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PREFACE 

This study is concerned with the development and exten

sion of a class of height balanceti binary search trees known 

as HB(k} trees. HE(k} trees are an important alternative 

data structure in file systems wtere rapid access and rapiri 

update are desired. However, a precise analysis of expected 

system performance using HB(k) trees is impossible since a 

precise analysis of the expected behavior of HB{k) trees 

remains unfornmlated. A generalized class of HB(k) trees, 

known as PHB(kl,k2) trees, may pravide tte tool necessary to 

analyze the expected behavior of HE(k) trees. The design 

of algorithms for maintaining these trees and the subsequent 

implementation of the algorithms as part of a research tool 

for height balanced trees are also discussed. Results from 

an initial use of the research tool are presented. 
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CHAPTER I 

INTRODUCTION 

An immense information explosion in the 60 1 s and 10•s· 

has intensified the issue of how to warehouse information: 

How may information be stored so ttJat any particular piece 

or any related group of pieces may be quickly retrieved for 

examination? 

Computer haroware technology has provided part of a 

solution: the appropriate warehouse, machines with an ever 

increasing capability of storing volumes of information in 

small amounts of space. Computer software tectJnology bas 

provided another part: methods or structures for organizing 

tbe information (data) helrl within the machine. The motiva

tion behind this study concecns the evolution of one such 

class of data structures, height balanced binacy search 

tcees, anrl the development of a researcb tool to aid in the 

theoretical analysts of the behavior of the trees. Height 

balanced binary search trees have been well-documented 

empirically but lack a ~efinitive theoretical explanation 

for their behaviol". 

Chapter II traces the 

binary search trees from the 

development of height balanced 

early days of computing during 

1 
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~hich the impetus for binary search trees developed out of 

the binary search technique. Tbe binary search tree as a 

logical entity was not presented until the early 1960's, but 

like an idea whose time bas come, much attention was given 

to binary search trees in subsequent years. 

Chapter III discusses the logical variants of binary 

search trees. These structures, each of which balances the 

tree in some way, have been developed in the attempt to 

obtain the best-possible worst case. The height balanced 

binary search tree, one of the variants, is selected foe a 

detailed discussion of its structure, maintenance, and per

formance. 

Chapter IV presents a generalization of height balanced 

binary search trees, partially height balancec binary searct 

trees. Th 1s lo gica.l structure has been proposed as an aid 

in the effort to rigorously define the performance of height 

balanced trees. Yet, a subclass of this structure may prove 

to have interest lng properties in and of itself. 

Chapter V discusses the research tool developed to pro

vide empirical data on the performance of binary search 

trees, height balanced binary search trees and partially 

height balanced binary search trees. An overview of the 

logit rlesign and program structuEe is presented along with 

preliminary instruct ions for using the programs that have 

been written. 
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Application of the research tool tor providing empiri

cal rlata wtich may lead to a rigorous definition of the per

formance of height balanced binary search trees is also dis

cussed. Some initial results concerning tbe subclass of 

partially height balance~ trees vbich may become of some 

importance in its own right are presented. 

Chapter VI summarizes the major ideas and findings of 

the study. Suggestions for further study and for expanding 

the capability of the research tool are also made. 



CHAPTER II 

BINARY SEARCH TO BINARY SEARCH TREES 

The foundation for the development of height-balanced 

binary search trees was laid in the early -days of computing 

by the binary search technique. The binary search was well 

known in the early 1940's although the first formally pub

lished algorithm which works for any number of items in the 

table was presented in 1962 (13). Use of a binary search 

can reduce tremendously the amount of effort devoted to one 

of the most frequent activities for any collection of 

information - looking for a particular item based upon a 

particular, unique identifier, called the key, such as a 

name or an account number. It there is no particular orrler

ing of the items of information, then one must use a 

•brute-force• approach, conventionally called a linear 

search, to find tbe desired item: beginning with the first 

of all items and exa~ine each one in turn until the desired 

item is found or the item list is exhausted. This is some

what akin to trying to find someone•s phone number in a tel

ephone directory in which people are listed in the order in 

which they requested phone service. The only recourse is to 

start with the first person listed and look tbrough all peo

ple listed until the one desired is found. 

4 
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The te~lousness of such an approach should be apparent. 

On the average, approximately half the items are examined to 

find the desired item. In the worst case or if the item is 

not present, then the entire list of information is exam

ined. 

Order, 

greatly eases 

lexicographic (dictionary-like) 

the burden of locating an item. 

or numeric, 

If one is 

trying to find .Peterson's phone number in the standard tele

phone directory, then one initially aims directly for the 

P•s and thus eliminates the entire first half of the direc

tory at once. If one happens to open to the N's then 

several pages are flipped in an attempt to get to the F•s, 

thus eliminating many more entries from consideration at 

once. 

Binary Search Technique 

This is the essence of the binary search technique -

given a list of items which are logically and physically in 

orcer, search for the desire<! item by successively eliminat

ing from consideration unneeded portions of the list. How

ever, for computer applications, this approach is rigorously 

fonnal iz ed as in Figure 1. 

the actions of the algorithm searching for the key P in 

a table of letters are illustrate~ in Figure 2. It can be 

shown (13} that the binary search technique makes at most 

lg(n) + 1 comparisons for an unsuccessful search and makes 



lg(n) 

BEGIN SEARCH(desired key1 midpoint); 
left_ boundary <- location of first i tern; 
right_boundary <- location of last item; 
mlcpoint <- FLOOR(( left_boundary+right_bounoary)/2) 
DO UNTIL { 1 ef t_bound ary > righ t_ooundarv); 

IF key at midpoint is desired key 
THEN END SEARCH; 

END IF; 
IF desired key < key at midpoint 

THEN riqht_bouncary <- micpoint; 
ELSE left_boundary <- midpoint; 

END If; 
END DO; 
key not found in table; 
END SE.ARCH; 

Figure 1. Binary Search Algoritbm 

6 

1 comparisons tor the average successful searct 

( 1 lg • indicates the base 2 logari thm''"''CJtrd·· will be- used as 

such throughout the discussion without further explanation). 

1 eft_ boundary= 1 m1dpoint=4 right_boundary=1 
+---+ 

location 1 2 3 I 4 I 5 6 7 
key B c F I G I H p v 

+---+ 

1 eft_boundary= 4 midpoint=5 right_boundary=1 
+---+ 

location 1 2 3 4 1 5 I 6 7 
key B c F c I H I p v 

+---+ 

left_boundary=5 midpoint=6 r1ght_boundary=1 
+---+ 

location 1 2 3 4 5 I 6 ' 7 
key B c F G H 1 p I v 

+---+ 

Figure 2. Actions of Binary Search Algorithm 



The time complexity has been reducea from O(n) for the 

brute force sequential search to O(log(n)) for the binary 

search. 

The binary search technique is the best possible searct 

algorithm that proceeds solely by comparing (the desired 

key) to keys in the table (11). However, tbe restriction 

that the keys be stored consecutively in a specified order 

has different implications when one considers activities 

other than searct:ing such as inserting a new item or celet-

ing an old one. 

In order to insert {delete) an ite& one might do the 

folloJ.jintJ steps: 

1. Determine the correct location for (of) the 
item. In terrns of the binary search 
technique presented earlier, location = riqht 
boundary upon termination . of an unsuccessful 
searcb for insertion ant for deletion 
location = midpoint upon termination of a 
successful search. 

2. ~ove all items between l~cation an~ tbe end 
ot the table down (up) one position. 

3. For insert ion, 
location. 

insert the ne~ item at 

This is potentially a very time-consuming taska With 

dynamic tables, tables which are constantly c~anging, 

reorganization time may far outweigh ac.cess time, time spent 

searching the tableo For some applications this may be of 
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no ccncern, but for otters, sue~ as an airlines reservation 

system, reorganization time may interfere ~ith the rapid 

access tiue 6eslrec. Hence, it ~oulc be rlesir2ble to 

develop an <:ppr.oach to information stor.age that I~~ould give 

not only small search times but zlso small insertion and 

leletion ti[es for any item of information. The binary 

search tree is such an approach. 

Tte Binary Searct Tree 

lHndley (26), and Booth and Colin (4) independently 

introduced binary searct trees as lo~ical ana physical 

structures in 1960. Many of the later publications report-

ing work concerning binary search trees reference these two 

articles. The concept oi binary search trees t;a.s been ~en-

eralized to binary trees. A binary tree is 

a finite set of nodes ~hich either is empty, or 
consists of a (node called tte) roct anrl two ~is
joint binary trees called the left and right sub
trees of the root (12, p. 309). 

Each node (or element) of the tree contains several items of 

inforroation: a key by which one may uniquely identify thE 

nofe, and two "pointer" fielcs wtich identify (or point to) 

the locations of the root nodes for the lett and right sub-

trees. Other intorroation relevant to the key may be storet 

in a node, but it is not a concern of this discussion. Fig

ure 3 illustrates a binary tree. 
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Figure 3. A Einary Tree 

If the binary tree is to be used to maintain an ordered 

set of recor~s, then a further requireme~t is that all nodes 

in the left subtree have keys which are less than the key in 

the root node in so~e sense whether numerically or lexfco

graptlcaiiy. In orier to picture this, it is belpful to 

consider flattening the tree so that all nodes are aligned 

such that it node X were in tte left subtree of no~e y, tten 

node X is to the lett of node Y in the line. Such a binary 

tree is usuzlly calle~ a binary search tree (BST) or binary 

decision tree. Thus, if we let A and B represent the 

keys of the nodes in Figure 4, tben Fi~ure 4 (a), while a 

valid binary tree, is not a valid binary search tree. Fig

ure 4 (b) 1s a valid binary search tree. 

It ~ay be helpful in un~erstanding tow a binary searct 

tree is organizeJ to consider that the binary search techni

que discussed earlier imposes an implicit tre~ structurE 

upon a lineirly ordered set of items. Tt~ initi~l midpoint 

is the root of the entire tree; the midpoint of the half-
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(a) (b) 

Figure 4. Binary Tree vs. Binary Search Tree 

list to the left of the initial midpoint is tte root of the 

left subtree of the root of the entire treei the midpoint of 

the half-list to the right of the initial midpoint is the 

root of tte right subtree of the root of the entire tree; 

and so on. 1hls is illustrated graphically in Figure 5. 

Figure 5. BST ~epresentation of Table of Letters 

The node with key <; is called the •parent• or immedi

ate ancestor of the no~es witt keys C and P. Conversely, 

the nodes with keys C and P are called •siblings• and are 
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tbe immediate 'descendants• or •offsprin~• of the node ~itt 

key G. In particular, C is the left offspring of G and F is 

the right offspring of G. Additionally, B, F, H, and V are 

leaf nodes (no offspring), and c, G, and P are interior 

nodes (two offspring). 

It should be apparent that since each node now con-

tains, or points to, the location of the next node to be 

examined, there is no need to reguire that the items be 

stored in order in consecutive locations. However, there 

must be a way to tell when there are no more nodes to exam-

ine; hence, a NULL value must be estahlisbed for pointers 

which do not point to any offspring. 'fh e search al yor i tha 

for the binary search tree is illustratee in Figure 6. 

BEGIN SEARCB(desired key,NODE,PARENT); 
PARENT <- NULL; 
NODE <- location of root of entire tree; 
DO ~HILE (NODE is not NULL); 

IF desired key = key at NODE 
TEEN END SEARCH; 

END IF; 
PARENT <- NODE; 
IF desired key < key at ~ODE 

THEN NODE <- LEFT( NODE); 
ELSE NODE <- RIGHT(NODE); 

END IF; 
END DO; 
key not found; 
END SEARCH; 

Figure 6. Search Algorittm for Binary Search Trees 
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Insertion is a relatively straig~tforwarl proce~ure 

although one must be careful to maintain the order associ-

ated with the structure. Figure 1 presents the algorithm 

for inserting a new item into the tree. Let us insert the 

key D into the tree of Figure 5. The search algorithm would 

detect a NULL value to the LEFT of the node for F and return 

the FAREIT = location of F. 1he INSERt algorithm would then 

put D into tte next available ncce anc tt.is node woulc 

become the LEFT descendant of F. Additionally, F is no 

longer a leaf node but is now a semi-leaf no~e (one descen-

dant). The resulting tree would then appear as in Figure s. 

