By
MAHENDRAKUMAR G. JANI
Bachelor of Science
Gujarat University
Ahmedabad, India

1976

```
submitted to the Faculty of the Graduate College
    of the Oklahoma State University
    in partial fulfillment of the requirements
        for the Degree of
        MASTER OF SCIENCE
            May, 1979
```

Thesus
cop. 2

The author wishes to thank Dr. L. E. Halliburton for his guidance, assistance and understanding. Without his help, this work would not have been completed. Appreciation is expressed to Dr. W. A. Sibley and Dr. E. E. Kohnke for serving on his Committee. Appreciation is also expressed to R. A. Weeks for kindly providing the quartz sample used in this study.

The author wishes to thank his parents, Pragna, Rahul and Shailesh, for their love, affection and encouragement. The author also wishes to thank Sauwanee for her love, affection and moral support. Thanks are extended to Ms. Janet Sallee for typing this manuscript.

Financial support from the U.S. Air Force under contract number F 19628-77-C-0171 for Summer 1978 and the Physics Department at Oklahoma State University is gratefully acknowledged.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
R. A. Weeks and C. M. Nelson (3) 3
R. H. Silsbee (5) 3
Kwok Leung Yip and W. Beall Fowler (6) 5
R. A. Weeks (7) 5
F. J. Feigl and J. H. Anderson (8) 6
L. E. Halliburton and J. A. Weil (9) 6
Present Study 6
II. EXPERIMENTAL PROCEDURE 8
I. Sample Preparation and Defect Production 8
II. ESR Spectrometer. 9
III. THEORETICAL ANALYSIS AND EXPERIMENTAL RESULTS 12
I. Theoretical Analysis 12
II. Experimental Results 19
IV. DISCUSSION. 32
SELECTED BIBLIOGRAPHY 34
APPENDIX A 35
APPENDIX B 41

LIST OF TABLES

I. The Lower Half of the Hamiltonian Matrix. 18
II. Spin Hamiltonian Parameters for the E_{2}^{\prime} Center From Present Study • • • . 29
III. Spin Hamiltonian Parameters Reported by Feigl and Anderson. 30

LIST OF FIGURES

Figure Page

1. The Crystal Structure of α-Quartz 2
2. Different E'-Type Center Models 4
3. ESR Spectrometer 10
4. ESR Spectrum for the E_{2}^{\prime} and the E_{4}^{\prime} Center With Magnetic
Field Along the [001] Direction at 300K. 20
5. ESR Spectrum for ${ }^{29}$ Si Hyperfine Interaction With MagneticField Along the [001] Direction at 300K. 21
6. Angular Dependence for ${ }^{29}$ Si Hyperfine Interaction 23
7. Angular Dependence for the High Field Doublet Illustrating the Proton Effects 24
8. Pulse Anneal Study of the E_{2}^{\prime} and the E_{4}^{\prime} Center in SiO_{2} 25
9. Energy Levels and Possible Transitions in an $S=1 / 2, I_{1}=$$1 / 2$ and $I_{2}=1 / 2$ system. 27

INTRODUCTION

Radiation-induced defects in solids have been studied extensively for the last sixty years. It is well known that high energy irradiation produces defects in crystals. Study of these defects is important since many materials are being used in various industrial areas involving high energy irradiation.

Electron spin resonance has been used as one of the important tools to visualize the crystalline environment in the vicinity of well-localized defects (called point defects) in crystalline solids.

Quartz $\left(\mathrm{SiO}_{2}\right)$ is different from other oxides, in that it is neither completely ionic nor completely covalent. This makes its study much more difficult. It does not have a high symmetry crystal structure (1). The crystal structure for SiO_{2} is shown in Figure 1. For quite some time now quartz has been used for oscillators in space satellites and hence has been exposed to various kinds of irradiation in outer space. It has been observed that properties of the oscillators do not remain the same as a consequence of its exposure to high energy irradiation (2).

The E^{\prime} center in quartz is similar to the F center in ionic materials in which an electron is trapped at a negative ion vacancy. The notation was first introduced by R. A. Weeks and C. M. Nelson (3) for this paramagnetic defect in quartz. There are three different

Figure 1. Structure of Right Quartz. (Projection on $z-p l a n e$ with $+z$ axis coming out of plane of paper)
types of E^{\prime} centers reported in the literature. They are the E_{1}^{\prime} center, the E_{2}^{\prime} center and the E_{4}^{\prime} center. Some E^{\prime} type centers are shown in Figure 2. The E_{2}^{\prime} and E_{4}^{\prime} centers are different from the E_{1}^{\prime} center in that proton hyperfine effects are associated with them.

The E_{1}^{\prime} center was originally reported by R. A. Weeks (4). This study inspired many other people to carry out theoretical and experimental investigations of the E ' centers in SiO_{2}. Some of these studies are discussed briefly in the following few paragraphs.

R. A. Weeks and C. M. Nelson (3)

The correlation of optical bands with ESR spectra was established by a series of optical bleaching and thermal annealing experiments. They used ${ }^{60}$ co γ-irradiated synthetic crystalline quartz in this study. It was concluded from this study that an optical band at 210 nm is associated with the E_{1}^{\prime} center and an absorption band at 230 nm is associated with the E_{2}^{\prime} center. Defect models were proposed for the E_{1}^{\prime}, the $E_{1}^{\prime \prime}$ and the E_{2}^{\prime} centers.

R. H. Silsbee (5)

A detailed electron spin resonance study of E_{1}^{\prime} centers produced by fast neutron-irradiation of crystalline quartz was done. The parameters for the g tensor and hyperfine tensor were reported for the E_{1}^{\prime} center. It was concluded that the E_{1}^{\prime} center, produced by low neutron doses, consisted of an unpaired electron in a non-bonding orbital on a silicon. The complete breakdown of the crystalline structure was observed at high doses of neutron irradiation. A pair of weak lines 400

gauss apart were attributed to a single ${ }^{29}$ Si strong hyperfine interaction.

Kwok Leung Yip and W. Beall Fowler (6)

Theoretical analysis of the E_{l}^{\prime} center in the α-quartz structure of SiO_{2} was done using a linear combination of localized orbital-molecular orbital (LCLO-MO) cluster method. Similar analysis was also done for the $E_{l}^{\prime}(G e)$ center which is an electron trapped by a germanium ion substituted for a silicon ion neighboring an oxygen vacancy in SiO_{2}. It was also concluded from this theoretical study that the E_{1}^{\prime} center is an electron trapped at an oxygen vacancy. The trapped electron at the defect site is strongly localized in a non-bonding sp ${ }^{3}$ hybrid orbital centered on silicon (or Ge substituted for Si) and oriented almost along a Si-O short bond direction toward the oxygen vacancy.

R. A. Weeks (7)

The E_{2}^{\prime} center was studied in detail using the electron spin resonance technique. A spectrum consisting of two lines about 0.4 ± 0.1 gauss apart was observed for the magnetic field oriented along the c axis. An angular dependence study was done for this spectrum and the g tensor parameters were calculated. It was concluded from this study that the E_{2}^{\prime} center is an electron trapped at an oxygen vacancy with a proton nearby. In addition to the primary doublet spectrum, an additional pair of similar doublets about 412 gauss apart was observed for the magnetic field along the c axis. The widely split pair of doublets was attributed to the strong hyperfine interaction with ${ }^{29}$ Si.

F. J. Feigl and J. H. Anderson (8)

Paramagnetic defects produced by low energy ionizing radiation in crystalline quartz doped with Ge were studied through electron spin resonance. Their analysis indicated that these defects are similar to the E_{1}^{\prime} and the E_{2}^{\prime} centers in pure crystalline quartz, with a Ge ion substituted for the central Si ion in the E^{\prime}-defect structures. The parameters for these Ge-related defects were calculated and compared with the parameters reported by R. H. Silsbee (5) and R. A. Weeks (7). It was concluded from this investigation that the unpaired electron occupies a non-bonding orbital strongly localized on the Ge impurity. A single oxygen vacancy model for the entire E' class of center was adequate to explain their data.

> L. E. Halliburton and J. A. Weil (9)

The E_{4}^{\prime} center first reported by R. A. Weeks and C. M. Nelson (3), was studied in detail using electron spin resonance. Nelson and Weeks suggested that the four equally spaced and equally intense line spectrum was a result of an unpaired electron interacting with an alkali ion $(I=3 / 2)$. The complete angular dependence study of the four line spectrum was done and the parameters for the g tensor and A tensors were calculated. It was concluded from this study that the E' center has $s=1 / 2$ and the hyperfine structure arises from interactions with a proton $(I=1 / 2)$ in a situation permitting observation of all 2S(2I+1) ${ }^{2}$ possible ESR transitions.

Present Study

In the present study, the angular dependence study of the two
pairs of lines due to strong hyperfine interaction with ${ }^{29}$ Si for the E_{2}^{\prime} center is reported. This study provides additional information from which the precise model for the E_{2}^{\prime} center in quartz may be determined.

CHAPTER II

EXPERIMENTAL PROCEDURE

In this chapter, the experimental procedure and equipment used to study the E_{2}^{\prime} center in SiO_{2} is described. In Section I, sample preparation and defect production in SiO_{2} is discussed. The ESR spectrometer and operating procedure is outlined in Section II.

I. Sample Preparation and Defect Production

The sample used in this study was obtained from R. A. Weeks, Oak Ridge National Laboratory. The main difficulty in this study was that the history of treatments received by this sample was not available. It was known that the crystal had been irradiated in a ${ }^{60}$ co γ-cell, receiving a dosage of $4.5 \times 10^{9} \mathrm{R}$ at some time in the past.

The next important question was how one explains defect production in the crystal. One of the possible explanations is that oxygen vacancies were already present in the crystal as a result of the hydrothermal growth process. This seems reasonable, since it was observed that Sawyer Electronic Grade samples, on being irradiated by electrons from a Van de Graaff accelerator, give similar ESR signals as from our γ-irradiated samples. Dimensions of the Sawyer Electronic Grade sample were nearly one-half of our γ-irradiated samples. The irradiation dose received by our Sawyer samples is not sufficient to create oxygen vacancies. Hence we conclude that oxygen vacancies are initially pres-
ent in the sample. Electron irradiation or γ-irradiation just moves around the charges to form paramagnetic defects.

II. ESR Spectrometer

The x-band homodyne spectrometer used to obtain the ESR spectra in this study is shown in the block diagram in Figure 3. The microwave power was supplied by a Varian VA-153C klystron. The klystron was locked to the resonant frequency of the sample cavity with the help of a reflector-modulated stabilizer. The sample was placed inside a rectangular microwave cavity operating in the TE_{102} mode. The precision attenuator in the sample arm regulated the microwave power incident on the sample. The microwave frequency was measured using a Hewlett-Packard frequency counter.

A Varian 9-inch V-7200 electro-magnet was used to produce the magnetic field. Any variations in the field intensity were detected by a Hall probe mounted on one of the pole caps. This probe supplies an error signal which adjusts the magnet current to maintain stability of the field. Magnetic field values could be directly read in gauss from the field set controls. But this method was not precise enough to yield correct field values, thus a different method was used.

The static magnetic field was amplitude modulated at 100 kHz . The modulation coils were mounted on the outside of a glass Dewar. The microwave signal was detected using a properly biased low-noise Schottky barrier diode. This signal was then amplified by a broad-band amplifier (Micro-Now Instruments Co., Model 521). The amplified signal was fed to a phase sensitive detector (PAR Model 128) which greatly enhanced the signal-to-noise ratio. The reference signal for the phase sensitive

Figure 3. ESR Spectrometer
detector was obtained from the oscillator which amplitude-modulated the magnetic field. The output from the phase sensitive detector was fed into a strip chart recorder (Leeds and Northrup) which yielded a first derivative ESR spectrum.

Magnetic field measurements were made using an NMR marginal oscillator and proton probe. The probe essentially consisted of coaxial cable surrounded by a brass tube. At one end of the probe a rigid BNC connector was provided for connecting to the marginal oscillator. At the other end of the coaxial cable an inductor which consisted of 18-20 turns of copper wire was wound on a glass capsule containing the NMR sample. Since the probe could not be placed at the same position as the ESR sample in the cavity, a correction was made to the measured field values using a standard Cr^{3+}-doped MgO sample whose g-value is 1.9799.

