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CHAPTER I

INTRODUCTION

During the hot months of summer, thermal stratification may occur
in water reservoirs. This presents a serious problem for quality of
water released from reservoirs with low-level release structures. The
reservoir stratifies into three main regions of different densities.
The.epilimnion, the top layer, contains warm-low density water (usu-
ally rich in oxygen and thus considered as a high-quality water). The
hypolimnion, the bottom layer, consists of cold high-density water (poor
in oxygen and thus considered as a low-quality water). The region of
rapid temperature change (between the other two layers) is called the
thermocline or metalimnion. Many of the old reservoirs have the re-
lease structure located near the bottom, and in this case the quality

of water downstream of the impoundment is poor.

-In spring the reservoir temperature is approximately uniform where
there is no significant density gradient in the vertical direction. As
the season progresses, the upper layer in the lake warms faster than the
lower layer, creating a positive density gradient in the downward direc-—
tion. The bottom layer will be at lower temperature due to low thermal
conductivity of water and when the density gradient has a significant

value across the top and bottom layers, the lake is said to be strati-

fied.



The epilimnion water is rich in oxygen because of the atmosphere re-
aeration and photosynthesis. The lack of oxygen in the hypolimnion is
referred to the lack of mixing with the epilimnion as a result of the
density gradient.‘ The low oxygen content is a characteristic of poor

water quality.
Background

Artificial destratification, localized mixing, and modifications of
the release structures of the dam can be used to improve the released
water quality. Artificial destratification can be either mechanical
pumping (with assorted piping) or diffused air pumping. These mixing de-
vices (1), however, require a substantial amount of energy to destratify
a large body of water. Localized mixing is proven to be effective and
economical to enhance the quality of water released from low-level re-
lease gates. Structural modification of the dam involves elevating of
the release gate position in order to allOw a release water made of the
epilimnion. This method is effective for quality improvement; however,
it is extremely costly. There has been a continued interest in local
(mechanical) destratification of reservoirs to improve water quality.
Garton (2) (3) has used a low-energy axial flow propeller pump to local-
ly mix reservoirs near the release structure of the dam. The Garton
pump has been used in Lake Okatibbee, Mississippi (3) (4), and at Pine
Creek Reservoir, Oklahoma (2).

Local mixing improves the release water quality by inducing a jet
of epilimnion water down to the release structure to dilute the hypo-
limnion water beiﬁg released.A The propeller used in References (2) and

(3) was a 72-inch Acme Windmaster fan. This propeller pump is capable



3 .
of producing 1.8 m /sec at 19.1 rpm. Dortch and Wilhelms (4) performed
a local destratification test at Lake Okattibbee (using the same propel-
ler) and concluded that it caused a significant change in the quality of

low-flow releases.
Hydraulic Modeling

Hydraulic modeling of the mechanical destratification by a propel-~
ler pump has been the main interest of hydraulic researchers at Oklahoma
State University. Moretti and McLaughlin (5) have modeled the fluid
dynamics of destratification using the Garton pump in a vertically dis-
torted model of Ham's Lake constructed by Gibson (6). Using the model,
Gibson (6) and Sharabianlou (7) concluded that prototype simulation by
hydraulic modeling was successful when the Richardson number (or the re-
lated densimetric Froude number) and a nondimensional time scale are
used as the modeling parameters. Givens (8) performed a hydraulic model
study of local destratification using a propeller pump (Garton type).

He developed dimensionless parameters to indicate that the released water
quality as well as the penetration depth using normalized initial condi-
tions for the propeller diameter, the relative magnitude of the propeller,
the released flowrates, and the metalimnion location. Moon (9) performed
a hydraulic model study of the near flowfield induced by an axial-flow
propeller puﬁp used to enhance the quality of water being released from
the hypolimnion by diluting the released water with higher gquality epi-
limnion water. He concluded that the dilution factor, DF, and penetra-
tion depth are functions of the densimetric Froude number, the nondimen-
sional propeller diameter, the nondimensional propeller depth, the flow
rate ratio of propeller flow rate and release flow rate, and the non-

dimensional metalimnion lécation. He successfully performed hydraulic



modeling of local destratification at Okattibee, Mississippi, using a
scale model of the release structure in a laboratory. Buoyancy forces
in reserviors are due to density gradients caused by temperature differ-
ence. Modeling thermal stratification is very difficult because of heat
transfer and temperature controls required on the boundaries. The ther-
mal stratification can be modeled by dissolved salt provided that the
fwo fluids (of the model and prototype) have similar thermal and mole-

cular diffusivity (10) or eddy-diffusivity.
Previous Theoretical and Numerical Analysis

There has been a continued interest in the theoretical analysis of
a jet issuing into a density stratified environment. Baines (11) (12)
studied the rate of entrainment through the end of a plume or jet which
impinges on a density interface. He coﬁcluded that the entrainment flux
into the plane must be a function of the local width, velocity, and buoy-
ancy difference. He combined them into a single parameter, the Froude
number (densimetric), Frd. Ditmars (13) studied the use of a pumping
system to mix density-stratified impoundment by means of a buoyant jet.
He developed a one-dimensional simulation technigque to predict the
changes in the density structure of an impoundment caused by mixing
using a pumping system. Abraham and Eysink (14) investigated the case
of a jet issuing vertically upwards into fluid with a density gradient.
They introduced a theoretical approach to determine the ceiling level
of a jet under the above mentioned conditions. Huber, Harleman, and
Ryan (15) developed a mathematical model to predict the vertical tempera-
ture distribution in stratified reservoirs. Their model includes the

effect of distribution of heat within the reservoirs by advection and



diffusion, heat source and sinks at boundaries, and internal absorption
of solar radiation. Boulot and Daubert (16) developed a mathematical
model of intrusion of salinity in stratified layers (salt wedge). The
model deals with unsteady flows of two fluids with a small density dif-
"ference. The model has been used to calculate the salt wedge in the
grand Rhone, France. Comparisons of the results with measurements show
the position of the salt wedge and its.movement under the effect of
tide. Difficulties of calibration and impossibility of getting data

for a stationary salt wedge were reported.
Outline of the Thesis

This thesis presents work in the primitive-variable finite differ;
ence solution procedure for two-dimensional axisymmetric transient
flows, with a primary interest in the steady state solution. Based on
the Los Alamos SOLA (17) technique, the present work extends this to in-
clude the computation of mass diffusion and buoyancy forces. Complexi-
ties can be added as needed such as a non-uniform grid, turbulence,
swirl, or a semi-implicit method for each time step (18). Predictions
of the near flow field of a jet induced by an axial-flow propeller pump
into a stratified environment are given in Chapter IV showing good
agreement with the experimental data. This shows that a useful and
valuable tool is now available to show the influence of design para-

meters on flowfield mixing.



CHAPTER 1II

THEORETICAL MODEL

The modeling and prediction technique presented in this work is' the
development of a primitive-variable finite difference procedure for two-
dimensional axisymmetric flow to represent flows of stratified fluids.
The technique is based on the Marker and Cell (MAC) method in the form of
the SOLA algorithm (17). The computational code using an Eulerian finite
difference formulation solves directly for the primitive pressure and
velocity variables. In addition, the velocity components are positioned
between nodes where pressure and other variables are stored. At each
time step the time advanced values of U,V are substituted in the continu-
ity equation and then the pressure and velocity are corrected through an

iterative process until the continuity equation is satisfied.

The Governing Equations

For incompressible stratified fluid flow the partial differential
equations in cylindrical (axisymmetric) coordinates of conservation of
mass (continuity equation), momentum, and mass diffusion may be taken in

conservative form as (18)

U , 3V | U _
ox * Ay * x 0
2 2 2
.g%+.5a_('u2)+_aa__(w)+.u_=.__]; .g_P--}-L(B——zg-FE—g
X Y P X Py g dy
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. X
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1 1
U 82V 32V 1 av
o, Tt T
°1 ox oy x
2 2
om m. U d m o m om
1, 3 3 1w 1 1,171
e Ty (Mg Uty (M) =0 [ ¢ T X ox ]
l'sc 9x dy
ml + m2 = 1

(1)

171 2 72
where
x = radial coordinates;
y = axial coordinates;
U,V = velocity components in x (= r) and y direction (ft/sec);
ml,m2 = mass fractions of two different density fluids, of densi-
. < i
ties Py and P, (pl 02),
. . 2
U = absolute viscosity (lbm-sec/ft’);
"o = Schmidt number;
sc
p,pl = weighted average density and the reference density
3
(slugs/ft7);
g = gravitational acceleration = (gx, gy) = (0, =32.2)
‘ 2
(ft/sec ); and
P = deviation from hydrostatic pressure.

Notice that the actual pressure P which

motion has been replaced by two separate terms:

is a function of depth and fluid



P=°pP - g ph
y

-g p.h hydrostatic pressure

y 1

where h is the depth below the surface and P is the deviation from the
hydrostatic pressure. This simplifies the righthand side of the y-equa-
tion when both the pressure and buoyancy are small and this, among other
things, reduces numerical error (see Appendix D).

The diffusion equation is used to calculate the mass fraction m

1

and m, and using this one can calculate the weighted average density and

the release water quality (dilution factor).

The Flow Domain and Grid System

The flow domain shown in Figure 1 represents the physical problem
and it has a vertical axis of symmetry provided with a downward flowing
jet of f£fluid from the rotor disk (propeller). A vector velocity plot,

in Figure 3, shows the flow field velocity in a typical computation

cycle at t 0.56 second to further illustrate the problem. Initially,
two fluids occupy positions above and below the interface as shown, so
that their mass fractions are m, = 1 and m, = 0 (for h > hl' the height
of the interface) and vice versa. The release gate of the dam is repre-
sented in Figure 4 by a circular opening in the bottom of the flowfield
under the propeller. This may not represent exactly the release gate in
the dam because of some structural details where the position of the re-
lease gate is on one side of the propeller and this cannot be represented
in an axisymmetric flowfield. However, this representation will be

fairly acceptable to represent the amount of release water, the position

of the gate (roughly), and to calculate the release water quality



(dilution factor). The available volume of the flow domain is very
limited and so as to allow the outlet of release water without drama-
tically decreasing the fluid level, there is an equal amount of input
fluid shared between the top and bottom layers in amounts egual to the
epilimnion and hypolimnion water released. The feeding is at two dif-
ferent locations in such a way that the epilimnion water is feeding
through a circumferential opening into the upper layer and does not dis-
turb the density profile. Also, the large circumferential opening allows
the feeding to be at low velocity in order to cause no disturbance to the
flow field. As with the epilimnion, hypolimnion water is fed into the
bottom layer, as shown in Figure 4 which represents the mesh arrangement.
This feeding allows the fluid to maintain its level, thus simulating
an infinite width or volume of water (as in the case of big lakes). The
general mesh arrangement is shown in Figure 4 where the cylindrical
region is divided into equal sized rectangular cell divisions with a
width of Ax and height Ay. The mesh region containing fluid consists of
IBAR cells in the x-direction which has the index i, and JBAR cells in
the y-direction with the index j. The flow domain is surrounded by a
single layer of fictitious cells on all sides to allow simulation of the
required boundary conditions. These fictitious cells increase the total
number of cells so that IMAX = IBAR + 2 and JMAX = JBAR + 2. A single
cell is shown in Figure 2; the pressure and mass fractions ml,m2 are
located at the cell center, and the radial and axial velocities on the
right and top boundaries, respectively. Thus (see Figure 4), the normal
velocities lie on the physical boundaries of the flow domain while the
pressure and mass fractions are displaced half a cell interval inside

the flow field boundary.
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Boundary Conditions

The finite difference form of the governing equation (to be pre-
sented in Chapter III) are solved by a time-march procedure applied to
the flow domain cells. Boundary conditions are imposed on the ficti-
tious cells surrounding the mesh by setting appropriate velocity values
in these cells.

The right boundary is a no-slip rigid wall with U = V = 0 on the
boundary. Because of the locations of these variables, this is imposed

via:

Usmr,s = © .
(for all J)

= -v
ViMax, g Ml,J

where IM1 = IMAX-1 and JM1 JMAX-1.