BEGIN INSERT(new key); 
CALL SEARCR(new key,node,parent)J 
IF new key < key at p~rent 

THEN LEFT (parent) = next available node; 
ELSE RIGHT{parent) = next available node; 

END IF; 
Place new key in next available node; 
END INSERT; 

Figure 7. Insertion Algoritt.m for Binary Search Trees 

Deletion of a node is more complicated, ~owever. For 

instance, if one were to delete the node with key G from the 

tree in Figure 81 then its descendent subtrees would no 

longer be subtrees ot a common root. They would be 

'dangling subtrees• or distinct binary search trEes with no 
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Figure 8. Result of Inserting D into Einary Search ~rEE 

logical interconnect ion. Some way must he found to maintain 

the relationship between all nodes remaining in the tree. 

The probleB is usually approacbea as follows: 

1. Find the largest (smallest) key in the LEFT 
(RIGHT) subtree of the node to be ~eleted. 

2. Substitute this node for the one being 
deleted being careful to reconnect all 
s~btrees of the two noces invclvee. (This 
substitution involves changing at most four 
pointers only.) 

3. Return deleted note to an available pool. 

The result of this algorithm after deleting the node C :fro11 

Figure 8 is sho~n in Figure 9. Stated more formally, the 

algorithm for deletion is illustrated in Figure 10. 



Figure 9. Result of Deleting G from Binary Seatch Tree 

BEGIN DELETE(old key); 
CALL SEARCH(olf key,NOOE,PAHENT); 
Find largest key in LEFt subtree of NCDEJ 
RIGHT( parent of largest key} <- LEFT( largest key); 
LEFT(NODE of largest key) <- LEF1(NCDE); 
RlGHT{NODE of largest key) <- RIGHT(NODE); 
Return NODE to available pool; 
END DELETE; 

Figure 10. Deletion Algorittm for Binary Search Trees 

lim~ .knmJ2.l.e.xl.t~ .al .iU.o.ax.! S.e.a.~:..c.ll l.r.e~ 

.Al.!Ul.t..i.tb~ 

14 

A reasonable question that must be asked involves the 

time complexity of the algorithms a~sociated with binary 

search trees. How long toes it take to search the tree, to 

insert a new item into the tree, to delete an item? 

For both deletion and insertion tte average time com-

plexity approximates that for an unsuccesful search. the 

changes made to the pointers are done in a constant amount 
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of time vhich is negligible tor trees containing large num

bers of noees. 

The time complexities associated with the best, aver

age, and worst case, in terws of average search time, binary 

search trees have been extensively documented (4, 5 1 8, 13, 

18, 21, 26). If one considers all nodes on one •row• to 

constitute a 1 le·vel', then tlle best case binary search tree 

has all leaf and semi-leaf nodes on at most two adjacent 

levels. This is sometimes terme~ a complete binary tree. 

This corresponds precisely to the binary search tree inter

pretation of the binary search tec~nique. Tte ti~e complex

ity for searching the tree is O(log(n)) where n is the num

ber of nodes in the tree. 

A worst case, called a 'degenerate • tree, arises when 

all keys are inserted in order. If the keys 1n Figure 5 

were inserted in lexicographic orter tten the tree woul~

appear as in Figure 11. Searching a degenerate tree struc

ture is equivalent to the sequential search ciscusseo ear

lier; the time complexity is O(n). 

However, if one assumes that the keys are inserted ran

ciomly then it can be proved that the time complexity approx

imates that for tb. e best case since well balanced trees are 

common and degenerate trees are rare (13). 
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Figure 11. A Degenerate 1ree 

Muc~ ~ork in data structures tas been tone to try to 

guarantee that a degenerate tree never occurs. But before 

discussing some of this ~ork, if would be helpful to define 

the terms cotrmonly usee in discussions of empirical perform

ance of the data structures. 

Since tte time complexity tor the algorithms for binary 

search trees are directly proportional to the number of com

parisons made during searching tte tree, performance con

cepts which may be measured empirically have been veil-de

fined (although minor variations still exist). These 
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include the height, the internal path length, and the exter

nal path lu1gth. 

The level of a node corresponds to ~hich •row• it is 

on, the root node being level 1. Thus, in Figure 11, B is 

on level 11 C is on level 2, and so on. lhe height of a 

binary search tree or a subtree is the ~umber ot levels in 

the tree or subtree. 

In order to formalize an empirical aeasurement for suc

cessful anc unsuccessful searches, it is helpful to intro

duce the concept of •external nodes 8 • An external node is a 

special node used to indicate a NULL subtree in the graphi

cal representation of a tree. Vf the nodes in Figure 12 

(a), nodes A and D have two NULL subtrees, anc ncee c has a 

NULL LEFT subtree. Figure 12 (b) shows the representation 

for and placement of external nodes. fiodes A, B, c, and D 

are nov termed •internal nodes•. 

(a} (b) 

Figure 12. A Binary Searcb Tree Exter.de~ 



For all trees, the following relationship holds: 

number of external nodes = number of internal 
nodes + 1. 

Fi~ure 12 (b) has been ter~ed an extendef binary tree. 

18 

The path length bet11een two nodes is the difference 

between their level numbers. Thus, in Figure 12 {b), the 

path length between E and D is 21 bet11een D and one of its 

external noces, it is 1. Tte path length may also be 

thought of as the number of additional comparisons needed to 

locate a particular node in a subtree from the root node ot 

the subtree. The internal path length of a tree with n 

nodes, l(n), is the sum of all the path lengths between the 

root node (level 1) and each internal node. Thus, for Fig-

ure 12 (b), 

l(n) = 1 + 1 + 2 = 4. 

Tbe external path length, E{n), is the sua of the path 

lengths bet~een the root node (levEl 1) and each external 

noce. Thus, for Figure 12 (b), 

E(n) = 2 + 2 + 2 + 3 + 3 = 12. 

The relationship bet11een the internal and external path 

lengths is always 

E(n) = I(n) + (2 * n). 

It should be appa.ren t that the average number of comparisons 

required for a successful search, C(n), is 
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C{n) = 1 + (I(n) I n}. 

One comparison is cequired to Qet to the root of the tree 

anrl cecice "hich subtree to examine next. The expression 

I(n)/n gives the average number of comparisons ceguireo to 

get from tte root cf the entire ttee to ~ny other particular 

internal node in the tree. Similarly1 the average number of 

comparisons required for an unsuccessful search1 c•(n), is 

C'{n) = E(n) I (n + 1). 

C(n) is a measure of the relative time required to retrieve 

a particular node from a tree. C'(n) is a measure of the 

relative time required to insert or to delete a node or to 

search for ~ node tbat is not pcesent. 

These measures aid in comparing the relative efficacy 

of different algorithms designed to manipulate trees and 

vill be used throughout tte remainfer of the ~iscussion. 



CHAPTER III 

HEIGHT BALANCED BINARY SEARCH TREES 

Even though, as ~as stated above, randomly constructed 

binary search trees behave quite well and ~e9enerate trees 

rarely occur, there still remains the issue of degenerate 

trees. If, as is guite possible in 'real• applications, 

items are entered in order, then this wondetful construct, 

the binary search tree, has saved nothing except for the 

occasional ran~o~ insertion. One would like to be able to 

guarantee a complete binary tree (one with all external 

nodes on at most two adjacent levels such as the binary tree 

interpretation of the binary search technique) all the time 

since this would save considerable searching effort. How

ever, tte time involverl in maintaining ttis guarantee shouli 

not outweigh the time saved during a search. 

One class of data structures that has been proposed to 

solve this problem is the class of weigtt balanced trees of 

which the optimal binary search tree is an example. "Weight 

balanced trees use as a guideline the adage that •eo~ of the 

activity occurs in 20% of the file•. Information about fre

quency of access for each key is used to construct and 

reconstruct the tree so that the Host frequently accessed 

20 
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keys are near the root level. 1his considerably reduces the 

average search time for a set of keys wit.h known frequen

cies. Weight balanced binary search trees are a nice solu

tion if one has a static tile ant can safely project the 

frequency of access to each key. However, for dynamic 

files, ones for which insertion and deletion are major 

activities, and frequency of access to any particular key 

cannot be predicted, weight balanced trees create more work 

than they save since access frequencies must be dynamically 

maintained and the entire tree aust be constantly checket 

for optimality. 

HB(k) Binary Search Trees 

A nice solution to the problem of maintaining dynamic 

trees so that degenerate trees never occur but maintenance 

requires only local adjustment around a node and one or two 

of its descendants, was first proposed in 1962 by two Rus

sian mathematicians, Adel•son-Vel 1 skii and Landis (1).. The 

binary tree structure they proposed, subsequently teemed an 

AVL tree, constrains the relative heights ot the LEFT and 

RIGHT subtrees of the notes. The height of the left subtree 

ot a node way differ by no more than one from the height of 

the right subtree. This constraint does not al~ays result 

in a complete binary tree. Figure 13 illustrates a worst 

case, in terms of average search path length, C(n), for an 

AVL tree with 12 nodes. In a complete binary tree, 12 nodes 
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would require only tour levels. Hokever, the performance of 

an AVL tree approximates the best possible performance of a 

complete binary tree and reguires only t~o bits per node to 

indicate wtetter the left subtree is longer than, balancec 

with, or shorter than the right subtree. 

Figure 13. A ~orst ~ase AVL 1ree ~ith 12 Nodes 

This notion of 1hei9ht balanced• iias generalizEd in 

1973 by Foster (7) to permit relative hei,bt imbalances 

greater than one. These trees are called liE (k) trees iih ere 

k, the allowed iubalance, is an arbitrary compromise between 

short seacch time and frequency of cestructuring. AVL trees 

may be considered a special case of HB(k) trees - the HB(l) 

subclass. Bowe~er, HB(k) trees require •ore storage per 

node since the relative imbalance may be between 0 and k for 
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e i th e r sub tree. The following discussion of structure and 

maintenance requirements applies egually to AVL and HB(k) 

trees. 

If o~e is going to guarantee ttat the rlifference 

between the heights of the left and right subtrees of a node 

is no more than k, then one must maintain information about 

the teights ~ith the nodes. One approact to this problem is 

to maintain the actual height of the (sub)tree rooted at a 

given nooe. If one defines the teight of a null descendant 

to be zero, then this may be calculated for all internal 

nodes simply according to the rule: 

Height{node) = ~AX (Height{left descendant), 
Height(right descendant))+ 1. 

A note whict is critically unbalanced, whose subt~ees bave 

relative heights which violate the balance constraint, may 

be detected by the following test: 

ABS (Height(left descendant) - Height(rig.ht des
cendant) ) > balance constraint k. 

Insertion and eeletion ~ay quite possibly change the 

heights associated with the nodes along the search path and 

create a critically unbalanced condition for some node. 

Thus, after insertion or ~eletion of a node, one must 

'backup• along the search path modifying the heights accord

ing to t~e above rule until one of two ttings occur: 



1. the height remains the same for some node. 

2. A noce is cetectec to be critically 
unbalanced. 
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In tte first case, cne may terminate tte backup for height 

maintenance. in the second case, one must restructure the 

tree in order to bring it back into compliance with the 

balance constraint. 

It should be evident that this involves a great deal of 

work. 'There are potentially four accesses per node along 

tbe search path: one during the searct, and tbree curing 

the backup procedure. It seems reasonable to exp~ct that 

this mettoc woulc cetract from tte usefulness of this cata 

structure. 

Fortunately, there is a second approach to the 

maintenance of teight inforDation whict does not involve 

such a great amount of effort. This approach maintains a 

'balance tag• for each node ~hict is a measure of the 

relative difference in heights between the left and right 

subtrees of the nodeo the balance tag may be defined as 

follows: 

. balance tag(nod e) ::: Height(right descendant) -
Height( left descendant). 

Thus, three cases are established: 

1. 

2. 

balance tag(node) ::: O: 
two subtrees are eq~al, 

the heights of the 

balance tag(node) < 0: 
cescencant) ) Hei~ht(right 
called left heavy, 

Height(left 
cesceneant), 



3. .balance tag(node) > O: Height(right 
descendant) > Hetght(left desceniant), called 
right heavy. 
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Backtracking from the inserted node along the path ot 

insertion /Geletion is still required in order to maintain 

the balance tags. 

