
THE DESIGN AND APPLICATION OF A RESEARCH

TOOL FOR HEIGHT BALANCED TREES

By

MAf:lY BE'IH HERNON

Bachelor of Science in Home Economics

Oklahoma State University

Stillwater, Oklahoma

1976

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
tlle Degree of

MASTER OF SCIENCE
July, 1919

~!J/
19'19

1-1 SSJ'c{
C'iJp.2

THE DESIGN IND APPLICATION OF A RESEARCH

TOOL FOR HEIGHT BALANCED 1REES

thesis Approved:

Dean of Graduate College

ii

PREFACE

This study is concerned with the development and exten

sion of a class of height balanceti binary search trees known

as HB(k} trees. HE(k} trees are an important alternative

data structure in file systems wtere rapid access and rapiri

update are desired. However, a precise analysis of expected

system performance using HB(k) trees is impossible since a

precise analysis of the expected behavior of HB{k) trees

remains unfornmlated. A generalized class of HB(k) trees,

known as PHB(kl,k2) trees, may pravide tte tool necessary to

analyze the expected behavior of HE(k) trees. The design

of algorithms for maintaining these trees and the subsequent

implementation of the algorithms as part of a research tool

for height balanced trees are also discussed. Results from

an initial use of the research tool are presented.

I would like to acknowledge the intellectual stimula

tion and encouragement provirled by Dr. ~ames R. Van Doren,

my major advisor, not only in support o.f this thesis but

also throughout my graduate education. Under his tutelage,

every course has been both challenging and rewarding.

I also acknowledge the encouragement received from my

comuil ttee members, Dr. Donald w. Grace, Dr. John P. Chan

dler, and Dr. Donald D. fisher. This thesis is better

because of their support.

iii

A special note of recognition is given for the love,

understanding, and support given me by my husbcnd, Bill.

His presence has enriched my graduate education.

I would also like to thank my parents, Robert and Jac

quetta Jacks, and my parents-in-law, Peter and Bertie Her

non, for their support, both moral and financial, which has

helped us over some bard times.

Finally, I would like to express appreciation tor the

friendship and comraderie I found among other graduate stu

cents.

iv

CHAPTER

I.

II.

III.

IV.

v.

VI.

TABLE OF CONTENTS

Page

INTRODUCTION ·• . • • • • • • • • • • • • • • • • • 1

BINARY SEARCH TO BINARY SEARCH TREES • • • • • ••

Binary Search Technique ••••
The Binary Search Tree ••••

• • • • • • •

4

5
8 • • • • • • •

HEIGHT BALI\NCED BINARY SEARCH tREES • • • . .. • • 20

HB(k) Binary Search Trees ••.•••••••• 21
Performance of HB(k) Trees o • • • • • • • • 35
Alternatives to RB(k) Balanced Binary Search

Trees ••••••••••••••••••• 31

PARTIALLY HEIGHT BALANCED TREES • • • • • • • • • 41

Structure anrl Maintenance of PHB(kl,k2)
Trees ••••••••• • • • • • • •

PHB(1,1) Trees ••••••••••••
Performance of PHB(kl,k2} Trees ••••

• • • 43
• • • 41
• • • 52

A RESEARCH TOOL FOR HEIGHT BALANCED TREES • • • • 53

Logic Design • • • • • • • • • • • • • • • • 54
Using the Research tool • • • • • • • • • • • 55
.Appl ic at ion of the Research Tool • • • • • • 55

SUMMARY AND CONCLUSIONS • • • • • • • • • • • • • 60

Results of the Study and Suggestions for
Future Study •••..••••••••• ., •• 61

Expanding the Capabilities of the Research
To~l ••••••••••••••••••• 62

A SELECTED BIBLIOGRAPHY • • • • • • • • • • • • • • • • • 63

APPENDIX A - DERIVATION OF BALANCE 71G ~AINTENANCE
EQUATIONS • • • • • • •••••• • •••• 66

APPENDIX B - HEIGHT OF THE SUBTREE DURING INSERTION
ROTATION • ••• • • • • • • • • • • • • • • 81

v

APPENDIX C - BNF DESCRIPTION OF INPUT TO THE RESEARCH
PROtRA~ • • • • • • • • • ••••••••• 86

APPENDIX D - AN ILLUSTRATION OF THE USE OF THE COMMAND
LANGUAGE • • • • • • • • • • • • • • • • • • 92

vi

LIST OF TABLES

TABLE Paqe

I. Test Case Information • • • • • • • • • • • • • • 56

II. Results from Test Case 1 • .. • • • • • • • • • • 51

III. Results from Test Case 2 • • • • • • • • • 0 • • sa

IV. Results from Test Case 3 • • • • • • • • • Cl • • 59

..

vii

LIST OF FIGURES

Figure Page

1. Binary Search Algorithm • • • • • • • • • • • • • 6

2. Actions of Binary Search Algorithm • • • • • • • • 1

3. A Binary tree ••••••••••••••• a • • 9

4.

5.

6.

1.

Binary Tree vs. Binary Search Tree •• • • • .. .
BST Representation of Table of Letters ••

Search Algorithm for Binary Searct Trees •

Insertion Algorithm for Binary Search trees

• • •

• • •

• •

• 10

• 10

• 11

• 12

a. Result of Inserting D into Binary Search Tree • • 13

9. Result of Deleting C from Binary Search Tree ~ . . 14

10. Deletion Algorithm for Binary Search Trees •••• 14

11 ..

12.

13.

A Degenerate Tree • • • • • o • • • • e • • • •

A Binary Search Tree Extended • • • • • • • • •

A Worst Case Aft Tree with 12 Nodes • • • • • •

• 16

• 11

• 22

14. Balance Tag ~aintenance in an HB(k) Tree ••••• 27

15. Cases 1 and 3 as 'Mirror Images •• • • • • • • •• 28

16. Simple Rotation in an .HB(k) Tree • •• • • • • • • 29
'

11. Balance Tag Maintenance After a Simple Rotation • 29

18.

19.

Split Rotation in an HB(k) Tree • • • • •

Cases 2 and 4 as Mirror Images •• • • • •

• • • • 30

• • • • 31

20. Balance Tag Maintenance After a Split Rotation •• 31

viii

21. An HB(l) Tree • • • • • • • • • • • • • • • • • • 42

22. Result of Insertion Depends on Classification •• 42

23. A PHB(2,2} Tree After Insertion of a Node •••• 45

24.

25.

The PHB(2,2l Tree After Restructuring

A worst Case for PHB(l,l) Trees • • •

• • • • • • 46

• • • • • • 41

26. Insertion Algorithm for PHB{l,l) Trees •••••• 49

21. Deletion in a PRE(l1 1) Tree ••••••••••• 50

28. Restructuring of a PHB(l,l) Tree After Deletion • 51

ix

CHAPTER I

INTRODUCTION

An immense information explosion in the 60 1 s and 10•s·

has intensified the issue of how to warehouse information:

How may information be stored so ttJat any particular piece

or any related group of pieces may be quickly retrieved for

examination?

Computer haroware technology has provided part of a

solution: the appropriate warehouse, machines with an ever

increasing capability of storing volumes of information in

small amounts of space. Computer software tectJnology bas

provided another part: methods or structures for organizing

tbe information (data) helrl within the machine. The motiva

tion behind this study concecns the evolution of one such

class of data structures, height balanced binacy search

tcees, anrl the development of a researcb tool to aid in the

theoretical analysts of the behavior of the trees. Height

balanced binary search trees have been well-documented

empirically but lack a ~efinitive theoretical explanation

for their behaviol".

Chapter II traces the

binary search trees from the

development of height balanced

early days of computing during

1

2

~hich the impetus for binary search trees developed out of

the binary search technique. Tbe binary search tree as a

logical entity was not presented until the early 1960's, but

like an idea whose time bas come, much attention was given

to binary search trees in subsequent years.

Chapter III discusses the logical variants of binary

search trees. These structures, each of which balances the

tree in some way, have been developed in the attempt to

obtain the best-possible worst case. The height balanced

binary search tree, one of the variants, is selected foe a

detailed discussion of its structure, maintenance, and per

formance.

Chapter IV presents a generalization of height balanced

binary search trees, partially height balancec binary searct

trees. Th 1s lo gica.l structure has been proposed as an aid

in the effort to rigorously define the performance of height

balanced trees. Yet, a subclass of this structure may prove

to have interest lng properties in and of itself.

Chapter V discusses the research tool developed to pro

vide empirical data on the performance of binary search

trees, height balanced binary search trees and partially

height balanced binary search trees. An overview of the

logit rlesign and program structuEe is presented along with

preliminary instruct ions for using the programs that have

been written.

3

Application of the research tool tor providing empiri

cal rlata wtich may lead to a rigorous definition of the per

formance of height balanced binary search trees is also dis

cussed. Some initial results concerning tbe subclass of

partially height balance~ trees vbich may become of some

importance in its own right are presented.

Chapter VI summarizes the major ideas and findings of

the study. Suggestions for further study and for expanding

the capability of the research tool are also made.

CHAPTER II

BINARY SEARCH TO BINARY SEARCH TREES

The foundation for the development of height-balanced

binary search trees was laid in the early -days of computing

by the binary search technique. The binary search was well

known in the early 1940's although the first formally pub

lished algorithm which works for any number of items in the

table was presented in 1962 (13). Use of a binary search

can reduce tremendously the amount of effort devoted to one

of the most frequent activities for any collection of

information - looking for a particular item based upon a

particular, unique identifier, called the key, such as a

name or an account number. It there is no particular orrler

ing of the items of information, then one must use a

•brute-force• approach, conventionally called a linear

search, to find tbe desired item: beginning with the first

of all items and exa~ine each one in turn until the desired

item is found or the item list is exhausted. This is some

what akin to trying to find someone•s phone number in a tel

ephone directory in which people are listed in the order in

which they requested phone service. The only recourse is to

start with the first person listed and look tbrough all peo

ple listed until the one desired is found.

4

5

The te~lousness of such an approach should be apparent.

On the average, approximately half the items are examined to

find the desired item. In the worst case or if the item is

not present, then the entire list of information is exam

ined.

Order,

greatly eases

lexicographic (dictionary-like)

the burden of locating an item.

or numeric,

If one is

trying to find .Peterson's phone number in the standard tele

phone directory, then one initially aims directly for the

P•s and thus eliminates the entire first half of the direc

tory at once. If one happens to open to the N's then

several pages are flipped in an attempt to get to the F•s,

thus eliminating many more entries from consideration at

once.

Binary Search Technique

This is the essence of the binary search technique -

given a list of items which are logically and physically in

orcer, search for the desire<! item by successively eliminat

ing from consideration unneeded portions of the list. How

ever, for computer applications, this approach is rigorously

fonnal iz ed as in Figure 1.

the actions of the algorithm searching for the key P in

a table of letters are illustrate~ in Figure 2. It can be

shown (13} that the binary search technique makes at most

lg(n) + 1 comparisons for an unsuccessful search and makes

lg(n)

BEGIN SEARCH(desired key1 midpoint);
left_ boundary <- location of first i tern;
right_boundary <- location of last item;
mlcpoint <- FLOOR((left_boundary+right_bounoary)/2)
DO UNTIL { 1 ef t_bound ary > righ t_ooundarv);

IF key at midpoint is desired key
THEN END SEARCH;

END IF;
IF desired key < key at midpoint

THEN riqht_bouncary <- micpoint;
ELSE left_boundary <- midpoint;

END If;
END DO;
key not found in table;
END SE.ARCH;

Figure 1. Binary Search Algoritbm

6

1 comparisons tor the average successful searct

(1 lg • indicates the base 2 logari thm''"''CJtrd·· will be- used as

such throughout the discussion without further explanation).

1 eft_ boundary= 1 m1dpoint=4 right_boundary=1
+---+

location 1 2 3 I 4 I 5 6 7
key B c F I G I H p v

+---+

1 eft_boundary= 4 midpoint=5 right_boundary=1
+---+

location 1 2 3 4 1 5 I 6 7
key B c F c I H I p v

+---+

left_boundary=5 midpoint=6 r1ght_boundary=1
+---+

location 1 2 3 4 5 I 6 ' 7
key B c F G H 1 p I v

+---+

Figure 2. Actions of Binary Search Algorithm

The time complexity has been reducea from O(n) for the

brute force sequential search to O(log(n)) for the binary

search.

The binary search technique is the best possible searct

algorithm that proceeds solely by comparing (the desired

key) to keys in the table (11). However, tbe restriction

that the keys be stored consecutively in a specified order

has different implications when one considers activities

other than searct:ing such as inserting a new item or celet-

ing an old one.

In order to insert {delete) an ite& one might do the

folloJ.jintJ steps:

1. Determine the correct location for (of) the
item. In terrns of the binary search
technique presented earlier, location = riqht
boundary upon termination . of an unsuccessful
searcb for insertion ant for deletion
location = midpoint upon termination of a
successful search.

2. ~ove all items between l~cation an~ tbe end
ot the table down (up) one position.

3. For insert ion,
location.

insert the ne~ item at

This is potentially a very time-consuming taska With

dynamic tables, tables which are constantly c~anging,

reorganization time may far outweigh ac.cess time, time spent

searching the tableo For some applications this may be of

a

no ccncern, but for otters, sue~ as an airlines reservation

system, reorganization time may interfere ~ith the rapid

access tiue 6eslrec. Hence, it ~oulc be rlesir2ble to

develop an <:ppr.oach to information stor.age that I~~ould give

not only small search times but zlso small insertion and

leletion ti[es for any item of information. The binary

search tree is such an approach.

