
A FORTRAN CROSS COMPILER FOR A TMS

9900 MICROCOMPUTER SYSTEM

By

STEVEN ROGER HEARD
"

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1977

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of the
requirements for the Degree of

MASTER OF SCIENCE
July, 1979

~~
/979

H4-J5 -P
~.?..

Copyright

By

Steven Roger Heard

July, 1979

A FORTRAN CROSS COMPILER FOR A TMS

9900 MICROCOMPUTER SYSTEM

Thesis Approved:

Dean of Graduate College

1031840

ii

AC KNOWLE DGt'1 ENT

I wish to express my sincere appreciation to Dr. George

E. Hedrick for spending many hours in valuable guidance on

this thesis research. I also wish to thank the other

members of my committee, Dr. John R. Phillips and Dr. John

P. Chandler.

iii

Chapter

I.

II.

III.

IV.

TABLE OF CONTENTS

INTRODUCTION

Background • • • . . . • • ..
Objectives and Motivation .•.•.
Literature Review•..

IMPLEMENTATION CONSIDERATIONS

Page

1

1
2
5

6

Requirements Imposed by FORTRAN . . • . 6
Requirements Imposed by the IBM 370/158 7
Requirements Imposed by the Tt1S 9900 . . . 8

LANGUAGE DESCRIPTION

FEATURES OF THE IMPLEMENTATION .

10

14

General Capabilities • . • . . • • 14
Major Algorithms Used . • • . . • • • • . . 15
TMS 9900 Assembler Support Routines 25

V. USER'S GIUDE••... 27

27
29
30
30

Compiler Control Language .
Output . • .
TSO Mode
Batch Mode

VI. PROGRAMMER'S GUIDE •

Data Structures •.
In termed ia te Code
Table Driven Routines
Non-executable Object Code
Executable Object Code ..•
Summary•...•.•

VII. CONCLUSIONS AND RECOMMENDATIONS

B IBLIOGRA PH Y

33

33
37
41
46
46
48

49

50

APPENDIX A - DESCRIPTIONS OF ROUTINES IN THE COMPILER 52

APPENDIX B - LISTING OF ASSEMBLER SUPPORT ROUTINES 67

iv

APPENDIX C - SAMPLE RUN

APPENDIX D - BNF SYNTAX OF FORTRAN STATEMENT TEXT

APPENDIX E - GLOSSARY .

v

Page

75

80

84

Table

I.

II.

III.

IV.

LIST OF TABLES

Functions of Assembly Language Support Routines .

Uses of Data Structures•

Usage of the ISYMB Data Structure •

Generation of Intermediate Code •.

vi

Page

26

38

39

42

Figure

1.

LIST OF FIGURES

Diagram of System Using Direct
Communication Link

2. Flowchart of Main Program .

3. Flowchart of PASS1

4. Diagram of Finite State Automaton
Used to Parse DO Statements

5. Flowchart of PASS2

6. Flowchart of PASS3

7. CLIST Used to Run the Compiler

8.

9.

JCL Used to Run the Compiler

Flowchart of LEX1 .

10. Flowchart of PARS2

vii

Page

3

16

18

20

22

24

31

32

43

44

CHAPTER I

INTRODUCTION

Background

Cross compilers can be a valuable aid in the development

of software for typical microcomputer applications. Micro

computers generally lack sufficient storage to support a

high-level language processor, yet it is often desirable to

write programs for process control, small business, automa

tion, and home computer purposes in a language less cumber

some than assembler or machine code (18) (8). Programs usu

ally require less time and money to develop and are easier

to maintain if they are written in a high-level language.

Through the use of a FORTRAN cross compiler it is possible

for a programmer to make use of existing FORTRAN subroutines

and to test for proper execution of programs· before trans

ferring the object code from the host computer to the object

computer. A cross compiler executes on one machine and

produces object code for another machine. The host computer

is the machine on which the cross compiler actually runs.

The object computer is the machine for which machine lan

guage (object code) is generated from the source code.

The hardware of the host and object computers need only

be compatible to a point that will permit data transfer.

2

Methods used for transferring compiled programs include read

only memory (ROM) chips, direct communication links, auto

matic send and receive (ASR) terminals, paper tape, flexible

disks (floppies) and magnetic tape. A diagram of a system

using a direct communication link is in Figure 1.

A cross compiler that is written in a commonly used lan

guage such as FORTRAN or BASIC can be portable from one host

computer to another. If the parsing of source code and the

generation of object code are divided into separate steps,

it is possible to modify the cross compiler for use with

different object computers. This may be accomplished by

altering the segments of object code (templates) that are

stored for use in code generation.

Objectives and Motivation

The primary objective of the compiler described in this

thesis is to provide a means of implementing programs writ

ten in a subset of Basic Standard FORTRAN on a TMS 9900

microcomputer through the use of an IBM 370. Existing pro-

grams written in FORTRAN or in other languages may be imple

mented after hand translation to the supported FORTRAN sub

set. A secondary objective is to provide parsing and code

generation software that can be adapted to other machines.

The compiler may be modified to generate code for a differ

ent object computer at a fraction of the time and cost

involved in developing a new compiler.

In order to take advantage of existing software and pro-

DISK
PACK

HOST
COMPUTER

MODEM

1•10DEM

OBJECT
COMPUTER

TERMINAL

TERMINAL

Figure 1. Diagram of System Using Direct Cornmunication Link

3

4

gramming skills, it is desirable for the compiler to support

a commonly used language. BASIC, FORTRAN and COBOL are all

common programming languages. BASIC interpreters exist for

most common microprocessors. This reduces the practicality

of a BASIC cross compiler. COBOL is more suitable for file

processing on large machines than for typical microcomputer

applications (18). The major drawback to FORTRAN is the

time and cost involved in developing a compiler to support

the full language. For these reasons, a FORTRAN subset was

selected to be supported by the compiler.

The choice of the TMS 9900 microprocessor was influenced

by the lack of existing software for that particular

machine. To maximize the practicality of the compiler, the

object computer should be one for which a FORTRAN cross com-

piler is not available. Since such software is offered for

most popular microcomputer systems, a logical second choice

is a microcomputer for which the cost of this support is

beyond the resources of some users. A FORTRAN cross com-

piler is available from Texas Instruments for the TMS 9900

at a cost of over two thousand dollars.

The IBM 370 is the primary machine for general use at

Oklahoma State University with facilities for data transfer

via telephone lines. This is a useful feature for transfer-

ring object code since it eliminates the need for actually

transporting some medium such as cards or tape.

5

Literature Review

A FORTRAN subset as a language to be supported by the

compiler has several advantages. Sammet (18) presents

several of the advantages and disadvantages of FORTRAN as a

programming language along with a brief history of FORTRAN.

Higman (8) discusses the evolution of programming languages

and makes comparisons of several modern languages including

FORTRAN. Barron (3) explores several of the general princi

ples involved in the design of programming languages and

gives a number of FORTRAN examples.

The Backus-Naur form (BNF) grammar used in Appendix D

was originally defined by Naur (14) and is discussed by

Gries (6) and by Aho and Ullman (1). Several other grammars

used for the definition of programming languages are pres

ented by Weingarten (20). Ghandour (5) examines the use of

canonic systems for the recursive definition of programming

languages.

A concise presentation of many of the aspects involved

in the design of compilers is given by Hopgood (9). Lee (1 1)

provides a more detailed treatment of these areas. Halstead

(7) discusses implementation considerations for compilers as

well as design considerations.

To add to its portability, the compiler is written in

FORTRAN. Cocke (4) suggests that the portability and ease

of implementation of a compiler may be greatly increased if

it is written in the language it supports and allowed to

compile itself.

CHAPTER II

IMPLEMENTATION CONSIDERATIONS

The compiler has been constructed so that it is reason

ably portable. Certain modifications may be required prior

to implementation because of differences in software and

hardware between systems. Reasons for such changes include

the version of FORTRAN supported by the host computer, com

munication facilities between the host and object computers,

and software for loading code onto the object computer.

This chapter outlines the considerations made for the cur

rent implementation on an IBM 370 using a TMS 9900 as an

object computer.

Requirements Imposed by FORTRAN

With the exception of the use of DATA statements in

subroutines, the compiler is written in ANSI Basic Standard

FORTRAN (2). It has been successfully tested with the

FORTRAN G, FORTRAN H and WATFIV compilers.

variables whose values are set in

subroutines and functions do not depend

Excluding those

DATA statements,

on the values of

internal variables being preserved between. calls.

Since Basic Standard FORTRAN is unable to detect the end

of an input file, a delimiter record is used at the end of

6

7

the source code to be compiled (2). Because no FORTRAN

statements can contain an asterisk in column 1, this record

and all other control statements accepted by the compiler

contain an asterisk in column 1. A complete description of

all control statements is in the user's guide (Chapter V).

Requirements Imposed by the IBM 370/158

The internal code of the object computer is assumed to

be ASCII. Since the internal code of the IBM 370 is EBCDIC,

the compiler contains an EBCDIC to ASCII conversion routine

for use with character strings encountered in formats and

DATA statements. If implemented on an ASCII host computer,

all such conversions should be eliminated.

The IBM 370 has a word length of 32 bits. This permits

the addresses associated with generated object code to

include the range from 0000 to FFFF (hexadecimal) since they

can all be represented as positive numbers. If implemented

on a 16-bit host computer, the range of addresses would have

to be restricted to 0000 to 7FFF (hexadecimal). This is

because a 16-bit computer uses the first bit of a word to

designate the sign of an integer value.

Certain datasets or devices must be allocated to certain

FORTRAN unit numbers for the compiler to operate.

allocations are as follows:

DESCRIPTION

File

UNIT NUMBER

5 Input dataset or device for FORTRAN

source code.

6

8

9

10

Output dataset or device for source

listings and diagnostics.

8

Dataset for intermediate code.

Dataset for preliminary object code.

Output dataset or device for pro

cessed object code.

Requirements Imposed by the TMS 9900

The primary requirement imposed on the compiler by the

TMS 9900 is the compatibility of the generated object code

with the TMS 9900 instruction set. The TMS 9900 is a 16-bit

microcomputer featuring sixteen general purpose registers,

hardware multiply and divide, and memory to memory arith

metic. A full description of the instruction set is availa

ble from Texas Instruments in the 990 Systems Handbook (19).

The word length of sixteen bits permits the compiler to

allocate exactly one word of storage for every integer vari

able. Because of the sixteen general purpose registers, the

code generated by the compiler does not need to use much

storage in memory for intermediate values. Hardware multi

ply and divide contribute to the efficiency of the algor

ithms used by the compiler for exponentiation, multiplica

tion, and division.

The format of the object code is another requirement

imposed by the TMS 9900. Each line of object code begins

with a four-digit hexadecimal address followed by a colon.

The remainder of the line contains two-digit hexadecimal

bytes of data separated by spaces.

code produced by the compiler is

Appendix C.

9

An example of the object

provided at the end of

CHAPTER III

LANGUAGE DESCRIPTION

The cross compiler supports a subset of Basic Standard

FORTRAN (2). A Backus-Naur form (BNF) syntax description of

the supported language is presented in Appendix D (1).

The compiler is capable of processing two types of

FORTRAN routines. These are subroutines and main programs.

Subroutines must start with a SUBROUTINE statement. Main

programs, by definition, cannot contain a RETURN statement.

Each routine is terminated with an END statement.

DIMENSION, COMMON and DATA statements must precede any exe-

cutable statements and appear in the order: DIMENSION,

COMMON, DATA. The source code for each subroutine must pre

cede any routines that invoke that subroutine. This is

because the compiler requires the absolute address of a

subroutine in order to generate the object code for a CALL

statement.

The compiler accepts FORTRAN source routines from a file

having a logical record length of eighty bytes. Each record

of input is divided into several fields. If a 'C' appears

in the first column, the compiler will not attempt to proc-

ess the record as a FORTRAN statement. Columns one through

five of a FORTRAN statement may either be blank or contain a

10

11

statement number. Statement numbers are optional for

executable statements, required for formats and prohibited

on all other non-executable statements. Duplicate statement

numbers within any one subroutine or main program are not

permitted. Column six, if not blank, designates a continua-

tion of statement text from the previous record. Columns

seven through seventy-two are reserved for the text of a

FORTRAN statement. The BNF syntax in Appendix D is applica

ble to this field.· Columns seventy-three through eighty are

for record identification only and are ignored by the com

piler.

FORTRAN statements may be divided into two categories,

executable statements and non-executable statements. Exe-

cutable statements cause the compiler to generate executable

machine code. The READ, WRITE, assignment, GO TO, IF, DO,

STOP, RETURN, CALL, and CONTINUE statements are all of the

executable statements supported. Non-executable statements

are used to define storage areas or to communicate other

information about the

SUBROUTINE, DIMENSION,

program

COtvlMON,

to the compiler. The

FORMAT and DATA statements

are the supported non-executable statements.

INTEGER, EQUIVALENCE, FUNCTION, PAUSE, REWIND,

The REAL,

BACKSPACE,

ENDFILE and computed GO TO statements are not supported.

The only type of variable supported by the compiler is

sixteen bit integer. The allowable range of values for both

variables and constants is from -32768 to 32767. The seven

basic external functions (EXP, ALOG, SIN, COS, TANl-1, SQRT

12

and ATAN) are not supported since the arguments of these

functions must be real and no support is given to real vari-

ables.

The implementation of the STOP, END, RETURN, CONTINUE,

DO, assignment, SUBROUTINE, CALL, and IF statements is

standard. Certain restrictions exist for the use of the

READ, WRITE, FORMAT, DIMENSION, DATA, and COMMON statements.

Arrays are restricted to a single dimension. No

dimensioning of arrays is permitted in a COMMON statement.