One sboula question why the seconri approach is better 

than the first, since the second approach defines the 

balance tag in terms of the heights of the subtrees and 

backtracki~g is ~till required. The answet is that the 

height need not be maintained; the balance tags may be 

maintained base~ upon theit previous values. Until 

backtracking is term ina ted for insertion, if the new node 

were inserted in the right subtree, then the height of the 

right subtree is one greater than before; hence, add one to 

the balance tag. If the nev node were inserted in the left 

subtree, then the height of the left subtree is one greater 

than before; hence, subtract one from the balance tag. 

Deletion from the left (right) s~btree is equivalent to 

insertion in the right {left) subtree. Thus, backtracking 

involves only one access per node inste2d of three as with 

the first approach. 

Basic insertion is identical to that tot unconstrained 

binary search trees. After insertion, the backup is terai-

natec if eit~er of two cases occur: 



1. At any unbalancEd node along the search path, 
tte new node ~ere inserted in the shorter 
subtree. That is, if a node were left heavy 
and the new node ~ere inserted in the tight 
subtree, or if a nofe were rigtt teavy an~ 
the new node were inserted in the left 
subtree, the b2ckup maintenance may be 
terminate(;. 

2. If a node is unbalanced to the point of 
violating the balance constraint. two 
simultaneo~s con~itions determine this case: 

a. ABS (balance tag(node)) = balance 
constraint, 

b. Tte node 
or heavy 

In this case, 
to conform to 

was inserte~ in the longer 
subtree. 

the tree must be restructured 
tile constraints. 
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Figure 14 illustrates, in FDL form, the algorithm required 

to maintain balance tags in an HB(k) tree. 

When a critically unbalanced node is encountered, that 

portion of the tree rooted at the critical node must be res-

tructuree or cotat~d so tbat the tree c~nforas to the given 

balance constraint. However, this restructuring must be 

done in a certain way in order to maintain the artier associ-

ated with the nodes. Restructuring entails three steps: 

1. Rearrange the nodes so that the 
initially rooted at tte critical 
conforros to the balance constraint. 

S\lbtree 
node 

2. Reconnect any uninvolvet desceneants of the 
nodes directly in11olved that have been 
rlisconnected during the restructuring. 

3. Mocify the balance ta~s ot the noces involved 
to reflect their new positions. As during 



backtracking, this may be done based on their 
previous values. (It is not intuitively 
obvious how this may be done during rotation. 
A demonstration of this fact ~ay be found in 
Appendix A.) 

BEGIN BTAG_MAINTENANCE; 
DO WHILE (Btag(NODE) < balance constraint OR 

insertion occurred in the shorter subtree}; 
IF insertion occurred to the right of this NODE 

TFEN Increment Etag(~CDE) by li 
IF NODE is now balancet or still left teavy 

THEN END BTAG-~AlNTENANCE' 
E~D IF; 

ELSE Decrement Btag(NODE) by 1; 
IF NODE is now balanced or still right heavy 

TEEN END BTAG-~AlNtENANCE; 
END IF; 

Etm IF; 
Back up to next previous NCDE; 

END DO; 
Tree violates balance constraint at NODE; 
END BTAG-~AINTENENCE; 

Figure 14. Balarce Tag Maintenance in an HB(k) Tree 
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At most three nodes along the search path are involve~ in 

this restructuring the critical node, the immediate 

descendant of tbe critical node and the offspring of the 

immediate cescencant ( tbe grand-rlescenrlant) cf the critical 

node. 

Four cases may be identitiecl in terms of the nodes 

involved as having differing restructuring ceguirements: 



1. Critical node i5 left teavy, cescenGant ol 
the ccitical node 1s 1Pft heavy. 

2. Critical no(e is lelt teavy, cescencant of 
the critical nod~ is right heavy. 

3. Criticel node i~ ri~ht he~vy 1 descEndant of 
tte critical noce is ri,tt teavy. 

4. Critical noJe is right heavy, descendant of 
the critic~l nod~ is lett hesvy. 
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C~se 3 is the mirror ireage of case 1 (see Figure 15). 

Figure 16 illustrates Case 1, a simple rot2tion. figUl'€ 11 

illustrates, ir: PDL for(ll, t~e balarcE tag reaintenance 

requirements tor the nodes involved in Case 1 or Case 3 

res true turing. Case 4 is the mlrror 1rrage of Case 2 (see 

Figure lr) .. Figure 19 illustrates Case 2 restructuring, a 

split rotation. Split rotation involves a subcase ~hen 

iealing witt balance tags. Figute 20 illustrates, in PDL 

form, the balance tag maintenance reouirements for the nodes 

invclved ir Case 2 or Case 4 restructuring. 

CASE 1 C .AS E 3 

Figure 15. Cases 1 anc 3 ~s Mirror Images 



critical node 

descendant node 

grand
descend ant 

B E C v II E S 

Figure 16. Simple Rotation in an HB(k) Tree 

BEGIN SIMPLE-BTAG; 
/*co11ment: let 

CN represent the critical node 
DCH represent tbe riescen~ant */ 

IF insertion occurred right of CN 
TREN Btag(CN) -<- balance constraint - Btag(OCN); 
Decre~ent Bta~(DCN) by 1; 

ELSE Et~g(CN) <- -balance constraint - Btag(DCN); 
Increment Btaq(DCN) by 1; 

END IF; 
END SI~PLE-~TAG; 

Fi~ure 17. Balance Tag Maintenance After a Simple 
Rotation 

29 
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CASE 2 

Figure 18. Cases 2 anc 4 ss Mirror Iwages 

critical noJe 

grand-descendant 

B E C 0 M E S 

Figure 19. ~plit Rotation in an HB(k) Tree 
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lt can 0e sho~n that this restructuring results in a 

(sub)treP of the s~we heigtt as the (sub)tree before 

restructuri[~. (See App~ncix B for d cetailerl presentation 

of thls fact.) 'Thus, Bfter restructuring 1 the insertion may 

be t€nairatec. 

BEGIN SPLI1_BTAG; 
/*cornrert- lEt 

*I 
SELECT; 

CN Iefresent the critical node 
rcN repr€s€11t tte cescendant 
CDCN represent the grand-descendant 

""l<P-rE~l(insertion occurred right of both CN and GDCtO: 
Etao(CN) <- bal:=nce constraint- 1 - Etag(gdcn); 
lncrerrent btag(DCN) by 1; 
Btag(CDC~) <- ~IN (balance constraint - 1, 
Eta9( n~rtd >; 

~WHLN{insertion occurrec ri£~t of CN ar~ lett ot GDCN): 
SavE> Ftay(iJCN); 
Btaq(CN) <- balance constraint - 1; 
Btag(DCN) <- Bt2g(DCN) _ Bt~g(GDCN) + 1; 

Btag(COCb) <- ,AX (Ptag(CUCf) 1 Saveri Btag(DCN) + 1); 
WHEN{instrtior occurret left of bot~ CN anc GDCN): 

bTag(CN) <- 1 -balance constraint- Ftag(GDCN); 
Btaq(GDC~) <- MAX (Btag(GDCN),l- oalence constraint); 
Dccre~ent Btag(DCN) by 1; 

OtherYlSE: /*comment - insertion occurred left of CN 
an c r· j £ r t o f c D CN * I 
SavE> Ptng(DCN),i 
Btag(Ch) <- 1 - balance constraint; 
Bta~(DCN) <- Rta£(DCN) - Rta£(GDCN) _ 1; 
Etag(CDCN) (-~IN (Saved Btag(DCN)- l.,rtag(CDC1:) ); 

END SELECT, 
END SPLIT_BT.:.G; 

Figure 20. Palance Tag ~aintenance After a Sp)it 
Rotation 
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Deletion in an HB(k) tree is more complicated than 

insertion. Insertion always inserts a new noce in an exter-

nal node position and at most one rotation is required to 

bring the tree back into compliance witb the balance const

raint. Deletion removes an internal node vbich may tave one 

or two descendant subtrees. 1hese dangling subtrees must be 

reconnected to the tree in the proper manner to prevent vio-

lation of the balance constraint. This may involve multiple 

rotations as shall be shown. 

Although· once a noce has beea::•,deletec, one must back

track along the search path in order to 111aintain the balance 

tags, deletion presents differing initial problems depending 

on wtether a leaf node (no descendants), a semi-leaf node 

(one descendant), or an interior node (two descendants) is 

beinc,; <leletec. These differing requireKents are outline( 

bel alii: 

1. If a leaf node is <leleted, set its parent's 
pointer to NULL. Prep~re to backtrack 
starting at the parent node. 

2. If a 3emi-leaf node is celetec, set its 
parent's pointer to its non-null.pointer. 
Prepare to backtrack starting at tbe parent 
noce .. 

3. If an interior node is deleted, then do the 
following: 



a. Find a noee with which tte noie to 
be deleted may be replaced keeping 
track of the se~rch path. 1his 
will be the no~e with the largest 
(smallest) key in the left (:right) 
subtree. The usual approach is to 
select the longer subtree (tte 
heavy side of the node to be 
deleted). 

b. In effect, delete the replacement 
node from its present position. 
that is, delete the node but save 
the VElue of the key (ant any 
information associated with the 
key). 

c. Delete tte inten~et noie by 
substituting the replacement node. 
The balance tag of the deleted node 
becomes the balance tag of the 
replacement node. 

d. Prepare to backtrack starting at 
the original parent of tte 
replacement node. 
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Several different cases may arise during backtracking 

They are as follows: 

1. The node was balanced before deletion. 
Adjust the balance tag to reflect in which 
subtree the deletion occurred (the opposite 
subtree is now longer by 1). terminate the 
algorithm. 

2. The node ~as left or right heavy before 
deletion; deletion occurred i~ the lon9er or 
heavy subtree. The heavy subtree is now less 
heavy (shorter) by one. the node becomes 
less unbalanced by 1. Continue backtracking. 

3. The node was left or right heavy before 
deletion; deletion occurred in the shorter 
subtree. The note is now more unb~lancec in 
the same direction as before {the shorter 
subtree has become one more level shorter 
tban tte longer subtree). Two subcases ~ay 
be recognized: 



a. Tte balance tag(note) was < balance 
constraint. The new balance tag 
remains <= balance constraint; 
hence, terminate tte algorittn. 

b. The balance tag(node) was = balance 
constraint. The node becomes 
critically unbalancei. Tte tree 
violates the balance constraint. 
Restructure the tree. After 
restructuring, continuec 
backtracking may or may not be 
required .. 
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When restructuring is required, the nodes involved are 

not along the search path except tor the critical node 

itse]f. Ttis is different from insertion but is as expectet 

since the subtree containing the search path has been 

shortened in height to the point of causing the critical 

node to violate the balance constraint. Thus, the other 

subtree is the critically heavy one. With this difference 

in wtich node is meant by tte iamediate iescendant of the 

critical node in mind, there are four cases 

restructuring ~bich correspond to those for insertion: 

1. 1he critical ncrle is left teavy; the 
descendant of the critical node is left heavy 
or balance c. 

2. The critical node is left heavy; the 
descendant of the critical node is right 
l!eavy. 

The critical node is eight heavy; the 
descendant of the critical node is right 
heavy or balancerl. 

The critical node is right heavy; the 
descendant of the critical node is left 
t,eavy. 

for 
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Note that the only difference between these cases and those 

for insertion is that the subtrees rootet at the descendant 

of the critical node may be balanced • 'Ihis case may be 

rotated either way, simple (Cases 1 and 3} or split (Cases 2 

and 4). It is placed with the simple .rotation cases merely 

because these involve less work. 

The rearrange«ent of the nodes is handled in 

identically the same way as .for insertion with the exception 

of choosing the grand-descendant of the critical node during 

split rotations. In insertion, tbe ~rand-descendant is 

along the search path; in deletion, the grand-descendant is 

chosen from the ~eavy side of tte descentant. 

Balance tag maintenance is also similar to that done 

for insertion If one considers that inserting a new node in 

tbe right subtree of some existing node is akin to rleletin~ 

a node from the left subtree. A difference arises because 

of the possibility that the des cencant af the critical node 

may root balanced subtrees {balance tag = 0) before 

restructuring. In this case, only, backtracking may be 

terttinated immediately since the rearrangement will result 

in a {sub)tree of exactly ~he same height as the subtree 

rooted at the critical node before d·eletion. 

