THE DESIGN AND APPLICATION OF A RESEARCH TOOL FOR HEIGHT BALANCED TREES

By
mary beth hernon
"
Bachelor of Science in Home Economics oklahoma State University
Stillwater, Oklahoma

1976

Submitted to the Faculty of the Graduate College of the oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1979

Theses
1979
H558d
cap. 2

THE DESIGN AND APPLICATION OF A RESEARCH TOOL FOR HEIGHT BALANCED FREES

Thesis Approved:

PREfACE

This study is concerned with the development and extension of a class of height balanced binary search trees known as $H B(k)$ trees. $H P(k)$ trees are an important alternative data structure in file systems where rapid access and rapic update are desired. However, a precise analysis of expected system performance using $H B(k)$ trees is impossible since a precise analysis of the expected behavior of $H B(k)$ trees remains unformulated. A generalized class of $H B(k)$ trees, known as $\mathrm{PHB}(\mathrm{k} 1, \mathrm{k} 2)$ trees, may provide the tool necessary to analyze the expected behavior of $\mathrm{HB}(\mathrm{k})$ trees. The design of algorithms for maintaining these trees and the subsequent implementation of the algorithms as part of a research tool for height balanced trees are also discussed. Results from an initial use of the research tool are presented.

I would like to acknowledge the intellectual stimulation and encouragement provided by Dr. James R. Van Doren, my major advisor, not only in support of this thesis but also throughout my graduate education. Uncer his tutelage, every course has been both challenging and rewarding.

I also acknowledge the encouragement received from my comittee members, Dr. Donald W. Grace, Dr. John P. Chandler, and Dr. Donald D. Fisher. This thesis is better because of their support.

A special note of recognition is given for the love, understanding, and support given me by my husband, Bill. His presence has enriched my graduate education.

I would also like to thank my parents, Robert and Jacquetta Jacks, and my parents-in-law, Peter and Bertie Hernon, for their support, both moral and financial, which has helped us over some hard times.

Finally, i would like to express appreciation for the friendship and comraderie I found among other graduate students.

TABLE OF CONTENTS

CHAPTER Page
I. INTRODUCTION 1
II. BINARY SEARCH TO BINARY SEARCH TREES 4
Binary Search Technique 5
The Binary Search Tree 8
III. HEIGHT BALANCED gINARY SEARCH tREES 20
HB(k) Binary Search Trees 21
Performance of HB(k) Trees 35
Alternatives to $\mathrm{HB}(k)$ Ralanced Binary Search Trees 37
IV. partially heicht baranced qrees 41
Structure and Maintenance of $\operatorname{PHB}(k 1, k 2)$
Trees 43
PHB(1,1) Trees 47
Performance of $\mathrm{PHB}(k 1, k 2)$ Trees 52
V. a research tool for height balanced trees 53
Logic Design 54
Using the Research Tool 55
Application of the Research Tool 55
V1. SUMMARY AND CONCLUSIONS 60
Results of the Study and Suggestions for Future Study 61
Expanding the Capabilities of the Research Tosl 62
A SELECTED BIBLIOGRA PHY 63
APPENDIX A - DERIVATION Of balance tag Naintenance EQUATIONS 66
APPENDIX B - hEIGHT OF THE SUBTREE DURING INSERTION ROTATION 81
APPENDIX C - BNF DESCRIPTION OF INPUT TO THE RESEARCH PROGRAN 86
APPENDIX D - AN ILLUSTRATION OF THE USE OF THE COMMAND LANGUAGE 92

LIST OF TAELES

TABLE Page
I. Test Case Information 56
II. Results fron Test Case 1 57
III. Results from Test Case 2 58
IV. Results from Test Case 3 59
Figure Fage

1. Binary Search Algorithm 6
2. Actions of Binary Search Algorithm 7
3. A Binary free 9
4. Binary Tree vs. Binary Search Tree 10
5. BST Representation of Table of Letters 10
6. Search Algorithm for Binary Search Trees 11
7. Insertion Algorithm for Binary Search Trees 12
8. Result of Inserting D into Binary Search Tree 13
9. Result of Deleting G from Binary Search Tree 14
10. Deletion Algorithm for Binary Search Trees 14
11. A Degenerate Tree 16
12. A Binary Search Tree Extended 17
13. A Worst Case AVL Tree with 12 Nodes 22
14. Balance Tag Maintenance in an $H B(k)$ Tree 27
15. Cases 1 and 3 as Mirror Images 28
16. Simple Rotation in an $H B(k)$ Tree 29
17. Balance T ag Maintenance After a Simple Rotation 29
18. Split Rotation in an $H B(k)$ Tree 30
19. Cases 2 and 4 as Mirror Images 31
20. Balance Tag Maintenance After a Split Rotation 31
21. An $\mathrm{HB}(1) \mathrm{Tree}$ 42
22. Resuit of Insertion Depends on Classification 42
23. A PHB(2,2) Tree After Insertion of a Node 45
24. The $P H B(2,2)$ Tree After Restructuring 46
25. A worst Case for $\operatorname{PHB}(1,1)$ Trees 47
26. Insertion Algoritha for $\operatorname{PHB}(1,1)$ Trees 49
27. Deletion in a $\operatorname{PHB}(1,1)$ Tree 50
28. Restructuring of a PHB(1,1) Tree After Deletion 51

Chapter I

INTRODUCTION

An immense information explosion in the $60^{\circ} \mathrm{s}$ and $70^{\circ} \mathrm{s}^{\circ}$ has intensified the issue of how to warehouse information: How may information be stored so that any particular piece or any related group of pieces may be quickly retrieved for examination?

Computer hardware technology has provided part of a solution: the appropriate warehouse, machines with an ever increasing capability of storing volumes of information in small amounts of space. Computer softuare technology has provided another part: methods or structures for organizing the information (data) held within the machine. The motivation behind this study concerns the evolution of one such class of data structures, height balanced binary search trees, and the development of a research tool to aid in the theoretical analysis of the behavior of the trees. Height balanced binary search trees have been well-documented empirically but lack a cefinitive theoretical explanation for their behavior.

Chapter II traces the development of height balanced binary search trees from the early days of computing during
which the impetus for binary search trees developed out of the binary search technique. The binary search tree as a logical entity was not presented until the early $1960^{\circ} \mathrm{s}$, but like an idea whose time has come, much attention was given to binary search trees in subsequent years.

Chapter III discusses the logical yariants of binary searchtrees. These structures, each of which balances the tree in some way, have been developed in the attempt to obtain the best-possible worst case. The height balanced binary search tree, one of the variants, is selected for a detailed discussion of its structure, maintenance, and perfornance.

Chapter IV presents a generalization of height balanced binary search trees, partially height balancec binary search trees. This logical structure has been proposed as an aid in the effort to rigorously define the performance of height balanced trees. Yet, a subclass of this structure may prove to have interesting properties in and of itself.

Chapter discusses the research tool developed to provide empirical data on the performance of binary search trees, height balanced binary search trees and partially height balanced binary search trees. An overviey of the logic design and program structure is presented along with preliminary instructions for using the programs that have been written.
Application of the research tool for providing empiri-cal data which may lead to a rigorous definition of the per-formance of height balanced binary search trees is also dis-cussed. Some initial results concerning the subclass ofpartially teight balancec trees which may become of someimportance in its own right are presented.Chapter VI summarizes the major ldeas and findings ofthe study. Suggestions for further study and for expandingthe capability of the research tool are also wade.

CHAPTER II

BINARY SEARCH TO BINARY SEARCH TREES

The foundation for the development of height-balanced binary search trees was laid in the early days of computing by the binary search technique. The binary search was well known in the early 1940's although the first formally published algoritha which works for any number of items in the table was presented in 1962 (13). Use of a binary search can reduce tremendously the amount of effort devoted to one of the most frequent activities for any collection of information - looking for a particular item based upon a particular, unique identifier, called the key, such as a name or an account number. If there is no particular ordering of the items of information, then one must use a 'brute-force' approach, conventionally called a linear search, to find the desired item: beginning with the first of all items and examine each one in turn until the desired item is found or the iten list is exhausted. This is somewhat akin to trying to find someone's phone number in a telephone directory in which people are listed in the order in which they requested phone service. The only recourse is to start with the first person listed and look through all people listed until the one desired is found.

The teolousness of such an approach should be apparent. On the average, approximately half the items are examined to find the desired item. In the worst case or if the item is not present, then the entire list of infordation is examined.

Order, lexicographic (dictionary-like) or numeric, greatly eases the burden of locating an item. If one is trying to find Peterson's phone number in the standard telephone directory, then one initially aims directly for the P's and thus eliminates the entire first half of the directory at once. If one happens to open to the N's then several pages are flipped in an atteapt to get to the fis, thus eliminating many more entries from consideration at once.

Binary Search Technique

This is the essence of the binary search technique given a list of items which are logically and physically in order, search for the desired iter by successively eliminating from consideration unneeded portions of the list. However, for computer applications, this approach is rigorously formalized as in Figure 1.

The actions of the algorithm searching for the key P in a table of letters are illustrated in Figure 2. It can be shown (13) that the binary search technique makes at most $l g(n)+1$ comparisons for an unsuccessful search and makes

```
BEGIN SEARCH(desired key,midpoint);
left_boundary <- location of first item;
right_boundary <- location of last item;
micpoint <- FLOOR((left_boundary+right_bounoary)/2)
DO UNTIL (Ieft_boundary > right_boundary);
    IF key at midpoint is desired key
            THEN END SEARCH;
    END IF;
    IF desired key < key at midpoint
        THEN right_bouncary <- aicpoint;
        ELSE left_boundary <- midpoint;
    END IF;
END DO;
key not found in table;
END SEARCH;
```

Figure 1. Binary Search Algorithm
$\lg (n)-1$ comparisons for the average successful searct ('lg' indicates the base 2 logarithmand will be used as such throughout the discussion without further explanation).

Figure 2. Actions of Binary Search Algoritha

The time complexity has been reduced from $O(n)$ for the brute force sequential search to $0(\log (n))$ for the binary search.

Restrictions

The binary search technique is the best possible search algorithm that proceeds solely by comparing (the desired key) to keys in the table (11). However, the restriction that the keys be stored consecutively in a specified order has different implications when one considers activities other than searching such as inserting a nex item or deleting an old one.

In order to insert (delete) an item one might do the following steps:

1. Determine the correct location for (of) the item. In terms of the binary search technique presented earlier, location $=$ right boundary upon teraination of an unsuccessful search for insertion anc for celetion location $=$ midpoint upon termination of a successful search.
2. Move all items between location anc the end of the table down (up) one position.
3. For insertion, insert the new item at location.

This is potentially a very time-consuaing task. Hith dynamic tables, tables which are constantly changinge reorganization time may far outweigh access time, time spent searching the table. For some applications this may be of
no concern, but for otters, such as an airlines reservation systen, reorganization time may interfere with the rapid access time cesirec. Hence, it woulc be desirable to develop an approach to information storage that would give not only sall search times but also small insertion and celetion tiaes for any item of information. The binary search tree is such an approach.

Tre Binary Search Tree

Windley (26), and Eooth and Colin (4) independently introduced binary search trees as logical anc physical structures in 1960. Many of the later publications reporting work concerning binary search trees reference these two articles. The concept of binary search trees has been ceneralized to binary trees. A binary tree is

> a finite set of nodes which either is emptye or consists of a (node called the) roct and two disjoint binary trees called the left and right subtrees of the root (12, p. 309).

Each node (or element) of the tree contains several itens of information: a key by which one may uniquely identify the node, and two "pointer" fielcs urich icentify (or point to) the locations of the root nodes for the left and right subtrees. 0ther information relevant to the key may be storec in a node, but it is not a concern of this discussion. Figure 3 illustrates a binary tree.

Figure 3. A Binary Tree

If the binary tree is to be used to maintain an ordered set of records, then a further requirement is that all nodes in the left subtree have keys which are less than the key in the root node in some sense whether numerically or lexicongraphically. In order to picture this, it is helpful to consider flattening the tree so that all nodes are aligned such that if node x were in the left subtree of node y, then node X is to the left of node y in the line. Such a binary tree is usually called a binary search tree (BST) or binary decision tree. Thus, if we let A and B represent the keys of the nodes in Figure 4, then Figure 4 (a), while a valid binary tree, is not a valid binary search tree. figuse 4 (b) is a valid binary search tree.

