DESLIGN OF OPERATING SYSTEM KERNEL FOR A

MICRGCCHMPUTER SYSTEM

By

SYLVANA XRISTANTI-S5ARI
7
Bachelor of ¥athematics

Uriversity of waterloc
Haterloo, Ontaric

1877

Submitted to the Faculty cof the
Graduate College ¢f thne
CGkiahona State University
in partial fulfilloent of
the requirements for
the Degree of
{ASTER OF SCIEAKCE
December 1979

DESIGN OF CPERATING SYSTEM KERMEL FOR

MICRCCOMPUTER SYSTEN

f\mﬁ%@

UNIVERSITY
LIBRARY

“Thesis hoViser

N

Gt acn

Z

Dean of Gtaduate College

1042993
ii

PREFACE

This thesis is a desigﬂ of an operating system keriiel
for 2 microcomputer system. The design is used mainly for
submitting and retrieving batch jobs executed by the host
compuler.

The author would like to thank Pr. J. Eichard Phillips,
my major advisor, for his guidance and assistarce to make
this project an enjoyable and mewmorable experience. The
auther would alsco like to thark Dr. Donald D. Fisher and Or.
Donald We CGrace, the other mewmbers of the committee, and Dr.
M. Folk for their suggestions.

A special appreciation is offered to my brother, Agus-
tinus, for his assistance in typing my thesis durinyg his
visit to Stillwater. I would also 1like to thank my parents
and grandwother for their encouragement, love and confidence

which made this thesis poessible.

TABLE OF CONIENTS

Chapter
I. INTECDUCTTIONE o o o o o o o = o« o « s o «

Gbjective . .
QVELVIOW o o o 2 » o s 5 s » s » =

.
[]
L}
L]
L]
.
.
.
*
L]
[]

I1. OVERVIEW OF KERNEL o o o o o o o o« o o @

CVBLVIOW 2 o o o« s o o » o = » » «
Functions Available to User <« « « »
Comamunication with the Systiem « « »
Limitation of the System « « o « =

III. STRUCTURE OF XERKEL « o o o o o = = o

Levels of the Kernel o« « o« o o o «
Description of Level Dependencies .

IV. KEGNEL DATA BASES AND KUUTINES o o« o o =
Toout/CUtpUl SYSLED 2 o « o o o » =
Command Interpreter « « « » «
File sanagemnent o « o o o o &
_iGHIUI'y x‘f:aﬂagemer}t . » - . - = - - -
Diagram of System Structiure .

Ve DISCUSSTUN OF A KERNEL CCHMMALND o o o o o

The Procedure to Cutput a Disk File

Local Printer o « o « s =2 o » o «
ﬁiscellaneﬂus * E] - L d L] - E E J - » »

VI. SUMMARY, CONCLUSIONS, AWD FUTUKE WCRK .

Summary and Conclusions « = « « «
FULUTE® WOLK o o o s s o o o 2 o o =

}BIRLIUGE<APHY L] - - . - » L] L] - - - - - - - - -

& & & » &

APPENDIX a - CHARACTERISTICS CF THE 1/0 INTERFACE

CGI&‘JTHOLLER . . - - - - - - . - » -

-

« & & 4

»

. 5 & »

»

APPENDIX © -~ OUTPUT INTERRUPT ROUTINE DATA STERUCTURES

iv

¢ a2 &

e ¥ & @«

16

APPENDIX C - PDL UESCKIPTION OF OUTPUT INTERRUPT KOUTINE 87
APPENDIX D - INPUT INTERFUPT ROUTINE DATR STRUCTURES .« « 9€

APPENDIX E - PDL DXSCRIPTION CF INPUT INTERRUPT ROUTINE + 9.2

TABLE

Table o Page

1. KERNEL SYSTE:}j NCDULES] - - » * - * - - » - * » - 21

vi

LIST UF FIGURES

Figure Page
10 OVGI‘ViQH Gf the Systi&.‘ﬂ* » - - - » - » - - L - - » L 6
2. Transition Diagram of User State o o o = o o = » « &

3. A High-level PDL Description of an Input Interrupt
ROUtine L] - » - - - - - » £ 2 - - - » - L] » - - . 14

4. A High-level FDL Description of arn Cutput
Interrupf KouULINE o s o o « » o » 2 = = » » =« » 1E

5. Hierarchical Kernel Structure o« « + « o o o o « o« 19
6. Interrupt Service Address Formation « « « « « o « 29
7. Communicatibn between I0S and I0CS o o « o e » = « 35
8. Example Of REACQUE 4 o s o 5 2 2 o 2 » » 2 » » o « 38
9. Diagram of Input frow a3 Terninal « « o o« » o » &« o 43
10. 105 Control ¢f an Outpul Tnterrupl « » « « o o » « 46
11. Diagram of Outpul to a Terminal <« « « = « o » « « 45
12. PDiadram of Outpul tc the HEST v 4 o o o o « o o o 5C
13. Diagran f Processor {ueues e = = s 2 » » = = = 54
14, File ¥anagement and its Control Blocks + « « » « » 63

15. Diagram of Communication of Kernel Mdodules « « « - 78

vii

CHAPTER X
INTRODUCTION
Cbjective

Computer technology has advanced rapidly since the
first cocmputers were built in the late 1940s and early
1950s. These computers were buill primarily to solve scien-
tific and engineering prohlems. The latest technclogical
developments are in the area of large scale integrated cir-
cuits. This has resulted in the development of the micropro-
cessor, a device which can function as 3 central prcecessing
unit (CePU).

Previcusiy, the emphasis of computer development was on
larger and more powerful machines, but these were expensive.
Microprocessors are now readily avaeilable in large nuambers
and at low cost. In comparison with large computers, a
microprocessor has limited capability with respect to scien-
tific and engineering problems; however, 1t is very useful
for controlling informaticn flow frcm cne Or 1Ore sSources.

A typical application for a microprocessor is the con-
trol of tasks for a larger computer. For example, a micro-
processor c¢an be used to control wvaricus types of

input/output. 1t is also possible for system designers te

use wmultiple wicroprocessors for certain types of dedicated
processes that are now handled by a general purpose com-
puter. The extent of such applications is Jjust begiinning.

Conceptually, a multiple microprocessor system could be
constructed. With such‘a syStam, it is easy Lo see that oune
of wicroprocessors could fail and still allow the other
processors to operate. This kxind of system i3 stiil in the
development phase because of the unsolved problem of inter-
processor control. A limited mnmultiple microprocessor sys-
tem, however, <¢an be considered and some <¢f the software
problems can be addressed.

The main objective of this thesis is the design of an
operating system kernel for a micrccomputer system to alliow
multiple users to create programs, store them on a disk file
and execute them on a host computer. In other words, the
host computer views the input as a remcte job entry statioa.
A user may keszp his program on & peramanent disk file and
rtetrieve 1t at any time.

The idea of using a nmicrocomputer to “olf-load™ a host
computer is not new; this design, however, 1s a first stap
in understanding the more general problem associated with
desighing an ogerating system for a system containing wmore

than one microcomputer in a multiuser epvironment.
Overview

Chapter Il introduces an overvies of the kernel by

describing the m3ajor functions ¢f the kernel. This chapter

also discusses how & user communicates with the system, the
functions that are availeble to a user and the limitation of
the kernel.

Chapter II1 presents the structure of the kernel. 1t
discusses the oyeratinq’syst&m components at each level and
how these components comuunicate with each other. A table of
the pasic wmedules of the kernel and their function is given
in this chapter.

Chapter iV presents a detailed description of all sys-
tenw wmodules and thelr data bases. The description is cate-
gorized into several seétions: they are the input/output
system, the command interpreter, file management and amemory
management. The input/outout system consists ¢of several
nodules such as Logon, Logoff, the conscle scheduler, 105,
I0CS and the comamunication usodule. File management consists
of the file manager and the disk manager. Tihe design of file
managesent or wmewory management is not considered 1in this
thesis? only the ﬁesign‘of the interfaces are presented. The
data bases are Jdescribed in terms of PL/I-style stiructure
declarations in which each field is described in detail.
This chapter also contains a few diagrams 1llustrating how
the systea modules commuynicate with one another. At the end
0of the chapter a diagram showing the overall system struc-
ture is presented.

in order to yive a better cverview of the desiyn of the

kernel, a4 discussion of howa the system works for a particu-

lar conmand is presented in chapter V. This involves a dis-
cussion of the operations of the command interpreter, the
file wanager, the disk manager, I0S and ICCS.

The appendices include PDL descriptions of the input
interrupt routine and the output interrupt routine. There is
alsec a discussion of the characteristics of the 1/0 inter-

face controller.

CHAPTER I1
CVERVIEW OF KERNEL
Qverview

The Kernel 1dis a waultiprogramming operating systen
designed for a microcomputer system. It supports multiple
users in which each user has a terminal. Any type of I/C
devices car be suoported, but the current system is config-
ured as illustrated in Figure 1.

The present system design only supports backyround jobs
executed in a foreground manner. As shown in Figure 1, each
user compunicates with the microcoiputer system. Prior to
submittiry a jJob, a user creates & file which is stored on
the diske. The user may then submit the job for execution on
the host by using the capabilities ¢f a command interpreter.

Communication with the host is accomplished by using a
special protocol. This involves the formation of messages
which are ccnpossd of a header, text and trailer, each of
witich i3 several characters in length. For an IBM system,
one protocol that is often wused ir communicatior with the
host is the byscyn (BSC) protocol. The otner protocols are
asynchronous and synchronous data link control (SELC) proto-
cols. A detailed description about communications? proteocol

may be found in Schoeffler (6).

w

Host

-

W2

-

Host Controller

and Modens
e
oystenm Levices
Y
Prirter 2 Microccomputer
Systen

Tage
V4
User

Terminal

1

Figure 1.

v

User
Terminal

-

i 2

User

Tarminal

it

3

Overview of the

- 8 8 0

Commuricatiorn
Link

Controlier

User
Terminal

1

From the huost point of view, the kernel is just another
card reader and printer. khen a wuser submits a batch job,
the kernel passes the information to the communication
module (a8 wsodule uwhich 1is responsible for setting up the
protccol) &nd the latter sets up the protocol in such a way
that the host recognizes the input as a remcite Jjob entry
station. In a simiiar way, the output from a batch job may
be retrieved. For instance, the kernel may request a signal
from the communication module to allow the host to send the
output to the microcomputer. The host interprets this
request as a signal to ocutput scme information to a line
printer.

A user has an option of either storing the output of a
batch Job on a disk file or printing it at the 1local
printer., If the user chcoses to store the output on disk,
the output file is stored‘as a permanent file. An zuthor-
ized user nmay request that the file be deleted at a later
tive.

The system 2lsc provides a mechanism for retrieving the
status of all batch jobs currently in the system. This

allows a u

th

er to know whether the job has been submitted or
stored on a disk output file.

The kernel maintains the status of a11 batch jobs cur-
rently in the system. The status bit iz zero if the jo¢b has
heen submitted to the host, and one if the job is completed.

Upon systemr initialization the status of all previcusly sub-

mitted batch Jjobs are purged. This initialization may be
done on a daily hasis.

There 1is only one communication 1line connecting the
microcomputer system to the host. The kernel schedules a Jjob
for submission to the host as long as the correspending user
is in a running state and the 1line to the host is not busy.
Otherwise this wuser is placed in a blocked state 2and must
wait to use processor time.

There are several different states that a user may be
in. A user is 1in a runrning state if he is using processor
tinme. Upon an I/0 regquest a user is mwoved from a running
state to a blocked state. Figure < gives a transition dia-
gram showiny how the states of a3 user charge. A user is said
to be dispatched when the kernel gives the user the CPU.

The terminology of multiprcgramming jtay be a misieading
concept (as defined in wmost operating systew books). HMulti-
programming, iIn a timesharing system, refers to the concur-
rent execution of t«0 Or moie user preocesses in a single
computer system. In the context of the kernel, the concur-
rency occurs in interoreting user ccemmands, nct in executing
several processese.

To support multiprcgramming the kernel hardles the
sharing of system resources among executing wusers. Some
resources, such as the line printer, are exclusively allo-
cated to a wuser until the task 1is completed. Cther

resources, such as the CPU and mesory, are shared dynami-

Dispatch Interrupts
{interrupts) {1/0, timer)

N

PRGN, (RO} A%

Blocked

Figure 2. Transition Diagram of User State

cally. The kernel supports time slicing {(sharing CPU time
aimony several users by e2lternately giving each a short
interval of time) by using a timer.

Each terminal way have a different rate of information
trarsaission. The kernel provides an adjustable systewm par-
ameter that allods terminals to be set at different rates
depending upon terminal characteristics. This provides &
mechanism for adding new terminals to the system. There are
also operator commands which are able to display or change
the current haud rate of any terminal. These commands are
useful for diagnosing commnunication problens.