If an array is in common, the dimensions must be declared in

a DIMENSION statement. Named common blocks are not permit-

ted. Implied repetition of items within a DATA statement is

not supported. For example:

DIMENSION LINE(10)
DATA LINE /10* 1 '/

is not valid and should be coded as

*

DIMENSION LINE(10)
DATA LINE/' 1 ,'

' ' '

I I

'

to be accepted by the compiler.

' ' ' ' ' '
I I

' ' ' '
I I

' I

Implied do loops are not supported for use with READ or

WRITE statements. Unformatted input or output is not

allowed. Since real variables are not permitted, the E and

F formats should not be used. Group repetition within a

format is not supported (2). For example:

60 FORMAT(2HX=,2(I2,','),I2)

should be coded as

60 FORMAT(2HX=, I2, I' I' I2, I''' I2)

Three extensions of Basic Standard FORTRAN are included

1 3

in the implementation. Quote marks may be used in FORMAT

statements and DATA statements to define character strings.

Variable names and subroutine names may contain six charac

ters instead of five. In addition to the standard I, X, H

and A formats, a U format field descriptor may be used

within a FORMAT statement. When used with a WRITE state

ment, the U format functions as an I10 format. When used

with a READ statement the U format permits integers to be

input without having to be aligned with any specific columns

of the input record. This is a useful feature when numbers

must be entered manually from a terminal.

In summation, the language supported by the compiler is

very close to Basic Standard FORTRAN. The major differences

are that the supported language does not include floating

point arithmetic or multidimensional arrays. The other dif

ferences detailed in this chapter are relatively minor.

CHAPTER IV

FEATURES OF THE IMPLEMENTATION

General Capabilities

The compiler possesses several other capabilities in

addition to its capacity to compile FORTRAN programs. A

FORTRAN program may reference subroutines that are not

included in the source code to be compiled. Via the control

language, a user may provide the compiler with subroutine

names and associated absolute addresses to be used for

subroutine entry. Hexadecimal machine code may be provided

as input to the compiler for the purpose of being included

in the object code output. This permits a user to interface

a FORTRAN program with previously compiled and/or assembled

routines. More extensive information on the use of the con

trol language is in the user's guide (Chapter V);

For every routine compiled, the FORTRAN source code is

listed and the execution address is printed. If syntax

errors are present in a statement, an error message is

included in the listing following the statement in which the

error was detected. If errors such as invalid nesting of

loops or references to non-existent statement numbers are

present in a routine, an error message follows the listing

of the routine in which the error was detected.

14

15

The compiler contains a preset address where the object

code starts, but this address may be altered by the user

through the control language. If a user wishes to make use

of previously compiled or assembled routines, it may be nec

cessary to modify this starting address to avoid conflicts

for memory space.

Major Algorithms Used

The compiler consists of a control language processor

and three separate steps of compilation, all of which are

invoked from the main program. The main program (flowchart

in Figure 2) establishes the input/output unit numbers and

reads the first record from the input file. The control

language processor is called if a control record is encoun

tered.. Any record containing an asterisk in column 1 is

assumed to be a control record. The first pass of compila

tion is invoked for every FORTRAN routine to be compiled.

The next two passes are called only if no errors are encoun

tered during the first pass. Details concerning parsing,

generation of code and manipulation of tables are presented

in the programmer's guide (Chapter VI).

The control language processor is used to identify the

various types of control statements and perform the associ

ated control functions. If the control statement cannot be

recognized an error message is printed and execution of the

compiler is terminated. Functions performed by the control

language processor include altering the initial machine code

:MAXE
·A.lfiTIALIZATIO:RS
AND FILL BllFPER

YES

CALL SECOND
PASS OF
COIIPILER

CALL THIRD
PASS OF
COIIPILER

UPDATE INI'l'IJ.L
IUCHDIE CODE

L-~--.......liiC-+----------'*--E~--------'11<-~------1 U>CATION FOR

Figure 2. Flowchart of Main Program

:NEXT FORTR.All'
ROllTINE

16

17

address, adding a subroutine name and address to the

subroutine table, invoking the routine to transfer hexadeci

mal machine code from the input file to the object code file

and terminating execution. A complete description of the

control language and control functions may be found in the

user's guide (Chapter V).

The major

(flowchart in

functions of the

Figure 3) are to

first pass of the compiler

parse the FORTRAN source

code, to generate intermediate code, and to detect syntax

errors. The intermediate code is a numerical representation

of the FORTRAN source code to be used by the second pass.

When invoked, the first pass 'rewinds (closes) temporary

files and initializes tables used for storing variable

names, information contained in formats and values estab-

lished by DATA statements. For every FORTRAN statement, the

routines to input, to print, and to parse the statement, and

to generate intermediate code from the statement are called.

Statements are checked for proper sequence as outlined in

the language description (Chapter III). When either an END

statement or a control statement is encountered, then the

intermediate code is delimited; a check is made for unde

fined variables; the table containing values established in

DATA statements is sorted into ascending addresses; and con

trol is returned to the main program.

A table driven parser is used to generate intermediate

code for all types of nontrivial executable statements that

can be parsed by a finite state automaton without pushdown

MAKE
INITIALIZATIONS

CALL ROmiNJ> TO
READ SOURCE
STATEMENTS AND
FILL LINE BUFFER

SET END OF
>=---jlf PROCRAM FLAG

CALL ROmiNE TO
DETERMINE TYPE
OF STATEME!IT AND
INVOKE PARSERS

Figure 3.

ADD DELIMITER
RECORD TO
DITEllNEDIATE
CODE FILE

Flowchart of PASSl

18

CALL ROmiNE
TO CREeK FOR
UNDEFINED
VARIABLES

CALL ROmiNE TO
SOR'l; VECTOR OF
VALUES SET IN
DATA STATEMENTS

1 9

lists (1). These statement types are READ, WRITE, GO TO,

DO, SUBROUTINE and CALL. Each line in the transition table

corresponds to a state of a finite state automaton and con

tains information regarding the next state to be entered for

every type of token encountered. A diagram of the finite

state automaton used to parse DO statements is in Figure 4.

Information governing intermediate code generation is also

contained within each line of the table.

Embedded logic parsers are used to generate intermediate

code for trivial statements and statements containing arith

metic expressions. An embedded logic parser is a parser

whose operation is not governed by a table, but rather has

its logic embedded in the source code comprising the parser.

Only the statement number and statement type need to be

recorded in the intermediate code for the STOP, RETURN and

CONTINUE statements. Assignment statements are recorded in

intermediate code in reverse Polish notation and must be

parsed using a pushdown list (1) (10). Arithmetic IF state

ments are divided into an arithmetic expression and an IF

statement using a simple variable as an argument. The

arithmetic expression is parsed in the same manner as any

assignment statement. The table driven parser parses the IF

statement after any arithmetic expressions have been

removed. FORMAT, DIMENSION, COMMON, and DATA statements do

not cause any intermediate code to be generated since they

are not executable. Embedded logic

the information contained within

parsers exist to store

these statements into

START STATE
INTEGER VAR.IABLE

=

'

'

INTEGER VARIABLE OR
INTEGER CONSTANT

INTEGER VARIABLE OR
INTEGER CONSTANT

INTEGER VARIABLE OR
INTEGER CONSTANT

END OF LINE

END OF .LINE

FINAL STATE

Figure 4. Diagram of Finite State Automaton
Used to Parse DO Statements

20

21

tables for use in the second pass of compilation.

There are three lexical analyzers: LEX1 is a table

driven lexical analyzer and is capable of recognizing eleven

types of tokens found in the FORTRAN source code: LEX2 uti

lizes LEX1 to recognize eleven types of tokens found within

formats: LEX3 utilizes LEX1 to recognize ten types of

tokens found within assignment statements. Detailed inform

ation regarding the types of tokens recognized by each of

these routines may be found in Appendix A.

The second pass of the compiler (flowchart in Figure 5)

performs two major functions. The first of these is to gen

erate machine code from the information stored in the tables

and the intermediate code. The second is to build a table

of statement numbers with corresponding locations, and to

build a list of the statement numbers in the order of refer

ence for use by the final pass of the compiler.

Machine code is first generated for all variables and

arrays. All values are zero unless defined otherwise in a

DATA statement. Code is next generated for character

strings found in formats. A separate routine exists for

generating object code from intermediate code for every type

of executable statement. These routines contain templates

of object code associated with the particular type of state

ment. The code generated by these routines contains no

absolute addresses and is therefore not executable. Instead

of four hexadecimal digits of an absolute address, four X's

are generated and the statement number associated with the

PRINT
EXECUTION
.Alllli!:5S

CALL ROUTIIIE TO
INPUT LIIIE OF
IliTERIIEDIATE
CODE

ADD lELDIITER
RECORD TO
MlCHIRE COlE
PILE

Figure 5.

CALL ROUTIIIE TO
GEKERATE CODE IP
STATEIIENT IS AT t-----:::,.
Elf.D OP A LOOP

Flowchart of PASS2

22

23

address is stored for use by the third pass. After all

intermediate code is processed in pass two, a check is made

for valid nesting of loops and control is returned to the

main program.

The third pass of compilation (flowchart in Figure 6)

fills in the absolute addresses in the object code. This is

done by the use of the table of statement numbers and asso-

ciated addresses, and by the use of the

numbers in the order they were referenced.

list of statement

The object code

is scanned for a sequence of four X's which were used in the

earlier pass to mark the places where addresses are needed.

At every such instance, the X's are replaced by four hexade

cimal digits representing an address associated with a

statement number and a pointer is advanced to the next

statement number in the list. At the end of this pass, the

object code for the FORTRAN routine parsed by the first pass

is complete and control is returned to the main program of

the compiler.

In summation, the FORTRAN source code for each routine

is compiled in three passes. The first pass detects syntax

errors and generates intermediate code. The second pass

generates object code from the intermediate code. The third

pass completes the generation of the object code by filling

in absolute addresses.

ENTER

CALL ROUTINE TO
CREATE A VECTOR
OF ADDRESSES
ASSOCIATED WITH
REFERENCED
STATEMENT
NUMBERS

REPLACE ANY
INSTANCES OF
FOUR X'S IN THE

>-=::;.._-~LINE HITH A
HEXADECINAL
ADDRESS FRm-1: THE
VECTOR OF
ADDRESSES

Figure 6. Flowchart of PASS3

OUTPUT LINE
~-o--~ OF MODIFIED

MACHINE CODE

24

25

TMS 9900 Assembler Support Routines

The object code generated by the compiler is dependent

on routines written in assembly language for input, output

and certain arithmetic functions. These routines may be

loaded into the TMS 9900 with the object code generated from

FORTRAN or they can reside in read only memory (ROM) in the

object computer. A complete listing of these routines may

be found in Appendix B.

Arithmetic function routines are used to perform opera

tions not fully supported by the TMS 9900 hardware. These

include subscripting and exponentiation. Multiplication and

division are supported by the hardware, but only for posi

tive integer operands. Assembler routines exist to multiply

and divide signed numbers.

Input and output are accomplished through the use of a

single buffer capable of holding a single line of data. The

entire buffer may be input from or output to any of the

first sixteen input/output ports (19). The port selected

corresponds to the unit number specified in the READ or

WRITE statement. Routines exist for the transfer of data

between the buffer and memory for all the supported formats.

There is a special routine for moving character strings

specified within formats from memory to the buffer.

TABLE I

FUNCTIONS OF ASSEMBLY LANGUAGE
SUPPORT ROUTINES

Routine Name Function

LNIN
LNOUT
BLANK
SKIP
INA 1
INA2
INI
INU
OUTA 1
OUTA2
OUTI
STRIN
EXPN
DIVD
MULT
SBSC

Input line of data.
Output line of data.
Set I/0 buffer to blank.
Skip spaces for X format.
Input character for A1 format.
Input characters for A2 format.
Input number for I format.
Input number for U format.
Output character for A1 format.
Output characters for A2 format.
Output number for I format.
Output a character string.
Perform exponentiation.
Perform signed division.
Perform signed multiplication.
Perform subscripting.

26

CHAPTER V

USER'S GUIDE

As implemented on the IBM 370/158 at Oklahoma State Uni

versity, the compiler may be run in either a batch mode or a

TSO (time sharing) mode. In both modes, the user's source

code is processed by the compiler to produce a source list

ing and object code suitable for loading onto a TMS 9900

microcomputer system. Information required by the user for

running the compiler is presented in this chapter. It is

assumed that the user has some familiarity with the protocol

involved in running programs on the IBM 370/158. The

methods employed for loading the object code onto the user's

microcomputer system and executing the code once it is

loaded are beyond the scope of this thesis.

Compiler Control Language

The control language allows the user to select the

starting location of the generated object code and to com

pile FORTRAN programs that reference subroutines which are

not included in the FORTRAN source code to be compiled. The

compiler can be provided with subroutine names and associ

ated absolute addresses to be used for subroutine entry.

Hexadecimal machine code can be input for the purpose of

27

28

being included in the generated object code. These features

of the control language permit the user to interface a

FORTRAN program with previously compiled or assembled rou-

tines.

Control records should be included in the same file as

the FORTRAN source code to be compiled. All control records

have an asterisk in the first column. Since no FORTRAN

statement can contain an asterisk in column one, the com-

piler will attempt to process any record starting with an

asterisk as a control statement. If a control statement

cannot be recognized, an error message is printed and execu-

tion of the compiler is terminated. Syntax and semantics of

the control statements are as follows:

*SUB nnnnnn hhhh

*HEX

The compiler adds the subroutine name nnnnnn and the
hexadecimal location hhhh to the list of subroutine
names and matching execution addresses. This statement
may be used to allow the invocation of subroutines
in read only memory or subroutines loaded as hex decks.

A hex deck is to be read in and added to the dataset
of generated object code. The hex deck must follow the
*HEX control statement and must conform to the format
used for object code generated by the compiler.

*LOC hhhh

*FOR

*END

The compiler will use the hexadecimal location hhhh as
a starting location for generated object code instead
of the default location.

FORTRAN source code is to follow.

End of input file.