It may be helpful in understanding tow a binary sear ct tree is organized to consider that the binary search technoque discussed earlier imposes an implicit tree structure upon a linearly ordered set of items. The initial midpoint is the root of the entire tree; the midpoint of the half-

(a)

(b)

Figure 4. Binary Tree vs. Binary Search Tree
list to the left of the initial midpoint is the root of the left subtree of the root of the entire tree; the midpoint of the half-list to the right of the initial midpoint is the root of the right subtree of the root of the entire tree; and so on. This is illustrated graphically in figure 5.

Figure 5. BST Representation of Table of Letters

The node with key G is called the "parent' or immediate ancestor of the nodes with keys C and P. Conversely, the nodes with keys C and P are called 'siblings" and are
the immediate descencants' or 'offsprinc' of the node witt key G. In particular, C is the left offspring of G and F is the right offspring of G. Additionally, B, F, H, and V are leaf nodes (no offspring), and C, G, and P are interior nodes (two offspring).

It should be apparent that since each node now contains, or points to, the location of the next node to be examined, there is no need to require that the items be stored in order in consecutive locations. However, there must be a way to tell when there are no more nodes to examine; hence, a NULL value must be established for pointers which do not point to any offspring. The search algorithe for the binary search tree is illustrated in Figure 6.

```
BEGIN SEARCH(desired key,NODE,PARENT);
PARENT <- NULL;
NODE <- location of root of entire tree;
DO WHILE (NODE is not NULL);
    IF desired key = key at NODE
        THEN END SEARCE;
    END IF;
    PARENT <- NODE;
    IF desired key< key at NODE
        THEN NODE <- LEFT(NODE);
        ELSE NODE <- RIGHT(NODE);
    END IF;
END DO;
key not found;
END SEARCH;
```

Figure 6. Search Algorittw for Binary Search Trees

Insertion is a relatively straightforward procedure although one must be careful to maintain the order associated with the structure. Figure 7 presents the algorithm for inserting a new item into the tree. Let us insert the key D into the tree of Figure 5. The search algorithm would detect a NoLl value to the LEFT of the noce for F and return the $F A R E N T=$ location of F. The INSERT algorithm would then put D into the next available node anc this node woulc become the LEFT descendant of F. Additionally, F is no longer a leaf node but is now a semi-leaf node (one cescendant). The resulting tree would then appear as in Figure 8.

BEGIN INSERT (new key);
CALL SEAFCH(new key, node,parent);
If new key < key at parent
THEN LEFT (parent) = next available node;
ELSE RIGHT (parent) = next available node;
END IF;
Place ney key in next available node; END INSERT;

Figure 7. Insertion Algorithm for Binary Search Trees

Deletion of a node is more complicated, however. for instance, if one were to delete the node with key G from the tree in figure 8 , then its descendent subtrees would no longer be subtrees of a coamon root. They would be 'dangling subtrees' or distinct binary search trees with no

Figure 8. Result of Inserting D into Binary Search Tree
logical interconnection. Some way must be found to maintain the relationship between all nodes remaining in the tree. The problem is usually approached as follows:

1. Find the largest (smallest) key in the LEFT (RIGHT) subtree of the node to be deleted.
2. Substitute this node for the one being deleted being careful to reconnect all subtrees of the two nodes involved. (This substitution involves changing at most four pointers only.)
3. Return deleted node to an available pool.

The result of this algorithm after deleting the node G from Figure 8 is shown in Figure 9. Stated more formally, the algorithm for deletion is illustrated in Figure 10.

Figure 9. Result of Deleting G from Binary Search Tree

```
BEGIN DELETE(old key);
CALL SEARCH(Old key,NODE,PARENT);
Find largest key in LEFi suttree of NCDE;
RIGHT(parent of largest key) <- LEFT(largest key);
LEFT(NODE of largest key) <- LEFT(NCDE);
RIGHT(NODE of largest key) <- RIGHT(NODE);
Return NODE to available pool;
END DELETE;
```

Figure 10. Deletion Algorithm for Binary Search Trees

Time Complexity of Binary Search Iree

Algorithms

A reasonable question that must be asked involves the time complexity of the algorithms associated with binary search trees. How long coes it take to search the tree, to insert a new item into the tree, to delete an item?

For both deletion and insertion tre average time complexity approximates that for an unsuccesful search. The changes made to the pointers are done in a constant amount
of time which is negligible for trees containing large numbers of nocies.

The time complexities associated with the best, average, and worst case, in terms of average search tirne, binary search trees have been extensively documented (4, 5, 8, 13, 18, 21. 26). If one considers all nodes on one ros' to constitute alevel., then the best case binary search tree has all leaf and semi-leaf nodes on at most two adjacent levels. This is sometimes termed complete binary tree. This corresponds precisely to the binary search tree interpretation of the binary search technique. Tre tiae complexity for searching the tree is $0(\log (n))$ where n is the number of nodes in the tree.

A worst case, called a degenerate" tree, arises when all keys are inserted in order. If the keys in figure 5 were inserted in lexicographic orcer tren the tree would appear as in figure 11. Searching a degenerate tree structure is equivalent to the sequential search discussed earlier; the time complexity is $O(n)$.

However, if one assumes that the keys are inserted rancomly then it can be proved that the time complexity approximates that for the best case since well balanced trees are common and degenerate trees are rare (13).

Figure 11. A Degenerate Tree

Terminglegy in Eqpirical teasurements

Much work in cata structures ras been cone to try to guarantee that a degenerate tree never occurs. But before discussing some of this work, if would be helpful to define the terms commonly used in discussions of empirical performance of the data structures.

Since tre time complexity for the algorithas for binary search trees are directly proportional to the number of comparisons mace during searching tre tree, performance concepts which may be measured empirically have been well-defined (although minor variations still exist). rrese
include the height, the internal path length, and the external path length.

The level of a node corresponds to which 'row' it is on, the root node being level 1. Thus, in figure 11, B is on level 1 , C is on level 2, and so on. The height of a binary search tree or a subtree is the number of levels in the tree or subtree.

In order to formalize an empirical measurement for successful anc unsuccessful searches, it is helpful to introduce the concept of external nodes. An external node is a special node used to incicate a NULL subtree in the graphical representation of a tree. of the nodes in figure 12 (a), nodes A and D have two NuLL subtrees, and node C has a NULL LEFT subtree. Figure 12 (b) shous the representation for and placement of external nodes. Nodes A, B, C, and D are now terred internal nodes.

(a)

Figure 12. A Binary Search Tree Extended

For all trees, the following relationship holds:

> number of external nodes $=$ number of internal nodes +1 .

Figure 12 (b) has been termed an extendec binary tree. The path length between two nodes is the difference between their level numbers. Thus, in figure 12 (b), the path length between E and D is 2 , between D and one of its external noces, it is 1. The path length may also be thought of as the number of additional comparisons needed to locate a particular node in a subtree frow the root node of the subtree. The internal path lengtr of a tree with n nodes, $I(n)$, is the sum of all the path lengths between the root node (level 1) and each internal node. Thus, for figure 12 (b),

$$
I(n)=1+1+2=4
$$

The external path length, $E(n)$, is the sum of the patt lengths between the root node (level 1) and each external node. Thus, for Figure 12 (b),

$$
E(n)=2+2+2+3+3=12
$$

The relationship between the internal and external path lengths is always

$$
E(n)=I(n)+(2 * n)
$$

It should be apparent that the average number of comparisons required for a successful search, $C(n)$, is

$$
c(n)=1+(I(n) / n)
$$

One comparison is required to get to the root of the tree and decice which subtree to examine next. The expression $I(n) / n$ gives the average number of comparisons reguired to get from the root of the entire tree to any other particular internal node in the tree. Similarly, the average number of comparisons required for an unsuccessful searche ce(n), is

$$
C^{*}(n)=E(n) /(n+1)
$$

C(n) is a measure of the relative time required to retrieve a particular node fromatree. ce(n) is a measure of the relative time required to insert or to delete a node or to search for a node that is not present. These measures aid in comparing the relative efficacy of different algorithms designed to manipulate trees and nill be used throughout the remaincer of the ciscussion.

CHAPTER III

HEIGHT BALANCED BINARY SEARCH TREES

Even though, as was stated above, randomly constructed binary search trees behave quite well and degenerate trees rarely occur, there still remains the issue of degenerate trees. If, as is quite possible in real" applications, items are enterec in order, then this woncerful construct, the binary search tree, has saved nothing except for the occasional random insertion. one would like to be able to guarantee a complete binary tree cone with all external nodes on at most two adjacent levels such as the binary tree interpretation of the binary search technique) all the time since this would save considerable searching effort. However, the time involved in maintaining this guarantee shoulc not outweigh the time saved during a search.

One class of data structures that has been proposed to solve this problem is the class of weigtt balanced trees of which the optimal binary search tree is an example. weight balanced trees use as a guideline the adage that 80% of the activity occurs in 20% of the file. Information about frequency of access for each key is used to construct and reconstruct the tree so that the most frequently accessed
keys are near the root level. This considerably reduces the average search time for a set of keyswith known frequencies. Weight balanced binary search trees are a nice solution if one has a static file anc can safely project the frequency of access to each key. However, for dynamic files, ones for which insertion and deletion are major activities, and frequency of access to any particular key cannot be predicted, weight balanced trees create more work than they save since access frequencies must be dynarically maintained and the entire tree aust be constantiy checked for optimality.

HR(k) Binary Search Trees

A nice solution to the problem of maintaining dynamic trees so that degenerate trees never occur but maintenance requires only local adustrent around a node and one or two of its descendants, was first proposed in 1962 by two Russian mathematicians, Adel'son-Vel'skii and Landis (1). The binary tree structure they proposed, subsequently termed an AVL tree, constrains the relative heights of the LEFT and RIGHT subtrees of the nodes. The height of the left subtree of a node may differ by no more than one from the height of the right subtree. This constraint does not always result in a complete binary tree. Figure 13 illustrates a worst case, in terms of average search path length, $C(n)$, for an AVL tree with 12 nodes. In a complete binary tree, 12 nodes
would require only tour levels. However, the performance of an AVL tree approximates the best possible performance of a complete binary tree and requires only two bits per node to indicate whether the left subtree is longer than, balanced with, or shorter than the right subtree.

Figure 13. A worst Case AVL Tree with 12 Nodes

This notion of 'height balanced" was generalized in 1973 by Foster (7) to permit relative height imbalances greater than one. These trees are called $H E(k)$ trees where k, the allowed imbalance, is an arbitrary compromise between short search time and frequency of restructuring. alL trees nay be considered a special case of HB (k) trees - the HB (1) subclass. However, $H B(k)$ trees require more storage per node since the relative imbalance may be between 0 and k for
either subtree. The following discussion of structure and maintenance requirements applies equally to AVL and HB(k) trees.

Structure and Vaintenance

If one is going to guarantee trat the difference between the heights of the left and right subtrees of a node is no more than k, then one must maintain information about the teights with the noces. One approach to this problen is to maintain the actual height of the (sub)tree rooted at a given node. If one defines the keight of a null descendant to be zero, then this may be calculated for all internal nodes simply according to the rule:

Height(node) $=$ MAX (Height(left cescencant), Height(right descendant)) + 1 .

A noce whick is critically unbalanced, whose subtrees tave relative heights which violate the balance constraint, may be detected by the following test:

ABS (Height(left descendant) - Height(right descendant) , balance constraint k.

Insertion and deletion may quite possibly change the heights associated with the nodes along the search path and create a critically unbalanced condition for some node. Thus, after insertion or deletion of a node, one must 'backup' along the search path modifying the heights according to the above rule until one of two trings occur:

1. The height remains the same for some node.
2. A noce is detectec to be critically unbalanced.

In trefirst case, cne may terminate tre backup for height maintenance. In the second case, one must restructure the tree in order to bring it back into compliance with the balance constraint.

It should be evident that this involves a great deal of work. There are potentially four accesses per node along the search path: one during the searct, and three during the backup procedure. It seems reasonable to expect that this mettod would cetract from the usefulness of this data structure.

Fortunately, there is a second approach to the maintenance of teight information uhict does not involve such a great amount of effort. This approach maintains a 'balance tag' for each node whict is a reasure of the relative difference in heights between the left and right subtrees of the node. The balance tag may be defined as follous:
balance tag(node) $=$ Height(right descendant) Height(left descendant).

Thus, three cases are established:

1. balance tag(node) $=0$: the heights of the two subtrees are equal,
2. balance tag(node) < 0 : Height(left descencant) $>$ Height(right descencant), called left heavy,
3. balance tag(node) $>0:$ Height(right descendant) > Height(left descencant), called right heavy.