Memory allocaticn for the user is partially hardled by

hardware using bank allocation. The memory is partiticned

1C

into seversl memory banks. The system provides & mechanisn
that allows the kernel to select ore or more banks. UOne of
the banks is wusad by the system and is referred to as the
system bank; the others are referred to as user banks. The
kernel controls wmemory bank selection and s&ssigns a free
bank to every user. The maximum size of a bank is about 64

k¥ bytes.?

Supgaly

The major functions of the kernel ares

1. tc perform input/output operaticns,

Ze to interpret commands from users,

R tc assign storage for users and system functions,
4, to schedule batch jebs, and

5 to retrieve batch iobs.

Functions Available to User

The wain objective of the present design of the kernel
is tﬁ allcw a user to submit batch Jjobs tc the host cem-
puter. To support this objective the system provides nmulti-
ple ter&inals for users. A user can create @ file contain-
ing the program from the terminal wusing a text editor anc
store it on a dicsk. The text editor allouws users to manipu-

late files in the usual waye. For example: save a file,

M S e —— - - ——

11X is eguivalent to 1024.

11

recall a file, delete a file, change one character or few

chartacters in a text (frown a file), and delete lines from a

file.

The system also provides user commands which serve as s
convenient tool for users to reguest services of the system.
Briefiy, the basic user copmands are:?

LOGGN: The user establishes contact with the systep. With
this Command the user gives a valid user identifi-
cation and password.

LOGCUFF: The user breaks contact with the system. The systesn
then displays the accounting information.

5UBMIT <input file named>: The user requests the system to
submit a batch job to the host. The input file
nawe is the name of the file containing the prograr
to be executed. The system gives the user a unlque
j¢b number for each job submitted to the system.
This job nuwber 1s actually assigned by the host.
The user «c¢ould examine the status of a Jjob using
STATUS command {discuss below).

STATUS <fuseridljobE>:?2 The system displays the status of =&
job for useridijob#bspecified.

OUTPUT <useridljoebii> <destipaticn>: The user requests the
output of a batch job identified with userid{jobij

to be printed at the designated destination.

20 i gignifies concatenation.

Communication with the System

The wuser communicates with the kernel primarily by
means of a terminal. ®*hen the user sits douwn at the terni-
nal gnd turns it on, the systew issues a logon wessage
requestiny the user identification. This identification is 2
userid and a password. The Xxernel checks this identification
in a table of authorized users and 1if a match is found, 1t
tells the user 19 proceed. The system module which allows
the user to be able to make confact with the system is rpameg
Logon.

Input and output from a terminal is handled on a char-
acter-hy-character basis. When the user strikes a key, the
corresponding character is fransmitted to the I/0 interface
module in the microccmputer system and an interrupt is gen-
erateds This character nust be removed frowm the 1I/0 dats
transmission buffer before the user strives another key, or
else the first character is overwritten by the next charac-
ter.

A terminal is a combipation of two devices in one unit,
a keyboard and a printer. When a key is struck the terwminal
acts as input device and places the character 1in a dats
transwission buffer. When the terminal receives & character
frow the system, it acts as output device, and prints the
character oi paper or displays it on a wvideo screen. The
kernel is5 responsible for controlling the titransmission of

character to and from the terminals. The system mcodule that

13

controls the transmission 1is «called 105 (Input Output
System).

Associated «ith every active user 1s a «orkspace and
several I/0 buffers. For input processing there are two
buffers: for output processing a single buffer. Both types
of buffers are fixed in size and reside 1in fixed locations
in the system area. Their capacity is one reccrd, where the
length of a record is variable. The actual size is deter-
mined by the physical characteristies of the device. The
system also provides a system parameter that allows an oper-
ator to adjust the size of the record accordingly.

103 is an interrupt driven system. It consists of
several submodules. Logen is one ol the submodules. The
other submodules are Legeff, input Interrupt System, Output
Interrupt System, the compnunication module and console sche-
duler. The basic design of input interrupt system is given
in Figure 2.

All the desiygns are written in PDL (7) ({(Program Design
L.anguage), & psSeudo language wWwith structured programming
technique 35 a replacement of the flouchart.

The kernel has an input iInterrupt service routine to
handle all terminals as well as irnput frem the host. Figure
3 describes the skeleton of the input interrupt routine.
The actual iwplementation of input interrupt toutine is

device~-dependent.

14

save all registers used;

input a character;

echo input character;

IT end of request is detected THEN
reguest TOCS to place the data in user's
worksovace)

s}

ELS!
place the character received in one of the
irput buffers te form a lire (reccerd);

Fi;

restore all registers;

enahie interrupt;

Teturn;

ure 3. A High-level PDL Description of an Input
Interrupt Houtine

rey
[N
Wy

The interface between 2 user program and the 170 con=-
troller consists of a procedure «called 10CS {Input Qutput
Control System). 10CS has the responsibility c¢f ccpying data
Iror input buffers to a user workspate or from USer WOrxXs-
pace to an output buffer. For the latter case 1CCS only
transfers the data cne record at a time. ¥hen the output
buffer is full, 10CS does the proper initialization to allou
the device to output characters toc the ccrresponding device.
The PDL for the output interrupt routine is shown in figure
4.

Users communicate with the system using wuser conmmands
via a terminal. These <commands ace used to communicate
with the file system, with memory managemert, or for gaining
access to subsystems such as text editor and other similar

system rescurves. The kernel contains a8 command interpreter

15

to interpret these comirands. The command interpreter
interprets a user command in & user Workspace and transfers

control to the appropriate routine for further actions.

save all registers used;
output a character from output buffer;
IF output buffer is empty THEN
martk output buffer emgty)
Fi;
restore all registers;
enable interrupt;
return;

Figure 4., 4 tiigh-level PDL Descripticn of an Output
interrupt ERoutine

One other important task of the kernel is to maintain
all the user files. This is the responsibility ¢f the file
management wodules Tt consists of the file manager and disk
WaNAagers The disk wanager controls the actual wovement of
data from the device (disk) to a wuser area (inp a systenm
bank). A user bank is divided into two partitions. One par~-
titicn is used as a workspace for terminai 1/0 operatiaong,
and the other 1is useqd as a workspace for text editing. The
user area is part of a system bank which is aillocated by the
memory managewment module to serve as & transfer station. The
length of a user area is determined by the physical charac-
teristics of the disk and is chosen to be a multiple of a

record.

16

With the existence of the file wmanager a user can

perform several functicnss:

1. The user may create, change or delete files.
2. The user may control the access to the files
and the type of access allowed, such as read
orf mwrite.
3. The user may provide a file back up in case a
file is accidentally deleted or damaged.
The process of a user breasking contact with the systerw

is takep cezre by the logoff routire. Upon termination of 3

usel session the logoff module:

i. updates asccounting information,

Ze calls memory management to deallocate all storage
used during an active session,

3. calls file maragement tc save tempolary files, if
anye.

Lipitation of the Systen

At the present time, the design of the kernel does not
include file management, mepory management, communication
module or text editore. These are self-contained modules
specified in terwms of functional atiributes. The main con=~
cern here 1s the system and interfaces design.

When the command interpreter is given & user command
reguesting services of the file manager, the command inter-
preter sends a request to the file manager along with the

function specified by the user. The file manager wight conm-

17

mand the disk manager to do the appropriate actions, if nec-
essary, but it cannot directly communicate with the disk
manager »

The systenm perforas no error checking on the byte being
transmitted except in the protoccl. Error detection and
recovery are on reception of characters. The module that
provides the error detection and recovery are different
depending upon the device type. There are only three sources
of input, either from terminals, the host or cassette tape.

I0S detects and recovers overrun errofs frem terminals.
The 1/0 channel provides a mechanism to detect these errors.
As each character is input teo the system, I08 checks fcor a
possible overrun error by interrc¢geting the status register
in the I/C interface. If there &are ary errors then 108
proppts a special character to request the wuser to rettan-
smit the entire current record. 7The comaunication wodule
detects and recovers errors for irnvut frem the host.

The size of a user workspace might not be large enocugh
to contain 2 huge user program. At the present time there
are no facilities provided by memcry management to eniarge
the size of the workspace allocsted. 4 solution to this
problen is to ailow the editer to copy the user program to

the disx when the wmorkspace is full.

CHAPTER III

STRUCTURE OF KEKNEL

tevels of the Kernel

The structure of the kernel is designed using hierarch-
ical concepts. The construction of the kernel is such that
a given level is allowed to call upon services of lower lev-
els, but not on those of hiygher lewvels. In other words, each
successive level, froi the bottom wup, depernds c¢nly on the

existence of those levels below it and not on those above

it.

The kernel consists of 3 1levels as follouws:

1. level 0 - Input/Output System

2 Jevel 1 = File Managemert

3. level 2 = User Domain

These levels are diagrammed in Figure 5.

The hierarchicsl approach has the advantage of
distributing the system functions. tach 1level does not

really have to know whether other levels are in the same
procéssor. The most important consideration is the design of
the interfaces between each level. These are described

thoroughly in the next chapter.

18

19

User Ucmalrn

File Management

1/0 Systeuw

Bare Machine

Level 0

Level 1

Level 2

Figure 5. Hierarchical Kernel Structure

From Figure 5 memory managemeht does not appear in any
level; this is because all levels need the memory management
services te allocate storage within their cuwn processor. Ir
order to distribute the systexm functions over several
Processors, wemory management must exist on all levels and

on all processors. Chapter IV will discuss the functions of

mewory management in amore detail.

20
Description of Level Dependencies

In the following section each level of the kernel and
its dependercies on cther levels beiow it are described. The
data structures for interfacing among levels are described
in mure detail in the next chapter. Table 1 1lists each
module of the kernel and the general function associated

with it.

Jpout/Qutput Svsgtaen

This system conrsists of seversl submcdules. They are
logon, logyoff, 105, IOCS, the conscle scheduler and the com-~
punication nodulee.

When a wusetr is making contact with the system, the
logon takes control of the system. It searches a table of
authorized users and 1if a match is found then the user may
proceed; otherwise the system gives several trials to the
user to resubwit the identification. Logon uses pewory man-
agement to ailocate a free user hank. gefeore the logon
module transfers its control to 105, the console scheduler
places the wuser identification intc a bilccked user queue.
This allows the command interpreter to service users by dis-
patching the first user in the gueue. This gueue, along with
others, 1is described in Chapter IV.

As each character is input, 108 assembles the charac-
ters into a record in one of the input buffers. When the engd

of record is detected (for example for a terminal it is a

KERNEL SYSTEM MOLULES

¥odul e

Function

Memory sMgnagesient

1.egon

Logoff

I0S
10CS

Communication wpodule

Console Scheduler
File Manager
Disk Manager

Cemnmand Interpreter

Editor

Allocate and deallocate amemory
space for other modules and
system bank

Authenticate user and logically
connect terminal to the systenm

Disconnect terwinal from the
system ard update user
accounting information

Control channel
input/cutput cperations

Control data flow from 1I/0
securces

Establish protocol for
communication link with
1BM 37¢C

Schedule new users and
allocate processor time

Maintain all user and system
files

‘Control disk input/output

operatiorns

Interpret user commands

Text or progranm manipulator

22

carriage return), TOS puts a reguest in a8 reyquest qgueue
{REQCUE) fcor servicing by 10CS. This allows IOCS to copy
the record to the appropriate workspace. The reguest jyueue
is a circularly linked queue. Allocating and deallocating
nodes for REQQLUE is the tesponsibility of memcry management.

in servicing & request from the host, 1I0S calls the
copmunication module to perform the task. The communication
module is responsible for setting up the sppropriate proto-
col in a form recogrizahble by the host before copyiny the
data to the indicated output buffer.

The two wodules, 105 and ICCS, coammunicate by means of
a control bleck which contains infermation such as the
address of the input or output bufier, address of the user
area, the status of buffers and other pertinert informaticn.
211 devices in the system have static control blocks, except
for dedicated devices such as the l1ine prirnter or a tape
drive. In theses cases, dynamic centrol blocks are allocated
and deallocated by memory manageitent. whether static orv

dyramic, all control blocks are of fixed size.

This medule consists of tu«o submodules. They are the
file manager and the disk manager. The interface between
file managenent and I/0 system is similar to the interface
between TUCS and 105. Upon an implicit reguest® from a user,

the file manager initializes another kind of control block,

23

similar to the I1/C control block, referred to as the disk
contrvl block (DXKCB). The file manager comwmands the disk
mwanager to control the data movewent by placing a2 request in
a disk rejuest gueue (DRCUE) toc allow the Ccisk marager te
move the data to and from the disk. Both DRQUE and FRGUE
are implewmented as circular linked queues and TrTequests are
serviced by the disk manager and file manager, respectively.