THEORETICAL ANALYSIS AND EXPERIMENTAL RESULTS

This chapter is divided into two sections. The theoretical format for analysis of the E_{2}^{\prime} center spectra is presented in Section I. Experimental results and computer programs for data reduction are discussed in Section II. Some of the results obtained using these computer programs are also presented in Section II. Conclusions reached in this study will be presented in the next chapter.

I. Theoretical Analysis

The spin Hamiltonian describing the E_{2}^{\prime} center is given by

$$
H=\beta \vec{H} \cdot \stackrel{\leftrightarrow}{g} \cdot \vec{S}+\vec{I}_{1} \cdot \vec{A}_{1} \cdot \vec{S}+\vec{I}_{2} \cdot \stackrel{\rightharpoonup}{A}_{2} \cdot \vec{S}-\left(g_{N} \beta_{N}\right)_{1} \vec{H} \cdot \vec{I}_{1}-\left(g_{N} \beta_{N}\right) \vec{H}_{H} \cdot \vec{I}_{2}
$$

where the first term represents the electron Zeeman interaction, the second and the third terms represent hyperfine interactions due to a proton $\left(\mathrm{H}^{+}\right)$nucleus and ${ }^{29} \mathrm{Si}(\mathrm{I}=1 / 2,4.7 \%$ abundant) nucleus, respectively, with the unpaired electron. The last two terms represent nuclear Zeeman interactions for the two nuclei, respectively.

The following coordinate systems are used in converting the Hamiltonian to a suitable form for computer programming.
$x, y, z:$ Magnetic field coordinate system chosen such that the magnetic field is along the z direction.
$x_{C}, Y_{C}, z_{c}:$ Crystal coordinate system.
$x_{g}, Y_{g}, z_{g}:$ Principal axes of the g tensor.
x_{1}, y_{1}, z_{1} : Principal axes system for the proton hyperfine tensor, $\stackrel{\leftrightarrow}{\mathrm{A}}_{1}$.
x_{2}, y_{2}, z_{2} : Principal axes system for the ${ }^{29}$ Si hyperfine tensor, $\stackrel{\leftrightarrow}{A}_{2}$.

Rewriting the Hamiltonian in terms of different coordinate systems, we have

$$
\begin{aligned}
H= & \beta\left[S_{x_{g}} g_{x} H_{x_{g}}+S_{y_{g}} g_{y} H_{y_{g}}+S_{z_{g}} g_{z} H_{z_{g}}\right] \\
& +I_{x_{1}} A_{x_{1}} S_{x_{1}}+I_{y_{1}} A_{y_{1}} S_{y_{1}}+I_{z_{1}} A_{z_{1}} S_{z_{1}} \\
& +I_{x_{2}} A_{x_{2}} S_{x_{2}}+I_{y_{2}} A_{y_{2}} S_{y_{2}}+I_{z_{2}} A_{z_{2}} S_{z_{2}} \\
& -\left(g_{N} \beta_{N}\right)_{1} H I_{z_{1}}-\left(g_{N} \beta_{N}\right)
\end{aligned}
$$

The relationships between the different coordinate systems are

$$
\left(\begin{array}{l}
x_{g} \\
y_{g} \\
z_{g}
\end{array}\right)=[T G]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)=[\mathrm{TH}]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

and

$$
\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)=[\mathrm{TM}]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

where the transformation matrices are defined as follows:
[G]: Transforms principal axes of the g tensor to crystal coordinate system.
[H]: Transforms principal axes of the hyperfine tensor A_{1} to crystal coordinate system.
[M]: Transforms principal axes of the hyperfine tensor A_{2} to crystal coordinate system.
[R]: Transforms the crystal coordinate system to the magnetic field coordinate system.
$[\mathrm{TG}]=[\mathrm{G}][\mathrm{R}]:$ Transforms principal axes of the g tensor to the magnetic field coordinate system.
$[\mathrm{TH}]=[\mathrm{H}][\mathrm{R}]:$ Transforms principal axes system of hyperfine tensor A_{1} to the magnetic field coordinate system.
$[T M]=[M][R]:$ Transforms principal axes system of hyperfine tensor A_{2} to the magnetic field coordinate system.

Now using the above transformations, the Hamiltonian is written in terms of the magnetic field coordinate system only, as follows:

$$
\begin{aligned}
H= & W 1 S_{x}+W 2 S_{y}+W 3 S_{z}+W 4 I_{1 x} S_{x}+W 5 I_{l x} S_{y} \\
& +W 6 I_{l x} S_{z}+W 5 I_{l y} S_{x}+W 7 I_{l y} S_{y}+W 8 I_{l y} S_{z} \\
& +W 6 I_{1 z} S_{x}+W 8 I_{l z} S_{y}+W 9 I_{1 z} S_{z}+W 10 I_{2 x} S_{x} \\
& +W 11 I_{2 x} S_{y}+W 12 I_{2 x} S_{z}+W 11 I_{2 y} S_{x}+W 13 I_{2 y} S_{y} \\
& +W 14 I_{2 y} S_{z}+W 12 I_{2 z} S_{x}+W 14 I_{2 z} S_{y}+W 15 I_{2 z} S_{z} \\
& -\left(g_{N} \beta_{N}\right)_{1}{ }^{H I_{1 z}}-\left(g_{N} S_{N}\right)_{2} H I_{2 z}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{Wl}=\beta H\left[\mathrm{~g}_{\mathrm{x}} \mathrm{TG}(1,1) \mathrm{TG}(1,3)+\mathrm{g}_{\mathrm{y}} \mathrm{TG}(2,1) \mathrm{TG}(2,3)+\mathrm{g}_{\mathrm{x}} \mathrm{TG}(3,1) \mathrm{TG}(3,3)\right] \\
& \mathrm{W} 2=\beta H\left[g_{x} \mathrm{TG}(1,2) \mathrm{TG}(1,3)+\mathrm{g}_{\mathrm{y}} \mathrm{TG}(2,2) \mathrm{TG}(2,3)+\mathrm{g}_{\mathrm{z}} \mathrm{TG}(3,2) \mathrm{TG}(3,3)\right] \\
& \mathrm{W} 3=\beta H\left[g_{\mathrm{x}} \mathrm{TG}(1,3) \mathrm{TG}(1,3)+\mathrm{g}_{\mathrm{y}} \mathrm{TG}(2,3) \mathrm{TG}(2,3)+\mathrm{g}_{\mathrm{z}} \mathrm{TG}(3,3) \mathrm{TG}(3,3)\right] \\
& \mathrm{W} 4=\mathrm{A}_{1 \mathrm{x}} \mathrm{TH}(1,1) \mathrm{TH}(1,1)+\mathrm{A}_{1 \mathrm{Y}} \mathrm{TH}(2,1) \mathrm{TH}(2,1)+\mathrm{A}_{1 \mathrm{z}} \mathrm{TH}(3,1) \mathrm{TH}(3,1) \\
& \mathrm{W} 5=\mathrm{A}_{1 \mathrm{x}} \mathrm{TH}(1,1) \mathrm{TH}(1,2)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,1) \mathrm{TH}(2,2)+\mathrm{A}_{1 \mathrm{z}} \mathrm{TH}(3,1) \mathrm{TH}(3,2) \\
& \mathrm{W} 6=\mathrm{A}_{1 \mathrm{x}} \mathrm{TH}(1,1) \mathrm{TH}(1,3)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,1) \mathrm{TH}(2,3)+\mathrm{A}_{1 \mathrm{z}} \mathrm{TH}(3,1) \mathrm{TH}(3,3) \\
& W 7=A_{1 \mathrm{x}} \mathrm{TH}(1,2) \mathrm{TH}(1,2)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,2) \mathrm{TH}(2,2)+\mathrm{A}_{\mathrm{Iz}} \mathrm{TH}(3,2) \mathrm{TH}(3,2) \\
& \mathrm{W} 8=\mathrm{A}_{1 \mathrm{x}} \mathrm{TH}(1,2) \mathrm{TH}(1,3)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,2) \mathrm{TH}(2,3)+\mathrm{A}_{l_{\mathrm{Z}}} \mathrm{TH}(3,2) \mathrm{TH}(3,3) \\
& \mathrm{W} 9=\mathrm{A}_{1 \mathrm{x}} \mathrm{TH}(1,3) \mathrm{TH}(1,3)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,3) \mathrm{TH}(2,3)+\mathrm{A}_{l_{z}} \mathrm{TH}(3,3) \mathrm{TH}(3,3) \\
& \mathrm{W} 10=\mathrm{A}_{2 \mathrm{x}} \operatorname{TM}(1,1) \operatorname{TM}(1,1)+\mathrm{A}_{2 \mathrm{y}} \operatorname{TM}(2,1) \operatorname{TM}(2,1)+\mathrm{A}_{2 \mathrm{z}} \operatorname{TM}(3,1) \operatorname{TM}(3,1) \\
& \mathrm{W} 11=\mathrm{A}_{2 \mathrm{x}} \operatorname{TM}(1,1) \operatorname{TM}(1,2)+\mathrm{A}_{2 \mathrm{y}} \operatorname{TM}(2,1) \operatorname{TM}(2,2)+\mathrm{A}_{2 \mathrm{z}} \operatorname{TM}(3,1) \operatorname{TM}(3,2) \\
& \mathrm{W} 12=\mathrm{A}_{2 \mathrm{x}} \operatorname{TM}(1,1) \operatorname{TM}(1,3)+\mathrm{A}_{2 \mathrm{y}} \operatorname{TM}(2,1) \operatorname{TM}(2,3)+\mathrm{A}_{2 \mathrm{z}} \operatorname{TM}(3,1) \operatorname{TM}(3,3) \\
& \mathrm{W} 13=A_{2 x} \operatorname{TM}(1,2) \operatorname{TM}(1,2)+A_{2 y} \operatorname{TM}(2,2) \operatorname{TM}(2,2)+A_{2 z} \operatorname{TM}(3,2) \operatorname{TM}(3,2) \\
& \mathrm{W} 14=\mathrm{A}_{2 \mathrm{x}} \operatorname{TM}(1,2) \operatorname{TM}(1,3)+\mathrm{A}_{2 \mathrm{y}} \operatorname{TM}(2,2) \operatorname{TM}(2,3)+\mathrm{A}_{2 \mathrm{z}} \operatorname{TM}(3,2) \operatorname{TM}(3,3) \\
& \mathrm{W} 15=\mathrm{A}_{2 \mathrm{x}} \operatorname{TM}(1,3) \operatorname{TM}(1,3)+\mathrm{A}_{2 \mathrm{y}} \operatorname{TM}(2,3) \operatorname{TM}(2,3)+\mathrm{A}_{2 \mathrm{z}} \operatorname{TM}(3,3) \operatorname{TM}(3,3) .
\end{aligned}
$$

Using the raising and the lowering operators

$$
\begin{aligned}
& S_{+}=S_{x}+i S_{y}, S_{-}=S_{x}-i S_{y} \\
& I_{+}=I_{x}+i I_{y}, I_{-}=I_{x}-i I_{y}
\end{aligned}
$$

we can write the Hamiltonian in the following form,

$$
\begin{aligned}
H= & W 3 S_{z}+W 9 I_{1 z} S_{z}+W 15 I_{2 z} S_{z}-\left(g_{N} \beta_{N}\right)_{1}{ }^{H I_{1 z}} \\
& -\left(g_{N} \beta_{N}\right)_{2}{ }^{H I_{2 z}}+Q I^{*} S_{+}+Q 1 S_{-}+Q 2 * I_{1+} S_{+} \\
& +Q 3 I_{I+} S_{-}+Q 3 I_{I-} S_{+}+Q 2 I_{I-} S_{-}+Q 4 * I_{1+} S_{z} \\
& +Q 4 I_{1-} S_{z}+Q 4 * I_{1 z} S_{+}+Q 4 I_{1 z} S+Q 5 * I_{2+} S_{+} \\
& +Q 6 I_{2+} S_{-}+Q 6 I_{2-} S_{+}+Q 5 I_{2-} S_{-}+Q 7 * I_{2+} S_{z} \\
& +Q 7 I_{2-S_{z}+Q 7 * I_{2 z} S_{+}+Q 7 I_{2 z} S_{-}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{Q} 1=1 / 2(\mathrm{~W} 1+\mathrm{iW} 2) \\
& \mathrm{Q} 2=1 / 4(\mathrm{~W} 4-\mathrm{W} 7)+1 / 2 \mathrm{~W} 5 \\
& \mathrm{Q} 3=1 / 4(\mathrm{~W} 4+\mathrm{W} 7) \\
& \mathrm{Q} 4=1 / 2(\mathrm{~W} 6+\mathrm{iW} 8) \\
& \mathrm{Q} 5=1 / 4(\mathrm{~W} 10-\mathrm{W} 13)+1 / 2 \mathrm{~W} 11 \\
& \mathrm{Q} 6=1 / 4(\mathrm{~W} 10+\mathrm{W} 13) \\
& \mathrm{Q} 7=1 / 2(\mathrm{~W} 12+\mathrm{iW} 14)
\end{aligned}
$$

