## SYNTHESIS OF AN R.S.S.R MECHANISM FOR FUNCTION GENERATION AND FOR REPLACING HYPOID GEARS USING HIGHER ORDER SPACE PATH

CURVATURE THEORY

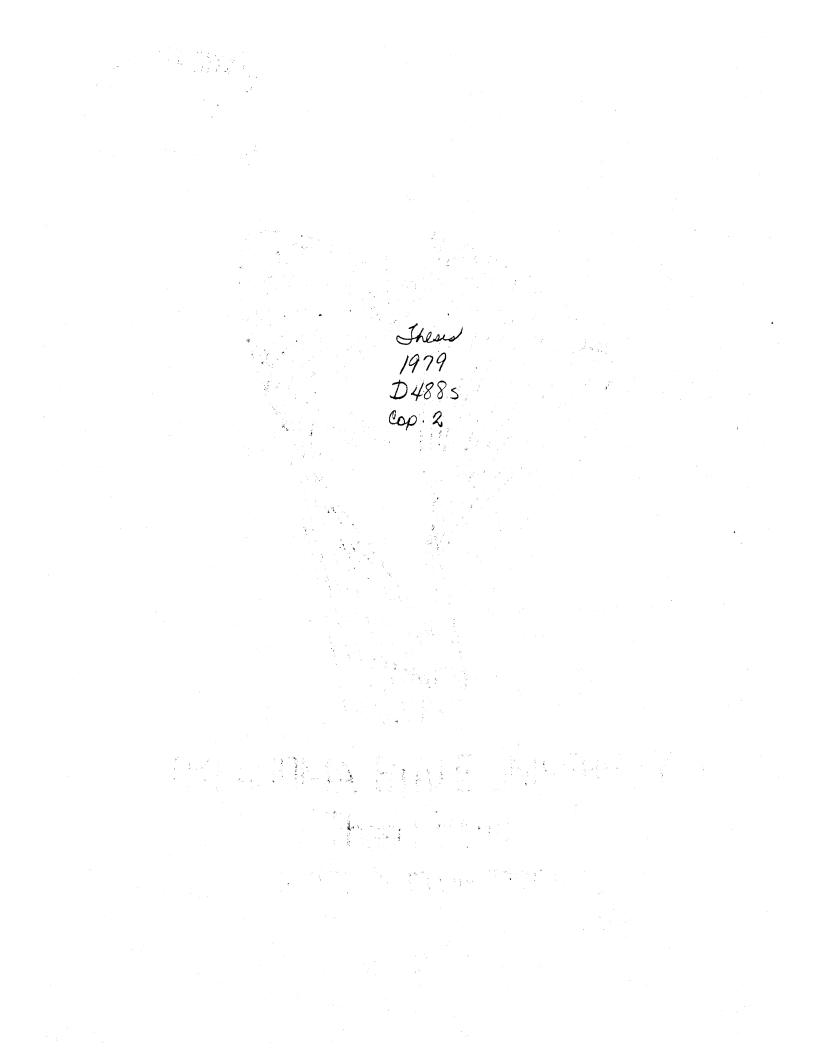
By

B. T. DEVANATHAN

Licentiate in Mechanical and

S. A. State

Electrical Engineering


Government Technical College,

Hyderabad

India

1953

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1979





SYNTHESIS OF AN R.S.S.R MECHANISM FOR FUNCTION GENERATION AND FOR REPLACING HYPOID GEARS USING HIGHER ORDER SPACE PATH CURVATURE THEORY

Thesis Approved:

Thesis Adv ٤

Dean of the Graduate College

#### ACKNOWLEDGMENTS

My dream of pursuing higher studies at this reputed university was made a reality by my well-wishers of M/S Tata Chemicals Ltd., India. It is a great pleasure to me to express my profound gratitude to all my superiors and in particular to Mr. D. S. Seth, Vice Chairman and Managing Director, Mr. P. V. S. Manyam, Deputy Managing Director, Mr. R. Prabhakar, General Manager, and Mr. S. Balakrishnan, Maintenance Manager, for sponsoring me for graduate studies at O.S.U.

I cannot express in words my thanks to my adviser, Dr. A. H. Soni, for suggesting the thesis problem. He provided me with generous assistance by spending many hours of his valuable time with me. His great abilities, his excellent guidance, encouragement, supervision and cooperation have made the completion of my M.S. degree program in reasonable time. I am very highly grateful to him.

I wish to acknowledge greatly the committee members, Dr. C. E. Price and Dr. T. E. Blejwas, for their encouragement throughout my stay with them.

I thank sincerely Mr. Siddhanty for his immense and valuable help and encouragement. Also, I profoundly thank all my other friends, particularly Mr. Patwardhan, Mr. Ganni and Dr. Hamid, for their continual cooperation and valuable help throughout my studies.

My wife, Smti Choodamani, my children, Sudha, Suresh and Savitha, suffered a lot during my stay and studies abroad away from home. I offer my special gratitude to each of them.

iii

Finally, my thanks are also due to my parents-in-law and my dear friend, Mr. S. Ganapathy, for their encouragement.

I am grateful to Joyce Gazaway for an excellent typing job and for cooperating with me in getting this job done in time.

## TABLE OF CONTENTS

| Chapte | r          |                                                                                              | Pa  | ge |
|--------|------------|----------------------------------------------------------------------------------------------|-----|----|
| I.     | INTRODUCT  | ION                                                                                          | •   | 1  |
|        | 1.1        | General                                                                                      | •   | 1  |
|        | 1.2        | Problem Statement                                                                            | •   | 4  |
|        | 1.3        | Literature Review                                                                            | •   | 4  |
|        | 1.4        | Objectives of the Study                                                                      | •   | 6  |
| II.    | SYNTHESIS  | •••••••••••••••••                                                                            | •   | 8  |
|        | 2.1        | Configuration                                                                                | •   | 8  |
|        | 2.2        | Function Generation Relationships                                                            | •   | 10 |
|        | 2.3        | The Principle of Inversion                                                                   | •   | 13 |
|        | 2.4        | Relative Angular Motions                                                                     | •   | 15 |
|        | 2.5        | Analysis of Point Motion                                                                     |     | 16 |
|        | 2.6        | Differential Geometry of the Point Path                                                      |     | 18 |
|        | 2.7        | Synthesis of Spherical Joint S, and                                                          |     |    |
|        |            | Spherical Joint S                                                                            | •   | 21 |
|        | 2.8        | Determination of the R.S.S.R Configuration                                                   | •   | 22 |
| III.   | ANALYSIS   | •••••••                                                                                      | • . | 24 |
|        | 3.1        | Displacement Analysis                                                                        |     | 24 |
|        | 3.2        | Derivative Analysis Up to Fourth Order                                                       | •   | 26 |
|        | J.2        | berivative Analysis of to Fourth order                                                       | •   | 20 |
| IV.    | NUMERICAL  | EXAMPLES AND DISCUSSION                                                                      | •   | 34 |
|        | 4.1        | Numerical Example of Function Generation                                                     |     | 34 |
|        | 4.2        | Numerical Example: Replacement of Gears                                                      |     | 35 |
|        | 4.3        | Discussion                                                                                   |     | 40 |
| v.     | SUMMARY AN | ND CONCLUSIONS                                                                               | •   | 42 |
| BIBLIO | GRAPHY     |                                                                                              | •   | 45 |
| APPEND | IXES       |                                                                                              |     | 47 |
|        |            |                                                                                              | •   |    |
|        | APPENDIX A | A - COMPUTER PROGRAM TO OBTAIN THE COORDINATES<br>OF SPHERICAL JOINT SA WITH ONE SET OF DATA |     |    |
|        |            | AND SOLUTION                                                                                 | •   | 48 |

Chapter

| APPENDIX | В | - | COMPUTER PROGRAM TO OBTAIN THE COORDINATES<br>OF SPHERICAL JOINT S <sub>B</sub> AND OTHER PARAMETERS<br>OF THE R.S.S.R MECHANISM WITH ONE SET OF |    |
|----------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
|          |   |   | DATA AND SOLUTION                                                                                                                                | 56 |
| APPENDIX | С | - | COMPUTER PROGRAM FOR DISPLACEMENT ANALYSIS<br>OF THE R.S.S.R MECHANISM WITH ONE SET OF                                                           |    |
|          |   |   | DATA AND SOLUTION                                                                                                                                | 63 |
| APPENDIX | D | - | COMPUTER PROGRAM FOR THE DERIVATIVE ANALYSIS<br>OF THE R.S.S.R MECHANISM WITH ONE SET OF                                                         |    |
|          |   |   | DATA AND SOLUTION                                                                                                                                | 65 |

Page

## LIST OF TABLES

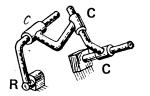
| Table |                                                                                                                   |   |   | Pε | ige |
|-------|-------------------------------------------------------------------------------------------------------------------|---|---|----|-----|
| I.    | R.S.S.R Mechanism Synthesis Solutions for Function<br>Generation                                                  | • | • | •  | 36  |
| II.   | Displacement and Derivative Analysis of the<br>Synthesized R.S.S.R Mechanisms for Function<br>Generation          | • | • | •  | 37  |
| III.  | R.S.S.R Mechanism Synthesis Solutions for Replacing<br>Hypoid Gears                                               | • | • | •  | 38  |
| iv.   | Displacement and Derivative Analysis of the<br>Synthesized R.S.S.R Mechanism for Replacing<br>Hypoid Gears        | • |   | •  | 39  |
| V.    | Deviations of Derivatives Over a Range of 40°, 20°<br>Below and 20° Above the Designed Input Angle of<br>Rotation |   |   | •  | 41  |

## LIST OF FIGURES

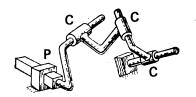
| Figu | re                                                      |   |     |     | Pa | age |
|------|---------------------------------------------------------|---|-----|-----|----|-----|
| 1.   | Examples of Space Mechanism According to Harrisberger . | • | •   | • . | •  | 2   |
| 2.   | R.S.S.R Mechanism                                       | • | •   | •   | •  | 9   |
| 3.   | Functional Relationship Between $\Theta$ and $\varphi$  | • | • 1 | •   | •  | 11. |
| 4.   | Inversion of R.S.S.R Mechanism                          | • | •   | •   | •  | 14  |
| 5.   | Space Curve C with Frenet Frame of Reference at Point P | • | •   | •   | •  | 19  |

#### CHAPTER I

#### INTRODUCTION

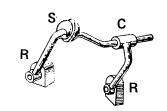

#### 1.1 General

One of the current areas of keen interest in mechanism research is the vast domain of three dimensional linkages, frequently called the space mechanisms. There are potentially hundreds of them. But only a few kinds have been investigated or described.

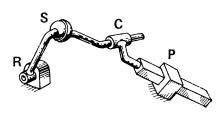

A space mechanism can exist with a wide variety of connecting joints or pair combinations. Detailed examination of the various kinds of space mechanisms showed many of these to be mechanically complex and of limited adaptability. But the four link mechanisms have particular appeal because of their mechanical simplicity. Figures 1a and 1b show the best of a class of four link space mechanisms according to Harrisberger (1).

Among four link space mechanisms it is well known that the R.S.S.R mechanism (see Figure 1b) is an outstanding choice as the most versatile and practical configuration capable of giving double crank motion requirements.

An R.S.S.R crank rocker mechanism consists of three movable links mounted to a fixed link or frame. The driver is the rotating link. The follower is the oscillating link. The coupler is the moving link between the driver and the follower connected to them by spherical joints. The driver and the follower are fixed to the frame by means to two revolute

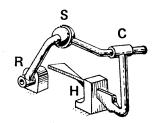



R - C - C - C MECHANISM




P - C - C - C MECHANISM

H - C - C - C MECHANISM

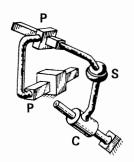



R - S - C - R MECHANISM

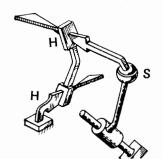


R - S - C - P MECHANISM

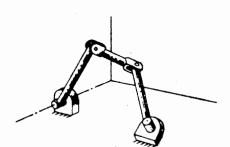
C - CYLINDERICAL PAIR H - HELICAL PAIR



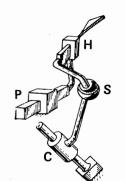

R - S - C - H MECHANISM


P – PRISMATIC PAIR R – REVOLUTE PAIR S – SPHERICAL PAIR

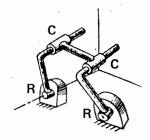
А


Figure 1. Examples of Space Mechanisms According to Harrisberger

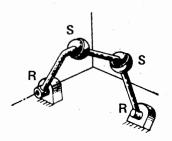



P - P - S - C MECHANISM

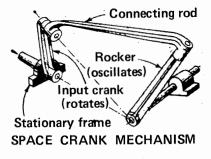



H - H - S - C MECHANISM

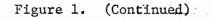



BENNET R - R - R - R MECHANISM




P-H-S-C MECHANISM




R-C-C-R MECHANISM



R-S-S-R MECHANISM



В



joints. Basically it is a two degree of freedom mechanism with a passive degree of freedom of the coupler motion about its own axis. The practical simplicity of the mechanism and its unlimited geometric adaptability justifies its importance as a practical and useful space mechanism.

#### 1.2 Problem Statement

Function generation is one of the important purposes for which a mechanism is often synthesized. For function generation a mechanism is so synthesized that the output motion is a desired function of the input motion, both motions being rotary or oscillatary in most cases. Thus, a function generating mechanism essentially converts a uniform motion into another uniform motion or nonuniform motion. Circular gears, chains, belts, and the like comprise most of the uniform motion convertors. Nonuniform conversions are made with noncircular gears, cam follower systems, ratchets and linkages.

In this thesis, the synthesis of a spatial R.S.S.R linkage for function generation between two links mounted on nonintersecting skew shafts is presented. The accuracy achieved is up to fourth order while in the existing literature it is only up to third order as discussed in the later sections of this thesis. A simple method of analysis up to fourth order is also presented to check the correctness of the synthesized linkage and its accuracy in neighboring positions.

#### 1.3 Literature Review

In most engineering fields gears and cams are used for motion transmission with uniform and nonuniform ratios of transmission. It has been an old dream of the kinematicians to find equivalent substitutes of gears and cams by linkages. They came to the conclusion that it is possible to replace gears and cams by linkages if small deviations from the ratios of transmission are permissible. The mechanism can be manufactured cheaper and easier.

Hall and Dunk (2) developed procedure for designing planar four bar linkages as a simple and effective substitute for more expensive gears. This design was suitable for transmission of a substantial constant angular velocity ratio for a limited range of angular motion.

Freudenstein (3) presented time saving self-explanatory tables on planar four bar function generators, illustrating the linkage types, functions, ranges and accuracies possible.

Hain (4) presented a practical method for designing planar four bar linkages for oscillatary motion with approximate constant transmission ratio within prescribed tolerances.

Harrisberger (5) described a simple method for synthesizing an R.S.S.R mechanism for finite displacements.

Scroggin and Morse (6) presented the relationships for the synthesis of R.S.S.R mechanism up to second order.

Suh (7) (8) presented matrix methods for the synthesis of R.S.S.R function generators up to third order. A special case of the function generators serve to replace hypoid gears up to third order.

Mohanrao, Sandor, Kohli, and Soni (9) presented methods to synthesize R.S.S.R mechanism for seven finite positions.

Recently, Chunsiripong and Soni (10) developed mathematical procedures to synthesize R.S.S.R mechanism to coordinate motions of input and output links for their finite and infinitesmal displacements.

However, the infinitesmal synthesis is carried out up to third order only.

The existing literature shows the following:

1. The kinematic analysis was carried out up to third order only.

2. In most cases the synthesis was done for finite displacements.

3. In case of higher order synthesis, the order achieved was up to three only.

4. Function generation synthesis was carried out using inversion techniques.

5. The design equations were obtained using the constant length constraint on the coupler.

To further the state of art in R.S.S.R mechanism synthesis, the following objectives are determined in this study.

#### 1.4 Objectives of the Study

1. To synthesize the R.S.S.R mechanism up to fourth order.

2. To use a new approach other than the constant length criterian of the coupler length.

3. To use the higher order path curvature theory to determine locus of points that describe spherical paths up to fourth order.

4. To use the above locus to determine the spherical pairs on the coupler.

5. To synthesize R.S.S.R mechanism to replace gears up to fourth order.

6. To analyze the R.S.S.R mechanism up to fourth order to determine the correctness of the synthesized mechanism and its accuracy in neighboring positions.

The above objectives of the study are made possible by the most recent studies by Siddhanty and Soni (11) on higher order path curvature theory.

.

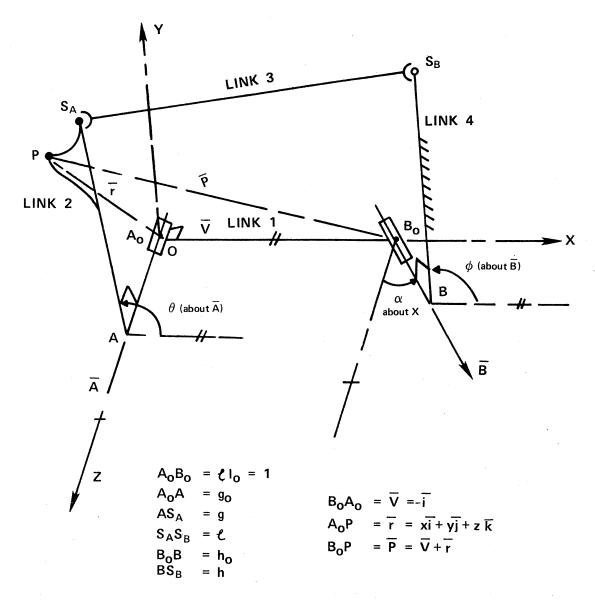
#### CHAPTER II

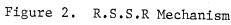
#### SYNTHESIS

#### 2.1 Configuration

Figure 2 shows the configuration of an R.S.S.R mechanism.  $\overline{A}$  and  $\overline{B}$  are the input and the output rotation axes which are fixed on a frame. A<sub>0</sub>B<sub>0</sub> is the shortest distance and  $\alpha$  is the angle between them.

Let  $A_0 AS_A$  be the input crank rotating about axis  $\overline{A}$ .  $A_0$  is the location of revolute pair and  $S_A$  is the location of spherical pair. We denote  $AS_A$  as the input crank length and  $A_0A$  as the input crank offset length.


Let  $B_0BS_B$  be the output crank rotating about axis  $\overline{B}$ .  $B_0$  is the location of revolute pair and  $S_B$  is the location of spherical pair. We denote  $BS_B$  as the output crank length and  $B_0B$  as the output crank offset length.


Let  $S_{A}S_{B}$  be the coupler connecting the input and output cranks at spherical pairs  $S_{A}$  and  $S_{B}.$ 

For simplicity we establish the following coordinate system.

Let OXYZ be the fixed coordinate system with its origin at  $A_o$ , X-axis along  $A_{Oo}^{B}$  and Z-axis along  $\overline{A}$ . Y-axis is determined by the right hand rule.

Let  $\overline{i}$ ,  $\overline{j}$ ,  $\overline{k}$  be the unit vectors along X, Y, and Z-axis. Let  $\alpha$  be the angle of skew of the output axis  $\overline{B}$  relative to the input axis  $\overline{A}$ 





measured about the X-axis. It is the angle from vector  $\overline{A_0}A$  to vector  $\overline{B_0}B$ .

Let us denote  $A_{OO}^B$  as the Link 1 which is fixed,  $A_{OO}^A A$  as Link 2,  $S_A^A S_B^B$  as Link 3 and  $B_O^B S_B^B$  as Link 4.

Let  $\Theta$  be the input crank rotation angle measured about the axis  $\overline{A}$ . It is the angle from vector  $\overline{A_{O}}_{O}^{B}$  to vector  $\overline{AS_{A}}$ .

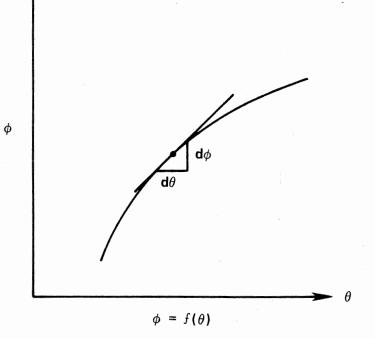
Let  $\phi$  be the output crank rotation angle measured about the axis B; it is the angle from vector  $\overline{A_{O}}_{O}^{B}$  to vector  $\overline{BS_{B}}$ .