The file wmanager calls upon mewory managemernt for
seyveral services. For example, the disk control blocks are
allocated for each user request and deallocated at the end
of the task. Hemory management also provides an availabil-
ity list for allocating and deallocating nodes of DRyUL and
FRQUE.

The disk manager examines DRCGUE to determine 1if it is
eipty or not. If DRQUE is empty then the disk manager 1is
idle because no service is requested from the file manager;
otherwise, thé disk manager performs the appropriate tasks
defined in DREUE. The structure c¢f DRQUE and FRQUE are dis-
cussed in more detail in the next chapter.

similerly, the file manager is idle if FR{UE is eaply.
There are three possible types of reguests 1in FRCUY origi-

nating frow the command interpreter, ICCS or text editor.

Th user requests the kernel, through the coamand inter-
preter, to manipulate files. The command interpreter serv-
ices the request by placing an entry in a file reyuest
queue (FRyULE). The file manager examines FREUE and dces the
proper actionse.

24

T0CS reyuests Lhe file manager to copy data from the user
area. Tiis occurs when a batch jcb 1s being retrieved. The
command interpreter reguests the file wanager to manipulate
files, such as print a fiie stored on a disk at the local
line printer. Tais causes the disk wmanager to place a
reguest in RETLUE to allow ICCS to copy the data from the
user area te the output buffer. The text editor alsc
requests the ({ilie manager lo copy the content of a file to a

user workspace for editing.

User Domain

At this level the command interpreter schedules users
for command evecution. A user is said to be eligible for

execution if he 1s not waiting for completion of an

input/outuut vperaticn or for a new time slice or for the
completicn of an I/0 operation from other users. If one of

these conditions occurs the command interpreter bhlocks the
user and vlaces the user in a blocked queue. This queue con-

sists 0of a3 sav

453

area containing the status of the processor
for a particulsar wusers The save area includes information
such as the contenis of processort's registers and the pro-
grair counter contalning & pointer to the next user commandg
t*o bhe intecprotad hy the <command interpreter for resuming
the contrul.

As mentioned in the previous section {file management),

the user domain (the command interpreter and text editor)

25

and the file maragement (the file manager) communicate by
means of a file request gqueue (FRQUE). Upon user rteguest,
the text editor and command interpreter place thelr requests
in FRQUE.

The text editor is used by users to enter, delete, and
nodify text and write it on the file. The file name is usu-
ally regquested by the editor and the wuser can change the
name if desired. In creating a new file the text editor does
not have 1o place a request in FEQUE. In order to allow
users to wanipulate o014 files the text editcer requests the
file manayer, «which in turn regquests the disk manager, to
copy the contents of the file frow the disk to the indicated

user workspacea.

CHAPTER 1V
KEKNEL DATA BASES AXND kOUTINES

This chapter presents a more detalled descriptiorn of
the modules 1in the kernel and their data bases. The data
bases are described using PL/Il-style structure declarations.
At the end of this chapter a diagram showing the overall

system structure of the kernel is given.
Input/Output Systen

At the present time the Input/Output system only sup-
ports three tyoes of communication devices: terminals, a
line printer {(local) and a communication link to the IRM 370
called the host. The disk is not considered as part of the
I/0 system since it has its own disk controller. It does,

however interface with the Input/Cutpul systenm,
Interrupt System

The word interrupt has beer menticrned several times irn
the preceding chapters., There are various ways to implement
and cdefine interrupt mechanisnse. Madnick and ULDonovan (4)
definre an interrupt as:

1. A Tesponse to an asynchronous or exceptional
event that

26

27
2e Automatically saves the current CPU status to
allow later restart, and

3. Causes an automatic tramsfer to a8 specified

rovtine called an interrupt handler.
Only the third cdefirnition of an interrupt is explored irn
depth in this secticn.

Une interrupt mwethod that Z8C microcomputer uses 1is
Called vectcring. This means that each irterrupt scurce
provides data {(an address) that the CPU can use to identify
the source of the interrupt. It uses fixed memory locaticns
for storing an array vector of addresses and is therefore
called an interrupt address véctor.

in mode 0 the interrupt address is at iocation 00xxxCCC
where Xxx is a 3-bit binary number that is part of the
instruction which has the binarcy forwm 1lxxx1ll. Since the
ZB0 is an B-bit microprocessor using 16-bit addresses, the
contents of the new progras counter are set to
06CC0C000C0OXxxx000. This is eguivalent tc the standard RST
instruction used by the 80804,

In mode 1 no interrupt vecter is needed. The 28C
interrupt response 1logic automaticaliy assumes that the
first instruction executed following the interrupt resgonse
will be a restart which branches to wmemory locaticn 0056 (ir
hexadecimal) .

In mode 2 it i3 possible to set up an array of 16=-bit
interrupt addresses anywhere in addressable memoury. These

16-bit addresses identify the first executable instruction

28

of interrupt service routines. The formation of the
interrupt service address 1s as follous: the 280 CPU
combines the I (interrugpt vector) register contents with the
interrupt response vectors from the external logic {the 1/C
interface lcgic). These 16-bit addresses are used tc access
the address in the interrupt address vector table. Since
16~$it addresses must lie at even memory boundaries, c¢nly
seven of the eight bits provided by the external logic are
used to create the table address; the lcw order bit is set
to zero (5). Figure 6 illustrates how an address is formed
and how it points to an address 1in the irterrupt address
vector.

Each nicrocomputer system has its own I/0 interface
conventions. The following discussion 1is based upon the
Cromenco system (1).

There are 16 possible interrupt scurces on each 1I/¢C
board. Among these, ten of those are timer interrupts with
different hardware pricrities. Loading the interval timer
with a value of zero causes an intermediate interrupt. The
8-bit interval timer provides intervals that vary 1in
duration from 64 to 16,320 microseconds. Longer intervals
can be implewented in software.

in order to be able to use all possible interrupt
sources, the kXxernel must use interrupt nmode 2 which allous
the I/0 controller to generate a unigue response without the
need for chaining +the interrupt request and pclling the

response.

29

Interrupt
Interrupt Response Address
I Register Vector from pxternal Logic Vectors

JdJ

KK

> KK

LL

LL

MM

MM

0 NN

-
=%
e

co

16-bit address points to first
of two bytes 1In Interrugt Address
Vector

Figure 6. Interrupt Service Address Formation

38

The 1/C interface controller prioritizes interrupts in
the order shown below:

ist -'Interval Timer 1

2néd = Interval Timer 2

3th - External Sensor

4th = Interval Timer 3

5th = Receiver Buffer Loaded

6th - Transmitter Buffer Emptied

7th - Interval Timer 4

8th - Interval timer % or an External Input
The fifth interrupt 1is an input interruprt and the sixth is
an output interrupt.

All mcodules of Input/Cutput system (ICS, I0CS, Logaon,
Logoff, Ccnsuvle Scheduler) use the previously described
harduware <apabilities. 1Ir order to apply the present desigr
of the Input/Output system to a microcomputer system with
different 1/0 interface controller the system must have at
least an irterrupt system and timer interrupt. Mest modules
within the kernel*s 1/0 system, such as I(CS, Logon, (Console
Scheduler are iInterrupt driven routires. ippendix A
discusses in more detail the «characteristics of the 1/C

interface contfroller currently used.

LOCON

The data structure for the logon and logoff is in form

of a2 table named LCKTAR (Logon ITshie). The size o¢f this

31

table depends on the nuaber of terminals existing 1in the

system. The structure is defined by:
DECLAKE
1 LCRIAB (™),

2 STATUS BIT(2),
2 UID CHAR(E),
2 PSWD CHAR{4);

where the fields are defined as fcllows:

STATUS: This field contains the status of the device (ter-
miral). It is zero if the terminal is inactive and
one if an authorized wuser is allowed to wuse the
system, It has the value c¢f two if the user is in
a blocked user gqueue waiting to use the system
facilities. The value of 3 is'unéefined.

UIil: This field consists of an -8~character strirg for a
user identification. This identification is com=
pared with the entries 1in a table of authorized
users.

PSWD: This field <contains the password associated with
Ulbs In order to be eligible to use the system both
UID and PSWD should be correctly specified by the
user.

The user hegins a session by turning the device on. Ir
order to recognize an interrupt, even if no device is physi-
cally cornected at the beginning, requires that the 1/C
interface controller be initialized to accept <characters

fror the device (terminal). To initiate logon a user must

hit the carrisage return three tines.

wodule

1.

Za

3.

to do the following:

If STATUS 1is zero (logoff) then issue a logon
message such 85 YLCGON - ENTER USERID AND
P4SSWURDY, else prompt & rejected logen
messaye. The latter can ¢nly happen ahen the
terwinal is disconnected improperly following
another logon (hitting carriage return).

Once a correct identification is given,
USERID and PSWD are stored in LONTAB angd
STATUS is set to indicate that this device
is now in the logon state. The 1ogon module
gives several trials if wrong identificaticn
is typed in. 1If the wuser fails to identify
himself then a logoff message is prompted. A
user may try again by repeating the prccess
beginning at 1.

Tf logon is successful then

3 Czll mwemory managemert to sllccate
a3 free wuser bank and update the
table (BARKTAR) containing this
informaticon. '

D Load the interval timer of lower
priority than the device {(timer 4)
With & <count of zerc to <¢ause an
immediate interrupt (1). This
allous the console scheduler to
search LCNTAB +to¢ fird an active
user (STATUS is one) and place this
newly active user in a blocked user
gqueue. It thep sets STATIUS to Minp
progress.m”

Ca Put & different address in the
interrupt Address Vector. This
address will be the address of the
actual input interrupt routine. Any
characters typed, at this point of
time, cause a jump to the 108§
modul e.

32

This allows the logon

Step 3b allows the system tc¢ trigger a lower onriocrity

interrupt level and exit from the higher routine. The lower-

33

pricrity routine then performs the functicns indicated but

is interruptable by higher-priority signals.

The console scheduler is called by the timer interrupt
routine set up by the logon module. It searches LONTAB to
find aﬁ active user with STATUS equsl to one and places this
user identification in a blcocked user queue. This queue con-
tains aill active users which are waiting for the comrpand
interpreter to schedule them. Finally, the console scheduler
sets STATUS to the value ¢f two to indicate that the user is

now in a blocked user gueue ready 1o use system facilities.

w¥hen the logoff module is «called by the comiand inter-

preter it dces the fclliowing:

1. it updates the accounting information,

Ze it calls wemrory management to deallocate the
user bank,

3. it prompts the user with a logoff message if
the status of the device 1is still ip
PLogress,

4. it puts a special address in the Interrupt
+ Address Vector which pceints t¢ the 1icgor
gmodule.

when a disconnect c¢ccurs (for example the terminal is
momentarily turned off) orf the terminal is not being used

for a periocd of time, the logoff occurs sulomatically. 7This

34

is done by a submodule of the input interrupt routine for
terninals. It is implemented with another timer interrupt
routine which checks the time the lest character was input.t
Once it passes a certain interval, this timer routine sets
STATUS to zero {logcff) and places a logcff command 1in 2
user workspace. The reason for‘this is to let the command
interpreter finish interpreting the current line. (©Once the

command interpreter interprets a logoff command it calls the

1ogoff procedure.

105 and ICCS8 (irput Cutput Control System) communicate
by means o¢f an Input Cutput CLontrol Blockx (ICCR) and 4
regquest gueue {(REGQUE). Each device 1in the system has its
oan I0CH except for dedicated devices such as the 1line
printer and cassette tape. TOC3 for devices other than ded-
icated devices have a fixed structure and location. The ker-
nel reserves some mpenmory locations in the system bank for
all fixed 1i0CB. For dedicated devices their I0CB have a
fixed structure but variable in location. It is allocated by
meéory management when it is reeded and dezllccated when the

task is coppleted. Therefore, it is necessary to store the

2]

address of IOCH in REGODUE to allow IGCS to exawmine the cor-

ipithout a timer drnterrupt there 1s nc way for the
kernel tou detect whether a terminal 1is still active or
inactive.

35

respcending I10CH. Figure 7 describes the comwmunication

between TuS and Tuls.

1CCS ICS

KEUCUE

10CH

Figure 7. Communication between 1ICS5 ard ICGCS

I6C8 is defined by:

DECLARE

1 1CCE,

2 STATUS BIT(1),

DEVTP FIXED RINARY(15,0),
DEYNUM FIXED BINARY(15,0),
ADRUR PO INTLEER,

ADRLB POINTER,

ADKOUB POINTLER,

TOTAL FIXED BINARY(15,0),
ACRDKCB POINTER,

EGCD BIT(1);

3]

BRI NI NI N RS N &S

where the fields are defined as fcllows:

STATUGL:

DEYTIP:

DEVEUM:

AGRUR:

ADRIR:

ADRCPR:

TOTAL:

36

This bit is zero 1f the request is inactive; other-
wise it is active. This field is used by the Input
Output Control 3System (IGCS) to determine whether
the outout buffer is empty of not. The Teguest is
said to be 1inactive if the output buffer is5 emptly
and active cvtherwise. In the latter case, 1058 is ir
process of transmitting characters to a device.
This field is set and reset by 1CS5 and is not used
for input since I0CS copies the data frow an input
buffer to the Jindicated srea only if the input
buffer is full. Hence, 10CS dces not have to delay
servicing an input reguest.