Il

The lefthand boundary is the axis of symmetry with free slip condi-
tions and in this case the normal (radial) wvelocity U will be zero and
tangential velocity V will have a zero normal gradient with v 0. Thus

9x

(for all J)

Free-slip conditions are taken also at the top boundary (along the free
surface) with V = 0 and %§-= 0; no-slip conditions are taken at the bot-
tom boundary where both U and V will be zero. The mass fraction boundary
condition will have a zero normal gradient at all the boundaries. The
boundary conditions are imposed on the velocities after each time step

and after each sweep of the mesh during the pressure iteration (see Chap-

ter IV). This includes the specification of known inlet and outlet
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normal velocities. The propeller or the rotor disk has specified down-
ward velocity values imposed at its location. The outlet flow (through

the release gate) velocity is specified from the nondimensional flow

Propeller flow rate
Release flow rate

rate ratio Q* = , since the propeller flow rate is
specified. The inlet flow into the domain of interest is meant to allow
re-entry of the released water in order to maintain the fluid level con-
sfant. Inlet flow velocities are specified so that the total mass of
water inside the flow domain is constant. The inlet mass flow rate of
epilimnion water is equal to its fraction of the release water multiplied
by the release water mass flow rate. It ig similar for the re-entry of
hypolimnion water. The calculation is shown in detail in Chapter IV and

the resulting velocities are imposed as boundary conditions for the next

time-step.



CHAPTER IIT
SOLUTION PROCEDURE

The steps for one calculation cycle can be summarized in three
steps:

1. Computing the velocity guesses for all the cells.

2. Adjusting the velocities and pressure iteratively to satisfy
the continuity equation by making appropriate changes in the cell pres-
sure until velocity divergence becomes zero.

3. When the convergence is achieved, the pressure and velocity
values will be at the advanced time level and can be used to start cal-

culation for the next time step.
The Finite Difference Equations

The finite difference technique used for the governing equation is
basedvgn the Marker and Cell (MAC) method (17), using the estimates of
one-sided first derivatives, centered first derivatives, and centered
second derivatives in representing the governing equations in the finite
difference form. Subscripts n and (blank) are used to indicate t and
t+ At time level, respectively. Most MAC reports use a fraction index

for velocities located at the cell edges like U,

to represent the
i+l/2 P

radial velocity at the righthand face of the cell (I,J). In FORTRAN
language fractional indexes are not allowed; therefore, the index of the

cell will be used for all the variables located in edges or center of

12
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the cell. In the equation the time derivatives are approximated by a
one-sided derivative. Spatial derivatives are approximated by central
differences using t-time level values. In representing the convection
terms, the upstream differencing is required. The eguation is now set
for one forward time-step starting with initial values and boundary con-
ditions through the mesh. A time-march process is then used to advance

the computation to a steady-state final solution.

u, =0t A @ . -0 ) +g - FUX - FUY
i,3 i,3 Ax i,3 it+i,J ble
- FUC + VISX}
n 1 n n
v, .=, ,+ A {— (@, ,-P , )+ - FVX - FVY
i,j i g Ay " i,] i,j+1 gy
- FVC + VISY}
n
S. . =8, .+ At {- FMX - FMY - FMC + VIMX} (2)
1,3 1,]
where Si 3 is the symbol used for mass fraction ml in the computer pro-
14

gram. The four terms on the righthand side of each equation, FUX, FUY,
etc., are shown in Appendix B. The coefficient & in these terms (see
Appendix B) is a constant .that gives the desired amount of upstream
(donor cell) differencing in the convective terms. It takes a value be-
tween 0.0 and 1.0, a value of zero changes the difference equations to
the original MAC formulation (centered in space), but in this case in-
stability problems arise. When o equals unity, this gives the full up-
stream or donor cell form which is stable (although introducing trunca-
tion or discretization errors) provided that the fluid is not allowed
to cross more than one cell in one time step.

The new calculated velocities using conservation of momentum

(Navier-Stokes equations) will not, in general, satisfy the continuity
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equation. Expressed in the finite difference form, the continuty equa-

tion is:

Yax a-1s Vi3 7 Ve, 7O 3)

Iterative Procedure

The incompressibility condition is imposed by iteratively adjusting
the cell pressure. If the divergence D of a cell (the lefthand side of
the continuity equation) is positive, this corresponds to a net mass out-
flow from the cell, so the pressure is decreased to draw it back. If the
divergence is negative, then there is a net flow of mass into the cell,
so the cell pressure is increased to eliminate the flow. In this way the
divergence of each cell can be driven to zero by adjusting the pressure
iteratively, and this is done by sweeping the mesh rows from left to right
starting with the bottom row. Terms in the equation are evaluated at a
time-level t+ At. The pressure change Ap used to drive the divergence D

to zero is:
2 2
Ap = -D/[2 At (L/Ax" + 1/Ay7)] (4)

The new cell pressure p+ Ap is obtained by adjusting the velocity compo-
nent on the four faces of the cell; this adjustment given by a linear

analysis is:
. . =0, . +A
U U, 5 t Ap/Ax
u. . = U, 3 - At Ap/Ax
4

vV, . = Vi 3 + At'Ap/Ay (5)
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Vi,j~1 = Vi,j-—l - At Ap/Ay

Substitution of Equation (5) in the divergence Equation (3) and solving
for Ap gives Equation (4). The convergence of the iterations is achieved
vwhen,the D value of each cell is less than g; a prescribed small positive
quantity in the order of 10—3 times the inlet mass flow rate can be ad-
justed to obtain higher accuracy. Convergence can be speeded up by mul-
tiplying Equation (4) by an over-relaxation factor w where 1 < w £ 2. A

value of 1.8 is often optimum in typical 15x 15 grid sizes.
Imposition of Boundary Conditions

Boundary conditions are imposed on the velocities and mass fractions
after each time step and after each pass through the mesh during pressure
iterations. Calculations of the inlet velocities, weighted average den-
sity, and dilution factors are done each time step starting with calcula-

tion of the propeller flow rate.

2
Q0 =V 7 r2 =V 7 (Ax)
p p p

where r = Ax from Figure 4. The nondimensional flow rate, Q%*, is the

ratio between propeller flow rate and release flow rate, Qrel:
= *

Qo1 = 272

and the release water velocity will be

2 2
Veel = Qrel/7TR - Qrel/ﬂ(2AX)

where

w
]

2Ax (from Figure 4)

(IREL - 1) Ax
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Then the epilimnion and hypolimnion inlet flow rates will be calcu-
lated using release water velocity and mass fractions. The released

epilimnion water flow rate will be
i 2
= . R. - A,) V
Qe izl Mll (m i 1) rel

where

and the released hypolimnion flow rate is

Il b3

2
M.. (MR, = A,)) V.
R 1 re

Qh - 2i

. 1
i

1

where Mli is the mass fraction of the epilimnion water and M2i is the
mass fraction of the hypolimnion water. Then the input velocity for epi-

limnion (feeding in the top layer) is:

Upe = Q727 (IBAR)Ax (h)dy

and for hypolimnion (feeding in the bottom layer) is:

UTB = Qh/ZW(IBAR)Ax (h) Ay

where (IBAR)Ax is the radius of the flow field and (h)Ay is the inlet
flow circumferential opening height; it is the same for the top and bot-
tom inlet openings.

Then the release water density is calculated using Qe and Qh:

Qe pe * Qh ph

p -
2
rel IRV
rel

Then the dilution factor can be easily calculated as follows:
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P~ °h Dl - 02

"The dilution factor represents the percentage of epilimnion water in
the release water; in other words, it represents the release water gual-
ity. The dilution factor, DF, has a maximum value of 1.0 when the re-
lease water consists of epilimnion, i.e., prel = pe. The minimum value

" for DF is zero, and this means the release water is made up of hypolim-

nion water, i.e. =p .
! r Prel h

Convergence and Stability

Convergence of the finite difference equations to the steady-state
solution is established by taking many forward time steps. It has been
found that the solution comes to a steady state condition after about

300 time steps which are equal to a nondimensional time t* = t/tc of 6.6,

volume under the propeller

Th hoice of time increment
propeller flow rate e choilce of t * &

where t =
c
must be restricted (for stability) in two ways. First, f£luid should not
pass through more than one cell in one time step. So At must be less
than (usually 0.25 to 0.33 times) the minimum cell transit time taken

over all cells.

. Ax Ay
At < min
{lul ' V|}
When a nonzero value of kinematic viscosity is used, the momentum should

not diffuse more than one cell in one time step; a linear stability ana-

lysis shows

2 2
1 Ax Ay

VAt <
2 2
2 Ax + Ay
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When the time increment At satisfies the above two conditions, then the
upstream (donor cell) differencing can be achieved by choosing o. larger

than (1.2 to 1.5 times) the righthand side of the inequality:

UM, VAt
Ax 'l

1> a0 >max (|
The maximum value of o is 1.0. This will provide stability at the ex-
pénse of introducing diffusion-like truncation errors. Figure 5 shows
the effect of variation of a on calculated mass fractionnﬁ_at some loca-
tions in the flow field. A value of o = 0.6 is being used in this pro-
gram. Initial velocity and field velocity do not satisfy the continuity
equation during the first time step. If these velocity values are used
immediately in the diffusion equation, gross errors will occur in the

computed m., mass fractions values, and hence concentration values.

1
These obvious errors may be reduced by shortening the time step and/or
not allowing computation of ml, until the first short time step has been
accomplished and new velocities (which do satisfy tﬂe continuity require-
ment) have been found. The latter approach was found to be more accurate
and it has been used.

During computations the axisymmetric cylindrical’finite differenceir
form of the mass diffusion equation exhibited an unstable behavior, and
the calculated values of the mass fraction m far exceeded the wvalue of

1.0 (which is the maximum possible value for the mass fraction m, or m2);

1
furthermore, this ml computation diverged.

In spite of the axisymmetric cylindrical finite difference form of
the mass diffusion equation, the two-dimensional version was stable and
the my computation did converge. This indicated that the source of

errors was additional terms occurring in the axisymmetric cylindrical
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polar form of the equations. Thus the new terms of the equation (in con-
servative form) were examined. It was noticed that errors oécurred when
Using an upwind (donor cell) (19) difference form for the cylindrical
term Uml/x. Normally this aids stability at the expense of a slight in-
accufacy. However, stability was no problem in this case and so the cen-
tered difference form was used for this particular term. The computation

was stable and converged.
Accuracy

Accuracy is established by using small space and time intervals.
Choice of the interval size will depend on the expense of computer time.
However, the mesh increments must be chosen small enough to resolve the
'expected spatial variations in all dependent variables taking into con-
sideration, of course, computing time and memory requirement limitation.

The main dynamic effect of the flow field is simulated; however,
the effect of turbulence should be inspected for any significant changes
it may have on the flow field. 1In order to do that, an algebraic turbu-
lent viscosity model is considered to calculate the order of magnitude

of the - eddy (turbulent) viscosity; the Prandtl's mixing-length model
2 19U
He =P zm |3y
where zm is the mixing length. The mixing length, Rm, for a round jet
in a stagnant surrounding (20) is

2 = 0.075 ¢
m

where § is the jet half width.
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So the turbulent viscosity for the hydraulic model using its data
and dimensions (which is the same for the computer model) at a point
under the propéller which is chosen to give the maximum eddy viscosity

value will be:

_ 62.4
He 322

0.7 3

0.1875

2 -
(0.1875 x 0.075)° | =1.43 x 10

The 1apinar dynamic viscosity used was U = 2.73 X 10“5 and so the ratio

between ut and p will be

He

jr-= 52

which is very small to cause a significant difference in the solution.
This value for eddy viscosity was tested by using it throughout the
entire flow field instead of the laminar viscosity, and a difference of
(5 percent less than experimental and predicted results) was noticed.

The caseAtested was for Frd = 1.86, Q* = 0.44, and D* = (0.211. The ratio
was increased to 100 and the difference was about 7.5 percent less. Com-
pared to an experimental data uncertainty of 15 percent, the turbulence
model effect looks so small that we can use the present model (which
models the dynamic effect and not the turbulence effect) effectively to
predict the flow field. Another important thing is that the present pro-
cess is different from the lake mixing, where the goal is to mix the
whole lake with no release water. In this case the turbulence effect is
more effective than the case for local destratification with release
water outflow where released water will reduce the mixing effect.

The propeller used in the hydraulic model is an axial-flow propel-

ler. The jet is considered axial and circular although it may have some
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nonuniform swirl. The computer model considering an axial circular jet
in the computations gave good predictions compared to the experimental

results. This is an indication to the weak effect of swirl.



