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ABSTRACT

In analyzing the dynamic stresses and deformations 
In viscoelastic bodies as In elastic ones, the problem Is 
concerned with the solution of boundary-value problems In 
Which the time has a dominant role. For thermal stresses as 
In classical elasticity the stress-straln relation will con­
tain terms due to thermal expansions. A few methods for 
thermal stress analysis have been suggested and applied. In 
all the previous work, the coefficient of thermal expansion 
Is considered either as Invariant or as a temperature- 
dependent parameter.

The basic objective of this study was to Investigate 
the stress and time dependency of the thermal expansion coef­
ficient of a viscoelastic material. The analytical part of 
this Investigation consisted of the theoretical development 
of the stress and time dependency of thermal expansion coef­
ficient for a general viscoelastic material under the Influ­
ence of three-dimensional stresses. To check the analysis, 
a series of creep experiments was conducted at three constant 
temperature levels and stress applied as a step function. In 
all of the experimental cases. It was found that the applica­
tion of the developed theory gave a better creep prediction
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than did use of tne assumption that tne thermal expansion 
coefficient remained constant.

In tne course of experimental Investigation, tne 
creep behavior of polymetnyl methacrylate was studied at dif­
ferent temperatures and a relation developed among the stress, 
strain, time and tenperature.
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THERMOVISCOELASTICITY WITH TIME AND STRESS 
DEPENDENT COEFFICIENT OF EXPANSION

CHAPTER I 

INTRODUCTION

The increasing use of various kinds of high polymers 
in machine parts and other products, as well as the use of 
solid propellents in rocket engines, has led many scientists 
and engineers to investigate stress, strain, deformation and 
their time dependence in viscoelastic materials. These mate­
rials in general have viscous properties as well as elastic 
properties, or simply the stress-strain relation in visco­
elastic bodies is time dependent. The theory for simple 
linear viscoelastic materials is well developed, while the 
theory for nonlinear viscoelastic bodies is still in an early 
stage of development.

Thermoviscoelasticity has been considered in the past 
few years. It is concerned with the stress and strain condi­
tion in a viscoelastic body due to a temperature gradient in 
the body. Different methods of solution have been proposed 
for thermoviscoelastic problems.

In 1944 Alfrey (l)^ considered an isotiHjpic,

^Numbers in parentheses refer to References at end.
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incompressible, linear, viscoelastic material and extended 
the theory of perfect elasticity for small strains to visco­
elastic bodies. He classified the problem into two categories:
(l) surface forces prescribed and (2) surface displacements 
prescribed. In the first case, where the surface forces were 
prescribed, he proved that the stresses in a viscoelastic 
body subjected to a surface force /(x,t), where /(x,t) is an 
analytic function of time for t > 0, is given by

Oĵ ĵ (3c,t) * Oĵ jç(x,t)î i « 1,2,3*

In the above equation ô ĵ (x,t) is the static stress of an in­
compressible perfectly elastic body subjected to a surface 
force /^(x,t). To find the displacements, Alfrey assumed 
that the force can be written as the product of two separate 
functions of the independent variables as

/(x,t) . /^(x) g(t).

Then the stress would be

aiĵ ;(x,t) * âijç(x) g(t)

Multiplication of the elastic displacements due to (x) in 
the perfectly elastic body with unit shear modulus and the 
viscoelastic response due to a shear force of 2 g(t) will give 
the displacements in the analogous viscoelastic medium. For 
problems of the second kind he proved that the same operation 
may be performed on displacements to get the stresses.
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Tobolsky and Andrews (2) studied the general molecular 

theory of materials under stress. They stated that actual 
substances, especially rubberlike substances, exhibit a com­
plicated behavior under mechanical stress. Gross (3) formu­
lated a relation between creep and relaxation functions.

In 1949 Mindlin (4) derived a mathematical optical- 
stress-strain-time -temperature relation in which stress and 
strain birefringence coefficients are time and temperature 
dependent. Read (5) considered stress-strain relations for 
compressible viscoelastic materials and proved that if stress, 
birefringence, and their time derivatives are linearly related, 
then the standard photoelastic technique can be used to deter­
mine the directions and differences of principal stresses.

Tsien (6) in 1950 generalized Alfrey's analogy for 
isotropic compressible media to cases where body forces are 
present. Schwarzl and Staverman (7) treated the question of 
whether or not, in the study of linear viscoelastic materials, 
a change of temperature is exactly analogous to a shift of 
the logarithmic time scale. When it is, they termed this 
material thermorheologically simple.

Freudenthal (8) mathematically proved that at differ­
ent rates of heating or cooling the stresses produced in the 
material would be quite different. Hilton (9 ) considered

2temperature-dependent viscoelastic materials of the Kelvin 
type, presented the solution for a thick-walled cylinder, and

2See Chapter II, Section 2 for definition of a Kelvin
material.
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compared the results with the temperature Independent visco­
elastic materials.

In 1955 Lee (10) considered the quasi-static case of 
a viscoelastic body, in which loading is such that the 
inertial force due to displacement is negligible, and by using 
the Laplace transform he analyzed the problem of proportional 
and nonproportional loading. He compared this method with the 
other approaches of stress analysis in viscoelastic materials. 
In the procedure of the Laplace transform method introduced 
by Lee both the boundary conditions and the governing differ­
ential equations must be transformed and become time inde­
pendent. This will restrict the problem to those boundary 
conditions which are transferable, or have zero initial con­
ditions where the given surface traction and displacements 
vanish at t < 0. But there are cases where this condition 
does not exist, and it is not possible to make the boundary 
conditions independent of time. For such a condition Radok
(11) introduced a functional equation in which the boundary 
conditions are not required to be transformed, and instead of 
applying Laplace transform to the elastic solution, the elas­
tic coefficients may be replaced by operators. With this pro­
cedure Radok actually expanded the range of applicability of 
Lee's method. In many cases involving simple elastic con­
stants, he found the functional equations become differential 
equations in time which may be integrated for given initial 
conditions.
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Olszak and Perzyna (12) derived variational theorems 

for the various models of viscoelastic bodies. Yamamoto (13) 
extended the classical linear theory of viscoelasticity to 
three dimensions and discussed three-dimensional nonlinear 
theory also. Norland and Lee (l4) considered a thermo­
rheologically simple material, and by using a shift factor for 
the temperature effect solved the problem of stress distribu­
tion in a cylinder with constant internal pressure and a 
steady state nonuniform temperature distribution. They 
pointed out the effect of nonuniform temperature distribution 
on the material behavior and particularized their problem to 
Kelvin and Maxwell type materials.

In I960 Segawa (15) stated that the spring and dash- 
pot mechanical model is not valid for three dimensions and 
large deformation. He derived Maxwell-body formulas for 
three dimensions and large deformations and illustrated that 
Alfrey's formula is a special case of it. Tschoegl (l6) 
developed a technique which allows the application of electric 
circuit theory to the solution of mechanical and Theological 
problems. Hilton and Russell (17) extended Alfrey's analogy 
to thermal-stress problems. Since in most of the cases the 
temperature distribution is a separable function of time and 
space, the material behavior is also a function of time and 
space. They proved that if the temperature is in the form of

T . ̂  H™(t) p“(x)
m
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then the stress produced due to this temperature distribution 
is in the form of

where a^j(x) is the stress distribution in an elastic material 
and gjjj(t) is a viscoelastic response which can be calculated 
separately. The product of these two will give the stress 
distribution in a viscoelastic material.