This field contains a binery numbher which defines
the type o0i device that is connected to the system.
This field contains the device pumber Ifor devices
in the same category.

This pointer 1is the address of a user area or a
user Wwork area. Tt contains the address of a user
workspace 1if the input is from a terminal.

This pointer 1is the address of +the input buffer
which in progress. HKote that there are two butffers
for input and only one is being used for the proc~
ess of accepting characterse.

This pointer is the address of the output buffer.
This field contains the number cf characters 1in =z
User area or a user workspace, depending on the

value of ACKUR.

31

ADRLKCR: This pointer is the address of a Disk Contrcl Block
{DKCBYe This field is used only for transmitting
data from or to a file. By folleowing this pointer
ICCS informs the disk manager whether the user area
is empty or not. In other cases this pointer aight
contain a2 null pointer.

ECD: This bit is one if the end of cdata occurs, zero
otherwise. This field is only used for transmit-
ting data from a file and for the host
input/output.

For output, PEOD is used to indicate whether a file
to be printed or to be sent to the host is empty or
net. The disk manager sets or resets this fielc
accordingly.

For input, EGD is used to indicate whether more
data is ceming from the host or nct. The communica-
tion module sets or resets this fielé¢ accordingly.

In the case of a dyramic I0C3, 10CS needs the locaticn of

I10CB in corder 1o acknowledye I0CS concerning the status of

the output buifer.

Memory management is responsible for reserving a fixed
1ocation.for the address of dynasic iCCB%s once they are
allcocated. The symbolic nawme 0f the memory location isz
PKINFO POINTIER - this location contains the address of the

prirterts 10(C3B

33

CTINFG PCINIER = this location contains the address of the
cassette tapet's 10CH

There are similar "fixed locations™ teserved for storing the

address of apny dypamic ICCB. This allows ICS to follow tﬁe

pointer aud be able to set and reset the STATUS field in

ICCB depending on the condition of the output buffer.

The regquest gqueue (REQRUE) 1s a circular linked queue
that is used to reguest 10CS to transfer data from a user
area {(or a user «orkspace) to an output buffer, ¢r from a
full (active) input buffer to a user area (Oor a USer WOLKS-
pacel. The respective modules, that need this service,
insert their reyuest at the end of the gueue. TO0OCS services
the requests, one at a tinme, from the front of the gqueues.
For this purpose only one pointer, ; Front, 1is needed to
manipulate the REQQUE. Figure 8 describes a typical RECGUER
containinyg three Tequests, the first request is an input
reguest, and the others are output requests. The fields of

REQQUE are described in the next paragraph.

Front

>11 57 |* > 11 550 *

+—>10 100 }*—

Fiqure 8. Example ¢f RECGUE

39

The yueue is ewpty if Front is a null pointer. For the
case when I0CS needs to service the next regquest because the
status of the present reguest is active, 1I0CS wioves the
Front pointer to the next rejuest hy fcollcwing the 1link
field. This has the sane effect as placing the current
reqgquest at the end of the gueue (because of the characteris-
tic of a circular lirked queue).

Memory management provides an availability list for
allocating and deallocating nodes for KE(CUE. The stucture
of a node for REGQUE is defined by:

DECLARE

1 REQQUE,
2 DIR BIT(1),
2 ADKTOGCB PCINTEK,
2 NEXT POINTER;

where the fields are defined as fcllous:

DIR: This field contains the direction of the movement
¢f the data. As menticned above this bit is zerc
if 10CS moves the data frem a full input buffer teo
8 user area (or a user workspace); otherwise it is
chee.

ADRICCB: This pointér is the address of I0OCB. It is used teo
point to a dynamic 1ICCB that has been allocated by
memory management for dedicated devices.

NEYT: This i1s a pointer to the next reqguest, if anvye.

As wmentioned in previocus chapter, +there Wwere tuoc input
bgffers and one output buffer. The siructure of an Input

Buffer (INBUFF) is as follcus:

DECLAKRE

1 IKBUFF,
2 BUFGSE BIT(2),
2 LENGTH FIXED BINARY(15,0),
2 BUFPTR F1XED SINARY(15,0),
2 BUFSP CHARACTER(255);

where the fields are defined as follows:

40

BUFUCSE: This is an input buffer irndicater. It is zerg if
the input buffer is empty, one if full and two if
ICCS is using this buffer. 1CS is respcnsible for

setting the field to one (buffer full) while the

other two conditions (empty,busy) are set by iC(S.

LENGTH: This field contains the lergth of the record.
value depends on the physical characteristics

the device.

its

of

BUFPTR: This field is used to point to the next location of

BUFSP.

BUF

[9]
3

mup size is 255 charaters.
The structure of an Cutput Buffer (CUTBUF) is sinmilar
INBUFF except the BUFUSE field does not exist. OUTBUF
defined by:

DECLARE

1 0UTBUF,
TENGTH FIXED BINARY(15,0),

BUFPIR FIXED BINARY(15,0),
BUFSP CHAKACTEK(259);

LIS N $]

where the fields are defipned as in INBUF.

: This field is reserved fcr buffer space. The maxi-

to

is

41

The kernel provides one inpul and one output interrupt
routine for each I/0 device in the systen. The description
of the input interrupt wmodule 1s divided into two sections,

one is an irput from terminals and the other is from the the

host.

As each <character is tyvped in by 3 user iICS does the

followings:

1. Place the character in the input buffer.

2a Load the interval timer with the lowest

priority {(timer 5) with & count of zero to
caus2 an immediate interrupt. The functicn
of this tirer 1is to check on the time when
the last character was input. This checking
is needed when a disconnect ocg¢urs or when
the terminal is not being wused for a periocd
of time. The choice of the timer priority 1s
based on the urgency of the task. The guthor
thinks that this task is of low pricrity and
can be interrupted by any other mnodules.

3. Interrogate the status register of the device
to check for possible overrun errcr. An
overrun error is an error where the receiver
buffer of the I/0 <contreller has been lcaded
with a4 new byte before the previocus contents
have been Tead from the buffer. Tf there
are any errors then ICS prompts with a
special character requesting the user to
retransmit the current line (record).
Meanwdhile, ICS resets BUFPTR ard LEAGTIH *to
the initial condition.,

4, It the end of a record is detected (detection
0f a carriage return) ther

3 Call memory management to allocate
a node for RELLUL. 108 places this
reguest at the end <¢f REGLUE after
initializing the DIR and ADRICCSB
fields.

4z

be initialize the I1I0CB fields: DEVTIP,
DEVNUY, ADKUx, ADRIB and TCGTAL.

Ca S5et QUFUSE to one te indicate that
the input buffer is full.

de 1f the other input buffer is zlso
full then load the interval timer
of the highest gpriority {(timer 1)
xith a8 count of one. This timer
inrterrupt allows the 1nput Cutput
Control System (ICCS)Y 1o serve
KEQCUE with an Yinput reqguest"” (the
OIR field in REGLUE is5 zZero). The
cnoice of a highest priority for
the timers is a guerantee that IGCS
finished copying the datz from the
input buffer befdre the next
character being placed in the input
buffer. Since the pricrity of the
input interrupt is lower thap the
timer 1, the 1Interval tiuer
counter is set to c¢che. This gives
enough time for the input interrupt
moduyle to finish its task and
return frem the irnterrupt before
the timer 1 generates its
interrupt.

Figure 9 shows how the data flows from the terminal to the
User wOrKspace.

The input interrupt routine also provides a mechanism
to detect a break key hit by a user while the output
interrupt routine is printing. If & user hits this break
key the input interrupt routine sets the LENGTH field in
QUTBUF to zero to indicate that the output buffer is empty,
sets the TCTAL field in 1ICCB to zero to indicate that there
are no more characters in the user area O USer WOCKsSpace,
and sets the STATUS field in ICC3 to zerc to indicate that

the request is in active., With all of these conditions, IGCS

will delete the rtequest by removing this

REGCUE. This input

controler to disable an output interrupt.

interrupt routine

Input
Buffers

B3
[#%)

request node frow

also sets the

IG5

User
Worxspace &
I0CS
<
REQQUE
ey
) rd

I0C8

1/¢C

1/0
Channel

Terminal

Figure 9, Diagram of Inputl from a Teruminal

interrupt routine for each I/ devices ip the system.

allows the system to

differepnpt terwinais.

As mentioned earlier

kernel

provides

recognize different break

one in

codes

put

This

for

44

This input interrtupt routine is similar to the inter-
rupt routine for input from a terminale. This interrupt is a
result of a user rejuest to retrieve a batch job.

The c¢command linterpreter calls menory management to
allocate a user area and stores the address of the user area
in the 10CB control block that controls the hcest input. The
command interpreter then regquests the comwmunication module
to send a signal te the host. This signal is recogrized by
the host as an output to a remote entry station.

When the host inputs a record Lo the kernel 1ICS per-
forms the foliowing functions:

1. it calls nmemory management to allocate a node for

REQUUE after initializirg the OIR ard ADRI1CCS
fields;

Ze it initializes the 10CB fields: DEVTP, DEVNUM,
ADRIB and TOTAL;

3. it sets BUFUSE to one}
4. if the other input buffer is full ther it gerer-

ates an inmediate interrupt to empty the full
buffer by using a high priority interval timer.

The wmain function of this routine is +to transmit a
sequence of records frem a user area {(or a user werkspace)
to a device designated by an IOCB fielde I0S does not neegd
te krnow that the host is the destination. The communication
module has the responsibility of formatting the record in

such a way that it is recognizable by the host.

45

Once 2 character is transaitted, 1ICS marks the request
as Mactive" (the 5TATUS field in IOCB is set to one). when
the end of record is detected (the output buffer 1is empty).,
IGS marks thé reguest as Minactive™ and then initializes
the 1/0 controller to dissble the output irterrupt. For
Jedicated devices, for example a lire printer, IGS needs tc
follox the pointer speci{ied at the "fixed location¥, callec
PRINFO, to get the address of the corresponding 10CR before
actually setting and resetting the STATUS field.

The decision to continue transmittirg ancther record is
made by ICCS. Gnce I05 marks the reguest as inactive and
there are still more records to output, 1t filis the output
buffer with the next record. Figure 10 shous how TUS con-

trols an output interrupt.

I0CS serves the reguests placed in REQQUE. There are
two types of requests, input and output. The type of
request is determined by the value in the DIR field. An
Woutput regquest™ asks ICCS +to copy the data to an éutgut
buffer whereas an "input request™ requests ICCS to move the
data from an 1input buffer to the 1iIndicated area determined
by the value in ADRUR of the correspondirg I0CB.

For input, a reguest can be removed from the gueue as
soon as the input buffer is eumpty. khile 1CCS is transfer-

ring a rececrd from the input buffer, the BUFUSE field in the

User

or

wWorkspace

User Area

Cutput
e) buffer
v
105 I1/6
oy Charnel
Y
ICCH I/0
Device

Figure 10. 1IC5S Control of an Output Intercupt

input buffer

is set to the value of tuwo {(buffer 1in use).

This is used by I0S to detfermine whether the input buffer is

full or being used by TI0CS. &t the end of the transfer IQCS

marks the BUFUSE emptly.

If an
ICCS serves
to peint to
request is

tions below

1.
2.

outpult request pointed to by Front is active
the next reguest by updating the Front pointer
the pext reguest in the queue. For output, 2
deleted from the queue when both of the condi-

are satisfied:

TOTAL = 0 (no more recordés)

TATUS = ¢ {(request is inactive)

47

A descrigtion of the functicns of ICCS5 falls into
several catedories depending on the type of request and the

destination cf the output.

Qutoyt Pegyest to Terzinals

when the reguest 1is inactive (the output buffer is
empty), ICCS copies a record from a fixed area pointed tc by
ADRUR to the output buffer and updates TOTAL in TOCB to
denote the number of remaining records to output.