Tte Binary Searct Tree

lHndley (26), and Booth and Colin (4) independently

introduced binary searct trees as lo~ical ana physical

structures in 1960. Many of the later publications report-

ing work concerning binary search trees reference these two

articles. The concept oi binary search trees t;a.s been ~en-

eralized to binary trees. A binary tree is

a finite set of nodes ~hich either is empty, or
consists of a (node called tte) roct anrl two ~is
joint binary trees called the left and right sub
trees of the root (12, p. 309).

Each node (or element) of the tree contains several items of

inforroation: a key by which one may uniquely identify thE

nofe, and two "pointer" fielcs wtich identify (or point to)

the locations of the root nodes for the lett and right sub-

trees. Other intorroation relevant to the key may be storet

in a node, but it is not a concern of this discussion. Fig

ure 3 illustrates a binary tree.

9

Figure 3. A Einary Tree

If the binary tree is to be used to maintain an ordered

set of recor~s, then a further requireme~t is that all nodes

in the left subtree have keys which are less than the key in

the root node in so~e sense whether numerically or lexfco

graptlcaiiy. In orier to picture this, it is belpful to

consider flattening the tree so that all nodes are aligned

such that it node X were in tte left subtree of no~e y, tten

node X is to the lett of node Y in the line. Such a binary

tree is usuzlly calle~ a binary search tree (BST) or binary

decision tree. Thus, if we let A and B represent the

keys of the nodes in Figure 4, tben Fi~ure 4 (a), while a

valid binary tree, is not a valid binary search tree. Fig

ure 4 (b) 1s a valid binary search tree.

It ~ay be helpful in un~erstanding tow a binary searct

tree is organizeJ to consider that the binary search techni

que discussed earlier imposes an implicit tre~ structurE

upon a lineirly ordered set of items. Tt~ initi~l midpoint

is the root of the entire tree; the midpoint of the half-

10

(a) (b)

Figure 4. Binary Tree vs. Binary Search Tree

list to the left of the initial midpoint is tte root of the

left subtree of the root of the entire treei the midpoint of

the half-list to the right of the initial midpoint is the

root of tte right subtree of the root of the entire tree;

and so on. 1hls is illustrated graphically in Figure 5.

Figure 5. BST ~epresentation of Table of Letters

The node with key <; is called the •parent• or immedi

ate ancestor of the no~es witt keys C and P. Conversely,

the nodes with keys C and P are called •siblings• and are

11

tbe immediate 'descendants• or •offsprin~• of the node ~itt

key G. In particular, C is the left offspring of G and F is

the right offspring of G. Additionally, B, F, H, and V are

leaf nodes (no offspring), and c, G, and P are interior

nodes (two offspring).

It should be apparent that since each node now con-

tains, or points to, the location of the next node to be

examined, there is no need to reguire that the items be

stored in order in consecutive locations. However, there

must be a way to tell when there are no more nodes to exam-

ine; hence, a NULL value must be estahlisbed for pointers

which do not point to any offspring. 'fh e search al yor i tha

for the binary search tree is illustratee in Figure 6.

BEGIN SEARCB(desired key,NODE,PARENT);
PARENT <- NULL;
NODE <- location of root of entire tree;
DO ~HILE (NODE is not NULL);

IF desired key = key at NODE
TEEN END SEARCH;

END IF;
PARENT <- NODE;
IF desired key < key at ~ODE

THEN NODE <- LEFT(NODE);
ELSE NODE <- RIGHT(NODE);

END IF;
END DO;
key not found;
END SEARCH;

Figure 6. Search Algorittm for Binary Search Trees

12

Insertion is a relatively straig~tforwarl proce~ure

although one must be careful to maintain the order associ-

ated with the structure. Figure 1 presents the algorithm

for inserting a new item into the tree. Let us insert the

key D into the tree of Figure 5. The search algorithm would

detect a NULL value to the LEFT of the node for F and return

the FAREIT = location of F. 1he INSERt algorithm would then

put D into tte next available ncce anc tt.is node woulc

become the LEFT descendant of F. Additionally, F is no

longer a leaf node but is now a semi-leaf no~e (one descen-

dant). The resulting tree would then appear as in Figure s.

BEGIN INSERT(new key);
CALL SEARCR(new key,node,parent)J
IF new key < key at p~rent

THEN LEFT (parent) = next available node;
ELSE RIGHT{parent) = next available node;

END IF;
Place new key in next available node;
END INSERT;

Figure 7. Insertion Algoritt.m for Binary Search Trees

Deletion of a node is more complicated, ~owever. For

instance, if one were to delete the node with key G from the

tree in Figure 81 then its descendent subtrees would no

longer be subtrees ot a common root. They would be

'dangling subtrees• or distinct binary search trEes with no

13

Figure 8. Result of Inserting D into Einary Search ~rEE

logical interconnect ion. Some way must he found to maintain

the relationship between all nodes remaining in the tree.

The probleB is usually approacbea as follows:

1. Find the largest (smallest) key in the LEFT
(RIGHT) subtree of the node to be ~eleted.

2. Substitute this node for the one being
deleted being careful to reconnect all
s~btrees of the two noces invclvee. (This
substitution involves changing at most four
pointers only.)

3. Return deleted note to an available pool.

The result of this algorithm after deleting the node C :fro11

Figure 8 is sho~n in Figure 9. Stated more formally, the

algorithm for deletion is illustrated in Figure 10.

Figure 9. Result of Deleting G from Binary Seatch Tree

BEGIN DELETE(old key);
CALL SEARCH(olf key,NOOE,PAHENT);
Find largest key in LEFt subtree of NCDEJ
RIGHT(parent of largest key} <- LEFT(largest key);
LEFT(NODE of largest key) <- LEF1(NCDE);
RlGHT{NODE of largest key) <- RIGHT(NODE);
Return NODE to available pool;
END DELETE;

Figure 10. Deletion Algorittm for Binary Search Trees

lim~ .knmJ2.l.e.xl.t~ .al .iU.o.ax.! S.e.a.~:..c.ll l.r.e~

.Al.!Ul.t..i.tb~

14

A reasonable question that must be asked involves the

time complexity of the algorithms a~sociated with binary

search trees. How long toes it take to search the tree, to

insert a new item into the tree, to delete an item?

For both deletion and insertion tte average time com-

plexity approximates that for an unsuccesful search. the

changes made to the pointers are done in a constant amount

15

of time vhich is negligible tor trees containing large num

bers of noees.

The time complexities associated with the best, aver

age, and worst case, in terws of average search time, binary

search trees have been extensively documented (4, 5 1 8, 13,

18, 21, 26). If one considers all nodes on one •row• to

constitute a 1 le·vel', then tlle best case binary search tree

has all leaf and semi-leaf nodes on at most two adjacent

levels. This is sometimes terme~ a complete binary tree.

This corresponds precisely to the binary search tree inter

pretation of the binary search tec~nique. Tte ti~e complex

ity for searching the tree is O(log(n)) where n is the num

ber of nodes in the tree.

A worst case, called a 'degenerate • tree, arises when

all keys are inserted in order. If the keys 1n Figure 5

were inserted in lexicographic orter tten the tree woul~

appear as in Figure 11. Searching a degenerate tree struc

ture is equivalent to the sequential search ciscusseo ear

lier; the time complexity is O(n).

However, if one assumes that the keys are inserted ran

ciomly then it can be proved that the time complexity approx

imates that for tb. e best case since well balanced trees are

common and degenerate trees are rare (13).

16

Figure 11. A Degenerate 1ree

Muc~ ~ork in data structures tas been tone to try to

guarantee that a degenerate tree never occurs. But before

discussing some of this ~ork, if would be helpful to define

the terms cotrmonly usee in discussions of empirical perform

ance of the data structures.

Since tte time complexity tor the algorithms for binary

search trees are directly proportional to the number of com

parisons made during searching tte tree, performance con

cepts which may be measured empirically have been veil-de

fined (although minor variations still exist). These

11

include the height, the internal path length, and the exter

nal path lu1gth.

The level of a node corresponds to ~hich •row• it is

on, the root node being level 1. Thus, in Figure 11, B is

on level 11 C is on level 2, and so on. lhe height of a

binary search tree or a subtree is the ~umber ot levels in

the tree or subtree.

In order to formalize an empirical aeasurement for suc

cessful anc unsuccessful searches, it is helpful to intro

duce the concept of •external nodes 8 • An external node is a

special node used to indicate a NULL subtree in the graphi

cal representation of a tree. Vf the nodes in Figure 12

(a), nodes A and D have two NULL subtrees, anc ncee c has a

NULL LEFT subtree. Figure 12 (b) shows the representation

for and placement of external nodes. fiodes A, B, c, and D

are nov termed •internal nodes•.

(a} (b)

Figure 12. A Binary Searcb Tree Exter.de~

For all trees, the following relationship holds:

number of external nodes = number of internal
nodes + 1.

Fi~ure 12 (b) has been ter~ed an extendef binary tree.

18

The path length bet11een two nodes is the difference

between their level numbers. Thus, in Figure 12 {b), the

path length between E and D is 21 bet11een D and one of its

external noces, it is 1. Tte path length may also be

thought of as the number of additional comparisons needed to

locate a particular node in a subtree from the root node ot

the subtree. The internal path length of a tree with n

nodes, l(n), is the sum of all the path lengths between the

root node (level 1) and each internal node. Thus, for Fig-

ure 12 (b),

l(n) = 1 + 1 + 2 = 4.

Tbe external path length, E{n), is the sua of the path

lengths bet~een the root node (levEl 1) and each external

noce. Thus, for Figure 12 (b),

E(n) = 2 + 2 + 2 + 3 + 3 = 12.

The relationship bet11een the internal and external path

lengths is always

E(n) = I(n) + (2 * n).

It should be appa.ren t that the average number of comparisons

required for a successful search, C(n), is

19

C{n) = 1 + (I(n) I n}.

One comparison is cequired to Qet to the root of the tree

anrl cecice "hich subtree to examine next. The expression

I(n)/n gives the average number of comparisons ceguireo to

get from tte root cf the entire ttee to ~ny other particular

internal node in the tree. Similarly1 the average number of

comparisons required for an unsuccessful search1 c•(n), is

C'{n) = E(n) I (n + 1).

C(n) is a measure of the relative time required to retrieve

a particular node from a tree. C'(n) is a measure of the

relative time required to insert or to delete a node or to

search for ~ node tbat is not pcesent.

These measures aid in comparing the relative efficacy

of different algorithms designed to manipulate trees and

vill be used throughout tte remainfer of the ~iscussion.

CHAPTER III

HEIGHT BALANCED BINARY SEARCH TREES

Even though, as ~as stated above, randomly constructed

binary search trees behave quite well and ~e9enerate trees

rarely occur, there still remains the issue of degenerate

trees. If, as is guite possible in 'real• applications,

items are entered in order, then this wondetful construct,

the binary search tree, has saved nothing except for the

occasional ran~o~ insertion. One would like to be able to

guarantee a complete binary tree (one with all external

nodes on at most two adjacent levels such as the binary tree

interpretation of the binary search technique) all the time

since this would save considerable searching effort. How

ever, tte time involverl in maintaining ttis guarantee shouli

not outweigh the time saved during a search.

One class of data structures that has been proposed to

solve this problem is the class of weigtt balanced trees of

which the optimal binary search tree is an example. "Weight

balanced trees use as a guideline the adage that •eo~ of the

activity occurs in 20% of the file•. Information about fre

quency of access for each key is used to construct and

reconstruct the tree so that the Host frequently accessed

20

21

keys are near the root level. 1his considerably reduces the

average search time for a set of keys wit.h known frequen

cies. Weight balanced binary search trees are a nice solu

tion if one has a static tile ant can safely project the

frequency of access to each key. However, for dynamic

files, ones for which insertion and deletion are major

activities, and frequency of access to any particular key

cannot be predicted, weight balanced trees create more work

than they save since access frequencies must be dynamically

maintained and the entire tree aust be constantly checket

for optimality.

HB(k) Binary Search Trees

A nice solution to the problem of maintaining dynamic

trees so that degenerate trees never occur but maintenance

requires only local adjustment around a node and one or two

of its descendants, was first proposed in 1962 by two Rus

sian mathematicians, Adel•son-Vel 1 skii and Landis (1).. The

binary tree structure they proposed, subsequently teemed an

AVL tree, constrains the relative heights ot the LEFT and

RIGHT subtrees of the notes. The height of the left subtree

ot a node way differ by no more than one from the height of

the right subtree. This constraint does not al~ays result

in a complete binary tree. Figure 13 illustrates a worst

case, in terms of average search path length, C(n), for an

AVL tree with 12 nodes. In a complete binary tree, 12 nodes

22

would require only tour levels. Hokever, the performance of

an AVL tree approximates the best possible performance of a

complete binary tree and reguires only t~o bits per node to

indicate wtetter the left subtree is longer than, balancec

with, or shorter than the right subtree.

Figure 13. A ~orst ~ase AVL 1ree ~ith 12 Nodes

This notion of 1hei9ht balanced• iias generalizEd in

1973 by Foster (7) to permit relative hei,bt imbalances

greater than one. These trees are called liE (k) trees iih ere

k, the allowed iubalance, is an arbitrary compromise between

short seacch time and frequency of cestructuring. AVL trees

may be considered a special case of HB(k) trees - the HB(l)

subclass. Bowe~er, HB(k) trees require •ore storage per

node since the relative imbalance may be between 0 and k for

23

e i th e r sub tree. The following discussion of structure and

maintenance requirements applies egually to AVL and HB(k)

trees.

If o~e is going to guarantee ttat the rlifference

between the heights of the left and right subtrees of a node

is no more than k, then one must maintain information about

the teights ~ith the nodes. One approact to this problem is

to maintain the actual height of the (sub)tree rooted at a

given nooe. If one defines the teight of a null descendant

to be zero, then this may be calculated for all internal

nodes simply according to the rule:

Height{node) = ~AX (Height{left descendant),
Height(right descendant))+ 1.