29

Example of the use of the control language:

*SUB AS1'1SUB 0200 *HEX 0200: 02 28 00 00 C8 08 01 OE CO 20
020A: 01 84 06 AO F2 E8 01 86 C8 00

02DO: 01 OE 04 58 *LOC 0300 *FOR
SUBROUTINE FTSUB

END
DIMENSION N(32)
DATA IX/'X'/

CALL ASMSUB(IP1,IP2,N)
CALL FTSUB
STOP
END *END

In the above example the subroutine ASMSUB has been

assembled independently and a hex deck has been produced.

The entry point for ASMSUB is 200 hexadecimal.

Output

For every routine compiled, the FORTRAN source code is

listed and the execution address is printed. If syntax

errors are present in a statement, an error message is

included in the listing following the statement in which the

error was detected. If errors such as invalid nesting of

loops or references to non-existent statement numbers are

present in a routine, an error message is included in the

listing following the routine in which· the error was

detected.

Object code is generated for every FORTRAN routine in

which no syntax errors are found. Each line of object code

30

begins with a 4-digit hexadecimal address followed by a

colon. The remainder of the line contains 2-digit hexadeci

mal bytes of data separated by spaces.

TSO Mode

The sample run in Appendix C was produced through the

use of the CLIST (command procedure) in Figure 7. The name

of the dataset containing the source code and the name of

the dataset to receive the object code should be entered by

the user. If these dataset names are not entered when the

CLIST is executed, the system will prompt the user for these

names. In the sample run RAND.FORT is the source code data

set and LOADDECK.DATA is the object code dataset.

COMP.DUMMY1.DATA and COMP.DUMMY2.DATA are the names associ

ated with the datasets used by the compiler for temporary

storage. These two datasets are created before the compiler

is invoked and are destroyed afterward.

U16529A.COMP.LOAD(TMS9900) is the name of the load module

containing the compiler. A listing of the FORTRAN source

and the execution ~ddress associated with each routine is

printed at the user's terminal.

Batch Mode

An example of JCL (job control language) that may be

used to run the compiler is in Figure 8. When submitted, it

produces a source listing on paper and punches an object

deck on cards.

31

PROC 2 SOURCEDS, OBJDS
ATTRIB INTATTR BLKSIZE(256) DSORG(PS) LRECL(256) RECFM(V B S)
ATTRIB OBJATTR BLKSIZE(400) DSORG(PS) LRECL(80) RECFM(F B)
FREE F(FT06F001 FT05F001)
ALLOC F(FT05F001) DS(&SOURCEDS) SHR
ALLOC DS(*) F(FT06F001) SHR
ALLOC DS(COMP.DUMMY1.DATA) F(FT08F001) NEW SPACE(5,2) TRACKS

BLOCK(256) USING(INTATTR) DELETE
ALLOC DS(COMP.DUMMY2.DATA) F(FT09F001) NEW SPACE(5,2) TRACKS-

BLOCK(400) USING(OBJATTR) DELETE
ALLOC DS(&OBJDS) F(FT10F001) SHR
CALL 'U 1652 9A. COMP. LOAD (TMS9900) '1

FREE DS(COMP.DUMMY1.DATA)
FREE DS(COMP.DUMMY2.DATA)
FREE F(FT10F001)
FREE ATTRLIST(INTATTR)
FREE ATTRLIST(OBJATTR)

Figure 7. CLIST Used to Run the Compiler

32

//U16529A JOB (16529,237-88-5308),'HEARD',CLASS:F,TIME=(O, 15),
II MSGCLASS=A,NOTIFY=U16529A
/*PASSWORD XXXX
/*ROUTE PRINT RMT1
II EXEC PGM=TMS9900,REGION=256K
//STEPLIB DD DSN:U16529A.COMP.LOAD,DISP=SHR
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
//FT08F001 DD UNIT=SYSDA,SPACE=(TRK,(5,2)),
II DCB:(RECFM=VBS,BLKSIZE=256,LRECL=256)
/IFT09F001 DD UNIT:SYSDA,SPACE=(TRK,(5,2)),
II DCB:(RECFM:FB,BLKSIZE:400,LRECL=80)
I /FT10F001 DD SYSOUT=B
I I G 0 . S YS IN D D *
*FOR

DIMENSION 11(10)
DATA 11/0,1,2,3,4,5,6,7,8,91 J1,J2/'I=','J'/
DO 100 1=1, 10

WRITE (1, 1) J 1, I, I 1 (I)
1 FORMAT(1X,A2,I2,' 11(1)=',13)

1 00 CONTINUE

*END
II

WRITE(1,2) J2
2 FORMAT(3HJ2=,A1)

STOP
END

Figure 8. JCL Used to Run the Compiler

CHAPTER VI

PROGRAMMER'S GUIDE

This chapter is intended for use by a person wishing to

make modifications to the cross compiler or by a person who

would like to make use of some of the compiler's subroutines

for another application. It is recommended that the reader

of this chapter have a source code listing* of the compiler

available for reference since the purpose of the Program-

mer's Guide is to supplement the internal documentation of

the compiler and not to provide a complete description of

the workings of the compiler. Information presented in this

chapter includes descriptions of data structures, generation

of intermediate and final code, and the logic of table

driven subroutines. Information concerning the functions

and parameters of each routine is in Appendix A. A listing

of the assembly language support routines required by the

compiler is in Appendix II.

Data Structures

All of the major data ~tructures are in common storage.

*Such a listing is on a magnetic tape file in the
Department of Computing and Information Sciences at Oklahoma
State University.

33

34

Data structures include line buffers, a symbol table, a

table for storing strings encountered in formats and varia

ble values established in DATA statements, a table of

subroutine names and addresses and a table for storing

information encountered in FORMAT statements. All data

structures have set capacities believed to be adequate for

?ompiling most FORTRAN pr6grams intended for microcomputer

purposes.

LBUF is the buffer for a single line of FORTRAN source

code input. It is capable of holding 72 characters. Since

any information in columns 73 through 80 of the FORTRAN

source code is intended to be ignored by the compiler, only

the first 72 characters of each line are read.

LINE is the buffer for a single FORTRAN statement and is

also used as an output buffer for hexadecimal object code.

It is capable of holding up to 402 characters. This allows

a FORTRAN statement with up to five continuations to be

stored. LNLEN is the integer variable indicating the number

of characters stored in LINE.

INTL is the buffer for a line of intermediate code. It

is capable of holding up to fifty integer values. It is

used in the first pass of the compiler as an output buffer

and in the second pass as an input buffer.

ISTBL is the table capable of holding up to 50

subroutine names and addresses. NSTBL is the integer varia-

ble indicating the number

ISTBL. The name of the

of subroutines represented

I'th subroutine is stored

in

in

35

ISTBL(1,I) through ISTBL(6,I). ISTBL(7,I) contains an

integer value for the address of the entry point for the

I'th subroutine.

ISYMB is a table that is used for storing information

associated with variables and constants during pass one and

for storing information associated with DO loops during pass

two. This table has a capacity of fifty entries. This lim

its the level of nesting of loops to fifty and the number of

variable names and

In the first pass

l'th variable name

through ISYMB(6,I).

constants in a single routine to fifty.

the alphanumeric representation of the

or constant is stored in ISYMB(1,I)

ISYMB(7,I) contains the integer loca-

tion of the I'th constant or local variable or a coded num

ber to indicate a parameter. This coded number is computed

as -100-NPARM where NPARM is the position of the parameter

in the parameter list of the SUBROUTINE statement.

ISYMB(8,I) is the initial value associated with the I'th

variable name or constant. ISYMB(9,I) is a definition indi

cator for the I'th variable name or constant. The values of

the definition indicator are 0 for an undefined variable,

for a constant or defined variable and 2 for a parameter.

In the second pass ISYMB(1,I) contains the ending statement

number of the I'th DO loop. ISYMB(2,I) contains the loca

tion of the loop index variable. ISYMB(3,I) contains the

location of the variable or constant whose value will termi

nate the loop. ISYMB(4,I) contains the location of the var

iable or constant whose value is used as an increment.

36

ISYMB(5,I) contains the location at the top of the loop to

be branched to in order to repeat the loop.

ISTRN is used both for storing character strings encoun

tered in FORMAT statements and values established in DATA

statements. The ASCII values for strings found in formats

are stored starting in ISTRN(3). NSTRN is the variable that

indicates the last position in ISTRN used for storing char

acter strings. The value of NDATA is equal to twice the

number of values from DATA statements stored in ISTRN.

ISTRN(601-NDATA) contains the last value established in a

DATA statement and ISTRN(602-NDATA) contains the location

associated with this value.

IFORM is the list for storing all format information

other than the contents of character strings. Format

information is stored starting at IFORM(1). The A1 and A2

formats are represented by 1 and 2 respectively. The value

used to represent an I format is computed as 100 plus the

length of the field. For example, an 110 format causes a

value of 110 to be stored in IFORM. The U format is repre-

sented by a zero. Character strings are represented by a 3

followed by a reference to the position in ISTRN containing

the character string. A slash mark is represented by a 3

followed by a 1. The value used to represent an X format is

computed as 200 plus the length of the field. The value of

-1 in !FORM indicates the end of the representation of a

FORMAT statement. IFNDX is the index to formats in IFORM.

The statement number associated with the I'th FORMAT state-

37

ment is stored in IFNDX(1,I). IFNDX(2,I) contains the

position in IFORM that the representation of the I'th FORMAT

statement starts.

Intermediate Code

Intermediate code is generated by the first pass of the

compiler to convey the contents of the FORTRAN source state

ments to the second pass. The use of intermediate code

eliminates the need for syntax error checking during the

second pass, since analysis of each FORTRAN statement is

performed in the first pass. Intermediate code is generated

for executable statements only.

The first number in the intermediate code for any state

ment is the associated statement number. If the statement

is not numbered, a zero value is stored in the first posi

tion of the line of intermediate code. The second number in

the line of intermediate code indicates the type of state

ment represented. The values of this number are 1 for READ,

2 for WRITE, 4 for assignment, 8 for GO TO, 9 for IF, 10 for

DO, 14 for STOP and 1 9 for CONTINUE. The other n urn ber s

between 1 and 21 are associated with non-executable state

ments for which no intermediate code is generated. Varia

bles and constants encountered in the FORTRAN source are

represented in the intermediate code by their machine code

locations. The value used to represent parameters is com-

puted as -100-NPARM where NPARM is the position of the par

ameter in the parameter list of the SUBROUTINE statement:

Structure Name

LBUF
LINE
INTL

ISTBL

ISYMB

ISTRN

IFORM

IFNDX

TABLE II

USES OF DATA STRUCTURES

Use

Buffer for line of input.
Buffer for FORTRAN statement.
Buffer for line of intermediate
code.
Table of subroutine names and
addresses.
Symbol table and table for
loop information.
List of character string values

38

and values from DATA statements.
List of values representing
information from FORMAT statements.
Index to data in IFORM.

TABLE III

USAGE OF THE ISYMB DATA STRUCTURE

Use

Alphanumeric representation
of variable name or constant.
Location of constant or
variable.
Initial value of constant
or variable.
Definition indicator for
constant or variable.
Ending statement number for
loop.

39

Location of loop index variable.
Location of value to terminate
loop.
Location of value to be used
to increment loop index.
Location at top of loop to
be branched to in order to
repeat the loop.

40

Subscripts are represented as a -1 followed by the

representation of the subscript variable or constant.

In READ and WRITE statements a reference to the variable

or constant denoting the logical unit number follows the

statement type identifier in the intermediate code. This is

followed by the specified format number and zero or more

variable references to represent the I/0 list.

In assignment statements a reference to the target vari

able follows the statement type identifier. This is fol

lowed by a reverse Polish representation of the assignment

expression consisting of variable references and numbers to

represent operators. These numbers are -1 for subscripting,

-2 for exponentiation, -3 for multiplication, -4 for divi

sion, -5 for addition and -6 for subtraction.

In GO TO statements the statement number to be transfer

red to follows the statement type identifier. The interme

diate code for STOP and CONTINUE statements does not extend

past the statement type identifier.

If the argument list of an arithmetic IF statement is

not a simple variable or constant then the intermediate code

for the arithmetic expression portion of an assignment

statement is generated to allow the code for the IF state

ment to contain only a simple reference to represent the

argument. The three statement numbers to be used for

branching follow the reference to the argument of the IF

statement.

For a DO statement the statement number to appear at the

41

end of the loop follows the statement type identifier. This

is followed by references to the index variable, starting

value and ending value. If an increment is specified then a

reference to the increment appears at the end of the inter

mediate code for a DO statement.

For a CALL statement the execution address of the called

subroutine follows the statement type identifier. In both

SUBROUTINE and CALL statements the intermediate code

includes references to every parameter in the list.

Table Driven Routines

The logic of one of the parsing routines (PARS2) and the

general purpose lexical analyzer (LEX1) are controlled by

tables. These tables contain data governing the state

transitions of a finite state automaton (1).

ITRAN is a 5 row by 14 column table governing the opera

tion of LEX1 (flowchart in Figure 9). Each column of the

table corresponds to a class of character as determined by

the character classification routine. Each row corresponds

to a non-final state of the finite state automaton. Each

entry in the table is the next state to be entered. Final

states are numbered 11 through 21 and correspond to token

types 1 through 11. The state is initially set to 1 and a

state transition occurrs for every character of FORTRAN text

processed.

reached.