Performance of HB(k) Trees 

The theoretical analysis that has been done for HB(k) 

trees has not been supported by empirical observation {7, 
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13). Some of the empirical results that have been reported 

are outline~ below. 

Foster (7l found that, for insertion, letting k be as 

large as four increased the average secrch path length by 

only one wt.ile the number of restructurings decreased by 

approximately 431 • Work reported by Van Doren {24) comple-

mented Foster's findings tor insertion ant exten~ed the 

results to deletion. The effect of a change in k under 

deletion follows a Pattern similar to that for insertion: 

increasing k cecreases the number of restructurings 

required. Van Doren also found that increasing k increases 

t.be number of noces exa.minec:l Cluring the backtracking opera-

tion. This may offset the gain realized by fewer restruc-

turings. Karlton, Fuller, Scroggs, and Kaehler (10) have 

provided tte most complete set of empirical observations 

concerning the performance of height balanced trees. Part 

of their week substantiates the results reported by Foster 

and Van Doren. Cther of their findings follow: 

1. The average number of rotation see~s to be 
independent of the number of nodes in the 
tree for trees containing more than 30 nodes. 

2. The number of no~es visitet rluring 
backtracldng is independent of the the number 
of nodes for insertion but for deletion it 
increases slowly as the numbEr of notes 
increases. 

3. The average number of nodes visited during 
backtracking is less for deletion than for 
insertion, for large k {balance constraint).-

4. Deletion is more time consu~ing than 
insertion but searc~ time is tte ~ominant 
factor in both operations. 
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Experiments performed by Baer and Sch~ab (3) corroborate 

previously reporte~ findings. 

Alternatives to HB(k) Ealancerl Einary 

Search Trees 

The work done on AVL and HB(k) trees has still!.ulated · the 

development of alternative solutions to the problem of bzl-

ancing a binary tree structure based on information about 

path lengths and heights of subtrees. Nievergelt and Rein-

qolc (19) introeucec bounced balance or BB(a) trees where 

•a• is a restriction on the relative number of nodes in the 

left and right subtrees ot a node: 

a <= {number of nodes in the left subtree + 1) I 
(total number of nodes + 1) <= 1 - a. 

BB(O) corresponds to an unconstrained binary search tree; 

BB(l/2) corresponds to a complete binary search tree. The 

authors admit that, based on empirical evieence, search time 

is somewhat ~orse for BE(a) trees than for BB(k) trees but 

they claim several ~dvanta~es of BB(a) trees over HB(k) 

which may compensate for this: 

1. Such important operations as tinting tte kth 
data element, or the qth·quantile, or ho~ 
many elements there are lexicographically 
between x ancl y, can all be ~one in time 
O(log(n)) {in a BB(a) tree), while they seem 
to reguire time O(n) (in an HE(k) tree), and 

2. The smallest possible change in k {for RB(k) 
trees) changes the class of trees very 
drastically, anrl ttus the compromise between 
search time and rebalancing time cannot be 
finely tuned (as it can be for BE(a) trees). 



Work done by Van Doren ani 

disadvantage but no ~ork bas 

Gray (25) supports 

been reported to 
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the statec 

support the 

claimed advantages. 

required before the 

fairly examined. 

More extensive research and analysis is 

advantages and disadvantages can be 

Pursuing an idea sug~esteri by Knutb (13), Hirschberg 

(9) investigated one-sided height-balanced or CSHB trees 

which are a restricted subclass of AVL trees. OSHB trees 

require that the right subtree never has a smaller height 

than the left subtree. In other kords, the nodes may be 

balanced or right heavy only. Although fast search time is 

maintained, insertion requires time O{log{n)**2) in an OSHB 

tree. Later work by·Zweben and McDonalt { 27} shews that 

deletion of an arbitrary node may be done in time O(log(n)). 

OSHB trees saves 

to the AVL trees 

one bit of storage per 

introduced in 1962, 

node when comparet 

but the trade off 

reguired for insertion may not be worttl tile storage saved. 

Hirschberg and Zweben and McDonald leave open the question 

of the actual (empirical) behavior of OSRB trees. 

Drawing on tbe work with OSHB trees, Ottaann, Six, and 

Wood (22) developed right brother or RB trees. 1he authors 

indicate that RB trees are a subclass of brother trees wbict 

they had present ad earlier. A bro.the:c tree requires that 

all leaf nodes be on the same level and ttat each node witt 

only one descendant 

descendants. f<ight 

has a sibling 

brother trees 

(brother) with two 

qualify the latter 
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condition, requiring that each node with only one descendant 

must have a right sibling (brothEr) with t~o descEndants. 

Ott~rann, anf Wooe detail insertion and ~eletion 

requirements and theoretically prove that both insertion and 

deletion may be accompliste~ in O(l~g(ri)) tiae although the 

algorithm for insertion is more complex. '!hey also derive 

bounds for the height of the tree: 

CEIL{lg(n)) <= height < 1.44 - lg(n + 1) - 0.32. 

Empirical verification of these claims is lacking. 

Another c1evelopaent in balanced trees is Power k or Pk 

trees introduced by Luccio and fagli {16}. Power trees 

Eaintain balance information as for AVL trees but only for 

the set of nodes on selected paths from the root to the 

leaves ifentifiel through tte paraaeter k. The paths are 

identified as follows: 

1. Fer k = O, there exists at least one path = 
the height of the tree such that all nodes on 
the path satisfy 

I balance tag(norie) l <= 1, 

and 

2. For k > o, all paths of lengtb j where 

height o.f the tree - k + 1 <= j <= 
height of the tree 

are such that all nodes on each path satisfy 

I balance tag (node) I <= 1. 
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In other worrls, balance is aaintained only for those no~es 

which lie along a path originating from the root of the 

entire tree which has reached a specified level relative to 

the teig~t of tte tree. Since tbe heigtt of a tree is a 

dynamic quantity, the set of nodes for lihich the balance is 

maintained is also eynamic. Tbeoretical deter&ination ot 

the following quantities are obtained .for FO trees under 

insertion only: 

1. Worst case path lengtt = SORT (2*n), ant 

2. Average search length for a worst case tree = 
2/3 (SQRT(2*n)). 

As for AVL and HI!(k) trees, average search length for a Pk 

tree, assuming all key sequences equally likely, bas yet to 

be .successfully analyzed~ Empirical results show that PO 

trees approximate the behavior of AVL trees but drastically 

refuce the amount of restructuring required. The difficult 

question of deletion in a Pk tree is left open. 

It is somewtat eifticult to compare these alternatives 

since all of them lack a definitive analysis of thei.r 

average behavior just as HB(k) trees do. As a result of 

this lack, it is ciitficult to compare the advantages and 

disadvantages between the classes of h~ight balanced trees 

since there is no evident relationstip between the 

constraining parameters. However, a generalization of tiB(k) 

trees may provide the impetus for a ri~orous analysis ot 

HB(k) trees. 



CHA.PTER IV 

PARTIALLY HEIGHT BALANCED TREES 

A generalization of HB{k) trees, partially height bal

anced (PRB) trees, may provide empirical guidance to the 

~evelopment of a rigorous tbeoretical analysis of .the behav

ior of HB{k) trees (23). FHB trees maintain the height bal

ance criteria of HB trees but restrict the effect of the 

criteria to internal nodes within a specified· path length to 

an external node. 1he notation used is PHB(kl,k2) where 

kl is the heigt.t balance constraint and k2 is the path 

length constraint, the path length to an external node 

within which a given internal noie must lie if the height 

balance constraint is to apply. 

To illustrate the effect of k2 on HB trees, consider 

the BB{l) tree in Figure 21. This aay also be classified as 

a PEE(l,t) tree. Assume that key A is inserted into this 

tree. If classifiec as an HB(l) tree, then Figure 22 (a) 

would be the result; but ·tf classified as a fi:IB(l,l) tree, 

then Figure 22 (b) woult be tte result. · 

One can express an HB tree via a PEB tree in the fol

lowing manner: 

HB(k) = PHB(k,i) 
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Figure 21. An HB(l) Tcee 

(a) (b) 

Figure 22. Result of Insertion Depends on Classifica
tion 
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vhere 'i' stands for infinity. The PHB balance constraint 

is applied to all internal nodes within an infinite path 

length of an external node ~hich is all internal nodes. 

Similarly, a.n uncons trainee binary search tree is eguival ent 

to a FHB{i,k). 
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Structure and Maintenanc~ of PflB(kl,k2l 

Trees 

Nodes of ~ PHB tree m~st contain tte information 

required for nodes in an HE tree. In addition, in order to 

be able to maintain a PHB tree, one ~~st knew the minimum 

length to an external node of every internal node in the 

tree. Hence, the node structure must contain this informa-

tion. 

The question to be answered is how to maintain the path 

length to an external node. It should be apparent that the 

nlinimum path lengtb to an external node is depentent on the 

minimum path lengths to external nodes of its two !~mediate 

descendants. If we define the path length to an external 

node from an external node to be o, then ,tbis dependency can 

be expressed as: 

mpl(noce) = MIN ( mpl( left cescenclant),mpl( t·ight 
descendant)} + 1 

for any internal node (mpl stands for .minimum path length to 

an external norle). 

The search '3lgorithm is identical tt) that for HB trees. 

the differences in the insertion and deletion algorithms 

at:lse in answering the question •is this tree critically 

unbalanced• but not in the placeilent 01: re•oval of a node. 
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In order to determine if the tree is critically unbalanced~ 

one must first maintain the balance tags associated 

each node in tbe PHB tree as for ttose in an HB tree. 

with 

At 

the same time, one must maintain the mpl•s for each node. 

This must be done through the tependency expressed above 

between one node's mpl and its iw.mediate descendants• mpl•s, 

since it does not appear that there is a relationship 

between a node's mpl before insertion/deletion and after as 

there is for a node's balance tag. 

As to whetter or not the insertion/~eletion resulted 

in a critically unbalanced condition, in FPE trees, the bal

ance tag associated with any node may .violate the balance 

constraint but the distance to an external node may exceed 

that specified by the Path length constraint thus obviating 

restructuring. Hence, before a PHB tree is declared to be 

out of balance, the critical node must meet the following· 

criteria: 

1. Balance tag(node) > balance constraint. 

2. Mpl(note) <= path lengtt constraint. 

For balance tag maintenance in RB trees, it is not 

necessary to backtrAck past the critical note. However, foe 

PHB trees it appears that backtracking must continue until 

the balance tag indicates that the height of the subtree 

rooted at a nooe has not cban~eG. Minimum path length to an 

external node would also require backtracking past the 

,.I'• 
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critical node since the mpl detErmines ~hich nodes are 

eligible tor restructuring. Consicer tte PHB(2,2) tree of 

Figure 23 which depicts the state of the tree just after 

insertion of noee B and balance tag maintenance to no~e D 

(the criti<::al node). 

Figure 23. A PHB(2,2) Tree After Insertion of a Node 

The balance tag of node D violates tbe balance constraint 

and its mpl is less than the path length constraint. Bence, 

the tree m~st be restructcree. Figcre.24 depicts the tree 

after restructucing. Note that the balance tags for node E, 

one level back from node o, tte critical node, remains 

unchanged; however, node E•s mpl bas changed from 2 to 3. 

Whereas before insertion of node B, no~e E•s mpl vocld bave 

permitted its participation in restructuring if required, 
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atter insertion of noce B, 

involvement in restructuring. 

noae E•s mpl obviates its 

Figure 24. The PHB(2,2) Tree After Restructuring 

By extension of this example, it should be evident that 

it is necessary to backtrack along the search path foe 

insertion/ deletion past the critical node in crder to 

aaintain tte structural informatlcn associated with each 

node. Thus, for FHB trees, backtracking involves 

maintenance of two quantities which have different 

requirements tor terminating their maintenance. Balance tag 

maintenance may be terminated under the same conditions as 

for HB trees. Minimum path lengt~ maintenance continues 

until a node is encountered whose mpl does not change during 

maintenance. If one no~e•s mpl .toes not change then its 

parent's apl also will not change. 
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PHB(l,l) Trees 

Of particular and additional interest is the subclass 

of PRB trees known as PHB(1,1) trees.· 1be reasons for this 

interest are (23) : 

1. Maintenance nf PHB(1,1) trees rices not 
require the generalized massively detailed 
algorithms of PHB(kl,k2) trees. The 
insertion 2Iqorittm in particular is much 
simpler since: 

a. ~estructuring does not require 
d2ngling subtree considerations. 

b. Balance tags need not be maintained 
since balance may be easily 
computerl as a function of insertion 
searching. 