A note whict is critically unbalanced, whose subt~ees bave

relative heights which violate the balance constraint, may

be detected by the following test:

ABS (Height(left descendant) - Height(rig.ht des
cendant)) > balance constraint k.

Insertion and eeletion ~ay quite possibly change the

heights associated with the nodes along the search path and

create a critically unbalanced condition for some node.

Thus, after insertion or ~eletion of a node, one must

'backup• along the search path modifying the heights accord

ing to t~e above rule until one of two ttings occur:

1. the height remains the same for some node.

2. A noce is cetectec to be critically
unbalanced.

24

In tte first case, cne may terminate tte backup for height

maintenance. in the second case, one must restructure the

tree in order to bring it back into compliance with the

balance constraint.

It should be evident that this involves a great deal of

work. 'There are potentially four accesses per node along

tbe search path: one during the searct, and tbree curing

the backup procedure. It seems reasonable to exp~ct that

this mettoc woulc cetract from tte usefulness of this cata

structure.

Fortunately, there is a second approach to the

maintenance of teight inforDation whict does not involve

such a great amount of effort. This approach maintains a

'balance tag• for each node ~hict is a measure of the

relative difference in heights between the left and right

subtrees of the nodeo the balance tag may be defined as

follows:

. balance tag(nod e) ::: Height(right descendant) -
Height(left descendant).

Thus, three cases are established:

1.

2.

balance tag(node) ::: O:
two subtrees are eq~al,

the heights of the

balance tag(node) < 0:
cescencant)) Hei~ht(right
called left heavy,

Height(left
cesceneant),

3. .balance tag(node) > O: Height(right
descendant) > Hetght(left desceniant), called
right heavy.

25

Backtracking from the inserted node along the path ot

insertion /Geletion is still required in order to maintain

the balance tags.

One sboula question why the seconri approach is better

than the first, since the second approach defines the

balance tag in terms of the heights of the subtrees and

backtracki~g is ~till required. The answet is that the

height need not be maintained; the balance tags may be

maintained base~ upon theit previous values. Until

backtracking is term ina ted for insertion, if the new node

were inserted in the right subtree, then the height of the

right subtree is one greater than before; hence, add one to

the balance tag. If the nev node were inserted in the left

subtree, then the height of the left subtree is one greater

than before; hence, subtract one from the balance tag.

Deletion from the left (right) s~btree is equivalent to

insertion in the right {left) subtree. Thus, backtracking

involves only one access per node inste2d of three as with

the first approach.

Basic insertion is identical to that tot unconstrained

binary search trees. After insertion, the backup is terai-

natec if eit~er of two cases occur:

1. At any unbalancEd node along the search path,
tte new node ~ere inserted in the shorter
subtree. That is, if a node were left heavy
and the new node ~ere inserted in the tight
subtree, or if a nofe were rigtt teavy an~
the new node were inserted in the left
subtree, the b2ckup maintenance may be
terminate(;.

2. If a node is unbalanced to the point of
violating the balance constraint. two
simultaneo~s con~itions determine this case:

a. ABS (balance tag(node)) = balance
constraint,

b. Tte node
or heavy

In this case,
to conform to

was inserte~ in the longer
subtree.

the tree must be restructured
tile constraints.

26

Figure 14 illustrates, in FDL form, the algorithm required

to maintain balance tags in an HB(k) tree.

When a critically unbalanced node is encountered, that

portion of the tree rooted at the critical node must be res-

tructuree or cotat~d so tbat the tree c~nforas to the given

balance constraint. However, this restructuring must be

done in a certain way in order to maintain the artier associ-

ated with the nodes. Restructuring entails three steps:

1. Rearrange the nodes so that the
initially rooted at tte critical
conforros to the balance constraint.

S\lbtree
node

2. Reconnect any uninvolvet desceneants of the
nodes directly in11olved that have been
rlisconnected during the restructuring.

3. Mocify the balance ta~s ot the noces involved
to reflect their new positions. As during

backtracking, this may be done based on their
previous values. (It is not intuitively
obvious how this may be done during rotation.
A demonstration of this fact ~ay be found in
Appendix A.)

BEGIN BTAG_MAINTENANCE;
DO WHILE (Btag(NODE) < balance constraint OR

insertion occurred in the shorter subtree};
IF insertion occurred to the right of this NODE

TFEN Increment Etag(~CDE) by li
IF NODE is now balancet or still left teavy

THEN END BTAG-~AlNTENANCE'
E~D IF;

ELSE Decrement Btag(NODE) by 1;
IF NODE is now balanced or still right heavy

TEEN END BTAG-~AlNtENANCE;
END IF;

Etm IF;
Back up to next previous NCDE;

END DO;
Tree violates balance constraint at NODE;
END BTAG-~AINTENENCE;

Figure 14. Balarce Tag Maintenance in an HB(k) Tree

27

At most three nodes along the search path are involve~ in

this restructuring the critical node, the immediate

descendant of tbe critical node and the offspring of the

immediate cescencant (tbe grand-rlescenrlant) cf the critical

node.

Four cases may be identitiecl in terms of the nodes

involved as having differing restructuring ceguirements:

1. Critical node i5 left teavy, cescenGant ol
the ccitical node 1s 1Pft heavy.

2. Critical no(e is lelt teavy, cescencant of
the critical nod~ is right heavy.

3. Criticel node i~ ri~ht he~vy 1 descEndant of
tte critical noce is ri,tt teavy.

4. Critical noJe is right heavy, descendant of
the critic~l nod~ is lett hesvy.

28

C~se 3 is the mirror ireage of case 1 (see Figure 15).

Figure 16 illustrates Case 1, a simple rot2tion. figUl'€ 11

illustrates, ir: PDL for(ll, t~e balarcE tag reaintenance

requirements tor the nodes involved in Case 1 or Case 3

res true turing. Case 4 is the mlrror 1rrage of Case 2 (see

Figure lr) .. Figure 19 illustrates Case 2 restructuring, a

split rotation. Split rotation involves a subcase ~hen

iealing witt balance tags. Figute 20 illustrates, in PDL

form, the balance tag maintenance reouirements for the nodes

invclved ir Case 2 or Case 4 restructuring.

CASE 1 C .AS E 3

Figure 15. Cases 1 anc 3 ~s Mirror Images

critical node

descendant node

grand
descend ant

B E C v II E S

Figure 16. Simple Rotation in an HB(k) Tree

BEGIN SIMPLE-BTAG;
/*co11ment: let

CN represent the critical node
DCH represent tbe riescen~ant */

IF insertion occurred right of CN
TREN Btag(CN) -<- balance constraint - Btag(OCN);
Decre~ent Bta~(DCN) by 1;

ELSE Et~g(CN) <- -balance constraint - Btag(DCN);
Increment Btaq(DCN) by 1;

END IF;
END SI~PLE-~TAG;

Fi~ure 17. Balance Tag Maintenance After a Simple
Rotation

29

30

CASE 2

Figure 18. Cases 2 anc 4 ss Mirror Iwages

critical noJe

grand-descendant

B E C 0 M E S

Figure 19. ~plit Rotation in an HB(k) Tree

31

lt can 0e sho~n that this restructuring results in a

(sub)treP of the s~we heigtt as the (sub)tree before

restructuri[~. (See App~ncix B for d cetailerl presentation

of thls fact.) 'Thus, Bfter restructuring 1 the insertion may

be t€nairatec.

BEGIN SPLI1_BTAG;
/*cornrert- lEt

*I
SELECT;

CN Iefresent the critical node
rcN repr€s€11t tte cescendant
CDCN represent the grand-descendant

""l<P-rE~l(insertion occurred right of both CN and GDCtO:
Etao(CN) <- bal:=nce constraint- 1 - Etag(gdcn);
lncrerrent btag(DCN) by 1;
Btag(CDC~) <- ~IN (balance constraint - 1,
Eta9(n~rtd >;

~WHLN{insertion occurrec ri£~t of CN ar~ lett ot GDCN):
SavE> Ftay(iJCN);
Btaq(CN) <- balance constraint - 1;
Btag(DCN) <- Bt2g(DCN) _ Bt~g(GDCN) + 1;

Btag(COCb) <- ,AX (Ptag(CUCf) 1 Saveri Btag(DCN) + 1);
WHEN{instrtior occurret left of bot~ CN anc GDCN):

bTag(CN) <- 1 -balance constraint- Ftag(GDCN);
Btaq(GDC~) <- MAX (Btag(GDCN),l- oalence constraint);
Dccre~ent Btag(DCN) by 1;

OtherYlSE: /*comment - insertion occurred left of CN
an c r· j £ r t o f c D CN * I
SavE> Ptng(DCN),i
Btag(Ch) <- 1 - balance constraint;
Bta~(DCN) <- Rta£(DCN) - Rta£(GDCN) _ 1;
Etag(CDCN) (-~IN (Saved Btag(DCN)- l.,rtag(CDC1:));

END SELECT,
END SPLIT_BT.:.G;

Figure 20. Palance Tag ~aintenance After a Sp)it
Rotation

32

Deletion in an HB(k) tree is more complicated than

insertion. Insertion always inserts a new noce in an exter-

nal node position and at most one rotation is required to

bring the tree back into compliance witb the balance const

raint. Deletion removes an internal node vbich may tave one

or two descendant subtrees. 1hese dangling subtrees must be

reconnected to the tree in the proper manner to prevent vio-

lation of the balance constraint. This may involve multiple

rotations as shall be shown.

Although· once a noce has beea::•,deletec, one must back

track along the search path in order to 111aintain the balance

tags, deletion presents differing initial problems depending

on wtether a leaf node (no descendants), a semi-leaf node

(one descendant), or an interior node (two descendants) is

beinc,; <leletec. These differing requireKents are outline(

bel alii:

1. If a leaf node is <leleted, set its parent's
pointer to NULL. Prep~re to backtrack
starting at the parent node.

2. If a 3emi-leaf node is celetec, set its
parent's pointer to its non-null.pointer.
Prepare to backtrack starting at tbe parent
noce ..

3. If an interior node is deleted, then do the
following:

a. Find a noee with which tte noie to
be deleted may be replaced keeping
track of the se~rch path. 1his
will be the no~e with the largest
(smallest) key in the left (:right)
subtree. The usual approach is to
select the longer subtree (tte
heavy side of the node to be
deleted).

b. In effect, delete the replacement
node from its present position.
that is, delete the node but save
the VElue of the key (ant any
information associated with the
key).

c. Delete tte inten~et noie by
substituting the replacement node.
The balance tag of the deleted node
becomes the balance tag of the
replacement node.

d. Prepare to backtrack starting at
the original parent of tte
replacement node.

33

Several different cases may arise during backtracking

They are as follows:

1. The node was balanced before deletion.
Adjust the balance tag to reflect in which
subtree the deletion occurred (the opposite
subtree is now longer by 1). terminate the
algorithm.

2. The node ~as left or right heavy before
deletion; deletion occurred i~ the lon9er or
heavy subtree. The heavy subtree is now less
heavy (shorter) by one. the node becomes
less unbalanced by 1. Continue backtracking.

3. The node was left or right heavy before
deletion; deletion occurred in the shorter
subtree. The note is now more unb~lancec in
the same direction as before {the shorter
subtree has become one more level shorter
tban tte longer subtree). Two subcases ~ay
be recognized:

a. Tte balance tag(note) was < balance
constraint. The new balance tag
remains <= balance constraint;
hence, terminate tte algorittn.

b. The balance tag(node) was = balance
constraint. The node becomes
critically unbalancei. Tte tree
violates the balance constraint.
Restructure the tree. After
restructuring, continuec
backtracking may or may not be
required ..

34

When restructuring is required, the nodes involved are

not along the search path except tor the critical node

itse]f. Ttis is different from insertion but is as expectet

since the subtree containing the search path has been

shortened in height to the point of causing the critical

node to violate the balance constraint. Thus, the other

subtree is the critically heavy one. With this difference

in wtich node is meant by tte iamediate iescendant of the

critical node in mind, there are four cases

restructuring ~bich correspond to those for insertion:

1. 1he critical ncrle is left teavy; the
descendant of the critical node is left heavy
or balance c.

2. The critical node is left heavy; the
descendant of the critical node is right
l!eavy.

The critical node is eight heavy; the
descendant of the critical node is right
heavy or balancerl.

The critical node is right heavy; the
descendant of the critical node is left
t,eavy.

for

35

Note that the only difference between these cases and those

for insertion is that the subtrees rootet at the descendant

of the critical node may be balanced • 'Ihis case may be

rotated either way, simple (Cases 1 and 3} or split (Cases 2

and 4). It is placed with the simple .rotation cases merely

because these involve less work.

The rearrange«ent of the nodes is handled in

identically the same way as .for insertion with the exception

of choosing the grand-descendant of the critical node during

split rotations. In insertion, tbe ~rand-descendant is

along the search path; in deletion, the grand-descendant is

chosen from the ~eavy side of tte descentant.

Balance tag maintenance is also similar to that done

for insertion If one considers that inserting a new node in

tbe right subtree of some existing node is akin to rleletin~

a node from the left subtree. A difference arises because

of the possibility that the des cencant af the critical node

may root balanced subtrees {balance tag = 0) before

restructuring. In this case, only, backtracking may be

terttinated immediately since the rearrangement will result

in a {sub)tree of exactly ~he same height as the subtree

rooted at the critical node before d·eletion.

Performance of HB(k) Trees

The theoretical analysis that has been done for HB(k)

trees has not been supported by empirical observation {7,

36

13). Some of the empirical results that have been reported

are outline~ below.