Muki and Sternberg (l8) considered the quasi-static 
transient thermal-stress analysis of a linear viscoelastic 
solid and solved two particular problems. Tokuoka (19) used 
the generalized Novozhilov's (20) nonlinear theory of elas­
ticity for large deformation and expressed the generalized 
equilibrium equation in the Lagrange representation and by 
applying Hamilton's principle obtained the general stress- 
strain relations for three-dimensional geometrically and 
physically nonlinear viscoelasticity. He also applied (21) 
Hamilton's principle to the viscoelastic deformation; and by 
physically appropriate assumptions he obtained the three 
dimensional stress-strain relations for Maxwell-type 
materials.

Pister (22) used the integral-transform method and 
considered the viscoelastic plate on a viscoelastic foundation. 
Lee and Rogers (23) discussed the constitutive relation for

^Maxwell-type materials are defined in Chapter II, 
Section 2.
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viscoelastic material in the form of integral equations which 
are more general than the operator form. Shinozuka (24) con­
sidered the problem of thermal stresses in a hollow cylinder 
with variable inside radius for the general linear visco­
elastic material.^ Brener and Onat (25) investigated the 
possibility of finding free energy P and entropy production 9 
of a solid from the knowledge of relaxation modulus with a 
thermodynamics approach and using the following equation.

o(t) ê(t) - P + Tgê

where Tq is a reference temperature and the dots indicate the 
time rate of change of the quantities.

Sternberg (26) extended Lee's Laplace-transform method 
to the thermal-stress problem for a general linear visco­
elastic material. He assumed an incompressible linear visco­
elastic body with temperature independent behavior. This, of 
course, is a crude assumption since viscoelastic materials 
are highly sensitive to temperature.

Except only in a very few papers the authors consider­
ed temperature Independent viscoelastic characteristics, and 
none of them considered the stress and time dependent thenmal 
coefficient of expansion.

In the course of the present investigation, it is theo­
retically proved that the thermal expansion coefficient of a
viscoelastic material is a function of stress and time as 

-

See Chapter II, Section 2 for the definition of a 
general linear viscoelastic material.
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well as a fimction of tenterature. A series of experiments 
is also conducted to prove this theory. Behavior of poly­
methyl methacrylate is investigated at different temperature 
levels and a general relation among the stress, strain, time 
and temperature is developed.



CHAPTER II 

BASIC THEORY

1. A Survey of the Literature 
To date. In most of the books and research papers in 

the field of thermal stresses, the thermal coefficient of ex­
pansion has been used either as a constant or a temperature 
dependent coefficient. In 1956 Rosenfield and Averbach (27) 
investigated the effect of uniaxial stress on the thermal 
coefficient of expansion for an isotropic elastic material.
C. W. Bert (28) in 1963 developed expressions for the effect 
of general three-dimensional stresses on the coefficient of 
expansion of an orthotropic elastic material and applied the 
results in general thermoelasticity theory. He proved that 
the thermal coefficient of expansion for elastic bodies will 
be influenced by the stresses as well as by the temperature 
and derived that the stresses and the coefficient of expan­
sion are related by the following equations:

aoi 8 ^ 1 -N 1
J - - (2-1)

It ( v^ )  (2-2)
i} ' " "  'ij
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Thus,

with
“1 ‘ “oi + ̂  ■ °iic''lk'’k 1 (^-3)

1
°11 ‘ * 17 5T-

(^-5)

where a, E^, , a and are stress, modulus of elasticity, ̂J
Poisson'8 ratio, thermal coefficient of expansion, and thermal 
coefficient of expansion at zero stress, respectively.

Although the theory of thermoviscoelasticity has been 
developed to some extent (29), there has been no theory show­
ing the dependence of thermal expansion coefficient on stress­
es and time for a viscoelastic material. The purpose of this 
chapter is to derive theoretical relations showing the effect 
of stress and time on coefficient of expansion.

2. Constitutive Relations 
The constitutive relations for a general three- 

dimensional linear viscoelastic body have been represented in 
different ways by many authors. The two most common ways are 
usually called the operator representation and the integral 
representation.

The operator representation was used by Lee (30) in 
the following form:

Î'̂ ii " %®ii^ V i J  " *^®ij
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where P^, Pg, and Qg are the differential operators defined
as follows:

" i
L

iZb "Îi«0
i

i«o at
«1 -1 =1 ®

i-0

Here )a, i, m and n are not necessarily equal; the a^, 
and dĵ are material constants which may be temperature or 
time dependent. With the above definitions it is obvious 
that as the number of terms in the summations increases the 
solution becomes more complicated. For a perfectly elastic 
material, the coefficients a^, b^, c^ and d^ are zero for 
i > 1.

In the integral representation used by Gross (3), in 
which he formulated the relations between creep and relaxation 
functions, the constitutive relations are:

t
Sj^j(x,t) « ^ Gg " T ) ®j^j(x,T)dT,

0
t (2-7)

aiçlc(x,t) - ^ 0^(t - t ) | -  eicic(x,T)dT,
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t
^ Jg(t - t ) S^j(x,T)dT,
0 ^

t (2-7)
®kk(*^^) “ ^ (̂  - t ) ^  a^(x*T )dT̂

0

where Gj and Gg are the relaxation modulus in shear and the 
bulk modulus, respectively; Jj and Jg are creep functions;
^kk ®kk the volumetric stress and strain respectively
with the regular tensor notation with summation on repeated 
indices and and e^^ are the deviatorlc stresses and
strains with the following definitions;

®1J “ ®1J ■ I ‘l/Wc '

* "IJ ' 3 ‘ij'Wc '

where 5 denotes the Kroneeker delta function. In the case ̂J
of sinusoidal deformation, the relaxation modulus G and creep 
function J amy be separated into two parts, namely the 
storage modulus and the loss modulus (3 1) as follows:

G = O' + iO" ,
J » J ' + iJ " ,

where i denotes /-I, O' and J ' are storage relaxation modulus 
and creep function and correspond to the elastic energy 
stored in the body in a cycle ; G" and j" are the loss relaxa­
tion modulus and creep function and correspond to the energy
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dissipated in the viscoelastic body due to the internal fric­
tion in one cycle; G ' is defined as the ratio of stress to 
the strain, in phase with each other in a sinusoidal deforma­
tion; G" is the ratio of stress to the strain, 90® out of 
phase with each other in a sinusoidal deformation; J ' is the 
ratio of strain to the stress in phase with each other and j" 
is the ratio of strain to the stress 90® out of phase in a 
sinusoidal deformation. The ratio of G"/0' is called the 
loss tangent. Although J and G are related by J - (I/O), 
their individual components are not reciprocally related (32).