CHAPTER IV
RESULTS AND DISCUSSION

?he results presented and discussed in this chapter refer to com-
puter predictions made for low speed laminar nonswirling stratified
flows in an axisymmetric simulation. Predictions were made for the
effect of time, densimetric Froude number Frd, flow rate ratio Q*, nor-
malized diameter D*, and the metalimnion location Z;, on the dilution
factor, DF. Also, the effect of densimetric Froude number on penetra-
tion depth Z; is presented. All experimental data used for comparison

purposes are from a previous study (9), except for Figure 28 which was

~performed during this study.
Dilution Factor as a Function of Time

The time required for the density of the release water to change
(from the hypoliminion density value) is in the order of nondimensional
time t* = 1. This means that the jet penetrated as far as the release
gate during this time period. Also in this period of time the dilution
factor increases from zero to a maximum value and then levels off to a
steady state constant value, as shown in Figure 6. The t* value requir-
.ed for the jet to penetrate to the bottom is a storing function of Frd.
It can be seen from the figure that the time required for the dilution

factor to reach steady state is t* = 4.88 (for a densimetric Froude num-

ber of 1.58). This is different for other values of Froude number.

22
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Dilution Factor as a Function of Frd

The dilution factor is an indicator of the release water quality; it
represents the percentage of epilimnion in the release water. The dilu-
tion factor is a function of several parameters, namely, the densimetric
Froude number Frd, the normalized‘propeller diameter D*, the flow rate
ratio Q*, the nondimensional metalimnion depth Z;, and penetration depth
Z;. figures 7 through 18 show the dilution factor as a function of den-
simetric Froude number for different values of Q* and D*, and show the
prediction along with the experimental data of the hydraulic model of the
flow field. Figures 7 through 9 show the dilution factor for D* = 0.211
and different values of Q*. In Figure 7, where Q* = 0.44, the prediction
shows a good agreement with the experimental data, where the dilution
factor drops to zero at Frd = 0.75 for both models. However, the maximum
value of the dilution factor predicted is lower than the experimental
data (6 percent lower).

Figure 8, for Q* = 2.50, shows a good agreement with experimental
data, where the maximum value of the dilution factor predicted is equal
to the experimental value. Dilution factor drops toAzero at Frd = 0.925
for both computer and hydraulic models. However, at Frd = 1.12, the
predicted value of DF shows a higher value than the experimental data.
This can be explained by the different position of the release gate in
the computer model (see Chapter II). Figure 9, for Q* = 0.17 (high re-
lease flow rates), shows a very close low value of DF for all values of
Froude number. Prediction shows almost the same values as the experi-

mental data, except they are increasing with Froude number while experi-

mental values are decreasing. This is perfectly acceptable where we
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expect the dilution factor to increase with Frd. Figures 10 through 13
show the dilution factor for D* = 0.183 and different valuéé of O*. 1In
Figure 10, for Q* = 0.75, predictions agree with experimental data very
well above Frd = 1.25; meanwhile below this value, a slight difference
of about 4 to 12 percent higher than experimental values was noticed.
The value of Frd, where DF drops to zero, is lower than experimental
values (5 percent lower). The same general good agreement is displayed

by Figure 11 for Q* = 0.20, although at Fr_ = 1.40 the experimental

d
value of DF is slightly higher than predictions.

The predictions in Figure 12, for Q* = 0.30, are lower than the
experimental data of the hydraulic model at Frd = 1.40 and 2.10. This
can be explained by the position of the release gate which is right
under the Jjet, and because of the high release water flow rate compared
to the propeller flow rate. This extracts much of the hypolimnion (bot-
tom water) through the annular opening (annular opening is used for D*
= 0.183 and 0.131, in order to model the release gate area because of
the limitation of the axisymmetric model) which is different in the
hydraulic model, where the release gate on the side of the jet can ex-
tract more of the epilimnion water than the annular lower opening.

When we have a low release water flow rate Q* = 2.50, this means
that more mixing is taking place at the release gate which means a high
value of dilution factor, and indeed we have a higher value of DF in
Figure 13. 1In this case the prediction is higher because the low re-
lease flow rate allows the jet to flow away radially in all directions.
This will enable the annular opening to have more epilimnion water than

the release gate of the hydraulic model, which is on one side only.
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Figures 14 through 16 represent the dilution factor as a function
of Frd for D* = 0.131 and different values of Q%*. Predictions in Figure
14, for Q* = 0;44, show a somewhat similar behavior to Figure 10 in
which the Frd value, where DF drops to zero, is lower than the experi-
‘mental value; this can be referred to the position of the release gate
as mentioned before. This effect of the position (at high release
water, flow rate) gives an earlier start for the dilution at a lower
Froude number than experimental data, but as Frd increases and reaches
a constant value, the experiment gives a high dilution factor value
(this was discussed previously in Figure 12).

- Figure 15, for Q* = 0.18, is very similar to Figure 12, and the
discrepancy with the experimental data can be explained in the same way.
As for Figure 16, for Q* = 2.60, it is somewhat similar to Figure 13,
although discrepancies with experiments are greater at low Froude num-
ber. The diameter effect on the Frd value, when mixing starts and thus
DF, can be observed from the formally discussed figures, where for D* =
0.211 DF starts at a Frd value of 0.80, for D* = 0.183 DF starts at a
Frd value of 1.10, and for D* = 0.131 DF starts at Frd value of 1.50.
Meanwhile, the prediction starting value of the dilution factor is at
Frd between 0.80 and 1.00 for all diameters. This is because in the
hydraulic model (with the release gate on one side) as the jet diameter
decreases the distance between the jet boundary and the release gate
increases, which delays the starting value of the dilution factor where
in the computer model the gate is under the propeller. Thus, the pro-

peller's normalized diameter D* has no effect on the starting value of

Frd when mixing takes place in the release water.
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Figures 17 and 18 are for D* = 0.117, where Figure 18, for Q¥ =
0.17, is very similar in behavior to Figures 11 and 12 and éan be ex-
plained very much the same way as the two mentioned figures.

Figure 17, for Q* = 0.43, has a great discrepancy with experimental
data for all values of Froude number except at Frd = 2.10, where the two
graphs coincide. The thing that prediction graph is similar in behavior
to ali other graphs predicted and experimental where it has a concave
curvature (downward), while the experimental graph in Figure 17 is con-
cave upward and then downward after the inflection point at Frd = 2.10.
This favors the prediction graph from this point of view; however, ex-
periments give a higher value for DF (at Fr_, = 2.10 and higher). This

d

can be explained the same way as in Figure 18.
Dilution Factor as a Function of Q¥

The relationship between the dilution factor and the flow rate
ratio Q* are represented in Figures 19 through 21. Figure 19 shows the
dilution factor as a function of Q* for D* = 0.211 and Frd = 1.00 and
2.00. The dilution factor is strongly dependent upon Q* for Q* < 0.6
where as Q* increases the release flow rate decreases. This means more
mixing will be allowed to take place near the release gate (bottom).
Thus higher dilution factor predictions show good agreement with experi-

ments for Fr., = 2.0, but for Fr

a = 1.0 the two graphs agree for Q% <

d

0.9. Then the experimental graph starts dropping (this is explained in
the discussion of Figures 8 and 13).
Figure 20, for D* = 0.183, shows a greater discrepancy between pre-

diction and experiments, especially at Fr_, = 1.0 for Q* > 0.3; this is

d

because of the diameter effect where mixing starts at higher Froude
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number as D* decreases. This effect is not valid for the computer model,
as discussed before in Figures 14 and 15. Figure 21, for D; = 0.131, is
very similar in behavior to Figure 20, where the diameter effect (at
higher values of Q*) is shown in this graph also at Frd = 1.50 (higher
than Frd for D* = 0.183) and this can be shown very clearly in Figure

16. Predicted values of the dilution factor are higher than experi-
ﬁental values for high Q*; this is explained in the discussion of Figure

13. Figure 21, for D* = 0.117, shows predictions for the dilution fac-

tor, and the behavior is somewhat similar to Figure 19.
Dilution Factor as a Function of D¥

The normalized diameter D* effect on the dilution factor is shown
in Figures 22 and 23 for Q* = 0.44 and 2.50, respectively. Figure 22,
for Q* = 0.44, shows an agreement in behavior between predictions and
experiments for Frd = 1.5 and 2.0. The low value of dilution factor at
D* = 0.117 is referred to the diameter effect on Froqde number value to
begin mixing at the release gate which was discussed before. The figure
further shows that for this value of Q* (0.44), a normalized diameter D¥*
value of 0.131 gives the best results for experimental data and predic-
tions for a Froude number value of 2.0.

The same value of D* of 0.131 still gives the best results (maximum
dilution factor) for Q* = 2.50 in Figure 23 for predictions, but for the
experimental data it is entirely different. First, at Frd = 1.50 the
diameter effect on the starting value of Frd is very clear at D* = 0.131
for the experimental graph, while the predictions are not affected by
such an effect, as explained previously. Second, at Fr_ = 2.0 the ex-

d

perimental graph gives maximum dilution factor at D* = 0.211, where as
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the diameter D* increases the momentum flux increases (for .high propel=-
ler flow rate or high Q*). The reason the prediction gives‘high values
at D* = 0.131 and D* = 0.183 at this value of Q* is explained in the
discussion of Figure 13. In addition, for D* = 0.117 and D* = 0.211

the release gate was not annular because the hydraulic release structure
was different from the structure for D* = 0.183 and 0.131, where the
Cave Run release structure was used for D* = 0.211 and 0.117; the

Okattibbee release structure was used for D* = 0.183 and 0.131.
Dilution Factor as a Function of Z;

The relation between the dilution factor and the normalized metalim-
nion location is presented in Figure 29. The location of the metalimnion
has a strong effect on the penetration depth and thus the dilution fac-
tor. As the metalimnion (interface) height (above the base) increases,
buoyancy forces increase and this will hinder the jet penetration and
thus the dilution factor (which is a function of the penetration depth
Z*).

p .

The erffect of the metalimnion location can be shown in the expres-

sion for the penetration depth prediction

Y pb - PO

jht po

2
2 2
vV =V (92) - 2g
y o Yy

dh vy 2 CD; y > ht

where (H - E;) is the metalimnion location height above the base. The
‘equation shows that the second term which represents the buoyancy force

is a function of E; and y the penetration depth.
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Penetration Depth Prediction

The penetration process of the jet is shown in Figures 24 and 25
with a nondimensional time t* increment, where t* = t/tc and tc' the

characteristic time, is egual to

£ = Volume under the propeller
c Propeller flow rate

The two figures show the location of the interface (metalimnion) in the
flow field for Frd = (0.35 in Figure 24 and Frd = 1.05 in Figure 25 dur-
ing a t* value of 1.37. The figures show very clearly that at the low
value of Froude number the jet stopped penetrating at a certain depth
and did not penetrate further as the time increases. At Frd = 1.05 the
jet did penetrate to the bottom of the flow field at t* = 1.37. The
characteristic time for the two cases was tc = 1.46 seconds.

Penetration depth as a function of densimetric Froude number is
shown in Figures 26 and 27. In Figure 26, for D* = 0.211, it is evident
that the prediction and the experimental data of the hydraulic model
match exactly. The reason we did not have such an excellent agreement
in the other cases was because they involve the release gate structure
diffegence between the computer and hydraulic model, where this has no
effect (in this case) because the release flow rate is zero, Q* = .
The figures show also some predictions calculated using an empirical
expression fo; the penetration depth (Appendix C):

Vi = v° (CD ’ - 2g fy i)--:—E-Q-dly for y 2 CD

o _50 o po

The penetration can be calculated using this equation by setting Vy = 0
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(stagnation point) and solving for y. The penetration depth predictions
made using this equation showed a difference (up to 5 perceﬁt) from the
experimental data, as shown in Figures 26 and 27.
Figure 27 presents some experimental data of the hydraulic model
"for D* = 0.175 and Z% = 0.40 (where Z; used for all former cases was
0.6) along with predictiong made using the preceding equation. The pre-~

dictions shows good agreement for Fr_ > 0.75; below that a difference of

d
4 to 12 percent was noticed where predictions were slightly higher than
experiments.

Modeling of the flow field in the computer model was performed by
matching the densimetric Froude number, but the physical dimensions used
in the hydraulic model were actually matched (and not the nondimensional
parameters such as D*, Q*, and Z;). The velocity used was chosen as 0.7
ft/sec, an average of the velocities used in the hydraulic model experi-
ments. The velocity was kept constant and different stratification (Ap/p)
values were used to match the densimetric Froude number (see Appendix E).

