THE DESIGN AND APPLICATION OF A RESEARCH

TOOL FOR HEIGHT BALANCED TREES

By
MARY BETH HERNON

g

Bachelor of Science in Home Econonmics
0kl zhoma State University
Stilluwater, Oklahoma

1976

Submitted to the Faculty of the
Graduate College of the
Oklzhoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1979

Thaoco
1979
U 5550

Cap. 2

AROMA SN
7"2@
[~ UNIVERSITY

LIBRARY

THE DESIGN AND APPLICATION OF A RESEARCH

TCOL FOR HEIGHT BALANCED TREES

Thesis Approveds:

thﬁmww&i§§Q'Wﬁ:§;bU“Aﬂ
<TS Thesis Adviser
o
Mo) Zora e
7 Dessne £) M

Dean of Gracduate College

1631843
it

PREFACE

This study is concerned sith the development and exten-
sion of a class of height balanced binary search trees known
as HB(k) trees. HE(k) trees are an important alternative
data structure in file systems where rapid access and rapic
update are desired. However, a precise analysis of expected
system performance using HR(k) trees is impossible since a
precise analysis of the expected behavior of HB{(k) trees
remains unforaulatede. A generalized claess of HB(k) trees,
known as PHB(k1l,k2) trees, may provide the tool necessary to
analyze the expected behavior of HB(k) trees. The design
of algorithms for maintaining these trees and the subsequent
implementation of the algorithwms as part of a research tool
for height balanced trees are also discussed. Results from
an initial use of fhe research tool are presentede.

I would 1like to acknowledge the intellectuzl stimula-
tion and encouragement provided by Dr. James R. Van Doren,
my major advisor, not only in support of this thesis but
also throughout my graduate education. Under his tutelage,
every course has been both challenging and rewarding.

I also acknowledge the encouragement received from my
comnittee members, Dr. Donald W. Grace, Dr. John P. Chan-
dler, and pr. Donald De. Fisher. This thesis is better

because of their support.

111

A special note of recognition is given iqr the love,
understanding, and support given me by my husbznd, Bill.
His presence has enriched my graduate education.

I would also like to thank my parents, Robert znd Jac~-
quetta Jacks, and my parents—-in—-lau, Peter and Bertie Her-
non, for their support, both moral and financial, which has
helped us over some hard times.

Finally, i would 1like to express appreciation for the
friendship and comraderie I found 3among other graduate stu-

dentse

iv

TABLE OF CONTENTS

CHAPTER Page

I’. INTRODBCTION -* L d * - - - - » L 4 L] - * - » -» b » - -
II. BINARY SEARCH TO BINARY SEARCH TREES o o o o » = =«

Binary Search Technique « o« o o o 2 ¢ = o «
The Binary Search Tree o« o o o ¢ s o o = o

I11. HELIGHT BALANCED BINARY SEARCH TREES o « o o » s

HB(K) Binary 528rch Tr€€5 o oo o = o 0 & » »
Performance of HB(k) Trees o « « e s
Alternatives to HB(k) Ralanced Binary Search

TECES o o« o« o« = o o« o« = o s s = » »« » © & »

IVe PARTIALLY HEILICHT BAUANCED TREES =+ o o o o = o o »

Structure and Maintenance of PHB(k1,k2)

Tt ees - [J - - » » -» L J £ L J . - L J » = L J L J -
PHB(I’l} Trees - & s ® ® ®
Performance of Pﬂs(kl,kz) Trees e o = @

V. A RESEARCH TOOL FOR HELCGHT BALANCED TREES o o o «
Lngic ﬂesign - - L d L 4 » - - - - - - - L d - »

Using the Research T00l « o o » &« -
Application of the Research 1001l o« - « « o

&
L)
[
]
.

Vi. SUMMARY AND CONCLUSIONS o o e« ¢ 2 o « s o o « o« »

Resultls of the Study and Suggestions for
Future StUdy s o °. ® ® ® ® ® ® B e e v &
Expanding the Capabilities of the Research

Tool L d - - L - L L .) - - -» A » » - - - > -»

APPENDIX A - DERIVATIOY OF BALANCE TAG MAINTEXNANCE
EQUATIOHS ® ®» @& ®» 8 ® ® ®© ® ® ® e e ® ° e

APPENDIX B - HEIGHT OF THE SUBTRFE DURING INSERTION
ROTATION > - - L 4 > - - - - - L d * - - L J L] -» -

20

21
35

317
4]

. 43
. 47
. 52

53

« 54

55

« 55

60

61
62
63

66

81

APPENDIX C - BNF DESCRIPTION OF INPUT TO THE RESEARCH
PROGRAH L d L 2 L] > » » » - L] L J - L] -» » - L J - - 86

APPENDIX D - AN ILLUSTRATION OF THE USE OF THE COMMAND
LANGUAGE [4 L4 L J *® L4 - - L 4 - L J - L 4 - - * - L] L J 92

vi

TABLE
I.
il.
Ill.

1Y.

LIST OF TABLES

Test Case Inforpation « « «
Results from Test Case 1 o+ o
Results from Test Case 2 « «

Results from Test Case 3 =« «

. vii

Page

56
57
58

59

Figure
1.
2.
J.
4.
5
6.
7.
8.
9.

10.
11.
12.
13.
14.
15,
16.
17.
18.
19.
20.

LIST OF FIGURES

Biﬂaty SearCh Algﬂrithﬁ} ® o & » » ® & & ¢ & 8 e

Actions of Binary Search Algorithnm

ABINALY TE@E o = o o o = o o o o o o« = o o o =
Binary Tree vs. Binary Search Tree « « o o « o
BST Representation of Table of LettersS o « o o
Search Algotithm for Binary Search TreesS « « = «
Insertion Algorithm for Binary Search Trees .+ o
Result of Inserting D into Pinary Search Tree .
Result of Deleting G from Binary Search Tree . «
Deletion Algorithm for Binary Search Trees « « «
ADegeneratle Tre€ o o« « o« » o = o o © o » » » o
A Binary Search Tree Extended <« o o o o o « = »
A Worst Case AVL Tree with 12 NOGES o o o o o o
Balance Tag Maintenance in an HB(k) Tree « « » «
Cases 1 and 3 as Yirror Im3ges o o o o o o = = »
Simple Rotation in an HB(Kk) Iree ¢« o « o « = « =
Qalance Tag Maintenance After a Simple Rotation
Split Rotation in an HB(K) Tree « o o o o o « «
Cases 2 and 4 as Mirror ImagesS « « o « o o » « «

Balance Tag Maintenance After a Split Rotation .

viii

-« 29
- 30

21.
22.
23.
24.
25.
26.
217.
28.

An HB{l) Tree o ¢ o o o« s o =

Result of Insertion Depends on Classification

A PHB(2,2) Tree After Insertion of a Node

The PHB(2,2) Tree After Restructuring . .

A Worst Case for PHB{(1l,1) Trees

- - » L J

Insertion Algorithe for PHB(1l,1) Trees « «

Deletion in a PHB(1,1) Tree

Restructuring of a PHB(1,1) Tree After Deletion

ix

-

42
42
45
46
47
49
50
51

CHAPTER I
INTRODUCTION

An immense information explosion in the 60*s and 70's-
has intensified the issue of how to warchouse information:
How may information be stored so that any particular piece
or any related group of pieces may be guickly retrieved for
examination?

Computer hardware technology has provided part of a
solution? the appropriate warehouse, machines with an ever
increasing capability of storing volumes of information in
small amounts of space. Computer softuare techknology has
provided another part: methods or structures for organizing
the information (data) held within the machine. The motiva-
tion behind this study concerns the evolution of one such
class of data structures, height balanced binary search
trees, and the development of a research tool to aid inm the
theoretical analysis of the behavior of the trees. Height
balanced binary search trees have been well-documented
empirically but 1lack a cefinitive theoretical explanation
for their behavior.

Chapter II traces the development of height balanced

binary search trees from the early days of computing during

which the impetus for binary search trees developed out of
the binary search technique. The binary search tree as a
logical entity was not presented until the early 1960's, but
like an idea whose time has come, much attention was given
to binary search trees in subsequent yearse.

Chapter IIl discusses the 1logical variants of binary
search trees. These structures, each of which balances the
tree in some way, have been developed in the attempt to
obtain the best-possible worst case. The height balanced
binary search tree, one of the variants, is selected for a
detailed discussion of its structure, maintenance, and per-
forrancee.

Chapter 1V presents a generalization of height balanced
binary search trees, partially height balancec¢ binary search
trees. This logical structure has been proposed as aﬂ aid
in the effort to rigorously define the performance of height
balanced trees. Yet, a subclass of this structure may prove
to have interesting properties in and of itself.

Chapter V discusses the research tool developed to pro-
vide empirical data on the performance of binary search
trees, height balanced binary search trees and partially
height balanced binary seérch treese. An overview of the
logic design and program structure is presented along with
preliminary instructions for using the programs that have

been uritten.

Application of the research tool for providing empiri-
cal data wtich may lead to a rigorous definition of the per-
formance of height balanced binary search trees is also dis-
Cussed. Some initial results concerning the subclass of
partially teight balancec trees whkich way become of some
importance in 1its own right are presentede.

Chapter VI summarizes the major ideas and findings of
the study. Suggestions for further study and for expanding

the capability of the research tool are also madee.

CHAPTER II
BINARY SEARCH TO BINARY SEARCH TREES

The foundation for the development of height-balanced
binary search trees was laid in the early -days of computing
by the binary search technique. The binary search was well
known in the early 1940's although the first formally pub-
lished algorithm which works for any nuwmber of items in the
‘table was presented in 1962 (13). Use of a binary search
can reduce tremendously the amount of effort devoted to one
of the most freguent activities for any collection of
information - 1looking ior a particular item based wupon a
particuiar, wunique identifier, called the key) such as a
name or an account number. If there is no particular order-
ing of the items of information, then one pust use a
*brute-force® approach, conventionally c¢alled a 1linear
search, to find the desired item: beginning with the first
of all items and examine each one in turn until the desired
item is found or the item list is exhausted. This is some-
what akin to trying to find someone®s phone number in a tel-
ephone directory in which people are 1listed in the order in
which they requested phone service. The only recourse is to
start with the first person listed and look through all peo-

ple listed until the one desired is found.

The tedlousness of such an approach should be apparent.
On the average, approximately half the items are examined to
find the desired iten. In the worst case or if the item is
not present, then the eantire list of information is exam=-
ined.

Order, lexicographic (dictionary-like) or numeric,
greatly eases the burden of locating an item. If one is
trying to find Peterson's phone number in the standard tele-
phone directory, then one initially aims directly for the
P*s and thus eliminates the entire first half of the direc-
tory at once. If one happens toc open to the N's then
several pages are flipped in an attemwpt to get to the Fts,
thus eliminating many mwore entries from consideration at

once.
Binary Search Technigue

This is the essence of the binary search technique -
given a list of items which are logically and physically in
order, search for the desired item by successively eliminat-
ing from consideration unneeded portions of the list. Houw~
ever, for computer applications, this approach is rigorously
formalized as in Figure 1.

The actions of the algorithm searching for the key P in
a table of letters are illustratec in Figure 2. it caﬁ be
shown (13) that the binary search technique makes at most

lg(n) + 1 comparisons for an unsuccessful search and makes

BEGIN SEARCH(desired key,midpoint);
left_boundary <~ location of first item;
right_boundary <~ location of last item;
micpoint <- FLOOR((left_boundary+right_boundary)/2)
DO UNTIL (left_dboundary > right_boundary):
IF key at midpoint is desired key
THEN END SEARCH;
END 1F;
IF desired key < key at midpoint
THEN right_bouncary <— gicpoint;
ELSE left_boundary <- midpoint;
END 1F;
END DO,
key not found in tahle;
END SEARCH;

Figure 1, Binary Search Algorithnm

1g{(n) - 1 comparisons for the average successful searct
(*1g* indicates the base 2 logarithwdnd- will be- used as

such throughout the discussion without further explanation).

left_boundary=1 midpoint=4 right_boundary=7

fm——
location 1 2 3 I 41 5 6 7
key B c F 1 G 1 H p v
fm———
left_boundary=4 midpoint=5 right_boundary=7
f———
location 1 2 3 4 1 51 6 7
key B C F G I | P v
fm——3
| left_boundary=9% midpoint=6 right_boundary=7
-t
location 1 2 3 4 5 1 61| 7
key B C ¥ G B | I S | v
s §

Figure 2. Actions of Binary Search Algorithsm

The time complexity has been reduced from 0(n) for the

brute force sequential search to 0(log{n)) for the binary

searche.

Besirictigns

The binary search technique is the best possible search
algorithm that proceeds solely by comparing (the desired
key) to keys in the table (11). However, the restriction
that the keys be stored consecutively in a specified order
has different implications wxhen one considers activities
other than searcting such as inserting 2 new item or delet-
ing an 0ld one.