Since the ${ }^{29}$ Si nucleus has $I=1 / 2$ and the proton $\left(H^{+}\right)$nucleus has $I=1 / 2$, the basis set chosen is $\mid M_{S}= \pm 1 / 2, M_{I_{1}}= \pm 1 / 2, M_{I_{2}}= \pm 1 / 2>$. This basis set consists of eight vectors, which allows one to write the Hamiltonian in an 8×8 matrix form. The Hamiltonian being hermitian, the lower half of the matrix elements are sufficient to calculate the
energy eigenvalues.
The notation for the lower half of the matrix elements is presented in Table I. The non-zero elements are given as follows:

$$
\begin{aligned}
& A(1,1)=1 / 2 W 3+1 / 4(W 9+W 15)-1 / 2\left(g_{N} \beta_{N}\right)_{1} H-1 / 2\left(g_{N} \beta_{N}\right)_{2} H \\
& A(2,1)=1 / 2 Q 4 \\
& A(3,1)=Q 1+1 / 2(Q 4+Q 7) \\
& A(4,1)=Q 2 \\
& A(5,1)=1 / 2 Q 7 \\
& A(7,1)=Q 5 \\
& A(2,2)=1 / 2 W 3-1 / 4(W 9-W 15)+1 / 2\left(g_{N} \beta_{N}\right)_{1} H-1 / 2\left(g_{N} \beta_{N}\right)_{2} H \\
& A(3,2)=Q 3 \\
& A(4,2)=Q 1-1 / 2(Q 4-Q 7) \\
& A(6,2)=1 / 2 Q 7 \\
& A(8,2)=Q 5 \\
& A(3,3)=-1 / 2 W 3-1 / 4(W 9+W 15)-1 / 2\left(g_{N} \beta_{N}\right) \\
& A(7,5)=Q 1+1 / 2(Q 4-Q 7) \\
& A(6,5)=1 / 2 Q 4 \\
& A(4,3)=-1 / 2 Q 4 \\
& A(5,4)=Q 6 \\
& A(5,3)=Q 6 \\
& A(5,4)=-1 / 2
\end{aligned}
$$

TABLE I
THE LOWER HALF OF THE HAMILTONIAN MATRIX

	$\left\|\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\rangle$	$\left\|\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right\rangle$	$\left\|-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\rangle$	$\left\|-\frac{1}{2},-\frac{1}{2}, \frac{3}{2}\right\rangle$	$\left\|\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle$	$\left\|\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right\rangle$	$\left\|-\frac{3}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle$	$\left\|-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right\rangle$
$\left\|\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\rangle$	A $(1,1)$							
$\left\|\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right\rangle$	A $(2,1)$	A (2,2)						
$\left\|-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\rangle$	A $(3,1)$	A (3,2)	A (3,3)					
$\left\|-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right\rangle$	A (4,1)	A (4, 2)	A (4,3)	A (4, 4)				
\| $2, \frac{1}{2},-\frac{1}{2}>$	A $(5,1)$	0	A $(5,3)$	0	A (5,5)			
$\left\|\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right\rangle$	0	A $(6,2)$	0	A $(6,4)$	A (6,5$)$	A $(6,6)$		
$\left\|-\frac{1}{2}, \frac{1}{2},-\frac{3}{2}\right\rangle$	A $(7,1)$	0	A $(7,3)$	0	A (7,5)	A $(7,6)$	A (7,7)	
$\left\|-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right\rangle$	0	A (8, 2)	0	A (8,4)	A $(8,5)$	A $(8,6)$	A (8,7)	A (8,8)

$$
\begin{aligned}
& A(6,6)=1 / 2 W 3-1 / 4(W 9+W 15)+1 / 2\left(g_{N} \beta_{N}\right)_{1} H+1 / 2\left(g_{N} \beta_{N}\right)_{2} H \\
& A(7,6)=Q 3 \\
& A(8,6)=Q 1-1 / 2(04+Q 7) \\
& A(7,7)=-1 / 2 W 3-1 / 4(W 9-W 15)-1 / 2\left(g_{N} \beta_{N}\right)_{1} H+1 / 2\left(g_{N} \beta_{N}\right)_{2} H \\
& A(8,7)=-1 / 2 Q 4 \\
& A(8,8)=-1 / 2 W 3+1 / 4(W 9+W 15)+1 / 2\left(g_{N} \beta_{N}\right)_{1} H+1 / 2\left(g_{N} \beta_{N}\right)_{2} H
\end{aligned}
$$

II. Experimental Results

The principal E_{2}^{\prime} center $E S R$ spectrum for the magnetic field along the [001] direction consists of two equally intense lines 0.37 ± 0.02 gauss apart as shown in Figure 4. The other four lines in the figure represent the E_{4}^{\prime} center. This data was obtained at 300 K . The lowest field E_{4}^{\prime} center line was used to check the alignment. The two lines associated with the E_{2}^{\prime} center arise as a result of the interaction of an electron trapped at an oxygen vacancy with a proton near the defect site (3).

In addition to this primary doublet for the E_{2}^{\prime} center, two additional weak pairs of lines were observed with the magnetic field along the [001] direction as shown in Figure 5. The separation of each of these pairs of lines is nearly 0.37 ± 0.02 gauss, the same as the primary doublet. One pair of lines was approximately 198.6 gauss above the primary doublet and the other pair was nearly 226.8 gauss below the primary doublet. The separation between these two pairs of doublets is 425.4 gauss which is greater than the value 412 gauss reported in the literature by R. A. Weeks [7]. These low and high field pairs of doublets are attributed to a strong hyperfine interaction with a ${ }^{29}$ Si

Figure 4. ESR Spectrum for the E_{2}^{\prime} and the E_{4}^{\prime} Center With Magnetic Field Along the [001] Direction at 300K

Figure 5. ESR Spectrum for ${ }^{29}$ Si Hyperfine Interaction With Magnetic Field Along the [001] Direction at 300 K
nucleus ($I=\frac{1}{2}, 4.7 \%$ natural abundance).
An angular dependence study of the low and high field pairs of doublets was carried out at 300 K . The magnetic field was rotated about the two-fold crystal axis and spectra were obtained at 15° intervals. Data were taken up to 70° of rotation on each side from the [001] direction. The intensity of the signal dropped rapidly beyond 70°, because the microwave magnetic field component perpendicular to the static magnetic field is proportional to $\cos ^{2} \theta$. The results of this study are presented in Figure 6, for both the low and high field pairs of lines. In this figure, proton hyperfine effects are not illustrated. Each line in this figure represents the average of the doublet. The proton hyperfine effects are illustrated in Figure 7 for the high field doublet.

An isochronal temperature anneal study was done by holding the sample at a desired temperature for 3 minutes and then taking an ESR spectrum at room temperature. Results of this study are shown in Figure 8. At 450K, half of the E_{2}^{\prime} centers have decayed. The initial growth of the E_{2}^{\prime} center is questionable and additional experimental verification will be required.

Two separate programs were written to analyze the experimental data presented in Figure 7. These are listed in Appendices A and B, respectively. The first program, listed in Appendix A, calculates the transition frequencies for a given set of spin Hamiltonian parameters and an assumed magnetic field value. This is equivalent to obtaining data at a fixed value of magnetic field by scanning the microwave frequency. The second program, listed in Appendix B, calculates the final set of parameters (g and A tensors) using the experimental data as in-

Figure 7. Angular Dependence for the High Field Doublet Illustrating the Proton Effects

Figure 8. Pulse Anneal Study of the E_{2}^{\prime} and the E_{4}^{\prime} Center in SiO_{2}
put.
In the first program, it was assumed that the parameters for the g and A tensors are known. The magnetic field values associated with different ESR resonance lines are predicted by an iteration scheme. An initial value of magnetic field, H, is assigned. The direction of the magnetic field relative to the defect site is specified by the parameters alpha (α) and beta (β). For each set of these angles there are four transitions according to the spin selection rules $\Delta M_{s}= \pm 1$, $\Delta M_{I_{1}}=0$ and $\Delta M_{I_{2}}=0$. These possible four transitions are shown in Figure 9. The 8×8 matrix shown in Table I is diagonalized and eight energy eigenvalues $D(I)$ given in order of ascending value are obtained. The four transitions are given by

$$
\begin{aligned}
& h \nu_{1}=D(8)-D(2) \\
& h \nu_{2}=D(7)-D(1) \\
& h \nu_{3}=D(6)-D(4) \\
& h \nu_{4}=D(5)-D(3)
\end{aligned}
$$

The assigned field value is then varied and the microwave frequency corresponding to a particular transition is recalculated and compared with the experimental microwave frequency 9.085 GHz . If the calculated microwave frequency lies within 0.1 MHz of the experimental frequency, then the microwave frequency for the other, 3 transitions are calculated by iteration.

In the second program, the values of different parameters are systematically varied until a good agreement between the calculated and experimental magnetic field positions is obtained. An initial set of

Figure 9. Energy Levels and Possible Transitions in an $S=1 / 2, I_{1}=$
$1 / 2$ and $I_{2}=1 / 2$ System
parameters is assumed and the magnetic field positions for different orientations of the magnetic field are provided as experimental data. Using this information the energy eigenvalues are obtained as in the first program and the microwave frequency associated with each resonance is calculated.

Since the assumed parameters are not the correct ones, the calculated microwave frequency is not the same as the experimental value. Therefore a quantity called SUM

$$
\text { SUM }=\sum_{i=1}^{28}\left[\nu_{i}^{\exp }-\nu_{i}^{c a l}\right]^{2}
$$

is calculated. Now the value of SUM is minimized by an iteration technique. Using the assumed set of parameters, the value of sum is calculated. One of the parameters then is increased by a pre-determined amount and a new set of calculated microwave frequencies are obtained by diagonalization of the matrix. Thus, a new value of SUM is obtained and compared with the previous value of SUM. If the new value of $S U M$ is greater than the previous value, then the value of the parameter (which was increased) is decreased by twice the specified increment. All the microwave frequencies are obtained again and SUM is recalculated. This SUM is compared with the initial value of SUM and the value of the parameter which gives the smallest SUM is retained. This procedure is repeated for all the other parameters.

