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CHAPTER I 

INTRODUCTION 

During the hot months of summer, thermal stratification may occur 

in water reservoirs. This presents a serious problem for quality of 

water released from reservoirs with low-level release structures. The 

reservoir stratifies into three main regions of different densities. 

The epilimnion, the top layer, contains warm-low density water (usu­

ally rich in oxygen and thus considered as a high-quality water). The 

hypolimnion, the bottom layer, consists of cold high-density water (poor 

in oxygen and thus considered as a low-quality water). The region of 

rapid temperature change (between the other two layers) is called the 

thermocline or metalimnion. Many of the old reservoirs have the re­

lease structure located near the bottom, and in this case the quality 

of water downstream of the impoundment is poor. 

In spring the reservoir temperature is approximately uniform where 

there is no significant density gradient in the vertical direction. As 

the season progresses, the upper layer in the lake warms faster than the 

lower layer, creating a positive density gradient in the downward direc­

tion. The bottom layer will be at lower temperature due to low thermal 

conductivity of water and when the densitv gradient has a significant 

value across the top and bottom layers, the lake is said to be strati­

fied. 

1 
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The epilimnion water is rich in oxygen because of the atmosphere re­

aeration and photosynthesis. The lack of oxygen in the hypolimnion is 

referred to the lack of mixing with the epilimnion as a result of the 

density gradient. The low oxygen content is a characteri.stic of poor 

water quality. 

Background 

Artificial destratification, localized mixing, and modifications of 

the release structures of the dam can be used to improve the released 

water quality. Artificial destratification can be either mechanical 

pumping (wich assorted piping) or diffused air pumping. These mixing de­

vices (1), however, require a substantial amount of energy to destratify 

a large body of water. Localized mixing is proven to be effective and 

economical to enhance the quality of water released from low-level re­

lease gates. Structural modification of the dam involves elevating of 

the release gate position in order to allow a release water made of the 

epilimnion. This method is effective for quality improvement; however, 

it is extremely costly. There has been a continued interest in local 

(mechanical) destratification of reservoirs to improve water quality. 

Garton (2) (3) has used a low-energy axial flow propeller pump to local­

ly mix reservoirs near the release structure of the dam. The Garton 

pump has been used in Lake Okatibbee, Mississippi (3) (4), and at Pine 

Creek Reservoir, Oklahoma (2). 

Local mixing improves the release water quality by inducing a jet 

of epilimnion water down to the release structure to dilute the hypo­

limnion water being released. The propeller used in References (2) and 

(3) was a 72-inch Acme Windmaster fan. This propeller pump is capable 
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of producing 1.8 m3/sec at 19.l rpm. Dortch and Wilhe~ms .(4) performed 

a local destratification test at Lake Okattibbee (using the same propel­

ler) and concluded that it caused a significant change in the quality of 

low-flow releases. 

Hydraulic Modeling 

Hydraulic modeling of the mechanical destratification by a propel­

ler pump has been the main interest of hydraulic researchers at Oklahoma 

State University. Moretti and McLaughlin (5) have modeled the fluid 

dynamics of destratification using the Garton pump in a vertically dis­

torted model of Ham's Lake constructed by Gibson (6). Using the model, 

Gibson (6) and Sharabianlou (7) concluded that prototype simulation by 

hydraulic modeling was successful when the Richardson number (or the re­

lated densimetric Froude number) and a nondimensional time scale are 

used as the modeling parameters. Givens (8) performed a hydraulic model 

study of local destratification using a propeller pump (Garton type). 

He developed dimensionless parameters to indicate that the released water 

quality as well as the penetration depth using normalized initial condi­

tions for the propeller diameter, the relative magnitude of the propeller, 

the released flowrates, and the metalimnion location. Moon (9) performed 

a hydraulic model .study of the near flowfield induced by an axial-flow 

propeller pump used to enhance the quality of water being released from 

the hypolimnion by diluting the released water with higher quality epi­

limnion water. He concluded that the dilution factor, DF, and penetra­

tion depth are functions of the densimetric Froude number, the nondimen­

sional propeller diameter, the nondimensional propeller depth, the flow 

rate ratio of propeller flow rate and release flow rate, and the non­

dimensional metalimnion location. He successfully performed hydraulic 
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modeling of local destratification at Okattibee, ~1ississippi, using a 

scale model of the release structure in a laboratory. Buoyancy forces 

in reserviors are due to density gradients caused by temperature differ­

ence. Modeling thermal stratification is very difficult because of heat 

transfer and temperature controls required on the boundaries. The ther­

mal stratification can be modeled by dissolved salt provided that the 

two fluids (of the model and prototype) have similar thermal and mole­

cular diffusivity (10) or eddy-diffusivity. 

Previous Theoretical and Numerical Analysis 

There has been a continued interest in the theoretical analysis of 

a jet issuing into a density stratified environment. Baines (11) (12) 

studied the rate of entrainment through the end of a plume or jet which 

impinges on a density interface. He concluded that the entrainment flux 

into the plane must be a function of the local width, velocity, and buoy­

ancy difference. He combined them into a single parameter, the Froude 

number (densimetric), Frd. Ditmars (13) studied the use of a pumping 

system to mix density-stratified impoundment by means of a buoyant jet. 

He developed a one-dimensional simulation technique to predict the 

changes in the density structure of an impoundment caused by mixing 

using a pumping system. Abraham and Eysink (14) investigated the case 

of a jet issuing vertically upwards into fluid with a density gradient. 

They introduced a theoretical approach to determine the ceiling level 

of a jet under the above mentioned conditions. Huber, Harleman, and 

Ryan (15) developed a mathematical model to predict the vertical tempera­

ture distribution in stratified reservoirs. Their model includes the 

effect of distribution of heat within the reservoirs by advection and 



diffusion, heat source and sinks at boundaries, and internal absorption 

of solar radiation. Boulot and Daubert (16) developed a mathematical 

model of intrusion of salinity in stratified layers (salt wedge). The 

model deals with unsteady flows of two fluids with a small density dif-

ference. The model has been used to calculate the salt wedge in the 

grand Rhone, France. Comparisons of the results with measurements show 

the position of the salt wedge and its movement under the effect of 

tide. Difficulties of calibration and impossibility of getting data 

for a stationary salt wedge were reported. 

Outline of the Thesis 

5 

This thesis presents work in the primitive-variable finite differ­

ence solution procedure for two-dimensional axisymmetric transient 

flows, with a primary interest in the steady state solution. Based on 

the Los Alamos SOLA (17) technique, the present work extends this to in­

clude the computation of mass diffusion and buoyancy forces. Complexi­

ties can be added as needed such as a non-uniform grid, turbulence, 

swirl, or a semi-implicit method for each time step (18). Predictions 

of the near flow field of a jet induced by an axial-flow propeller pump 

into a stratified environment are given in Chapter IV showing good 

agreement with the experimental data. This shows that a useful and 

valuable tool is now available to show the influence of design para­

meters on flowfield mixing. 
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CHAPTER II 

THEORETICAL MODEL 

The modeling and prediction technique presented in this work is' the 

development of a primitive-variable finite difference procedure for two-

dimensional axisymmetric flow to represent flows of stratified fluids. 

The technique is based on the Marker and Cell (MAC) methodinthe form of 

the SOLA algorithm (17). The computational code using an Eulerian finite 

difference formulation solves directly for the primitive pressure and 

velocity variables. In addition, the velocity components are positioned 

between nodes where pressure and other variables are stored. At each 

time step the time advanced values of U,V are substituted in the continu-

ity equation and then the pressure and velocity are corrected through an 

iterative process until the continuity equation is satisfied. 

The Governing Equations 

For incompressible stratified fluid flow the partial differential 

equations in cylindrical (axisymmetric) coordinates of conservation of 

mass (continuity equation), momentum, and mass diffusion may be taken in 

conservative form as (18) 

au av u 
+-+-=O 

dX Cly X 

au a 2 
-- + (U ) 
tlt dX 

a u2 
+ (UV) + 

3y x 

6 



where 

1 
+ 

x 

3V 3 -+ 
ax at 

3U 
3x 

(VU) 

J:!....) + g 
2 x 

x 

3 (V2) +-
Cly 

2 
a2v + ...H_ <a v + --+ 

2 3y2 pl 

m + m = 1 
1 2 

ax 

x = radial coordinates; 

y = axial coordinates; 

UV -1 3P 
+ --+ 

x pl Cly 

l av) 
x 3x 

p - p 

CJY 
( 

pl 
1) 

1 3ml 
--] 
x ax 

(1) 

U,V =velocity components in x (= r) and y direction (ft/sec); 

m1 ,m2 = mass fractions of two different density fluids, of densi-

ties p1 and p2 (p 1 < p2); 

2 
µ absolute viscosity (lbm-sec/ft ); 

·a Schmidt number; 
SC 

p,p 1 =weighted average density and the reference density 

3 (slugs/ft ) ; 

g gravitational acceleration 

. 2 
(ft/sec); and 

(g I g ) 
x y 

P = deviation from hydrostatic pressure. 

(0, -32.2) 
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Notice that the actual pressure P which is a function of depth and fluid 

motion has been replaced by two separate terms: 



p = p - g ph 
y 

-g p h = hydrostatic pressure 
y 1 

where h is the depth below the surface and P is the deviation from the 

hydrostatic pressure. This simplifies the righthand side of the y-equa-

tion when both the pressure and buoyancy are small and this, among other 

things, reduces numerical error (see Appendix D). 

The diffusion equation is used to calculate the mass fraction m1 

and m2 and using this one can calculate the weighted average density and 

the release water quality (dilution factor). 

The Flow Domain and Grid System 

The flow domain shown in Figure 1 represents the physical problem 

and it has a vertical axis of symmetry provided with a downward flowing 

jet of fluid from the rotor disk (propeller). A vector velocity plot, 

in Figure 3, shows the flow field velocity in a typical computation 

cycle at t 0.56 second to further illustrate the problem. Initially, 

two fluids occupy positions above and below the interface as shown, so 

that their mass fractions are m1 = 1 and m2 = 0 (for h > h 1 , the height 

of the interface) and vice versa. The release gate of the dam is repre-

sented in Figure 4 by a circular opening in the bottom of the flowfield 

under the propeller. This may not represent exactly the release gate in 

the dam because of some structural details where the position of the re-

8 

lease gate is on one side of the propeller and this cannot be represented 

in an axisymmetric flowfield. However, this representation will be 

fairly acceptable to represent the amount of release water, the position 

of the gate (roughly), and to calculate the release water quality 
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(dilution factor) • The available volume of the flow domain is very 

limited and so as to allow the outlet of release water without drama­

tically decreasing the fluid level, there is an equal amount of input 

fluid shared between the top and bottom layers in amounts equal to the 

epilimnion and hypolimnion water released. The feeding is at two dif­

ferent locations in such a way that the epilimnion water is feeding 

through a circumferential opening into the upper layer and does not dis­

turb the density profile. Also, the large circumferential opening allows 

the feeding to be at low velocity in order to cause no disturbance to the 

flow field. As with the epilimnion, hypolimnion water is fed into the 

bottom layer, as shown in Figure 4 which represents the mesh arrangement. 