In the given coordinate system we have

$$\overline{A} = \overline{K}$$
(2.1)  
$$\overline{B} = -\sin \alpha \overline{j} + \cos \alpha \overline{k}$$
(2.2)

We note  $\overline{A}$  and  $\overline{B}$  are unit vectors.

#### 2.2 Function Generation Relationships


Figure 3 shows the functional relationship between input and output crank motions.


Let 
$$\phi = f(\Theta)$$
. (2.3)

Since the number of links in the mechanism are limited, the synthesized mechanism in general can satisfy the function (2.3) only at finite number of points in case of finite synthesis, or up to a finite number of derivatives in the case of derivative synthesis. In this thesis we are concerned with derivative synthesis of the R.S.S.R mechanism up to fourth order. This means we are going to synthesize the R.S.S.R mech anism so that the derivatives  $\frac{d\phi}{d\Theta}$ ,  $\frac{d^2\phi}{d\Theta^2}$ ,  $\frac{d^3\phi}{d\Theta^3}$ , and  $\frac{d^4\phi}{d\Theta^4}$  are realized in the synthesized mechanism at a given instant.

Let

$$\frac{d\phi}{d\Theta} = n_1$$





$$\frac{d^{2}\phi}{d\Theta^{2}} = n_{2}$$

$$\frac{d^{3}\phi}{d\Theta^{3}} = n_{3}$$

$$\frac{d^{4}\phi}{d\Theta^{4}} = n_{4}$$
(2.4)

The case, in which  $n_1$  is less than zero and  $n_2 = n_3 = n_4 = 0$ , represents a gearing relationship up to fourth order. A mechanism for this gear relationship can replace a set of hypoid gears with sufficient accuracy in the neighborhood of the synthesized position of the linkage. Higher the order of derivative synthesis, more will be the accuracy of gearing ratio in the neighborhood.

In the synthesis procedure we take time as the independent motion parameter. Hence, input and output motions are expressed as functions of time. So we can express the derivatives in Equation (2.4) as function of time as follows. The dots represent differentiation with respect to time.

$$n_{1} = \frac{d\phi}{d\Theta} = \frac{\phi}{\Theta}$$
(2.5)

$$n_2 = \frac{d^2\phi}{d\Theta^2} = (\phi \quad \Theta - \phi \quad \Theta) / \Theta^3$$
(2.6)

$$n_{3} = \frac{d^{3}\phi}{d\theta^{3}} = \left[ (\phi \quad \Theta - \phi \quad \Theta)\Theta - 3(\phi \quad \Theta - \phi \quad \Theta)\Theta \right] / \Theta^{5}$$
(2.7)

$$n_{4} = \frac{d^{4} \phi}{d\Theta^{4}} = \left[ \left( \begin{array}{ccc} \phi & \Theta + \phi & \Theta & -\phi & \Theta & -\phi & \Theta \end{array} \right) \right) \right) \left( \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left( \begin{array}{c} 0 \end{array} \right) \left( \begin{array}{c} 0 \\ 0 \end{array} \right) \left( \begin{array}{c} 0 \end{array} \right) \left( \begin{array}$$

For the sake of simplicity, we can assume

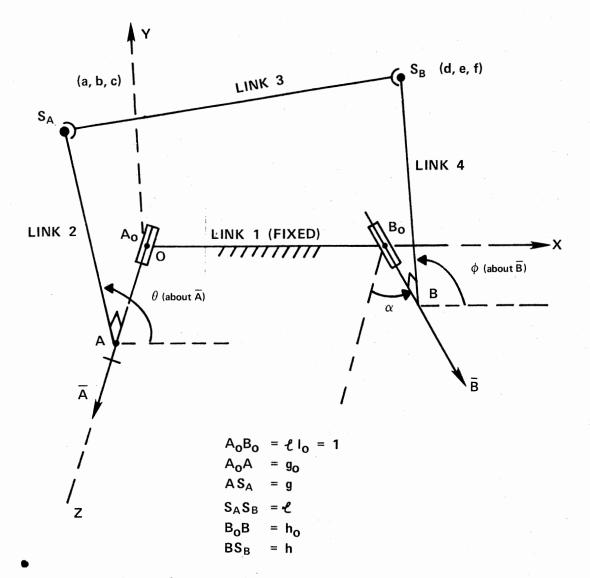
$$\Theta = 1, \ \Theta = 0, \ \Theta = 0, \ \Theta = 0.$$
 (2.9)

Then we have

$$n_{1} = \phi$$

$$n_{2} = \phi$$

$$n_{3} = \phi$$


$$n_{4} = \phi$$

(2.10)

#### 2.3 The Principle of Inversion

In Figure 2 we have Link 1 fixed. However, if we fix Link 4 instead of Link 1 the synthesis procedure will be easier. A mechanism obtained by fixing an alternate link is known as the inversion of the original mechanism.

Figure 4 shows an inversion of the mechanism in Figure 2. We note that Link 4 is fixed in the inversion. It is to be noted that the relative motion of a link with respect to any other link in the mechanism is not altered in its inversion. Further, we can assume  $A_0B_0$  as unity without loss of generality in the functional relationship between 0 and  $\phi$ . Now when  $n_1$ ,  $n_2$ ,  $n_3$ ,  $n_4$  and  $\alpha$  are specified we can determine the locations  $A_0$ , and  $B_0$ , directions  $\overline{A}$  and  $\overline{B}$  and the relative motions of Link 1 with respect to Link 4 and Link 2 with respect to Link 4. The mechanism is synthesized when we determine the locations of  $S_A$  and  $S_B$ . In the inversion  $S_B$  is a point on Link 4 which is fixed.  $S_A$  is a point moving on a sphere with  $S_AS_B$  as the radius. We use this property of  $S_A$ 



### Figure 4. Inversion of R.S.S.R Mechanism

having a spherical path as the synthesis technique. We note  $S_A$ , being a pair, is also considered as a point on Link 2. Further, we can find the locus of points in Link 2 that describe spherical paths up to fourth order. Any point on this locus can serve as a spherical joint  $S_A$ . Having determined  $S_A$ , we can determine also the center of sphere of the spherical path which will yield  $S_B$ . These are derived in the following sections.

#### 2.4 Relative Angular Motions

Referring to Figure 4, we have the instantaneous angular motion of Link 1, with respect to Link 4 is given up to fourth order as follows:

First Order  $\overline{w}_{1/4} = -\dot{\phi} \overline{B}$  Velocity Second Order  $\dot{\overline{w}}_{1/4} = -\dot{\phi} \overline{B}$  Acceleration Third Order  $\frac{\cdots}{w_{1/4}} = -\dot{\phi} \overline{B}$  Jerk Fourth Order  $\frac{\cdots}{w_{1/4}} = -\dot{\phi} \overline{B}$  Kerk (2.11) Relative motion of Link 2 with respect to Link 1 is given by First Order  $\overline{w}_{2/1} = \dot{\Theta} \overline{A}$  Velocity Second Order  $\dot{\overline{w}}_{2/1} = \ddot{\Theta} \overline{A}$  Acceleration Third Order  $\frac{\cdots}{w_{2/1}} = \overset{\cdots}{\Theta} \overline{A}$  Jerk Fourth Order  $\frac{\cdots}{w_{2/1}} = \overset{\cdots}{\Theta} \overline{A}$  Kerk (2.12) Motion of Link 2 with respect to Link 4 is given by

 $\overline{\omega}_{2/4} = \overline{\omega}_{2/1} - \overline{\omega}_{4/1}$ 

In this inversion case  $\overline{A}$  is a rotating vector about  $\overline{B}$ . Therefore,

$$\frac{1}{\overline{A}} = -\phi \overline{B} \times \overline{A} = -[\phi (\overline{B} \times \overline{A})]$$
(2.17)

$$\overline{A} = -\phi \ \overline{B} \times \overline{A} + (-\phi \ \overline{B} \times \overline{A})$$

$$= -\left[\phi \ (\overline{B} \times \overline{A}) + \phi \ (\overline{B} \times \overline{A})\right] \qquad (2.18)$$

$$\overline{A} = -\phi \ \overline{B} \times \overline{A} - \phi \ \overline{B} \times \overline{A} + (-\phi \ \overline{B} \times \overline{A}) + (-\phi \ \overline$$

#### 2.5 Analysis of Point Motion

Referring to Figure 4, let P be a point on Link 2 noting  $B_0$  is a fixed point in the inversion. Link 1 rotates about  $\overline{\text{B}}$  and Link 2 rotates about the moving axis  $\overline{A}$  in Link 1.

The motion of P up to fourth order is considered as a vector sum of motion of point  $A_o$  with respect to fixed point  $B_o$  and relative motion of P with respect to moving point  ${\rm A}_{{}_{{\rm O}}}$  . It is given by

16

(2.19)

$$\overline{P} = \overline{V} + \overline{r}$$

$$\frac{\overline{P}}{P} = \frac{\overline{V}}{V} + \frac{\overline{r}}{r}$$

$$\frac{\overline{V}}{P} = \frac{\overline{V}}{V} + \frac{\overline{r}}{r}$$

$$\frac{\overline{V}}{P} = \frac{\overline{V}}{V} + \frac{\overline{V}}{r}$$

$$(2.20)$$

where the position and derivative motion of point  $A_0$  with respect to fixed point  $B_0$  is given by

$$\overline{\nabla} = -\overline{1}$$

$$\overline{\nabla} = \overline{\omega}_{1/4} \times \overline{\nabla}$$

$$\overline{\nabla} = \overline{\omega}_{1/4} \times \overline{\nabla} + \overline{\omega}_{1/4} \times \overline{\nabla}$$

$$\overline{\nabla} = \overline{\omega}_{1/4} \times \overline{\nabla} + 2(\overline{\omega}_{1/4} \times \overline{\nabla}) + \overline{\omega}_{1/4} \times \overline{\nabla}$$

$$\overline{\nabla} = \overline{\omega}_{1/4} \times \overline{\nabla} + 3 \overline{\omega}_{1/$$

and relative derivative motion of P with respect to the moving point A  $_{\rm O}$  is given by

$$\overline{\mathbf{r}} = \mathbf{x}\overline{\mathbf{i}} + \mathbf{y}\overline{\mathbf{j}} + \mathbf{z}\overline{\mathbf{k}}$$

$$\overline{\mathbf{r}} = \overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}}$$

$$\overline{\mathbf{r}} = \overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}} + \overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}}$$

$$\overline{\mathbf{r}} = \overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}} + 2(\overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}}) + \overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}}$$

$$\overline{\mathbf{r}} = \overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}} + 3(\overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}}) + 3(\overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}}) + \overline{\mathbf{\omega}}_{2/4} \times \overline{\mathbf{r}}$$

$$(2.22)$$

So the path of any general point P is determined by its coordinates X, Y, Z and the other known parameters obtained from the synthesis specifications, and the determined mechanism parameters.

#### 2.6 Differential Geometry of the Point Path

From differential geometry (12) and referring to Figure 5, we have the following relationships for the path of point  $\overline{P}$ .

Tangent

$$\overline{t} = \frac{\overline{P}}{|\overline{P}|}$$
(2.23)

Bi-Normal 
$$\overline{b} = \frac{\frac{1}{P} \times \frac{1}{P}}{\left|\frac{1}{P} \times \frac{1}{P}\right|}$$
 (2.24)

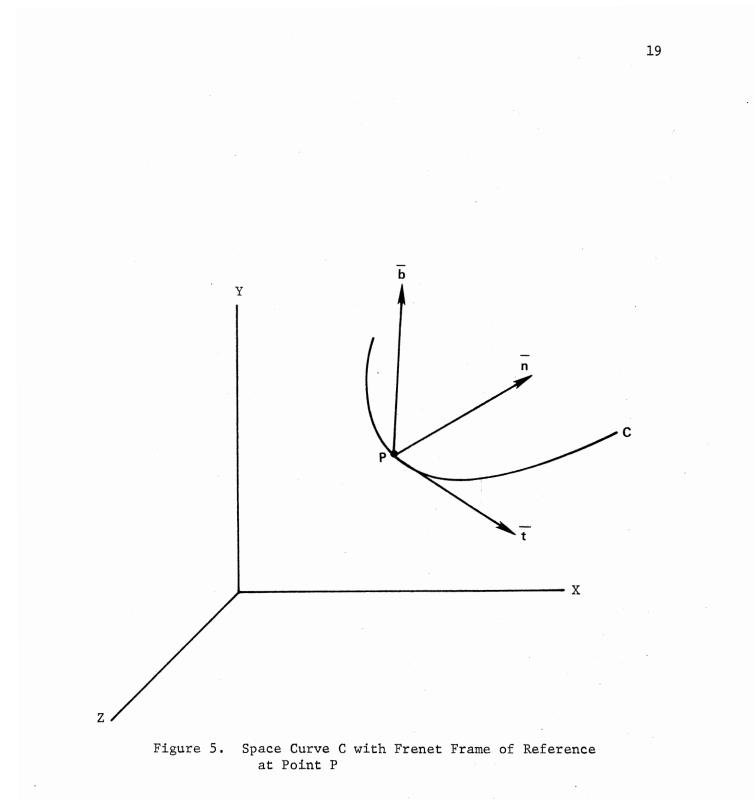
Normal  $\overline{n} = \overline{b} \times \overline{t}$  (2.25)

The radius of curvature 
$$\rho = \left[\frac{B^3}{A}\right]^{1/2}$$
 (2.26)

where

$$B = \frac{i}{\overline{P}} \cdot \frac{i}{\overline{P}} \quad (\text{dot product of } \overline{P} \text{ with } \overline{P}) \quad (2.27)$$

$$A = \left( \frac{\dot{P}}{P} \times \frac{\dot{P}}{P} \right) \cdot \left( \frac{\dot{P}}{P} \times \frac{\dot{P}}{P} \right)$$
(2.28)


Rate of change of radius of curvature with respect to arc length s along the path of P is given by

$$\frac{d\rho}{ds} = \frac{\rho}{s}$$
(2.29)

where

$$\dot{\rho} = \frac{3}{2} \times \left[ \frac{B^{1/2} \dot{B}}{A^{1/2}} \right] + \left( -\frac{1}{2} \right) \left[ \frac{B^{3/2} \dot{A}}{A^{3/2}} \right]$$
(2.30)

and



$$s = B^{1/2}$$
 (2.31)

$$\frac{d\rho}{ds} = \frac{3}{2} \frac{B}{A^{1/2}} + (-\frac{1}{2}) \frac{B}{A^{3/2}}$$
(2.32)

The second rate of change of radius of curvature with respect to arc length s along the path of P is given by

$$\frac{d^{2}\rho}{ds^{2}} = \frac{d}{dt} \begin{bmatrix} \rho \\ s \end{bmatrix} \frac{dt}{ds}$$

$$= \frac{d}{dt} \begin{bmatrix} \rho \\ s \end{bmatrix} \frac{1}{s}$$

$$= \frac{s \rho - \rho s}{(s)^{2}} \cdot \frac{1}{s}$$

$$= \frac{s \rho - \rho s}{(s)^{3}} \cdot \frac{1}{s}$$
(2.33)

The radius of torsion of the path

$$\sigma = \frac{A}{C}$$
(2.34)

where

$$C = \left( \frac{1}{P} \times \frac{1}{P} \right) \cdot \frac{1}{P}$$
(2.35)

The rate of change of radius of torsion of this path with respect to the arc length s along the path P is given by

$$\frac{d\sigma}{ds} = \frac{d\sigma}{dt} \cdot \frac{dt}{ds} = \frac{\sigma}{s}$$
(2.36)

$$\sigma = (CA - AC)/C^2$$
 (2.37)

$$\frac{d\sigma}{ds} = (CA - AC)/C^2 s$$
(2.38)

The equation for the radius of sphere for the path is given by

$$R^{2} = \rho^{2} + (\sigma)^{2} \left[ \frac{d\rho}{ds} \right]^{2}$$
(2.39)

The condition for the radius of the sphere of the path to be constant is

$$\frac{\mathrm{dR}}{\mathrm{ds}} = 0 \tag{2.40}$$

This is a fourth order condition.

Substituting for R in Equation (2.40) and simplifying we get

$$\rho + \sigma \left[ \frac{d\sigma}{ds} \right] \left[ \frac{d\rho}{ds} \right] + (\sigma)^2 \left[ \frac{d^2 \rho}{ds^2} \right] = 0$$
(2.41)

The terms in Equation (2.41) are functions of X, Y and Z. Hence, Equation (2.41) represents a characteristic surface. The points on this surface have the property that their paths are spherical up to fourth order. The highest power of the terms in the equation is 20. The equation has many terms having multiples of half power. Hence, it is a very complex surface to visualize.

# 2.7 Synthesis of Spherical Joint $S_A$ and Spherical Joint $S_B$

Since Equation (2.41) is a characteristic surface of points with spherical paths up to fourth order, we can pick any point on it and consider that as a spherical joint  $S_A$ . To do this we employ a numerical technique.

In Equation (2.41) let us assume Y and Z. Then we find Equation (2.41) reduces to a function of X, i.e.,

$$f(x) = \rho + \sigma \left[ \frac{d\sigma}{ds} \right] \left[ \frac{d\rho}{ds} \right] + (\sigma)^2 \left[ \frac{d^2 \rho}{ds^2} \right]$$
(2.42)

With known values of Y and Z, the above equation is solved using Newton Raphson method. Thus, the position of spherical joint  $S_A$  is obtained.

Having found the spherical joint  $S_A$ , the spherical joint  $S_B$  can be determined as described below. Let  $S_B$  be the center of the sphere. That means  $S_A S_B$  forms the radius. The vector from  $S_A$  to  $S_B$  is given by

$$\overline{S_A S_B} = \rho \ \overline{n} + \sigma \left[ \frac{d\rho}{ds} \right] \overline{b}$$
(2.43)

where  $\overline{n}$  is the normal,  $\overline{b}$  is the bi-normal at  $S_A$  as defined before. Therefore,

$$\overline{A_{o}S_{B}} = \overline{A_{o}S_{A}} + \overline{S_{A}S_{B}}$$
(2.44)

By changing the values of Y and Z we can obtain other solutions for X. In this way there are theoretically  $\infty^2$  solutions possible to synthesize a mechanism up to fourth order.

#### 2.8 Determination of the R.S.S.R Configuration

In order to construct a physical mechanism, we should derive from the X, Y, Z coordinates of  $S_A$  and  $S_B$ , the crank lengths, offset lengths, input and output angles, etc. These are done as follows.

The angle between  $\overline{A}$  and  $\overline{B}$  is assumed to be  $\alpha$  and the distance between  $\overline{A}$  and  $\overline{B}$  is assumed to be unity, i.e.,  $A_{OO}B_{O} = 1$ .

Let a, b, c be the coordinates of  $S_A$  and d, e, f be the coordinates of  $S_B$ . Coupler link length  $\ell$  is given by

$$l^{2} = (d - a)^{2} + (e - b)^{2} + (f - c)^{2}$$
(2.45)  
input crank offset length A<sub>A</sub> along  $\overline{A}$  is given by

$$g_{0} = c$$
 (2.46)

The input crank length is given by

$$g = [a^{2} + b^{2}]^{1/2}$$
(2.47)

Angle  $\Theta_0$  is determined by

$$\Theta_{o} = \operatorname{Tan}^{-1} \frac{b}{a}$$
 (2.48)

The output crank offset length along  $\overline{B}$ , of the output crank  $B_0^B$  is given by

$$h_{\alpha} = -e \sin \alpha + f \cos \alpha \qquad (2.49)$$

The output crank length is given by

$$h = [(d - 1)^{2} + e^{2} + f^{2} - h_{o}^{2}]^{1/2}$$
(2.50)

Angle  $\phi_0$  is given by

$$\operatorname{Tan}^{-1} \frac{h_2}{h_1}$$
 (2.51)

 $\phi_0$  is measured from X about  $\overline{B}$ , where

$$h_1 = d - 1$$
 (2.52)  
 $h_2 = e \cos \alpha + f \sin \alpha$  (2.53)

#### CHAPTER III

#### ANALYSIS

Displacement analysis, and derivative analysis up to the fourth order, for the R.S.S.R mechanism have been worked out as per details shown. This analysis program serves as a check on the synthesis results.