Backtracking from the inserted node along the path of insertion feletion is still required in order to maintain the balance tags.

One should question why the seconc approach is better than the first, since the second approach defines the balance tag in teras of the heights of the subtrees and backtracking is still required. The answer is that the height need not be maintained; the balance tags may be maintainec based upon their previous values. Until backtracking is terminated for insertion, if the new node mere inserted in the right subtree, then the height of the right subtree is one greater than before; hence, add one to the balance tag. If the new node were inserted in the left subtree, then the height of the left subtree is one greater than before; hence, subtract one from the balance tag. Deletion from the left (right) subtree is equivalent to insertion in the right (left) subtree. Thus, backtracking involves only one access per node instead of three as with the first approach.

Insertion in an $H B(\underline{k})$ Einary Search Iree

Basic insertion is identical to that for unconstrained binary search trees. After insertion, the backup is terminatec if either of two cases occur:

1. At any unbalanced node along the search path, the new node were inserted in the shorter subtree. That is, if a node were left heavy and the new node were inserted in the right subtree, or if a node were right teavy ano the new node were inserted in the left subtree, the backup daintenance may be terminatec.
2. If a node is unbalanced to the point of violating the balance constraint. Two simultaneous concitions cetermine this case:
a. ABS (balance tag(node)) = balance constraint,
b. The noce was insertec in the longer or heavy subtree.
In this case, the tree must be restructured to conform to the constraints.

Figure 14 illustrates, in $F D L$ form, the algorithm required to maintain balance tags in an $\mathrm{HB}(\mathrm{k})$ tree.

Bestructucing

When a critically unbalanced node is encountered, that portion of the tree rooted at the critical node must be restructurec or rotatec so that the tree conforms to the given balance constraint. However, this restructuring must be done in a certain way in order to maintain the orcer associated with the nodes. Restructuring entails three steps:

1. Rearrange the nodes so that the subtree initially rooted at the critical node conforms to the balance constraint.
2. Reconnect any uninvolvec descencants of the nodes directly involved that have been disconnected during the restructuring.
3. Modify the balance tass of the noces involved to reflect their new positions. As during
backtracking, this may be done based on their previous values. (It is not intuitively obvious how this may be done during rotation. A demonstration of this fact way be found in Appendix A.)
```
BEGIN BTAG_NAINTENANCE;
DO WHILE (Btag(NODE) < balance constraint OR
    insertion occurred in the shorter subtree);
    IF insertion occurrec to the rioht of this NODE
        THEN Increment Etag(NCLE) by 1;
            IF NODE is now balancec or still left heavy
                THEN END BTAG-MAINTENANCE;
            END IF;
        ELSE Decrement Btag(NODE) by 1;
            IF NODE is now balanced or still right heavy
                THEN END BTAG-NAINTENANCE;
            END IF;
    END IF;
    Back up to next previous NODE;
END DO;
Tree violates balance constraint at NODE;
END BTAG-NAINTENENCE;
```

Figure 14. Balance Tag Maintenance in an HB(k) Tree

At most three nodes along the search path are involved in this restructuring - the critical node, the imaediate descendant of the critical node and the offspring of the immediate cescencant (the grand-descendant) cf the critical node.

Four cases may be identified in teras of the nodes involved as having differing restructuring reguirements:

1. Critical nooe is left reavy, cescencant of the critical node is left heavy.
2. Critical noce is leit reavy, cescencant of the critical node is right heavy.
3. Critical node is rightheavy, descendant of tre critical noce is rictt tecuy.
4. Critical node is right heavy, descendant of the critical node is left heavy.

Case 3 is the mirror image of case 1 (see figure 15). Fiqure 16 lllustrates case 1 , a simple rotetion. Figure 17 illustrates, in PDL form, the balance tag maintenance requirements for the nodes involved in Case 1 or case 3 restructuring. Case 4 is the mirror inage of Case 2 (see Figure 18). Figure 19 illustrates case 2 restructuring, a split rotation. split rotation involves a subcase then cealing witt balance tags. figure 20 illustrates, in pDL form, the balance tag maintenance requirenents for the nodes involved ir Case 2 or Case 4 restructuring.

CASE 1

CASE 3

Figure 16. Simple Rotation in an HB(k) Tree

```
BEGIN SIMPLE-BTAG;
    /*comment: let
        CN represent the critical node
                        DCN represent the cescencant */
IF insertion occurred right of CN
    THEN Btag(CN) <- balance constraint - Btag(DCN);
        Decrerent Btac(DCN) by 1;
    ELSE Etag(CN) <- -balance constraint - Etag(DCN);
    Increment Btag(DCN) by 1;
    END IF;
END SIMPLE-ETAG;
```

Figure 17. Balance Tag Maintenance After a Simple Rotation

Figure 18. Cases 2 and 4 as Mirror Images

Figure 19. Split Rotation in $3 n \mathrm{HB}(\mathrm{k}) \mathrm{Tr}$ (fe
it can se shown that this restructuring results in a (sub)tree of the safe height as the (sub)tree before restructurinc (See Apeencix B for a cetailed presentation of this (act.) Thus, after restructuring, the insertion may be terminatec.

```
BEGIN SPLIT_BTAG,
    \(/^{*}\) commert - \(1 \in t\)
                            Ctiepresent the critical node
                    CON represent tre cescendant
                        GDCN represent the grand-descendant
    * 1
SELECT;
    WHEN(insertion occurred right of both cN and GDCh):
        Etac(CN) <-balence constraint - 1-Etag(gdcn);
        Increment stac(DCN) Dy \(1 ;\)
        Btag(GDCm) s- AN (balance constrairt - 1 ,
        Etag(CLCN) )
    WHEN(insertion occurtec right of CN arc lett of GOCN):
        Save Etag(UCN);
        btag(CN) <- Dalance constraint - 1;
        Btac(DCN) \(<-\operatorname{Ptag}(D C N)-8 t a g(G D C N)+1 ;\)
```



```
    Whentinsertion occurrec left of both CN anc GDCN):
        BTag(CN) (-1 - balance constraint - Ftag(CDCN);
        Etag(GDCA) < \(\mathrm{HAX}(B t a g(G D C N), 1-\infty \quad\) ance constraint);
        Decremenc btag(DCN) by 1 :
    othervise: /*comant - insertion occurred left of cn
        ancerict of GOCN*/
        Save ptag(0CN);
        Btag(Cn) <- -balancec constraint;
        Btac(DCN) \(<-8 t a c(D C N)-B t a g(G D C N)-1 ;\)
        Etag( \(C D C N\) ) \(<-\operatorname{NiN}(S a v e d \operatorname{Etag}(D C N)-1, \operatorname{tag}(G D C N)) ;\)
END SELECT,
END SPLIT_DTAG;
Figure 20. Palance Tag vaintenance After a Split
        Rotation
```

Deletiod in an HB(k) Tres

Deletion in an $H B(k)$ tree is more complicated than insertion. Insertion always inserts a new noce in an external node position and at most one rotation is required to bring the tree back into compliance with the balance constraint. Deletion removes an internal node which may tave one or two descendant subtrees. These dangling subtrees must be reconnected to the tree in the proper manner to prevent violation of the balance constraint. This way involve multiple rotations as shall be shown.

Leaf ys. Non=leaf
-
Although once a node has been deleted, one must backtrack along the search path in order to waintain the balance tags, deletion presents differing initial problems depending on whether a leaf nocie (no descendants), a semi-leaf node (one descendant), or an interior node (two descendants) is being deleted. These differing requirements are outlinec belcw:

1. If a leaf node is deleted, set its parent's pointer to NuLL. Prepare to backtrack starting at the parent node.
2. If a semi-leaf node is celetec, set its parentis pointer to its non-null pointer. Prepare to backtrack starting at the parent node.
3. If an interior node is deleted, then do the following:
a. Finc a node witb which the noce to be deleted may be replaced keeping track of the search path. This will be the noce with the largest (smallest) key in the left (right) subtree. The usual approach is to select the longer subtree (tte heavy side of the node to be deleted).
b. In effect, delete the replacenent node from its present position. That is, delete the node but save the value of the key (anc any information associated with the key).
c. Delete the intencec noce by substituting the replacement node. The balance tag of the deleted node becomes the balance tag of the replacement node.
d. Prepare to backtrack starting at the original parent of tre replacement node.

Several different cases may arise during backtracking
They are as follows:

1. The node was balanced before deletion. Adjust the balance tag to reflect in which subtree the deletion occurred (the opposite subtree is now longer by 1). Terminate the algorithmo
2. The node was left or right heavy before deletion; deletion occurred in the longer or heavy subtree. The heavy subtree is now less heavy (shorter) by one. The node becomes less unbalanced by 1. Continue backtracking.
3. The node was left or right heavy before deletion; deletion occurred in the shorter subtree. The noce is now more unbalancec in the same direction as before (the shorter subtree has become one more level shorter than the longer subtree). Two subcases may be recognized:
```
a. The balance tag(noce) was < balance
    constraint. The nes balance tag
    remains <= balance constraint;
    hence, terminate the algorittm.
b. The balance tag(node) was = balance
    constraint. The node becomes
    critically unbalancec. Tre tree
    violates the balance constraint.
    Restructure the tree. After
    restructuring, continued
    backtracking may or may not be
    required.
```

When restructuring is required, the nodes involved are not along the search path except for the critical node itself. Tris is different from insertion but is as expectec since the subtree containing the search path has been shortened in height to the point of causing the critical node to violate the balance constraint. thus, the other subtree is the critically heavy one. fith this difference in which node is meant by tre immediate cescendant of the critical node in mind, there are four cases for restructuring which correspond to those for insertion:

1. The critical node is left heavy; the descendant of the critical node is left heavy or balancec.
2. The critical node is leftheavy; the descendant of the critical node is right teavy.
3. The critical node is rightheavy; the descendant of the critical node is right heavy or balanced.
4. The critical node is rightheavy; the descendant of the critical node is left heavy.

Note that the only difference between these cases and those for insertion is that the subtrees rooted at the descencant of the critical node may be balanced. This case may be rotated either way, simple (Cases 1 and 3) or split (Cases 2 and 4). It is placed with the simple rotation cases merely because these involve less work.

The rearrangement of the nodes is hancled in identically the same way as for insertion with the exception of choosing the grand-descendant of the critical node during split rotations. In insertion, the grand-descendant is along the search path; in deletion, the grand-descendant is chosen from the heavy side of the descencant.

Balance tag maintenance is also similar to that done for insertion if one considers that inserting a new node in the right subtree of some existing node is akin to celeting a node from the left subtree. A difference arises because of the possibility that the descencant of the critical node may root balanced subtrees (balance tag $=0$) before restructuring. In this case, only, backtracking may be terninated immedately since the rearrangement will result in a (sub)tree of exactly the same height as the subtree rooted at the critical node before deletion.

Performance of $\mathrm{HB}(k)$ Trees

The theoretical analysis that has been done for $H B(k)$ trees has not been supported by empirical observation (7,
13). Some of the empirical results that have been reported are outlinec below.

Foster (7) found that, for insertion, letting k be as large as four increased the average search path length by only one wrile the number of restructurings decreased by approximately 43; Work reported by Van Doren (24) complemented Foster's findings for insertion anc extended the results to deletion. The effect of a change in k under deletion follows a pattern similar to that for insertion: increasing k cecreases the number of restructurings required. Van Doren also found that increasing k increases the number of nodes exanined during the backtracking operation. This may offset the gain realized by fewer restructurings. Karlton, Fuller, Scroggs, and Kaehler (10) have provided the most complete set of empirical observations concerning the performance of height balanced trees. Part of their work substantiates the results reported by foster and Van Doren. Cther of their findings follow:

1. The average number of rotation seefis to be independ ent of the number of nodes in the tree for trees containing more than 30 nodes.
2. The number of nodes visitec during backtracking is independent of the the number of nodes for insertion but for deletion it increases slowly as the number of noces increases.
3. The average number of nodes visited during backtracking is less for deletion than for insertion, for large k (balance constraint).*
4. Deletion is more time consuming than insertion but search time is the cominant factor in both operations.

Abstract

Experiments performed by Baer and Schwab (3) corroborate previously reported fincings.