Characters are processed until a final state is

IFSA is a 37 row by 12 column table governing the opera-

Statement
Type

Any

Any
Any

Any

Assignment
Assignment
Assignment
Assignment
Assignment
CALL

READ
WRITE
Assignment
GO TO
IF
DO
STOP
CONTINUE

42

TABLE IV

GENERATION OF INTERMEDIATE CODE

Construct Encountered
in Source Code

Local variable or
constant
Subscript operator
Parameter

Statement number

** operator
* operator
I operator
+ operator
- operator
Subroutine name

Start of statement
Start of statement
Start of statement
Start of statement
Start of statement
Start of statement
Start of statement
Start of statement

Intermediate Code
Generated

Location of variable
or constant
-1
-100-parameter position
in SUBROUTINE statement
Value of statement
number
-2
-3
-4
-5
-6
Execution address of
called subroutine
1
2
4
8
9
10
14
19

SEI'STATE
TO START
STATE

INCREMEN'l'
POSI'l'ION
IN LINE

UPDATE
STATE

SET
CHARACTER
CLASS TO
BLANK VALUE

Figure 9. Flowchart of LEXl

43

CALL ROl1l'IIIE TO SKIP OVER
START. LINE OF OF TOKENS IN
INTERJIEDIATE LINE OF SOURCE
CODE, CODE DESIGNATED.
INITIALIZE STATE,t----:illt Br EF'FECTS PIE
SET STARTI!IG CORRESPONDING
POSITION IN LIIIE TO START STATE
OF SOURCE CODE

PERFORM PIJNCTION
DESIGNATED BY
EFFECTS FIELD
CORRESPONDING
TO CURRE!l'l' STATE

Figure 10. Flowchart of PARS2

44

45

tion of PARS2 (flowchart in Figure 10). Each row in the

table corresponds to a non-final state in

automaton. The first eleven columns

the finite state

correspond to the

eleven types of tokens returned by LEX1. The parameter

ISTRT indicates which row of the table to use as a start

state. Entries in the first eleven columns of IFSA indicate

the displacement from the start state of the next state to

be entered. An entry of 99 implies a transfer to the error

state and an entry of 100 implies a transfer to a final

state with no errors detected. The number in the last col

umn of a row of IFSA that corresponds to a start state indi

cates how many tokens are to be ignored before processing

begins. If the row does not correspond to a start state,

entries in the last column of IFSA control the processing of

the last token recognized. The functions associated with

these values are as follows:

-1 Enter -1 in intermediate code.

0 Do nothing.

Enter value of constant in intermediate code.

2 Enter token in symbol table as a defined symbol and

enter the associated location in intermediate code.

3 Enter token in symbol table as an undefined symbol and

enter the associated location in intermediate code.

4 Enter token in subroutine table as a subroutine name.

5 Search subroutine table for token and

enter associated location in intermediate code.

46

Non-executable Object Code

Object code is generated for all character strings

encountered in formats, constants and variables. GSYMB is

the routine that produces object code for constants and var

iables. The value generated for a variable is zero unless

it has been initialized otherwise in a DATA satatement.

GSTRN is the routine that produces object code for character

strings encountered in FORMAT statements. The code produced

by GSTRN consists of the ASCII representation of the charac

ter strings packed two characters per word of object code.

Executable Object Code

Object code is produced for every executable statement.

Assembler listings of object code templates are included in

the internal documentation of every routine that generates

executable code.

The code generated for assignment statements uses regis

ter 0 as an accumulator and register 2 as an index register.

Calls are generated to the arithmetic function routines

(Appendix B) for exponentiation, multiplication, division

and subscripting. Add and subtract instructions are gener

ated for addition and subtraction.

The code generated for a CALL statement consists of a

branch and link (BL) instruction to the execution address of

the called subroutine followed by the addresses associated

with the parameters in the list. The code for a SUBROUTINE

statement modifies the return address to skip over the

47

parameter list and stores this address. For a RETURN

statement, code is generated that will retrieve the return

address and branch to it.

In the case of a DO loop, two different blocks of object

code are generated. Before the top of the loop, the index

variable is initialized. At the bottom of the loop, the

index variable is incremented and tested, and a conditional

branch to the top of the loop is generated.

A branch to an absolute address is generated for a GO TO

statement. The code for an IF statement consists of a test

of the argument and conditional branches to three.absolute

addresses.

The code for READ and WRITE statements starts by ini

tializing the logical unit number and establishing a works

pace for the I/0 routines (Appendix B). For a WRITE state

ment, the I/0 buffer is set to blank. For a READ statement,

a line of data is read into the I/0 buffer. In both READ

and WRITE statements, calls are generated to the I/0 rou

tines to handle the various operations.

The code for a STOP statement consists of a branch and

link workspace pointer (BLWP) instruction to the absolute

address of FFFC hexadecimal. This has the same effect on

the computer as an externally generated reset (19).

The GETPM routine generates the code to fetch a parame

ter. This routine may generate code to fetch the value of a

parameter to any register or location. The code generated

by GETPM also causes the address of the parameter to be

48

placed in register 10.

Summary

The compiler uses a number of line buffers and tables

for storing information. All data structures have set

capacities believed to be adequate for compiling most

FORTRAN programs intended for use on a microcomputer. These

capacities may be altered by the programmer as needed.

Intermediate code is generated for every executable

FORTRAN statement processed. The use of intermediate code

allows the parsing of source code and the generation of

object code to be accomplished in separate passes of compi

lation.

Table driven routines exist for lexical analysis and

generation of intermediate code from FORTRAN source code.

Since the logic of these routines is governed by tables,

they are comprised of a relatively small number of FORTRAN

statements.

Object code is produced for character strings, constants

and variables. Executable object code is generated for

every executable FORTRAN statement processed.

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

The FORTRAN cross compiler described in this thesis is a

useful program product for implementing a restricted class

of programs on a TMS 9900 microcomputer system. The versa

tility of the compiler could be improved by modifying the

compiler to support a more powerful FORTRAN subset. Po ssi-

ble improvements and additions include support for multi

dimensional arrays, floating point arithmetic, and function

routines. Altering the compiler to be compatible with other

object computers would also add to its usefulness.

The code generated by the compiler is compatible with

any TMS 9900 or TI 990 computer system. Certain modifica

tions to the assembly language input/output support routines

may be required to allow for hardware differences between

systems. The compiler may be implemented on many ASCII or

EBCDIC host computers that support the FORTRAN language.

49

B IBLIOGRA PH Y

1. Aho, A. V., and Ullman, J.D. The Theory of Parsing,
Translation, and Compiling. Prentice-Hall,
Englewood Cli-ffs, N. J., 1972.

2. American National Standards Committee X3J3. Basic
FORTRAN. Standard no. X3. 10-1966. New York,
N. Y. , 196 6.

3. Barron, D. W. An Introduction to the Study of
Programming Languages. Cambr1dge University
Press, Cambridge, England, 1977.

4. Cocke, John, and Schwartz, J. T. Programming Languages
and their Compilers. Courant Institute, New York,
w-:---Y. , 1970.

5. Ghandour, Z. J. Formal Systems and Syntactical Analys
Yale University, New Haven:-conn., 1968.

6. Gries, David. Compiler Construction for Digital
Computers. Wiley, New York, N. Y., 1971.

7. Halstead, M. H. A Laboratory Manual for Compiler and
Operating System Implementation:- American
Elsevier, N'ewrork, N. Y., 197Il.

8. Higman, Bryan. A Comparative Study of Programming
Languages: American Elsevier-,-New York, N. Y.,
1970.

9 . H o p good , F • R . A . Com p i 1 i n g T e c h n i q u e s . Am e r i c an
Elsevier, New York, N. Y., 1970.

10. Knuth, D. E. The Art of Computer Programming.
·Addison-Wesley, Reading, Mass., 1973.

11. Lee, J. A. N. The Anatomy of a Compiler. Van Nostrand
Reinhold,-new York, N-.-Y:, 1974.

12. Lewis, P.M., Rosenkrantz, D. J., and Stearns, R. E.
Compiler Design Theory. Addison-Wesley, Reading,
Mass., 1976.

13. Milne, Robert. A Theory of Programming Language
Semantics. Wiley, New York, N. Y., 1976.

50

51

14. Naur, P. "Report on the Algorithmic Language ALGOL 60."
Communications of the ACM, Vol. 3, No. 5 (May,
1960)' pp. 299-314-. - --

1 5 . Pr at t , T • W . Pro g r a mm i n g L an g u a g e s : De s i g n and
Implementation. Prentice-Hall, Englewood Cliffs,
N. J., 1975.

16. Rustin, Randall. Design and Optimization of Compilers
Prentice-Hall,--rriglewood Cliffs, N. J.,-T~.r71.--

17. Rustin, Randall. Formal Semantics of Programming
Languages. Prentice-Hall, Englewood Cliffs,
rJ.' 1970.

18. Sammet, J. E. Programming Languages: History and
Fundamentals. Prentice-Hall, Englewood Cliffs,
N. J. , 196 9.

1 9 • T e x as In s t r urn en t s D i g it a l S y s t em s D i v i s ion . 9 9 0
Computer Family Systems Handbook. Manual no.
945250-9701. Tex~s Instruments, Austin, Texas,
1976.

20. Weingarten, F. W. Translation of Computer Languages.
Holden-Day, San Francisco-,-Calif., 19.73.

21. Wulf, William, Johnsson, R. K., Weinstock, C. B., Hobbs,
S. 0., and Geschke, C. M. The Design of an
Optimizing Compiler. American Elsevie~ New York,
N. Y., 1975.

APPENDIX A

DESCRIPTIONS OF ROUTINES IN THE COMPILER

MAIN PROGRAM
FUNCTION:

INITIALIZES I/0 UNIT NUMBERS, INVOKES CONTROL LANGUAGE
PROCESSOR, INVOKES 3 PASSES OF COMPILER, MONITORS ERROR
COUNT.

ROUTINES CALLED: CLPRO, PASS1, PASS2, PASS3

SUBROUTINE ADSTR(JPOS1,JPOS2)
FUNCTION:

ADD A STRING TO THE STRING TABLE.
PARAMETERS:

JPOS1 STARTING POSITION OF STRING IN LINE.
JPOS2 ENDING POSITION OF STRING IN LINE.

CALLED BY: PFORM
ROUTINES CALLED: ASCII

SUBROUTINE ASCII(ICHAR,JCODE)
FUNCTION:

CONVERT EBCDIC CHARACTER TO ASCII.
PARAMETERS:

ICHAR CHARACTER TO BE CONVERTED TO ASCII.
JCODE ASCII CODE REPRESENTATION OF ICHAR.

CALLED BY: ADSTR, PDATA
ROUTINES CALLED: SHIFT

SUBROUTINE BUFIO(IFLAG)
FUNCTION:

PRINT FORTRAN SOURCE CODE, KEEP THE INPUT BUFFER FULL
AND DETECT THE END OF INPUT DATA.

PARAMETERS:
IFLAG FLAG TO INDICATE END OF SOURCE CODE.

CALLED BY: PASS1
ROUTINES CALLED: NONE

52

SUBROUTINE CLASS(ICHAR,ICLAS)
FUNCTION:

DETERMINE THE CLASS OF A GIVEN CHARACTER.
PARAMETERS:

ICHAR CHARACTER TO BE CLASSIFIED.
IC LAS NUMERICAL CLASS IF IC A TION OF IC HAR.

CHARACTER CLASSES ARE DETERMINED AS FOLLOWS
1 ALPHABETIC (I - N)
2 ALPHABETIC (A-H,O-Z)
3 NUMERIC
4 PERIOD OR DECIMAL POINT
5 PLUS SIGN
6 MINUS SIGN
7 ASTERISK
8 SLASH MARK
9 EQUALS SIGN
10 PARENTHESIS OPEN
11 PARENTHESIS CLOSED
12 COMMA
14 BLANK
13 OTHER

CALLED BY: LEX1, SINST
ROUTINES CALLED: NONE

SUBROUTINE CLPRO
FUNCTION:

PROCESS CONTROL LANGUAGE STATEMENTS.
PARAMETERS: NONE
CALLED BY: MAIN PROGRAM
ROUTINES CALLED: HEX2, HEXIN, SBADD

SUBROUTINE CSORT(NCOM,ISPOS,NXCOM)
FUNCTION:

SORT COMMON BLOCK TO FRONT OF SYMBOL TABLE.
PARAMETERS:

NCOM NUMBER OF SYMBOLS IN COMMON BLOCK.
ISPOS POSITION IN SYMBOL TABLE OF SYMBOL TO BE

·MOVED TO FRONT OF TABLE.
NXCOM MACHINE CODE LOCATION FOR SYMBOL.

CALLED BY: PC OM
ROUTINES CALLED: NONE

SUBROUTINE DSORT
FUNCTION:

SORT DATA TABLE INTO ORDER OF INCREASING LOCATION.
PARAMETERS: NONE
CALLED BY: PASS1
ROUTINES CALLED: NONE

53

SUBROUTINE DTABL
FUNCTION:

DUMP THE STRING TABLE, SYMBOL TABLE AND FORMAT TABLE.
PARAMETERS: NONE
CALLED BY: PASS1
ROUTINES CALLED: NONE

SUBROUTINE GASSG
FUNCTION:

GENERATE MACHINE CODE FOR ASSIGNMENT STATEMENTS.
PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, WDOUT, GETPM

SUBROUTINE GCALL
FUNCTION:

GENERATE MACHINE CODE FOR A CALL STATEMENT.
PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, GETPM, WDOUT

SUBROUTINE GD01
FUNCTION:

GENERATE MACHINE CODE AT TOP OF DO LOOP AND RECORD
DO LOOP INFORMATION.

PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, GETPM, WDOUT

SUBROUTINE GD02
FUNCTION:

GENERATE MACHINE CODE AT END OF DO LOOPS.
PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, GETPM, WDOUT

54

SUBROUTINE GETPM(LOCP,IDEST,ISUB)
FUNCTION:

GENERATE CODE TO FETCH THE VALUE OF A PARAMETER
TO A GIVEN LOCATION OR REGISTER AND TO FETCH THE
LOCATION OF THE PARAMETER TO REGISTER 10.