The final set of parameters was reached when any variation in the parameters failed to lower the value of SUM. The parameters obtained from the computer programs are listed in Table II. The final parameters obtained in this study for the g tensor and proton hyperfine tensor are in good agreement with the parameters listed in Table III

TABLE II
SPIN HAMILTONIAN PARAMETERS FOR THE E' ${ }_{2}^{\prime}$ CENTER FROM PRESENT STUDY

		z-component	x-component	y-component
Zeeman	g-tensor	$\begin{aligned} & 2.0020 \\ & \left(120^{\circ}, 149^{\circ}\right) \end{aligned}$	$\begin{gathered} 2.0006 \\ \left(67^{\circ}, 73^{\circ}\right) \end{gathered}$	$\begin{gathered} 2.0004 \\ \left(140^{\circ}, 14^{\circ}\right) \end{gathered}$
H^{+}	hfs.	$\begin{aligned} & 4.21 \mathrm{MHz} \\ & \left(237^{\circ}, 26^{\circ}\right) \end{aligned}$	$\begin{gathered} -0.23 \mathrm{MHz} \\ \left(134^{\circ}, 24^{\circ}\right) \end{gathered}$	$\begin{gathered} -0.56 \mathrm{MHz} \\ \left(117^{\circ},-83^{\circ}\right) \end{gathered}$
Si ${ }^{29}$	hfs.	1312.95 MHz $\left(59^{\circ}, 27^{\circ}\right)$	1135.54 MHz $\left(67^{\circ},-48^{\circ}\right)$	$\begin{aligned} & 1135.51 \mathrm{MHz} \\ & \left(140^{\circ},-72^{\circ}\right) \end{aligned}$

SPIN HAMILTONIAN PARAMETERS REPORTED BY FEIGEL AND ANDERSON

		z-component	x-component	y-component
Zeeman	g-tensor	$\begin{gathered} 2.0020 \\ \left(120^{\circ}, 208^{\circ}\right) \end{gathered}$	$\begin{gathered} 2.0007 \\ \left(67^{\circ}, 133^{\circ}\right) \end{gathered}$	$\begin{gathered} 2.0005 \\ \left(39^{\circ}, 253^{\circ}\right) \end{gathered}$
H^{+}	hfs.	$\begin{gathered} 4.5 \mathrm{MHz} \\ \left(126^{\circ}, 215^{\circ}\right) \end{gathered}$	$\begin{aligned} & -0.3 \mathrm{MHz} \\ & \left(44^{\circ}, 257^{\circ}\right) \end{aligned}$	$\begin{gathered} -0.59 \mathrm{MHz} \\ \left(70^{\circ}, 140^{\circ}\right) \end{gathered}$
Si ${ }^{29}$	Strong hfs:	Not Measured		

which were reported by Feigl and Anderson (8). Discrepancies exists in the angles describing the principal axes directions because of the failure of Feigl and Anderson to choose an appropriate coordinate system. The estimated errors in computing the principal values and directions from this present study are

$$
\begin{aligned}
& \Delta \mathrm{g}= \pm 0.000006 \\
& \Delta \mathrm{~A}= \pm 0.1 \mathrm{MHz} \\
& \Delta \theta= \pm 1^{0} \\
& \Delta \phi= \pm 1^{0}
\end{aligned}
$$

The E_{4}^{\prime} center has been studied in detail recently by L. E. Halliburton and J. A. Weil (10). They have suggested that the E_{4}^{\prime} center is a hydride ion (H^{-}) sitting in the oxygen vacancy bonding with one silicon with the unpaired electron localized in an sp ${ }^{3}$ hybrid orbital on the opposite silicon.

In general, a hyperfine interaction tensor can be separated into two parts--an isotropic part and an anisotropic part with zero trace.

$$
\stackrel{\leftrightarrow}{A}=A \stackrel{\leftrightarrow}{I}+\overleftrightarrow{B}
$$

The isotropic interaction term (also called the Fermi contact term) is proportional to the probability density of the unpaired electron at the interacting nucleus and is given by

$$
A_{0}=(8 / 3) \pi g \beta g_{N} \beta_{N}\left|\psi\left(\gamma_{i}\right)\right|^{2}
$$

The anisotropic term describes the dipole-dipole interaction of the nuclear magnetic moment with the distributed electronic magnetic moment. The elements of the B tensor are given by

$$
B_{i j}=g \beta g_{N} \beta_{N} \int\left[\frac{3 x_{i} x_{j}}{\gamma^{5}}-\left(\frac{\delta_{i j}}{\gamma^{3}}\right)\right]|\psi(\gamma)|^{2} d \tau
$$

where x_{1}, x_{2} and x_{3} are the Cartesian coordinates of the distributed electronic dipole with respect to the point nuclear dipole.

Now for the E_{2}^{\prime} and the E_{4}^{\prime} center let's assume momentarily that the distributed electronic dipole moment is a point dipole with separation γ from the nuclear magnetic moment along the z axis of the principal coordinate system of the A tensor. From the anisotropic part of the hyperfine tensor A we get

$$
\gamma=1.4 \mathrm{~A}^{\circ} \quad \text { for the } \mathrm{E}_{4}^{\prime} \text { center }
$$

and

$$
\gamma=3.2 \mathrm{~A}^{\circ} \quad \text { for the } \mathrm{E}_{2}^{\prime} \text { center. }
$$

Different γ values for the E_{4}^{\prime} and the E_{2}^{\prime} centers from the simple calculations suggests that these two centers are different in nature. But at the same time we have evidence from our thermal anneal study which suggests that these two centers must be similar in nature. A recent thermal anneal study at low temperatures after various low and high temperature electron irradiation by Mark E. Markes and L. E. Halliburton (11) supports the idea that these two defect centers must be similar in nature. The main question is to find where the proton is sitting in the E_{2}^{\prime} center configuration.

A complete set of experimental data for the ground state of the E_{2}^{\prime} center has now been obtained. But this accumulation of information is insufficient to suggest any concrete model for the E_{2}^{\prime} center. Further theoretical investigations probably will allow one to propose a definite defect model for the E_{2}^{\prime} center in agreement with the experimental data available.

1. Megaw, Helen D. Crystal Structures: A Working Approach (W. B. Saunders Company).
2. Flanagan, T. M. IEEE Transaction on Nuclear Science. NS 21 (1974).
3. Weeks, R. A. and C. M. Nelson. Journal of the American Ceramic Society, 43, 399 (1960).
4. Weeks, R. A. Journal of Applied Physics, 27, 1376 (1956).
5. Silsbee, Robert H. Journal of Applied Physics 32, 1459 (1961).
6. Yip, Kwok Leung and W. B. Fowler, Phys. Rev. B 11, 2327 (1975).
7. Weeks, R. A., Phys. Rev. 130, 570 (1963).
8. Feigl, F. J. and J. H. Anderson, J. Phys. Chem. Solids 31, 575 (1970).
9. Halliburton, L. E. and J. A. Weil, Solid State Commn. (in press).
10. Halliburton, L. E. and J. A. Weil (private communication) (1978).
11. Markes, Mark E. and L. E. Halliburton (private communication) (1979) .

APPENDIX A

CAPD		
0001		IMPLICIT REAL * 8 ($A-H, D-Z)$
0002		REAL * 8 AR(8,8), $4(18,8), E(8), E 2(8), T A U(2,8), 0(8), H F(8), P(18)$,
0003		CG(3,3$), H(3,3), 2(3,3), R M(3,3), R 2(3,3), R 3(3,3), R T(3,3), T G(3,3)$,
0004		CTH(3,3), T2(3,3),R(3,31, PQ(18)
0005		$P(1)=2.0005840+00$
0006		$P(2)=2.0003780+00$
0007		$P(3)=2.001710+00$
0008		$P(4)=120.30+00$
0009		$P(5)=238.80+00$
0010		$P(6)=153.20+00$
0011		$P(7)=1135.540+00$
0012		$P(8)=1135.510+00$
0013		$P(9)=1312.950+00$
0014		$p(10)=58.70+00$
0015		$P(11)=62.60+00$
0016		P($121=153.20+00$
0017		$P(13)=-0.2320+00$
0018		$p(141=-0.5590+00$
0019		$P(15)=4.2140+00$
0020		$\mathrm{P}(16)=237.00+00$
0021		$P(17)=63.50+00$
0022		$P(18)=56.50+00$
0023	C	the parameters fin tre g tensor are 1-Gx, 2-Gy, 3-Gz, 4-THETA,
C024	C	5-PHI. 6-PSI. THE PARAMETERS FOR THE HYPERFINE TENSOR ARE 7-AX,
0025	c	8-AY, 9-AL, 10-THETA, 11-PHI, 12-PSI.
0026	C	the parameters for proton tensir are 13-a,14-ay,15-az,16-theta,
0927	C	$17-P H 1.18-P S 1$.
0028		WPITE(6,10) (P(1),I=1,18)
6029	10	FORMATI9F10.51
0030		$B=9.27410+00 / 6.82620+00$
0031		G8N1=8.4580-04
0032		GBN2 $=4.2577080-03$
0033		FREOD=9.0850+03
0034		$\mathrm{N}=6$
0035		NM $=8$
0036		ALPHA $=0.00+00$
CO37		BETA $=-9.00+01$
CO38		$0091 \mathrm{~L}=1,3$
C039		$P(L+3)=P(L+3) *(3.141590+00 / 1.80+02)$
¢040		$p(L+9)=P(L+9) *(3.141590+00 / 1.80+021)$
0041	91	$P(L+15)=P(L+15) *(3.141590+00 / 1.80+02)$
5042		$A G=0$ INPP(4)
0043		$\triangle A G=0 \operatorname{Cos}(\mathrm{P}(4))$
0044		$C G=O S I N(P(5))$
0045		CCGsocos (P) 51)
0046		$F G=O S I N(P(6))$
CC47		FFG*OCOS $(P) 6$)
0048		$A H=O S I N(10:)$
0049		$\triangle A H=O C D S(P 101)$
0050		CH=OSIN(P111)
0051		CCH=OCOS(P(11))
0052		FH=OSIN(P112)
CO53		FFH=OCDS(P121)
0054		$A L=O S I N(P(161)$
0055		$\triangle A Z=0 \operatorname{COS}\left(\mathrm{P}^{(16))}\right.$
0056		CL=OSIN(P(17))
0057		$C C 2 * O C O S(P 17) 1$
0058		$F Z=0 S 1 N(P(18))$
0059		$F F L=0 C O S(P 181)$
c060		$C O=0 \cos (2.0943950+00)$
0061		SI $=$ OSIN(2.0943950+00)
0062		G(1.1) $=F F \mathrm{~F} * C C G-\triangle A G * C G * F G$
0063		G(1.2) 2 FFG* CG $+\triangle A G * C C G * F G$
C064		G(1, 3) $=\mathrm{FG} * \triangle \mathrm{G}$
0065		G(2,1)=-FG*CCG-AAG*CG*FFG
C 366		G(2.2)=-FG*CG $+\triangle A G * C C G * F F G$
0067		G(2,3)=FFG*AG
0068		G83.1)=AG*CG

