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INTRODUCTION

It is well known that in atomic processes where the
interaction between, say, a free (i.e., unbound) electron
and an atom gives rise to aﬁ internal atomic transition, the
probabilities (related to the inelastic-collision cross
sections) of possible transitions depend not only on the
properties of the initial and final atomlc states, but on
the properties of all other atomic states as well. Thus,
an exact treatment of such a problem i1s a hopelessly com-
plicated application of quantum mechanicecs to an infinity of
interacting (i.e., coupled) states. Fortunately, however,
1t often happens that only a small number of states are
strongly coupled (i.e., only the influence of a small numbér
of states appreciably affects the transition probability
' between two particular states). In fact, there are many
instances when only the initilal and final atomic stateé are
strongly coupled. This often occurs when the two states are
in near resonance (i.e., the energy separation of the two
states 1s small).

Collision problems involving near resonance and
strong coupling are found to be somewhat troublesome since
the standard weak-coupling, approximate methods such as Born

1



2
Approximation, and the Method of Distorted Waves give poor
results., 1In faét, in the partial wave analysis, the Born
Approximation is found to give>part1al cross sections in ex-
cess of the 1limits imposed by conservation. Two methods have
been proposed which satisfy conservation. However, both of
these methods consist in modification of the standard Born
Approximation. It would seem more desirable to have a method
of solution which incorporates the two distinguishing char-
acteristics of the problem (i.e., near resonance and strong
coupling) in a more fundamental way.

A method (called the method of resonance distortion)
is developed in this thesis to handle electron-collision-
induced atomic transitions under conditions of near resonance
and strong coupling between the initial and final states.

The scheme involves an lteration procedure based on the
Zzeroth-order solution for the case of exact resonance. 1In
cases where the coupling is weak, the resonance-distortion
results are found to reduce to those of the Method of Dis-
torted Waves.

Electron-atom collislions accompanied by the emission
of radiation are handled in a distinctly different way. With
the particles and the radlation field taken together as the
system, one may employ the standard time-dependent perturba-
tion approach in determining cross sections for various
processes,

For hydrogen, four radiative processes are possible:



3

two-body recombination of protons and electrons, proton-
electron breméstrahlung, free-bound transitions causing the
formation of H™, and free-free transitions in H . Because of
the importance of hydrogen 1n plasma reseafch, it is important
to be able to analyze the continuous emission spectrum with
respect to these processes. The least famlliar of the four,
free-free transitions in H , is investigated, and the result-
ing emission compared with that due to recombination, bremss-
trahlung, and free-bound of H™. It is found that in cases
where the degree of ionlzation of hydrogen remains small, the
free-free process becomes significant for large temperatures,
say T = 50,000°K. Suech conditions may be found in cases
where thermal equilibrium is absent (i.e. Saha equation in-
valid), or where other gases are present, ensuring charge
neutrality without a necessarily high proton density.

Finally, cross sections are calculated for the 63P1 -
63P2 tfansition in mercury under the assumption of exact
resonance, Such cross sections are important 1n establishing
the population densities of these states. The energy de-

pendence of the cross sections is found to be consistent with

the experimental determination.



CHAPTER I
ELECTRON-ATOM COLLISIONS

The theoretical approach to scattering phenomena is'
basically quite simple. One need only obtain the wave func-
tion Y which describes the whole system (this includes the
atomlic system and scattered parﬁicles); A detailed analysis
of the properties of this function will yleld all information
necessary to the determination of cross sections for partic-
ular internal processes, Essential to the interpretation
of this function are, of course, the boundary conditions im-
posed on it. These conditlions specify, for example, the
form of the continuum parts of Y for large separations of the
atomic and scattered systems, and the flux of incident
particles, relative to which the cross sections are deter-
mined; as 1n other wave mechani~s problems, i1t is necessary
to assume regularity of all solutions at the origin chosen.
One is, however, unable to solve such a problem exactly,
and 1t becomes necessary to resort to one's own physical
intuition as well as the invaluable experience of others in
order to find acceptable, approximate descriptions of the
phenomena.

The problem to be dealt with most extensively in

I
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this work 1s that of one electron, having linear momentum
hﬁo, incident upon an atomlc system centéred—at r = 01-3.
Referring to the atomic coordinates as Ty, ?2, cens Fz and
those of the incident electron as ;, we find the hamiltonian

for the system to be given by (atomlic units, e =m=h = 1)

Ha= -4 zi vf UL Hy (71,7), (1.1)

It is then necessary to solve the Schroedinger equation
(H ~ E)Y(ry,r) =0, (1.3)

where E represents the total energy of the system

o
he 2
E=E +5-k

5 Ko (1.4)

E, representing the energy of the atomic state prio: to the
scattering, and where ;i appearing as an argument represents
the entire collection of atomic coordinates. The last two
terms in Eq. (1.2) represent the interaction between the
incident electron and the atomic system. When the scattered
electron 1s close to the atomic system, this interaction
could cause considerable distortion of the atomic system re-
sulting in a polarization effect. However, since the r, are

8

bound within a small region of space (~ 10~ cm), the two

terms nearly cancel for large r; we have




i . §;

Z 1 z 1l

r i lri - I'I r

Since in the limiting case where the cancellation is exact,

the wave functlon becomes
Y(ri,r) - Fm(;)Ym(ri) , (1.6)

a logical manner in which to represent !(;i,r) i8 by means

of the expansion1
1(F,F) = ) Ba(F)v,(Fy) o

where the functions Ym form a complete set over the space
;1 and the » dependence 1s carried in the coefficients Fm.
Substitution of Y as given by Eq. (1.7) into Eq. (1.3)
yields

MR E IR S
=) @ e E-) ﬁ }RLGE) b)) . (2.8)

[ ] - -
which upon multiplication by -Evma(ri)dri and integration

over all of the atomic coordinates becomes
(2 4 K2 ,)F (7)) = ) U, (F)F(F) (1.9)
m'““m' m'm m ’ )
where

Upin(®) = 53 Von® = 52§ 0 GOVELDI,E AR, (1.20)




V(;i,;) = - -f—; + -:-l—:- ’ (1.11)
1| -7
2 2 , 2M
k =k + ) (Eq - Ept) (1,12)

It may be seen from Eq. (1.7) that the function Fm(;) de-
scribes completely the behavior of the scattered electron
for the atom in state m, and thét the asymptotic behavior
of this function will indicate the flux distribution of the
outgoing electrons and thus the cross section for a process
in which the final atomic state is represented by m. For a
problem in which the initial state is represented‘by o, the

functions Fm(F) must satisfy the conditions

Fo(;) ~ exp (120-;) + %.f°(9,¢) exp (ik,r),
(1.13)
' Fm(;) ~-% fn(8,9) exp (1kmr), m#O0 .

It i1s assumed that Y 18 normalized such that the number of
scattered electrons per unit volume at ; coming off with
the atomlc system left in the m'" state is |Fm(;)|2. We
obtain, then, the outgoing fiux of such electrons for large

r into solid angle dQl as

2
v, 5 1n(0.0) 7 (rRan) . (1.14)
r

" If in the incident beam, the density of particles 1s held

at l/cm3, then the incident flux is simply v,. The
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differential cross section Imdﬂ is defined as the number
of particles per unit area per unit time which come off
within d4Q having giveh rise to a transition o-m, per unit

incident intensity. Thus we havel

I,(0,9)a0 = o= |1, (6,9) [ "a0 (1.15)

similarly for the elastic cross section

I,(8,9)da = |f,(8,%) |2dq . (1.16)

It should be pbinted out that the plane wave part of Fo(;)
is not considered here since in actuality it should be re-
placed by a wave packet of width large compared to the
region of interaction but negligible compared to the separa-
tion of atomic system and measuring apparatus. In other
words, except for a very small region surrounding the Eo
axis, only the second term in Fo(;)'is gsignificant. The
total cross section is obtained by integrating the differen-

tial cross section over all space as
Q(o=m) = § Ip(6,9)d0 . (1.17)

Strong Coupling

It 1s often the case that for certain transitions
the coupling between two states 1s so strong that the influ-
ence of all other states may be neglected. Say o and n
represent two such strongly coupled states, where o refers

to the initlal atomic state. It is then possible to consider
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in Eq. (1.9) only the two coupled equationsu

2 .2 _
(v +k, -U )F =U_ F , (1.18)
2, .2 _ .
(v + K -U )F =U F . (1.29)

In cases where U , U , and U are small, it is sometimes
00 nn on

valid to set Uoo =U

nn = O and solve Eq. (1.19) for F,,

having replaced F_, by exp (iﬁo-;). This is the familiar
First Born Approxiﬁationl'3 (BI), the validity of which
depends on the matrix elements being small as compared to
the incident energy of the electron. The Born approximation
is ﬁsually good only for relatively large incident energies,
Often the situatlon arises where U, 1is small but Uy, and
Uhn are not. A method suitable in this case is that of
Distorted Wavesl'e, in which Uoo and Unn are retained.

The function'Fo is first determined from Eq. (1.18), neg-
lecting the term UonFn‘ This function is then inserted in
Eq. (1.19) which is solved for F,. Again, the validity of

this method depends on Uon being small.

Exact Resonance

In cases where Uon is not small, neither of the two
previous methods is satisfactory and it 1s necessary to
treat the coupling in a more balanced manner. In the case
of exact resonance (i.e., k, = ko, Uy =U,,), Egs. (1.18)
and (1.19) may be uncoupled exactly givingu

(V2 + 15 - Upp ¥ U ) (F, £ Fp) = O. (1.20)
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Defining, in the usual way, the phase shifts nL and 6& for
F, + P and F, - F_respectively, we obtain for F (assuming

spherically symmetric potentials)

21
e

- 1 5
F ~p 1 exp (1kor) Tk, 2;(2L + 1)(e21nL - L)PL(cos 8).

n
‘ (1.21)
The differential cross section for the transition o~n is

then given by

2in 218 o
In(e)dn.;——lﬁa- | Z (e *-e %ot + 1)P, (cos 8) |“aq ,
16k L :
© (1.22)
and the total cross section becomes
2
Q(o~n) = _E.Z:(ec + 1) sin (nL - 6L) . (1.23)

koL

Near Resonance

When exact resonance is not present, there is no

exact way to decouple the equations, and a more complicated

method of.solutidn must be invoked. In some 1nstance82

numerical methods have been tried, however in most cases
these are quite complicated and do not lend themselves to
very extensiye physical interpretation. A new method for
this type of problem has been developed. It consists of

first solving the exact resonance problem for the function

(o)

o 3 then Eq. (1.19) is solved for

Fo, which will be called F

distortion, 1s similar to the method of distorted waves in

replacing F. by F(o). The method, called resonance-
o) o
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that the former method assumes close coupling in the zeroth
order while the latter starts with zero coupling. In the
following chapters the resonance-distortion method is dis-
cussed in detall. Along with the description are included

applications and detalled comparisons with other methods.

Approximate Forms of the Interaction Potential

In the present work, we will be concerned primarily
W1th the special class of electron-atom collisions which in-
‘voive (1) strong coupling, (ii) a long-range interaction
potential, and (i111) near resonance; however, the resonance-
distortion method 18 not restricted to such problems.

It has been known for some time3 that several
collision-induced atomic transitions show strong coupling,
for example, 2s-2p of Hydrogen (It was found that the cou-
pling here was so strong that the consideration of these
states considerably reduced the 1s8-2p cross section in
agreement with experiment), 218*21p, 23s~23p of Helium,
Us-4p, 3d-4p of Cat and 3s-3p of‘Sodium. This last transi-
tion will be used as aﬁ application of resonance distortion.
These transitions.are 2ll optically allowed and of the form
n',4,m'-n,4+tl,m; such transitions have long-range interac-
tionss, which in the partial wave picture render several
partial waves important.

In many instances, if we are dealing only with sin-

gle excitation, the wave function of the atom can be repre-

sented approximately by the one-electron orbital of the
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excited electron 'nLﬁ(;l) = RﬁL(rl)Y&m(fl)' (This is, of
course, not always valid, especlally for cases where the ex-
change effects of the atomic electrons must be considered,
e.g., He(23s~23p)). However, extension of the treatment in
this section to these cases can be made very easily and will
not be considered here. In Eq. (1.11) this amounts to con-
sidering z - 1 electrons along with the nucleus as making up
the core of charge +1; the remaining electron (coordinate
?1) along wlth the core represents the scattering flelid seen
by the incident electron. We have, then, for the'coupling

matrix element

I * oz 11 vdn
Uno(r) 2 S *n&m(rl) [ B -, T ] vn'&'m'(rl)drl

r
r - pl
@ A
= ( ——————-) y (n&,n'&lr) z: hxu im,4'm!' )Y (r), (1'24)A
ng 2x + 1 A =Ry .

where

* ~ "~ " o~
hy = S Y0 (5) v, (B) ¥, (F)aF

(2l 2" +1 )éc (tm,'m'), (1.25)

¥y, (nt,n't'|r) = —x—- & R, (7 )rl+2 'L'(rl)drl

8)(nt,n'¢L")

+ rl §. Rn{,(rl)ri-x BT!'L'(rl)drl ~ r,\-}.l ’ (l°26)

and where we have made use of the multipole expansion
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A -(x41) - x

4or_ r . A
1 . ) == ) L) Y (F) . (1.e7)
12 - 2] =0 2X+1 H== H Au
1

The long-range behavior of Uho for optically allowed transi-

tions (i.e., 4=4%1) follows from the fact that for large r

sl(n 1+1,n'L)

¥y(n a1, n'tir) ~ 3 s (1.28)
where sg is the line strength for the transition given by
®
s;(n 241, n'¢) = (R, (r) Rn,L(rl)r%drl . (1.29)
. o , ‘

The line strength is related to the oscillator strength f

by6

2
8™ me 1 2
3he® 811 12 (1.30)

where A\ is the wave length corresponding to the energy
separation, and g, is the statistical weight of the lower
state. We see from Eq. (1.28) that for large r the line
strength is a measure of the strength of coupling of the two
states., The diagonal elements Uoo and Unn can be calculated
simllarly, however they are found to fall off exponentially
for large r. In problems involving allowed transitions,
where the coupling is long-range, these short range functions
are of minor importance.

In order to illustrate the behavior of these matrix
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'elements, we may consider a simple example such as the
- 28-2p(m) transition in Hydrogen. The matrix elements are

easily found to be (in Slater atomic units)

Upo = - $ e-r(re +2r + 6 + g-) , (1.31)
F;;‘"lle e T(r° + 6r + 18 + 22 ), (1.32)
(V) = 5 0(r) ¥(0,0)  (me0, 21) ,  (1.33)
where
T =45 ) Unn(®) af (1.34)
and
1 .
U(r) = 8 /3 ¢ I'(3r'2 + 12r + 36 + %? + zg') - 73 92 » (1.35)
r

the averaging having been done merely to remove the angular

dependence for comparison. Similarly, we employ
-{£(Iv (r)ledr} -2 u(r) (1.36)
on rms Im 3 ’ :

The behavior of these functions is illustrated in Figure 1,
where the function -2 /3/r2 has been included to show the
impertance of the exponential part of Uon

Near resonance often occurs for transitions between
the same n, i.e., ni~n 41+l1. Here, a significant contribution
to the total cross section comes from the partial waves of

large 4, and the effects of Uon at small distances are




Figure 1

unimportant. Thus 1in the ns-np transition we shall make the
simplification of replacing the true interaction potentials
by

Yoo = Unn = %

2M 2 S *
Uon = W 3 /m Ylm(e’m) ” = Vo ° (1.37)
The same set of potential functions was used by Seaton7
in deriving the close-coupling formula and the modified
version of the Bethe approximation. Throughout the calcula-
tion, the exchange between the incident and atomie electrons

" has been ignored; this is justifiable for collisions with
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long-range interactions. However, the effect of electron
exchange can be readily incorporated into the general

formulation of the resonance-distortion method (see Ch. VII).

Schematic Model

The effects of using potential functions of the form
given in Eqs. (1.37) can be illustrated to some extent by
means of a schematic model (denoted by SM) in which it is

assumed that

(1.38)

= - 2
Uon A/PS ,

Avbeing an adjustable parameter. The advantage of treating
such a model is the simplicity of solution. Uon in the
schematic model mﬁy be thought of as representling some kind
of angular average of U  in Egs. (1.37). We will consider
the results of the Born approximation (same as Distorted
waves for schematic model), exact resonance, and the
resonance-distortion method.

In the Born approximation it is assumed that the
wave functlion representing the incident particles is not
distorted by the scattering center. This amounts to setting

F, = exp (1Eo-r) in Eq. (1.19) which then becomes

(7 + 107 () = - Fr exp (1kg'r) . (1.39)

We expand exp (1ﬁo-;) and Fn(;) in terms of Legendre
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polynomials asl

exp (1k '7) = = Z 1Yon 4 1), (cos 8)3, (kyr), (1.40)
where
| 4
3, (e,v) = gi.;) AR (1.41)
nd
a o . i: . |
Fn(r) = 5 L 1 (24 + 1)P, (cos 8) Fn’L(r) . (1.42)

Eq. (1.39) then bresks up into an infinity of ordinary

differential equations

2
[-2‘:2—”51 -ﬂirg_ll]Fn’L(r) - -;%(g;—o)é.rm(kor) :
(1.43)
This equation can be solved by the standard variation of
parameters procedure.8 The asymptotic form of Fn,L is found
to be

Fn,L ~ E?Eﬂﬁ—ff (-i)L exp (1knr) S JL+é(kor) JL+§(knr) Q%_.
on ° (1.44)

From Eqs. (1.42) and (1.44) we see that the amplitude f,(8)

is given by

A
f.(8) = m LZO(QL + 1)P, (cos 0) § 7143 o) J%Ekn:))g_g,
1.45

which, when squared (absolute) and multiplied by (kn/ko)dQ
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yields the differential cross section

I, (8)dn =

2 ( mA > | z:(EL + 1)P, (cos 8) S Tph(kor) Ty g (k r) dr |2aq.

(1 46)
Upon integration over 8 and ¢, we obtain the total cross
section |
dr 2
Q(o-n) = =z (ma)? z:(ec +1) S AR ARTCEIR: 3
° (1.47)
which, making use of the relation9
§J (kor) J (kr)gi-——il—-(ff-‘)“% (1.48)
s L4470 L+ n r- 2t +1\k s .
we may write as
SMBI hd SMBI 2
w_ (nA 1+Yz
L=0 o
where
2,2
z = kn/ko = (E - AE)/E P) (1-50)

SMBI
and where the partial cross section Ql(o~n) is given by

2441
QL%EEg) = §éﬂélj'< ) ! (1.51)

(1.49) is of the same form as the total Born cross



19
~section obtained using the angular dependent potentials (see

Eq. 2.23) and in fact the two give the same result if we set

A = Ug/n /3, 32
7

o-n.

being the line strength for the transition
For the case of exact resonance, Eqs. (1.18) and
(1.19) may be uncoupled exactly by introducing
o
F =F %F, . (1.52)
These functlons satisfy the uncoupled equations
(v + 5 £ a/rP)FE = 0, (1.53)

which, upon substitution of the usual partial wave expansion

F(r) = 2 LZoiL(EW, + 1)F, (r)P, (cos 8) , (1.54)
become
& 2 2 2 7 &
[ Sp, - (P, - $)/r | F (r) =0, (1.55)
Wwhere
P, =[(t+3)2F at?, (1.56)
and thué}
+ mr 3
F, =a, < 5;;‘) Jki(kor) : (1.57)

Here Jp (k,r) is the Bessel function of the first kind of
+
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order gi and is éhe solution regular at the origin; the ay
are constant coefficients. Considering the asymptotic con-
ditions for F, and F_, which are given in Egs. (1.13), the
paftial wave expansion of exp (1§°-;) given in Eq. (1.40),

and the relation

(2k° ) J“%(k r) ~—- sin (k,r - L1/2) , ~ (1.58)

we find the asymptotic conditions for Fo L and Fn L to take
2 2

the form

+ . oam 1 .
Fop = #(Fy +F,) ~g5 sin (ke - 41/2) + ¢, , exp (ikyr),

0,4
(1.59)
+ -
N (P, - F) ~ Cn,¢ €XP (ikor) | (1.60)
the collision amplitude fn(e) is then expressed as
1.(8) = 21 (2t + 1) cn,i P, (cos 8) . (1.61)

=0
In order to determine the coefficients a, , we must examine

the asymptotic behavior of F ) and F E For the elastic

scattering function we have
= 3 ( ) [a+JP (kor) + 2 JP (k r)] ~

5%; (a, cos (kor - "/4.- Ptn/2) + a_ cos (kor - /4 - P7n/2)]
(1.62)
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= E%; {a+ exp 1(k°r - n/4 - Ptn/2) 4+ a4 exp [-1(k,r - w/b -
P™n/2)] + a_ exp 1(kor - /4 - P n/2) + a_ exp [-1(kor -
n/4 - P'n/2)]} + %; sin (kor - n/2) - aikbexp 1(k,r - tn/2)

+ §%E-exp [-1(k,r - tn/2)] = ﬁ: sin (kor - ¢m/2) +

EEg-exP ik,r {a¥ exp [-1(n/4 + P™n/2)] + a_ exp [-1(n/4 +

- PT -2 - 1 -

P n/2) T exp (-1m/2)} + T, exp (-ik,r) f{a, exp 1(n/4 +
Ptn/2) + a~ exp 1(n/4 + P~n/2) +‘% exp (itn/2)} . (1.63)
Comparing Eqs. (1.59) and (1.63) we see that the first term
of Eq. (1.63) represents the incident wave part; the re-
mainder, then, should represent only scattered waves (i.e.,

outgoing waves). Thus the coefficient of exp (-ik,r) must

vanish, yielding

a, exp (1P*n/2) + a_ exp (1P7n/2) = 21 exp 1(4n/2 - w/4).
(1.64)

Similarly, the asymptotic form of F .4 is found to be
= 3 ( > [a+JP (kgr) - a Jp_ (kor)] ~
E—;-{a exp 1(k r - n/4 - Ptn/2) + a, exp [-1i(k,r - n/4 -

*n/2)] - a_ exp i(kor - /4 - Pn/2) - a_ exp [-i(kor -
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n/4 - PTn/2)1} = Eﬁ; exp ikor {a, exp [-1(n/4 + P'n/2)] -
a_exp [-1(n/4 + P n/2)]) + E%;-exp (-ikor){a+ exp 1(n/4 +

PTn/2) - a~ exp 1(n/4 + Pm/2)) . (1.65)

The asymptotic form of Fn,L must contain outgoing waves
only; thus the coefficient of exp (-iky,r) must vanish,

yielding

a_.= a, eip [1(P, - P_) g l. (1.66)

Combining Eqs. (1.64) and (1.66), we find

a; = U exp [-1(PT + %) g-] s

(1.67)
a_ = 1L+l exp [-1(P™ + '})

B
d

‘From Eqs. (1.62) and (1.67), we may write F ., as
: 2

gt 3 A
F_,(r) = ( il exp (-in/4) [Jp (kor) exp (-1P m/2)
O’L. 2 2ko +

+ Jp_(k,r) exp (-1P_n/2)] ; (1.68)

this function will be used in the iteration method which
follows. 1In order to determine the exact-resonance cross
section for the schematic model, we must examine the asymp-
totic behavior of F, 1+ Comparing Egs. (1.60) and (1.65)

we observe that
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°h,t = H%f'{a+ exp [-1(n/4% + Ptn/2)] - a_ exp [-1(n/4 +
3 o ‘

. 1 '
Pn/2)1) = %m; lexp (-1P*n/2) - exp (-1P7m/2)] . (1.69)

From Eqs. (1.15) and (1.61) it follows that the total exact-

resonance cross section for the schematic model 1is given by

SMEX s
Q(o~n) = 4m ZL (2t + 1) e, 1, ~ (1.70)

which by means of Eq. (1.69) becomes

SMEX
m 2 n
Q(o-n) = ;524 (2¢ + 1) stn® (P, - P_) 2 .  (1.71)

Here, P*n/2 and P™n/2 may be identified with the standard
partial phase shifts given in Eq. (1.23). “It should be
mentloned that the above treatment is invalid if P, becomes
imaginaryl®, 1.e., 1f A > (¢ + )%, thus for small ¢ the
partlial cross sectlions may have to be calculated by some
other means. For the schematic model under exact-resonance
conditions, the total cross section is found to diverge, as
may be seen by examining sin? [(P, - P_)n/2] for large 4 in
Eq. (1.71). This model is, however, only for illustrative-
purposes and the divergence 1s of little concern. It is
found, nevertheless that upon introduction of the inexactness
(1.e., Ey - E; £ 0) the divergence disappears.

When k, # kn, we are faced with the task of treating

the coupled equations
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(v 4k§)Fo - (1.72)

*x
S
.

(1.73)

)

14:- 1&"
o

(v2A+ kﬁ)Fn = -

The resonance-distortion method, briefly described earlier,
consists, in the case of the schematic model, of solving

Eq. (1.73) for F_ in terms of F, which is then replaced by
F§°), the solution obtained under exact-resonance condi-

tions. Expanding FO in terms of partial waves in the form

F, = %.zéic(EL + 1)P, (cos 8) FO,L(r) P (1.74)

as was done for Fn in Eq. (1.42), we obtain for Fn L
>

2

a 2 4 +1 A
[dr2 +k - _(__lre APEES L (1.75)

Making use of the standard variation of parameters method

of solution, we obtaln for the asymptotic form

F ~ mA (-i)L exp (ik_r) ( J, a(k r)
n,4 z(kokn)§ n é L+32\*n

2k 3
x (=2 F, o (r) &, (1.76)

It is interesting at this point to compare the above equation
with the SM Born result given by Eq. (1.44). 1In the latter,
one has within the integral the funcﬁion J4+§(kor) in place
of (2ko/nr)%FoJL(r)"found in Eq. (1.76). The pure Bessel

3
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function results from the plane wave assumption for the
elastic function, which is inherent in the Born approximation.
In line with the resonance-distortion approximation, we re-
place F

0,4
calculated for the case of exact resonance and is given by

in Eq. (1.76) vy F§°2, of Eq. (1.68) which was

2k 3
< ﬁ;g Fé?i(r) = % 1L+l exp (-iﬂi)[JP+(k°r) exp (-1P_ m/2)

+ Jp_(k,r) exp (-1P_m/2)] . (1.77)

From Eqs. (1.76) and (1.77) we obtain for the collision
amplitude

= nA - L + -
f,(8) W exp (-im/4) Lzoi (24.'+ l)[IL exp (-1P_m/2)
+ 1, exp (-1P_n/2)]P,(cos 8) , (1.78)
where -
4 |
I, - § T143(nT) Jp, (kor) ‘.i.i‘. . (1.79)

Considering Eq. (1.78), it follows in a straightforward
manner that the resonance-distortion partial cross sections
fdr the schematic model under conditions of near-resonance

are given by

+,2
l +

SMRD n 2
Q (0-n) = Z (3ma)~ (20 + 1) |1,
(o}

-2
+ llcl

21: I, cos #(p, - P)7], (1.80)
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where the superscript SMRD refers to schematic model
(resonance-distortion). It may be easily shown that, as

S
MRD reduces to QL of

should of course be expected, Qi
Eq. (1.71) in the limit of k, = k,. It is of interest to
point out that the resonance-distortion method does not
appear to be limited to cases of strong coupling since for
small A, QiMRD reduces to the Born approximation result

QSMBI given in Eq. (1.49), which should be valid in such a

c:se. One finds that for any magnitude of A, Qi”mb - QEMBI
for large 4; the coupling, then, 1s said to be weak for
large 4.