Most of the predictions in this study were run for a value of L*/D*
= 1.0, where L* is the nondimensional propeller depth except for D* =
0.211, where a value of L* = 0.183 was used in this case.

The release gate area used in the computations was increased in
order to slow down the velocities on the bottom near the gate, but the

release water flow rate, Q , was not changed. This change in area

rel
was used to eliminate some of the differences between the release struc-
ture in the hydraulic model and the axisymmetric model, where the velo-

cities (on the bottom under the jet) are higher in the latter model be-

cause the release gate is under the jet.
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Predictions for large D* values (D* = 0.211 and 0.183) were more
accurate than the other small D* values. This is due to the difficulty
in modeling the release area for small values of D* (where the grid size
is taken‘as a function of D*). This can be solved@ by using a very fine

grid; however, this may be very costly.



CHAPTER V
CONCLUSIONS
Summary

Computer simulation of the near flow field of a jet induced by an
axial-flow propeller pump (used to mix the epilimnion high quality water
with the released hypolimnion water) is accomplished by solving the
governing equations of the flow field. The two-dimensional Los Alamos
SOIA prediction technique (with a finite difference scheme based on the
Marker and Cell method) has been modified to include the computation of
mass diffusion and buoyancy forces in an axisymmetric stratified flow.
The finite difference equations are in terms of the primitive pressure-
velocity variables. Prediction and interpretation of the experimental
data show that simulation of the flow field is .adequate for design pur-
poses; futhermore, the simplified code represents a useful (low cost)

basic tool to show the influence of the different design parameters on

the flow field.

Conclusions

The conclusions derived from this study may be stated as follows:
1. A prediction procedure for .an axisymmetric stratified flow has
been developed to predict the dilution factor (released water quality)

- and the jet penetration depth.

32
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2. The main dynamic effect was modeled using continuity, Navier-
Stokes, and mass diffusion equations. The turbulence effort on the flow
field was shown to be small for the velocities used in the computations;
therefore, the use of a turbulence model was not needed at this time.

3. The computer simulation on the basis of a circular jet without
swirl gives adequate resul?s for penetration depth and dilution factor
within the limits of accuracy of currently available data.

4. Predictions were made of the effect of densimetric Froude num-
ber Frd, flow rate ratio Q*, normalized propeller diameter D*, and meta-
limnion location Z%, on the dilution factor DF, for a low speed laminar
nonswirling flow in an axisymmetric stratified flow field simulation,
and the effect of some of the above parameters on the penetration depth
are as follows:

/2

a. The densimetric Froude number Fr_ = V/[g(Ap/p)H]l was the

d
major modeling parameter, and it was adequate for comparing
the computer model and the hydraulic model. The dilution
factor is a strong function of Frd when Frd is less than 1.5
for large D* values (0.211 and 0.183), and Frd is less than
1.8 for small D* values (0.131). For values of Frd larger
than 1.5 for (D* = 0.211 and 0.183), and 1.8 (D = 0.131) the
dilution factor is a very weak function of Frd.
b. The dilution factor is a strong function of Q* for Q* wvalues
less than 0.6, and when Q* is greater than 0.6 the dilution
factor is a weak function of Q%*.
c. A small normalized propeller diameter D* value (0.131) gives

a maximum dilution factor at low Q*, and large D* gives a

maximum value for high values of Q%*.
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d. The effect of D* on the value of Frd where mixing starts
(DF begins to exceed zero) in the hydraulic model was not
adequately simulated by the axisymmetric computer model.

e. The dilution factor DF tends to decrease as the metalimnion
(interface or thermocline) height above the base increases.

f. Computer pred%ctions of the penetration depth as a function
of Frd was accurate (as compared with the very limited avail-
able experimental data) in the absence of release flow.
Penetration depth Z; is a strong function of densimetric
Froude number.

5. An empirical expression for prediction of the penetration depth

has been introduced; it exhibits good prediction compared with experi-

mental data.
Recommendations for Further Study

Recommendations for further study of the flow field may be stated
as follows:

1. To model an off-center release outlet by means of a three-
dimensional model in order to represent the release structure correctly.

2. To study the effect of trubulence on the flow field for high
propeller velocities.

3. To study the possible effect of swirl for high propeller velo-
cities by solving for the swirl velocity along with axial and radial

velocities using the Navier-Stokes equations.
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The four terms on the righthand side of Equation (1) in Chapter II

are defined by:

U-Equation

FUX =

FUY

I
=
<
a

- alvi,j—l + Vi+1,j—1I

1 2 2
FUC = gD P35 * Ui, g -

+ + Jw, . -u, ..
0‘IUi,j Ui+l,jl(Ul,j Uiet,s)

+ a|U, .+ U, .|(U, .- U, )
l i-1,3 1,31( i-1,3 i,] ]

VISX

Il
<

|
N
c
+
c
+

1
N
c

2 Yi-ja1 i,3

Ax” (1-1)

V-Equation

1
FVX = —— U .+ . . . . TV, .
4Ax L i,3 Ul,j+l)(vl,j l+lrj)

+alu, . +U | (v
1

_v .
3 %,50 Va5 7 Vi, )

- (U ) (V, L F VvV, L)
-

. + U, .
i-1,3 Ul—l,j+l 1,3 i, 3

| (v - v, )1

+ . . .
OlllUl i-1,3 i,]

.+ U, .
-1,3 i-1,3+1



70

1 2 .
F = — [(V, . +V, |, + 0|V, ., +V, . A
vy 4hy L i,3 l,j+l) ]Vl,j Vl,j+l!(vl,j i, j+1
W, .V, D -alv, L+, ., . o= v, )]
i,j-1 i,3J i,j-1 i,J i,j-1 i,J
FVC=————1———[(U + U ) (V + Vv )
8Ax (i-1.5) i3 i,9+1° VUi,5 i+l
+ . + U, . . .+ Vv,
(Ui—l,j Ul-l,j+l)(v1—l,j Vl,])
+ + -
@lUy 5+ U5 5l g 5 = Vi g
+ S+ - .
U )5+ Ui gl Viog,5 = Yy, 500
VISY = '\)[—l— (v - 2V + Vv )
JUERR o P i, g i-1,3
s 1w V. L+ V )
Ayz i, j+1 i, i,j-1
1
+ — (V. .~ V, )]
2 -
20x”(i-1.5) i*ed 7LD
m-Equation
FMX = =—=— [U, . (S. . + S. ) +oalu, Ll(s, . -8, . .
2Ax i,J i,3 i+l,3 i,3 i,J i+l,3
- U, . (S, + S, - a|U .| (S, . = S.
i-1,j ( i-1,J 113) l llj!( i-1,3 l,])]
FMY = ==— [V, . (S, . + S, . ) + alv, ., . -8, ..
2Ay i, i,J i,j+1 i, jt 1,3 i, j+1
- V. . S, . + S, .) - oV, . S. - S
i,j-1 ( i,j-1 lrJ) | 1.3-1|( i,j-1 1,3)]
FMC = L [T (s
4Ax (i-1.5) i,J i, 3 i+l,J
+ U S. + S
i-1,3 ( i-1,3 1,3)]
u 1 1
VIMX = [—5 (s, . - 28, . + 8, )+ —= (S, .
- 2 +
pl sc  Ax i+l,3 i, 3 i-1,3 Ay i,j+1
. 1
=25, . +58, . )+ —F— (S - S, )]

20x? (i-1.5) iTHd 7L



APPENDIX C

PENETRATION DEPTH ANALYSIS

71



72

Jet penetration can be analyzed approximately at the stagnation
point considering potential flow by Bernoulli's equation. Aéplying
Vernoulli's equation to the central stream line from the propeller plane
to the stagnation point s (see Figure 31) where the axial coordinate h

is considered in the downward direction.

2 2 )
p_ Vv p Vv

o s
o 2 s 2 poghs (6)

Considering that the density of the jet to be po the top density
(epilimnion), VO the propeller velocity, PO the reference pressure, P
stagnation pressure, and VS the velocity at stagnation point (which

equals zero), and then rearranging Equation (6) gives:

[e]
= (P -P) - h 7
5 (s O) P Ih (7)

In the absence of strong currents below the stagnation point, we

assume that the pressure at the point s is egual to the pressure anywhere

in the lake at the level hS where

h h
S S
P -P = = + - h
s o gfo pdh = gp_ h_ qfo (p po)d , (8)
Substituting in the Bernoulli equation,
2
po VO hs
= h_ + - - h
5 [gp b, +9 [ (o -p )dnl - p gh_
2
VO s p - po
— = - = 9
5=l 5@ (9)

where

Vo = propeller-induced central velocity;
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h = jet penetration depth;
p = epilimnion density; and
P = stratification density as a function of depth.
In a stratified lake, pressure is greater than the hydrostatic pres-

sure with no density gradient. The difference in this case will be
h
p' = - dh
g fo (p po)
and at the stagnation point,

1
P' =>=p V
2 po o)

The density in the lake is a function of depth and this function de-
pends on the kind of density profile which can be a profile with deep
penetration, shallow penetration, or a polynomial profile, etc. We will
consider here a deep penetration profile (see Figure 32). The profile
is approximated by a step change in the density where it takes place at

the mean thermocline depth ﬂ;, where
for h < h_
o) or c

for h > h
or ht

Then substituting in Equation (4),

v bl h  —
o _ f P67 Po dh + f_f_ b T % ah
2g o Po h s
P, — P
_ b o
=0 + ( po )(hs ht)

So the penetration depth will be
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) = ' ' (10)

or an expression for the central velocity along the central axis of the

jet can be written as

Yy b - p
2 2
vo=v. -29 [¢ L °an (11)
b t  Po
where y > Et and dh = dy.
At y = hs'
Ps 5 -0
2
v, =V -2 [- b0 an
s t pu
2 2 . . .
= VO - V_o =0 (velocity at stagnation point)

The decay in the jet velocity (due to friction) is not considered
in Equation (11). The centerline velocity is inversely proportional to

y (21) and this can be written as

V. =V — (12)

where D is the jet diameter, C is a constant, and y z‘CD. Then rearrang-

ing,

2
y o v
2 2 2 CD 2
Vy = Vo - Vu (1 - (3;0 ) (13)

Equation (13) represents the jet dissipation effect (jet decay due to
viscous dissipation). This effect can be added to Equation (10) which

represents the stratification effect in order to consider the two effects
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on the centerline jet velocity. This can be done by considering a form

of an empirical equation as

g — 2
2 2 Yy ooPy TPy 2 cD
Ve =V - 2g fh— (——p——-—)dh - v (- (?) ) (14a)
t [e)
Yy P, -
2 2 CD b fo)
Vi=V' (=) - 29 [- dh 14b
=% G g fht ( » ) (14b)

or it could be written in another form (energy) as

2
p_ Vv p Vv 2 Y -
C -
=22 O - J. o, = p) dn (14c)
Yy ht

In Equation (14), if the considered fluid to be homogeneous, i.e.,
no stratification (density gradient is zero) the second term in Equation
(14) will drop off (equals zero), and the equation will be reduced to
Equation (13) which represents the jet dissipation effect. Also, if the
flow is considered frictionless, the dissipation term can be neglected,
and the equation will be reduced to Equation (11) which represents the
stratification effect.

At s the stagnation point y = h

S
h .
2 s P~ 0P
2 _ . _ .2 CD __ b o
vy 0=V () 2g fh —5——dn
S S t o
2 P, =P
2 CD b o —
- - 2o - 5
vy (hs) 29 ( o )(hS ht) (15)

This equation can now be solved for the penetration depth hs' but the
equation is cubic in hS and in this case we will get three solutions.
However, this equation (when checked) gives one real root (which is the

solution) and two complex conjugates.
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An application of this relation (Equation (15)) to the available
experimental data shows that the value of C is 3.5. Figures-27 and 28
show the penetration depth predicted by this equation compared with the
experimental data and the computed solution where it shows a fairly good
agreement.

The above comparison indicates that Equation (15) can predict the
penetration with an error less than 12 percent as compared with the ex-
perimental data in Figure 28; in Figure 27 the error is about 5 percent.

Now the equation is set to predict the penetration depth or velo-
city (if y is known), assuming that there is no release water from the
flow field. 1In case of a release flow, an extra term is needed for the
velocity expression (Equation (14)) to represent the pulling action
(which increases the velocity as well as the penetration depth) on the
jet.