0069		G(3.2) $=-\triangle \mathrm{G} * \mathrm{CCG}$
0970		$G(3,3)=A \Delta G$
0071		H(1, l) =FFH*CCH- $\triangle A H * C H * F H$
0072		H(1, 2) $=\mathrm{FFH} * \mathrm{CH}+\triangle A H * C C H * F H$
On7 3		$H(1,3)=F H * A H$
0074		H(2.1) = -FH*CCH-AAH*CH*FFH
0075		H(2,2) $=-\mathrm{FH} * \mathrm{CH}+\triangle \triangle H * C C H * F F H$
0076		$H(2,3)=F F H * A H$
0077		H(3,1) = AH*CH
0078		$H(3,2)=-A H * C C H$
co79		$\mathrm{H}(3,3)=\triangle A H$
0080		Z(1.1)=FFZ*CCL-AAL*C Z*FZ
0381		Z(1,2)*FFL*CZ +AA 2 *CC Z*FZ
0082		$2(1,3)=F 2 * A L$
C083		Z(2, $)=-F Z * C C Z-A A Z * C Z * F Z ~$
C084		Z 2,2$)=-F 2 * C Z+A A Z * C C Z * F F Z$
0085		Z(2.3) =FFL*AZ
0086		2(3.1) = A 2 * 2
0087		$2(3,2)=-A L * C C Z$
0088		$2(3,3)=A \Delta Z$
cos9	20	$\triangle L P H A R=\triangle L P H A *(3.141590+90 / 1.80+02)$
0090		$B E T \Delta R=\theta E T \quad 4 *(3.141590+00 / 1.80+021)$
0091		WRITF(6,30) ALPHA, BETA
0092	30	FORMAT($0 \cdot$, 2F15.3)
0093		RM(1.1) $=$ OCOS (ALPHAR)
0094		RM(1,2) $=-\operatorname{SSIN}(\operatorname{ALPHAR}) * O S!N(B E T A R)$
0095		QY(1,3)=OSIN(ALPHAR)*DCOS(BETAR)
0096		QM(2,1) $=0.00+00$
0097		RM $(2,2)=0 \operatorname{COS}(8 E T A R)$
0098		RM(2,3$)=0 \operatorname{SIN}($ BETAR)
0099		RM(3,1) $=$-OS (N(ALPHAR)
0100		
0101		RM $(3,3)=$ DCDS (ALPHAR)*OCOS (BETAR)
9102		$k=1$
0103	40	Gi $\mathrm{T}_{\text {O }}(50,50,50,60,60,601, \mathrm{~K}$
0104	50	Q $2(1,1)=1.00+00$
0105		$R 2(1,2)=0.00+00$
0106		R2 21,3$)=0.00+00$
0107		R $2(2,1)=0.00+00$
9108		R $2(2,2)=1.00+00$
0109		$R 2(2,3)=0.00+00$
0110		Q $2(3,1)=0.00+00$
0111		$22(3,2)=0.00+00$
0112		R $2(3,3)=1.30+00$
0113		GO TO (70.80,901, K
0114	60	R2(1, 1) $=1.00+00$
0115		$R 2(1,2)=0.00+00$
0116		R2(1, 3) $=0.00+00$
0117		$R 2(2,1)=0.00+00$
0118		Q $2(2,2)=-1.00+00$
0119		$\mathrm{R} 2(2,3)=0.00+00$
0120		$R 2(3,1)=0.00+90$
0121		R2 $23,21=0.00+00$
0122		$R 2(3,3)=-1.00+00$
0123		$K K=K-3$
0124		GO TO 170,80,901, KK
0125	70	R $3(1,1)=1.00+00$
0126		R $3(1,2)=0.00+00$
0127		R $3\{1.3)=0.00+00$
0128		R $3(2,1)=0.00+00$
0129		2 $3(2,2)=1.00+00$
0130		Q $3(2,3)=0.00+00$
0131		R $3(3,1)=0.00+00$
0132		R $3(3,2)=0.00+00$
0133		R $3(3,3)=1.00+90$
0134		GO TO 100
0135	80	R3(1, 1) = $C 0$
9136		R3(1, 2) $=51$
0137		R $3(1,3)=0.00+00$
2138		R3(2,1) $=-51$

```
0139
O140
0141
0142
0143
0144
0145
0146
0147
O148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
2174
0175
2176
0177
0178
0179
1180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0 1 9 5
0196
0197
0198
0199
0290
0201
0202
0203
0204
0 2 0 5
2206
0207
0278
```

```
    R3(2,2)=CO
```

 R3(2,2)=CO
 R 3(2,3)=0.70+00
 R 3(2,3)=0.70+00
 R 3(3,1)=0.00+00
 R 3(3,1)=0.00+00
 R3(3.2)=0.00+00
 R3(3.2)=0.00+00
 R 3(3,3)=1.00+00
 R 3(3,3)=1.00+00
 GO TO 100
 GO TO 100
 90 R3(1, l)=C0
90 R3(1, l)=C0
R3(1,2)=-SI
R3(1,2)=-SI
R3(1.3)=0.00+00
R3(1.3)=0.00+00
R3(2,1)=S!
R3(2,1)=S!
R3(2,2)=C0
R3(2,2)=C0
R 3(2,3)=0.00+00
R 3(2,3)=0.00+00
R3(3,1)=0.00+00
R3(3,1)=0.00+00
R3(3.2)=0.00+00
R3(3.2)=0.00+00
R3(3,3)=1.00+00
R3(3,3)=1.00+00
100 00 110 L=1,3
100 00 110 L=1,3
OO 110 M=1,3
OO 110 M=1,3
110 RY{L,M)=R2(L,1)*R3(L,M)+R2(L,2)*R3(2,M)+R2(L,3)*R3(3,M)
110 RY{L,M)=R2(L,1)*R3(L,M)+R2(L,2)*R3(2,M)+R2(L,3)*R3(3,M)
OO 120 L=1.3
OO 120 L=1.3
OO 120 M=1,3
OO 120 M=1,3
120 R(L,M)=RT(L,1)*RM(1,M)+RT(L, 2)*RM(2,M) +RT(L, 3)*RM(3,M)
120 R(L,M)=RT(L,1)*RM(1,M)+RT(L, 2)*RM(2,M) +RT(L, 3)*RM(3,M)
OO 130 L=1.3
OO 130 L=1.3
OO 130 M=1,3
OO 130 M=1,3
TG(L,M)=G(L,L)*R(1,M)+G(L, 2)*R(2,M)+G{L,3)*R(3,M)
TG(L,M)=G(L,L)*R(1,M)+G(L, 2)*R(2,M)+G{L,3)*R(3,M)
TH(L,M)*H(L,1)*R(L,M) +H(L, 2) *R(2,M)+H{L,3)*R(3,M)
TH(L,M)*H(L,1)*R(L,M) +H(L, 2) *R(2,M)+H{L,3)*R(3,M)
130 TZ(L,M)*Z(L,L)*R(1,M)+Z(L,2)*R(2,M)+Z(L,3)*R(3,M)
130 TZ(L,M)*Z(L,L)*R(1,M)+Z(L,2)*R(2,M)+Z(L,3)*R(3,M)
I=1
I=1
140 HH=6.000+03
140 HH=6.000+03
150 W1=8*HH*(P{1)*TGI1,1)*TG(1,3)+P(2)*TG(2,1)*TG(2,3)*P(3)*TG(3,1)*
150 W1=8*HH*(P{1)*TGI1,1)*TG(1,3)+P(2)*TG(2,1)*TG(2,3)*P(3)*TG(3,1)*
CTG(3,3))
CTG(3,3))
W2=8*HH*(P(1)*TG(1,2)*TG(1,3)+P(2)*TG(2,2)*TG(2,3)*P(3)*TG(3,2)*
W2=8*HH*(P(1)*TG(1,2)*TG(1,3)+P(2)*TG(2,2)*TG(2,3)*P(3)*TG(3,2)*
CTG(3.31)
CTG(3.31)
W3=B*HH*(P(1)*TG(1,3)*TG(1,3)+P(2)*TG(2,3)*TG(2,3)+P(3)*TG(3,3)*
W3=B*HH*(P(1)*TG(1,3)*TG(1,3)+P(2)*TG(2,3)*TG(2,3)+P(3)*TG(3,3)*
CTG(3.31)
CTG(3.31)
W4=P{7)*TH(1, 1)*TH(1,1)+P(8)*TH(2,1)*TH(2,1)+P(9)*TH(3,1)*TH(3,1)
W4=P{7)*TH(1, 1)*TH(1,1)+P(8)*TH(2,1)*TH(2,1)+P(9)*TH(3,1)*TH(3,1)
W5=P(7)*TH(1, 1)*TH(1, 2) +P(8)*TH(2,1)*TH(2,2)+P(9)*TH(3,1)*TH(3,2)
W5=P(7)*TH(1, 1)*TH(1, 2) +P(8)*TH(2,1)*TH(2,2)+P(9)*TH(3,1)*TH(3,2)
W6 =P(T)*TH(1,1)*TH(1,3) +P(8)*TH(2,1)*TH(2,3)+P(9)*TH(3,1)*TH(3,3)
W6 =P(T)*TH(1,1)*TH(1,3) +P(8)*TH(2,1)*TH(2,3)+P(9)*TH(3,1)*TH(3,3)
H7=P{7}*TH(1, 2)*TH(1,2)+P{8)*TH{2,2)*TH{2,2)+P(9)*TH(3,2)*TH(3,2)
H7=P{7}*TH(1, 2)*TH(1,2)+P{8)*TH{2,2)*TH{2,2)+P(9)*TH(3,2)*TH(3,2)
W =P(7)*TH(1, 2)*TH(1,3) +P(8)*TH(2,2)*TH{2,3)+P(9)*TH(3,2)*TH(3,3)
W =P(7)*TH(1, 2)*TH(1,3) +P(8)*TH(2,2)*TH{2,3)+P(9)*TH(3,2)*TH(3,3)
W9=P(7)*TH(1, 3)*TH(1,3)+P(8)*TH(2,3)*TH(2,3) +P(9)*TH(3,3)*TH(3,3)
W9=P(7)*TH(1, 3)*TH(1,3)+P(8)*TH(2,3)*TH(2,3) +P(9)*TH(3,3)*TH(3,3)
W1O=P(13)*TZ(1,1)*TZ(1,1)+P(14)*TZ(2,1)*TZ(2,1)+P(15)*TZ(3,1)
W1O=P(13)*TZ(1,1)*TZ(1,1)+P(14)*TZ(2,1)*TZ(2,1)+P(15)*TZ(3,1)
C*rZ(3,1)
C*rZ(3,1)
W11=P(13)*TZ(1,1)*TZ(1,2)+P(14)*TZ(2,1)*TZ(2,2)+P(15)*TZ(3,1)
W11=P(13)*TZ(1,1)*TZ(1,2)+P(14)*TZ(2,1)*TZ(2,2)+P(15)*TZ(3,1)
C*TZ(3,2)
C*TZ(3,2)
W12=P(13)*TZ(1.1)*TZ(1.3)+.P(14)*TZ(2,1)*TZ(2.3)+P(15)*TZ(3.1)
W12=P(13)*TZ(1.1)*TZ(1.3)+.P(14)*TZ(2,1)*TZ(2.3)+P(15)*TZ(3.1)
C*TZ(3.3)
C*TZ(3.3)
W13=P(13)*TZ(1,2)*TZ(1,2)+P(14)*TZ(2,2)*TZ(2,2)+P(15)*TZ(3,2)
W13=P(13)*TZ(1,2)*TZ(1,2)+P(14)*TZ(2,2)*TZ(2,2)+P(15)*TZ(3,2)
C*T2(3,2)
C*T2(3,2)
W14*P(13)*TZ(1,2)*TZ(1,3)+P(14)*TZ(2,2)*TZ(2,3)+P(15)*TZ(3,2)
W14*P(13)*TZ(1,2)*TZ(1,3)+P(14)*TZ(2,2)*TZ(2,3)+P(15)*TZ(3,2)
C*r2(3.3)
C*r2(3.3)
W15=0(13)*TZ(1,3)*TZ(1,3)+P(14)*TZ(2,3)*TZ(2,3)+P(15)*TZ(3,3)
W15=0(13)*TZ(1,3)*TZ(1,3)+P(14)*TZ(2,3)*TZ(2,3)+P(15)*TZ(3,3)
C*T2(3,3)
C*T2(3,3)
O1R=W1/2.OD+CO
O1R=W1/2.OD+CO
OII=W2/2.00+00
OII=W2/2.00+00
Q2R=(W4-W7)/4.00+00
Q2R=(W4-W7)/4.00+00
02I=W5/2.00+00
02I=W5/2.00+00
03= (W4+W7)/4.00+00
03= (W4+W7)/4.00+00
U4R=W6/2.00+00
U4R=W6/2.00+00
04I=W8/2.00+00
04I=W8/2.00+00
05R=(W1O-W131/4.00+00
05R=(W1O-W131/4.00+00
05I=W11/2.00+00
05I=W11/2.00+00
06=(W10+W13)/4.00+00
06=(W10+W13)/4.00+00
Q 7R=W12/2.00+00
Q 7R=W12/2.00+00
07I=W14/2.OD+00
07I=W14/2.OD+00
OD 160 L=1.8
OD 160 L=1.8
OO 160 M=1.8
OO 160 M=1.8
ARIL,MI= 0.00+00
ARIL,MI= 0.00+00
160AI(L,M)=0.00+00
160AI(L,M)=0.00+00
AR(1, 1)=W3/2.00+00+W9/4.00+00+WL5/4.00+00-(G8N1*HH)/2.00+00
AR(1, 1)=W3/2.00+00+W9/4.00+00+WL5/4.00+00-(G8N1*HH)/2.00+00
C-{GBN2*HH)/2.00+00

```
    C-{GBN2*HH )/2.00+00
```