The radial integrals present in Eq. (1.80) may be
evaluated in terms of the hypergeometric functions oFq,
which 1n turn may be determined by their power series

representationll

o (a)p(®)p (5)P

3C3 = 1.81
2Fl (a,b:c:z) 250 (UP pr ° ( )
where
(a)P=a(a+1) ... (a +P -1) .
We have then’
+ k, \tt I'(a,)
I = —_ == FPi[a_,b_a,  +b, +1;2
2 éck(,) I‘(l-b+)I‘(a++b++l)21[ 4:P4384 +Py +132],
T -7 (1.82)

where

a, =%(Py +1+3),
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bi=%(L+é_P;t) )

= 3

7 = (kn/k°)2 :

The variation of QiMRD with AE 1s given in Figure 2.
for several values of 4. The partial cross section for each
1 18 seen to increase steadlly with decreasing AE, reaching
a maximum for AE = 0. Also plotted in Figure 2. 1s the
maximum partial cross section allowed by conservation

limitst

QL(O*n) = kg QL = —5-(2L +1) . (1.83)

’ o
It 1s seen that the resonance-distortion partial cross sec-
tions satisfy conservation requirements even for AE = O.
It 1s interesting to notice that the distribution in 4 does
not differ greatly for different AE.

MRD (AE = 0) on the coupling

The dependence of Qi
parameter A is given in Figure 3. There are two important
things to notice here; first, for each different value of 1
there is a clustering of points (and for some cases even
oscillation) as the coupling A is increased, and secondly,
the distribution in 4 1s sensitive to the degree of coupling.
The clustering is evidence of a saturation of QL with in-
ereasing A. This effect 18 intimately connected with

particle conservation and is not present in the Born
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Figure 2. Partial Cross Sections Q (AE) for Different
Values of AE(eV) with E = 13.6 eV agd A = 3.0, Calculated by
Using the Schematic Model (units nao)
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approximation, sometimes causing the latter to actuaily ex-
ceed Qrax for large values of A. This saturation effect will
be discussed more in detail when the angular dependent poten-
tial functions are considered. The distribution in L of the
partial cross sections is related to the applicability of
Born approximation, which is most suitable for problems in
which many partial waves, all making small contributions,
are necessary. We see from Figure 3 that the distribution
is most uniform and the partial cross sections smallest for
small A; this is in agreement with our analytic result that
Qim - Qi"_m for small A.

» Introduction of the inexactness correction AE ap-
peﬁrs to decrease the cross sections in general as shown by
Figure 4. The saturation effect is present just as in the
exact-resonance case, and the distribution remains somewhat
sensitive to the magnitude of the coupling parameter A. A
careful comparison of Figures 3 and 4 shows that in the case
of AE = 3eV, the maxima of the inexact-resonance partial
cross sections are shifted inward slightly as compared with
those of the exact-resonance case. The various properties
mentioned above have been pointed out so that when results
of the more involved methods are analyzed, one may sort out

which of these properties, for example, are related to the

angular dependence of the coupling matrix element Ubn'
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. CHAPTER II
. BORN AND BETHE APPROXIMATIONS

As was mentioned in the previous chapter, there are
several instances in electron-atom scattering where the
coupling between the two states of interest i1s not strong
and where one 1is interested in incident energies large
enough 8o that ;t may be assumed the incident plane wave is
not appreciably distorted by the scatterer and hence, to a
zeroth-order approximation the elastic scattering function

may be represented by
F,(r) = exp (iko-r) . (2.1)

This amounts to neglecting the terms UooFo and Uann in
Eq. (1.18). 1In keeping with the degree of approximation,

one neglects U F_ in Eq. (1.19), which then becomes
RN k oo 2.2
(V" + k,)F, = Uy, exp (1ko'r) . (2.2)

Solving Eq. (2.2) then results in the first Born approxima-
tion (will be denoted as BI) for Fn and thus for the cross
section. The Born approximation has for some time been a
popular research tool, and an abundant supply of calculations

1’2,3,11

is avallable in the literature. However, in regard

32
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to problems invblving strong coupling and near resonance,
with which we are primarily concerned here, the Born approxi-
mation 18 inadequate and usually gives a cross section very
much larger than experimen'c.3’7 A detailed derivation of
the Born approximation will be presented here in order to
illustrate a useful fact concerning chﬁice of the axis of
quantization, and to compare two methods of obtaining the
Bethe approximation, which will be discussed.

We consider as before an electron having linear
momentum hﬁo incident upon an atomic system consisting of
one electron outside a core of charge +1. The total wave
function 1s expanded in terms of atomic wave functions as
in EQ. (1.7), and the scattered electron is described by F,
which, rewriting Eq. (2.2), is found to satisfy

(v + K2V (7) = 2 exp (tk,o7) § ¥ (7)) VLT ¥, (7))aT
' (2.3)
where V(;l,;) is given in Eq. (1.11) with z = 1. A solution
to this equation is easily obtalned by means of the Green's
function for the operator ve 4 ki, which is given by1

- 1 exp (ikplr - rol)
K(I“,I‘Q) = Im

e R = K(r,,r) . (2.4)
lr - |

Thus we have
F (r) =

L exp (1, 7) { TR IT T2 Y gz § G v EL A (Fp)eR,
v - | (2.5)
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For large values of r (r represents the distance of scattered

electron from atom) one has the relation

r - ré| ~7p - ﬁ';e s

where . (2.6)
n=r/r% lzn/kn ,
and thus
— - l - -
K(r,ro) e Ty ©XP (iknr) exp (-ik,-rp) . (2.7)

Asymptotically, then, we have that

.. exp (ik,r) v e o -
F (r) ~ o S exp [1(k, - kn)'ra] dr,

x § ¥2(F) V(FLF,) ¥ (Fy) aF (2.8)

Comparing Eqs. (1.13) and (2.8) one obtains

1,(0,9) = 2-5;- | § exp [1(k - k) Tplar,
™ Xo

x § @) VELE) 1 G aF B (2.9)

To facilitate calculation of the total cross section, it is
convenlent to introduce the relative momentum coordinates R,

where

2=k, - k1P = K2+ 12 - 2k k, cos @ , (2.10)

and where 6 is the scattering angle, 1i.e., ﬁo'ﬁn = kokn cos 6

(see Figure 5).
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FPigure 5

Differentiating Eq. (2.10) we obtain
K dK = k k_ sin 8 de . | (2.11)

The total cross section is given according to Eq. (1.17) as

2n m .
Q(o~n) = S S I,(8,9) sin 8 d8 4% . (2.12)
o [

a

o

We now choose to define

I,(K,®) dK 9 = I, (6,9) §E§§;99 , (2.13)

and conéequently

on k0+kn

Qon) =  { 1,(x,9) ax aw . (2.14)
0 lko‘kn|

The potential according to Eq. (1.11) is given as
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V(#.,7) = —L 1 (2.15)
1’ r’ ‘

7 - 7

the second term, however, makes no contribution to the
integral because of the orthogonality of ¥y, and ¥o. Making

use of an expression due to Bethe,

S eJ-C.P (iK'Px) d'f,l = i‘l exp (112.;) , (2.16)
II‘ = rl' K2
we obtaln
In(K,m) dK do = ;5' K3 | S exp (1K-r1) #n(rl) to(rl) dry |2.
o
(2.17)

~Bethe Approximation

The standard Bethe approximation (will be denoted
as B'I)1 is obtained by expanding the function exp,(ii-;l)
in Eq. (2.17) and retaining only the first two terms
1+ 4K-r . This is valld for K small relative to r™%, for
r in the region of overlap of the atomic wave functions.

In situations where K is not small (i.e., close encounters),
this approximation may be expected to produce too large a
cross section. 1In the past, several methods of correcting
the Bethe approximation have been devised, including a
reasonably successful scheme by Seaton.7 This technique,
called the close-coupling method, will be discussed in
Chapter V.

We take Yy as the angle between nand v, 1.e.,
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i';l = Kr) cos v , (2.18)

where cos Y may be expanded in spherical harmonics as

1

cos ¥ = & Eﬁvl,m(el,wl) v o(en,e) (2.19)
M=

where 91,¢1 are atomic electron coordinates and 8',¢' give
the orientation of ﬁ referred to the atomic coordinate sys-
tem (the z-axis is taken as the axis of quantization). Thus

we have for an ns—~npm transition

l‘.
- - *» — - - * 1
S K-ry vn(?l) ¥ (r;) dr, = %ﬁmzlyl:m (9'“’.) S r¥1,;n(815%)

1

' * - I~ - 4rK * ' '
X 4n () VG(Fy) ary = ) ¥y (8090 § Yy n(ey,9))

m=-
XY, (8,,9,) ¥ (8 cp)df-& (rq) R (r)r3dr =
0,001591) ¥1,m(915%)) 471 3 Rpgiry) Rpplry) vy dry

£E§§5¥£nﬁe"m') sl(np,ns) . (2.20)

The flrst term in the expansion of exp (iK-rl).makes no con-
tribution because of the orthogonality of ¥, and ¥, . The

differential cross section in K becomes

2
8 ,nS)
In(K,‘-’P) aK 4o = ( %) Bl(;i > dKqu’ I8y n(e" 12, (2.21)

kO

which 1s independent of ®. In the case of transitions
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involving a degenerate final stgte, such as thé ns~np'transi-
tion conslidered here, the total cross section is obtained
by summing over the degenerate states. Thus for a beam of
electrons incident on an unpolarized group of atoms, we
have
m=0 m=1 m=-1

Q(ns~np) = Q(ns=np) + Q(ns-np) + Q(ns-np). (2.22)

We may choose to identify Eo as the axis of quanti-
zation (z axis) for the atomic system. The cross section

becomes

Q(ns-np) = ( 11{'5 ) %S
- 2

1
2
8y, m(e") 1”&
m=-1

' K. + k
= (2 )8 s%(np,ns) 1n ( —” n (2.23)
2 31 .
K k - x|
0 n
If, on the other hand, K 1s chosen as the z axis, we see

immediately that 8' = 0 and noticing that

91,_+_1(°) = 0, 01’0(0) =/3/2 ,

we find that Q(ns-np) is identical to Eq. (2.23). Thus if
one can choose an axis of quantlzatlion such that two of the
three degenerate states produce zero cross sections, then
the cross section due to the third does indeed represent

the total ns-np cross section. There 18 a related theorem12
due to Oppenheimer to the effect that for a degenerate level,

the sum of transition probabilities from one state.to each
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of the degengrate states is 1nvar;ant for all cholces of

the axis of quantization. Thus if one can find an axis such

that only one transition probability does not vanish, then

this does indeed represent the total transition probability.
The Bethe approximation can also be obtained by a

different approach, in which one does not expand the func-

tion exp (1ﬁ-;), but rather replaces the matrix element

v (7) = 2 S ¢; VY, di-'l in Eq. (2.3) by its asymptotic

form. From Eq. (1.37) we have (in Slater atomic units)

y /ot ., 81(np,ns)

LTy alF) 2, (2.24)

ry

Uno(rl) =

for the speclial case of an ns-np transition. One can see a
basic similarity in the two approaches in that both over-
emphasize the degree of interaction for close encounters
(see Figure 1), and thus predict too large a cross section.
Choosing ﬁ = Eo - En as the axis of quantization, we have
from Eq. (2.9)

k
I (6,9) = Eﬁﬁg | S exp [1(Kr, cos 682)] 23/h

s,(np,ns) ., o
safoems) o2 (2..25)

The integral may be written

® w
an
73 sl(np,ns) § dr, é exp (iKr, cos 6,) cos 0, sin 8, de,
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4“131 (np ns ) c dra c dr2
- > -K \ cos (Kr,) —= + \ sin (Kr,) .
/3 K2 { é 2 r2 § 2 rg }
(2.26)

One can easlily verify, using integration by parts, that

S sin (Kr) 95 - K S cos (Kr) dr _ _ sin (Kr) , (2.27)
r S r
and since
1im Sin Kr _ (2.28)
r-o
we obtailn
2 /1 o . drp  lUmis;
ex iKr~ cos Y 8 = .
T
(2.29)
The differential cross section in K becomes
2 2
k 16m s
d 1
I (K,9) ak ap = —2 - LK IP . __ L, (2.30)
L kg on 3K

and from this the total cross section is found to be identi-
cal to that given in Eq. (2.23). Thus with respect to the
total Bethe approximation, the technique of expanding

exp (ii-;l) and that of using the asymptotic form of Uno
appear to be identical. It is found that the latter approach

is more convenient in the Bethe partlal-wave development.

Partial Wave Formulation of the Bethe Approximation

In many methods of treating inelastic scattering it

is not possible to obtain a closed-form expression for the
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total cross section, as was done for the Bethe approximation
in the previous section; such is the case, for instance, in
the resonance-distortion method, to be discussed in more de-
tall in Chapter III. In such instances it 1s necessary to
resort to a partial wave formulation in which the incident
plane wave 1is analyzed in terms of its spheriéal-wave com-
ponents, each having angular momentum 4. The total cross
section 1s then determined as the sum of the partial cross
sections, each of which corresponds to a particular value
of 4., This technique was used in the schematic model dis-
cussed in Chapter I. The partial wave procedure is, in
spite of 1ts complexity, an extremely valuable means of in-
vestigating the validity of certain approximations, since
unlike the total cross section, the partial cross section
is subject to certain conservation laws such as that given
in Eq. (1.83). We will make direct use of the partial Bethe
cross sections for large ¢ in calculating total cross sec-
tions, since 1t 1s found, as will be discussed later, that
for large values of { the Bethe approximation is quite good.

In Eq. (2.9) for the differential cross section, we
expand exp (1&0-;2) and exp [-1(ﬁn.;2)] according to
Eq. (1.40) as

®
exp (1l_c'o-;2) = ri'z iL(QL + 1)P, (cos 8,)Jd, (ko)
2 =0

- L (2.31)
exp (-1k,'T,) = ;E.Lz:o(-i) (2¢' +1)P,, (cos 8,) 3, (kyrp),
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where

Jp (kr) = ( g—l‘: )é JL_%(kr) . (2.32)

The angles are identified in Figure 6, where the x-axis is
taken in the plane of kK, and k,. Making use of the addition

—f\(ag.¢2-)

_-———.———)*

ot > Z
Pigure 6
" 13
theorem of spherical harmonics, we have that
1
Ym i »
Pyilcos 8,) = 7 m.=_L.Y4':m'(92’Q2)‘ YL,,m,(a,cp) .

(2.33)

For an ns-npm transition, the interaction matrix element is

gotten from Eq. (2.24) (in Slater atomic units) as

4 /1«

Uno(;g) =3 Yl,m(f'?-) yl(np,nslra) . (2.34)

When these expressions are inserted into Eq. (2.9), the

resultant Born differential cross section is

" © © . &, I
I,(0,9) = —1- 170-1)° (2¢ + 1) (2L + 1)TI(e,0)
n(e i Ur kg, lLZ; L'Z; '
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2 / 4
x { 2: 0§ 5240 (05,0002, (cos 6,) ST You i (020%)
m'=-¢! »
2
X sin 6, 8y dwp Y, m.(e,m)} 1<, (2.35)

where we have defined
BI ™ ' .
T(t,4') = § 3,0c,2) 3y (kyr)y, (np,msr) ar . (2.36)
o

We consider first the angular integral

2 /- *
3TT -TA +1SS Y1 m(e +%) <é‘£—"> o (2 L',m'(GQ’q’?)
3/2
X sin 8, de, d9, = 37 22’,‘ ) ( TR 1) S 8 m(®2) 8y .(85)
X8, ..(8) sin o, do, , - (2.37)

where £' = ¢ £ 1, and m' = -m are the only 4',m' giving non-

vanishing results. The angular integrals are evaluated by

means of Gaunt's formula and found to be13

_ _ 4 2 ‘
S 81:18‘(':08‘{""1:'1 - -é [ %2(:: I%%Q‘o*."' %7 ]é ’

) ®,18,0%-1,-1 = ? I e i“f‘)'(;ﬁ 0y *,

(2.38)

_ 3_ i (L +i) F
S 0;,082,089¢41,0 ( 2 ) [(2¢t + 3)(2¢ + 1)]é

= 3 L b
S 81,08¢,08¢-1,0 (2‘) [(2t + 1) (2t - )2
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Thus, we have

I (6,9) = Ekf 16m | 21 (24 + 1) (ﬂ'—‘) {(- 1), 41)

{1=0

1-1 BI
X S 8, m8,08 41, m' Ye41,m!(8,9) + (-1)7 "I(¢,2-1)
2
X S 8 ,m1,0%-1,m' YL-l,m'(e’cP)} = . (2.39)

Making use of Eqs. (2.38), we find for m = O

_ k BI
1™ (0,0) = = lgﬂ | Lrd o o1(a,e41) Y, .. (009
n 0 1=0 (2¢ + 3) +1,0
L IB(}, L-1) Y (8,9) |2 (2.40)
- s v= 2@ ’ .
(21 - 1)§ 1-1,0
and similarly for m = 11 ,
+
m-==_1(9 cp)g_g_l‘l Z {[§(¢+1)(c+2) ]51(:,4&1)

1=0 2(24 + 3)

XY (8,9) + [ _4(4_-_11 ]’l’ IB(}.,L—l) Y, - (0,9 } 12 .

441,+1 24 -
(2.41)

Integrating these differential cross sections over all

orientations of the final momentum En’ one obtains

0
Q'?Zs-@p) = 1&3 lgﬂ { 2(:: A é) [1(4 “1)]
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2

§'— [1(4 *«-l):] - (& +241,).£L3+ 2) I?£+2 141) I(4,141)
- -"7,_,(2—'—1)- IB(}, 2,4-1) I(L 1-1) } (2.42)
and

metl kn z (4 +1)(4 + 2)
Q(2s-2p) = -k— { 5L + 3 [I(L L+1)]
¥ -‘-’-2(2—:-1—)- [I(L e P L *2i)£‘3+ 2) (ts2,e41) I(L,441)
+ -“-é(%—l—l IB(},-E 4-1) 1(4, L-l) } . (2.43)

The total cross section for an ns—~np transition is obtained
by summing over the three degenerate states; from Eqs. (2.42)
and (2.43) we have '

(2s~2p) - -5 16" 2 {(L +1) [I(L 4,+1):|2 + 2 [1(4 L-l)]‘? }
(2.44)
The cross section given above is strictly that of the Born
approximation (BI), since no gpproximation has been made 1in
connection with the matrix element Vno. \
The Bethe approximation (B'I) may now be obtained,
as we have shown previously, by replacing.yl(np,hslr) in

the radial lntegrals by

s1(np,ns)

¥, (np,ns|r) ~—— - (2.45)
r
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B'I
Renaming these integrals I(4,%'), we obtain

B'I ns c d
T(e)e21) = __1__?5 Ty 00r) Ty g, (enT) &, (2.46)
2(k°kn) 0

and then for the total cross section

B'I

a(2s-2p) = ( ‘:_i)% me)® L { e § Ty 3 (€o7)

2 [ -]
X7, lr) 8% vt é Ty (ko) T, 4 0cr) 42 2

(2.47)

This 1s the standard Bethe'I cross section7, which will

be derived in another manner in Chapter VI.



CHAPTER III

METHOD OF RESONANCE DISTORTION

In the Born and Bethe approximations as well as the
Method of Distorted Waves, validity requires that the
coupling of the states of interest be weak (i.e., that the
off-diagonal matrix element be relatively small). However,
there are several instances, particularly in cases of near
resonaﬁce, when the coupling is quite large. In such cases
it 1s necessary to freat the off-diagonal elements as com-

14 have formulated

pletely as possible. Percival and Seaton
thé géneral partial wave theory for electron-Hydrogen atom
collisions. Their formulation will be used below for
electron-atom collisions where the atom is replaced by an
electron outside a core of unit charge.

Consider an electron of linear momentum hﬁ' incident
upon an atom in the state niLi. We wish to obtain the cross
sectlon for a process in which the atom undergoes the transi-
tion ni&i - nlLl and the electron goes off with kinetic
energy h2k2/2m. Since Uon is in general angularly-dependent,
the expansion of the amplitude functions Fo and Fn in terms
of spherical harmonics, causes the two coupled, partial dif-
ferential equations of Eqs. (1.18) and (1.19) to decompose

47



L8
into an infinity of coupled differential equations in L.
For the case of an ns-np transition, the equation for the
L'th partial amplitude function couples with equations for
2 1. One must find a way to approximately decouple these
equations in order to obtain a solution.

Seaton5

has suggested a method of solution based

on the fact that the total angular momentum of the electron-
atom system must be conserved. We first describe the system
by assigning quantum numbers n, Ll m, to the atom, and 4m

to the scattered electron, where lel represent the angular
momentum of the atomic electron, and L;m that of the
scattered electron. (Or if one prefers, 4,m represent the
angular momentum of one partial-wave component of the
scattered electron, the solution for the scattering problem

then requiring the results for all i¢m.) Then in order to

obtalin solutions to Schroedinger's equation
(H -E)Y =0, (3.1)

we first construct eigenfunctions of the total angular
momentum L,M as
-~ 4,1L - .
WELE) =) O Y (7)) Y ()0 (3:2)
where VvV stands for the group of quantum numbers nILlLLM, and
C is the Clebsch-Gordon coefficient. Then the wave function

for the whole system 1s expanded as

Y FLE) = el ) R (v ) v (L) (3.3)
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where the index v' 1is included to remind us that the system
was 1initially in the state characterized by v'. In other

words, the asymptotic form of F,(v'|r) for r - = 1s

Fv(v'lr) ~ k-é{exp [-1i(kr - %Ln)]bvv,

- exp [1(kr - #7)]s,,} , (3.4)
in terms of the S-matrix, or alternatively

Fv(v'lr) ~'k-é{sin (kr - Q&n)bvv, + cos {(kr - #Lm)R,\}
| (3.5)
where the S- and R-matrices are related by the equation5

S=(1+1R)(1 - 15)'l ) (3.6)

where the S-matrix 18 unitary and diagonal in L and M.

Upon introducing the T-matrix defined by
-1
T=1-8=-21R(1-1R) , (3.7)

t 1
one can express the cross section for the nl‘l - n1£1

transition as

Q(nibi - “1‘1) = [ﬂ/(k')z(ELi + 1)]n(n141,ni&£)

= (/(k")?(249 + 1)) u,zr. (2L + 1) |T(n4,4L,n/2]4'L) |2 ,(3 .

! !
where Q(nltl,nltl) is the collision strength for the transi-

tion n,¢, = n.4..

'
1 171
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Differentlal Equations

When the total wave function given in Eq. (3.3) is
substituted into Schroedinger's equation, Eq. (3.1), one
obtains, after multiplying by V) (ri,#) dr, df and

integrating,

2
[ 9—§:+ ki - 4(t + 1)/r° ] F,(v'|r) = EL F (v'Ir) U(v,ulr)

dr
(3.9)
where

L d ~ 2 2 L d
»* - £ - - a
s = 8§ SELH { g - F s aes,
and where we have made use of the orthonormality relation
. - ~ - ~ g ~
W ARG 8) 4 (Fpu8) aF) af = 5, . (3.10)

A multipole expansion of U(V,u|r) may be obtained upon ex-
panding |r; - ;I-l in terms of spherical harmonics (see Eq.

(1.27)); we obtain

U(v,ulr) = 2; Uy (V,u|r) (3.11)
where
Uy (Vamlr) = 260 (21) iy, (1) 4, 1=80(n), (ny) Ir 7
+ Yol (1) (41)y» (n)), (1), 1P1)
and o | (3.12)

U, (v,ulr) =2fk[(Ll)vtv,(&i)utu;L]yk[(nl)v(tl)v (ny), (41), Ir]
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for A > O, where y, (v,u) 1is given in Eq. (1.26), and where
Pl being the ordinary Legendre polynomial of order A\.
Tables of fk for the cases of interest are available.ll‘l
[et us now consider an ns-np transition and neglect inter-
actions with all other states. To obtain a given total

angular momentum L, one may choose three different combina-

tions of 4. and 4 as follows:

1
(1) L1 =0 =1L
(2) Ll =1 4=15L-1 (3.14)
(3) ;=1 2t=L+1,

where the possibility Ll =1, 4 = L has been ignored since
there 1s no coupling between this state and the other three.
We willl designate the F functlions of these three channels
as Fl, F2, and F3, and matrix elements connecting channels

i and J as Uij' We have then

U, = 2f;(1,2) ¥, (np,ns|r) ~2f; (0 L,1 L-1;L) s, (np,ns)/r?
(3.15)
Uyg = 2f,(1,3) yy(np,ns|r) ~ 2f,(0 L,1 I+1;L) s, (np,ns)/r? ,

where the fx coefficlents are found to be

4 f,(0 L,1 L-1;L) = [L/3(2L + 1)]% ,
and (3.16)
fl(o L,1 L+1;L) = -[(L + 1)/3(2L + 1)]% .
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We have pointed out earlier (see Chapter I).that the diagonal
elements fall off exponentially and for intermediate electron
energies, have lilttle effect on the cross section; also, it
was mentioned that the behavior of the off-diagonal elements,
for small r, was not important to the cross section for
intermediate incident energles. Therefore, in the following
we keep only the asymptotic parts of the off-diagonal ele-

ments and ignore the dlagonal ones completely. Thus, with

Uy =Upp = U3y =Tp3 =0, (3.17)
and
= p¥p/r2
U12 B/r" ,
32 (3.18)
U13 = _(L + 1) a/r )

we obtain for the differential equations

. |
a 2 2 3 -2 3, -2
[;:2-+ko—L(L+l)/r]Fl=LBr Fy - (L +1)%rp,
(3.19)

ther2p (3.20)

2
[ %;g + ki - L(L - 1)/r° ] F,

and

-+ 1)¥er 2R,
(3.21)

[ ——§-+ k - (L +1)(L + 2)/r2 ] Fy

where

_ 2sj (np,ns) (3.22)

[(3(2L + 1)3%
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and :

2 2
h 2 h 2
_—'ko + Ens = kn + En

m 2m p -

The collision strength, then, according to Eq. (3.8) is
2 2
a(np,ns) =) 2L+ 1) {Iz,1° + 1152}, (3.23)
where the indices 1, 2, 3 refer to the respective channels.