In order to insert (delete) an item one might do the

following steps:

1. Determine the correct location for (of) the
{tene. In terms of the binary search
technique presented earlier, iocation = right
boundary upon termination of an unsuccessful
segrch ftor insertion anc for celetion
location = midpoint upon termination of 2
successful search.

2. Kove all items between location anc the end
of the table down (up) one position.

3. For insertion, insert the nes item at
locaticn.
This is potentially a very time-consuming taske. ¥ith
dynamic tables, tables which are constantly chtanginag,
reorganization time may far outueigh access time, time spent

searching the table. For some applications this may be of

no concern, but for otters, such as an 2irlires reservation
system, reorganization time may interfere with the rapid
gccess timwe desirece. Hence, 1t woulc be cesirzble to
develop an epproach to information storage that would give
not only small search times but zlso small insertion and
celetion times for any idtem of information. Tte binary

search tree is such an approache.
Ttre Binary Searchk Tree

¥indley (26), and Booth and Colin (4) independently
introduced binary searchk trees as logical ané physical
structures in 1960. Many of the later publications report-
ing work concerning binary search 1tirees reference these tuo
articles. Thke concept of binary search trees has been cen~
eralized to binary trees. A binary tree is

a finite set of nodes which either is empty, or

consists of a (node called tie) roct andé tuo cis-

joint binary trees called the left and right sub-

trees of the root (12, p. 309).
Each nede (or element) of the tree contains several items of
information: a key by shich one may uriquely identify the
node, anc two "pointer™ fielcs whkich icdentify (or point to)
the locations of the root nodes for the left and right sub-
trees. Other inforwmaticn relevant to the key may be storeg
in & node, but it is not a concern of this discussion. Fig-

ure 3 illustrates a binary tree.

Figure 3. & Binary Tree

If the binary tree is to be used to maintain an ordered
set of recorés, then a further requirement is that all noces
in the left subtree have keys which are less than the key in
the root node in some sense whether numerically or lexico-
grapgkically. In orcéer to picture this, it 1is hkelpful to
consider flattening the tree so that all nodes zre aligned
such that if node X were in tike left subtree of nuée ¥, then
node X is to the 1eft of node ¥ in the line. Such 2 binary
tree is usvelly called a binary search tree (BST) or binary
decision tree. Thus, If we jet A and B represent the
keys of the nodes in Figure 4, then Ficure 4 (a), while a
valid binary tree, is not a valid binary search tree. Fig-
ure 4 (b) 1s a valid binary search tree.

It way be helpful in uncerstanding fkow & binary sezarct
tree is organized to consider that the binary search techni-
gque discussed earlier imposes an implicit tree structure
‘upon & lineérly ordered set of items. The initizl midpoint

"is the root of the entire tree; the midpoint of the hzlf-

10

(a) (b)

Figure 4. Binary Tree vs. Binary Search Tree

list to the left of the initial onsidpoint is tte root of the
left subtree of thé root of the entire tree; the ridpoint of
the half-1list +to the right of the initizl midpoint 1is the
root of tte right subtree of the root of the entire tree;

and so one This is illustrated gragphically in Figure 5.

Figure 5. BST FRepresentation of Table of Letters

The node with key € is called the *parent® or immedi-
ate ancestor of the nocdes withk keys C 2né Pe Conversely,

the nodes #ith keys € and P are called ®*siblings' and are

11

the immediate Ydescencants® or toffsprinc' of the node witk
key Go In particular, ¢ is the left offspring of € and F is
the right offspring of G. Additionally, B, F, H, and V are

leaf nodes (no offspring), and €, G, and P are interior

nodes (two offspring).

It should be apparent ttat since ezch node now con-
tains, or points to, the location of the next node to be
exanined, there 1is no need to require that the items be
stored ir order in consecutive locations. However, there
must be a way to tell when there are no more nodes to exzm-
ine; hence, a NULL value nmust be estahlished for pointers
which do not point to any offspringe. The search algoriths

for the binary search tree is illustrated in Figure 6.

BEGIN SEARCH(desired key,NODE,PARENT);
PARENT <~ NULL:
NODE <- location of root of entire tree;
DO WHILE (NODE is not NULL);
I1F desired key = key at NODE
THEN END SEARCE;
END IF;
PARENT <= NODE;
IF desired key < key at ANOLE
THEN NODE <« LEFT(NGCDE);
ELSE NODE <- RIGHT(NODE):
END IF;
END DO;
key not found;
END SFARCH;

Figure 6. Search Algorithim for Binary Search Trees

12

Insertion 1s 3 relatively straightforuard procecdure
although one must be careful to maintain the order associ-
ated with the structure. Figure 7 presents the algoritha
for inserting a new item into the tree. Let us insert the
key D into the tree of Figure 5. The sezrch zlgorithm would
detect a NULL value to the LEFT of the noce for F ané return
the FARENT = location of F. The INSERT zlgorithm would then
put D inte tte next available nocde ané this node uoulc
hecorme the LEFT descendant of F. Additionally, ¥ 1is no
longer a leaf node but is now a semi~leaf nocde (one cescen-

dant). The resulting tree would then appear as in Figure B.

BEGIN INSERT(new key);

CALL SEARCH(new keysnodesparent)’

IF new key £ key at perent
THEN LEFT (parent) next available node;
ELSE RIGHT(parent) next available node}

END IF;

Place new key in next available node;

END INSERT;

i H

Fiqure 7. Insertion Algorithm for Binary Search Trees

Deletion of a node is more complicated, touever., For
instance, if one were to delete the node with key G from the
tree in Figure &, then its descendent subtrees would no
longer be subtrees of & common Troote. They would be

*dangling subtrees® or distinct bingry search trees suith no

13

Figure 8. Result of Inserting [into Pinary Search Tree

logical interconnection. Some way nmust be found to maintain
the relationship between all nodes remaining in the tree.
The problem is usually appreached as follows:
1. Find the largest (smallest) key in the LEFT
{RIGHT) subtree of the node to be deletede.
2. Substitute this node for the one being
deleted being careful to reconnect gzll
subtrees of the two noces invelvecd. {This
substitution involves changing at most four
pointers only.)

3. Return deleted noce to an availsble pool.

The result of this algorithm after deleting the node € from
Figure 8 is shown in Figure 9. Stated more formally, the

algorithm for deletion is illustrated in Figure 1C.

14

Figure 9. Result of Deleting G from Binary Search Tree

BEGIN DELETE(old key);

CALL SFARCH(olc kev,NODE,PARENT);

Find largest key in LEFI subtree of XCDE;
RIGHT(parent of largest key) <= LEFT(largest key);
LEFT(NODE of largest key) <~ LEFT(NCDE);
RIGHT(NODE of largest key) <= RIGHT(NODE);

Return NODE to available pool;

END DELETE;

Figure 10, Deletion Algorithkm for Binary Search Trees

Tipe Complexity of Bipary Search Iree
Algorithms

A reasonable question that gust be asked involves the
time complexity of the algorithms associated with binary
search trées. How long coes it take to search the tree, to
insert a new item into the tree, to delete an item?

For both deletion and insertion tte average time com-
plexity approximates that for an unsuccesful searche The

changes made to the pointers are done in a constant amount

15

of time which is negligible for trees containing large num-
bers of noces.

The time complexities associated with the best, aver-
age, and worst case, in terms of average search time, binary
search trees have been extensively documented (4, 5, 8, 13,
18, 21, 26). If one considers all nodes on one *row' to
constitute & *level?, then the best case binary search tree
has all 1leaf and semi-leaf nodes on at most txo adjacent
levels., This is sometimes termeé a complete binary tree.
This corresponds precisely to the binary search tree inter-
pretation of the binzry search technigue. Tte time complex-
ity for searching the tree is 0(log{n)) where n is the num-
ber of nodes in the tree.

A worst case, called a *degenerate’ tree, arises shen
all keys are inserted in order. If the keys in Figqure S
were inserted in lexicographic orcer tten the tree woulc’
appear as 1In Figure 11. Searching a degenerate tree struc-
ture is equivalent to the sequential search discussed ear-
lier; the time complexity is 0(n).

However, if one aSsumes that the keys are inserted ran-
¢omly then it can be provedé that the time complexity approx-
imates that for the best case since well balanced trees are

common and degenerate trees are rare (13).

16

Figure 11. A Degenerate Tree

Termipnology in Ewpirical Xeasuremenis

Much work in c¢ata structures tas bLeen cone to try to
guarantee that a degenerate tree never Occurse But before
discussing some of this work, if would be helpful to define
the terms ccmmonlf used in discussions of empirical perform—
ance of the data structurese.

Since tte time complexity for the &lgorithms for binary
search trees are directly progortional to the nupmber of conm-
parisons mace during searching tie tree, performance con-
cepts which may be measured empirically have been sell-de-

fineéd (although minor variatiors still exist). Trese

17

include the height, the internal path length, and the exter-
nal path length.

The level o¢f a node corresponds to which *row® it is
on, the root node being level 1. Thus, in Figure 11, B is
on level 1, € is on level 2, and so one The height of &
binary search tree or a subtree is the number of levels in
the tree or subtree.

In order to formalize an empirical measurement for suc-
cessful ané unsuccessful searches, it is helpful to intro-
duce the concept of 'external nodes®. An external node is &
special node used to indicate a NULL subtree in the graphi-
cal representation o¢f a tree. Cf the nodes in Figure 12
(a), nodes A and D have two HULL subtrees, and¢ noce C has a
NULL LEFT subtree. Figure 12 (b) shous the representation
for and placement of external nodés. Nodes A, B, C, and D

2re now termed ?internail nodes'.

(a) (b)

Figure 12, A Binary Searchk Tree Extended

18
For all trees, the follouwing relationship holds:

number of external nodes = numrber of internal

nodes + 1.

Figure 12 (k) tas been terwed an extendec¢ binary tree.

The path 1length between 1tuwo nodes 1is the difference
between their level numberse. Thus, 1in Figure 12 (b)), the
path length between £ and D is 2, between D and one of its
external nocess, it is 1. Tke path length ﬁay glso be
thought of as the number of additional compariscns needed to
locate a particular node in a subtree from the root node of
the subtree, The internal path lengtk of & tree with n
nodes, I{n), 1is the sum of all the path lengths between the
root node (level 1) and each internal node. Thus, for Fig-

ure 12 (b)),
I(n) =14+ 1+ 2= 4,

The external path length, E(n), 1is the sum of the patk
lengths betseen the root node (level 1) and each external

node. Thus, for Figure 12 (b),
Eqn) =2+ 2+ 2+ 3+3=12.

The relationship between the internal and external patk

lengths is always
E(n) = I(n) + (2 * n).

It should be apparent that the average number of comparisons

required for a successful search, C(n), is

19
C{n) =1 + I(n) / n).

One compat ison 13 required to get to the root of the tree
ané cdecice which subtree to examine next. The expression
I{n)/n gives the average number of comparisons required to
get from tte root of the entire tiee to any othter particular.
internal node in the tree. Similarly, the average number of

comparisons required for an unsuccessful search, C¥{(n), is
c*'(n) = EMY /7 (n + 1).

C{n) 1is a measure of the relative time required to retrieve
a particular node from a tree. C*{n) 1is a weasure of the
relative time required to insert or to delete @ node or to
search for @ node that is not present.

These measures aid in comparing the relative efficacy
of different algorifhms designed to w@manipulate trees and

will be used ttroughout the remainder of the c¢iscussion.

CHAPTER III
HEIGHT BALANCED BINARY SEARCH TREES

Even though, as uas stated above, randomly constructed
binary search trees behkave quite well ané degenerate trees
rarely occur, there still remains the issue of degenerate
trees. If, as 1is quite possible in ‘'real® applications,
items are entere¢ in order, then this woncerful construct,
the binary search tree, has saved nothing except for the
occasional randor insertion. One sould 1like to be able to
guarantee a complete binary tree {(one with all external
nodes on at most two adjacent levels such as the binéty tree
interpretation of the binary search techrique) all the time
since this would save considerable searching effort. Eow-
every, the time involved in maintaining ttis guarantee shoulc
not ocutweigh the time saved during a searche.

One clsss of data structureé that has been proposed to
solve this problem is the class of weigkt balanced trees of
which the optimal binary search tree is an examplee. ¥eight
balanced trees use as a guideline the adeage that *80% of the
activity occurs in 20% of the file'. Information about fre—-
quency of access for each key 1is used to construct and

reconstruct the tree sg that the most frequently accessecd

20

21

keys are near the root level. 1This considerably reduces the
average search time for a set of keys with knour frequen—
cies. ¥eight balanced binary search trees are a nice solu-
tion if one has a static file a&anc can safely project the
frequency of access to each key. However, for dynamic
files, ones for which insertion and deletion are major
activities, and frequency of access to &ény particular key
cannot be predicted, weight balanced trees create more work
than they save since access frequencies must be dynamiczlly
maintained and the entire tree must be constantly checkec

for optirmalitye.
HRBR{(X) Binary Search Trees

A nice solution to the problem of maintaining dynamic
trees so that degenerate trees never occur but maintenance
requires only local adjusiment around a node and one or tuwo
of its descendants, was first proyosed“in 1962 by two Rus-
~sian mathematicians, Adel*son-Vel?!skii and Landis (1). The
binary tree structure they proposed, subsequently termed an
"AVL tree, <constrains the reiative heights of the LEFT and
RIGHT subtrees of the nodes. The height of the left subtree
of a node nay differ by no more than one from the height of
the right subtrec. This constraint does not always result
in a complete binary tree. Figure 13 illustrates a worst
case, in terms of average search path length, C(n), for an

AVL tree with 12 nodes. 1In a complete binary tree, 12 nodes

22

{
would require only four levels. Houever, the perforwance of

an AVL tree approximates the best possible performance of a
complete binary tree and requires only tuwo bits per node to
indicate wtether the left subtree is lorgeir tkan, balancec

with, or shorter than the right subtree.