The data to be displayed at & terminal has three possi-
ble sources: a usar workspace, an editor workspace or 4 user
3Ared. The latter isractually a block of data from a file
that the disk manager has copied from the disk to the user
ared.

when the user area is empty I0CS uses ADRDXCB t¢ deter=-
mine whether there ic a null pointer or a valid pointer to
the disk control block. In the latter case, ICCE can use
the pointer to indirectly inform the disk manager that the
user area is empty. If wmore records are Lo be output, the
disk manager places another request in RECQOUE and copies 3
block of data to the user ared. Figure 11 shouws how an out-
put tequest tc a terminal is handled by I16CS.

in 6rder Lo let I0S transwit the characters, IGCS
reinitializes the 1I/C controller which 2llcws the output

interrupt to be enabled.

4t

Qutout Reguest ta Dedicaten Devices

10CS performs a similar task in servicing an output
request to a terminal except the destination 1is different.
If the destination is a line printer, the only possible
source of data is from an editor workspace or a user areg
which contasins the data frow a disk file. The source of dats
deperds on whether the file is “active" or nct. A file is
said to be active 1f it is currently in the editor works-
- pace. 1f the file is active, the disk manager does not have
to copy the Jdata to the user area. The procedure on how the
kernel outputs a file to @ line printer 1is discussed in
Chapter V.

1f the destination is a cassete tape the sources of the
data are a user workspace, an editor workspace or a user
area. I10CS ser#ices the request placed in REQCUE by the disk

wanager in the same way 1t services the request from 10S.

Qutnut Reguest tao the Yost

This operation 1is used to submit a batch job to the
hosta Normally, a user has created the program and stored
it on a disk file.

The actual output of the records are handled by the
corpuniication wmodule and 1I0S. I0CS still contrcels the
activity of tha request queue (REQCUE) as discussed in the
previous section. As shown in Figure 12, IOCS does not copy
the data to the output buffer, instead the communication

mcdule does the copying.

User Cutout
WOLKspdce >} Buifer
or
User Area
ar
Fditor
sorkspace

v

Polnter

I6CS i05 ——t— I1/0
> Channel

o]
¥
]
fve)

<

i
*

IREGQUE]

Y

\J

10CR
j SN 1 Terminal

Figure 11. Diagram of Cutput to a Terminal

The compunication module i3 called by ICCS with

following parameters:

1. CMTP: This is & command type. If it is one,
it is a special «comuand and the rest
of the parawmeters are 1irrelevant.
This special commard is used +to
request the status of a batch job. If
it is zero the 7rest of the parameters
are examired.

2. CPTP: This is an operation type that is
reguested by I0CS. Zero indicates an
input requesty; one indicates an cutput
teguest.

3. Address of user arede.

4. Address of input or

upon the value of CPTP).

5e Address of 10C3

cutput buffer (depending

(for ingput operation only).

User Sutput
Workspace >} Buffer
or
User Areas
or
Editor
workspace
Pointer
< - I0CS I10sS
RELLUE
A
10CH
> Gt
Cx
>
Ruffer

Figure 12. Diagram ¢f Cutput to the Host

)

1/0
Channel

Hest

in servicing a request, ICCS calls the coumunicatiorn
module with the appropriate parameters. This allows the
comaunication module to set up the protoccl before copying
the data to the output buffer.

If the user area is empty, ICCS informs the disk
narager o¢f this condition wihen TOTAL in 10C8 is Zerc. The
EOD field in I0C8 will let I0CS know whether there are more
records to be sert or not. 10CS sends a special command tc
the communication wmodule 1f EOD is one (the end of data).
This allows the communicaticn wmodule te¢ send a3 special
request t¢ the host to obtain the job npumber. This
identification and the user identification together form a
unigue identificatiocn fcr the coresponding batch job. I0CS

sets the I/0 <controller to allox ICS to transmit the

records .

This operation 1is used to retrieve a batch job. In
servicing an input reguest ICCS «c¢alls the communication
module with appropriate paraweters. ITO0CS requests the con-
munication module to tranfer the data fron the input buffer
to the user area. Before this transfer takes place, the
communication module reformats the buffer data in such a way
that 1is recoynizable by the kerrel. The <communicatior
module also detects the end of data indicator and sets or

resets the EOD field in I0CB to reflect this. Cnce ECD is

set to one, T0CS informs the disk manager. This enables the
disk manager to "close" the file. The size of a user areas
depends on the physical characteristics of the disk. TIf the
user area is full, ICCS reguests an "immediate attention" to
the file amanagyer which implicitly requests the disk manager
to wove the data from the user area. This can be accom-
plished in a wmanner similér to that used by IGCS when both
input buffer ére full. In other words, ICC3 generates &
high opriority interrupt 7requesting immediate services by
using an interval timer. This timer interrupt alliows the
file wmanager to regquest the disk manager to perform the

tasks.

Copmunication Module

The system nmaintains the status of all batch jobs using
a linked 1ist (BJSTAT). The BJSTAT is defined by:
UECLARE
1 BJISTAT,
z USERY CHARACTER(B)Y,
2 JOBY CHARACTER{4),
2 CORD BIT(1).,
2 LINK POINTER:
where the fieids are defined as fcllious:
USERfis This field is a valid wuser identification in making
a contact with the systen.

JOoR§s This field contains the job number assigned by the

host initiatoer (Jobh Entry Subsystem).

53

This condition bit is zero, if the job hus been sub-

<y
s
e
2
-e

mitted, one if the 3ob is completed. The latter
implies that the host has spooled the cutput onto a
file.
LIxue This pointer points to the next batch. job, if anye.
The BJSTAT linked list is <created by the communication
wouule when the host returns the job# regquested. This list
is meintaired in ascending order by wuserd and job# and mem-
ory manasement allocates podes for BJISTAT.
At the time BJSTAT is created the COKD bit is zero. At
a regular timer interval the communication module takes con-
troi of the systsm to search B8JSTAT for all condition bits
thal are zero. It interrogales the host to determine the
status of previously submpitted batch 3Jobs. If the host has
finished executing the job, the communication module updates
the CUOND field. 4 user may.request the batch job only wher

the coudition bit is two.
Command Interpreter

The conmand interpreter is a module that provides serv-
ices to the users. Il interprets user coamands in their own
WOriaoace an&_transfers the contro¢l to the appropriate sys-
tem voduies for further actiorns.

de shell assume that all users are serviced in a2 single
processer so that at most cpe user can use the CPU a3t a

time. The switching of active users occurs whens

1. their time slice has elapsed ,

(&3]
=N

2. there is a request to do input/output or,

3. an I/06 operatior is completed.

The kernel has the respgonsibility of saving the status of
running users in 8 save area when users are swilched.

The kernel nmaintains several types cf queues for saving
the status of users that are 1in the same state. Figure 13
shows the only orocessor gueues that the kernel wmanaged
(2). Lach rectangle in Figure 13 represents a 3save area
containing the status o¢f the processor for a particular

user. The save area includes the fcllowirng irnformaticn:?

1. the contents vf the processor's registers;

Ze the progran counter containing a peointer te
the next wuser comwand Yo be executed for
resuming the control.

Running >
B8locked

User eeee——> * > Ko f e
51ock ed

for > i - device type
Devicei] J =~ device ¥

Figure 13. Diagram of Processor {ueues

($a)
(31

If a user's timse slice has elapsed, its privilege of
using the CPU is removed and the processcr's status is
stored in the "blocked user"™ gqueue in FIFC (first-in-first-
out) order.

43 it can be sSeen in Figure 13 there is only one save
area for Blocked for Deviceij. This is because oinly one
reguest may be serviced by the command interpreter at =&
time. For example, there may be a request to print a file
to & local printer, butl the printer is busy. Hence, the
command 1irterpreter delays servicing this request Dy
changing the userfs state frowm "running?” to "blocked.™ The
kernel maintains a structure describing the activity of the
dedicated devices and the host. FEach dedicated device has a
structure defined by

DECLARE
1 LEVACT,
2 DEVFREE BIT(1);

winere the fieid is used as follows:

DEVFREE: 7This bit is zero if the device is free, and one if
it 1is bhusy. For the ‘host, this field is an
indication of the status of the communication link
bhetween the host and the kXernel.

To service an I1/0 request the comnpand interpreter
blocks a running user by placing the status of the
corresponding user in a blocked <queue for the corresponding

I1/0 device (Rlocked for PRevicei;) and then dispatches a new

56

user from "blociked queue for users", At the end of an 1/C
reguest the disk manager, which is in charge of the 1/C
operatior, stops the runniny user frow usirg the CPU and
dispatches a wuser in "blocked for 1/0 device'. In
implewenting the processer queues, a pceirter is needed for
each type of gueues. The save area for "8locked for Deviceij®
is statically allocated by the kernel for each type of the
I/0 device 1in the systen. Cther types of save areas are
allocated and dedallocated by wmemory @manageaent when
requested by the command interpreter cor disk manager. A user
is said to be dispatched when the processor?'s status can be
restered by maninulating the Running pointer l¢ point te the
appropriate save area. For examrple, a user changes his
status fromw "blocked for line printer" to T"running". This
can be done by blocking the rtunning user (insert the save
area pointed by the kunning pointer to the end of slocked
User queue) and planting the Running pointer to pcint tg the
save area pointed by Blocked for Line Printer. This causes
Biocked for Line Printer gueue to be a null pcinter.

In interpreting a user command, the command
interpreter may have to initialize something before actuaily
transferring the control to the appropriate system module.
As an exanmrple, to print a file the command interpreter
perfecrms the followirg operationss:

1. Check the device activity (except far

terminals); 1if the device 1is busy, block the
user temporarily;

2 otherwise,

3a Set DEVFREE for tine desired device
to one to indicate that the device
is guing to be useda.

b Call pemory wanagement to allccate
User ared.

Ce For a reguest on a dedicated
device, call memory management tu
allocste an I0CHa

de initialize the AURUR field in IOCH
with the address of the
corresponding user area.

€ Reguest the file warayement system
to print the data to the indicated
170 device (this «1l1l be discussed
in wmore detail in the rext
section).

f. Once the file managewsent tizkes over
the controi, the cemmand
interpreter places the processort's
status of & user in the running
state in Y“blocked for printer®
gquaue . The command interpreter

then cispatches ¬her user fron
the "blocked user' queue.

L user has several options regarding where to print the
output of @& batch Jjob. The output can bhe printed at a
remcte prirter or it may be routed to the kernel. If the
output is handled by the kernel, then it may be directed to
the terminal without storing it permanertly on the disk or
it may be stored perwmanently on a dissx file and retrieved by
the user &t a later time. In the non permanent case the
command interpreter regquests the file marager to create a
temporary file on the disk before directing the cutput to a
terninal. This 1is to insure a wuniform procedure for

handling the data flow from the host to the kernel.

58

Therefore, 1in both instances where the output from the host

is routed te the kernel a disk file is created.
File Management

in this section only the interface with file manage-
ment is discussed, File managemént consists of two nmodules:
the file manager and the disk manager. The file manager is
respensible for maintaining all user and system files and
the disk w®wanager is resgonsible for controlling all disk
input/output operationse.

The command interpreter and the file manager communi-
cate by wmezns of a file request gueue (FRQUE). FRQUE 1is

defined by:

DECLARE

1 FRQUE,
2 REQSR BIT(L),
2 ISFN CHAKACTER(FILE-NAME.LENGTH),
Z OSFN CHARACTER(FILE~NANE.LENGTH),
2 ADRUR POINTFR,
2 ADIOCR POINTEK,
2 LINK PCINTER;

where the fields are defined as follous:

RECSRz: This field is used as & reguest source indicator.
It is zero 1if the reguest is from ICCS; one if it
is from the command interpreter. I0CS reguests
the file manager to ¢opy the data from the user
area when 1t is full. This is in conjunction with

retrieving a batch job.

59

ISFN: This field is the input symbolic file rname. The
length of this field is fixed by the file manager
and determined by how it builds its file direc-
tory. This 1s the name of the file given by 4 user
in submitting his batch jch.

OSFHNz: This field is the output sywboelic file name. This
is the name of a disk file to contain the output
of a batch job.

ADRUR: This pointer is the address of the user area that
is used to transfer data to or from the disk.

ADIOCH: This pointer is the address of T0CE. Tnis field
and ADRUR are passed to the disk wmanager.

LINK: This is a pointer to the rext request, if any.

| FR{UE is maintained 3just as REQLUE and it is a circu-

larly linked qQueus., Memory management provides an availa-

bility list for allocating and desllocating nodes for Fik(UE.

The only time that the ccemmand interpreter communpnicates

with the file manager is when there is a request from the
user to do the following:

1. Cutput a file {(stored on the disk) to cne of
the 1/0 devices ot

2 Submit a Job stored in a giver file t¢ the
host {(the ISFN field contains this file name)
or

3. Retrieve the ocutput of 3 Jjob executed by the

host and store it in & file or dispclay
igmediately at the terminal.