PARAMETERS:
LOC P
IDEST

ISUB
ISUB

LOCATION CODE FOR PARAMETER
DESTINATION CODE FOR PARAMETER
IDEST>O FOR FETCH TO MEMORY.
SUBSCRIPTING INDICATOR.
SUBSCRIPTING INDICATOR.
ISUB=O FOR NO SUBSCRIPTING.
ISUB=1 TO USE VALUE IN R2 AS A

CALLED BY: GASSG, GCALL, GD01, GD02, GIF, GIO
ROUTINES CALLED: HEX, WDOUT

SUBROUTINE GGOTO
FUNCTION:

VALUE.

SUBSCRIPT.

55

GENERATE MACHINE CODE FOR A GO TO STATEMENT AND RECORD
REFERENCED STATEMENT NUMBER.

PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: WDOUT

SUBROUTINE GIF
FUNCTION:

GENERATE MACHINE CODE FOR IF STATEMENTS AND RECORD
REFERENCED STATEMENT NUMBERS.

PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, GETPM, WDOUT

SUBROUTINE GIO
FUNCTION:

GENERATE MACHINE CODE FOR READ AND WRITE STATEMENTS.
PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, GETPM, WDOUT

SUBROUTINE GOCHK(IOK)
FUNCTION:

CHECK FOR THE KEYWORD 'TO' FOLLOWING THE KEYWORD 'GO'.
PARAMETERS:

IOK=1 IF 'TO' FOLLOWS GO.
IOK=O IF 'TO' DOES NOT FOLLOW 'GO'.

CALLED BY: PARS1
ROUTINES CALLED: LEX1

SUBROUTINE GRETN
FUNCTION:

GENERATE MECHINE CODE FOR A RETURN STATEMENT.
PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, WDOUT

SUBROUTINE GSTOP
FUNCTION:

GENERATE MACHINE CODE FOR A STOP STATEMENT.
PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: WDOUT

SUBROUTINE GSTRN
FUNCTION:

GENERATE MACHINE CODE FOR STRING TABLE.
PARM1ETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, MCOUT

SUBROUTINE GSUBR
FUNCTION:

GENERATE MACHINE CODE FOR A SUBROUTINE STATEMENT AND
STORE THE EXECUTION ADDRESS IN THE SUBROUTINE TABLE.

PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, WDOUT

SUBROUTINE GSYMB
FUNCTION:

GENERATE MACHINE CODE FOR SYMBOL TABLE.
PARAMETERS: NONE
CALLED BY: PASS2
ROUTINES CALLED: HEX, MCOUT

SUBROUTINE HEX(IHEX,IVAL)
FUNCTION:

CONVERT A BINARY VALUE TO FOUR HEX DIGITS.
PARAMETERS:

IHEX FOUR HEX DIGITS.
IVAL BINARY VALUE FOR CONVERSION.

56

CALLED BY: GASSG, GCALL, GD01, GD02, GETPM, GIF, GIO, GRETN,
GSTOP, GSUBR, GSYMB, MCOUT, PASS2, PASS3

ROUTINES CALLED: NONE

SUBROUTINE HEX2(IHEX,IVAL)
FUNCTION:

CONVERT FOUR HEX DIGITS TO A BINARY VALUE.
PARAMETERS:

IHEX FOUR HEX DIGITS.
IVAL BINARY VERSION OF IHEX.

CALLED BY: CLPRO
ROUTINES CALLED: NONE

SUBROUTINE HEXIN
FUNCTION:

READ HEXADECIMAL INPUT AND WRITE IT DIRECTLY
TO THE MACHINE CODE FILE UNTIL A CONTROL STATEMENT IS
ENCOUNTERED.

PARAMETERS: NONE
CALLED BY: CLPRO

. ROUTINES CALLED: NONE

SUBROUTINE INITZ
FUNCTION:

INITIALIZE THE STRING, SYMBOL AND FORMAT TABLES.
PARAt~ETERS: NONE
CALLED BY: PASS1
ROUTINES CALLED: NONE

SUBROUTINE INTIN(IFLAG)
FUNCTION:

INPUT LINE OF INTERMEDIATE CODE AND DETECT END OF
PROGRAM.

PARAMETERS:
!FLAG FLAG SET=O AT END OF INTERMEDIATE CODE.

CALLED BY: PASS2
ROUTINES CALLED: NONE

SUBROUTINE INTLN(KPOS)
FUNCTION:

OUTPUT LINE OF INTERMEDIATE CODE.
PARAMETERS:

KPOS LENGTH OF LINE OF INTERMEDIATE CODE.
CALLED BY: PASS1, PARS2, PASSG, PTRIV
ROUTINES CALLED: NONE

57

FUNCTION JCONV(JPOS 1, JPOS2)
FUNCTION:

RETURN A NUMERIC VALUE FOR AN INTEGER CONSTANT IN
THE LINE OF INPUT.

PARAMETERS:
JPOS1 STARTING POSITION OF INTEGER IN LINE.
JPOS2 ENDING POSITION OF INTEGER IN LINE.

CALLED BY: LEX2, PARS2, PDIM, PFORM, SINST, STRTI
ROUTINES CALLED: NONE

SUBROUTINE LEX1(IPOS,JPOS1,JPOS2,JTYPE)
FUNCTION:

GENERAL PURPOSE LEXICAL ANALYZER.
PARAMETERS:

POSITION IN LINE TO BEGIN SCAN.

58

IPOS
JPOS1
JPOS2
JTYPE

POSITION IN LINE OF FIRST CHARACTER OF TOKEN.
POSITION IN LINE OF LAST CHARACTER OF TOKEN.
TYPE OF TOKEN

TOKEN TYPES
1. INTEGER IDENTIFIERS.
2. FLOATING POINT IDENTIFIERS.
3. INTEGER CONSTANTS.
4. FLOATING POINT CONSTANTS.
5. OPERATORS. (+,-,*,/)
6. EQUALS SIGN.
7. LEFT PARENTHESIS.
8. RIGHT PARENTHESIS.
9. COMMA.

10. ERROR.
11. ENDOFFIELD.

CALLED BY: GOCHK, LEX2, LEX3, PASSG, PCOM, PDATA, PDIM,
PFORM, PIF, PTRIV, STRTI, STYPE

ROUTINES CALLED: CLASS

59

SUBROUTINE LEX2(IPOS,JPOSO,JPOS1,JPOS2,JTYPE,JNUM)
FUNCTION:

LEXICAL ANALYZER FOR USE WITH FORMATS.
PARAMETERS:

POSITION IN LINE
POSITION IN LINE
POSITION IN LINE
POSITION IN LINE
TYPE OF TOKEN

TO BEGIN SCAN.
OF NUMBER PRECEEDING TOKEN.
OF FIRST CHARACTER OF TOKEN.
OF LAST CHARACTER OF TOKEN.

IPOS
JPOSO
JP031
JPOS2
JTYPE
JNUM NUMBER PRECEEDING TOKEN (FOR 5110, JNUM=5) .

TOKEN TYPES
1. I FORMAT.
2. A FORMAT.
3. H FIELD.
4. X FIELD.
5. SLASH MARK.
6 . S PE C I A L U F 0 R M AT .
7. LEFT PARENTHESIS.
8. RIGHT PARENTHESIS.
9. COMMA.

10. ERROR.
11. END OF FIELD.

CALLED BY: PDATA, PFORM
ROUTINES CALLED: LEX1, JCONV

SUBROUTINE LEX3(IPOS,JPOS1,JPOS2,JCODE,LCODE)
FUNCTION:

60

IDENTIFY TOKENS IN ASSIGNMENT STATEMENTS AND HAVE
IDENTIFIERS AND CONSTANTS INSERTED IN THE SYMBOL TABLE.

PARAMETERS:
IPOS
JPOS1
JPOS2
JCODE
LCODE

VALUES
0

-1
-2
-3
-Lt

-5
-6
-7
-8
>O

POSITION IN LINE TO BEGIN SCAN.
POSITION IN LINE OF FIRST CHARACTER OF TOKEN.
POSITION IN LINE OF LAST CHARACTER OF TOKEN.
INDICATOR FOR TYPE OF TOKEN.
PHEVIOUS VALUE OF JCODE.

OF JC ODE
END OF FIELD
SUBSCRIPT OPERATOR
EXPONENTIATION
MULTI PLICATION
DIVISION
ADDITION
SUBTRACTION
LEFT PARENTHESIS
RIGHT PARENTHESIS
LOCATION CORRESPONDING TO INTEGER IDENTIFIER
OR CONSTANT

<-100 LOCATION CODE FOR A PARAMETER
CALLED BY: PASSG
ROUTINES CALLED: LEX1, SINST

SUBROUTINE MCOUT(IHEX)
FUNCTION:

ADD FOUR HEX DIGITS TO GENERATED MACHINE CODE.
PARAMETERS:

IHEX FOUR HEX DIGITS.
CALLED BY: GSTRN, GSYMB, WDOUT
ROUTINES CALLED: HEX

SUBROUTINE PARS1(ITYPE)
FUNCTION:

SELECT THE APPROPRIATE SUBROUTINE TO GENERATE
INTERMEDIATE CODE FOR A FORTRAN STATEMENT.

PARAMETERS:
ITYPE TYPE OF STATEMENT AS DETERMINED BY STYPE.

CALLED BY: PASS1
ROUTINES CALLED: STYPE, PARS2, PFORM, PASSG, PDIM, PDATA,

PCOM, GOCHK, PIF, PTRIV

SUBROUTINE PARS2(ISTRT,ITYPE)
FUNCTION:

GENERATE INTERMEDIATE CODE FOR NONTRIVIAL STATEMENTS
THAT CAN BE PARSED WITH A DETERMINISTIC FINITE STATE
AUTOMATON WITHOUT PUSHDOWN LISTS.

PARAMETERS:
ISTRT NUMBER OF START STATE TO USE.
ITYPE TYPE OF STATEMENT.

CALLED BY: PARS1, PIF
ROUTINES CALLED: STRTI, JCONV, LEX1, SBSRC, SBADD, SINST,

S YNER, INT LN

SUBROUTINE PASS1(IEOF)
FUNCTION:

DRIVER FOR FIRST PASS OF COMPILER.
PARAMETERS:

IEOF END OF FORTRAN SOURCE FILE FLAG.
CALLED BY: MAIN PROGRAM
ROUTINES CALLED: INITZ, BUFIO, PARS1, INTLN, UDCHK, DSORT,

DTABL

SUBROUTINE PASS2
FUNCTION:

DRIVER FOR SECOND PASS OF COMPILER.
PARAMETERS: NONE
CALLED BY: MAIN PROGRAM
ROUTINES CALLED: GSYMB, GSTRN, HEX, INTIN, GASSG, GGOTO,

GIF, GIO, GD01, GSTOP, GSUBR, GREIN, GCALL, GD02

SUBROUTINE PASS3
FUNCTION:

61

FILL IN ADDRESSES IN MACHINE CODE GENERATED DURING THE
SECOND PASS OF THE COMPILER.

PARAMETERS: NONE
CALLED BY: MAIN PROGRAM
ROUTINES CALLED: STNUM, HEX

SUBROUTINE PASSG
FUNCTION:

PARSE AND GENERATE INTERMEDIATE CODE FOR ASSIGNMENT
S TATEM ENTS.

PARAMETERS: NONE
CALLED BY: PARS1, PIF
ROUTINES CALLED: STRTI, LEX1, SINST, LEX3, SYNER, INTLN

SUBROUTINE PCOM
FUNCTION:

PROCESS COMMON STATEMENT
PARAMETERS: NONE
CALLED BY: PARS1
ROUTINES CALLED: LEX1, SSRCH, SINST, CSORT, SYNER

SUBROUTINE PDATA
FUNCTION:

62

PARSE DATA STATEMENTS AND STORE VALUES AND LOCATIONS OF
VARIABLES ESTABLISHED IN DATA STATEMENTS.

PARAMETERS: NONE
CALLED BY: PARS1
ROUTINES CALLED: LEX1, SINST, SSRCH, LEX2, ASCII, SYNER

SUBROUTINE PDIM
FUNCTION:

PARSE DIMENSION STATEMENTS AND MODIFY LOCATIONS IN
SYMBOL TABLE TO ALLOW ROOM FOR DIMENSIONED VARIABLE.

PARAMETERS: NONE
CALLED BY: PARS1
ROUTINES CALLED: LEX1, JCONV, SSRCH, SINST, SYNER

SUBROUTINE PF ORM
FUNCTION:

PARSE FORMAT STATEMENTS AND RECORD INFORMATION
CONTAINED WITHIN FORMATS.

PARAMETERS: NONE
CALLED BY: PARS1
ROUTINES CALLED: STRTI, JCONV, LEX1, LEX2, ADSTR, SYNER

SUBROUTINE PIF
FUNCTION:

GENERATE INTERMEDIATE CODE FOR AN ARITHMETIC IF.
PARAMETERS: NONE
CALLED BY: PARS1
ROUTINES CALLED: LEX1,PASSG, PARS2, SYNER

SUBROUTINE PTRIV
FUNCTION:

GENERATE INTERMEDIATE CODE FOR RETURN, CONTINUE AND
STOP STATEMENTS.

PARAMETERS:
ITYPE TYPE OF STATEMENT AS DETERMINED BY STYPE

CALLED BY: PARS1
ROUTINES CALLED: STRTI, LEX1, INTLN

SUBROUTINE SBADD(JPOS1,JPOS2,JLOC)
FUNCTION:

ADD A SUBROUTINE NAME TO THE SUBROUTINE
PARAMETERS:

TABLE.

JPOS 1 STARTING POSITION OF SUBROUTINE NAME IN
LINE.

63

JPOS2
JLOC

ENDING POSITION OF SUBROUTINE NAME IN
MACHINE CODE LOCATION ASSOCIATED WITH

LINE.

S UBHOUT INE NAl"l E.
CALLED BY: CLPRO, PARS2
ROUTINES CALLED: NONE

SUBROUTINE
FUNCTION:

SBSRC(JPOS1,JPOS2,JLOC)

SEARCH FOR
AND RETURN

PARAMETERS:
JPOS1

JPOS2
JLOC

A SUBROUTINE NAME IN THE SUBROUTINE TABLE
THE ASSOCIATED MACHINE CODE LOCATION.