#### 3.1 Displacement Analysis

Displacement analysis, of the R.S.S.R mechanism shown in Figure 2, is obtained by expressing the coordinates of spherical joints  $S_A$  and  $S_B$ with respect to a fixed set of axis OXYZ. Expressing the coordinates of the spherical joint  $S_A$  and  $S_B$  as a function of rotation angle we have

| $c = g_0$           | (3.1) |
|---------------------|-------|
| $b = g \sin \Theta$ |       |
| $a = g \cos \Theta$ |       |

Let

 $h_1 = h \cos \alpha \tag{3.2}$ 

and

$$h_{2} = h \sin \alpha \tag{3.3}$$

then

$$h = [h_1^2 + h_2^2]^{1/2}$$

$$d = h \cos \phi + 1$$

$$e = h_1 \sin \phi + h_0 \sin \alpha$$

$$f = h_2 \sin \phi + h_0 \cos \alpha$$
(3.5)

where

- g = input crank length
- h = output crank length
- g = input crank offset length
- h = output crank offset length
- $S_A S_B = \ell = coupler link length$
- Θ = input angle of Link g relative to plane perpendicular to
   common normal
- $\phi$  = output angle of Link h relative to plane perpendicular
  - to common normal

As the links are assumed to be rigid the coupler link length 
$${\rm S}_{A}{\rm S}_{B}$$
 is constant. Hence,

$$(a - d)^{2} + (b - e)^{2} + (c - f)^{2} = l^{2}.$$
 (3.7)

Substituting for a, b, c, d, e and f leads to

$$(g \cos \Theta - h \cos \phi - 1)^{2} + (g \sin \Theta - h_{o})^{2} + (g_{o} - h \sin \phi)^{2} = \ell^{2}.$$
(3.8)

Simplifying the above equation we get

$$2 g_{0}h \sin \phi + 2 K_{1}h \cos \phi = K_{1}^{2} + K_{2}^{2} + g_{0}^{2} + h^{2} - \ell^{2}$$
(3.9)

where

$$K_1 = g \cos \theta - 1 \tag{3.10}$$

$$K_2 = g \sin \Theta - h_0. \tag{3.11}$$

Equation (3.9) can be written as

 $A \sin \phi + B \cos \phi = C \tag{3.12}$ 

where

A = 2 gah (3.13)

$$B = 2 K_1 h$$
 (3.14)

$$C = K_1^2 + K_2^2 + g_0^2 + h^2 - \ell^2.$$
 (3.15)

(3.6)

Using the trigonometric identities

$$\sin \phi = 2 \, \operatorname{Tan} \frac{\phi}{2} / (1 + \operatorname{Tan}^2 \frac{\phi}{2})$$
 (3.16)

$$\cos \phi = (1 - Tan^2 \frac{\phi}{2})/(1 + Tan^2 \frac{\phi}{2}).$$
 (3.17)

And substituting in Equation (3.12)

2 A Tan 
$$\frac{\phi}{2}$$
 + B(1 - Tan<sup>2</sup>  $\frac{\phi}{2}$ ) = C(1 + Tan<sup>2</sup>  $\frac{\phi}{2}$ ) (3.18)

or

(B + C) 
$$\operatorname{Tan}^2 \frac{\phi}{2}$$
 - (2A)  $\operatorname{Tan} \frac{\phi}{2}$  + (C - B) = 0. (3.19)

From which

Tan 
$$\frac{\phi}{2} = [A \pm (A^2 + B^2 - C^2)^{1/2}]/(B + C).$$
 (3.20)

This leads to two distinct values of  $\boldsymbol{\varphi}$  as

$$\phi_1 = 2 \operatorname{arc} \operatorname{Tan} \frac{A + (A^2 + B^2 - C^2)^{1/2}}{B + C}$$
 (3.21)

$$\phi_2 = 2 \operatorname{arc} \operatorname{Tan} \frac{A - (A^2 + B^2 - C^2)^{1/2}}{B + C}$$
 (3.22)

The two values correspond to the two ways in which a four bar linkage may be closed.

#### 3.2 Derivative Analysis Up to Fourth Order

To derive the equations for derivative analysis up to fourth order of the R.S.S.R mechanism we express the coordinates of the spherical joints  $S_A$  and  $S_B$  with respect to a fixed set of axis OXYZ. We repeat the following relations already obtained.

```
a = g \cos \Thetab = g \sin \Thetac = g_0
```

(3.23)

Let

$$h_{1} = h \cos \alpha$$

$$h_{2} = h \sin \alpha$$

$$h = (h_{1}^{2} + h_{2}^{2})^{1/2}$$

$$d = h \cos \phi + 1$$

$$e = h_{1} \sin \phi + h_{0} \sin \alpha$$

$$f = h_{2} \sin \phi + h_{0} \cos \alpha$$
(3.25)

Let us get the derivatives of  $\cos \Theta$  and  $\sin \Theta$  with respect to time up to the fourth order. Let

$$\cos \Theta = \frac{g_3}{2}$$
$$\sin \Theta = h_3$$

Then

$$\frac{d}{dt} (\cos \theta) = \dot{g}_{3} = -h_{3} \dot{\theta}$$

$$\frac{d}{dt} (\sin \theta) = \dot{h}_{3} = g_{3} \dot{\theta}$$

$$\frac{d^{2}}{dt^{2}} (\cos \theta) = \ddot{g}_{3} = -\dot{h}_{3} \dot{\theta} - h_{3} \ddot{\theta}$$

$$\frac{d^{2}}{dt^{2}} (\sin \theta) = \ddot{h}_{3} = \dot{g}_{3} \dot{\theta} + g_{3} \ddot{\theta}$$

$$\frac{d^{3}}{dt^{3}} (\cos \theta) = \ddot{g}_{3} = -\dot{h}_{3} \dot{\theta} - 2\dot{h}_{3} \ddot{\theta} - h_{3} \ddot{\theta}$$

$$\frac{d^{3}}{dt^{3}} (\sin \theta) = \dot{h}_{3} = \dot{g}_{3} \dot{\theta} + 2\dot{g}_{3} \ddot{\theta} + g_{3} \ddot{\theta}$$

$$\frac{d^{4}}{dt^{4}} (\cos \theta) = \ddot{g}_{3} = -\dot{h}_{3} \dot{\theta} - 3\dot{h}_{3} \dot{\theta} - 3\dot{h}_{3} \ddot{\theta} - h_{3} \ddot{\theta}$$

$$\frac{d^{4}}{dt^{4}} (\sin \theta) = \dot{h}_{3} = g_{3} \dot{\theta} + 3\dot{g}_{3} \ddot{\theta} + 3\dot{g}_{3} \ddot{\theta} + g_{3} \ddot{\theta}$$
(3.26)

Similarly, let us get the derivatives of cos  $\varphi$  and sin  $\varphi$  with respect to time up to fourth order. Let

$$\cos \phi = g_4$$
$$\sin \phi = h_4$$

Then

$$\frac{d}{dt} (\cos \phi) = \dot{g}_{4} = -h_{4} \dot{\phi}$$

$$\frac{d}{dt} (\sin \phi) = \dot{h}_{4} = g_{4} \dot{\phi}$$

$$\frac{d^{2}}{dt^{2}} (\cos \phi) = \ddot{g}_{4} = -\dot{h}_{4} \dot{\phi} - h_{4} \dot{\phi}$$

$$\frac{d^{2}}{dt^{2}} (\sin \phi) = \ddot{h}_{4} = \dot{g}_{4} \dot{\phi} + g_{4} \dot{\phi}$$

$$\frac{d^{3}}{dt^{3}} (\cos \phi) = \ddot{g}_{4} = -\dot{h}_{4} \dot{\phi} - 2\dot{h}_{4} \dot{\phi} - h_{4} \dot{\phi}$$

$$\frac{d^{3}}{dt^{3}} (\sin \phi) = \dot{h}_{4} = g_{4} \dot{\phi} + 2 g_{4} \dot{\phi} + g_{4} \dot{\phi}$$

$$\frac{d^{4}}{dt^{4}} (\cos \phi) = \ddot{g}_{4} = -\dot{h}_{4} \dot{\phi} - 3 \dot{h}_{4} \dot{\phi} - 3 \dot{h}_{4} \dot{\phi} - h_{4} \dot{\phi}$$

$$\frac{d^{4}}{dt^{4}} (\sin \phi) = \dot{h}_{4} = g_{4} \dot{\phi} + 3 g_{4} \dot{\phi} + 3 g_{4} \dot{\phi} + g_{4} \dot{\phi}$$
(3.27)

In the analysis problem we know  $\Theta$ ,  $\Theta$ ,  $\Theta$ ,  $\Theta$ , and  $\Theta$  knowing  $\phi$ from the displacement analysis we determine  $\phi$ ,  $\phi$ ,  $\phi$ , and  $\phi$  from the following procedure.

Differentiating the expressions of Equation (3.23) with respect to time we get

$$a = g g_1$$
$$a = g g_1$$

 $a = g g_{1}$   $a = g g_{1}$   $a = g g_{1}$   $b = g h_{1}$   $c = g_{0}$  c = 0 c = 0 c = 0

(3.30)

The constraint equation is

$$(a - d)^{2} + (b - e)^{2} + (c - f)^{2} = l^{2}.$$
 (3.31)

Differentiating (3.31) we get

$$(a - d) (a - d) + (b - e) (b - e) + (c - f) (c - f) = 0.(3.32)$$

Let

$$a - d = u$$
  
 $b - e = v$   
 $c - f = w.$  (3.33)

Differentiating (3.25) we get

$$d = h g_4$$

(3.28)

(3.29)

$$e = h_1 h_4$$
  
 $f = h_2 h_4$  (3.34)

Substituting the above values in Equation (3.32) we have

$$\phi [-h(uh_4) + (h_1v + h_2w)g_4] = u a + v b + w c.$$
 (3.35)

Let

$$R_{1} = -h(uh_{4}) + (h_{1}v + h_{2}w)g_{4}$$
(3.36)

and

$$S_1 = u a + v b + w c.$$
 (3.37)

Then

$$\phi R_1 = S_1$$
 (3.38)

or

u = a - d

$$\phi = S_1 / R_1.$$
 (3.39)

In Equation (3.39)  $\phi$  can easily be calculated since all the other quantities contained in R<sub>1</sub> and S<sub>1</sub> are known.

Next we differentiate (3.33), (3.36), (3.37) and (3.38) and obtain

| v = b - e     |  |        |
|---------------|--|--------|
| <br>w = c - f |  | (3.40) |

$$R_1 = -h(u h_4 + u h_4) + (h_1 v + h_2 w)g_4 +$$

 $(h_1 v + h_2 w)g_4$  (3.41)

$$S_1 = ua + ua + vb + vb + wc + wc$$
 (3.42)

Then

$$\phi \quad R_{1} + \phi \quad R_{1} = S_{1}$$
(3.43)

$$\phi = \frac{S_1 - \phi R_1}{R_1}$$

 $\phi$  can be calculated since all the other quantities in Equation (3.44) are known.

Next, differentiating the expressions of Equations (3.34), (3.40), (3.41), (3.42), and (3.43) we get

| $d = h g_4$                                        |        |
|----------------------------------------------------|--------|
| $e = h_1  h_4$                                     |        |
| $f = h_2 h_4$                                      | (3.45) |
| u = a - d                                          |        |
| v = b - e                                          |        |
| w = c - f                                          | (3.46) |
| $R_1 = -h(u h_4 + 2 u h_4) + (h_1 v + h_2 w)g_4 +$ |        |
| $2(h_1 v + h_2 w)g_4 + (h_1 v + h_2 w)g_4$         | (3.47) |
| $S_1 = u a + 2 u a + u a + v b + 2 v b + v b +$    | ,      |
| <br>w c + w c + w c                                | (3.48) |

Then

$$\phi \quad R_{1} + 2 \quad \phi \quad R_{1} + \phi \quad R_{1} = S_{1}$$
(3.49)

or

$$\dot{\phi} = \frac{S_1 - 2 \phi R_1 - \phi R_1}{R_1} .$$
(3.50)

All the quantities on the R H S of Equation (3.50) are known. Hence  $\phi$ can be obtained.

or

(3.44)

Once again we differentiate the expression in Equations (3.45),  
(3.46), (3.47), (3.48), and (3.49) and get  

$$d = h g_4$$
  
 $d = h g_4$   
 $d = h_1 h_4$   
 $d = h_2 h_4$   
 $d = h_4 h_4$   
 $d =$ 

$$\phi \quad R_1 + 3 \quad \phi \quad R_1 + 3 \quad \phi \quad R_1 + \phi \quad R_1 = S_1$$
(3.55)

or

$$\phi = \frac{S_1 - 3 \phi R_1 - 3 \phi R_1 - \phi R_1}{R_1}$$
(3.56)

Knowing all the quantities on R H S of Equation (3.56) φ. can be obtained. Thus we have obtained the values of  $\phi$  ,  $\phi$  ,  $\phi$  , and Ъу φ knowing the values of  $\Theta,\ \Theta$  ,  $\Theta$  and  $\ \Theta$  .

We find according to the equations given below

$$n_{1} = \frac{d\phi}{d\Theta} = \phi/\Theta$$
(3.57)

$$n_2 = \frac{d^2 \phi}{d \Theta^2} = (\phi \quad \Theta - \phi \quad \Theta) / \Theta^3$$
(3.58)

$$n_{3} = \frac{d^{3}\phi}{d\Theta^{3}} = \left[ (\phi \quad \Theta - \phi \quad \Theta)\Theta - 3(\phi \quad \Theta - \phi \quad \Theta)\Theta \right] / (\Theta)^{5} \quad (3.59)$$

$$n_{4} = \frac{d^{4}\phi}{d\Theta^{4}} = \begin{bmatrix} (\phi \Theta - \phi \Theta - \phi \Theta - \phi \Theta - \phi \Theta)(\Theta)^{2} - \\ 7(\phi \Theta - \phi \Theta)(\Theta \Theta + \\ (\Theta \Theta - \phi \Theta)(15 \Theta^{2} - 3 \Theta \Theta)]/(\Theta)^{7}$$
(3.60)

The synthesized mechanism can be analyzed in the above manner to determine the accuracy of synthesis. When the synthesis is correct the analysis of the mechanism yields the same  $n_1$ ,  $n_2$ ,  $n_3$  and  $n_4$  values.

#### CHAPTER IV

#### NUMERICAL EXAMPLES AND DISCUSSION

#### 4.1 Numerical Example of Function Generation

It is desired to synthesize an R.S.S.R mechanism with input and output axes at 90°, the distance between the axes being unity, fulfilling the following function generation requirements.

$$\frac{d\phi}{d\Theta} = -2.0$$
$$\frac{d^2\phi}{d\Theta^2} = -8.5$$
$$\frac{d^3\phi}{d\Theta^3} = -65.0$$
$$\frac{d^4\phi}{d\Theta^4} = -785.0$$

SOLUTIONS: Following the methodology described in Chapter II, a computer program is written for synthesis as given in Appendix A.

Values of Y and Z coordinates and the initial guess values of X coordinate of the spherical pair  $S_A$  are assumed. The value of X corresponding to the values of Y and Z is obtained from this program. By changing the values of Y and Z, a new value of X is obtained.

Then, using the computer program as given in Appendix B, the coordinates of spherical pair  $S_B$  and various parameters of the mechanism are computed.

Table I shows six solutions fulfilling the same function generation specifications. Theoretically infinite number of solutions are possible by varying Y and Z.

The above results are again fed into the analysis programs given in Appendix C and Appendix D. The results obtained are tabulated in Table II. This proves that the analysis results agree well with the synthesis specifications.

## 4.2 Numerical Example: Replacement

#### of Gears

It is desired to synthesize an R.S.S.R mechanism to replace a set of hypoid gears. The gear ratio being  $-\frac{3}{2}$  and the angle between the shafts being 90°. The distance between the shafts is assumed unity. SOLUTIONS: For gearing up to fourth order derivative functional relationships between the input and output crank angles are given by  $n_1 = -\frac{3}{2}$ ,  $n_2 = 0$ ,  $n_3 = 0$ ,  $n_4 = 0$ . As before, the computer program given in Appendix A is used to get the X coordinate of spherical pair S<sub>A</sub> by assuming the values of Y and Z coordinates. By changing Y, different values of X are obtained.

Then, using the computer program given in Appendix B, the various other parameters of the mechanism are obtained.

Table III shows six solutions fulfilling the same function generation specifications. These results are fed into the analysis program given in Appendix C and Appendix D. The results obtained are shown in Table IV. The analysis results agree well with the synthesis specifications.

| TABLE | Ι |
|-------|---|
|-------|---|

| Parameters                                   | Solution<br>1 | Solution<br>2 | Solution<br>3 | Solution<br>4 | Solution<br>5 | Solution<br>6     |
|----------------------------------------------|---------------|---------------|---------------|---------------|---------------|-------------------|
| Normal Distance Between Shafts (%)           | 1.0           | 1.0           | 1.0           | 1.0           | 1.0           | 1.0               |
| Angle Between Shafts (a)                     | 90°           | 90°           | 90°           | 90°           | 90°           | 90°               |
| Input Crank Offset Length (g <sub>o</sub> )  | 0             | 0             | 0             | 0             | 0             | 0                 |
| Input Crank Length (g)                       | 1.715301      | 2.83994       | 3.140421      | 3.444008      | 2.886055      | 3.134155          |
| Coupler Link Length (1)                      | 1.433977      | 2.386951      | 2.637319      | 2.901628      | 2,567245      | 2.811454          |
| Output Crank Offset Length (h <sub>o</sub> ) | 0.04858       | -0.405419     | -0.392191     | -0.381277     | 0.138747      | 0.149184          |
| Output Crank Length (h)                      | 0.7326304     | 1.442359      | 1.433769      | 1.427554      | 0.721997      | 0.722812          |
| Input Crank Angle in Degrees (0)             | 35.66099      | 31.88258      | 33.86584      | 35.50111      | 51.22497      | 52 <b>.9</b> 0754 |
| Output Crank Angle in Degrees ( $\phi$ )     | 142.7916      | 60.48786      | 60.4477       | 60.41574      | 145.4357      | 145.68950         |

R.S.S.R MECHANISM SYNTHESIS SOLUTIONS FOR FUNCTION GENERATION

Synthesis Derivatives:  $n_1 = -2.0$ ,  $n_2 = -8.5$ ,  $n_3 = -65.0$ ,  $n_4 = -785.0$ .

## TABLE II

| Parameters                                | Solution<br>1 | Solution<br>2 | Solution<br>3 | Solution<br>4 | Solution<br>5 | Solution<br>6 |
|-------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Input Crank Angle in Degrees ( $\Theta$ ) | 35.6609       | 31.88511      | 33.86755      | 35.50048      | 51.22245      | 52.90695      |
| Output Crank Angle in Degrees ( $\phi$ )  | 142.7917      | 60.48283      | 60.44442      | 60.41699      | 145.4411      | 145.6905      |
| First Derivative (n <sub>1</sub> )        | -2.0          | -2.0          | -2.0          | -2.0          | -2.0          | -2.0          |
| Second Derivative (n <sub>2</sub> )       | -8.5          | -8.503        | -8.502        | -8.4999       | -8.497        | -8.499        |
| Third Derivative (n <sub>3</sub> )        | -65,0         | -65.03        | -65.02        | -64.99        | -64.97        | -64.99        |
| Fourth Derivative (n <sub>4</sub> )       | -785.0        | -785.6        | -785.4        | -784.9        | -784.5        | -784.9        |

## DISPLACEMENT AND DERIVATIVE ANALYSIS OF THE SYNTHESIZED R.S.S.R MECHANISMS FOR FUNCTION GENERATION

Synthesis Derivatives:  $n_1 = -2.0$ ,  $n_2 = -8.5$ ,  $n_3 = -65.0$ ,  $n_4 = -785.0$ .