The behavior of different linear viscoelastic mate­
rials can be represented by different combinations of mechan­
ical elements, namely Hookean (linear) springs and Newtonian 
(linear) dashpots. In general linear viscoelastic materials 
under instantaneously applied stress have three distinct 
phases of straining, called

1. Instantaneous elastic response associated with the 
spring element.

2. Delayed elastic response associated with spring 
and dashpot in parallel.

3. Viscous flow associated with the dashpot.
The first response is purely elastic and recoverable 

immediately after removing the stress. The second part is 
also recoverable but at a delayed time. The third part is 
not recoverable.

To find the exact behavior of a general linear visco­
elastic body, it would be necessary to use an infinite number
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of terms In the differential operators P and Q; then, as 
mentioned before, the mathematical solution of the problem 
becomes more complicated. This Is one reason why some authors 
choose to use Integral equations In their analyses. This 
corresponds to employing an Infinite number of elements In 
the mechanical models. Yamamoto (13) started his analysis 
from the elementary model of the classical linear theory of 
viscoelasticity and extended It to three dimensions and showed 
that for three-dimensional nonlinear theory the spring must 
be non-Hookean and the dashpot non-Newtonian.

The simple viscoelastic models are those known as 
Maxwell, Kelvin (or Voigt), and Maxwell-Kelvin bodies (29). 
Behavior of each of these three models corresponds to the 
mechanical models shown In Figures 1, 2, and 3, respectively, 
with the following mathematical relations:

a. For a Maxwell body

e » ^  (2-8)
®m n.'m

or

Thus,

where D - É_ .dt

m

b. For a Kelvin or Voigt body

a - Eĵ e + (2-10)
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Em

T 'm

Maxwell Model 
Figure 1

a

Kelvin or Voigt Model 
Figure 2

a

Maxwell-Kelvin Model 
Figure 3
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or

0 « (Ejç + ĵçD)c .
Then

c. For a Maxwell-Kelvln body (General Linear Visco­
elastic Material),

where
« - «m + «k (2-12)

'“ “ C Em + Ilm!) ) ®

and

Thus,

or
(Sq + a^D + agD^)G - (biD + D^)c (2-l4)

Comparison of equations (2-13) and (2-l4) results in the fol­
lowing relationships;
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A material represented by a Kelvin model with a spring in 
series exhibits instantaneous and delayed elasticity but no 
viscous flow; this is sometimes referred to as the Standard 
Linear Solid (30).

3. Effect of Stress and Time on Thermal 
Coefficient of Expansion 

In the previous section the constitutive relations 
for the various simple viscoelastic materials were described. 
In the present section are derived the mathematical relation­
ships among time, stress and thermal coefficient of expansion 
for viscoelastic materials.

Prom the definition of expansion coefficient

bCi

the following relations are obtained

(2-16)

. â _ (2-17)

Assuming that is a continuous function of and T,
then it is possible to interchange the order of differentia­
tion. Thus,

&*i _ a r ®®i— Ü  . ^ zlL ̂
ag. 3T  V  Ô0 . y



18

In an elastic body the relation among the stress, strain, 
volumetric and devlatorlc stresses and strains are

®kk * 3K ^kk

®ij * h  ®1J (2-19)

1 r Oil + ̂ 22 + ̂ 33 1  ̂1 r ^*11 ~ *22 ~ ̂ 33 “1®11 **■ *kk “ *11 “ 3K L 3 J 20 L 3 J
*11 " " n  [ ic ■ è  ] ■ ®22 [■ W  + ] • ®33 I èi ■ W  ]

where 0 and K are shear and bulk modulus. For a viscoelastic 
material It Is possible to derive expressions analogous to 
equations (2-1 9) as follows.

A. Using the constitutive equations (2-6)

*kk * "kk

Fg
®11 - ®11

*1 r '11 +*22 + *33 1 2̂ r »11 ■ 022 - 033
‘kk + ®ll - ‘ 11 - ̂  L  3 J ------3-------J
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or

r 1 f i 2 1 r 1 r i  i
L 3Qi + 3Qg J "  ®22 L 302 ■ 3Qi J '  <̂ 33 L 3Q2 ‘  3 0 i J

^IX r f^2 1 f22 r £2 £1-1 ^  r £2 ^  1
3 L Qg Q i - I '  3 L Q g ' Q ^ J "  3 L Qg " Qi  J

(2-20)
Equations analogous to equation (2-20) can be obtained for
Sgg and in a similar fashion. Equation (2-20) can be used
to obtain expressions for Ifli and ££11 » with the

0011 ÔOgg
following results:

Substitution of equations (2-21), (2-22) and (2-23) Into 
(2-I8 ) results in

Ü i - . i â _ r  ü i + !i-i
aoii 3 aT L Qg Qi J

(2-24)

— i a _ r  !i . ! i - |
ÔC J  J  3 ST  ̂Qg 0^ ^
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After integration of equations (2-24); for the three- 
dimensional case, a becomes

with
= - *oi + + °lk®kk (2-25)

2Po P,1 8  r ^ 1
=11 - 3 8T L qg- + J

“ij - (2-25)

for an isotropic material

® i k  '  ° 1 J  *

For the one-dimensional case, equations (2-21), (2-22) and 
(2-2 3) simplify as follows;

1. For the case of a Maxwell body, equation (2-8) 
defines the constitutive relation

; . 2- + S- .
Em

If the stress is a function of time

ff * f(t)

then t can be expressed in terms of a
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t . P(p) (2-27)

Differentiation of equation (2-27) gives

dt - AEisl dada
or

Now substitution of equation (2-29) into (2-28) results in 
the following expression:

1 
à

Integration of equation (2-8) with (2-30) gives

dt « V dfl (2 -3 0)
a

G « —  + \ —  dt 
®in X

or

Ïr + S TO- da (2-31)

Now differentiating equation (2-28) with respect to a gives 
the following expression:

or

Substitution of equation (2-32) into (2-17) gives



22

H  “ It  + It
or

do. 1 a% " "  " ' f ?  *T- (2-33)

After Integration the expression for @ becomes

%  (2-34)_2_

%  "■ 2«n'm

for the special case when stress is constant

0 - Oq

the constitutive equation (2-8) becomes

Differentiation of equation (2-35) with respect to Oq results

(2-36)

in

iL - J l. + _L 

Substitution of (2-36) in (2-17) gives

If. m 1_ r JL + _Ë_ 1 
aco 3T So a? L Tim J

or

^  ̂  - 7  ̂  (2-37)
° m ^

now integrating equation (2-37) with the condition
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a = ÜQ at og = 0

(-38,
m TO

A Maxwell body approaches a perfectly elastic body when
-• » . To compare the results with those previously obtained 

for perfectly elastic materials, • is substituted into
(2-34) and (2 -3 8) then in both cases (o = constant and a / 
constant) gives

%

W h i c h  is identical to the equation which has been derived for 
a perfectly elastic material.