Foster (7l found that, for insertion, letting k be as

large as four increased the average secrch path length by

only one wt.ile the number of restructurings decreased by

approximately 431 • Work reported by Van Doren {24) comple-

mented Foster's findings tor insertion ant exten~ed the

results to deletion. The effect of a change in k under

deletion follows a Pattern similar to that for insertion:

increasing k cecreases the number of restructurings

required. Van Doren also found that increasing k increases

t.be number of noces exa.minec:l Cluring the backtracking opera-

tion. This may offset the gain realized by fewer restruc-

turings. Karlton, Fuller, Scroggs, and Kaehler (10) have

provided tte most complete set of empirical observations

concerning the performance of height balanced trees. Part

of their week substantiates the results reported by Foster

and Van Doren. Cther of their findings follow:

1. The average number of rotation see~s to be
independent of the number of nodes in the
tree for trees containing more than 30 nodes.

2. The number of no~es visitet rluring
backtracldng is independent of the the number
of nodes for insertion but for deletion it
increases slowly as the numbEr of notes
increases.

3. The average number of nodes visited during
backtracking is less for deletion than for
insertion, for large k {balance constraint).-

4. Deletion is more time consu~ing than
insertion but searc~ time is tte ~ominant
factor in both operations.

31

Experiments performed by Baer and Sch~ab (3) corroborate

previously reporte~ findings.

Alternatives to HB(k) Ealancerl Einary

Search Trees

The work done on AVL and HB(k) trees has still!.ulated · the

development of alternative solutions to the problem of bzl-

ancing a binary tree structure based on information about

path lengths and heights of subtrees. Nievergelt and Rein-

qolc (19) introeucec bounced balance or BB(a) trees where

•a• is a restriction on the relative number of nodes in the

left and right subtrees ot a node:

a <= {number of nodes in the left subtree + 1) I
(total number of nodes + 1) <= 1 - a.

BB(O) corresponds to an unconstrained binary search tree;

BB(l/2) corresponds to a complete binary search tree. The

authors admit that, based on empirical evieence, search time

is somewhat ~orse for BE(a) trees than for BB(k) trees but

they claim several ~dvanta~es of BB(a) trees over HB(k)

which may compensate for this:

1. Such important operations as tinting tte kth
data element, or the qth·quantile, or ho~
many elements there are lexicographically
between x ancl y, can all be ~one in time
O(log(n)) {in a BB(a) tree), while they seem
to reguire time O(n) (in an HE(k) tree), and

2. The smallest possible change in k {for RB(k)
trees) changes the class of trees very
drastically, anrl ttus the compromise between
search time and rebalancing time cannot be
finely tuned (as it can be for BE(a) trees).

Work done by Van Doren ani

disadvantage but no ~ork bas

Gray (25) supports

been reported to

38

the statec

support the

claimed advantages.

required before the

fairly examined.

More extensive research and analysis is

advantages and disadvantages can be

Pursuing an idea sug~esteri by Knutb (13), Hirschberg

(9) investigated one-sided height-balanced or CSHB trees

which are a restricted subclass of AVL trees. OSHB trees

require that the right subtree never has a smaller height

than the left subtree. In other kords, the nodes may be

balanced or right heavy only. Although fast search time is

maintained, insertion requires time O{log{n)**2) in an OSHB

tree. Later work by·Zweben and McDonalt { 27} shews that

deletion of an arbitrary node may be done in time O(log(n)).

OSHB trees saves

to the AVL trees

one bit of storage per

introduced in 1962,

node when comparet

but the trade off

reguired for insertion may not be worttl tile storage saved.

Hirschberg and Zweben and McDonald leave open the question

of the actual (empirical) behavior of OSRB trees.

Drawing on tbe work with OSHB trees, Ottaann, Six, and

Wood (22) developed right brother or RB trees. 1he authors

indicate that RB trees are a subclass of brother trees wbict

they had present ad earlier. A bro.the:c tree requires that

all leaf nodes be on the same level and ttat each node witt

only one descendant

descendants. f<ight

has a sibling

brother trees

(brother) with two

qualify the latter

39

condition, requiring that each node with only one descendant

must have a right sibling (brothEr) with t~o descEndants.

Ott~rann, anf Wooe detail insertion and ~eletion

requirements and theoretically prove that both insertion and

deletion may be accompliste~ in O(l~g(ri)) tiae although the

algorithm for insertion is more complex. '!hey also derive

bounds for the height of the tree:

CEIL{lg(n)) <= height < 1.44 - lg(n + 1) - 0.32.

Empirical verification of these claims is lacking.

Another c1evelopaent in balanced trees is Power k or Pk

trees introduced by Luccio and fagli {16}. Power trees

Eaintain balance information as for AVL trees but only for

the set of nodes on selected paths from the root to the

leaves ifentifiel through tte paraaeter k. The paths are

identified as follows:

1. Fer k = O, there exists at least one path =
the height of the tree such that all nodes on
the path satisfy

I balance tag(norie) l <= 1,

and

2. For k > o, all paths of lengtb j where

height o.f the tree - k + 1 <= j <=
height of the tree

are such that all nodes on each path satisfy

I balance tag (node) I <= 1.

40

In other worrls, balance is aaintained only for those no~es

which lie along a path originating from the root of the

entire tree which has reached a specified level relative to

the teig~t of tte tree. Since tbe heigtt of a tree is a

dynamic quantity, the set of nodes for lihich the balance is

maintained is also eynamic. Tbeoretical deter&ination ot

the following quantities are obtained .for FO trees under

insertion only:

1. Worst case path lengtt = SORT (2*n), ant

2. Average search length for a worst case tree =
2/3 (SQRT(2*n)).

As for AVL and HI!(k) trees, average search length for a Pk

tree, assuming all key sequences equally likely, bas yet to

be .successfully analyzed~ Empirical results show that PO

trees approximate the behavior of AVL trees but drastically

refuce the amount of restructuring required. The difficult

question of deletion in a Pk tree is left open.

It is somewtat eifticult to compare these alternatives

since all of them lack a definitive analysis of thei.r

average behavior just as HB(k) trees do. As a result of

this lack, it is ciitficult to compare the advantages and

disadvantages between the classes of h~ight balanced trees

since there is no evident relationstip between the

constraining parameters. However, a generalization of tiB(k)

trees may provide the impetus for a ri~orous analysis ot

HB(k) trees.

CHA.PTER IV

PARTIALLY HEIGHT BALANCED TREES

A generalization of HB{k) trees, partially height bal

anced (PRB) trees, may provide empirical guidance to the

~evelopment of a rigorous tbeoretical analysis of .the behav

ior of HB{k) trees (23). FHB trees maintain the height bal

ance criteria of HB trees but restrict the effect of the

criteria to internal nodes within a specified· path length to

an external node. 1he notation used is PHB(kl,k2) where

kl is the heigt.t balance constraint and k2 is the path

length constraint, the path length to an external node

within which a given internal noie must lie if the height

balance constraint is to apply.

To illustrate the effect of k2 on HB trees, consider

the BB{l) tree in Figure 21. This aay also be classified as

a PEE(l,t) tree. Assume that key A is inserted into this

tree. If classifiec as an HB(l) tree, then Figure 22 (a)

would be the result; but ·tf classified as a fi:IB(l,l) tree,

then Figure 22 (b) woult be tte result. ·

One can express an HB tree via a PEB tree in the fol

lowing manner:

HB(k) = PHB(k,i)

41

Figure 21. An HB(l) Tcee

(a) (b)

Figure 22. Result of Insertion Depends on Classifica
tion

42

vhere 'i' stands for infinity. The PHB balance constraint

is applied to all internal nodes within an infinite path

length of an external node ~hich is all internal nodes.

Similarly, a.n uncons trainee binary search tree is eguival ent

to a FHB{i,k).

43

Structure and Maintenanc~ of PflB(kl,k2l

Trees

Nodes of ~ PHB tree m~st contain tte information

required for nodes in an HE tree. In addition, in order to

be able to maintain a PHB tree, one ~~st knew the minimum

length to an external node of every internal node in the

tree. Hence, the node structure must contain this informa-

tion.

The question to be answered is how to maintain the path

length to an external node. It should be apparent that the

nlinimum path lengtb to an external node is depentent on the

minimum path lengths to external nodes of its two !~mediate

descendants. If we define the path length to an external

node from an external node to be o, then ,tbis dependency can

be expressed as:

mpl(noce) = MIN (mpl(left cescenclant),mpl(t·ight
descendant)} + 1

for any internal node (mpl stands for .minimum path length to

an external norle).

The search '3lgorithm is identical tt) that for HB trees.

the differences in the insertion and deletion algorithms

at:lse in answering the question •is this tree critically

unbalanced• but not in the placeilent 01: re•oval of a node.

44

In order to determine if the tree is critically unbalanced~

one must first maintain the balance tags associated

each node in tbe PHB tree as for ttose in an HB tree.

with

At

the same time, one must maintain the mpl•s for each node.

This must be done through the tependency expressed above

between one node's mpl and its iw.mediate descendants• mpl•s,

since it does not appear that there is a relationship

between a node's mpl before insertion/deletion and after as

there is for a node's balance tag.

As to whetter or not the insertion/~eletion resulted

in a critically unbalanced condition, in FPE trees, the bal

ance tag associated with any node may .violate the balance

constraint but the distance to an external node may exceed

that specified by the Path length constraint thus obviating

restructuring. Hence, before a PHB tree is declared to be

out of balance, the critical node must meet the following·

criteria:

1. Balance tag(node) > balance constraint.

2. Mpl(note) <= path lengtt constraint.

For balance tag maintenance in RB trees, it is not

necessary to backtrAck past the critical note. However, foe

PHB trees it appears that backtracking must continue until

the balance tag indicates that the height of the subtree

rooted at a nooe has not cban~eG. Minimum path length to an

external node would also require backtracking past the

,.I'•

45

critical node since the mpl detErmines ~hich nodes are

eligible tor restructuring. Consicer tte PHB(2,2) tree of

Figure 23 which depicts the state of the tree just after

insertion of noee B and balance tag maintenance to no~e D

(the criti<::al node).

Figure 23. A PHB(2,2) Tree After Insertion of a Node

The balance tag of node D violates tbe balance constraint

and its mpl is less than the path length constraint. Bence,

the tree m~st be restructcree. Figcre.24 depicts the tree

after restructucing. Note that the balance tags for node E,

one level back from node o, tte critical node, remains

unchanged; however, node E•s mpl bas changed from 2 to 3.

Whereas before insertion of node B, no~e E•s mpl vocld bave

permitted its participation in restructuring if required,

46

atter insertion of noce B,

involvement in restructuring.

noae E•s mpl obviates its

Figure 24. The PHB(2,2) Tree After Restructuring

By extension of this example, it should be evident that

it is necessary to backtrack along the search path foe

insertion/ deletion past the critical node in crder to

aaintain tte structural informatlcn associated with each

node. Thus, for FHB trees, backtracking involves

maintenance of two quantities which have different

requirements tor terminating their maintenance. Balance tag

maintenance may be terminated under the same conditions as

for HB trees. Minimum path lengt~ maintenance continues

until a node is encountered whose mpl does not change during

maintenance. If one no~e•s mpl .toes not change then its

parent's apl also will not change.

47

PHB(l,l) Trees

Of particular and additional interest is the subclass

of PRB trees known as PHB(1,1) trees.· 1be reasons for this

interest are (23) :

1. Maintenance nf PHB(1,1) trees rices not
require the generalized massively detailed
algorithms of PHB(kl,k2) trees. The
insertion 2Iqorittm in particular is much
simpler since:

a. ~estructuring does not require
d2ngling subtree considerations.

b. Balance tags need not be maintained
since balance may be easily
computerl as a function of insertion
searching.

2. Its worst case (see Figure 25) is not as bad
as an unconstrainee binary searct tree.

3. For moderately sized, randomly constructed
trees, the expected search perfor~ance for
PHB(1, 1) trees is only slightly worse than
P.IHl} trees.

Figure 25. A Worst Case tor PRD(l,l) Trees

48

The PHB(l,l) insertion algorithm .is straightforward and

is given in Pigure 26. the information required from

searcting tbe tree toe tte key is given in the arqu~ent list

to SEARCH; SEARCH itself is not sho~n. Deletion presents a

more complex problem. Wittout balance information, it is

difficult to determine how to restructure an unbalanced tree

or bow m2ny restructurings are required. Consider ieletinq

the key I from the FHI3{1,1) tree of Figure 27 {a). Froceed-

ing as for deletion in other binary search trees, one

replaces I with fl; Figure 27 {b) is the result. The sub-

trees of node G now violate the balance constraint. This

could be easily ietermined by 'looking ahead• one level: if

the non-null descendant has a descendant, then the (sub)tree

is out of balance. However, how does one decide how to res-

tructure the tree? Should a simple or split rot2tion be

pertorme c"'? A simple solution is to do a simple rotation

then •look ahead • one level to determine if the new subtree

rooted at the critical node is unbalanced; if so, then do a

simple rotation; then 'look ahead' ••• and so on, until

the subtree is not critically unbalanced.

lovs:

A much Gleaner solution to the problem of deletion fol-

1. Delete the desired key by replacing it with
the largest key in the left subtree.

Ii the ori91nal PARENT of
n~ee now has two NULL links,
the algorithm; otherwise,

the replacement
tten.terminate

3. ~emove the PARENT of the replacement node by
replacing its parent's pointer vith its non
null descendant.

4. Reinsert tte PARENT in the subtree rooted at
the descendant. This permits the insertion
algorithm to restructure the tree where
2pprop riat e.