Alternatives to $H B(k)$ Ealanced Einary
Search Trees

The work done on AVL and $B E(k)$ trees has stinulated the development of alternative solutions to the problem of balancing a binary tree structure based on information about path lengths and heights of subtrees. Nievergelt and Reingold (19) introduced bounded balance or $B B(a)$ trees where 'a' is a restriction on the relative number of nodes in the left and right subtrees of a noce:
a < (number of nodes in the left subtree +1) ((total number of nodes +1) $\leqslant=1$ - .
$B B(0)$ corresponds to an unconstrained binary search tree; BE(1/2) corresponds to a complete binary search tree. The authors admit that, based on empirical evidence, search time is somenhat worse for $\mathrm{EB}(\mathrm{a})$ trees than for HE(k) trees but they claim several acivantages of $B B(a)$ trees over $H B(k)$ which may compensate for this:

1. Such important operations as fincing the kth data element, or the gth quantile, or how many elements there are lexicographically between x and y, can all be cone in time $0(\log (n))$ (in a $B B(a)$ tree), while they seem to require time $O(n)$ (in an $H E(k)$ tree), and
2. The smallest possible change in k (for HB(k) trees) changes the class of trees very drastically, and thus the compromise betueen search time and rebalancing time cannot be finely tuned (as it can be for $\mathrm{ER}(\mathrm{a})$ trees).

Work cone by Van Doren anc Gray (25) supports the statec disadvantage but no sork has been reported to support the claimed advantages. More extensive research and analysis is required before the advantages and disadvantages can be fairly examined.

Pursuing an idea suggestec by Knutt (13), Hirschberg (9) investigated one-sided height-balanced or CSHB trees which are a restricted subclass of AVL trees. oSHB trees require that the right subtree never has a smaller height than the left subtree. In other words, the nodes may be balanced or right heavy only. Although fast search time is maintained, insertion requires time $O(\log (n) * * 2)$ in an OSHB tree. Later work by Zweben anc McDonalc (27) shous that deletion of an arbitrary node may be done in time $0(\log (n)$). OSHB trees saves one bit of storage per node uben comparec to the AVL trees introduced in 1962, but the trade off required for insertion may not be worth the storage saved. Hirschberg and Zweben and McDonald leave open the question of the actual (empirical) behavior of OSHB trees.

Drawing on the workwith osHB trees, ottmann, Six, and Hood (22) developed right brother or RB trees. The authors indicate that $R B$ trees are a subclass of brother trees unich they had presentad earlier. A brother tree requires that all leaf nodes be on the same level anc that each node with only one descendant has a sibling (brother) with two descendants. Right brother trees qualify the latter
condition, requiring that each node with only one descendant must have a right sibling (brother) with two descendantse Ottmann, Six, and Hood detail insertion and celetion requirements and theoretically prove that both insertion and deletion may be accomplistec in $O(\log (n))$ time although the algorithm for insertion is more complex. They also derive bounds for the height of the tree:
$\operatorname{CEIL}(1 g(n))<=$ height $<1.44-1 g(n+1)-0.32$.

Empirical verification of these clams is lacking.
Another developrent in balanced trees is Power k or Pk trees introduced by Luccio and fagli (16). Power trees waintain balance information as for avi trees but only for the set of nodes on selected paths from the root to the leaves identified through the parafeter k. The paths are identified as follows:

1. For $k=0$, there exists at least one path $=$ the height of the tree such that all nodes on the path satisfy
| balance tag(noce) $\mid<=1$,
and
2. For $k>0$, all paths of length j where
height of the tree - $k+1<=j \leqslant=$ height of the tree
are such that all nodes on each path satisfy
| balance tag (node) $\mid<=1$.

In other words, balance is maintained only for those nodes which lie along a path originating from the root of the entire tree which has reached a specified level relative to the reight of the tree. Since the heigtt of a tree is a dynamic quantity, the set of nodes for which the balance is maintained is also cynamic. Theoretical determination of the following guantities are obtained for fo trees under insertion only:

1. Norst case path length $=\operatorname{SQRT}(2 * n)$, anc
2. Average search length for a worst case tree $=$ 2/3 (S CRT(2*n)).

As for AVL and $H Q(k)$ trees, average search length for a Pk tree, assuming all key sequences equally likely, has yet to be successfully analyzed. Empirical results show that PO trees approximate the behavior of AVL trees but orastically recuce the amount of restructuring required. The difficult question of deletion in a Fk tree is left open.

It is someurat difficult to compare these alternatives since all of them lack a definitive analysis of their average behavior just as $\mathrm{HB}(\mathrm{k})$ trees do. As aresult of this lack, it is difficult to compare the advantages and disadvantages between the classes of height balanced trees since there is no evicent relationstip between the constraining parameters. However, a generalization of he(k) trees may provide the impetus for a rigorous analysis of HB(k) trees.

CHAFTER IV

partially height balanced trees

A generalization of $H B(k)$ trees, partially height balanced (PAB) trees, may provide empirical guidance to the development of a rigorous theoretical analysis of the behavior of $H B(k)$ trees (23). PHB trees maintain the height balance criteria of HB trees but restrict the effect of the criteria to internal nodes within a specified path length to an external node. The notation used is PBB(k1,k2) where $k 1$ is the height balance constraint and $k 2$ is the path length constraint, the path length to an external node within wich a given internal noce must lie if the height balance constraint is to apply.

To illustrate the effect of $k 2$ on $H B$ trees, consider the $\mathrm{HB}(1)$ tree in figure 21. This way also be classified as a PHE(1,1) tree. Assume that key A is inserted into this tree. If classified as an $H B(1)$ tree, then Figure 22 (a) nould be the result; but if classified as a $F B B(1,1)$ tree, then Figure 22 (b) woulc be the result.

One can express an B tree via a PHB tree in the following manner:

```
HB(k)=PHB(k,i)
```


Figure 21. An $\mathrm{HB}(1)$ Tree

Figure 22. Result of Insertion Depends on Classification
where i" stands for infinity.
The PHB balance constraint is applied to all internal nodes within an infinite path length of an external node which is all internal nodes. Similarly, an unconstrained binary search tree is equivalent to a $\operatorname{FHE}(i, k)$.

Structure and Maintenance of PHB(k1,k2)
Trees

Nodes of a PHB tree must contain the information required for nodes in an HB tree. In addition, in order to be able to maintain a PHB tree, one must kncy the minimum length to an external node of every internal node in the tree. Hence, the node structure must contain this information.

The question to be answered is how to maintain the path length to an external node. It should be apparent that the minimum path length to an external node is depencent on the minimum path lengths to external nodes of its two immediate descendants. If de define the path length to an external node from an external node to be 0 , then this dependency can be expressed as:
$\operatorname{mpl}(n o d e)=M I N(m p l(l e f t$ cescencant),mpl(right descendant)) + 1
for any internal node (mpl stands for minimum path length to an external node).

Algorithms for PHB(k1,k2) Irees

The search 91 gorithm is identical to that for $H E$ trees. The differences in the insertion and deletion algorithms arise in answering the question is this tree critically unbalanced but not in the placerent or reapol of a node.

In order to determine if the tree is critically unbalanced, one must first maintain the balance tags associated with each noce in the PHB tree as for those in an HB tree. at the same time, one must maintain the mpl's for each node. This must be done through the cependency expressed above between one node's mpl and its immediate descendants' mplis, since it does not appear that there is a relationship between a node's mpl before insertion/deletion and after as there is for a node's balance tag.

As to whetter or not the insertion/celetion resulted in a critically unbalanced condition, in fPE trees, the balance tag associated with any node may violate the balance constraint but the distance to an external node may exceed that specified by the path length constraint thus obviating restructuring. Hence, before a PHB tree is declared to be out of balance, the critical node must meet the following criteria:

> 1. Balance tag(node) > balance constraint.
> 2. Upl(noce) <= path length constraint.

For balance tag maintenance in $H B$ trees, it is not necessary to backtrack past the critical noce. Houever, for PHB trees it appears that backtracking must continue until the balance tag indicates that the height of the subtree rooted at a node has not changec. Minimum path length to an external node would also require backtracking past the
critical node since the mp determines which nodes are eligible for restructuring. Consider the $\operatorname{PHB}(2,2)$ tree of Figure 23 which depicts the state of the tree just after insertion of node B and balance tag maintenance to node D (the critical node).

Figure 23. A $P H B(2,2)$ Tree After Insertion of a Node

The balance tag of node D violates the balance constraint and its $m p l$ is less than the path length constraint. Hence, the tree must be restructured. Figure 24 depicts the tree after restructuring. Note that the balance tags for node E, one level back from node D, the critical node, remains unchanged; however, node E's mol has changed from 2 to 3. Whereas before insertion of node B, node E's mol would have permitted its participation in restructuring if required,
after insertion of node B, node E's mel obviates its involvement in restructuring.

Figure 24. The PHB(2,2) Tree After Restructuring

By extension of this example, it should be evident that it is necessary to backtrack along the search path for insertion/ deletion past the critical node in order to maintain the structural information associated with each node. Thus, for FHE trees, backtracking involves maintenance of two quantities munich have different requirements for terminating their maintenance s Balance tag maintenance may be terminated under the same conditions as for HB trees. Minimum path length maintenance continues until a node is encountered whose pl does not change during maintenance. If one noceis mel does not change then its parent's mel also will not change.

PHB(1,1) Trees

Of particular and additional interest is the subclass of PRB trees known as PHB(1,1) trees. The reasons for this interest are (23):

1. Maintenance of $\operatorname{PHB}(1,1)$ trees coes not require the generalized massively detailed algorithms of PHB(k1,k2) trees. The insertion algoritra in particular is ruch simpler since:
a. Restructuring does not require dangling subtree consicerations.
b. Bal ance tags need not be raintained since balance way be easily computed as a function of insertion searching.
2. Its worst case (see Figure 25) is not as bad as an unconstrained binary search tree.
3. For moderately sized, randomy constructed treas, the expectec search performance for PHB(1,1) trees is only slightly worse than $\operatorname{HB}(1)$ trees.

Figure 25. A Worst Case for PHE(1,1) Trees

Algorithms for PEB(1,1) Irees

The PHB(1,1) insertion algorithm is straightforward and is given in Figure 26. The information required from searcting the tree for the key is given in the argument list to SEARCH; SEARCH itself is not shown. Deletion presents a more complex problem. Without balance information, it is difficult to determine how to restructure an unbalanced tree or how many restructurings are required. Consider celeting the key I from the $F H E(1,1)$ tree of Figure 27 (a). Froceeding as for deletion in other binary search trees, one replaces 1 with $\theta ;$ Figure 27 (b) is the result. The subtrees of node G now violate the balance constraint. This could be easily ceterminec by looking ahead one level: if the non-null descendant has a descendant, then the (sub)tree is out of balance. However, how coes one decide how to restructure the tree? Should a simple or split rotation be performec? A simple solution is to co a simple rotation then look ahead one level to determine if the new subtree rooted at the critical node is unbalanced; if so, then do a simple rotation; then look ahead'... and so on, until the subtree is not critically unbalanced.

A much cleaner solution to the problea of deletion fol-

10ws:

1. Delete the desired key by replacing it with the largest key in the left subtree.
2. If the original PARENT of the replacement node now has tuo NULL links, then terminate the algorith⿴囗 otheruise,
3. Remove the parent of the replacement node by replacing its parent's pointer with its nonnull descendant.
4. Reinsert the Parent in the subtree rooted at the descendant. This permits the insertion algorithm to restructure the tree where appropriate.
```
BEGIN INSERT (cesirec key);
CALL SEARCH (desired key,NODE,PARENT,GRANDPARENT,
    GREAT_GRANDPARENT);
IF desired key < key(PARENT)
    THEN attach desired key to LEFT(PARENT);
    ELSE attach desired key to RIGGT(FARENY);
END IF;
IF GRANDPARENT is NULL OR (GRANDPARENT
    is not NULL AND does not have a NULL link)
    THEN END INSERT;
END IF;
If PARENT and grandfarent have a NULL link
    on the safe sice
    THEN Perform a simple rotation;
    ELSE Perform a split rotation;
END IF;
END INSERT;
```

Figure 26. Insertion Algorithm for $F A B(1,1)$ Trees

Let us assume that in Figure 27 subtree 1 looks like this:

and that subtree 2 looks like this:

(a)

(b)

Figure 27. Deletion in a PHB(1,1) Tree

The result of this solution applied to figure 27 is pictured in figure 28. Occasionally, this approach restructures the tree (reinserts a node) unnecessarily; however, in order to prevent this, a one-level look ahead must be done. This would be extra work for those cases in which reinsertion
must occur. intuitively, it seems that an occasional unnecessary reinsertion of a note creates less extramork.