2. For the case of a Kelvin body equation (2-11) de­
fines the constitutive relation

Differentiating with respect to a to get

If “ Ek (2-39)

Taking ^  y, then equation (2-39) becomes a®

Ek + V

o r

(Ejç + TijçD)y - 1
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(2-40)
at T,k

Equation (2-4o) is a differential equation with tne following 
solution

-^p dt t Cp dt 
y = e ( e'̂ q dt (2-4l)

o

Here P ■ V ’tlc
q - 1/tiic

Therefore

After integration tne following expression is obtained

-®kr 1 - e
Ek

Substitution of (2-42) into (2-17) yields

-Ek tTIK
5 5 - - S T L ^ - ^
sa r J_ _ M̂c - 1

L E._ E,_ J

Integrating the above equation gives

a - a o + L f r C ^ - ^ *  ) ] o  (2-43)



25
A Kelvin body approaches a perfectly elastic material when 

- 0. Substitution of T)jj ■ 0 in equation (2-43) results in

which again is the same as the one which has been derived for 
perfectly elastic materials.

3. For the case of a Maxwell-Kelvin body equation 
(2-l4) defines the constitutive relations

2 2 (aQ + a^D + agD )a ■ (b^D + D )c

To solve the above equation, Laplace transform is applied (33)

(p̂  + b^p) 7(p) . (agP^ + a^p + a^) a(p) (2-44)

where p is transformed variable, 7 (p) and o(p) are transformed 
strain and stress respectively

-, X *2P^ + »lP + *0 -, .
+ b,p)

e(t) . [ »gP + »lP + =0 f(p)] (2-45)
(P + bip) J

After transforming equation (2-45) to the original variable 
(t), it is possible to differentiate with respect to o(t).
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Considering a step function for a(t), then

0 = qq u(t) (2-46)
Substituting this into equation (2-l4) yields

(b^D + D^) c(t) - (aQ + a^D + "(t)

Now applying the Laplace transform gives

(p2 + b,p) 7(P) . o„ (2-47)

Solving for transformed strain in terms of transformed stress

(2-48)
pr(p + b^)

To get the strain in terms of time and stress, equation (2-48) 
should be transformed back to the original system (t). To do 
this equation (2-48) can be written in the following form

™  ■ [ r ? 5 r  ‘ ] -o « ■ * »

The inverse Laplace transform of equation (2-49) is as 
follows:

r - b i t  a - b i t  S q  - b i t  _
g(t) . I age + (1 . e ) + (e + bit - 1 ) | j

L  ̂ bi bj J O

Substitution of coefficients Sq, a^, ag and bi from equations 
(2-1 5) results in

e(t) + ] a o  (2-50)
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Differentiation with respect to Oq gives

-Bk

Now substitution of equation (2-51) into (2-l8) results in

Bm 2% ^k
or

-Bk t
ôa 1 1 t , 1 3 c  B̂ĵ

r  i r

•®k

I t C | )  (2-52)
Integration of equation (2-52) gives the expression for a

”0 "0 ®0* *”m . ®0 ^
= - "o ?  - 3  FT + 3- « 5T“

^  ^

-El»

l ^ ( ^ )  (3-53)

A Maxwell-Kelvin body reduces to a perfectly elastic body 
by letting -* « and -» 0 (l4). Thus, substituting into
equation (2-5 3)

T)m ■ “ and - 0 ,
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then finally a becomes

a " *0 - 3  (2-54)

Equation (2-54) Is the same as the one obtained for a per­
fectly elastic material. In this case it corresponds to a
model with two springs in series.

B. Using constitutive equations (2-7)

®ij " S J2(t - t ) dT

®kk

t
S0

0

Applying the Laplace transform to the above equations gives

ëi,(p) - p Tg(p) 5.,(p)
- ,  , , , , _ \  . (2-55)
cac(p) - P Ti(p) 9m c (p )

Where the barred symbols denote the transformed variables and 
p is the Laplace transform parameter. Now adding ^^^(x) and 
e^(p) to get the following relation

ên(p) + ?kk(P) - l Ü l .- j 2 2 - « 3 3  + «11.1^22 . - J p )

ê,i(p) + 7^(p) . F,i(p) 25-11 - “22 - “33 ]

+ ?  [ *11 + "22 “33 ]
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After simplification the above equation becomes

Cii(p) - I  ëii(p) [ 2Tg(p) + Ti(p) ] - I  Sgg [ ]g(p) - 7i(p) ]
* ̂  ̂ 22 [ ?2(p) - Jĵ (p) ] (2-56)

Findley (34, 35, 36, 37) and Onaran and Findley (3 8) showed 
that J(t) Is also a function of j. Thus,

^1 - T’i(Piâ)
T T  , (^-57)

Now differentiating equation (2-56) with respect to âgg
and and considering equations (2 -5 7) yields

3eii(p)
aô"ii(p) ■ | { 2J2(PfÔ) + T̂ (Piff) - (Ôgg + 023) r SJg 

3oii

r 37o+ aii(p) [ 2 1 } 30ii J J (2-58)

3 ®2.1 ) 
3022 (P) ■ - I {T2(p,Ï) - Ti(p,7) ■t (@22 G33) r 33̂ 2 _ %Jl 

**22

-  “11 [ " " 2 ^ 1  ) 
3^22 (2-59)

3€i i(p ) 
3^33 (p) ■ - ! {T2(p,î) - Ti(p,ô) •t (@22 ^ @33) r *3̂ 2 

**33
3^1
**33
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Transformation of equations (2-58), (2-59) and (2-60) to the 
original variable t results in

ââ'̂ (̂'i) “ 2J2(t,o) + Ji(t,o)] + Oii(t) ti(t-X)dX
o

t
“ ^ \ {@2 2 (t) + Ggg(t)^ç2 (t -x)dX (2-6l)

he t
- " - Y  ̂  [ J2(t,o) - Ji(t,o) +

22 0
t

- 5 Oll(t) tgft ■ (2-62)
0

^  = - i a r  [J2(t'0) - Ji(t,a) + t{a22(t) + x)dx

- ^ oii(t) ♦^(t - x)dx] (2-63)

where

3*11 S'il

$2 - 2 H 2 -  + .
**11 **22
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* 3 - 2 !£l . + îii_ .
**33 **33

5 Jg ) J1
soii '

ÔJ2 ÔJ1 ^

a*22 *^22

ôJo )J1œ  ----------
SCToo %0:'33 **33

Substitution of equations (2-61), (2-62) and (2-63) Into 
(2-1 8) leads to:

*°i . i_ r 1 d 
do { 3" 3F  [2J2(t*o) + Ji(t,o) + ^ Oii(t) *^(t - x)dX

0t
- 5 {*22(t) + Gggft)} cp;̂ (t - X)dx] }

aa^ I t  {- 3 it [j2(t,o) - Ji(t,a) + ^ {022
t 

+  Oggft)} fl>g(t - X)ax - ^ O^^(t) tg(t - x)dx] }
0

»'kk t
+ v(^ “ X)dx - ^ o^^(t) $ (t - x)dxj J )

0
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Integration of the above equations gives the a as follows

“l - "ol + S S

Where cu,, c. , and c., are defined as n  ij ik

Sai
®ll = S5^  ' (2-65)

o . *îi_ * (2-6 6)

c,t - Î2i- • (2-67)
6°kk

Similar relations can be obtained for a. and by the same
J K

procedure,
For the one-dimensional case, equations (2-62) and 

(2-6 3) will vanish and equation (2-61) becomes

l^ftj “ ^  [j(t,a) + ^ Oii(t) * (t - x)dx] (2-6 8)
0

Where
♦ ■ If (2-69)

For the case of a constant applied stress

a - Oq
equation (2-68) becomes

- a? J(t,Og) + »o ssy J(6'®0 > (2-f°)

substitute in equation (2 -l8 ) to get
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Integration of equation (2-71) gives the a as follows

a * 0.Q + ̂  Z do > (2-7 2 )

where
Z - àfl_ (2-73)

Equations (2-25), (2-38), (2-43), (2-53), (2-64) and (2-72) 
are the relations among thermal coefficient of expansion, 
time and stresses applied on different materials. As it can 
be seen from these equations in the regular viscoelastic 
materials for which £ and r) decrease with the Increase of 
temperature, a increases with the stress and in the few mate­
rials Which E and increase with the temperature, a de­
creases with the stress.

