
DESIGN OF OPERATING SYSTE~ KERNEL FOR A

MICRCCCMPUTEP SYSTEM

By

SYLVANA KRISTANTI-SARI
~

Bachelor of Mathematics

Uriversity of haterloo

Waterloo, Ontario

1977

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment cf

the requirements for
the Degree of

MASTER OF SCIE~C~

December 1979

DESIGN OF OPERATING SYSTEM KERh£1

MICRCCCMPUTER SYSTEM

Thesis Appr cved:

..

Dean of Gradudte College

1042993

ii

PREFACE

This thesis is a design of an operating system ker11el

for a microcomputer system. The design is used mainly for

submitting and retrieving batch jobs executed by the host

computer.

lhe author ~auld like to tl1ank Dr. J. Richard Philli~s~

my major advisor, for his guidance and assistarce to make

this project an enjoyable and meworable experience. The

author woulJ also like to thank Dr. Donald D. Fisher and Dr.

Donald w. Grace, the other members of the committee, a~d Dr.

M. Folk for their suggestions.

A special appreciation is offered to my brother, Agus

tinus1 for his dSSistance in typing my thesis durin~ his

visit to Still~3ter. I would also like to thank my p3rents

and grand!uother for their encouragement 1 love and confidence

which made this thesis possible.

iii

Chapter

I •

II.

I II.

IV.

v.

VI.

TABLE OF CCN1E~TS

Paqe

I NT Fi 0 DUCT I 0 ~: 1

Objective ••••••••
Overview ••••••••

. 1 L

OVERVIEW OF KE~NEL • • • •
~ Overview •••••••••• • • ~

• • • • • • • • 10 • 1 :;
Functions Available to User •
Communication with the System
LLnitation of the System •• • • • • • • • • 16

STHUCTURE OF KERNEL • • • • • • • • • • • • • • • 18

Levels of the Kernel •••••••••••• lt
Description cf Level Devendencies •••••• 20

KEhNEL DATA BASES AND kOUTINES •• • • 2t

Input/Output System •••••••
Command Interpreter •••••••••
File Management •••••••••••
Memory Management • • • • • • • •
Diagram of System structure •••••

• • • • ? 6
• • • • 53
• • • • 5C

• • 6 3
• • • • 6 9

DISCUSS1UN OF A KERNEL CCMMA~D • • 'l 3

The Procedure to Output a Disk File to the
Local Printer • • • • • • • • • • • •

Miscellaneous •••••• 7 " . .,)

SUM~ARY, CONCLUSIONS, AND fUTUhE WCRK . . . • 77

Summary and Conclusions ••••••••••• 77
Future Work ••••••••••••••••• 78

B I 8 L I UG H A P H Y • • • • • • • • • • • • • • 0 • • • • • • • 8C

APPENDIX A - CHARACTERISTlCS OF THS 1/0 INTERFACE
CONThOLLER ••••••••••••• • • •

APPENDIX U - OUTPUT I~TER~UPT ROUllhE DATA STFUCTURES •

.iv

• 81

APPENDIX C - POL UESCRIPTION OF OUTPUT INTEhRUPT ~OUTINE 87

APPEhDIA D - INPUT l~TERPUPT ROUTiNE DATA STRUCTURES •• 9C

APPENDIX E - POL D~SCRIPTION CF INPUT INT~RHUPT ROUTINE • 92

v

TABLE

Table Page

1. KERNEL SYSTE~ POODLES •••••••••••••• 21

vi

LIST OF FIGURES

Figure Page

1 .. Overview of the System •• 6

2. Trdnsition Diagram of User State •
3. A High-level POL Description of an Input Interrupt

4.

s.

6.

7.

8.

9.

10.

11.

12.

13 ..

14.

Routine •••••••••••••••••••• 14

A Hiyh-level FDL Description of an Output
Interrupt ~outine • • • • • • • . . . • 15

Hierarchical Kernel 5tructure • • 19

Interrupt Service Address Formation . . • 29

Communication between lOS and IOCS • • • • • • • • 3 5

Example of R£CQUE - • • • • 38

Diagram of Input from a 1erminal • • • 43

lOS Control of an Output Interrupt • • • • • 46

Diagram of Output to a Terminal • 49

Diagram of Output ta the Host • • • • • • •••• 50

Diagram of Processor Queues • 54

File Management and its Control Blocks • . . ·• • • 63

15. Didgram of Communication of Kernel Mod~les •••• 70

vii

CHAPTER I

INTRODUCTlO~

Objective

Computer technology has advanced rapidly since the

first computers were built in the late 1940s and early

1950s. These computers were built primarily to solve scien

tific and engineering pro~lems. The latest technological

developments are in the area of large scale integrated cir

cuits. This has resulted in the development of the micropro

cessor, a device which can function as a central precessing

unit (CPU).

Previously, the emphasis oi computer development was on

larger and more powerful machines, but these were expensive.

~icroprocessors are no~ readily available in large numbers

and at low cost. In comparison with large computers, a

microprocessor has limited capability ~ith respect to scien

tific and engineering problems; however, it is very useful

for controlling information flow frcm cne or more sources.

A typical application for a microprocessor is the con

trol of tasks for a larger computer. For example, a micro-

processor can be used to control various types of

input/out?ut. It is also possible for system designers to

1

2

use multi~le wicroprocessors for cert~in tyves of dedicated

processes that are now handled by a general purpose com

puter. The extent of such applicatiQns is just begiilning.

Conce~tually, a multiple microprocessor system could be

constructed. 1\'i th such a syst·~w, it is easy to see that oHe

of micro~rocossors could fail and still allo~ the other

grocessor!:i to oe>erate. This kind of system is still in the

davelopment phdse necause of the uLsolved problem of inter-

processor control. A limited multiple lliicro~rocessor sys-

tern.,.. however, can be considered and some cf the software

problems Cdll be ::tddressed.

The main objective of this thesis is the design of an

operating system kernel for a micrccom~uter system to allow

multiple users to create programs,. store ther1 on a disk file

and execute them on a host computer. 1n other words, th~

host computer vi~ws the input as a remote job eutry station.

A user may kee~ his program on d perilldnent disk file and

r e tr i eve it at any t .im e.

T h e i d e a o t u s i n g a n1 i c r o c om i_; u t e r t o u o .Lf - 1 o d du a h us t

computer is not new; this design, however, is a first step

in understanding the more qeneral problem associated with

d e s i g t1 i n g au o .P e r a t.i n q s y s t e m f o r a s y s t (~ m co n t a 1 n i n. g ili o r e

than one ,11icrocoui?uter in a multiuser environment.

Overview

Chapter Il introduces an ove.rvie,..; of the kernel by

describing the mJJOr functions of the kerneL Thi.s chapter

3

also discusses noA a user commurlicates ~iti1 the system, the

functions that are available to a user dnd the limitation ot

the kernel.

c t1 apt e r I II p r e sent s the s t r u c t u r e o f the kern e 1 • I t

discusses the Oi:Jeratinq syste,u components at each level and

how these coffipor1ents communicate ~ith each other. A table of

the basic modules of the kernel and their function is given

in th.is chapter.

Chapter IV presents a detailed description of all sys

tem modules a:1d their data bases. The description is cate-

gorized into several sections: theJ are the input/output

syste;i;, the comaiand interpreter, file mandqement aiH3 .uemocr

The in~ut/output system consists of several

modules such as Loqon, Logoff~ the console scheduler,. IOS,

IDCS dnd the couununication moduJe. File wcmdgerrH'.:nt consists

of the file rndnager and the disk manager. The design of file

management or rne~ory management is not considered in this

thestsi only the design of the interfaces are presented .. The

data bdses are described in terms of PL/I-style structure

declarations in which each field is described in detail.

This chapter also contains a few diaJra~s illustrating ho~

the Sist~~m modules comwunicdtt:: ;.;;ith one another.. At thf! end

of the chapter 3 diagram showing tl1e overall system struc-

ture is presented.

ln order to give a better overview of the design of the

k ern e I, a d i s c u s s i o n o f h ow the s y s t em w o r'o< s f or a p a r t i c u-

4

lar co~~and is presented in cha?ter V. This involves a dis

cuss ion ot the op er at :i or.s o [the command in te rp r-eter, the

file rnana]er, the disk manager, lOS and lCCS.

The ar)pend1ces include PDL descriptions of the input

interru2t routine and the out~ut interrupt routine. There is

also a discussion of the characteristics of the I/O inter

face controller.

CHAPTER I1

OVERVIEW OF KEFNEL

Overvielfl

The kernel is a multi~rogramwing operating systeffi

designed for a microcomputer system. It supports rnulti~le

users in ~hicn each user has a terminal. Any type ot I/C

devices car. be .SU;?ported, but the current system is config

ured as illustrated in Figure 1.

The present system design only supports background jobs

executed in a foreground manner. As shown in Figure 1, each

user comw~nicates with the microcomputer system. Prior to

submittirj a job, a user creates a filE which is stored on

the disk. The user may then submit the job for execution on

the host by using the capabilities cf a command interpreter.

CommunicatioH ;..;ith the host is accomplished by using a

specidl protocol. This involves the formation of messages

which are composed of a header, text and trailer, each of

which is several chdracters in length. For an IB11 system,

one protocol tnat is often used i~ com~unicatioc with the

host is the byscyn (BSC) protocol. the otner protocols are

asynchronous and synchronous data link central {SDLC) proto

cols. A detailed description about communications' protocol

may be found in Schoeffler (6).

5

Pr i rt e r

User
T <~fll i Nll

ff 1.

~J

Host

Host Contro11£r
and t.Joden's

Microccmt_:>uter
Sjstcm

•

User
Ter:ninal

ii 2

User
I~rminal

il 3

•

Commuric.ation
Link

Di.sk Controller

. User
'I'Brn;inal

il n

Figure 1. Overview of the System

7

From the host point of vie~, the kernel is just another

card redder and printec. When a user submits a batch job 1

the kernel passes the information to the communication

module (a ~odule which is res~onsible for setting up the

protccol) a~d the latter sets up the protocol in such a ~ay

that the host recogniLes the input as a rernote job entry

station. In a siwilar way, the output from a batch job Wd}

be retrieved. For instance.., the kernel may request a signal

from the communication module to allow the host to send the

out~ut to the ~icrocoru~uter. The host inter~rets this

request as a signal to output scme information to a line

printer.

A user has an option of either storing the output of a

batch job on a d.isk file or printing it at the local

printer. If the user chooses to store the output on disk,

the out2ut file is stored as a permanent file. An author

ized user aay request that the file be deleted at a later

tirne.

The system also provides a mechanism for retrieving the

status of all batch jobs currently in the system. This

allows a user to know whether the job has been submitted or

stored on a disK output file.

The kernel maintains the status of all batch jobs cur

rently in the system. The status bit is zero if the job has

been submitted to the host, and one if the job is completed.

Uklon system initialization the status of all previously suh-

mitted batch jobs are purged.

done on a daily basis.

This initialization may be

Th e r e i s o nly o n e c o nm u r: i c a t i on li n e c <.l n n e c t i n g t h e

microcomputer system to the host. The kernel schedules d job

for submission to the host as long as the cGrrespcnding user

is in a running state and the line to the host is not busy.

Otherwise this user is placed in a blocked state and must

~ait to use processor time.

There are several different states that a user may be

in. A user is in a running state if he is using ~rocessor

time. Upon an I/O request a user is moved from a ru~ning

state to a blocked state. Figure 2 gives a transition dia

gram showiny how the states of a user change. A user is said

to be dispatched ~hen the kernel gives the user the CPU.

The terminology of multiprogramming may be a misleading

concept (as defined in most operating system books). Multi

programming, in a tiffiesharing system, refers to the concur

rent execution of t~o or moce user precesses in a single

computer system. In the context of the kernel, the concur

rency occurs in interpreting user commands, net in executing

several processes.

To support multiprogramming the kernel handles the

sharing of system resources among executing users. Some

resources, such as the line printer, are exclusively allo-

catt.d to a user until the task is completed. Other

resources, such as the CPU and memory, are shared dynami-

Dispatch
(inter r Uf:l ts)

Runninq

I'

'
Blocked

I~

/

lt

{
Interrupts
IJO., timer)

Figure 2. Transition Diagram of User State

cally. The kernel supports tirue slicing (sharing CPU time

among several users by alternately giving each a short

interval of time) by using a timer.

Each terminal way have a different rate of information

transmission. The kernel provides an adjustable system par-

ameter thdt allo~s terminals to be set at different rates

depending u;_..on terminal characteristics. This vrovides a

mechanism fer adding new terminals to the system. There are

also operator commands which are uble to display or change

the current baud rate of any terminal. These commands are

useful fo.r diagnosing con;n:unication problems.

l-ieruory allocati en for the user is partially handled by

hard~are using bdnk allocation. The memory is partitioned

lC

into several memory banks. The system provides a mechanism

that allows the kernel to select one or more banks. One of

the banks is used by the system a~d is referred to as the

system bank; the others are referred to as user banks. The

kernel controls memory bank selection and assigns a free

bank to every user.

k bytes. 1

The maximum size of a bank is about 64

The major functions of the kernel are:

1. tc perform input/output operations,

2. to interpret commands froru users,

3. tc assign storage fer users and system functions 1

4. to schedule batch jobs, and

5. to retrieve batch jobs.

Functions Available to User

The main objective of the present design of the kernel

is tc allcw a user to submit batch jobs tc the host com

puter. To support this objective the system provides multi

ple terminals for users. A user can cre~te a file contain

ing the program from the terminal using a text ed.i.tor and

store it on a disk. The text editor allows users to manifU

late files in the usual way. For example: save a file,

11K is equivalent to 1024.