Zeroth-Order Approximation (Exact Resonance)

In the resonance~-distortion method,'the zeroth-order
approximation is obtained by solving for the case of exact-
resonance, i.e., k, = k,. Under this condition, the coupled
equations may be decoupled by forming sultable linear com-
binations of F,, Fy and F3.5 This can be seen more clearly
by writing Eqs. (3.19), (3.20) and (3.21) in the form of a

matrix equation

2
rz(g-g+k§)g=gg, (3.24)
r

where F is a column vector with components Fl, Fo, F3 and A

is the square matrix

r-L(L + 1) D%B -(L + 1)%3 |
A= 12s L(L-1) O (3.25)
-(L+1)’}B 0 (L+l)(L+2)J .

Thus to obtain the solutions, we merely diagonalize A by
means of the orthogonal transformation X so that Eq. (3.24)

a
!




becomes

2
2 ( g;g +x> )a=aga, (3.26)

where a = 1’1 A and @ = E'l F. The eigenvalues of a are

i

a. = L(L + 1),
2

ap =L+ L+1- (2L + 1)x, (3.27)
a3 =12 + L+ 1+ (2L + 1)x,

where
x = [1+82/(2L + 1) 73, (3.28)

and thus the transformation matrix is given by

g, g, 3

r¥pg, r¥se, t¥se,
X - 2L (2L + 1) (1 - x) (2L + 1) (1 + x)

@+ n¥ee, @+ 1, (L + 1)3pe,

2(L + 1) (2L + 1) (1 + x) (2L + 1)(1 - x)_d
(3.29)

where .

gi = 4L(L + 1)/[4L(L + 1) + 82(2L +1)),

g2 - 82/2(8° +2L 41 - x) , (3.30)

€§ = 82/2(82 +42L + 1 + x) .

The procedure now 1s to choose solutions of the decoupled
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equations having the proper asymptotic behavior, and then

transform back to E. To investigate the asymptotic behavior,

we note that
a, = ZJ (271)4 4Py = zJ Xy4Fy - (3.31)

Considering the asymptotic form of FJ, we find that

G ~ k;% {Xli(-Zi) sin (k r - 2Lm)

+ X, T, exp [1(k,r - #2m)]

+ 121T21 exp [1(k,r - #4m)]

+ x31T31 exp [i(kor - )]} . (3.32)

Thus, the solutions of Gi which conform to the proper

boundary conditions are

G = -2ixll(§nr)é JL+%(kor) , |
G, = -21X;, exp [(#in(L - uz)](inr)é Ju2+§(kor) ’ (3.33)

G3 = -2iX,3 exp [$im(L - u3)](}nr)é Ju3+é(kor) .

Here we have used the abbreviations

o = -4 + [(L - §)2 - C]i s
(3.34)
ug = -4 + [(L + %02 + et
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where

C=(2L+1)(x -1), > (L-3%)°7. (3.35)

The phase factors are due to the assignment of phase in the
definition of the S-matrix (see Eq. (3.4)).
The functions Fl’ F2, F3 may now be determined by

transforming from @ to F. In particular, for F, we obtain

P (r) = 20 ()0, 3 ()

2

+ x12 Juz_é(kor) exp [#mi(L - u2)]
* X3 T (kor) exp [mi (L - wg)l] . (3.36)

The above results have been checked by ensuring that they
do indeed yleld the exact resonance cross section given by

Seaton.5

Resonance Distortion Approximation

The resonance-distortion approximation, as outlined
earlier, consists of replacing the F function describing the
elastic scattering by the function obtained assuming exact

resonance. The functions F, and F3 can be determined in

terms of F, by solving Egs. (3.20) and (3.21) by the varia-
8

tion of parameters technique. We have asymptotically

Fp ~ky exp [1(kr - (L - 1)]

x§ @mnta aon @erfe) ar, )

o8
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-1
F3 ~ k= exp [1(knr - #m(L + 1)]

X § (annr)% JL+3/2(knr) <-(L + 1)%81"21?l ) dr. (3.38)

According to the definition of the S-matrix in Eq. (3.4),

we have
F,(v'|r) ~ k;% exp [1(k,r - #7L)1S,, ; (3.39)

thus one obtailns

Sp1 = 1(n/2)§L%5 § JL_I/Q(knr) Fl(r) r—3/2 dr , (3.40)
o

83y = 1(n/2)%(L+1)%BS Ip+3/2 (k) Fl(r)'r'3/2 dr . (3.41)
o

Introducing into Eqs. (3.40) and (3.41) the exact resonance
expression for Fy, given by Eq. (3.36), and recalling that -
|T1J|2 = ISiJIQ, one finds the resonance-distortion collision

strength to be given by

0™ (np,ns) = % (ms1)? ZL{LII(L,L-l)l2 + (L41) |1(L,141) |7},
(3.42)

where

(1)

I(L,Ltl) = Ei ' (L,Lt1) + §§ H(e)(L,Lil) exp [#im(L - u,)]

2-H(3)

+ €3

(L,L£1) exp [¥n(L - u3)], (3.43)
and

7(1)(1,141) - S JPi(kor)'JL+l+é(knr) rldr, (3.44)
o . ' ) -



58
Pigl-li'*"é’ (“1514)-

The integrals H(i)(L,Lil) may be expressed in terms of

hypergeometric functions asg

L+l
B (0,081) = 3 /g) S P U0a, (1 £ 1)1/TToy (5 £ 1))

X T[1 - by (L 4 1)1} ,F[a, (Lt1),b, (LE1)je, (L41); (k, /k,)2]
(3.45)
where

a, (L£1) = #[(L 2 1) + Py + 4],
by (I#1) = #[(L £ 1) - Py + 3],

ci(L:tl) =L t14+ 3/2

It has been verified that in the limit of exact
resonance (k, = k,), the collision strength given in Eq.
(3.42) does agree exactly with that determined by Seaton's
formulas., It 1s also found that for large values of L, the
resonance-distortion cross section approaches that of the
Bethe approximation (B'I). Again, all of the above results
are valid only for those values of L which satisfy the in-

equality in Egs. (3.35).



CHAPTER IV
GENERAL RESULTS

In the previous chapter a technique was presented
}whereby inelastic cross sections for collision-induced
transitions under near-resonance conditions could be deter-
miﬁed. It is now wished to investigate the general behavior
of these cross sections for different degrees of coupling
and resonance and to compare them with the results’ obtained

from othervmethods of calculation.

Effect of the Magnitude of Coupling

In Figure 7, the collision strength for ns—-np transi-
"tion with exact resonance is given for several values of the
line strength s (s2 1s a measure of the strength of cou-
pling). The cross sections with £ = O and 1 cannot be calcu-
lated by the scheme outlined in the previous section, since
they violate the inequality in Egqs. (3.35). It has been
shown that for exact-resonance collisions, as one increases
the strength of coupling (from weak coupling),‘fhe transfer
probability first increases rapidly, then reaches a certain
saturation stage, and finally beﬁ;ves in an oscillatory

K manner.15 For a given 4, such saturation and 6scillation
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behavior can be seen from the convergence of the points
corresponding to larger values of s along each vertical line
in Figure 7. (Here we have replaced the expansion index L
by 4 in order to facilitate comparisons with other works.)
This can be 111ustrafed more clearly in Figure 8, where
nf”(a& + 1) 1s plotted against s2 for ¢ =2, 3, ..., 6. The
saturation effect is more pronounced for low values of ¢
since partial waves with small {4 correspond classically to
a small impact parameter and therefore stronger interaction.
Thus the curve for 4 .= 2 in Figure 8 passes through a maxi-
mum around 8 = 10, while the 4 = 3 collision strength does
not reach the highest value untill 82 = 25, and the collision
strengths for higher {4 require even stronger coupling for
complete saturation. Thlis saturation effect 1s also respon-
sible for keeping the collision strengths below the conserva-
tion 1limit (see Figure 7).

For the case of near (but not exact) resonance, the
qualitative behavior of the partial collision strengths with
respgct to the degree of coupling is similar to that of
exact resonance. Figure 9 shows the variation of
QED/(QL + 1) with respect to s? for an energy separation of
the initial and final states (AE) of 2.0 eV.

Effect of AE

In Figure 10 is displayed the collision strength OED

in terms of 4 for several different AE with 82 = 19.3. As

AE is decreased, the collision strength curves are found to
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move up steadlily, at first, and finally converge upon the
AE = O curve in an oscillatory fashion. Vertical sections
of these curves are plotted against (AE)'l in Figure 11,
All the computations were made for a particular value of E
of 13.6 eV; in general, the collision strengths depend on E
and AE solely through z = (kn/ko)2 = (E - AE)/E. ‘This fact
enables us to use Figures 10 and 11 for several different
sets of E and AE by means of Table I, Figure 11 1llustrates
that for low values of 4, reduction of AE leads to saturation

and oscillatory behavior of " analogous to Figure 8.

L

Comparison with Other Methods

The standard approximate methods for systems with
weak coupling, such as Born approximation and the Method of
Distorted Waves, break down in the region where saturation

2

is important (i.e., large s€ or z ™~ 1), since they give an

accurate estimation of the cross sections only along the

initial rise of the curvesl® of Q,/(2¢ + 1) vs. s2,

Thus
when these methods are used for cases with strong coupling,
they may produce partial cross sections which violate the

conservation limitS’7

Q, < nk;2(2&, +1). (4.1)

£

It may be seen in Figure 8 that a weak coupling approximation
applied to 4 = 2 is valid only for relatively small 1line
strengths (52 = T.5 1s considered small for near-resonance

optically allowed transitions).6
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VALUES OF AE(eV) CORRESPONDING TO

GIVEN VALUES OF E(eV) AND z

E(eV)

z 3.4 6.8 10.2 13.6 17.0 20.4 23.8 27.2
.9632  ,125 .25 375 .50 625 .75 .875 1.0
.9265 .25 .50 .75 1.0 1.25 1.5 1.75 2.0
.8897 .375 .75 1.125 1.5 1.875 2.25 2.625 3.0
.8529 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.o
.8162 ,625 1.25 1.875 2.5  3.125 3.75 4.3715 5.0
TT9% .75 1.5 2.25 3.0 3.75 4.5 5.25 6.0
.T426  .875 1.75 2.625 3.5 4,375 5.25 6,125 T.0
.7T059 1.0 2.0 3.0 4,0 5.0 6.0 7.0 8.0
.6324 1,25 2.5 3.7 5.0 6.25 T7.5 8.75 10.0
.5588 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0
.4853 1.75 3.5 5.25 7.0 8.75 10.5 12.5 14.0
.4118 2.0 4.o 6.0 8.0 10.0 12.0 14,0 16.0




| 68

One method which has been devised so as to satisfy
the conservation rule 1s that of Born II.5 The method
consists of replacing the R-matrix, which was defined in
Eq. (3.5), by the B-matrix, which for the particular case

of three channels is given in atomic units by5
B, = - § Typlgr) U (r) 3, 5 (kyr) var (4.2)
where
U, = 2f1(0 £ 14-1;¢) y,(np, ns) , (4.3)
U13 = 2f;(0 ¢ 1‘L+1;L) yl(np, ns) ,

and
[4/3(2¢ + 1)1%,
[ +1)/3(2t + 1)1 .

fl(O 41 2-1;4)

(4.4)
£1(0 4 1 L41;2)

In the approximation of keeping only the asymptotic parts
of the potentials (corresponding to the Bethe Approximation),

we have
Uy =Upp =U33 =0,
(4.5)
U12 = L%B/PE P) U13 = "({’ + 1)%3/12
and .
Bp = dmte {3, (k) 3, L0ee) £l ar (4.6)
o
- 3 ( -1
Byjg = -4m(t + 1)°8 § JL%(kor) Ipe3/2kpr) 70 dr 5.7)

where
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8 = 2s, (np, ns)/[3(2t + 1)1% . " (4.8)

Accordingly, the partial collislon strength will be denoted
1
by dB II,
L
BTyt 4 1)00(B,)2 + B.)21/01 + (B,,)2 + (B.2)21)
4 12 13 12 13 )
(4.9)
The B'I (usual Bethe approximation) partial cross section
may be expressed in terms of these matrix elements as

B'I
Q

= mk;? b2t + DIBR)° + (8571 . (4.10)
For purposes of comparison, Calculations of ditII have been
made for E = 13.6 eV, 2 = 19.3, and several values of the
energy separation AE. The results are shown in Figure 12.
From Flgure 13 we see that for 4 > 3, the partial cross
sections calculated by the resonance-distortion method and
by B'II agree quite well with each other for AE as large as
3.0 eV, However, for 4L =2 and L = 3, they are found to
differ considerably. This can be ascribed to the fact that
the method B'II tends to overestimate the collision strength
for small 4, since in the limit of AE = 0, @8 'II does exceed

the corresponding partial cross section obtained from the

exact calculation for 4 = 2 and 3.5 Furthermore Figure 10

RD
2

1s quite insensitive to AE, Because of the insensitivity of

shows that for these low values of 4 and for AE < 3.0, Q

the collision strength with respect to AE and the fact that

for AE = 0. the resonance-distortion result is exact for the
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Figure 12, Bethe II Collision Strengths Oy  with s° = 19.3
for Several Values of AE (eV).
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Figure'13. Collision Strengths Q, for AE = 0, 0.5, 3.0 eV,
and Q? II for AE = 0.5, 3.0 eV. (The upper of the two solid
and of the two dashed curves correspond to the Bethe II
method, and the lower, the Resonance-Distortion method.)
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particular potentials chosen, it appears likely that the
resonance-distortion method gives more accurate partial

cross sections for small 4 than does B'II.



CHAPTER V
APPLICATION - 328~32P TRANSITION OF Na BY ELECTRON IMPACT

An excellent example of a near-resonance and strong-
coupling situation 1s the 32S~32P trans;tion in Na, which
has an energy separation AE = 2.104 eV and a rather large
line strength s® = 19.0. Since this transition is optically
allowed, the coupling matrixlelement Vbn becomes proportional
to l/r2 asymptotically, and bécause of this long-range
interaction it is expected that many partial waves will con-
tribute to the total cross section. Salmona and Sea’con16
have discussed thls problem and made calculations based on
the modified Bethe approximations B'II and B'III, which are
found to satisfy conservation conditions. Previously,
Seéton had investigated, by a close coupling technique,7
proton and electron impact on Na, giving rise to this transi-
tion; the results were found to be quite good for high
energies. Cross sections for this transition have been
determined experimentally and found to be large.>!

'Partial cross sections have been calculated for
several values of the incident electron energy kg using.the
resonance-distortion method, Bethe I, and Bethe II approxi-

mations. Since for large values of 4, say 4 > Lo,'the
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coupling 1s weak, we find that the partial cross sections
RD ‘T B'II
QL , QE and QL

may then be determined by utilizing the "tail" of B'I as

all coincide. The total cross sections

- . bo pir o oo
V=PI ) g +ZOQL+Q', (5.1)
=0 L=2
4 BIII BlI LO 1 Lo )
€ =T ) T ) R, (5.2)
»f,:o L=O
where '
B'I -
Q = k7 (85/3) tn [(k, + Kk )/lk, - kyll, (5.3)

and Q' represents the sum of the s and p cross sections,
which must be determined in some other manner. Numerical
values for QED and QE'II are given in Tables II and III for
several valueé of the incident energy and several 4; all
cross sections are in units of ﬂag. A comparison of the

! B'II max
I, Q, and 4Q, 1s given

partial cross sections QED, QE
in Figures 14 and 15 for incident electron energies 10.520
eV and 33.660 eV, respectively. As 1s, of course, to be ex-
pected, the major contribution to the cross section in the
éase of E = 10.520 eV 1s due to a few intermediate values

of 4; while for E = 33.660 eV, the contribution is more
uniformly distributed among several different ¢. One may
also notice that QED, QE'I, and QE'II all approach the same
value for large 4, the convergence being faster for small E.

In calculating cross sections by the resonance-
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TABLE II

PARTIAL CROSS SECTIONS IN UNITS OF ﬂai OF THE 3s-3p

TRANSITION OF Na CALCULATED BY THE METHOD
OF RESONANCE DISTORTION

E(eV)

4,210 7.364  10.520 16.832 23.144 33.660

2 11.79 6.54 4.31 2.69 2.04 1.51
3 11.44 10.17 7.58 4,80 3.49 2.40
h 7.84 10.03 8.25 5.50 4,02 2.74
5 4,52 8.18 T7.44 5.29 3.93 2.70
6 2.45 6.26 6.29 4.80 3.65 2.54
7 1.29 4,65 5.18 4,25 3.32 2.34
8 0.66 3.40 4,21 3.72 2.98 2.15
9 0.34 2.46 3.39 3.24 2.68 1.96
10 0.17 1.77 2.72 2.82 2.40 1.79
11 0.09 1.27 2.18 2.45 2.15 1.64
12 0.04 0.91 1.74 2.12 1.92 1.50
13 0.02 0.65 1.39 1.84 1.72 1.38
14 0.01 0.47 1.11 1.60 1.55 1.27
0.006 0.33 0.89 1.39 1.39 1.17

[
U




PARTIAL CROSS SECTIONS IN UNITS OF na§ OF THE 3s-3p

TABLE III
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TRANSITIONS OF Na CALCULATED BY B'II METHOD

E(eV)

X 4,210 7.364 10.520 16.832 23.144 33.660
0o  3.18 1.50 0.93 0.51 0.35 0.23
1 6.19 3.64 2.62 1.68 1.24 0.86
2 16.14 9.17 6.41 4,02 2.93 2.01
3 16.43 11.67 8.37 5.26 3.81 2.61
4 10.83 11.08 8.52 5.52 4,02 2.75
5 5.98 9.13 7.73 5.27 3.89 2.67
6  3.08 7.01 6.61 4. 81 3.62 2.51
7 1.55 5.18 5.47 4,29 3.30 2.32
8 0.77 3.76 4. 46 3.78 2.98 2.13
9 0.38 2.70 3.59 3.30 2.69 1.95
10 0.19 1.93 2.88 2.88 2.4 1.79
11 0.10 1.37 2.30 2.50 2.16 1.64
12 0.05 0.98 1.83 2.17 1.94 1.50
13 0.02 0.69 1.46 1.89 1.74 1.38
14  o0.01 0.49 1.16 1.64 1.57 1.27
15 0.006 0.35 0.9 1.42 1.4 1.17
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distortion and Bethe methods, all of the hypergeometric

functions needed, except those for E = 33.66 eV, were

evaluated by means of the series representationll
oF1(as b5 ¢5 2) = ) [(@), (0)/(e)y nla, (5.4)
where |
(p), = (p +1)(p+2) ... (p +n-1), (5.5)
and
lz| < 1.

For the higher energy, use was made of a formula given by
Seaton.”

The total resonance-distortion and Bethe II cross
sections calculated by means of Eqs. (5.1) and (5.2) are
given in Table IV. The cut-off value for the tail is 4, =
15 and the percentage contributions from the tail, the
intermediate values of ¢, and L = 0 and 4 = 1 are also given
in the table (i.e. % relative to QBD); the s and p cross
sections were arbitrarily taken as %anx_ In Figure 16,
these cross sections are compared with Born approximation
as well as absolute measurements of Christoph and felative
measurements of Haft (as quoted by Bates, gg_gl.).la
The relative curve has been adjusted according to the ab-
solute measurements. It is important to note that some
freedom remains in the adjustment of Haft's relative meas-

urements. FEach resonance-distortion cross section in

Figure 16 1s accompanied by a bar indicating the maximum and
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Pigure 16, Total Cross Sections Q , Q s Q » and Q

for Na, 32s - 32p, by Electron Impact. (The open circles
refer to the absolute measurements of Christoph and the solid
curve marked EXPT represents the relative measurements of

Haft. The dashed curve represents Seaton's Close-Coupling
Approximation QCC.) _
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TABLE IV

TOTAL CROSS SECTIONS IN UNITS OF ﬂai AND PARTIAL

SUMS OF QL FOR THE 3s—~3p TRANSITION OF Na.

, © 15
Eev) ST & & Q! Yot y P
I3
1=16 1=2
4,210 288.63 64.9 47.1 6.5(13.7%) 0.0(0%) 40,66 (86.3%)
7.364 231.87 71.6 61.7 3.7(6.0%) 0.9(1.5%) 57.10(92.5%)
10.520 189.12 68.9 62.9 2.6(4.1%) 3.6(5.7%) 56.69(90.2%)
16.832 139.19 60.5 57.7 1.6(2.8%) 9.6(16.6%) 46.50(80.6%)
23.144 111.26 53.3 51.6 1.2(2.3%) 13.2(25.6%) 37.24(72.1%)

33.660 84.48 4y u 43.5 0.8(1.8%) 15.6(35.9%) 27.10(62.3%)

3
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minimum values obtained by taking Q' = O and Q' = Q.
respectively. (One may recall that in Table IV the value
QQan was‘used.) It is clear thaf the form of the resonance-
distortion curve 1is in reasonable agreement with that of the
experimental curve, however we should not place toq much
faith in our resﬁlts for small E, since in such cases,
kg - ki is no longer very small compared to k§ (1.e., the
kinetic energy of relative motion changes considerably dur-
ing the collision), and thus our assumption of exact reso-
nance in the zeroth order i1s no longer Justified. It 1s
also likely that distortion effects due to the diagonal
elements Ubo’ Unn Wwill come in. Exchange effects have been
neglected completely, and are expected to be important only
for small 4; however, since for smail E, the effect of small
{4 becomes significant, one might then expect exchange to be
important.

A close coupling technique Qas devised by Seaton7v
specifically for cases where exceptionally strong coupling
causes the weak coupling approximations to give much too
large cross sections. In such cases, one may find a value
1, of %, such that

BI

Q

. ™ -}nk;2(24.0 +1). (5.6)

It is found that a reasonably good approximation 1s




Q, = (5.7)

It is known that for large 4, QEI and QE'I (standard Bethe
approximation) coincide. Thus, if ¢  is suitably large,

one may simplify calculation by replacing QEI above by QE'I.
Despite the simplicity of this approaéh, it is actually
found to give satisfactory results. Cross secfions calcu-
lated by this method (denoted by CC) are included in Figure
16. It should be poihted'out that this method is strictly
limited to cases of strong coupling, its failure in other

cases having been clearly demonstrated.7'



CHAPTER VI
TWO-CHANNEL APPROXIMATION FOR ELECTRON-ATOM COLLISION

Attempts have been made to devise a simplified pro-
cedure for the calculation of the collision strength by the
reépnancé-distortion method, particularly to avoid the task
of solving the three-channel; coupled differential equations.
Here the zeroth-order solution of Fo (denoted by Féo) is
again obtained from the limiting exact-resonance case, i.e.,

Féo) and Féo) satisfy the equations

(v +12) F£°) =, Féo) , (6.1)
(V¢ + k2) Féo) = U, Féo) : (6.2)

At this point we introduce an additional approximation of
replacing the angular dependent Uon(F) by an angular inde-
pendent potential of the form -A/r2. This eliminates the

three-channel coupling for the zeroth order equations and

a(0)

o
in See. III. We then solve for Fn by using this form of

can be obtained by a procedure analogous to that given

Féo) and the original angular dependent Uon‘ At first
thought, this procedure might seem inconsistent in that we
use an angular independent interaction potenﬁial to calculate

84
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Féo), and an angular dependent éne for Fn' However, it must
be remembered that Féo) can be regarded as a first-step

trial function. It need not be the solution of the problem
corresponding to the true potentials as long as it has
sufficient resemblence to the actual solution Fy of Egs.
(1.18) and (1.19).

The first task i1s to select a suitable value of A,

(o)

0
for Fn. As suggested before, the potential -A/r2 represents

so that F gotten here will produce a satisfactory result
some kind of average of U, . Considering Eqs. (1.37), we
can write down the asymptotic form of Uon for the transitlons

ns-npm, as
Uop = (4/3) /m ¥7(0,0) /% = U _(F) (6.3)

where 8, ® give the orientation of the incident particle in
the atomie coordinate system. We recall that when one con-
siders the cross section for transition to a degenerate
level, one must sum the cross sectlons over each of the
degeherate states of the level. This fact leads us to con-
sider two averaging techniques in order to obtaln an approp-‘
riate value of A. It should be remembered that the zeroth
order function Féo) need only represent one of the three
degenerate states (m = 0, £ 1), since in performing the
iteration it will be used to calculate the cross section for
each of the degenerate states, separately. We first take A

to be determined by averaging the modulus squared of Ugn‘;)
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over all space as

2 _4 1 W12 a1 2 2
(Uon)rms = -A/r® = §'/h { I S |Y2(P)| dr } sSr 2 - §-S/P2 s

thus

Alternatively, we can average the square of the matrix ele-

ments over all the m values, i.e.,

Oon) s = £ 5 G Ll G L P S s/?, (6.5)

giving the same result as Eq. (6.4).