BEGIN INSERT {desired key);
CALL SEARCH {desired key,NODE,FARENT,GRANDPAREN!,

GREAl_GRA~DPARENT);
IF ees1re~ key < key(PARENT)

THEN attach desired key to LEFT(PARENT)'
ELSE attach desired key to RICH1(FAFEN1);

END IF;
IF GRANDPARENT is NULL OR (GRANDPARENT

is not NULL A~D does not have a ~ULL link}
THEN E.ND INSERT;

END IF;
IF PAFtENT and GRANDPARENT have a NULL link

on the same side
TEEN Perform a simple rotation;
ELSE Perform a split rotation;

END IF;
END INSERT;

Figure 26. Insertion Algorithm for FHB(l,l) Trees

Let us assume that in Figure 27 subtree 1 looks like this:

8
and that subtree 2 looks like this:

~

49

50

<a)

(b)

Figure 27. Deletion in a PHB(l,l) Tree

The result of this solution applied to Figure 27 is picttu:eG:

in Figure 28. Occasionally, this approach restructures the

tree (reinserts a node) unnecessarily; however, in order to

prevent this, a one-level look atlead must be done. 'rhis

would be e~tra work for those cases in which reinsertion

51

must occur. l.ntui tively, it seems that an occasional

unnecessary rein~ertion o1 a noce crecites less extra work •

Figure 2A. Restructucin~ o1 a PHE{l,l) Tree After
Deletion

Performance of PHB(k1,k2) Trees

•

A formal theoretical analysis of the pertormance of PHB

trees tas been presente~ only lor PHP(l,l) trees (23).

Unfortunately, pt:"elirninary empirical results did not support

Use ot a researct tool to provide erepirical

data regarding heio.ht balanced trees may guide further

CHAP1'Ef~ V

A R~S£ARCH !CCt FOR REICHl BALA~CED

TREES

Basicc;lly, the research tool is a set of algorithms

designed to build various height balanced trEES with exactly

the Earne keys ard tten give ~erfornance rreasures, suet as

int€rnal and external patn lengths, and nu~ber of restruc

turinQs required, so that ttE relative rrErit of each clas~

of binary search trees may be cospared. Such e~pirical.

data, gathered in an orderly fashion, nay also guide thE

theoretical analysis of the beh~vior of the trees.· At the

present timE, insertion and deletion algorithms have been

implerrentei for tte general classes HB(k) anc PHB(kl,k2),

and for the specific trees AVL and fRB(l,l), and the uncon

strained bin2ry search tree. It i~ interiec that the pro

grams be capahle of being expanded and developed into an

ongoing project ~ith ~lgorithrus for other clzsses of height

balance~ trees being i~plerrentec.

in the Pl/1 proqcanrring language.

The prograrrs ~re-written

A copy reay be obtained

ttrcu~~ the Comvoter Science Department cf Okla~owa State

tJn i v e r s J. ty.

' 52

53

togic Ot:slqn

A researc~ tool must e~coura~e its effective use by

persons other than those who orlginally desiqned it. In

accordancti with this 1 the follo~ing points ~ere considerec

in designing the drivinq prograru and its input r~guir£rnents:

1. 'The explanation of how the input s'hould be
prepared stoul~ not require sections ot the
driving as docu~entation.

2. freparing the input should not require an
intimate knowle~ge of i~put list tor~ats userl
in the driving program.

3. Input should t€ free-form (no column
Elignment r~quirerrents) to avci~ errors ttat
fixed-forro may create.

4. fefaults on certain pzrEmeters should be
cll.owec.

5. Expansion of input capabilities or a cnange
in ho~ something is specified should bE easy
t o i If p l e tll e n t w i th in th e d r i v in g p r o g ram •

for these re2sons 1 the author chosE to design ~nd implement

a srr2ll conaanf langu~~e tor use with the research tool. A

signal character is used to siqnal that a key~ord is to

follaw; tterefore, ro .colunn reg~irerneuts nust be enforced.

A complete Backus-Naur forD (E~f) description of the

language may be found in Appendix c.

The language is interpreted via a top-down parser in

sections. Fach ma]or section is terminated by the key~ord

GO ~tich ~nticates ttat all inforuatiun necessary to c~ some

work with the trees {insertion and/or deletion) has been

54

!nterprete~ ~~e may be use~ at ttis point. Tte top-(mw

parser dlso allo~s greatEr easE of future modifications oi

input capatilities since eact syLtactic category rnay be

implemented a~ a separate rrodule.

Using the ResEarch Tool

One may use the research tool to insert, or delete, or

alternately insert and delete keys frorn ~ny numter of thE

avai1atJle trees. Tte keys usee in ttese operations WdY be

ordered, rand om, or ?1 ternat iug. Alternating key seguence~

exercise both siMple and split rotation cafabilities anc

create d et,: en era te unconstrained binary search trees ;,;ind

~orst case FbB(1,1) trees. AftEr e~ch insertion and/or

eeletion sequence various performsnce me2sures may be taken.

The most appropriate way to introduce how to use tht

researc~ tocl is to illu~trate tte capztilities of tte corn-

wand lan~uage w1th a detailed exaaple. Appendix D provides

such an illustration.

Appl ic at ion of the Research Tool

PHB(l,l) trees may become an interesting structure in

ane cf tteuselve!. Tte reasons for this expectation are:

1. No extra storage for bal2nce tags is reguir~d
since, fer inEertton, balince ~ay be corrpute~
as a function of searching and, for deletion,
b~lance may be regained by reinserting the
criticcl noce.

2. The worst case for fHE(l,ll is not as bad as
fer unconstrained binary search trees.

55

3. For randornly constructed trees, the expected
av~raye s~Erch path length is no worse ttan
for AVL or HR(l) trees.

Evidence for the fjrst cl2irn is presenterl above in the

discussion of PHB trees. Ttc initial application of the

research ~rograrus ~as to provide enpirical data concerning

the last two claims. Ttree test ca~es ~ere icvolvet. Table

I shc~s tl1e info~mation used in each test case. BS'Y stands

for unconstrained blnsry search tree.

TABLE I

lEST CASE INFORMATION

i ' TEST I f'i::SC Rl PT ION TREES US ED I NUlA.BER
CASE I I Type I Number I of KEY3 ______ l ___________________ l __________ l __________ l ________ _

I I I I
1 I FU.f\C'IION: ins€rt I ES1 I 1 J 100

I KFY SEQU.t:NCF:: ~ HR(l) ! ecce I each
I alternating I PHB(l,l) I I tree ______ l ___________________ j __________ l __________ l ________ _

t I I I
2 1 FnhC1ION: insert t fS1 I 10 t 100

I KEY s~:QUENCE': J .HR(l) 1. €ctl1 J each
I permutations I PHB(l,l) t I tree
I of a given j I I
I .sequence I BST I 10 I 200
j I HB(l) I each I each
j I fff(l,l) ! I t.ree ______ l __________________ l _________ l __________ l ______ _

t 1 a
3 t fUt'iCTION: I tn:es 1rorr I 20 in

I alternate I TEST CASE 2 ltrees of
J in.Hert/oelet€ f fsize 100
J KE¥ SS~UE~CE: I J
I 'rcndorn I I 40 in
t I ltrees <Jt
I I lsize 200 ____ l ___________________ j _____________________ j _______ _

56

Test case 1 ~ewonstrates ~tat will t2ppen if the keys

are inserted in such a rnanner as to cre2te a degenerate

unconstr~ine~ binary searct tree. Alttough decucible

without Pmpirical testing, use of tne research tool makes

the results readily avail~hle. As can t€ seen in Table 11 1

a PHE(l,l) tree is net as ba~ ~s an unconstrained tree; the

aver2ge search path end the average

insertior/feletion searct patt Jen~tn are about ~alf ttose

of an unconstrained binary search tree. Powever, they are

more than three times those oi an cl 0 (1) tree. Ot cour;:;e,

about half as many restructurings ~ere required for the

FHP(1,1) tree corrpared to the HB(l) treE, but this is not an

intuitively rea~onable traeeoff.

TABLE II

RESUL!S F~C~ 1E~T CASE 1

' 1'REE I n I C(n) 1 c•(n) I PO'IATICNS _______ . ___ l ___________ l __________ l_._ _________ l __________ _

' I I f
~ST I 100 1 50.5 1 51.0 f

I I f I
F.t(l) I 100 1 6.0 I 1.0 I 92

Y 1 f I
PHP(l,l) 1 100 1 26.0 I 26.7 1 49 ___________ l ___________ l ___________ l ___________ l __________ _

5'1

Test case 2 ~Ernonstrates average be~avior unter the

assurrption that each permutation of a given ke~ sequence is

equally likely to cccur. Table Ill stows t~e results

garnered frow Test Case 2. 1he values sho~n are the

averagPs across all trees ot tte same type. Certainly the

behavior of PBq{t,t) trees tends toward that of the BP(l)

trees but it is slightly ~orse. Ho~ever, note again that

about half ~s rrary restructurin~s ~ere required in order to

maintain the trees. ~~ether this drastic~lly reduced amount

of restructurirg is kOrtt tte snail traie elf in searct time

remains to be determined.

TABLE Ill

RESUtTS F~C~ 1~ST CASE 2

I
'ffiEE ' n I C(n) ' (1 (n) I PO'fA'f1CNS

___________ l ___________ l ___________ l ___________ l __________ _
I J f f

BST I 100 I 7.5 f 8.4 f
f 2()() I 9.1 t lC.O I
I J I I

HB(l) I 100 f 5.9 1 6.8 I 45.1
I 200 I 6.9 t "1.8 I 87.7
t f f I

PHB(l,l) 1 100 I 6.4 I 1.3 1 27.6
I 200 I 7;7 I 8.6 I 55.4

------~---1---·--------l ___________ l ___________ ! _________ ._

58

Te~t Case 3 cerrcnstrates tte trenf for a~era~e behavior

after a period of activity ~ithin the trEe. 'fhe data arE

presentee io Table IV. As for Test Case 2, the v2lues stown

are the 2verages across all trees of the samt type. About

ttrEe-fourtts a~ rrary rotations were required to rraint~in

PHB(l,l) trees as opposej to fB(1) trees. 1'h is is a high e .r

percent2ge tha~ for insertion alone ani probably reflects

the occasional unnecessary reinsertion of a node. However,

the number of rotations is still less and the average se2rch

an~ inserticn/~eletion ~ath lengtts are less than 1 greater

for PH3(1,1) trees than for BE(l) trees. 1his indicates an

advantage for PHB(1,1) trees. No Extra storage is requirec

for halance information, yet fe~er rotations are required to

maintain the tree and the average Fath lengths are not much

lor~er. Tte exact extent or this trace off rerrains to be

deternlinffi.

TABLE IV

RESULTS F~C~ 1E~T CAS£ 3

I
TliEE I n I C(n) 1 C•(n) 1 PO'fATIONS

__________ l __________ l _________ l ___________ l __________ _
I I I I

BST f 100 I 7.2 f e.l I
I 2 oo t 8. 9 J 9. 8 J
f I I I

RB(l) f 100 f 5.9 f 6.8 I 52.7
l 200 I 6.9 I 1.9 t 103.6

' ' ' ' PbF{l,l) f 100 l 6.5 f 1.4 I 37.2
f 20U t 7.8 t 8.7 I 14.5

___________ j ___________ j ___________ l ___________ l __________ _

CBAP1E~ VI

SU~HARY A~D CONCLUSIONS

1his study has dealt with the evolution of height bal

ancet binary ~earct trees ane ~ith the tesign ani i~plerren

tation of a research tool to provide the irrpetus for rigor-

ously at1aly2inq their performance characteristics. Height

balanced bjnarv search trees are one solution to tte problea

one often encounters in infor~ation storage: how can one

stOLP inforrration so t~at insertion, deletion, ~D~ &earctin~

can be accomplished quickly and efficiently? feneralizerl

tel~tt balancee treEs can guarantee logaritbroic search time;

however, since balance information must be maintained, and

insertion and deletion involve backtracking along the searct

path, it is unclear how to decide what an optimal trade off

bet•een secrch time and ruaintenanc~ time is. A specific

subclass of teigtt bzlancet trees, PRB{l,J) trees, has been

introduced ~hich do not require aaintenznce of balance tags

nor backtr2cking but ·way still be able to provice close tc

logaritnwic search time for the average case.

59

60

Fesults oi the Study ~nd Suggestions for

fo'uture s tuc.r

This study presents previously undocumented outlines ot

algorithms tor a generalized clc.ss of height balcnced trees_,

partially teight ba1ancei or PHD trees. One eJerrent of

these algoritnms remains uncl~~r - is it necess2ry to main-

t2in balanct tag ant patt length !~formation past tte crit-

ica1 point of 1 greater than the constraint values? if om~ 1

instead., maintained therr only until ttey reachei ttese

points durinq insertion, then could the appropr1ate values

be regainet turing ~eletion suet that a ncfe woult be recog-

nized ~s once ayain eligible for restructuring?
\

'f.his ques-

tion needs turther study.

Also presented -were algorithms for the subclass.,

PHB(l,l) trees. The deletion algorithm ~as previously undo-

currente~. The algorittns presenteci have been implementee as

part of a research tool for height balanced trees.

An initial application of the rese~rch tool was made

for PHB(l.,l) tr€es. trees ext.ibit

slightly worse performance characterist~cs than do HP(lJ

trees, ttey elso recuce by talf tte number cf restructurings

required. This seems to indicate that fEE(l,l) trees may be

a viable alternative to HB(k) trees. However, ~ore exten-

sive analysis, empirical and theoretical, needs to be done.

The research tool 1s also avail~ble to provide the empirjcal

h:petus to analyzinc; Hfl(k) trees. As its capabilities

61

expand, cofuparisons ~ith other height balanced tre€5 ~houl

be ~a~e to ~eigt tte relative a~vantages ant tisatvantages

of each u.uder oarticular c:lrcumst<.mces.