Figure 13. A ¥orst Lase AVL Ttee with 12 Nodes

tThis notion of ‘*height balanced' was generzlized in
1973 by Foster (7) to pernit relative height imbalances
greater than one. These trees are called HR(k) trees swhere
k, the allowed imbalance, is an arbitrary comprorise between
short search time and frequency of restructuring. AVL trees
may be considered a special case of HB(k) trees - the HB(1)
subclass. However, HB{(k) 1irees require more storage per

node since the relative imbalance may be between 0 and k for

23

either subtree. The following discussion of structure and
maintenance requirements applies egually to AVL and HB({(k)

trees.

Sstructure apnd Malntepance

If one is gqoing to guarantee ttat the difference
between the heights of the left and right subtrees of a node
is no more than k, then one must maintain informwation about
the teights with the noces. One approach to this probler is
to maintain the actual height of the (sub)tree rooted a3t a
given n&de. If one defines the Lkeight of a null descendant
to be zero, then this may be calculated for all internal
nodes simply according to the rule: |

Height(node) = MAX (Height(lefi cescencant),

Height(right descendant)) + 1.

A noce whick is critically unbalanced, whtose subtrees hLave
relative heights which violate the balance constraint, may
be detected by the following test:

ABS (BHelight(left descendant) - Height{right des~

cendant)) > balance constraint k.

Insertion and <deletion may 9quite pcessibly change the
heights associated with the nodes along the search path and
create a criticzlly unbalanced condition for some nodee.
Thus, after insertion or deletion of a2 node, one wnust

*backup? along the search path modifying the heights accord-

ing to the above rule until one of two ttings cccurs

24

1. The height remains the same for some nodes
2¢ A noce 1is detected to be critically
unbalancede.
In tte first case, c¢ne wmay terminate tte backup for height
maintenance. in the second case, one must restructure the
tree in order to bring it back into compliance with the
balance constrainte.

It should be evident that this involves a great deal of
work. There are potentially four accesses per node along
the search path: one curing the searct, ané three during
the backup procedure. It seems reasonable to expect that
this methtod woulé detract from the usefulness of this data
structure.
| For tunately, there 1is @ second approach to the
maintenance of teight information whict does not involve
such a great amount of effort. This approach raintains a
'‘balance tag* for each node whick 1is a2 =measure of the
relative difference in heights between the left and right
subtrees of the nodeo the balance tag may be defined as
follecus:

-baiance tag(node) = Height{right descendant) -
Height(left descendsnt).

Thus, three cases are established:
1. balance tag(node) = 02 the heights of the
two subtrees are equal,
2. balance tag(node) < 02 Height{left

descencant) > Height(right descencant),
called left heavy,

25

3. .balance tag{node) > 03 Height(right
descendant) > Height(left descencant), called
right heavy.

Backtracking from the inserted node along the path of
insertion fceletion is still required in order to maintain
the balance tags.

One shtouléd question why the seconc approach is better
than the first, since the second approach defines the
balance tag in terws of the heights of the subtrees and
backtracking is still required. The answer 1is that the
‘height need not be maintained; the balance tags may be
maintainec basecd upon their previous vzlues. Until
backtracking is terminated for insertion, iIf the new node
uere inserted in the right subtree, then the height of the
right subtree’is one greater than before; hence, add one to
the balance tag. iIf the new node were inserted in the left
subtree, then thte heicht of the left subtree is cone greater
than before; hence, subtract one fror the balance tage.
Deletion from the left (right) subtree 1is equivalent tg
insertion in the right {left) subirece. Thus, backtracking
vinvolves only one access per node instead of three as with

‘the first approache

Insertion ip an BB(k) Binary Search Iree

Basic insertion is identical to that for unconstrained
binary search trees. After insertion, the backup is termi-

natec¢ if either of two cases occur?

26

1. At any unbalanced node along the search path,
the new node were inseited in the shorter
subtree. That is, if a node were left heavy
and the new node were inserted in the right
subtree, or if @ node were right Leavy ang
the new node were inserted 1in the 1left
subtree, the bazckup w®maintenance may be

terninatece.

2. If a node is unbalanced to the point of
violating the balance constrainte. 1vo
sipultanecus condéitions determine this case:

de ABS (balance tag({node)) = halance
constraint,

be Tte noce was insertec¢ in the longer

or heavy subtree.
In this case, the tree must be restructured
to conform to the constraints.

Figure 14 illustrates, in FDL form, the algorithm required

to maintain balance tags in an HB{k) tree.

Restructuring

¥hen @ critica2lly unbalanced node is encountered, that
portion of the tree rooted at the critical node must be res-
tructured or rotatec so that the tree conforas to the given
balance constrainte Bouwever, this restructuring must be
done in a certain way Iin order to wmaintain the order associ-
ated with the nodess Restructuring entails three steps:
1. Rearrange the nodes so that the subtree
initially rooted at tlke critical node
conforns to the balance constrzinte.
2, Reconnect any uninvolvec descenédants of the
nodes directly involved that have bheen

disconnected during the restructuringe.

3. Mocdify the balance tag¢s of the nccées involved
to reflect their new positionse. As during

27

backtracking, this may be done based on their
previous values. (It is not intuitively
obvious how this may be done during rotation.
A demonstration of this fact wmay be found in
Agpendix A.)

BEGIN BTAG_MAINTENANCE;
DO WHILE (Btag(MNODE) < balance constraint OR
insertion occurred in the shorter subtree);
IF insertion occurrec¢ to the right of this NODE
THEN Increment BRtag{(NCLE) by 1;
IF NODE is now balancec or still left teavy
THEN END BTAG-MAINTENANCE:
END IF;
ELSE Decrement Btag(NODE) by 1;
IF MODE is now balanced or still right heavy
. THEN END BTAG-FAINTENANCE;
END IF;
END IF;
Back up to next previous NCDE;
END DO;

Tree violates balance constraint at NODE;
EXD BTAG-MAINTENENCE;

Figure 14, Balance Tag Maintenance in an HB(k) Tree

At most three nodes along the search path are involved in
this restructuring - the critical node, the imgediate
descendant of the critical node and the offspring of the
immediate cescencant (the grand-descendznt) o¢f the critical
node.

Four <c¢2ases may be identified in terus of the nodes

involved as having differing restructuring requirementss:

28
i. Criticel noce is5 left tesvy, <cescencant ot
the critical node is left heavye.

e Critical noce is left treavy, <cescencant of
the critical node is right heavye.

3. Criticel node is right hesvy, descendant of
the critical roce is richt btezvy.

4 Critical node is5 right heavy, descendant of
the critical node is leoft heavye.
Cese 3 is the wmirreor igmage of Csse 1 (see Figure 15).
Figure 16 jllustrates Case 1, a simgle rotation. Figure 17
illustrates, in PDL form, the balarnce tag mpaintenance
requirements for the nodes invoived in Case 1 or Case 3
restructuring. Case 4 is the mirror inmsge of Case 2 (see
Figure 18), Figqure 19 illustrates Case 7z restructuring, &
split rotetion. Split rotstion involves & suhcase shen
cealing with balance tags. Ficure 20 illustrates, 1in PDL
form, the halance tag maintehance requirenents for the nodes

irvelved ir Case 2 or Case 4 restructuring.

CASE 1 CASE 3

Figqure 15, Cases 1 anc 3 &s Mirror Images

29

critical node

descendant node

grand—
descendant

Figure 16. Simple Rotation in an HB(k) Tree

BEGIN SIMPLE-BTAG:
/*corment: let
CN represent the critical node
DCN represent tte cescencant */
IF insertion occurred right of CN
THEN Btag(C¥) - balance constraint - Btag(DCN);
Decrewent Btac{DCN) by 1;
ELSE Btag(CN) <- <-balance constraint - Btag(DCN);
Ircrement Htag(DCN) by 1;
END IF;
END SINPLE~EBTAG)

Ficure 17. Balance Tag Maintenance After a Simple
Rotation

CASE 2 CASE 4

Figure 18. Cases 2 enc¢ 4 &35 ¥irror Irages

critical nole

descendant node

grand=-gdescendant

Figure 19. plit Rotation in 3an HB(%) Tree

30

31

it can oe shown that this restructuring results 1in &
(sub)tree of the szre height as the (sut)tree bhefore
restructurirc. (See Aprencix B for a cetaziled presentation
of this fact.) Thus, after restructuring, the insertion way

be terminatec.

BEGIN SPLIT_BTAG;
/*commert = let
Ch represent the critical node
PCN renresent the descendant
CDCK represent the grand-descendant
*/

SELECT;

S EUEM(insertion occurred right of both CN and GDCH):
Btac(CN) <~ balznce constraint -— 1 - Etag(gdcn);
Increpment stac(DCN) by 1;

Btag(GDCx) <= &IN (balance constraint - 1,
Etag(CLCNY),
~WHEN(insertion occurrec richt of CN anc¢ lett of GDCN):3
Save Ftag(ulN);
Btag{C¥) <~ palance constraint - 1;
Btac(DCLN) <= Ptag(LCNY _ Btag(GDCN) + 13
Etag(CDCL) <= ¥AX (Ptag((DCX),Saved Btag(DCX) + 1);
WEEN(insertion occurrec left of both CN anc GDCH):
BTan{CH) <= 1 - balance constraint - PFtag(cNCN)?
Btag{GLCid) <~ MAX {Btag(GDCN),1 - pslznce constraint)y
Decrement bBtag(DCN) by 13
Cthervise? [/*comment - inserition occurred left of (N
anc rictt of GDCN*/
Save Ptagl(DCH);
Btag(Ch) ¢~ i - balance constraint;
Btac(nC¥) <- Btac(DCN) - Btacg(ehCN) _ 13
Btag(CDCN) ¢= MIN (CSaved Ptag(DCN) - 1,PtagleDCY))3
END SELTCT;
END SPLIT_ETAG;

figure 20. Palance Tag Yajintenence After a Split
RQotation

32
Deletion ip spn HE(K) lree

Deletifon in an HB(X) tree is more complicated than
insertions Insertion always inserts 3 new noce in an exter-
nal node position and at most one rotation is required to
bring the tree back into comgliance with the balance const-
raint. Deletion removes an ihternal node which may have gne
or two descendant subtrees. These dangling subtrees must be
reconnected to the tree in the proper manner to prevent vio-
lation of the balance constraint. This may involve nultiple
rotations as shall be shosne.

Leaf ys. NHop-leaf

Although once @ node has been*deleted, one must back-
track along the search path in order to maintain the balance
tags, deletion presents differing initial problems depending
on wtether @ 1leaf noce {no cdescendants), a semi-leaf node
{one descendant), or an interior node (two descendants) is
being deleted. These differing requirements are outlinec

belcus

1. If a 1eaf node is deleted, set its parent's
pointer to NULL. Prepére to backtrack
starting at the parent node.

2. If 8 sewmi-leaf node is deleteds, set its
parent?!s pointer to its non-null pointere.
Prepare to backtrack starting at the parent
nOdec

3. If an interior node is deleted, then do the
followings

33

de Find a nocde witt which tte noce to
be deleted may be replaced keeping
track of the sezarch path. This
will be the noce uith the largest
(smallest) key in the left (right)
subtree. The ususl approach is to
select the longer subtree (tte
heavy side of the node to be
deleted).

be In effect, <delete the replacenent
node from its present position.
That is, delete the node but save
the velue of the key (anc¢ arny
information associated with the
key).

‘Ce Delete the intencec node by
substituting the reglacement node.
The balance tag of the deleted node
becomes the balance tag of the
replacement node.

d. Prepare to backtrack starting at
tte original parent of tte
replacement node.

Several different cases may arise during backtracking

They are as followss

1. The node was balanced before deletion.
Adjust the balance tag to reflect in shich
subtree the deletion occurred (the opposite
subtree is now longer by 1). Terminate the
2lgorithm.

2. The node was left or right heavy before
deletion; deletion occurred ir the longer or
heavy subtree. The heavy subtiree is nou less
heavy (shorter) by one. The node becomes
less unbalanced by 1. Continue backtrackinge.