Next we shall determine Fn from
(2 +K2) F () =U_(7) F_ () (6.6)
n’ 'n no o ?

where Uno is given by Eq. (1.10). It is not permissible to
expand Fn(;) in terms of Legendre Polynomials since such an
expansion implies c¢ylindrical symmetry. Rather, the spheri-

cal harmonics must be used, i.e.,
-t = -l -
Fn(r) r z;g Fn,Lg(r) YLg(r) . (6.7)

The differential equation for the partial wave amplitudes is

2 2 * >
[ g;g tk - L+ 1)/1° ] Fn,&g(r) = §;|g, S ng(r) Uno(r)
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X Yy (F) B oo (0) af (6.8)

The desired solution may be found by the standard variation
of parameters technique, in which the wronskian of the
homogeneous solutions 1s chosen to be equal to one.8 ‘Thus
we have for the partial wave amplitudes, the asymptotic

result

@

Fog(®) ~ ()" exp (1k7) Ek'g' § rd, (kyr) Fy 41g1(r) dr
x § ¥, () U () () af (6.9)

where

3 00) = (v/2re)ds, ) er)

and for the total inelastic function

@®

Fn(?) ~ 171 exp (1k,r) Lg’z;g'(-l)L § rj, (k,r) FO,L,g,(r) dr
X S ng(f) v, (T) Yy (F) af ¥, (F) . (6.10)

In the case of optically allowed transitions, which
are often accompanied by strong coupling, Uno(;) will always

include a dipole term i1.e., a term given by

* "
by, (441 m,4m"') Ylu(r) yl(n 111, ntlr) , (6.11)

where for ns-np transitions we have

b (pm, so) = (4/3) /7, (6.12)
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and for large r

yl(np, ns | r) ~ sl(np, ns)/r2 . (6.13)

We replace Uno(;) in Eq. (6.10) by 1its asymptotic form, and

noticing that as a result of the angular integration,

g=g'-mand L = 4' £ 1, we obtaln for the total collision

amplitude

frn]l(e:q)-) =

"

4 L -1
3 /ms E;,g,(-l) { ; 3y 06ar) By o () 27 ar

) Yorir,grom(E) Yin(F) Yy (B) af - ¥ o (F)

-1 * -
Jpr_y (ke r) Fo,L'g'(r) r “dr S Yo, g'-m(r)

o8

Y a(E) Yy (F) @R Y, o, () ) (6.14)

-2s8 2 (-1)“{1(4+1,1 g) e} ( g3 41 gom)
g

A 1
L) g-m(r) + I(4-1,2 g) ¢ (¢t g5 4-1 g-m)

Y1 g-m(®) s

where we have employed the Condon and Shortley notation,13

(see Table V)

™
Famstm') = (2/2k41)% { @(c,m-m') @(¢,m) 8(2',m') sin o as,
(o]

(6.15)
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TABLE V

INTEGRALS OF THREE NORMALIZED ASSOCIATED
LEGENDRE POLYNOMIAILS.

el(t, 05 L +1,21) = -[(4 +2)(4 +1)/2(2t + 3) (2% + 1)1%
el(t, 03 4 -1, £1) = [L(t - 1)/2(2¢ + 1) (2t - 1)1?
el(b+2,0; 0 +1, £1) =[(4 +2)( +1)/2(2L + 5) (24 + 3)1?
el -2, 0; 4 -1, £1) = -[L(L - 1)/2(24 - 1) (2¢ - 3)1%

el(t, 0; 4 + 1, 0) = (¢ +1)/[(2¢ + 3) (24 + 1)]%

el(t, 0; 4 -1, 0) = t/[ (2t +1) (2% - 1)]é

mp—
—
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and where we have defined

I(t' 21, L'g') = § (kyw) By, (2) vlar.  (6.16)

JL'il

The total cross section for the transition ns—~npm, is given

by

Q(ns=npm) = (iy/k,) § 1e0(o,®) [% an

(kp/K) % 82 z;gill(L+1,£ g) ¢l (4 g; 41 g-m)|°

+ ]I(t-1,2 g) e1(t g34-1 g-m) |% + T*(441,4 g)

X I(441,242 g) ct(t gi4+1 g-m) cl (442 g;4+1 g-m)

+ I*#(4-1,4 g) I(4-1,4-2 g) cl(L g;t-1 g-m)

X cl(t-2 g;¢-1 g-m)} . (6.17)

In evaluating the radial integrals I(4',4 g), we
o
use F( i (r) as determined for the case of exact resonance.
3
In this section, we have made use of the expansion

-1

F (F) = r Py 1g(F) Yp(F) - (6.18)

g

Comparing this with Eq. (1.68) for F_, 4» Wwe find that
3

(r) = 21¥[n(2e + 1)7% ANORS (6.19)

Fo,Ls )

where 6s o is the usual Kronecker delta. The radial integrals
3
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are found to be given by
I(441,4 0) = 1n3/2(-1)L(2L + 1)%(k°kn)'§ exp (-tmi)
- x [HY(4£1,2) exp (-§1p+n)

+ H(411,4) exp (-éip;“)] ; (6-é0)

where we have defined

H(121,¢) = Iy, (6oT) 4143 (kyr) ©har
° (6.21)

H(441,0) = 3\ 3y (o) 3,0 4 0r) 2 dr
J +

Making use of the coefficients given in Table V, we find for

the total cross sections

Q(ns-np(tl1)) =

ni:2 (4/3) (ns)? 2 {& S(gi(i ;)l)

x lo(+1,0) 12 + = ja(e-1,0) 17

5 (2L
(6.22)
L g(gi(i ;)1) G*(L+1,2) G(4+1,4+2)
Lt -1

- * - - -
5ot — 1) @ (¢-1,2) Ga(2-1,4-2) ,

and
Q(ns-npo) = nk;2(4/3)(ns)2 E; { i&.i_Lﬁi |G(L+1,L)|2

12 2 , (4 + 2)(4 + 1)
t 5T la(e-1,2)] 5T+ 3 G* (4+1,4)
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L(L -1
x q(L+1,Lf2) Y v #*(1-1,4) G(4-1,1-2) } ,

(6.23)

where we have defined

G(4+1,4) = HY(441,4) exp (- % 1p,m) + H (421,t) exp (-%ip_m),
(6.24)

Since the initial state 1s non-degenerate, we need
only sum the three cross sections above to obtain the total

ns-np cross section; one finds

Q(ns=np) = meg®(4/3) (ne)? ), {(x + 1) laee1, ) P
+ t|a(t-1,2) 2 } . (6.25)

The radial integrals given in Egs. (6.24) may be
readily evaluated in terms of hypergeometric functions9 as
-1

Hi(L+1,L) = 4 é in(kor) JL+3/2(knr) r - dr

b)) R T me) T 01 (6.26)

2
where
a, = ¥(py + 1 +3/2),

(L +3/2 - p,) , (6.27)

by

L+ 5/2,

Ci
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and
#E(e-1,2) = 3 § T, Oor) 3, Ger) r™h ar
L-% ! ' '
= Hlky/ky) C(T(a,)/T(ey) T - by)) (6.28)
x B, oy, bys eys (kp/kg)?1
with
ay = ¥(p, + 4 +3/2),
by = 3( +3/2 - py) , (6.29)
c; =1 +5/2 .

We notice that Eq. (6.25) is of precisely the samé
form as the Born cross section given by Eq. (2.47), except
that the radlal integrals are different and 1n the iteratilon
result, contain the A dependence., It can be shown that for
a gilven A and large values of 4, or for small A and any
values of 4, the two results coincide. This 1s to be ex-
pected since A is a measure of the distortion of Fo, and
its effect becomes much less pronounced for large 4; we also
find that for A~O we have F§°)(§) ~ exp (1&0-;).

The criterion by which we chose the constant A is,
of course, somewhat intuitlve. It i1s based on the well-
known idea that transitions in an atomlc system are governéd
by the absolute square of the matfix elements of the external

perturbation connec¢ting the initial and the final state.
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Since the cross sections calculated from Eq. (6.25) do de-
pend appreciably on A, the use of the two-channel approxima-
tion does introduce some uncertainty to the cross sections.
Nevertheless, this "two-channel" scheme may be used as an
appréximate method for calculating the cross sections where
more detailed calculations are impractical. Figure 17 shows
reasonable agreement between the collision strengths calcu-
lated by the three-channel coupling equations and by the two-
channel approximation with A = - % s. Also is shown the

variation of the collision strengths with respect to A.



RD
Figure 17. Collision Strengths O (s° = 19.0) and 0y (2-
Channel, A = 2.9, 4.0, 5.0) for Na, 32s - 32p, by Electron
Impact, with AE = 2,104 eV. The value of A = 2.9 corres-
ponas to the relation |A| = 2|s|/3). -

56



CHAPTER VII
DISCUSSION

In the calculations présented in the previous chap-
ters, we have made the approximation of using a special set
of potential functions as given in Egs. (1.37) and of neg-»
lecting the effect of exchange between the colliding and the
atomic electrons. For transitions with long-range coupling,
where the total cross section is distributed over a large
number of Q%, these approximations can be Justified on the
basis that they affect only the partial cross sections
corresponding to small values of 4. The use of the approxi-
mate potentlal functions is merely to simplify the calcula-
tion of the cross sections, and 'is not essential to the
method of resonance-distortion. 1In case Uoo and Unn are not
set to zero, our zeroth order solution, in the uncoupled

representation,19 1s taken as the solution of

°) _y ), (7.1)

(
FO on n
20 _

n

o

2
(V" + k% - Uoo)

(V2 +k -U_)

00 ?

(o 2 \V)

o

and the first approximation of Fn is gotten by solving

2

(v + 62 - U )F =0 rlo) . (7.2)

no ©O
96
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We have 1nvestigated, to a certain extent, the effects of
the parts of the potential funetions which were neglected in
Eqs. (1.37), on the cross sections. For electron-atom

1

collisions, U  and Uﬁn behave like -r~— exp (-ar) near the

origin and decay rapidly on account of the exponential fac-

2 at large

tor. The radial part of -Uon is proportional to r~
distances (ns~np), but attains a maximum and eventually
passes through the origin as r is decreased to zero. Even
for elastic cbllision problems, the functionél form of Uoo
is so complicated as to make exact solution impractical. 1In
their studies of elastic collisions between electrons and
atoms of the rare gases, Allis and Morse20 used a potential

of the form

<
]

z(1/r, - 1/r), r < rg,

(7.3)
= O, : r>r
which makes possible an analytic solution of the Schroedinger
equation. As a trial calculation we have considered a mod -

ified schematic model with the following interaction terms:

Uso = Upnpn = 2Z(l/ro - 1/r) } rer, (7.8)
Uon =0
U =1 = 0

00 nn } r > ry - (7.5)
Uop = -A/r2

We chose the parameter r, so that at r = Tos Uy, and U, are
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both vefy small and U,, has deviated appreciably from its
asymptotic inverse-square form. Once ro is fixed, z cag be
determined in the same manner as was done>by Allis and
Morse.?0 For the case of exact resonance, the solutions
of FO and Fn can be expressed in terms of the coulomb wave
functions?O (r < ro) and Bessel functions (r Z_ro). We
have calculated the partial cross sections (exact reéonance)
for the 2s~2p transitions of H at an electron energy of 13.6
eV using the two-region interaction potentials of Eqs. (7.4)
and (7.5), and have repeated the same calculation with the
one-region asymptotic form of Egqs. (1.38). It is found that
the results of these two cases are different only for small
4. PFor 1nstanée, the sum of QL fromd4 =2 to 4 = 7 varies by
about 10%. Thus for transitions involving a long-range
interaction, the introduction of the two-region potential
alters the total cross section only slightly.

| The exchange effect of the electrons can be incor-
porated into the formulation of the method of resonance dis-
tortion. If we consider only the interaction of two states,

'o and tn, the total wave function 1s now expanded as

Y(1,2) = Fo(F) ¥, (F') + F_(F) v_(F") + G (F") ¥, (F)
+a,(F) v (@) (7.6)

in the uncoupled representation. Upon introducing

F = F, 2 G, ,
Oo,1 o o (7.7)
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we obtain the differential equations for the scattering

amplitudes as2

(7% 4 ¥ - v ) 7, () :tg Koo (F,7') B, ,(F') &7
i+

, [e]e]

= UonFn,i(r) ‘-'FS Kon(r,r') Fn’i(r') dr' ,

[v2 +k° -U_]F (;).—hg (z,7') F_ (7') dp'
n nn n,+t Knn ) n,+ _

= UoFy 4 (F) ?S Ko(FF') Fy L(F') aF',  (7.9)
where U, , U ., and U,, are given by Eq. (1.24), and
Koo (F1sTn) = V2 (7)) ¥, (%) (K5 - 2/r , - 2E_)
ool\T1:T2 o'\T1/ YolT2 o T2 o’ ?
Kon (F15%2) = ¥h(F) 4,(Fp) (& - 2/, - 2E) , (7.10)

» - - -
Kon(?1’32) = *n(gl) *o(rg) (kﬁ - 2/T12 = QEO) = K;o(rgxrl)

The zeroth order solutions, which will be denoted as Fgéi
3
and F(o), are taken as the solutions of the limlting exact-

n,t
resonance problem, ignoring exchange. Under these limiting

conditions, Eqs. (7.8) and (7.9) reduce to Egs. (7.1) and

F(o)'and Fééi become 1dentical to the functions F(O) and Fio),

o,i I o (O)
respectively. We then replace F in Eq. (7.9) by F
. 0,% o,%

and solve for Fn A similar iteration procedure can be

i.
2
used if one expands ¥(1,2) in terms of basis functions of

the coupled representation.14
Finally we wish to discuss‘the applicability of the

method of resonance distortion and its relation to other
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approximate methods of solving collision problems. First of
all, the method of resonance distortion 1s restricted to
problems involving near resonance, since the limlting case
of exact resonance 1is taken as thé zeroth-order approximation.
This method is most suitable for cases where the coupling
between the initial and flnal states 1is strong. We can illus-
trate the nature of this method through a partial wave anal-
ysis. The partial cross sections corresponding to large 4
for the Strong coupling case reduce to the Born partlal cross
sections, because partial waves of large {4 are classically
equivalent to distant impacts and at large distances, Uoo’
Unn’ and Uon are sufficiently small so that the Born Approxi-
mation 1s applicable. At lower 4 the "effective" coupling
becomes so large that the use of the Born Approximation and
the Method of Distorted Waves, which are valid for weak cou-
pling, i1s not always Jjustifiable. It is in this region of ¢
(called "low % region") that the method of resonance distor-
tion 1s useful. PFor collision-induced transitions with a
long-range interaction potentlal, where the contribution from
the partial cross sections in the "low % region" constitutes
a substantial part of the total cross section (e.g., Table
IV), we may expect the method of resonance distortion to
vlield more accurate results than the usual Born Approximation.

For very weak coupling, the results of the method of

resonance distortion approach those of the Method of Distorted

Waves. This can be seen from Eqs. (7.1) and (7.2). When von
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(o)

becomes very small, Fo in Eq. (7.2) is nearly equal to the

zeroth order solutlion in the Method of Distorted Waves, which

1s defined by

(o)

2
Uoo)(Fo )Dw = 0,

(V2 + k° -
o)

The difference in F, as calculated by these two zeroth order

functions should be small compared to Fn 1tself.




CHAPTER VIII
THE CONTINUUM OF ATOMIC HYDROGEN

For some time, researchers have been aware of the
exlstence of a strong continuum in hydrogen arcs, sparks, and
of pafticular interest in the expansion from an electric
shoek tube;21 the continuuerédiation 1s of particular inter-
est in the visible reglon, and hence this investigation will
concern, primarily, wavelengths in the range 2000 to 6000 A°.

It was generally bellieved that this continuum was due
to recombination (i.e., radiation resulting from the combin-
ing of a free electron with a proton), and proton-electron
bremsstrahlung, however 1t was often found that the measured
intensity was too strong to be explained.by these alone.?1

22 it was shown

In high-pressure hydrogen-arc experiments,
that a large part of the continuum was due to the free-bound
transition of the negative hydrogen ion (i1.e., the attachment
of a free electron onto a neutral hydrogen atom). The im-
portance of the reverse process of photodetachment of H™, as
an absorption mechanism in the atmosphere of the sun, had
been reallzed for some time,23 and much work had already been
done on the calculation of absorption coefficients.au
In electrically energized shocks, it is possible to

102
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have conditions 1p'wh1ch local thermodynamic equilibrium is
not present25 (e.g. populations of excited levels are not re-
lated by the Boltzmann factors, and the Saha equation doesn't
apply) and hence, such properties as electron density and
electron temperature are not simply related. Sihce measure -
ments of such properties are often quite uncertain, it was
felt that a comparison of measured continuum intensities with
those calculated under an array of different conditions,
could be helpful in determining characteristics of the plasma.
With this in mind, then, we determine contributions to the
hydrogen continuum from several processes, assuming only that
the electrons themselves are in thermal equilibrium (i.e. an

electron temperature T may be defined).

Electron-Proton, Radliative Recombination

Whenever a free electron 1s located in the proximity
of a proton, there exists a finite probablility that the two
will combine to form a bound state (say, n, 4) of the hydrogen

atom. In so doing, an amount of energy hv is emitted, where

hv = E + In (8.1)

2

E being the initial kinetic energy of the electron and In L
3

the lonization potential of the level n,4. In the following,

we shall neglect the 1ifting of the {-degeneracy in hydrogen

(L.e. I - In)' The cross section for such a process 1s

n,4
’ 22,26,27

well known and is given by




104

2
o = 32T eohn V1 €11 (8.2)
R 23Vv(v-v) 3 '
2V/3 m"c ‘n’ n
where gyy 18 the Gaunt factor for the free-bound transition28
and
V1
Yn = 2 Vi = Re , (8.3)

where R 1s the Rydberg constant. Gaunt factors have been
calculated and tables are available,e9 however for most cases
one finds 811 = 1. .

The cross section given in Eq. (8.2) 1s for a process
in which a free electron of kinetic energy E = h(v - vn) =

th quantum state of a hydrogen

%mv2 is captured into the n
atom. In general, we do not have a beam of monoenergetic

electrons but rather a maxwellian energy distribution, where
the number of electrons per unit Qolume in the energy range -

E, E + dE 1s given by

N, 2 (k'r)"3/2 ¢ BT g2 4

E
e 7 ’
where No is the electron number density. Combining with Eq.
(8.2) and multiplying by vN.hv, we obtain the energy per unit
volume, per unit time, per unit solid angle emitted from é

system of electrons and protons having densitieé Ne and Ni

respectively, for recombination into the nth state; thus

(8.4)

2.4 NN h(v_ - v)/kT
e, ndv = c 4n2e m e ;2 n
? hen3 (kT)3
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where 6
32 n2e

3/3 ¢ (2mm)

¢ = 372

In order to obtain the total power emitted pef unit volume,

one must sum Eq. (8.4) over all values of n such that E =

h{v - Vn) > 0. It has been a standard practice to sum over

n up to, say n = 4, and then integrate fromn = 5 to =, thus
taking advantage of the nearness of levels for high.n values.22
However, consideration of the stark broadening of higher
levels suggests that only a finite number of discrete states
be considered,3l'33 the cut-off belng taken when the broaden-
- ing becomes.of the same order as the level separation, 1i.e.

~ 1
AE, = Rhe [ =+ —1 ], (8.5)
m (m + 1)

where AEm is the spread of the mth level due to the perturba-

tion of the microfield.

Lowering of the Ionizatlon Potential

Several researchers have considered this problem of
determining to what extent the presence of electrons and ions
in the proximity of a hydrogen atom caﬁses the ionization
potentilal té decrease and the corresponding series limits to
shift toward larger wave lengths.33-35 However, the most
straightforward theory is probably that of Unsb'ld,36 in which
he considers only neafest ﬁeighbor interactions which is

valid for not too high densities.35 His result for the
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lowering of the lonization potential Ax is given by

log (bx) = - 6.158 + %-log Ny, (8.6)

where N, is the electron density. The principal quantum num-

ber corresponding to this energy is determined from

5 .
1
AY = o = (8.7)
2ao n2
and hence ;
log n = 3.645 - 2 log N, . (8.8)

This equation is found to give roughly the same value
of n, for a.given electron density, as the value, obtained
by Inglis and Teller,31 for which the levels begin'to overlap
due to Stark broadening; they obtained |

7.5 log n = 23.26 - log N , | (8.9)
where |
N = 2N, , T < (10°/n)°K ,
(8.10)
N=N, , T > (10°/n)°K .

According to Eq. (8.10), only the ions are effective at
larger temperatures.

Since we are not striving for high accuracy in this
investigation, we choose to take advantage of tﬁe simplicity
of Uns8ld's results. It is convenient to consider the rate

3

of photon emissions (i.e. number of photons/em”-sec-cm wave-

length), which is related to the emission coefficient by
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dn _ 4w
Rn =a=h_kev,n . (8.11)

Thus we have

27
R = NN 3.2594x10° {_ 14.T386z <%

n 1 -
© XT3/2n3
1 -3 -1 ., -1
IE,) } cm | sec — cm (8,12)
where o
2.2
A, = (.911) __E__2 n = (8.13)
P° - n ‘ '
= 3 1/6
p = 5612.1 ( E;ﬁ;-> ’ (8.14)

and where \ and T are in units of 103 A° and 104°K, respect-
ively, and N, and Ni are in units of 1017 cm'3. The parameter
p 1s a measure of the shift of the ionization potential. The

total rate of photon emission for a given wavelength is given

by
Rp = ) R, , (8.15)

where m 1s the largest integer contained in p, and 4 is the
smallest integer such that A < A,. Of course, Eq. (8.14) 1is
equivalent to Uns8ld's result given in Eq. (8.8). The net

effect of including the lowering of the ionization potential

is to decrease somewhat the contribution from recombination
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and to shift the discontinulity, due to péssing over the
Balmer series limit, toward higher wavelengths.

It should be pointed out here that we have made a
rather arbitrary cholce in shifting the ionization potential
by Ax. Actually, the effects of the merging of higher levels
and the 1ower1ng-of the ionlzation potential are inseparable,
and each plays a part in the apparent shift of the Balmer
series limit. However, since the pseudo-continuum resulting
from the overlapping of higher levels joins smoothly onto the
real continuum, the net result will be approximately the same
regardless of the degree of participation by each of the two
effects.

In Tables VI-XVII are given calculated values of the
| rates of emission from proton-electron recombination (i.e.,
number of photons emitted per cm3 per séc per cm of wave-
length), which are obtained with the aid of Eqs. 8.12 - 8.15.
Results are given for four arbltrarily chosen electron den-

sities; the electron density, of course, enters the calcula-
tion through the shift of the lonization potential. It

should be pointed out that the number of significant figures
in all of the tables to be presented i1s in no way indicative
of the accuracy; one should recall that in all cases, we have

taken the gaunt factors as unity, which may cause errors
ranging from about 1% for recombination to possibly as high

as 15% for bremsstrahlung.




TABLE VI

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

2 22

(units of ng x 10 em™3 sec-l em-1

ng = .01 (Ng = 1015 em™3)7 p = 13.98, 1 (11mit) = 3722 A°
T (10% °k)
A
(103 A®) .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
1.0 .0001 .0005 .0021 .007T4 .0210 .0519 .1137 .2261 L4148 7114
1.5 .8220 2.023 4.239 T7.859 13.24 20.69 30.40 42.50 57.00 73.85
2.0 74.58 118.7 172.9 235.8 305.3 379.5 456.7 535.2 613.7 691.1
2.5 1060. 1298. 1522. 1725. 1907. 2067. 2207. 2326. 2428. 2514,
3.0 6015. 6189. 6271. 6288. 6256. 6189. 6099. 5992. 5874. 5749,
3.5 20292. 18434, 16838. 15462. 14268. 13225. 12308. 11498, 10779. 10136.
4.0 211.0 265.5 318.6 369.1 415.9 458.6 497.0 531.2 s561.2 587.2
4.5 417.2 488.0 551.3 606.7 654.,3 694.5 T728.1 T755.6 T77.6 T795.0
5.0 T711.7 T785.4 845.3 892.9 929.7 957.3 977.2 990.5 998.4 1002.
5.5 1092. 1149, 1188. 1214, 1228, 1234, 1232, 1225. 1214, 1199,
6.0 1548. 1565. 1567. 1556. 1537. 1512.  1483.. 1451. 1417, 1383.
6.5 2066. 2021. 1967. 1908. 1847. 1785. - 1724, 1664 . 1606. 1550.
7.0 . 2632. 2501. 2377. 2259. 2149, 2046, 1950. 1861. 1778. 1700.
7.5 3230.  2995. 2787. 2603. 2440, 2293, 2161. 2041. 1932. 1833.
8.0 3849, 3491, 3191. 2935. 2714, 2522. 2353. 2203. 2069. 1949,
8.5 hyte. 3983, 3582. 3251, 2971. 2733. 2528, 2348, 2191. 2051.
9.0 625.9 633.0 632.6 626.8 617.3 605.1 591.3 576.3 560.7 544.9
9.5 701.6 698.8 689.5 675.9 659.5 641.3 622.2 602.8 583.3 564.0
10.0 775.5 T761.8 T43.1 T21.4 698.1 6T4.0 649.8 626.0 602.7 580.3

*Here, n, is the electron density Ne

5 in units of 1017 Cm’3.
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TABLE VII

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

(units of ng x 1022 em™3 sec™! em™1)

ng = .01 (Ng = 1019 em™3, p = 13.98, A (1imit) = 3722 A°
. T (10% °K)

(103 A°) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0 1.152 22.11 87.06 185.6 293.8 394.8 480.4 548.7 600.6
1.5 92.93 360.5 638.4 842.4 968.8 1036. 1062. 1062. 1045,
2.0 766.6  1337. 1588. 1649, 1616. 1541, 1451, 1357. 1266.
2.5 2585. 2792. 2608. 2345, 2088. 1860. 1663. 1494, 1350.
3.0 5621. 4h09, 3511. 2868. 2396, 2038. 1761. 1541.. 1363.
3.5 9558, 5967. 4239, 3233. 2580. 2125. 1792. 1538. 1340.
4.0 609.6 694, 658.0 592.9 526.7 U467.2 416.0 372.2 335.0
4.5 808.1 805.2 (14.3 618.3 534.8 465.6 408.6 361.6 322.6
5.0 1001. 896.8 T54.3 632.4 535.5 459.1 398.3 349.4 309.5
5.5 1182. g70.6 781.5 638.3 531.2 449.7 386.6 336.7 296.4
6.0 1348, 1029. 798.9 638.4 523.6 438.7 374.2 323.9 283.9
6.5 1496, 1074, 808.7 634.5 514.0 426.9 361.7 311.5 271.9
7.0 1627. 1108. 812.7 627.6 503.1 4iy.7 349.4 299.6 260.6
7.5 1742, 1133. 812.3 618.8 491.5 402.5 337.5 288.3 249.9
8.0 1841. 1151. 808.6 608.6 479.5 390.5 326.0 277.6 240.0
8.5 1926. 1162, 802.4 597.5 467.5 378.8 315.1 267.4 230.7
9.0 529.0 390.4 296.1 232.8 188.6 156.6 132.6 114.1 99.54
9.5 545.2 391.2 292.6 228.1 183.8 152.0 128.3 110.2 95.90

10.0 558.6 390.9 288.7 223.3 179.0 147.5 124.2 106.4 92.50

OTT



TABLE VIII

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

n

e

(units of n° x 10

e

22

= .01 (Ng = 10' em3), p =

cm

13.98, » (1imit) = 3722 A°

-3

sec

-1

cm—l

T (10" °K)
A
(103 A°) 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
1.0 638.3 664.1 - 680.4 689.0 691.8 690.0 684.6 676.6 666.7 655.3
1.5 1018. 984.6 o48.6 911.4 874.2 837.7 802.4 T68.6 T736.3 T05.7
2.0 1180. 1101. 1029. 962.8 902.6 847.8 T797.9 T52.4 T10.8 672.7
2.5 1227. 1120. 1027. 945.9 874.8 811.9 T756.1 T706.2 661.6 621.4
3.0 1217. 1095. 991.9 9Q04.0 828.4 T762.8 705.3 654.7 609.9 570.0
3.5 1181. 1052. oWy .7 84.6 T778.0 T12.2 - 655.3 605.6 561.9 523.2
4.0 303.2 275.9 252.3 231.7 213.7 197.9 183.9 171.5 160.4 150.4
4.5 289.8 262.1 238.4 218.1 200.4 185.0 171.4 159.4 148.7 139.1
5.0 276.4 248.8 225.4 205.4 188.2 173.2 160.1 148.6 138.4 129.3
5.5 263.6 236.3 213.3 193.9 177.2 162.7 150.1 139.1 129.3 120.6
6.0 251.4 224.6 202.2 183.3 167.2 153.3  141.2 130.6 121.3 113.0
6.5 239.9 213.8 192.0 173.7 158.2 144.8 133.2 123.1 114;2 106.3
7.0 229.3 203.8 182.7 165.0 150.0 137.1 126.0 116.3 107.8 100.3
7.5 219.4 194.6 174.2 157.1 142.6 130.2 119.5 110.2 102.1 94 .86
8.0 210.2 186.1 166.3 149.8 135.8 123.9 113.6 104.7 96.89 90.00
8.5 201.7 178.3 159.1 143.1 129.7 118.2 108.3 99.72 92.22 85.61
9.0 87.80 78.18 70.20 63.48 S57.77 52.86 48.61 44,90 41.63 38.75
9.5 84.46 75.12 67.37 60.87 55.34 50.61 46.51 42,93 39.79 37.02
10.0 81.35 T2.27 64.75 58.45 53.11 48,53 44 58 41.13 38.11 35.43
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TABLE