## TABLE III

| Parameters                                   | Solution<br>1 | Solution<br>2 | Solution<br>3 | Solution<br>4 | Solution<br>5 | Solution<br>6 |
|----------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Normal Distance Between Shafts (1)           | 1.0           | 1.0           | 1.0           | 1.0           | 1.0           | 1.0           |
| Angle Between Shafts (α)                     | 90°           | 90°           | 90°           | 90°           | 90°           | 90°           |
| Input Crank Offset Length (g <sub>o</sub> )  | 1.5           | 1.5           | 1.5           | 1.5           | 1.5           | 1.5           |
| Input Crank Length (g)                       | 0.4735795     | 0.4559487     | 0.4415671     | 0.4286306     | 0.3737503     | 0.3298566     |
| Coupler Link Length (1)                      | 1,80229       | 1.809967      | 1.82617       | 1.846641      | 1.982756      | 2.121395      |
| Output Crank Offset Length (h <sub>o</sub> ) | -0.14463      | -0.322014     | -0.448983     | -0.555826     | -0.972553     | -1.25675      |
| Output Crank Length (h)                      | 0.2030792     | 0.1944022     | 0.1901074     | 0.1874757     | 0.1815148     | 0.1743801     |
| Input Crank Angle in Degrees<br>(Θ)          | -65.22747     | -67.09571     | -68.2039      | -68.9394      | -69.46438     | -65.4344      |
| Output Crank Angle in Degrees<br>(\$)        | 8.397328      | 1.734945      | -3.101921     | -7.177642     | -23.41148     | -38.19876     |

## R.S.S.R MECHANISM SYNTHESIS SOLUTIONS FOR REPLACING HYPOID GEARS

Synthesis Derivatives:  $n_1 = -\frac{3}{2}$ ,  $n_2 = 0$ ,  $n_3 = 0$ ,  $n_4 = 0$ .

## TABLE IV

| Parameters                             | Solution<br>1           | Solution<br>2           | Solution<br>3           | Solution<br>4           | Solution<br>5           | Solution<br>6           |
|----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Input Crank Angle<br>in Degrees (Θ)    | -65.22555               | -67.09336               | -68.20495               | -68.93833               | -69.4654                | -65.43183               |
| Output Crank Angle<br>in Degrees (¢)   |                         | 1.731646                | -3.099991               | -7.179619               | -23.4091                | -38.20254               |
| First Derivative<br>(n <sub>1</sub> )  | -1.5                    | -1.5                    | -1.5                    | <del>-</del> 1.5        | -1.5                    | -1.5                    |
| Second Derivative<br>(n <sub>2</sub> ) | 0.3135×10 <sup>-4</sup> | 0.2072×10 <sup>-4</sup> | 0.4749×10 <sup>-4</sup> | 0.6048×10 <sup>-4</sup> | 0.1025×10 <sup>-3</sup> | 0.2066×10 <sup>-4</sup> |
| Third Derivative<br>(n <sub>3</sub> )  | 0.4382×10 <sup>-4</sup> | 0.6638×10 <sup>-5</sup> | 0.102×10 <sup>-3</sup>  | 0.1989×10 <sup>-3</sup> | 0.548×10 <sup>-3</sup>  | 0.2066×10 <sup>-3</sup> |
| Fourth Derivative<br>(n <sub>4</sub> ) | 0.1448×10 <sup>-3</sup> | -0.133×10 <sup>-3</sup> | 0.8651×10 <sup>-3</sup> | 0.1117×10 <sup>-2</sup> | 0.4927×10 <sup>-2</sup> | 0.2872×10 <sup>-2</sup> |

## DISPLACEMENT AND DERIVATIVE ANALYSIS OF THE SYNTHESIZED R.S.S.R MECHANISM FOR REPLACING HYPOID GEARS

One solution is picked up to find the deviation in the derivatives over a range of 40° (i.e., 20° below and 20° above the designed input angle). Table V gives the results. As can be seen from the results, the variance is tolerable.

#### 4.3 Discussion

The initial guesses of the coordinates of the spherical joint  $S_A$  are found to be very critical. It is essentially a trial and error method. Once a solution is obtained, solutions in the neighborhood are very easy to obtain by assuming proper increments in one of the assumed coordinates Y or Z. Since the surface is very complex, it is found that solution may not exist over a long range of values of a particular coordinate. More difficulty was encountered in obtaining a solution for the gear replacement problem. It may be a good practice to arrive at the gear problem progressively. This means the first trial solution might be attempted with  $n_4 = 0$ . The second trial solution should be obtained with  $n_2 = 0$ ,  $n_3 = 0$  and  $n_4 = 0$ .

| Θ in<br>Degrees | φ in<br>Degrees | n <sub>1</sub> | n <sub>2</sub> | ng         | n <sub>4</sub> |
|-----------------|-----------------|----------------|----------------|------------|----------------|
| -45.22552       | -21.62835       | -1.5           | -0.08271       | -0.8981    | -8.381         |
| -50.2255        | -14.10989       | -1.5           | -0.02941       | -0.3866    | -3.954         |
| -55.22554       | -6.605459       | -1.5           | -0.007654      | -0.1417    | -1.889         |
| -60.22547       | 0.895018        | -1.5           | -0.0008428     | -0.03082   | -0.7482        |
| -65.2255        | 8.395036        | -1.5           | 0.00002787     | 0.00003355 | 0.00008837     |
| -70.22547       | 15.89500        | -1.5           | 0.0008012      | -0.02628   | 0.5888         |
| -75.2255        | 23.39553        | -1.5           | 0.006038       | -0.1019    | 1.147          |
| -80.22549       | 30.8990         | -1.5           | 0.02006        | -0.2286    | 1.78           |
| -85.22543       | 38.41168        | -1.5           | 0.04776        | -0.4184    | 2.62           |
|                 |                 |                |                |            |                |

## DEVIATIONS OF DERIVATIVES OVER A RANGE OF 40°, 20° BELOW AND 20° ABOVE THE DESIGNED INPUT ANGLE OF ROTATION

TABLE V

Synthesis derivatives:  $n_1 = -\frac{3}{2}$ ,  $n_2 = 0$ ,  $n_3 = 0$ ,  $n_4 = 0$ . Designed input angle of rotation  $\Theta_0$  is  $-65.2255^\circ$ . Output crank angle of rotation corresponding to  $\Theta_0$  is  $\phi_0 = 8.395036^\circ$ . Other parameters of the mechanism:  $\ell_0 = 1.0$ ,  $\alpha = 90^\circ$ , g = 0.47358,  $g_0 = 1.5$ , h = 0.203079,  $h_0 = -0.14463$ .

1.14

#### CHAPTER V

#### SUMMARY AND CONCLUSIONS

The R.S.S.R mechanism is a versatile mechanism, best suited for function generation. The earlier works on the derivative synthesis for function generation were limited up to third power. All the works were based on the concept of constant length constraint on the coupler link and on the principle of inversion. In this thesis the point path properties are studied to find points in the rigid body that have spherical paths up to fourth order. These points were utilized to determine one of the spherical joints, using the principle of inversion. Again using the point path properties, the second spherical joint was determined and the synthesis was completed with known informations. The newness of this thesis is in utilizing the point path properties and extending the derivative synthesis up to fourth order. While obtaining the fourth order synthesis one characteristic equation has been utilized. This left us with the freedom of choosing two of the three coordinates required to locate a spherical joint. The characteristic equation for the fourth order is a condition requiring that the rate of change of radius of the sphere of the point path is zero. Considering second derivatives of the radius of the sphere to be zero, we may obtain another characteristic equation. This equation corresponds to the fifth order properties. Derivative synthesis is possible up to fifth order if we can find the intersection of characteristic equation of the fourth

order and the characteristic equation of the fifth order. In this situation we still have the freedom to choose one of the three coordinates of the spherical joint. Extending the same philosophy we may consider the third rate of change of radius of the sphere of the path to be zero for the sixth order derivative synthesis. This condition will yield a third characteristic surface. Intersection of this surface with the previously mentioned two surfaces might yield unique points that can be used as a spherical joint in the synthesis. However, it should be realized that the magnitude of work involved is enormous even for the fourth order and much more so for the higher orders. One of the difficulties that one faces in numerically solving the equation is the initial guess. It is very much a matter of art, patience, and finally, luck. In general, it is more difficult to find a solution for a linkage to replace a gear than to solve for ordinary function generation as has been discussed earlier.

This work may be degenerated to study spherical or planar mechisms. Then the criterion required to determine a coupler joint in planar and spherical kinematics is that they generate circular paths rather than spherical paths as in R.S.S.R mechanism.

Higher order derivative synthesis for other four bar mechanisms like R.C.C.C., R.S.C.R., etc., might be possible using suitable pair constraint equation. The author cannot readily comment elaborately on them now.

It may be possible to produce design charts for this mechanism. In order to produce design charts we should obtain several solutions with varying shaft angle  $\alpha$ , gear ratio, the input angle of crank and compute the relationship with the ratio of the link lengths. Once this is

obtained, a design chart can easily be prepared but as pointed out earlier it is very difficult to find a solution. Further, too much time has to be devoted in the process of trials. All the spade work of deriving the synthesis equations and ensuring their correctness is the primary task of this thesis. It will be nice if someone will follow up this study and produce design charts. These design charts are very valuable to the engineers and are an asset to the industry.

It is well known that the higher order synthesis yields higher accuracies over a larger range. At the same time it is to be noted that different solutions yield different accuracies over a given range. Hence, the error is to be checked for the given solution. Keeping this in mind the analysis problem is simultaneously developed to check the correctness of the synthesis and its accuracy in the neighborhood. The results of the third order synthesis have been compared with the results available in the earlier literature and they agree very well. Since this synthesis is one order higher than before, these results are helpful in building linkages with higher accuracies than before.

#### BIBLIOGRAPHY

- (1) Harrisberger, Lee. <u>Mechanisms</u>, <u>Linkages</u>, <u>and Mechanical Controls</u>. New York: McGraw Hill Book Company.
- (2) Hall, A. S. and Dunk, A. C. "Designing Four Bar Linkages to Substitute Gears." <u>Machine Design</u>, Vol. 25, No. 1 (April, 1953), pp. 233-236.
- (3) Freudenstein, F. "Four Bar Function Generators." <u>Machine Design</u>, Vol. 30, No. 3 (Nov., 1958), pp. 119-123.
- (4) Hain, Kurt and Marx, Gerhard. "How to Replace Gears by Mechanisms (Linkages)." <u>Transactions of the ASME</u>, <u>Journal of Engineering</u> for Industry, Vol. 81 (May, 1959), pp. 126-130.
- (5) Harrisberger, Lee. "Simple Technique for Synthesizing Space Crank Mechanisms." <u>Machine Design</u>, Vol. 36, No. 3 (Sept., 1964), pp. 170-175.
- (6) Scroggin, J. T. and Morse, I.E., Jr. "Analysis and Design of R.S.S.R Spatial Linkage." ASME Paper No. 68-MECH-38.
- (7) Suh, C. H. "Design of Space Mechanism for Function Generation." <u>Transactions of the ASME</u>, <u>Journal of Engineering for Industry</u>, Vol. 90 (Aug., 1969), pp. 507-512.
- (8) Suh, C. H. "Design of Spatial Linkages to Replace Gears." Applied Mechanism Conference, O.S.U., Tulsa, Oklahoma, August, 1969.
- (9) Mohanrao, A. V., Sandor, C. N., Kholi, D., and Soni, A. H. "Closed Form Synthesis of Spatial Function Generating Mechanism for the Maximum Number of Precision Points." <u>Transactions of the</u> <u>ASME, Journal of Engineering for Industry</u>, Vol. 95 (Aug., 1973), pp. 725-736.
- (10) Chunsiri-Pong, T. and Soni, A. H. "Synthesis of R.S.S.R Mechanism for Co-ordinating Input-Output Displacements for Finitely and Infinitesmally Separated Positions." ASME Paper No. 76-WALDE-5.
- (11) Siddhanty, M. N. and Soni, A. H. "Intrinsic Invariants of Rigid Body Motion and Higher Path Curvature Theory in Spatial Kinematics." Scheduled to be published.

(12) Weatherburn, C. E. <u>Differential Geometry</u> of <u>Three Dimensions</u>. New York: MacMillan Company, 1927.

## APPENDIXES

## APPENDIX A

COMPUTER PROGRAM TO OBTAIN THE COORDINATES

of spherical joint  $\boldsymbol{s}_{A}^{}$  with one

SET OF DATA AND SOLUTION

\$J0B С С SRI RAMA JEYAM. SRIRAM JEYARAM JEYAJEYA RAM. \* С SYNTHESIS OF R-S-S-P MECHANISM x × С \* THIS POOGRAM OBTAINS THE CO-ORDINATES OF SPHERICAL \* Ć JOINT SA. \* \* С \* DATA CARDS: С \* CARD 1 SPECIFIES THE DERIVATIVES OF FIRST, SECOND, С \* THIPD, AND FOURTH ORDER. CARD 2: GIVES THE VALUE OF Y AND Z. С x CARD 3: GIVES THE INITIAL GUESS VALUE OF X AND THE С × \* TEST VALUE. С X \* ALL THE DATA CARDS ARE PUNCHED IN 12 COLLUMN FIELD С \* ¥ С WITH SIX DECIMAL PLACES. χt С \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* С READ(5,100) AN1, AN2, AN3, AN4 1 2 100 FORMAT(F12.7,E12.7,E12.7,E12.7) 3 WRITE(6,105) AN1, AN2, AN3; AN4 105 FORMAT(//5X, 'AN1=', E15.7, 5X, 'AN2=', E15.7, 5X, 'AN3=', E15.7, 4 15X, 'AN4=', E15.7//) С 15 READ(5,10) Y,Z 5 10 FORMAT(F12.6.F12.6) 6 С 7 AL=0.0 8 BL=1.0 С 9 P1=AN1\*BL 10 P2 = AN2 \* BL11 P3=AN3\*BL 12 P4 = AN4 \* BLС 13 Q1 = -AN1 \* AL14 Q2 = -AN2 \* AL15  $Q3 = -AN3 \times AL$ Q4=-AN4\*AL 16 С 17 V1=0.0 V2 = -Q118 V3=P1 19 С 20 V11=P1\*\*2+01\*\*2 V21 = -0221 V31=P2 22 С 23 V12=3.0\*(P2\*P1-02\*Q1) V22=-(Q3-Q1\*\*3-P1\*\*2\*Q1) 24 V32=-(-P3+P1\*\*3+Q1\*\*2\*P1) 25 С 26 V13=-(-4.0\*P3\*P1-4.0\*Q3\*Q1-3.0\*P2\*\*2-3.0\*Q2\*\*2+P1\*\*4+Q1\*\*4 1+2.0\*P1\*\*2\*Q1\*\*2) V23=-(Q4-3.0\*P2\*P1\*Q1-3.0\*Q2\*P1\*\*2) 27 V33=-(-P4-3.0\*Q2\*Q1\*P1+3.0\*P2\*Q1\*\*2+6.0\*P2\*P1\*\*2) 28 С 29 AV1=0.0 30 AV2=0.0 AV3=1.0 31 С 32 BV1=0.0

| 33 |    | BV2=-BL                                                    |
|----|----|------------------------------------------------------------|
| 34 | •  | BV3=AL                                                     |
|    | С  |                                                            |
| 35 | Ŭ  |                                                            |
|    |    | TH1=1.0                                                    |
| 36 |    | TH2=0.0                                                    |
| 37 |    | TH3=0.0                                                    |
| 38 |    | TH4=0.0                                                    |
| 50 | ~  | 114-0.0                                                    |
|    | С  |                                                            |
| 39 |    | PH1=AN1                                                    |
| 40 |    | PH2=AN2                                                    |
| 41 |    |                                                            |
|    |    | PH 3 = AN 3                                                |
| 42 |    | PH 4= AN 4                                                 |
|    | С  |                                                            |
| 43 |    | BAX=BV2*AV3-BV3*AV2                                        |
|    |    |                                                            |
| 44 |    | BAY=BV3*AV1-BV1*AV3                                        |
| 45 |    | BAZ=BV1*AV2-BV2*AV1                                        |
|    | C  |                                                            |
| 46 | *  | AV11=-PH1*BAX                                              |
|    |    |                                                            |
| 47 |    | AV21 = -PH1 * BAY                                          |
| 48 |    | AV31=-PH1*BAZ                                              |
|    | С  |                                                            |
| 49 | 56 | BA1X=BV2*AV31-BV3*AV21                                     |
|    |    |                                                            |
| 50 |    | BA1Y = BV3 * AV11 - BV1 * AV31                             |
| 51 |    | BA12=BV1*AV21-BV2*AV11                                     |
|    | С  |                                                            |
| 52 | v  | AV12=-PH2*BAX-PH1*BA1X                                     |
|    |    |                                                            |
| 53 |    | AV22=-PH2*BAY-PH1*BA1Y                                     |
| 54 |    | $AV32 = -PH2 \times BAZ - PH1 \times BA1Z$                 |
|    | С  |                                                            |
| 66 | C  |                                                            |
| 55 |    | BA2X=BV2*AV32-BV3*AV22                                     |
| 56 |    | BA2Y=BV3*AV12-BV1*AV32                                     |
| 57 |    | BA2Z=BV1*AV22-BV2*AV12                                     |
|    | С  |                                                            |
|    | C  |                                                            |
| 58 |    | AV13=-PH3*BAX-2.0*PH2*BA1X-PH1*BA2X                        |
| 59 |    | AV23=-PH3*BAY-2.0*PH2*BA1Y-PH1*BA2Y                        |
| 60 |    | AV33=-PH3*BAZ-2.0*PH2*BA1Z-PH1*BA2Z                        |
| 00 | ~  | AV33- FH3+DAL-2. OFFH2+DALL-FH1+DALL                       |
|    | С  |                                                            |
| 61 |    | $W1 = -PH1 \times BV1 + TH1 \times AV1$                    |
| 62 |    | $W2 = -PH1 \times BV2 + TH1 \times AV2$                    |
| 63 |    | W3 = -PH1 * BV3 + TH1 * AV3                                |
| 05 | •  | W3PHI*6V3+1HI*4V3                                          |
|    | С  |                                                            |
| 64 |    | $W11 = -PH2 \times BV1 + TH2 \times AV1 + TH1 \times AV11$ |
| 65 |    | $W21 = -PH2 \times BV2 + TH2 \times AV2 + TH1 \times AV21$ |
|    |    | W3 1=-PH2*BV3+TH2*AV3+TH1*AV31                             |
| 66 |    | NO 1PHZ* 0V0 FI HZ*AV0 FI HI*AV01                          |
|    | С  | · · · · · · · · · · · · · · · · · · ·                      |
| 67 |    | W12=-PH3*BV1+TH3*AV1+2.0*TH2*AV11+TH1*AV12                 |
| 68 |    | W22=-PH3*BV2+TH3*AV2+2.0*TH2*AV21+TH1*AV22                 |
|    |    |                                                            |
| 69 |    | W32=-PH3*BV3+TH3*AV3+2.9*TH2*AV31+TH1*AV32                 |
|    | С  |                                                            |
| 70 |    | W13=-PH4*BV1+TH4*AV1+3.0*TH3*AV11+3.0*TH2*AV12+TH1*AV13    |
| 71 |    | W23=-PH4*BV2+TH4*AV2+3.0*TH3*AV21+3.0*TH2*AV22+TH1*AV23    |
|    |    |                                                            |
| 72 |    | W33=-PH4*BV3+TH4*AV3+3.0*TH3*AV31+3.0*TH2*AV32+TH1*AV33    |
|    | С  |                                                            |
| 73 |    | A11=0.0                                                    |
| 74 |    | A21=W3                                                     |
|    |    |                                                            |
| 75 |    | A31=-W2                                                    |
|    | С  |                                                            |
| 76 |    | B11=-W3                                                    |
| 77 | •  | 821=0.0                                                    |
|    |    |                                                            |
| 78 |    | B31=W1                                                     |
|    |    |                                                            |