60

For the third case the ISVN field contains the name of a
file specified by the user if the file is a permanert file.
Otherwise, the command interpreter initializes 1SFN with a3
dummy name and the data type of this file 1is TEMPE.Z2
In servicing a request the file wmanager directs the
disk manayer to either move the inforwmation from the disk to
the user area or from the user arca to the disk, depending
on the pnature of the reqguest. For this purpose file
managentent has another <queue for the file manager tc
request the disk manager to conirael the disx I/70 (DRLUE) and
a disk control block (DKCB). DRGUE is defined hy:
GFCLARE
1 LDRuUE,
2 FLOWN BIT(1),
2 ADRDKCB POINTER,
2 DKACS BIT(1);
where the fields are defined as fcllows:
FLOWS This bit indicates the flecw of the data. If the
data is to be stored on the disk FLCW is zero
(input), otherwise FLOW 1is one {(output).
ADRDXCB: This pointer is the address .of disk contrel block
{DKC3) which in turn is used by the disk manager
for finding more informatiocn about a request fron

the file manager.

2) file name may consists of the name ard the type of
the file. This restricts the user not to use TEHMP as the
data type for a file which will contain the output of a job.

61

DKACS: This is zero if disic access is not needed. Irn

other words, the file is currently in the menxory.

It is one if a disk access 1s reeded.
is used ounly when FLO® is one (gutput).
The disk contrcl bloeock (DKCB) <contains the

information for the disk manager to perform its ta

This field

necessary

5K« There

is a different DXCB for each reguest and it is dynamic. fThe

file manager reguests mepory management to alloca

when it places a reguest for the disk wanager

te a DKCB

in DRQUE.

¥hen the disk marnager finishes its taslk, it removes ah entry

frow DELUE éand calls memory management to deallocate the

corresponding DRCB. DXKCB is defined by

DECLARE

i DXC3,

DHYADR FIXED BINARV(31,0),
NUPB FIXED BINARY(31,0),
ADRUR POINTER,

ADIOCE POILINTER,

USIND BIT(1),

0T BiT(1);

KNI RSB RS RS N

where the fields are defined as follouws:

PHYADKk: This field is the physical (cdevice) address 1if

LXACS in DHECUE is one. Otherwise, it contains the

address of a memory locaticne.
NCP3 s This field contains the size of the filea

ADIOCHB: This pointer 1is the address of TI0CRE.

The disk

nanager needs this information to initialize the

I0CB fields 1in requesting I0CS to move

from a user area to the output buffer.

the datsa

62

USInD: This bit 1is zero 1if a wuser area 1s enptys one
otherwise. This indicator is used when FLOW is one
{cutput only). When the disk wanager moves the
data from the disk to the user area, 1t sets USINE
to one and 10CS will reset it to zero when it is
eitpty.

ECT: This hit is an erd of file indicator. If it is one
{no wmore data) the disk manager "closes®™ the file,
zero otherwise. This field is set and reset by
ICCS depending on EOD in IGCB.

In servicing @ regquest in FRQUE, the file wmanager
searches the file directory to find the physical address of
the corresponding file. The file manager then places a
request ih DRGUE, «calls wmemory managdgement to zliccate 3
DECB, 1initializes DXCB and deletes the current reguest in
FRCUE.

The idinterface betwen the disk manager and I0CS 1is
similar to the interface between ICCS and 10S. ¥hile 1CCS
is copyiry the data from the wuser area te¢ the output buffer
{(this is r1eflected by USIAD being one) the disk manager
services the next request, 1if anvye. There will not be any
reguest for the same I/0 device in DRGUE because the coamand
interpreter will not schedule such a request.

#hen this input/output operation is completed, the disk
manacer dispatches @ user frow the "blocked for 1/C device®

quele. Figure 14 describes the relaticnship betuween the

o
[F%)

file managyer and disk marager anc¢ its centrol blcecck (DKC3).
Tt is alsc showh how the disk manager zlaces a reguest in
REQGUL and indirectly initializes some of the fields in

ICCR.

o ' DM 10C5
b > :
FRQUE DRQUE RECLUS

DKCB ICCH
> < - Pointer

Figure 14. File Managemwent and its Contrecl Blocks

Memory Management

The kernel is an operating system desigred specificelly
for a microcomputer system. For a real-time application it
is more desirable to distribute the systen 'functicns oVer
several processorse. For the above reason and Dbecause nost
modules of the kernel need services Ifronl mewpory manageiwent,

s

some c¢f mewory management functions exist cn gll processcrs.

64

This allows wmodules of the kernel to request wmemory manage-
ment to allocate space within its own domein (processor).

As a summary, memory management performs the following
functions:

1. It allocates and deallocates variocus control
blocks such as the @disx control block (DKCB)

and tne inpput/output control block (I0CH).
2« It allocates and deallocates user areas.

3. It allocates and deallocates nodes fer
REQLUE,FR{UE, and DRQUF.

4. It allocates and deallocates "blocked user®
SHVE 3C2as .

S It updates BANKTAEB fdr alloccation and

deallocation of user banks.

in allocating or deailocafing nodes for request gqueues
mewory management provides an availability 1list for each
type of dueue. Fvery time a new node for a particular
reguest queue is needed, a call to a procedure nawed GETNCDE
is made. GETHCUE examines the corresponding availahility
list and returns the first ncde on the list, if there is one
on the availebility list. #ben a node is not needed anymore
it is inserted at the front of the availapility list by 3
procedure nawed KETNGDE. There is a similar GETNODE and
RETNCUE for REQQUu,FRCUE, and DRQUE.

Memory wanagement maintains two tables, BANKTAB and
TERNMTAB to keep track all user barks in the system. The 1/C
interface controller has a bank select feature which can be

used to select one of the memory banks. The size of BAKKTAB

65

depends on the number of user bansxs in the systew and the
number of the terminals cannot exceed the nusmber of user
hanks. The structure of BANKTAB is defined by:
DECLAKE
1 BabkTaB(*},
2 TERMNO FILED BIKARY(15,0);
here the field 15 defined as follous:

TERPMNO: This fieid contains a terminal rumber if the bank
is occupied; otherwise, it contains & value ¢f zero
to indicate that a user bank is free.

The structure of TERKILE is defined by:

DECLAKE
1 TERETAB(*),
2 BANKNO FIXED BINARY(15,0);

where the field is defined as follows:

BANKNO: This field contains a bark nunber for an active
terminal; otherwise, it contains a wvalue of
negative one to indicate that the corresponding
terminal is not active. Ir kerrel "ipitialization®
all entries of this table are initialized to
negative ore. HNote that zerc wight be used tc
identify systeyp bank. The numpbering system for user
banks starts with the nunber one.

when the 1logon module c¢alls mewcry managemant tg
allocate a free user bank, memory management searches this

BAKKETIAB to find the first free banke. It upcdates the entry

66

of BEANKTAB with the corresponding termiwual rusber and the
entry of TLEFsTA3 is wupdated tc contain the corresponding
bank number. At the end of a user session the logoff wmodule
cdalls memory management fto deallocate a user banka. This
causes memory maragement to search TERMTAD to find the banky
assuciated with the termwminaly and‘ urdates the entry of
TEEMTA3 to neyative cne. Using the bank{§ obtained from the
TER¥TAR memcry management updates the entry of BANKTAE t¢
zero to indicate that this user bank is free.

ghien mcdules of the kernel need to Teguest space memory
management nust be able to allocate a block of contiguous
stcrzye of the correct size. For example, the <Command
interpreter requests memory management to allocate a user
area and ar 1I6C3 for the printer when a user reeds fto output
a disk file to the printer. Mepmcry management uses dynamic
storage management to allocate and deallocate a dynamic ICCH
control block, the save areas for "blocked wuser™ and user
areas. The size of T0C3 control blocks and of save areas
are fixed but the the size of user areas are variable and
depend on the iength of a rTecord {the physical
characteristics of 1I/C device determines the 1length of a
record). For this reason a dynamic stcrage nmanagement is
preferred to static storage management.

Dynamic storage management uses algcecrithms to reserve
and free wvariable size blocks of storage which are 1in

contiguous sewory locations. Enuth (3) discusses dynamic

67

storage management algorithms such as first-fit,best-fit,
liberation with sorted list, boundary tag method and huddy
systeni.

First-fit and best-fit are methods for searching and
reserving a block of storage if there are any bDlocks wWith
the reguired size {(say size of N). The first-fit methogd
chooses the first area from the available space that is
greater than equal to N. On the other hand, the best-fit
method chooses an area with size M where it is the smallest
which is N or wmore. This usually requires searching the
entire list of available space before a decision can be
made. The disadvantage of using either c¢re ¢f these methoc
is that there are certain situaticns in which the first fit
method is better than the best-fit wmethod and vice versa.
Knuth (3) demonstrates an exanple for a situaticn in which
first-fit is better than the best-fit; suppose there are two
availahle hlocks of memory ¢f sizes 13CC ard 1200, ang
suppose there arec subsequent requests for blocks of sizes

1000,1100,arnd 259:

memory available areas available areas
reguest vfjirst-fit"® fhegt-fit"
- 13¢0, 13C0O 1360,120¢
10C¢C i00,12C0 1300,200
1100 300,100 200,200
25¢ 50,100 unaliocated

Liberation with sorted list is a wmethod for freeing
blocks and inserting the block at the asppropriate location

of the sorted available space list when they are no longer

6t

needed. It alsc merjes tuc adjacent free areas into cne. In
fact, when an area is bounded by tuo free areas, all three
areas are wmeryged toyether.

All the tLthree wethods discussed 3bove require an
extensive sesrching through the &vallsbility list. The
bourdary teg method or the buddy systen elimipates wmost of
the searching when storage is reserved.

The ‘houndary tay method requires fields for <cantrol
information at both ends of each block. Cne of the fields is
a TaG field which is used to control the collapsing process
(it is easy to detect whether or not both adjascent block are
available). This method 1is perhaps too much of a penalty to
pay in situations waen the blocks have a small average size.
Another approach to dynamic storage management is the buddy
system. “The overhiead in each block i3 less ccompared to the
boundary tag wmethod and it requires a8ll blocks of size cf &
power of two. The buddy system keeps segarate lists of
available hlock of each size 2%¥*K (0 <= K <= M) and the
entire block is ¢of size 2**4. When a block of size 2**X is
desired, ard if nothing ¢f this size is availsble, a larger
available block is split dinto two eqgual parts called
buddies. Later w«hen both buddies are available again, they
coalesce baclk inio a single block. The disadvantages of the
buddy systexs are internal fragmentatign and allocation of

uhused Space.

69
Diagram of System Structure

In order %to give a better overview of all the systen
modules and how they communicate, a giagram showing the
overall system structure is given in Figure 15.

The communication between the modules 1is described
belcw. The numbers below refer tc the diayram numbers in

Figure 15.

1. ICCS regquests the communication module to set
up the protocol and transfer the data from a
user area to an output buffer (for outgut to
the host only)e.

Za I0S requests I0CS to transfer a record from
the input buffer to the wuser area by placing
a2 request in REQQUE. ICCS ther regquests the
compuniication medule t¢ perform this task
(for input from the host only).

3. ICCS copies a8 record from the user area to
the output buffer and initializes I/0 channel
to generate &an output 1interrupt {for an
cutput regquest to any system devices, except
the host).

4. TCS transmits a record character by character
to the 1/C device after 1/0 channel generates
an output interrupt.

5. The I/0 device sends a character and stores
in the input buffer. The 1/C chanrel places
the input character in the receiver buffer.

0 ICCS copies the data freom the irput buffer to
the corresponding user «orkspace upon reguest
froa 105 (for input from terminal only).

7. For an output request, 105 sets STATUS in
I0CCB to "INACTIVE' when the end of record is
detected and WYACTIVE™ ptherwise. For ar

input request, I0S places a reguest in RECCUE
and initializes 10CB when the end of record
is detected.

TILE MARAGRENT

-3 setfers

Tramsfer Coutrel

[$T)]

Figure

Legeff|

Diagram of Communication of Kernel Modules

0L

10.

14.

15.

17.

For an output request, 1CCS checlts the STATUS
fieid in 1icCB. If it 1is inactive zand the
user area 1is not ewmpty then I0CS copies a
reccerd frowm the user area tc the output
buffer.

For an output request, ICCS follous the
pecinter in I0C2 to set the USIND field irn
DKCB to zero when the user area 1is empty.
For an input request, ICCS checks the EQD
fieid in 1I0CB. If FOD is one {(end of cata),
then ICCS follows the pointer in ICCE to set
the BUYI field in DKCB to one. This is mainly
for input from the host.

The command interpreter interprets a user
cemmand contained -in the user worxspace.

The command interpreter places its reguest in
the FRGUY queue.

The command interpreter initializes TI0CB
(ACRUR)Y for the reqguest made in 11.

The file manager places 1ts reguest in DRCUER
associated with the request in 1l.