11

recall a file, delete a file, change one character or few

characters in a text {fro~ a file}, and delete lines from a

file.

The system also provides user commands ~hich serve as a

convenient tool for users to request services of the system.

Briefly, the ba3ic user commands are:

LOCGN: The user establishes contact ~ith the system. With

this command the user gives a valid user identifi

cation and password.

LOGOFF: The user breaks contact with the Sjstern. The syste~

then displays the accounting information.

SUBMIT <in~ut file 11ame): The user requests the system to

submit a batch job to the host. The input file

name is the name of the file containing the prograrr

to be executed. The system gives the user a unique

jcb number for each job submitted to the system.

This job nurrber is actually assigned by the host.

The user could examine the status of a job using

STATUS command {discuss below).

STATUS <userid1Job#>:2 The system displays the status of a

job for useridljob~ specified.

OUTPUT <useridljob#> <destination>: The user requests the

output of a batch job identified with useridfjobj

to be ~rinted at the designated destination.

z• f • signifies concatenat.ion.

l 2

Communication with the System

The user communicates with the kernel primarily by

meatJs of a term.inal. ~hen the user sits down at the terrui-

nal and turns it on, the system issues a logon message

requesting the user identificatior. This identification is a

userid and a pass~ord. The kernel checks this identification

in a table of authorized users and if a match is found, it

tells the user to proceed. The system module ~hich allows

the user to be able to ruake contact with the system is rarueri

Logon.

Input and output from a terwinal is handled on d char

acter-by-character basis. When the user strikes a key., th€

corresponding character is t~ansmitted to the I/O interface

module in the microcomputer system and an interrupt is gen

erated. This chardcter ruust be removed frow the 1/0 data

transmission buffer before the user strikes another key, or

else the first character is overwritten by the next charac

ter.

A terminal is a combination of two devices in one unit,

a keyboard and a printer. When a key is struck the terminal

acts as input device and !?laces the character in a data

transmission buffer. When the terminal receives a character

trow the system, it acts as output device, and prints the

character Gfi paper or displa}·s it on a video screen. The

kernel is res~onsible for controlling the transmission of

character to and from the terminals. The system module that

13

controls the transmission is called IOS (In~ut Output

System).

Associated ~ith every active user is a workspace ana

several T/0 buffers. For input processing there are two

buffers; tor out~ut processing a siLgle buffer. Both types

of buffers are fixed in size and reside in fixed locations

in the system area. Their capacity is one record, where the

length of a record is variable. The actual size is deter-

mined by the physical characteristies of the device. 1he

system also provides a system parameter that allows an oper

dtor to adjust the size of the record accordingly.

lOS is an interrupt driven system. It consists of

several subrnodules. Logon is one of the submodules. The

other subruodules are Logoff, lnput interrupt ~ystem, Output

Interrupt System, the communication module and console sche

duler. The basic design of input interrupt system is given

in figure 3.

All the designs are ~ritten in POL (7) {Progrdm Design

Language), a ~seudo language with structured programming

technique as a replacement of the flo~chart.

The kernel has an input interrupt service routine to

handle all terminals as well as irput from the host. Figure

3 describes the skeleton of tl1e input interrupt routine.

The actual iiliplementation of input interrupt routine is

device-dependent.

save all registers used;
input a character;
ec h o i n p u t c h a r a c t e r ;
IF end of request is detected 1HEN

ELSE

FI;

request IOCS to ~lace the data in user•s
workspace;

place the character received in one of the
irput buffers tc form a lire (reccrd);

restore all registers;
enable interrupt;
return;

Figure J. A High-level PDL Description of an Input
Interrupt Routine

14

The interface between a user program and the 110 can-

troller consists of a procedure called IOCS (Input Output

Control System). IOCS has the responsibility of copying data

from input buffers to a user worksvace or from user works-

pace to an out~ut buffer. For the latter case lCCS only

transfers the data cne record at a time. When the output

buffer is full, IOCS does the proper initialization to allo~

the device to output characters to the ccrresponding device.

The PDL. for the output interrupt routine is shown in figure

4 •

Users communicate with the system using user commands

via a terminal. These commands are used to communicate

with the file system, with memory rnanagemer.t, or for yairing

access to subsystems such as text editor and other similar

system rescurces. The kernel contains a command interpreter

15

to inter~ret these com~ands. 1he command interpreter

interprets a user corrmand in a user workspace and transfers

control to the ap~ropriate routine tor further actions.

save all registers used;
output a character from output buffer;
IF output buffer is empty THEN

mark output buffer emfty;
FI;
restore all registers;
en~ble interrupt;
return;

Figure 4. A Hiyh-level PDL Description of an output
lnterrupt Poutine

One other imJortant task of the kernel is to mdintain

all the u~er files. This is the responsibility cf the file

management module. It consists of the file manager and disk

manager. Ihe disk manager controls the actual movement o.f

data from the device (disk) to a user area (in a system

bank). A user bank is d:ivided into two partitions. One par-

titicn is used as a workspace fer terminal I/O operation,

and the other is used as a workspace for text editing. The

user area is part of a system bank which is allocated by the

memory management module to serve as a transfer station. The

length of a user area is determined by the physical charac-

teristics of the disk and is chose~ to be a multiple of a

record.

16

With the. existence of the file ITdnager a user can

perform several functions:

1. The user may create, change or delete files.

2. The user may control the access to the files
and the type of access allo~ed1 such as read
or :write.

3. The user may provide a file back u~ in case a
file is accidentally deleted or damaged.

The process of a user breaking contact with the system

is taken c~re by the logoff routire. Upon termination of a

user session the logoff module:

1. updates accounting information,

2. calls memory rnanayement to deallocate all storage
used during an active session,

3. calls fila management tc save temporary files, if
any.

Limitation of the System

At the present time, the design of the kernel does not

include file management, rueruory manageroent, communication

module or text ed.itor. These are self-contained modules

specified in terms of functional attributes. The main con-

cern here is the system and interfaces design.

When the command interpreter is given a user command

requesting services o£ the file manager, the command inter-

preter sends a request to the file manager along with the

function specified by the user. The file manager might com-

17

mand the disk manager to do the appropriate actions, if nec

essary, but it cannot directly communicate with the disk

manager.

The system performs no error checking on the byte being

transmitted excegt in the protoccl. Error detection and

recovery are on reception of characters. The module that

provides the error detection and recovery are different

depending UfOll the device type. There are only three sources

of input, either from terminals, the host or cassette tdpe.

lOS detects and recovers overrun errors from terminals.

The I/0 channel provides a mechanism to detect these errors.

As each character is input to the system, lOS checks fer a

possible overrun error by interrogating the status register

in the I/C interface. If there ace ary errors then lOS

prompts a special character to request the user to retran

smit the entire current record. The communication ruodule

detects and recovers errors for input frcru the host.

The size of a user workspace rright not be large enough

to contain a huge user pro;ram. At the present time there

are no facilities provided by memory management to enlarge

the size of the workspace alloc6ted. ~ solution to this

preble~ is to allow the editor to copy the user program to

the disk ~hen the ~orkspace is full.

CHAPTER III

STHUCTUWE OF KE~NEL

Levels of the Kernel

The structure of the kernel is designed using hierarch-

ical concepts. The construction of the kernel is such that

a given l~vel is allowed to call upon services of lower lev

els, but 11ot on those of hi9her levels. In other ~ords, each

successive level, from the bottom up, depe~ds cnly on the

existence of those levels bela~ it and not on those above

it.

The kernel consists of 3 levels as follows:

1. level 0 - Input/Output System

2. level 1 - File Managerne£t

3. level 2 - User Domain

These levels are diagrammed in Figure 5.

The hierarchical approach has the advantaye of

distributing the system functions. Each level does not

really have to know whether other levels are in the same

processor. The most important consideration is the design ol

the interfaces bet~een each level. 1hese are described

thoroughly in the next chapter.

18

19

User Ucnair

r-· ile \'anagernent

I/O Ststem

Machine]
Level 0

Level 1

Level 2

Figure 5. Hierarchical Kernel Structure

from Figure 5 memory management does not apiJear in any

level; this is because all levels need the rneffiory mandgement

services to allocate storage within their cw~ processor. Ir

order to distribute the system functions over several

processors, memory manage~ent must exist on all levels and

on all processors. Chapter IV liiill discuss the functiOllS of

m e m o r y .Ui an a g e w e n t i 11 m o r e d e L:li 1 •

2C

Description of Level Dependercies

In the following section each level of the kernel and

its dependencies on other levels below it are described. The

data structures for interfacing among levels are described

in more detail in the next chapter. Table l lists each

module of the kernel and the general functiDil associated

with it.

This system co~sists of several submcdules. They arE

logon, layoff, ros, roes, the console scheduler and the com

munication ruodule.

~hen a user is making contact with the system, the

logon takes control of the system. It searches a table of

au.thorized users and if a match is found then the user may

proceed; otherwise the system gives several tridls to the

user to resubmit the identification. Logon uses mewory man-

agement to allocate a free user bank. Before the logon

module transfers its control to lOS, the console scheduler

places the user identification irtc a blccked user queue.

This allows the command inter~reter to service users by dis

patching the first user in the queue. This queue, along with

others, is described in Chapter IV.

As each character is input 1 lOS assembles the charac-

ters into a record tn one of the input buffers. ~~he.n the end

of record is detected (for example for a terminal it is a

TABL~ 1

KERNEL SYSTEM MOCULES

~ odul e

Merrory Management

Logon

Logof:f

IOS

roes

Communication module

Console Scheduler

F i 1 e f.l an age r

Disk Man age r

Command IDterpreter

Editor

runction

Allocate and deallocate memory
space for other modules and
system bonk

Authenticate user and logically
connect terminal to the system

Disconnect terwinal from the
system ard update user
accounting information

Control channel
input/cutput operations

Control data flow from I/O
sources

Establish protocol for
collimunication link with
lBl-1 37 C

Schedule new users and
allocate processor time

Maintain all user and system
files

Control disk input/output
operatior;s

Interpret user commands

Text or program manipulator

?1

22

carriage return), IOS puts a reGuest in a re~uest q~eue

(REQCUE) fer servicing by lOCS. This allows IOCS to copy

the record to the avrropriate workspace. The request ~~eue

is a circularly linked queue. Allocatiny and deallocating

nodes for REQCU~ is the responsibility of memory Ranagement.

In servicing a request from the host, IOS calls the

communication module to perform the tas~. The co~munication

module is responsible for setting up the appropriate proto

col in a form recoyrizable by the host before copying the

data to the indicdted output buffer.

The two modules, IOS and TCCS, communicate by means ot

a control block which contains information such as the

address of the in~ut or output buffer, address of the user

area, the status of buffers and other pertinert information.

All devices in the system have static control blocks, exce~t

for dedicated devices such as the line prirter or a tape

drive. In these cases, dynamic control blocks are allocated

and deallocated by memory management. ~hether static or

dynamic, all control blocks are of fixed size.

file nonagen:ent

This module consists of t~o subruodules. They are the

file manager and the disk manager. The interface betwee~

file management and I/O system is similar to the interface

between rues and lOS. Upon an implicit reguest 1 from a user,

the fil~ manager initializes another kind of control block,

23

similar to the I/0 control block1 referred to as the disk

control block (OKCB). The file manager commands the disk

manager to control the data movement by placing a request in

a disk re~uest queue (DRQUE) to allow the ~isk macager tc

move the data to and from the disk. Both DRCUE and FRCUE

are implemeGted as circular linked queues and requests are

serviced by the disk manager and file mdnager, respectively.

The file manager calls upon memory management for

several services. For exaruple 1 the disk control blocks are

allocated for each user re~uest and deallocated at the end

of tl1e task. Memory management also provides an availabil-

ity list for allocating and deallocating nodes of DRUUE and

FRQUE.

The disk manager examines DRQLE to determine if it is

empty or not. If DhQUE is em~ty then the disk manager is

idle becaus€ no service is requested from the file manager;

otherwise, the disk manager performs the appropriate tasks

defined in DRQUE. The structure of DRQUE and FRQUE are dis-

cussed in mere detail in the next chapter.

Similarly, the file manager is idle if fRCUi is empty.

There are three possible types of requests in FRCU~ origi-

nating from the command intervreter, ICCS or text editor.

1 A user requests the kernel, through the command inter
preter, to manipulate files. The command interpreter serv
ices the request by placing an entry in a file reyuest
queue (fRJUE). The file manager examines FRQUE ard does the
proper actions.

24

roes reyuests Lhe file manager to copy data from the user

area. This occurs when a batch jcb is being retrieved. The

con:razHd intertlt<der re,;uests the file manager to manipulate

filEs, suci1 as Jrint a file stored on a disk at the local

line IJrl . .tlter. r;li!:i causes the d.isk wanager to place a

request in RfQ~U~ to allow ICCS to co~y the data from the

user :::1c ea to the output buffer. The text editor alsc

requests the file rednager to co~y the content of a file to a

usrr work3pace for editing.

At Ulis level the command ir;tert?reter schedules users

for comma.,d D:-!ecution. A user is said to be eligible tor

eX(!ClJtion if hB is not waiting for comf)letion of an

input}out)ut 0)~raticn or for a new time slice or for the

COl'-pletiOi; of :w I/O operation from other users. If one of

these condi Lions occurs the command interpreter blocks the

u:_;er and t>l<Jce:; the user in a b.lock~d queue. 1his queue con-

sists of J save area containing the status of the processor

for a partiv.tllr user. 'r.he save area includes information

such as the coutents of processor's registers and the pro-

gram count?r
CUil ~ull11nq a pointer to the ne~t user command

to be interprot~J by the command interpreter fer resuming

the contru::.