3e The node was left or right heavy before
deletiony deletion occurred in the shorter
subtree. The noce is now more unhélancec in
the same direction as before (the shorter
subtree has become one more level shorter
than tte longer subtree)e. Tuwo subcases may
be recognized:

34

"ae Tte balance tag(noce) was < balance
constraint. The nes balance tag
remains <= balance constraint;

" hence, terminate the algoritine.

be. The balance tag(node) was = balance

constraint. The node Lecomes
critically unbalancec. Tte tree
violates the balance constrainte.
Restructure the tree. After
restructuring, continued
backtracking may or may not be
required.

¥hen restructuring is required, the nodes involved are
not along the search path except for the critical node
ftself. Ttis is different from insertion but is as expected
since the subtree containing the search path has been
shortened in height to the point of causing the critical
node to violate the balance constraint. Thus, the other
subtree is the critically heavy onee. ¥ith this difference
in wtich node is meant by tire immediate cescendent of the
critical node in mind, there are four cases for
restructuring which correspond to those for insertion:
1. The <critical ncée 1is left teavy? the
descendant of the critical node is left heavy
or balancec.
2. The critical node 1is 1left heavy; the
descendant of the critical node is right
teavye.
N 3. The criticzal node is right heavy; the
descendant of the critical node is right
heavy or balanced.
4. The critical node is right heavy; the

descendant of the critical node is left
beavye.

35

Note that the only difference between these cases and those
for insertion is that the subtrees rootec at the descendéant
of the c¢ritical node may be balanced . This case may be
rotated either way, simple (Cases 1 and 3) or split (Cases 2
and 4). It is placed with the simple rotation cases merely
because these involve less worke. -

The rearrangexent of the nodes is bhancled in
identicaliy the same way as for Insertion with the exception
of choosing the grand-descendant of the critical node during
split rotationse. In insertion, the ¢rand-descendant 1is
along the search path; in deletion, the grand-descendant is
chosen fror the heavy sicde of the descencant.

Balance tag mailntenance is also similar to that done
fof insertion if one considers that inserting z new node in
the right subtree of some existing node is akin to celeting
a node from the left subtireea A diffetence arises because
of the possibility that the descencant of thke critical node
may root balanced subtrees (balance tag = 0) Dbefore
restructuringe. In this case, only, backtracking may be
terapinateé immediately since the rearrangement will result
in 2 (sub)tree of exactly the same height as the subtree

rooted at the critical node before deletion.
Per formance of HB(k) Trees

The theoretical analysis that has been done for HB(k)

trees has not been supported by empirical observation (7,

36

13). Some of the empirical results that have been reported
are outlinec belowe.

Foster (7) found that, for insertion, 1letting k be as
Jarge as four increased the average sezrch path 1length by
only‘one wkile the nunber of restructurings decreased by
approximately 43% . HWork reported by Van Doren (24) comple-
mented Foster?s findings for 1insertion anc extended the
results to deletione. The effect of a change in k under
deletion follows a pattern similar to that for insertion:
increasing k decreases the nunber of restructurings
regquired. Van Doren also found that increasing k increases
the number of nocdes examined during the backtracking opera-
tion. This may offset the gain realized by fewer restruc-
turingse. Karlton, Fuller, Scroggs, and Kaehler (10) have
provided the most complete set of empirical observations
concerning the per formance of height balanced treese. Part
of tteir wcrk substantiates the results reported by Foster
and Van Dorens. Cther of their findings follow:

1. The average number of rotation seems to be

independent of the number of nodes in the
tree for trees containing more than 30 nodes.

2e The number of nodes visitec during
backtracking is independent of the the number
of nodes for insertion but for deletion it
increases slowly as the number ¢f noces
increases.

3. The average number of nodes visited during
backtracking is less for deletion than for
insertion, for large k (balance constraint).”

4. Deletion is more time consuming than

insertion but search time is tte cominant
factor in both operations.

317

Experiments performed by Baer and Schuab (3) corroborate

previously reported fincingse.

Alternatives to HB(k) Balanced Binary

Searchk Trees

The work done on AVL and HE{(k) trees has stimulated the
developuent of alternative soluticons to the problem of bal-
ancing a binary tree structure based on information about
path lengths and heichts of subtreese. Nievergelt and Rein-
gold (19) introcduceé bounced balance or BB(a) trees xhere
45 §5 a restriction on the relative number of nodes in the
left and right subtrees of a noce:

a <= (nupber of nodes in the left Subtree +1) /

{total number of nodes + 1) <=1 - 3.

BB{0) <corresponds 1o an unconstrained binary search tree;
BB(1/2) corresponds to a complete binary search tree. The
2uthors admit that, based on empirical evidences, search time
is someuhat worse for BE(a) trees than for HE(k) trees but
they claim. several acdvantages of BB(a) trees over HB(k)
which may compensate for thiss:

1. Such important operations as fincéing thke kth

data element, or the gth quantile, or how
many elements there are lexicographically
betuween x and vy, <can all be <cone in time
0(log(n)) {in a BB{(a) tree), w®hile they seem
to require time O(n) (in an HEBE(k) tree), and

2e The smallest possible change 1in k (for HB(X)

trees) changes the class of trees very
drastically, andé thus the compromise between

search time and rebalancing time cannot be
finely tuned (as it can be for EB(a) trees)e.

38

Work done by Van Doren ané ©Gray (25) supports the statec
disadvantage but no nork.has been reported to support the
‘claimed advantages. More extensive research and analysis is
required before the advantages and disadvantages can be
fairly examined.

Pursulng an 1idea suggestec¢ by Xnutk (13), Hirschberg
(9) investigated one-sided height-balanced or CSHR trees
whichk are @ restricted subclass of AVL trees. NSHB trees
require that the right subtree never has @ smaller height
than the left subtree. In other words, the nodes may be
balanced or right hezvy onlye. Although fast search time is
maintained, insertion requires time 0(log(n)**2) in an OSHB
tree. Later work by Zuweben anc WMcDonalc (27) shows that
deletion of an arbitrary node may be done-in time 0{log{(n)j.
OSHB trees saves one bit of storage per node when comparecd
to the AVL trees introduced in 1962, but the trade off
required for insertion may not be worth the siorage saved.
Hirschberg and Zsweben and McDonald leave open the question
of the actual (empirical) behavior of OSHB trees.

Drawing on the work with OSHB trees, Ottgann, Six, and
#ood (22) developed right brother or RB trees. the authors
indicate ttat RB trees are & subclass of brother trees whick
they had presenta2d earlier. A brother tree regquires that
all leaf nodes be on the same 1level anc that eachk node with
only one descendant has a sibling (brother) with two

descendantse. Right brother trees quzalify the 1latter

39

condition, requiring that each nbde with only one descendant
must have 3 right sibling (brother) with tuo descendantse.
Ottgann, Sixs ané¢ Wood¢ detail insertion and celetion
requirements and theoretically prove that both insertion and
deletion may be accomplisbec in 0(log(n)) time although the
_algorithm for insertion is more compléx. They also derive

bounds for the height of the tree:
CEIL{1¢g{(n)) <= height < 1.44 - 1g(n + 1) - 0.32.

Empirical verification of these claims is lacking.

Another development in balanced trees is Power k or Pk
trees introduced by Luccio and Fagli (16). Power trees
raintain balance inforwmation as for AVL trees but only for
the set of nodes on selected paths from the root to the
leaves icdentifieé¢ through thte parazeter k. The paths are
identified as follouws:

1. For ¥ = 0, there exists at lesst one path =

the height of the tree such that all nodes on
the path satisfy

] balance tag(noce) | <= 1,

and

2. For kX > 0, all paths of length j where

height of the tree - k + 1 &= j <=
height of the tree

are such that all nodes on each path satisfy

} balance tag (node) | <= 1.

40

In other werds, balance is @aaintained conly for those nodes
which lie along a path originating from the root of the
entire tree which has reached a specified level relative to
the teight of 1tlte tree. Since the heigtt of a tree 1is &
dynamic quantity, the set of nodes for which the balance 1s
raintained is also cdynamice Theoretical <determination of
the following guantities are obtained for F0 trees under

insertion only:?

1. ¥Worst case path lengtlk = SQRT (2*n), anc
2. Average search length for a worst case tree =
2/3 (SCRT(2*n)).

As for AVL and HP(k) trees, average search length for a Pk
tree, assuring all key sequences equally likely, has yet tg
be successfully analyzed. Empirical results show that PO
trees approximate the behavior of AVL trees but drastically
recduce the amount of restructuring reguired. The difficult
question of deletion in a Pk tree is left open.

1t is somewtat difficult to compare these alternatives
since all of them 1lack a definitive analysis of their
average behavior just as HB(k) trees do. As g result of
this lack, it is difficult to compare the advantages and
disadvantages between the classes of height balanced trees
since there is no evident relationstip between the
¢onstraining parameters. However, a generalization of HEBE(k)
trees may provide the impetus for a ricorous analysis of

HB(k) trees.

CHAFTER 1V
PARTIALLY HEYGHT BALANCED TREES

A generalization of HB{k) trees, partially height bal-
anced (PHB) trees, ray provide empirical guidance to the
developnent of a rigorous theoretical anzlysis of the behav-
ior of HB{(k) trees (23). PHB trees maintain the height bal-~-
ance criteria of HB trees but restrict the effect of the
criteria to internal nodes sithin a specified path length to
an extern;l node. The notation used is PHB(k1,k2) shere
k1 1is the height balance constraiht and k2 1is the path
length constraint, the path length to &an external node
witkin which a given internal noce nmust lie If the height
balance constraint is to apply.

To illustrate the effect of k2 on HB trees, consider
the HB(1) tree in Figure 21. This mxay also be classified as
a PHBE(1,1) tree. Assume that key A is inserted into this
tree. If classified¢ as an HB{1l) tree, then Figure 22 {(a)
would be the result; but if classified as a FHE(1,1) tree,
then Figure 22 (b) sculcé be the result.

One can express an HB tree via a PPB tree in the fol-

lowing manner:

HB(k) = PHB(k,1)

41

42

Figure 21. An HB(1l) Tree

(a) | (b)
Figure 22. Result of Insertion Depends on Classifica-
tion
where 'i® stands for infinitye. The PHB balznce consiraint

is applied to all internal nodes within.an infinite path
length of an external node which is 311 internal nodes.
Similarly, an unconstraireé binary search tree is egquivalent

to a PHB(i’k)o

43

Structure and Maintenance of PHB(k1l,k2)

Trees

Nodes of & FPHB tree nust contzin thke information
required for nodes in an HB tree. In additipn; in order to
be able to maintain a PHB tree, one must kncw the minisue
length to an external node of every internal node 1in the
tree. Hence, the node structure must contasin this informa-
tion.

The guestion to be answered is how to maintain the path
length to an external node. It should be apparent that the
minipum path length to an external node is depencent on the
minimum path lengths to external nodes of its two irmediate
descendantse. If we define the path length to an external
node from an external node to be 06, then this dependency can
be expressed as:

mpl(noce) = MIN (mpl(left c{escendant),mpi(right

descendant)) + 1
for any internal node {(mpl stands for minimum path length to

an external node)d.

Algorithms for PHB(K1,k2) Jgees

The search 3lgorithm is identical to that for HE trees.
The differences in the insertion and deletion algorithms
arise in znswering the gquestion 'is this tree critically

unbalanced®* but not in the placement or removal of a node.

44

In order to determine if the tree is critically unbalanced,
one must first maintain the balance tags associated with
each noce in the PHB tree as for those in an HB tree. At
the same time, one must maintain the mpl*s for each nodee.
This must be done through the <cependency expressed above
betueen one node's mpl and its impediate descendants' mplts,
sinCe it does not appear that there is & relationship
between a node®s mpl before insertion/deletion and after as
there is for a node's balance tag.

As to whetlter or not the insertion/celetion resulted
in a critically unbalanced condition, in PFFE trees, the bal-
ance tag associated with any node may violate the balance
constraint but the distance to an external node may exceed
that specified by the path 1length constraint thus obviating
restructuring. Hence, before a PHB tree is declared to be
out of balance, the critical node must meet the following:

criteriac

1. Balance tag(node) > balance constraint.

2. ¥pl(nodce) <= path length constrzaint.

For balance tag maintenance in BB trees, it 1is not
necessary to backtrdck past the critical noce. However, for
PHB trees it appears that backtracking must continue until
the balance tag indicates ‘that the height of the subtree
rooted at 2 node has not changeé. Minimum path length to an

external node would also require backtracking past the

15

critical node since the mpl determines which nodes are
eligible for restructuring. Consicer the PHB(2,2) tree of
Figure 23 which depicts the state of the tree Jjust after
insertion of nocde B and balance tag wmaintenance to node D

(the critical node)d.

Figure 23. A PHB(2,2) Tree After Insertion of a Node

The balance tag of node D violates the balance constraint
and its mpl is less than the path length constraint. Hence,
the tree must be restructurec. ‘Fiqure 24 depicts the tree
after restructuring. W¥ote that the balance tags for node E,
one level back from node Dy tke critical node, remains
unchanged; houever, node E's mpl has changed from 2 to 3.
Whereas before insertion of node B, noce E's mpl would have

permitted its participation in restructuring if required,

46

after insertion of node B, node E's mpl obviates its

involvement in restructuringe.