This feeding allows the fluid to maintain its level, thus simulating 

an infinite width or volume of water (as in the case of big lakes). The 

general mesh arrangement is shown in Figure 4 where the cylindrical 

region is divided into equal sized rectangular cell divisions with a 

width of 6x and height 6y. The mesh region containing fluid consists of 

IBAR cells in the x-direction which has the index i, and JBAR cells in 

they-direction with the index j. The flow domain is surrounded by a 

sing!& layer of fictitious cells on all sides to allow simulation of the 

required boundary conditions. These fictitious cells increase the total 

number of cells so that IMAX = IBAR + 2 and JMAX = JBAR + 2. A single 

cell is shown in Figure 2; the pressure and mass fractions m1 ,m2 are 

located at the cell center, and the radial and axial velocities on the 

right and top boundaries, respectively. Thus (see Figure 4), the normal 

velocities lie on the physical boundaries of the flow domain while the 

pressure and mass fractions are displaced half a cell interval inside 

the flow field boundary. 
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Boundary Conditions 

The finite difference form of the governing equation (to be pre-

sented in Chapter III) are solved by a time-march procedure applied to 

the flow domain cells. Boundary conditions are imposed on the ficti-

tious cells surrounding the mesh by setting appropriate velocity values 

in these cells. 

The right boundary is a no-slip rigid wall with U = V = 0 on the 

boundary. Because of the locations of these variables, this is imposed 

via: 

v 
IMAX,J 

0 

-VIMl,J 

where IMl = IMAX-1 and JMl = JMAX-1. 

(for all J) 

The lefthand boundary is the axis of symmetry with free slip condi-

tions and in this case the normal (radial) velocity U will be zero and 

tangential velocity V will have a zero normal gradient with ~~ = 0. Thus 

u 0 
l,J 

(for all J) 
V =V 
l,J 2,J 

Free-slip conditions are taken also at the top boundary (along the free 

au 
surface) with V = 0 and ay = O; no-slip conditions are taken at the bot-

tom boundary where both U and V will be zero. The mass fraction boundary 

condition will have a zero normal gradient at all the boundaries. The 

boundary conditions are imposed on the velocities after each time step 

and after each sweep of the mesh during the pressure iteration (see Chap-

ter IV). This includes the specification of known inlet and outlet 
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normal velocities. The propeller or the rotor disk has specified down-

ward velocity values imposed at its location. The outlet flow (through 

the release gate) velocity is specified from the nondirnensional flow 

Propeller flow rate 
rate ratio Q* = Release flow rate , since the propeller flow rate is 

specified. The inlet flow into the domain of interest is meant to allow 

re-entry of the released water in order to maintain the fluid level con-

stant. Inlet flow velocities are specified so that the total mass of 

water inside the flow domain is constant. The inlet mass flow rate of 

epilimnion water is equal to its fraction of the release water multiplied 

by the release water mass flow rate. It is similar for the re-entry of 

hypolimnion water. The calculation is shown in detail in Chapter IV and 

the resulting velocities are imposed as boundary conditions for the next 

time-step. 



CHAPTER III 

SOLUTION PROCEDURE 

The steps for one calculation cycle can be summarized in three 

steps: 

1. Computing the velocity guesses for all the cells. 

2. Adjusting the velocities and pressure iteratively to satisfy 

the continuity equation by making appropriate changes in the cell pres-

sure until velocity divergence becomes zero. 

3. When the convergence is achieved, the pressure and velocity 

values will be at the advanced time level and can be used to start cal-

culation for the next time step. 

The Finite Difference Equations 

The finite difference technique used for the governing equation is 

based on the Marker and Cell (MAC) method (17), using the estimates of 

one-sided first derivatives, centered first derivatives, and centered 

second derivatives in representing the governing equations in the finite 

difference form. Subscripts n and (blank) are used to indicate t and 

t + lit time level, respectively. Most MAC reports use a fraction index 

for velocities located at the cell edges like U. I to represent the 
i.+l 2 

radial velocity at the righthand face of the cell (I,J). In FORTRAN 

language fractional indexes are not allowed; therefore, the index of the 

cell will be used for all the variables located in edges or center of 

12 
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the cell. In the equation the time derivatives are approximated by a 

one-sided derivative. Spatial derivatives are approximated by central 

differences using t-time level values. In representing the convection 

terms, the upstream differencing is required. The equation is now set 

for one forward time-step starting with initial values and boundary con-

ditions through the mesh. A time-march process is then used to advance 

the computation to a steady-state final solution. 

u .. 
l,J 

u~ . + t:.t {;x (P~ . - p~+· .) + g - FUX - FUY 
l,J Ll l,J l l,J x 

- PUC + VISX} 

V == ,,n + bt {J:_ (Pn Pn ) + g - FVX - FVY 
i,j "i,j t:.y i,j - i,j+l y 

s .. 
l,J 

- FVC + VISY} 

S~ . + bt {- FMX - FMY - FMC + VIMX} 
l,J 

(2) 

where S .. is the symbol used for mass fraction m1 in the computer pro-
1,J 

gram. The four terms on the righthand side of each equation, FUX, FUY, 

etc., are shown in Appendix B. The coefficient a in these terms (see 

Appendix B) is a constant .that gives the desired amount of upstream 

(donor cell) differencing in the convective terms. It takes a value be-

tween 0.0 and 1.0, a value of zero changes the difference equations to 

the original MAC formulation (centered in space), but in this case in-

stability problems arise. When a equals unity, this gives the full up-

stream or donor cell form which is stable (although introducing trunca-

tion or discretization errors) provided that the fluid is not .allowed 

to cross more than one cell in one time step. 

The new calculated velocities using conservation of momentum 

(Navier-Stokes equations) will not, in general, satisfy the continuity 
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equation. Expressed in the finite difference form, the continuty equa-

tion is: 

1 1 
A (U. . - u. 1 . ) + h (V. . - v. . 1) DX l,J i- ,] DY l,J l,J-

1 
+ 2l\x (i - 1.5) (U. . - U. l . ) l,J 1- ,J 

Iterative Procedure 

0 (3) 

The incompressibility condition is imposed by iteratively adjusting 

the cell pressure. If the divergence D of a cell (the lefthand side of 

the continuity equation) is positive, this corresponds to a net mass out-

flow from the cell, so the pressure is decreased to draw it back. If the 

divergence is negative, then there is a net flow of mass into the cell, 

so the cell pressure is increased to eliminate the flow. In this way the 

divergence of each cell can be driven to zero by adjusting the pressure 

iteratively, and this is done by sweeping the mesh rows from left to right 

starting with the bottom row. Terms in the equation are evaluated at a 

time-level t +lit. The pressure change lip used to drive the divergence D 

to zero is: 

l\p 
2 2 

-D/[2 lit (l/llx + l/lly )] (4) 

The new cell pressure p + l\p is obtained by adjusting the velocity compo-

nent on the four faces of the cell; this adjustment given by a linear 

analysis is: 

U. . U. . + lit llp/llx 
l.,J l,J 

U. 1 . = U. 1 . - lit llp/l\x 
l- I J l- t J 

v .. 
l, J 

v .. + lit l\p/lly 
l, J 

(5) 
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v. . 1 = v. . 1 - /::,,t /::,,p//::,,y 
l,J- l,J-

Substitution of Equation (5) in the divergence Equation (3) and solving 

for ~p gives Equation (4). The convergence of the iterations is achieved 

when the D value of each cell is less than E; a prescribed small positive 

quantity in the order of 10-3 times the inlet mass flow rate can be ad-

justed to obtain higher accuracy. Convergence can be speeded up by mul-

tiplying Equation (4) by an over-relaxation factor w where 1 < w < 2. A 

value of 1. 8 is often optimum in typical 15 x 15 grid sizes. 

Imposition of Boundary Conditions 

Boundary conditions are imposed on the velocities and mass fractions 

after each time step and after each pass through the mesh during pressure 

iterations. Calculations of the inlet velocities, weighted average den-

sity, and dilution factors are done each time step starting with calcula-

tion of the propeller flow rate. 

v 
p 

2 
1T r 

where r = ~x from Figure 4. The nondimensional flow rate, Q*, is the 

ratio between propeller flow rate and release flow rate, Q 1 : 
re 

and the release water velocity will be 

where 

v rel 
2 

Q l/TIR re 
2 = Q 1/n(2~x) re 

R 2~x (from Figure 4) 

= (IREL - 1) ~x 
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Then the epilirnnion and hypolirnnion inlet flow rates w111 be calcu-

lated using release water velocity and mass fractions. The released 

epilirnnion water flow rate will be 

where 

i 

l Mli (TIR~ 
i=l 

2 
A. TIR, l 

l i-

and the released hypolirnnion flow rate is 

where Mli is the mass fraction of the epilimnion water and M2i is the 

mass fraction of the hypolimnion water. Then the input velocity for epi-

limnion (feeding in the top layer) is: 

U = Q /2TI(IBAR)Ax (h)Ay 
Te e 

and for hypolirnnion (feeding in the bottom layer) is: 

where (IBAR)Ax is the radius of the flow field and (h)Ay is the inlet 

flow circumferential opening height; it is the same for the top and bot-

torn inlet openings. 

Then the release water density is calculated using Qe and Qh: 

Then the dilution factor can be easily calculated as follows: 
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DF = = 

· The dilution factor represents the percentage of epilimnion water in 

the release water; in other words, it represents the release water qual-

ity. The dilution factor, DF, has a maximum value of 1.0 when the re-

lease water consists of epilimnion, i.e., P 1 = P • re e 
The minimum value 

· for DF is zero, and this means the release water is made up of hypolim-

nion water, i.e., prel =Ph· 

Convergence and Stability 

Convergence of the finite difference equations to the steady-state 

solution is established by taking many forward time steps. It has been 

found that the solution comes.to a steady state condition after about 

300 time steps which are equal to a nondimensional time t* = t/t of 6.6, 
c 

where t 
c 

= volume under the propeller 
propeller flow rate 

The choice of time increment 

must be restricted (for stability) in two ways. First, fluid should not 

pass through more than one cell in one time step. So bt must be less 

than (usually 0.25 to 0.33 times) the minimum cell transit time taken 

over all cells. 

bt < min { lb;I , l~I } 

When a nonzero value of kinematic viscosity is used, the momentum should 

not diffuse more than one cell in one time step; a linear stability ana-

lysis shows 

1 bx2 by2 
Vbt < 2 2 2 

bx + by 
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When the time increment ~t satisfies the above two conditions, then the 

upstream (donor cell) differencing can be achieved by choosing a. larger 

than (1.2 to 1.5 times) the righthand side of the inequality: 

l > o; > max 

The maximum value of o; is 1.0. This will provide stability at the ex-

pense of introducing diffusion-like truncation errors. Figure 5 shows 

the effect of variation of o; on calculated mass fractionm1 at some loca-

tions in the flow field. A value of o; = 0.6 is being used in this pro-

gram. Initial velocity and field velocity do not satisfy the continuity 

equation during the first time step. If these velocity values are used 

immediately in the diffusion equation, gross errors will occur in the 

computed m1 , mass fractions values, and hence concentration values. 