Therefore, it has been shown that according to the 
theory developed here a is not a constant but a time, 
temperature and stress dependent factor.

By the same procedure it is possible to find the math­
ematical relations for any combinations of springs and 
dashpots.



CHAPTER III

PLANNING OP EXPERIMENTS

In the preceding chapter It was derived that, for the 
imlaxlal state of stress, the relation for the stress de­
pendency of thermal expansion coefficient would be

H  - It  [ Jft.'o) + «0 •

To Investigate the validity of the above equation, two stages 
of experiment were planned: (l) low-stress-level experiments
and (2 ) high-stress-level experiments.

1. Low-Stress-Level Experiments 
In order to have enough Information to carry out the 

second stage of experiments. It Is necessary to know the 
variations of creep constant J with time, temperature and 
stress explicitly. Several methods have been developed (35, 
42) to represent the stress-straln relation with time- 
dependent creep modulus. In parallel there have been some 
experimental Investigations on the creep properties of visco­
elastic materials (4l, 44). However, the experimental Inves­
tigations were not concerned with the change of creep coeffi­
cient with temperature. In the constitutive equation

34
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suggested by Findley (48)

e “ a slnh 2  + ct” slnh £ (3-1)

there are constants a, b, c, d and n. At least some of these 
constants are highly affected by the temperature changes ac­
cording to Findley.

To find the variations of these coefficients with 
temperature, it was planned to conduct some creep experiments 
at different temperatures. Since it was expected, according 
to the theory derived in Chapter II, that the thermal expan­
sion coefficient varies with the stress, the experiments were
planned to be conducted at low stress levels at this stage,
in order to minimize the error due to this effect. On the 
other hand, to avoid a transient state of tenqperature dis­
tribution and consequent inconsistency of the results, it was 
decided to keep the tenqaerature constant at each level during 
the experiments. From the experimental information the co­
efficients of creep can be determined such that equation (3-1) 
fits the experimental data. The procedure for doing this is 
explained in Chapter V.

Since the creep at ])w stress levels is very small
and any small error due to the reading or due to the non-
uniform condition may cause a major deviation in the results, 
four sets of experiments with different stresses were planned 
to be carried at each tenq)erature level in order to check the 
consistency of the fitted curves and to be able to compare
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them statistically. It was also planned to repeat these ex­
periments at different temperatures, so that curves could be 
plotted for a, b, c, d and n versus temperature. Prom this 
Information It Is possible to predict tne creep at any tem­
perature and any stress level for the material considered 
with tne assumption of constant thermal expansion coefficient.

It Is Interesting to note that, although the tempera­
tures were kept constant during each experiment, after ob­
taining tne above information tne creep can be predicted at 
any variable temperature simply by considering the coeffi­
cients as a function of temperature and Integrating equation 
(3 -1 ) over the range of temperature change.

2. Hlgn-Stress-Level Experiments 
At this stage It was planned to apply stresses of tne 

order of 3000-5000 psl In order to observe tne effect of 
stress on thermal expansion coefficient as much as possible. 
Again at this stage tne temperature Is kept constant. For 
tne specified temperature the values of the constants of 
equation (3-1 ) can be obtained from tne curves previously 
explained In section 1. With these coefficients and the 
specified stress, tne curve for the strain versus time may 
be plotted. This Is tne creep curve assuming tne thermal ex­
pansion coefficient Is constant.

Now from equations (2-71) and (2-72) the predicted 
additional strain due to the variation of the thez*mal expan­
sion coefficient can be calculated and added to tne basic
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creep deformation calculated from equation (3-1). The calcu­
lated strains may be compared with the experimental data ob­
tained for creep at high stress level. With this procedure 
It was planned to check the derived equations at three dif­
ferent temperatures and different stresses.

It should be realized that equation (2-72) has two 
terms; the first term has already been compensated by 
letting the experimental models expand and stabilize at each 
temperature without any stresses, and then applying the 
stress.



CHAPTER IV

MATERIAL, SPECIMENS, AND EXPERIMENTAL APPARATUS

1. Material
A methyl methacrylate copolymer plastic* was employed 

in these experiments. This material is a slightly cross- 
linked copolymer. To predict any trouble in evaluating the 
creep and other experimental data, several materials were 
considered. These included copolymers like "Lucite,” 
"Plexiglas," and polyvinyl chloride (39, 40, 4l). Prom a 
study of the technical data on these materials, "Lucite" wae 
selected. It has good creep properties (42) and also is 
relatively insensitive to humidity change (0.2-0.4 per cent 
water absorption in 24 hours, A.S.T.M. test method D570). 
Furthermore, it has almost the same machining characteristics 
and thermal conductivity as polyvinyl chloride (3.6 x 10*^ 
calories per second per square centimeter per *C per centi­
meter thickness) but it can stay at higher temperature (43). 
Commercial Lucite contains little plasticizing agent and 
mechanical properties of this material are known to be 
strongly affected by temperature, thus permitting a wide 
range of investigation.

* "Lucite," manufactured by E.I. du Pont.
38
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Unfortunately, all of tne available experimental 

creep data on "Lucite" Indicate tnat tne creep tests were 
carried at only one tenqperature level, Tnerefore, as a part 
of tne present Investigation, tne creep benavlor of "Lucite" 
nas been Investigated at several temperature levels. Tnls 
was necessary In order to find tne variation of creep coef­
ficient of tne material versus temperature as discussed In 
Cnapter III.