Figure 24. The PHB(2,2) Tree After Restructuring

By extension of this example, it should be evident that
it 1is necessary to backtrack along the search-path for
insertion/ deletion past the critical node in order to
maintain the structural inforpaticn associated with eack
node. Thus, for FHE trees, backtracking 1involves
maintenance of tio gquantities which have different
reguirements for terminating their maintenance. Balance tag
maintenance way be terminated under the same conditions as
for HB trees. Minimumw path length mainténance centinues
until a node is encountered whose mpl does not change during
maintenance. If one noce's mpl . coes not change then its

parent's mpl also will not changeas

417
PHB(1,1) Trees

Of particular and additional interest is the subclass
of PRB trees known as PHB{(1,1) trees. "The reasons for thLis

interest are (23)

1. Mzintenance of PHB{(1,1) trees c¢oes not
require the generalized massively detailed.
algorithms of FHB(k1l,k2) trees. The
insertion zlgoriths in particular 1is much
simpler sinces

3 Restructuring does not reguire
déngling subtree consicerationse.

he Balance tags need not be maintained
since balance way be ezsily
copputed as @ function of insertion
searchinge.

2. Its worst case (see Figure 25) is not as bad
as an unconstrained binary search tree.

3. For moderately sized, randomly constructed
trees, the expected seaich perforrance for
PHB(1,1) trees is only slightly worse than
BEB(1) trees.

Figure 25. A Worst Case for PHE(1,1) Trees

48
Algorithms for PHB(1,1) Irees

The PHB(1,1) insertion algorithm is straightforward and
is given in Figure 26.- The information required from
searchting the tree for the key is given in the arcgument list
to SEARCE; SEARCH itself is not shosn. Celetion presents sz
pore complex problex. Without balance information, it is
difficult to determine how to restructure an unbalanced tree
or how ma2ny restructurings are required. Consider cdeleting
the key I from the PHE(1,1) tree of Figure 27 (a). Froceed-
ing as for deletion in other binary se&arch trees, one
replaées I with H; Figure 27 (b) 1is the result. The sub-
trees of node G nou violate the balance constraint. This
coulé be easily ceterminec by *looking ahead® one level: 1if
the non-null descendant has a descendant, then the (sub)tree
is out of balance. However, houw coes one decide how to res—
tructure the tree? Should a simple or split rotation be
performec? A siuwple solution is to do a simple rotation
then *look ahead? ohe level to determine if the new subtree
rooted at the critical node is unbalanced; 1if so, then do a
simple rotation; then *look ahead?® . . « and so on, until
the subtree is not critically unbalanced.

A much cleaner solution to thke probles of deletion fol-
lous?

1. Delete the desired key by replacing it mith

the largest key in the left subtree.
2. If the original PARENXT of the replacement

ncée now has twg NULL links, then terminate
the algorithm}; otherwise,

3. Remove the PARENT of the replacement node by

replacing its parent®s pointer with its non~
null descendante.

4. Reinsert the PARENT in the subtree rooted at
the descendant. This permits the insertion
algorithm to restructure the tree where
appropriate.

BEGIN INSERT (cdesired key);

CALL SEARCH (desired key,NODE,PARENT,GRANDPARENT,
GREAT_GRAKDPARENT),

IF desired key < key(PARENT)
THEN attach desired key to LEFT(PARENT):

ELSE attach desired key to RIGHT{FARENT);
END IF;

iF GRANDPARENT is NULL OR (GRANDPARENT
is not NULL ANC does not have a NULL link)
THEN END INSERT;

END IF;

IF PARENT and GRANDEFARENT have a NULL 1link
on the same side
TBEN Perform a simple rotation;
ELSE Perform a3 split rotation;

END IF;

END INSERT;

Figure 26. Insertion Algorithm for FEBE(1,1) Trees

Let us assume that in Figure 27 subtree 1 looks like this:

()

and that subtree 2 looks like this:

50

)

Ficure 27. Deletion in a PHBR(1,1) Tree

The result of this solution applied to Figure 27 is picturec
in Figure 28. Occasionally, this approach restructures the
tree (reinserts 3 node) unnecessarily; however, in order to
prevent this, a one-level Yook ahead must be done. This

would be extra work for those cases in which reinsertion

MUSt OcCcCuUT. intuitively, it seewms that an occasional

unnecessary reinsertion of @ noce credtes less extra work.

Figure YR, Restructurince of a PHB(1,1) Tree After
Deletion

FPerfermance of PHB(K1,k2) Trees

A formal theoretical analysis of the pertormznce of FHB
trees tfe2s been presentec only for PHP(1,1) trees (23).
Unfortunately, preliminary enmpirical results did not support
the adalvsis. Use ¢f 8 researchk tool to provide empirical
data regarding heicht balanced trees may guide further

development in this area.

CHAPTER ¥

A RESEARCH TICCL FOR HEICHT BALAKCED

TREES

Basicezlly, the research tool is a set of algorithsms
designed to huild various height balanced trees with exactly
the same keys aﬁd tten cive perfornance wnezsures, suct as
internal and external patn lengths, and nuwmber of restruc-
turings required, so that the relative merit of each class
of binary search trees gmay be coupared. Such ewmpirical
dats, 4yathered in an orderly fashion, &2y =elsc guide the
theoretical analysis of the behavior of the trees. - At the
present times insertion 2nd deletion slgorithms have been
implementec for tte general c¢lasses HB(k) ang PHB(K1,%E2),
and for the specific trees AVL and FHB8(1,1), =2nd the uncon-
strainec binery search tree. It 1is iptercec that the pro-
grams be capahie 0f being expanded and developed 1into an
ongoing project with algorithms for other clesses of height
balancec¢ trees being irplementec. The pregrems &re written
in the PL/Y prog¢ranring language. A copy nzy be obtained
tirrcugh the Computer Science Department ¢f Okletora State

University.

53
Logic Tesiagn

A resesrch tool must encourace its efiective use by
persons other than those who originally designed it. In
accordance with this , the follosing points were considerec
irn designing the driving progoras and its input requirements:

i. The exolanation of how the input should be

prepared stouic not require cections of tte
driving a2s docupentation.

2 freparing the input shouid not reguire an

intimate knowlecece of input list formats used
in the driving prograa.

3. Input should be free-form (no <column

zli¢gnment requirepents) 1tn aveid errors tlrat

fivxed-forx may create.

da Nefaults on certain pzraemeters shouid be

z1louec.
5e Fxpansion of input capabilities or a change

in how something is specified should he ezsy
to implepent within the driving program.

For these rezsons , the author chose to design and implement
N

2 saell coruant languacge tor use with the researchk tool. A
signal character 1is used to signal that a keysord is to
follow; trerefore, ro colunn requirements nust be enforced.
A complete Backus-Naur Form (ENF) description of the
language may be found in Appendix C.

The language 1s interpreted via a top—down parser in
sectionse. Tach major section is terminated by the keyword

GO wtich incicates ttat 211 inforzation necessary to co some

work with the trees (insertion and/or deleticn) has been

514

interpretec ané¢ may be usec =at this point. Tre top—cown
parser also allous greater ease of future modifications of
input capatilities since eack syntactic category may be

inplemented as a separate podule.
Using the Rescarch Tool

One mzy use the research tool to insert, or delete, or
alternately insert and delete keys from zny number of the
available trees. Thte keys usec Iin these orerations may be
ordered, random, or 2lternating. Alternating key sequences
exercice both simple and split rotation capabilities anc
create decvgenerate unconstrained binary search trees and
worst case PHR(1,1) +trees. After esch ipsertion 2ndjor
celetion seguence vsarigus perfoxmaﬁce mezsures may be taken.

The most appropriate way to introduce how to use the
resezrch tocl is to illustrate tie capebilities ¢f the com-
pand language with a detailed exaspie. Appendix D provides

such an illustration.
Application of the Research Tool

PHB(i,l) trees ay become an interesting siructure in

and of ttemselves. Tle reasons for this expectation are?

1. ¥c extra storage for balence tags is reguired
since, for insertion, balénce mey he conputed
2s a function of searching and, for deletion,
balance may be regained by reinserting the
criticel noce.

Ze The worst case for FBE(1,1) 1is not as bad as
fecr unconstrained hinary search trees.

55

3. For randomly constructed irees, the expected
average sezrch path length 1is po worse tran
for AVL or HR{1) trees.
Fyidence for the first <clzim is presented above in the
discussion ¢f PHEB trees. Tte idinitial epplicetion of the
research programs wWas to provide empirical data concerning
the last two claimse Thrree test cases were irvolvec. Table
I shows the information used in each test case. BST stands

for unconstrazined binary sezarch tree.

TABLE I

TEST CASE INFORMATION

i | |
TEST 1 PESCARAIPTION { TREES USED § NUMBER
CASE | | Type] Number | of KEYS
......) U N N i _—
| | } |
1 { FUNCTION: insert | ES] 1 i 100
] KFY SE{UENCE: i HR{1) H ezct I each
} aglternating | PHB(1,1) | | tree
_____ e Y
{ | | |
2 | FUACIICY: dinsert { ES1T | i¢ | 100
] KEY SEQUEN(E:] HR(1) ! eack i each
| permutations j PHB(1,1) 1 | tree
i of a given i | }
] seguence } 8571 i ie { 200
i I HB(1) [each i each
i] FEE(1,1) 1 ! 1tree
1 _— 1__ J 1
{ | |
3 | FUnCTION: { trees fraomw | Z0 in
i clternate { TEST CASE 2 jtrees of
| insert/delete i {size 100
| KEY SSQUENCE: i]
i ‘rendorm l { 40 in
i i Jtrees of
i | size 200
i 1 i

596

Test Cese 1 cenonstrates what will teppen 1if the keys
are inserted 1in such a manper &s to create @ degenerate
unconstrained binery seerct treec. Alttough deducible
without empirical testing, use uf tihe research tool makes
the results readily asvailshle. As can te seen in Table 11,
a8 PHB(1,1) tree is not &s bac &s &p unconstrained tree; the
averzge search gath length end the average
insertionfcéeletion searchk patt length sre sbout half trose
of an unconstrained binary search tree. Fowever, they are
more than three times those of an HR(1l) tree. 0f coursey,
about half as many restructurings were reguired for the
FHR(1,1) tree compared to the HE(1) tree, bhut this is not 2an

intuvitively reasonable tradecif.

TABLE 11

RESULTS ¥ROM TEST CASE 1

- —— - -

| ! ! !
TREE] n ! C{n)] Ce(n) | ROTATICNS
SUNI S 1 —— - 1
! !] !
RST ! 100 1 50.5 1 51.0 | -
| { !]
HE(L) H 100 | 6.0 | 7.0 | 92
! 1 { i
PER(1,1)] i0¢ 1 260 ! 2€.7 ! 49
e 1. —_y _—

51

Test <(agce 2 cenonstrates average behavior uncer the
assurption that each perazutation of a given key sequence is
equa?iv likely to cccur. Table 111 stows tlhe results
garnered frow Test Case 2. lhe values shown 3are the
averages across zil trees of tie same type. Certainly the
behavior of PHR(1,1) trees tends toward that of the HBE(1)
trees hut it is slighbtly worse. However, note 3again that
about half &s mary restructurings were vequired in order to
maintain the trees. @whether this drasticzlly reduced amount
of restructuring is wortt tre small trace cff in sesrcht time

remains to be determined.

TABLE IiI

RESULTS FRCM TRSET CASE 2

v ———— — - ———

} | | |
TREZ i n ! c(n) 1 Ct(n) | POTATICAS
S B | — __1 1
{ | { I
85T ! 100 1 7.5 1 fed ! -
! 20¢ ! 9.1 1 1C. 0 l -
i ! | !
BE(1)] 100 { 5.9 ! £.8 i 45,1
| 200 1 69 | 7.8 i 87.17
! { { i
| 200 1 7.7 ! 8.6 1 554
............. e e

58

Test Cese 3 cemcnstrates the tiend for averace bebavior
after a period of activity within the tree. The data sre
presentec in Table IV, As for Test Case 2, the velues shtown
are the 2verages across all trees o¢f the same type. Abtout
three~fourths as wory rotaticns were required to maintein
PHR(1,1) trees as opposed to ER(1) trees. Thiis dis 2 highers
percentzge than for insertion alone anc¢ probably reflects
the occasional unnecessary reinsertion of a node. However,
the numper of rotations is still less and the average sezrch
and inserticn/cdeleticon path lencgtis are 1less tran 1 greater
for PHR(1,1) trees than for FE(l) trees. This indicates an
advantage for PHBE(1,1) 1trees. No extre storzge is requirec
for halance information, yet {ewer rotatiohs are required to
maintain the tree and the average Epath lengths are not much
lorcer. Tte exact extent oi this trace off renmains to be

determinede.