These obvious errors may be reduced by shortening the time step and/or 

not allowing computation of m1 , until the first short time step has been 

accomplished and new velocities (which do satisfy the continuity require-

ment) have been found. The latter approach was found to be more accurate 

and it has been used. 

During computations the axisymmetric cylindrical· finite difference 

form of the mass diffusion equation exhibited an unstable behavior, and 

the calculated values of the mass fraction m1 far exceeded the value of 

1.0 (which is the maximum possible value for the mass fraction m1 or m2); 

furthermore, this m1 computation diverged. 

In spite of the axisymmetric cylindrical finite difference form of 

the mass diffusion equation, the two-dimensional version was stable and 

the m1 computation did converge. This indicated that the source of 

errors was additional terms occurring in the axisymmetric cylindrical 
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polar form of the equations. Thus the new terms of the equation (in con-

servative form) were examined. It was noticed that errors occurred when 

Using an upwind (donor cell) (19) difference form for the cylindrical 

term um1/x. NormaHy this aids stability at the expense of a slight in-

accuracy. However, stability was no problem in this case and so the cen-

tered difference form was used for this particular term. The computation 

was stable and converged. 

Accuracy 

Accuracy is established by using small space and time intervals. 

Choice of the interval size will depend on the expense of computer time. 

However, the mesh increments must be chosen small enough to resolve the 

expected spatial variations in all dependent variables taking into con-

sideration, of course, computing time and memory requirement limitation. 

The main dynamic effect of the flow field is simulated; however, 

the effect of turbulence should be inspected for any significant changes 

it may have on the flow field. In order to do that, an algebraic turbu-

lent viscosity model is considered to calculate the order of magnitude 

of the eddy (turbulent) viscosity; the Prandtl's mixing-length model 

= i2 I au I 
P m Cly 

where .Q, is the mixing length. The mixing length, £ , for a round jet 
m m 

in a_stagnant surrounding (20) is 

.Q, 0.075 0 
m 

where o is the jet half width. 
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So the turbulent viscosity for the hydraulic model using its data 

and dimensions (which is the same for the computer model) at a point 

under the propeller which is chosen to give the maximum eddy viscosity 

value will be: 

62.4 2 I o.7 I -3 = 32.2 (0.1875 x 0.075) 0.1875 = 1.43 x 10 

The laminar dynamic viscosity used was µ , 
-5 

= 2.73 x 10 and so the ratio 

between µt and µ will be 

which is very small to cause a significant difference in the solution. 

This value for eddy viscosity was tested by using it throughout the 

entire flow field instead of the laminar viscosity, and a difference of 

(5 percent less than experimental and predicted results) was noticed. 

The case tested was for Frd = 1.86, Q* = 0.44, and D* = 0.211. The ratio 

was increased to 100 and the difference was about 7.5 percent less. Com-

pared to an experimental data uncertainty of 15 percent, the turbulence 

model effect looks so small that we can use the present model (which 

models the dynamic effect and not the turbulence effect) effectively to 

predict the flow field. Another important thing is that the present pro-

cess is different from the lake mixing, where the goal is to mix the 

whole lake with no release water. In this case the turbulence effect is 

more effective than the case ror local destratification with release 

water outflow where released water will reduce the mixing effect. 

The propeller used in the hydraulic model is an axial-flow propel-

ler. The jet is considered axial and circular although it may have some 



nonuniform swirl. The computer model considering an axial circular jet 

in the computations gave good predictions compared to the experimental 

results. This is an indication to the weak effect of swirl. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The results presented and discussed in this chapter refer to com-

puter predictions made for low speed laminar nonswirling stratified 

flows in an axisymmetric simulation. Predictions were made for the 

effect of time, densimetric Froude number Frd, flow rate ratio Q*, nor-

malized diameter D*, and the metalimnion location Z*, on the dilution 
T 

factor, DF. Also, the effect of densimetric Froude number on penetra-

tion depth Z* is presented. All experimental data used for comparison 
p 

purposes are from a previous study (9) , except for Figure 28 which was 

performed during this study. 

Dilution Factor as a Function of Time 

The time required for the density of the release water to change 

(from the hypoliminion density value) is in the order of nondimensional 

time t* = 1. This means that the jet penetrated as far as the release 

gate during this time period. Also in this period of time the dilution 

factor increases from zero to a maximum value and then levels off to a 

steady state constant value, as shown in Figure 6. The t* value requir-

ed for the jet to penetrate to the bottom is a storing function of Frd. 

It can be seen from the figure that the time required for the dilution 

factor to reach steady state is t* = 4.88 (for a densimetric Froude num-

ber of 1.58). This is different for other values of Froude number. 

22 



23 

Dilution Factor as a Function of Frd 

The dilution factor is an indicator of the release water quality; it 

represents the percentage of epilimnion in the release water. The dilu-

tion factor is a function of several parameters, namely, the densimetric 

Froude number Frd, the normalized propeller diameter D*, the flow rate 

ratio Q*, the nondimensional metalimnion depth Z~, and penetration depth 

Z*. Figures 7 through 18 show the dilution factor as a function of den­
p 

sirnetric Froude number for different values of Q* and D*, and show the 

prediction along with the experimental data of the hydraulic model of the 

flow field. Figures 7 through 9 show the dilution factor for D* = 0.211 

and different values of Q*. In Figure 7, where Q* = 0.44, the prediction 

shows a good agreement with the experimental data, where the dilution 

factor drops to zero at Frd = 0.75 for both models. However, the maximum 

value of the dilution factor predicted is lower than the experimental 

data (6 percent lower). 

Figure 8, for Q* = 2.50, shows a good agreement with experimental 

data, where the maximum value of the dilution factor predicted is equal 

to the experimental value. Dilution factor drops to zero at Frd = 0.925 

for both computer and hydraulic models. However, at Frd = 1.12, the 

predicted value of DF shows a higher value than the experimental data. 

This can be explained by the different position of the release gate in 

the computer model (see Chapter II). Figure 9, for Q* = 0.17 (high re-

lease flow rates), shows a very close low value of DF for all values of 

Froude number. Prediction shows almost the same values as the experi-

mental data, except they are increasing with Froude number while experi-

mental values are decreasing. This is perfectly acceptable where we 
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expect the dilution factor to increase with Frd. Figures 10 through 13 

show the dilution factor for D* = 0.183 and different values of Q*. In 

Figure 10, for Q* = 0.75, predictions agree with experimental data very 

well above Frd 1.25; meanwhile below this value, a slight difference 

of about 4 to 12 percent higher than experimental values was noticed. 

The value of Frd, where DF drops to zero, is lower than experimental 

values (5 percent lower). The same general good agreement is displayed 

by Fi~ure 11 for Q* = 0.20, although at Frd = 1.40 the experimental 

value of DF is slightly higher than predictions. 

The predictions in Figure 12, for Q* = 0.30, are lower than the 

experimental data of the hydraulic model at Frd = 1.40 and 2.10. This 

can be explained by the position of the release gate which is right 

under the jet, and because of the high release water flow rate compared 

to the propeller flow rate. This extracts much of the hypolimnion (bot­

tom water) through the annular opening (annular opening is used for D* 

= 0.183 and 0.131, in order to model the release gate area because of 

the limitation of the axisymmetric model) which is different in the 

hydraulic model, where the release gate on the side of the jet can ex­

tract more of the epilimnion water than the annular lower opening. 

When we have a low release water flow rate Q* = 2.50, this means 

that more mixing is taking place at the release gate which means a high 

value of dilution factor, and indeed we have a higher value of DF in 

Figure 13. In this case the prediction is higher because the low re­

lease flow rate allows the jet to flow away radially in all directions. 

This will enable the annular opening to have more epilimnion water than 

the release gate of the hydraulic model, which is on one side only. 
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Figures 14 through 16 represent the dilution factor as a function 

of Frd for D* = 0.131 and different values of Q*. Predictions in Figure 

14, for Q* 0.44, show a somewhat similar behavior to Figure 10 in 

which the Frd value, where DF drops to zero, is lower than the experi-

mental value; this can be referred to the position of the release gate 

as mentioned before. This effect of the position (at high release 

water,flow rate) gives an earlier start for the dilution at a lower 

Froude number than experimental data, but as Frd increases and reaches 

a constant value, the experiment gives a high dilution factor value 

(this was discussed previously in Figure 12). 

Figure 15, for Q* = 0.18, is very similar to Figure 12, and the 

discrepancy with the experimental data can be explained in the same way. 

As for Figure 16, for Q* = 2.60, it is somewhat similar to Figure 13, 

although discrepancies with experiments are greater at low Froude num­

ber. The diameter effect on the Frd value, when mixing starts and thus 

DF, can be observed from the formally discussed figures, where for D* 

0.211 DF starts at a Frd value of 0.80, for D* = 0.183 DF starts at a 

Frd value of 1.10, and for D* = 0.131 DF starts at Frd value of 1.50. 

Meanwhile, the prediction starting value of the dilution factor is at 

Frd between 0.80 and 1.00 for all diameters. This is because in the 

hydraulic model (with the release gate on one side) as the jet diameter 

decreases the distance between the jet boundary and the release gate 

increases, which delays the starting value of the dilution factor where 

in the computer model the gate is under the propeller. Thus, the pro­

peller's normalized diameter D* has no effect on the starting value of 

Frd when mixing takes place in the release water. 
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Figures 17 and 18 are for D* = 0.117, where Figure 18, for Q* = 

0.17, is very similar in behavior to Figures 11 and 12 and can be ex-

plained very much the same way as the two mentioned figures. 

Figure 17, for Q* = 0.43, has a great discrepancy with experimental 

data for all values of Froude number except at Frd = 2.10, where the two 

graphs coincide. The thing that prediction graph is similar in behavior 

to all other graphs predicted and experimental where it has a concave 

curvature (downward), while the experimental graph in Figure 17 is con-

cave upward and then downward after the inflection point at Frd 2.10. 

This favors the prediction graph from this point of view; however, ex-

periments give a higher value for DF (at Frd = 2.10 and higher). This 

can be explained the same way as in Figure 18. 