This term will be a function of the flow rate ratio Q*, and the total
depth of the flow field H, F(Q*, H). It will represent the work done on
the flow by the pressure gradient induced by the release flow. The equa-

tion in its general form will be as follows:

2 yeo-p
2 2
ve=v () - 29 [ ——2an + F(0*, H)
Y o vy o Po
If the value of Vy is known, one can solve for the penetration depth y.
In some cases when the Vy value is high, a value of y higher than H is

expected. 1In this case, we set y = h in the final result for convenience

where H is the total depth and y equals H when the jet reaches the bottom.
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The axial momentum equation used in the program without the buoy-

ancy term in the conservative form is

oV . 9 - w _ _Llop u
ac Tox WOty V) F =9, Tyt

where gy, the body force, is equal to -g, the gravitational acceleration
2
(= 32.2 ft/sec ).

In the absence of motion,

—:p = -
gy pPg

Checking the pressure in the program to see if the hydrostatic pressure
was calculated properly, the program was run with a zero input velocity
(null case) and a zero initial pressure. In this case there is no devia-
tion from hydrostatic pressuré caused by velocity, but we do have a
hydrostatic pressure case. Although the initial pressure should not be
zero (where we have a hydrostatic pressure because of the difference in
density in the flow field), the equations will be able to calculate the
hydrostatic pressure. At the same time the pressure will be adjusted in
order for the velocity to satisfy the continuity equation and since all
the vélocities in the field are zero, then the resulting output pressure
will represent the hydrostatic pressure.

The output pressure, as shown in Figure 30, represents the hydro-
static pressure,where it shows that the pressure increases with depth.
In addition, one can see that the pressure at the surface is negative.
This occurred because the initial pressure was zero where it should have
the initial hydrostatic pressure value. The program was run also with

an initial hydrostatic pressure and zero velocity, and in this case the
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pressure at the surface will represent the atmospheric pressure. The
new pressure profile is shown in Figure 30 where it is shifted by a
value equal to the atmospheric pressure.

Then when the buoyancy term is used in the equation as

(b = p0)
v 9 d 2 v _ -1 9P o
5t + ™ (vuy + 5y (V) + x p_ 9y + gy o
o o
2 2
o X oy

and as mentioned before that when Vv = 0 (fluid at rest), then

-1 9P Pg

In this case this term (pressure gradient) will be already included in

: aP .
the buoyancy term; however, the pressure gradient 5§~w1ll be zero because

it represents the deviation from hydrostatic pressure caused by velocity.

P 9 3 3 3
— = — (P + h) = =P + —=— h=—P+
dy 9y pgy oy y pgy y pgy

Then adding the body force,

% 9
— = —7D + -
v 3y pgy pogy
Rearranging,
1 12, P70
Pe 9y p_ 9y Y Py

In the case of V = 0, we have P = 0; then,

(p - oo)

o Y Y Py
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and when the buoyancy is used the initial pressure P value (function of

velocity) will be always zero if the initial velocity field is zero.
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The governing equations of mass, momentum, and species conserva-
tion being dimensional, can be made dimensionless by redefiﬁing the
dependent and independent variables in a dimensionless form. This can
be accomplished by dividing:

1. Lengths by Dp' the diameter of the propeller, or some other
characteristic length.

2. Velocities by Vp' the downward velocity at the propeller.

2 . .
V_, the stagnation pressure corresponding

. P P =
3. ressure by pl o

ref

to the reference velocity Vp.
4. Mass fraction by the initial top water mass fraction Ml in the
upper layer.

The resulting dimensionless variables will be as follows:

U v
* = — vk =
U v v
p b

y X
* = L * = X
Y D =5
b p

m
P*=PP mi=ﬁ£
ref 1

Inserting the dimensionless variables into the governing Equation
(1) in Chapter II in the conservative form, we obtain a set of equa-

tions in the dimensionless form. The equation of continuity gives

* * *
du* . av* U*

ox* oy* x* 0

The steady state Navier—-Stokes equations in the dimensionless form

will be as follows: the x-momentum equation with 9, = 0,

2

2 8 womy L U*T _ 3PE
-+

By* (U* v*)

2
ox* (U*) +

x* Ix*
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1 %ur , %o 1 odur ot
* *
Re 8x*2 8y*2 x* 9x -

where Re = VpDPpl/u is the Reynolds number, and the y-momentum equation,

] 9 2 U* v* 1 9P*
* * + * + = -
ox* (U* V) oy* (v*) b4 2 oy*
Fr
d
1 [azv* , v 1avk,
2 2 * *
Re Sy Sy* X* 9x
where
v
Fro = ___75___
g ”B'H
Y pl

is the densimetric Froude number and Ap = p - pl.

The mass diffusion equation also will be in the dimensionless form

2 2
9 (U*M* 9 (M*V* M*U* : 9 M* 3 M* oM*
( l)_*_(l)_l_lU:‘Vl [Ml+ Ml+__:_L__ 1
ox* oy* * g 2 2 * Ox*
* o * {Ee sc ox¥ oy* ®T X
v
®” - e T
where { ;;
= K
%c = oD
c

is the Schmidt number, and Dc is the molecular diffusivity.

The dimensionless coefficients Re, Frd, and Gsc define the govern-
ing equations and indicate the solution where, if these dimensionless
.coefficients are the same in the model and prototype egquations, and the
boundary conditions are the same, there will be a complete similitude

between the model and the prototype.
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The first dimensionless coefficient is the inverse of the Reynolds
number, and it appears in the Navier-Stokes and mass diffusion equa-
tions. If the viscosity term is small, or if the flow is turbulent,
the influence of the Reynolds number may be weak. Therefore, in many
cases modeling accuracy may not be sensitive to the exact matching of
the Reynolds number between the model and the prototype. The use of a
too-small Reynolds number (compared to the prototype Reynolds number)
in a model is investigated elsewhere (22), and from considerable experi-
ence it is known that this deviation from complete similitude produces
only small errors, provided that the flow regime is turbulent for both
model and prototype.

The other dimensionless and most important coefficient is the
square inverse of the densimetric Froude number, Frd. It appears in
the y-momentum equation as an independent term. The characteristic
length is taken as H, the total depth. Matching the densimetric Froude
number between the model and the prototype can be accomplished by in-
creasing the density difference between the model and the prototype in
order to offset a smaller depth in the model. Exact matching of the
densimetric Froude number is essential (22) in the modeling process.

The third dimensionless coefficient is the Schmidt number, which
appears in the mass diffusion equation. The Schmidt number should be
the same between the model and the prototype, and since the flow regime
‘is considered turbulent, the turbulent Schmidt number (with the wvalue
of unity) is used.

We can conclude that the most important dimensionless coefficient
in the y-momentum equation is the square inverse of the densimetric

Froude number, Frd. At values less than unity the dimensionless
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coefficient in the y-momentum equation will be larger than unity, and

will increase rapidly with decreasing Fr a condition appropriate to

a’
higher buoyancy forces. For values of Frd greater than unity, the
dimensionless coefficient decreases rapidly with increasing densimetric
Froude number.

The numerical simulation of the flow field is done by matching the
densimetric Froude number and Schmidt number. The Reynolds number, how-
ever, was not matched exactly, since only laminar viscosity was used.

As a check, increased values of viscosity throughout the field were used
to identify any sensitivity to the level of momentum exchange. That is,
a large laminar viscosity roughly simulates a turbulent viscosity, the
exchange coefficients in each case being similar in magnitude in these

two cases. The influences on dilution factor and penetration depth were

very small (5%) for the cases studied.
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s TinLa( 20400)

®sssevsee NUMLRICAL SXHULAYION OF DESTRATIFICAYION UF LAKES sswsvsnens

THIS PRUGRAM IS5 BASED ON LUS ALAMUS SOULA vucbethN TECHNIQUE
IT 15 CExPANOLD TU INCLUDE COMPUTATIONS FON MASS UIFFUSION AND
HOUYANCY FUKCES o THE PROGKAM SOLVES uAvxtn-ulaxES.couIiuulrr.
AND HMASS DIFFUSION RQUATIOUNS FOR AN AXILYMMETKRIC STRATIFIED

FLun FIlLLL

InAR = NUMBLRR OF CELLS IN X=0IRECTION

JOkR & pumienr ufF QLLLS IN Y-UIRECTICN

DELY = T1IME LIMCREMENY

HU a CUEFFICIENT OF KINAMATIC vISCUSITY
\

MU = CUEFFICIENT OF ABSUOLUTE VvISCUSITY

CYL = GEUMETRY INDICATOR 1.0 FUOR CYLILOKICAL CUOKDINATES

0.0 FOR PLANE CUOMUINATES
EPSl = PRESSURE ITERATIUN CONVERGENCE CRITIRION

GA = BOUY ACCELERATIOUN IN POSITIVE x=0IRLCYIUN

GY & ROOY ACCELERATION IN NEGATIVE Y=-DIRECTLIUN

UMG & QVE NLLAXLAYTION FACTOKR . A VALUE TikT I3 OFTEN OPTIMIUN
IS 148 8UT (N L0 CASE SHUULDL bE LAKUEK TIAN 2.0

ALFNMA & CONTRULS AMDUNT OF DUNUR CELL FLUKING sVALUES HETWEEN

0.0 ANU 1.0 ARE 10 HL USED

U & RADTIAL VELOCITY

V = AXIAL VELOCITY

S5C a SCHMIODY NUMBER

S = MASS FRACILION M)

$2 = MASY FRACTION M2

DLN & wtIGHTLED AVEKAGE DENMITY

DENL = TOM DENSITY

L8
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DEN2 = BOTTOM DENSITY

DELX = CELL WIOTH

OELY = CELL HEIGHT

IREL = NUMBRER uF:CELLb OF THE RADIUS OF THE RELEASE GATE +1

JIN = NUMHBER Of CELLS OF THE INTERFACE HEIGHT +1

IOISK = NUMDER OF CELLS OF THE PRPLLLER RADIUS +1

JDISK = NQMBEu CF CELLS UF ThE PRUPELLER HEIGHT +1

JNT =JNB = NUMBER OF CELLS OF THE OPENING HEIGHT FOR TOP
WATER INLEY

JNT1 =JUNB1 = NUMBER OF CELLS 0OF THE‘OPLNING HEIGHT FOR BOTTOM

WATER INLET
DR = DENSIYY RATIO UETWEEN THE TOP AND THE HBOTTOM DENSIVIES
VINITL = PROPELLER VELOCITY

QSTAR = FLOW RATE RATIO F
QSTAR = FLOW RATE RATIO FPF PROPELLER FLOW RATE TO RELEASE

FLOW RATE
QPROP = PROPELLER FLOW RATE
QREL = RELEASE FLOW RATE

VOUT = RELEASE VELQCITY

INTEGER CYCLE

REAL NU»MU

DIMENDIUN DU15430),DELPL15,303,01(15430)

DIMENSION UGL5,300aVI15536)sPL150300 UNI15530)5VNEL5430)

DIMENSTON S5(15930)0352015530)sDENE15+30)s5N115+430)
In@ITE=Q

DATA UsVsPsUNIVN /225040407

S»SNPETC ARE INDICATED LATER

DATA EPSYISDELAXSDELY,IBARIJBARSGXsGY0MGHCYL
¥ /14£=3+1006214550607291+551440.0s=3242514721.0 /

QSTAR=0. 44
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45
46

A7
48
Y]

51

52
53

54

S5

[a N al

[aN ol al

FROVOF NUMBER = 1.86
DR=1.00247
VINITL=<0.7

CUN1=0.40
CUH2=1.0
ALPHA2 0.6
PL=3.14159
NU=1.41E=-5
MU=2.73E=5
S5C=1.0
DENL=62.4/32.2
DEN2=62.44DR/ 32.2
DZIRU=21.0

IREL=Y
DELX=0.1875
DELY=0.125
I8AR=T
JOISK=12
JIN=9
JNT=13
JNB=12
JHNTL1=7
JNB1=6
IDISK=2
JINI=JINTL
IMAK=IBALRS2
JUARZIBARE 2
IMl1=IMAX=1
JML=gMAXK~)
IM2=T6AR
JM2=JBAR
RCX=1./DELX
HOY=1./0ELY