The file manager initializes DXCH zssociated
with the reguest in 13.

For an output regquest, the disk manager
checks the USIND field in DKCB. If it is zero
{the user area is eimpty) then the disx
marnager copies a block of dats from the disk
to the user area and sets USIND to one to
indicate that the user area is full.

For an input reguest the disk manager checks
the E0I field in DKCB. If it is one then it
transfers control to the command interpreter;
octherwise the disk manager waits for an
urgent request from I0CS which indicates that
the user area is full.

For an output request the disk manager places
its request in RECCUE to order I0CS to copy
the data to the output puffer.

Fer an output reguest the disk manager
foliows the pointer in LXCPB to initialize the
TCTAL and ADKDXCB fields 1in ICCEB {other
fields have been initialized by the commard
interpreter in 12). When the file is eppty
the disk manager sets EOD in T0CB to one;
otherwise it resets to zero.

71

13,

12

For "input from the host" the communication
gfodule sets ECD to one when end of data 1is
detected; otherwise it resets to zero.

The editor requests the f[ile manager to copy
2 file to a usar WOrkspace.

Tie editor does its processing in a user
ROTKSPACe.

CHAPTER V
UDTLCUSSION OF & KEKNEL COMMAND

The Procedure to Cutput a Disk File to

the Local Printer

The procedure of how the modules of the kernel communi-
cate with each other in performing a task such as outputting
a file stored on a disk to @ local printer is presented in
this chapter. 7The purpose is to give a better cverview of
the design of the kernel. The choice of this user command
is reasonably good bec3use it involves most of the systen
medules in the kernel.

The syntax of the command is defined as follows:

QUTPUT <input file name> <Kdestination>.
The user is required to supply the input file name and des-
lgnate the destination to be the line printer.

The cosmand interpreter checks the activity of the line
printer. If it is beiny used the command interpreter delays
the servicing of this reguest by placing the status of
processor for the user in a "blocked user"™ gueue; othefuise
the conmangd interpreter does the feollowing:

1. Tt sets the yprinter activity to one to
indicate that the printer is beiry used.

713

74

2a It calls mewmory meanagement to allocate a
user area and an 1C0C8 fcer the printer.

3 It initializes ihe printerts TCCR.
4. It places a request in FR{UZ.

It blocks this wuser by vlacing the
processor's status in a "blocked ussr® gueue.

i
’

in servicing a regquest placed by the command
interpreter in FHQUE the file manager searches its file
directory to find the physical address of a named file. fihe
actual data moveament is carried out by the disk npanager.
The file mwanager communicates with the disk wanager by
placing 3 request irn DRLUE and by initiaiizing 1its UKCB.
BRefore the disx manager assuwmes control the file wmanager
remoeves the regquest from FRQUE.
Upon receiving a8 request from the file manager, the
disk manager performs the following operations:
1. Cet the necessary informaticon for s disk transfer
froas DRCB.
2. If USIND in ©DKCB is still onet then delay the
recuest by moving the FRUNT pceinter te point tc
the next request; otherwise move the data to the

user area and set the USIND field to one to
indicate that the user area 1is full

»

3. Call memory management to allocate a ncde for
REQQLUE «
4, Place the reguest at the end of the Gueue.

D Set TOTAL field in I0CR tc the length ¢f the user
ared. Aiso initialize ALRERCE to the address of

13 one in USIND indicates that Y0CS has not finished
meving the data from the user ares to the output buffer

the disk «contrcel block (the compand interpreter
has initiualized other 1CCh's fields).

6. when the user areca is empty,2 regeat steps 2,3,4,
and 5 above until there is no more data to be
printed.

Te If there is no more data to be transferred and the
user area is eupgty then:

Se Call memory manademert to deallocate the user
area and the printerts 10ChH.

b. Delete the reguest in DRGUE and deallocate
its DKCB,

Ce Reset the device activity to zero (it is free
10W Ya

d. Dispatch the user from a "hlocked for
printer"™ which was created by the command

interpreter when the wuser requests an 1/¢
gperation with the printer.

Miscellanegus

The procedure fcr printing a file t¢ the local printer
can be shortened if the file 1is & current file. A current
file is defined as a file that is currentiy ir a user werks-—
pace.

when the editor reguests the file manager 1to copy the
data to the user workspace, the file¢ manager shoulé mark the
Mactivity" field of a file in the file directory as ¥cur-
rent." This information determines the value of LKACS fielg
in DRQUE. If the file is in the user workspace, DLDXKACS has

the wvalue of 2zero and PHYALR in DKCB will contain the

2This indicates that 1CCS has finished moving the data
from the user area to the output buffer.

76

address of nemory location instead of the physical (device)
address. The mencry address can be obtairned by searching a
system table" provided by memory manggement {(memory manage-
ment keeps track o¢f all active wusers in the systewm and
assigus both types 0f workspace to each users).

The kernel also provides a mechanism for cancelling the
output printed at the local printer. To support this, 2
fixed location is reserved to contain the address of a disk
contrel hlock. The symbolic name ¢f the location is LPREQ.
This location is used by the disk manager and comrand inter-
preter. 1f there is a reguest to output a file to the local
printer the disk manager initializes LPREQ with the address
of the disk control block.

The actual cancellaticn is recognized by the kernel as
an operator command which has higher priority than any user
command. When the command interpreter inpterprets an opera-
tor command to cancel the output printed at the 1iocal
prirnter, it sets the NCP3 field in DKCB tc zero to indicate
that there is no wmore data tc be printed. The address of
DKCb is found from LPREQ. At the tiwme LCPB 1s zero, the
process of printing a file t¢v the printer could be 1in
several different states; I0CS wight be transferring data to
the output buffer, I0S might be transferring data from the
output buffer to the line printer or the disk manager might
be copying data to the user area. In any of the 2bove cases
several lires of ocutput might be printed at the printer

hefore the disk wanager stops the process.

CHAPTER VI
SUMMARY , CONCLUSICONS, ANL FUTURE WCERK
surmary and Conclusions

The kernel is useful for a real-time application where
every users communicate with the systes by means of termi-

1alsa. The kernel provides a wuser with the following func-

tions:

1. it allows a user to create, delete and keep 3
file on a disk;

2 it aliows 2 user to print a file on a local
or remote printer;

3. it allows a user to submit a batch job to the
host computer;

4 it allows a user to retrieve a batch job froum
the host and store it on a disk file or
display the output 3just retrieved inmediately
at his terwinal;

5. it allows a3 user to directly print the output
of a batch job at the host prirtera.

At present, the design of kernel only supports

background johs sexecuted in a fcecreground manner. It does not
allow a user to execute a Job within the microcomputer
sysiem. By expanding the system to inclucde more than cne

microcomputer and by distributing the operating system over

17

7€

these processors, it would be possibie for the system t¢
execute sorxe jobs locally, for examgle, a compile step could
he done locally follcwed by a debug sessicn, or possibly an
incremental compiler could be accessed locally. It 1is
evident that multipie processors are necessary te achieve a

rapid response from the system.
Future ®ork

The design of the kernel could be expandéd to allow
some of the features described abovea. This would reyuire the
addition of other wcdules to the kernel. Ore such moccdule
would be the processor nmanagement module which Wwould perforuw
at jeast the following functions:

1. schedule Jjobs to be run on various
processors:

2 allocate g processor to a usSer in the ready
state;
e determine the maximum time a user §ay use an

2llocated processor;

4. initiate a user into a running state on an
allocated processor;

Se monitor the status of all users in the

system;
Ha swadpy users that enter & blocked state}
1. deallocate a processor;

Ba allocate the necessary resources;

9. deallocate these resources when the job is
done}

10. protect wusers from each other and the
operating system from users.

76

An extension of this type will add znother level to the
present hierarchical kernel structure. The decision on, the
placement ¢f the processor wmaragement wmodule with the
hierarchical structure and how the operating system should
be distributed, has to be made. The design of the interfaces
hetween the procaessor management podule and other modules of
the existing system must be determined as well as how the

processor wanagyement module takes control of the system.

(1

(2)

(3)

(4)

(5)

(6)

(1)

BIBLIOGRAPHY

Crouwencog TU~2KT Digitzl Interface. JInstruction
#anual. Crowemco Iucorgcrated, 19786.

Holt, KeCes GaS5. Groham, E.C. Lazowska and Y.A. Scott.
crpuctured Copcurrent Preavznmiryg with QOperatipg
Systens snplicatiorse Uriversity ¢f Teronte,
Computer Systems Research Group, Toronto,
Cntarios. M¥assachussttis: sddiscr~¥essliey
Puplishing Co., 1978, 139-159.

¥nuth, fonald E. The art of Connuter Prosrammipg, voi
1, secund edition. liassachuselts: Adulison-sesley
Publisning Cca., 1973, 435-451.

Madnick, Stuart F. and J.J. Donovan. perating
Svstems. Hew Yorxs: Mc Craw-Hill Boox Co., 1974,
66,

Osbornre, Adam and Assocliates. An Introduction to
¥ i €0k arg, vol 2, Sgme Rezi Produgts, June
1977 revision. Adaw Csborne ang Associates Inca.,
4.24-4,25, 7.26-7.21.

Schoeffler, Javes D. The Swall Copruuter Corncect. IBYN
Series/1l. International Lusiness Machires
Corporation, Ceneral Systems Division, Atlanta,
Georgla, 1978, 402-436.

Van Toren, Jaunes Ra. [Notes con Software Lesiygp Methods.
{(Unpub. supplementary class notes). Stilluwater,
Oklahoma: Cklahoma State University, 1678,

B8G

AEPENDIX A

CHARACTZRISTICS CF THE 170 INTERFACE

CONTROLLER

The present harduare configuration «consists of & Z80
CPU, multiple Cromemco TU=-ART bcards for inputfoutput and
pmultiple Cromemce 156 XZ memory boards (16K RAM). The TU=-ARI
(twin universal asynchronous receiver and transaitter) can

perform the following functiors:

1. it converts output date frow parallel to
serial form and input data from serial tg
parallel;

2. As a transmitter it adds start and stop bits,

generates parity, and clocks the data out at

the required baud rate. 2As a rTeceiver it

recognizes and deletes start and stop bits,

check parity, and clocxks the data in at the

required rate;

3. 1t provides indicators that tell whether it

has received data or is ready to accept data

for transmission. Cther indicators are used

to detect erccors in the received data.
The TU-ART has two channels of duplex serial data exchange,
two channels of parallel data exchange 3and ten intervals
timers in which each 1interval timer c¢an activate an
interrupt. It contains two THS 5501 (Texas Instrumernts) I1I/C

Controller chips which will refered to as "Device A" and

"hevice B%,

81

82

In order to support interrupts on a priority basis,
multiple TU=-ART hoards may bhe connected tcgether. Each 1/¢C
hoard is provided «ith two lines, Jl PRICKITY GQUT/ and Jil
PRICFITY 1N/. Priority is set by the locaticn c¢f the 1/C
board 1in a daisy <chain configuratione. This 1is done by
connecting J1 PxIOKITY VUI/ from the highest priority TU=-ART
to J1 PRIORITY IN/ c¢f the next highest pricority TU-ART, then
connecting J1 PRIOKITY QUT/ of the second TU=-ART to J1
PRICRITY 1Ik/ of the next TU-ART wuntil all TU-ART are
connected. The J1 PRIGRITY IL/ of the highest priority TU-
ART is 1left unconnected. This pricrity corfiguration insures
that a higher priority device will be serviced before a
lower priority device when two or more dnterrupt Ttequests
occur at the same tine. Device A is internally prioritized
over Device B.

For a TU-ART to have pricrity its J1 PRICRITY I&/ must
be high. when an 1/0 board needs service, 1t will prevent
downstream I/0 boards froa interrugpting by pulling low on
its 41 PRICRITY ¢UT/. The next 1I/0 bcard 1in the chair
sensing a low at the J1 PRYORITY IN/ will pass this priority
sigral on the next I/C board by pullirg low on its Jl
PRICRITY OUT/ and so on.

The base address of 1/0 ports are determined by the
position of 38 switch called a DIP switch. This base address
congists of the high-order bits of an @8-bit I/0 port

address. At the present time the disk controller uses zerc

83

4s the 1/0 base address of UDevice 4, 5CH (hex) as the 1/C
base address of Device B and 40H 1is dedicated for mermory
bank select feature.?

The memory space is cryganized into 2 barks of 64K each.
Fach memory bank{s) nay be enabled under softuare control by
addressiryg 1/C port 40H. The 8-bit cutput frem port 40H
enables or disables the corresponding bank(s) 1in memory. A
set bit v1*' in the corresponding bit poesiticn will enable
the memory banik and a reset bit *0% will disable it. On
power up the active mémory bank is bank €3 this is used as &
system bank in the design of the kernel.