Dilution Factor as a Function of Q* 

The relationship between the dilution factor and the flow rate 

ratio Q* are represented in Figures 19 through 21. Figure 19 shows the 

dilution factor as a function of Q* for D* = 0.211 and Fr 
- d 

1. 00 and 

2.00. The dilution factor is strongly dependent upon Q* for Q* < 0.6 

where as Q* increases the release flow rate decreases. This means more 

mixing will be allowed to take place near the release gate (bottom) • 

Thus higher dilution factor predictions show good agreement with experi-

ments for Frd = 2.0, but for Frd = 1.0 the two graphs agree for Q* < 

0.9. Then the experimental graph starts dropping (this is explained in 

the discussion of Figures 8 and 13). 

Figure 20, for D* = 0.183, shows a greater discrepancy between pre-

diction and experiments, especially at Frd = 1.0 for Q* > 0.3; this is 

because of the diameter effect where mixing starts at higher Froude 
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number as D* decreases. This effect is not valid for the computer model, 

as discussed before in Figures 14 and 15. Figure 21, for D* = 0.131, is 

very similar in behavior to Figure 20, where the diameter effect (at 

higher values of Q*) is shown in this graph also aL Frd = 1.50 (higher 

than Frd for D* = 0.183) and this can be shown very clearly in Figure 

16. Predicted values of the dilution factor are higher than experi­

menta! values for high Q*; this is explained in the discussion of Figure 

13. Figure 21, for D* = 0.117, shows predictions for the dilution fac­

tor, and the behavior is somewhat similar to Figure 19. 

Dilution Factor as a Function of D* 

The normalized diameter D* effect on the dilution factor is shown 

in Figures 22 and 23 for Q* = 0.44 and 2.50, respectively. Figure 22, 

for Q* = 0.44, shows an agreement in behavior between predictions and 

experiments for Frd = 1.5 and 2.0. The low value of dilution factor at 

D* = 0.117 is referred to the diameter effect on Froude number value to 

begin mixing at the release gate which was discussed before. The figure 

further shows that for this value of Q* (0.44), a normalized diameter D* 

value of 0.131 gives the best results for experimental data and predic­

tions for a Froude number value of 2.0. 

The same value of D* of 0.131 still gives the best results (maximum 

dilution factor) for Q* 2.50 in Figure 23 for predictions, but for the 

experimental data it is entirely different. First, at Frd 1.50 the 

diameter effect on the starting value of Frd is very clear at D* = 0.131 

for the experimental graph, while the predictions are not affected by 

such an effect, as explained previously. Second, at Frd = 2.0 the ex­

perimental graph gives maximum dilution factor at D* = 0.211, where as 
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the diameter D* increases the momentum flux increases (for high propel-

ler flow rate or high Q*). The reason the prediction gives high values 

at D* = 0.131 and D* = 0.183 at this value of Q* is explained in the 

discussion of Figure 13. In addition, for D* = 0.117 and D* = 0.211 

the release gate was not annular because the hydraulic release structure 

was different from the structure for D* = 0.183 and 0.131, where the 

Cave ~un release structure was used for D* = 0. 211 and 0 .117; the 

Okattibbee release structure was used for D* = 0.183 and 0.131. 

Dilution Factor as a Function of Z* 
T 

The relation between the dilution factor and the normalized metalim-

nion location is presented in Figure 29. The location of the metalimnion 

has a strong effect on the penetration depth and thus the dilution fac-

tor. As the metalirnnion (interface) height (above the base) increases, 

buoyancy forces increase and this will hinder the jet penetration and 

thus the dilution factor (which is a function of the penetration depth 

Z*) . 
p 

The etf ect of the metalimnion location can be shown in the expres-

sion for the penetration depth prediction 

2 v 
y 

y ~ CD; y > ht 

where (H - ht) is the metalirnnion location height above the base. The 

·equation shows that the second term which represents the buoyancy force 

is a function of h and y the penetration depth,. 
t 



Penetration Depth Prediction 

The penetration process of the jet is shown in Figures 24 and 25 

with a nondimensional time t* increment, where t* = t/t and t , the 

characteristic time, is equal to 

t 
c 

Volume under the propeller 
Propeller flow rate 

c c 
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The two figures show the location of the interface (metalimnion) in the 

flow field for Frd = 0.35 in Figure 24 and Frd = 1.05 in Figure 25 dur-

ing at* value of 1.37. The figures show very clearly that at the low 

value of Froude number the jet stopped penetrating at a certain depth 

and did not penetrate further as the time increases. At Frd = 1.05 the 

jet did penetrate to the bottom of the flow field at t* = 1.37. The 

characteristic time for the two cases was t = 1.46 seconds. 
c 

Penetration depth as a function of densimetric Froude number is 

shown in Figures 26 and 27. In Figure 26, for D* = 0.211, it is evident 

that the prediction and the experimental data of the hydraulic model 

match exactly. The reason we did not have such an excellent agreement 

in the other cases was because they involve the release gate structure 

difference between the computer and hydraulic model, where this has no 

effect (in this case) because the release flow rate is zero, Q* = 00 • 

The figures show also some predictions calculated using an empirical 

expression for the penetration depth (Appendix C) : 

v2 
y 

2 
V2 (CD) 

0 y 

y p - po 
- 2g f 0 p dy for y :;:: CD 

0 

The penetration can be calculated using this equation by setting V = 0 
y 
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(stagnation point) and solving for y. The penetration depth predictions 

made using this equation showed a difference (up to 5 percent) from the 

experimental data, as shown in Figures 26 and 27. 

Figure 27 presents some experimental data of the hydraulic model 

·for D* = 0.175 and Z* = 0.40 (where Z* used for all former cases was 
T T 

0.6) along with predictions made using the preceding equation. The pre-, 

dictions shows good agreement for Frd > 0.75; below that a difference of 

4 to 12 percent was noticed where predictions were slightly higher than 

experiments. 

Modeling of the flow field in the computer model was performed by 

matching the densimetric Froude number, but the physical dimensions used 

in the hydraulic model were actually matched (and not the nondimensional 

parameters such as D*, Q*, and z;). The velocity used was chosen as 0.7 

ft/sec, an average of the velocities used in the hydraulic model experi-

ments. The velocity was kept constant and different stratification (~p/p) 

values were used to match the densimetric Froude number (see Appendix E) • 

Most of the predictions in this study were run for a value of L*/D* 

1.0, where L* is the nondimensional propeller depth except for D* = 

0.211, where a value of L* = 0.183 was used in this case. 

The release gate area used in the computations was increased in 

order to slow down the velocities on the bottom near the gate, but the 

release water flow rate, Q 1 , was not changed. This change in area 
re 

was used to eliminate some of the differences between the release struc-

ture in the hydraulic model and the axisynunetric model, where the velo-

cities (on the bottom under the jet) are higher in the latter model be-

cause the release gate is under the jet. 



31 

Predictions for large D* values (D* = 0.211 and 0.183) were more 

accurate than the other small D* values. This is due to the difficulty 

in modeling the release area for small values of D* (where the grid size 

is taken as a function of D*). This can be solved by using a very fine 

grid; however, this may be very costly. 



CHAPTER V 

CONCLUSIONS 

Surmnary 

Computer simulation of the near flow field of a jet induced by an 

axial-flow propeller pump (used to mix the epilimnion high quality water 

with the released hypolimnion water) is accomplished by solving the 

governing equations of the flow field. The two-dimensional Los Alamos 

SOLA prediction technique (with a finite difference scheme based on the 

Marker and Cell method) has been modified to include the computation of 

mass diffusion and buoyancy forces in an axisymmetric stratified flow. 

The finite difference equations are in terms of the primitive pressure­

veloci ty variables. Prediction and interpretation of the experimental 

data show that simulation of the flow field is .adequate for design pur­

poses; futhermore, the simplified code represents a useful (low cost) 

basic tool to show the influence of the different design parameters on 

the flow field. 

Conclusions 

The conclusions derived from this study may be stated as follows: 

1. A prediction procedure for an axisymmetric stratified flow has 

been developed to predict the dilution factor (released water quality) 

and the jet penetration depth. 
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2. The main dynamic effect was modeled using continuity, Navier-

Stokes, and mass diffusion equations. The turbulence effort on the flow 

field was shown to be small for the velocities used in the computations; 

therefore, the use of a turbulence model was not needed at this time. 

3. The computer simulation on the basis of a circular jet without 

swirl gives adequate results for penetration depth and dilution factor 
' 

within the limits of accuracy of currently available data. 

4. Predictions were made of the effect of densimetric Froude num-

ber Frd, flow rate ratio Q*, normalized propeller diameter D*, and meta-

limnion location z;, on the dilution factor DF, for a low speed laminar 

nonswirling flow in an axisyrnmetric stratified flow field simulation, 

and the effect of some of the above parameters on the penetration depth 

are as follows: 

a. 1/2 
The densimetric Froude number Frd = V/[g(~p/p)H] was the 

major modeling parameter, and it was adequate for comparing 

the computer model and the hydraulic model. The dilution 

factor is a strong function of Frd when Frd is less than 1.5 

for large D* values (0.211 and 0.183), and Frd is less than 

1.8 for small D* values (0.131). For values of Frd larger 

than 1. 5 for (D* 0.211 and 0.183), and 1.8 (D = 0.131) the 

dilution factor is a very weak function of Frd. 

b. The dilution factor is a strong function of Q* for Q* values 

less than 0.6, and when Q* is greater than 0.6 the dilution 

factor is a weak function of Q*. 

c. A small normalized propeller diameter D* value (0.131) gives 

a maximum dilution factor at low Q*, and large D* gives a 

maximum value for high values of Q*. 



d. The effect of D* on the value of Frd where mixing starts 

(DF begins to exceed zero) in the hydraulic model was not 

adequately simulated by the axisyrrunetric computer model. 

34 

e. The dilution factor DF tends to decrease as the metalimnion 

(interface or thermocline) height above the base increases. 

f. Computer predictions of the penetration depth as a function . 
of Frd was accurate (as compared with the very limited avail-

able experimental data) in the absence of release flow. 

Penetration depth Z* is a strong function of densimetric 
p 

Froude number. 

5. An empirical expression for prediction of the penetration depth 

has been introduced~ it exhibits good prediction compared with experi-

mental data. 

Recommendations for Further Study 

Recommendations for further study of the flow field may be stated 

as follows: 

1. To model an off-center release outlet by means of a three-

dimensional model in order to represent the release structure correctly. 

2. To study the effect of trubulence on the flow field for high 

propeller velocities. 