As n: e n t i ..:rh' d in t h e f r e vi o us sec t ion {f i 1 e man age men t) ,

t h e u De r d o ~1 d i.. n (t 11 e c o nm: and inter pre t e r and t e .x t e d i tor)

25

ar1d the file maragement (the file manayer) communicate by

means of a file request queue (F~QUE). Upon user request,

the text editor and command interpreter place their requests

in FRUUE.

The text editor is used by users to enter, delete, and

modify text and write it on the filE. The file name is usu

ally requested by the editor and the user can change the

name if desired. ln creating a new file the text editor does

not have to place a request in FhQUE. In order to allo~

users to manipulate old files the text editor requests the

file ma11ayer 1 ~hich in turn requests the disk manager, to

copy the contents of the file from the disk to the indicated

user workspace.

CHAPTER IV

KERNEL DATA BASES AND hOUTINES

This chapter presents a more detailed description of

the modules in the kernel and their data bases. 1he data

bases are described using PL/1-style structure declarations.

At t h e en d of t h is c hap t e r a d i a g r am s h ow i 11 g t h e o v e r a 11

system structure of the kernel is given.

Input/Output System

At the present time the Input/Output system only sup-

ports three ty~es of communication devices: terminals, a

line printer {local) and a communication link to the IBM 370

called the host. The disk is not considered as part of the

I/O system since i.t has its own disk controller. It does,

however interface with the lnput/Cutput system.

Interrupt System

The word interrupt has been mentioned several times ir

the preceding chapters. There are various ways to implement

and define interrupt mechanisms. Madnick and Donovan {4)

define an interrupt as:

l. A response to an asynchronous or exceptional
event that

26

2. Automatically saves the current CPU status to
allow later restart, and

3. Causes an automatic traDsfer to a specified
routine called an interru~t handler.

27

Only the third definition of an interrupt is explored i~

depth in this section.

One interrupt method that ZSC microcomputer uses is

called vectcrin9. This means that each irterrupt scurce

provides data (an address) that the CPU can use to identify

t.he source of the interrupt. It usEs fixed m€mo.ry lccaticns

for storing an array vector of addresses and is therefore

called an interru~t address vector.

ln mode 0 the interrupt address is at location OOxxxCCC

where xxx is a 3-bit binary number that is part of the

instruction which has the binary forw llxxx111. Since the

zao is an 8-bit microprocessor using 16-bit addresses, the

contents of the new program counter are set to

OOOCOOOOCOxxxOOO. This is equivalent tc the standard RST

instruction used by the 8090A.

In mode 1 no .inter-rupt vectcr is I]e€ded. The zac

interrupt response logic automatically assumes that the

first instruction executed following the interru~t res~onse

will be a restart which branches to ~emory location 0056 (i~

hexddecimal).

In mode 2 it is possible to s~t up an array of 16-bit

interrupt address~s anywhere in addressable memory. These

16-bit addresses identify the first executable instruction

of interru~t service routines.

interruvt service address is as

The formation

follows: the

of

ZBO

28

the

CPU

combines the I (interrupt vector) register contents with the

interrupt res~onse vectors from the external logic (the 1/C

interface logic). These 16-bit addresses are used to access

the address in the interrupt address vector table. Since

16-bit addresses must lie at even memory boundaries 1 cnly

seven of the eignt bits frovided by the external logic are

used to create the table address; the lew order bit is set

to zero (5). Figure 6 illustrates how an address is formed

and how it points to an address in the interrupt address

vector.

Each fuicrocom~uter system has its own I/O interface

conventions. The following discussion is based upou the

Cromemco system (1).

There are 16 possible interrupt scurces on each I/C

board. Among these, ten of those are timer interrupts with

different hardware priorities. Loading the interval timer

with a value of zero causes an intermediate interrupt. The

8-bit interval timer provides intervals that vary in

duration from 64 to 16,320 microseconds.

can b e i fllfi 1 em en t e d i n so f twa r e •

Longer intervals

ln order to be able to use all possible interrupt

sources, the kernel must use interrupt mode 2 which allows

the I/O controller to generate a unique response ~ithout the

need for chaining the interrupt request and pclling the

response.

I Register:

* l

Inter:ru~t Res[onse
Vector from ixternal Logic

I i t I I
'