TABLE 1V

RESULTS FRCM TEST CASE 3

! | | H
TREE | n | Cn) 1 Ct(n) | ROTATICAS
_______ 1 1 Y 1
i { | {
RST ' 100 ! 7.2 | p.1 1 _
| 20¢ 1 8.9 1 9.8 | -
{ | . 1 |
HE(1) | 100 ! 5.9 | 6.8 | 52.7
! 200 ! 6.9 | 7.9 1 103.6
! { H | '
PHE(1,1) 100 i £.5 1 7.4 1 37.2
! 200 ! 7.8 1 8.7 1 74.5
___________ 5 I 1. ——d e 1

CHAPTER VI
SUNMMARY AND CONLLUSLIONS

This study has dezlt with the evoiution of height hal-
ancef binary search trees 2né¢ with the fesicon anc irplemen-
tation of a research tool to oprovide the igmpetus for rigor-
ously 2nalyzing their performance cherecteristicse. Height
balenced binary search trees ere cne solution to the problen
one often encounters in information storzge: hew <can one
store inforwstion so that inpserticns deletion; ang sea;cfing
can be acconplished guickly and efficiently? tenersiized
Feictt belanced trees can cudrantee locarithwic seavrch tine;
however, since halance information must be maintained, and
inseftion and deletion involve backtiracking along the searct
path, it is unciear how to decide what an optimal trade off
betueen seerch tiwe and maintenance time is. A specific
subclass of teigtt belanced trees, FHUB{1,1) trees, has been
introduced which do not require maintenznce of bzalance tags
nor backtracking but -way still be eble to provice close tg

logarithric search time for the average case.

59

60

Fesults of the Study &énd cuggestions for

Future Study

This study presents previously undocumented ocutlines of
algorithes for a Qeneralizeé ciess of height baiénced trees,
partially reicht bhalancec or FHO trees. One elepent of
these algorithnes rema2ins unclegr - is it necessary to mezin-
tein balence tag anc patt length information past tte crit-
ical point of 1 qreater than the constraint values? 1If one,
instead, faintzined then only wuntil trev reachec tlese
points during insertion, then «could the appropriate values
be regainec¢ curing celetion suck that a nefe woul¢ be reccog-
nized Aas once ayain eligible for restructuting? This gques-
tion needs further study.

4150 presented were aigbtithms for the subclass,
PER(1,1) trees. The deletiorn aigorithm was previously undo-
curentec.s The algorittns presented have been inplementecd as
part of 2 researcin tool for height baianced trees.

ah initial application of the resezrch tool was made
for PHUHB(1l,1) treese. Alttouch FHB(1,1) trees exhibit
siigntly worse pertormance characteristics than do HPE(1)
trees, ttey elso recuce hy ta3lf tke purber ¢f restructurings
required. This seems to indicate that FY¥E(i,1) trees may bhe
a viable alternative to HB(k) trees. Hocwever, more exten-
sive analysis, empiricel and theoretical, needs to be done.
The research tool 1s also availsble to provide the empirical

isretus to analyzinc HB(k) treese. 2s its capabilities

61

exnpend, cotparisons with other height belanced trees shoul
be made tag weigl the relative sdvantages anc¢ cisacvantaces

of each under varticular clrcumstances.

Expanding the Capnabilities of the

Research Tool

In order to provide 2 more flexibie command langquage,
it is desireocle to perrit cefault values for mocre of the
parameters such a5 FECY » TG y. 1The parser is designed in 2
rodular feshion to facilitate tkis expénsion. Most of the
syntactic cateqories correspond to separate moduies 1in the
igclezentation. Hence, gocifiying at most one module per
expansicn is necessarya.

it would he desirable at some time to implegent algor-
ithms for other ‘classes of height balanced 1trees, such as
the PB(&) or Pk classes cescribed above, ir order to facili-
tate coaparisons beiween data structures. 1t is also sug-
cestec tnat nowing the number of noées accessec during
backtracking and maintenance of balance information way help
evaluate the trade off betuween search tiwe and maintenznce
tine for hkeicht balznced trees. The resezrct ‘tcol shoulc

prove 2 poweriul aid in the study of height bzlanced trees.

A SETECTED BIGLiCCFAPHY

(1) Réel'son~veltskii, C. Y. anc Ye ¥, Lancéis. Yan
Algorithm for the Organisation of Information.®
Soyist Yath, vol. ¢ (1963), 1259-12€3.

(2) Baer, J-L.. "weight Raléenced Trees." Proceedings
AFLIPS 19075 NLC, Vol. 44, Montvele, New Jersey:
AFIPS Press, 147%.

3) Baery, J-L., anc¢ B, Scruwehes ™A Cowreriscn of Tree-
Falancing Algorithis."™ (Coprunjcaltions of ihe

e AL e Sl B e e i e

ACHr Vole 20, Hoe. 5 (May 1977), 3Z22-330.

(4) Boott, A. D. &81¢ As Jo Te Cclin. "Mon tre Eificiency
of a New Vethod of Dicticnary Construction.™
Irformaticp apd fonlyoei, Vol. 3, Ko. 4 (December
1%60), 327-334,

{5) surgye, se. P. "Sorting, Trees and Yeasures of Crider.m
irformaticp gpg Cortrol, Vel. 1, Ho. 3 (1958),
191-197.,

(6) Cleppeti, Hoe 4. "Ranconize¢ Binary Searcihing with
Tree Structures.” Congupications of Xhe ALY,
Vol. 7, tio. 3 {(Marcht 1654), 1e3-165.

(N Foster, Ce C» YA Generalization of AYL Trees.”
Logmunicstions of the 4aCP, Vol. 16, No. 8 (August
1973), 513~517.

{8) Hitbard, T. %o "Some Combinatorizl Ffroperties of
Certain Trees witt Agplicaticors to Searcrning end
Sorting." Jgurnal oi the aC¥, Vol. 9, No. 1
(Januzry 1362), 13-28.

(@°)) Hirschberg, Do S« M™An insertion Technigue for One-
sided Height Pzlanced Irees.™ Cornupications of
the AL¥, VYole. 19, Mo. 8 (Rugust 1976), 471-473.

(10) Karlton, P L-I Se He ?U.lle[’ Re E- SCqugS,lanﬂ Ee Bo
Kaehler. %“rferforwmsnce of Heicht Bzlanced Trees.”
Lopruricaltions oi tre ACE, Vol. 19, No. 1
(Januzry 1976), 23-28.

(11) Ynuth, D Fo "Alygorithus." Scieptific Apericzn, Vol.
236, Noe. 4 (Rpril 1977), 53-41.

62

(12)

(13)

(i4)

(15)

(15)

(17)

(18)

(19)

(21)

(22)

(23)

(24)

63

nuth, 0. %. The Art of ¢
Reading, Y“assachusetlt
19773,

Frograerpipg, Vol. 1.

onputer
53 Audison-Xesiey Pube. CoO.,

¥nutt, D. %. Tie 21t ol CLopputer Progrerpipgs, Vel. 3.
Keading, Yassachusetts: tgdlson-kesley Fube. CO.,
1973,

Kosarajuy, S Re PYiInsertions and Deletions in One-
sided Heicht Balanced 1rees."™ CLormgupications of
ire ACps VYole 21, No. 3 (March 1978), 226—227.

Lucrcicr F» anc L. Paglia. "™On the Heighl of Height-
Bzlanced Trees.” JLFEF Trapseciions gon Cozpyulelss
Voie C-25, No. 1 {(Jeanvery 1976}, 87-G0,

Luccio, F. and L. Pagii. "Fower Trees."
Lommunications of the £Ck, Vol. 21, Ko. 11
(Novemper 1978), 941-947.

Luccio, F. and L. Fagli. "kebalancing Height Palanced
Trees " ILEL Irspsaclticrs op Loupulers, Vol
¢-27, No. 5 (May 1978), 486-J9%.

Nieverqgelt, Js "Binarv Search Trees and File
Crganization." Compuyting Survevss Vol. 6, No. 3
(September 1974), 195~-:07.

Nievergelt, J. anc £« ¥. Reingeold. "Binary Sezrch
Trees of Pounded Balance.” 314Y Jourbgl of
CLogputings Vol. 2, No. 1 (M2rck 1973), 33-43.

Nievergelt, J. and C. ¥. hong. ™"Cn E€inzry Search
Trees.” Proceefipgs o4 IF1P Cgopgress 11, 91-58.

Mievergelt, J. and C. K. song. "Upper EBounds for the
Total Pat}y Length of Binery Trees." Jdguirgl cf
the AC¥, Vol. 20, ho. 1 (January 1573), l-t.

Ottmann, T., He ¥« Six, and D. wood. "Right Brother
Trees.” (Commupications of the ALY, Vol. 21, Ko.
9 (Septeaber 1578), 765-7176.

Van Toren, J. %o Data and Storage Structures,
{unpublisted class netes). Stilluwater, OK:
Ckianoma State Yniversity, 1878,

Vzn Doren, Je Re "Some Fmpirical Results on
Generalizec AVL Trees.®™ DProgeedings of the MNSE=
€PKS Reolonal kesscarelr Copigrerce cpn Auloralic
igiggmaijga Crgapizetigpe spnd beirieyzd, 1973,

=57,

(25) Van DNoren, Je Fe and Je L. Greve. MAn Algorithm for
kaintzirarg Dynamic AVL Trees.™ in jlnforraticn
Svsterns Jo Te Tou, ede New York, New York:
Flepunr Fress, 1974, 161-170.

(26) wWincley, P. ¥, "Trees, Forests an¢ Rearranginc.”
Lowpulter Journzl, Voie. 3, Ko. 2 (1560), 84-88.

(27) Zweben, S. o and M. A. McDonzld. "&n Cptimal Method
for Deletion in Cne-sided Height Belanced Trees.”®
Leopryricelionus of tre aCE, Vol.o 21, No. 6 (June
1979), 441-445.

AFPE¥DIX A

DERIVATITCN OF EALAMCE TAC MAINTERAMCEL

ECUATIONS

Maintepance of balance tags in an HB(k) or PHB(k1,k2)
treec during rotation s&sfter insertion sy be 3accomplished
with the irformation provicec by tre previous values of ihe
halance tacs of the nodes involved. This is g demonstration
0of wty it is possible. Similar results npay be cerivec for
deletion cases.

SYVECL LEGERND:

CH : tte critical nofce

DCN 3 the descendent of the critical node
CLCN ¢ the yrand-descendant of the criticzal node
F(#) : tte heicht of the subtree indicetec by #
h{null subtree) = 0
h(x) = ¥AX (F(LEFI(x)),t(RIGET(Xx))) + 1
hi{(n) : the neight of the (sub)tree rooted at node n
| BF(r) : h(n) BEFOPE restructurirg
Ah(n) ¢ h{n) AFTER restructuring
h(n) ¢ the balznce associated with node n

p(n) = FRIGHT(n)) - H(LEFT(n))
£b(n) : b(n) PEFCEE restructuring

Ab(n) : b{n) AFTER restructurinc

65

66

k s the palance constraint
* 1 insegticn occurred in this subtirce
CASE 1@ SINFLYT ROTATION
CN left heavys; DCN left heavy.
BEFORE RFSTRUCTURING AFTER PESTRUCTURING

PEFCRE restructuring, we know that:

P(DCW) = F{(1) + 1
h{c¥) = h(DCN) + 1
= h(1) + 2
anc
b(c¥) = h(3) = h(LCN)

h(3) = (h{(1) + 1)
= =-{k + 1)
b(bCN) = h(2) - h(1)
AFTER restructuring, we know thats

h{CN)

MAY (n(2),h{3)) + 1

1]

h(DCN) = MAX (h(1),h{Cu)) + 1

and_

b{CN) h(3) = h(2)

67

FCCNY = B(1)

"

b(DCN)

n

FaXx (h(2),h(3)) + 1 - h(1).
Since 1), 1(2), k{3), &ndé k are ccnstaﬁts ttrouch the
rotation, the following expressions remain true through the
rotation?
P(3) = (h(1) + 1) = =(k + 1)
h(3)

1]

nel) + 1 - k - 1 -

]

h{(1) - %
and
h{2) - h(1) = Bv(DCH)
F(2) = n(1) + Bb(DCN)
Substituting these expressions for h(2) and h(3) in the
equations for AFTER B(n)ts cives:

b(CN) h(3) - h(2)

ti

= h{1l) = k = (h(1) + BB(NCN))
= -k = BB{DCN)
BEOCHN) = ¥aX (h(2),h(3)) + 1 - h(1)
= MAX (h(L)+4PL(DCE),P(1)-k) + 1 = F(1)

= WAX (EbB(UCN),-k) + 1

QIE.BO
The expression for Ab(DCY) may be simplified further by not-
ing that BR(TCXY) must be >= -k. Therefore, MAX (Bb(DCN),~k)

will always yield Pob(DCH) arnc Ab(DCK) = Pb{(DCN) + 1.

CASE 27 SFLIT ROTATION

C¥ left heavy? DCF richt heavye.

Subgese 23 GDCH left teavy.