3. To study the possible effect of swirl for high propeller velo-

cities by solving for the swirl velocity along with axial and radial 

velocities using the Navier-Stokes equations. 
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The four terms on the righthand side of Equation (1) in Chapter II 

are defined by: 

U-Equation 

FUX = 4:x [ (U. . + U . +l . ) 2 + a I u . . + U. 1 . I (U . . - U. 1 . ) 
Ll 1.1] 1. 1] 1.1] i+ 1] 1.1] i+ 1] 

- (U. 1 . + u . . ) 2 - a I u . 1 . + u . . I (U . 1 . - u. . ) ] .. i- ,] 1.1] i- 1] 1.1] i- 1] 1.1] 

FUY 
l = 4Ay [ (V, . + V, l .) (U, . + U, '+l) 
Ll l.,J i+ 1] 1.1] 1.1] 

+ alv .. + v. 1 .I (U .. - u. '+l) 
11] i+ 1] 1.1] 1.1] 

- (V. . l + V. +l . 1) (U. . l + U. . ) 
1.1]- 1. 1]- 1.1]- 1.1] 

- a Iv. . l + v. l . 11 (U. . l - u. . ) ] 
1.1]- i+ 1]- 1.1]- 1.1] 

FUC 
l 2 2 

8 Ax(i'-l) [(U .. + U. l .) + (U. l . + u .. ) 
Ll 1.1] i+ 1] i- 1] 1.1] 

+ a I U. . + U. 1 . I (U . . - U. +l . ) 
1.1] i+ 1] 1.1] 1. 1] 

+ a I U. 1 . + u. . I (U. 1 . - U. . ) ] 
1.- 1] 1.1] i- 1] 1.1] 

VISX 
l l = V [-2- (U . +l . - 2U. . + U . l . ) + 2 (U. . l - 2U. . 

b.x 1. i] 1.1] i- i] b.y i-J+ i,J 

l 
+ u. . 1) + 2 l.1J- 2b.x (i-1) 

u .. 
( ) 1.1] ] 
U,+l ' - U, l . - 2 

1. 1] i- 1] b.x (i-1) 

V-Equation 

FVX 
l = 4Ax [ (U. . + U, . 1) (V. , + V, +l , ) 
Ll 1.1] l.,]+ 1.1] 1. 1] 

+ a I u. . + u. . 1 1 (V. . - v. +l . ) 
1.1] 1.1]+ l.,J 1. 1] 

- (U. l . + U. l . 1) (V. l . + V. . ) 
i- 1] 1.- ,]+ i- 1] 1.1] 

+ a I u . l . + u . l . 11 (V . l . - v . . ) ] i- 1] i- 1]+ i- 1] 1.1] 
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1 2 I , 
FVY = 4 "y [ (V . . + V . . l) + a. V . . + V . . 1 j (V . . - V . . l) 

u 1,J 1,J+ 1,J 1,J+ 1,J 1,J+ 

- (V . . 1 + v . . ) 2 - a. Iv . . 1 + v . . I (V . . 1 - v . . )] 
1,J- 1,J 1,J- 1,J 1,J- 1,J 

FVC 

+ (U. 1 . + U. 1 . 1) (V. 1 . + V. . ) 1- ,J 1- ,]+ 1- ,J 1,J 

+ a. I u . . + u . . 11 cv . . - v . 1 . ) 1,J 1,J+ 1,J 1+ ,J 

+ a. I u . 1 . . + u . 1 . +1 I (v . 1 . - v . . ) l 1- ,J 1- ,J 1- ,J 1,J 

VISY 
1 

V [-2- (V. +l . - 2V. . + V. l . ) 
/:ix 1 ,J 1,J 1- ,J 

1 
+ - 2- (V. . +l - 2V. . + V. . l) 

/:iy 1,J 1,J 1,J-

+ 
1 

2 (V.+l . - V. 1 .)] 
1 ,J 1- ,J 

2/:ix (i-1. 5) 

m-Equation 

FMX = 2: [U, . (S .. + s. 1 .) + a.!u .. !cs .. - s. 1 .) uX 1 1 ] 1 1 ] 1+ 1 ] 1 1 ] 1 1 ] 1+ 1 J 

- U. 1 . (S. 1 . + s. . ) - a I U. 1 . I (S. 1 . - S. . ) ] 
1- ,J 1- ,J 1,J 1- ,J 1- ,J 1,J 

FMY = 2: [V .. (S .. + s .. 1) + alv .. 1 (S .. - s .. 1) uY 1,J 1,J 1,J+ 1,J 1,J 1,J+ 

- v .. 1 (s .. 1 + s .. ) - alv .. 1 1<s .. 1 - s .. )] 
1,J- 1,J- 1,J 1,J- 1,J- 1,J 

FMC 

+ U. l . (S. l . + S. . ) ] 1- ,J 1- ,J 1,J 

1 
- 2S. . + S. . 1 ) + 2 (S. +l . - S. l . ) ] 1,J 1,J- . 1 ,J 1- ,J 

2/:ix (i-1. 5) 
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Jet penetration can be analyzed approximately at the stagnation 

point considering potential flow by Bernoulli's equation. Applying 

Vernoulli's equation to the central stream line from the propeller plane 

to the stagnation point s (see Figure 31) where the axial coordinate h 

is considered in the downward direction. 

p 
0 

p 
s 

+ 
P v2 
_o_2_s_ - p gh 

0 s 

Considering that the density of the jet to be p the top density 
0 

(6) 

(epilimnion), V the propeller velocity, P the reference pressure, P 
0 0 s 

stagnation pressure, and V the velocity at stagnation point (which 
s 

equals zero), and then rearranging Equation (6) gives: 

(P - P ) - p gh 
s 0 0 s 

In the absence of strong currents below the stagnation point, we 

(7) 

assume that the pressure at the point s is equal to the pressure anywhere 

in the lake at the level h where 
s 

h h 
p 

s 
-P =gf 8 pdh 

0 0 
= gpo hs + g Jos (p - po)dh 

Substituting in the Bernoulli equation, 

where 

2 v 
0 -= 

2g 

h 
s 

[gp h + g J 
0 s 0 

h 
s p - p 

Jo p o dh 
0 

(p - p ) dh] - p g h 
0 0 s 

V propeller-induced central velocity; 
0 

(8) 

(9) 
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h jet penetration depth; 
s 

Po = epilimnion density; and 

p = stratification density as a function of depth. 

In a stratified lake, pressure is qreater than the hydrostatic pres-

sure with no density gradient. 

h 
p I g f - (p - p ) dh 

0 0 

and at the stagnation point, 

1 
P' = - p V 

2 0 0 

The difference in this case will be 

The density in the lake is a function of depth and this function de-

pends on the kind of density profile which can be a profile with deep 

penetration, shallow penetration, or a polynomial profile, etc. We will 

consider here a deep penetration profile (see Figure 32). The profile 

is approximated by a step change in the density where it takes place at 

the mean thermocline depth ht' where 

p 

Then substituting in Equation ( 4) ' 

2 ht h v po - Po s p - Po 0 

Jo dh + f- b 
dh -= 

2g Po ht Po 

p - p 
0 + ( b 0) (h - h ) 

Po s t 

So the penetration depth will be 



h 
s 

2 v 
0 

2g 
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{10) 

or an expression for the central velocity along the central axis of the 

jet can be written as 

2 
v 

y 

where y > ht 

At y = h 

2 
vh 

s 

-
2 

y Pb - p 

f- 0 = v - 2g 
0 ht Po 

and dh ay. 

, 
s 

h -
2 s Pb - Po 

= -v 2g f-
0 ht Pu 

2 2 v - v = 0 
0 0 

ah (11) 

dh 

(velocity at stagnation point) 

The decay in the jet velocity (due to friction) is not considered 

in Equation (11). The centerline velocity is inversely proportional to 

y (21) and this can be written as 

v 
y 

v CD 
0 y 

(12) 

where D is the jet diameter, C is a constant, and y ~ CD. Then rearrang-

ing, 

2 v2 (D) v = y 0 y 

2 v2 2 
2 

v = - v (1 - (CD) ) (13) y 0 u y 

Equation (13) represents the jet dissipation effect (jet decay due to 

viscous dissipation). This effect can be added to Equation (10) which 

represents the stratification effect in order to consider the two effects 
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on the centerline jet velocity. This can be done by consid~ring a form 

of an empirical equation as 

2 2 
- p 

2 
2 I:_ Pb 

v = v - 2g ( o)dh - v (1 - (CD) ) 
y 0 ht 

(14a) 
Po 0 y 

2 v2 
2 y p - p 

v = (CD) - 2g !- ( b 0) dh 
y 0 y ht Po 

(14b) 

or it could be written in another form (energy) as 

(14c) 

In Equation (14), if the considered fluid to be homogeneous, i.e., 

no stratification (density gradient is zero) the second term in Equation 

(14) will drop off (equals zero) , and the equation will be reduced to 

Equation (13) which represents the jet dissipation effect. Also, if the 

flow is considered frictionless, the dissipation term can be neglected, 

and the equation will be reduced to Equation (11) which represents the 

stratification effect. 

At s the stagnation point y h 
s 

2 
= V2 (CD) 

0 h 
s 

- 2g 
Pb - po 
----ah 

Pb - p 
- 2g ( 0 ) (h - h ) 

p 0 s t 
(15) 

This equation can now be solved for the penetration depth h , but the 
s 

equation is cubic in h and in this case we will get three solutions. 
s 

However, this equation (when checked) gives one real root (which is the 

solution) and two complex conjugates. 
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An application of this relation (Equation (15)) to the'available 

experimental data shows that the value of C is 3.5. Figures 27 and 28 

show the penetration depth predicted by this equation compared with the 

experimental data and the computed solution where it shows a fairly good 

·agreement. 

The above comparison indicates that Equation (15) can predict the 

penetration with an error less than 12 percent as compared with the ex-

perimental data in Figure 28; in Figure 27 the error is about 5 percent. 

Now the equation is set to predict the penetration depth or velo-

city (if y is known), assuming that there is no release water from the 

flow field. In case of a release flow, an extra term is needed for the 

velocity expression (Equation (14)) to represent the pulling action 

(which increases the velocity as well as the penetration depth) on the 

jet. 

This term will be a function of the flow rate ratio Q*, and the total 

depth of the flow field H, F(Q*, H). It will represent the work done on 

the flow by the pressure gradient induced by the release flow. The equa-

tion in its general form will be as follows: 

2 
v 

y 

2 
V2 (CD) 

0 y 

y p - p 
- 2g f 0 o dh + F(Q*, H) 

Po 

If the value of V is known, one can solve for the penetration depth y. 
y 

In some cases when the V value is high, a value of y higher than H is 
y 

expected. In this case, we set y = h in the final result for convenience 

where H is the total depth and y equals H when the jet reaches the bottom. 
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The axial momentum equation used in the program without the buoy-

ancy term in the conservative form is 

av a a 2 w 1 aP a2v 
+ (VU) + "y (V ) + - = g - - - + H_ (-- + 

3t 3x o x y p ay P ax2 
l av) 
x 3x 

where g , the body force, is equal to -g, the gravitational acceleration 
y 

2 
(= 32.2 ft/sec). 

In the absence of motion, 

Checking the pressure in the program to see if the hydrostatic pressure 

was calculated properly, the program was run with a zero input velocity 

(null case) and a zero initial pressure. In this case there is no devia-

tion from hydrostatic pressure caused by velocity, but we do have a 

hydrostatic pressure case. Although the initial pressure should not be 

zero (where we have a hydrostatic pressure because of the difference in 

density in the flow field), the equations will be able to calculate the 

hydrostatic pressure. At the same time the pressure will be adjusted in 

order for the velocity to satisfy the continuity equation and since all 

the velocities in the field are zero, then the resulting output pressure 

will represent the hydrostatic pressure. 