IX

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

(units of nz x 10°2 em™3 sec™! cm'l)
n, = 0.1 (Ne = 1016 em=3), p = 9.52, A (1imit) = 3814 A°
T (104 °K)
A
(103 A°) .s0 .55 .60 .65 .70 .75 .80 .85 .90 .95
1.0 .0001 .0004 .0018 .0064 .0185 .0459 .1015 .2032 .3753 L6473
1.5 6828 1.709 3.635 6.822 11.62 18.32 27.14 38.21 51.57 67.19
2.0 61.95 100.3 148.3 204.7 267.8 336.1 407.7 481.2 555.3 628.8
2.5 880.5 1097. 1305. 1498, 1673. 1831. 1970. 2092, 2197. 2287.
3.0 4996, 5230. 5378. 5458, 5488, 5480. shll 5387. 5314, 5231.
3.5 16855. 15579. 14438, 13422, 12518. 11710. 10987. 10337. g752. 9222, .
4.0 179.4 229.5 279.2 327.0 371.9 413.4 450.9 484.6 514.4 s40. 6
4.5 354.6 421.9 483.1 537.6 585.2 626.0 660.6 689.3 T12.9 T31.8
5.0 605.0 679.0 T40.8 T91.2 831.5 862.9 886.6 903.7 915.3 922.2
5.5 928.0 993.1 1041, 1076. 1098. 1112. 1118. 1118. 1113. 1104,
6.0 1315. 1353. 1373. 1379. 1375. 1363. 1345, 1324, 1299. 1273.
6.5 1756. 1747. 1723. 1690. 1652. 1609. 1564, 1518, 1472, 1427,
7.0 2237. 2162. 2083. 2002. 1922. 1844 1770. 1698. 1630. 1565.
7.5 2T46. 2589, 2442, 2307. 2182. 2067. 1960. 1862. 1771. 1687.
8.0 3272. 3018. 2796. 2601. 2428, 2273. 2135. 2010. 1897. 1795.
8.5 3805. 3443, 3139. 2880. 2658. 2464 2293, 2142, 2008. 1888,
9.0 4337. 3858. 3468. 3144, 2871. 2637. 2436, 2260, 2106. 1969.
9.5 608.2 612.1 608.8 600.6 589.0 575.2 560.0 544,1 527.8 511.4:
10.0 672.3 667.3 656.1 641.0 623.5 604.5 584.9 565.0 545.4 526.2

cit



TABLE X
CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION
(units of ng x 10%2 cm=3 sec™! em~1)

ng = 0.1 (Ne = 1016 em™3), p = 9.52, X (limit) = 3814 A°

. T (10% °K)

(103 A®) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0 1.054 20.87 83.40 179.2 285.1 384.3 468.7 536.3 587.7
1.5 84.99 340.3 611.5 813.4 g9l40.0 1008. 1036. 1038. 1022.
2.0 701.1 1262. 1521. 1592, 1568. 1500. 1415. 1326. 1239,
2.5 2364, 2635. 2498, 2264 . 2026. 1811. 1623. 1461. 1321.
3.0 5141, 4162. 3363. 2769, 2325, 1984, 1718. 1506. 1334,
3.5 8742. 5633. 4060. 3122, 2504, 2069. 1748. 1503. 1311.
4.0 563.3 654.2 625.3 565.5 503.5 Lyt . 4 398.7 357.0 321.5
4.5 TH46.7 759.1 678.7 - 589.8 511.4 L4ys .8 391.6 346.8 309.5
5.0 925.2 845 .4 716.7 603.3 512.0 439.5 381.8 335.1 297.0
5.5 1093. 915.0 T42.6 608.9 507 .8 430.6 370.5 322.9 284 .5
6.0 1245, 970.0 759.1 609.0 500.6 420.1 358.7 310.7 272.4
6.5 1382. 1012. 768.4 605.2 4o1.4 408.7 346.7 298.8 260.9
7.0 1504, 1045, T772.2 598.7 481.0 397.1 334.9 287.3 250.0
7.5 1609. 1068. 771.9 590.3 470.0 385.4 323.5 276.5 239.8
8.0 1701. 1085. 768.3 580.6 458.5 373.9 312.5 266.2 230.3
8.5 1780. 1096. 762.4 570.0 4uh7.0 362.7 302.0 256.5 221.4
9.0 1846. 1102. 54.7 559.0 435.6 351.9 292.0 2474 213.1
9.5 hos,2 358.8 269.3 210.3 169.6 140.3 118.5 101.8 88.64

10.0 507.5 358.5 265.7 205.9 165.2 136.2 114.8 98.35 85.49

ETT



TABLE XI
CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

(units of ng x 10°2 em=3 gec”?! cm'l)
ng = 0.1 (Ng = 1016 em™3), p = 5.92, A (1imit) = 3814 A°
T (10% °k)
A

(103 A°) 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 .0
1.0 625.2 651.0 667.3 676.2 679.2 677.6 672.6 664.9 655.3 .2
1.5 996.8 965.1 930.4 894.3 858.2 822.7 788.3 755.2 T23. T
2.0 1156. 1079. 1009. o4y .8 886.1 832.6 T783.9 T739.3 698. .3
2.5 1201. 1098. 1007. 928.3 858.8 792.4 T42.8 694.0 650 .9
3.0 1192. 1073. 9g72.8 887.2 813.3 T49.1 692.9 643.4 599, .3
3.5 1157. 1031. 926.6 838.6 763.8 699.5 643.8 595.1 552. .3
4.0 291.1 264.9 242.,3 222.6 205.4 190.2 176.8 164.8 154 .6
4.5 278.2 251.7 229.0 209.5 192.6 177.7 164.7 153.2 142, .8
5.0 265.4 238.9 216.5 197.4 180.8 166.5 153.9 142.8 133, .3
5.5 253.0 226.9 204.9 186.2 170.2 156.4  144.,3 133.7 124 .0
6.0 241.3 215.7 194.2 176.1 160.7 147.3 135.7 125.6 116 T
6.5 230.3 205.3 184.5 166.9 152.0 139.1 128.0 118.3 109 .2
7.0 220.1 195.7 175.5 158.5 144.,1 131.8 121.1 111.8 103
7.5 210.6 186.9 167.3 150.9 137.0 125.1 114.9 105.9 98.11
8.0 201.8 178.7 159.8 143.9 130.5 119.1 109.2 100.7 93.15
8.5 193.6 171.2 152.8 137.5 124.6 113.6 104.1 95.85 88.65
9.0 186.0 164.3 146.4 131.6 119.1 108.5 99.39 91.48 84.56
9.5 78.07 69.44 62.29 56.28 51.18 46.80 43.01 39.71 36.81

10.0 75.20 66.81 59.87 54.05 49,11 44,88 41.23 38.04 35.24
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TABLE XII

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

(units of nS x 10°2

< em™3 sec”?! cm'l)

ng = 1.0 (N, = 1017 en™3), p = 6.49, A (1imit) = 4028 A°

e

r (10* °k)

A

(103 A°) .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
.0000 ,0003 .0013 . 0047 .0139 .0354 .0795 .1617 .3028 .5286
4581 1.191 2.612 5.03%5 8.77T4 14,11 21.27 30.41 41.60 54.87
41.56 69.85 106.6 151.1 202.2 258.8 319.5 382.9 448.0 513.6
590.8 T64.3 937.6 1105. 1263. 1410. 1544, 1665. 1772. 1868.
3352. 3643, 3864. 4028. hiyy, 4oo3. 4267. 4287. 4288. yor2.

11309. 10850. 10376. 9906. glis2 . 9019. 8611. 8227. T7868. 7532.

27651. 24164, 21376. 19107. 17230. 15657. 14321. 13176. 12184, 11318.
252.0 310.0 364.7 414.9 459.9 499.5 533.9 563.3 688.1 608.7
429,9 498.9 559.2 610.6 653.4 688.5 T716.6 T38.5 T55.0 T6T7.0
659.4 729.8 T786.2 830.1 863.2 887.1 903.4 913.2 917.9 918.3
934.8 994.3 1036. 1064 . 1080. 1087. 1087. 1082, 1072. 1059.
1248. 1284, 1301. 1305. 1298. 1284, 1264, -1241. 1215. 1187.
1590. 1589. 1572. 1545, 1511. 1472. 1430. 1388. 1344, 1302.
1951, 1902. 1844, 1780. 1715. 1649, 1584, 1522, 1461. 1403.
2325, 2218, 2111. 2007. 1908. 1814, 1725. 1643, 1565. 1493,
2704, 2530. 2370. 2223, 2088. 1966. 1853. 1751. 1657. 1570.
3082. 2835. 2618. 2426, 2256. 2104, 1969. 1847, 1737. 1637.
3455, 3130. 2853. 2616. 2410. 2230. 2072. 1932. 1807. 1695.
3819. 3412, 3075. 2792. 2551. 2344 . 2164, 2006 . 1867. 1744,
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TABLE XIII

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON‘RECOMBINATION

(units of ng x 10

22

cm

-3

sec

-1

cm-l)

ne = 1.0 (Ng = 107 em™3), p = 6.49, X (1imit) = 4028 A°
T (10% °K)
A
(103 A°) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0 .8700 18.43 75.95 166.0 266.8 362.1 4437 509.4 559.7
1.5 70.17 300.5 556.9 753.4 879.7 950.0 981.0 985.8 973.7
2.0 578.8 1115. 1385. 1474, 1467. 1414, 1340. 1260. 1180.
2.5 1952. 2327 2275. 2097. 1896. 1706. 1536. 1387. 1258,
3.0 houlh 3675 3063. 2565. 2175. 1870. 1627. 1431. 1270.
3.5 T217. 4ary, 3698. 2892, 2343, 1949, 1655. 1428, 1249,
4 0o 10557. 6130, 4183. 3107. 2433, 1975. 1646, 1401. 1211.
4.5 625.5 661.8 601.3 526.9 459.0 401.4 353.4 313.5 280.2
5.0 775.0 737.1 635.0 538.9 459.6 395.8 344 .6 302.9 268.8
5.5 915.2 797.7 657.9 544 .0 455.9 387.8 334.4 291.9 257.5
6.0 1043, 845.6 672.6 544 .1 4hg b 378.3 323.7 280.8 246.5
6.5 1158. 882.7 680.8 540.7 441.1 368.1 312.9 270.1 236.1
7.0 1259. 910.8 684.2 534.8 431.8 357.6 302.3 259.8 226.3
7.5 1348. 931.4 683.8 527.3 421.8 347.1 292.0 249.9 217.1
8.0 1425, 945.8 680.7 518.6 411.6 336.7 282.0 240.6 208.5
8.5 1491, 955.2 675.5 509.2 401.3 326.7 272.6 231.9 200.4
9.0 1547. 960.5 668.6 499.3 391.1 316.9 263.5 223.6 192.9
9.5 1594, 962.4 660.7 489.3 381.0 307.5 255.0 215.9 185.8
10.0 1633. 961.7 651.9 479.1 371.2 298.5 246.9 208.5 179.2
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TABLE XIV

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

(units of nz x 10°2 cm™3 sec”! em™1)

ng = 1.0 (Ng = 10*7 em™3), p = 6.49, A (1imit) = 4028 A°

T (10% °K)
A
(1o3 A®) 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
1.0 596.6 622.2 638.7 64T7.9 651.4 650.4 646.0 639.0 630.0 619.6
1.5 91.2 922.5 890.5 856.9 823.0 7T89.6 T57.1 T25.8 695.8 667.3
2.0 1103, 1032. 965.8 905.3 849.8 T799.2 T752.9 T10.5 6T71.7 636.1
2.5 1146, 1049, 964.1 889.4 823.6 T765.3 T13.4 666.9 625.2 587.6
3.0 1137. 1026. 931.1 850.0 T780.0 T719.0 665.5 618.3 576.4 539.0
3.5 1104, 985.6 886.8 803.5 T732.5 671.4 618.3 571.9 531.0 4o4.T
4.0 1061. 939.5 839.8 1756.6 686.4 626.4 574.7 529.8 490.4 455.7
4.5 262.0 228.2 207.8 190.2 174.9 161.5 149.7 139.3 130.0 121.6
5.0 240.4 216.6 196.4 179.2 164.2 151.3 139.9 129.9 121.0 113.0
5.5 229.2 205.7 185.9 169.1 154.6 142.1 131.1 121.5 113.0 105.5
6.0 218.6 195.5 176.2 159.9 145.9 133.8 123.3 114.1 106.0 98.83
6.5 208.7 186.1 167.4 151.5 138.0 126.4 116.3 107.5 99.79 92.92
7.0 199.4 177.5 159.2 143.9 130.9 119.7 110.1 101.6 94,22 87.66
7.5 190.8 169.5 151.8 137.0 124.4 113.7 104.4 96.31 89.21 82.95
8.0 182.8 162.1 144.9 130.6 118.5 108.2 99.26 91.50 84.70 178.70
8.5 175.4 155.2 138.7 124.8 113.1 103.2 g4.59 87.14 80.61 T4.86
9.0 168.5 148.9 132.9 119.5 108.2 98.60 90.33 83.16 76.89 T1.37
9.5 162.1 143.1 127.5 114.6 103.7 94.40 86.43 79.52 T3.49 68.18
10.0 156.2 137.7 122.6 110.0 99.48 90.53 82.84 76.18 T0.37 65.27
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TABLE XV

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

n

(units of

2

22

ng x 10

em™3 sec~l em1)

. =10.0 (Ng = 10'8 cm™3), p = 4.42, A (1imit) = 4584 A°

)\
(103 A°) .50

—

O \0\WO MO~I~I YW £ £WW NN - -
OUVIOUVIOUMIOUIOWMOM oM OM oW o

T (10% °k)
.55 .60 .65 .70 .75 .80 .85 . 90 .95
.0000 .0001 .0007 .0025 .0077 .0203 L0473 .0994 1916 .3433
.1949 .,5493 1,290 2.633 4.820 8.089 12.66 18.69 26.33 35.64
17.68 32.23 52.61 T78.99 111.1 148.4 190.1 235.4 283.5 333.5
251.3 352.6 u463.0 578.0 694.0 808.3 918.6 - 1023. 1122. 1213.
1426. 1681. 1908. 2106. 2276. 2420, 2539. 2636. 2714, 2774,
4811. 5006. 512 5180. 5192. 5170. 5123. 5058. 4979, 4891.
11764. 11149. 10554. 9992, 9465 . 8975. 8521. 8101. T7T11. T7350.
23256. 20495. 18262. 16425. 14891. 13593. 12482. 11523. 10686. - 9951.
209.2 257.0 301.7 342.1 378.0 409.2 435.8 458.2 476.8 491.8
320.9 375.9 424.1 465.1 499.3 527.2 549.4 566.7 579.6 588.8
4sh .9 512.2 559.0 596.2 624.9 646.3 661.4 671.3 676.9 679.0
607.2 661.2 T01.8 T31.0 T750.8 T62.9 768.8 769.8 767.0 T761.1
773.5 818.4 848.1 865.7 873.8 874.6 869.9 861.0 848.9 834.7
949.6 979.9 "994.6 997.5 991.9 979.9 963.6 944.1 922.6 899.9
1132. 1142, 1139. 1125. 1104, 1078. 1049.: 1019. 988.2 957.1
1316. 1303. 1278. 1246. 1208. 1168. 1127. 1086. 1046. 1007.
1500. 1460. - 1412. 1359. 1305. 1251. 1197. 1146. 1097. 1050. -
1681. 1612, 1539. 1466. 1394, 1325. 1260. 1199. 1141, 1087.
1858. 1758. 1659. 1565. 1476. 1393. 1316. 1245, 1118.

1179.
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TABLE XVI

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

(units of ng x 10°° em=3 sec”! cm-l)
n_ = 10.0 (N. = 1018 em=3), p = 4.42, A (1imit) = 4584 A°
e e
. T (10“ °K)
(103 A°) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0 .5782 14.10 61.93 140.2 230.3 317.0 392.5 454.0 501.8
1.5 46.63 229.8 4sh 3 636.3 759.2 831.8 867.8 878.6 872.9
2.0 384.¢ 852.6 1130. 1245, 1266. 1238. 1185. 1123. 1058.
2.5 1297. 1780. 1855. 1771. 1636. 1494, 1359. 1237. 1128.
3.0 2821. 2811 2497, 2166, 1877. 1637. 1439, 1275. 1139,
3.5 4796. 3804 3015. 2442, 2022, 1707. 1464 . 1273. 1120.
4.0 T016. 4689 3411, 262l . 2100. 1729. 1456. 1248, 1086.
4.5 9300. 5440 3703. 2737. 2132, 1723. 1431, 1213. 1045,
5.0 503.8 519.9 46k .9 403.1 348.5 303.0 265.6 234.8 209.2
5.5 594.9 562.7 481.7 406.8 345.7 296.8 257.8 226.2 200.4
6.0 678.2 596.4 4gop 4 406.9 340.7 289.6 249.5 217.6 191.9
6.5 752 .8 622.6 498.5 4o4 .4 334.5 281.8 241 .2 209.3 183.8
7.0 818.8 642.4 500.9 400.0 327.4 273.7 233.0 201.3 176.1
7.5 876.4 656.9 500.7 394.4 319.8 265.7 225 .0 193.7 168.9
8.0 926.3 667.1 498.4 387.9 312.1 257.8 217.4 186.5 162.2
8.5 969.1 673.7 4ok .6 380.8 304.3 250.0 210.1 179.7 155.9
9.0 1005. 677.5 489.6 373.5 296.5 242 .6 203.1 173.3 150.1
9.5 1036. 678.8 483.7 365.9 288.9 235.4 196.5 167.3 144 .6
10.0 1062. 678.3 4r7.3 358.3 281.5 228.5 190.3 ‘161.6 139.5

61T



TABLE XVII

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON RECOMBINATION

n

e

(units of ng x 10

22

em™3 see”

1

cm™

1y
= 10.0 (Ng = 1018 em3), p = 4.42, \ (1imit) = 4584 A°

A
(103 A°)_5.5

=

CWVWYWOONNNTOAONVIN EFWWN N -

OV OWMOUI oW OUTOU Ol 01 O ©

r (10* °K)

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
537.3 562.5 579.1 588.9 593.3 593.5 590.4 584.8 sS77.4 568.5
856.7 833.9 807.4 778.9 T49.7 T720.6 692.0 664.3 637.7 612.2
993.6 932.7 875.7 822.8 T7T4.1 T729.3 688.1 650.3 615.6 583.6
1033. 948.3 874.1 808.5 750.2 698.4 652.0 610.4 573.0 539.1
1024, 9RT7.2 844.2 T72.7T T10.5 656.1 608.3 565.9 528.2 U494 .5
99,5 890.9 804.1 T30.4 66T7.2 612.7 565.1 523.4 486.6 453.9
955.4 849.3 T761.4 687.7 625.2 571.6 6525.3 484.9 4h9. 4 418.1
913.2 806.9 T719.7 642.2 586.2 534,2 489.4 450.6 416.7 386.8
187.8 169.6 154 .2 140.9 129.4 119.4 110.5 102.7 95.79 89.60
179.0 161.1 145.9 133.0 121.8 112.1 103.6 96.14 89.52 83.62
170.7 153.1 138.3 125.8 115.0 105.6 97.45 90.29 83.96 78.34
163.0 145.8 131.4 119.2 108.8  99.76 91.93 85.07 79.02. T3.66
155.7 139.0 125.0 113.2 103.1 94.48 . 86.97 80.40 T4.61 69.49
149.0 132.7 119.1 107.7 98.04 89.T71 82.49 T76.19 T0.65 65.75
142.8 126.9 113.8 102.7 93.39 85.37 78.43 72.38 67.07 62.38
137.0 121.6 108.8 98,18 89.15 81.42 T4.74 68.93 63.84 59,34
131.6 116.6 104.3 - 93.98 85.26 T77.80 T71.38 65.79 60.89 56.57
126.6 112.1 100.1 90.11 81.68 T4.49 68.29 - 62.91 58.20 54.05
121.9 107.8 96.20 86.53 78.38 71.44 65.46 60.27 -55.73 51.73

0oct
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Electron-Proton Bremsstrahlung

An electron in the proximity of a proton may, instead
of éombining to form a hydrogen atom, lose part of its energy
to the radiation field and remain unbound. The process is
called bremsstrahlung and often constitutes a significant por-
tion of the H-continuum. This phenomenon has been of interest

for some time and has been widely :I.nvest::lgat:ed.30’37-42

It is found, as in the case of recombination, that
the cross section may be written as the classical form mul-
tiplied by a correction factor 8111 (1.e. Gaunt factor for

free-free transitions).2 Thus, we have

(v) av 16725 - hor av (8.16)
g(Vv = .
373 v ( E > 8111 . |

where R 1s the Rydberg constant; a the fine structuré con-
stant, and E the initlal electron energy. In calculating fhe
emlission coefficient, we must integrate vo(v) over the dis-
tribution function, which is proportional to v2e-E/kT dv.
Since the only quantity in o(Vv) which is velocity dependent

is g II/E, it 1s convenient to define a weighted average

30

I
gaunt factor

hv/kT C -E/kT E
¢ { e (V) e (&)
hv
Average gaunt factors have been calculated for ranges of T

111 <

-

and v, and are tabulated.29’3o

The emission coefficient for free-free transitions

of an electron in the field of a proton, 1s given a322
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N_N
- e'i -hv/kT
€ = C —= e ) (8.17)
v III (kT)l/2
where
co__ 31 &
3v3 Sem)?

and where Ni is the ion density, which for the case of a pure
hydrogen plasma, in the absence of external fields, must be
equal to the electron density N in order to produce charge
neutrality. Thus making use of Eq. (8.11) the rate of photon

emission becomes

' 4
R =/ dn =T NN 32 /T a e 1 o ~he/AKT
b 111 NeMs ’
( 136 n/? A(er)l/? (8. 18)

where a is the fine structure constant (i.e., a =

7.29720 x 1073). Rewriting Eq. (8.18) with A in units of

4o

103 A°, T in units of 10 °K, and n; and ng in units of

e
1017 cm‘3, we have

-14.3867
R = Epyp (1.03237 x 10%°) ne2}2 e M cm3sec en
AT (8.19)

The factor EiII for the free-free transition is also found
to be close to unity.28-3o

Since the rates and emission coefficients of the re;
combination and bremsstrahlung processes possess the same
density dependence, they are often combined into one expres-

sion which is then simply said to represent the rate, or
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emissivity for the hydrogen continuum. Simplification is
then possible 1f one integrates over higher states in the re-
combination part. However, since ﬁe wish to examine relative
contributions, we shall continue to distinguish between the'
two. .
: Tables}XVIII - XX give values of rates of emission

(1.e. number of photons emitted per ems

per sec per cm of
wavelength) resulting from proton-electron bremsstrahlung,
which were calculated using Eq. (8.19) with giII set equal

to unity.