0209		AR 12,2$)=W 3 / 2.00+00-W 9 / 4.00+00+W 15 / 4.00+00+(G B N 1 * H H 1 / 2.00+00$
0210		C-(GBN2*HH $/ 12.00+00$
0211		AR $3,31=-W 3 / 2.00+00-W 9 / 4.0 D+00-W 15 / 4.00+00-(G B N 1 * H H) / 2.00+00$
0212		C-(GBN2*HH)/2.00 + 00
0213		$\Delta R(4,4)=-W 3 / 2.00+00+W S / 4.00+00-W 15 / 4.00+00+(G B N 1 * H H) / 2.00+00$
0214		C-(GBN2*HH)/2.00+00
0215		AR 15,5$)=W 3 / 2.00+00+W 9 / 4.00+00-W 15 / 4.00+00-(G B N 1 * H H) / 2.00+00$
0216		C+(GBN2*HH)/2.00+00
0217		AR $(6,6)=W 3 / 2.00+00-W 9 / 4.00+00-W 15 / 4.00+00+(G 8 N 1 * H H) / 2.00+00$
0218		C+ (GBN2*HH $/ 12.00+00$
0219		AR (7, 7) $=-W 3 / 2.00+00-W 9 / 4.00+00+W 15 / 4.00+00-($ CBNL $* H H) / 2.00+00$
0220		$\mathrm{C}+(\mathrm{GBN} 2 * \mathrm{HH}) / 2.00+00$
0221		AR $(8,8)=-W 3 / 2.00+00+W 9 / 4.00+00+W 15 / 4.00+00+(G 8 N 1 * H H) / 2.00+00$
0222		C+(G8V2*HH)/2.00+00
0223		AR (2,1) $=04 \mathrm{R} / 2.00+00$
0224		Ai $(2,1)=041 / 2.00+00$
0225		$A R(3,1)=Q 1 R+Q 4 R / 2.00+00+07 R / 2.00+00$
0226		$A I(3,1)=011+041 / 2.00+00+071 / 2.00+00$
0227		$A R(4,1)=Q 2 R$
0228		$\Delta(14.1)=021$
0229		$\Delta R(5,1)=$ Q $7 R / 2.00+00$
0230		AI(5, 1) =071/2.CD+00
0231		AR (7,1) $=058$
2232		$A(17,1)=051$
9233		AR (3,2$)=03$
0234		AR 44,2$)=01 R-04 R / 2.00+00+07 R / 2.00+00$
0235		$\Delta 1(4,2)=011-041 / 2.00+00+07 / 2.00+00$
0236		$\Delta R(6,2)=\operatorname{AR}(5,1)$
0237		A1 6,2$)=A 1(5,1)$
ก238		$12(8,2)=A R(7,1)$
0239		$A 1(8,2)=A 1(7,1)$
0240		AR 14,3$)=$-AR $(2,1)$
0241		$A I(4,3)=-A I(2,1)$
0242		$\Delta \mathrm{Q}(5,3)=06$
0243		$\operatorname{AR}(7,3)=-\operatorname{AR}(5,1)$
0244		A1 17.3$)=-41(5,1)$
0245		$\Delta R(6,4)=\Delta R(5,3)$
0246		AR $(8,4)=A R(7,3)$
0247		$A(18,4)=A(17,3)$
0248		$A R(6,5)=-A R(4,3)$
0249		AI (6,51$)=-41(4,3)$
0250		AR (7,5) $=$ Q1R + Q $4 R / 2.00+00-Q 7 R / 2.00+00$
0251		$4 I(7,5)=011+041 / 2.00+00-071 / 2.00+00$
0252		$\Delta R(8,5)=A R(4,1)$
0253		$\Delta I(8,5)=A 1(4,1)$
0254		$\Delta R(7,6)=\Delta R(3,2)$
0255		AR (8,6) $=01 R-04 R / 2.00+00-07 R / 2.00+00$
0256		Al(8,6$)=011-041 / 2.00+90-071 / 2.00+00$
0257		AR ($8,71=-04 R / 2.00+90$
0258		AI (8,7) $=-041 / 2.00+00$
0259	,	CALL HTRIDI (NM,N,AR,AT,O,E,E2,TAU)
0269		CALL IMTOLI (N,D,E,IERR)
0261		GO TO (179,180,190,200).I
0262	170	FREQ 0 (8)-012)
0263		GO TS 210
0264	180	$F R E Q=D(7)-D(1)$
0265		GO TO 210
0266	190	$F R E Q=0(6)-D(4)$
0267		GO TH 210
0268	200	FREQ $=0(5)-0(3)$
0269	210	IFIDABSIFREQQ-FREQ1-1.00-01)220,220,230
0270	220	$\mathrm{HF}(1)=\mathrm{HH}$
$\bigcirc 271$		GO TO 240
0272	233	HH=HH*(FREQQ/FREQ)
0273		GO TO 150
0274	240	IF(I-4) $250,260,260$
0275	250	$\mathrm{I}=1+1$
0276		GO TO 140
0277	260	WRITE(6,270) (HFII), I=1,4)
0278		FDRMA (4F20.2)

0279
0280
0281
0282
0283 0284 0285 0286 C287 0288 0289 0290 0291 0292 0293 0294 0295 0296 3297 0298 0297 0300 3301 0302 0303
0304
0305
0306
0307
ก308
0309

```
IF(K-6)280.290.290
\(280 K=K+1\)
GO TO 4n
290 BETA \(=B E T A+5.00+00\)
IF(BETA-9.10+01)20.300.300
300 WRITE(6.310) (P(1).I \(=1,19)\)
310 FRRMATI'O',9F10.51
\(P Q(1)=D A R C O S(G(1,3))\)
\(P Q(2)=\) DATAN(G) 1,2\() / G(1,1)\}\)
\(D O(3)=\) DARCOS(G) 2,31\()\)
\(P(4)=0 A T A N(G(2,2) / G(2,1))\)
\(P Q(5)=P(4)\)
\(P Q(6)=0 A R C O S(C G)\)
\(P Q(7)=0 A R C O S(H(1,3))\)
\(\operatorname{PQ}(8)=D A T A N(H(1,2) / H(1,1))\)
\(P Q(9)=0 \operatorname{ARCOS}(H(2,3))\)
\(P Q(1))=D A T A N(H(2,2) / H(2,1))\)
\(P Q(11)=P(10)\)
\(P Q(12)=O A R C O S(C H)\)
\(\rho Q(13)=\) DARCOS \((2(1,3))\)
\(P Q(14)=\) DATAN(211,2)/Z(1,1))
\(P Q(15)=0 A R C O S(2(2,3))\)
\(P Q(16)=D A T A N(Z(2,2) / Z(2,1))\)
\(P Q(17)=P(16)\)
\(P Q(18)=\) OARCOS (C2)
DO \(320 \mathrm{~L}=1.18\)
320 PO(L) \(=P Q(L) *(1.80+02 / 3.141590+00)\)
WRITE(6,339) (PQ(I), I=1,18)
330 FORMATI'O'.6F15.51
STOP
ENO
```

APPENDIX B

```
CARD
O001
0กつ2
0003
0004
0NO5
0006
0007
n0)8
COO9
0010
COIl
CO12
0013
CO14
0015
CO16
CO17
018
C019
CO20
0 0 2 1
0022
023
CO24 C
CO25
C026
027
กn28
029
0030
CO31
032
0 0 3 3
0034
0035
0036
0037
0.38
C039
0040
0041
C042
0043
0044
0045
0 0 4 6
0047
0 0 4 8
0 . 0 4 9
050
0051
0052
0 0 5 3
0054
0055
0056
057
058
0059
0 0 6 0
0 0 6
0 0 6 2
0 0 6 3
0 0 6 4
0065
0 0 6 6
0067
C068
```

```
        RMPLICIT REAL * 8 (A-H,I)-Z)
```

 RMPLICIT REAL * 8 (A-H,I)-Z)
 REAL * 8 AR(8,8),AI(8,8),E(8),E2(8),TAU(2,8),D(8),HF(8),P(13),
 REAL * 8 AR(8,8),AI(8,8),E(8),E2(8),TAU(2,8),D(8),HF(8),P(13),
 CG(3,3),H(3,3),Z(3,3),RM(3,3),R2(3,3),R(3(3,3),RT(3,3),TG(3,3),
 CG(3,3),H(3,3),Z(3,3),RM(3,3),R2(3,3),R(3(3,3),RT(3,3),TG(3,3),
 CTH(3,3),TZ(3,3),R(3,3),FREQ1(28)
 CTH(3,3),TZ(3,3),R(3,3),FREQ1(28)
 P(1)=2.0005840+00
 P(1)=2.0005840+00
 P(2)=2.0003780+00
 P(2)=2.0003780+00
 P(3)=2.001710+00
 P(3)=2.001710+00
 P(4)=120.30+00
 P(4)=120.30+00
 P(5)=238.8D+00
 P(5)=238.8D+00
 P(6)=153.2D+C0
 P(6)=153.2D+C0
 P(7)=1135.540+00
 P(7)=1135.540+00
 P(8)=1135.510+00
 P(8)=1135.510+00
 P(9)=1312.950+00
 P(9)=1312.950+00
 P(10)=58.70+00
 P(10)=58.70+00
 P(11)=62.60+00
 P(11)=62.60+00
 P(12)=153.20+00
 P(12)=153.20+00
 P(13)=-0.232D+00
 P(13)=-0.232D+00
 P(14)=-0.5590+00
 P(14)=-0.5590+00
 P(15)=4.2140+00
 P(15)=4.2140+00
 P(16)=237.00+00
 P(16)=237.00+00
 P(17)=63.50+C0
 P(17)=63.50+C0
 P(18)=56.50+00
 P(18)=56.50+00
 THE PARAMETERS FOP. THE G TENSOR ARE 1-GX, 2-GY, 3-GZ, 4-THETA,
 THE PARAMETERS FOP. THE G TENSOR ARE 1-GX, 2-GY, 3-GZ, 4-THETA,
 5-PHI, G-PSI. THE PARAMETERS FOR THE HYPERFINE TENSOR ARE T-AX,
 5-PHI, G-PSI. THE PARAMETERS FOR THE HYPERFINE TENSOR ARE T-AX,
 8-AY, 9-AZ, 10-THETA, 11-PHI, 12-PSI.
 8-AY, 9-AZ, 10-THETA, 11-PHI, 12-PSI.
 THE PARAMETERS FOR PROTON TENSOR ARE 13-A,14-AY,15-AZ,16-THETA,
 THE PARAMETERS FOR PROTON TENSOR ARE 13-A,14-AY,15-AZ,16-THETA,
 17-PHI,18-PSI.
 17-PHI,18-PSI.
 WRITE(6,10) (P(I),I=1.18)
 WRITE(6,10) (P(I),I=1.18)
 10 FORMATI'OO,GFIO.51
 10 FORMATI'OO,GFIO.51
 B=9.27410+00/6.62620+00
 B=9.27410+00/6.62620+00
 GBNI=8.458D-04
 GBNI=8.458D-04
 GBN2=4.2577!8D-n3
 GBN2=4.2577!8D-n3
 FREOO=9.0850+03
 FREOO=9.0850+03
 N=8
 N=8
 NM=8
 NM=8
 ALPHA=0.00+00
 ALPHA=0.00+00
 D\ Y1 L=1,3
 D\ Y1 L=1,3
 P(L+3)=P(L+3)*(3.141590+00/1.80+02)
 P(L+3)=P(L+3)*(3.141590+00/1.80+02)
 P(L+9)=P(L+9)*(3.141590+10/1.80+02)
 P(L+9)=P(L+9)*(3.141590+10/1.80+02)
 91 P(L+15)=P(L+15)*(3.141590+00/1.80+02)
91 P(L+15)=P(L+15)*(3.141590+00/1.80+02)
92 DO 93 LL=13.18
92 DO 93 LL=13.18
94 K1=1
94 K1=1
95 MM=1
95 MM=1
96 GO TO (358,359,360,361, 362,363,364,365,366,367,368,369,370,
96 GO TO (358,359,360,361, 362,363,364,365,366,367,368,369,370,
C 371,372,373,374,375,376,377,378,379,380,381,382,383,384,3851,MM
C 371,372,373,374,375,376,377,378,379,380,381,382,383,384,3851,MM
358 HH=2996.6550+00
358 HH=2996.6550+00
BETA=70.0D+00
BETA=70.0D+00
K=2
K=2
I=1
I=1
GO rO 97
GO rO 97
359 HH=3434.567D+00
359 HH=3434.567D+00
K=1
K=1
I=3
I=3
G! TO 97
G! TO 97
360 HH=3435.957D+00
360 HH=3435.957D+00
K=3
K=3
I =4
I =4
GO T0 97
GO T0 97
361 HH=2995.592D+00
361 HH=2995.592D+00
BETA =60.0D+00
BETA =60.0D+00
K=2
K=2
I=1
I=1
GO TO 97
GO TO 97
362 HH=3433.7560+00
362 HH=3433.7560+00
K=1
K=1
I=4
I=4
GO TO 9%
GO TO 9%
363HH=2997.2360+00

```
    363HH=2997.2360+00
```