Figure 28. Restructuring of a PHE(1,1) Tree After Deletion

Performance of $\mathrm{FHB}(\mathrm{k} 1, \mathrm{k} 2)$ Trees

A formal theoretical analysis of the performance of pB trees has been presenter only for $\operatorname{PHP}(1,1)$ trees (23). Unfortunately, preliminary empirical results did not support the analysis. Use of a research tool to provide empirical data regarding height balanced trees may guide further development in this area.

CHAPTER V

A RESEARCE TCCL FOR HEICHT BALANCED

TREES

Abstract

Basically, the research tool is a set of algorithms designed to build various height balanced trees with exactly the samekeys and tren give performance measures, suct as internal and external patis lengths, and number of restructurings required, so that the relative merit of each class of binary search trees way be corpared. such empirical data, gathered in an orderly fashion, azy also quide the theoretical analysis of the behavior of the trees. At the present time, insertion and deletion algorithms have been implementef for the general classes $H B(k)$ anc phB(k1, f2), and for the specific trees AVL anc $\mathrm{FHB}(1,1)$, and the unconstrainec binary search tree. It is intercec that the programs be capable of being expanded and developed inco an ongoing project with algorithms for other classes of height balancec trees being ipplefentec. The programs arewritten in the ph/I progranming language. A copy may be obtained tracugh the conguter science Defartment of oklahoma state University.

Logic Design

A research tool must encourace its effective use by persons other than those who originally designed it. In accordance with this, the following points were considerec in designing the driving frogram and its input reguirements:

1. The explanation of how the input should be prepareo stould not raquire sections of the driving es docuitertation.
2. Freparing the input should not require an intimate knowlecce of input list formats used in the driving prograf.
3. Input should be free-form (no column alignment requirements) to avcic errors trat fixed-form nay create.
4. Defauits on certain parameters shouid be allowet.
5. Expansion of input capabilities or a change in how solbething is specified should be easy to implenent within the driving program.

For these reasons, the author chose to design and implement a saill comanc languace tor use with the research tool. A signal character is used to simal that a keyword is to follow; trerefore, ro colunn requirenents aust be enforced. A complete Backus-Naur form (ENF) description of the language may be found in Appendix C.

The language is interpreted via a top-down parser in sections. Fach major section is terminated by the keyword Go wtich incicates trat all inforation necessary to co some work with the trees (insertion andor deletion) has been
interpretec anc may be usec at tris point. Tre top-down parser also allows greater ease of future modifications of input capabilities since eact syntactic category may be implemented as a separate module.

Using the Research Tool

One may use the research tool to insert, or delete, or alternately inserc and deletekeys from any number of the available trees. Tre keys usec in these oferations may be ordered, random, or aiternating. Alternating key sequences exercise both simple and split rotation capabilities anc create degenerate unconstrained pinary search trees and worst case PHP(1,1) trees. After each insertion andor deletion sequence various performance measures may be takene

The most appropriate bay to introduce how to use the research tool is to illustrate the capabilities of the command language with a detailed exanpie. Appendix D provides such an illustration.

Application of the Research Tool

pqb(1,1) trees may become an interesting structure in and of trenselves. the reasons for this expectation are:

1. Ne extra storage for balance tags is required since, for insertion, balance ay be conputed as a function of searching and, for deletion, balance may be regained by reinserting the critical noce.
2. The worst case for f fe(1,1) is not as bad as for unconstrained binary search trees.
3. For randomly constructed trees, the expected average search path length is no worse tran for AVL or $H P(1)$ trees.

Evidence for the first clam is presented above in the discussion of PHB trees. Tte initial apelication of the research prograas was to provide empirical data concerning the last two clains. Tree test cases were involvec. Table I. shows the information used in each test case. BST stands for unconstraned binary search tree.
table I
TEST CASE INFORMATION

Test case 1 cemonstrates mat will tappen if the keys are inserted in such a manner as to create a degenerate unconstrainec binary searct tree. Altrough decucible without fopirical testing, use of the research tool makes the results readily available. As cante seen in Table li, a PhR(1,1) tree is not as bac as an unconstrained tree; the average search path length and the average insertiondeletion search patr length are about ralf trose of an unconstrained binary search tree. Fowever, they are more than three times those of an in(1) tree. of course, about half as many restructurings were reguired for the PHP(1,1) tree compared to the $H B(1)$ tree, but this is not an intuitively reasonable traceoff.

TABLE II

Test case 2 cemonstrates average behavior uncer the assumption that each perautation of a given key sequence is equally likely to cocur. Table III stows the results garnered from test case 2. he values shown are the averages across all trees of tre same type. Certainly the behavior of $\operatorname{FH}(1,1)$ trees tends toward that of the HE(1) trees but it is slightly worse. However, note again that about half as many restructurincs were required in order to maintain the trees. hhether this drastically reduced amount of restructuring is wortr the small trace off in searct time remains to be determined.

TABLE III
RESULTS fRCN TEST CASE 2

Test case 3 cencnstrates the tienc for averace behavior after a period of activity within the tree. The data are presentec in Table iv. As for pest Case 2 , the values stown are the averages across all trees of the same type. About tref-fourtts as mary rotations were required to maintain PHE $(1,1)$ trees as opposed to $\mathrm{EB}(1)$ trees. This is a higher percentage than for insertion alone anc probably reflects the occasional unaecessary reinsertion of a node. However, the number of rotations is still less and the average search and insertion/celetion patb lenctrs are less than 1 greater for $\operatorname{PH}(1,1)$ trees than for $H E(1)$ trees. This indicates an adyantage for $\operatorname{PH}(1,1)$ trees. No extra storage is requirec for balance infomation, yet fewer rotations are required to maintain the tree and the average path lengths are not much longer. Tre exact extent of this trace off reflains to be determined.

TABLE IV
FESULTS FRCA TEST CASE 3

Chapter VI

SUNMARY AND CONCLUSIONS

This study has dealt with the evolution of height halancec binary search trés anc with the cesicn anc implementation of a research tool to provide the impetus for rigorousiy analyzing their performance characteristics. Height balanced binary search trees are one solution to the problea one often encounters in information storage: how can one store inforation so that insertion, deletion, ans searcting can be accomplished quickly and efficiently? Generaized teictt balancec trees can guarantee logarithmic search tine; however, since balance information must be maintained, and insertion and deletion involve backtracking along the searct pathr it is unciear how to decide what an optimal trade off between search time and maintenance time is. A specific subclass of reigrt balancec trees, $\mathrm{FH}(1,1)$ trees, has been introcuced which do not require azintenance of balance tags nor backtracking but way still be able to provice close to logarithmic search tine for the average case.

Fesults of the Study and suggestions for
 Future Stucy

This stuay presents previousiy undocumented outlines of algorithms for a generalized class of height balanced trees, partially reight balancec or $P H B$ trees. One element of these algorithms reazins unclear - is it necessary to maintain balance tag anc patt length information past the critical point of 1 greater than the constraint values? if one, instead, naintained thef only until trey reachec trese points during insertion, then could the appropriate values be regainec curing celetion suck that a noce woulc be recognized as once ayain eligible for restructuring? This question needs further study.

Also presented were algorithos for the subclass, Phe(1,1) trees. The deletion algorithe was previously undocumentec. Tte algorittas presented have been implementec as part of a research tool for height balanced trees.

An initial application of the research tool was nade for PHB(1,1) trees. Altrouch $F H B(1,1)$ trees extibit slightly worse performance characteristics than do HR(1) trees, trey elso recuce by balf the number cf restructurings required. This seems to indicate that fye $(1,1)$ trees may be a viable alternative to $H B(k)$ trees. However, wore extensive analysis, empirical and theoretical, needs to be done. The research tool is also available to provide the empirical inpetus to analyzing $H R(k)$ trees. As its capabilities
expand, cofparisons with other height balanced trees shoul be aace to weigt tre relative advantages anc cisacuantages of each under darticular circumstances.

Expanding the Cagabilities of the Research Tool

In order to provide a more flexible codmand language, it is cesirable to permit cefault values for more of the parameters such as fRCF x To y. The parser is designed in a rocular fashion to facilitate tris expansion. Nost of the syntactic categories correspond to separate modules in the iaplementation. Hence, modifying at most one module per expansion is necessary.

It would be desirable at some time to implement algorithms for other classes of height balanced trees, such as the $\mathrm{Bb}(\mathrm{a})$ or $\mathrm{p} \% \mathrm{classes}$ described above, ir order to facilitate comparisons between data structures. It is also sugsestec tnat knowing the number of noces accessec during backtracking and maintenance of balance information ray help evaluate the trade off between search time and maintenance tine for teight balancec trees. The researct tool shoulc prove a poweriul aid in the study of height bolanced trees.
(1) Acel'sontiel'stii, G. M. anc y. M. Lanticis. Man Algoritha for the Organisation of information." soyiet Math, Vol. 6 (1963), 1259-1263.
(2) Raer, J-I. "ineight Palanced Trees." Erocesdings AFIPS 1975 NCC, Vol. A4. Montvale, New Jersey: AFIFS press, 1975.
(3) Baer, J-L., anc B. Sctuab. "A Conearison of TreeEalancing Algorithins." Couqunications of the ACy, Vol. 20, No. 5 (May 1977), 322-33c.
(4) Bootr, A. D. arc A. J. T. Colir. "on tre Eificiency of a New Nethod of Dictionary Construction." Inforgation and fontrgi, Vol. 3, No. 4 (December 1960), 327-334.
(5) Burge, n. ㅁ. "Sorting, Treєs and Neasures of Crder." Inforiaticn anc Eontrol, Vol. 1, No. 3 (1959), 181-197.
(6) Clampett, H. A. "Rancomizec Binary Searctinc with Tree Structures." Conaunications of tos ACN, Vol. 7, No. 3 (Marct 1964), 163-165.
(7) Foster, C. C. "A Generalization of AvL Trees." Coumunications of the ACM, Vol. 16 , No. 8 (August 1973), 513-517.
(8) Hibbard, T. N. "Some Combinatorial frogerties of Certain Trees witt Applications to Searcning and Sorting." Jeuragl of the ace, vol. 9, No. 1 (January 1962), 13-28.
(9) Hirschberg, D. S. "An insertion Technigue for onesided Height Ealanced trees." Compuications of the Acp, Vole 19, No. 8 (August 1976), 471-473.
(10) Karlton, P. L., S. H. Fuller, R. E. Scroggs, and E. B. Kaehier. "rerformance of tieight Balanced Trees." Comgunicgtions of Ife ack, Vol. 10 , No. 1 (Januery 1976), 23-28.
(11) Vnuth, D. E. "Algorithas." Scientific American, Vol. 236, No. 4 (April 1977), 53-51.
(12) snuth, 0 . 5 . The Art of computer frogroming, vol. 1 . Reding, Vassachusetts: Addison-kesiey Pub. Co., 1073.
(13) Knutt, D. F. The Bre of Gonfuter Prosremaing, Vol. 3. Feading, Nassachusetts: sodison-kesley fub. Co., 1973.
(14) Kosaraju, S. R. "Insertions and Deletions in onesided Heicht falanced trees." Commoncations of the Acte Vol. 21, No. 3 (March 1978), 226-227.
(15) Luccic, F. ancl. Paoli. "Un tre Heigtt of HeightEalanced reees." 1 eef mansestions qn Comuuters, Vol. $\mathrm{C}-25$, No. $1 .(J a n u a r y 1975$), 87-90.
(15) Luccio, F. and L. Pagii. "Fower Trees." Conmunications of the ACt, Vol. 21, 1o. 11 (November 1978), 941-947.
(17) Luccio, F. and L. Fagli. "Febalancing Height Ralanced Trees." IEEE Transacticcs on computess, Vol. C-27, No. 5 (May 1978), 386-396.
(18) Nievergelt, J. "Binary Search trees and file Crganization." Computing Surysys, Vol. 6, No. 3 (September 1974), 195-207.
(19) Nievergelt, J. anc E. N. Feincolć. "Binary Search Trees of Bounded Balance." Slà J Jurnsl of computing, Vol. 2, Nc. 1 (Marct 1973), 33-43.
(20) Nievergelt, J. and $C . K$. hong. "On Einary search Trees." Pioceficins of LEIP Cansfess 71, 91-98.
(21) Mievergelt, J. and $C . K$. kong. "upper Eounds for the Total Patr Lergtr of Rinary Trees." Jeyrral of the ACN, Vol. 20, No. 1 (January 1973), 1-6.
(22) 0ttmann, T., H. S. Six, and D. hood. "Right Brother Trees." Comundications of the ACE, Vol. 21, No. 9 (Septeaber 1978), 769-776.
(23) Van Coren, J. F. Data and Storage Structures, (unpublisred class nctes). Stillwater, ok: Cklanoma State University, 1978.
(24) Van Doren, J. R. "Some Empirical Results on Generalizec avl Trees." precesdings of the NSE= CELS 3egional Eesoarch Csinfierse fn Autoratic Information crganizeriona and Eftrieyad, 1973, 46-62.
(25) Van noren, J. F. and J. L. Gray. "an Algorithm for nainteirirg Dynanic ave trees." in lofermgtion Systeri, J. T. Tou, ed. New York, New York: flenua fress, 1974, 151-190.
(26) Wincley, P. F. "Trees, Forests anc Rearrancince" GgMuter Journal, voi. 3, No. 2 (1560), 84-88.
(27) 2weoen, S. H. and M. A. NcDonald. Man optimal method for Deletion in cne-sideci height Belanced trees." Cgmmurisetigns si the sce, Vol. 21, No. 6 (June 1978), 441-445.