~

~~~ 

1 f f I I 0 

29 

Interrupt 
Address 
Vectors 

JJ 

JJ 

KK 

Kl< 

LL 

LL 

kt-: 

NM 

NN 

N ~~ 
" 

oc 

00 

16-bit aaaress points to first 
of two bytes in Interrupt Address 
Vector 

Figure 6. Interrupt Service Address Formation 



3C 

The lJC interface controller prioritizes interrupts in 

the order shown bela~: 

1st - Interval Timer 1 

2nd - Interval Timer 2 

3th - Extern1l Sensor 

4th - Interval Timer J 

5th - Receiver Buffer Loaded 

6th - Transmitter Buffer Emptied 

7th - Interval Timer 4 

8th - Interval timer 5 or an Externdl Input 

The fifth i~terrugt is an input interrupt and the sixth is 

an output interru~t. 

All modules of Input/Output system {lOS, IOCS, Logon, 

Logoff, Ccnsole Scheduler) use the previously described 

hardware capabilities. In order to apply the present design 

of the In~ut/Output system to a microcomputer system with 

diflerent TJO interface controller the system must have at 

least an irterrupt system and timer interru~t. Most modules 

within the kernel's I/O system, such as !OS, Logon, Console 

Scheduler are interrupt driven routi~es. Appendix A 

discusses in more detail the characteristics of the 1/C 

interface controller currently used. 

LO~ON 

The data structure for the logon and logoff is in form 

of a table na~ed LONTA3 (Logon table). The size of this 



31 

table depends on the nu~ber of terminals existing in the 

system. The structure is defined by: 

DECLA«E 
1 tCNlAb(*)1 

2 STATUS UIT(2), 
2 urn cH~~CB), 

2 PSWD CHAP{4); 

wheie the fields are defined as fcllo~s: 

STATUS: This field contains the status of the device (ter-

mical). It is zero if the terminal is inactive and 

one if an authorized user is allowed to use the 

system. It has the value cf twc if the user is in 

a blocked user queue waiting to use the system 

facilities. The value of 3 is undefined. 

UID: This field consists of an 8-character string for a 

user identification. This identification is com-

pareti with the entries in a table of authorized 

users. 

P3~D: This field contains the password associated ~ith 

UID. In order to be eligible to use the system bath 

UID and PShD should be correctly specified by the 

user. 

The user ~egins a session by turning the device on. Ir 

order to recognize an i11terrupt, even if no device is physi-

cally connected at the beginning, requires that the 1/C 

i11terface co~troller be initialized to accept characters 

frore the device (terminal). To initiate logon a user must 



32 

hit the cdrriage return three times. This allows the logon 

module to do the following: 

1. If STATUS is zero (logoff) then issue a logon 
message such as 'LCGON - EhTER USERID AND 
PJSS~ORD•, else Jrompt a rejected logcn 
rressdyc. The latter can ~nly happen ~hen the 
teriliinal is disconnected improperly follo~ing 

another logon (hitting carriaJe return). 

2. Once a correct identification is given, 
U ~ E iH D a n d P S W D a r e s t o r e d i n L 0 t~ T ;, !3 an d 
STATUS is set to indicate that this device 
is no~ in the logon state. The Io9on module 
gives several trials if wrong identification 
is typed in. If the user fails to identify 
himself then a logoff message is prom~ted. A 
user may try again by reDeating the precess 
beginning at 1. 

3. If logon is successful then 

a. Call memory managemert to allocate 
a free user bank and update the 
table (BANK'fA8) containing this 
informatior:. 

b. Load the interval timer of lower 
priority than the device (timer 4) 
with a count of zerc to cause an 
immediate interrupt {1). This 
a11ol<is the console scheduler to 
search LC~TAB to fird an active 
user (STATUS is one) and place this 
newly active user in a blocked user 
queue. It then sets ST.ATUS to uin 
progress." 

c. Put a different address in the 
I~terrupt Address Vector. This 
address will be the address of the 
actual input interru~t routine. Any 
characters typed, at this poi~t of 
time, cause a JU~p to the lOS 
module. 

Step 1b allows the system tc trigger a lower priority 

interrupt level and exit from the higher routine. The lo~er-



33 

priority routine the~ performs the functic~s indicated but 

is interruptable by higher-priority signals. 

Console Scbedul~t 

The conso1e scheduler is called by the timer interrui)t 

routine set up by the logon module. It searches LONTAB tc 

find an active user with STATUS equal to one and ~laces this 

user identification in a blacked user queue. 1his queue con-

tains all active users ~hich are waiting for the command 

inter~reter to schedule them. Finally, the console scheduler 

sets STATUS to thB value of two to indicate that the user :is 

now in a blocKed user queue ready to use system facilities. 

Loqcff/Discaon~~t 

When the logoff module is called by the command inter-

preter it does the following: 

1. it updates the accounting information, 

2. it calls mewory management to deallocate the 
user 0auk, 

3. it prompts the user with a lo~off message if 
the .status of tile device .is still in 
progress, 

4. it puts a svecial address in 
Address Vector which JCitts 
module. 

the interrupt 
to tlle lager. 

~hen a disconnect occurs (for example the terminal is 

momentarily turoed off) oc the terminal is not being used 

for a period of time, the logoff occurs automatically. This 



34 

is done by a submodule of the input interru~t routine for 

terminals. It is iffiplemented with another timer interrupt 

routine which checks the time the l~st character was input. 1 

Once it passes d certain interval1 this timer routine sets 

STA1US to zero (logoff) and places a logoff command in a 

user workspace. Tho reason for this is to let the command 

inter~reter finish interpreting the current line. Once the 

command inter~reter interprets a logoff command it calls the 

logoff vrocedure. 

I n p u t ;) n d C u t p 11 t I o :t Er runt S y s t em 0 0 S ) 

lOS and lCCS (input Cutput Central System) communicate 

by means of an Input Output Control Bloc~ (IOC8) afid a 

request ~~ueue (REQQUE). Each device in the system has its 

own rocq e~cept for dedicated devices such as the line 

printer and cassette tape. IOCj for devices other than ded-

icated devices have a fixed !:>tructun~ and location. The ker-

nel reserves some memory locations in the system bank lor 

all fixed lOCB. for deaicated devices their IOC8 have a 

fixed structure but variable in location. It is allocated by 

memory management when it is reeded and deallocated when the 

task is completed. Therefore, it is necessary to store the 

address of IOC3 in RECOUE to allow roes to examine the cor-

1~ithout a tiillcr irterrupt there 
kernel to detect whether a terminal 
inactive. 

is nc way for 
is still active 

the 
or 



35 

respcndinJ roes. Figure 7 describes the communication 

between TvS aud Iuc;:;. 

lCCS lCS 
-------------------> 

hEQCUE 
<-------------------

lOCH 

+------) <-----+ 

Figure 7. Communication between lOS a~d ICCS 

IOClJ is defined by: 

DECLARE 
1 ICCB, 

2 STATUS uiT(l), 
2 DSVTP FIXED BINARY(15 1 0), 
2 DEVNUM FIXED BINAhY(15,0), 
2 ADPUR PDU.TER, 
2 l\DRlB POINTER, 
2 ,~DROB POINTER, 
2 TOTAl FIXED BINAnY(lS,O), 
2 ADRDKCB POINTER, 
2 EOD BIT(l); 

where the fields are defined as follows: 



36 

STA1U5: This bit is zero if the request is inactive; other

~ise it is active. This field is used by the Input 

DEVTP: 

Output Control System (IGCS) to determine whether 

the out?ut buffer is empty of not. The request is 

said to be inactive if the output buffer is em~ty 

and a c t i v e c t h e r w is e • I n t h e 1 at t e r cas e, l C S is in 

process of transmitting characters to a device. 

This field is set and reset by lOS and is not used 

fer input since roes copies the data frcm an input 

buffer to the indicated area only if the input 

buffer is full. Hence, lOCS does not have to delay 

servicing an input request. 

This field contains a binary number which defines 

the type of device that is connected to the system. 

D E V rdP-i : T h i s fi e 1 d con t a ins t h e de v ice n u w be r f o r d e v i c e s 

in the 5ame category. 

ADRU.R: 

ADRIB: 

. \OROB: 

TOTAL: 

This pointer is the address of a user area or a 

user work area. It contains the address of a user 

workspace if the input is from a terminal. 

This pointer is the address of the input buffer 

which in progress. Note that there are t~o buffers 

for input and only one is being used for the proc

ess of accepting characters. 

This pointer is the address of the output buffer • 

This field contains the number cf characters in a 

user area or a user ~orkspace, depending on the 

value of ACRUR. 



3 'J 

hDRLKCR: This pointer is the address of a Disk Control BlocK 

(DKCB). This field is used only for transmitting 

data from or to a file. By followi~g this poi~ter 

ICCS informs the disk manager •hether the user area 

is empty or not. In other cases this pointer might 

contdin a null pointer. 

EGO: This bit is one if the end of data occurs, zero 

otherwise. This field is only used for transmit-

t iii g data fron:. a file ar.d for the host 

input/output. 

For output, EOD is used tc indicate whether a file 

to be printed or to be sent to the host is empty or 

not. The disk manager sets or resets this field 

accordin,Jly. 

For invut, EOD is used to indicate whether more 

data is comi~g from the host or net. The communica

tion module sets or resets this field accordingly. 

In the case of a dyramic ICC3 1 lOCS needs the location of 

IOCU in order to ackno~ledge IOCS concerning the status of 

the output buffer. 

Memory management is responsible for reserving a fixed 

location for the address ot dynalliic lCCB's once they are 

allocated. The symbolic name of the memory location is: 

PhlhFO POINTEh - this location contains the address of the 

pri rter • s lOCH 



38 

CTI~PO POI~1ER - this location contains the address of the 

cassette tape's IOCB 

There ar(~ similar "fixed locations" reser11ed for storing the 

address of any dynamic ICCB. This allows IOS to follow the 

pointer alld be able to set and reset tbe STATUS field in 

IOC8 depending on the condition of the output buffer. 

The request queue {REQCUE} is a circular linked queue 

that is used to request lOCS to transfer data from a user 

area (or a user ~orKspace) to an output buffer, or from a 

full (active) input buffer to a user area (or a user worKs-

pace). The respective modules, that need this service, 

insert their reyuest at the end of the queue. IOCS services 

the requests, one at a time, from the front of the queue. 

For this purpose only one pointer 1 Front, is needed to 

manipulate the REUQUE. Figure 8 describes a typical RhCQUt 

containing three requests, the first request is an input 

request, and the others are output requests. The fields of 

REQQUE are described in the next paragraph. 

Front 

~+ 100 . : I + I 57 I· I ) 1 1550 I· 

Figure B. Example of RECQUE 



39 

The ~ueue is ew~ty if Front is a null pointer. For the 

case when IOCS needs to service the next request because the 

status of the ~resent request is active, IOCS moves the 

Front pointer to the next request by fcllcwin] the link 

field. This has the sarre effect ns placi&g the current 

re~uest at the end of the queue (because of tte characteris-

tic of a circular lirked queue). 

Memory management provides an availdbility list for 

allocating and deallocating nodes for REQCUE. The stucture 

of a node for REQQUE is defined by: 

DEC L Ai~E 
1 REGQUE, 

2 LiiR BIT(l), 
2 ADki0CB POINTE~, 
2 t-iEXT POit>t1l:.R; 

where the fields are defired as fcllo~s: 

DIR: This field contains the direction of the movement 

cf the datr1. As mentioned above this bit is zero 

if IOCS moves the data from a full input buffer to 

a user area (or a user ~orks~ace); otherwise it is 

one. 

ADRICCB: This pointer is the address of IOCB. It is used to 

point to a dyndlliic lOCB that has been allocated by 

memory management for dedicated devices. 

NEXT: This is a pointer to the next request, if any. 

As mentioned in previous chapter, there Wdre two input 

buffers and one output buffer. The structure ot an In2ut 

Buffer {l~BUFF) is as follows: 



DECL!I!\E 
1 ll>B UF F, 

2 RUFUSE JIT(2), 
2 LENGTH f'JXED fHNA.hY{l5,0), 
2 BUFPTR FIXED JINAFY{l5,0) 1 

2 BUFSP CHARACTER(255); 

40 

where the fields are defined as follows: 

BUFUSE: This is an input buffer i£dicatcr. It is zero if 

the input buffer is empty, one if full and t~o ii 

ICCS is using this buffer. IC~ is respcnsible for 

setting the field to one (buffer full) while the 

other two conditions (empty,busy) are set by lCCS. 

LENGTH: This field contains the lecgth of the record. Its 

value depends on the physical characteristics of 

the device. 

BUFPTR: This field is used to point to the next location of 

BUFSP. 

BUFSP: This field is reserved fer buffer s9ace. The maxi-

mum size is 255 charaters. 

The st~ucture of an Output Buffer (OUTBUF) is similar to 

INBUFF except the BUFUSE field does not exist. 

defined by: 

Dt:CLARS 
1 OUTflUf, 

~ lhNGTH FIXED BINA~Y(15,0), 
2 9UFPTR FIXED 8INARY(l5 1 0) 1 

2 ROFSP CHAhACTER(255); 

where the fielJs are defined as in lNDUF. 

OUTBUF is 



41 

The kernel provides one input and one out}!ut interrupt 

routine for each I /0 device in the .system. The description 

of the in~ut interrupt ruodule is divided into two sections 1 

one is an input from terminals and the other is from the the 

host. 

lppyt Interrupt EcuJine from Terminal§ 

As each character is typed in by a user IOS does the 

fo11ow.ing: 

1. Place the character in the in~ut buffer. 

2. Load the interval timer with the lo~est 
priority (timer 5) with a count of zero to 
cause an immediate interrupt. The function 
of this tirrer is to check on the time when 
the last character ~as in~ut. This checking 
is needed when a disconnect occurs or when 
the terminal is not being used for a period 
of time. The choice of the timer priority is 
based on the urgency of the task. 1he author 
thinks that this task is of low priority and 
can be interrupted by any other modules. 

3. Interrogate the status register of the device 
to check for possible overrun error. An 
overrun error is an error where the receiver 
buffer of the l/0 controller has been loaded 
witt1 a neilli byte before the previous contents 
have been read from the butter. If there 
are ary errors then ICS prom~ts with a 
specidl character requesting the user to 
retransmit the current l:ine (record). 
Meanwhile, ICS resets BUfPTR ard LE~GTH to 
the hli ti a 1 condition. 

4. Ii the end of a record is detected (detection 
of a carriage return) ther 

a. Call memory mauagemer,t to allocate 
a node for PEQGU£. lOS places this 
request at the end cf P£Q[Ut after 
initializing the DIR and ADRlOCU 
fields. 



h. Initialize the ICCB fields: DEVTP, 
DEVNU~, ADhUt.:, ADRIA a11d TOTAL. 

c. Set ilUFUSE to one to indicate that 
the input buffer is full. 

d. If the other input buffer is also 
full then load the interval timer 
of the highest priority (timer 1) 
~lth a count of one. This timer 
irterrupt allows the input Cutput 