2. Its worst case (see Figure 25 ) is not as bad 
as an unconstrainee binary searct tree. 

3. For moderately sized, randomly constructed 
trees, the expected search perfor~ance for 
PHB( 1, 1) trees is only slightly worse than 
P.IHl} trees. 

Figure 25. A Worst Case tor PRD(l,l) Trees 
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The PHB(l,l) insertion algorithm .is straightforward and 

is given in Pigure 26. the information required from 

searcting tbe tree toe tte key is given in the arqu~ent list 

to SEARCH; SEARCH itself is not sho~n. Deletion presents a 

more complex problem. Wittout balance information, it is 

difficult to determine how to restructure an unbalanced tree 

or bow m2ny restructurings are required. Consider ieletinq 

the key I from the FHI3{1,1) tree of Figure 27 {a). Froceed-

ing as for deletion in other binary search trees, one 

replaces I with fl; Figure 27 {b) is the result. The sub-

trees of node G now violate the balance constraint. This 

could be easily ietermined by 'looking ahead• one level: if 

the non-null descendant has a descendant, then the (sub)tree 

is out of balance. However, how does one decide how to res-

tructure the tree? Should a simple or split rot2tion be 

pertorme c"'? A simple solution is to do a simple rotation 

then •look ahead • one level to determine if the new subtree 

rooted at the critical node is unbalanced; if so, then do a 

simple rotation; then 'look ahead' ••• and so on, until 

the subtree is not critically unbalanced. 

lovs: 

A much Gleaner solution to the problem of deletion fol-

1. Delete the desired key by replacing it with 
the largest key in the left subtree. 

Ii the ori91nal PARENT of 
n~ee now has two NULL links, 
the algorithm; otherwise, 

the replacement 
tten.terminate 



3. ~emove the PARENT of the replacement node by 
replacing its parent's pointer vith its non
null descendant. 

4. Reinsert tte PARENT in the subtree rooted at 
the descendant. This permits the insertion 
algorithm to restructure the tree where 
2pprop riat e. 

BEGIN INSERT {desired key); 
CALL SEARCH {desired key,NODE,FARENT,GRANDPAREN!, 

GREAl_GRA~DPARENT); 
IF ees1re~ key < key(PARENT) 

THEN attach desired key to LEFT(PARENT)' 
ELSE attach desired key to RICH1(FAFEN1); 

END IF; 
IF GRANDPARENT is NULL OR (GRANDPARENT 

is not NULL A~D does not have a ~ULL link} 
THEN E.ND INSERT; 

END IF; 
IF PAFtENT and GRANDPARENT have a NULL link 

on the same side 
TEEN Perform a simple rotation; 
ELSE Perform a split rotation; 

END IF; 
END INSERT; 

Figure 26. Insertion Algorithm for FHB(l,l) Trees 

Let us assume that in Figure 27 subtree 1 looks like this: 

8 
and that subtree 2 looks like this: 

~ 

49 
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<a) 

(b) 

Figure 27. Deletion in a PHB(l,l) Tree 

The result of this solution applied to Figure 27 is picttu:eG: 

in Figure 28. Occasionally, this approach restructures the 

tree (reinserts a node) unnecessarily; however, in order to 

prevent this, a one-level look atlead must be done. 'rhis 

would be e~tra work for those cases in which reinsertion 
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must occur. l.ntui tively, it seems that an occasional 

unnecessary rein~ertion o1 a noce crecites less extra work • 

Figure 2A. Restructucin~ o1 a PHE{l,l) Tree After 
Deletion 

Performance of PHB(k1,k2) Trees 

• 

A formal theoretical analysis of the pertormance of PHB 

trees tas been presente~ only lor PHP(l,l) trees (23). 

Unfortunately, pt:"elirninary empirical results did not support 

Use ot a researct tool to provide erepirical 

data regarding heio.ht balanced trees may guide further 



CHAP1'Ef~ V 

A R~S£ARCH !CCt FOR REICHl BALA~CED 

TREES 

Basicc;lly, the research tool is a set of algorithms 

designed to build various height balanced trEES with exactly 

the Earne keys ard tten give ~erfornance rreasures, suet as 

int€rnal and external patn lengths, and nu~ber of restruc

turinQs required, so that ttE relative rrErit of each clas~ 

of binary search trees may be cospared. Such e~pirical. 

data, gathered in an orderly fashion, nay also guide thE 

theoretical analysis of the beh~vior of the trees.· At the 

present timE, insertion and deletion algorithms have been 

implerrentei for tte general classes HB(k) anc PHB(kl,k2), 

and for the specific trees AVL and fRB(l,l), and the uncon

strained bin2ry search tree. It i~ interiec that the pro

grams be capahle of being expanded and developed into an 

ongoing project ~ith ~lgorithrus for other clzsses of height 

balance~ trees being i~plerrentec. 

in the Pl/1 proqcanrring language. 

The prograrrs ~re-written 

A copy reay be obtained 

ttrcu~~ the Comvoter Science Department cf Okla~owa State 

tJn i v e r s J. ty. 

' 52 
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togic Ot:slqn 

A researc~ tool must e~coura~e its effective use by 

persons other than those who orlginally desiqned it. In 

accordancti with this 1 the follo~ing points ~ere considerec 

in designing the drivinq prograru and its input r~guir£rnents: 

1. 'The explanation of how the input s'hould be 
prepared stoul~ not require sections ot the 
driving as docu~entation. 

2. freparing the input should not require an 
intimate knowle~ge of i~put list tor~ats userl 
in the driving program. 

3. Input should t€ free-form (no column 
Elignment r~quirerrents) to avci~ errors ttat 
fixed-forro may create. 

4. fefaults on certain pzrEmeters should be 
cll.owec. 

5. Expansion of input capabilities or a cnange 
in ho~ something is specified should bE easy 
t o i If p l e tll e n t w i th in th e d r i v in g p r o g ram • 

for these re2sons 1 the author chosE to design ~nd implement 

a srr2ll conaanf langu~~e tor use with the research tool. A 

signal character is used to siqnal that a key~ord is to 

follaw; tterefore, ro .colunn reg~irerneuts nust be enforced. 

A complete Backus-Naur forD (E~f) description of the 

language may be found in Appendix c. 

The language is interpreted via a top-down parser in 

sections. Fach ma]or section is terminated by the key~ord 

GO ~tich ~nticates ttat all inforuatiun necessary to c~ some 

work with the trees {insertion and/or deletion) has been 
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!nterprete~ ~~e may be use~ at ttis point. Tte top-(mw 

parser dlso allo~s greatEr easE of future modifications oi 

input capatilities since eact syLtactic category rnay be 

implemented a~ a separate rrodule. 

Using the ResEarch Tool 

One may use the research tool to insert, or delete, or 

alternately insert and delete keys frorn ~ny numter of thE 

avai1atJle trees. Tte keys usee in ttese operations WdY be 

ordered, rand om, or ?1 ternat iug. Alternating key seguence~ 

exercise both siMple and split rotation cafabilities anc 

create d et,: en era te unconstrained binary search trees ;,;ind 

~orst case FbB(1,1) trees. AftEr e~ch insertion and/or 

eeletion sequence various performsnce me2sures may be taken. 

The most appropriate way to introduce how to use tht 

researc~ tocl is to illu~trate tte capztilities of tte corn-

wand lan~uage w1th a detailed exaaple. Appendix D provides 

such an illustration. 

Appl ic at ion of the Research Tool 

PHB(l,l) trees may become an interesting structure in 

ane cf tteuselve!. Tte reasons for this expectation are: 

1. No extra storage for bal2nce tags is reguir~d 
since, fer inEertton, balince ~ay be corrpute~ 
as a function of searching and, for deletion, 
b~lance may be regained by reinserting the 
criticcl noce. 

2. The worst case for fHE(l,ll is not as bad as 
fer unconstrained binary search trees. 
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3. For randornly constructed trees, the expected 
av~raye s~Erch path length is no worse ttan 
for AVL or HR(l) trees. 

Evidence for the fjrst cl2irn is presenterl above in the 

discussion of PHB trees. Ttc initial application of the 

research ~rograrus ~as to provide enpirical data concerning 

the last two claims. Ttree test ca~es ~ere icvolvet. Table 

I shc~s tl1e info~mation used in each test case. BS'Y stands 

for unconstrained blnsry search tree. 

TABLE I 

lEST CASE INFORMATION 

i ' TEST I f'i::SC Rl PT ION TREES US ED I NUlA.BER 
CASE I I Type I Number I of KEY3 ______ l ___________________ l __________ l __________ l ________ _ 

I I I I 
1 I FU.f\C'IION: ins€rt I ES1 I 1 J 100 

I KFY SEQU.t:NCF:: ~ HR(l) ! ecce I each 
I alternating I PHB(l,l) I I tree ______ l ___________________ j __________ l __________ l ________ _ 

t I I I 
2 1 FnhC1ION: insert t fS1 I 10 t 100 

I KEY s~:QUENCE': J .HR(l) 1. €ctl1 J each 
I permutations I PHB(l,l) t I tree 
I of a given j I I 
I .sequence I BST I 10 I 200 
j I HB(l) I each I each 
j I fff(l,l) ! I t.ree ______ l __________________ l _________ l __________ l ______ _ 

t 1 a 
3 t fUt'iCTION: I tn:es 1rorr I 20 in 

I alternate I TEST CASE 2 ltrees of 
J in.Hert/oelet€ f fsize 100 
J KE¥ SS~UE~CE: I J 
I 'rcndorn I I 40 in 
t I ltrees <Jt 
I I lsize 200 ____ l ___________________ j _____________________ j _______ _ 



56 

Test case 1 ~ewonstrates ~tat will t2ppen if the keys 

are inserted in such a rnanner as to cre2te a degenerate 

unconstr~ine~ binary searct tree. Alttough decucible 

without Pmpirical testing, use of tne research tool makes 

the results readily avail~hle. As can t€ seen in Table 11 1 

a PHE(l,l) tree is net as ba~ ~s an unconstrained tree; the 

aver2ge search path end the average 

insertior/feletion searct patt Jen~tn are about ~alf ttose 

of an unconstrained binary search tree. Powever, they are 

more than three times those oi an cl 0 (1) tree. Ot cour;:;e, 

about half as many restructurings ~ere required for the 

FHP(1,1) tree corrpared to the HB(l) treE, but this is not an 

intuitively rea~onable traeeoff. 

TABLE II 

RESUL!S F~C~ 1E~T CASE 1 

' 1'REE I n I C(n) 1 c•(n) I PO'IATICNS _______ . ___ l ___________ l __________ l_._ _________ l __________ _ 

' I I f 
~ST I 100 1 50.5 1 51.0 f 

I I f I 
F.t(l) I 100 1 6.0 I 1.0 I 92 

Y 1 f I 
PHP(l,l) 1 100 1 26.0 I 26.7 1 49 ___________ l ___________ l ___________ l ___________ l __________ _ 
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Test case 2 ~Ernonstrates average be~avior unter the 

assurrption that each permutation of a given ke~ sequence is 

equally likely to cccur. Table Ill stows t~e results 

garnered frow Test Case 2. 1he values sho~n are the 

averagPs across all trees ot tte same type. Certainly the 

behavior of PBq{t,t) trees tends toward that of the BP(l) 

trees but it is slightly ~orse. Ho~ever, note again that 

about half ~s rrary restructurin~s ~ere required in order to 

maintain the trees. ~~ether this drastic~lly reduced amount 

of restructurirg is kOrtt tte snail traie elf in searct time 

remains to be determined. 