REFORE KFESTRUCTURING

BEFOPE restructuring, we know that:

B{GDCX) = h(2) + 1
h(DCN)Y = h{(EDCY) + 1
. = h(2) + 2

h{CyN) = h{DCN) + 1

= h(2) + 3

ang

B{GDCY) = h(3) - h(2)

> =(k - 1)

= h(GDCN) - h(1)

b{DCN)
f h(2) - h(1) + 1

638

66

<= k

1]

L{CN) n(4) - h(ncw)

n(4) - r(2) - 2

]

-{x + 1)

AFTEDP restructuring, we Y¥now thrast:

h{Dcy) = MAX (h{1),h(2)) + 1

b(CH) = MAX (H(3),1(4)) + 1

n(GDCN) = #AX (h(DCM),h{(CN)) + 1
and

b(DCH) = p(2) - K(1)

b(C¥) = h{(4) - hi(3)

b{GDCN) = D(CN) = E{(DCN)

= HAX (h{(3),h(4)) - ¥AX (h(1),nh(2))
Since h(1), h(2), h{(3), h(4), =end k are constants througk
the rotation, the following expressions rewsain true through
the rotation:
Bb(GDCN) = F(3) - L(2)
h(2) = Bb(COCN) + h(2)
BR(DCN) = ¥(2) - (1) + 1
h{(1) = h(2) - Bp(DCN) + 1
-(k #+ 1) = h(4) - h(2) - 2
F(4) = h(2) - k + 1
Suhstituting these expressions for h(1l), h(3), and h{(4) in
tihe equations for AFTER b{n)'s cives:

b(DCN) 1(2) - h(1)

h(2) - (h(2) - Bb(DCN) + 1)

H

Bb({DCN) - 1

76

b{CN)

i

h{4) - h{3d)
= h{2) - k + 1 - (BEHb(COCN) + h(2))
= =k + 1 - PE{EDCY)
BGPCH) = MAL (F(3),E(4)) — ¥Ax (R(1),E(2))
= MAX (h(3),h(4)) - ¥aX (h(2)-2b(DCH)+1,k(2))
but since DCN was ricght hesvys, BRIDCN) > 0; hkence,
= MAX (h(3),h(4)) - h{2D)
= MAX (Eb(EDCXN)+h(2),h(2)~k+1) = h(2)

= HMAX (BE(GDCM),~k+1)

QeFalw

Subgesze b: CDCN right heavy.

BEFORE RFSTRUCTURING

11

REFOPRE restructuring, we know thati:

h(GLCK) = h(3) + 1
F(DCN) = h(GNCK) + 1
=" h(3) + 2
h(c¥) = h{OCK) + 1
= h{3) + 3
and \
b(GDCR) = h(3) - h(2)
<= % - 1
b(UCK) = h(EDCY) - h(i)
= h(3) + 1 - (1)
<= K
B(CN) = h(4) = B(DCN)

n(4) - h(3) - 2

1t

-{k + 1)

it

AFTER restructuring, we know that:

h(DCk)Y = #2X (h{1),h(2)) + 1

£(cw) = MAX (H(),5(4)) + 1

h(GDRCX) = kAaX (h(CN),h(DCK)) + 1
arc

b(DCKY = h(2) - h{1)

b(C¥N) = h(4) - h(3)

b{&DCN) = h{C¥) - h(DCN)

= MAX (b(2),h{4)) = FAX (R{1),h(2))
Since (1), ¥2), (), Y(4), anc k remzir constant tbrough
the rotation, the following exgressions remain true through

the rotation:

72

Bh(GLCN) = h(3) - h(2)
h(?2) = 1(3) - Rb(GDCLN)
Eh{(TCK) = h{3) + 1 - h{(1)
F(1) = h(3) + 1 - BE(LCN)
h(4) - b(3) - 1 = =(k + 1)

B(3) + 1 -~ k - 2

{4

i

h{3) - ¥ - 1
Substituting these expressions for (1), H(2), andé r(4) in

the equations for AFTER b(n)'s gives:

b(LCCx) = h{(2) - h(1)
= n(3) - Bb(GDCN) = (F(3) + 1 - BhL{DCM))
= ph(DCY) - ER(CLCH) - 1

b{CN) = n{4) - h(3)

=n@B) ~-k-1 - h(3)
= -k -1
b(eDCN) = MAX (h{(2),h(4)) - ¥AX (h(1),h(2))
= BAX (h(3),h(3)-%1) - ¥AX (k{1),h(2))
= B{3) =.MAX (£(1),h(2))
= n(3) = ¥AX (h(3)+1-8b(DCN),h(3)-Eh(CDCN))
= MIH (F(2)=(H(3)+1-BB{DCN)), F(3)=(h{(3)-Bb(GDCN)))

= ¥IN (EB(LCK)-1,FBb(CDCN))

Ja%aDe
Xote that since hoth ab{(NCXN) end Ab{(GTCCN) depend wupon
Rh{BCN) anc Bh(CDCN), cne o¢f tte Bb vslues npust be savec

before changing it.

T3

CaSk 3t STMPL® ROTATION

C¥ right heavy; LCKN tight heavy.

BEFORE RFESTRUCTURLNG AFTER RESTRUCTURING

BEFORE restructuring, we know that:
h{DCH)Y = h{(3) + 1

h{Ck)} = h{TC¥) + 1

= F(3) + 2
and
b(DCN) = h(3) - h(2)
= k

b(C¥) = h(DCN) - h(1)
= B(3) + 1 - 1(1)
= %k + 1

AFTEP restructurine, we know that:

h{cy) = MaX ({1, h(2)) + 1 -
h{DCRY = MAX (h{CN),h(3)) + 1
and
b(C¥) = h(2) - h(1)
b{DCH) = v(3) = r(CN)

h(3) - ¥AX (h(1),h(2)) - 1

74

Sirce h(1), n(2), h(3), and k rerain constant throuah the
rotation, the following expressiors remzin true through the
rotation:s
Bh(DCN) = a(3) - h{(2)
b(2) = h(3) - BbL(DCK)
h(3) + 1 - h(1) =k + 1
h(1) = n(3) - %
Subkstituting these expressicns for F(1) ean¢ h{2) in the
eguations for AFIER b(n)'s gives:

b{CN)

1]

F(2) = B(1)

h(3) - Eb(LC¥) - (h(3) - k)
= k% - PL{DCN)
b(DCH)Y = h(3) - MKAX (h(1),h(2)) - 1
= h{3) - ¥2X (h(3)=k,u(3)-RL(LCN)) — 1
= MIN (b (3)=-{r(3)~¥), L (3)-(L(3)-Bp(DCN))) - 1

= ¥1I¥% (k,Bb(DCN)) - 1

Q.EaDo
Tne expression for Ab(PCYX) may be simplified further by not-
ing trat PE(DCN) <K= k. Tterefcres ¥MIN(k,Bb(DCX)) will

always yield b(CCX) and Ab(DCY) = EB(DCY¥) - 1.

CASE SFLIT ROTATION

5.
a0

CN right heevy; DCN left heavy.

Syhcage 2: CDCN right heavye.

BEFCFE RESTRUCTUFRLRG

BEFCRE restructuring, we know that:

E(GDCKR) = h(3) + 1

h(DC%) = h(GDCN) + 1
= h(3) + 2

E(CN) = h{DCN) + 1
= n{(3) + 3

and

b{EDCN) = h(3) = ¥(2)
<= k¥ -1

b{DCN) = h{4) - t(GDCHN)
>= -k

b(CN) = h(DCN) - h(1)

R{3) + 2 - (1)

15

AFTER restructuring, we know that:

h(DCN) = ¥AX (h(I),h{4)) + 1

E(CN) = MAX (MD),1(2)) + 1

hIGPCH) = MAX (h{CN),h{(DC¥)) + 1
and

b(DCu) = h{4) = F(3)

b(CH) = h(2) - k(1)

b{GDCN) = h(DCN) ~ E{(CN)

= HAX (h(3),h(4)) - MAX (h(1),h(2))
Since h(1), h(?2), h(2), h(4), =znd k remwzin constsnt througk
the rotation, the following expressions rewain true through
the rotation:
Bb(COCN) = F(3) - 1(2)
h(2) = h(3) - Fb(EDCN)
Bb{RCN) = ¥(4) - (3) - 1
h(4) = h(3) + Bpb{OCN) + 1
h(3) ¢+ 2 - h(1) = k + 1

(1) h(3) + 2 - kx - 1

h(3) - kx + 1

Substituting these expressions for r(1), k(2), ane ¥{4) in

the eguations for AFTER b(n)'n gives:?

BCLCN) = h(1) = h(3)
= ((3) + BL{DCN) + 1 - 1(3)
= BBH(TC¥X) + 1

b(CN) = h{(2) - k(1)

1l

h{3) - Bb(GDCYN) = (h{(3) - k + 1)

11

k = BE(CDCN) - 1

i

b(GLCN)

#AX (h(3),h{4)) - ¥rX (h{1),h(2))

i

MBX (F(3),1(3)4BL(DCN)+1) — HAX (h(l),h(Z})

but since [CY was left heavy, Fb{LCN) < 0; hence,

1]

n(3) = MAX (r(1),0(2))

i

h{3) - MaY¥ (u(3)Y-k+1,h(3)~-Eh{CDCN))

MIN (r(3)-(h(3)-k+l),h(3)-(h(3)—Bh{GDCN)))

MIN (k-1,Bb(GDCN))

CeFela

Suhgase h: CDCN left heavy.

REFCFL RESTRUCTURING

REFOFRE restructuring, we know that:

h(GDCN) = h(2) + 1

h(DCN) = n{GDCN) + 1
= n2) + 2

E(CE) = h(DCN) + 1

= ac2) + 3
and

b(GDCN) = n(3) - k(2)
>= =(k = 1)

B(DCN) = L{4) - H(GDCi)
= h{4) - h(2) - 1
>= -k |

B(CM) = h(DCN) - h(1)
= h{2) = 2 - h(1)
=k + 1

AFTER restructuring, we know that:

h(DCN) = MAX (H(3),k(4)) + 1

h(CX) = EBAX (h{1),h(2)) + 1

R(GDCN) = MAX (H(DCN),E(CN)) + 1
and »

b{DCN) = h(4) - h(3)

b{CN) = h(2) - k(1)

b(ELC¥) = h(DCN) - h(CK)

= MAX (Y (3),Lk(4)) - MAX (B(1),1(2))
Since h(1), h{(?2), h(3), h(4), and k remain constant through
the rotaticrr, tte following expressions remain true througk

the rotation:

7§

Bb{GLCN) = ¥(3) - h(2)
h{(3) = Bb{CCCK) + h{2)
Bh(DCN) = t(4) - I(2) -1
h(4) = Bb(DCN) + n(2) + 1
H(2) + 2 - (1) =k +1
h(l) = h(2) - k + 1
Substituting these expressions for h{(l), h(3), andé t(4) in

the equations for AFTER b(n)'s gives:

B(DCN) = h(4) = h(3)
= BB(DCH) + E(2) + 1 - (Bb(EDCN) = h(2))
= BB(DCK) = EL(ELCN) + 1

b(CY) = h(2) = H(1)

= h(2) - (h(2) = k + 1)
=k -1
BCGDCH) = MAX (h(3),h(4)) - ¥AX (h(1),h(2))
= NAX (h(3),h(4)) = MAX (h(2)-k+1,h(2))
= MAX (H(3),E(D) = £(2)
= KAX (PECCDCN)+h(2),RL(DCN)+R(2)+1) = h(2)

= MM (Bb(GDCN),Bh(DCN)+1)

CeFala
Note that since both AbL(DCH) enc AD(GDCN) deperd vupon
AL{DCHY ana BhH(GDCN), one of the B®b velues nmust be saved

before changing 1ite.

AFPENDIX B

BEICHT OF THE SUBTREE DURINC INSERIICHN

POTATION

During insertion restructuring, the height of the sub-
tree involved remains the szme . This is 2 demonstration of
why it is true. Refer to Appencix A for & sysmbel cescrip-

tion and preliminary derivation of formulas.

CASE 1 SIMPLT ROTATION
CN Jeft heavy; DCN left Lezvye.
Before insertion, the height of the subtree rooted at CN
= PL(CY) - 1.

After restructuring, the height of the subtree = Ah{DCN).

AE(DCw) = MAX (h{l),h(CN)) + 1

= MaX (1), h(2)+1,h(3)+1) + 1
but h{(2)+1 = h{l1)+FL(DCAY+1 <= (1) sirce RE(DCK) ¢ O
and h(2)+1 = n(1)-k+1 <= h{l) since ¥ > 0
Hercey
Eheocn)y = h(1) + 1

= Bp(LCN)

80

CaSE 2

Qeele

(1]

81

Bh(CY) -~ 1

SPLIT ROTATION

CN Yeft iieavv; DCN rickt teavy.

3

ube

~

58 23

CECH left heavye

Sefore insertion, the height of the subtree rooted at CN

= Ph{C¥) - 1. I

After restructuring, tre height of the subtree = Ah{GDCKN).

AR(EDCN)

but h{1)
and h(3)

and h(4)

Hence,

Ah(EDCN)

Q.E .n.