Control System (ICCS) to serve 
n:EQ()UE JoJith an 11 in;;ut resuest" (the 
DIR field in REQGUt is zero ). The 
choice of a highest priority for 
the timers is a gu~r~ntee that IOC5 
finished copying the data from the 
input buffer before the next 
chardcter being placed in the input 
buffer. Since the priority of the 
input interrupt is lo~er than the 
timer 1, the interval tiu:er 
counter is set to cne. This gives 
enough tirre for the input interrupt 
wodule to finish its task and 
return frox the irterrupt before 
the timer 1 generates its 
interrupt. 

42 

Figure 9 shows how the data flews from the terminal to the 

user .. orkspace. 

The input interrupt routine also provides a mechanism 

to detect a break key hit by a user while the out~ut 

interruot routine is printing. If a user hits this break 

key the input interrupt routine sets the LENGTH field in 

OUTBUF to zero to indicate that the output buffer is empty, 

sets the TOTAL field in 1CCB to zero to indicate that there 

are no more characters in the user area or user workspace, 

and sets the STATUS field in ICCB to zero to indicate that 

the request is in active. With all of these conditions, IGCS 



43 

will Jelete the request by removin~ this request ncde from 

REQCUE. This input interrupt routine also sets the 1/C 

controler to disable an output interrupt. 

User 
Works~ ace 

roes 

I REQQUE 

<------------

<------------

IOCB 

Input 
Buffers < 

ros 
< 

T/0 
Channel 

~' 

Terminal 

Figure 9. Diagram of Input from a Terminal 

As mentioned earlier the kernel provides one input 

interrupt rcuti11e fer each I/0 devices in the system. This 

allo~s the system to recognize different break codes for 

different terminals. 



44 

Innyt Interrupt 1outine fro~ tbc Hos! 

This in~ut interrupt routine is similar to the inter-

rupt routine for invut from a terffiinal. This interrupt is a 

result of a user re~uest to retrieve a batch job. 

The cvrnmand interpreter calls men,ory managen:ent tu 

allocate a user area and stores the address of the user area 

in the IOCB control block that controls the best input. The 

command interpreter then requests the communication module 

to send a signal to the host. This slg~al is recog~ized by 

the host as an outJut to a remote entry station. 

When the hast inputs a record to the kernel ICS per-

forms the following functions: 

1. it calls memory management to allocate a node for 
~tQUUE after initializirg the UI~ ard ADPlCCB 
fields; 

2. it initializes the IOCB fields: DEVTP, DEVl\UM, 
ADRI:l and TOT.AL; 

3. it sets BUFUSE to one; 

4. if the other input buffer is full then it gerer
ates an irrmediate interrupt to empty the full 
buffer by using a high priority intervdl timer. 

Out?ut lnterryot Routine 

The main function of this routine is to transmit a 

sequence of records frcru a user area (or a user workspace) 

to a device designated by an IOCB field. IOS does not need 

to know tllat the host is the destination. The communication 

module hds the responsibility of formatting the record in 

such a ;.ray that it is recognizable by the host. 



45 

Once a character is tran.s'1ittea, lOS marks the request 

as "active 11 (the STA'J:US field in IOCB is set to one). \tihen 

the end of record is detected (the output buffer is empty), 

IOS n:arks the request as "inactiven and 

the IJO controller to disable the output 

thell initializes 

ir.terrupt. For 

dedicated devices, for exampl0 a lite printer, IGS needs to 

follo~iii the pointer s~;;ecified at the "fixed location•~, callec 

PRINFO, to get ttle address of the corresponding IOCB before 

actually setting and resetting the ~TATUS field. 

The decision to continue tra~smittirg ancther record is 

made by ICCS. Once !OS marks the request as inactive and 

there are still more records to output, it fills the out~ut 

buffer with the next record. 

trols an output interrupt. 

Figure 10 shows ho~ IUS con-

Input apd O_lltout C!Jttrol ~4-St~n: <I~CS) 

IOCS serves the requests rlaced in R~QQUE. There are 

two types of requests, input and output. The type of 

reque~t is determined by the value in the DIR field. An 

"output request 11 asks roes to copy the data to an output 

buffer whereas an "input request« requests IOCS to move the 

data from an input buffer to the indicated area determined 

by the valu€ in ADRUR of the correspondirg IOCB. 

For input, a request can be removed from the queue as 

soon as the input buffer is empty. ~hile lCCS is transfer-

ring a reccrd from the input buffer, the BUFUSE field in the 



User 
worKspace 

or 
User Area 

---------~ 

Output 
Buffer 

IOS 

' 
IOCB 

,, 
I/O 

) Cha~nel 

~ 

1/0 
Device 

Figure 10. ICS Control of an OutpLt Interrupt 

46 

input buffer is set to the value of two {buffer in use). 

This is used by lOS to determine whether the input buffer is 

full or being used by roes. At the end of the transfer IOCS 

marks the BUFUS~ em~ty. 

If an output request pointed to by Front is active 

IOCS serves the next request by up~atlng the Front pointer 

to point to the next request in the queue. For output, a 

request is deleted from the queue when both of the condi-

tions below are satisfied: 

1. TOTAL = 0 (no more records) 

2. STATUS = 0 (request is inactive) 



4 '1 

A descrirtion of the functions of ICCS falls into 

several cate;Jori•::s de.,h~l1din;J on the tYi.H cf request and the 

des tina t i o n of the o u t put • 

Qutout Deguest tg Ier~ioal~ 

~hen the request is inactive (the output buffer is 

empty), ILCS COJies a record from a fixed area pointed tc by 

ADRGR to the output buffer and updates TOTAL in IOCB to 

denote the number of reruaining records to output. 

The data to be displayed at a terminal has three possi

ble sources: a user ~orkspace, an editor workspace or a user 

The latter is actually a block of data from a file 

that the Jisk manager has copied from the disk to the user 

area. 

khen the user area is empty IOCS uses ADRDKCB to deter

mine ~ h e th e r the r e i ~: <:~ n u 11 p o in t e r o r a v a 1 i d poi n t e r to 

the disk control block. In the latter case 1 lCCS can use 

the pointer to illdirectly inform the d.isk manager that the 

user area is em~ty. If more records are to be output, the 

disk m3na~er places another request in RECQUE and copies a 

block of data to the user area. Figure 11 shows how an out

put request tc a terminal is handled by IOCS. 

In order to let IOS transmit the characters, IOC$ 

reinitializes the l/0 controller which allows the output 

interrupt to be enabled. 



4t 

Qut,ut R~JuEst to Dedicate~ Devices 

lOCS performs a simil6r task in servicing an output 

request to a terminal except the destination is different. 

If the destination is a line printer, the only possible 

source of data is from an editor ~orkspace or a user area 

which contains the data from a disk file. The source of data 

de;;>crds on whether the file is 11 active 11 or net. A til€ is 

said to be active if it is currently in the editor works

pace. If the file is active, the disk manager does not have 

to copy the data to the user area. The procedure on ho~ the 

kernel outputs a file to a line printer is discussed in 

Chapter V. 

If the destination is a cassete tape the sources of the 

data are a user ~orkspace 1 an editor workspace or a user 

area. roes services the request placed in REQCUE by the disk 

mandger in the same way it services the request frcill lOS. 

Outnut q0,JlH~st to tbe t.~ost 

This operation is used to submit a batch job to the 

ho;;t. ~ormallt, a user has created the program and stored 

it on a disk file. 

The actual output of the records are handled by the 

co~ruunication module ana ros. roes still controls the 

activity of the reguest queue (REQCUE) as discussed in the 

prev:ious sectiDil· As sho~~tn in Figure 12, IOCS does not copy 

the data to the output buffer, instead the communication 

mcdule does the copying. 



User 
workL>pdce 

or 
User Arec 

< -E1?ointer 

or 
Editor 

\.'.Ork::.:;pac:e 

roes 

IPE:<.:;QUEI 
+----·-+ 

Cutr>ut 
t---> Buffer 

>~------~ I/0 L_J Channel 

--{~~}- lerminal 

Figure 11. Diagr~m of Output to a Ter~inal 

49 

The communication module is called by ICCS with the 

folloriing parameters: 

1. CMTP: This is a command type. If it is one, 
it is a special ccmmand and the rest 
of the pararreters are irrelevant. 
This special co~ma~d is used to 
request the status of a batch JOb. If 
it is zero the rest of the parameters 
are examired. 

2. OPTP: This is an operation t1pe that is 
re~uested by IOCS. Zero indicates an 
input request; one indicates an output 
request. 

3. Address of user area. 



1. Address of input or output buffer (depending 
u~on the Jalue of CPTP). 

5. Address of IOC9 (for infut operation only). 

User 
'iiorkspace 

or 
User Are a 

or 

EIP.ointer 
( -

Edit or 
horkspace 

ro cs 

Output 
--> Buffer 

lOS 

C}j 

!Huffer{ 
1-

•----·> I /0 
Channel 

Host 

Figure 12. Diagram cf Output to the Host 

5C 



51 

In servicing a request, ICCS calls the communication 

module with the uppropriate parameters. This allows the 

com~unication module to set up the protocol before CO?Ying 

the data to the output buffer. 

If the user ~rea is efupty, IOCS informs the disK 

manager cf this condition ~hen TOTAL in IOCB is zero. The 

EOD field in IGCB will let roes know whether there are more 

records to be sert or not. IOCS sends a special command tc 

the communication module if EOD is one (the end of data). 

This 'Jllows the 

request to the 

communication module to send a special 

host to obtain the job number. This 

identification and the user identification together form a 

unique identification fer the coresponding batch JOb. IOCS 

sets the I/0 controller to allo~ ICS to transmit the 

records. 

]DP!tt Reqys:st fro:ol the Host 

This operation is used to retrieve a batch job. In 

servicing an input request roes calls the coffimunication 

module with appropriate parameters. IOCS requests the com

munication module to tranfer the data frorr the input buffer 

to the user area. Before this transfer takes place, the 

communication module reformats the buffer data in such a way 

that is recognizable by the kerrel. The communication 

module also detects the end of data indicator and sets or 

resets the EOD field in IOCB to reflect this. Cnce EOD is 



52 

set to one, rues informs the disk manager. This enables the 

d i s k man a g e r to 11 c 1 o s e ' 1 the f i l e • The size of a user area 

depends on the physical characteristics of the disk. If the 

u s e r a r e a i s f u 1 1 , I G C S r e q u e s t s a n " i m m e d i a t e a t ten t ion '1 t o 

the file ~ana~er which implicitly requests the disk manager 

to ~ove the data from the user area. This can be accom-

plished in a manner similar to that used by IOCS when both 

inpDt buffer are full. In other l!Wrds, ICCS generates a 

high priority irterrupt requestin~ immediate services by 

using an interval timer. This timer interrupt allows the 

file manager to request the disk manager to perform the 

tasks. 

ComwunicatiQn Mo~ule 

The system m~intains the status of all batch jobs using 

a linked list (DJ~TAT). The dJSTAT is defined by: 

DECLARE 
1 B,JSTAT_, 

~ USEP# CHARACTER(8) 1 

2 JODfl CHARACTER(4), 
2 COND BI1(l), 
2 L I N K P 0 I t. T E R :; 

where the fields are defined as follows: 

U5EH#: This field is a valid user identification in making 

a contact with the system. 

JOB~: This field contains the job nuffiber assigned by the 

host initiator (Job Entry Subsystem). 



C0ND: 

53 

This condttion bit is zero, if the job h<.ts bet~n sub

mitted, one if the job is completed. The latter 

implies that the host has spooled the output onto a 

file. 

LHir:: This vointer points to the next batch.job, if an,. 

The ti.JSTAT linked list is created by the communication 

rraJule ~hen the host returns the JOb# requested. This list 

is ~aintJined in ascending order by user~ and job# and rnem

o~y management allocates nodes for BJSTAT. 

At the time BJS!AT is created the COtD bit is zero. At 

a regular timer interval the communication module takes con

tro.l uf the syst~~:m to search B,JS1AT for all condition bits 

that dre zero. It interrogates the host to determine the 

st1tus of previously submitted batch jabs. If the host has 

finished executing the job, the communication module updates 

ttJe COND fiEld. J, user may request the hatch job only wher 

the condition bit is two. 

Command Interpreter 

The corrwand interpreter is a module that provides serv-

icr.::> to the users. It interprets user con;rnands in their own 

wo~~sJaCe 2Gd transfers the control to the appropriate sys

tere r~Jules for further actions. 

'1e shall assume that all users are serviced in a single 

processor so that at most cne user can use the CPU at a 

tirrP. 1'!!,~ su.:itching of active users occurs when: 

1. their time slice has ela?sed , 



54 

2. there is a request to do input/output or, 

3. an I/0 operatior is completed. 

The kernel has the responsibi l.i ti of saving the status of 

running users in a save area when users are switched. 

The kernel maintains several types cf queues for saving 

the status of users that are in the same state. Figure 13 

shows the only p~ocessor queues that the kernel managed 

(2). Each rectanyle in Figure 13 represents a save area 

containing the status of the processor for a particular 

user. The save area includes the fcllowirg i~forrnation: 

1. the contents of the processor's registers; 

2. the program counter containin~ 
the next user corn~and to be 
resuming the control. 

~unning )+~------+ 

a pcintEr tc 
executed for 

Blocked--->,. 
User __ *-!-->..._[ _*j->+-[~ -~ I 

Blocked 
for 

Deviceij 
i - device type 
j - dev.ice # 

Figure 13. Diagram of Processor Cueues 



55 

If a user's ti~e slice has elapsed, its privi.lege of 

using the CPU is removed and the processcr 1 s status is 

stored i n t be u b 1 o c k e d use r 11 queue i IJ F IF 0 (f i :r s t-in- f irs t-

out) order. 

As it can be seen ir Figure 13 there is only one save 

area for Blocked for Deviceij. This is because only one 

request may be serviced by the command interpreter at a 

time. For example, there may be a request to print a file 

to a local printer, but the printer is busy. Hence, thE 

command interpreter delays servicing this request by 

c.hanging U:e user's state fro~n "running" to "blockecl. 11 The 

kernel maintains a structure describing the activity of the 

dedicated devices and the host. Each dedicated device has a 

structure defined by: 

DECLARE 
1 DEVACT, 

2 DEVFREE BIT{l); 

where the field is used as follows: 

DEVFREE: This bit is zero if the device is free, and one if 

it is busy. For the host, this field is an 

indication of the status of the com~unication link 

between the host and the kernel. 

To service an 1/0 request the command interpreter 

blocks a running user by placing the status of the 

corresponJing user in a bloc~ed queue for the corresponding 

I/O device (Blocked for CeviceiJ) and then dispatches a ne~ 



56 

user from •'blocked queue for users". At the end of an I/C 