0069		ВETA $=45.00+00$
C070		$\mathrm{K}=2$
c071		1=1
0072		GU TO 97
0073	304	HH=2995.7760+00
C.174		1=2
2075	365	$H H=3025.920+00$
0076		$\mathrm{K}=1$
0077		$1=2$
0078		G0 T0 97
. 3079	366	$H H=3.226 .2750+00$
0080		$\mathrm{K}=3$
0081		G0 TO 97
0082	307	$\mathrm{HH}=3002.3030+00$
0083		BETA $=30.00+00$
0084		$k=2$
0085		$1=1$
0086		Gก ro 97
0087	368	$H H=3024.0280+00$
0088		$K=1$
0089		1:1
0090		GO TO 97
0091	369	$\mathrm{HH}=3024.70350+00$
0092		$x=3$
0093		GO TO 97
0094	370	$H H=3009.712 \mathrm{D}+00$
C095		$B E T A=15.00+00$
CO96		$K=2$
0097		$1=1$
C098		G0 ro 97
c099	371	$H H=3020.90+00$
0100		$\mathrm{K}=1$
0101		$1=1$
0102		GU T0 97
0103	372	$\mathrm{HH}=3021.4110+00$
0104		$k=3$
0105		GO TO 97
0106	373	$H H=3017.5230+00$
0107		$B E T A=0.00+00$
C10'8		$\mathrm{K}=2$
0109		$1=1$
0110		GO TO 97
0111	374	$\mathrm{HH}=3023.642 \mathrm{D}+00$
0112		$B E T A=-15.00+00$
0113		$\mathrm{K}=2$
0114		$1=1$
0115		GO TO 97
0116	375	$H H=3026.277 D+00$
0117		$\triangle E T A=-30.00+00$
0118		$\mathrm{K}=2$
0119		$1=1$
0120		G0 Tמ 97
0121	376	$H H=3011.467 \mathrm{D}+00$
0122		$\mathrm{K}=3$
0123		$1=1$
0124		GO TO 97
0125	377	$\mathrm{HH}=3012.850+00$
0126		$\mathrm{k}=1$
0127		$1=1$
0128		GO TO 97
0129	378	$H H=3024.3870+00$
0130		$8 E T A=-45.00+00$
0131		$K=2$
0132		$1=1$
0133		GO 1097
0134	379	$H H=3012.810+00$
0135		$k=1$
0136		$1=1$
0137		GO TO 97
0138	380	$H H=3010.9030+00$

0139		$k=3$
0140		$1=1$
0141		GO in 97
0142	381	HH=3018.6680+00
0143		$B E T A=-60.00+00$
0144		$\mathrm{K}=2$
0145		$1=1$
0146		GO TO 97
0147	382	$H H=3014.4510+00$
0148		$k=1$
0149		$1=1$
0150		GOTI 97
0151	383	$\mathrm{HH}=3012.3080+00$
0152		$k=3$
0153		$1=1$
0154		GO T0 97
0155	384	$\mathrm{HH}=3014.211 \mathrm{D}+00$
0156		$B E T A=-70.00+00$
0157		$\mathrm{K}=3$
0158		1=1
0159		G0 1097
0160	385	$\mathrm{HH}=3445.7870+00$
0161		$k=3$
0162		$1=4$
0163	97	$A G=0 \operatorname{Sin}(P 14) 1$
0164		$\triangle A G=0 C D S(P(4))$
0165		$C G=0 S I N(P 15) 1$
0166		$C C G=0 \operatorname{Cos}(P(5))$
0167		$F G=O S I N(P(6))$
0168		FFG=OCOS(P(6))
0169		$A H=O S I N(P) 101)$
0170		$A A H=O C O S(P 110:)$
0171		$\mathrm{CH}=0 \operatorname{SN(P(1)})$
0172		CCH=OCOS (P(11))
0173		FH=OSIN(P(12)
0174		FFH=OCOS(P(12))
0175		AL*OSIN(P(16))
0176		$A A L=O C O S(P) 16) 1$
0177		CZ=DSIN(P(17))
0178		CCL $=0 \operatorname{Cos}\{\mathrm{P}(17) 1$
0179		FL=OSIN(P(1a))
0180		FF $2=0 \operatorname{COS}(\mathrm{P}(18)$)
0181		$C O=O C O S(2.0943950+00)$
0182		SI $=$ OSIN(2.0943950+00)
0183		G(1,1) $\mathrm{FFFG}^{\text {F CCG G-AAG*CG*FG }}$
0184		G(1.2) $\times F F G * C G+A A G * C C G * F G$
0185		G(1,3)=FG*AG
0186		G(2,1) $=-F G * C C G-A A G * C G * F F G$
0187		G(2,2)=-FG*CG +AAG*CC G*FFG
0188		G(2.3) $=$ FFG*AG
0189		G(3,1) $=A G * C G$
0190		G(3,2) $=-A G * C C G$
0191		G(3,3)=AAG
0192		H(1,1) =FFH*CCH-AAH*CH*FH
0193		H(1,2) =FFH*CH $+A A H * C C H * F H$
0194		$\mathrm{H}(1,3)=F \mathrm{H} * \mathrm{AH}$
0195		$\mathrm{H}(2,1)=-\mathrm{FH}$ ($\mathrm{CCH}-\mathrm{AAH} * \mathrm{CH} * \mathrm{FFH}$
0196		$\mathrm{H}(2,2)=-\mathrm{FH} * \mathrm{CH}+\mathrm{AAH} * C C \mathrm{H} * \mathrm{FFH}$
0197		H(2,3$)=f F H * A H$
0198		$\mathrm{H}(3,1)=A \mathrm{H}$ (CH
0199		$H(3,2)=-A H * C C H$
0200		$H(3,3)=A A H$
0201		(11,1)=FFZ*CC Z-AAL*C Z*FZ
0202		2(1,2)=FFZ*CZ + AAL*CC $2 * F Z$
0203		2(1.3) \times F2*AZ
0204		$2(2,1)=-F Z * C C Z-A A Z * C Z * F F Z$
0205		Z(2,2) $=-F 2 * C Z+A A Z * C C 2 * F F Z$
0206		Z 2 ,3) =FFZ*AZ
0207		2(3,1)=AZ*CZ
0208		$2(3.2)=-A 2 * C C 2$

```
0209
0210
3211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0 2 3 0
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0 2 4 2
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
```

```
    2(3.3)=AAZ
```

 2(3.3)=AAZ
 20 ALPHAR =ALPHA* (3.141590+00/1.80+02)
 20 ALPHAR =ALPHA* (3.141590+00/1.80+02)
 BETAR=8ETA*(3.141590+00/1.80+92)
 BETAR=8ETA*(3.141590+00/1.80+92)
 RM(1,1)=OCOS(ALPHAR)
 RM(1,1)=OCOS(ALPHAR)
 RM(1,2)=-DS[N(ALPHAR)*DSIN(BETAR)
 RM(1,2)=-DS[N(ALPHAR)*DSIN(BETAR)
 RM(1,3)=0S{N(ALPHAR)*OCOS(BETAR)
 RM(1,3)=0S{N(ALPHAR)*OCOS(BETAR)
 RM(2,1)=0.OD+00
 RM(2,1)=0.OD+00
 RM(2,2)=OCOS(BETAR)
 RM(2,2)=OCOS(BETAR)
 RM(2,3)=OSIN(BETAR)
 RM(2,3)=OSIN(BETAR)
 RM(3,1)=-DSIN(ALPHAR)
 RM(3,1)=-DSIN(ALPHAR)
 RM(3,2)=-DCOS(ALPHAR)*DSIN(BETAR)
 RM(3,2)=-DCOS(ALPHAR)*DSIN(BETAR)
 RM(3.3) = OCOS(ALPHAR)*DCOS(BETAR)
 RM(3.3) = OCOS(ALPHAR)*DCOS(BETAR)
 40 GO Tn (50,50,50,60,60,60),K
 40 GO Tn (50,50,50,60,60,60),K
 50 R2(1,1)=1.00+00
 50 R2(1,1)=1.00+00
 R2(1,2)=0.00+00
 R2(1,2)=0.00+00
 R2(1,3)=0.00+00
 R2(1,3)=0.00+00
 R2(2,1)=0.00+00
 R2(2,1)=0.00+00
 R2(2,2)=1.00+00
 R2(2,2)=1.00+00
 R2(2,3)=0.00+00
 R2(2,3)=0.00+00
 R2(3,1)=0.00+00
 R2(3,1)=0.00+00
 R2{3,2)=0.00+00
 R2{3,2)=0.00+00
 R2(3,3)=1.00+00
 R2(3,3)=1.00+00
 G0 10 170,80.901,K
 G0 10 170,80.901,K
 60 R2(1,1)=1.00+00
60 R2(1,1)=1.00+00
R2(1,2)=0.00+00
R2(1,2)=0.00+00
R2(1,3)=0.00+00
R2(1,3)=0.00+00
R2(2,1)=0.00+00
R2(2,1)=0.00+00
R2(2.2)=-1.00+00
R2(2.2)=-1.00+00
R2(2,3)=0.00+00
R2(2,3)=0.00+00
R2(3.1)=0.00+00
R2(3.1)=0.00+00
R2(3,2)=0.00+00
R2(3,2)=0.00+00
R 2(3,3)=-1.00+00
R 2(3,3)=-1.00+00
KK=k-3
KK=k-3
GO TO (70,80,90),KK
GO TO (70,80,90),KK
70 R3(1.1)=1.00+00
70 R3(1.1)=1.00+00
R3(1, 2)=0.00+00
R3(1, 2)=0.00+00
R3(1,3)=0.00+00
R3(1,3)=0.00+00
R3(2,1)=0.00+00
R3(2,1)=0.00+00
R3(2,2)=1.00+00
R3(2,2)=1.00+00
R3(2,3)=0.00+00
R3(2,3)=0.00+00
R3(3.1)=0.00+00
R3(3.1)=0.00+00
R3(3,2)=0.0D+00
R3(3,2)=0.0D+00
R3(3,3)=1.00+00
R3(3,3)=1.00+00
GO ro 100
GO ro 100
80R3(1,1)=C0
80R3(1,1)=C0
R3(1,2)=S!
R3(1,2)=S!
R 3(1.3)=0.00+00
R 3(1.3)=0.00+00
R 3(2,1)=-SI
R 3(2,1)=-SI
R3(2,2)=CO
R3(2,2)=CO
R3(2,3)=0.00+00
R3(2,3)=0.00+00
R3{3,1)=0.00+00
R3{3,1)=0.00+00
R3(3.2) =0.00+00
R3(3.2) =0.00+00
R3(3,3)=1.00+00
R3(3,3)=1.00+00
GO TO 100
GO TO 100
90R3(1,1)=CO
90R3(1,1)=CO
R3(1,2)=-SI
R3(1,2)=-SI
R3(1,3)=0.0D+00
R3(1,3)=0.0D+00
R3(2,1)=SI
R3(2,1)=SI
R3(2,2)=CO
R3(2,2)=CO
R3(2,3)=0.00+00
R3(2,3)=0.00+00
R3(3.1)=0.00+00
R3(3.1)=0.00+00
R3(3,2)=0.00+00
R3(3,2)=0.00+00
R3(3.3)=1.00+00
R3(3.3)=1.00+00
100 00 110 Lx 1,3
100 00 110 Lx 1,3
OO 110 M=1,3
OO 110 M=1,3
110 RT(L,M)=R2(L,1)*R3(1,M)+R2(L,2)*R3(2,M)+R2(L,3)*R3(3,M)
110 RT(L,M)=R2(L,1)*R3(1,M)+R2(L,2)*R3(2,M)+R2(L,3)*R3(3,M)
OO 120 L= 1.3
OO 120 L= 1.3
DO 120 M=1,3
DO 120 M=1,3
120 R(L,M)=RT(L,1)*RM(1,M)+RT(L,2)*RM(2,M) +RT(L,3)*RM(3,M)
120 R(L,M)=RT(L,1)*RM(1,M)+RT(L,2)*RM(2,M) +RT(L,3)*RM(3,M)
DO 130 L=1.3

```
    DO 130 L=1.3
```