2. Specimens 
Several models were made to be used at different 

sets of experiments; tney were all made out of a 1/4-lncn- 
tnick flat sneet of "Lucite." Tne gage lengtns of all of tne 
models were 8 In. and tney were made stronger at tne ends as 
snown In Figure 4. In order to be able to use and statisti­
cally conqpare tne results of tne tests. It Is required to cut 
tne models from tne materials navlng tne same condition as 
mucn as possible. To fulfill tnls requirement, all of tne 
models were cut from one piece of plastic. Furtnermore to 
prevent any nonnomogenelty amorié tne models due to tne mold­
ing stresses In different directions, all of tne models were 
cut along tne same axis. Tne models were 1/4 Incn x 3/8 Incn 
In cross section. One 1/4-lncn-diameter nole was prepared 
on tne centerline of tne model at eacn end to center tne 
model and apply tne tension. But since tne bearing area at 
tne noles was only

bearing area ■ 1/4" x 1/4" - 1/16 sq.ln.
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and In comparison with cross section of the model

cross sectional area = 3/8 " x 1/4" ■ 3 /3 2 sq.in.
at the gage length

was small, there was a chance for bearing failure due to com­
pression force exerted by the steel pin and consequently mis­
leading results. To prevent this situation, two clamps were 
prepared for each model as shown in Figure 5, to exert the 
tension load through the whole square area at the ends in­
stead of using Just the holes. Before tightening the clamps 
at each experiment, the model was centered by applying a 
small load and then the clamps were tightened. The dial 
gages used for the elongation measurements were numbered to 
read 1/1 0 ,0 0 0 in., but it was possible to estimate the frac­
tions of 1 /1 0 and therefore get measurement up to 1/1 00 ,000  

in. The dial gages were installed in such a way to read 
directly the elongation of the gage length, as shown in the 
installation of the gage (Figure 6 ). To avoid friction between 
the clamps and loading frame, washers were used on each side 
of the specimen to increase the spacing between the two 
pieces of clamp.

As shown in Figure 4, the ends of the section called 
gage length have been smoothly enlarged to prevent failures 
at the grips. However, in the data reduction, it is assumed 
that the cross section is constant. The following calcula­
tions give an estimate of the percentage of error to be ex­
pected due to this assumption. These calculations are based
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W

weight

I"

washers

aluminum
f'bolt

holes

Figure 5. Model Assembly
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Figure 6. I n s t a l l a t i o n  o f  D ia l  I n d i c a t o r s
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on elementary theory. In which stress-concentration effects 
are neglected.

Let F denote the applied load and E the Young's 
modulus. Then the strain Is

1/4 X 3/8 X E

total elongation At ■ tc ■  ÊE (4-1)
assuming constant cross section 1/4 x 3/8 x E

actual total elongation » At' + At" (4-2)

To find At", the strain Is calculated at an arbitrary point 
on the curved section and then Integrated to give the 
elongation.

stress at any point _ p
of the curved section * ^ Z Psl

% (1 - g COB @)

strain-------1 55  (1 - 2  cos @)

Referring to Figure J,

L " A. sin e 16
dL " cos 0 16
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dL

Figure 7
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1%  (P/E) cos e. .elongation for small length dL ■ — -------------
% (1 - ^ cos @)

total elongation for the _ 5 f (P/E) cos a 
curved sections at both ends 8 j 5 "0

0 ^ (1 - g cos 0 )
or TT2

LI

|tt/2 

0
After substitution of limits, equation (4-3) becomes

1 .3 1 P/E
1 /4

Thus:
actual total elongation - At' + At" - - f in.1/4 X 3 /8 1/4

and percentage of error * ^ t — ~ x 100
At' + At"

or

7.375 P/E  ̂ 1.31 P/E P/E 
1/4 X 3/8 1/4 " 1/4 X 3/6

7.375 P/E ^ 1.31 P/E * 
1/4 X 3/6

percentage error ■ ■ 1 .69$

Therefore the error entering the calculations for the
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above assumption would be less than 1.7$̂ . Consideration of 
the stress-concentration effects by making an elasticity- 
theory analysis would be expected to result in an even smaller 
estimated error.

3. Experimental Setup
To carry out the experiments at each temperature 

level as nearly similarly as possible, four loading frames 
were designed with different loading ratios (Figure 8 ), so 
that tests under four different loads could be carried at the 
same temperature and humidity conditions. This avoids the 
possibility of different temperature and humidity fluctua­
tions at different loadings but the same temperature level.
The frames were prepared such that they could be used for any 
specimen length up to 12 inches.

All of the loading frames were completely enclosed 
in an oven specially designed and built for this purpose as 
shown in Figure 9. The heating system of the oven consisted 
of an electric heater which was mounted on the wall and was 
controlled by an automatic temperature controller. One 
electric fan was installed at the bottom under the loading 
frames, and the other one on the opposite wall where the 
heater was mounted. Since the viscoelastic materials are 
highly sensitive to vibrations, especially at higher tem­
peratures, the fans were mounted on two separate stands in 
order to minimize the transfer of vibrations due to the fans 
through the structures. The fans were in continuous operation
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Figure 8. Loading Frame
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Figure 9. Frames Mounted In Oven
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while the oven was in use and the heater was in control.
With this procedure the temperature was fairly well distrib­
uted, so that there was only about one degree Fahrenheit 
temperature difference between the front and back of the 
oven. The temperature was controlled within 1®F.

A glass door was prepared at the front, to be able 
to take all readings without opening the door and disturbing 
the temperature. In order to avoid the development of local 
hot spots on the specimens and to prevent temperature varia­
tions from one specimen to another due to direct radiation, 
a shield was used in front of the neater. Furthermore, the 
locations of specimens were so arranged that they were all 
almost the same distance from the heater.



CHAPTER V 

EXPERIMENTAL RESULTS

In this Chapter an effort has been made to express 
the creep behavior of the material by a mathematical 
expression.

As explained In Chapter III, experiments were con­
ducted at low stress levels and at different temperatures 
to obtain the variations of the creep constants of the mate­
rial with temperature. At low temperatures the experiments 
were conducted at periods of time up to 49 hours, but at 
higher temperatures a two-hour period was sufficient to get 
the necessary Information. At the same time at higher tem­
peratures the lower stresses were applied.

The results of creep experiments at different tem­
peratures are tabulated In Tables 1 through 35, Appendix A, 
and the curves for the experimental strain versus time are 
plotted In Figures 25 through 34.

To find the creep coefficients. It Is necessary to 
establish a constitutive relation among the stress, strain 
and time which fits the experimental data as closely as 
possible. Different kinds of equations have been suggested 
and applied by various Investigators.

51
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Marin (42) assumed a time-dependent stress-straln 

relation in the form of

e - Do* + Bta" (5-1)

Where e is the creep strain, t is the time, and a ie the 
stress level; D, B, m and n depend on the material.

Leaderman (43) suggested the following equation for 
creep in torsion

c " A log^Q t + Bt + C (5-2)

Where A, B and C are constants depending on material and
stress.

Cottrel and Aytekin (46) used equation (5-3) for 
single crystal materials.

e - €q + At^/S + Bt (5-3)

Here A and B are constants of the material and Cq is the in­
stantaneous strain.

Pao and Marin (47) also introduced the creep math­
ematical relations in the following form.

-Ct,e A + B(1 - e " ) + Dt (5-4)

Where A, B, C and D are material constants and functions of 
stress.

Findley and Khosla (48) employed the creep equation 
' in the form of

c ■ 6q + nt (5-5)
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Where m and n are material constants and cq and m depend 
on stress as well. They showed that stress dependence of £q
and m can be expressed by a hyperbolic sine function such as

Cq = a sinh ^ (5 ”6 )

m - c sinh & (5 -7 )d

Which yields an equation for creep as follows:

c » a sinh — + ct” sinh ^ (5 -8 )b d

For the present investigation equation (5-8) has 
been employed also. In equation (5-8) the first term is in­
dependent of time with a and b material constants depending 
on temperature but independent of stress. The second term 
of equation (5 -8 ) is time dependent, and constants c, n and 
d are again material constants independent of stress but 
temperature dependent.