Expanding thE Ca~abilities of the

Research Tool

In order to provide a •ore flexlblE corrmand language,

it is desiraole to permit fefauJt values for mare of the

parameters such as FPC~ x 10 ~· 1hE pars€r is designed in a

' ffofuJar fashion to facilitate ttis expansion. Most of the

syntactic categories correspond to separate aoduies in the

irn~?l em entation. Hence, modifying at wost one module per

expansion is necessary.

It ~ould be desirable at sowe time to implexent algor-

ithms for other classes of height balanced trees, such as

the BB{a) or Pk classes ~escribed above, ir order to facili-

tate comparisons bet~een data structures. It is also sug-

~estec teat knowing the nuwber ol notes accessec durin£

backtracking and maintenance of balance infor~ation ~ay help

evaluate th~ trade otf bet~een search time and ffialntenancE

tirre for hei~bt bai2ncef trees. 1he researct tool shoulc

prove a powerful aid in the study ot height b2lanced trees.

A SEfEC1EO EI~tlCCPAPHV

(1) A c e l • son- v e 1' sk ii, G. P. an c ¥ • !". L c n c :is. "An
Algorithm tor the Organisation of Information.u
~QJj~J !~lb, Vol. b (lSAJ), 1259-1263.

(2) Baer, J·-L. 11 'it€iqht !lalc:nced Tr€Bs." £l:.!B;.f.fU.i.D;Q~
.8.E!.f~ 1.5!15 .!1,1;£, Vol. 44. Nontv<.>le.., Ne• Jersey:
AFIPS Press, 1Y15.

(3) Baer, J-L., anc B. Sd.wcb. HA CompC;r]scn ot Trce-
Ealancing Al9orithms." !;Q!ll.ll:YD.i££.!12£l.S .2! .!b.~
A£Br Vol. 20.., No. 5 (May 1977), 322-33L.

(4) Boott1 A. D. ard A. J. T. Cclin. "en tte Etficiency
of a Naw Yethod of Dictionary construction."
1D.!.2£.!i.!.!..i.£LJ .an..9 i!H.!J:.t:.Ql, Vol. 3, No.4 (D£cemb€r
1 9 6 f)) , 3 2 1- 3 3 4 •

{5) Burge, ,. P. "Sorting, Trees and leasures o! Crder."
!L.1..!2J:n..a.1ll:.D ~.ru: t.!lL.!..t.Q.lr VoJ. 1, Nc. 3 (1958),
lBl-197.

(6) C 1 2m p € t t, H • i! • "P an co u i z e c B 1. n a r y S t a r c td n q w i t h
Tree Structures." CQDAUni~~l12n~ g! !b~ A~!,
Vol. 7, ho. 3 (~arct 1964), 163-165.

(7) Foster, c. c. 11 A. G€neralizat1on of AVL Trees."
~QI!YDi~~J.iQD~ Ql 1b~ J£~, Vol. 16, No. 8 (August
1973), 5l3-517.

(8) Hibbard, T. N. "Some Combinatorial frop~rties of
Certain Trees ~itt Afplications to Searctinq ind
Sorting." JQU~D~l Q! !h§ at~, Vol. 9, No. 1
(Janu2ry 1962), 13-28.

(9) Hirschberg, D. s. "An Insert.ion Technique for one
sided Height falanced 1rees." ££~1Y~1~~jjQD~ Ql
lh~ AI~, Vol. 19, ~o. 8 (August 1916), 471-413.

(10) Ka:rlton, p. L., s. H. FullP.r 1 R. E. Scroggs,, and E. B.
Kaehler. "fertorweince ot Height Bclanced Trees.n
£~~~y~j~~jj~n~ ~l Jl~ A£~, Vol. 19, No. 1
(January 1976), 23-28.

{11) Ynuth, D. F. ".Alyorith.llls•" S~i.fD!l.fi.s;; A.II.£Lti~,go, Vol.
236, No. 4 (April 1977) 1 ~3-81.

62

63

(12) Knuth., 0. E. 'rhg .AI! QL £QJL12JJ.!1li .E!QJHI:l.!!:.illli.J.£, Vol. l.

(13)

Redding, vassachusetts: Audlson-~es!ey Pub. Co.,
1971.

Knutt, D. F.
~eai:ling,
1973.

i.t£ l;:J; .ol ~..QlUJ.lJ..!.f.I: i:.L.Ojj.IiilrlllillJll' Vol. 3.
~ass2chusetts: Jridlson-Wesley Fub. Co.,

(14) Kos(.uaju, s. l<. 11 InserUons and Deletions in One-
si.ded He1ght Palanced 'lr€'23. 11 £Ql!!!L!1.DlJ;;..iJ..!lQD~ Q.f
ll~ At~, Vo]. 21, ~o. 3 (March 1918) 1 226-227.

(15) Lurcic, F. anG L. Pagli. "Dn tte Heigtl of Heigtt-
B alan ceo 'frees." 1!::&.E !.L:EQ~~~lifHl.S Q!l !.2:i:UU!.f.£:S.,
Vol. c-25, No. 1 (Janucir~ 1~76), 87-90.

(16) Lucclo, F. and L. Pagli. "Fower Trees."
.&Ql!ll!:.Y!Ji.£QllQ!l1! .Ql .!.b~ J.£1:., Vol • .21, No. 11
{Novemoer 1978), Q41-947.

(17) Luccio, F. and L. F~gli~ "~ebaJancing Height Ealanceri
Trees." l.t:.E.t;; !.r.QJJ..S.zl.C.!l!i1J~ .Qll .ClJE.IJlJj~.r~, Vo 1.
C-211 No. 5 (May 1976) 1 J86-J96.

(18) Nieveraelt, J. "Binary Search Trees and File
Organization." ~~!£~lJ~s ~YL~~~~~ Vol. 6, No. 3
(September 1974), 195-~07.

(19) Niever~e]t, J. an~ E. ~. Rein,cld. "Binary SeErcb
Trees of Bounded Balance." SlA~ JguLD~l gt
..&.!.HI!lllA.!.lll~, Vol. 2, No •. 1 (hard; 1913), 33-41.

(2C) ~ievergelt, J. and c. K. kong. "On Ein~ry Search
Trees.n f.J:..O.-'.f.tij.D-'~ .Qj; l.El£ .S.:.&.IJJj.IJ;~Jil 11, 91-98.

(21) ~ievergelt, J. anti c. K. ~ong. "Upper Eounds for the
lotal Patt tengtt of Bin~ry Tree~." ~~~L~~l ~1
lh~ AI!r Vol. 20, ~o. 1 (January 1913}, 1-6.

{22) Ottmann1 r., H· ~- Six, and D. wood. "Right Brother
'Ire e s • .. i.Q.ill.!l!.!Lo1&..aJj.Qn~ .2.1 ..!.b~ .!~!, v o 1 • 21, t1 o.
9 (September 1978), 769-176.

(23) Van roren, J. t. Data and Storage Structures,
(unpublisted class nctes). Stillwater, OK:
Oklahoma State University, 1918.

(2'1) Van Doren, J. R. "Some Emp.Hica1 REsults on
Generalize~ AVL Trees.~ EI~~~~djD~~ Ql !h~ NSf:
.!;..EK~ 3~.£!j i:fljll h.f~~~.I:.£1: r~.o.t~.I..f.t~.s; !.Ill !1Jl.O.!Lj;}.1.i.t
l.D.l.Q:t:J!.a.!.i~Ll £;I.£.i.l.UJ"'£J1~n~ .sand .E.s.1IJ.fJL..S2J, 1 9 7 3,
46-(i2.