TABLE XVIII

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON BREMSSTRAHLUNG

(units of ng x 10°2 em™3 sec”l em™1)
. T (10* °k)

(103 A°) .50 .55 .60 .65 .70 75 .80 .85 .90 .95
1.0 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0012 .0028
1.5 .0000 .0002 .0010 .0033 .0092 .0222 .0478 .0939 ,1708 .2913
2.0 .0041 .0145 .okis ,1000 .2125 .4073 .7182 1.182 1.839 2.726
2.5 .0586 .1591 .3643 .7319 1.327 2.219 3.470 5.139 T.275 9.914
3.0 .3325 .7583 1.501 2.668 4.354 6.642 9.590 13.24 17.60 22.68
3.5 1.122 2.259 4,031 6.560 9.931 14.19 19.35 25.40 32.29 39.98
4o 2.743 5.030 8.305 12.65 18.10 24.64 32,19 40.68 50.01 60.07
4.5 5.423 9.246 14.37 20.80 28.48 37.31 47.15 57.87 69.31 81.33
5.0 9.250 14.88° 22,03 30.61 u40.47 51.43 63.29 75.86 88.98 102.
5.5 14.19 21.77 30. 41.62 53.46 66.26 T79.78 93.82 108.2 122
6.0 20.11 29.66 40.84 53.35 66.91 81.23 96.04 111.1 126.3 141
6.5 26.85 38.29 51.26 65.41 80.38 95.88 111.6 127.5 143.1 158
7.0 34,21 47.39 61.95 T7.46 93.56 109.9 126.3 142.5 158.4 173
7.5 B1.99 56.74 T72.65 89.26 106.2 123.2 139.9 156.3 172.2 187
8.0 50.03 66.15 83.17 100.6 118.2 135.5 152.4 168.7 184.4 199
8.5 58.18 75.47 93.37 111.5 129.4 146.8 163.7 179.9 195.2 209
9.0 66.32 84.56 103.1 121.6 139.7 157.2 173.9 189.7 204.7 218
9.5 74.3%4 93.35 112.4 131.2 149.3 166.6 183.0 198.4 212.9 226

10.0 82.17 101.8 121.2 140.0 158.0 175.1 191.1 206.1 220.0 233

O £ 000 £UIO WU

el



TABLE XIX

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON BREMSSTRAHLUNG

(units of ng x 10°2 em™3 sec-l cm'l)
r (10* °k)
b\

(103 4°) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0 .0058 .5T60 5.486 20.68 49, .27 90.50 141.5 199.0 259.9
1.5 4703 9.393 40,23 93.89 162.5 237.5 312.9 385.0 452 .0
2.0 3.879 34.84 100.1 183.7 271.0 353.3 4o7.3 4g2.0 54T7.7
2.5 13.08 T72.73 164 .3 261.4 350.2 4o 4 489.8 541.9 584, 2
3.0 28.45 114.9 221.2 319.6 4o1.7 467.3 518.8 558.8 589.8
3.5 48.37 155.5 267.1 360.4 432.7 487.2 527.8 55T7.8 579.8
4.0 70.76 191.6 302.2 387.3 449,.3 493.7 525.1 547 .1 562.2
4.5 93.79 222.3 328.0 403.9 456.3 4931.9 515.8 531.5 541.3
5.0 116.2 247.6 346.4 413.1 456.8 485.1 502.8 513.5 519.3
5.5 137.2 268.0 358.9 417.0 453.1 45 .2 488.0 4oi .8 hat.5
6.0 156.4 284.1 366.9 417.0 4h46.7 463.6 ho .4 476.1 476.4
6.5 173.7 : 296.5 371.4 4ih 4 438.5 451.1 456.6 457.8 456.2
7.0 188.9 +305.9 373.2 410.0 429,2 438.2 441 .1 440.3 437.3
7.5 202.2 312.9 373.0 hou.2 419.3 425.3 426.1 423.7 419.4
8.0 213.7 . 317.7 371.3 397.5 409.1 J12.6 4ii.6 407.9 402.8
8.5 223.5 .320.9 368.4 390.3 398.9 400.3 397.8 393.1 387.2
9.0 231.9 322.6 364.7 382.8 388.7 388.3 384.6 379.1 372.6
9.5 239.0 323.3 360.4 375.0 378.7 376.8 372.1 365.9 359.0

10.0 244 9 323.0 355.6 367.2 369.0 365.8 360.2 353.5 346.2

Get



TABLE XX

CALCULATED RATES OF EMISSION FROM PROTON-ELECTRON BREMSSTRAHLUNG

(units of ng x 10°2 cm™3 sec™! cm'l)

t (104 °k)
1\

(103 A°) 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
1.0 321.8 383.2 442.7 499.7 553.6 604.3 651.g 695.8 36.7 g7u.5
1.5 513.1 568.1 617.2 660.9 699.6 T733.7 T63. 790.3 13.6 34.1
2.0 595.1 635.4 669.5 698.2 T22.3 T42.6 T759.6 T73.7T T85.4 T795.1
2.5 618.5 646.1 668.3 686.0 TO00.1 T1l.1 T19.7 T26.2 T31.1 T34.5
3.0 613.6 631.7 645.4 655.6 663.0 668.1 671.4 673.3 673.9 673.7
3.5 595.7 607.0 614.7 619.7 622.6 623.8 623.8 622.7 620.9 618.4
4.0 572.3 578.6 582.1 583.6 583.4 582.1 579.8 576.9 573.4 569.6
4.5 547.0 S549.7 550.2 549.2 547.0 543.9 540.2 536.1 531.6 527.0
5.0 521.8 521.8 520.2 617.4 513.7 509.5 504.8 499.9 494.8 489.7
5.5 har 4 495.5 492,33 488.2 483.6 478.5 473.2 46T7.9 462.4 45T.0
6.0 yrh 4 471.0 466.7 461.7 456.4 450.8 445.1 439.4 433.7 428.1
6.5 4s2. 9  448.4 443.2  437.6 431.7 U425.8 419.9 414.0 408.2 402.5
7.0 432.8 427.5 421.7 4#415.6 409.4 403.3 397.2 391.2 385.4 379.7
7.5 414,171 408.2 401.9 395.6 389.2 382.9 376.8 370.8 364.9 359.3
8.0 396.8 390.4 383.8 377.2 370.7 364.4 358.2 352.2 346.5 340.9
8.5 380.7 374.0 367.2 360.5 353.9 347.5 341.4 335.4 329.7 324.3
9.0 365.8 358.8 351.8 345.0 338.5 332.1 326.0 320.1 314.5 309.2
9.5 351.8 344.7 337.7 330.8 324.3 317.9 311.9 306.1 300.6 295.4

10.0 338.9 331.6 324.5 317.7 311.2 304.9 299.0 293.3 287.9 282.7

9ct



CHAPTER IX
THE CONTINUUM OF THE NEGATIVE HYDROGEN ION

The existence of a bound state of H was first con-

4y
43 and Hylleraas , when crude calculations

firmed by Bethe
were made for the wave function and the electron affinity
(1.e. the binding energy of the electron to the hydrogen
atom). The existence of such a bound state, then makes
possible a radiative process analogous to recombination of
electrons with protons; this process is called "attachment"
and the resulting continuum is often referred to as the
"affinity spectrum." This spectrum differs from that due to
fecombination in that H™ possesses only one bound state and
thus only one series 1limit (i.e. threshold), located at A =
16,500 A°. The inverse process, 'photodetachment," has been
found to be the dominant absorption mechanism in the atmos-
pheres of the sun and similar stars at wavelengths X £
16,500 p° 2R, H5-47
Another important continuous-emission process, 1s the
free-free transition of H~ (i.é. a transition between two un-
bQund states of the electron-hydrogen atom system). This
process 1s analogous to bremsstrahlung resulting from electron-

proton interactions, except, of course, that in the former the

127
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long-range coulomb potential is not present; as a result of
this rather significant difference, the behavior of the two
is quite different. The inverse free-free process 1is also
found to be an important absorption mechanism in the solar

atmosphere for wavelengths A 3 16,500 p° 24, 45-47

The Affinity Spectrum

The calculation of the cross section for emission in
a free-bound transition of H™ 1is extremely complicated. Since
an electron approaching a hydrogen atom sees at large dis-
tances effectively a neutral atom, any chance for formation
of a bound H™ system will have to result from the incomplete
shielding of the nucleus by the atomic electron, as well as
the re-orientation of the atomic electron density within the
atom so that an attractive potential well of suitable depth
may be formed for the incident electron. Thus it is found
that correlation and polarization effects are impor*tant:.a8

Because of 1ts importance in astrophysics, the absorp-
tion cross section of the corresponding bound-free transition
has been investigated extensively, and quite accurate calcu-
lations have been made.ug'sl We will take advantage of this
work by incorporating the principle of detalled balancing,
which in quantum mechanics is simply a restatement of the
fact that operators corresponding to observables are hermitian.
The relation between the absorption (detachment) and emission

(attachment) cross sections is given by Milne's formula52'53
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2.2 2

Y = g§§§§2_ s (9.1)
where v 1s the frequency of the photon emitted in the capture.
Rewriting Eq. (9.1), with A in units of 105 A° and k° in
units of 13.6 eV, we obtain

-2

22x°

where Y = 4 is a factor relating the total photon intensity
to the flux passing perpendicularly through unit area (See
Appendix II). Table XXI contains values of the photodetach-
ment cross section obtained by Geltman, who used a rather
.complicated variational schemeso; also given are attachment
cross sSections calculated using Eq. (9.2). A slightly better
fit to the experimental photodetachment cross sectionssu,has

been obtained by Armstrong,ug

using an empirical method based
on effective range theory. However, his cross sections are |
in essential agreement with those of Geltman.

Now, assuming the population of free electron states
to be given by a Maxwell-Boltzmann distribution, one obtailns

for the number of photons emitted per cm3 per sec
dn()‘JT) = NHNe v an(l:T) s (9~3)

where | SR
a0, (,1) = o 2 () V2 MR g T (o

and where Ny represents the density of hydrogen atoms. Thus
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TABLE XXI
PHOTODETACHMENT AND ATTACHMENT CROSS SECTIONS FOR H~

(units of 10-17 and 10-21 .0"!2, regspectively; See Appendix iI)
» (103 A°) Qg (10717 em) Q (10721 o).
1.0 0.33 | .085
1.5 0.57 .101
2.0 0.85 ‘ .117
2.5 1.17 .134
3.0 1.52 | .150
3.5 1.89 .166
4.0 2.23 - .178
4.5 2.55 .189
5.0 2.84 .197
5.5 3.11 .205
6.0 3.35 .212
6.5 3.56 .219
7.0 3.71 .223
7.5 3.83 .226
8.0 3.92 .230
8.5 3.95 .232
9.0 3.93 .232
9.5 3.85 .231
10.0 3.73 .229
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making use of the relations

he d\
|dE] = |h av] = .°2d ,

A

and (9.5)
vV = (2E/m)1/2 s

we obtaln for the rate of photon emission per cm of wave-

length as
1/2 -3/2 -E/kT
dn. 2 2 he
Ra=<awa=nenn7;(a> Qa-)?-(kT) e E,
| (9.6)
or incorporating the units: DD (1017 em3), A (10'5 cm),
Q (10'21 enf), T (104 °kK), E (eV), one obtains
nn.Q -1.161E/T
R, = (1.037, x 10°7) JHle%a g 7 /T (9.7)

2 3/2
N T3/

It is’important to note here that Ra decreases rapidly with
temperature as does Rj, (Recombination), however the rate of
emission due to attachment depends only linearly on the
electron density Ny, while that due to recombination has a
quadratic dependence. It i1s clear that by decreasing the
degree of ionization, one may wash out the recombination con-
tribution in favor of the affinity spectrum.

In Tables XXII - XXIV are given calculated values of

3

rates of emission (i.e. number of photons emitted per cm” per

sec per cm of wavelength), which were obtained from the



TABLE XXIT

CALCULATED RATES OF EMISSION FROM FREE-BOUND TRANSITIONS OF H™

1

(units of ngny x 1022 em~3 see™! cm-l; See Appendix II)

T (10* °k)
X .
(203 A°) .50 .55 .60 .65 .70 .75 .80 .85

1.0 .0000 .0000 .0000 .0002 . 0007 .0023 .0065 .0161 .0359
1.5 .0026 .0111 .0365 .0990 .2311 L4783 .8983 1.558 2.530
2.0 L1496  ,Bho97 9377 1.872 '3.356 5.529 8.503 12.36 17.16
2.5 1.501 3.163 5.822 9.661 14.79. 21.24 28.98 37.90 47.88
3.0 6.408 11.34 18.05 26.49 36.50 47.84 60.25 T3.43 87.12
3.5 16.94 26.47 37.98 51.04 65.22 80.08 95.25 110.4 125
4.0 32.75 46.63 61.87 T77.85 94,01 109.9 125.3 139.8 153.
4.5 52.02 68.86 86.00 102.8 118.8 133.7 147 .4 159.7 17O.
5.0 72.07 90.01 107.1 122.9 137.1 149.7 160.6 170.0 178.
5.5 90.98 108.3 123.9 137.5 149.0 158.7 166.7 173.0 1T8.
6.0 107.0 122.5 135.5 146.2 154.8 161.5 166.5 170.1 172.
6.5 119.4 132.2 142.2 149.9 155.5 159.3 161.8 163.0 163.
7.0 127.0 136.6 143.4 148.1 151.0 152.4 152.7 152.2 150.
7.5 130.8 137.3 1412 143.3 143.9 143.3 142.0 140.1 137.
8.0 131.5 135.0 136.4 136.2 135.0 133.0 130.4 127.5 124,
8.5 128.5 129.4 128.6 126.8 124 .2 121.1 117.7 114;2 110.
9.0 122.8 121.5 119.1 116.0 112.4 108.7 104.8 101.0 97 .20
9.5 114.6 111.7 108.1 104.2 100.1 95.93 91.89 87.98 84.23
10.0 105.3 101.2 96.81 92.35 87.98 83.75 T79.71 75.90 T72.30

AN



- TABLE XXIII

CALCULATED RATES OF EMISSiON FROM FREE-BOUND TRANSITIONS OF H™

" (units of ngny x 1022 cmf3 sec™! em™l; See Appendix II)

T (10" °K)
A
(103 A°) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0 .1376 6.798 42,06 116.4 218.1 329.5 437.2 533.4 615.1
1.5 5.695 56.82 158.0 270.6 368.3 huz .8 495.0 528.6 547.9
2.0 29.59 132.7 247 .4 333.3 386.6 iy, 7 4o5 4 4os .0 nT.7
2.5 T0.37 195.3 286.5 334.2 352.2 352.7 343.7 330.0 314.1
3.0 115.1 232.0 290.0 307.4 303.8 290.7 273.7 255.9 238.4
3.5 153.3 245.9 274.2 271.4 256.2 237.3 218.1 200.0 183.5
4.0 177.3 239.6 245 .2 230.5 210.4 190.1 171.5 155.1 . 140.7
4.5 188.8 223.3 213.8 193.1 171.6 152.1 135.3 121.0 108.8
5.0 189.9 202.0 183.3 160.4 139.5 121.8 107.1 94.91 84.73
5.5 184.6 179.8 156.3 133.2 113.8 98.17 85.52 75.24 °  66.78
6.0 174.6 158.2 132.6 110.5 93.10 79.46 68.69 60.06 53.06
6.5 162.0 138.0 112.2 91.81 76.39 64.63 55.50 48.28 42 47
7.0 147.0 118.8 gl .06 75.78 62.39 52.39 iy 74 38.75 33.97
7.5 132.1 102.0 78.91 62.71 51.16 42,68 36.27 31.29" 27.35
8.0 117.7 87.36 66.25 52.02 42 .10 34.92 29.55 25.41 22.15
8.5 103.5 T4.12 55.22 42,91 34.48 28.46 23.99 20.57 17.89
9.0 90.00 62.47 45 .82 35.27 28.17 23.14 19.44 16.63 14,43
9.5 77 .26 52.14 37.71 28.78 22.86 18.71 15.67 13.37 11.58
10.0 65.76 43 .28 30.91 23.41 18.50 15.08 12.60 10.73 9.276

€ET



TABLE XXIV

CALCULATED RATES OF EMISSION FROM FREE-BOUND TRANSITIONS OF H™

(units of n_n, x 1022 em™3 sec™l em~l; See Appendix II
e H

A
(103 4°)_ 5.5

[
OWVWYW NN\ EEWWN N -

ouviouvuouvouvouwmowmowunounowno

T (10% °k)

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
681.8 T734.4 TTA.7 804.2 824.,8 838.0 845.2 8B47.4 845.7 840.9
556.5 557.5 552.9 S544.6 533.6 520.9 507.1 492.8 478.2 463.6
406.2 392.3 377.4 362.0 346.7 331.7 317.3 303.5 290.4 278.0
297.5 281.2 265.5 250.7 236.8 223.9 211.9 200.8 190.5 181.0
221.,9 206.2 192.8 180.1 168.6 158.1 148.6 140.0 132.1 124.8
168.7 155.5 143.8 133.3 124.0 115.6 108.1 101.4 95.26 89.73
128.1 117.2 107.6 99.24 91.84 85.28 79.45 T4.23 69.55 65.33
98.36 89.43 81.71 T75.01 69.15 64.00 59.45 5540 51.79 u48.54
76.18 68.92 62.72 57.37 52.73 48.68 45.11 41.95 39.14 36.62
59.79 53.85 48.84 44,55 4o.84 37.62 34.79 32.30 30.09 28.12
47.28 42,47 38.41 34,95 31.98 29.40 27.15 25.17 23.42 21.86
37.73 33.79 30.49 27.69 25.29 23.21 21.41 19.82 18.42 17.18
30.08 26.88 24,21 21.94 20.01 18.34 16.90 15.63 14.51 13.52
24,16 21.54 19.37 17.53 15.96 14.62 13.45 12.43 11.53 10.74
19.52 17.38 15.60 14.10 12.83 11.73 10.79 9.960 g9.235 8.593
15.74 13.98 12.53 11.32 10.28 9.400 8.635 T7.969 T7.383 6.866
12.67 11.25 10.07 9.080 8.244 T7.529 6.912 6.37T4 5.903 5,487
10.15 8.999 8.047 T.252 6.579 6.004 5.508 5.077 4.699 4.366
8.124 T.192 6.425 5.785 5.244 4,783 4,386 4.040 3.738 3.472

©et
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attachment cross sections given in Table XXI by means of Eq.

(9.6).

Free-Free Transitions in H~

Early aftemptssS’ss to treat free-free transitions
of H™ were rather unsuccessful sinceAthey incorporated the
Born approximation, which 1s, of course, completely invalid
for the conditions involved here. Considerable improvement

57

was made by Chandrasekhar and Breen who solved for the con-

tinuum states in a static Hartree field. More recently,

58

Ohmura and Ohmura-~, reallzing the possible importance of

exchange and polarization, devised an approximate scheme which

partially includes these effects. Finally, Firsov59 and

Hundley6o have derived expressions for the emitted energy
spectrum, both 1ncorporating ideas similar to those of Ohmura
and Ohmura. These expressions are actually intended for
radiation emitted from electrons colliding with heavy atoms,
and are not directly applicable to hydrogen. However, part
of the present approach will parallel the work of Firsov.

In order to calculate the emission from the electron-
hydrogen atom system interacting with the radiation field,

we must first lnvestigate the continuum states of H". The

system 1s described by the hamiltonilan

2 2 a2 2 e°
1

e e
He-m"1 "% "1 "7, Y1y, (9:8)

which 18 hellum-like, except that the nucleus has only a unit
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charge. A crude cholce for the total eigenfunction of (9.8)
is |

Y(rp,r,) = ¥ (rp) olkiry) , (9.9)

where *ls(;l) 1s the hydrogenic wavefunction for the ground
state, and where m(klrg) represents the unbound state of

momentum ﬁh, and satisfies the asymptotic relation

- -

1k-r, 1kr,

-y o~ l "
e(kiry) ~ e + ] e fls(r?) . (9.10)

The asymptotic relation (9.10) 1is, of course, the familiar
boundary condition for elastic scattering wave functions,l
and the problem of obtaining the continuum-state functions
reduces to that of solving the corresponding elastic scatter-
ing problem, except that in the latter, one 1s normally in-
terested only in the asymptotic form of the wave functions,
while here we wish the wave function in all regions of space.

58

Ohmura and Ohmufa found, however, that for low energles it

is possible to use the scattering cross-sectioh results dir-

ectly in determining theAfree-freg absorption coefficients.
In the standard partial wa&e development, w(EI;Q) is

expanded as1

in, (k)

o 1°{, k
w(k|r2) = ;; ;z 1 (24 + l)PL(cos 92) e fL(kra), (9.11)
=0

where
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E-;a = kr, cos 8 ,
and : (9.12)
!L(krg) ~ %-sin (kr, - tn/2 + n, (k)1 ,

where nL(k) is the elastic-scattering phase shift. When ex-
change effects are considered, i.e., when the total wave func-

tion i1s expressed, in the simplest case, as
Y(7,5) = = { 4 (y) 0,(5) 2 4y (F) 0,(F) J o (9.13)
1,72 /2 1s'\F1/ Yallfo 1s\Tp/ ¥x\T] s .

one obtains two phase shifts nt and nz, corresponding to the
triplet and singlet states, respectively. Low energy electron-
hydrogen collisions have been investigated extensive1y61’62;
calculated cross sections are available which incorporate
exchange, correlation, and strong coupling effects (e.g. in-
fluence of 2s, 2p states on ls-elastic scattering). It is
found that for rather low energies, say less than 13.6 eV,
partial waves corresponding to ¢ > 2 contribute only a small
percentage to the total cross section, while for energies

less than 4 eV, only the partial cross section corresponding

to 4 = 0 1s of great significance.

Calculation of the Transition Probability

In treating problems involving the radiation field,
it is convenient to employ the standard technique of time
dependent perturbation theory63. In this context, the

particles are taken along with the quantized radiation field
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to make up the complete system. As 1s well known, the transi-
tion probability per unit time (for times small compared to
lifetimes of states but large relative to atomic periodé) for
a transition 1 - f, in which either the initial or final

state is free, 1is given to first order by
an t 2
wif = -ﬂ— lHif' p(Ef) ’ (9.1}4)

where Hif is the matrix element between initial and final
states of the interaction part of the hamiltonian and p(Ef)
is the final state density. Thus, for a process in which a
photon 1s emitted while a two-particle system undergoes a

transition from state a to state b, we have

Hp

= (00 ... 1 ... Ob| - ﬁ% (51 + Py)-Elo0 ... 0 ... 0a) ,
(9.15)
where K is the vector-potential operator for the radiation
field, and in terms of the individual quantum oscillators,
is given by
A= EL (unu + QA% (9.16)
where

- - 2 1/2 - )
AA = &, (4me”) exp (iKu-r) ’ (9.17)

and where qu and q: are the familiar photon annihilation and
creation operators, respectively. In Eq. (9.17), éu and Eu
represent the unit polarization vector, and the propagation

th

vector (i.e. |ﬁu| = 2m/\) corresponding to the u“" oscillator.

Inherent in Eq. (9.14) is conservation of energy, viz.
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E =E +hv. (9.18)

Carrying out the integration over the field variables, we
obtain
. 1i-;|a> 2

2
dns = £Y 40- | (b|B-ée

v.J K 2.3, K : (9.19)

where dﬂﬁ is the differential solid angle about the ﬁ axis,
J designates the polarization (two possible), and where p is
the total linear-momentum (i.e. p = 51 + 52). In Eq. (9.19)
we have included for p(Ep), the photon state density (i.e.
number of quantum oscillators per unit volume in the energy

range €, € + de), which is given by

pe de = - de . (9.20)
he

It 1s easily shown that

(®|3la) = - 2miv (b |Fla) ; (9.21)
thus
2 23
Aguﬂe\’ Al o2 12
LR 3. ang [m¢, <, (9.22)

where, in the case where two electrons are involved,

M= (ol|f) +Fpla), (9.23)

and where we have dropped the retardation term exp (12';),

which is insignificant for problems involving nonrelativistic
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energies.64
Since we are not interested in the probability of an
event in which a photon is emitted having a particular
polarization or direction of propagation, we sum over the two
independent polarization directions and integrate over all

directions of propagation. Referring to Figure 18, we have

Figure 18. Orientation of the Polarization and Propagation
Vectors.

Integrating first over @', we obtain




14

em 2 2
S (!n'éll + IM'62| ) de' =
0

2

on {|M2|2 sig o' + %’(IMXI2 + lMyIQ)(l +

cos® 0') } ; (9.25)

the 8' integration then yields
n 8 5
= -~ 2 pyd - 2 ._“ y
§ {lM-e1| + |M-é, | } sin 0' do' de' =3 IM|”.  (9.26)

Thus, for a process in which a particle state changes from a
to b and a photon 1s emitted having energy hv, the transition

probability per unit time 1is given by

- 64 nue2v3 |ﬁ|2

) (9.27)
3
3¢ h

w\)

and the energy radiated per unit time becomes

424
- 2
SV = M_Y._ |M' . (9.28)

3 =
It should be polinted out here, that although the
previous development 1s located in the section concerning
free-free transitions, it 1s perfectly general and Egs. (9.27)
and (9.28) apply to bbund—bound and free-bound transitions
as well. The derivations were placed in this section, rather

than at the beginning of Chapter VII, partly because the
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electron-prbton, radiative processes are so well known that
their derivations are unnecessary, and in order that a more
continuous discussion of the electron-atom, free-free transi-
tions might be presented.

The processes described by Egqs. (9.27) and (9.28) are
distinguished by the form of the dipole matrix element ﬁ. In
the simplest case of bound-bound transitions, both initial
and final state wave functions are normalized to unity. 1In
the case of free-bound transitions, such as electron-
recombination or attachment, the final state is still nor-
malized to unity, while the normalization of the initial free
state is left somewhat arbitrary depending on the 1nterpréta-
tion of wv and Sv' For instance, if the free state is nor?
malized to a plane wave of unit amplitude at infinity, then
Wv 8imply represents the probability per unit time for the
radiative process in which a beam of v electrons per cm? per
sec 1s incident on the scatterer, however if one normalizes
the free-state function so that it approaches a plane wave

of amplitude v'l/2

at infinity, then Wv becomes S, the
familiar cross section for the process. In the case of a
free-free transition, the same discussion applies to the
incident particle state, however the outgoing particle must
be considered differently. We simply inquire as to what kind
of phenomenon we wish wv to describe. For example, if we

wish the cross section for a process in which the final state

consists of a photon and an outgoing electron of a specific
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energy E (i.e. 1n a range E, E + dE), we simbly normalize the
final free étate to unit amplitude at infinity and hultiply
by the number of states per unit volume corresponding to the
energy range E, E + dE. It should be clear then, that nor-
malization of the wave functions appearing in ﬁ is indeed
what indicates the nature of the process one is attempting

to describe.

The Dipole Matrix Element

Specilalizing now to the particular process in which
an electron is decelerated in the vicinity of a hydrogen

atom and a photon emitted, we have from Eq. (9.23)

- *‘ -’ - - - - -— -~ -
m= 0GR G+ 7)) () o a5, . (9.29)

which, in the case where Y takes on the simple form Eq. (9.13),

becomes simply
i- (@R @ Far 2 v £ET 6§ EH T
x 4(F) aF £ | (@) 4(F) F aF (@) F) aF . (9.30)

If exchange 1s ignored in calculating the matrix element,
then one no longer needs to distinguish between singlet and

triplet states, and Eq. (9.30) becomes simply
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H={ 4@ o,@ 747, (9.31)

where ©_(r) and wb(F) are as given in Eq. (9.11). Thus, we

have
® : a ]
- 1 L 1”4 a
® (%) = ;-ngi (24 +1) & * B, (cos ) £2(r), (9.32)
b
iﬂL

P (7) = %-L'Z;ié'(QL' +1) e ' B, (cos @) fy(r), (9.33)

where n> = n,(k,), and where the angles are defined in Figure
4 L\a

19. The z-axls here 1s the axls of quantization for the

Figure 19. Orientation of the Electron Position Vector and
the Final Momentum Vector.

hydrogen atom. From the addition theorem for spherical

harmonics, one can express &, in terms of 6, @ and 8, ¥ (of
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course a, = §) as

4
Pyi(oos o) = it ) Vo g (B9 Y (0,0 . (9.38)

Y
g '

-4
If we define
M, =) GE) 0@ zat,
and | (9.35)
M, = § @) o) stno e aF,
then clearly

= 2 2 2
MI” = M, 1%+ M |7 . (9.36)

Considering Eqgs. (8.32) - (8.35), we find for the

matrix elements

M, = bdme ) 1t(2e +1) {1
i=0

-(4+1 —_—
(4+1) S YL+1,0(9’¢) cos §

b a
o, () f(r) ar

o8

8) dn
X PL(cos 8) YL+1 0(9:¢)

I

-(¢-1) - — - e =
+1 S YL-l,o(e’w) cos 8 P, (cos 8) daQ Y£_l’o(9:¢)
x S f:_l(r) fi(r) dr } ’ (9.37)
o

- - 1
and similarly for M, with cos 8 replaced by sin 8 e w. -Since

we are interested in total cross sections, the direction of
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the outgoing electron constitutes a degeneracy in the problem
"and may be integrated out. For cdnvenience we shall continue
to designate the dipole elements as,Mz and M+ even after
integration over all final electron directions (i.e. over dﬁb).