AFPENDIX A
 derivatica of ealance tag haintfmance
 EQUATIONS

Maintenance of balance tags in an $\mathrm{HB}(k)$ or PHB(k1,k2)
tree during rotation after insertion may be accomplishedwith the information frovicec by the previous values of thebalance tacs of the nodes involved. This is a dearonstrationof bry it is possible. Sinilar results may be ceriveo fordeletion cases.
SyNECL LEGEND:
CN : the critical noce
DCN : the descendent of the critical node
CDCN : the grand-descendant of the critical node
$f(f):$ tre heicht of the subtree incicatec by \#$h(n u l l$ subtree) $=0$$h(x)=\operatorname{MAX}(t(\operatorname{LEFT}(x)), t(R I G H T(x)))+1$
$h(n)$: the height of the (sub)tree rooted at node n
Br(n) : $h(n)$ BEFORE restructurirc
Ah(n) : h(n) AFTER restructuring
b(n) : the balence associated with node n
$b(n)=r(\operatorname{PIGHT}(n))-r(\operatorname{LEFT}(n))$
$\mathrm{Eb}(\mathrm{n}): \mathrm{b}(\mathrm{n})$ PEFCFE restructuring
$A b(n): b(n) A F T E R$ restructurinc
$k \quad: \quad$ the $\mathfrak{b a l a n c e}$ constraint

* : insection occurced in tris subtree

CASE 1: SIAFLE ROTATION
CN left heavy; DCN left heavy.

Pefcee restructuring, we know that:

$$
\begin{aligned}
h(D C N) & =h(1)+1 \\
h(C N) & =h(D C N)+1 \\
& =h(1)+2
\end{aligned}
$$

anc

$$
\begin{aligned}
b(C N) & =h(3)-h(D C N) \\
& =h(3)-(h(1)+1) \\
& =-(k+1)
\end{aligned}
$$

$$
b(D C A)=h(2)-h(1)
$$

AFTER restructuring, we know that:

$$
h(C N)=M_{A} X(n(2), h(3))+1
$$

$$
h(D C N)=\operatorname{MAX}(h(1), h(C N))+1
$$

and

$$
b(C N)=h(3)-h(2)
$$

$$
\begin{aligned}
\mathrm{b}(\mathrm{DCN}) & =\mathrm{H}(\mathrm{CN})-\mathrm{H}(1) \\
& =\mathrm{NAX}_{\mathrm{A}}(\mathrm{~h}(2), \mathrm{h}(3))+1-\mathrm{h}(1) .
\end{aligned}
$$

Sincen(1), $n(2), h(3), ~ a n c k$ are constants trough the rotatione the following expressions remain true through the rotation:

$$
\begin{aligned}
& h(3)-(h(1)+1)=-(k+1) \\
& h(3)=h(1)+1-k-1 \\
&=h(1)-k
\end{aligned}
$$

and

$$
\begin{aligned}
h(2)-h(1) & =B b(D C N) \\
r(2) & =h(1)+B b(D C N)
\end{aligned}
$$

Substituting these expressions for $h(2)$ and $h(3)$ in the equations for $\operatorname{AfTER} \mathrm{E}(\mathrm{n})$'s gives:

$$
\begin{aligned}
& b(C N)=h(3)-h(2) \\
& =h(1)-k-(h(1)+B b(D C N)) \\
& =-k-\operatorname{BE}(D C N) \\
& b(D C N)=N_{A X}(h(2), h(3))+1-h(1) \\
& =\operatorname{MAX}(\mathrm{h}(1)+\operatorname{LE}(D C N), \mathrm{h}(1)-\mathrm{k})+1-\mathrm{r}(1) \\
& =\operatorname{NAX}(\operatorname{Eb}(E C N),-k)+1
\end{aligned}
$$

Q.E.D.

The expression for $A b(D C N)$ may be simplified furtiner by noting that $\mathrm{Bb}(\mathrm{CCN})$ must $b \in>=-\mathrm{k}$. Therefore, $\operatorname{MAX}(\mathrm{Bb}(D C N),-k$) will always yielc Pb(DCN) anc $A b(D C N)=P b(D C N)+1$.

CASE 2: SFLTT ROTATION

> CN left heavy; DCN right heavy.

```
Subsese a: GDCN left reavy.
```

PEFORR KESTRUCTURING

AFter pestructuring

BEFORE restructuring, we know that:

$$
\begin{aligned}
\mathrm{h}(\mathrm{GDCN}) & =\mathrm{h}(2)+1 \\
\mathrm{~h}(\mathrm{DCN}) & =\mathrm{h}(\mathrm{GDCN})+1 \\
& =\mathrm{h}(2)+2 \\
\mathrm{~h}(\mathrm{CN}) & =\mathrm{h}(\mathrm{DCN})+1 \\
& =\mathrm{h}(2)+3
\end{aligned}
$$

anc

$$
b(\operatorname{GDCN})=h(3)-h(2)
$$

$$
>=-(k-1)
$$

$$
b(D C N)=n(G D C N)-n(1)
$$

$$
=h(2)-h(1)+1
$$

$$
\begin{aligned}
& s=k \\
b(C N) & =h(4)-h(D C N) \\
& =h(4)-r(2)-2 \\
& =-(x+1)
\end{aligned}
$$

AFTER restructuring, we know trot:

$$
h(D C \lambda)=\max (h(1), h(2))+1
$$

$\mathrm{H}(\mathrm{CN})=\mathrm{HAX}(\mathrm{r}(3), \mathrm{r}(4))+1$
$h(\operatorname{GDCN})=\max (\mathrm{h}(\mathrm{DCN}), \mathrm{h}(\mathrm{CN}))+1$
and

$$
\begin{aligned}
\mathrm{b}(\mathrm{DCN}) & =\mathrm{h}(2)-\mathrm{t}(1) \\
\mathrm{b}(\mathrm{CN}) & =\mathrm{h}(4)-\mathrm{h}(3) \\
\mathrm{b}(\mathrm{GDCN}) & =\mathrm{h}(C N)-\mathrm{n}(\mathrm{DCN}) \\
& =\operatorname{HAX}(\mathrm{h}(3), \mathrm{h}(4))-\operatorname{MAX}(\mathrm{h}(1) \operatorname{h}(2))
\end{aligned}
$$

Sinceh(1), h(2), h(3), h(4), and k are constants through the rotation, the following expressions realn true through the rotation:

$$
\begin{aligned}
\mathrm{Bb}(\mathrm{GDCN}) & =\mathrm{r}(3)-\mathrm{r}(2) \\
\mathrm{h}(3) & =\mathrm{Bb}(\operatorname{CDCN})+\mathrm{h}(2) \\
\mathrm{Bh}(\mathrm{DCN}) & =\mathrm{r}(2)-\mathrm{r}(1)+1 \\
\mathrm{~h}(1) & =\mathrm{h}(2)-\mathrm{BD}(\mathrm{OCN})+1 \\
-(\mathrm{k}+1) & =\mathrm{h}(4)-\mathrm{h}(2)-2 \\
\mathrm{r}(4) & =\mathrm{h}(2)-k+1
\end{aligned}
$$

Substituting these expressions for h(1), h(3), and h(4) in the qquations for AFTER $\mathrm{b}(\mathrm{n})$'s gives:

```
    b(DCN) = h(2)-h(1)
        =h(2)-(h(2)-Bb(DCN) + 1)
        = Bb(DCN) - 1
```

$$
\begin{aligned}
& b(C N)=h(4)-h(3) \\
& =h(2)-k+1-(\operatorname{bb}(\operatorname{GDCN})+h(2)) \\
& =-k+1-\operatorname{eg}(\operatorname{coch}) \\
& b(G \operatorname{CO})=\operatorname{Max}(r(3), r(4))-N(x(1), H(2)) \\
& =\max (\mathrm{h}(3) \mathrm{h}(4))-\mathrm{Wax}(\mathrm{~h}(2)-\mathrm{Bb}(\mathrm{CON})+1, \mathrm{~h}(2)) \\
& \text { but since } D C N \text { was right heavy, } B t(D C N) \text {) } 0 \text {; hence, } \\
& =\mathrm{Hax}(\mathrm{~h}(3), \mathrm{h}(4))-\mathrm{h}(2) \\
& =\operatorname{mAX}(E D(G D C N)+h(2), h(2)-k+1)-h(2) \\
& =\operatorname{MAX}(\operatorname{Bb}(\operatorname{GDCN}),-k+1)
\end{aligned}
$$

Q.E.E.

Subsese b: GDCH right heavy.
before restructuring

after restructuring

REFORE restructuring, we know trat:

$$
\begin{aligned}
h(C D C N) & =h(3)+1 \\
h(D C N) & =h(G D C N)+1 \\
& =h(3)+2 \\
h(C N) & =h(D C N)+1 \\
& =h(3)+3
\end{aligned}
$$

and

$$
\begin{aligned}
b(G D C N) & =h(3)-h(2) \\
& s=k-1 \\
b(D C N) & =h(G D C N)-h(1) \\
& =h(3)+1-r(1) \\
& \leqslant=k \\
b(C N) & =h(4)-\operatorname{HCDCN}) \\
& =n(4)-h(3)-2 \\
& =-(k+1)
\end{aligned}
$$

AFTER restructuring, we know that:

$$
h(D C H)=\operatorname{mX}(h(1), h(2))+1
$$

$$
r(C x)=\max (t(3), t(4))+1
$$

$$
h(\operatorname{GDCN})=\operatorname{NAX}(h(C N), h(D C N))+1
$$

anc

$$
\begin{aligned}
b(D C N) & =h(2)-h(1) \\
b(C N) & =h(4)-h(3) \\
b(G D C N) & =h(C N)-h(D C N) \\
& =\operatorname{MAX}(h(3), h(4))-\operatorname{MAX}(h(1), h(2))
\end{aligned}
$$

Since $h(1), r(2), f(3), r(1)$, anc k reanin constant trough the rotation, the following expressions remain true through the rotation:

$$
\begin{aligned}
& \mathrm{Bb}(\mathrm{GOCN})=\mathrm{h}(3)-\mathrm{h}(2) \\
& \mathrm{h}(2)=\mathrm{h}(3)-\mathrm{Bb}(\mathrm{GDCN}) \\
& \mathrm{Eb}(\mathrm{CCN})=\mathrm{h}(3)+1-\mathrm{h}(1) \\
& \mathrm{r}(1)=\mathrm{h}(3)+1-\operatorname{BE}(\mathrm{DCN}) \\
& \mathrm{h}(4)-\mathrm{h}(3)-1=-(k+1) \\
& \mathrm{r}(4)=\mathrm{h}(3)+1-k-2 \\
&=\mathrm{h}(3)-k-1
\end{aligned}
$$

Substituting these expressions for $r(1), t(2)$, anct(4) in the equations for AFTER $b(n)$'s gives:

$$
\begin{aligned}
& b(D C N)=h(2)-h(1) \\
& =n(3)-\operatorname{Bb}(\operatorname{cDCN})-(r(3)+1-\operatorname{Eb}(D C N)) \\
& =B b(D C N)-E R(C D C N)-1 \\
& b(C N)=n(4)-b(3) \\
& =h(3)-k-1-h(3) \\
& =-k-1 \\
& b(\operatorname{GDCN})=\max (h(3), h(4))-\operatorname{NAX}(h(1) \operatorname{ch}(2)) \\
& =\operatorname{mAX}(h(3), h(3)-4-1)-N A X(h(1), h(2)) \\
& =h(3)-M_{A X}(h(1), h(2)) \\
& =h(3)-N A X(h(3)+1-\operatorname{Sb}(D C N), h(3)-8 b(C D C N)) \\
& =\operatorname{MTN}(r(3)-(H(3)+1-B b(D C N)), f(3)-(h(3)-B b(G D C N))) \\
& =\operatorname{MIN}(E b(L C N)-1, \operatorname{Pb}(\operatorname{CDCN}))
\end{aligned}
$$

0.E.0.