request the disk rua na ge r, which is in charge of the I/G 

ope r at i. o r, StO;?S the running user from usirg the CPU and 

dispatches a use.r .in 11hlocl<ed for I/0 device" • In 

implementing the processor queues, a pcirter is fleeded for 

each type o.t gueue. The save area for 11 8locked for Deviceij'i 

is statically allocated by the kernel for each type of the 

I/O devic~ in the system. Other types of save areas are 

allocated and de<l11ocated by wemory manage;Dent t.ihen 

requested by the command interpreter or disk manager. A user 

is said to be dispatched ~hen the processor's status can be 

restcred by mani?ulating the Runnin; pointer to point to the 

appropriate save area. For exarrple, a user changes his 

status from "blocked for line printer" to 11 running". 'I.t1is 

can be done by blocking the running user (insert the save 

area pointed by the Running pointer to the end of blocked 

User queue) and ?lanting the Running pointer to pcint to the 

save are a pointe d b 1 B 1 o c ked for Line Printer • This c a tt s e s 

Blocked for Lifle Printer queue to be a null pcinter. 

In interpreting a user command, the command 

interpreter may hdve to initialize something before actually 

transferring the control to the appropriate system module. 

As an example, to rrint a file the command interpreter 

performs the following o~erations: 

1. Check the device activity {except for 
terminals); if the device is busy, block the 
user temporarily; 

2. otherwise, 



a. Set DEVFREE for the desired device 
to one to indicate that the devicB 
is going to he used. 

b. Call rremory management to allocate 
user area. 

c. For a reqtJest on a dedicated 
device, c~ll memory management tu 
allocate an IOCB. 

d. Initialize the ADRUR field in IOCB 

e. 

with the address of the 
corresponding user area. 

Request the file 
to print the data 
I/O device (this 
.in more detail 
section). 

marayement system 
to the indicated 

•ill be discussed 
in the rex: t 

f. Once the file manage~ent takes over 
the control, the command 
interpreter places the processor's 
status of a user in the running 
state in 11blocked for printer'1 

queue. The command interpreter 
then dispatches another user from 
the fi!Jlocked useru queue. 

57 

A user has several options regarding where to print the 

out~ut of a batch job. The output can be ~rinted at a 

remote prirter or it may be routed to the kernel. If the 

output is handled by the kernel, the~ it may be directed to 

the terminal without storing it permanertly on the disk or 

it ~ay be stored perrranently on a dis~ file and retrieved by 

the user at a later time. In the non permanent case the 

command .intEr~?r.-eter .requests the file marag€r to create a 

tem~orary file on the disk before directing the output to a 

tern: ina l. This is to insure a uniform procedure for 

handling the data flow from the host to the kernel. 



58 

Therefore, in both instances ~here the o~t~ut from the host 

is routed tc the kernel a disk file is created. 

Fi.le Nanagement 

In this section only the interface with file manage-

ment is discussed. File management consists of t~o modules: 

the file ~anager and the disk manager. 1he file manager is 

responsible for maintaining all user and system files and 

the disk manager is res~onsible for controlling all disk 

input/output operations. 

The command interpreter and the file manager communi-

cate by means of a file reyuest queue {FRQUE). FRQUE is 

defined by: 

DECLARE 
1 FFQUE, 

2 REQSR BIT(l), 
2 ISFN CHARACTE~(FILE-NAME.LENGTH), 
2 0 SF N C il :, FACT£ R { f' I L E.- f\ AJ·, E • LENGTH ) " 
2 ADRUR POINTER, 
2 ADIOCR POINTEH" 
2 LINK POHiTE.H; 

where the fields are defined as follo~s: 

HECSR: This field is used as a request source indicator. 

It is zero if the request is fraru ICCS; one if it 

is from the command interpreter. IOCS requests 

the file manager to copy the data from the user 

area ~hen it is full. This is in conjunction ~ith 

retrieving a batch job. 



59 

ISF'N: Thl.s field is the input syn;bolic file Jiame. Th€ 

length of this field is fixed by the file manager 

and determined bt how it builds its file direc-

tory. This is the name of the file given by a user 

in submitting his batch jcb. 

OSFN: This field is the output symbolic file name. This 

is the narue of a disk file to contain the output 

ot a batch JOb. 

ADRUH: Tbis pointer is the address of the user area that 

is used ~o transfer data to or from the disk. 

ADIOCB: This pointer is the address of IOCE. This field 

and ADRUR are passed to the disk manager. 

LINK: This is a pointer to the Lext request, if any. 

FRQUE is maintained just as REQCUE and it is a circu-

larly linked queue. Memory management ~rovides an availa-

bility list for allocating and deallocating nod(;s for Fi<CUE. 

The o~ly time that the command interJreter ccmmunicate~ 

with the file manager is when there is a request from the 

u s e r to do t h e f o 11 o 1o1 in g : 

1. Cutput a f.He (stored on the disk) to cne of 
the I/O devices or 

2. Sub m it a j ob star e d in a g l v e r f il e t c t h 8 

host (the ISFN field contains thls tile name) 
or 

3. Petriave the output of a joh executed by the 
host and store it in a file or display 
immediately at the terminal. 



60 

For the third case the ISfN field contains the name of a 

file specified by the user if the file is a perm~nert file. 

Otherwise, the command interpreter initializes ISFN with a 

dummy name ~nd the data type of this file is TEMP. 2 

In servicing a request the file manager directs the 

disk manager to either move the inforwation from the disk to 

the user area or from the user area to the disk, Jevending 

on the nature of the request. For this purpose file 

mar.a.,;er:tent .has another queue fer the file manager tc 

request the disk manager to control the dis~ 1/U (DRCUE) and 

a disk control block (DKCB). DRQUt is defined by: 

DECLARE 
1 DRQOE, 

2 FLO!. BI TO)~ 
2 ADRDKCD POINTSR, 
2 DKAC;.> BIT(l); 

where the fields are defined as fellows: 

rLO~: This bit indicates the flew of the data. If the 

data is to be stored on the disk FLGW is zero 

(input), otherwise FLOW is one (output). 

ADRDKCB: This ~ointer is the address of disk control block 

(DKCB) which in turn is used by the disk mallager 

for finding more information about a request from 

the file manager. 

2 A file name may consists of the name a~d the type of 
the file. This restricts the user not to use TFMP as the 
data type for a file ~hich will contain the outvut of a job. 



61 

DKACS: This is zero if disk access is not neeJed. Ir. 

other words, the file is currently in the rue~ory. 

It is one if a disk access is reeded. This field 

is used otlly ~hen FLOi~ is one (output). 

The disk control block (DKCB) contains the necessary 

information for the disk manager to perform its tas~. There 

is a different DKCB for each reguest and it is dynamic. 1he 

.f i 1 e m a .nag e r r e q u e st s me .rn or y man age men t to a 11 ocate a D K C B 

when it flaces a reguest for the disk manager in DRQU£. 

~hen the disk manaqer finishes its task, it removes an entry 

frow UR~U£ and calls memory management to deallocate the 

corresponding DKCB. DKCB is defined by: 

DECU\HE 
1 DKC3 1 

2 PHYADR FIXED BINARY(31 1 0), 
2 NJPB FIXED BINARY{31,0), 
2 ADRUR POINTER_, 
2 AOIOCB POINTER_, 
2 lJSIND EIT(l), 
2 EOI BlT(l); 

where the fields dre defi11ed as follo;Js: 

PHYAD~: This field is the ~hysical {device) address if 

UKACS in DRCUE is one. Other~ise, it contains the 

address of a memory location. 

NCPJ; This field contains the size of the file. 

ADIOCR: This pointer is the address of IOCE. The disk 

manager needs this information to initialize the 

IOCD fields in requesting roes to move the data 

from a user area to the output buffer. 



USIND: 

62 

this bit is zero if a user area is errpty, one 

otherwise. This indicator is used when FLOW is one 

(output only). When the disk manager moves the 

data from the disk to the user area, it sets USlND 

to one and roes will reset it to zero ~hen it is 

EOI: This bit is an end of file indicator. If it is one 

(no wore data) the disk rranager "closesH the file/' 

zero otherwise. This field is set and reset by 

lOCS depending on EOD in IOCB. 

In servicing a request in 

searches the file directory to 

the corresponding file. The 

FFQUE, the file ma~ager 

find the phJsical address of 

file manager then places a 

request in DRQUE, calls memory management to allocate a 

DKCD, initializes DKCB and deletes the current request in 

FRQUE. 

The interface betwen the disk manager and IOCS is 

similar to the interface between ICCS and lOS. While lCCS 

is copyirg the data from the user area to the output buffer 

(this is reflected by USI~D being one) the disk manager 

services the next request, if any. There will not be any 

request for the same I/C device in DRQUE because the cowm~nd 

interpreter will not schedule such a request. 

~hen this input/output operation is completed, the disk 

manager 

queue. 

dispatches a user frow 

figure 14 describes 

the "blocked for 1/0 device~ 

the relationship between the 



63 

file ma~ager and disk marager an~ its central blcck (DKCB). 

It is alsc shown ho;.; the disk manager t:laces a re<;uest in 

REQQUL and indirectly initializes some of the fields in 

IOC8 .. 

Ft>i 

·~.')('''.~. 
c~ 

---> 
DR QUE 

-{~-<:::-::~ __ ._r_·o_l_· ~-~-t_e_r_ 

IOCS 

REQl,.;lit~ 

,It 

IOCr) 

) 

Figure 14. File Management and its Control Blocks 

1'-lemor] 1·1anagement 

The kernel is an operating system desigred s~ecifically 

for a microcomputer system. For a real-ti~e application it 

is &ore desirable to distribute the system functions over 

several processors. For the above reason and because rrost 

moaules of the kernel need service5 trorr memory rranageruent, 

some cf memory rnanaJement functio~s exist en all ~rocesscrs. 



64 

This allows modules of the kernel to request memory manage-

ment to allocate space ~ithin its o~n domain Crrocessor). 

As a summary, memory management performs the following 

functions: 

1. It allocates and deallocates various control 
blocks sud1 as the disk control block (OKCG) 
aDd tne input/out:?ut control block (IOC!3). 

2. It allocates and deallocates user areas. 

3. It allocates 
f~ECQUE,FPQUE, 

and deallocates 
and DRQUE. 

nodes f cr 

4. It allocates and deallocates 11 blocked usern 
save areas. 

It updates 
deallocdtion 

BANKTAB for allocation 
of user banks. 

and 

In allocating or deallocating nodes for request queues 

memory management provides ~n availability list for each 

type of queue. Every time a ne1-w node for a particular 

request queue is needed, a call to a procedure nawed GETNODE 

is trade. GETNCDE examines the corresponding availahility 

list and returns the first node on the list, if there is one 

on the availability list. When a node is not needed anymore 

it is inse~ted at the front of the availability list by a 

procedure named RET~ODE. There is a similar GETNODE and 

RETNCDE for REQQUL,FRQUE, and DRQUE. 

Memory management maintains t~o tables 1 BANKTAB and 

TEP~TAB to keep track all use£ barks in the system. The 1/C 

interface controller has a bank select feature which can be 

used to select one of the memory banks. The size of BA~KTAB 



65 

depends on the number of user banks in the system and the 

number of tbe term.lnals cannot exceed the nUliJber of user 

banks. The structure of BANKTAB is defined by: 

DcCLAi\E 
1 il.HNKTAB(*), 

2 1ERNNO liX~D BINARY(l5 1 0); 

where the field is defined as follo~s: 

TEPMNO! This field contains a terminal £umber if the bank 

is occupied; other~ise, it contains a value of zero 

to indicate that a user bank is free. 

The structure of TEHM1AB is defined by: 

DECLARE 
1 T.t: F< l·: T Ml ( *)., 

2 BANKNO fiXED BINARY(15,0); 

~here the field is defined as follo~s: 

BANK~O: 1his field contains a bark nurnber fur an active 

t e r:rrri n a 1 ; otherwise, it contains a value oi 

negative one to indicate that the correst.>ondinq 

t e 1: m i r a 1 is not act iv e • It k e r n € 1 n i n it i a 1 i z at ion ¥1 

all entries of this table are initialized to 

n e g a t iv e o r e .. N o t e t h a t z e r o m i g h t b e us e d t c 

identify system bank. The numbering system for user 

banks starts 1;;ith the number one. 

When the logon module calls mewcry management tc 

allocate a free user bank, memory management searches this 

BANKTAB to find the first free bank. lt updates the entry 



66 

of EANKTAB with the cor~esponding terminal rulliber and the 

entry of TERMTAJ is upd~ted to contain the corresponding 

bank .ilUn,ber. fl.t the er1d of a user session the logoff module 

calls memory management to deallocate a user bank. This 

causes memory mar:agement to search 'IERPTAB to find the bankll 

associated ~ith the terminal# and u~dates the entry of 

TERMTA3 to ne~ative cne. Using the bank~ obtained from the 

TER~TA3 memcry management updates the entry of DANKTAP to 

zero to indicate that this user bank .is free. 

rihen mcdules of the kernel need to request space merrory 

management ~ust be able to allocate a block of contiguous 

stcras;e of the correct size. For example, the command 

interpreter requests memory management to allocate a user 

area and a~ IOCd for the printer when a user reeds tc output 

a disk file to the printer. Memory management uses dynaffiic 

storage management to allocate and deallocate a dyna~ic ICCB 

control block, the save areas fer "blocked user" and user 

areas. The size of IOCB control blocks and of SdVe areas 

are fixed but the the size of user areas are variable and 

depend on the length of a record ( t.h e physical 

characteristics of 1/C device determines the length of a 

record). For this reason a dynamic stcrage management is 

preferred to static storage mdnagement. 

Dynamic storage management uses algcrithms to reserve 

and free variable size blocks oi storage which are in 

contiguous ~eruory locations. Knuth (3) discusses dynamic 



67 

storage managemeut algorithms such as first-fit,best-fit, 

liberation ~ith sorted list, boundary tag method and buddy 

ststem. 

First-fit and best-fit are methods for searching and 

reserving a block of storage if there are any blocks with 

the re~uired size {say size of N). The first-fit method 

chooses the first area from the available space that is 

greater than equal to N. on the other hand, the best-fit 

method chooses an area with size M where it is the smallest 

which is N or more. This usually requires searching the 

entire list of available space before a decision c~n be 

made. The disadvantage of using either ere cf these methoc 

is that there are certain situations in ~hich the first fit 

method is better than the best-fit method and vice versa. 

Knuth (3) demonstrates an exa:nple for a situation in which 

first-fit is better than the best-fit; su~pose there are t~o 

availa~le blocks of memory cf sizes 1300 ard l?OC, and 

suppose there arc subsequent requests for blocks of sizes 