TABLE Ill 

RESUtTS F~C~ 1~ST CASE 2 

I 
'ffiEE ' n I C(n) ' ( 1 (n) I PO'fA'f1CNS 

___________ l ___________ l ___________ l ___________ l __________ _ 
I J f f 

BST I 100 I 7.5 f 8.4 f 
f 2()() I 9.1 t lC.O I 
I J I I 

HB(l) I 100 f 5.9 1 6.8 I 45.1 
I 200 I 6.9 t "1.8 I 87.7 
t f f I 

PHB(l,l) 1 100 I 6.4 I 1.3 1 27.6 
I 200 I 7;7 I 8.6 I 55.4 

------~---1---·--------l ___________ l ___________ ! _________ ._ 
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Te~t Case 3 cerrcnstrates tte trenf for a~era~e behavior 

after a period of activity ~ithin the trEe. 'fhe data arE 

presentee io Table IV. As for Test Case 2, the v2lues stown 

are the 2verages across all trees of the samt type. About 

ttrEe-fourtts a~ rrary rotations were required to rraint~in 

PHB(l,l) trees as opposej to fB(1) trees. 1'h is is a high e .r 

percent2ge tha~ for insertion alone ani probably reflects 

the occasional unnecessary reinsertion of a node. However, 

the number of rotations is still less and the average se2rch 

an~ inserticn/~eletion ~ath lengtts are less than 1 greater 

for PH3(1,1) trees than for BE(l) trees. 1his indicates an 

advantage for PHB(1,1) trees. No Extra storage is requirec 

for halance information, yet fe~er rotations are required to 

maintain the tree and the average Fath lengths are not much 

lor~er. Tte exact extent or this trace off rerrains to be 

deternlinffi. 

TABLE IV 

RESULTS F~C~ 1E~T CAS£ 3 

I 
TliEE I n I C(n) 1 C•(n) 1 PO'fATIONS 

__________ l __________ l _________ l ___________ l __________ _ 
I I I I 

BST f 100 I 7.2 f e.l I 
I 2 oo t 8. 9 J 9. 8 J 
f I I I 

RB(l) f 100 f 5.9 f 6.8 I 52.7 
l 200 I 6.9 I 1.9 t 103.6 

' ' ' ' PbF{l,l) f 100 l 6.5 f 1.4 I 37.2 
f 20U t 7.8 t 8.7 I 14.5 

___________ j ___________ j ___________ l ___________ l __________ _ 
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SU~HARY A~D CONCLUSIONS 

1his study has dealt with the evolution of height bal

ancet binary ~earct trees ane ~ith the tesign ani i~plerren

tation of a research tool to provide the irrpetus for rigor-

ously at1aly2inq their performance characteristics. Height 

balanced bjnarv search trees are one solution to tte problea 

one often encounters in infor~ation storage: how can one 

stOLP inforrration so t~at insertion, deletion, ~D~ &earctin~ 

can be accomplished quickly and efficiently? feneralizerl 

tel~tt balancee treEs can guarantee logaritbroic search time; 

however, since balance information must be maintained, and 

insertion and deletion involve backtracking along the searct 

path, it is unclear how to decide what an optimal trade off 

bet•een secrch time and ruaintenanc~ time is. A specific 

subclass of teigtt bzlancet trees, PRB{l,J) trees, has been 

introduced ~hich do not require aaintenznce of balance tags 

nor backtr2cking but ·way still be able to provice close tc 

logaritnwic search time for the average case. 

59 
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Fesults oi the Study ~nd Suggestions for 

fo'uture s tuc.r 

This study presents previously undocumented outlines ot 

algorithms tor a generalized clc.ss of height balcnced trees_, 

partially teight ba1ancei or PHD trees. One eJerrent of 

these algoritnms remains uncl~~r - is it necess2ry to main-

t2in balanct tag ant patt length !~formation past tte crit-

ica1 point of 1 greater than the constraint values? if om~ 1 

instead., maintained therr only until ttey reachei ttese 

points durinq insertion, then could the appropr1ate values 

be regainet turing ~eletion suet that a ncfe woult be recog-

nized ~s once ayain eligible for restructuring? 
\ 

'f.his ques-

tion needs turther study. 

Also presented -were algorithms for the subclass., 

PHB(l,l) trees. The deletion algorithm ~as previously undo-

currente~. The algorittns presenteci have been implementee as 

part of a research tool for height balanced trees. 

An initial application of the rese~rch tool was made 

for PHB(l.,l) tr€es. trees ext.ibit 

slightly worse performance characterist~cs than do HP(lJ 

trees, ttey elso recuce by talf tte number cf restructurings 

required. This seems to indicate that fEE(l,l) trees may be 

a viable alternative to HB(k) trees. However, ~ore exten-

sive analysis, empirical and theoretical, needs to be done. 

The research tool 1s also avail~ble to provide the empirjcal 

h:petus to analyzinc; Hfl(k) trees. As its capabilities 
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expand, cofuparisons ~ith other height balanced tre€5 ~houl 

be ~a~e to ~eigt tte relative a~vantages ant tisatvantages 

of each u.uder oarticular c:lrcumst<.mces. 

Expanding thE Ca~abilities of the 

Research Tool 

In order to provide a •ore flexlblE corrmand language, 

it is desiraole to permit fefauJt values for mare of the 

parameters such as FPC~ x 10 ~· 1hE pars€r is designed in a 

' ffofuJar fashion to facilitate ttis expansion. Most of the 

syntactic categories correspond to separate aoduies in the 

irn~?l em entation. Hence, modifying at wost one module per 

expansion is necessary. 

It ~ould be desirable at sowe time to implexent algor-

ithms for other classes of height balanced trees, such as 

the BB{a) or Pk classes ~escribed above, ir order to facili-

tate comparisons bet~een data structures. It is also sug-

~estec teat knowing the nuwber ol notes accessec durin£ 

backtracking and maintenance of balance infor~ation ~ay help 

evaluate th~ trade otf bet~een search time and ffialntenancE 

tirre for hei~bt bai2ncef trees. 1he researct tool shoulc 

prove a powerful aid in the study ot height b2lanced trees. 
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AfPENUIX A 

DERIVATTC~ OF EALAhCE 1AC ~Al~TfNA~CE 

EQUATIONS 

Maintenanc~ of balance tags 1n an HB(k) or PHB(k1,k2) 

tcee during rotation after insertion way be accomplished 

wit.b the ir.focmation rrovicec by t.tP previous values of the 

balance tags of the nodes involved. Ih1s is a demonstration 

ot wty it is possible. Similar results fiay be ceriveci tor 

deletion cases. 

SYWECL LEGEt.D: 

CN : tte critical no~e 

DOl : the descendant of the critical node 

CDCN : the yrand-descendant of the critical node 

t(~) : tte te1~ht ct the subtree intiicztet by B 

h(null subtree) = 0 

h(x) = YAX ( t(LEFT(x)),t(RIGHT{x)) ) + 1 

h(n) : the 11eight of the (sub)tree rooted at node n 

Dt{n) : h(n) BEFORE resttucturirg 

Ah(n) : h(n) AFTER restructuring 

b(n) : thE balence associated ~itb node n 

b(n) = t(PlGHT(n)) - ~(LEFT(n)) 

Eb(n) : b(n} PEFC~h restructurin~ 

Ab(n) : b(n) AFTER restructucin~ 
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k : the balance constraint 

* : ln~erticn occurred ifi ttis subtrEe 

SJ)FL~ ~OTA11CN 

CN left heavy; OCN left heDvy. 

BEFORE RESTRUCTURING AFTER PESTRUCTU~ING 

P~Fcn~ restructuring, w~ know that: 

t{DC~) = t(l} t 1 

ar. c 

h(C~) = h(OCN) + 1 

= h(l) + 2 

b(CN) = h(3) - h(DCNJ 

= h{3) - (h{l) + 1) 

= -(k + 1) 

b(DC~) = h(2) - h(l} 

AFTER restructurjnq, ~e kno~ ttat: 

h(CN) = MAX (n(2) 1 h(3)) + 1 

h{DCN) = ~AX (h(l),h(CN)) + 1 

and 

b(CN) - h(3) - h(2) 
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b{DCN) = t(CN) - t(l) 

= ~~X (h(2) 1 h(3)) + 1- h(l). 

Since h(l), t(2), b(3), an~ k are constants ttrough the 

rotation, the following expressions reruain true through the 

rotation: 

and 

t(3) - (t(l) + 1) = -(k + 1) 

h(3) = h(l) + 1 - k - 1 

= b(l) - k 

h{2) - h(l) = Bt(DCN) 

t(2) = h(1) + Bb(DCN) 

Substituting these expressions for h(2) 

equations fer AFtER b(n)'s ,ives: 

b(CN) = h{1) - h(2) 

= h( 1) - k - (h(l) + Bb(DCN)) 

= -k - Bb(DCN) 

b(OCN} = VAX (h (2)~h(3)) + 1 - h(l) 

= ~AX (b{l)+Pb(DCN)~t(l}-k) + 

= ~A X (Eb(tCN},-k) + 1 

Q.E.D. 

and h(3) in the 

1 - t( 1) 

The expression for Ab{DCN) may be simplified further by not

ing that Bh(tCN} must be >= -k. Thirefore, MAX {Bb(OCN),-k) 

will al~ays yield Bb(DCN) ani Ab(DCN) = Pb(DCN) + 1. 

£J~i 2: SFLIT NOTATION 

CN left heavy~ DCf right hEavy. 



B~b~i~~ ~: GUCN lett teavy. 

PEfORE RESTRUCTURING 

AFTER RESTRUCTURING 

BEFOPE restructuring, ~e know that: 

h(GDCN) - h(2) + l 

anc 

h(DCN) - h(GDC~) + 1 

; t(2) + 2 

h(CN) ; h{DCN) + 1 

; h(l) + 3 

b(GDC~) = h(3) - h(2} 

>= -(k - 1) 

b(DCN) = h(GDC~) - h(l) 

= h(2) - h(l) + 1 
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L{CN) 

<= k 

= h(4) - h(OCN) 

= b(4) - t(2) - 2 

= -(K + 1) 

AFTEP restructurinq, ~e know ttat: 

h(DCN) = MAX (h{1),h(2)) + 1 

h(CN) - MU (t(3),t(4)) + 1 

h(GDCN) - ~AX (h(OCN),h(CN)) 

anc 

b(DCN) = h{2) - t(l) 

b{CN) = h(4) h{3) 

b(GDCN) = h{CN) - t(DCN) 

+ 1 

= MAX (h(J},h(4)} - HAX (h(l),h(2)) 
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Since h(l), h(2), h(3), h(4), 2nd k are constants througt 

the rotation, the follow~ng expressions remain true through 

the rotation: 

Bb(GDCN) = t{3) - t(2) 

h{3J = Eb{CDCN) + h(2) 

Bb(DCN) = t(2} - t(l} + 1 

h(l} = h(2)- Bb(DCN} + 1 

-(k + 1) = h(4) - h(2) - 2 

t(4) = h(2)- k + 1 

Suhstituting these expressions for h(l), h(3), and h(4) in 

tte €quatiuns for AFTER b(n)'s 'ives: 

b(DCN) = h(2) - h(l) 

= h(l) - (h(2) - Bb(DCN) + 1) 

= Bb(DCN) - 1 



b(CN) = h{4) - h(3) 

= h{2) - k + 1 - (bb{GDCN) + h(2)) 

= -k + 1 - Pb{GDC~) 

b(GrCN)- l-lU (t(3),t{4))- .Mf\X (t(l),t:(2)) 

= MAX (h(3),h{4)) - ~AX (h(2)-Eb(DCN)+l,h(2)) 

10 

but since DCN was right heavy, Bt(DCN) > 0; hence, 

= M\X (h(3),h(4)) - h(~) 

Q.E.D. 

- MAX (Eb(CDCN)+h{2) 1 h{?)-k+l)- h(2) 

= MAX (Bb(GDCN) 1 -k+1) 

S~b~~~~ h: GDCN right heavy. 