One obtains then
Im;le = (uﬁ)3e2 Li_ {(2& + 1) (lI(L - 1,1) h (¢ - 1,2) |?
=o | -
S+ T 4+ 1,4) h(t + 1,4)12 ) - [(2t + 1) (2t - 3)1M/2
x I(t - 1,4) hi(4 +1,¢) I(¢ - 1,4 - 2) h(t - 1,4 - 2)

[(22 + 1) (24 + 5)]1/2 I(¢ + 1,1) h:(L + 1,1)

x I(4 + 1,4 +2) h+(4 + 1,4 + 2) } s (9.38)

and

M 1% = (4m)3e? cz {t +1) (1t - 1,4) nyt - 1,4) 2
. =0

F 110+ 1,8 ny(t + 1,012 ) - (2t + 1) (2t - 3)7Y°

X I(4 - 1,8) hy(t - 1,4) I(4 - 1,4 - 2) hy(t - 1,4 - 2)

[(2t + 1) (2t +5) 772 1(2 + 1,4) n¥(t + 1,2)

x I(4 + 1,4 +2) h(¢ + 1,4 + 2) } ) (9.39)
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where | -
I(4 - 1,L) = S fz_l(r) fi(r) r dr , (9.40)
o

and where

19
he(d - 1,4) = SS Yz_l,l(e,w) sin 8 e Yt,o(e,¢) sin 6 ds do ,
(9.41)

. »
h, (4 - 1,4) = SS YL-1,0(9’¢) cos 8 Yé’o(e,m) sin 6 de 4o ;
(9.42)

these are given in Table XXV. Substitution of the expressions

TABLE XXV
_ - (L - 1) 1/2
hy(t - 1,8) [ (2L + 1) (2 - 1) ]

(@ +1)@ +2) /2
hy (L + 1,4) (2L++ 1) (24 + 3) ]

1
[(24 + 1)(2¢ - 1)]

h (Lt - 1,4) =

1/2

hy (4 + 1,4) = (t +1)

[(2¢ + 1)(2¢ + 3)]1/2

from Table XXV into Eqs. (9.38) and (9.39) ylelds

A% = @m3e® ) 4 {lze - 1,08 4 e - 0P} (9.43)
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At this point it is necessary to consider the de-
tailed nature of the radial functions defined in Egqs. (9.32)
and (9.33). In the case where Y(;l,;z) is given the simple
product form of Eq. (9.9), the static Hartree approximation
results, and fi(rg) 18 easily shown to satisfy (in Slater

atomic units)

2 2
dr a r

2 - dr, 1
R RN UG R/ LS
2 2 (9.44)

where the asymptotic condition becomes, from Eq. (8.12),
a 1 a o
fL(rz) ~‘ka sin (kar2 - /2 + mg) . (9.45)

Chandrasekhar57 treated this problem numerically, and ob-
tained values for the continuous absorption coefficient of H™
which were later shown to be somewhat too large. It was

58 that, since exchange and

pointed out by Ohmura and Ohmura
correlation effects are found to be important to the bound
state of H™, they méy also be significénf iﬁ the free state
determination. They then suggested an approéch in which only
the asymptotic form of fo(r) is used in calculating the di-
pole matrix element. This of course includes the phase shift
no(k), which can be made to include such effects as exchange
and electronic correlation. Matrix elements determined in

this manner were compared, using the static Hartree phase

shiffs, with the numerically determined matrix elements and
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found to agree within = 1% throughout the energy range of
consideration. Using more accurate phase shifts, consider-
ably improved absorption coefficlents were obtained with re-
gard to solar opacity measurements. In the above technique
only s- and p-waves (i.e., 4 = O and 4 = 1) were considered
and the phase shift for 4 = 1 was taken to be zero (i.e.,
Born approximation is used for p-wave); both are good assump-
tions for small energies.

In order to further examine the asymptotic'approxima-
tion, the author considered a three-dimensional spherical
potentlial-well problem. The well was assigned a depth ki and
a radius a such that the resulting elastic scattering phase
shifts agreed fairly well with those of electron-hydrogen
scattering results. Since it is possible to solve such a
problem exactly, matrix elements evaluated by the asymptotic
approximation (i.e. asymptotic s-wave function and Born
approximation for p-wave) could be compared directly with the
correct results. We consider only the ¢ = 1 term in Eq.
(9.43); thisvassumptioh is valid for low energles and was
used by Ohmura and Ohmura in their work. For incident
energles between 2 and 6 eV, the errof in Iﬁl2 was found to
lie between 0.3 and 2.0%, the larger of the two corresponding
to 6 eV. It was also shown that by far the greatest source
of error was not the asymptotic assumption for the s-wave,
but the Born approximation for the p-wave (i.e. the assump-

tion that M, = 0). This 1is quite easy to understand, since
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the asymptotic form for the s-wave deviates from the true wave
function only in a small region where the potential is still
effective, i.e. where r 1s still rather small, while the
neglect of the p-wave phase shift has a cumulative effect on
the dipole matrix element. One concludes, then, that the
above approximations are well within the desired accuracy.
Details of this investigation will be presented in Appendix I.

Incorporating the approximations discussed above, we

find the s- and p-wave functions to be given by

b 1 b
fo(r) = E; sin (kbr + ) (9.46)
a 1 sin kgr
fl(r) = E; { cos kaP - ——E;;r—'} (9.47)

Thus from Eq. (9.43), we have that (keeping only the 4 = 1

term)

-2 . 3 c b sin kgr 2
M|~ = éET%' {l é sin (kbr + M) [cos kv - __E;;—- ] r dr|

a

c sin kyr
+ | S sin (kar + nz) [cos k,r - b ] r dr |2 } .
)

r
(9.48)
Carrying out the elementary integrations, one obtains
2 .b - 2 .a
-2 L) p sin® n o 8in® 7
M7 - () 250 To 42 00 To ] (9.49)
(k2 ka)u 2 k2
a - “b ky, a

Relating o to the s-wave partial cross section by
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4n

0o (k) = -5 sin® no (k) (9.50)
' k
we obtain
22 64
M| = = :2)4 (12 o + k% o3) . (9.51)
B ¢

Emission Spectrum

In calculating the dipole matrix element, the con-
tinuum function representing the outgoing electron was nor-
malized to a plane wave of unit amplitude at infinity. In
order to obtain the energy per unit time of frequency v
emitted in a process where electrons go off with momenta in
the range ky,, ky + dky, we multiply by the final electron

state density

k% dky,

3 F} (9- 52)
(em)
or, in terms of the kinetic energy,

/2 w2 1/

o3 3 E" dE . (9.53)

Now, combining Egs. (9.53), (9.51) and (9.28), we have

1/2

4 2 4 3/2 d
as, = 64 12 < 64 g Y > < /2 m Ez zbu
30 G R L (e
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4/2 G.f

3n02m3/2

¢ dE_ (E, og + By oo) (9.54)

where a, 1s the fine structure constant (a, = 7.29720 x 1073),

Using the energy conservation relation

h\) = Ea - Eb ¥ (9'55)
59

we can write

as,, = (

4 /2 a

L (EYRG-BY R

Q-2 ) o2 Ja(m) , (9.56)

where we are thinking of a particular incident energy Ea
IdEbI = d(hv)). In Eq. (9.56), the units are clearly

erg-cm‘j’-sec:"l

3 thus one may interpret 43, as the emltted
energy per sec per cm3 of frequency v, v + dv per incident
electron per hydrogen atom.

Since in discharges of various types and luminous
regions of a shock, one does not have a mcnoenergetic beam
of electrons, but rather a distribution (to a good approxi-
mation Maxwell-Boltzmann) described by an electron temperature
T, it 1s necessary to weight dSv accordingly and integrate
over all incident energles greater than hv, Thus, the frac-

tion of electrons having kinetic energies in the range

E, E + dE at temperature T is given by
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-3/2 e-E/k‘I‘ E1/2

2
f(E,T) dE = 7;-(kT) dE , (9.57)

and we have

as (1) = ( 572 o ) Gkt 2d(hv) {hS T (1 - >1/2
: \Y

22 E
3(mm)>/
¢ -E/kT 3/2
x o E° aE +hS e G-Z2)Y "2} (9.58)
v

We have obtained an expression for the emitted power
spectrum which now depends on the detailed nature of the
particle interaction only through the s-wave partial cross
sections corresponding to the initial and final kinetic

60

energles, Firsov59 and Hundley~~, who were investigating

emission ffom electron collisions with heavy atoms, assume

at this point that 02 = Og = const., and factor this out of
the integrals, thereby obtaining the result that the radlated
energy 1s proportional to the elastic scattering cross sec-
tion. Clearly such an assumption 1s invalid in the case of

hydrogen.

Electron-Hydrogen, Elastic Scattering Cross Sections

As was mentioned earlier, elastic scattering of elec-
trons and hydrogen atoms at low energlies 1s quite complicated
since the continuum wave function of the electron strongly
penetrates the atom (viz. s-waves most important), consider-

ably distorting the atomic charge cloud, and exchange effects
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are significant. A considerable amount of work has been done

in connection with electron-hydrogen elastic scattering,

61,62 66,67

including calculations and laboratory measurements.

Since high accuracy is really not warranted in this
investigation, 1t was assumed satisfactory to fit an approxi-

mate curve to the s-wave partlial cross sections given by

68

Bransden et al. It was found that a satisfactory fit could

be made with the sum of a rapldly decaying and a slowly decay-

ing exponential of the form

e-BE)

o(E) = A(e-aE + B , , (9.59)

where a = ,1471 eV'l, B = 1.8382 eVv'l, B=2.5, and A =
20 nag. A comparison of o(E) from Eq. (9.59) and as given
by Bransden et al. is given in Table XXVI. The agreement is

satisfactory for our purposes.

TABLE XXVI

THE ELASTIC CROSS SECTION OO(E) AS GIVEN BY BRANSDEN
ET AL. AND BY EQ. (9.59)
k2 UQ c’O
units of 13.6 eV - Bransden et al, Approximate

0.0025 _ 63.8 66.9

0.01 53.6 58.7
' 32.4

0 20.5

0 13.7

0 11.0

.5 8.99

0

0

7

Q
(8
w
N
wm

6.02
4.0k
2.70

HOOOOOOO




155

Integration over the Boltzmann Distribution

From Eqs. (9.58) and (9.59) we obtain

8 /2 ap '3/2 ahv
ds,, (T) <3(ﬂm)3/2c2 > (k) A d(hv) {(1 +e  )gy(a,v)
+B(1 +e"™) g,(8,v) - g1 (a,v) - Bey(8,v) } , (9.60)
whe:.r'e69
c 1/2  -(a+1/kT)E
gq(a,v) = 2 E(1 -2, dE
1 (kT)3 151\) ( E >
= ai e 2 S [E(8 + l)jll/2 e-a§ dg
(o]
ag -a/2 '
=2 Ky (a/2) , (9.61)
and
< 1/2  _
2o (a,v) = . S §2 (1 - h_Ev o~ (a+1/kT)E .
(kT)° hv

( i ag. (a,v)
= a<3> e™ S (8 + 1)[8(% + 1)]1/2 e 2% 4e = _nv g, (
° da
ad -a/2
-2 e [(2 +a/2) K, (a/2) + (a/2) K (a/2)] ,
2a
(9.62)

with




and (9.63)

a-m(asl).

The expressions for glfs,v) and gz(B,v) are obtained from
Egs. (9.61) and (9.62) with a replaced by B and a féplaced

The functions Ko(a/z) and Kl(a/2), of course, are the modified

Bessel functions of the second kind of order zero and one,

respectively.
Incorporating units such that we have ne,nH in
1017 em=3, A 1n 103 A°, T in 10* °Kk, and A 1n na2, and
employing the relationship
as, (1)
=40 1y 6
R=2 """ X am) (9.65)

one finds for the number of photons per cm3 per sec emitted

per unit cm of wavelength to be given by

22 n.n T3/2A '
Re = ( %‘% )f = (2.8539 x 10 ") _LHT— a(v,T)

x em™> see™d em~! , (9.66)

where G(v,T) corresponds to the expression within the curly
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brackets of Eq. (9.60). In these units, a is given by

a = %-(12.3946 a +-154%§§I-> s

and similarly for b, with a replaced by B.

It 1s important to observe that H , free-free emission
increases linearly with Ne and quite strongly with temperature
(@(v,T) increases with T for smaller values of T).

In Tables XXVII and XXVIII are given rateé of
emission (i.e. number of photons emitted per cm3_per sec per
cm wavelength), calculated from Eq. (9.66). We should bear
in mind, that in the above analysis it has been assumed that
the p-wave phase shift is zero. This assumption is good for
low energies, say E < 8 eV, but for T = 100,000 °K, the
electrons have an average thermal energy of ~ 10 éV, and the
p-wave phase shift 1s no longer negligible. This could cause
us to underestimate the emission somewhat. 'However, it 1s
known that the phase shifts of Bransden et a1.68, which are
used, somewhat overestimate the elastic cross section.66

Thus, we might expect a partial cancellation of these two

errors.




TABLE XXVII

CALCULATED VALUES OF THE RATE OF PHOTON EMISSION

FROM FREE-FREE TRANSITIONS IN H™

(units of ngny x 10°2 em~3 sec-? em™1)
T (10% °k)
A (103A°) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
2.0 .6723 21.01 41.49 65.00 89.15 112.4 134.0 153.5
| 2.5 1.733 27.69 48.24 69.71 90.41 109.5 126.5 141.4
3.0 3.059 31.65 50.89 69.90 87.53 103.3 117.1 129.0
3.5 4.399 33.66 51.25 68.00 83.15 96.47 107.9 117.7
4.0 5.603 34.41 50.39 65.21 78.41 89.85 99.61 107.8
4.5 6.612 34.39 48.90 62.13 T73.77 83.77 92.22 99.26
5.0 7.417 33.90 47.13 59.04 69.42 78.27 85.71 91.88
5.5 8.037 33.14 4s 26 56.06 65.41 73.35 79.98 85.45
6.0 8.498 32.23  43.39 53.26  61.76  68.94 - Th.92  T79.83

84T



TABLE XVIII

CALCULATED VALUES OF THE RATE OF PHOTON EMISSION FROM FREE-FREE TRANSITIONS IN H™

(units of ngny X 10°2 em=3 sec™l em™1)
r (10% °k)

(}03XA°) 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.
2.0 170.7 185.7 198.7 209.8 219.1 226.9 233.3 238.4 242.5 245,
2.5 154.3 165.2 174.5 182.1 188.4 193.5 197.5 200.6 202.9 204.
3.0 139.0 147.4 1544 160.0 164.6 168.1 170.9 172.9 174.2  175.
3.5 125.8 132.5 ~ 138.0 142.4 145.9 148.5 150.5 151.8 152.6 153.
4.0 114.6 120.1 124.6 128.2 130.9 132.9 134.4 135.3 135.8 136.
4.5 105.1 109.8 '113.5 116.4 118.7 120.3 121.4 122.1 122.4 122,
5.0 96.91 101.0 104.2 106.7 108.5 109.9 110.7 111.2  111.4 111,
5.5 89.90 93.45 96.25 98.39 99.97 101.1 101.8 102.1 102.2  102.
6.0 83.80 86.96 89.43 91.30 92.66 93.60 94.17 94.43 o4 .44 94 22

O W & O O O U o |O
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CHAPTER X
COMPARISON OF RADIATIVE PROCESSES

It 1s well known that the careful examination and
interpretation of radiation emittéd from a plasma can be an
important tool for the determination of internal properties,
such as electron density and temperature. 1Indeed, a mul-
titude of techniques have been developed for extracting such
information from various line intensities, widths, and con-
tours, as well as relative intensities of different'lines,
and relative intensities of lines and adjacent regions of the

70,71

continuum, Several of these methods depend strongly on
the presence of local thermodynamic equilibrium (LTE); this
is to ensure that the relative populations of energy levels
are related by the Boltzmann factors. It is known that under
ceftain conditions, the populations vary significantly from

a Boltzmann distribution,72 and generally no simple relation
exists between the electron temperature and the relative popu-
lations of bound and free states (e.g., the Saha equation is
no longer applicable). In such cases it may be helpful to
compare the measured continuum intensities with those calcu-
lated under a variety of conditions, and in such a way obtain

an indication of the magnitudes of the electron temperature

160
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and electron density.

Emission Spectrum

The tables given in Chapters VIII and IX were used
to graph representative curves giving rates of emission
corresponding to each of the four processes contributing to
the continuum of hydrogen. In Figures 20 - 38 are given, on

a semi-log plot, the rates of emission R (in units of n2 X

1025 em™3 see™d em! wavelength, where n is the total particle
density (1.e. n = ny +n,), in units of 10'7 em™3) for the
four processes: recombination (r), proton-electron
bremsstrahlung (b), free-bound, H™ spectrum (fb) (See Ap-
pendix II), and free-free, H~ spectrum (ff). The curves
corresponding to recombination (r) and bremsstrahlung (b)

must still be multiplied by a°

, Where a 1s the degree of
ionization (i.e., ng = on, ny = (1 - a)n, and the curves for
free-bound (fb) and free-free (ff) must be multiplied by
a(l - a). Alternatively, one may simply think of the re-
combination and bremsstrahlung curves as being given in units
of ng X 1025 em™3 secl cm'l, and those of free-bound and
free-free emission in units of NNy X lO25 cm'3 sec'1 em™L.
The abscissa of each graph 18 scaled by the wavelength A,
given in units of 105 A°.

Because of the shifting of the ilonization potential
with electron density, the recombination emission has a some-

what complicated dependence on Ne. However, for moderate

densities (i.e. Ne < 1017), variation of the ionization
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potential has a rather small effect. For comparison, curves
have been given for four representative electron densities:

N, = 1015, 1016, 1017, and 10'® em3 (1.e. n

e = .01, 0.1, 1.0,

10., respectively).

In Figures 39-46 are given, on a log-log plot, calcu-
lated values of rates of emission R (in units of 10°7 em™3
sec™t em™t wavelength) for a total particle density of N =
1017 em™3 (n = 1,0) and several values of T, in terms of a,
the degree of ionization. Figures 39, 41, 43, and 45 corres-
pond to A = 3000° (X below Balmer 1imit), and Figures 40, 42,
44, and 46 to X = 5000° (A above Balmer limit). Curves are
given for recombination (r), bremsstrahlung (b), free-bound
(fo) (See Appendix II), free-free (ff), and the sum of the
four processes, denoted by s. In order to investigate dif-
ferent total particle densities N (i.e. different pressures),
one may Scale the rates given in Figures 39 - 46 by n2 (1.e.
N x 10'34); this 1s, of course, only approximate for the re-
combination curves, due to the shifting of the ionization -
potential with electron density, however, eicept for Ng 2
1018, the error is small. The curves may easily be extended

for higher degrees of ionization, by means of the tables in

Chapters VIII and IX, and by recalling that

22 = o®n?

NeNy

(10.1)
NNy = a(l - a)n2 .

It should be mentioned, that the results given in
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Figures 20 - 38 are in no way restricted to a pure hydrogen
plasma, If other components are present, then in general the

relation n, = ny; does not hold, and henceuit is impossible

e
to define an a satisfying Eq. (10.1), since charge neutrality
may be maintained by means of ions of the other components

as well as protons. In such cases, the contribution to the
total emission, due to hydrogen, is obtained by multiplying
the recombination (r) and bremsstrahlung (b) results by NeNy s
where n, gives the proton density, and the free-bound (fb)

and free-free (ff) by NgNy.

Dependence on Electron Temperature and Electron Density

The emission from a highly ionized (say 2 50%)
hydrogen plasma 1s, of course, mainly due to recombinatiqn
and proton-electron bremsstrahlung (Dissociation of Hé is
practically complete for temperatures of interest here.).
Recombination 18 a rapidly decreasing function of temperature,
as seen in Eq. (8.12), while bremsstrahlung increases with
temperature over a certain range of T, due to the exponential
dependence shown in Eq. (8.18). Bremsstrahlung is of con-
siderably more importance beyond the Balmer series limit,
where the recombination intensity has dropped off. (Recom-
bination into the n = 2 state does nbt contribute to the
emission for wavelengths beyond the Balmer series limit.),
however for large temperatures it is quite significant on
both sides of the limit.

In cases where the ratio n,/ng (1.e., /(1 - a)
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a purely hydrogenic plasma) is much less than unity, the
effecté of the negative hydrogen ion become important. The
relative temperature dependence of the free-bound and the
free-free processes is similar to that of fecombination and
' brémstrahlung, the free-free emission becoming important at

higher temperatures.

The Free-Bound H~ Continuum

In order to observe the free-bound continuum (affinity
spectrum) (See Appendix II), it 1s necessary to maintain
conditions such that the emission due to recombination and
bremsstrahlung is weak (viz. high neutral density, but low
degree of ionization). In a plasma possessing local. thermal

equilibrium, the neutral particle density, ion density, and

the electron density are related by the Saha equation.71’73
eni 5.050 V4
log, g =-—5 — t1.5log T+ 15.385 , (10.2)

~Where V1 i1s the ionization potential in volts, and where the

total pressure 1s given by

In cases where ng, = ny (viz., a one-component plasma with no

strong external fields), we have

= ) =5. 050 =5.050 V3

1oslo( +2.5 log, T - 6.5, (10.4)

where
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X = ng/n =ng/n .
One can see from Eq. (10.4), that low values of ny and ng are
favored by large pressures, and consequently large neutral
particle densities.
The appropriate conditions have been found to exist
in high pressure, hydrogen-arc discharges at temperatures of

the order 10,000 to 15,000 °K.2%2

Lochte-Holtgreven and
Nissen7u found that in a water-cooled hydrogen arc at pres-
sures of .4 to 1.0 atm. and temperatures of 10,000 to 12,000
°K, the observed continuum was, on the average, twice aé
strong as that due to recombination and bremsstrahlung alone.
It was concluded that the free-bound, H™ continuum made up
the difference, and in fact, theoretical calculations showed
this to indeed be the case.75 Several other similar experi-
ments have been carried out involving pressures up to 1000
atm., in which case, the emission 1s very close to that of a
black body.22 At these higher pressures, the free-bound, H~
continuum is several times stronger than that of H.

It might be well to point out, that in the above work
extensive use was made of the fact, that for cases where
thermal equilibrium is present, the emission, and absorption

coefficients are related by22

€

v
K, - By(T) , (10.5)

where Bv(T) is the Planck function, and 1s given by
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el

B (1) = 20V (DVAT _ gy-1 (10.6)
This is Kirchoff's radiation law, and is simply a statement
of thermal equilibrium of the particles. It is important to
realize that Eq. (10.5) does not require thermodynamic
equilibrium of the radiation itself (i.e., need not have
black-body radiation). The relation given by Eq. (10.5) is
quite useful, since extensive calculations of absorption
24

coefficients are available; however, one must be certain
that the system 1s in thermal equilibrium.

| Suitable conditions for the observation of the H™
continuum have also been obtained by Weber'76 in a diaphragm-
type shock tube, filled with a H-Kr mixture in the low-
pressure section and pure hydrogen in the high-pressure
section. The discontinuity‘at the Balmer 1limit was found to -
be 25%, which is in approximate agreement with theory; in the
absence of any H™ continuum, the intensity would Jjump by a
factor of 30. The measurements were made behind the reflected
shock wave, where the temperature was approximﬁtely 8600°K,
and the densities were found to be: Ng = 4.8 x 1016, Ny =

8.3 x 1018, = 3.9 x 1012, Ny = 1.45 x 1014, Ng, = 1.66

Ht

x 1012, and N

free-free transitions in H™ was of course assumed to be

+ = 4.4 x 1016 em™3. The contribution from

negligible because of the low temperature.

The Free-Free Continuum

Of the four processes discussed in this work, the
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most difficult to observe is clearly that corresponding to
free-free transitions in H-. Quite unlike the affinity spec;
t;um, where appropriate conditions can be realized in an
equilibrium situation, the free-free, H™ continuum 13 import-
ant only in cases where the electron temperature is high
(e.g. 25,000-50,000 °K) and the ion density low. Probably,
only in cases of non?thermal equilibrium, can such conditions
be met.

Hamberger,77 in a study of intensity modulation of
Bﬁlmer light from a high-frequency discharge, obtained condi-
tions conducive to the appearance of the free-free, H™
continuum. At low pressures (~ .2 mm Hg), rather high elec-
tron temperatures result from the acceleration of the elec-
trons in the rf field, while the electron density remains
low., Typical conditions are given by: P = 0.2 mm Hg, Ny =

ol cm'3, where the electron temperature

1016 cm'3, Ne =1
was estimated to vary between 3 and 9 eV, at 1.5 x 108 eps.
Although no measurements were made on the continuum, it was
observed to be relatively strong.78 From the above dis-
cussion, we would conclude that, under these conditions, re-
combination and proton-electron bremsstrahlung contribute
practically nothing to the continuum, which is then almost
entirely due to free-bound and free-free transitions in H-,
with the free-free emission being somewhat the stronger of

the two.
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CHAPTER XI

TRANSITIONS BETWEEN FINE-STRUCTUBE LEVELS IN MERCURY
RESULTING FROM ELECTRON IMPACT

The careful analysls of gas discharge, or electron
beam experiments requires accurate knowledge of transition
probabilities between different levels, as well as population
densities of these levels. Because of the great number of
simultaneously occurring processes, determination of these
quantities 1s extremely difficult. In cases where free
electrons are present, these electrons may collide with atoms
causing excitation (collision of the first kind), or they may
collide with atoms in excited states causing de-excitation
(collision of the second kind), neither process involving the
absorption or emission of radiation. Cross sections for
these processes are necessary for a complete description of
the experiments.79’80

In mercury, the ground state is 6180 corresponding to
the configuration 5d10682. In the triplet system, as a result
of the spin-orbit interaction, the first excited configuration
5dlo6s(3s)6p produces three states 63Po, 63P1, and 63P2,
corresponding to J = 0, 1, 2, respectively; these are

identified in Figure 47. As a result of the strong spin-
195
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orbit interaction, there is some mixing between the states

i
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Figure 47. Energy levels of Mercury

63P1 and 61P1 (1.e., S 1s not a completely good quantum num-

).81 Consequently, the transition 63Pl - 6180 is op-

ber
tically allowed, and produces the familiar 2537 A° resonance
line of mercury. The levels 63PO and 63P2, which are also
populated by electron impact, are metastable, and do not
contribute directly to the radlation field. However,
collislon-induced transitions between these states and 63P1
can alter the population densities and in such a way influ-

ence the radiation. We wish to calculate approximate cross

sections for such transitions.

Wave Functions for the 6P o States of Mercury

0,1,

Because of the extreme complexity of this atom, it is
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approximated here by a helium-like, two-electron system. The
antisymmetric basis functions for sharp spin, and orbital

angular momentum (S = L = 1) are well known to be given by

1
Yimimg = 72 ['6pm(1)'63(2) ) '6pm(2)'68(1)] cp1“'3(1’2)'(11.1)

where

'68(1) = R6S(rl) Yoo(f'l) ’

) (11.2)
Yoom(1) = Rgp(ry) ¥y (F))

and where @, (1,2) 18 a member (corresponding te S = 1) of
s

an orthonormal set of basis functions in a two-particle spin

space. The radial functions in Eq. (11.2) will be discussed

below.

-y -y -

Since the total angular momentum J = L + S 18 a con-
stant of motion, wave functions accurately representing the

system may be chosen to be eigenfunctions of the operators

J2 and Jz. Such functions are easily obtained by means of

the Clebsch-Gordan coupling scheme, namely82

ISJ

= c v . (11.3)
LSIM mit mmgM "LmSmg

Y

These functions are tabulated in Table XXIX in terms of 'LmSm'
s
(written as Yom ) for the special case L =S = 1. It should
s
be mentioned that no singlet-triplet mixing is shown for the

J = 1 state. Penney83 has considered this and found the
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TABLE XXIX

EIGENFUNCTIONS Y ;. IN TERMS OF LmSmg BASIS FUNCTIONS
(WRITTEN AS §__ ) FORL = S = 1
mms

J=2
Y122 = 11
1
Y1901 =72 (Y30 * Yor!
1
1100 = 7g (V1.1 * @ *+ ¥ 4,)
1
Y121 =78 (oo + ¥00)
Y1102 = Y101
J=1
Yiiqg = o (g - V)
12111 = 75 (Y10 " Yo
1
Y1110 = 72 (’1-1 - V,)
= 1 -
Ylll-l /2 ('0-1 ’_10)
J=0
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- mixing to be small. In any case, 1f exchange is ighored in
the scattering problem, then this singlet part will make no
contribution to the cross section, and its effect will merely

be to change the normalization of the bound-state function:

slightly.