,

|      | С  |                                                                          |
|------|----|--------------------------------------------------------------------------|
| 79   |    | C11=W2                                                                   |
| 80   |    | C21=-W1                                                                  |
| 81   |    | C31=0.0                                                                  |
|      | с  |                                                                          |
| 82   |    | A12=-(W2**2+W3**2)                                                       |
| 83   |    | A22=W31+W2*W1                                                            |
| 84   |    | A32=-W21+W3*W1                                                           |
|      | С  |                                                                          |
| 85   |    | B12=-W31+W1*W2                                                           |
| 86   |    | B22=-(W3**2+W1**2)                                                       |
| 87   |    | B32=W11+W3*W2                                                            |
|      | С  |                                                                          |
| 88   |    | C12=W21+W1*W3                                                            |
| 89   |    | C22 = -W11 + W2 * W3                                                     |
| 90   |    | C32 = -(W1 * * 2 + W2 * * 2)                                             |
|      | С  |                                                                          |
| 91   |    | A13≂-3.0*(W21*W2+W31*W3)                                                 |
| 92   |    | A23=W32+W21*W1+2.0*W11*W2-W3**3 -W2**2*W3-W1**2*W3                       |
| 93   |    | A33=-W22+2.0*W11*W3+W31*W1+W2**3+W1**2*W2+W3**2*W2                       |
|      | с  |                                                                          |
| 94   | Ŭ  | B13=-W32+W11*W2+2.0*W22*W1+W3**3+W1**2*W3+W2**2*W3                       |
| 95   | •  | B23=-3.0*(W31*W3+W11*W1)                                                 |
| 96   |    | B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1                        |
| 70   | C. | ())) with 2.00 with with 1.00 with 2.00 with 2.001                       |
| 97   | U  | C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2                        |
| 98   |    | C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1                       |
| 99   |    | $C33 = -3.0 \times (W11 \times W1 + W21 \times W2)$                      |
| .,,  | с  | CJJJ•O+(WII+WIFWZI+WZ)                                                   |
| 100  | C  | A14=-4.0*W22*W2-4.0*W32*W3-3.0*W21**2-3.0*W31**2+2.0*W21*W1*W3           |
| 100  |    |                                                                          |
|      | с  | 1-2.0*W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0*W2**2*W3**2+W3**2*W1**2      |
| 101  | C  | A24=W33+W22*W1+3.0*W12*W2+3.0*W21*W11-3.0*W21*W2                         |
| 101  |    | 1-3.0*W31*W2**2-W31*W1**2-5.0*W11*W3*W1-W2**3*W1-W2**3*W1+**3            |
|      |    | 2-W2*W3**2*W1-6.0*W31*W3**2                                              |
|      | С  | 2. N2. N3. N2. N1. 0. 0. N31. N34. Z                                     |
| 102  |    | A34=-W23+3.0*W12*W3+3.0*W31*W11+3.0*W31*W3*W2+5.0*W11*W1*W2              |
| 102  |    | 1+3.0*W21*W3**2+W21*W1**2+6.0*W21*W2**2-W3**3*W1-W3*W1**3                |
|      |    | 2-W3*W1*W2**2+W32*W1                                                     |
|      | С  | 2 n3 n1 n2 n2 n32 n1                                                     |
| 103  | C  | B14=-W33+3.0*W22*W1+3.0*W11*W21+3.0*W11*W1*W3+5.0*W21*W2*W3              |
| 105  |    | 1+3.0*W31*W1**2+W31*W2**2+6.0*W31*W3**2-W1**3*W2                         |
|      |    |                                                                          |
|      | с  | 2-W1*W2**3-W1*W2*W3**2+W12*W2                                            |
| 104  | C  |                                                                          |
| 104  |    | B24=-4.0*W32*W3-4.0*W12*W1-3.0*W31**2-3.0*W11**2+2.0*W31*W2*W1           |
|      |    | 1-2.0*W11*W2*W3+W3**4+W1**4+W2**2*W3**2+2.0*W3**2*W1**2<br>2+W1**2*W2**2 |
|      | с  | Z # W I * * Z * W Z * * Z                                                |
| 105  | C  | B34=W13+W32*W2+3.0*W22*W3+3.0*W31*W21-3.0*W31*W3*W1-3.0*W11*W3**2        |
| 105  |    |                                                                          |
|      |    | 1-W11*W2**2-5.0*W21*W1*W2-W3**3*W2-W3*W2**3-W3*W1**2*W2                  |
|      | c  | 2-6.0*W11*W1**2                                                          |
| 1.04 | С  | C14-W221W12+W212 0#W22#W112 0#W111402 2 0#W114002 2 0#W11400             |
| 106  |    | C14=W23+W12*W3+3.0*W32*W1+3.0*W11*W31-3.0*W11*W1*W2-3.0*W21*W1**2        |
|      |    | 1-W21*W3**2-5.0*W31*W2*W3-W1**3*W3-W1*W3**3-W1*W2**2*W3                  |
|      | ~  | 2-6.0*W21*W2**2                                                          |
| 107  | С  |                                                                          |
| 107  |    | C24=-W13+3.0*W32*W2+3.0*W21*W31+3.0*W21*W2*W1+5.0*W31*W3*W1+             |
|      |    | 13.0*W11*W2**2+W11*W3**2+6.0*W11*W1**2-W2**3*W3-W2*W3**3                 |
|      | c  | 2-W2*W3*W1**2+W22*W3                                                     |
|      | С  |                                                                          |

| 108               |      | C34=-4.0*W12*W1-4.0*W22*W2-3.0*W11**2-3.0*<br>L-2.0*W21*W3*W1+W1**4+W2**4+W3**2*W1**2+2.0<br>2+W2**2*W3**2 |   | 1*W3*W2 |
|-------------------|------|------------------------------------------------------------------------------------------------------------|---|---------|
|                   |      | INITIAL GUESS VALUE OF X IS GIVEN HERE                                                                     |   |         |
| 109               |      | READ(5,80) X.TEST                                                                                          |   |         |
| 110               | 80   | FORMAT(F12.7,F12.7)                                                                                        |   |         |
|                   | С    |                                                                                                            |   |         |
| 111               |      | N=1                                                                                                        |   |         |
| 112               |      | WRITE(6,86) Y.Z                                                                                            |   |         |
| 113               | 86   | FORMAT(//,5Y,'Y=',F12.7,5X,'Z=',F12.6)                                                                     |   |         |
| 114               |      | WRITE(6,85) X, TEST                                                                                        |   |         |
| 115               |      | FORMAT(//5X,'X=',F12.7,5X,'TEST=',F12.7)                                                                   |   |         |
| 114               | C 00 | P11=V1+A11*X+B11*Y+C11*Z                                                                                   |   |         |
| $\frac{116}{117}$ | 90   | P112-VITA11****011**                                                                                       |   |         |
| 118               |      | P21=V2+A21*X+B21*Y+C21*Z                                                                                   |   |         |
| 119               |      | P21X=A21                                                                                                   |   |         |
| 120               |      | P31=V3+A31*X+B31*Y+C31*Z                                                                                   |   |         |
| 121               |      | P31X=A31                                                                                                   |   |         |
|                   | С    |                                                                                                            |   |         |
| 122               | -    | P12=V11+A12*X+B12*Y+C12*Z                                                                                  |   |         |
| 123               |      | P12X=A12                                                                                                   |   |         |
| 124               |      | P22=V21+A22*X+B22*Y+C22*Z                                                                                  |   |         |
| 125               |      | P22X=A22                                                                                                   |   |         |
| 126               |      | P32=V31+A32*X+B32*Y+C32*Z                                                                                  |   |         |
| 127               |      | P32X=A32                                                                                                   |   |         |
|                   | С    |                                                                                                            |   |         |
| 128               |      | P13=V12+A13*X+B13*Y+C13*Z                                                                                  |   |         |
| 129               |      | P13X=A13                                                                                                   |   |         |
| 130               |      | P23=V22+A23*X+B23*Y+C23*Z                                                                                  |   |         |
| 131               |      | P23X=A23                                                                                                   |   |         |
| 132               |      | P33=V32+A33*X+B33*Y+C33*Z                                                                                  |   |         |
| 133               | ^    | P33X=A33                                                                                                   |   |         |
| 17/               | С    | P14=V13+414*X+B14*Y+C14*Z                                                                                  |   |         |
| 134<br>135        |      | P14=V13+414**********************************                                                              |   |         |
| 135               |      | P24=V23+A24*X+B24*Y+C24*Z                                                                                  |   |         |
| 137               |      | P24X=A24                                                                                                   |   |         |
| 138               |      | P34=V33+A34*X+B34*Y+C34*Z                                                                                  |   |         |
| 139               |      | P34X=A34                                                                                                   |   |         |
|                   | С    |                                                                                                            |   |         |
| 140               |      | AM1=P21*P32-P31*P22                                                                                        |   |         |
| 141               |      | AM2=P31*P12-P11*P32                                                                                        |   |         |
| 142               |      | AM3=P11*P22-P21*P12                                                                                        |   |         |
|                   | С    |                                                                                                            |   |         |
| 143               |      | AM1X=P21X*P32+P21*P32X-P31X*P22-P31*P22X                                                                   |   |         |
| 144               |      | AM2X=P31X*P12+P31*P12X-P11X*P32-P11*P32X                                                                   | • |         |
| 145               |      | AM3X=P11X*P22+P11*P22X-P21X*P12-P21*P12X                                                                   |   |         |
|                   | C    | NULL DOLLODD DOLLEDDD                                                                                      |   |         |
| 146               |      | AM11=P21*P33-P31*P23                                                                                       |   |         |
| 147               |      | AM21=P31*P13-P11*P33                                                                                       |   |         |
| * 148             | c    | AM31=P11*P23-P21*P13                                                                                       |   |         |
| 140               | C    | AM11X=P21X*P33+P21*P33X-P31X*P23-P31*P23X                                                                  |   |         |
| 149               |      | AM21X=P31X*P13+P31*P13X-P11X*P33-P11*P33X                                                                  |   |         |
| 150               |      | AM31X=P11X*P23+P11*P23X-P21X*P13-P21*P13X                                                                  |   |         |
| 1 71              | с    | ANDIA TIATIONI IN 20A TELATIO ELATO ESA                                                                    |   |         |
| 152               | U U  | AM12=P22*P33+P21*P34-P32*P23-P31*P24                                                                       |   |         |
| 153               |      | AM22=P32*P13+P31*P14-P12*P33-P11*P34                                                                       |   |         |
|                   |      |                                                                                                            |   |         |

| 154        | с  | AM32=P12*P23+P11*P24-P22*P13-P21*P14                                                                                |
|------------|----|---------------------------------------------------------------------------------------------------------------------|
| 155        | L  | AM12X=P22X*P33+P22*P33X+P21X*P34+P21*P34X-P32X*P23-P32*P23X                                                         |
| 156        |    | 1-P31X*P24-P31*P24X<br>AM22X=P32X*P13+P32*P13X+P31X*P14+P31*P14X-P12X*P33-P12*P33X                                  |
|            |    | 1-P11X*P34-P11*P34X                                                                                                 |
| 157        | -  | AM32X=P12X*P23+P12*P23X+P11X*P24+P11*P24X-P22X*P13-P22*P13X<br>1-P21X*P14-P21*P14X                                  |
|            | C  |                                                                                                                     |
| 158        |    | A=AM1**2+AM2**2+AM3**2                                                                                              |
| 159<br>160 |    | A1=2.0*(AM1*AM11+AM2*AM21+AM3*AM31)<br>A2=2.0*(AM11**2+AM21**2+AM31**2+AM1*AM12+AM2*AM22+AM3*AM32)                  |
| 100        | С  | AZ-2.00*(A111**ZTAMZ1**ZTAMJ1*A12TAM1*AM2*AMZ*AMZ*AMZ*AMZ)                                                          |
| 161        | Ŭ  | AX=2.0*(AM1*AM1X+AM2*AM2X+AM3*AM3X)                                                                                 |
| 162        |    | A1X=2.0*(AM1X*AM11+AM1*AM11X+AM2X*AM21+AM2*AM21X+AM3X*AM31                                                          |
|            |    | 1+AM3*AM31X)                                                                                                        |
| 163        |    | A2X=2.0*(2.0*AM11*AM11X+2.0*AM21*AM21X+2.0*AM31*AM31X+AM1X*AM12+                                                    |
|            |    | 1AM1*AM12X+AM2X*AM22+AM2*AM22X+AM3X*AM32+AM3*AM32X)                                                                 |
|            | С  |                                                                                                                     |
| 164        |    | B=P11**2+P21**2+P31**2                                                                                              |
| 165        |    | B1=2.0*(P11*P12+P21*P22+P31*P32)                                                                                    |
| 166        | ~  | B2=2.0*(P12**2+P22**2+P32**2+P11*P13+P21*P23+P31*P33)                                                               |
| 167        | С  | BX=2.0*(P11*P11X+P21*P21X+P31*P31X)                                                                                 |
| 168        |    | B1 X=2•0*(P11X*P12+P11*P12X+P21X*P22+P21*P22X+P31X*P32+P31*P32X)                                                    |
| 169        |    | B2X=2.0*{2.0*P12*P12X+2.0*P22*P22X+2.0*P32*P32X+P11X*P13+P11*P13X                                                   |
|            |    | 1+P21X*P23+P21*P23X+P31X*P33+P31*P33X)                                                                              |
|            | C  |                                                                                                                     |
| 170        |    | C=P13*AM1+P23*AM2+P33*AM3                                                                                           |
| 171        |    | C1=P14*AM1+P13*AM11+P24*AM2+P23*AM21+P34*AM3+P33*AM31                                                               |
|            | С  |                                                                                                                     |
| 172        |    | CX=P13X*AM1+P13*AM1X+P23 <b>X*AM2+P23*AM2X+P33X*AM3+P33*AM3</b> X                                                   |
| 173        |    | C1X=P14X*AM1+P14*AM1X+P13X*AM11+P13*AM11X+P24X*AM2+P24*AM2X                                                         |
|            | С  | 1+P23X*AM21+P23*AM21X+P34X*AM3+P34*AM3X+P33X*AM31+P33*AM31X                                                         |
| 174        | C  | RO=B**1.5*A**(-0.5)                                                                                                 |
| 175        |    | R01=1.5*B**0.5*B1*A**(-0.5)+B**1.5*(-0.5)*A**(-1.5)*A1                                                              |
| 176        |    | R02=1.5*(0.5*B**(-0.5)*B1**2*A**(-0.5)+B**0.5*(B2*A**(-0.5)+                                                        |
|            |    | 1B1*(-0.5)*A**(-1.5)*A1))-0.5*(1.5*B**0.5*B1*A**(-1.5)*A1+                                                          |
|            |    | 2B**1.5*((-1.5) *A**(-2.5)*A1**2+A**(-1.5)*A2))                                                                     |
|            | С  |                                                                                                                     |
| 177        |    | ROX=1.5*B**0.5*BX*A**(-0.5)+B**1.5*(-0.5)*A**(-1.5)*AX                                                              |
| 178        |    | R01X=1•5*(0•5*B**(-0•5)*BX*81*A**(-0•5)+B**0•5*(B1X*A**(-0•5)+                                                      |
|            |    | 1B1*(-0.5)*A**(-1.5)*AX))-0.5*(1.5*B**0.5*BX*A**(-1.5)*A1+                                                          |
|            | с  | 2B**1.5*((-1.5)*A**(-2.5)*AX*Al+A**(-1.5)*AlX})                                                                     |
| 179        | C  | H1=0.5*B**(-0.5)*B1**2*A**(-0.5)                                                                                    |
| 180        |    | H1X=0.5*((-0.5)*B**(-1.5)*BX*B1**2*A**(-0.5)+                                                                       |
| 100        |    | 1B**(-0.5)*(2.0*B1*B1X*A**(-0.5)+B1**2*(-0.5)*A**(-1.5)*AX))                                                        |
|            | С  |                                                                                                                     |
| 181        |    | H2=B**0.5*(B2+A**(-0.5)+B1*(-0.5)*A**(-1.5)*A1)                                                                     |
| 182        |    | H2X=0.5*B**(-0.5)*BX*(B2*A**(-0.5)+B1*(-0.5)*A**(-1.5)*A1)+                                                         |
|            |    | 1B**0.5*(B2X*A**(-0.5)+B2*(-0.5)*A**(-1.5)*AX+B1X*(-0.5)*A**(-1.5)*                                                 |
|            | -  | 2A1+B1*(-0.5)*((-1.5)*A**(-2.5)*AX*A1+A**(-1.5)*A1X))                                                               |
| 100        | C. | 112-1 E40440 E40144441 1 E1411                                                                                      |
| 183        |    | H3=1.5*B**0.5*B1*A**(-1.5)*A1<br>H3¥-1 5*(0 5*B**(-0 5)*BY*B1*A**(-1 5)*A1+B**0 5*(B1Y*A**(-1 5)*A1                 |
| 184        |    | H3X=1.5*(0.5*8**(-0.5)*8X*B1*A**(-1.5)*A1+B**0.5*(B1X*A**(-1.5)*A1<br>1+B1*((-1.5)*A**(-2.5)*AX*A1+A**(-1.5)*A1X))) |
|            | С  | 1.01.(( 1.77),M/(( 2.67),M/(MI(M*********************************                                                   |
| 185        | 2  | H4=B**1.5*((-1.5)*A**(-2.5)*A1**2+A**(-1.5)*A2)                                                                     |
|            |    |                                                                                                                     |

| 186      | H4X=1.5*B**0.5*BX*((-1.5)*A**(-2.5)*A1**2+A**(-1.5)*A2)+B**1.5*<br>1{(-1.5)*(-2.5)*A**(-3.5)*AX*A1**2+{-1.5}*A**(-2.5)*2.0*A1*A1X+<br>2(-1.5)*A**(-2.5)*AX*A2+A**(-1.5)*A2X) |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | c                                                                                                                                                                            |
| 187      | RO2X=1.5*(H1X+H2X)-0.5*(H3X+H4X)<br>C                                                                                                                                        |
| 188      | SG=A/C                                                                                                                                                                       |
|          |                                                                                                                                                                              |
| 189      | SG1={C*A1-A*C1}/C**2<br>C                                                                                                                                                    |
| 190      | $SGX = \{C \times \Delta X - \Delta \times CX\} / C \times 2$                                                                                                                |
| 191      | SG1X=(C**2*(C*A1X+A1*CX-A*C1X-C1*AX)-(C*A1-A*C1)*2.0*C*CX)/C**4<br>C                                                                                                         |
| 192      | S1=B**0.5                                                                                                                                                                    |
| 93       | S2=0.5*B**(-0.5)*B1                                                                                                                                                          |
| . , 5    | C                                                                                                                                                                            |
| ~        |                                                                                                                                                                              |
| 194      | S1X=0.5*B**(-0.5)*BX                                                                                                                                                         |
| 95       | S2X=0.5*((-0.5)*B**(-1.5)*BX*B1+B**(-0.5)*B1X)                                                                                                                               |
|          |                                                                                                                                                                              |
| 96       | DRS1=R01/S1                                                                                                                                                                  |
| .97      | DR S2=(S1*R02-R01*S2)/S1**3                                                                                                                                                  |
|          | C C                                                                                                                                                                          |
| 98       |                                                                                                                                                                              |
|          | DRS1X=(P01X*S1-R01*S1X)/S1**2                                                                                                                                                |
| 99       | DR S2X=((S1X*RO2+S1*RO2X-RO1X*S2-RO1*S2X)*S1-                                                                                                                                |
|          | 1(S1*RD2-RD1*S2)*3.0*S1X)/S1**4                                                                                                                                              |
|          |                                                                                                                                                                              |
| 00       | DSG1 = SG1 / S1                                                                                                                                                              |
| 01       | DSG1X = (SG1X + S1 - SG1 + S1X) / S1 + + 2                                                                                                                                   |
| <b>.</b> | C                                                                                                                                                                            |
|          |                                                                                                                                                                              |
|          | C                                                                                                                                                                            |
| 02       | FX=RO+SG*DSG1*DRS1+SG**2*DRS2                                                                                                                                                |
|          | C                                                                                                                                                                            |
| 03       | FPX=R0X+SGX*DSG1*DRS1+SG*(DSG1X*DRS1+DSG1*DRS1X)+                                                                                                                            |
|          | 12.0*SG*SGX*DRS2+SG**2*DRS2X                                                                                                                                                 |
| 04       | WRITE(6,225) X.FX.FPX                                                                                                                                                        |
| 05       |                                                                                                                                                                              |
| 0.0      | 225 FORMAT(1H,, 'X=', E15.7, 5X, 'FX=', E15.7, 5X, 'FPX=', E15.7/)                                                                                                           |
|          | C                                                                                                                                                                            |
| 06       | $X\Lambda = X - (FX/FPX)$                                                                                                                                                    |
|          |                                                                                                                                                                              |
| 07       | N=N+1                                                                                                                                                                        |
| 08       | IF(ABS(XA-X)-TEST)240,240,235                                                                                                                                                |
|          | c                                                                                                                                                                            |
| 09       | 235 X=XA                                                                                                                                                                     |
|          | C                                                                                                                                                                            |
| 10       |                                                                                                                                                                              |
| 10       | WRITE(6,230) N, XA                                                                                                                                                           |
| 11       | 230 FORMAT(5X, 'N=', 18, 5X, 'XA=', E15.7/)                                                                                                                                  |
|          | C                                                                                                                                                                            |
| 12       | IF(N.GT.20)GO TO 300                                                                                                                                                         |
| 13       | G0 T0 90                                                                                                                                                                     |
| -        | C                                                                                                                                                                            |
| 14       | 300 WRITE(6,310)X                                                                                                                                                            |
|          |                                                                                                                                                                              |
| 15       | 310 FORMAT(//1X, 'NO OF ITERATIONS EXCEED 20. VALUE OF X IS', E11.4//)                                                                                                       |
|          | C                                                                                                                                                                            |
| 16       | 240 WRITE(6,245) X                                                                                                                                                           |
| 17       | 245 FORMAT(//5X, 'X=', E15.7//)                                                                                                                                              |
|          | C                                                                                                                                                                            |
| 18       | 500 STOP                                                                                                                                                                     |
| 10<br>19 |                                                                                                                                                                              |
| .7       | END                                                                                                                                                                          |
|          |                                                                                                                                                                              |

\$ENTRY

AN1= -0.1500000E 01 AN2= 0.0000000E 00 AN3= 0.0000000E 00 AN4= 0.0000000E 00

O, NUMBER OF EXTENSIONS=

0

Y= -0.4000000 Z= 1.500000

FPX= -0.7381797E 03 N= 2 XA= 0.8222228E-01 X= 0.8222228E-01 FX= 0.2415315E 02 FPX= -0.2935579E 03 N= 3 XA= 0.1644996E 00 FPX= -0.6190525E 03 X= 0.1644996E 00 FX= -0.5801660E 01 4 XA= 0.1551277E 00 N= X= 0.1551277E 00 FX= -0.5518341E 00 FPX= -0.5076184E 03 5 XA= 0.1540406E 00 N= X= 0.1540406E 00 FX= -0.6820679E-02 FPX= -0.4970095E 03 N= 6 XA= 0.1540268E 00 X= 0.1540268E 00 FX= 0.5035400E-03 FPX= -0.4968782E 03

£ .