0279		$00130 \quad M=1.3$
0280		$T G(L, M)=G(L, 1) * R(1, M)+G(L, 2) * R(2, M)+G(L, 3) * R(3, M)$
0281		$\operatorname{TH}(L, M)=H(L, 1) * R(L, M)+H(L, 2) * R(2, M)+H(L, 3) * R(3, M)$
0282	130	$T Z(L, M)=2(L, L) * R(1, M)+2(L, 2) * R(2, M)+Z(L, 3) * F(3, M)$
0283	150	$W \mathrm{~L}=8$ * HH* $(P(1) * T G(1,1) * T G(1,3)+P(2) * T G(2,1) * T G(2,3)+P(3) * T G(3,1) *$
0284		CTG(3,3)
0285		W2 $=$ B*HH* (P(1)*TG(1,2)*TG(1,3) +P(2)*TG(2,2)*TG(2,3)+P(3)*TG(3,2)*
0286		CTG(3.3)
0287		W3=8*HH* $P(1) * T G(1,3) * T G(1,3)+P(2) * T G(2,3) * T G(2,3)+P(3) * T G(3,3) *$
0288		CTG(3,3)
0289		W4*P(7)*TH(1, 1) *TH(1, 1) +P(8)*TH(2,1)*FH(2,1)+P(9)*TH(3,1)*TH(3,1)
0290		W5 =P(7)*TH(1, 1) *TH(1, 2) +P(8)*TH(2,1)*TH(2,2)+P(9)*TH(3,1)*TH(3,2)
0291		W6 $=P(7) * T H(1,1) * T H(1,3)+P(8) * T H(2,1) * T H(2,3)+P(9) * T H(3,1) * T H(3,3)$
0292		$W 7=P(7) * T H(1,2) * T H(1,2)+P(8) * T H(2 ; 2) * T H(2,2)+P(9) * T H(3,2) * T H(3,2)$
0293		$W 8=P(7) * T H(1,2) * T H(1,3)+P(8) * T H(2,2) * T H(2,31+P(9) * T H 43,2) * T H(3,3)$
0294		W9:P(7)*TH(1,3)*TH(1,3) +P(8)*TH(2,3)*TH(2,3)+P(9)*TH(3,3)*TH(3,3)
0295		W10mP(13)*TZ(1,1)*T2(1,1)*P(14)*TZ(2,1)*TZ(2,1)*P(15)*TZ(3,1)
0296		C*T213,11
0297		$W 11 * P(13) * T Z(1,1) * T Z(1,2)+P(14) * T 2(2,1) * T Z(2,2)+P(15) * T Z(3,1)$
0298		C*T ${ }^{\text {(13,2) }}$
0299		
0300		C*T213.3)
0301		W(3)P(13)*TZ(1,2)*TZ(1,2)+P(14)*TZ(2,2)*TZ(2,2)+P(15)*TZ(3,2)
0302		C*TZ(3,2)
0303		$W 14=P(13) * T Z(1,2) * T Z(1,3)+P(14) * T Z(2,2) * T Z(2,3)+P(15) * T Z(3,2)$
0304		C*r2(3,3)
0305		W15=P(13)*TZ(1,3)*TZ(1,3)*P(14)*TZ(2,3)*TZ(2,3)+P(15)*TZ(3,3)
0306		C*TZ(3,3)
0307		$01 R=W 1 / 2.00+00$
0308		01I $=\mathrm{W} 2 / 2.00+00$
0309		$02 R=\|W 4-W 7\| / 4.00+00$
0310		Q2I $=$ W5/2.00+00
0311		$03=(W 4+W 7) / 4.00+00$
0312		$04 R=W 6 / 2.00+00$
0313		Q4I=W8/2.00+00
0314		$05 R=(W 10-W 13) / 4.00+00$
0315		051xW11/2.00+00
0316		Q6 = (W10+W13)/4.00+00
0317		07R=W12/2.00+00
0318		07I =WL4/2.00+00
0319		$00 \quad 160 \quad L=1.8$
0320		OD $160 \mathrm{M}=1.8$
0321		$A R(L, M)=0.00+90$
0322	160	$A I(L, M)=0.00+00$
0323		AR (1. 1) $=W 3 / 2.00+00+W 9 / 4.00+00+W 15 / 4.00+00-(G B N 1 * H H 1 / 2.00+00$
0324		$C-(G 8 N 2 * H H) / 2.00+00$
03,25		AR (2. 2) =W $3 / 2.00+00-W 9 / 4.00+00+W 15 / 4.00+00+(G 8 N 1 * H H) / 2.00+00$
0326		C-(G8N2*HH)/2.00+00
0327		AR(3,3) $=W 3 / 2.00+00-W 9 / 4.00+00-W 15 / 4.00+00-(G 8 N 1 * H H / / 2.00+\cap 0$
0328		C-(GBN2*HH)/2.0D+00
0329		AR 14.4) $=-W 3 / 2.0 D+00+W 5 / 4.00+00-W 15 / 4.00+00+($ G8N1*HHI/2.00 +00
0330		$C-(G B N 2 * H H) / 2.00+00$
0331		$A R(5,5)=W 3 / 2.00+00+W 9 / 4.00+00-W 15 / 4.00+00-(G 8 N L * H H 1 / 2.00+00$
0332		$C+(G 8 N 2 * H H) / 2.00+00$
0333		AR (6,6$)=W 3 / 2.00+00-W 9 / 4.00+00-W 15 / 4.00+00+(G 8 N 1 *+H / / 2.00+00$
0334		$\mathrm{C}+(\mathrm{GBN} 2 * H H) / 2.00+00$
0335		$\triangle R(7,7)=W 3 / 2.00+00-W 9 / 4.00+03+W 15 / 4.00+00-(G 8 N 1 * H H / / 2.00+00$
0336		$\mathrm{C}+(\mathrm{GBN} 2 * H H) / 2,00+00$
0337		AR (8, 8) $=-W 3 / 2.00+00+W 9 / 4.00+00+W 15 / 4.00+00+(G B N 1 * H H) / 2.00+00$
0338		$\mathrm{C}+(\mathrm{GBN} 2 *+H H) / 2.00+00$
0339		$A R(2,1)=Q 4 R / 2.00+00$
0340		$A(12,1)=041 / 2.00+00$
0341		$A R(3,1)=Q 1 R+Q 4 R / 2.0 D+00+07 R / 2.00+00$
0342		$A!(3.1)=01 I+Q 4 I / 2.00+00+07 I / 2.00+00$
0343		$A R(4,1)=02 R$
0344		$\Delta I(4,1)=02 I$
0345		AR(5.1) $=07 R / 2.00+00$
0346		$A(15,1)=071 / 2.00+00$
0347		$A R(7,1)=05 R$
0348		A1(7,1) $=051$

0349		$\Delta R(3,2)=03$
0350		$\Delta R(4,2)=01 R-Q 4 R / 2.00+00+07 R / 2.00+00$
0351		$\Delta[(4,2)=011-041 / 2.00+00+071 / 2.00+00$
0352		$A R(6,2)=A R(5,1)$
0353		$A I(6,2)=A \backslash(5,1)$
0354		$\operatorname{AR}(8,2)=\operatorname{AR}(7,1)$
0355		$A[(8,2)=A[(7,1)$
0356		$\operatorname{AR}(4,3)=-\operatorname{AR}(2,1)$
0357		$A(14,3)=-4(12,1)$
0358		$\triangle R(5,3)=06$
0359		$A R(7,3)=-A R(5,1)$
0360		$\Delta(17,3)=-A(5,1)$
0361		$A R(6,4)=A R(5,3)$
0362		$A R(9,4)=A R(7,3)$
0363		$A(18,4)=A(17,3)$
0364		$\Delta R(6,5)=-A R(4,3)$
0365		$A!(6,5)=-4!(4,3)$
0366		$\Delta R / 7.51=01 R+Q 4 R / 2.00+00-07 R / 2.00+00$
0367		AI $(7,51=01 I+041 / 2.00+00-071 / 2.00+00$
0368		AR (8,5) $=A R(4,1)$
0369		$A I(8,5)=A(14,1)$
0370		$A R(7,6)=A R(3,2)$
0371		$A R(8,6)=01 R-44 R / 2.00+00-07 R / 2.00+00$
0372		$A 1(8,6)=0111-041 / 2.00+00-071 / 2.00+00$
0373		$A R(B, 7)=-04 R / 2.00+10$
0374		AI(8,7) $=-041 / 2.00+00$
0375		CALL HTRIDI (NM,N,AR,AI,D,E,E2,TAU)
0376		CALL [MTQLI (N,O,E,IERR)
0377		GO TD (170.180.190.200).1
0378	170	FREQ $=0(8)-0(2)$
0379		GO PO 210
0380	180	FREQ=0(7)-0(1)
0381		GO TD 210
0382	190	FREO=O(6)-O(4)
0383		G0 TO 210
0384	200	$F R E Q=0(5)-0(3)$
0385	210	FREQ $1(M M)=F R E D$
0386		$M M=M M+1$
0387		IF(MM-28)96.96.399
0388	399	SUM $=0.00+00$
0389		On $400 \mathrm{MM}=1.28$
0390	400	SUM= SUM + (FREQ 1 MM I-FREQQ)**2
0391		60 m (401.407,409),K1
0392	401	SUMZ $=$ SUM
0393		IF(LL-13)402,402.403
0394	402	SUM1 \times SUM
0395	403	$L L L=L L-12$
0396		G0 T0 1404,404,404,405,405,405), LLL
0397	404	$P P=1.00-03$
0398		GO 10406
0399	405	$P P=0.50+00+\{3.141590+00 / 180.00+00\}$
0400	406	$P(L L)=P(L L J+P P$
0401		K $1=$ K $1+1$
0402		GO TO 95
0403	407	IF (SUM-SUM2)93,408,408
0404	408	$P(L L)=P(L L)-2.00+00 * P P$
0405		K1 $=$ K1+1
0406		GO TO 95
0407	409	IF(SUM-SUM2) $93,410,410$
0408	410	$P(L L)=P(L L)+P P$
0409	93	continue
0410		IF SUM SUM2)411.412.412
0411	411	SUM $2=$ SUM
0412	412	Continue
0413		WRITE16.4201 SUM2
0414	420	FORMATI' SUM2 EQUALS',F12.5)
0415		WRITE(6.430) (P(I), $1=1.18)$
3416	430	FORMAT('0', 6F 15.6)
0417		IF\{SUML-5UM2)450,450,52
0418	450	continue
0419		STOP
0420.		ENO

VITA
Mahendrakumar G. Jani
Candidate for the Degree of
Master of Science
Thesis: ELECTRON SPIN RESONANCE STUDY OF THE E' CENTER IN QUARTZ
Major Field: Physics
Biographical:
Personal Data: Born at Kanpur, Uttar Pradesh, India, August 28,1954, the son of Gunvantrai and Manglagauri Jani.
Education: Graduated from Sainik School, Balachadi, India, in1970; received Bachelor of Science degree in 1976 fromGujarat University; completed the requirements for the de-gree of Master of Science at Oklahoma State University,Stillwater, Oklahoma, in May, 1979.