Subgage b

HAX (h(DCH),h(CN)) + 1

HAK (h(1),h(2),h(3),n(4)) + Z

h{<) = Bb(DCN) + 1.¢= [(2) sirce BL{DCN) > 0

Bh(GDCH) + h(D) <= h{2) since Bb(GDCX) < ¢
n{z2Yy - ¥+ 1 €= h{(Z2) since k¥ > 0

h(2) + 2

Br(NCN)

Eh(CN) - 1

C5CH right heavy.

BRefore insertion, the height of the subtree rooted at C¥N

= Fh(C¥%) - 1.

B2

After vestructuring, the height of the subtree = Ah{CDCA).

AR(GDCN) = AKX (RP(CN), H(DCN)) + 1
= PAX (h{D),b(2),h(3),h(4)) + 2
but h{(1) = n(3) + 1 - BB(DCN) <= h(3) since BH(DCN) > ¢
2nd h(2?2) = h(3) - Eb(CDCYN) <= L(3) since EBb(EDCK) > C
anc h(4) = p(3) - k-1 <= £(3) since k > 0
Bence,
AE(GDCN) = h(3) + 2
= gh(BCYN)
= ph{CK) —‘1
JebkeDa

CASE 3t SIMPLE ROTATION
CN riagit heasvy; DCN right heavye
Pefore insertion, the height of the subtree rooted at CN
= BLR(CWN) - 1.

After resiructuring, the height of the subtree = Ah{DCX).

ARCDCN) = MaX (a{cW),h(3)) + 1
= VAX (h{1)+1,h(2)+1,h(3)) + 1
but h(1)+1 = n(3) - k + 1 £=

h(3) since k > ¢

and h(2)+1 h{3) - Bb(DCN) + 1 <= h(3) since BL(DCK) > O

83

Hence,
Ab(DCH) = F(3) + 1

= Rh(UCH)

= BPh{C¥) - 1
JetoeDe

CASE 43 SFLIT RCTATIICGN

- — —

CH right heavy; DCH lieft heavy.

»

Subgase a: GUCN rigltt heevy.
Pefore insertion, the height of the subkiree rooted at CN
= Ru{CN) - 1.

After restructuring, the height of the shbtree = Ah(GOCHK).

ALLGDCH) = MAX (BR{CH),E(DCH)Y)) + 1

= ¥AX (h(1D),h(2),h{3),h(4)) + =z
but h(1) = h{(3)Y - % + 1 <= h(3) since k > 0
and h(2) = h{(3) — Fb(CD(X) <= h(3) since RL(GDCK) > O
and (1) = 1{(3) + PB(DCK) + 1 <= £(3) since Bb(DCNY £ O
Hence,

Ap(GDCH) = n(3) + 2
= Bh(DCN)
= Bh(CN) - 1

Q.E.D.

84

Subcase bs CUCHN left heavy.
Before insertion, thhe height of the subtree rooted at CN
= PA(CN) =~ 1.

After restructucine, the teight of the subtree = Ah{GDCN).

ARCGNCY) = MAX (h{DCH),h{CN)) + 1

= PAX ({0 (D)D), (4))y + 2
but h{l1) = h{2) - % + 1 £= L({2) since ¥ > ¢
‘and h(2) = BH(GDCN) + h(2) <= h(2) since Rb(GDCN) < 0
and h{4) = Bb(DCN) + h(2) + 1 <= h{2) since BPb{DCN) € 0
Herce,
Ah{GDCN) = h{(2) + 2 .

= BH(DCHN)

= Ba{CN) - 1

QnEc.‘D.

APPENDIX €

PAF DeSCRIFTIICN CF INFUT 10 THE RESEARCH

PROGRAW

Appendix C gives the BNF (Backus—-%Naur Form) descrigtion

of the input reguirewrents for using the resezrch program.

NOTATIOR LEGEND:

3

nnnnn

HNNNN

{oon}

input -->

The signal character; indicstes that z kéyuord
icl!nus.

lower case letters; A syntactic category which
must be rewritten.

uppercase letters) A keyworé¢ whict must appear
in that position.

epsilon; a null vaiue or entry.

PR; incicates a ctroice.

indicates a set of information from which a
choice way be wace.

single characters which gust appeér whete

indicated.

test_case_series

test_case_series —--=>

test_case_series test_case

85

86

i tect_cose

test_case ==

%
o
(]

L

$§ € kevwori_cornent case_specification
$ { keyword_comment S5 | e 3 initial_specification
5 { keyword_comrent $ | € 3 manipulction_specificztion
5 { keywori_conmnrent $5 1 e 3}
{ reasurepent_specification 3
{keyword_coument S5 | 3 | e 3 -
keywordé_endczse
keyuword_congent ~->
COEMENT (not reservec_xo1c¢s | e 3
reserved_words ~-—>
$
] ENDCASE
case_specification -=5
CASE ce2se_runmber
case_nutiher -->

integer | e

initial_specification =-->
tree_specification
§ € keyword_coruent 5 | e } 1ipitisl_functicn
$ U keysord_corment 5 | e 3} keyrord_ogo
tree_specification =-->
TREFS tree_spec
tree_spec =-->

tree_sgec (, | e} ¢s_tiee_sprec

{ as_tree_spec
gs_tree_spec -3

nuicher_of_trees generalized_tree

! number_of_trees specialized_tree
rurber_of_trees =-=>

integer { e
generglizec_%tree =-=>

HB { balance_constraint)

i F¥B (balance_constraint , path_length_constraint)}
balarce_constraint -->

integer 1 |
path_lenott-constrairt -->

integer | 1

specialized_tree =-->
AVYL
| EST
] PHR11
initisl_function -->

INITIAL numnber_of_nodes
nunber_of_nodes -=->

inteyer

keyword_go ==->

co

rmanivrulation_specification -->

87

FUNCTICN function_speciitication
$ (keyword_comment S5 | & }
KEYSFT keyset_specification
s 1 keywcrfgcowwent $ 1 e}
keysord_oo
function_specification -->
INSERT
} DELETE
{ INS/DEL ic_orcer-ctoice
id_order_choice -->
RARDOM
{ ALTERNATING (BY set_size
keyset_specification =<>
ALTERNATING 8li_Yey_choice
! OKRDERED ovd_key_choice
j PaXpC¥ ran_Yey_choice
I SHUFFLED shui_key_choice
alt_keyv_choice -3
ord_key_choice { SET1 setsize

cré_key_crhoice >

1

l

€

€

}

}

FRPOV - low_key 1C high_key (€ BY increment |

ran_key_choice -->
number_oi_keys BEIWEEN low_key
rancor_start

shuf_key_choice -->
ord_key_choice randow_start

lecuw_key -->

AXD

high_key

e

3

8&

integer
bick_key =-->
inrteger
set_size -=->
integer
increnpent -->
integer
nupber_of_keys -=>
integer
random_start -->
SEED serjes_start | e
series_start ~->

integer

mezsurenent_specification -->
MEASURE perforwance_neasures
5 {1 keyword_cowmment S 1 €
keyuord_go
performance_reasures ~—>
verformance_measures ameasure
{ measure

reasvre ==

ROTATICN
| HeIGHT
] INTERNAL

I EXTERNAL

30

intecer =-=>
integer digit
] digit
Cicit =-->
011 4213141516141 7T1815¢58
There are several linitations and restriciions to the place-
rent of soge symbols and the values of others. These

restrictions follow.

1. Since § is used to signal that & keyword
foliows, 1t cannot be used in any place other
tten ttrtose dincicatec in the description (i.c.
it cannot be within a CCOMMERT statement).

2e EATCASY &cts 3s 8 signal chzracter for
ceriain error correction procecurese. bencer
its use in 2 COMMENT statement could create
problens.

3. Thke largest 1intecer whick the program 1is
currentiy designed to handle = 2*%15 - 1 =
32767. Irtegers lerger than 227867 will hzve
vnpregictatle results. Similzrly , the
spzailest ainteger which should bte wused is - (
2*¥*15 - 1) = = 32767. (— 32768 tes special
meaning within the proaram and should not be
used.)

APPENDIX D

AW ILLUSTRATION CF TEE USE CF THE

COMMAND LANGUAGE

The meanings associated with each statement of the com-
mand languzge is best illustrated «ith exzmples. The fol-
Yowing sample input sequences provide exemples of the use of
the commend lanyguage statements. For ease in coordinating sz
statement witt its explanation escin 1input statepent is
placed on 2 sepsarate line and is inmmediztiely folilowed by & _
CO¥MKENT statement (inédentec¢ in block forn) explaining it.
Houwever, there are no columrn requirements for the input

statenentse.

SCOMMENT - %ingals the beginnign of & nesx test
case. The friver prograw prepéres to initialize a
new set of trees. There is no tesi case numker on
the stztemert; since trhis is tte first run, I will
iet the driver program number the test cases. On
outout, I expect this test case to be CASE NUMBER
i.!

STREES

AVL HR(1) PHB(1,1)

g1

92

JCOMMEKT = The trees to bte used in this test case
are beirg specifiece Since there are no repeat
countes in front of the treest nawes, one tree of
each type will ke available.s <since these specifi-
cations are equivalent tiees (tre 1 stancs for
infinity), what I will see 1s the results of any
differences in the algorithms for mzintaining the
irees.

SINITIAL 1000

SCOMMENT - I wish 1000 noces tg be availzhle in
the trees.

$GC

SCOMMENT - Signeis the 2nd of the tree initializa-
tion input sectiocn. At this point, the trees are
established witt the requested nunmber ¢f nocese.

SFUNCTICY INSERI

SCOMHMENT = 1 wish to buildé tie tree by insertinc a
series of keys into the tree.

SKEYSET ALTERNATING FROM 1 TO 1400

SCOMMENT — Tae insertion is to use 1(C keys with
the vaiues 1 = 100 in the glternating order: 1,
100] 21 9Q, 3[98] - - e J 50[51. Since are .15
no BY speciiied, the deiault of 1 was assumed;
hence, the sequence takes 1 value frorm the low
enc¢, tren i value from thie high end, then 1 frow
the los eNdy + o o4, shd SO ONe

$GO

SCOVEENT - Indicates that a complete manipulation
request nas veen fcunée Thre édriver program should
perform the reguest at this point.

SHTASURE

$GO

93

ROTRTICON, HEICHT, INTERNAL

EXTFRNAL

SCOMMFNT - I wish to see how meany rotations were
perforeed in order to naintain the halance crite-
ria, witat tte heictts of tihe 1trees ere, &nc what
the internal and external path lengths are. Note
the iack of a cosra after 1VIFENAL. Comnas &re
epticnz); tte facility teés been preoviced only for

user readability of the input data.

SCOVMENT - ALl mreasurements desired have been
listeds This 1s the time to tzke the measurements
an¢ print ttem out.

SFUNCTIOY INSERT

3COMMENT - Now, 1 wish to insert some more kevs.

SKEVYSET

$€cOo

100 RAKDGOM EBE2TWEEN 10C0 AXD 32000

SCOMMFANT - This time, I swant 100 keys rancomly
chosen between 1060¢ and 32000 Since { have not
specified a SFEL velue, the driver progrem will
generate one for mee.

NOTE = The program attempts to generate 100 unique
random ¥evss bence, the user should provide =z
l2arce rance to facilitate this processe.

SCOMMERNT - Do tlte insertion ¢f 100 rancos keys.

SMEASURE

INTERWAY, EXTERMNAL

94

SCO¥MENT -~ This tine 311 1 cere ahout are thre
internal and external path lengths. Since 1
insertecd 1U0 kevs into 2 tree whick sYreacdy fac
100 keys, {1 expect the statistics to print out
that there zre 200 keys currently in the tre¢s.

SENDCASE

SCONNEANT - This is the end of the first test cases

VITA
Mary Beth Hernon
Candidate for the Degree of

Master of Science

Thesis: THE DESIGN AND APPLICATION OF A RESEARCH TOOL FOR
HEICGHT BALAKCED 1TREES

¥ajor Fielcé: Computing and Information Sciences
Biographical: |

Fersonal data® Born 2 Februery 1954 in Longview, #ash-
incton. Moved to Massena, Neuw York, in 19%8.
¥arried William Patrick Hernon on 24 Fay 1978.

Education? Graduatec from Massena Central High School
in June 1972. Received Pachelor of Science in
Home Economics degree from Oklzhoma State Univer-
sity, Stillwater, OK, in May 1976. Completed
requirements for Master of Science degree in Cor-
puting and Inforwmation Sciences frowm Oklahoma
State University in July 1979.

Professional Experience: Graduate teaching instructor
for Intermediate Procramming n the Computing ang
Information Sciences Department, Cklahoma State
University, Fall 1978 - Summer 1979. Programsing
intern with the Researct &énd Plarning Informaticn
Division of the Cklahoma State EBoard of Regents

. for Higher Education, Summer 1978. Gracuate
teaching assistant for Introductory Programming in
the Computing and Information Sciences Lepartment,
Fall 1977 - Spring 1978.