QPROP=VINLTL*PIw(( IDISK~1)DELXK)I®m2
QRELaQPRUP/QSTAR
VOUTE=QRELZ(PLe(l [REL=1)}¢DELX)%e2)

DELT=0.02
BETA=OMG/(2.04DELT ¢l RDXe#2+R0OYew21)
PARAMETER CHECK

DYMAX1=0.33eDELY/VINLTL
DIMAX2z045¢DELX® w20 DELY 4w/ ((DELX*%2+DELY®42)=NU)
ALFAMI=1 HeVINITLEDELT/UELY
WRITE(G392) DELTHOTMAX1»DTMAX2

HRIYE(€s93) ALPHA» ALFAMI

DY REDUCTION FOR STARILILITY

IFIDELY  GT DTMAXIIDELY=DTMAXL

92 FORMAT(® DELT DIMAX] DYMAX2*+3E12.4)
93 FORMAT(® ALFHA ALFAMIN *,2E12.4)

T =0

00013400

00013600

00013800

00014000

cmrmemr e et c e —— e e e —m—me=00014400

00014500
00014600

68
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79
&0
31
ez

L3
64
85

&6

87

By

89

C
C
C

[

TTER=O 00014700

CYCLE=O 00014800
GUESS INIYIAL VELOCITY FIELD 00014560

DO 560 [=1,IMAX . 00015000
DU 560 J=1sJMAX ' 00015100
UlLsJ) = 0. 66615200
ViIsJ) = Q. 00015360
CONTINUE 00015500

~eeeece—==INITIAL DENSITY AND MASS FRACTIUN FIELD

DG 555 I=1,1IMAX
D0 555 J=1wJIN
St1+J)=040
S2(Ls+J)=1.0
SNII»J)=0.0
DENCTIJU)=DEN2
CUNTINUVE

DO 556 I=1,1IMAX
00 556 J=JINlsJMAX
StIvJI=1.0
S2(1,J)=0.0
SN{IsJ)=1.0
DEN(IsJ)=DEN1
CONTINUE

C e e et e e, e e e e e r—r e r e e e c s aececccmccccencecnece==00015600
C
ASSIGN 5000 TO KRET 00015800
GU YU 2000 00015900
1000 CONIINUE 060156000
ITER=OQ 00016100
FLG=1.0 00016200
ASSIGHN 3000 TO KRET 00C¢16200
C
C e e e e e e e m e e e e e e ceeccccccce e s neceew==~00016500
Cowommmeme=-=APPPLY MIMENTA EQUS FQR TIME AUVANCED Us Vs W 00010600
C
00 1100 1 = 2,.IM1 00016800
00 2160 J = 2sJmy 00016300

FUX2 LIUNIT s JI+UNCI+1 3 ) (UKNCIZJ)I+UNTTI+1,J))+ALPHA®ABSCUNLI»JI+UNLOOOLT7G00
11415 J1)a(UNET»J)~UNCLelaU ) )=CUNCTI=13J)+UNCLsJ)IeCUNCI=19J)+UNLIsJ)ICO00L17100
2I=ALPHACARSIUNCI=13J ) + UNCI»J)) »{UNCI=1sJ)=UN(TsJ) )/ AeDELX) 00617200

FUYSCIVNILLOD$VNIL #15J3)e(UNtI»J) + UN(CINJeL)) 000617300
1 + ALPHA « ABSUVUNITSJ)+VNCTI+LsJ)) « (UN(I9JI=UN(LsJ+1)) 00017400
2=(VN{LyJ=1)¢VN(I+1sJ=~13) & (UN(IsJ=1) + UN(IsJUI) 00017500

S=ALPHASARS LVN(T ) J=1)+UNCL#13J=1)) el UNITsd=~1) = UNUIsJI)I/t4.¢DELYI00017600
FUCECYL&(ULUNCIsJ)vUNLT#10d))atUNCTI2aJI+UNCI+10J))+(UN{I=21yJ)4#UN(IsJ00017700

1)) UNEI=1sJ)eUNK(TISU)) 00017800
2¢ALFHA » AUS(UNCEIoJ) & UN(CLe130)) & (UNCIsJ)=UN(I+150)) 00017900
3+ALPHA & ABS(UNCI=1sJ)0+#UNCTIaJ)) & TUNITI-13J3=UNIYXsJ))) 00018000
4 /U8 HDELX*FLUAT(I=1)) 00018100
FVr=((UN(LsJIrUN G001R200
C (LsJe 1) )e(UNIT,0)eVHII+1,43J))¢ALPHASABS(UN(L,J)+UNC 00018300

10sJde2))a(VNCTWJI=VNII+10J ) )=(UNCI=1,J)+UNII=15J+1))e(VUN(I=1+J)+VN(OODLB4LO00
209J))~ALPHARABS(UNIL=1,3J)+URII=15J+1))2(VUN(I=13J)=VN(1sJ)))/(4.40E00018500
aLx) 00018600
FUYR((VNLT s JI+VHIT 242 0)aCUNCT,J e VN(LoJ+L)I+ALPHASADBSIVUNILISJI+VN 00018700
CIs T+ Dl VNCIWII=UNIL s J e 1) )=t VNCI o d=2)vVHN(IsJI Vel VUN(I»J=1)+VN(14J0C018¢c00
2))1-ALPHASADBSIVAL I J=1)0+VNLIaJ))a(UNILsJ=1)=VUNLIsJ)))/(4aeDELY) ¢€Co18900

06



90

9t

92.

97

38

99
1¢0
101
102
103
104

105 -

106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122

FVC=CYLeCLUNT I s I+ UNCIJr 1) 3ot UNE T s )+ VNET4¢20dY Y+ UN(I=1oU)+UN(I=-100019000
1o J4+L 2ot UNLY =1 J 3¢ VAT )3+ ALPHA®ABSEURNET )¢ UNTTSJ41 )l VUNCTI+J)=V00019100
ZNCT+ o) )e ALPHAX ABSIUNITI=13J )eUN(I=1,0+ 8 Y )xlVNII=1sJ)=VvN{IsJ))) 000168200

3/7(B.sDcLXe(FLOAT(I~] )=,5)) . 600195300
VISx=s MU & ({UN(Ir1:Ji-2.«¢UNITod) + UN(I=1sJ))/DELX#%2+ 00019400
1 (UNC I e 1)=202UNITsdY & UNtILsJ-1))/DELY®n2 00019500
2 +CYL ¢ ((UNUIvlaJd=UNEI=13J))/12.«DELXSDELX®FLOAT(I=1)) 0001SECO
3 ~UN(LsJI/(OELX®FLOAT{I~12)ea2))/0ENL

VISYz MUe ((UNTI#1,0)~2owUN{LsJ) & UNCI=14J))/DELX*a2¢ 00019000
1 (VNUTL 241 )=200VNTIsJ) + UN(IsJ=1))/DELY w2 000199C0

2 vCYL » CVUNCIrlad b= UNE =10 ) )/ (2. w0ELX+DELXOlFLOAT(I)=125)))}/DENL
FMX=(UNCYs JIe(SNED o J)eSNCI#L 0 )2 +ALPHAR(ABS(UNIISU)I)I®(SNIISJ)=SN(O0GOZ0100

» L4131 3=UNEI=1 s JIACSONII=10JESNIL ) I=ALPHAS{ASS(UNI{LI=15J)2)400020200
’ (SNEI-1aJ)=SNUT I I/L2xDELX) 00020300

FMYSLUNT L Jdal{SNEL, 03+ SNCL»J+1 ) )« ALIPHAXCABSCVUNIISJI IV (SNIL,JI=-SNLOOCR20400
’ 1o 4211 0-VN(TaJ-2)s(SNI{Ls =3 +SHLLsJ)I-ALPHA®(ABSIVNC(IsJ=12)1¢000620500
» (SNLLsJ-1)=SN{LsJ) )/ (2+DELY) 00020600

FMCELUNE Loy e SNET a1+ SNETI+ LaJIwCUN2YPUNCI=13J)e(SNCI=1sT)+SNITsJ

eV 1aCONZ+ALPHASLABSIUNCTI I I 1o 0 SN L d)~SNI1+1,J))«CONTI+ALPHAS (ABSI
CUNETI=Ls I Il SNE L=y ud=SNILT U ) 1eaCONLYI/ (4aDELXa(=1.5))2CYL
VIMX2({SNEI+1,0)0=24SNLEaJd+SN(1=1,J3 2/l 0UELXma2)+{SN(LsJ+1)~22S5NL 1500021000
. JISKNETs =) )/ ({OELY+#2 )¢ {SNEI+12agd=SNII=13J))/L2¢L0ELX+%2)4(00021100
. I~1.5)18CYL)#{ MU/ CSCHDENLY Y

UCL s JI=UNE Ly eDEL T (LPLE>UY=P(T+150))eRDA/DENL+GX-FUX=FUY~-FUC+

sVISX)

VLI JI=VNCIaJ ) #DELTW Il PU T s ) =PlLsJel 1w RDY/DENI+GY#I DENL IsJ)-DENL)

e JOENI=-FVXK=FVY-FVC+VISY)

SEIsJI=SNETsUI¢DELTH(=FMX~-FHRY=FMC+VIMX)

IFICYCLESEQe1l) SUE,JI=SNUIsJY

S2(1vu)=1.0-5(1s )
DENCIsJI=SU sl eDENL*S2CTadl«DEN2
B1C1,U)=GYs(DENE Iy JI=OENLI/DENL

1100 CONTINUE 00021800
C e e e e e e et e e e m e e s smmnee—esse s s e eae==(] 021300
C

2000 CONTINUE 000221C0
C .

C S e e e e et e e m e e me e rrm e c e e m e s aee e e== 00022300
C
Q5=0.0
A=0.0
D0 551 . I=2yIREL
CS205+SUXa2)e{PleltI-1)e¢DELX)wel=a)evOUT
A=Ple( (1=3IwDELX ) a2
551 CONTIHNUE
C
‘as2=0.0
A=0.0
00 552 I=2, IREL
0522052vS2(Ls2 1w (P Lot (I~1)a0ELX1ee2-A)»V0OUT
A=Ple({l=1)eDELK I a2
552 CONTINUE
UT=0S/(2¢P InIBARSE INT=INEv1)eDELY*DELX)
UB=QS2/ (2%P1e AR« JNT1-UhiL+1)«CELYSDELX)
DENAC={0Se0DENLI+QS2sDEN2 )/ (FLlel ( IREL-1)eDELX)**2¢VOUT)
OF ={DENAC=UVEN2)/(DENL=-DENZ)
C
C(eeremammn-=GENERAL BOUNDARY CONDITIONS . 00022500
C

DU 2200 J=lsJMAX

16



123
124

125

134
135
1306
137

138

139
140
14l
182
143

148
145
laco
147

149

155

146
157
1548
159
160
161

162

[ala)

(al

2

(o}

[a}

C

C

C

e mercr———— -=B0UNDARY CONDITIONS ON LEFTY--FREE SLIP

Ul1,J3¥20.0
VI{1sJ¥=V(2,J1)
S014J2:5(2s0)

----------- BOUNDARY CONDITIONS ON RIGHY=-=NO SLIP

ULIM1sJ)=0.0
VIIMAX s Jizs=VIIMLs J)
SCINMAX s JI=S{IML,J)
200 CONWTINUE
LU 2500 I=1,IMAK

____________ BOUNDARY CUNDIYIONS ON YOP-=FREE SLIP

VIIsuM1)=0.0
UlTH»JMAXI=U(TsIM1)
SCIsSMAXI=S(TsIML)

e ——— --=BQUNDARY CONDITIONS ON BOTYOM-~-NO SLIP

ViIs19=0.0

Ullsl)==UC1,2)

S{Ts1)=2S5(122)
2500 CONTINUE

JDISK1=JDISK=1 = i
--------------- INLEY FLONW

0G 2811 I=2.J0I5K
VII,JOL15K I==VINITL
VEIsJOISKL )=V IsJDISK)
UE1sJDISK)I=0a0
2811 CONTINUE

0G 558 JaINASJINT
VOIMAX 3 JD)=0.0
UL IMAX T ) ==UT
Ut iMts Jy==-uT
SUIMAX U I=55C(IM10J)
5586 CUNTINUE

DO 559  JsJINBLIJINTL
VIIMAX»JI=0.0
UCTMAXsJ ) =-UB
UCIMLJ)=~-un
SUIMAKLIJ)=S(IMLe )