The output pressure, as shown in Figure 30, represents the hydro-

static pressure,where it shows that the pressure increases with depth. 

In addition, one can see that the pressure at the surface is negative. 

This occurred because the initial pressure was zero where it should have 

the initial hydrostatic pressure value. The program was run also with 

an initial hydrostatic pressure and zero velocity, and in this case the 



pressure at the surface will represent the atmospheric pressure. The 

new pressure profile is shown in Figure 30 where it is shifted by a 

value equal to the atmospheric pressure. 

Then when the buoyancy term is used in the equation as 

av a a 2 uv -1 aP 
- + - (VU) + ay (V ) + - = - - + at ax x p ay gy 

0 

+ _H.._ < a 2v + a 2v + 1:_ av> 
p 2 2 x ax 

o ax Cly 

(p - p ) 
0 

and as mentioned before that when V 0 (fluid at rest) , then 

-1 (lp 

P ay 
0 

In this case this term (pressure gradient) will be already included in 

79 

th b h h d.. (lp . b b e uoyancy term; owever, t e pressure gra 1ent Cly will e zero ecause 

it represents the deviation from hydrostatic pressure caused by velocity. 

-
ClP 
Cly 

_!_ p + ~pg h 
ay oy y 

Then adding the body force, 

-aP 
-= 
ay 

_!_ p + pg p g 
Cly y - 0 y 

Rearranging, 

-
1 aP --= 

P ay 
0 

In the case of V = 0, we have P 

(p - p ) 
0 

(p - p ) 
0 

O; then, 

= 2- p + pg 
ay Y 
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and when the buoyancy is used the initial pressure P value (function of 

velocity) will be always zero if the initial velocity field is zero. 
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The governing equations of mass, momentum, and species conserva-

tion being dimensional, can be made dimensionless by redefining the 

dependent and independent variables in a dimensionless form. This can 

be accomplished by dividing: 

1. Lengths by D , the diameter of the propeller, or some other 
p 

characteristic length. 

2. 

3. 

Velocities by V , the downward velocity at the propeller. 
p 

2 
Pressure by Pref = p 1vp, the stagnation pressure corresponding 

to the reference velocity V . 
p 

4. Mass fraction by the initial top water mass fraction M1 in the 

upper layer. 

The resulting dimensionless variables will be as follows: 

U* 
u 

V* 
v 

v v 
p p 

y* L x* 
x = 

D D 
p p 

P* 
p ml 

m* p 
ref 

1 Ml 

Inserting the dimensionless variables into the governing Equation 

(1) in Chapter II in the conservative form, we obtain a set of equa-

tions in the dimensionless form. The equation of continuity gives 

au* av* u* --· + + 0 
Clx* Cly* x* 

The steady state Navier-Stokes equations in the dimensionless form 

will be as follows: the x-momentum equation with g = 0, 
x, 

Cl 2 Cl U* 2 ClP* 
(U* ) + -- (U* V*) + --

Clx* Cly* x* Clx* 



2 
1 [ 3 U* + + - 2 Re 

3x* 

32u* + _!_ 3U* _ 
2 x* 3x* 

Cly* 

U* -] 
*2 x 
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where Re v D p1/µ is the Reynolds number, and the y-momentum equation, 
pp 

3 
3x* 

where 

(U* V*) + 
3 

Cly* 

1 32V* 
+- [--+ 

Re 2 

v 
p 

3x* 

(V*2) U* V* 1 
+ -- -

x 2 
Frd 

32V* 1 3V* 
~.-+ 

x* 3x*] ()y*2 

is the densimetric Froude number and ~p = p - p1 . 

3P* 
Cly* 

The mass diffusion equation also will be in the dimensionless form 

where 

()(U*M*) 
1 ----+ 

3x* 

v /\... 

a 
SC 

p 
I 

_µ_ 
pD 

c 

3(M*V*) M*U* 
1 1 

---~ + ~- = 
Cly* x* 

,v· 1 

Re a 
1,,;.J SC 

is the Schmidt number, and D is the molecular diffusivity. 
c 

1 
()M* 

1 
x* Clx* 

The dimensionless coefficients Re, Frd, and a define the govern­
sc 

ing equations and indicate the solution where, if these dimensionless 

coefficients are the same in the model and prototype equations, and the 

boundary conditions are the same, there will be a complete similitude 

between the model and the prototype. 
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The first dimensionless coefficient is the inverse of the Reynolds 

number, and it appears in the Navier-Stokes and mass diffusion equa­

tions. If the viscosity term is small, or if the flow is turbulent, 

the influence of the Reynolds number may be weak. Therefore, in many 

cases modeling accuracy may not be sensitive to the exact matching of 

the Reynolds number between the model and the prototype. The use of a 

too-small Reynolds number (compared to the prototype Reynolds number) 

in a model is investigated elsewhere (22) , and from considerable experi­

ence it is known that this deviation from complete similitude produces 

only small errors, provided that the flow regime is turbulent for both 

model and prototype. 

The other dimensionless and most important coefficient is the 

square inverse of the densimetric Froude number, Frd. It appears in 

the y-momentum equation as an independent term. The characteristic 

length is taken as H, the total depth. Matching the densimetric Froude 

number between the model and the prototype can be accomplished by in­

creasing the density difference between the model and the prototype in 

order to offset a smaller depth in the model. Exact matching of the 

densimetric Froude number is essential (22) in the modeling process. 

The third dimensionless coefficient is the Schmidt number, which 

appears in the mass diffusion equation. The Schmidt number should be 

the same between the model and the prototype, and since the flow regime 

is considered turbulent, the turbulent Schmidt number (with the value 

of ur.i~y) is used. 

We can conclude that the most important dimensionless coefficient 

in the y-momentum equation is the square inverse of the densimetric 

Froude number, Frd. At values less than unity the dimensionless 
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coefficient in the y-momentum equation will be larger than unity, and 

will increase rapidly with decreasing Frd, a condition appropriate to 

higher buoyancy forces. For values of Frd greater than unity, the 

dimensionless coefficient decreases rapidly with increasing densimetric 

Froude number. 

The numerical simulation of the flow field is done by matching the 

densimetric Froude number and Schmidt number. The Reynolds number, how­

ever, was not matched exactly, since only laminar viscosity was used. 

As a check, increased values of viscosity throughout the field were used 

to identify any sensitivity to the level of momentum exchange. That is, 

a large laminar viscosity roughly simulates a turbulent viscosity, the 

exchange coefficients in each case being similar in magnitude in these 

two cases. The influences on dilution factor and penetration depth were 

very small (5%) for the cases studied. 
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~9 

llE.R~o 

CYCLE=O 
GuES$ INITIAL V£LOCIIY FIELD 

00 ~6G I=l,PIAX 
Oil 560 J=l, J'IAX 
UlloJI = O. 

\I' 1. J , 1: 0. 
560 COlllINUE 

00014700 
oooi. eoo 
0~014 %0 
00015000 
00015100 
ooc1s200 
00015300 
00015500 

c 
C ---------INITI~L DENSITY ANO 'IAS~ fNACTIUN FIELD 
c 

555 
c 

55C. 
c 
c 

DO ~5') l=l1lM.\X 
Ou 0.~> J~l ,JIN 
S"CloJl=O.u 
S2tl.Jl=t•0 
SNr I1Jl=O.O 

Dt:NI {,J l=DEN2 
CUN I I NU E 

DO 556 1=1, [MAX 

DO 556 J=JIN1,JM4X 
scr,J1=1.0 
Sdl,Jl=O.O 

Sl\l(loJJ=l·U 

Dt:Nl loJ l=OENl 

c~~~~~~~----------------------------------------------------------0001s600 
~SS!GN 5000 TO KRET 0001seoo 

GO T () 2 0 00 00015900 
1000 COii! INUE 00016000 

l TEl'=O OOOlblOO 

f LG;: l • 0 00016~00 

ASS IC.t< 30UO TO Kil ET OOC16300 
( 

C ------------------------------•----------------------------------00016S00 
c-----------Al'PLY ~O~ENTA Eaus FOR TIME AUVA~CED u. v. w 
c 

0001to600 

UU 1100 I a 2.!Ml 00016800 
DO l!GO J ' 2oJM! 000lu900 
FU X a l ( lJ f~ ( l , J J +UN ( I + l , J > ) • ( lJ t.; ( I 1 J ) +V N l l + 1 , J ) ) +ALPHA• ABS ( UN l I 1 J 1 +UN ( 0 0 0 l 7 0 0 0 

1 1 + i , J 1 , • 1 u ~'' 1 •. J J - u N c 1 + l • .J > •- < u"' c r - 1 , .J 1 .... u :-1 < 1 , J > > • c u N ' 1- i. J > + u N c x • J >coo 1 11 o o 
;!J-ALPHt~•AflSClJN(l-ltJ) + lJN(l,JJ> •llJNll-l1J>-Ul\ll1.J))J/(4•0CLXJ 

f u y ~ c ( IJ N' 1 • .J J + v r~ { !, .. 1 • J J ) • { u r. ( l • J J t u N ( I • J t 1 ) ) 

J. + f,LP11A 41 A~jS{IJ1'\ll,.J)+Vt.i(t+l1JJ) • <UN(I,Jl-UNCltJ+lJJ 

2-~V~i(t,J-lJ+V,.,,J(lt-l•J-l))"' (1Jf"o1Cl1J-l) + UNCl1.J1) 

00017~00 

UUG!7J00 
00017<00 
U0017500 

.l-t.Ll'H.". .. t.H~(vr.<r,J-l)+Vt~(ltl.J-lJ)•lU~Jtl.J-1) - UNlI1JJJ)/14 •. •D£L'1')00011600 

FU C •CY L • I I u N ( I ,J IT u N { I • l , J l I• I U rd l , J H lJ NI l +I , J I J >( UN I l -1 , J J +UN I l, J 0 0 0 l 7 7 0 0 

1 ) ) • l U Nt 1- l , J ) .. U f, ( I • J > ) 

2+t..Ll-'HJ, • :..u~CUNt I.JJ t' Ul.J(l+-l1J)) • ClJ~J( I1J)-lJN(l+l1JI) 

J t ;\ L r1 H ,, • A n '.... c u N ' I - i • J 1 + u ~j < r • J l 1 • t u N c 1 - 1 • J 1 - u N < x , .J , > 1 

• /IU .. D(LX•FUJ~TCI-1JJ 
flJ'A~t (l.)H( l ,JJ· .. l}N 

C ( I , J • l ) ) • ( V N ( f , .J I • V tJ ( I+ 1 1 J > J + ALPHA• ADS ( UN ( l 1 J > t U ~ C 

0001lU00 
00017900 
000111000 
00010100 
0001 ~~00 
00010300 

l I • J .. l ) ) • ( v ~J ( t 'J J - v N ' I .... 1 I .J , )- ( u N ( I - l • j , ;. u N ( I - 1. J + t ) ) • c v ."I/ ( I - l • .J } • v N ( 0 0 0 l 8 <. 0 0 

211JJ)-ti.LPHA•AliSCUN([-t1Jl+UN(l-l,,J+l)J•CIJNtL-l1.J,-VN(l•JJ)l/(4.•0£0001U~OO 

~LX! OOClP.uOO 

f v y ~ l l v" ( I • J , + v 1i ( r • J + l I , • ( v N ( I • J l + v N r l • J • 1 ) l +AL I' HA. Ans I v N l r • J , + v N 0 0 0 l •l 7 0 0 
l(l1J+l))•(Vr.;c1.J>-V~CI1Jil))-CVNC.I.J-l)TV!-l(I1J>>•(VNCI1J-J.)+\JNc1.Joco1.scoo 

2 , ) - t.. l PH ..4 •II. fl S ( \IN ( t • J- l ) • V ~i ' I • J > ) • ( V N ( I 1 J - 1 J -\IN ( I~ J ) J JI ( 4 • •DC: LY l G C 0 l U 9 0 0 
\.0 
0 



90 

91 

92 

SJ 

9• 

95 

S6 

~7 

98 

9q 

ion 
1 (JI 

102 
1 0 3 
10~ 

105 

106 
I 01 
I Oll 
l 0 9 
110 
111 

l 12 
11 3 
l l. 