Each TU~-ART wuses 14 different ports for data and

control. They are:

status register - input port
baud rate register -~ putput port
receiver data register - input peort

transmitter data register - cutput port

interrugt address register - input port

interrupt mask register - ¢cutput port
parallel port - input port

parallel port ~ gutput port
timer 1 - gutput port
timer 2 - gutput port
timer 3 - gutput port
timer 4 - cutput port

iCromenco 10KZ RAM, Instruction Manual. Cromemcce
Incorpgorated, 1975.

84

timer 5 - cutput port
The block diagram of THS 5501 containing the above registers
is described in TMS 5501 Hultifuncticn Input/Cutput
Controllier.?

Certain features of the kernel are dependent wupon the
above hardware. Timer and priority interrupts are necessary
for desiogning an interrupt driven I/0 systen. Most of the
modules of Ipput/Output System such as I10S, Logon and the
consocle scheduler are interrugpt-driven routines. The
ability to isclate the hardware dependencies in ary softuware
system is important for achieving a reasonable degree of
portability. In the design of the kernel, the hardware
dependencles are confired to the ICS module. The
inplementation of the other modules can be done in z systeu

progyranming language.

2TMS 5% ¥ ifu
Instruments Inc., 1976.

. Texas

APPENDIXL B

QUTPUT INTERKUPT KQUTINE LCATA STRUCTIURES

The followiny describes the data structures used in the

output interrupt routine and its driver:

1 CUBRUFi - output buffer for userf i

2 NOCHAR # of characters tg be cutput

2 BUFFPIR - buffer pcirter contains the
address of next location of
output buffer space

2 4DDR_CUTE = output buffer space {the maximum
is 257 characters - the last 2
storages are used for 1iwmbedding
carriage return and line feed)

1 USRAR1 - user W0Orkspace for userf i
2 NCCHAR = it contains the length of user
Wworkspace
2 USRPTR - user workspace gointer contains the
address of next location c¢f user
workspace
2 UWRSP - user workspace
1 ucBTl - output control block for terminal 1
2 TO0IAL - #§ of characters to be gutput

2 STATUS - 1t contains the status of a request
0 -~ reguest is in waiting line or
completed
1 - request is being serviced (in
proyress)
2 DEVTP - device type
1 - terminal
2 - disk
3 - tape etc
DEVNUM - devicef
EOR - end of record indicator
0 - no
1 - yes

LS

NUTE:
Naming convention for 1/0 contrel block
UCBYY where X is device tyupe
Y is devicef
Example: UCBTI is the output control block for
terninaly 1

1 GUIRLQ(*) - table contairs output requests

2 BEG - request indicator
0 - no request
1 - there is 3 request
2 ADDR - it contains the address cof output

ceoentrol block (UCB) if RiQ is one

RQTS17 - it contains the number of regquests which
have been serviced

ORPTIE - it contains the address of next request
to be serviced

7.
»

Both RETSIZ and CRPTR are used for implementation purposes
onlye.

APPENDIX C

PDOL DESCRIPTICK CF CUIPUT INTERRUPT

ROUTINE

The following section contains a Program Design Lan-
guage {PLL) description ¢f the output irterrupt rcutine and
its drivere. The data structures used are described in

Appendix B.

QUIKDR : PEOQC ;

/*

This is an output intervupt driver. This driver controls
the flox of data from a user workspace +to an output
buffer. This transfer of datd 1s done record~by=-record.
assume that a bleck of characters to be sent to a device
are in the appropriate user workspace and the correspond-
ing UCE entries are filled with the information needed.
This routine searches CUIRE(Q table tc¢ find whether there
is a request. If no request is found then this routine
does nothing. Otherwise, it checks the status of this
request. If the request 1is still in pregress {(the output
interrugt has not finished printing the data), then it
delays servicing this requesi by scanning the next entry
in CUTREG. Gtherwise it checks whether the end of record
indicator is on or not. If it is not on then this routine
scans the next entry in OUTkEYS otherwise 1t checks
whether there are more characters to be printed. If pot
then it indicates that the reguest is ccmpleted; other-

Wwise:

1. Call BUFACR to find the addéress of user
area and oultput buffer for the
corresponding device type and devicej.

2e Call CP1 to load the cutput buffer with
the characters to be printed.

3. Call SETOI to update the status of the

request and initialize the 1/C ccntrcller.

87

88

*/

DC WHILE(Y1'5);
Search OQUTREL table for a request and store output
control block address in UCBADK, if any?
IF STATUSA=1 & ECFR4=0 & iCTAL-=0 THEN LG
CALL BUFADR(UCHALR,OQUBUFi,USRARL);
CALL CPI{USRARILI,UUEUF1,UCRADK);
CALL SETCI(UC3ADR)Y;
END
ELoE IF TOTAL = 0 THEN STATUS = 0y
EXD;

BUFADR: PROC(UCBADR,OQUBUFi,USRARiLY;
Get DEVIP and DEVNUM froim UCEADK;
IF DEVANUB = 1 THEN DOj
Set USRAKR1I to contain the address ¢f user
workspace for devicej 1i;
Set QUBUF1 to contain the address cf output
buffer for devicel 1i;
END
Returny;
END BUFADR;

CPl: PrHOC(USRAKI,CURUFi,UCBADK);

Initialize CUSUFi.NCCHAR tc zeroj

DO ¥HILE(USRARLIJNOCHAR ~= (C);

Move a3 character frow MEFMORY(USKPTK) to
MEACRY(BUFPTEK);

Increment OUBUFi.NOCHAK by one;

Decreaent USKEARLI.NCCHAR by oney

Advance USKPTR and BUFFPIR to point to the
next locaticn;

End;

/*

At the end of a record, a carriage return and line

feed characters are imbedded into the character strean

to let the device (terminal) skip to the next line.

x/

Stoure carriage rteturn and line feed characters in
MEMORY(BUFFPTR+1) and MENMORY(BUFFPIR+2),
respectively;

Set TOTAL to CUBUF1.NOCHAR;

Return;

END CP1;

SETOY: PKOC(UCBADR);
Set UCBADRL.STATUS to one} /f* in progress */
Set UCBADR.EQR to zeroj;
Initialize 1/C controller for UCBEADR.DEVIP and

8§

UCBADK LDEVNUM specified;
Return;
END SETCL;
END QUINDK;

OUINT: PRCC;
/*
This is5 an output interrupt routine. Each device has
its own ocutnut interrupt routire.
*/ .
IF DUBUFL1.NCCHAR = { THEN DO;
Set UCB.LGH to onel /* end of record */
Set UCh.STATUS to zero; /* request is completed */
END;
ELSE DU
Qutput a character from MEMCRY(CUBUTF1.BUFFPTR);
Advance OUBUFL.BUFFPTR to point to the next
location;
Decrement QUDUFi.NCCHAR by ore;
END:
kestore all reglisters;
Enahle ipterrupt;
Return;
END QUINT;

APPLNDIX D

INPUT INTERRUPT RCGUTINE DATA STRUCTURES

The following describes the data structures used in the

input interrupt routine & its driver:

1 INEBFAL - input buffer A for usery 1

2 KOCHAR - # of characters

2 BUFFPIR buffer pointer contains the
address of next location of
input buffer snace
input buffer space {the nmaximum
is 25% charactiers)

2 ADDR_INB

t

1 iNBFB1 LIKE INBFAL - input huffer B for usery i

1 USKAKI = user workspace for userd i
(the fields and their descripticns
are found in Appendix R)

1 ICBT1 - dnput control block for terminalj 1
2 DIR - it contains the direction of datsa
movement.

0 - ipput reguest (the data is ccepied
from input buffer to user
workspace) :

1 - output request (the data is cepnied
from user wer«kspace t¢ output
buffer)

2 STATUS = it contains the status of a request

U0 - request is in waiting line or
completed
1 - request is beinyg serviced (irbp
progress)

2 LEVIP =~ device type

2 DEVNUM - devicel

2 ADRUW = it contains the address of user

workspace
ACRIB -~ it contains the address of active
input buffer

b

90

91

For input interrupt routine the value of TCBT1.LIR is zero
at all times.

1 INKEG(*) - table contains input reguestis
2 KEQ - request indicator
0 - no reguest
1 - there 15 a request
2 ALDiICCB - it corntains the addiress of input
control block (ICC3) if REC is one

The following data structures are used by the input inter-
rupt driver to checkx for input regquestse.

METS1I7 - it contains the number of requests which
has been serviced

MYRPTR = it contains the address of next request
to be serviced

The following data structures are used by the input inter-
rupt routine to get the next empty entry in IKKEQ table.

PIKERT - it conteins the address of the next
empty entry in INRE(
NCHEL =~ §f of reguests in THREC

NCTE s
¥irTST17, MVEPTR, PTNERT and NOKEL sre used for implementation
pPurposes only.

INPTL - a pointer used for swithching between
two input buffers (for userf 1)
1 - indicates that the first buffer
{buffer A) is active
2 = indicates that the second buffer
{(buffer 8) is active
Initially, it contains the value of one.

APPENDIX &

POL DESCRIFTICN CF INPUT INTZRRUPT

ROUTINE

The following section contains a Program Design Lan-
guayge (PDL)Y description c¢f the input irterrupt routine and
its driver. The data structures usec are described in Appen-

dix Ca.

INITDR: PROC}
/‘k
This is an input interrupt driver. The driver examines
INREQ table for a request from the input interrupt rou-
tine. The input interrupt routine reqguests IAMITDR to copy
data from an active dnput buffer to the corresponding
User WL0r¥space.
This routine searches INREC table to find w«hether there
is any request or nct. 1f no request is found then this
routine does nothing; otherwise:

1. Keset the buffer pointer of an active
input buffer to point to the beginning of
input buifer.

2 Call CPC to copy data frorx the input
buffer to the corresponding user
WOrkspace.

*/

DO WHILE(Y1'h)Y,

Search TWREQ table for a request;
IF there is a regquest THEN DC;

Store the address of input control block

in ICBADR;

CALL CPO(ICBADR);

Set REQ tc zero) /* request is completed %/
END;

52

END;

CP0O: PROC(ICBADR);
Get the address of input buffer (INdADE) apd user
worxkspace(UwWSADR)Y from ICBADR;
Initialize UsSADR.NOCEAK to zero;
DO WHILE(INBALDR..NGCCHAR = ()
Mogve a character from MEMCRY(INDADRLBUFFPTR)
to MEMURY(UXSADH.USKPTR):
Increment UuSADRLNCCHAR by one;
Decrement INDADRJNOCHAR by cney
Advance INFADRLBUFFPTR anc UWSADRLUSRPTK to
point to the rext location;
END?
Return;
ENU CPG3
END INITD&}

ININT: BPROC;
/*
This is an input interrupt routine. Each device has
its own interrupt routine.
*/
IF INPTI = 1 THEHN INBACT = INBFAL;
ELSE INBACT = IKBFBi;
Input a character frow a device}
Echo input charactery
iF end of record is detected THEMN DO
IF INPTi = 1 THEN INPTi 3
ELSE INPTH
Gelt an empty INRLE(entryy
Set REQ = 1 and ADIOCB to contain the address
of the corresponding ingut control block;
i'*
Initialize fields in input contrel block.
*x/
Set DIR to zero; /* input request */
Set ADRUW to USRARi;
Set ADxYIB to INDACT;
EXND3
ELS® DO ;
Place the character received in
MEMORY (INE ACT.BUFFPIR);
Increment INBACT.NOCHAR by one;
Advance INBACTJRUFFPTR to point to the next
location;

it

£ 7
-
f

END}
Kestore all registers;
Enable interrupt;
Return;

END ININT;

viTA
Sylvana Kristanti-Sari
Candidate for the Degres of

Master of sScience

Thesis: DESIGN CF CPERATING SYSTeM XIERNEL FOR A
MICRCCOMPUTER SYSTEM

Hajor Field: Computinyg ard Information Sciences
Biographical:

Personal data: Born in Surabaya, Indonesia, on Novea-
ber 5, 19514.

Educationy Graduated from St. Agnes High School, Sura-
baya, Indoresia, in December, 1972; received Hach-
elor of Mathematic from University of YHaterloo,
Waterloo, Cntario, in August, 1Y77; comgleted
requirements for Master of Science degree at Okla-
howma state University, Stillwater, Gklahoma, 1n
Ceceaber, 197G.

Professivnal Experience: Graduate research assistant
at Cklahoma State University, Flectrical Lngineer-
ing, October, 1977=Vay, 1973; programmer for
Department of Parasitology at Oklahoma state Uni-
versity, Summer, 1978; graduate teaching assistant
at Oklahoma State University, Department of Mathe-
matics, Fall 1979, graduate teaching assistant at
Qklshoma State University, Computing and Inferma-
tion Sciences Department, Spring 1979.