559 CONYINUE
———————————— QUTLETY FLOW

00 557 I=2s IREL
ULI»11=0.0
V{Ist)a=-vourv
V(T2 )==V0UT
S(Tsl)as(Ls

57 CONYINUE

2802 CONTINUE

-
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163
164

165
lub
167
18

1€9
170
171

172
173
174

175
176
177
178
179
140
181

182

183
184
185
186

187
1¢e8

109
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

GC YO KRETV»(3000,50600)

3000 CONTINUE

[

[ ~CHECK IF CONVERGENCE HAS HEEN REACHED
C

IF (FLG.EQ.0) GOTO4GOO

ITER=ITER+L
TFIITERCLTL50)

GO TO 3050

LF(CYCLELLY.20)G0T0 4000
C TERMINATIUN CUNDITION

T={E+10
6aTOs5000
056 FLG=0.0

3
C
C eew=ece---PRESSURE
C

D0 3500 J=2,4M1
00 3500 I=2,1M1

DII»JI=ROX$(ULLII)I=U(TI=1,J))+ROYs(VII)J)=V(Lsd=1)2¢CYL®(U(LsJ)

ITERATIUN AND Pa Us V UPDATE

s tUIT=13U02)7(2.#0ELX#LFLOAT(I)=145))
TFLABSIOD(LyJI/D2ZROICGELEPST) FLG=1.0

DELP(1lyJdx =HBETARD(IJ)
PUIWJISP(LI»JI+0ELPUIL )

UCIsJdI=U(T a0l ¢DELT eROX#OELP( Y d)
UCI=13J) = UtI-1ed)
VIIsJd )z VILaJI+0ELT «ROY*DELP(I»Y)

VIIsJ=13 = VI1sJ=1)1=-0ELT«ROY«DELP(YsJ)

C
3500 CONTINUE

DELT#«ROR=DELP(TIsJ)

Cowwe==eac=-CHECKPRINTS DURING PRESSURE CYCLE

IWRITE=0

IF(ITERLEC2VIWRITE=T
IF(CYCLE.GTL.2.4ND.CYCLE.LY.500) IWRITE=Q

5152

C RETURN FROM PRINTING SECTION

IFCIWRITE.EQ.1)GO TO

3501 CONTINUE
ITWRITE=O
C
GO T0 20900
4000 CONTINVE
5006 CONTINUE

Commmmmmm

C IFICYCLE.EQa500)CALL

LIFLCYCLELEQaLO)
IF(CYCLECEQ.20)
IFICYCLELEDQL30)
IFULCYCLECEUL40)
IF(CYCLECEGeS0D
IFICYCLE.EG.€0)
IF(CYCLE.EJWT70)
IFICYCLE.ENL80)
IFICYCLEZEQ.90
TFICYCLEEG.100)
IF(CYCLE.CQ.110}
LFECYCLELEQLL120)
IF(CYCLE«EC.130)
IF(CYCLE.EC.140)
IF(CYCLEEQ.150)
IF(CYCLELEQ.160)

‘60

GO
GQ
GO
Go

GO
63 YO 5182
GO TO
GU TO 5152

GO
GO
GO
GO
6o
[qs]
GU

~-INTERMEDIATE PRINTING

PLOTIUSVITMALIIMAXSDELXDELY)

5152

S142
5152
5152
5152
5152
5152
5152

00041500

00042000
00042100

00042400
00042500
00042600
00042700
00042800

00043100
00043200

0u044300
00044500
00044G00
00044700

000448C0
600450600
00045100
00045200

00045400
00045500
00045600

cmcmcecec e cccenenecaee==00045700

Q00458C0
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203
209
210
211
212
212
214

221
222
243
244

25
226
2«7
224
229
230
231
232
233
234
235
216
37
238
239
240
241
2482
243
244
245
246
247
243
249
250

251
252
253
254
<55
2.6
257
25b
289
260
261
262
243
264

5152

oW aNal

7001

7002
7014

IFICYCLECEQ.170)
IFLCYCLECEG.e180)
1FICYCLECEQ.1901
IFICYCLEEQL200)
IF(CYCLE.EV.210)
IF(CYCLELEQ.220)
IFLCYCLELEQa230)
IFCCYCLE EQ.2401
IF{CYCLELED.,250)
TFICYCLECEG.260)
IF(CYCLELEC.270)
IF(CYCLE 4£0.280)
IFCCYCLELED,286)
[FICYCLEWEQe2AT)
IFCCYCLELEC.208)
IFICYCLEWEQa2d9)
IFLCYCLE a€04290)
IFLCYCLELEQL29)
IFLCYCLE.EGC.295
IFLCYCLELEUL297
IFICYCLEw G al0Y
IFCCYCLELEUL. 30U
IF(CYCLELEQL3LIC
IFLCYCLELEGL320
LFICYCLL.ECL380
IF{CYCLELED. S8V
IF(CYCLELEDeS50
IF(CYCLE.EQ, 300U
LFICYCLELEQ.2T70
IFCCYCLEEU.280)
IH(CYCLELEQJ.390)
IFICYCLECEW.395)
IF(CYCLE s Ga3u7)
LFLCYLLE s Ge339)
IFCCYCLELEG. 400}
IFICYCLELFQ.2)

6D YO 5152
GO YO 5t52
GO 10 5152
GO 10 5152
GO 10 5152
GQ 10 5152
GO0. 10 €152
GG Tu 5152
GO 10 5182
GO TO 5152
GO Tu S5152
GO TG 5152
GO 10 s152
GO 1D 5152
G0 TO 5152
GO TC 5152
GO YO =152
GG 10 5152
GL TO 5152
GO TO 5152
GO TO 5152
G TO 5152
GO 10 51%2
GO TO 5152
Gu YU 5152
GO TO 5152
G TQ 5152
GU TO 5152
GO TJ 5152
GO TO 4152
G0 10 5152
G Y0 5152
GO 10 2152
GO YU 5152
GO TO 5152

3
GO 10 5152
IF(CYCLE.E Qa1 GO TU

5152

IF(CYCLELEQ.C) GO TO 5152

GO YO 5251
CUNTINUE

PRINT 334 [TER,T

PRINT S4,0F
NRITELG48)

DG TO0L U=1sJMAX
PLERENEY SN ESY

WRITELGsAT) (ULTaJMMI Y Ia1aTMAX Y

CORYLMNUE
HRITE(G»49)

DO 7002 J=LsJdMAX

JMMJI= UM AX~J+ L

WRITE(6+47) IVIIsJMMI)aI=1sTIHAX)

CONYINUE
CCHNTINVE
WRITE(H .51

DO 7004 Jx1lsJMAK

JMMI2UMAX=J+ 1

WRITEL 6547 ) (PLXaJMMIIsT21sIMAX)

2 CYCLE

LIST Uy Vs Ps S» DENn_Do ul

00046700
00046800

00046900

00047000
00047100
00047200
0L047300
00047400
00047500
00047600
00047700
00047800
000464500
000468000
00048700
00040U£00
00048900
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2u5

279
2¢0
281
262
2¢&3
284
ZE5
286

2u8
289
250
291

293

310

7004 CONTINUE 00049000
: WRITE(H,62)

DO 2C05 J=1.JHAaX

JMMIzgMaX=-Je 1l

WRITE(OH 47 ) (SL1sJMMI)I=1,IMAX)
70C5 CONTINGE

WRITE(G+63)

DO 7006 u=1sJMAX

JMMT=aMAX~J+1

WRITELG6247) (DEN(Ls+JIMMUIsTal,1MAX)
7006 CONTINUE

WRITE(E 641

CO 7007 J=1sJMAX

JHMU=UMAX=J+1

WRITE(O+47 ) (DULsdMMI)»I=1sIMAK)
7007 CuUNTINUE

WRITE(D265)

D0 7008 uJ=1sdmax

JMMJIz UMAX=J¢1

WRITE(G 47 ) (BLILeUMMI I I=1s IMAXK)
7008 CUNTINUE
<

5251 CONT INUE 00050200
C
C RETURN T0O PRESSURE ITERATION CYCLE L1F THESE WERE ONLY CHECKPRINTS 00050400
IFCIWRITECEQ,L1360 TG 3501 00050500
[ e T et B ittt attadate e m e re et — e e emee=00050500
Creroencane— REPACKAGING C0050700
DO 61031 I=1.1mMAX 00050800
D0 6101 J=1,rJIMAX . 00050600
UNCTsU ) =UC L) . 00051000
VNE T, =vi Ly, 04051100
SN{XI+JI=S(TrJ)

6101 CONTINUE 00051300
Commemammmm e = e R L RPN e ———— R e e L e L L DL L 00052300
C AOVANCE TYIME AND CYCLE. 00052400

T=T+0ELT 00052500
IF(CYCLL.EQ.300) GO YO 6500
CYCLE=CYCLLeL 00u52700
6aT0 1000 00052800
6500 CONTINUE 00052900
svour 00053000
47 FUNRMATILIX»12(E11.4))
LX] FOkHAr(//.2x.ﬂﬂ U=FIELD» /) 00053200
49 FORMAT(//732Xs8H V=FIELD»/) 00053300
51 FORMAT( /772X 98H P=FIFLD/Y 00053400
§3 FORMATU/// 64 SHITER=1IS)9XsSHTIMES1PEL2455 10X 6HCYCLES 14
54 FORMATE //»5X»*DILUTICN FACTOR=*31E12.4)
62 FORMAT(//s2X%X38H S=FLELDW/)
63 FOUPMATI//32X,10H DEN-FIELDs/)
64 FORMAT(//s2Xs8H D=FLELDy /)
65 FURMAT(/Z/s2Xs9H BLl=FIELDW/)
END 00054000
c .
C
C
C
C
C
C
C
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ITER

DILUTY

U=FIELD

0.0000€
0.0CGCE
0.0C0CE
0.0000E
0.0(0CF
C.0COCE
0.0CCCE
0.0000E
0.00GCLL
0.0C0UE
0.0COCE
0.0600E
0.0000E
0.0000E
0.000CE
~0.0000E

v-FIELD

0.00G0E
0.0COCLE

~0e7072E=~

~0.1702¢€
-0.7000E
=0.7G0CE
=046963F
-0.6E069E
“0.6756G¢

~0.b043E
-0+6516E
~C.6A0EC
~0.617CE
~0.60Y98E
~0e3477E

0.000CE

x 1 TIME= 5.99988E 00 CYCLE= 300

ICN FACTORs 0.5299E 00

0C=0e¢5304E-01-0¢1516F=01~0,2202E-01~-0.1915E6-01-0.1479E-01-0.8311E~-02 -0.0000E 00 0.0000E 00
CC=0a5308E=-0U1=0s1518E~01~042202E=01-0+1915E=01-Ce1479E~-01-0.8311E~-C2 0.0000E 00 0.0000€ 00
CC=Ca?4b8L=01=0.5340E=02-042688L~01-0.207BE-01-041654L=01-0.1088E~-C1 0.0000E 00 0.0000E 0O
00-043974E 00-0.5%03E=01-0.4082E-01=042287E~01~042131E~01~042932E~01~0.4513€E=01~-0.4513E~01
CC 04COUCGE U0=CelU75F 00-0+2596E~01=042191E-01=0.2010E~01=0.2916E~01=0.4513E~01=0.4513E=01
0C C.2706E~=02-0.2680E=01-0,2228E~01-041676€E~01-041249€E=~01~0+7931E~-C2 C.0000E 00 0.000CE 00C
€C Co7002E-02=042492E=02~G,3025C=01-041424E~01-041223E~01-0,5229E-C2 0.0CCCE 00 0.000CE 00
00 0-22265—02-0.22226-01-0.1473&-31-0.lJSEE-OI-O.BGJLE-OZ-O.2&395-03 0.0060E 00 0.0000E 0GC
00 C,B7AME-02~0,2068E=-01-Us17H9E=01=-0.1501E~C1-0.1144E=01=0.5804E=-02 0.0000E 0C 0.0000E OO
CO CoY939BE=G2=Ca2013E=01=042201E~01=0.2493C=01=0,3272E=01-044150E~C1=CoA4C05E~01=0.4009E~01
CC CeE292E-02-Co2353€=-01-Co2A47GE-01~0.2755E=01~0435286=01~044393E~C1~0.4CC09E=-01~0,4009E=01
GC 041782b=01=0,3765E~01-0.2500E-04~042223E~01-0,1673c=01-0.1081E-01 0.0000E 00 0.0000E 00
CC Coe5433E-02-Ce55L2E=-01-0.2078E-01-0.2244E-01-0,2114E~01-03883E~C3 0.0CO00E 00 0.0000E 00
0C 0.1590F 00-002030E 00=0.3247E-01-0.2900E-01-041190E-01~0.1753E-C2 C.0CO00E 00 0.000CE 0C
0C~Csl070E=-04-0.1657E-04~CoE578E-01~0.2631E~01=-0.1313E~01~0+3467E~C2 0.0000E 00 0.0000E 00
CC 0,0000& 00 O.COOUE 00 0e«B8578E~01 042631E=-01 0.1313E=-01 0.34b7E-02-0.0000€E 00~0.0000E 00