115 

11 ull 

c 
c 
~000 

c 
c 
c 

551 
c 

F 'ti C;. CY L. • ( ( lJ N ( l , .J ) + l) N ( I , j ;- l J J .,. ( V N ( J. , j J + Vt~ C l + l ,, J ) J + ( UN C 1- l • .J ' + UN ( I - l 0 0 0 1 tJ 0 0 0 

I • J +I ) I• ( VN ( I - 1 , J I+ V rJ I ! , J I I+ A Li' ti A• ll ti 5 ( u NI I , J J +UN I I , J + l I I• I V NI I , JI- V 0 0 0 191 0 G 

~ N ( I + l 1 J 1 ) .. AL. P ti A• Ali 5 l l:-'l ( I - 1 • J J t- UN ( I - 1 , .J + 1 l J * ( V N ( I - 1, j J - \IN ( l • J l J ) U 0 0 1 92 0 0 

)/( b.•DC..LX.-( flUAT ( I-1 J-.!; > J 
\ILSx= MU• llUNt.It-l1JJ-2.•UNCl1J, + UN(l-l•J)J/OELX••2• 

1 CUNCI1..Jtl)-2 ... urnt.Jt + UNtI,J-lJJ/OELY••2 

2 +CYL • II UNI Id oJ I- UN( I- l ,JI I/I< ••DEL••DELX•FLOAT ( I-111 

3 -UNl!1JJ/(Of.lX•FLUATll-lll• .. :!JJ/OC:Nl 

\/l~Y.:z MU• ((V."i!(l•l•J>-:: ... vNC!tJI + VNC r-11J))/0E:LX••2f-

COOl'JJOO 
00019•00 
0001~500 

00019t00 

000l9DOO 
l l VN( I 1.J+l 1-2.•\/N( I ,J' -t \IN(! aJ-1) l/DELY••2 00019900 
2 t c y l .. ( \Ir~ ( l,. 1 1 J )- 'JN ( I - 1 , .) ) ) I ( 2 • "'D 1: L x ... v EL x • ( FL 0 Ar ( I J- 1. 5 ) ) ) IDEN l. 

FM x;; t uu ( l, J ) ... c S rv I C • J l t 5 N c I+ 1 , j , I +ALP Tl I\• ( r~ !~ S ( u t~ f I , J J > > ;. { S f'4 t I • _i ) - SN ( O o 0·2 O I u O 

l+l1JJJ-UNtl-l1J).;.(:,f\(l-l1Jlt$N(!1JJJ-ALPHA•lA8St.UNC!-l1J))J,.OIJ020200 

, (SN( I-l.1J>-SNl I 1J l \ 1/1 2 .. Df:LX J 00020300 

f MY: I V N l I, J I• I 5 N ( 1 , J I+ 5 ~ ( l , j t l I I t AL I' HA• < ABS ( V N ( I , J I I h ( SN ( l , J I - SN I 0 0 G 2 0 ~ 0 0 

I,J+lJJ-VflCI1J-tJ•(SN(l1J-ll+SNC!,J)J-ALP11A•lt..8SCVN.([1J-1J11•0002U500 

r SNC I •J-11-SNI l ,J l I J/I 2•DClY J 00020600 
f MC~ l UN< I, J I • l 5 N ( I • J 11· 5 NI I t l , J I •CL'~ 2 I• U l·H I -1, J I •I SN I 1- I , Jl + 5 N l I • J 

• ) l + C 0 N2 -t ALP Hf..,.. ( ..\ t1 S ( U Ii ( I , J I I ) .. I ~.~I l , J ) - 5 N ( l + l 1 J J ) • C 0 N 1 + ALP H !.. • (/.US ( 

• UN ( I - 1 1 J J ) 1 • f S tJ { r - l 1 J J - '.::. N ( I , J l J • C 0 N l ) / C 4 "'0 £ L X 41 ( I - 1 • 5 I J •CY L 

VIMX~(l S.Nl l+l1JJ-::"'s:,l !1Jl+S"-1 < I-1,JJ )/(DtLX••2)+(~N( 11.J•l >-2•SNl I .. 00021000 

J J .. 5 tH I .. J - 1 J ) I ( u cl y •• 2 ) • ( s N { ! .,. l I .J ) - s N ( I- l. J J ) I' 2 • { D £ L x .... 2 ) .. ( 0 0 0 2 1 10 0 

I-l.5)l•CYLl•(MU/lSC•flEN!ll 

U ( 1, JI= UN( l, J It DEL h I l I'< l, J l - P ( I+ 1, J I I >ilOX /Dt N l + GX-FUX-f UY- f UC+ 

.v1sx1 
, V C ! 1 .J J .:;. V N' I • J } + D £ L T"' ( ( fl l I , J ) - i-l ( I , J t 1 I I •I~ 0 YID EN l + G Y • l 0 E i't ( I 1 .J ) - ::l E N l J 

• /OEN1-rvx-fVY-f vc •V ISY J 

5( 11.JJ:St,:( l1Jl•OELT•C-fMX-f·MY-fMC+VlMX J 

IF"lCYCL(.£0.Jl ~lloJl=SN!l,JI 

S211•J J;;.1.0-S( IaJJ 

DEN[ l1J);;Sl l1J)•OENlT$,,!( l1.Jl•Of.N;,,? 

8 l < 1 • JI • Gr o< u ~ N l I, J I - 0 L N l JI DE N l 
CONTINUE 0002lf00 

-----------------------------------------------------------------00021900 

C 0 N 1 I tJU f 00022100 

-----------------------------------------------------------------OOOL~JOO 

QS"u. 0 
A"- 0 • 0 
DO 551 l..;21lRfL 

os•as+S( I12)•(Pl .. ( lI-1 lit·DELXl••2-A)•VOUl 

A :p I• ( (I -1 J ,..Q.£ LX l • 41.2 

CONT ltlUE 

OS2"-0.0 
A=O.O 
DO 552 !=2.Il~EL 

0~2=052.,..S2f I12 >•CP Itt ( !-1 >•LJELX , ... 2-A l•VOUT 

flb /..=Pl•( ( 1-1 J•OLL< )•"'2 

117 552 CONTINUE 
118 VT=Q$/( 2•Pl•lflAR•l JNT-JNl,•1 l•DELY•f,ELXl 
11 <J 

120 
l~l 

122 

c 

US.::.Q!j';!/ ( 2•P l• Illt.f(•( JNT 1-Jf~tl 1• l) •CEL'f•O[LJ() 

DE NA c: I a s. 0 E N 1 • u $ 2 • D Ut2 11 ( p I • ( ( I f< c L - l } • DE l. x ,.. • 2. ~au T I 
DF=IDENAC-UEN2l/!Of.~l-OEN~I 

C·----------GtNERIL BOUNDARY CUN~ITIONS 

c 
00 2200 JaJ,JMAX 

00022500 l.O 
I-' 



12J 
124 
1;.:: ~ 

1 2 ti 
127 
l~O 

129 
130 

1J1 
!32 
1 J3 

13• 
135 
lJb 
137 

1 J 8 

IJ9 
l 4 0 

l • 1 
l 4.:? 
1' J 

H• 
1 ~ :j 

140 
I 4 7 
HR 
149 

150 
1~1 

1~2 

153 
15• 

c -------------BOUNDARY CONDITIONS ON LEFT--FREE SLIP 
c 

c 

u11.J1-o.o 
'l(l ,Jl;V( 2,JJ 

$( l 1JJ..;S<.21Jt 

c -----------BOUN~ARI CONOITIONS ON R!GHT--NO SLIP 
c 

\Jf!Ml1J l•O.O 

VI !MAX,Jl=-'ltIMl,JI 
$( !l"'t.X,Jt;r;.5( IM11JJ 

220 (/ co:.i [NU E 

uU 2500 !-"l, !MA.< 

c 
c ------------liOUNDARY CUNOITIJN~ ON TOP--FKEE SLIP 
c 

c 

U I I • JM l l- 0 • 0 
Uf I ,JMAXl=Uf I1JMl 

St 1.Je~x J•Sf r.JMl l 

c ------------BOUNDARY CONDITIONS ON HOTTOM-NO SLIP 
c 

Vfloil=O.O 
lJ I l , l l • -u f I , 2 I 

Sf loll•SCI,21 
2500 CONT !NIJE 

c 
J 0 IS K 1 =JD I 5 K - 1 -·I/ 

c 
C ---------------INLEf fLOW 
c 

DO 2811 1~2.IOISK 

VI I .Jo l SK l=-v !Niil 
V f I •JD I S ~ l I = V f l , JO IS KI 

U I I 'JD I SK l • 0. 0 
2Bll CONTINUE 

c 

~5H 

c 

00 ~58 J•JNBoJNT 
Vf [fll.X oJ l•0.0 
UI !Mt.X ,J )•-UT 
Ul IM!, JI =-UT 

S l IMAX ,J.1:5( !MtoJ I 

CUNT !NU£ 

00 559 J;JN8l1JNTl 
V<lMl.XoJl=O.O 
U < !t-4A X 1J !J:-UB 

UI !Ml •Jl;-Ull 
Sf !MA,< ,J l=SI [MloJ) 

,~"'"" \ ;r 
- .'C' 

\'>' 

', 
'V 

,rv 
\) 

), ,,:i <? ,, 'I) 
F \ 

i< ; 

~ ~' \, ' '/ -2' \'i I '\ 
'l "\/' 

~"' 

155 559 CONTINUE 

1 !i6 
15 7 
l 5 il 
1 ~ fJ 

160 
1 & l 

lb~ 

' ------------ ourL£r FLOW 
c 

DO 557 !;2• IRE!. 
Ufloll=O.O 

vc1.1•~-vour 

V C I , ;t, l -::.- V 0 U f 

Stl1l }.a$CI~~J 

5~7 CONT l 1.JUE. 

c 
2601 CONTINUE 

,., 
' I 

,C\ ,...,.,,,.,, ~ 

_, \Y\ '). ', 'J; 

:~ 

.., vi 

~o 
,; 1 

•.....i.­-, 
fV 

(-~ , 

'· 
1 

~ 
l'.) 