BEFORE RESTRUCTURING 

-----~ 

AFTER RESTRUCTURING 



REFOPE restructuring, we know ttat: 

h(GCC~) - h(3) + 1 

and 

AFTER 

an c 

.1':( D CN) = h(GDC N) + 1 

= h (3) + 2 

h(C~'J :;:; h(DC!\) + 1 

= 11{3) + 3 

b(GDCN} = b(3) - h(2) 

<= k - 1 

b(DCN) = h(GDC~) - h(l) 

= li (J) + 1 - t(l} 

<= k • 

b( CN) = b(4) - HDCN) 

= h(4) - h(3) - 2 

- -{k + 1) 

restructuring, t~~e know that: 

h(DCtd = "'AX (h(l),h(2)) + 1 

t(CN) = MAX ( t{3),t;(4)) + 1 

h(GDCN) = ~AX (h(CN),h{CCN)) + 

b(DCN) - h {2) - h{l) 

b{ CN} = h(4) - h(3) 

b(GDCN} ::: h(CN) - h(DCN) 

= ~AX (h{3),h(4)) - t-AX 

11 

1 

(h(l),h(2)) 

Since h{l), t(2}, ~(3), t(•), ant k reDEin const~nt t~rough 

the rotation, the follo~ing ex~resstons remain true through 

tlJe rotation: 



Hb(GDCN) = h(3) - h(2) 

h(?} = h(3) - Pb(GDCN) 

Bh{DCf) = h(3) + 1 - b(l} 

t{l) = h(3) + 1- Bt(DCN) 

h(4) - h(3) - 1 = -(k + l) 

t(4) .::; b(3) + l k 2 

= h (3) - k - 1 

12 

Substituting these expressions for t(l), t(2), an~ t{4) in 

th e e qu at i on s f o r A F 'l' E R b ( n ) • s g i v e s : 

b(Df~) .:: h(2) - h{l) 

b{ CN) 

b( GDC N) 

Q.E.D. 

= h(3) - Pb(GDCR) - (t(3) + 1 - Bb(DCN)) 

= Bb(DC~) - E~(CLC1) - 1 

= tl ( 4) - t(3) 

= h (3) -·k - 1 - h {3) 

- -k - 1 

- HAX (h(3),h(4)} - ~AX (h ( 1) ,h ( 2)) 

= liAX ( h ( 3 ) , h ( 3 )- ~-1 ) - liAX (h(l ),h(2)) 

:: h(3) -.!-1AX {t:(l),h(?)) 

= h(3) - liAX (h(3)+1-Rb(DC~),h(3)-Sb(CDCN)J 

-MIN (t(3)-(t(3)+1-Bb(DCN)),t(3)-(h(3)-Bb(GDCN))) 

= ~IN (Eb(DCh)-l,Eb(GDCN)) 

Not~ that since hoth Ab(OCNJ ind At(GDC~) dEpend upon 

Pb(DCN} anc Bb(GDCN), 

before changing it. 

one of tte Bb values rrust be savec 



.C~~i;, ,J: Slt-'PLr.: ROTAT.lON 

c ti r l <Jl1 t heavy; t r. N r 1 g h t he av _y. 

BEFORE RFSTRUCTURLNG AFTER RESTRUCTURING 

BEFORE resttucturing, we know that: 

h(DCN) = h(3) + 1 

and 

h{CN) = h(rC~) + 1 

= t(3) + 2 

b(DCN) = h(3) - h(2) 

<= k 

b(CN) = h{DCN) - h(l} 

= t( 3) + 1 - l( 1) 

= k ·+ l 

AFT E P r e s t r u c t u r in g, w e k n ow u~ a t : 

h ( C N) = MA ~ (h (1) ,h ( 2) ") + 1 

Il(D CN) = MAX (h(CN),b(3)) + 1 

and 

b(CN) = h( 2) - h(l) 

b{DC~D = t ( 3) - t(CN) 

= h( 3) - ~AX (h(l),h(2)) - 1 
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S1rce h(l), n(2), h(3), and k re~ain constant through the 

rotation, the tollo~ing expressions remain true through the 

rotation: 

Bb(DCN) = h(J) - h(2) 

h(2) = h(J) - Bb(DCN) 

h(3} + 1 - h(l) = k + 1 

h(l) = h(J)- k 

Substitutln£ these expressions far t(l) 

equations for Af1E~ b(n)'s gives: 

b(CN) = t{2) - h{l) 

= h(3) - Eb(DCN) - (h(3) - k) 

= k - Bb(DCN) 

b(DCN} = h(3) - MAX (h(l),h(2)) - 1 

anc h(2) 

= h(3) - tAX (h(3)-k 1 b{3)-Pb(DCN)) - 1 

in the 

= MIN (h(3)-{t(3)-k),t(J)-(t{3)-Bb(DCN))) - 1 

= ~IK {k,Eb(DC~)) - l 

Q.E.D. 

The expression for At(DCN) ~ay be simplified further by not

in~ ttat Pt(DCN) <= k. TtErefcre, VIN(k,Bb(DCN)) will 

always yield Bb{CC~) and Ab(DCN) = Eb(OCW) - 1. 

!AS~ 1: SPLIT RO!ATIO~ 

CN right te~vy; DCN left heavy. 

1Ubf~~f ~: CDCN right heavy. 



B£FCFE RESTSUCTU~l~G 

B~fC~~ restructuring, we know that: 

t(GDCN) = h(3) + 1 

h(OCN) = h (GDCN) -t 1 

= h(3) -t 2 

h(C~I) = h (D CN) + 1 

= h {3) + 3 

b(GDCN) = b(3) - ~(2) 

<= k - l 

b(DCN) = b{4) - t(GDCN) 

>= -k 

b( C N) = h(DCN)- h(l) 

= 11(3) + 2 - t(l) 

75 



= k = 1 

AFTER restructuring, ~e know that: 

h(DC~} - ~AX (h(3) 1 h{4)) + 1 

h{CN) =MAX (t(1) 1 t{2)) + 1 

h(GDCN) - M~X (h(CN),h{DCM)) + 1 

and 

b( DC!~<) = h(4) - l{3) 

b( CN) = h (2) - h ( 1) 

b(GDCN) = b(DCN) - t(CN) 

= HAX (h(3),h(4)) - MAX 

16 

(h(l),h(2)) 

Since h(l), h(2), h(3), h(4) 1 and k rereain const~nt througt 

the rotation, the following expressions remain true through 

the rotat1on: 

Bb(CDCh) = t(3) - t{2) 

h(2) = h{3)- Pb(GDCN) 

Bb{DCN) = t(~) - t(J) - 1 

h{4) = h(J) + Bb(DCN) + 1 

h(3) + 2 - b(l) = k + 1 

t(l) - b(3) + 2 - k - 1 

= h (3) - k + 1 

Substitutin~ the~e expressions tor t(l), t(2), an~ t(4) in 

the equations for AfTER b(n)'n gives: 

b(DCN) = h(l) - h(3) 

b( CN) 

= h(3) + Bb{DCftl + 1 - h(3) 

= B':J(f:C~:) + 1 

= h(2) - t(1) 

= b(3) - Bb(GDCN) - (h(3) - k + 1) 
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= k - Ut(GDCN) - J 

b(GCCN) = MAX (h(3),h(4)) - •AX (h(1),h(2)) 

Q.E.D. 

= M AX ( t( 3) , t( 3 ) + B t ( D C N ) +1 ) - ~ A X ( h( l ) , b ( 2 )) 

but since CCN was left heavy, Fb(DC~) < 0; hence, 

- h(J) - MAX (r(1),~(2)) 

= h(3) - MAX (h(3)-k+l,h(3)-Eb(~DCN)) 

= MIN {t(3)-(h(3)-k+l),h(3)-(h(3)-Bb{GDCN)}) 

= MIN {k-1,no(GDCN)} 

AfT~P PESIFUC1UR1NC 



PEFOPE restructuring, ~e know that: 

h(GDCN) = h(~) + 1 

h(DCN) - i:l{GDCN) T 1 

= h(2) + 2 

and 

HCN) - h{DCi~) + 1 

= h {2) + 3 

b(GDCN) = h(J) - ~(2} 

): -(k - 1) 

b(DCh) - t(4) - t{GDCN) 

= h(4) - h(2) - 1 

>= -k 

b{CN) = h (D CN ) - h ( 1) 

= h(2) = 2 - h(l) 

= k + 1 

AF'fEfi .r estruc turing, ~~~ kno• that: 

h( DCN) = .MAX ( t(3),t{4)) .. 1 

h( CN) ·- f.! AX (h (l) ,h ( 2)) .... 1 

h( GDCN) = M 1\X ( l(DCN),t(CN)) + 

and 

b(DCN.) - h(4) - h(3) 

b{CN) = h(2) - h(l) 

b(GI:Cfl) ;;; h{UCN) - h(CN) 

= MAX {t(3),t(4)) - .i'L~X 
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1 

(t(l),t(2)) 

Since h(l), h(2), h{3), h{~), and k remain constant through 

tte rotaticn, tte following expressions r~wain true thrcugt 

the rot .at ion ! 



B b ( GD C N) = t ( 3 ) - l: CD 

h(3) = Bb(CCCN) + h(2} 

Bh(DCN) = t(A) - t(2) - 1 

h(4) = Bb(DC~) + h(2) + 1 

b{2) + 2 - t(l) = k + 1 

h(l) = h(2) - k + 1 
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Substituting these e~pressions for h(l), h(3), an~ t(4) in 

th€ equations for AF'l'ER b(n) •s gives: 

b(DCN) = b(4) - h(3) 

b( CN) 

b(GDCN) 

o.F.c. 

= Bb(DCN) + t(2) + 1 - (Bb(GDCN) = h(2)) 

= l:.lb(IJCt\) - Eb(CI:CN) + 1 

= h(2) - t(l) 

= h(2) - (h(2) - k + 1) 

= k - 1 

= M A. X (h(3),h(4)) - MAX (h ( 1) ,h ( ~)) 

= l'AX (h(3),h(4)) - fo AX (h(2)-k+l,h(2)) 

= MAX {t(3),.t:(4)) - t(2) 

= sAX (Pb(CDCN)+h(2) 1 Bt(DCN)+h(2)+1) -
= MAX (Pb(GDCN),Bh(DCN)+l) 

h(2) 

Note that since bott Ab(DCN) ~nc Ab(GDCN) deperd upon 

Bb(DCN) ana Bh(GDCN), 

before changing it. 

one of the Bb values must be saved 



AfPENDLX B 

ROTATION 

Durinq iHsertion restructuring, the height of the sub-

tree involved remains the same • This is a d€rnonstration of 

wty it is tnJe. Refer to Appentix A tor a symbcl iescrip-

tion and preliminary derivation oi formulas. 

tAS~ 1: SIMFLR ROTATION 

CN left heavy; DCN left te2vy. 

Before insertion, the height of tl:.e subtree rooted at CN 

= Pli(CN) - 1. 

After restructur inq, the height of the subtree = Ah(DCN). 

Al(DC~) :: ~AX (h(l),h(CN)) • 1 

= MAX (n(l),h(2)+1,h(3}+1) + 1 

but h{2)+1 = h(1)•Et(DCN)+1 <= t(l) sirce Bb(DCN) < 0 

and h < 3) + 1 = n { 1 )- k+ 1 <= h(l) sirce k > 0 

fierce, 

• Ah(DCN) = h(l} + 1 

:: Eh(lJCN) 
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= llh ( C N) - 1 

Q.E.D. 

t&S£ 2: SPLIT ROTATIOM 

t.:N left i:~eavy; DCN riCJht heavy. 

~Yb~~~f f! CDCt left heavy. 

Refore insertion, the height of the subtree rooted at Ch 

= Ph(Cf-J) - 1. 

liter restructurin~, tte teiqtt of the subtree = Ah(GDCN). 

Ah(GDCN) = MAX (h{OCN),h(CN)) + 1 

=~AX (h(1),h{2),h(3),h(4l) + 2 

but b{l) = h(2) - Bb(DCN) + 1 <= t(2) since BL(DCN) > 0 

and h(3) = Bb(GDCN) + h(2) <= h(2) since Bb(GDCN) < 0 

and h{4} = h(2) - k + 1 <= h(2) since k > 0 

Hence, 

Ah{GDC~J = h(2) + 2 

- Bt( ncN) 

= Eh ( CN) - l 

Q.E.D. 

ll:ub.&£~£ )2: C?DC.N rlght heavy. 

Be:fore ins€rtion, the height of the subtree rooted at CN 

= Fh(c•:) - 1. 
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After rcstructur:ing, the hei']ht of the subt.ree- Ah{CDCK). 