0C 0.GO000E GO 0,0000E Q0 0.,0060t 00 0.000CO0E 00 0.0000E 00 0.0000E 00 0.0000E 00-~0.0000E 00
€CC C.COGOE 00 0, CGCO0E 00 G.0000E 00 0.0CO0E 00 0.0000E 00 0.00O00E 00 0.0000E 00 0.0000€ 00
C1<0.7072L=01 0e41008E=01-0:9516E~02~04200%E=-02 043916E=03 0.2924E-C2 0+5115€6~02-0.5115E~02
CC~Ce17C2E 0N 0.3452E~01=0,2H04L=01=0.2475E=-02 0.4526E~03 0.5035E-02 0,1101E-01 0.0000E 00
00-0,7000c 00 0,1648E 00-043062E=01 0.3426E-02~0,1784E-02-0,3369E-02~0.2551E=-02 0.0000E 00
00~0.7000E 00 0.6922E-01 0.592CLE~02 041506E~02-C.3687E-02-0.1240E~01-0.1701€-01 0.1701E~01L
0C-0.6963E 00 0.4417F=01 02393E-02 0+41526€6-02-0.3004E=02~041063E~C1~-0+1210E-01 0,121CE~01
0C-0,E809E 00 0.3Y%01E~01=Coe4505E-02-0e34062E=02-043620E-02-047028E~C2~-0eEETEE~02 0.0876E~02
CC-0.6759L 00 O0.155YE=01=044518E-02-0.5337E~02-0.2155E=-02-0.10853E-02-0.8724c-02 0.8724E=-02

CC=CeG6A3E 00-0,6677E-02=047795E~02~047164E=02-041260E=02 0.8586E-03-0.5154E-02 0.0000E 00
CC-0.6518E U0=-0o2B71E=01-GC+1467E=-01~041358E~01=-0.1073E=01=0.9553E~02-0,8348E~02 0.000CE 00
C(-CecA0EE 00-0,5330E-01-Co2197E~01~04204CE-01~0.2054E=01~0.2014E~01~0,1010E~01 0.101CE=-01
0C-0e6170E 0GO=-0aS472E~01~0.22196E=01=00230sL=01=041975E=01~0.1733E=01~0.3452E~02 043452E=02
CC~C.GO0YHE 0U=-0e1460F 00=0oe1368BE~01=042482L~01=0s1469E=01=041138F~C1~0432213E~02 0e3213E=-02
0C=0e3977C 00-0e3977E 00 0CU62E=01~002897E=01~0.5086UE=02~-0,54486~C2=0,2131E=02 0e2131€-02
C(-043977E U0-043977E 00 C.0000E 00 0.0CO00E 00 0.00COE 00 0.0GOO0E CO 0.0000E 00 0.0000E 00
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P=FILELL

0.,0C0CE CC 0.CCOOE 00 0.0000E 00 0.0000E 00 0.0000E 00 0.00COE 00 0.0000E CO 0.0COOE 00 0.000CE 00
0.00G0E CC~0.4326E<-01-0,4026E~01-0,4220E=01-0.4255€E-01-0.4254E~01=04257E~01-0.4285E~01 0.,0000E 00
0.0000E 0C=040169L~0L=0s4067E~01=0.4308€E~01=044273E~01~0,4256E=01-0.4254E~01~0.4309E-C1 0.000CE 0O
Ge0000F CC-0.:680¢ 00-0.0432€-01-U+4549E~01~0.4306E~-01~-0.4262F=01~0,4251E~C1~C.4300E~01 0.000CE 00
0e0COLE CC=C o2207€~01=0,5b629E=01~CsA43€EE~01-0e4cS5E=01=0e4262E=01-0s4248E-01~Co42S50E=-01 0.0C00E 00
0.000CE 0C=C4290%1=01=0,4283E~01=0+4156E~01-0+4201E=01-0,4213E=01-0,4217E=01-0.,4284E=01 0.0000E 00
0«C00CE (UO0=0.30G6L=-01~043406E=01~0+3580E-01~043704€~01~043748E~01-0+3766E=01-0.3795E=~01 0.000CE 00
0.000CE CC~Ue1886E=01=0s1622E~01=041676E~01~0.1745€-01~041801E-01=0+1874F=01=-0.1951E-01 0.000CE 00
0s0C0CE CC Ue29L0k-02 0019YN3E=02 0,1629E~02 041334E=02 0490657E=03 0.35€63E~03 C+1493E~-03 0.0000E 00
Q0.0C0CE CC 0o4111i~0t 0.2010E~0L 0.2005E-01 0.2C1CE~01 C.2000E=-01 0.1958E-01 0.1968E-GC1 0.000CE 00
0.06000t CO 0.3928<=01 043724E-01 0.3832E-01 0.3877E-01 0.3889E=-01 0.3856E~01 C.3855E-01 0.0COCE 0O
0.000CE CC (Le%990E=0L 0.5350F=01 0.5669E=061 0.5741E~01 0.5769E=01 0.5740E=01 0.5707E-0L 0.0000E 00
0.0COLE CC U.88Y5E~01 0.6210F~01 0.7697E=01 047597L£-01 Ue7664E~01 0.7665E=01 0.7648E~01 0+0CGOE 00
0.0C0CL CC (.15%4C 00 0.4<COE=0Q01 (.8875tE=-01 0.5434E-01 0.9579E-01 0.9601E~C1 0.5586E-61 0.CCUOE 00
0.0CUCE 0C 0,46106£=01 0a1932E QU 0.,1086E 00 0o1137E U0 O 1151E 00 0.1153€ 00 0e1152c 00 0.0GO0E 00
0.0COCE CC 0.COGCOE 00 0.0000E 00 0.0000E Q0 0+.0C0GE 00U C+0000E 00 0.0000E 00 0.0000E 00 0+000GE 00

S-FILLC

0.9998E OC 0.9998E 00 0.9998E 00 0.1000E 01 0.9G99E 00 0.,9999E 00 0.9999E CO 0.9999E 00 0.999SE 00
0.999uF CC 0.9998F 00 0.9998FE 00 0.1000E 031 0.9699E 00 0.9999E 00 0.99Y99E CU 0.5999E 00 0.9999E 00
0+10GC1€ C1 CeJO00LE C! 0.99680E 00 0.,9999E 00 049S9SE 00 G«99S9E 00 0.95SSE CO 0.SSYSE 00 0«S99SE 00
Ce9E9LE CC 0.5851E V0 (.9830E 00 0.10C1E 01 0.9597E GO 0.9999E GO 0.9999E €O 0.9999E 00 0.9999E 0O
0.9899E 0C Ge9HYIE U0 049734F 00 0.9007E 00 0.9960FE 00 0.5981E 00 0.9991E 00 0.9999E 00 049999E 00
0.9908E 0C C.9908E 00 0.9433E 00 0.8YB7t V0 0.9557F 00 0«9695E 00 0.9792E CO Q.9882E 00 0.9882E 00
09S15E CC 04SS15E 00 046E85E (€0 C.6489E 00 047347E 00 CG.7479E 00 0.763BE 00 0.7985Z GO 0.7965E 00
09947E 00 04S947E 00 0.5244E 00-0.3409E-01-043657E-01-042666E=01 041355E~01 0+8759E~01 048759€=01
0499ACE CC CaS900CL 00 0.4890E 00 0.1455E=01=0.1589F~02 Ce1370E-02 042384F~02 0.5637E~02 0.5637E=02
0+1003C 01 0.1003E 0! 004492€ 00 0.1298E~01-041C1CE=~02~042669E~04~041311E-03 0e5913E-04 0.5913E-04
0¢1C0JE C) 0.1003E 01 0.42€9E 00 Q+s7549E=02=04722CE~03 041526E=04=0.1560E=C4=C.5469C=05-0e946SE=05
0.1020L C1 0,1020E Ul 042778E 00-0.9250E~02~0+1426L-04 0437256=065-0+3005E-05-0.9012E~06-0.9012E=-06
069943E 00 (45943E G0 C.2807E 00~VU41572E~CL 042704E=03-0e30B6E~05-042576E=06-Co155GE~07~0.1556E=07
O0¢1115F C1 0e1115E OL 003254E 00-0.5182E=C1 041b20E-02-0+3566E=04 0.2426E~CG6~Ce2721E~C3-0.2721E~09
0.1115C 01 C<1115E Ol 0.3345E 00 0.8197E~02-0.209LE=03 0¢2824E~05-041636E~C? Ca2753E~10 0.2753E~10
042115 C1 0,1115k O 043345E 00 0.8197E~02-04209UE=03 0.2824E=05-0,1636E=07 0.2753E~-10 0.2753E-10

DEN-FIELC

0+163¢l C1 04293FE 01 O0.1S38E 0L 0.1938E O! 0.1$38E 0! 0.1938E 01 0.19Y23BE G1 0.1938C 01 0.1938E 01
0.1938E O1 C.2936& 01 0.1934E Ol 0.1938& 01 0.1934E 01 C.1938E 0! 0.1938E 01 0.1933t 01 0.1938E 01
0.1936E C) 0.1938E Q! 0.1G38E 01 0.1933E Ol 0.1936E 01 0.1938E 01 0.1938€ C1 0.1938E 0! 0.1Y36€ 01
0«163bE C) 0,1938€6 Ol 0.1938E 01 U.19368E C1l 0.1938€E 01 0.1938E 01 0.1938E C1 C.1938& 01 0.1938E 01
0«193¢€E C) 0,1628E 01 0.1$38E 01 0.1938E 01 041S38BE 01 C.1938E 01 0.,193¢E 01 0.1S38E 01 0.1938E 01
Oel193kL 0! 0.1938E 01 C.1Y30E Ol O0.193BE Ol 0.1S36E OL U.193BE 01l 041938C 01 0.1938E 01 0.1938E 01
0.1934€ €1 0.1938E 01 0.1936E Ol C.1940E OL 0.193SE 01 0.19392 01 0.1939E Cl 0.1939E G1 0.1938E 01
0.1933E C) 04193RE 01 001%940E 01 0.1943E 01l 041943E O1 041943E 01 O0.19A3E 01 0.19426 01 0.1943E 01

0e¢1€43E C1 C.1$3EE 01! 0.1S40E 0L O0.1$43E 0L 0.1943E Ol 0.1943E U1 0.1943E 01 0.1943E 01 0.1943E 01
041943 01 041938E 01 0.1G41E 01 01943E 01l Q.1%43E 01 0.1943E 01 0.1943E 0L 0.1943E 01 0.1942€ 01
0.1643t €1 0.1934L 01 0.1941E Ol 0.1943E 01 0.1943E 0! O0.1943E Ol 0.1943F Gf 0.1943E 01 041943€ 01
0.1943E 01! 0.193HE 01 0.1941E Ol 041943E 01 0.1943E 01 0.1943E 01 0.1943E 01 0.1943E 0! 0.1943€ 01
0e1S43C C1 04193¥¢E 0Ll 041541E 01 Ga1943L 01 0.1543E Ol 0.1G43E 01 0.1943E 01 0.1G943E 01 0.1542E
0.1943E 01 C.1937L Ol 0.1941E Ol 041943k 01 0.1943E OL 0+1943E 01 0.1943E 01 0.1943E 01 Q.1943E
0-1943E C1 Co1937E 0L 0.1541E OL 0.1943E 0L 0.1943E G1 0.1943E 01 0.1943E 01 0<1943E 01 0.1943E€ 01
0.19A3f Cl 041943E G1 0.1943E 01 0.1943E 01 0.1943E 01 0+41943E 01 0.1943€E C1l 0.2943E 01 0+1943E 01
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