STARTING POSITION OF SUBROUTINE NAME IN
LINE.
ENDING POSITION OF SUBROUTINE NAME IN LINE.
MACHINE CODE LOCATION ASSOCIATED WITH
SUBROUTINE NAME.

CALLED BY: PARS2
ROUTINES CALLED: NONE

SUBROUTINE SHIFT(ICHAR,JCHAR)
FUNCTION:

SHIFT A CHARACTER FROM THE LEFTMOST BYTE OF A WORD TO
THE RIGHTMOST BYTE.

PARAMETERS:
ICHAR ORIGINAL UNSHIFTED WORD.
JCHAR SHIFTED VERSION OF !CHAR.

CALLED BY: ASCII
ROUTINES CALLED: NONE

SUBROUTINE SINST(JPOS1,JPOS2,LOC,IVAL,DEF)
FUNCTION:

INSERT AN IDENTIFIER INTO THE SYMBOL TABLE.
PARAMETERS:

JPOS1
JPOS2
LOC
IVAL
IDEF

STARTING POSITION OF JDENTIFIER IN LINE.
ENDING POSITION OF IDENTIFIER IN LINE.
ZERO BASED ASSEMBLER LOCATION OF SYMBOL.
VALUE ASSOCIATED WITH SYMBOL.
DEFINITION INDICATOR. IDEF=1 IMPLIES THAT
SYMBOL IS TO BE INSERTED AS A DEFINED SYMBOL.

CALLED BY: LEX3, PARS2, PASSG, PCOM, PDATA, PDH1
ROUTINES CALLED: SSRCH, JCONV, CLASS

SUBROUTINE SSRCH(JPOS1,JPOS2,ISPOS)
FUNCTION:

64

SEARCH FOR A SYMBOL IN THE SYMBOL TABLE AND RETURN ITS
POSITION IN THE TABLE IF FOUND.

PARAMETERS:
JPOS 1 POSITION IN LINE OF START OF SYMBOL.
JPOS2 POSITION IN LINE OF END OF SYMBOL.
ISPOS POSITION OF SYMBOL IN SYMBOL TABLE.

CALLED BY: PC OM, PDA TA, PDIM, SINS T
ROUTINES CALLED: NONE

SUBROUTINE STNUM
FUNCTION:

RECORD ADDRESSES ASSOCIATED WITH REFERENCED STATEMENT
Nm1BERS.

PARAMETERS: NONE
CALLED BY: PASS3
ROUTINES CALLED: NONE

SUBROUTINE STRTI
FUNCTION:

START LINE OF INTERMEDIATE CODE.
PARAMETERS: NONE
CALLED BY: PARS2, PASSG, PTRIV
ROUTINES CALLED: JCONV

SUBROUTINE STYPE
FUNCTION:

DETERMINE THE TYPE OF A STATEMENT.
PARAMETERS:

ITYPE NUMERIC VALUE FOR TYPE OF STATEMENT.
VALUES FOR ITYPE:

1
2
3
4
5
6
7
8
9

1 0
1 1
12
13
14
15
16
1 7
18
1 9
20
21

READ
WRITE
FORMAT
ASSIGNMENT
DIMENSION
DATA
COMMON
GO TO
IF
DO
E QUI VALENCE
REAL
INTEGER
STOP
END
SUBROUTINE
RETURN
FUNCTION
CONTINUE
CALL
ERROR

CALLED BY: PARS1
ROUTINES CALLED: LEX1

SUBROUTINE SYNER(JPOS)
FUNCTION:

PRINT SYNTAX ERROR MESSAGE.
PARAMETERS:

JPOS POSITION IN LINE THAT ERROR WAS DETECTED.
CALLED BY: PARS2, PASSG, PCOM, PDATA, PDIM, PFORM, PIF
ROUTINES CALLED: NONE

SUBROUTINE UDCHK
FUNCTION:

CHECK FOR UNDEFINED VARIABLES IN SYMBOL TABLE.
PARAMETERS: NONE
CALLED BY: PASS1
ROUTINES CALLED: NONE

65

SUBROUTINE WDOUT(MCODE,MSTRT,MLEN)
FUNCTION:

OUTPUT A BLOCK OF WORDS OF MACHINE CODE
PARAMETERS:

MCODE TEMPLATE OF MACHINE CODE.

66

MSTRT FIRST WORD IN TEMPLATE TO BE OUTPUT.
MLEN LENGTH OF BLOCK OF WORDS TO BE OUTPUT

CALLED BY: GASSG, GCALL, GD01, GD02, GETPM, GGOTO, GIF,
GIO, GRETN, GSTOP, GSUBR

ROUTINES CALLED: MCOUT

APPENDIX B

LISTING OF ASSEMBLER SUPPORT ROUTINES

op code &
1 abel operands

*
comments

* TMS 9900 FORTRAN CROSS COMPILER I/0 ROUTINES
*
* WKSP
BUFFR
COUNT
UNIT
INDEX
* SAVE

*

AORG >80

BSS 32
BSS 76
BSS 2
BSS 2
BSS 16

BSS 4
AORG >F 000

START GENERATING CODE AT
HEXADECIMAL LOCATION 80
I/0 WORKSPACE
I/0 BUFFER
I/0 COUNTER
LOGICAL UNIT NUMBER
UNIT NUMBER TO BAUD RATE INDEX
NUMBER IN INDEX=63300/BAUD RATE-5
REGISTER SAVE AREA
GENERATE EXECUTABLE CODE AT FOOO

* ROUTINE TO PRODUCE DELAY OF 1/2 I/0 CLOCK CYCLE
* WAIT MOV R12,R13 R13=2*UNIT NUMBER=OFFSET IN INDEX

SLA R13,1
MOV @INDEX(R13),R14 R14=NUMBER FROM INDEX

WAIT1 DEC R14 LOOP TO CAUSE DELAY
JNE WAIT1
B *R11

* * ROUTINE TO INPUT A CHARACTER INTO R4
* INPT MOV R11,R9

1'1 0 V @U N IT , R 1 2
IN PT 1 TB 0

JE Q IN PT 1
CLR R4
LI R0,>101
BL @WAIT

INPT2 BL @HAIT
BL @WAIT
TB 0
JNE INPT3
XOR RO, RLl

IN PT 3 S LA R 0 , 1
JNC IN PT 2

SAVE RETURN
R12=UNIT NUMBER
WAIT FOR START BIT

RO :::BIT MAP
WAIT FOR MID BIT
WAIT FOR NEXT BIT

INPUT BIT
TEST FOR 1 BIT

UPDATE t·1ASK
IF NOT LAST BIT, PROCESS NEXT BIT

67

*

BL
BL
ANDI
B

@WAIT
@WAIT
RLI, >7F
*R9

WAIT FOR STOP BIT

REMOVE PARITY BIT
RETURN

68

* ROUTINE TO OUTPUT RIGHT BYTE OF R4, THEN IF LEFT BYTE
* OF R4 IS NOT ZERO, OUTPUT IT ALSO.
* TYPE MOV @UNIT,R12

MOV R11,R9
TYPEO LI R6, 1

BL @WAIT
BL @WAIT

TYPE 1 SBZ 0
TYPE2 BL @WAIT

BL @WAIT
CI R6,>100
JEQ TYPE4
COC R6,R4
JEQ TYPE3
SLA R6, 1
JMP TYPE 1

TYPE 3 SLA R6, 1
SBO 0
JMP TYPE2

TYPE4 SBO 0

*

BL @WAIT
BL @WAIT
SRL R4,8
JNE TYPEO
B *R9

R12=UNIT NUMBER
SAVE RETURN
R6=BIT MAP
WAIT ON LAST I /0

BIT=O
WAIT FOR PREVIOUS BIT

TEST FOR END

TEST CURRENT BIT

BIT=O

BIT=O

ISSUE STOP BIT

CHECK LEFT BYTE
IF NOT ZERO THEN OUTPUT IT
RETURN

* ROUTINE TO INPUT LINE OF DATA
* LNIN

LNIN2

LNIN3

*

MOV
MOV
LI
LI
BLHP
LI
BL
CI
JEQ
CI
JEQ
SLA
MOVB
JMP
LI
BL
MOV
MOV
RTHP

R13,@SAVE
R 11+ , @ SAVE+ 2
R5,WKSP
R6,BLANK
R5
R3,BUFFR
@INPT
R4,>0D
LNIN3
R 3, COUNT
LNIN2
R4,8
R4,*R3+
LNIN2
R4,>0AOD
@TYPE
@SAVE,R13
@SAVE+2,R1l+

SAVE REGISTERS

INVOKE ROUTINE TO CLEAR COUNTER AND
SET BUFFER TO BLANKS

READ CHARACTER
IF CR THEN RETURN

TEST FOR END OF BUFFER

STORE CHARACTER

OUTPUT CR, LF

RESTORE REGISTERS

RETURN

* ROUTINE TO OUTPUT LINE OF DATA
*
LNOUT MOV

!'10V
CLR
LI

LNOUTO DECT
CI
JEQ
MOV
CI
JEQ

LNOUT 1 INCT
LI

LNOUT 2 C
JEQ
MOVB
SRL
BL
LI

LNOUT3 DEC
JNE
JMP

LNOUT 4 LI
BL
LI

LNOUT5 DEC
JNE
MOV
MOV
RTWP

*

R13,@SAVE
R11-i,@SAVE+2
@COUNT
R2,COUNT
R2
R2,BUFFR
LNOUT1
*R2,R4
R4,>2020
LNOUTO
R2
R1,BUFFR
R1,R2
LNOUT4
*R1+,R4
R4,8
@TYPE
R5,200
R5
LNOUT 3
LNOUT2
R4,>0AOD
@TYPE
R5,20000
R5
LNOUT5
@SAVE,R13
@SAVE+2,R14

SAVE REGISTERS

RESET I/0 COUNTER
FIND LAST NON BLANK CHARACTER IN
I/0 BUFFER

TEST FOR LAST CHARACTER

OUTPUT CHARACTER

DELAY BETWEEN CHARACTERS

SEND CR, LF

DELAY FOR CR, LF

RESTORE REGISTERS

RETURN

* ROUTINE TO TEST VALUE OF I/0 COUNTER
* TESTC LI

c
JLE
MOV

TESTC1 B
*

R12,76
@COUNT,R12
TESTC1
R12,@COUNT
*R 11

R12=76
TEST FOR COUNTER > 76

RESET COUNTER TO 76
RETURN

* ROUTINE TO SET BUFFER TO BLANKS
*
BLANK

BLANK1

*

LI
LI
MOVB
CI
JNE
CLR
RTWP

R4,>2020
R2,BUFFR
R4,*R2+
R2,COUNT
BLANK1
@COUNT

RLI=ASCII BLANK
R2=ADDRESS OF BUFFER
SET BYTE OF BUFFER TO BLANK
TEST FOR END OF BUFFER

SET I/0 COUNTER TO 0
RETURN

* ROUTINE TO SKIP SPACES FOR X FORMAT
* (NUMBER OF SPACES IN R4)
*
SKIP MOV @>8(R13),R4 GET VALUE OF R4

69

*

A R4,@COUNT
BL @TESTC
RTWP

ADD VALUE TO COUNTER
TEST FOR VALUE IN RANGE
RETURN

* INPUT ROUTINE FOR A1 FORMAT
* (DESTINATION ADDRESS IN R4)
* INA1 MOV @>8(R13) ,R4 GET VALUE OF R Ll

INC @COUNT INCREMENT COUNTER
BL @TESTC TEST VALUE
CLR *R4 CLEAR DESTINATION
MOV @COUNT,R2 R2=VALUE OF COUNTER
t-1 OVB @BUFFR-1 (R2) ,@1 (R4) MOVE CHARACTER TO

* DESTINATION ADDRESS
RTWP RETURN

* * INPUT ROUTINE FOR A2 FORMAT
* (DESTINATION ADDRESS IN R4)
*
INA2

*

MOV
INCT
BL
MOV
l10VB
SRL
MOVB
MOV
RTWP

@>8(R13),R4 GET DESTINATION ADDRESS
@COUNT INCREMENT COUNTER BY 2
@TESTC TEST VALUE
@COUNT,R2 R2=VALUE OF COUNTER
@BUFFR-1(R2),R5 PICK UP LOW ORDER BYTE
R5,8
@BUFFR-2(R2),R5 PICK UP HIGH ORDER BYTE
R5,*R4 STORE RESULT

RETURN

* INPUT ROUTINE FOR I FORMAT
* (DESTINATION ADDRESS IN R4, LENGTH IN R10)
*
INI

INI1

INI2

MOV
MOV
CLR
CLR
INC
BL
LI
MPY
MOV
MOV
MOVB
SRL
CI
JNE
MOV
CLR
ANDI
A
DEC
JNE
CI
JEQ

@>8(R13),R4 GET DESTINATION ADDRESS
@>14(R13),R10 GET FIELD LENGTH
R5 R5=0
R8 R8=0
@COUNT INCREMENT COUNTER
@TESTC TEST VALUE
R7,10 R7=10
R7,R5 R6:R5*10
R6,R5
@COUNT,R2 R2=COUNTER VALUE
@BUFFR-1(R2) ,R6 R6=CHARACTER FROM BUFFER
R6,8
R6,>2D
INI2
R6,R8
R6
R6,>000F
R6,R5
H10
INI1
R8,0