COMPILE TIME= 1.18 SEC, EXECUTION TIME= 0.23 SEC, 20.38.00 WEDNESDAY 24 JAN 79 WATFIV - JUN 1977 VIL6

OBJECT CODE= 21832 BYTES, ARRAY AREA= O BYTES, TOTAL AREA AVAILABLE= 149504 BYTES CORE USAGE

STATEMENTS EXECUTED= 682

X= 0.1540268E 00

DIAGNOSTICS NUMBER OF ERRORS= 0, NUMBER OF WARNINGS=

C\$STOP

S Ū.

## APPENDIX B

COMPUTER PROGRAM TO OBTAIN THE COORDINATES OF SPHERICAL JOINT S<sub>B</sub> AND OTHER PARAMETERS OF THE R.S.S.R MECHANISM WITH ONE SET OF DATA

AND SOLUTION

|          | \$JOB  |                                                                                                                         |  |
|----------|--------|-------------------------------------------------------------------------------------------------------------------------|--|
|          | Ç.     |                                                                                                                         |  |
|          | C      | ************                                                                                                            |  |
|          | с<br>с | * SRI RAMA JEYAM. SRIRAM JEYARAM JEYAJEYA RAM. *<br>* SYNTHESIS OF R-S-S-R MECHANISM. *                                 |  |
|          | C      | * THIS PROGRAM OBTAINS THE CO-ORDINATES OF SPHERICAL *                                                                  |  |
|          | c      | * JOINT SB AND OTHER PARAMETERS OF THE MECHANISM. *                                                                     |  |
|          | č      | * GO= INPUTCRANK OFFSET LENGTH *                                                                                        |  |
|          | č      | * HO= OUTPUTCRANK OFFSET LENHTH *                                                                                       |  |
|          | č      | * G=INPUTCRANK LENGTH *                                                                                                 |  |
|          | С      | * H= OUTPUTCPANK LENGTH *                                                                                               |  |
|          | С      | * S= COUPLER LINK LENGTH *                                                                                              |  |
|          | С      | * THETA= INPUTCRANK ANGLE IN DEGREES *                                                                                  |  |
|          | С      | * PHI= OUTPUTCRANK ANGLE IN DEGREES *                                                                                   |  |
|          | c      | * DATA CARDS: *                                                                                                         |  |
|          | C      | <ul> <li>* THIRD, AND FOURTH ORDER.</li> <li>* CARD 1 SPECIFIES THE DERIVATIVES OF FIRST. SECOND.</li> <li>*</li> </ul> |  |
|          | C<br>C | * CARD 1 SPECIFIES THE DERIVATIVES OF FIRST, SECOND, *<br>* CARD 2 SPECIFIES X,Y,Z CO-ORDINATES OF SPHERICAL *          |  |
|          | č      | * JOINT SA OBTAINED FROM PROGRAM A. *                                                                                   |  |
|          | č      | * ALL THE DATA CARDS ARE PUNCHED IN 12 COLLUMN FIELD *                                                                  |  |
|          | č      | * WITH SIX DECIMAL PLACES. *                                                                                            |  |
|          | C      | ******                                                                                                                  |  |
|          | С      |                                                                                                                         |  |
| 1        |        | REAL N1,N2,N3                                                                                                           |  |
|          | С      |                                                                                                                         |  |
| 2        |        | READ(5,100)AN1,AN2,AN3,AN4                                                                                              |  |
| 3        | 100    | FORMAT(F12.6,F12.6,F12.6)                                                                                               |  |
| 4<br>5   | 105    | WRITE(6,105) AN1,AN2,AN3,AN4<br>FORMAT(//5X,*AN1=',F12.6,5X,*AN2=',F12.6,5X,*AN3=*,F12.6,5X,                            |  |
| J        | 105    | 1'4N4=',F12.6//)                                                                                                        |  |
|          | с      |                                                                                                                         |  |
| 6        | -      | READ(5,90) X,Y,Z                                                                                                        |  |
| 7        |        | FORMAT(F12.6,F12.6,F12.6)                                                                                               |  |
| 8        |        | WR ITE(6,95) X.Y.Z                                                                                                      |  |
| 9        | 95     | FORMAT(1H,,'X=',F12.6,5X,'Y=',F12.6,5X,'Z=',F12.6)                                                                      |  |
|          | С      |                                                                                                                         |  |
| 10       |        | AL = 0.0                                                                                                                |  |
| 11       |        | BL=1.0                                                                                                                  |  |
| • •      | С      | 01 411 401                                                                                                              |  |
| 12       |        | $P1 = \Delta N1 \times BL$<br>$P2 = \Delta N2 \times BL$                                                                |  |
| 13<br>14 |        | P3=AN3*BL                                                                                                               |  |
| 15       |        | P4=AN4*BL                                                                                                               |  |
|          | С      |                                                                                                                         |  |
| 16       | -      | Q1=-AN1*AL                                                                                                              |  |
| 17       |        | Q2=-AN2*AL                                                                                                              |  |
| 18       |        | Q3=-AN3*AL                                                                                                              |  |
| 19       |        | $Q4 = -\Lambda N4 \neq AL$                                                                                              |  |
|          | С      |                                                                                                                         |  |
| 20       |        | V1=0.0                                                                                                                  |  |
| 21       |        | V2=-Q1                                                                                                                  |  |
| 22       | c      | V3=P1                                                                                                                   |  |
| 23       | с      | V11=P1**2+Q1**2                                                                                                         |  |
| 23       |        | $V_{1} = P_{1} + 2 + Q_{1} + 2$<br>$V_{2} = -Q_{2}$                                                                     |  |
| 25       |        | V31=P2                                                                                                                  |  |
| - /      | с      |                                                                                                                         |  |
| 26       |        | V12=3.0*(P2*P1-Q2*Q1)                                                                                                   |  |
| 27       |        | V22=-(Q3-Q1**3-P1**2*Q1)                                                                                                |  |
| 28       |        | V32=-(-P3+P1**3+Q1**2*P1)                                                                                               |  |
|          |        |                                                                                                                         |  |

|      | •                     | ·                                                                                        |
|------|-----------------------|------------------------------------------------------------------------------------------|
| 29   | с                     |                                                                                          |
| 29   |                       | V13=-(-4.0*P3*P1-4.0*Q3*Q1-3.0*P2**2-3.0*Q2**2+P1**4+Q1**4                               |
| ~ ~  |                       | 1+2.0*P1**2*Q1**2)                                                                       |
| 30   |                       | V23=-(Q4-3.0*P2*P1*Q1-3.0*Q2*P1**2)                                                      |
| 31   |                       | V33=-(-P4-3.0*02*01*P1+3.0*P2*01**2+6.0*P2*P1**2)                                        |
|      | С                     |                                                                                          |
| 32   |                       | AV1=0.0                                                                                  |
| 33   |                       | 4V2=0.0                                                                                  |
| 34   |                       |                                                                                          |
| 24   | <b>c</b>              | AV3=1.0                                                                                  |
|      | С                     |                                                                                          |
| 35   |                       | BV1=0.0                                                                                  |
| 36   |                       | BV2=-BL                                                                                  |
| 37   |                       | BV3=AL                                                                                   |
|      | С                     |                                                                                          |
| 38   |                       | TH1=1.0                                                                                  |
| 39   |                       | TH2=0.0                                                                                  |
| 40   |                       | TH3=0.0                                                                                  |
|      |                       |                                                                                          |
| 41   |                       | TH4=0.0                                                                                  |
|      | С                     |                                                                                          |
| 42   |                       | PH1=AN1                                                                                  |
| 43   |                       | PH2=AN2                                                                                  |
| 44   |                       | PH3=AN3                                                                                  |
| 45   |                       | PH4=AN4                                                                                  |
|      | с                     |                                                                                          |
| · 46 | U                     | BAX=BV2*AV3-BV3*AV2                                                                      |
| 47   |                       |                                                                                          |
|      |                       | BAY=BV3*AV1-BV1*AV3                                                                      |
| 48   | •                     | BAZ=BV1*AV2-BV2*AV1                                                                      |
|      | С                     |                                                                                          |
| 49   |                       | AV11=-PH1*BAX                                                                            |
| 50   |                       | AV21=-PH1*BAY                                                                            |
| 51   |                       | AV31=-PH1*BAZ                                                                            |
|      | С                     |                                                                                          |
| 52   |                       | BA1X=BV2*AV31-BV3*AV21                                                                   |
| 53   |                       | B41Y=BV3*AV11-BV1*AV31                                                                   |
| 54   |                       | BA1Z=BV1*AV21-BV2*AV11                                                                   |
|      | С                     |                                                                                          |
| 55   | •                     | AV12=-PH2*BAX-PH1*BA1X                                                                   |
| 56   |                       | AV22=-PH2*BAY-PH1*BA1Y                                                                   |
| 57   |                       |                                                                                          |
| . 51 | <b>e</b> <sup>1</sup> | AV32=-PH2*BAZ-PH1*BA1Z                                                                   |
|      | C                     |                                                                                          |
| 58   |                       | BA2X=BV2*AV32-BV3*AV22                                                                   |
| 59   |                       | BA2Y=BV3*AV12-BV1*AV32                                                                   |
| 60   |                       | BA2Z=BV1*AV22-BV2*AV12                                                                   |
|      | С                     |                                                                                          |
| 61   |                       | AV13=-PH3*BAX-2.0*PH2*B41X-PH1*B42X                                                      |
| 62   |                       | AV23=-PH3*BAY-2.0*PH2*BA1Y-PH1*BA2Y                                                      |
| 63   |                       | AV33=-PH3*BAZ-2.0*PH2*BA1Z-PH1*BA2Z                                                      |
|      | С                     |                                                                                          |
| 64   | ů.                    | W1 =- PH1 * BV1 + TH1 * AV1                                                              |
| 65   |                       |                                                                                          |
|      |                       | W2 = -PH1 * BV2 + TH1 * 4V2                                                              |
| 66   | •                     | W3=-PH1*BV3+TH1*AV3                                                                      |
|      | С                     |                                                                                          |
| 67   |                       | W11=-PH2*BV1+TH2*AV1+TH1*AV11                                                            |
| 68   |                       | W21=-PH2*BV2+TH2*4V2+TH1*4V21                                                            |
| 69   |                       | W31=-PH2*BV3+TH2*AV3+TH1*AV31                                                            |
|      | С                     |                                                                                          |
| 70   |                       | W12=-PH3*BV1+TH3*AV1+2.0*TH2*AV11+TH1*AV12                                               |
| 71   |                       | W22=-PH3+BV2+TH3+AV2+2+0+TH2+AV21+TH1+AV22                                               |
| 72   |                       | W32=-PH3*BV3+TH3*AV2+2.0*TH2*AV21+1H1*AV22<br>W32=-PH3*BV3+TH3*AV3+2.0*TH2*AV31+TH1*AV32 |
|      | с                     | 132- 113 0V3T113TAV3T2.0*112*AV31+1H1*AV32                                               |
|      | C                     |                                                                                          |