Note that since both $A B(D C N)$ and $A B(G D C N)$ depend upon Pb(DCN) anc Bb(CDCN), one of tre Bb values must be savec before changing it.

CASE 3: SIMPLE ROTATION
CN right heavy; LCN right heavy.

BEFORE RESTRUCTURING

AFTER RESTRUCTURING

BEFORE restructuring, we know that:

$$
\begin{aligned}
\mathrm{h}(\mathrm{DCN}) & =\mathrm{h}(3)+1 \\
\mathrm{~h}(\mathrm{CN}) & =\mathrm{h}(\text { CCN })+1 \\
& =\mathrm{r}(3)+2
\end{aligned}
$$

and

$$
\begin{aligned}
b(D C N) & =h(3)-h(2) \\
& <=k \\
b(C N) & =h(D C N)-h(1) \\
& =h(3)+1-1(1) \\
& =k+1
\end{aligned}
$$

AFTEP restructuringe we know that:

$$
\begin{aligned}
& h(C N)=\operatorname{MAX}(h(1), h(2))+1 \\
& h(D C N)=\operatorname{MAX}(h(C N), h(3))+1
\end{aligned}
$$

and

$$
\begin{aligned}
b(C N) & =h(2)-h(1) \\
b(D C M) & =r(3)-h(C N) \\
& =h(3)-\operatorname{HAX}(h(1), h(2))-1
\end{aligned}
$$

Sirce $h(1), h(2), h(3)$, and k remain constant through the rotation, the following expressions remain true through the rotation:

$$
\begin{gathered}
\mathrm{Bb}(\mathrm{DCN})=\mathrm{h}(3)-\mathrm{h}(2) \\
\mathrm{h}(2)=\mathrm{h}(3)-\mathrm{Bb}(\mathrm{DCN}) \\
\mathrm{h}(3)+1-\mathrm{h}(1)=k+1 \\
h(1)=\mathrm{h}(3)-k
\end{gathered}
$$

Substituting these expressions for $f(1)$ anc h(2) in the equations for AETER $\mathrm{b}(\mathrm{n})$'s gives:

$$
\begin{aligned}
& b(C N)=t(2)-h(1) \\
& =h(3)-\operatorname{bb}(C C N)-(h(3)-k) \\
& =k-\operatorname{Bb}(D C N) \\
& b(D C N)=h(3)-\operatorname{MAX}(h(1), h(2))-1 \\
& =h(3)-\operatorname{AX}(h(3)-k, h(3)-\operatorname{Bb}(L C A))-1 \\
& =\operatorname{MIN}(\operatorname{n}(3)-(\operatorname{tr}(3)-x), t(3)-(\operatorname{tr}(3)-\operatorname{Bb}(D C N)))-1 \\
& =1 \mathrm{~N}(\mathrm{k}, \mathrm{~Eb}(\mathrm{DCN}))-1
\end{aligned}
$$

Q.E.D.

The expression for at(DCN) nay be simplified further by noting that $\operatorname{BL}(D C N)<=k$. Tterefore, MIN(k,Bb(DCN)) will always yiela b (LCN) and $A b(D C N)=E b(D C N)-1$.

CASE S: SPLIT ROTATION
CN right reavy; $D C N$ left heavy.

Subcase e: CDCN right heavy.

BEFOFE RESTGUCTURING

AFTEF RESTEUCTURING

BEFCFE restructuring, we know that:

$$
\begin{aligned}
r(G D C N) & =h(3)+1 \\
h(D C N) & =h(G D C N)+1 \\
& =h(3)+2 \\
n(C N) & =h(D C N)+1 \\
& =h(3)+3
\end{aligned}
$$

and

$$
\begin{aligned}
D(G D C N) & =h(3)-r(2) \\
& \leqslant=k-1 \\
D(D C N) & =h(4)-r(G D C N) \\
& >-k \\
b(C N) & =h(D C N)-h(1) \\
& =h(3)+2-r(1)
\end{aligned}
$$

$$
=k=1
$$

AFTER restructuring, we know that:

$$
h(D C N)=\operatorname{MAX}(h(3), h(4))+1
$$

$$
\mathrm{h}(\mathrm{CN})=\operatorname{MAX}(+(1) \operatorname{st}(2))+1
$$

$$
h(G D C N)=\operatorname{MAX}(h(C N) \cdot h(D C N))+1
$$

and

$$
\mathrm{b}(\mathrm{DCN})=\mathrm{h}(4)-\mathrm{r}(3)
$$

$$
b(c a)=h(2)-h(1)
$$

$$
b(\operatorname{GDCN})=\mathrm{h}(D C N)-\mathrm{t}(\mathrm{CN})
$$

$$
=\operatorname{nax}(h(3) \operatorname{m}(4))-\max (h(1) \operatorname{h}(2))
$$

Sinceh(1), h(2), h(3), h(4), and k remain constant througt the rotation, the following expressions remain true through the rotation:

$$
\begin{aligned}
& \mathrm{Bb}(\operatorname{COCN})=r(3)-r(2) \\
& h(2)=h(3)-\mathrm{Fb}(\operatorname{CDCN}) \\
& \mathrm{Bb}(\mathrm{DCN})=r(4)-\mathrm{r}(3)-1 \\
& \mathrm{~h}(4)=\mathrm{h}(3)+\mathrm{Bb}(D C N)+1 \\
& \mathrm{~h}(3)+2-\mathrm{h}(1)=k+1 \\
& \mathrm{r}(1)=\mathrm{h}(3)+2-k-1 \\
&=\mathrm{h}(3)-k+1
\end{aligned}
$$

Substituting these expressions for $r(1), r(2)$, and $f(4)$ in the eguations for After $b(n)$ 'n gives:

$$
\begin{aligned}
b(D C N) & =h(1)-h(3) \\
& =h(3)+8 t(D C N)+1-h(3) \\
& =B h(\operatorname{CCN})+1 \\
b(C N) & =h(2)-r(1) \\
& =h(3)-8 b(\operatorname{GDC})-(h(3)-k+1)
\end{aligned}
$$

```
    =k-Bt(GDCA})-
b(GCCN)= (AX (h(3),h(4))-NAX (h(1),h(2))
    =MAX (r(3),H(3)+BL(DCA +1) - MAX (t(1),h(2))
but since [CN was left heavy, Fb(DCN) < 0; hence,
=n(3)-M4X (r(1),M(2))
=h(3)- MAX (h(3)-k+1,h(3)-Eb(GDCN))
= MIN (t(3)-(h(3)-k+1),h(3)-(h(3)-8b(\operatorname{coci})))
= MIN (k-1,Bb(CDCN))
```

Q.E.D.

Suhcase b : cocir left heavy.

BEFCFE RESTFUCTURING

AFTEF RESTGUCiURINC

PEFOFE restructuring, we know that:

$$
\begin{aligned}
n(G D C N) & =n(2)+1 \\
n(D C N) & =n(G D C N)+1 \\
& =n(2)+2 \\
\mathrm{r}(C N) & =n(D C N)+1 \\
& =n(2)+3
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{b}(\mathrm{GDCN}) & =\mathrm{n}(3)-\mathrm{n}(2) \\
& >=-(k-1) \\
\mathrm{b}(\mathrm{DCN}) & =\mathrm{h}(4)-\mathrm{r}(\mathrm{GDCN}) \\
& =\mathrm{h}(4)-\mathrm{h}(2)-1 \\
& >=-k \\
\mathrm{~b}(\mathrm{CN}) & =\mathrm{h}(D C N)-\mathrm{h}(1) \\
& =\mathrm{h}(2)=2-\mathrm{h}(1) \\
& =k+1
\end{aligned}
$$

AFTEf restructuring, we know that:

$$
h(D C N)=\operatorname{MAX}(t(3), H(4))+1
$$

$$
h(C N)=\operatorname{HAX}(h(1) \cdot h(2))+1
$$

$$
\mathrm{r}(\mathrm{GDCN})=\operatorname{MAX}(\mathrm{r}(D C N), \mathrm{r}(C N))+1
$$

and

$$
\begin{aligned}
b(D C N) & =h(4)-h(3) \\
b(C N) & =h(2)-h(1) \\
b(G C C X) & =h(D C N)-h(C N) \\
& =\operatorname{MAX}(H(3), \mathrm{H}(4))-\operatorname{MAX}(\operatorname{l(1)}, \mathrm{H}(2))
\end{aligned}
$$

Sinceh(1), h(2), h(3), h(4), and k remain constant through the rotaticne tre following expressions remain true through the rotation:

$$
\begin{gathered}
B b(\operatorname{COCN})=H(3)-h(2) \\
h(3)=B b(C D C N)+h(2) \\
B b(D C N)=H(4)-r(2)-1 \\
h(4)=B b(D C N)+h(2)+1 \\
h(2)+2-H(1)=k+1 \\
h(1)=h(2)-k+1
\end{gathered}
$$

Substituting these expressions for h(1), h(3), anc r(4) in the equations for $A F T E R \quad b(n)$'s gives:

```
b(DCN) = h(4)-h(3)
            = Bb(DCN) + h(2) + 1-(Bb(GDCN) = h(2))
            = Bb(DCN)-Eb(CLCN) + 1
b(CN)=h(2)-r(1)
            =h(2)-(h(2)-k+1)
            = k-1
```

$b(\operatorname{GDCN})=\max (h(3) \min (4))-\operatorname{Max}(h(1), h(2))$
$=\operatorname{MAX}(h(3), h(4))-\operatorname{AXX}(h(2)-k+1, h(2))$
$=\max (r(3), t(4))-r(2)$
$=\operatorname{NAX}(\operatorname{BL}(\operatorname{CDCN})+h(2), \operatorname{At}(\operatorname{DCN})+h(2)+1)-h(2)$
$=\operatorname{MAX}(\operatorname{Bb}(\operatorname{GDCN}), B b(D C N)+1)$
Q.F.E.

Note that since botr $A b(D C N)$ anc $A b(G D C N)$ depero upon BU(DCN) and $\mathrm{Bh}(G D C N)$, one of the Bb values must be saved before changing it.

AFPENDIX B

heichi of the suethee dufing tasertion

ROTATION

During insertion restructuring, the height of the subtree involved reatins the same. This is a demonstration of why it is true. Refer to Appencix A for a symbl cescription and preliminary derivation of formulas.

CASE 1: SIMFLD ROTATION
CN Jeft heavy; DCN left reavy.
Before insertion, the height of the subtree rooted at CN $=\dot{m}_{h}(C N)-1$.

After restructuring, the height of the subtree $=A h(D C N)$.

```
Ar(DCN) = NAX (h(1),r(CN)) + 1
    = MAX (n(1),h(2)+1,h(3)+1) + 1
```

```
buth(2)+1=h(1)+EL(DCN)+1<= r(1) since BL(DCN) < 0
and h(3)+1 = h(1)-k+1 <= h(1) sincek>0
```

```
Herce,
Ah(DCN) = h(1) + 1
    = En(UCN)
```

```
= Bh(CN)-1
    Q.E.0.
CASE 2: SFLIT ROTATIOM
    CN left lleavy; DCN richt heavy.
Subcase a: CDCN left heavy.
    Sefore insertion, the height of the subtree rooted at CN
    = Ph(CN)-1.
    After restructurinc, tre beight of the subtree = Ah(GDCN).
Ah(GDCN})=\operatorname{MAX}(h(DCN),h(CN))+
    = \operatorname{tax (h(1)/h(2)/h(3),h(4)) +2}
buth(1)=h(\alpha)-Bb(DCN) + 1.<= r(2) since Eb(DCN)>0
and h(3)= Bb(GDCN) +h(2) <= h(2) since Bb(GDCN) < 0
and h(4) = h(2)-k+1 <= h(2) since k > 0
Hence,
\[
\begin{aligned}
\operatorname{Ah}(\operatorname{CDCN}) & =\operatorname{h}(2)+2 \\
& =\operatorname{Br}(\operatorname{DCN}) \\
& =\operatorname{Eh}(C N)-1
\end{aligned}
\]
Q.E.D.
Subcase b: COCN right heavy.
Before insertion, the height of the subtree rooted at \(C N\) \(=\operatorname{Fh}(\mathrm{C} v)-1\).
```

After restructuring, the height of the subtree $=$ Ah(CDCA).

```
Ar(GDCN})=MAX(r(CN),R(DCN))+
    = NAX (h(1),h(2),h(3),h(4)) +2
```

```
but h(1) = h(3) + 1- ED(DCN) <= h(3) since go(DCN) > 0
and h(2) = h(3)-Eb(CDCN) <= h(3) since Eb(GDCN) > 0
anch(4)=n(3)-k-1 < < r(3) sincek> 0
```

Hence,
$\operatorname{Ar}(\operatorname{GDCN})=h(3)+2$
$=\operatorname{Bh}(D C N)$
$=\operatorname{bh}(C N)-1$
Q.E.D.