Radial Punctions

The radial functions Rg, and R6p from Eq. (11.2) may
be expected to be rather complicated nodal functions.

84 by means of a self-consistent-field analysis, ob-

Hartree,
talned a numerical result for the ground state function.
Improved ground-state functions have been found, incorporating

85

the relativistic correction, and calculations have been
carried out for several excited states of mercury, in partiec-
ular the states: 6p, 6d, 7s, Tp, and 7d.86

In this preliminary investigation, we assume that the
functilons RSs and R6p do not differ much in the region of
space important to the scattering problem. Also, we know
from the discussions in Chapters I and III, that partial
waves corresponding to large values of 4 are sensitive only
to the asymptotic form of the orf-diagonai matrix elements.

J
matrix elements behave asymptotically as

For 3P - 3P transitions, it will be shown that these
Jl

ey R0 ~ X (6o lP l6p) (11.4)
r

Thus for large {, one would expect good results if an
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approximate function could be found for RGp wh}ch would give
accurate values for (6p|r2|6p). "However, it is anticipated
that for a problem 1nvolvihg matrix elements which behave as
shown in Eq. (11.4), the dominant partial wave will probably
correspond to smaller values of 4, say £ = 1, or 2. Thus,
the chosen radial functions should behave properly in a
region somewhat closer to the nucleus of the mercury atom.

With this in mind, a rough calculation of T was made,
using Hartree's SCF function;84 it was found that

— H ~
Ty = <368|rlngs> = 3.4k a . - (11.5)

As a first trial funetion then, we consider the Slater

nodeless orbital87
n+% ==L
1 22 n-1 n
R =--—---(-ﬁ-> r e , (11.6)
(2n)!

where n < principal quantum number, the partlcular value de-
pending on the size of the quantum number, and where the ex-

pectation value of r is given by

7, =20+ 1) (11.7)

2Z )

87
In the case of Rg, and R6p’ a reasonable choice is n = 4,

Then, equating T, from Eq. (11.7) with Ty from Eq. (11.5), we
obtain
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18
Ca 3.44 ,

and

Z = 5,233, (11.8)

The corresponding normalized radial function is given as

e'1'398r . (11.9)

Rgg = Rgp = (.378)

This function 1s compared with that determined by Hartree in
Figure 48. (The solid curve is the Hartree function and the
dashed curve, the approximate function given in Eq. 11.9.)

Agreement is seen to be satisfactory in the region surround-

ing T.

Electron-Collision Problem

We now consider the problem of a free electron in-
cident upon this two-electron system. The hamiltonian is
given (in Hartree a.u.) by

1 2 2 2 1 1 - - -
where
V(P Ty P) = =B 2 (11.10)
Ir -1 I - 2|

In the approximation where exchange is ignored, the total
wavefunction describing a continuum state of the three-
electron system, where the atom was initially assumed to be

in the state 63PJ,M,,V15 assumed to have the form!




Figure 48. Comparison of r Rg, Calculated by Hartree's Func-
tion (solid curve) and a Nodeléss Orbital (dashed curve).

. 202
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Y(J'M'lr,rl,rz) = Jz; Fyy (3'M'|T) YllJM(rl,rz) . (11.11)
3

In Eq. (11.11), angular momentum coupling between the atom
and the incident electron has been neglected. Schrddinger's

equation becomes (in Slater a.u.)

(v + k§ - U(IM,JM)] Fyp(7) = E:U(JM,J'M') Fyige(T)
J'M
(11.12)

where

* . g -t -t - -t - -,
U(IM,I'M') = 2 SS YllJM(rl,rg) Viryry,r) ¥, 2 (rysry)

X dr; drp d012 ,

__ 4 s o 1
=-= 6(IM,J'M') + 4 SS YllJM(rl,re) ]ETTTEE_-

| Y110 (FpsTy)
1 .

x d?l d;a oy, (11.13)

where d012 represents the volume element 1n spin space.
Evaluation of the matrix elements from Eq. (11.13),
using the functions given in Table XXIX, 1s straight-forward,

and one finds

U(IM,TM') = 20y, (6% |2) + yo(6p°Ir) - 2 1 8(am,T'H")

+ UJM’J'M' ) (ll.lu)

where
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| c 2 r2 dr
v (62]r) = § Rgg (ry) 2—2L,
o] > .
(11.15)
2 r drl
y, (60%|r) Snsp (ry) 221
>

and where the matrix U is given in Table XXX, The

JM,J'M!
entries in this table must all be multiplied by the common

factor
2 /’n (6p2 lr) , | (1‘1.16)
5 V5
where
® 2 2
> ) re T drl
¥, (60° Ir) = | Rgp (r)) —s. (11.17)
o) ry

One has the asymptotic relation

y2(6p |r) ~ -f; S Rgp(rl) r? ar, . (11.18)

Two-Channel Approximation

The angular dependence of the functions U(JM,J'M')
makes solution of the coupled partial differential equations
given in Eq. (11.12) extremely difficult. In view of the
nature of the approximations already introduced, it 1s rea--
sonable to seek only an approximate solution. Recalling that
in time-dependent perturbation theory, transition probabilities
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TABLE XXX

THE MATRIX UJM,J'M'

All entries should be multiplied by (2 /n/5 /5) y, (6p° |v) .

J'=0 J'=1
M'=0 | M'=1 M'=0 M'= -1 -
J=0 M=0 0 0 0 0
M=1 0 Y0 /3 Y, 4 /6 Y, ,
J=1 M=0 0 -/3 Y, -2 Yéo - /3 Y2_1
J' =2
M' =2 M' =1 M' =0 M'= -] M = -2
J=0]
M=o |22 Yp|-2 /2 Y5, (-2 /2 Yoo | -2 /2 Yo_q |-2 /2 ¥, 5
M=1]| - /6 Yo, -3 ¥, -3 Y, 4 - /6 Y, 5 0
I=1) 2 /3¢ /3 Y 0 -/3Y -2 /3 Y.
M=20 22 21 2-1 2-2
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TABLE XXX (continued)

J' =2
M'=2] M'=1 |[M'=0 | M' = -1 |M' = -2
M=2]-2Y,, | -/6Y,,(-2Y,, 0 0
M= 1|6 ¥,, Yoo | Yoy |-V6 Y, 0
J=2 M=0|-2 Y, Yo, | 2¥ Y,, |-2Y,
M=-1l 0 | -/6Y, | -ty Yo |6 Y,
M=-2| O 0 2y, |-V6Yy | 27,
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are proportional to the absolute squares of the pefturbation
matrix elements,63 we conslider the angularly independent

functions given (for J ¥ J') by

2
U(3,J") = {ﬁ ) }r;' lu(am,a'm) |2 }l/ . (11.19)

The factor (2J' + 1)1, and the sum over M' are introduced to
take into consideration the averaging over initial degenerate
states, while the sum over M is related to the summing over

all final degenerate states, For the transitions 3P1 - 3P2

and 3P° - 3P2, we find

1) = Uy =Ly, (6P ) (11.20)
and
2 /2
U(2,0) = Uyo = 5222 3, (65 1) . (11.21)

The diagonal matrix elements in cases of close cou-
pling usually have a rather slight effect on the partial cross
sections, at least for large values of 4. For instance, in
a case where exact resonance 1s valid, the partlal cross sec-
tions for a two-channel problem are proportional to sin2 ('qL
- §,) as shown in Eq. (1-23). The phase shifts n, and &8,
are determined from the functions F, + F, and F, - F_, res-
pectively, These functions satisfy differential equations
differing only in the sign of the off-diagonal element (see
Eq. 1.20). We now make the approximation of averaging the




208
dilagonal elements over 6,9, thus retaining only the spheri-

cally symmetric part'common to all J,M, namely
2 2 4
U(IM,IM) = 2y (65 |r) + 2y, (6p°|r) -= . (11.22)

The functions yo(652|r) and yo(6p2|r) are found to contain
pure 1/r terms, Eausing U(IJM,JM) to behave exponentially.
Incorporating the matrix elements given in Egs.
(11.20), (11.21), and (11.22), we are able to reduce the
problem to one of two channels. The corresponding differen-

tial equations are given for the transition 63Pl - 63P2 by

- Uy )F; (7) = U, F, (%)
2 (11.23)
2

- Upp)Fo () = U,,F, (7) ,

where, according to Eqs. (11.19) and (11.22), Uy = Upp and
U =U

12 21°
Figure 47), we make the additional assumption that k, = ko.

Considering the closeness of the levels (see

With these simplifications, one may easily decouple Eqs.
(11.23), obtaining

=
(v 4+, -y TUF(F) =0, (11.24)

where

F'(r) = F; (7) £ Fy(7) . (11.25)
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Because of the spherical symmetry of the matrix elements,
F#(;) may be expanded in the form

1

Fi(§) = %- 2:1L(2L + 1) e L Py (cos 8) Ff(r) s (11,26)
1

and Eqs. (11.24) reduced to

( Q—§-+ ke - ﬁi&—%—il-- U, F Uy, > Fi(r) =0 . (11.27)

dr r

Since, according to Eq. (11.18) the matrix elements fall off

faster than l/r2 for large r, the phase shifts ﬂ: may be

determined from the asymptotic relation

0 = () [oon 5,50 + ()" stn 0]
(11.28)

~ % sin (kr - in/2 + ﬁf) . (11.29)

The expression (11.28) is valid when the matrix elements are
much smaller than 4(4 + 1)/r2, while (11.29) holds only for
very large values of r (for 4 > 0) such that the matrix
‘elements and £4(4 + 1)/r2 are negligible compared to k2.
Clearly, for numerical work, (11.28) is the more practical

of the two.

Solution of the Differential Equations

Because of the complexity of the matrix elements, it

1s necessary to apply numerical methods in order to obtain
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solutions of Eq's. (11.27). A technique devised specifically
for second-order, linear equations is that of Numerov.88
In the Numerov method, 1t is first necessary to obtain
solutions of the equations at two points, say Ff(ro) and
Ff(rl). Application of the method of Frobenius to Eq's.

(11.27) shows that for small r,
441
i) =4t r 7, (11.30)

where Ai is an arbitrary constant (may be chosen equal to
unity); this equation holds so long as the matrix elements
increase no faster than 1/r2. Once solutions at two points
are found, the general solution may be built up by means of

the relation

o) = [ (0 7 T2 0§ @0 £ ] %0y

- [1 - f%_(ar)2 fj-l ] Ff(rj_l) }, (11.31)
Wwhere
fj - -[a - &ifgi_ll - Uy, F UL, ], (11.32)
and where
r = r -r

I+l J

The phase shifts are then obtained by matching the

numerically determined function to the bessel function
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combination in Eq. (11.28) for two values of r, say r, and
r,, large enough so that Eq. (11.28) is valid. Then defining

the ratios
k* = Fy(r,)/F (1) , (ry > ) (11.33)

we obtailn

L - -
can 1 = (1) +1 { Ki Proa(kry) - By oy (kry) b, o
K P_L_%(krb) - P_L_%(kra)
where
) = (B2 ) Ty ler) (11.35)

The partial cross section is then given (in units of nai) by

Q = F (2¢ + 1) sin® (“I - n,) . (11.36)

Bethe I Approximation

We have found that for large values of {, the weak
coupling approximation is Justified, and also only asymptotic
parts of the matrix elements are significant. Thus, a com-
parison of the Bethe I, and two-channel approximations gives
some indication of the strength of coupling and the importance
of accurate matrix elements.

The Bethe I approximation for this type of transition

simply reduces to the Born I approximation for a schematic
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model possessing the off-diagonal matrix element

y' = BC (11.37)

where according to Eqs. (11.20) and (11.21), B is given by

v, = By2(6p°Ir) , (11.38)
and C by
2 C
¥, (6p°|r) ~ =%, 11.3
2 3 (11.39)
or
2 4
C = é Rép(r) r dr = 13,218 . (11.40)

The Bethe I partial cross section is easily found to be giVen

by
B'I B'I
q, =-3 (mBC)? (1, )°, (11.41)
k
(o]
where
B'I
dr
I, =\J ,(k.r)J, ,(kr)E (11.42)
4 é L&(o) L&(n) re’ \
with

2 2 2
knako-;g-(En-Eo).
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Under the aésumption of exact resonance (i.e., ko = kp = k),

9

one finds
B'IT o

dr

I, = § [J4+§(kr)] 2

sk ___ 1 140, 11.4
ey # ( 3)

: ' 2
Hence, from Eq. (11.40) we have, in units of ma_

B'I

2
QL = (BC) 24 + 1

ZEYI—:fISQ , L£0., (11.44)

. B'I .
It 1s interesting to observe that QL. is independent of the

kinetic energy of the incident electron. We shéuld, then,
expect this to be true of the two-channel cross sections for

large values of 4.

Exact-Resonance Results

The solution of Eqs. (11.27), and determination of
the partial cross sections have been carried out for the
63Pl - 63P2 transition in mercury, where the off-diagonal
matrix element was taken to be that given by Eq. (11.20),
Because of the long-range character of Ula’ it was necessary
to carry the solution out to rather large values of r before
attempting to determine the phase shifts by matching with
the bessel function combination in Eq. (11.28). Resulting

two-channel and B'I cross sections are given in Table XXXI
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TABLE XXXI

PARTIAL CROSS SECTIONS (UNITS OF nag) FOR THE 6P - 63p_

<

TRANSITION IN MERCURY IN THE TWO-CHANNEL, AND BETHE I
EXACT-RESONANCE, APPROXIMATIONS

L\ k2 .05 .10 .15 .20 .25 .30 B'I

0 16.40 9.51 4,83 2.76 1.76 1.23

1 27.96 16.06 17.97 14.28 8.33 5.02 31.45
2 5.67 5,64 5.52 5.35 5.13 4.87 5.82
3 1.96 1.98 1.97 11.96 1.93 1.90 2.04
4 0.89 0.91 0.92 0.92 0.92 0.91 0.94

for several energles. As suggested earlier, the two-channel
results are seen to approach those of B'I for large values
of 4, and consequently become rather insensitive to fhe in-
cident energy of the colliding electron. It is clear that
within the accuracy of this preliminary investigation, B'I
partial cross sections may be used for ¢+ > 5. Total cross
sections may then be calculated; these are given in Table

. XXXII.
TABLE XXXII

TOTAL CROSS SECTIONS (UNITS OF ma>) FOR THE 63p, - 6P
TRANSITION IN MERCURY IN THE TWO-CHANNEL,
EXACT-RESONANCE, APPROXIMATION
2 | o5 .10 .15 .20 .25 .30
Q I 54,9  36.1  33.2  27.3  20.1  15.9

2
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No direct measurements of these cross sections have
yet been made. However, according to Yavorsky, Fahrikant has
been able to deduce some results from Hg-discharge experl-

18,89 These are quoted in Yavorsky's paper along with

ments,
his Born-Oppenheimer results. (These results are given in
terms of the effective cross section, which 1s'gotten by mul-
tiplying the ordinary cross section by the atom density n at
1 mm Hg, and 0°C; usually n = 3.56 x 1016 cm-3.)- It may be
seen that the results in Table XXXII are considerably larger

than those quoted by Yavorsky; typical values obtained by

Yavorsky are @ ¥ 19.7 ma2 at k2 = 0.1 and @ ¥ 16.9 ma> at
k2 = 0.15. However, considering the well-known inconsisten-

cles of the Born-Oppenheimer method, and the lack of informa-
tion regarding Fahrikant's data, comparison is rather diffi-
cult at this point. It shouid be pointed out, also, that

the rather crude averaging procedure applied to the matrix
elements, cou}d indeed overestimate the resulting cross

section.




APPENDIX I

FREE-FREE TRANSITIONS OF A PARTICLE IN A
THREE-DIMFNSIONAL POTENTIAL WELL

Calculation of the cross section for a free-free
transition accompanied by the emission of radiation, was dis-
cussed in Chapter IX. It was shown thét the continuum states
could be described by functions of the form

a
in
- 1 L 4

o(m) =1 ngi (2t +1) e *P, cos e f(r),

where

fo(r) ~'% sin (kr - 41/2 + n,) .

The cross sectlion, and hence the rate of emission, was found
(as shown in Eq. (9.27)) to be proportional to the square of

the dipole matrix element ﬁ, and from Eq. (9.43), we have
-2 ad
M|° = (4m)3 &2 LZ e {Ize-1,0) 2 + Jze,e-0) 2},

=0

where

1 a
X (r)f

L(r)r dr,

I(¢-1,1) = n

Xy -1 (kyr)xg (kyr)r dr = S f
: o

o8

and where a and b refer to the initial and final states,

216
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respectively; thus
2 2
o) 2
h\)=§n-(ka-k.b)-

In calculating the matrix elements for free-free
transitions in H™, an approximation was introduced, in which
the asymptotic form, including the phase shift, was taken for
the s-wave, and the £ = 1 component of a plane wave was
assumed for the p-wave (i.e., assume n;(k) = 0); partial
waves corresponding to ¢ > 1 were not considered. It was
indicated that for low energies, these approximations are
valid. In order to partially examine the validity of the
above approximations, we consider the corresponding matrix
elements for a problem involving free-free transitions of a
system consisting of a particle and three-dimensionallpoten-
tial well. Since this problem may be solved exactly, we are
able to compare exact and approximate results.

Consider a particle of kinetic energy k° (a.u.),
incident upon a potential well of depth ki (a.u.) and radius

a, as shown in Pigure a. We require continuum states of

Flgure a
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the set of equations

(- gD w2 ) ) =0 (rea),
( d2 4(4 + 1) , 42 ) X, (kr) = © (r>a),
where
k' = 12 4+ ki .

Exact solutions for the case 4 = 0 are given byl

xg(kr) ) { A, sin (k'r) (r < a)

sin (kr + n,) (r > a) ,

where the scattering phase shift Mo is given by
N = tan~! ( %T tan k'a ) - ka ,

and the coefficilent Ao, by
2
= 2 1t k' 2 ,..,7-1/2
Ao [sin k'a + < E—-) cos k a] .
The solutions for 4 = 1 are similarly found to be

o Ay /r Js/e(k'r) (r < a)
X, (kr) = ¢ ” | |
( E§£.> {cos n1 J3/2(kr) - sin my J_3/2(kr)}

(r > a),
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where
21 (3g; - 1) (2ka)>
'ﬂl = tan ) L
2401 - (ka)“(gy - 3)]
with
g = (k'a sin k'a)-l [ EEETELQ - cos k'a] s
and where
cos 1, J (ka) - sin n . (ka)
with
sin ka :
J3/2(ka) = —z— - cos ka ,
and
-cos kKa _ o4p pa .

J_3/2 (ka) = ka

1
Solutions for £ > 1 can easily be obtained , however they
will not be necessary in this investigation. The asymptotilec
approximation for the s-wave solution amounts to assuming for

all r, the relation
A | .
X, (kr) = sin (kr + n,) (0 < r<w),

while the plane-wave approximation (i.e., Born approximation)

for the p-wave 1s given by
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1/2
xﬁ(kr) = < E§E / J3/2(kr) (0 < r<w),

The following integrals may now be defined:

E E
(Ea,Eb) = xo(kar) xl(kbr) r dr ,

o8

(Ea,Bb) = § xf(kar)x?(kbr) r dr ,
(Aa,Bb) = é xﬁ(kar)x?(kbr) r dr ,

where clearly the first letters refer to the s-wave and the
second to the p-wave. 1In order to examine error in particular
regions of space, we append 1 for O < r <a, and 2 fora <r

< », for example (Ea,Bb) = (Ea,Bb)l + (Ea,Bb)2, and similarly
for (Ea,Eb) and (Aa,Bb). The cross section, then is propor-

tlonal to the sum of squares of matrix elements in the form
(EE) = (Ea,Eb)? + (Eb,Ea)? ,
for the exact solution, and

(EB) = (Es,Bb)? + (Eb,Ba)? ,
(AB) = (Aa,Bb)® + (Ab,Ba)? ,

for the two types of approximations.

The radius a, and the depth ki of the potential well
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may be chosen so that the phase shifts agree, within a few
percent, with those obtained by Chandrasekhar and Breen using
the static-hartree-field approximation for H‘.57 Such a
cholce of parameters gives a = 1.0 a_, and kg = 2.3 a.u, (~
31 eV). 1In Tables A and B are given calculated values of
(EE), (EB), (AB), and their percentage differences (always
taken relative to the more exact of the two). The approxima-
tion used in Chapter IX corresponds to AB in this model calcu-
lation. It 1s seen from Tables A and B, that for low energies
the error i1s rather small, and even for an electron energy of
12 eV the error 1s still less than 10%.

If we now recall the significance of the approxima-
tions, then it 1s clear that the agreement of (EE) and (EB)
is a measure of the validity of assuming 1, = 0 (1.e., plane
wave component for p-wave), while the agreement of (EB) and
(AB) indicates the validity of using the asymptotic form for
the s-wave; the latter 1s quite obviously the better of the
two approximations. This 1s easily understood, since the
asymptotic approximation is in error only in the inner region
(0 < r <a), which contributes little to the integrals, while
the plane-wave assumption for ¢ = 1 has a cumulative effect
which is strongly felt in the outer region (a < r < =), which
is most important to the integrals. This argument should
also apply to H, since the potential seen by the electrons
is short range and rapidly decaying (exponential in the
static-hartree-field approximation).
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TABLE A

CALCULATED VALUES OF (EE), (EB), (AB), AND

PERCENTAGE DIFFERENCES FOR a = 1.0 8,

AND kg = 2.3 a.u.

E A % i % %
(ev) (103a°) _(EE) (EE,EB) _(EB) (EB,AB) _(AB) (EE,AB)
2.0 10. 1151, .3 1154, 0 1154, .3
3.0 6. 325.4 6 327.3 0 27,4 .6

10, 3167, 6 3185, 0 3185. .6

4,0 L, 108.5 1.0 109.6 0 109.6 1.0

6. 666.8 .9 673.0 0 673.1 .9
8. 2349, .9 2370, 0 2370. .9
10. 6145, .9 6202, 0 6202, .9
5.0 4, 189.8 1.4 192.4 0 192.5 1.4
6. 1124, 1.4 1140. 0 1140, 1.4
8. 3883, 1.4 3936. 0 3936. 1.4
10, 10021, 1.4. 10161. 0 10162, 1.4
6.0 4, 291.5 1.9 297.1 0 297.2 1.9
6. 1691, 1.9 1723, 0 1g23. 1.9
8. 5756. 2.0 5870. 0 5870. 2.0
10, 14714, 2.0 15012. 0 15013. 2.0
7.0 2, 19.42 2.8 19.97 .1 20.00 2.8
y, 413.3 2.6 423,9 0 424 .1 2.6
6. 2356, 2.6 2418, 0 2418, 2.6
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TABLE B

CALCULATED VALUES OF (EE), (EB), (AB), AND

PERCENTAGE DIFFERENCES FOR a = 1.0 a,

AND ki = 2,3 a.u.

E g . % % - %
(ev) (10°A°) (EE) (EE,EB) _(EB) (EB,AB) _(AB) (EE,AB)
8.0 2. 27.23 3.6 28.21 .1 28.24 3.7

b, 553.0 - 3.4  571.8 0 572.0 3.4
6. 3107. 3.5 3217. 0 3218, 3.5
10.0 2. 4y 67 5.6 47.17 .1 47.24 5.7
4, 876.6 5.7 926.2 0 926.5 5.7
6. 4816, 6.0 5103, 0 5104, 6.0
12.0 2. 65.16 8.4 70.66 .1 70.76 8.6
b, 1240. 9.0 1351. 0 1351, 9.0
6. 6701. 9.4 7333. 0 7334, 9.4
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In prder to examine the sensitivity of the results
with respect to the radius a and the depth kg, several com-~
binations'were‘1nvestigated for an intermediate energy of
4 ev. 1In Table C are given<percentage'differences of (EE),
(EB), and (AB) for several choices of a and_kg. One concludes
fhat for problems involving potentials of longer range, care’
should be taken in the treatment of the p-wave. In such

cases, one should consider higher partial waves as well.

TABLE C

A COMPARISON OF (EE), (EB), AND (AB) FOR SEVERAL

CHOICES OF THE RADIUS a AND DEPTH kg

A (103 A°) % (EE,EB) % (EB,AB) % (EE,AB)

< a=1.0 4, 6.5 .04 6.5
= 0.5 10. 5.1 .01 5.1

< a=1.,0 L, 4.3 .04 4.3
k2 = 1.0 10. 3.5 .01 3.5
( o= y, 3.0 .03 3.0
kg = 1 5 10. 2.4 .01 2.4
< a,= 1.0 4, 1.8 .03 1.9
kS = 2.0 10. 1.5 .01 1.5
( a, .= 2 o y, 24, .54 25.
10. 22, .09 22,

( a = 2 o 4, 5.8 .49 5.4
10. 3.5 .08 3.6

< a_= 2 o 4, 19. W43 19.
10. 30 007 3'3



APPENDIX II

IMPORTANT POINTS CONCERNING USE OF
THE FIQURES AND TABLES

It 1s important to emphasize that great care must be
taken in interpreting the figures and tables of Chapters
VIII - X. In all cases, the free-bound and free-free gaunt
factors for hydrogen have been taken as unity; this can give
rise to error as high as 15% for the proton-electron
bremsstrahlung emission (b). In Figures 20-38, the recom-
bination (r) and proton-electron bremsstrahlung (b) curves

5o

must still be multiplied by ngn (or a“n® in the case of a

i
pure hydrogen plasma), while the free-bound H™ (fb) and the
free-free H~ (ff) curves must be multiplied by NgNy (or

a(l - a)n® in the case of a pure hydrogen plasma); Ng, Ny,
and n represent the electron density, positive hydrogen ion
density, and total particle density, all in units of

lO17 cm’3, and n, = an,.

One further, somewhat ambiguous, point remsins. The
attachment cross sections for free-bound transitions in H7,
which are given in Table XXI, are'consisteht with those given
by Massey and Burhop,’> and are used in Chapter IX to calcu-
late the free-bound H- (fv) rates of emission presented in
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Tableé XXII - XXIV and,in the graphs of Chapter X. However,
in chécking the predicted free-béund absorption coefficients
- (temperature dependent) with those given by Griem,71 one may
see that our's are four times too large. The difference
appears to stem from definitipn, and in our fOrﬁulation
arises with the introduction of y in Eq. (9.2). 1In order to
be consistent, it i1s necessary to reduce by four all free-

bound H~ (fb) rates of emission appearing in the tables and

figures. The S curves must be adJusted accordingly.
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