At(GDCN) =MAX (l'{CN),t(DCN}) + 1 

= ~AX (h(1) 1 h(2),h(3) 1 h{4)) + 2 

but h(l) = b(3) + 1- Eb(DCN) <= h(3) since Bb(DCN) > C 

and h(2) = h{3) fb(CDCN) <= h(J) since Eb(,DCN) > 0 

a~i h{4) = t(3) '- 1 <= t(3) since k > 0 

Fence, 

At(GDCN) = 0(3) + 2 

= Bh{ DCN) 

= Eh(CN) - 1 

Q.E.D. 

~A~~ J: SI~FLR ~OTA110N 

C N r i gh t he av y; D c N .r i gh t h e a v y • 

Pefore insertion, the height of the subtree rooted at CN 

= Rt(CN)- 1. 

After restructuring, the height oi thE subtree = Ah{DCN). 

Ah(DrN) = MAX (n(CN),h(3)) + 1 

= ~AX (h(l)+1 1 h(2)+11 h(3)J + 1 

h~t h(l)+l = n(3) k + 1 <= h(3l since k > 0 

and h(2)+1 = h(J) - Pb(Drh) + 1 <= h(3) since Bb(DCN) > 0 



He flee, 

Ah{DCfJ) = t{ 3) + 1 

= R.h ( U CIO 

= Eh<cn - 1 

Q.E.D. 

£J~j ~: SPLit RCTA1IGN 

C N r 1 qh t h e a v y; DC t~ 1 eft h € a v y • 

~Yb~~~~ ~= GDC~ rigtt teavy. 

Before insertion, the height of the subtree rooted at CN 

= Ft(CN) - 1. 
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Afte~ restructuring, the height of the subtree = Ah(GDCh). 

AtfGDCN) =MAX (t(CN),t(DCN)) + 1 

= ~AX (h{1),h(2),b(3J,b(4)) + L 

but h(1) = h(3) - ~ + 1 

and h(2) = h(J) - Fb(CDCI) 

<= h(3) s~nce k > 0 

<= h(J) since Pb(CDCN) ) 0 

ani h(1) = b(J) + Eb(DCN) + 1 <= t(3) since Bb(DCN) < 0 

f!ence, 

At(GDCN) = b(J) + 2 

= Bh ( DCN) 

- Bh ( CN) - 1 

Q.E.D. 



~~b~~~f t: GOC~ left he2vy. 

Eefor(: insertion, the height of the subtree rooted at CN 

= Ph(CN) - 1. 
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After restrurturinc, the teigtt of th€ subtree = Ah(GDCN). 

Ah(GDC~J = HAX (h(DC~),h(CN)) + 1 

-MAX (h{l),h{2),h(3),h(4)) + 2 

but h(l) = h(2) - k + 1 <= t(2) since k ) 0 

'and h(3) = db(GDCN) + h(2) <= h(2) since Bb(GDCN) < 0 

and h(4) = Bb(DCN) + h(2) + 1 <= h(2) since Bb(DCN) < 0 

Hence, 

Jb(GOCN) = h(2) + 2 

=.BHDCN) 

= 1lh (CN) - l 

Q.E • .u. 



A.PPf~NDIX C 

PROGRAV 

Appendix C gives the BNF (Backus-N.aur Form) descria;:tion 

of the input reguire~ents for using the rEsezrch program. 

NOTA'l'ION LFG!?ND! 
• 

~ 1he signal character; indic~tes that a key~ord 

.tcllo'-ls. 

nnnnn - lo~er case letters; A syntactic category which 

UNNNN - uppercase letters] A keywore wbict must appear 

in that position. 

e - epsilon; a null value or entry. 

- OR; inGicates a c~oice. 

{ ••• } - indicates a set of information from ~hich a 

choice Hay be uaie. 

,( )/ - single charact~rs 11hich must avpear where 

indicated. 

input --> 

test_case_s er ies 

t e s t_ c a s e_ s e r i e s -- ) 

test_case_s erie s test_case 
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te~ t_ case 

test_ca.se --.> 

$ { k eywo.r- (_co 1m en t $ e } case_specification 

$ { key word_ co wrn P.ll t s e J initial_specification 

.s { 

$ ( 

key '-or d_ co ITlt en t 

kE}'WOC C_corrnel: t 

s 

$ 

e 1 roanipulation_specific2tion 

e } 

{ weasu.rernent_specific;jtJon $ 

{key~ord_cowrnent $ 

key • or c_ en c c c. s e 

keyworrl_comruent --> 

e l 

COMMENT < not reservec_wores e 1 

reserved_words --> 

s 
END CAS F. 

case_soecification --> 

CASE case_rurrber 

case_nuwber --> 

integer e 

1nftial_specification --> 

tree_specification 

€ } 

S ( k e y w or C co n u: en t S 1 e l in i t i a 1_ fun c t ion 

$ { keysor~_corrrnent $ 

tree_specification --> 

TRE FS tc ee_spe c 

tL·ee_spec --.> 

e } keylliord_go 

t r e e_ s p e c ( , e } ,s_tree_spec 



os_ tr.ee_spec 

qs_tree_~pec --) 

numher_oi_trdes qeneralized_tree 

number_of_trees speciali2ed_tree 

ruuber_of_trees --> 

integer e 

generalize c_ t.ree --) 

HB ( balance_constraint ) 

I fHB ( balance_constraint , path_ltngth_constraint ) 

ba1a~ce_constraint --> 

integer I 

path_lengtt-constraint --> 

integer I 

specialized_tree --> 

.Ai'L 

F.S 'l' 

PHBll 

initial_functlon --> 

INITIAL nuruher_of_nodes 

nun:b er_of_nodes --> 

Integer 

k ey~ord_ qo --) 

en 

rraniruli:itlon_specification --> 
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FUNCTJON function_specilication 

$ < key~ord_comment S e l 

XEYSET keyset_specific~tion 

S { keyworr_corr1Tent $ el 

key!.iord_qo 

function_speclfication --> 

lNSER'l' 

I DElETE 

INS/DEL i c _ o r c e r- c t o i c e 

id_order_choice --) 

RAr~DO M 

ALTERNATING { BY set_size e } 

keyset_srecificat~on --> 

ALTFldJ.ATJNG al t_l~€y_ct.oice 

ORDE~En ord_key_choice 

PA~DC~ ran_~ey_choice 

SHUFFLED sl11Jf_key_ctoice 

al t_k ey_ch o ice -- > 

ord_key_choice t SEl setsize e 1 

crc_key_ctoice --> 

fRO~ low_key 10 hiqh_key ( PY increment e J 

ran_key_cboice -- > 

llU.illber_of_keys 8F1WEEN lo~_key AND hiqh_key 

ran coF _start 

shuf_key_choice --> 

ord_key_choice random_start 

1 cw_k ey --.> 
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integer 

lli~t_key --> 

.integer 

set_size --> 

integer 

increment --> 

integer 

nu~Fb e r_o f_k ey s --> 

integer 

randoru_start --> 

SEEn series_start e 

series_start --> 

integer 

rneesurement_specification --> 

~~ASURE perforuance_rreasures 

S { key~ord_cornment $ e J 

key~ord_go 

performance_weasures --) 

performance_rneasur~s measure 

me a sure 

.r.ea.sure --> 

R01A1IOJ. 

H~IGBT 

IN'l'EPNAL 

EX H.f<N AL 
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inte~er --> 

integer diqit 

digit 

cic.it --) 

0 I 1 J 2 J 3 I 4 I 5 I 6 l 1 I 8 I s 

Thet€ are s€vera1 llrritations and restrictions to tbe place-

went of sotte symbols a.nd the values of others. 

restrictions follow. 

1.. Since $ is used to sional that o key""'ord 
follows, it cannot be used in 2ny place oth~r 
than ttose incicatec in tte description (i.e. 
it cannot be lMithin a COMMENT statement). 

2. Et.DC.AST" acts 
certain Error 
its use in a 
problt!lls. 

as a si,nal chat~cter tor 
correction ~roceiures. Hence, 
COMMENT statement could create 

3. Tte largest inte~er ~hict the program is 
currently designed to handle = 2~*15 - 1 = 
32767. lrtegers larger than 32161 will h2ve 
unprecictatle results. Simil2r1y , tte 
smallest 1nteger which should te used is - ( 
2**15 - 1 ) = - 12767. ( - 32768 t~s Sfecial 
mEaninq with in the proqrarn and should not be 
\IS€d.) 
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APPENDIX D 

AW ILLU~1PATION CP THE USE CF 1H£ 

COV~ANO LANGUAGE 

The meanings associated ~ith each statement of the com-

rnand language is best illustrated ~ith e~Emples. The fol-

lowing sample input sequences provide examples of the use of 

the commznd language statements. For ease in coordinating a 

statement ~itt its explanation eac~ input statement is 

placed on a separate line and is imroed12tely followed by 2 

CO~MENT st2teruent (in~entec in block fern} explaining it. 

However, there are no colurrn requirements for the input 

statements. 

$CASE 

$CO~~EIT - Singals the beginnign of a nek t•st 
case. T~e ~rivet prograw frepires to initialize a 
new set of trees. 1here is no test case numtec on 
t~e st~terrert; since ttis is tte first r~n~ I will 
let the driver program number the test cases. On 
output, I ex~ect this test case to be 'CASE NUMB~~ 
1.• 

$TPEES 

AVL HB(l) PHB(l,I) 
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$CO~~Eh~ - 1he trees to be usee 1n this test case 
are bei~g ~pecifiec. Since there are no repeat 
count~ in front of th~ trees• names, one tree of 
each type will b~ avail~ble. ~ince these specifi
cations arl:l equivaJent trees ( H·e l stancs fer 
Infinity), ~hat I will see is the results of any 
differEnces in the algorithms toe maintaining the 
trees. 

$1Ni'TlA.L 1000 

$GC 

$COVMENT I wish 1000 nodes tc be avai]ible in 
the trees. 

$CO~MENT - Signals the end of the tree initializa
tion input section. At this point, thE trees are 
establisted witt tte requesterl number of nodes. 

$ FUNC'ri CN 

SCOFMENT- I vish to build tte tree by insertin~ a 
series of keys into the tree. 

$Kr<:YSE'J' ALTER~ATING FROM 1 TO 100 

$GO 

SCO~MFNT- T~e insertion is to use 1CC keys ~ith 
the values 1 - 100 jn the alternating order: 1, 
100, 21 gq, J, 98, ••• , 50, 51. SincE are is 
no BV specified, the default of 1 was assumed; 
hence, the sequence takes 1 value frorr tte low 
ent, tten 1 value fro~ the high end, then 1 from 
the lo~ end, ••• , ~nd so on. 

$CO~~!hT - lndicates that a complete manipulation 
request nas oeen fcune. Tte d1iver program shoul~ 
v e r f o r ru th e c e ~ u est at th is point. 
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$GO 

ROTATION, hEIGH,, IN1ERNAt 

t:XTFRNAL 

$CO~MFNT - I ~ish to see how many rotations ~ere 
performed in order to maintain the ~alance crite
ria1 wtat tte te1ctts of tte trees ere, ~nt ~tat 
the lnterndl and extern~! path lengths are. Note 
the lack of a con;rra after lNTF:fiNAL. Com.n.as ere 
option~]; tte facility tas been prcvite~ only for 
user reaJ.abU ity of the input data. 

$CO~MENT - All rreasurements desired have been 
listed. This is the time to take the measurements 
ant print ttem out. 

$fUNCTION 

SCO~kFNT - Now, I kist to insert some more keys. 

$KEYSE'l' 

$f0 

100 RAhDO~ EET~~EN 1000 A~D 32000 

$CO~MFNT - This tirre, I ~ant 100 keys r2ufomly 
chosen between lOCO and 32000. Since I have not 
specified a SF~r vzlue, the driver program ~ill 
generate one for we. 
N01'E' - The program attemrts to generate 100 unique 
random keys; tence, the usEr should provide a 
large range to facilitate this process. 

$CO~NENT - Do tte insertion cf 100 ranion keys. 

$MEASURE 

INTERNAl, l:>XT~tHAt 
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SCO~MFNT - This tine all 1 carE about are tte 
internal an1 external path lengtbs. ~ince I 
insertEi 1UO kevs into a tree ~hict slrea~y tac 
lOU keys, 1 expect the statistics to print out 
that thece are ?00 keys currentll in the trees. 

$ENDCASE 

$CO~~FN~ - 1his is the end of the first test case. 
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