. INI 3

TEST FOR MINUS SIGN

RECORD MINUS SIGN FOR LATER USE
R6=0
REMOVE ALL BUT LOW ORDER NIBBLE
UPDATE VALUE IN R5
DECREMENT LENGTH

TEST FOR NEGATIVE NUMBER

70

NEG R5
INI3 MOV R5,*R4

RTWP

NEGATE VALUE
STORE VALUE
RETURN

* * INTEGER INPUT FOR U FORMAT
* (DESTINATION ADDRESS IN R4
* INU

INU1

INU2
INU3

INU4

INU5

*

MOV
CLR
CLR
MOV
CI
JEQ
INC
BL
MOVB
SRL
CI
JEQ
CI
JNE
MOV
JMP
LI
MPY
MOV
ANDI
A
MOV
CI
JEQ
INC
BL
MOVB
SRL
MOV
ANDI
CI
JEQ
CI
JEQ
NEG
MOV
RTWP

@>8(R13),R4
R5
R9
@COUNT,R2
R2,76
INU3

GET DESTINATION
R5=0
R9=0
R2=COUNT VALUE
TEST FOR END OF

ADDRESS

BUFFER

@COUNT INCREMENT COUNTER
@TESTC TEST VALUE
@BUFFR(R2),R8 RS~CHARACTER FROM BUFFER
R8,8
R8,>20
INU1
R8,>2D
INU2
R8,R9
INU1
R7, 10
R7,R5
R6,R5
R8,>000F
R8,R5
@COUNT,R2
R2,76
INU4

TEST FOR BLANK

TEST FOR MINUS SIGN

RECORD MINUS SIGN FOR LATER USE

R7=10
R6=R5*10

REMOVE ALL BUT LOW ORDER NIBBLE
UPDATE VALUE IN R5
R2=COUNTER VALUE
TEST FOR END OF BUFFER

@COUNT INCREMENT COUNTER
@TESTC TEST VALUE
@BUFFR(R2),R8 R8=CHARACTER FROM BUFFER
R8,8
R8,R10
R10,>00FO
R10,>0030
INU3
R9,0
INU5
R5
R5,*R4

TEST FOR NUMERIC

TEST FOR NEGATIVE NUMBER

NEGATE VALUE IN R5
STORE NUMBER
RETURN

* OUTPUT ROUTINE FOR A1 FORMAT
* (SOURCE ADDRESS IN R4)
* OUTA1 MOV

INC
BL
MOV
MOVB
RTWP

@>8(R13),R4 GET SOURCE ADDRESS
@COUNT INCREMENT COUNTER
@TESTC TEST VALUE
@COUNT,R2 R2=COUNTER VALUE
@1 (R4) ,@BUFFR-1 (R2) STOHE CHARACTER IN BUFFER

RETURN

71

*
*
*
* OUTA2

*

OUTPUT ROUTINE FOR A2 FORMAT
(SOURCE ADDRESS IN R4)

MOV @>8(R13),R4 GET SOURCE ADDRESS
INCT @COUNT INCREMENT COUNTER BY 2
BL @TESTC TEST VALUE
MOV @COUNT,R2 R2:COUNTER VALUE
M 0 VB * R 4 + , @ BUFF R- 2 (R 2) S T 0 R E HIGH 0 R DE R BYTE
MOVB *R4,@BUFFR-1(R2) STORE LOW ORDER BYTE
RTWP RETURN

* OUTPUT ROUTINE FOR I FORMAT
* (DESTINATION ADDRESS IN R4, LENGTH IN R10)
* OUT! @>8(R13),R4

@>14(R13),R10
*R 4, R5
R5

GET DESTINATION ADDRESS
GET FIELD LENGTH
GET VALUE
USE ABSOLUTE VALUE
R 1 :COUNTER VALUE

72

MOV
MOV
MOV
ABS
,,DV
A
BL
MOV
LI
MOV
-.LR
DIV
c
JEQ
AI
SRC
MOVB
DEC
CI
JNE
MOV
JGT
JEQ
c
JEQ
LI
MOVB
JMP
LI
INC
MOVB
c
JNE
RTWP

@COUNT,R1
R10,@COUNT
@TESTC
@COUNT,R2

INCREMENT COUNTER BY FIELD LENGTH
TEST VALUE

OUTI1

OUTI2
OUTI3

OUT I 4
*

R7, 10
R5,R6
R5
R7,R5
R1,R2
OUTI2
R6,>30
R6,8

R2:COUNTER VALUE
R7=10
SET UP R5,R6 FOR DIVISION

R5:R6/10, R6=REMAINDER
TEST FOR END OF FIELD

ADD ACSII OFFSET TO R6

R6,@BUFFR-1(R2) STORE CHARACTER IN BUFFER
R2
R5,0 TEST FOR LAST DIGIT
OUTI1
*R4,R5 TEST SIGN
OUTI4
OUTI4
R1,R2 TEST FOR END OF FIELD
OUTI2
R6,>2D2D INSERT MINUS SIGN
R6,@ BUFFR-1 (R2)
OUTI4
R6,>2A2A VALUE ERROR, INSERT ASTERISKS
R1
R6,@BUFFR-1(R1)
R1,@COUNT
OUTI3

RETURN

* ROUTINE TO MOVE A STRING TO THE I/0 BUFFER UNTIL
* A ZERO BYTE IS ENCOUNTERED IN THE CHARACTER STRING
* (STARTING ADDRESS OF STRING IN R4)
*

STRIN ~10V
STRING INC

BL
MOV
CLR
CB
JEQ
MOVB
JMP

STRN 1 RTWP
*

@>8(R13),R4
@COUNT
@TESTC
@COUNT,R2
R3
*R4,R3

GET STARTING ADDRESS
INCREMENT COUNTER
TEST VALUE
R2::COUNTER VALUE
R3::0
TEST FOR ZERO BYTE

STRN1
*R4+,@BUFFR-1(R2)
STRINO

MOVE CHARACTER TO BUFFER

RETURN

* TMS 9900 FORTRAN CROSS .COMPILER
* ARITHMETIC FUNCTION ROUTINES
*

73

**
* * EXPONENTIATOR ROUTINE TO RAISE VALUE IN RO TO POWER
* SPECIFIED BY PARAMETER AT RETURN ADDRESS.
* EXPN

EXPN1
EXPN2

EXPN3

EXPN 4

EXPN5
*

CLR
MOV
MOV
MOV
INCT
LI
MOV
CI
JGT
coc
JNE
DEC
ASS
CI
JEQ
coc
JNE
MPY
MOV
MPY
MOV
SRL
JMP
CI
JNE
NEG
B

R10
RO,RS
*R 11, R2
*R2,R12
R 1 1
R 0, 1
RO:R15
R8,-1
EXPN 1
R15,R12
EXPN 1
R10
RS
R12,0
EXPN4
R15,R12
EXPN3
R8,RO
R1,RO
R8,R8
R9,R8
R 12, 1
EXPN2
R10,-1
EXPN5
RO
* R 11

R10=0
R8=BASE
R 2=P A RAMETE R ADDHESS
R12=EXPONENT

R 0= 1
R15=1
TEST FOR NEGATIVE BASE

TEST FOR LSB OF R 12 = 1

R10=-1
R8=ABSOLUTE VALUE OF R8
TEST FOR R12 = 0

TEST FOR LSB OF R12 = 1

RO=RO*R8

SQUARE RS

R12=R12/2

TEST FOR NEGATIVE

RETURN

* SIGNED DIVISION ROUTINE TO DIVIDE IN RO BY VALUE
* VALUE OF PARAMETER AT RETURN ADDRESS.
*
DIVD LI R10,1

MOV *R11,R2
MOV *R 2, R8
INC T R 11

R10=1
R2::PARAMETER ADDRESS
R8=DIVISOR

74

CI H8,-1 TEST FOR NEGATIVE DIVISOR
JGT DIVD1
NEG R8 R8=-R8
NEG R10 R10=-R10

DIVD1 CI R0,-1 TEST FOR NEGATIVE DIVIDEND
JGT DIVD2
NEG RO RO=-RO
NEG R10 R10::-R10

DIVD2 MOV RO,R1 SET UP 32 BIT DIVIDEND
CLR RO
DIV RS,RO RO::RO/RS
CI R10,-1 TEST FOR NEGATIVE RESULT
JNE DIVD3
NEG RO

DIVD3 B *R 11 RETURN
*
* SIGNED MULTIPLICATION ROUTINE TO MULTIPLY VALUE IN RO
* BY VALUE OF PARAMETER AT RETURN ADDRESS.
*
!v1ULT LI R 1 0, 1 R10=1

MOV *R11,R2 R2=PARAMETER ADDRESS
ov *R2, RS R8::MULTIPLIER

INCT R 11
CI R 8, -1 TEST FOR NEGATIVE
JGT Jv1ULT1 MULTIPLIER
NEG RS R8=-R8
NEG R10 R10=-R10

MULT1 CI R0,-1 TEST FOR NEGATIVE MULTIPLICAND
JGT MULT2
NEG RO RO=-RO
NEG R10 R10=-R10

MULT2 MPY RS,RO MULTIPLY ABSOLUTE VALUES
MOV R 1, RO
CI R10,-1 TEST FOR NEGATIVE RESULT
JNE MULT3
NEG RO RO::-RO

MULT3 B *R11 RETURN
*
* SUBSCRIPTOR ROUTINE TO SUBSCRIPT ARRAY ADDRESS
* LOCATED AT RETURN ADDRESS WITH THE VALUE OF THE
* PARAMETER LOCATED AT THE RETURN ADDRESS + 2 AND
* LOAD THE VALUE INTO RO.
*
SBSC MOV *R11,R10 R10=ARRAY ADDRESS

INCT R 1 1
MOV *R11,R2 R2::SUBSCRIPT ADDRESS
MOV *R 2, R8 R8=SUBSCRIPT VALUE
INCT R 11
SLA R8, 1 COMPUTE OFFSET
DECT R8
A R8,R10 COMPUTE ADDRESS
MOV *R10,RO R O=ARRAY VALUE
B *H11
END

APPENDIX C

SAMPLE RUN

EX COMP.CLIST 'RAND.FORT LOADDECK.DATA'
1 SUBROUTINE RAND(IX1)

c
C RANDOM NUMBER GENERATOR.
c
C VALUES OF IX1 WILL RANGE FROM 1 TO 32767
c

2 DIMENSION N(32)
3 DATA L/12345/, NDIM/32/, M2/16384/, LA/205/,

* LC/6925/
4 DATA NRAN/23456/
5 DATA N/22291, 155,31814,26768,20735,17400,21861,

* 1138,13116,23810,1089,21391 '13235,27179,
* 7912,31503,29998,6509,30399,1613,17736,
* 15345,5454,20861,16503,19272,3742,29190,
* 18043,24419,2604,12011 I

6 NDIV=2**10
7 J=1+NRAN/NDIV
8 IF(J) 175,175,180
9 175 J=1-J

10 180 IF(J-NDIM) 190,190,185
11 1 8 5 J = J /N DIM
12 GO TO 180
13 190 NRAN=N(J)
14 IX1=NRAN
15 L=L*LA+LC
16 IF(L/2-M2) 220,220,210
17 210 L=(L-M2)-M2
18 220 IF(L) 230,240,240
19 230 L=(L+M2)+M2
20 240 N(J)=L
21 RETURN
22 END

EXECUTION ADDRESS:018E
c

SUBROUTINE PLOT(NAVG,NTOT)
c
C ROUTINE TO PLOT DISTRIBUTIONS OF NTOT NUMBERS
C COMPUTED AS AVERAGES OF NAVG RANDOM NUMBERS
C EACH ON A 10 X 10 GRAPH.

75

76

c
2 DIMENSION IDIST(10),LINE(10)
3 COMMON IN,LP

c
c SET PLOT CHARACTERS
c

4 DATA IAST,IBLNK /'**' , 1 I I
c
c INITIALIZE DISTRIBUTION DATA TO ZERO AND
c LINE TO BLANK
c

5 NMAX=O
6 DO 100 I= 1 , 1 0
7 LINE(I)=IBLNK
8 100 IDIST(I)=O

c
C LOOP TO RECORD DISTRIBUTIONS
c

9 DO 300 I=1,NTOT
c
C COMPUTE NUMBER AS AVERAGE OF RANDOM NUMBERS
c

10 NUM=O
11 DO 200 J=1,NAVG
12 CALL RAND(JRAN)
13 200 NUM=NUM+JRAN/NAVG

c
C RECORD DISTRIBUTION
c

14 ISUB=NUM/3277+1
15 IDIST(ISUB)=IDIST(ISUB)+1
16 IF(IDIST(ISUB)-NMAX) 300,300,250
17 250 NMAX=IDIST(ISUB)
18 300 CONTINUE

c
C MAKE PLOT OF DISTRIBUTION
c

19 NDIV=NMAX/10
20 DO 1000 I=1,10
21 NMAX=NMAX-NDIV
22 DO 500 J = 1 , 10
23 IF(IDIST(J)-NMAX) 500,500,400
24 400 LINE(J)=IAST
25 500 CONTINUE

c
C OUTPUT LINE OF GRAPH
c

26 1000 WRITE(LP,1) LINE(1),LINE(2),LINE(3),LINE(4),
* LINE(5),LINE(6),LINE(7),LINE(8),LINE(9),

27 1 FORMAT(10A2)
* LINE(10)

28 HETURN
29 END

EXECUTION
c

ADDRESS=0332

c
c
c
c
c

MAIN PROGRAM TO READ A NUMBER (N) FROM A
TERMINAL, CALL A ROUTINE TO PLOT DISTRIBUTIONS
OF 1000 NUMBERS CALCULATED AS AVERAGES OF N
RANDOM NUMBERS EACH AND REPEAT THE PROCESS
UNTIL A ZERO IS ENTERED.

c
COMMON IN,LP

c
C SET I/0 UNIT NUMBERS
c

2 IN=O
3 LP=O

c
C INITIALIZE RANDOM NUMBER GENERATOR
c

4 WRITE(LP,1)
5 1 FORMAT(

* ' ENTER 4-DIGIT NUMBER FOR INITIALIZATION')
6 READ(IN,2) N
7 2 FORMAT(I2)
8 DO 50 I=1,N
9 50 CALL RAND(J)

c
c READ NUMBER OF RANDOM VALUES FOR AVERAGE
c

10 100 WRITE(LP,3)
1 1 3 FORMAT(' ENTER N')
12 READ (IN, 4) N
13 4 FORMAT(I2)

c
c TEST FOR LAST N ,...
'-'