| 73                                                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 74                                                                      |        | W13=-PH4*BV1+TH4*AV1+3.0*TH3*AV11+3.0*TH2*AV12+TH1*AV13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 75                                                                      |        | W23=-PH4*BV2+TH4*AV2+3.0*TH3*AV21+3.0*TH2*AV22+TH1*AV23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                         | С      | W33=-PH4*BV3+TH4*AV3+3.0*TH3*AV31+3.0*TH2*AV32+TH1*AV33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 76                                                                      | U      | 411-0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 77                                                                      |        | A11=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                         |        | A 2 1 = W 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 78                                                                      | ~      | A31=-W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                         | С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 79                                                                      |        | B11=-W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80                                                                      |        | B21=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 81                                                                      |        | B31=W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                         | С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 82                                                                      |        | C11=W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 83                                                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 84                                                                      |        | C31=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                         | C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 85                                                                      | C      | A1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 86                                                                      |        | A12=-(W2**2+W3**2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                         |        | A22=W31+W2*W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 87                                                                      |        | A32=-W21+W3*W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                         | С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 88                                                                      |        | B12=-W31+W1*W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 89                                                                      |        | B22=-(W3**2+W1**2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 90                                                                      |        | B32=W11+W3*W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         | С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 91                                                                      |        | C12=W21+W1×W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 92                                                                      |        | C22=-W11+W2*W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 93                                                                      |        | C32=-{W] **2+W2**2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                         | С      | CJ2(WI**ZWZ**Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 94                                                                      | C.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                         |        | A13 = -3.0*(W21*W2+W31*W3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 95                                                                      |        | A23=W32+W21*W1+2.0*W11*W2-W3**3 -W2**2*W3-W1**2*W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 96                                                                      |        | A33=-W22+2.0*W11*W3+W31*W1+W2**3+W1**2*W2+W3**2*W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                         | С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 07                                                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 97,                                                                     |        | B13=-W32+W11+W2+2.0+W22+W1+W3++3+W1++2+W3+W2++2+W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98                                                                      |        | B13=-W32+W11*W2+2.0*W22*W1+W3**3+W1**2*W3+W2**2*W3<br>B23=-3.0*(W31*W3+W11*W1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                         |        | B23=-3.0*(W31*W3+W11*W1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 98                                                                      | с      | B13=-W32+W11*W2+2.0*W22*W1+W3**3+W1**2*W3+W2**2*W3<br>B23=-3.0*(W31*W3+W11*W1)<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 98                                                                      | с      | B23=-3.0*(W31*W3+W11*W1)<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 98<br>99<br>100                                                         | с      | B23=-3.0*{W31*W3+W11*W1}<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98<br>99<br>100<br>101                                                  | с      | B23=-3.0*{W31*W3+W11*W1}<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 98<br>99<br>100                                                         |        | B23=-3.0*{W31*W3+W11*W1}<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98<br>99<br>100<br>101<br>102                                           | c<br>c | B23=-3.0*(W31*W3+W11*W1)<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1<br>C33=-3.0*(W11*W1+W21*W2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 98<br>99<br>100<br>101                                                  |        | B23=-3.0*{W31*W3+W11*W1}<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1<br>C33=-3.0*{W11*W1+W21*W2}<br>A14=-4.0*W22*W2-4.0*W32*W3-3.0*W21**2-3.0*W31**2+2.0*W21*W1*W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 98<br>99<br>100<br>101<br>102<br>103                                    |        | B23=-3.0* {W31*W3+W11*W1}<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1<br>C33=-3.0* {W11*W1+W21*W2}<br>A14=-4.0*W22*W2-4.0*W32*W3-3.0*W21**2-3.0*W31**2+2.0*W21*W1*W3<br>1-2.0*W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0*W2**2+2.0*W21***2+W3**2*W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98<br>99<br>100<br>101<br>102                                           |        | B23=-3.0*{W31*W3+W11*W1}<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1<br>C33=-3.0*{W11*W1+W21*W2}<br>A1 4=-4.0*W22*W2-4.0*W32*W3-3.0*W21**2-3.0*W31**2+2.0*W21*W1*W3<br>1-2.0*W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0*W21**2+2.0*W21*W1*W3<br>1-2.0*W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0*W21**2+2.0*W21*W1*W3<br>A24=W33+W22*W1+3.0*W12*W2+3.0*W21*W1+-3.0*W21*W2*W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 98<br>99<br>100<br>101<br>102<br>103                                    |        | B23=-3.0* (W31*W3+W11*W1)<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1<br>C33=-3.0*(W11*W1+W21*W2)<br>A14=-4.0*W22*W2-4.0*W32*W3-3.0*W21**2-3.0*W31**2+2.0*W21*W1*W3<br>1-2.0*W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0*W2**2*W3**2+W3**2*W1**2<br>A24=W33+W22*W1+3.0*W12**2+3.0*W21*W11-3.0*W21*W2**3*W1=W2**3<br>1-3.0*W31*W2**2-W31*W1**2-5.0*W11*W3*W1-W2**3*W1=W2**3**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 98<br>99<br>100<br>101<br>102<br>103<br>104                             |        | B23=-3.0* (W31*W3+W11*W1)<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1<br>C33=-3.0*(W11*W1+W21*W2)<br>A14=-4.0*W22*W2-4.0*W32*W3-3.0*W21**2-3.0*W31**2+2.0*W21*W1*W3<br>1-2.0*W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0*W2**2*W3**2+W3**2*W1**2<br>A24=W33+W22*W1+3.0*W12**2+3.0*W21*W11-3.0*W21*W2**3*W1=W2**3<br>1-3.0*W31*W2**2-W31*W1**2-5.0*W11*W3*W1-W2**3*W1=W2**3**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 98<br>99<br>100<br>101<br>102<br>103                                    |        | B23=-3.0* (W31*W3+W11*W1)<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1<br>C33=-3.0*(W11*W1+W21*W2)<br>A14=-4.0*W22*W2-4.0*W32*W3-3.0*W21**2-3.0*W31**2+2.0*W21*W1*W3<br>1-2.0*W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0*W21**2*W3**2+W3**2*W1**2<br>A24=W33+W22*W1+3.0*W12*W2+3.0*W21*W11-3.0*W21*W2*W3<br>1-3.0*W31*W2*2-W31*W1**2-5.0*W11*W3*W1-W2**3*W1-W2*W1**3<br>2-W2*W3**2*W1-6.0*W31*W3**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 98<br>99<br>100<br>101<br>102<br>103<br>104                             |        | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$<br>$B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$<br>$C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$<br>$C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$<br>$C33=-3.0 \times \{W11 \times W1 + W21 \times W2\}$<br>$A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times 2 \times 2 \times W1 \times 2 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 98<br>99<br>100<br>101<br>102<br>103<br>104                             |        | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$<br>$B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$<br>$C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$<br>$C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$<br>$C33=-3.0 \times \{W11 \times W1 + W21 \times W2\}$<br>$A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 \times 2 \times 2 \times 2 \times W3 \times 2 \times W3 \times 2 \times W1 \times 2 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98<br>99<br>100<br>101<br>102<br>103<br>104                             | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$<br>$B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$<br>$C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$<br>$C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$<br>$C33=-3.0 \times \{W11 \times W1 + W21 \times W2\}$<br>$A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times 2 \times 2 \times W1 \times 2 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                      |        | B23=-3.0* (W31*W3+W11*W1)<br>B33=W12+2.0*W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1<br>C13=W22+W11*W3+2.0*W31*W1-W2**3-W1**2*W2-W3**2*W2<br>C23=-W12+W21*W3+2.0*W31*W2+W1**3+W2**2*W1+W3**2*W1<br>C33=-3.0* (W11*W1+W21*W2)<br>A1 4=-4.0*W22*W2-4.0*W32*W3-3.0*W21**2-3.0*W31**2+2.0*W21*W1*W3<br>1-2.0*W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0*W2**2*W3**2+W3**2*W1**2<br>A24=W33+W22*W1+3.0*W12*W2+3.0*W21*W11-3.0*W21*W2*W3<br>1-3.0*W31*W2**2-W31*W1**2-5.0*W11*W3*W1-W2**3*W1-W2*W1**3<br>2-W2*W3**2*W1-6.0*W31*W3**2<br>A34=-W23+3.0*W12*W3+3.0*W31*W11+3.0*W31*W3*W2+5.0*W11*W1*W2<br>1+3.0*W21*W3**2+W21*W1**2+6.0*W21*W2**2-W3**3*W1-W3*W1**3<br>2-W3*W1*W2**2+W32*W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 98<br>99<br>100<br>101<br>102<br>103<br>104                             | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$<br>$B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$<br>$C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$<br>$C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$<br>$C33=-3.0 \times (W11 \times W1 + W21 \times W2)$<br>$A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 + W3 \times 2 \times W1 \times 2 \times 2 \times W1 + 3.0 \times W12 \times 3.0 \times W21 \times W1 - 3.0 \times W21 \times W2 \times W3 \times 2 \times W1 \times 2 \times 2 \times W1 + 3.0 \times W12 \times 2 \times 5.0 \times W11 \times 3 \times W1 - W2 \times 3 \times 2 \times W1 + 3.0 \times W11 \times 3 \times 2 + 5.0 \times W11 \times W2 \times 2 + W3 \times 2 + W1 \times 3 \times 2 + W2 \times 3 \times 2 + W1 + 3.0 \times W12 \times W1 + 3.0 \times W11 \times 2 \times 2 + W3 \times 2 + W2 \times 2 + W3 \times 2 + W1 + 3.0 \times W11 \times W2 \times 2 + W3 \times 2 + W2 \times 2 + W2 \times 2 + W3 \times 2 + W1 + 3.0 \times W11 \times W2 \times 2 + W3 \times 2 + W1 \times 2 + 6.0 \times W21 \times W2 \times 2 - W3 \times W1 + W2 \times 2 + W3 \times 2 + W1 \times 2 + 4 \times 2 \times W1 + 3 \times 2 + W3 \times 2 + W1 + 3 \times 2 + W3 \times 2 + W1 + 3 \times 2 + W1 + 3 \times 2 + W3 \times 2 + W1 + 3 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W1 \times 2 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 + 4 \times 2 + W2 \times 2 + W3 \times 2 + W1 + 3 \times 2 + W3 \times 2 + W1 \times 2 + 4 \times 2 + W3 \times 2 + W1 + 3 \times 2 + W3 \times 2 + W1 \times 2 + 4 \times 2 + W3 \times 2 + W1 \times 2 + 4 \times 2 + W3 \times 2 + W1 \times 2 + 4 \times 2 + W3 \times 2 + W1 \times 2 + 4 \times 2 + W3 \times 2 + W1 \times 2 + 4 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 \times 2 \times 1 \times 2 \times 2 \times 2 \times 1 \times 2 \times 2$                                                                                                                                                                                   |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                      | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$<br>$B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$<br>$C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$<br>$C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$<br>$C33=-3.0 \times (W11 \times W1 + W21 \times W2)$<br>$A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 \times 2 \times 0 \times W21 \times W1 \times W3 \times 2 \times W1 \times W2 \times W2 \times W1 + 3.0 \times W21 \times W2 \times W2 \times 2 \times W3 \times 2 \times W1 \times W2 \times W1 \times W2 \times W2 \times W1 \times W2 \times W2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106               | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$<br>$B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$<br>$C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$<br>$C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$<br>$C33=-3.0 \times (W11 \times W1 + W21 \times W2)$<br>$A14=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times 2 \times W1 \times 2 \times W1 \times 2 \times W2 \times 2 \times W1 \times 3 \times W1 \times 2 \times 2 \times W1 \times 3 \times 2 \times W1 \times 3 \times W1 - W2 \times W1 \times 3 \times W1 - W2 \times W1 \times 3 \times 2 \times W1 \times 3 \times $                                                                                                                                                              |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                      | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$<br>$B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$<br>$C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$<br>$C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$<br>$C33=-3.0 \times \{W11 \times W1 + W21 \times W2\}$<br>$A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times 3 \times 4 \times W1 \times 2 \times W2 \times W3 \times 2 \times W1 \times W1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106               | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$<br>$B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$<br>$C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$<br>$C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$<br>$C33=-3.0 \times \{W11 \times W1 + W21 \times W2\}$<br>$A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times W3$<br>$1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times 3 \times 4 \times W1 \times 2 \times W2 \times W3 \times 2 \times W1 \times W1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106               | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$ $B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$ $C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$ $C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$ $C33=-3.0 \times \{W11 \times W1 + W21 \times W2\}$ $A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W2 \times 1 \times W1 \times W3$ $1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 \times 2 \times 3 \times 2 \times W3 \times 2 \times W1 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times W1 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106               | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$ $B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$ $C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$ $C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$ $C33=-3.0 \times (W11 \times W1 + W21 \times W2)$ $A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W21 \times W1 \times W3$ $1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 + W3 \times 2 \times W1 + 3.0 \times W12 \times W2 + 3.0 \times W21 \times W1 - 3.0 \times W21 \times W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 - 3.0 \times W21 \times W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 \times W3 \times W1 - W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 \times W3 \times W1 - W2 \times W3$ $2-W2 \times W3 \times 2 \times W1 - 6.0 \times W31 \times W3 \times 2$ $A34=-W23 + 3.0 \times W12 \times W3 + 3.0 \times W31 \times W1 + 3.0 \times W31 \times W2 + 5.0 \times W11 \times W2$ $1+3.0 \times W21 \times W3 \times 2 - W21 \times W1 \times 2 + 6.0 \times W21 \times W2 \times 2 - W3 \times 3 \times W1 - W3 \times W1 + W2$ $1+3.0 \times W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 + 6.0 \times W31 \times W3 \times 2 - W3 \times W1 - W3 \times W1 + W2 \times 2 + W3 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times W1 \times W2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107        | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$ $B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$ $C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$ $C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$ $C33=-3.0 \times (W11 \times W1 + W21 \times W2)$ $A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W21 \times W1 \times W3$ $1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 + W3 \times 2 \times W1 + 3.0 \times W12 \times W2 + 3.0 \times W21 \times W1 - 3.0 \times W21 \times W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 - 3.0 \times W21 \times W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 \times W3 \times W1 - W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 \times W3 \times W1 - W2 \times W3$ $2-W2 \times W3 \times 2 \times W1 - 6.0 \times W31 \times W3 \times 2$ $A34=-W23 + 3.0 \times W12 \times W3 + 3.0 \times W31 \times W1 + 3.0 \times W31 \times W2 + 5.0 \times W11 \times W2$ $1+3.0 \times W21 \times W3 \times 2 - W21 \times W1 \times 2 + 6.0 \times W21 \times W2 \times 2 - W3 \times 3 \times W1 - W3 \times W1 + W2$ $1+3.0 \times W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 + 6.0 \times W31 \times W3 \times 2 - W3 \times W1 - W3 \times W1 + W2 \times 2 + W3 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times W1 \times W2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107        | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$ $B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$ $C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$ $C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$ $C33=-3.0 \times (W11 \times W1 + W21 \times W2)$ $A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W21 \times W1 \times W3$ $1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times 2 \times W1 \times 2 \times 2 \times 2 \times W1 \times 2 \times 2 \times W1 \times 2 \times 2 \times 2 \times W1 \times 2 \times 2 \times W1 \times 2 \times 2 \times W1 \times 2 \times 2 \times 2 \times W1 \times 2 \times 2 \times 2 \times W1 \times 2 \times $ |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107        | С      | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$ $B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$ $C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$ $C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$ $C33=-3.0 \times (W11 \times W1 + W21 \times W2)$ $A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W21 \times W1 \times W3$ $1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 + W3 \times 2 \times W1 + 3.0 \times W12 \times W2 + 3.0 \times W21 \times W1 - 3.0 \times W21 \times W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 - 3.0 \times W21 \times W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 \times W3 \times W1 - W2 \times W3$ $1-3.0 \times W31 \times W2 \times 2 - W31 \times W1 \times 2 - 5.0 \times W11 \times W3 \times W1 - W2 \times W3$ $2-W2 \times W3 \times 2 \times W1 - 6.0 \times W31 \times W3 \times 2$ $A34=-W23 + 3.0 \times W12 \times W3 + 3.0 \times W31 \times W1 + 3.0 \times W31 \times W2 + 5.0 \times W11 \times W2$ $1+3.0 \times W21 \times W3 \times 2 - W21 \times W1 \times 2 + 6.0 \times W21 \times W2 \times 2 - W3 \times 3 \times W1 - W3 \times W1 + W2$ $1+3.0 \times W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 + 6.0 \times W31 \times W3 \times 2 - W3 \times W1 - W3 \times W1 + W2 \times 2 + W3 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times W1 \times W2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 - W3 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times 2 + W3 \times 2 + W1 \times 2 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107        | c<br>c | $B23=-3.0 \times (W31*W3+W11*W1)$ $B33=W12+2.0 \times W21*W3+W31*W2-W1**3-W2**2*W1-W3**2*W1$ $C13=W22+W11*W3+2.0 \times W31*W1-W2**3-W1**2*W2-W3**2*W1$ $C33=-3.0 \times (W11*W1+W21*W2)$ $A14=-4.0 \times W22*W2-4.0 \times W32*W3-3.0 \times W21**2-3.0 \times W31**2+2.0 \times W21*W1*W3$ $1-2.0 \times W31*W1*W2+W2**4+W3**4+W1**2*W2**2+2.0 \times W2**2*W3**2+W3**2*W1**2$ $A24=W33+W22*W1+3.0 \times W12*W2+3.0 \times W21*W11-3.0 \times W21*W2*W3$ $1-3.0 \times W31*W2**2-W31*W1**2-5.0 \times W11*W3*W1-W2**3*W1-W2*W1**3$ $2-W2\times W3**2*W1-6.0 \times W31*W3**2$ $A34=-W23+3.0 \times W12*W3+3.0 \times W31*W11+3.0 \times W31*W3*W2+5.0 \times W11*W1*W2$ $1+3.0 \times W12*W3+3.0 \times W11*W2**2+W31*W1**2+6.0 \times W11*W3*W1-W3*W1**3$ $2-W3\times W1*W2**2+W31*W1**2+6.0 \times W11*W3**2-W1**3*W2$ $B14=-W33+3.0 \times W22*W1+3.0 \times W11*W3**2-W1**3*W2$ $B14=-W33+3.0 \times W22*W1+3.0 \times W11*W3**2-W1**3*W2$ $B24=-4.0 \times W32*W3**2+W1-3.0 \times W31*W3**2-W1**3*W2$ $B24=-4.0 \times W32*W3**2+W1-3.0 \times W31*W3**2+2.0 \times W31*W2*W1$ $B14=-W33+W1*W2*W3**2+W1-3.0 \times W31*W3**2-W1**3*W2$ $B24=-4.0 \times W32*W3**2+W1*W2*W2**2+W1**3$ $B24=-4.0 \times W32*W3**2+W1*W2*W3$ $B24=-4.0 \times W32*W3**2+W1*W2*W3$ $B24=-4.0 \times W32*W3**2+W1*W2*W3$ $B24=-4.0 \times W32*W3**2+W1*W2*W3$ $B24=-4.0 \times W32*W3**2+W1*W2*W2*W3$ $B24=-4.0 \times W32*W3**2+W1**4+W2**2*W3**2+2.0 \times W31*W2*W1$ $D24=-4.0 \times W32*W3**2+W1*W1**4+W2**2*W3**2+2.0 \times W31*W3*W1-3.0 \times W11*W3**2+2.0 \times W31*W2*W1$ $D24=-4.0 \times W32*W3**2+W1*W1**4+W2**2*W3**2+2.0 \times W31*W3*W1-3.0 \times W11*W3**2+2.0 \times W31*W2*W1$ $D34=W13*W2*W2**2+3.0 \times W31*W2+3.0 \times W31*W3*W1-3.0 \times W11*W3**2+W1**2$ $B34=W13*W32*W2+3.0 \times W2*W3**3*W2-W3*W2**3-W3*W1**2*W2$ $2-6.0 \times W11*W1*W2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | c<br>c | $B23=-3.0 \times \{W31 \times W3 + W11 \times W1\}$ $B33=W12+2.0 \times W21 \times W3 + W31 \times W2 - W1 \times 3 - W2 \times 2 \times W1 - W3 \times 2 \times W1$ $C13=W22+W11 \times W3 + 2.0 \times W31 \times W1 - W2 \times 3 - W1 \times 2 \times W2 - W3 \times 2 \times W2$ $C23=-W12+W21 \times W3 + 2.0 \times W31 \times W2 + W1 \times 3 + W2 \times 2 \times W1 + W3 \times 2 \times W1$ $C33=-3.0 \times (W11 \times W1 + W21 \times W2)$ $A1 4=-4.0 \times W22 \times W2 - 4.0 \times W32 \times W3 - 3.0 \times W21 \times 2 - 3.0 \times W31 \times 2 + 2.0 \times W21 \times W1 \times W3$ $1-2.0 \times W31 \times W1 \times W2 + W2 \times 4 + W3 \times 4 + W1 \times 2 \times W2 \times 2 + 2.0 \times W2 \times 2 \times W3 \times 2 \times W1 \times 2 \times W1 \times 2 \times 2 \times 2 \times W1 \times 2 \times 2 \times W1 \times 2 \times 2 \times 2 \times W1 \times 2 \times 2 \times W1 \times 2 \times 2 \times W1 \times 2 \times 2 \times 2 \times W1 \times 2 \times 2 \times 2 \times W1 \times 2 \times $ |

.

|        | l-W21*W3**2-5.0 <b>*W31</b> *W2*W3-W1**3*W3-W1*W3**3-W1*W2**2*W3<br>2-6.0*W21*W2**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 110    | C24=-W13+3.0*W32*W2+3.0*W21*W31+3.0*W21*W2*W1+5.0*W31*W3*W1+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • • •  | 13.0*W11*W2**2+W11*W3**2+6.0*W11*W1**2-W2**3*W3-W2*W3**3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 2-W2*W3*W1**2+W22*W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 111    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | C34=-4.0*W12*W1-4.0*W22*W2-3.0*W11**2-3.0*W21**2+2.0*W11*W3*W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 1-2.0*W21*W3*W1+W1**4+W2**4+W3**2*W1**2+2.0*W1**2*W2**2<br>2.442**2*42**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 2+W2**2*W3*÷2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 112    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | P11=V1+A11*X+B11*Y+C11*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 113    | P11X=A11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 114    | P21=V2+A21*X+B21*Y+C21*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 115    | P21X=A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 116    | P31=V3+A31*X+B31*Y+C31*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 117    | P31X=A31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 118    | P12=V11+A12*X+B12*Y+C12*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 119    | P12X=A12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 120    | P22=V21+A22*X+B22*Y+C22*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 121    | P22X=422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 122    | P32=V31+432*X+B32*Y+C32*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 123    | P32X=A32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 124    | P13=V12+413*X+B13*Y+C13*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 125    | P13X=A13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 126    | P23=V22+A23*X+B23*Y+C23*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 127    | P23X=A23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 128    | P33=V32+A33*X+B33*Y+C33*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 129    | P33X=A33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 130    | P14=V13+A14*X+B14*Y+C14*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 131    | P14X=A14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 132    | P24=V23+A24*X+B24*Y+C24*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 133    | P24X=A24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 134    | P34=V33+A34*X+B34*Y+C34*Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 135    | P34X=A34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 136    | AM1=P21*P32-P31*P22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 137    | AM2=P31*P12-P11*P32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 138    | AM3 = P11 * P22 - P21 * P12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 139    | AM1X=P21X*P32+P21*P32X-P31X*P22-P31*P22X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 140    | AM2X=P31X*P12+P31*P12X-P11X*P32-P11*P32X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 141    | AM3X=P11X*P22+P11*P22X-P21X*P12-P21*P12X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | C .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 142    | AM11=P21*P33-P31*P23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 143    | AM21=P31*P13-P11*P33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 144    | AM31=P11*F23-P21*P13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 145    | AM11X=P21X*P33+P21*P33X-P31X*P23-P31*P23X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 146    | AM21X=P31X*P13+P31*P13X-P11X*P33-P11*P33X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 147    | AM31X=P11X*P23+P11*P23X-P21X*P13-P21*P13X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 148    | AM12=P22*P33+P21*P34-P32*P23-P31*P24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 149    | AM22=P32*P13+P31*P14-P12*P33-P11*P34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 150    | AM32=P12*P23+P11*P24-P22*P13-P21*P14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.70   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 151    | AM12X=P22X*P33+P22*P33X+P21X*P34+P21*P34X-P32X*P23-P32*P23X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 - 1  | 1-P31X*P24-P31*P24X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 152    | AM22X=P32X*P13+P32*P13X+P31X*P14+P31*P14X-P12X*P33-P12*P33X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| L / (. | A CENT SEAT FOR THE SATE STATE STA |
|        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

•

|            |    | 1-P11X*P34-P11*P34X                                               |
|------------|----|-------------------------------------------------------------------|
| 153        |    | AM32X=P12X*P23+P12*P23X+P11X*P24+P11*P24X-P22X*P13-P22*P13X       |
|            |    | 1-P21X*P14-P21*P14X                                               |
|            | С  |                                                                   |
| 154        |    | A=AM1**2+AM2**2+AM3**2                                            |
| 155        |    | A1=2.0*(AM1*AM11+AM2*AM21+AM3*AM31)                               |
| 156        |    | A2=2.0*(AM11**2+AM21**2+AM31**2+AM1*AM12+AM2*AM22+AM3*AM32)       |
|            | С  |                                                                   |
| 157        |    | AX=2.0*(AM1*AM1X+AM2*AM2X+AM3*AM3X)                               |
| 158        |    | A1X=2.0*(AM1X*AM11+AM1*AM11X+AM2X*AM21+AM2*AM21X+AM3X*AM31        |
|            |    | 1+AM3*AM31X)                                                      |
| 159        |    | A2X=2.0*(2.0*A:11*AM11X+2.0*AM21*AM21X+2.0*AM31*AM31X+AM1X*AM12+  |
|            | 2  | 14M1*AM12X+AM2X*AM22+AM2*AM22X+AM3X*AM32+AM3*AM32X)               |
|            | С  |                                                                   |
| 160        |    | B=P11**2+P21**2+P31**2                                            |
| 161        |    | B1=2.0*(P11*P12+P21*P22+P31*P32)                                  |
| 162        | ~  | B2=2.0*(P12**2+P22**2+P32**2+P11*P13+P21*P23+P31*P33)             |
| 1/2        | С  | BX = 2.0*(P11*P11X+P21*P21X+P31*P31X)                             |
| 163        |    | B1 X=2.0*(P11X*P12+P11*P12X+P21X*P22+P21*P22X+P31X*P32+P31*P32X)  |
| 164        |    | B2X=2.0*(2.0*P12*P12X+2.0*P22*P22X+2.0*P32*P32X+P11X*P13+P11*P13X |
| 165        |    | 1+P21X*P23+P21*P23X+P31X*P33+P31*P33X}                            |
|            | с  | 1465144654651651465346514653465146534                             |
| 166        | C  | C=P13*AM1+P23*AM2+P33*AM3                                         |
| 167        |    | C1=P14*AM1+P13*AM11+P24*AM2+P23*AM21+P34*AM3+P33*AM31             |
| 107        | ć  | 01-F14+AM1+F15+AM11+F24+AM2+F25+AM21+F34+AM5+F55+AM51             |
| 168        | C  | CX=P13X*AM1+P13*AM1X+P23X*AM2+P23*AM2X+P33X*AM3+P33*AM3X          |
| 169        |    | C1X=P14X*AM1+P14*AM1X+P13X*AM11+P13*AM11X+P24X*AM2+P24*AM2X       |
| 107        |    | 1+P23X*AM21+P23*AM21X+P34X*AM3+P34*AM3X+P33X*AM31+P33*AM31X       |
|            | с  |                                                                   |
| 170        | •  | R()=B**1•5*A**(-0•5)                                              |
|            | с  |                                                                   |
| , 171      |    | R01=1.5*B**O.5*B1*A**(-O.5)+B**1.5*(-O.5)*A**(-1.5)*A1            |
|            | С  |                                                                   |
| 172        |    | SG=A/C                                                            |
|            | C  |                                                                   |
| 173        |    | S1=B**0.5                                                         |
|            | С  |                                                                   |
| 174        | ~  | DR S1=R01/S1                                                      |
| 175        | С. | R=SQRT(R0**2+SG**2*DRS1**2)                                       |
| 175        | c  | R= 5 WRI (RU**2 + 5 G**2 + 0 R 5 I * + 2 )                        |
| 174        | С  |                                                                   |
| 176        |    | T1 = P11/B * *0.5<br>T2 = P21/B * *0.5                            |
| 177        |    | T3=P31/B**0.5                                                     |
| 178        | с  |                                                                   |
| 170        | C  | BN1=AM1/A**0.5                                                    |
| 179<br>180 |    | BN 2= AM2 / A ** 0.5                                              |
|            |    |                                                                   |
| 181        | С  | BN3=AM3/A**0.5                                                    |
| 182        | C  | N1=BN2*T3-BN3*T2                                                  |
| 182        |    | $N2 = 8N3 \times T1 - 8N1 \times T3$                              |
| 185        |    | $N3 = BN1 \times T2 - BN2 \times T1$                              |
| 104        | с  |                                                                   |
| 185        | C  | SBX=X+RD*N1+SG*DRS1*BN1                                           |
| 186        |    | SB Y = Y + RO * N2 + SG * DRS 1 * BN2                             |
| 187        |    | SBZ=Z+RO*N3+SG*DRS1*BN3                                           |
|            | С  |                                                                   |
| 188        | ÷  | A)SA=(X**2+Y**2)**0.5                                             |
| 189        |    | B0SB=SQRT((SBX-1.0)**2+(SBZ**2))                                  |
|            |    |                                                                   |