(25) V~n roren, J. P. and J. L. Gr2y. "An AlgorJthrr for
J.l.;aint<:iPir9 Dyr;ardc AVL Trees." in lD.f.QJ:l!i.'J!l~D
~~~!~~~, J. T. Tou1 ed. ~~w York, New York: 
flenum Fress, 1974, 151-lPO. 

( 2 6) W i n c ] € y" P·. F. "T r € e s, F o r est s 0 n c R e a r ran !S in c; • " 
!Qill~U1~L ~QUID~l, Vol. 3, ~o. 2 (1S6U}, 84-BB. 

64 

(2'7) Zwrnrn, s. d .. and M. A. t-1cDonc;ld. "An Optimal Method 
for Deletion in Cne-sided Heigbt B2lanced 1rees." 
i:J::lllr.Yt.i.!:Jii.!i!'D~ JJl l.l:.ii ll.!:,C!, Vol .. 21, t~o. 6 (June 
1979), 441-445. 



AfPENUIX A 

DERIVATTC~ OF EALAhCE 1AC ~Al~TfNA~CE 

EQUATIONS 

Maintenanc~ of balance tags 1n an HB(k) or PHB(k1,k2) 

tcee during rotation after insertion way be accomplished 

wit.b the ir.focmation rrovicec by t.tP previous values of the 

balance tags of the nodes involved. Ih1s is a demonstration 

ot wty it is possible. Similar results fiay be ceriveci tor 

deletion cases. 

SYWECL LEGEt.D: 

CN : tte critical no~e 

DOl : the descendant of the critical node 

CDCN : the yrand-descendant of the critical node 

t(~) : tte te1~ht ct the subtree intiicztet by B 

h(null subtree) = 0 

h(x) = YAX ( t(LEFT(x)),t(RIGHT{x)) ) + 1 

h(n) : the 11eight of the (sub)tree rooted at node n 

Dt{n) : h(n) BEFORE resttucturirg 

Ah(n) : h(n) AFTER restructuring 

b(n) : thE balence associated ~itb node n 

b(n) = t(PlGHT(n)) - ~(LEFT(n)) 

Eb(n) : b(n} PEFC~h restructurin~ 

Ab(n) : b(n) AFTER restructucin~ 

65 



k : the balance constraint 

* : ln~erticn occurred ifi ttis subtrEe 

SJ)FL~ ~OTA11CN 

CN left heavy; OCN left heDvy. 

BEFORE RESTRUCTURING AFTER PESTRUCTU~ING 

P~Fcn~ restructuring, w~ know that: 

t{DC~) = t(l} t 1 

ar. c 

h(C~) = h(OCN) + 1 

= h(l) + 2 

b(CN) = h(3) - h(DCNJ 

= h{3) - (h{l) + 1) 

= -(k + 1) 

b(DC~) = h(2) - h(l} 

AFTER restructurjnq, ~e kno~ ttat: 

h(CN) = MAX (n(2) 1 h(3)) + 1 

h{DCN) = ~AX (h(l),h(CN)) + 1 

and 

b(CN) - h(3) - h(2) 

66 



67 

b{DCN) = t(CN) - t(l) 

= ~~X (h(2) 1 h(3)) + 1- h(l). 

Since h(l), t(2), b(3), an~ k are constants ttrough the 

rotation, the following expressions reruain true through the 

rotation: 

and 

t(3) - (t(l) + 1) = -(k + 1) 

h(3) = h(l) + 1 - k - 1 

= b(l) - k 

h{2) - h(l) = Bt(DCN) 

t(2) = h(1) + Bb(DCN) 

Substituting these expressions for h(2) 

equations fer AFtER b(n)'s ,ives: 

b(CN) = h{1) - h(2) 

= h( 1) - k - (h(l) + Bb(DCN)) 

= -k - Bb(DCN) 

b(OCN} = VAX (h (2)~h(3)) + 1 - h(l) 

= ~AX (b{l)+Pb(DCN)~t(l}-k) + 

= ~A X (Eb(tCN},-k) + 1 

Q.E.D. 

and h(3) in the 

1 - t( 1) 

The expression for Ab{DCN) may be simplified further by not

ing that Bh(tCN} must be >= -k. Thirefore, MAX {Bb(OCN),-k) 

will al~ays yield Bb(DCN) ani Ab(DCN) = Pb(DCN) + 1. 

£J~i 2: SFLIT NOTATION 

CN left heavy~ DCf right hEavy. 



B~b~i~~ ~: GUCN lett teavy. 

PEfORE RESTRUCTURING 

AFTER RESTRUCTURING 

BEFOPE restructuring, ~e know that: 

h(GDCN) - h(2) + l 

anc 

h(DCN) - h(GDC~) + 1 

; t(2) + 2 

h(CN) ; h{DCN) + 1 

; h(l) + 3 

b(GDC~) = h(3) - h(2} 

>= -(k - 1) 

b(DCN) = h(GDC~) - h(l) 

= h(2) - h(l) + 1 

68 



L{CN) 

<= k 

= h(4) - h(OCN) 

= b(4) - t(2) - 2 

= -(K + 1) 

AFTEP restructurinq, ~e know ttat: 

h(DCN) = MAX (h{1),h(2)) + 1 

h(CN) - MU (t(3),t(4)) + 1 

h(GDCN) - ~AX (h(OCN),h(CN)) 

anc 

b(DCN) = h{2) - t(l) 

b{CN) = h(4) h{3) 

b(GDCN) = h{CN) - t(DCN) 

+ 1 

= MAX (h(J},h(4)} - HAX (h(l),h(2)) 

69 

Since h(l), h(2), h(3), h(4), 2nd k are constants througt 

the rotation, the follow~ng expressions remain true through 

the rotation: 

Bb(GDCN) = t{3) - t(2) 

h{3J = Eb{CDCN) + h(2) 

Bb(DCN) = t(2} - t(l} + 1 

h(l} = h(2)- Bb(DCN} + 1 

-(k + 1) = h(4) - h(2) - 2 

t(4) = h(2)- k + 1 

Suhstituting these expressions for h(l), h(3), and h(4) in 

tte €quatiuns for AFTER b(n)'s 'ives: 

b(DCN) = h(2) - h(l) 

= h(l) - (h(2) - Bb(DCN) + 1) 

= Bb(DCN) - 1 



b(CN) = h{4) - h(3) 

= h{2) - k + 1 - (bb{GDCN) + h(2)) 

= -k + 1 - Pb{GDC~) 

b(GrCN)- l-lU (t(3),t{4))- .Mf\X (t(l),t:(2)) 

= MAX (h(3),h{4)) - ~AX (h(2)-Eb(DCN)+l,h(2)) 

10 

but since DCN was right heavy, Bt(DCN) > 0; hence, 

= M\X (h(3),h(4)) - h(~) 

Q.E.D. 

- MAX (Eb(CDCN)+h{2) 1 h{?)-k+l)- h(2) 

= MAX (Bb(GDCN) 1 -k+1) 

S~b~~~~ h: GDCN right heavy. 

BEFORE RESTRUCTURING 

-----~ 

AFTER RESTRUCTURING 



REFOPE restructuring, we know ttat: 

h(GCC~) - h(3) + 1 

and 

AFTER 

an c 

.1':( D CN) = h(GDC N) + 1 

= h (3) + 2 

h(C~'J :;:; h(DC!\) + 1 

= 11{3) + 3 

b(GDCN} = b(3) - h(2) 

<= k - 1 

b(DCN) = h(GDC~) - h(l) 

= li (J) + 1 - t(l} 

<= k • 

b( CN) = b(4) - HDCN) 

= h(4) - h(3) - 2 

- -{k + 1) 

restructuring, t~~e know that: 

h(DCtd = "'AX (h(l),h(2)) + 1 

t(CN) = MAX ( t{3),t;(4)) + 1 

h(GDCN) = ~AX (h(CN),h{CCN)) + 

b(DCN) - h {2) - h{l) 

b{ CN} = h(4) - h(3) 

b(GDCN} ::: h(CN) - h(DCN) 

= ~AX (h{3),h(4)) - t-AX 

11 

1 

(h(l),h(2)) 

Since h{l), t(2}, ~(3), t(•), ant k reDEin const~nt t~rough 

the rotation, the follo~ing ex~resstons remain true through 

tlJe rotation: 



Hb(GDCN) = h(3) - h(2) 

h(?} = h(3) - Pb(GDCN) 

Bh{DCf) = h(3) + 1 - b(l} 

t{l) = h(3) + 1- Bt(DCN) 

h(4) - h(3) - 1 = -(k + l) 

t(4) .::; b(3) + l k 2 

= h (3) - k - 1 

12 

Substituting these expressions for t(l), t(2), an~ t{4) in 

th e e qu at i on s f o r A F 'l' E R b ( n ) • s g i v e s : 

b(Df~) .:: h(2) - h{l) 

b{ CN) 

b( GDC N) 

Q.E.D. 

= h(3) - Pb(GDCR) - (t(3) + 1 - Bb(DCN)) 

= Bb(DC~) - E~(CLC1) - 1 

= tl ( 4) - t(3) 

= h (3) -·k - 1 - h {3) 

- -k - 1 

- HAX (h(3),h(4)} - ~AX (h ( 1) ,h ( 2)) 

= liAX ( h ( 3 ) , h ( 3 )- ~-1 ) - liAX (h(l ),h(2)) 

:: h(3) -.!-1AX {t:(l),h(?)) 

= h(3) - liAX (h(3)+1-Rb(DC~),h(3)-Sb(CDCN)J 

-MIN (t(3)-(t(3)+1-Bb(DCN)),t(3)-(h(3)-Bb(GDCN))) 

= ~IN (Eb(DCh)-l,Eb(GDCN)) 

Not~ that since hoth Ab(OCNJ ind At(GDC~) dEpend upon 

Pb(DCN} anc Bb(GDCN), 

before changing it. 

one of tte Bb values rrust be savec 



.C~~i;, ,J: Slt-'PLr.: ROTAT.lON 

c ti r l <Jl1 t heavy; t r. N r 1 g h t he av _y. 

BEFORE RFSTRUCTURLNG AFTER RESTRUCTURING 

BEFORE resttucturing, we know that: 

h(DCN) = h(3) + 1 

and 

h{CN) = h(rC~) + 1 

= t(3) + 2 

b(DCN) = h(3) - h(2) 

<= k 

b(CN) = h{DCN) - h(l} 

= t( 3) + 1 - l( 1) 

= k ·+ l 

AFT E P r e s t r u c t u r in g, w e k n ow u~ a t : 

h ( C N) = MA ~ (h (1) ,h ( 2) ") + 1 

Il(D CN) = MAX (h(CN),b(3)) + 1 

and 

b(CN) = h( 2) - h(l) 

b{DC~D = t ( 3) - t(CN) 

= h( 3) - ~AX (h(l),h(2)) - 1 

73 



74 

S1rce h(l), n(2), h(3), and k re~ain constant through the 

rotation, the tollo~ing expressions remain true through the 

rotation: 

Bb(DCN) = h(J) - h(2) 

h(2) = h(J) - Bb(DCN) 

h(3} + 1 - h(l) = k + 1 

h(l) = h(J)- k 

Substitutln£ these expressions far t(l) 

equations for Af1E~ b(n)'s gives: 

b(CN) = t{2) - h{l) 

= h(3) - Eb(DCN) - (h(3) - k) 

= k - Bb(DCN) 

b(DCN} = h(3) - MAX (h(l),h(2)) - 1 

anc h(2) 

= h(3) - tAX (h(3)-k 1 b{3)-Pb(DCN)) - 1 

in the 

= MIN (h(3)-{t(3)-k),t(J)-(t{3)-Bb(DCN))) - 1 

= ~IK {k,Eb(DC~)) - l 

Q.E.D. 

The expression for At(DCN) ~ay be simplified further by not

in~ ttat Pt(DCN) <= k. TtErefcre, VIN(k,Bb(DCN)) will 

always yield Bb{CC~) and Ab(DCN) = Eb(OCW) - 1. 

!AS~ 1: SPLIT RO!ATIO~ 

CN right te~vy; DCN left heavy. 

1Ubf~~f ~: CDCN right heavy. 



B£FCFE RESTSUCTU~l~G 

B~fC~~ restructuring, we know that: 

t(GDCN) = h(3) + 1 

h(OCN) = h (GDCN) -t 1 

= h(3) -t 2 

h(C~I) = h (D CN) + 1 

= h {3) + 3 

b(GDCN) = b(3) - ~(2) 

<= k - l 

b(DCN) = b{4) - t(GDCN) 

>= -k 

b( C N) = h(DCN)- h(l) 

= 11(3) + 2 - t(l) 

75 



= k = 1 

AFTER restructuring, ~e know that: 

h(DC~} - ~AX (h(3) 1 h{4)) + 1 

h{CN) =MAX (t(1) 1 t{2)) + 1 

h(GDCN) - M~X (h(CN),h{DCM)) + 1 

and 

b( DC!~<) = h(4) - l{3) 

b( CN) = h (2) - h ( 1) 

b(GDCN) = b(DCN) - t(CN) 

= HAX (h(3),h(4)) - MAX 

16 

(h(l),h(2)) 

Since h(l), h(2), h(3), h(4) 1 and k rereain const~nt througt 

the rotation, the following expressions remain true through 

the rotat1on: 

Bb(CDCh) = t(3) - t{2) 

h(2) = h{3)- Pb(GDCN) 

Bb{DCN) = t(~) - t(J) - 1 

h{4) = h(J) + Bb(DCN) + 1 

h(3) + 2 - b(l) = k + 1 

t(l) - b(3) + 2 - k - 1 

= h (3) - k + 1 

Substitutin~ the~e expressions tor t(l), t(2), an~ t(4) in 

the equations for AfTER b(n)'n gives: 

b(DCN) = h(l) - h(3) 

b( CN) 

= h(3) + Bb{DCftl + 1 - h(3) 

= B':J(f:C~:) + 1 

= h(2) - t(1) 

= b(3) - Bb(GDCN) - (h(3) - k + 1) 



77 

= k - Ut(GDCN) - J 

b(GCCN) = MAX (h(3),h(4)) - •AX (h(1),h(2)) 

Q.E.D. 

= M AX ( t( 3) , t( 3 ) + B t ( D C N ) +1 ) - ~ A X ( h( l ) , b ( 2 )) 

but since CCN was left heavy, Fb(DC~) < 0; hence, 

- h(J) - MAX (r(1),~(2)) 

= h(3) - MAX (h(3)-k+l,h(3)-Eb(~DCN)) 

= MIN {t(3)-(h(3)-k+l),h(3)-(h(3)-Bb{GDCN)}) 

= MIN {k-1,no(GDCN)} 

AfT~P PESIFUC1UR1NC 



PEFOPE restructuring, ~e know that: 

h(GDCN) = h(~) + 1 

h(DCN) - i:l{GDCN) T 1 

= h(2) + 2 

and 

HCN) - h{DCi~) + 1 

= h {2) + 3 

b(GDCN) = h(J) - ~(2} 

): -(k - 1) 

b(DCh) - t(4) - t{GDCN) 

= h(4) - h(2) - 1 

>= -k 

b{CN) = h (D CN ) - h ( 1) 

= h(2) = 2 - h(l) 

= k + 1 

AF'fEfi .r estruc turing, ~~~ kno• that: 

h( DCN) = .MAX ( t(3),t{4)) .. 1 

h( CN) ·- f.! AX (h (l) ,h ( 2)) .... 1 

h( GDCN) = M 1\X ( l(DCN),t(CN)) + 

and 

b(DCN.) - h(4) - h(3) 

b{CN) = h(2) - h(l) 

b(GI:Cfl) ;;; h{UCN) - h(CN) 

= MAX {t(3),t(4)) - .i'L~X 

78 

1 

(t(l),t(2)) 

Since h(l), h(2), h{3), h{~), and k remain constant through 

tte rotaticn, tte following expressions r~wain true thrcugt 

the rot .at ion ! 



B b ( GD C N) = t ( 3 ) - l: CD 

h(3) = Bb(CCCN) + h(2} 

Bh(DCN) = t(A) - t(2) - 1 

h(4) = Bb(DC~) + h(2) + 1 

b{2) + 2 - t(l) = k + 1 

h(l) = h(2) - k + 1 

79 

Substituting these e~pressions for h(l), h(3), an~ t(4) in 

th€ equations for AF'l'ER b(n) •s gives: 

b(DCN) = b(4) - h(3) 

b( CN) 

b(GDCN) 

o.F.c. 

= Bb(DCN) + t(2) + 1 - (Bb(GDCN) = h(2)) 

= l:.lb(IJCt\) - Eb(CI:CN) + 1 

= h(2) - t(l) 

= h(2) - (h(2) - k + 1) 

= k - 1 

= M A. X (h(3),h(4)) - MAX (h ( 1) ,h ( ~)) 

= l'AX (h(3),h(4)) - fo AX (h(2)-k+l,h(2)) 

= MAX {t(3),.t:(4)) - t(2) 

= sAX (Pb(CDCN)+h(2) 1 Bt(DCN)+h(2)+1) -
= MAX (Pb(GDCN),Bh(DCN)+l) 

h(2) 

Note that since bott Ab(DCN) ~nc Ab(GDCN) deperd upon 

Bb(DCN) ana Bh(GDCN), 

before changing it. 

one of the Bb values must be saved 



AfPENDLX B 

ROTATION 

Durinq iHsertion restructuring, the height of the sub-

tree involved remains the same • This is a d€rnonstration of 

wty it is tnJe. Refer to Appentix A tor a symbcl iescrip-

tion and preliminary derivation oi formulas. 

tAS~ 1: SIMFLR ROTATION 

CN left heavy; DCN left te2vy. 

Before insertion, the height of tl:.e subtree rooted at CN 

= Pli(CN) - 1. 

After restructur inq, the height of the subtree = Ah(DCN). 

Al(DC~) :: ~AX (h(l),h(CN)) • 1 

= MAX (n(l),h(2)+1,h(3}+1) + 1 

but h{2)+1 = h(1)•Et(DCN)+1 <= t(l) sirce Bb(DCN) < 0 

and h < 3) + 1 = n { 1 )- k+ 1 <= h(l) sirce k > 0 

fierce, 

• Ah(DCN) = h(l} + 1 

:: Eh(lJCN) 

80 



81 

= llh ( C N) - 1 

Q.E.D. 

t&S£ 2: SPLIT ROTATIOM 

t.:N left i:~eavy; DCN riCJht heavy. 

~Yb~~~f f! CDCt left heavy. 

Refore insertion, the height of the subtree rooted at Ch 