14 IF(N) 1000,1000,200
15 200 CONTINUE

c
C CALL ROUTINE TO PLOT DISTRIBUTION

16 CALL PLOT(N,1000)
17 GO TO 100
18 1000 STOP
19 END

EXECUTION ADDRESS=061C
READY
L LOADDECK.DATA NONUM
IKJ52827I LOADDECK.DATA

0132: 57 13 00 98 7C 46 68 90 50 FF 43 F8 55 65 04 72
0142: 33 3C 50 02 04 41 53 8F 33 83 6A 2B 1E E8 78 OF
0152: 75 2E 19 6D 76 BF 06 40 L[5 48 3B F1 15 4E 51 7D
0162: 40 77 48 48 OF 9E 72 06 46 78 5F 63 OA 2C 2E EB
0172: 30 39 00 20 40 00 00 CD 1B OD 5B AO 00 00 00 02

77

78

0182: 00 OA 00 00 00 01 00 00 OD OA 00 00 02 28 00 02
0192: C8 08 01 1 0 co 20 01 80 06 AO F2 E8 01 82 C8 00
01 A2: 01 7E co 20 01 7C 06 AO F3 26 01 7E C8 00 01 30
0182: co 20 01 86 AO 20 01 30 C8 00 01 84 co 20 01 84
01C2: 15 05 1 3 02 04 60 01 D2 QL(60 01 D2 04 60 01 DE
01D2: co 20 01 86 60 20 01 84 C8 00 01 84 co 20 01 84
01 E2: 60 20 01 74 C8 00 01 88 co 20 01 88 1 5 05 1 3 02
01 F2: OL(60 02 1 0 04 60 02 10 OL(60 01 FE co 20 01 84
0202: 06 AO F3 26 01 7 L(C8 00 01 84 04 60 01 DE 06 AO
0212: F3 80 01 32 01 84 C8 00 01 7C co 20 01 7C 02 OA
0222: FF FC A2 AO 01 10 C2 AA 00 02 C2 1A C6 80 co 20
0232: 01 72 06 AO F3 54 01 78 AO 20 01 7A C8 00 01 72
0242: co 20 01 72 06 AO F3 26 01 80 60 20 01 76 C8 00
0252: 01 88 co 20 01 88 1 5 05 1 3 02 04 60 02 78 04 60
0262: 02 78 04 60 02 68 co 20 01 72 60 20 01 76 60 20
0272: 01 76 C8 00 01 72 co 20 01 72 1 5 05 1 3 02 04 60
0282: 02 8C 04 60 02 9C 04 60 02 9C co 20 01 72 AO 20
0292: 01 76 AO 20 01 76 C8 00 01 72 co 20 01 72 co AO
02A2: 01 84 OA 12 06 42 C8 80 01 32 C2 EO 01 1 0 04 58
02D6: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02E6: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02F6: 00 00 00 00 00 00 00 00 00 00 00 00 2A 2A 20 20
0306: 00 00 00 00 00 00 00 01 00 OA 00 00 00 00 00 00
0316: 00 00 oc CD 00 00 00 00 00 02 00 03 00 04 00 05
0326: 00 06 00 07 00 08 00 09 OD OA 00 00 02 28 00 04
0336: C8 OB 02 84 co 20 03 08 C8 00 03 06 cs 20 03 oc
0346: 03 OA co 20 03 04 co AO 03 OA OA 12 06 42 C8 80
0356: 02 EE co 20 03 08 co AO 03 OA OA 12 06 42 C8 80
0366: 02 DA 05 AO 03 OA 88 20 03 OA 03 OE 15 02 04 60
0376: 03 48 C8 20 03 oc 03 OA co 20 03 08 C8 00 03 1 0
0386: C8 20 03 oc 03 12 06 AO 01 8E 03 1 4 02 OA FF FA
0396: A2 AO 02 84 C2 AA 00 02 C8 1A 02 82 co 20 03 14
03A6: 06 AO F3 26 02 82 C8 00 02 D4 co 20 03 1 0 AO 20
0386: 02 D4 C8 00 03 10 05 AO 03 12 02 OA FF FA A2 AO
03C6: 02 84 C2 AA 00 02 C8 1A 02 86 88 20 03 12 02 86
03D6: 15 02 04 60 03 8C co 20 03 10 06 AO F3 26 03 1 8
03E6: AO 20 03 oc C8 00 03 1 6 06 AO F3 80 02 DA 03 1 6
03F6: AO 20 03 oc co AO 03 1 6 OA 12 06 42 C8 80 02 DA
0406: 06 AO F3 80 02 DA 03 1 6 60 20 03 06 C8 00 03 1A
0416: co 20 03 1A 15 05 1 3 02 04 60 04 36 04 60 04 36
0426: 04 60 04 2A 06 AO F3 80 02 DA 03 1 6 C8 00 03 06
0436: 05 AO 03 OA 02 OA FF FA A2 AO 02 84 C2 AA 00 04
0446: C8 1A 02 86 88 20 03 OA 02 86 15 02 OLI 60 03 7E
0456: co 20 03 06 06 AO F3 26 03 OE C8 00 03 1C C8 20
OLI66: 03 oc 03 OA co 20 03 06 60 20 03 1C C8 00 03 06
0476: C8 20 03 oc 03 12 06 AO F3 80 02 DA 03 12 60 20
0486: 03 06 C8 00 03 1A co 20 03 1A 15 05 1 3 02 04 60
0496: 04 BO OL(60 OL(BO 04 60 04 AO co 20 03 02 co AO
QLIA6: 03 12 OA 12 06 42 C8 80 02 EE 05 AO 03 1 2 88 20
0486: 03 12 03 OE 15 02 04 60 04 7C C8 20 02 D8 00 EE
Ol-+C6: 02 05 00 80 02 06 F 1 26 04 05 02 04 02 EE C2 20
04D6: 03 oc OA 18 06 48 A1 08 02 06 F2 4E 04 05 02 04
OLIE6: 02 EE C2 20 03 1E OA 18 06 48 A1 08 02 06 F2 4E
O!JF6: OLI 05 02 04 02 EE C2 20 03 20 OA 18 06 48 A1 08

79

0506: 02 06 F2 4E 04 05 02 04 02 EE C2 20 03 22 OA 18
0516: 06 48 A1 08 02 06 F2 4E 04 05 02 04 02 EE C2 20
0526: 03 24 OA 18 06 48 A1 08 02 06 F2 4E OLI 05 02 04
0536: 02 EE C2 20 03 26 OA 18 06 48 A1 08 02 06 F2 4E
0546: 04 05 02 04 02 EE C2 20 03 28 OA 18 06 48 A1 08
0556: 02 06 F2 4E 04 05 02 OL+ 02 EE C2 20 03 2A OA 18
0566: 06 48 A1 08 02 06 F2 4E 04 05 02 04 02 EE C2 20
0576: 03 2C OA 18 06 48 A 1 08 02 06 F2 4E 04 05 02 04
0586: 02 EE C2 20 03 OE OA 18 06 1!8 A1 08 02 06 F2 4E
0596: 04 05 02 06 FO co Oi-l 05 05 AO 03 OA 88 20 03 OA
05A6: 03 OE 15 02 Ol! 60 04 6A C2 EO 02 B4 04 5B
0508: 00 00 00 00 00 00 00 01 00 00 03 E8 OD OA 00 00
05E8: 20 45 4E 51! 45 52 20 34 2D 44 49 47 49 54 20 l!E
05F 8: 55 4D 42 45 52 20 Ll6 l.j.f 52 20 49 4E 49 54 49 41
0608: 4C 49 5A 41 54 49 4F 4E 00 00 20 45 4E 511 45 52
0618: 20 LIE 00 00 co 20 05 D8 C8 00 02 D6 co 20 05 D8
0628: C8 00 02 D8 C8 20 02 D8 00 EE 02 05 00 80 02 06
0638: F1 26 QLI 05 02 04 05 E8 02 06 F2 CA 04 05 02 06
0648: FO co 04 05 cs 20 02 D6 00 EE 02 05 00 80 02 06
0658: FO 82 04 05 02 04 05 DA 02 OA 00 02 02 06 F1 82
0668: Qlj 05 C8 20 05 DE 05 DC 06 AO 01 SE 05 EO 05 AO
0678: 05 DC 88 20 05 DC 05 DA 15 02 OLI 60 06 70 C8 20
0688: 02 D8 00 EE 02 05 00 80 02 06 F1 26 04 05 02 04
0698: 06 1 2 02 06 F2 CA 04 05 02 06 FO co 04 05 C8 20
06A8: 02 D6 00 EE 02 05 00 80 02 06 FO 82 04 05 02 04
06B8: 05 DA 02 OA 00 02 02 06 F1 82 0 lj 05 co 20 05 DA
06C8: 15 05 1 3 02 04 60 06 E4 04 60 06 E4 04 60 06 D8
0608: 06 AO 03 32 05 DA 05 E2 04 60 06 86 04 20 FF FC

READY

APPENDIX D

BNF SYNTAX OF FORTRAN STATEMENT TEXT

stmt ::=read stmt : write stmt : format stmt I
assiinment stmt 1-dimension stmi : data stmt
common stmt : go to stmt : Tf stmt : do-stmt
stop stmt I end stmt I call stmt : -
subroutine stmt- return stmt continue stmt

stop_stmt ::=STOP

end stmt :: = END

return stmt ::=RETURN

continue stmt ::=CONTINUE

read stmt ::=READ(int , int canst) io list

write stmt ::=WRITE(int , int_const) io list

io 1 i st var I var io list

var ::= int id : int id (int)

format stmt FORMAT(format list)

format list ::=format item format i tern , format_ list

format item format type
string-1 I :

int canst format type
int canst X -

format_type ::= A1 : A2 : I int canst : U

string :: = ' char string ' I int canst H char string

assignment_stmt ::= var = rhs

rhs ::= var: rhs op rhs I (rhs) canst

op ::= + I- * I I : **
dimension stmt DIMENSION dimension list

dimension list dimension item

80

dimension_item , dimension_list

dimension item ::= int id (int const)

data stmt ::=DATA data block

data block id list I data list I :
id-list I data list I data block

id list

data list

data item

int id : int id , id list

.. -.. - data item : data ~tern

const : string

common stmt ::=COMMON id list

go_to_stmt ::=GO TO int_const

data list

if stmt IF (rhs) in t const int const int const

do stmt DO int id = int , int
DO int-id = int , int , int

subroutine stmt SUBROUTINE id :
SUBROUTINE id (subroutine list)

subroutine list int id : int id , subroutine_list

call stmt CALL id : CALL id (call list)

call list const : in t id : const
int_id , call list

call list

int const pos_num

1 1
1 2 1

1 3 pos_num :: =

pos_num num list

415161718

num list ::= num I num num list

num :: = 0 pos_num

const :: = 0 I int const I - int const

int id :: = int __ alpha I int_alpha id

id :: = alpha I id num id alpha

int_alpha

alpha ::=A
p

I

B
Q

int int const

J

c
R

K

D
s

in t id

L

E
T

M

F
u

N

G
v

H
w

9

int alpha
X 1-Y I Z

0

81

char_string ::=char char char_string

char ::=alpha
(:)

: num : blank
: - + =

II $: &
I

82

*

83

Supplemental notes:

1. The range of int const is from 1 to 32767.

2. The range of const is from -32768 to 32767.

3. The maximum length of id and int id is 6 characters.

4. If string is defined using int_const H char string,

then the value of int const must be equal to the length

of char string.

APPENDIX E

GLOSSARY

ASCII - American Standard Code for Information Interchange.

Cross compiler - A compiler that executes on one computer

and produces object code for a different computer.

EBCDIC - Extended Binary Coded Decimal Information Code.

Finite state automaton - A parser that consists of a finite

number of states and rec~gnizes input strings by making

transitions between states until a final state is

reached.

Grammar - A set of definitions which specify the sequences

of characters that form allowable programs in a lan

guage.

,Hex deck -File of hexadecimal records of object code suita

ble for loading onto the object computer.

Hexadecimal - Base

through F to

through 15.

16 number system using

represent the digits

the characters A

with values 10

Host computer - Machine on which the cross compiler exe-

cutes.

Intermediate code - Code generated by the compiler for

internal representation of FORTRAN statements.

Lexical analyzer - A subroutine whose function is to recog-

84

85

nize tokens in a string of input characters.

Object code - Hexadecimal machine code generated by the com

piler to be loaded onto the object computer.

Object code templates - Hexadecimal machine code stored in

the compiler for use in generation of object code.

Object computer - Machine for which the compiler generates

object code.

Parse - Process of determining the syntactic structure asso

ciated with a string of input characters.

Parser - A subroutine whose function is to parse a statement

in the source code.

Source code- FORTRAN program input to the compiler.

Syntax - Relation associating sentences of a language with

the structure that is specified by the grammar for the

language.

Steven Roger Heard

Candidate for the Degree of

Master of Science

Thesis: A FORTRAN CROSS COMPILER FOR A TMS
9900 MICROCOMPUTER SYSTEM

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Winston-Salem, North Carolina,
April 18, 1956, the son of Mr. and Mrs. Burton E.
Heard.

Education: Graduated as valedictorian from Dale High
School, Dale, Oklahoma, in May, 1973; received the
Bachelor of Science degree in Computing and
Information Sciences from Oklahoma State
University, Stillwater, Oklahoma, in December,
1977; completed the requirements for the Master of
Science degree in July, 1979, at Oklahoma State
University.

Professional Experience: Employed by ·oklahoma State
University as a Student Assistant from September,
1977 to December, 1977; employed by Oklahoma State
University as a Graduate Assistant from January,
1978 to May, 1979.