CASE 3: SINFLE ROTATION
CN right heavy; DCN right heavy.
Pefore insertion, the height of the subtree rooted at $C N$ $=\operatorname{Pr}(C N)-1$.

After restructuring, the height of the subtree $=A h(D C N)$.

$$
\begin{aligned}
\operatorname{Ah}(D C N) & =\operatorname{MAX}(h(C N) \operatorname{h}(3))+1 \\
& =\operatorname{MAX}(h(1)+1, h(2)+1, h(3))+1
\end{aligned}
$$

```
but h(1)+1=n(3)-k+1 <= h(3) since k>0
and h(2)+1=h(3)-PG(DCN)+1<=h(3) since Bb(DCN)>0
```

Hence,

$$
\begin{aligned}
\operatorname{Ah}(D C N) & =H(3)+1 \\
& =\operatorname{Ph}(D C N) \\
& =\operatorname{En}(C N)-1
\end{aligned}
$$

Q.E.D.

CASE 4: SPLIT RCTATIGN CN right heavy; DCN left heavy.

Subcase a: gocir rigtt reavy.
Before insertion, the height of the subtree rooted at $C A$
$=\operatorname{Bn}(C N)-1$.
After restructuring, the height of the subtree $=$ Ah(GDCA).
$\operatorname{Ar}(\operatorname{GDCN})=\operatorname{MAX}(\mathrm{H}(\mathrm{CN}), \operatorname{t(OCN}))+1$
$=\max (h(1), h(2), h(3), h(4))+2$
but $h(1)=h(3)-k+1 \quad<=h(3)$ since $k>0$
and $h(2)=h(3)-\operatorname{Fb}(C D C N) \quad<=h(3)$ since $\mathrm{Pb}(G D C N)>0$
$\operatorname{anc} h(A)=h(3)+\operatorname{Db}(D C N)+1<r(3)$ since $B b(D C N)<0$

Hence,

$$
\begin{aligned}
\operatorname{Ar}(\operatorname{GDCN}) & =\mathrm{n}(3)+2 \\
& =\operatorname{Bh}(D C N) \\
& =\operatorname{Bh}(C N)-1
\end{aligned}
$$

Q.E.D.

```
Sybcase b: cDCf left heavy.
Before insertion, the height of the subtree rooted at CN
= gn(CN)-1.
After restructucinc, the reigrt of the subtree = Ah(GDCN).
An(GDCN})=HAX(h(DCN),h(CN))+
    = MAX (h(1),h(2),h(3),h(4)) + 2
buth(1)=h(2)-i+1 <= h(2) since k>0
and h(3)= Bh(GDCN) + h(2) <= h(2) since Bb(GDCN)< < 
and h(4) = Bb(DCN ) +h(2) + 1 <= h(2) since Bb(DCN) < 0
Herce,
Ah(GOCN})=h(2)+
    = Br(DCN)
    = Bn(CN)-1
Q.E.D.
```


APPENDIX C

eaf descrificon ce inevt to the eesearch
 PROGRAM

Appendix C gives the BNF (Backus-Naur Form) description of the input requirerents for using the research program. NOTATIDN LEGEND:
$३ \quad-\quad$ The signal character; indicates that a keyword follows.
nnnnn - lower case letters; A syntactic category which must be rewritten.
fNond - uppercase letters; A keyword wict must appear in that position.
e - epsilon; a null value or entry.
1 - OR; incicates a croice.
(...) - indicates a set of information from thich a choice ray be aace.
()/ - single characters which must appear where indicated.
input -->
test_case_series
test_case_series -->
test_case_series test_case

```
    1 test_case
test_case -->
    $ {keywori_coment { | e } case_specification
    $ {keyword_comment $ | e } initial_specification
    & fkeyword_comment & | e } manipulation_specification
    $ (keyworćcomment $ | e }
    c measurement_specification $
        {keyword_comment $ | es | ef
        keyworċ_endcase
keykord_comnent -->
    COWMENT ( not reservec_worćs | e }
reserved_words -->
    $
    | ENDCASF
case_specification -->
    CASE case_rumber
case_number -->
    integer | e
initial_specification -->
    tree_sqecification
    $ (keymorc_comment \ | e } initial_function
    $ {keysord_comment $ | e } keykord_go
tref_specification -->
    TREES tree_spec
tree_spec -->
    tree_spec {, | e } cs_tree_spec
```

```
    | as_tree_spec
cs_tree_secc --)
        number_of_trees generalized_tree
        | number_of_trees specialized_tree
number_of_trees --)
        integer | e
generalizec_tree -->
        HB ( balance_constraint )
        | FHB ( balance_constraint , path_length_constraint )
balarce_constraint --)
    integer | I
path_lengtr-constraint -->
    integer | I
specialized_tree -->
    AYL
    | EST
    | PHB11
```

initial_function -->
INITIAL number_of_nodes
number_of_nodes -->
integer
keyword_go --)
CO
manifulation_specification --)

```
    FUNCTION function_specilication
    $ {keyword_comment $ 1 e }
    REYSET Keyset_specification
$ f keyworc_comitent $ 1 e}
        keyword_oo
function_specification -->
INSERT
| DELETE
I INS/DEL ic_orcer-croice
id_order_choice -->
RANDOM
    | ALTERNRTING (BY set_size | e;
keyset_sfecification -->
    AL,TERNATING alt_ley_choice
    | ORDERED orä_key_choice
    | PaNDC ran_key_choice
    I ShUFPLED shui_key_ctoice
alt_key_choice -->
        ord_key_choice { SEI setsize l e)
orc_key_croice -->
        FRON low_key TO high_key ( By increment I e s
ran_key_choice -->
    number_of_keys BETGEEN lom_key AND high_key
        rancom_start
shuf_key_choice -->
    ord_key_choice random_start
low_key -->
```

integer
hict_key $-\infty$
integer
set_size -->
integer
increnent -->
integer
number_of_keys --)
integer
random_start -->
SEED series_start 1 e
series_start -->
integer
measurement_specification -->
MEASURE performance_measures
\$ f keyword_comment \$keymordmgo
performance_reasures -->
performance_measures measure
1 measure
measure --)
ROTATICN
1 HEIGHT
1 INTERNAL
1 Extefnal
intecer --3

```
    integer digit
    l digit
cicit -->
    01111213 1415 1 6 1 7 1 8 19
There gre several limitations and restrictions to the place-
ment of sone symbols and the values of others. These
restrictions follow.
1. Since \(\$\) is used to sional that a keyvord follows, it cannot be used in any place other than trose incicatec in the description (i.e. it cannot be within a coprent stateatent).
2. EADCAS acts as a signal character for certain error correction procecures. bencer its use in a compent starement could create problems.
3. Tre largest intecer which the program is currently designed to handie \(=2 * * 15-1=\) 32767. Irtegers larger than 32767 will have unprecictatle results. Sinilarly, the saallest integer which should be used is - ( 2**15-1 ) = - 32767. ( -32768 tas special meaning within the program and should not be used.)
```


APPENDIX D

AN ILLUSTPATIOA OF THE ISE CF THE
 COMRAND LANGUAGE

The meanings associated with each statement of the command language is best illustrated withexcmples. The following sonple input sequences provide examples of the use of the command language statenents. For ease in coordinating a statement bit its explanation eacn input statement is placed on a separate line and is inmediately followed by á COMHENT statenent (indentec in block fora) explaining it. However, there are no colunn requireaents for tie input statenents.

SCASE

SCONVEAT - Singels the beginnign of a new test case. The crivei proorau prepcres to initialize a nem set of trees. There is no test case numter on the staterent; since tris is tre first runf will let the driver program number the test cases. on output, I exsect this test case to be CASE NUMBer 1.

STREES
AVL.
HB(1)
$\operatorname{PHB}(1,1)$

इCoriffr - The trees to te useo in this test case are beirg specifiec. Since there are no repeat counts in iront of the trees names, one tree of each type will be availatice since these specifications are equivalent trees (the 1 stancs for infinity), what 2 ill see is the results of any differences in the algorithms lor azintaining the trees.

SINITIAL 1000
§COMEAT - I wist 1000 noces to be available in the trees.
$\$ \mathrm{GC}$

SCOMMENT - Signais the end of the tree initialization input section. At this point, the trees are establistieo witt tre requestec number of noces.

SFUNCTICN TNSEFI

SCOMAENT - I wish to huild tre tree by insertinc a series of keys into the tree.

SKEYSET ALTERNATING FROM 1 TO 100

SCONAFNT - The insertion is to use 100 keys with the vaiues 1-100 in the alternating order: 1 , 100, 2, 99, 3, 98, ... 50, 51. Since are is no $B y$ seecified, the default of 1 was assumed; hence, the sequence takes 1 value from the los enc, tren 1 value from the high end, then 1 from the low end, . .., and 50 on.
$\$ \mathrm{GO}$
sConnent - Indicates that a complete manipulation request nas beer founc. Tre driver program should perform the request at this point.

SMCASURE

ROTATION, HEIGHT, INTERNAL
EXTFRNAL

SCOMMFNT - I wish to see hom many rotations were perforaed in order to naintain the talance criteria, what the reactis of the trees are, anc what the internal and external path lengths are. Note the lack of a conma after intafnaf. Comas are optioncl; the facility tas been proviced only for user readability of the input data.
$\$ 60$
\$COMMENT - All reasurements desired have been listed. This is the time to take the measurements anc grint trem out.

SFUNCTION INSERT
§COMENT - Nos, 1 wist to insert some aore keys.

SKEYSET
100 RAMDON EETMEEN 1000 ANE 32000

SComifnt - This time, I want 100 keys rancomly chosen between 1000 and 32000. Since 1 have not specified a SEeD value, the driver program till generate one for me. NoTE - The program attemets to generate 100 unique random reys; rence, the user should provide a larce rance to facilitate this process.
$\$ \mathrm{EO}$
sComment - Do tre insertion cf 100 rancoak keys.

SMEASURE
INTERAAT EXTERAL

SCOMANT - This tine all 1 care about are the internal and external path lengths. since I insertec 100 keys into a tree wicr alreacy rac 100 keys, I expect the statistics to print out that there are ? 00 keys currently in the trees.

SENDCASE

```
SCONNET - This is the end of the first test case.
```

VITA
Mary Beth Hernon
Cand idate for the Degree of
Naster of Science

Thesis: THE DESIGN AND APPLICATION OF A RESEARCH TOOL FOR heicht balanced trees

Major Fielc: Computing and Inforation Sciences
Biographical:
Personal data: Born 2 Februãry 1954 in Longyiew, $\begin{aligned} & \text { ash- }\end{aligned}$ ington. Moved to Massena, New York, in 1958. Narried Hilliam Patrick Hernon on 24 Nay 1378.

Education: Graduatec from Massena Central High School in June 1972. Received Rachelor of Science in Home Economics degree from Oklahoma State University, Stillwater, OK, in May 1976. Completed requirements for Kaster of Science degree in Cowputing and Information Sciences from Oklahoma State University in July 1979.

Professional Experience: Graduate teaching instructor for Intermediate Programing n the Computing anc Information Sciences Department, oklahoma State University, Fall 1979-Sumer 1979. Programming intern with the Research and planning Information Division of the Cklahoma state Board of Regents for Higher Education, Sumner 1978. Gracuate teaching assistant for introductory Programming in the Computing and Information Sciences fepartment, Fall 1977 - Spring 1978.