lOOO,llOO,ar:d 250: 

memory 
reguest 

10 c 0 
1100 
250 

available areas 
Hfirst-fit 11 

13 co, 1300 
300,1200 
300,100 
50,100 

available areas 
11 best-fit" 
13001 120C 
1300,200 
200,.200 
unallocated 

Liberation ~ith sorted list is a method for freeing 

blocks and insertiny the block at the appropriate locatio~ 

of the sorted available space list when they are no longer 



66 

needed. It alsc merges t~o adjaceEt free areas into cne. ID 

fact, ~hen an area is bounded by t~o free areas, all three 

areas are meryed together. 

All the three methods discussed above require an 

extensive se6rching through the availability list. The 

bourdary tag method or the buddy system eliminates most of 

the searcb.ing when storage is reserved. 

The boundary tag method requires fields for control 

information at both ends of each block. One of the fields is 

a TAG field which is used to control the collapsing process 

(it is easy to detect whether or not both adjacent block are 

available). This method is perha~s too much of a penalty to 

pay in situations when the blocks have a small average size. 

Another approach to dynamic storage management is the buddy 

system. The overhead in each blcck is less ccmpared to the 

boundary tag ffiethorl and it requires 

power of two. The buddy s~stem 

all blocks of size of a 

keeps separate lists of 

available block of each size 2**K (0 <= K <= M) and the 

entire block is of size 2**M. When a block of size 2**K is 

desired, and if nothing of this size is avail~ble1 a largec 

available block is split into two equal parts called 

buddies. Later when both buddies are available again, they 

coalesce back into a single block. The disadvantages of the 

buddy system are inte~nal fragmentation and allocation of 

unused space. 



69 

Diagram of System Structure 

In order to give a better overview of all the system 

modules and how they communicate, a diagram showing the 

overall syste~ structure is given ir Figure 15. 

The commu.nication betweHn the modules is described 

below. The numbers helow refer tc the diayrarn numbers in 

Figure 15. 

1. IGCS requests the ccmmu~ication module to set 
up the protocol and transfer the data from a 
user area to an output buffer (for output to 
tt1e host only). 

2. IOS requests IOCS to tLansfer a record from 
the input buffer to the user area by placing 
a request in REQQUE. ICC5 ther requests the 
ccm!ruuication mcdule to t;<~rforrr; this task 
(for in~ut from the host only). 

3. ICCS copies a record from the user area to 
the output buffer and initializes IJO channel 
to generate an out~ut interrupt (for an 
output request to any system devices, except 
the host). 

4. IOS transmits a record character by character 
to the 1/C device after l/0 channel g~nerates 
an output interrupt. 

5. The I/0 device sends a character and stores 
in the input buffer. The I/O chanrel places 
the iuput character in the receiver bufter. 

6. ICCS copies the data from the irput buffer to 
the corresponding user ~orkspace upon request 
froru lOS (for in~ut from terminal only). 

7. For an output request, lOS sets STATUS in 
IOCB to 11 INACTIVE 11 lllihen the end of record is 
detected and 11 ACTIVE 11 otherwise.. For an 
input request, lOS places a request in RECCUE 
and initializes IOCB when the end of record 
is detected. 



loaf fen 

110 n11111 

lOCI 

Figure 15. Diagram of Communication of Kernel MOdules 

0 
s 

1/o 
a.-1 

....... 
0 



B. For an outvut reguest, 1CCS checks the STATUS 
field in lCC8. If it i~ inactive and the 
user area is 
rEcord from 
buffe.r .. 

not ewuty tt1en lOCS COJ!ies d 
the user area to the output 

9. For an output re~ucst, IOCS follows the 
pcinter in IOCJ to set the USI~D field in 
DKCD to zBro when the user area is em~ty. 
For an in~1ut request, lCCS c.hec~s the ECD 
field in I OCB. If f.OD is one {end of data ) 1 

then ICCS follows the pointer in ICCd to set 
tile EUI :field ir: DKCR to cne. This is mainly 
far input from the host. 

10. The command interpreter interprets a user 
c c n: m a I 1 d co n t a i n e d i n the u s e r ~ o rk spa c e • 

11. The comm~nd interpreter places its request in 
the FRQUc queue. 

12. The command i~terpreter initializes IOCB 
{ACRUR) for the reyuest m~de in 11. 

13. The file manager places its request in DRQUE 
associated ~ith the request in 11. 

14. The file manager initializes DKCB 2ssociated 
with the request in 13. 

15. For an output re~uest, the disk ITanager 
checks the USINU field in DKCB. If it is zero 
(the user area is empty) then the disk 
manager copies a block of data from the disk 
to the user area and sets USIND to one to 
indicate that the user area is full. 
For an input request the disk mana~er checks 
the EOI field in DKCB. If it is one then it 
transfers control to the command interpreter; 
otherwise the disk manager waits for an 
urgent request from 10CS ~hich indicates that 
Ul e user a rea is t u 11. 

16. Fer an output request the disk manager places 
its request in REQCUE to order IOCS to copy 
the data to the out~ut buffer. 

17. For an output request the disk manager 
follows the pointer in LKCB to initialize the 
TOTAL and J\DhDKCB fields in IOCB (other 
fields have been initialized by the comma~d 
interpreter in 12). When the file is empty 
the disk manager sets EOC in IOCil to one; 
otherwise it resets to zero. 

71 



1n. For "in~ut fro~ the host'' the communication 
rrodule sets ECD to one'wtJen end of data is 
d~tected; other~ise it resets to zero. 

19. The editor reguests th~ Iile manager to copy 
a file to a user workspace. 

20. The editor does its processing in a user 
•orks~ace. 

72 



CHAPTER V 

DTSCUSSIO~ OF A KEhN~L COMMAND 

The Procedure to Cutput a Disk File to 

the Local Printer 

1he procedure of how the mcdules of the kernel communi-

cate with each other in performing a task such as outputting 

a file stored on a disk to a local printer is presented in 

this cha?ter. The purpose is to give a better cverview of 

the design of the kernel. The choice of this user comrrand 

is reJsonably good because it involves most of the system 

m o d u l es in t h e k e r n e 1 • 

The syntax of the command is defined as follc~s: 

OUTPUT <input file name> <destination>. 

The user is required to SUQply the input file name and des-

ignate the destination to be the line printer. 

The co~ruand interpreter checks the activity of the line 

print~r. If it is beinY used the ccmmand interpreter delays 

the servici~0 of this request by placing the status of 

processor for the user in a "blocked user" queue; otherwise 

the com:uand interpreter does the followir.g: 

1. It sets the printer activity to one to 
indicate that the printer is beiny used. 

73 



2. Tt calls memory mcndqem<:;nt to allocate a 
user area and an lOCd fer the printer. 

3. It initializes the rrinter•s IOCR. 

4. It places a request in FRCUi. 

5. It blocks this user by placinry the 
processor's status in a "blocked us;;r" queue. 

74 

In servicing a request placed by the command 

interpreter in FdQUE the file reanager searches its file 

directory to find the physical address of a named file. ihe 

actual data move~ent is carried out by the disk manager. 

The tile manager communicates ~ith t.he cisk n:anagec by 

placing a request in DPCUE and by initializing its UKCR. 

Before the disk manager assumes control the file Qanager 

removes the request from FRQUE. 

Upon receiving a request :from the file manager,, the 

d i s k man a g e r t:H~ r f o r n; s tl• e f o 11 o ~o~ i n q o p e r a t i o n s : 

1. Get the necessary information for a OlSK tcanste[ 
from OKCB. 

2. If USIND in DKCB is still one 1 then delay the 
rec;uest b;,- moving th€ HiUNT pointer to roint tc 
the next request; ot.hendse move the data to the 
user area and set the USIND field to one to 
indicate that the user area is full. 

3. Call illemory ma~agement to allocate a ncde for 
REQQU£. 

4. Place the request at the end of the queue. 

5. Set TOTAL field in IOCB to the length cf the user 
area. Also initialize ALRDKCE to the address of 

1 a one in USIND indicates that IOCS has not finished 
moving the data from the user area to the output buf~er 



75 

the disk control bloci~ (the coren:and interrretcr 
has initialized other 1CCo 1 s fields). 

6. When the user area is empty, 2 repeat steps 2,3,4, 
and 5 above until there is no more d~ta to be 
printed. 

7. If there is no more data to be transferred and the 
user area is ew~ty then: 

a. Call memory rna~a~emert to deallocate the user 
area and the printer's IOCB. 

b. Delete the re~uest in DRGUE and deallocJte 
.its DKCH. 

c. Reset the device activity to zero (it is free 
now). 

d. Dispatch the user from a 
printertt •h.ich J<Jas created 
interpreter when the user 
operation with the printer. 

Miscellaneous 

"blocked for 
b y t h e co nm 2 n d 

request::; an l/G 

The procedure fer printing a file to the local printer 

Cdn be shortened if the file is a current file. A current 

file is defined as a file that is currently in a user works-

pace. 

When the editor reguests the file manager to copy the 

rlata to the user workspace, the filE manager should mark the 

"activity" field of a file in the file directory as 11 cur-

rent. 11 This information determines the value of Lr:.:1CS field 

in DRQUE. If the file is in the user workspace, DKACS has 

the value of zero and PHYA~R in DKCB will contain the 

2 This indicates that ICCS has finished moving the data 
from the user area to the output buffer. 



'16 

address of Reruory location instead of the physical (device) 

add.ress. Th~ memory address can be obtained by search~ng a 

11 systent table" l?rovided by metuory management {memory manage

ment keeps track of all active users in the system and 

assigus both types o.f workspace to each users). 

The kernel also ~rovides a mechanism for cancelling the 

output printed at the local printer.. To support this, a 

fixed location is reserved to contain the address of a disk 

control black. the symbolic nam£ cf the location is LPREQ. 

This location is used by the disk manager and command inter

preter. If there is a request to output a file to the local 

printer tile disx manager initializes LPREQ M~ith the address 

of the disk control block. 

The actual cancellation is recognized by the kernel as 

an operator command ~hich h~s higher priority than any user 

command. ~hen the command interpreter irterprets an opera-

tor command to canci~l the . outl:'ut printed at the local 

prirter, it sets the NCPJ field in OKCB tc zero to indicate 

that there is no more data to be printed. The address of 

DKCb is foLnd froru LPPEQ. At the time ~C?B is zero, the 

process of printinJ a file to the printer could be in 

several different states; roes might be transferring data to 

the output buffer, lOS might be transferring data from the 

out~ut buffer to the line printer or the disk manager wight 

he copying data to the user area. In any of the above cases 

several liLes of output might be printed at tbe printer 

before t l: e dis;< man a g e r s tops the process • 



ClHPTEI{ VI 

Surrrnary and Conclusions 

The kernel is useful for a redl-time apflic~tion where 

every users communicate with the system by means of terrni-

llals. The kernel provides a user ~o~ith the following fuuc-

tions: 

1. it allows a user to create, delete and keep a 
file on a disk; 

2. it allows a usee to print a file on a local 
or cernot.e printer; 

3. it allows a user to subffiit a batch job to the 
host computer; 

4. it allo~s a user to retrieve a batch job from 
the host and store it on a disk file or 
display the output just retrieved immediately 
at his terwinal; 

5. it allo~s a user to directly print the output 
of a batch job at the host pr.i:rter. 

H present, the design of kernel only sup~orts 

background jobs executed in a foreground manner. It does not 

allow a user to execute a job ~ithin the microcomputer 

sy.stem. By ex~anding the system to include more than one 

microcomputer and by distributing the operating system over 

77 



78 

the~e ?roce~sors, it would be possible for the systerr to 

execute some jobs locally, tor examfle, a com~ile ste~ could 

he doue locally follcwed by a debug session, or possibly an 

incrernentdl compil8r could be accessed locally. It is 

evident that multiple processors are necessary to achieve a 

rapid res~onse irom the system. 

Future ~ork 

The desiYn of the kernel could be expanded to allo~ 

some of the features described above. This ~auld re~uire the 

addition of other mcdules to the kernel. Ore such mo~ule 

would be the processor management module which would perforru 

at least the following fu~ctions: 

1. schedule jobs to be run on various 
processors; 

2. allocate a processor to a user in the ready 
state; 

J. determine the maximum time a user way use an 
3llocated pLocessor; 

4. initiate a user into a running state on an 
allocated processor; 

5. monitor the status of all users in the 
S)stem; 

6. s~a~ users that enter a blocked state; 

7. deallocate a processor; 

8. allocate the necessary resources; 

9. deallocate these resources when the job is 
done; 

10. protect users from each other dnd the 
o~erating system from users. 



79 

An extension of this type will add another level to the 

present hierarchical kernel structure. The decision on, the 

placement of the processor matagement module with the 

hierarchical structure and ho~ the operating system should 

be distributed, has to be made. The design of the interfaces 

between the processor management rrodule and other modules of 

the existing system must be determined as well as ho~ the 

processor rnanage~ent module takes central cf the system. 



B1BLIOGRAPRY 

(1) Crowerrco IU-~RT OJqit2l Interface. Instruction 
:; an u <.J 1 • C rowe n: c o 1 L co r ~: c r a t e d, 1 9 7 8 • 

(2) Holt, ~.c., G.S. Gr~ham, E.C. tazo~ska and M.A. Scott. 
~try,tured Coocutten! (r~~tammirl with Oper3ticg 
~y~terns Anplicatlors. Uriversity cf Toronto, 
Computer Systems Research Croup, Toronto, 
Cnta~io. ~assachusetts: Addtscn-Wessley 
Publishing Co., 1978, 139-159. 

(3) Knuth, Donald E. The ~rt of Co~2uter Programming, vol 
1, second edition. :;assacbusetts: Ad\.lison-tiesley 
Publishing Co., 1973, 435-451. 

(4) Madnick, Stuart F. Jnd J.J. Donovan. Qn~rating 

S~ste~$. ~ew York: Me Cra~-Hill BecK Co., 1974, 
66. 

(5) Osborne, Adam and Associates. ~D Introdu~tion to 
t:1 i c r 9 c: o n: ;:i 1 1 t e r_ 5 , v o 1 2 , :S c:H; ii e ;;. l r r o :J u c t s , J u r e 
1977 revision. Adaru Gsborne ana Associates Inc., 
4.24•4.25, 7.20-7.21. 

(6) Schoeffler, Jarres D. · Th8 Srrall Co~Luter Concept. IB~ 
Series/1. International uusir,es.s ~;aclLires 

Corporation, General Sj,:stems DivisiOJ.l, Atlanta, 
Georgia, 1972, 402-436. 

{7) Van [oren, James R. ~Qte~ en Software ~esiyn ~etbgds. 
{Unpub. supplementary class notes). Stillwater, 
Oklahoma: Oklahoma State University, 1978. 

80 



AFPENIJIX A 

CHARACT~RISTICS Cf THE 1/0 lN1ERfACE 

CONTROLLER 

The present hardware configuration consists of a ZBO 

CPU, rnulti}le Cromemco TU-ART beards for i£putjoutput and 