To obtain the coefficients a, b, c, d and n from the 
experimental data, equation (5-5 ) can be rearranged as

€ - Cq * rat̂  (5-9)

Taking logarithm from both sides of equation (5-9) yields:

log^Q (c - Cq ) - log^Q m + n log^Q t (5-10)

Equation (5-10) is the equation of a straight line taking 
log (c - Cq ) as ordinate and log t as abscissa. The quantity 
n is the slope of the line and the value of m may be obtained
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by letting t * i nour. The experimental curves corresponding
to equation (5-10) are plotted In Figures 10 through 19.
Having gg and m for the different stresses and by the use of
equations (5-6) and ($-7), the coefficients a, b, c and d
can be obtained by trial such that the plot of cq versus
sinh g. and m versus sinh §■ yield a straight line. This Is b «
done In Figures 20, 21 and 22 for different temqperatures, 
where the values of a and c are the slopes of the lines. It 
was found that to get the straight lines for cq versus sinh ^
and m versus sinh ̂  the values of b and d are constant and
Independent of temperature

b . 40,000 d * 3,300,
but the values of a, c and n vary with temperature. The
variation of these coefficients are tabulated in Table 36, 
Appendix A and are plotted in Figure 23.

In order to be able to differentiate the creep func­
tion J as necessary In equation (2-71), It Is much more con­
venient and accurate to get mathematical expressions for 
variation of the constants with tenqperature. To do this. In 
Figure 24 log^^ n, log^^ 100c and log^^ a are plotted versus 
temperature. It Is seen that the resulting curves are nearly 
straight lines. Now the mathematical expressions can be ob­
tained very easily. Let

- - log^Q n - + v^T (5-11)
yg - - log^Q a - Ug + VgT (5 -1 2)
yg » - log^Q lOOc m Ug + V3T (5-1 3)
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Where Vg, and may be obtained by choosing
two arbitrary points on each line and putting their 
coordinates In equations (5 -1 1), (5 -1 2) and (5-1 3) and 
solving for the unknowns. In this way

"1 ■ 1-800 - - 0 ^

Ug - 1.490 Vg - -

U, - 1.935 V, *8‘3 3 - 6500

Substitution of these values In equations (5-11), (5-12) and 
(5 -1 3) results In:

50.6- log@ n " -2.3 1O&10 R • 2.3(1.800 - g Q ^ Q  T)

- log, a - -2.3 losio " - 2-3(1-490 - ̂  T)

or

- log, lOOo . -2.3 log^o 100c - 2.3(1.935 - ) ,

n - «(-0179T - 4.14)  ̂ (5 .1 4)

a - .(-Ol4lf - 3.4)  ̂ (5 .1 5)

_ ^ , ( . 0 2 4 T - 4 . 4 5 )

With equations (5-14), (5-15) and (5-16) the creep 
expression (equation 5-8 ) Is completely defined In terms of 
stress, time, temperature and material behavior for Luclte 
as follows:
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. _ L  - •■<5> .u, _ J _  (5-II)
100 3300

Where T Is the teiqperature In degrees Fahrenheit and n Is 
given by equation (5-l4).

With the obtained coefficients a, b, c, d and n and 
' equation (3-8) the theoretically predicted creep Is calculated 
and plotted In Figures 25 through 34.

It should be mentioned here that although the experi­
mental curves and the curves from equation (3-8) differ from 
one another and In the worst cases as much as 10 percent, 
but In comparison with the worst cases of (38) and (42) which 
have 8 percent and 30 percent deviation respectively, these 
curves seem to be In reasonable agreement.
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CHAPTER VI 

ANALYSIS OP EXPERIMENTAL RESULTS

As explained In Chapter III, experiments were carried 
out at high stress level In the range of 2600-5000 psl and 
at different temperatures. The creep data for the hlgh- 
stress experiments are tabulated In Tables 37 through 4l, 
Appendix A and experimental creep curves are plotted In 
Figures 35 through 39. The theoretical creep curves based on 
Information obtained In Chapter V and equation (5-8) are also 
plotted In Figures 35 through 39. These curves correspond 
to the assumption that the thermal expansion coefficient Is 
not a function of stress. But as It Is clear the theoretical 
and experimental creep strains differed about 17 to 23 percent 
after a two-hour period, while In previous chapter where 
theoretical creep equations were fitted to the low-stress 
experimental data, the deviation was only about zero to 10 
percent. This Indicates that It would be a better prediction 
of creep If the additional strains due to the change of 
thermal expansion coefficient be added to the predicted 
creep which has been calculated from equation (5-8).

As mentioned In Chapter III, since the models are 
stabilized at any particular temperature and are expanded
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under no stress with the thermal expansion factor before 
the experiment starts, the first term of equation (2-72)

a « ttQ + 5 Z da ,

is already compensated and it only remains to calculate the 
strain corresponding to the second term. To do this, equa­
tion (5-8) is employed to obtain the creep function J(t,ag)

J(t,ag) . ^  sinh ^  sinh . (6-1)

To apply J in equation (2-71) and get Z in equation 
(2-7 2 ), equation (6-1) is differentiated with respect to time 
and stress,

slnh 5° (6-2)at Cq d

. 4  Sinh ^  + -2- cosh . 4 2  Slnh
ol bOo «2 a

+ ——— t cosh —— (6-3)
dCo d

Substitution of equations (6-2) and (6-3) into equation (2-71) 
results in
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slnh "Y + ̂  cosh ] (6-4)

or
ôa d

Z " SoJ " df [S] (6-5)

where

Ç . t"‘^lnh ^  ^  slnh ̂  + â cosh ^  - «îîl slnh ^
Oq d Oq b b b CTq d

d d
and

Gt" °0 ,,+ — 3—  cosh -T- (6-6)

É i . È i È Ï  + Èi É &  + %iÉc (6_7)
dT bn dT ba dT be dT ^

But from equations (5-14), (5-15), and (5-16)

0179 (6-8)

M .  .0141 - 3-^)dT (6-9)

| | . ^ , ( . 0 2 4 T - 4 . 4 5 )  (6.10)

To differentiate t*' and t”  ̂with respect to n the following
approach is used

t” - P
then

logg P ■ n logg t
and
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n logg t

3E - 3E t" - e" * l®«e t - t" logg t (6-11)

Therefore :

Ih  "  ̂ Blnh IT + t*  ̂loge t slnh

loge t sinh loge t cosh

|£ m  ̂+ nt”  ̂logg t - t” logg tj _£_ sinh ^

et" . . ®0+ -g— logg t cosh -g- (6-12)

1 , ^ *0 1  ̂ ®o ,,3% - - sinh Tg- + g cosh Tg- (6-13)

« gL t"  ̂sinh —  - 1— sinh —  + —  cosh —  (6-l4)00 CQ d Cq d d d

Substitution of equations (6-8), (6-9), (6-10), (6-12), 
(6-13) and (6-l4) in equation (6-7) and (6-5) results in;