•

0-000000 XALIE (6,2)] SBX,SBY,582 FJX4AI(//,jX,'S5X=',F10.6,5X,'SBY=',F10.6,5X,'S52=',F10.6) AN4 = Warre(0,25,30,60,4,4,5 Foidar(//).,'30=',215.7,5%,'H0=',215.7,5%,'G=',215.7,5%, 1'8=',215.7,5%,'5=',215.7/) whill(0,30)T,P,IACTA,PHI
30 FURAAf(5X,'THETA=',F12.6,5X,'THETA=',F12.6,5X,
1'PHL=',F1...0/) 0.000000 5à 3.J=S 24I ( K+S 5.J) \*\*2 + (Y-S BY) \*\*2+ (Z-S52) \*\*2) = 5 N A 0.000000 Т=АТАН (Т/.) Р=АГАН (344/334-1.0)) FUETA=2\*1J0.73.14159 PdE=2\*1J0./3.14153 -7.N.2= 60=2 60=2 6=405A 6=4058 6=258 8=3458 - 1. 500030 -500 STOP G N D \$ EN L'A I 5.2 52 ů. υ U Ċ, O 0 AN 1= 2002 198 202 204 205 206 237 130 191 192 194 194 196 197

WATPLY - JUN 1977 VIL6 O BYTES, TOTAL AREA AVAILABLE= 149504 BYTES 0 - NUMBER OF EXTENSIONS= 27 JAN 79 S ATU RDAY 10.55.08 O, NUMBER OF WARNINGS= 0-04 SEC, OBJECT CUDE= 19376 DYTES, ARRAY AREA= 0.96 SEC, EXECUTION TIME= NUKEES OF ERACISE 197 STATEMENTS EXECUTED= = ALIT TITES = DIAGNOSTICS CORE USAGE

0.1.046641E 01

ۍ ۳

0.1874757E 00

G= 0.4286306E 00

H0= -0.5558261E 00

0.15J00J0E 01

=C9

SBZ= -0.023425

Ssi= -0.555826

1. 18 6337

S BX =

1.500000

= 7

- i. 40000

۳ ۲

0.154327

H= 0.187 -7.17758

=I IId

-68.939940

THE TA=

-0.125275

n d

- 1. 23 5228

H H-1 CISIOP

## APPENDIX C

## COMPUTER PROGRAM FOR DISPLACEMENT ANALYSIS OF THE R.S.S.R MECHANISM WITH ONE SET OF DATA AND SOLUTION

STATEMENTS EXECUTED= 15 CORE USAGE O BYTES, TOTAL AREA AVAILABLE= 149504 BYTES OBJECT CODE= 2896 BYTES, ARRAY AREA= DIAGNOSTICS NUMBER OF ERRORS= 0. NUMBER OF WARNINGS= **O, NUMBER OF EXTENSIONS=** 0 COMPILE TIME= 0.15 SEC, EXECUTION TIME= 0.01 SEC. 20.20.14 WEDNESDAY 24 JAN 79 WATFIV - JUN 1977 VIL6

PHI1= -1.989295 PHI2= -0.125267 PHI10= -113.978200 PHI2D= -7.177282

\$ENTRY G0= 1.500000 H0≠ -0.555826 G= 0.428631 H= 0.187476 S= 1.846641 T= -1.203228

\$J08 С SRI RAMA JEYAM. SPIRAM JEYARAM JEYAJEYA RAM. С \* С \* DISPLACEMENT ANALYSIS THIS PROGRAM OBTAINS THE DISPLACEMENT ANALYSIS OF С R-S-S-R MECHANISM. С \* С \* DATA CAPDS: CARD 1 SPECIFIES THE PARAMETERS GO, HO, G, H, S, AND T C \* С \* OF THE MECHANISM OBTAINED FROM PROGRAM B. \* THIS PROGRAM GIVES TWO VALUES OF OUTPUT ANGLE PHI c CORRESPONDING TO THE VALUE OF INPUT ANGLE THETA. С \* \* ALL THE DATA CARDS ARE PUNCHED UN 12 COLLUMN С С \* FIELD WITH SIX DECIMAL PLACES. С \*\*\*\*\*\*\*\* С 300 READ(5,1C) GO,HO,G,H,S,T 1 2 10 FORMAT(F12.6,F12.6,F12.6,F12.6,F12.6,F12.6) 3 WR ITE(6,15) GO, HO, G, H, S, T 4 15 FORMAT(1H,, 'GO=', F12.6, 5X, 'HO=', F12.6, 5X, 'G=', F12.6, 5X, 'H=', 1F12.6,5X, 'S=', F12.6,5X, 'T=', F12.6) С 5 CT=COS(T) 6 ST=SIN(T) С 7 AK1=G\*CT-1.0 8 4K2=G\*ST-H0 С 9 A=2.0\*G0\*H 10 B=2.0\*4K1\*H 11 C=AK1\*\*2+AK2\*\*2+G0\*\*2+H\*\*2-S\*\*2 12 D=SQRT(A\*\*2+B\*\*2-C\*\*2) . с 13 PHI1=2.0\*ATAN((A+D)/(B+C)) 14 PH12=2.0\*ATAN((A-D)/(B+C)) 15 PHI1D=PHI1\*180.0/3.14159 PHI2D=PHI2\*180.0/3.14159 16 С 17 WPITE(6,20)PHI1,PHI2,PHI1D,PHI2D 20 FORMAT (//5X, 'PHI 1=', F12.6, 5X, 'PHI 2=', F12.6, 5X, 'PHI 1D=', F12.6, 5X, 18 1'PHI2D=',F1?.6//) С 19 200 STOP 20 END

## APPENDIX D

# COMPUTER PROGRAM FOR THE DERIVATIVE ANALYSIS OF THE R.S.S.R MECHANISM WITH ONE SET

OF DATA AND SOLUTION

\$J0B С \*\*\*\*\* SRI PAMA JEYAM. SRIRAM JEYARAM JEYAJEYA RAM. С 뇨 DERIVATIVE ANALYSIS. С \* THIS PROGRAM DOES THE DERIVATIVE ANALYSIS С \* \* OF THE R-S-S-R MECHANISM UP TO FOURTH ORDER. С \* A= X CO-ORDINATE OF SPHERICAL JOINT SA. B= Y CO-ORDINATE OF SPHERICAL JOINT SA. \* С \* С \* \* C= Z CO-ORDINATE OF SPHERICAL JOINT SA. С D= SBX= X CO-ORDINATE OF SPHERICAL JOINT SB. E= SBY= Y CO-ORDINATE OF SPHERICAL JOINT SB. С \* С × F= SBZ= 2 CO-ORDINATE OF SPHERICAL JOINT SB. С \* С \* DATA CARDS: CARD 1 SPECIFIES GO, HO, G, H, S С \* С \* CARD 2 SPECIFIES T AND P. С SOLUTIONS OBTAINED ARE THE CO-ORDINATES OF SPHERICAL \* × JOINTS SA, SB AND THE DERIVATIVES С \* \*. UP TO THE FOURTH ORDER. \* ALL THE DATA CARDS ARE PUNCHED IN 12 COLLUMN FIELD С С С \* WITH SIX DECIMAL PLACES. \*\*\*\*\*\* С С READ(5,10) G0,H0,G,H 1 10 FORMAT(F12.6,F12.6,F12.6) 2 3 ' WR ITE(6,15)G0,H0,G,H 15 FORMAT(1H,, 'GO=', F12.6, 5X, 'HO=', F12.6, 5X, 'G=', F12.6, 5X, 'H=', 4 1F12.6) С 5 100 READ(5,20)T.P 20 FORMAT(F12.6,F12.6) 6 С 7 T1=1.0 8 T2=0.0 9 T3=0.0 T4=0.0 10 С 11 H1=0.0 H2=H 12 С CT = COS(T)13 ST=SIN(T) 14 С 15 CT1 = -ST \* T1ST1=CT\*T1 16 С 17 CT2=-ST1\*T1-ST\*T2 ST2=CT1\*T1+CT\*T2 18 С CT3=-ST2\*T1-2.0\*ST1\*T2-ST\*T3 19 ST3=CT2\*T1+2.0\*CT1\*T2+CT\*T3 20 С CT4=-ST3\*T1-3.0\*ST2\*T2-3.0\*ST1\*T3-ST\*T4 21 ST4=CT3\*T1+3.0\*CT2\*T2+3.0\*CT1\*T3+CT\*T4 22 С 23 ∧=G\*CT  $A1 = G \times CT1$ 24 25 A2=G\*CT2 43=G\*CT3 26 A4=G\*CT4 27

С

| 28  |     | B=G*ST                                               |
|-----|-----|------------------------------------------------------|
|     |     |                                                      |
| 29  |     |                                                      |
| 30  |     | B2 = G * ST2                                         |
| 31  |     | B3=G*ST3                                             |
| 32  |     | B4=G*ST4                                             |
|     | С   | •                                                    |
| 33  |     | C=G0                                                 |
| 34  |     | C1=0.0                                               |
| 35  |     | C2=0.0                                               |
| 36  |     | C3=0.0                                               |
| 37  |     | C4=0.0                                               |
| 2.  | С   |                                                      |
| 38  | v   | CP=COS(P)                                            |
| 39  |     | SP=SIN(P)                                            |
| 57  | с   | SF-SIN(F)                                            |
| 40  | C   | D=H*CP+1.0                                           |
| 41  |     |                                                      |
|     |     | E=HO                                                 |
| 42  |     | F=H2*SP                                              |
|     | С   |                                                      |
| 43  |     | U=A-D                                                |
| 44  |     | V=B-E                                                |
| 45  |     | W=C-F                                                |
|     | С   |                                                      |
| 46  |     | R1=-H*U*SP+(H1*V+H2*W)*CP                            |
| 47  |     | S1=U*A1+V*B1+W*C1                                    |
| 48  |     | P1=S1/R1                                             |
|     | С   |                                                      |
| 49  | •   | CP1=-SP*P1                                           |
| 50  |     | SP1=CP*P1                                            |
| 20  | С   | 511-01-11                                            |
| 51  | C   | D1 = H * C P 1                                       |
| 52  |     | E1=H1*SP1                                            |
| 53  |     | F1=H2*SP1                                            |
| 55  | С   | F1-72m3F1                                            |
| 54  | C   | U1 = A1 - D1                                         |
|     |     |                                                      |
| 55  |     | VI=BI-EI                                             |
| 56  | ~   | W1=C1-F1                                             |
|     | C   |                                                      |
| 57  |     | S2=U1*A1+U*A2+V1*B1+V*B2+W1*C1+W*C2                  |
| 58  |     | R2=-H*(U1*SP+U*SP1)+(H1*V1+H2*W1)*CP+(H1*V+H2*W)*CP1 |
| 59  |     | P2=(S2-P1*R2)/R1                                     |
|     | C   |                                                      |
| 60  |     | CP2=-SP1*P1-SP*P2                                    |
| 61  |     | SP2=CP1*P1+CP*P2                                     |
|     | С   | •                                                    |
| 62  |     | D2=H*CP2                                             |
| 63  |     | E2=H1*SP2                                            |
| 64  |     | F2=H2*SP2                                            |
|     | С   |                                                      |
| 65  |     | U2=A2-D2                                             |
| 66  |     | V2 = B2 - E2                                         |
| 67  |     | W2=C2-F2                                             |
| 01  | с   |                                                      |
| 68  | U U | S3=U2*A1+2.0*U1*A2+U*A3+V2*B1+2.0*V1*B2+             |
| 00  |     |                                                      |
| (0  |     | 1V*B3+W2*C1+2.0*W1*C2+W*C3                           |
| 69  |     | R3=-H*(U2*SP+2.0*U1*SP1+U*SP2)+(H1*V2+H2*W2)*CP+     |
| 7.0 |     | 12.0*(H1*V1+H2*W1)*CP1+(H1*V+H2*W)*CP2               |
| 70  |     | P3=(S3-2.0*P2*R2-P1*R3)/R1                           |
|     | С   |                                                      |
| 71  |     | CP3=-SP2*P1-2.0*SP1*P2-SP*P3                         |
|     |     |                                                      |

|          |          |                |           |                      |             |               |               |         | •             |     |
|----------|----------|----------------|-----------|----------------------|-------------|---------------|---------------|---------|---------------|-----|
| 72       | _        | SP3=0          | CP2*P1    | +2.0*CP1             | *P2+C       | <b>₽</b> *₽3  |               |         |               |     |
| -        | С        | <b>D</b> 2     |           |                      |             |               |               |         |               |     |
| 73       |          | D3=H*          |           |                      |             |               |               |         |               |     |
| 74       |          | E3=H1          |           |                      |             |               | ÷ .           |         |               |     |
| 75       | с        | F3=H2          | 2*3P3     |                      |             |               |               |         |               |     |
| -        | L        |                |           |                      | •           |               |               |         |               |     |
| 76       |          | U3=A3          |           |                      |             |               |               |         |               |     |
| 77<br>78 |          | V3=B3<br>W3=C3 |           |                      |             |               |               |         |               |     |
| 10       | С        | W3=C3          | 5-1-2     |                      |             |               |               | ,       |               |     |
| 79       | C        | \$4-113        | *****     | 0+112+12             | 12 0 *1     | 11 * 4 2 + 1  | 1*A4+V3*B1+3  | 0+12+0  | 7+            |     |
| 13       |          |                |           |                      |             |               | +3.0*W1*C3+   |         | 2+            |     |
| 80       |          |                |           |                      |             |               | *SP2+U*SP3)   |         |               |     |
| 80       |          |                |           |                      |             |               | ****2)*CP1+   | •       |               |     |
|          |          |                |           |                      |             |               | *W)*CP3       |         |               |     |
| 81       |          |                |           | *P3*R2-3             |             |               |               |         |               |     |
| 91       | <u>د</u> | P4=13          | 54-5.0    | *P3*K2=3             | • 0* P 2    | *K3-P14       | K417K1        |         |               |     |
| 0.2      | С        | AN1 1 - 1      |           |                      |             |               |               | •       |               |     |
| 82       |          |                | 21/TL.    |                      | T 1 + + 7   |               |               |         | •             |     |
| 83       |          |                |           | -P1*T2)/             |             | A+1024        | T1 D1+T31+T   |         | F             |     |
| 84       |          |                | •••       | 1-P1*131<br>1+P3*T2- |             |               | T1-P1*T2)*T   | 21/11++ | · <b>&gt;</b> |     |
| 85       |          |                | ••••      |                      |             |               |               |         |               |     |
|          |          |                |           | 2-3.0*T3             |             |               | 1-P1*T2)*     |         |               |     |
|          | с        | 2115.0         | J~1 Z **. | 2-3.0413             |             | / 1 1 ** 1    |               |         | · .           |     |
| 86       | C        | TD-T           | 100 O     | /3.14159             |             |               | · ·           |         |               |     |
| 87       |          |                |           | /3.14159             |             |               |               |         |               |     |
| 01       | С        | PU-P*          | -100-0    | / 5 • 1 + 1 5 9      |             |               |               |         |               |     |
| 88       | C        |                | -16 30    | A.B.C.D              |             |               |               |         |               |     |
| 89       | 20       |                |           |                      |             | 57 10-1       | ,F12.6,5X,    | C-1 E12 | 6 / 5V        |     |
| 09       | 50       |                |           |                      |             |               | =',F12.6//)   |         |               |     |
|          | с        | 1.0-0          | F12.0     | , JA, - E            | + - 1 2 • 0 | 0, 5, , , ,   | - 12.0///     |         |               |     |
| 90       | C        |                | -16 25    | ) TD. PD. T          |             |               | · ·           |         |               |     |
| 90       | , 25     |                |           |                      | •           | . 5Y . 100    | -1. 512. 6.54 |         | 12.6.5X. P=   | • . |
| 91       |          | 11F12          |           |                      | 12.0        | 1 2 1 1 2 1 2 | - 112.0,0,0   |         | 12.01011      | •   |
|          | Ċ        | 110120         |           |                      |             |               |               |         | •             |     |
| 92       | C        | WRITE          | =16.90    | ANI.AN               | 12. AN3     | - ANA         |               |         |               |     |
| 93       | 90       |                |           |                      |             |               | N2=',E12.4,   | 5X AN3  | = F12.4.      |     |
| 12       |          |                |           | E12.4//)             |             |               |               | 201 403 | /             |     |
|          | С        |                |           |                      |             |               |               |         |               |     |
| 94       |          | STOP           |           |                      |             |               |               |         |               |     |
| 95       | 200      | END            |           |                      |             |               |               |         |               |     |
| ,,,      |          | C.10           |           |                      |             |               |               |         |               |     |
|          | \$ENTR   | v              |           |                      |             |               |               |         |               |     |
| :        | 1.50000  |                | H0=       | -0.5558              | 26          | G=            | 0.428631      | H=      | 0.187476      |     |
|          |          |                |           |                      |             |               | 53 120031     |         |               |     |
|          |          |                |           |                      |             |               |               |         |               |     |
| Δ=       | 0.15     | 4027           | 8=        | -0.40                | 0000        | C =           | 1.500000      |         |               |     |
| D=       |          | 6007           | E=        |                      |             | F=            | -0.023423     |         |               |     |
| 0.5      |          |                | -         |                      |             |               |               |         |               |     |

| TD= | -68.939940 | PD= | -7.177278 | T = | -1.203228 | P≠ | -0.125267 |
|-----|------------|-----|-----------|-----|-----------|----|-----------|
|     |            |     |           |     |           |    |           |

AN1= -0.1500E 01 AN2= 0.6117E-04 AN3= 0.2024E-03 AN4= 0.1325E-02

 $\overline{a}$ 

#### B. T. Devanathan

#### Candidate for the Degree of

Master of Science

Thesis: SYNTHESIS OF AN R.S.S.R MECHANISM FOR FUNCTION GENERATION AND FOR REPLACING HYPOID GEARS USING HIGHER ORDER SPACE PATH CURVATURE THEORY

Major Field: Mechanical Engineering

Biographical:

- Personal Data: Born in Madras State, India, February 10, 1931, the son of Sri. T. Thiruvenkatachary and Smti. Kalyani Ammal.
- Education: Obtained the Licientiate in Mechanical and Electrical Engineering (L.M.E.E.) in May, 1953, from the Government Technical College, Hyderabad, India; privately studied and passed the sections A and B examinations of the Institute of Engineers, India, in May, 1956; completed requirements for the Master of Science degree at Oklahoma State University in May, 1979.
- Professional Experience: Commenced my career as a maintenance engineer with Messers Sirsilk Ltd., Sirpur-Kaghaznagar, October 1, 1954; joined the reputed organization of Tata Chemicals Ltd., Mithapur-Gujarat State, India, in January, 1956; presently designated as senior maintenance superintendent; possess a total of 24 years of experience in the field of maintenance of mechanical equipment in the chemical industry.
- Professional Organizations: Member of the Institution of Engineers, India (M.I.E.); designated as chartered engineer of the above institution; represent Tata Chemicals Ltd. as an alternate member in the pressure vessels committee and the pumps committee of the Indian Standards Institution.