multiple Cromemcc 16 KZ memory boards {16K RAM). The TU-AR1 

(twin universal asynchronous receiver and tran~rnitter) ca[ 

perform the following functions: 

1. It converts 
serial form 
pardllel; 

output data from parallel to 
and input data from serial to 

2. As a transmitter it adds start and stop bits, 
generates parity, and clocks the data out at 
the required baud rdte. As a receiver it 
recognizes and deletes start and stop bits, 
check parity, and cloc~s the data in at the 
required rate; 

3. It provides indicators that tell whether it 
has received data or is ready to accept data 
for transmission. Cther indicators are used 
to detect errors in the received data. 

The TU-A~T bas two channels of duplex serial data exchange, 

two channels of parallel data exchange and ten intervals 

timers in which each interval timer can activate an 

interrupt. It contains two TMS 5501 (Texas Instruments) 1/0 

Controller chips 18lhich w:i.ll refered to as unevice A" and 

"Device en. 

81 



82 

In order to support interrupts on a priority basis, 

multi~le TU-ART boards may be connected together. Each l/C 

board is provided with t~o lines, 

PRJCFIT'i lNJ. Priority is set by 

Jl PRIO~ITY OUT/ and Jl 

the location of the 1/G 

board in a daisy chain configuration. This is done by 

connecting Jl PhiORITY UU1/ from the highest priority TU-AR1 

to ,Jl PRIORITY IN/ of the next highest priority TU-APT, then 

connecting Jl PRI0hi1Y OUT/ of the second TU-ART to Jl 

PRIORITY I~/ of the next TU-ART until all TU-ART are 

connected. The Jl PRTORITY IN/ of the highest priority ru
ART is left unconnected. This priority cc~figuration insures 

that a higher priority device ~ill be serviced before a 

lower priority device ~hen t~o or more interru~t requests 

occur a t t h E s am e t i me • D ev i c e A is in t ern a 11 y p r i or i t i z e G 

over Device B. 

For a TU-ART to have priority its Jl PR1CR11Y I~/ must 

be hiyh. ~hen an 1/0 board needs service, it will ~revent 

downstream I/O boards from interrufting by pulling low on 

its Jl PRICRlTt UUT/. The next I/0 beard in the chair 

sensing a lo~ at the Jl PliTORITY IN/ will pass this priority 

sigral en the next I/C board by pulling lo~ on its Jl 

PRIGRITY OUT/ and so on. 

The base address of I/O ports are determined by the 

position of a switch called a DIP switch. 

consists of the high-order bits of an 

This base address 

8-bit I/O port 

address. At the present time the disk controller uses zerc 



83 

dS the 1/0 base address of Device A1 SCH (hex) dS the l/C 

base address of Device B and 40H is dedicated far merrory 

bank select feature.1 

The memory space is crganized into 8 barks of 64K each. 

Each memory bank(s) rray be endbled under software control by 

addressirg l/G port 40H. The 8-bit output from port 40H 

enables or disables the correspondi~g bank(s) in memory. A 

set bit '1' in the corresponding bit positicn will enable 

the memory bank and a reset bit •o• ~ill disable it. On 

po~er u~ the active rueruory bank is bank C; this is used as a 

system bank in the design of the kernel. 

Each TU-A~T uses 14 different ports for Jata and 

control. They are: 

status re~ister - infut port 

baud rate register - output port 

receiver data register - input port 

transmitter data register - output port 

interru~t addre3s register - input ~ort 

interrupt mask register - output port 

parallel port - input port 

parallel ~ort - output port 

timer 1 - output port 

timer 2 - output port 

timer 3 - output port 

timer 4 - cutput pert 

1Crornemco loKZ RAM. Instcuction Manual. Cromemco 
Incorporated, 197d. 



84 

ti:ner 5 - cutput pert 

The block diagram of TMS 5501 containing the above registers 

is d es c r i b € d in TMS 5501 ~ultifunction Input/Output 

Controller .2 

Certain features of the kernel are dependent upon the 

above harJ•are. Timer and priority i.nterrupts are necessary 

for designing an interruJt driven I/0 system. MOSt of the 

modules of Input/Output System such as lOS, Logon and the 

console scheduler are interru}t-driven routines. The 

ability to isolate the hard~arc dependencies in ary software 

ststeru is important for achieving a reasonable degree of 

portability. In the design of the kernel, the hardware 

dependencies are confired to the res module. The 

implementation of the other modules Cdn be done in a systeru 

proyramming langJage. 

2T~S 5501 Multifunction Inpyt/Outpyt ConttQllec. Texas 
Ins t rum c nt s Inc • , 1 9 '16 • 



APPENDIX n 

OUTPUT INTERRUPT kOUTINE CATA STRUCTURES 

The following describes the data structures used in the 

output interru?t routine and its driver: 

1 CUBUFi 
2 r.OCHAi1 
2 BUFrPTR 

- output buffer for user# i 
- # of characters to be output 
- buffer pcirter contains the 

address of next location of 
output buffer space 

2 ADOR_CUTB - output buffer space (the maximum 
is 257 characters - the last 2 
storages are used tor imbedding 
carriage return and line feed) 

1 USRARi user ~orkspace for userti i 
2 NCCHAR - it contdins the length of user 

workspace 
2 USRPTR - user ~orkspace ~ointer contains the 

address of next location of user 
~orkspace 

2 UWKSP - user ~orkspace 

1 UCBTl - output control block fer terminal 1 
2 10IAL - ff of characters to be output 
2 STATUS - it contains the status of a request 

0 - request is in waiting line or 
completed 

1 - request is being serviced (in 
progress) 

2 DEVTP - device ty~e 
1 - terminal 
2 - disk 
3 - tal?e etc 

2 DEVNUM - device# 
2 EOR - end of record indicator 

0 - no 
l - yes 

85 



~OJE: 
Naming convention for l/0 control block : 

UCBXY ~here X iR device ty~e 
Y is device# 

Example: UCUTl is the output control block for 
terminal# 1 

NOTE; 

1 OU1n~Q(*) - table contairs output requests 
2 ~EQ - request indicator 

0 - no request 
1 - there is a request 

2 ADDR - it contains the address of output 
control block (UCB) if R~Q is cne 

RQTSlZ - it contains the number of requests which 
have been serviced 

ORPT~ - it contains the addrEss of next request 
to be serviced 

Both RETSIZ and ORPTR are used for implementation purposes 
only. 

86 



APPENDIX C 

POL DESCRIPTICN CF CUIPUT I~1ERRUPT 

ROUTINE 

The following section contains a Program Design Lan-

gu:age {PCL) description of the output irtercupt routine and 

its driver. 

Appendix B. 

OUINDR : PROC ; 
/* 

The data structures used are described in 

This is an output interrupt driver. This driver controls 
the flo1o: of data from a user workspace to all output 
buffer. Ihis transfer of dat~ is done record-by-record. 
iissume that a blcck of characters to be sent to a device 
are in the appropriate user workspace and the correspond
ing UCB entries are filled with the information needed. 
This routine searches CUTREQ table to find ~hether there 
is a requost. If no request is found then this routine 
does nothing. Otherwise, it checks the status of this 
request. If the request is still in progress (the output 
interrurt has not finished printing the data) 1 then it 
delays servicing this request by scanning the next entr~ 
in OUTREQ. Otherwise it checks whether the end of record 
indicator is on tlr not. If it is not on then this routine 
scans the next entry in OUThE~; other~ise it checks 
whether there are mnre characters to be printed. If not 
then it indicates that the request is completed; other
wise: 

1. Call BUFADR to find the address of user 
area and output buffer for the 
corresponding device type and device#. 

2. Call CPl to load the cutput buffer with 
the characters to be printed. 

3. Call SETOI to update the status of the 
cequest and initialize the 1/C ccntrcller. 

87 



88 

*I 

DC W li IL E (' 1' a ) ; 
Search OUTHEC table for a request and store out~ut 
control block address in UCBADR, if any; 
IF S1JTUS,=1 & ECR,=O & 101Al~=o THEN DC; 

END; 

CALL BUFADR(UCBADR,OOBUFi,US;ARi); 
CALL CPl{USRARi,OUBUFi,UCRAD~); 
CALL SETGI(UC3ADR); 

ELSE IF TOTAL = 0 THEN StATUS = 0; 
END; 

BUfADR: PROC(UCBADR,ODBUFi,USRARi); 
Get DEVTP and DEVNUM from UCUADk; 
IF DLVNUM = i THEN DO; 

Set USRARi to contain the address of user 
workspace for device# i; 

Set OUBUFi to contain the address cf output 
buffer for deviceH i; 

END; 
Return; 

END BUFAuR; 

CPl: PHOC(US~~Ri,CU?UFi,UCBADR}; 

Initialize cuaUFi.NCCHAR tc zero; 
DO WHTLE(USRARi.NOCHAR ,: C); 

End; 
I* 

Move a cl1aracter from ME~ORY(USRPT~) to 
t·lEi"lCRY(BUFPT!i ); 

Increment OUBUFi.NOCHAk by one; 
Decrernent USHARi.NCC~l~ by one; 
Advance u~~PT? and bUFFP1R to point to the 

ne:xt location; 

At the end of a record, a carriage return and line 
feed characters are imbedded into the character strearr 
to let the device (terminal) skip tc the next line. 
*I 
Store carriage return and line feed characters in 

~EMORY(BUFFPTR+l) anJ ME~ORY(BUFFP1P+2), 
respectively; 

Set TOTAL to OUBUFi.NOCHAR; 
Return; 

END CPl; 

SETOI: PhOC(UCBADR); 
Set UCUADR.STATUS to one; J* in progress */ 
Set UCDAUR.EOR to Lero; 
Initialize I/C controller for UC5ADR.DEVTP and 



UCEADk.DEVNU~ specified; 
Return; 

END SETOI; 
END oun;cit; 

0 U Jt, 1: P RC C; 
/* 
This i~ an out~ut interrupt routine. Each device has 
its own out?ut interrupt routi~e. 
*I 
IF OUBUFi.NCCYAR = 0 THEN DO; 

Set UCB.SO~ to one; /* end of record *J 
Set DCri.ST~TUS to zero; J* request is completed *I 

END,; 
EL.S.E DU; 

Output a character from MEMOFY(CUBUFi.BUFFPTR); 
Advauce OUflUF1.~1UfF'PTR to point to the next 

location; 
Decrement OUDUFi.NCCHAF by one; 

Restore all registers; 
Enable .ir:terrurlt; 
Return; 

El~D OUii\'f; 

89 



APPENDIX D 

INPUT INTERRUPT ROUTINE DATA STRUCTURES 

The following describes the data structures ~sed in the 

input interrupt routine & its driver: 

1 INBFAi - input buffer A for userU i 
2 }·•OCHA'R - # of characters 
2 8UFFPTt< - buff~::r r'cintPr contains tbe 

address of ne~t location of 
input buffer s~ace 

2 ADDR_INB - input buffer space {the maximum 
is 255 chdrccters) 

1 lNBFBi LIKE INBFAi - input buffer B for useril i 

1 USkA~i - user ~orkspace for user# i 

1 ICBTl 
2 DIR 

(the fields and their descriptions 
are found in Afpendix B) 

- input control block for terminaln 1 
- it contains the direction of data 

movement. 
0 - input request {the data is copied 

from input buffer to user 
works~ace) 

1 - output request (the data is cc~ied 
from user wcr~space to output 
buffer) 

2 STATUS - it contains the status of a request 
0 - request is in waiting line or 

completed 
1 - request is beiny serviced (in 

progress) 
2 DEVTP - device type 
2 DEVNUM - devicefi 
2 ADRUW - it contains the address of user 

workspace 
2 ADRIB - it contains the address of active 

input buffer 

90 



91 

liili: 
For in?ut interruvt routine the value of ICBTl.CIR is zero 
at all tim €' s. 

1 INkEQ(*) - table contains input requests 
2 FfQ - request indicator 

0 - no request 
1 - there is a request 

2 ACiOCB - it contains the audr€:ss of ir.,?ut 
control block (IOC;I) if f<SC is orle 

The follo~ing data structures are used by the in~ut inter
rupt driver to check for input requests. 

MRTSIZ - it contains the number of requests ~hich 
has been serviced 

MVRPTR - it cQntains the address of ne~t request 
to be serviced 

The following data structures are used by the input inter
rupt routine to get the next empt~ entry in I~REQ table. 

NOTE: 

PThERI - it contains the address of the next 
empty entry in INREC 

NOHE~ - # of requests in TNRhC 

MdTSIZ, MV~PT~, PTNERT ~nd NO~EQ are used for implementation 
purp o..:;es only. 

INPTi - a pointer used for swithching between 
two input buffers (for user~ i) 
1 - indicates that the first buffer 

(buffer A) is active 
2 - indicates that the second buffer 

(buffer a) is active 
Ini tial1y, it contains the value of one. 



APPENDIX E 

PDL DESCRIPTICh CF INPUT INTSR~UPT 

ROUTINE 

The tollowing section contains a Program Design tan-

guage (POL) description cf the in~ut irterrupt routine and 

its driver. The data structures used are described in Appen-

di:x D. 

I N IT D n : PI{ 0 C i 
I* 
Tbis is an in~1ut interrupt driver. The 
INRSQ table for a request fran the input 
tine. The in~ut interrupt routine reQuests 
data from an active in~ut buffer tc the 
user ~orkspace. 

driver examines 
interrupt rou
H.ITDR to cop}· 
corresk>ondin~ 

This routine searches I~REC table to find ~hether there 
is any request or net. If no request is found then this 
routine does nothing; other~ise: 

*I 

1. Heset the buffer pointec of an active 
input buffer to point to the beginning of 
input buffer. 

2. Call CPO to copy 
buffer to the 
wor-kspeice. 

data trow the input 
correspondi~g user 

D 0 wHILE {I 1. B); 
Search TUREQ table for a request; 
IF there is a requt.:st THEN DC; 

Store the address of input control block 
i.n ICB~.D.R; 

CALL CPO(ICBADR); 
Set ~EQ tc zero; /* request is com~leted */ 

END i 

92 



E ND.i 

CPO: ?kOC(ICB\DR); 
Get the ajdress of input bufferUNdADfl) ard user 

workspace(UWSADR) from ICilAUR; 
Initialize U~SAD~.NOCHAR to zero; 
DO ~hlLE(INBALR.NOCHAR ,: Cl; 

~ove a character trore ME~CRY(l~DADR.BUFFPTR) 
to MEM0,Y(U~SADd.USkPTR): 

Increment U~SADR.NCCHAR by one; 
Decrement INBADR.NOCHAR by one; 
Advance INPADk.BUfFPT~ and UWSADk.OSRPT~ to 

point to the next location; 
Et-\D; 
Return; 

END CPO; 
END INITDKi 

Ii.;INT: PPOC; 
I* 
This is an input interru~t routine. Each device has 
its own interrupt routine. 
*I 
IF INPTi = 1 THEl~ IN3ACT = H1BFA.i; 

ELSE INBACT - lhBFBi; 
Input a character from a device; 
Echo input character; 
lF end of record is detecte(] TiiEt, DO; 

IF INPTi = 1 THEN INPTi = 2; 

END; 

ELSE INPTi = 1; 
Get an empty lNRLQ entry; 
Set HEQ = 1 and ADIOCB to contain the address 

of the corresponding input control block; 
I* 
Initialize fields in input control block. 
*I 
Set DIP to zero; /* input request */ 
Set ADRU~ to USRARi; 
Set ADRIB to INPACT; 

ELSS DO; 

END; 

Place the character received in 
MEMORY(INUACT.BUFFPTH}; 

Increment I~BACT.NOCHA.R by one; 
Advance INBACT.BUFFPTR to ~oint to the next 

location; 

~estore all registers; 
Enable interrupt; 
Return; 

END HHNT; 

93 



VITA 

Sylvana Kristanti-Sari 

Candidate for the Degree of 

Master of Science 

Thesis: DESIGN OF OPERATING SYST~M KERNEL FO~ A 
HILROCOMPUTER SYSTEM 

Major Field: Computing a~d Information Sciences 

Biographical: 

Personal datil: Born in Suraba~a, Indonesia, on Noveili
ber 5;- .1954. 

Education: Graduated frow St. Agnes High School, Sura
baya, Indo~esia 1 in December, 1972; received Bach
elor of "-~athematic from Uni\/ersiti ot vlaterloo, 
Waterloo, Cntario, in August, 1~77; com~leted 
requirements fer Master of Science de~r~e at Okla
homa State University, Stillwater, Gklahoilla 1 in 
December, 1979. 

Professional Experience: Graduate research assistant 
at Gklahorna State University 1 Electrical Lngineer
ing;- October, 1977-~aJ, 1978; proyra~mer for 
Department of Parasitology at O~lahoma State Uni
versity, Summer, 1978; yraduate teaching assistant 
at Oklahoma State Universit~, Departrrent of Mathe
matics, fdll 1979; graduate teaching assistant at 
Oklahoma State 0niversity, Computing and Informa
tion ScierJces Dei,)artment, S~1ring 1979. 