= Ph(Cf-J) - 1. 

liter restructurin~, tte teiqtt of the subtree = Ah(GDCN). 

Ah(GDCN) = MAX (h{OCN),h(CN)) + 1 

=~AX (h(1),h{2),h(3),h(4l) + 2 

but b{l) = h(2) - Bb(DCN) + 1 <= t(2) since BL(DCN) > 0 

and h(3) = Bb(GDCN) + h(2) <= h(2) since Bb(GDCN) < 0 

and h{4} = h(2) - k + 1 <= h(2) since k > 0 

Hence, 

Ah{GDC~J = h(2) + 2 

- Bt( ncN) 

= Eh ( CN) - l 

Q.E.D. 

ll:ub.&£~£ )2: C?DC.N rlght heavy. 

Be:fore ins€rtion, the height of the subtree rooted at CN 

= Fh(c•:) - 1. 



82 

After rcstructur:ing, the hei']ht of the subt.ree- Ah{CDCK). 

At(GDCN) =MAX (l'{CN),t(DCN}) + 1 

= ~AX (h(1) 1 h(2),h(3) 1 h{4)) + 2 

but h(l) = b(3) + 1- Eb(DCN) <= h(3) since Bb(DCN) > C 

and h(2) = h{3) fb(CDCN) <= h(J) since Eb(,DCN) > 0 

a~i h{4) = t(3) '- 1 <= t(3) since k > 0 

Fence, 

At(GDCN) = 0(3) + 2 

= Bh{ DCN) 

= Eh(CN) - 1 

Q.E.D. 

~A~~ J: SI~FLR ~OTA110N 

C N r i gh t he av y; D c N .r i gh t h e a v y • 

Pefore insertion, the height of the subtree rooted at CN 

= Rt(CN)- 1. 

After restructuring, the height oi thE subtree = Ah{DCN). 

Ah(DrN) = MAX (n(CN),h(3)) + 1 

= ~AX (h(l)+1 1 h(2)+11 h(3)J + 1 

h~t h(l)+l = n(3) k + 1 <= h(3l since k > 0 

and h(2)+1 = h(J) - Pb(Drh) + 1 <= h(3) since Bb(DCN) > 0 



He flee, 

Ah{DCfJ) = t{ 3) + 1 

= R.h ( U CIO 

= Eh<cn - 1 

Q.E.D. 

£J~j ~: SPLit RCTA1IGN 

C N r 1 qh t h e a v y; DC t~ 1 eft h € a v y • 

~Yb~~~~ ~= GDC~ rigtt teavy. 

Before insertion, the height of the subtree rooted at CN 

= Ft(CN) - 1. 

83 

Afte~ restructuring, the height of the subtree = Ah(GDCh). 

AtfGDCN) =MAX (t(CN),t(DCN)) + 1 

= ~AX (h{1),h(2),b(3J,b(4)) + L 

but h(1) = h(3) - ~ + 1 

and h(2) = h(J) - Fb(CDCI) 

<= h(3) s~nce k > 0 

<= h(J) since Pb(CDCN) ) 0 

ani h(1) = b(J) + Eb(DCN) + 1 <= t(3) since Bb(DCN) < 0 

f!ence, 

At(GDCN) = b(J) + 2 

= Bh ( DCN) 

- Bh ( CN) - 1 

Q.E.D. 



~~b~~~f t: GOC~ left he2vy. 

Eefor(: insertion, the height of the subtree rooted at CN 

= Ph(CN) - 1. 

84 

After restrurturinc, the teigtt of th€ subtree = Ah(GDCN). 

Ah(GDC~J = HAX (h(DC~),h(CN)) + 1 

-MAX (h{l),h{2),h(3),h(4)) + 2 

but h(l) = h(2) - k + 1 <= t(2) since k ) 0 

'and h(3) = db(GDCN) + h(2) <= h(2) since Bb(GDCN) < 0 

and h(4) = Bb(DCN) + h(2) + 1 <= h(2) since Bb(DCN) < 0 

Hence, 

Jb(GOCN) = h(2) + 2 

=.BHDCN) 

= 1lh (CN) - l 

Q.E • .u. 



A.PPf~NDIX C 

PROGRAV 

Appendix C gives the BNF (Backus-N.aur Form) descria;:tion 

of the input reguire~ents for using the rEsezrch program. 

NOTA'l'ION LFG!?ND! 
• 

~ 1he signal character; indic~tes that a key~ord 

.tcllo'-ls. 

nnnnn - lo~er case letters; A syntactic category which 

UNNNN - uppercase letters] A keywore wbict must appear 

in that position. 

e - epsilon; a null value or entry. 

- OR; inGicates a c~oice. 

{ ••• } - indicates a set of information from ~hich a 

choice Hay be uaie. 

,( )/ - single charact~rs 11hich must avpear where 

indicated. 

input --> 

test_case_s er ies 

t e s t_ c a s e_ s e r i e s -- ) 

test_case_s erie s test_case 

85 



86 

te~ t_ case 

test_ca.se --.> 

$ { k eywo.r- (_co 1m en t $ e } case_specification 

$ { key word_ co wrn P.ll t s e J initial_specification 

.s { 

$ ( 

key '-or d_ co ITlt en t 

kE}'WOC C_corrnel: t 

s 

$ 

e 1 roanipulation_specific2tion 

e } 

{ weasu.rernent_specific;jtJon $ 

{key~ord_cowrnent $ 

key • or c_ en c c c. s e 

keyworrl_comruent --> 

e l 

COMMENT < not reservec_wores e 1 

reserved_words --> 

s 
END CAS F. 

case_soecification --> 

CASE case_rurrber 

case_nuwber --> 

integer e 

1nftial_specification --> 

tree_specification 

€ } 

S ( k e y w or C co n u: en t S 1 e l in i t i a 1_ fun c t ion 

$ { keysor~_corrrnent $ 

tree_specification --> 

TRE FS tc ee_spe c 

tL·ee_spec --.> 

e } keylliord_go 

t r e e_ s p e c ( , e } ,s_tree_spec 



os_ tr.ee_spec 

qs_tree_~pec --) 

numher_oi_trdes qeneralized_tree 

number_of_trees speciali2ed_tree 

ruuber_of_trees --> 

integer e 

generalize c_ t.ree --) 

HB ( balance_constraint ) 

I fHB ( balance_constraint , path_ltngth_constraint ) 

ba1a~ce_constraint --> 

integer I 

path_lengtt-constraint --> 

integer I 

specialized_tree --> 

.Ai'L 

F.S 'l' 

PHBll 

initial_functlon --> 

INITIAL nuruher_of_nodes 

nun:b er_of_nodes --> 

Integer 

k ey~ord_ qo --) 

en 

rraniruli:itlon_specification --> 

87 



FUNCTJON function_specilication 

$ < key~ord_comment S e l 

XEYSET keyset_specific~tion 

S { keyworr_corr1Tent $ el 

key!.iord_qo 

function_speclfication --> 

lNSER'l' 

I DElETE 

INS/DEL i c _ o r c e r- c t o i c e 

id_order_choice --) 

RAr~DO M 

ALTERNATING { BY set_size e } 

keyset_srecificat~on --> 

ALTFldJ.ATJNG al t_l~€y_ct.oice 

ORDE~En ord_key_choice 

PA~DC~ ran_~ey_choice 

SHUFFLED sl11Jf_key_ctoice 

al t_k ey_ch o ice -- > 

ord_key_choice t SEl setsize e 1 

crc_key_ctoice --> 

fRO~ low_key 10 hiqh_key ( PY increment e J 

ran_key_cboice -- > 

llU.illber_of_keys 8F1WEEN lo~_key AND hiqh_key 

ran coF _start 

shuf_key_choice --> 

ord_key_choice random_start 

1 cw_k ey --.> 

86 



integer 

lli~t_key --> 

.integer 

set_size --> 

integer 

increment --> 

integer 

nu~Fb e r_o f_k ey s --> 

integer 

randoru_start --> 

SEEn series_start e 

series_start --> 

integer 

rneesurement_specification --> 

~~ASURE perforuance_rreasures 

S { key~ord_cornment $ e J 

key~ord_go 

performance_weasures --) 

performance_rneasur~s measure 

me a sure 

.r.ea.sure --> 

R01A1IOJ. 

H~IGBT 

IN'l'EPNAL 

EX H.f<N AL 

99 

\ 



90 

inte~er --> 

integer diqit 

digit 

cic.it --) 

0 I 1 J 2 J 3 I 4 I 5 I 6 l 1 I 8 I s 

Thet€ are s€vera1 llrritations and restrictions to tbe place-

went of sotte symbols a.nd the values of others. 

restrictions follow. 

1.. Since $ is used to sional that o key""'ord 
follows, it cannot be used in 2ny place oth~r 
than ttose incicatec in tte description (i.e. 
it cannot be lMithin a COMMENT statement). 

2. Et.DC.AST" acts 
certain Error 
its use in a 
problt!lls. 

as a si,nal chat~cter tor 
correction ~roceiures. Hence, 
COMMENT statement could create 

3. Tte largest inte~er ~hict the program is 
currently designed to handle = 2~*15 - 1 = 
32767. lrtegers larger than 32161 will h2ve 
unprecictatle results. Simil2r1y , tte 
smallest 1nteger which should te used is - ( 
2**15 - 1 ) = - 12767. ( - 32768 t~s Sfecial 
mEaninq with in the proqrarn and should not be 
\IS€d.) 

1hese 



APPENDIX D 

AW ILLU~1PATION CP THE USE CF 1H£ 

COV~ANO LANGUAGE 

The meanings associated ~ith each statement of the com-

rnand language is best illustrated ~ith e~Emples. The fol-

lowing sample input sequences provide examples of the use of 

the commznd language statements. For ease in coordinating a 

statement ~itt its explanation eac~ input statement is 

placed on a separate line and is imroed12tely followed by 2 

CO~MENT st2teruent (in~entec in block fern} explaining it. 

However, there are no colurrn requirements for the input 

statements. 

$CASE 

$CO~~EIT - Singals the beginnign of a nek t•st 
case. T~e ~rivet prograw frepires to initialize a 
new set of trees. 1here is no test case numtec on 
t~e st~terrert; since ttis is tte first r~n~ I will 
let the driver program number the test cases. On 
output, I ex~ect this test case to be 'CASE NUMB~~ 
1.• 

$TPEES 

AVL HB(l) PHB(l,I) 

91 



$CO~~Eh~ - 1he trees to be usee 1n this test case 
are bei~g ~pecifiec. Since there are no repeat 
count~ in front of th~ trees• names, one tree of 
each type will b~ avail~ble. ~ince these specifi
cations arl:l equivaJent trees ( H·e l stancs fer 
Infinity), ~hat I will see is the results of any 
differEnces in the algorithms toe maintaining the 
trees. 

$1Ni'TlA.L 1000 

$GC 

$COVMENT I wish 1000 nodes tc be avai]ible in 
the trees. 

$CO~MENT - Signals the end of the tree initializa
tion input section. At this point, thE trees are 
establisted witt tte requesterl number of nodes. 

$ FUNC'ri CN 

SCOFMENT- I vish to build tte tree by insertin~ a 
series of keys into the tree. 

$Kr<:YSE'J' ALTER~ATING FROM 1 TO 100 

$GO 

SCO~MFNT- T~e insertion is to use 1CC keys ~ith 
the values 1 - 100 jn the alternating order: 1, 
100, 21 gq, J, 98, ••• , 50, 51. SincE are is 
no BV specified, the default of 1 was assumed; 
hence, the sequence takes 1 value frorr tte low 
ent, tten 1 value fro~ the high end, then 1 from 
the lo~ end, ••• , ~nd so on. 

$CO~~!hT - lndicates that a complete manipulation 
request nas oeen fcune. Tte d1iver program shoul~ 
v e r f o r ru th e c e ~ u est at th is point. 

92 



$GO 

ROTATION, hEIGH,, IN1ERNAt 

t:XTFRNAL 

$CO~MFNT - I ~ish to see how many rotations ~ere 
performed in order to maintain the ~alance crite
ria1 wtat tte te1ctts of tte trees ere, ~nt ~tat 
the lnterndl and extern~! path lengths are. Note 
the lack of a con;rra after lNTF:fiNAL. Com.n.as ere 
option~]; tte facility tas been prcvite~ only for 
user reaJ.abU ity of the input data. 

$CO~MENT - All rreasurements desired have been 
listed. This is the time to take the measurements 
ant print ttem out. 

$fUNCTION 

SCO~kFNT - Now, I kist to insert some more keys. 

$KEYSE'l' 

$f0 

100 RAhDO~ EET~~EN 1000 A~D 32000 

$CO~MFNT - This tirre, I ~ant 100 keys r2ufomly 
chosen between lOCO and 32000. Since I have not 
specified a SF~r vzlue, the driver program ~ill 
generate one for we. 
N01'E' - The program attemrts to generate 100 unique 
random keys; tence, the usEr should provide a 
large range to facilitate this process. 

$CO~NENT - Do tte insertion cf 100 ranion keys. 

$MEASURE 

INTERNAl, l:>XT~tHAt 

93 



SCO~MFNT - This tine all 1 carE about are tte 
internal an1 external path lengtbs. ~ince I 
insertEi 1UO kevs into a tree ~hict slrea~y tac 
lOU keys, 1 expect the statistics to print out 
that thece are ?00 keys currentll in the trees. 

$ENDCASE 

$CO~~FN~ - 1his is the end of the first test case. 

94 



VIT.A 

Mary Beth Hernon 

Candidate for the Degree of 

~aster of Science 

Tbesis: THE DESIGN AND APPLICATION OF l RESEARCH TOOL FOR 
HEIGH! EALA~CED 1~EES 

Major Fieli: Computing anrl Information Sciences 

Biograph teal: 

Personal data: Born 2 Februcry 1954 in Longvie~, wash
ington. Moved to Massena, New York, in 1958. 
"arried ~illiam Patrick Hernon on 24 ~ay 1978. 

Education: Gracuatec from Massena Central High School 
in June 1912. Received "achelor of Science in 
Home Economics degree from Oklahoma State Univer
sity, Stillwater, OK, in ~ay 1976. Completed 
requirements for ~aster of Science degree in Co~
puting and Information Sciences from Oklahoma 
State University in J~ly 1979. 

Professional Experience: traduate teaching instructor 
for Interme~iate Programming n the Computing ant 
Information Sciences Department, Oklahoma State 
University, Fall 1918 - Summer 1979. Programming 
intern witb tte Hesearct ~nd Planning Information 
Division of the Oklahoma State Board of ~egents 
for Higher Education, Summer 1978. Gracuate 
teaching assistant for Introductory Programming in 
the Computing and Information Sciences tepactment, 
Fall 1977 - Spring 1978. 