1f J 
lb4 

16~ 

l u (, 

lb7 
lb8 

l f. 'J 
170 
l 71 

172 
l 7) 

l 7 4 

115 
176 
l 7 7 

l 7 6 
l 7 ') 
l~O 

l ~ 1 

182 

I fi l 

i e • 
l iJ s 
l 8(, 

I B 7 
1 ea 

109 
190 

3000 
c 

GC TO K~ET.(3000150001 

CUNT I NUE 

c ------------CHECK IF CONVEM~ENCe HAS UeEN RLACHEO 
c 

c 

305G 
c 

IF CfLG,E0.01 GOT041)CJ0 
ITE~•l TElhl 
IF C I T £ R. LT• ~ 0 I GO T 0 3 0 5 0 
IrCCYCLEoLT.20JGUTO 4000 

TERHINA!IUN CUHD!TlON 
T•lE+lO . 
<.OTCJSOOO 

FLG=O.D 

C ----------PRESSURE lff~AT!UN ANO p, U, V UPDATE 

c 

c 

DO 350u J:2,.J:H 
C..0 JSQ,) !=2.l<<l 

DI I, J I= f< 0 ~•CU c I• J 1-U I I -1 , ..JI H ~ 0 Y • l VI I ,"JI-VI I •.J-1 I I +CV L •I U I I, JI 
f" li l f .. l 'J > l .I ( 2 • •iJ f; L X • l f L lJ AT ( l l- 1. 5 l ) 

l F I AB~ l D I I , J I I OZ R 0 l • G (' • E P S I I f L G = 1 • 0 

DELP(l,JJ:a. -flETA.•0(1,J) 

P C l , J I= P C 1 , .J l t DE LP C I , J l 
U( I1JJ;\J(!1.JJt-Ot.LT•HOX+J£LP( l1J') 
U(I-1,J) &:. \Jll-l1J) - UELT•H(U>..•UELP(l1J) 

V { I 1 .J ) ;;; V f l 1 J H· 0£ LT • R 0 'I" • U El P { I 1 .J ) 

~11.J-11 = vc1,J-1l-OfOLT•NDV•DELPCI.JI 

3500 CONTINUE 
C--··-------CHECKPRINTS DUR[~G PNESSURE CYCLE 

!Im I Tf=O 

IF I f TE R • LE • 2 11 >IR IT E ~ 1 
!Fl cvcu;.c;r.2.i.ND.CVC.Ll.LT.500 I 

!Fl l"R! TE. EQ. l>GO TO 5152 
C RElURN FNO" PAlNflNG SECTION 

35'1 CO~! INUE 

c 

<OOO 

IYIRITE•O 

GO TO 2000 
CONTINUE 

l>lllITE~O 

000•1900 

OOtH2000 
00042100 

00042•00 
OC0•2500 
00042600 
00042700 
000•:!800 

00043100 
00043200 

0U04• 300 
OOO•H500 
00044600 
000-1•70() 

000•49Gil 
00045000 
000•5100 
00045i00 

00045400 
000•5500 

191 500G CONTINUE 0004~600 

192 
1 lJ) 

19• 
195 
l 96 
197 
196 
1 'J ~, 
, 00 

201 
202 
~OJ 

2 O• 
205 
;i 0 6 
2U 7 

c-----------------------------------------------------------------------ooo•s100 
C•-··-------INTf~MED!ATE PAINTING 
c lflCYCLE.Ell.500lCALL f'LillCu.v.rMA~,JMAX.DELX.DELVI 

lflCVCL£.E0.10l°CO 10 !'1~~ 
IFIC.VCLE.Eu.~DI GO TO ~1~~ 

Ifl(\"CLl:..EJ,JfJI GO Ju 51~~ 

.CFCC'l"C:L~.F.Ci.~O> GO 10 ~)15~ 

IFICYClt.EtJ.:,Q) GO TO 5152 

IFICVCLE.EC.601 GO TU 515~ 

!f"(CVCLE.t:d.70) GJ TO 51S:! 
lfl CYCLE.i:.rJ. llO> GO T 0 'il~2 

[ff(Y(LE.EQ.'JO\ GU TO 5152 
If'ICVCLE.EG.1001 GO TU 51~2 

lF<CVCLE.EQ.1101 GU IO 51~2 

!FICVCL£.E0.1201 GO 
!fCCYCLE.E0.1301 Gll 
IFICYCLE.Ei.:.1•01 t;O 
IFICVCLi.Ea.1so1 GO 
IFILVCLE.Ell.1601 GU 

!<) 

ro 
TO 

Tu 
TU 

') l 52 
'.) 1 ~l 

~ l 52 

5152 
5152 

Ou0•5000 

\0 
w 



20~ 
2C9 
.2 l 0 
211 
212 
2 l.! 
214 
215 
2 1 l. 
2 I 7 

21~ 

219 
2 ~o 
~21 

2L2 
2" J 
2~• 

2~5 

226 

~"' 1 
228 
22Q 
230 
2Jl 
232 
:?JJ 
2J• 
2JS 
2J6 
2 .31 
2JA 
2 J •; 

2•0 
2U 
2 Ii~ 
24J 
244 
24~ 

246 
2•7 
2•o 
2•9 
250 

2·51 
:,,::,4 

253 
2!:14 
4: ~ 5 
256 
257 
25b 

2t9 
200 
2td 
2L2 
2<.3 
2 t" 

IFICYCLE.E0.!701 GO TO 5152 
lFICYCLE.oG.1801 GO TO 5152 
lFI CYCLE .E0.1% I GO 10 51 ~2 
IFCCYCL£.Ell.200l GO 10 515L 
!PCCYCLE.E0.210J GO 10 51~2 
IFICYCLE.E0 • .2201 GO TO 5152 
IFICYCLE.EC.2301 c& TO ~15~ 
lf(CVCLE..C:C • ...!.\01 GC TJ 5152 

If(CYCLE.Ea.2~0J GO TO 5152 
lf(CYCLl!.i':a.2c.o I GO 10 5152 
fflCYCLE.EU,2701 GQ TU 51~2 

If(CYCLE.C.0.2BO> GO TU SlS2 
IflCYCLE.E.1}.2B6J GO ro 5152 

( f- ( CY CL E • E (J • .! h 7 ) G 0 f iJ ~ I 5 2 

IF((.VCL.t.t.c.2u1~) GO TU 5152 
IFtCYCLE.cO.<d91 GO lC 5152 
IF{l'J'CLt:.co.2ij;J) GO TU 51~~ 

IftCYCLE:.E0.2".)J) GO JO 51~2 

1FtCYCLE.EG.2'J.:d GCi TD 5152 
lf!CYCL£.Eu.L971 GO TO 5152 
1F!CYCLl.t.:(~.29t;I GO TO 51'52 

IFICtCLl'..EU.3:1ul Gll TU 51'.>2 
IflLYCLE.EO.JlCI GO TO 51~.::! 

iFtCYCLt.i:~.J~J~ GO TO St~.! 

lfllYCLL.lC.:>101 GU TU 5152 

IHCYCLE.E,1.J•VI [,J HI 5152 
tfCC'ICLE.E;l.:550l GU TO 5152 
If<CYCLE.EQ.-30U, GU ro :i1s2 
!Ft CYCL£.EO.J70 I GO TJ 5152 

1FlL't~LE.EU.30i)) GO TJ :.152 
ll!CYCLE.J,J.JqQI GO 10 5152 
IF<CYCLE.E~.J~5l GO TO ~l~~ 

IFICYCLE.LC.J971 GO TO 0152 
l Fl (. Y C:. LC , LC. • 3 -3 •) J G CJ l J 5 L 5:: 

IFICYCLE.G0.40Jl GO TO 5152 

IFICYCLf.fll.21 GO TO 5152 
!FICYCLE.lG.ll GO T(J 5152 

IFtCYCLc.t:J.01 GO TO 5152 
GO TCl ~2~1 

5152 CONTINUE 

c 

PRLNI 53ol!E~.r oCYCl.c 
PfllNT ~~ 1DF 

"~.LTEtGJ.\3) 

C ---------- LIST U, V1 p, S• OEN1 O, Ul 
c 

00 70UI J;"I o.JMAX 
J~l1J;JM~X-J+! 

WQ I TE! 6 o 4 7 I I U I l , JM ,,, J I oI • I .r M AX I 
1ou1 corn HltH. 

r1RlTEltio•91 
DO -70J2 J=l oJMAX 

JMMJ;JMAX-J+t 
WR lT £I 6 , 4 7 I I V ( (, JM MJ ) , I• l oI MAX I 

7002 CON! INLIE 
701~ CONTINUE 

Wfi!TE<&.~11 

00 7004 J•loJMA~ 
JMHJ.,.JM4X-JT1 

WRIT£t6•471 IP(I,JMMJJ,I~l.Xl<AXJ 

00040700 
00046SOO 

0004i.900 

00047000 
00047100 
00047200 
OtJ047JOO 
00047400 
00047:;(JQ 

00047600 
00047700 
000'7000 
00046~00 

00040c00 
OOO•e"lOO 
00040800 
000•8900 '° ..,. 



2o5 
26b 
2 CJ 7 

:<ob 

1co+ c:-.Nr It<UE 
"'R 1 Tf Ct), 6.7'. • 
00 IC05 J~l,JIOX 

JH•J=J,..ni-Jtl 
2b1 ~N.t!lE.(6,-\7) lStl•.Jl'IMJ)•l .. l1H1AXJ 

2 7 () 1 0 C 5 C 0,; I l l/IJ E 
271 WRTTEl6o~31 

272 . Du 7Gv6 J=l .JMAK 
27) JMMJ"JMA X-J+l 
2 7 4 \liR I TE 16 , 4 7 l (0 F. N 11 t J MM J l .I a I ol MAX I 

275 7vD6 CONTINUE 
~76 WRITEt6a641 
277 DO 7007 J= l •JMAX 
2 78 JHMJ:.Jf'IAX-J<l 

279 WHllf{61-\7) (0(1,JMM..JJ,I•l•lMA;.(J 

2e0 7007 CuNTPllJE 
2P.1 WRITL:i6t6~) 
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