ôa / r^n-1 . _jn-lÙ
f r n-l n-j. n T e  0{ (_t + nt logg t - t logg tj g—  sinh —
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+ ̂  108e t o o s h ÿ }  [.0179 e(-°^79T- 4.14)^

+ {- i  Slnh ̂  + I oosh ÿ  } [.0141 ]
+ { ~  slnh - I— slnh'• ®0 d Gg d

Now equation (6-15) can be substituted Into equation (2-72) 
and Integrated to obtain:

Aa - a - ttQ - 5 Z dOQ

Aa - c [.0179 e('01?9T " {(t*"^ + nt""^ log^ t
Oq_ _ slnh —r  . n On -,

- t logg t) ^ —   dcQ + ̂  logg t ^ cosh doQ j

. [,«1.1 ■ * ■ * > ] {  è s .... ÿ  %

■ S ^  « " 0 } • [ ' S  ■ *■*'’ ] {<••"•■

n. n slnh -g- r *0 i ,
0 Oq **0 + IT S °°sh -g- doQ } (6-16)

s l n h ÿ
To Integrate ------- the following procedure has been applied:
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- slnh -rp g(ao/<l) g(“Co/d) ^ ^(ao/d)
Ù - ^ 3 — ------ j  ------^ -------- ^ 0  - j —

But

+ . . . (6-17)

4° (6-18)c " ' '
5*5M^

In equations (6-17) and (6-l8) the terms after the sixth 
term are neglected because in comparison with other terms 
they are small enough that their effects are negligible. 
Subtraction of equation (6-18) from (6-17) gives

^ slnh ^  1 r e^'o/d)  ̂ 1 c
:> - I T -  "'o - ? Ù - g r -  - ? j — ;—0

- X  + (6-19)3'3JdJ 5*5M^

Now with equation (6-19) equation (6-16) becomes
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[.0179 - 4.14) j + nt*"l log^ t

+ t”log t) (  ̂  + ) + t"iogg t sinh ÿ  }
® ^ d 3 .3 ,4 3 5 .5 ,4 5 ^ J

+ [ . 0 l 4 l e ^ - ° ^ ^ ^ ^ - 3 - ^ ) ] { 3 i n h ^ - ( ^ .  '*
3*3.'b3

5
®0 > 1 ^ r .024 .(.024* - 4 .4 5) I f_^n-l

+ n - ï ô ô ®  J

+ + ) + t " s l n h ^ }  (6-20)
^  ^ 3-3.'d3 5'5Jd> ^ ^

Equation (6-20) describes Aa in terms of temperature and 
stress for the material used. The following equations are 
the same equation particularized to the specific temperatures 
and stresses in which the high-stress level experiments were 
carried out.

For l40®P:

Aa ■ 975 X 10 [(t + .i7t *^^logg t - t'^^logg t) ^

g3 p5 0 a
+ + t Slnh IT ] +366 x lO'® [slnh ^
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. t'l? r + Slnh 22 ] (6.21)
1 I8d3 6ooa5 1

For 160®P:
Aa - 228 X 10 ^ + .24t '^^logg t - t'^^logg t) ^ ^

3 5 ,
®0 ^0 \ . 24 ®o “1 I -5 r+ — ^  +  —  ) + t log- t sinh ~  + 456 X 10 1 sinh

18(j3 600(j5 ^ e d j L b

For 190®F:
Aa « 85 X 10"* [(t"'5* + .44t"'^*logg t - t'^^logg t) ^ ^

+ 705 X 10-5 r - C f +  ̂  +

+ 259 X 10-® [(.6H-56 . f^'*) ( ^  + A  + _ f E ^ )
^ l8d3 600d5

+ sinh ̂  ] (6-2 3)
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From equations (6-21), (6-22), and (6-23), the additional 
strain can be calculated from the elementary equation

Ae - (ùa)(ùT) (6-24)

where is measured from the reference temperature T * 0.
The additional strains have been calculated and added to the 
strains obtained from equation (5-8) in Figures 35 through 39.

Comparison can be made between the experimental data 
and the additional strains Just obtained plus the strains 
previously calculated from equation (5-8).

In Figure 40 the percentage deviation from experi­
mental data after thirty minutes is plotted for the same 
stress level versus temperature.

In the next chapter will be shown the percentage of 
error expected if the additional strain term is not added.



CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

1. Conclusions 
Based on the theoretical derivations of Chapter II 

and the experimental information presented in Chapters V and 
VI, the following conclusions can be reached.

a. The thermal expansion coefficient of viscoelastic 
materials is not a constant or a function of temperature 
alone, but it is a function of stress and time as well. For 
the materials in which the relaxation function decreases with 
the temperature, the expansion coefficient will increase with 
the stress. The elastic solution can be reached as a partic­
ular case simply by substitution of

• and = 0 .

For the elastic case Brock (49) has mentioned that 
the results of analysis would be identical, using the expan­
sion coefficient corresponding to zero stress and the value 
of elastic modulus at the final temperature, instead of using 
the expansion coefficient as a function of stress. This can 
be proved by taking a partial integral; however, this will 
not hold for viscoelastic materials, since the relaxation
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modulus at any temperature varies also with time.

To show how much error would enter In analyzing a 
thermal-stress problem In viscoelasticity, a^, the thermal 
expansion coefficient at zero stress Is measured and tabu­
lated for polymethyl methacrylate. The experimental values 
and variations of expansion coefficients with time for dif­
ferent stresses are plotted In Figure 4l. As It can be seen 
In Figure 4l, after two hours the percentage error consider­
ing the thermal-expanslon coefficient constant would be be­
tween 1 3 .2 to 26 percent.

b. The nonlinear relation for the creep of plastics sug­
gested by Findley In the form of

e « a slnh ̂  + ct” slnh |-

Is developed for polymethyl methacrylate at a variety of 
temperature levels. Results Indicate that the coefficients 
b and d remain constant with temperature variations, but a, 
c and n vary exponentially with temperature as follows.

.(.Ol4lT - 3.4)fit * c

1 (.024t - 4 .4 5)c ■ —=— e 100
n _ e(.0179T - 4.14)

2. Some Suggestions for Future Research 
Viscoelasticity being a relatively new field of re­

search, there are still many aspects to be studied and
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theoretical and experimental methods to be developed. For 
further development of this field. It Is Important to Inves­
tigate the following points as well as the other phases:

a. Possibilities of using strain gages to get more 
accurate readings of any kind of deformation without any in­
fluence due to the straln-gage mounting which has been a sub­
ject of discussion for a long time among the Investigators.

b. Often In practical problems the load Is not con­
stant, therefore, experimental methods should be extended to 
cover this situation and the results correlated with theo­
retical results. There are possibilities of using a step 
loading as Is explained by Pelgar (5 0).

c. The experimental work In the present Investiga­
tion was carried out at constant temperature levels; however, 
this Is not always the case In practical problems. There­
fore, It Is necessary to develop the theory for obtaining 
the change of expansion coefficient of a viscoelastic mate­
rial at transient temperatures,

d. Although some viscoelastic materials have less 
tendency to absorb moisture than others. In general they are 
affected by moisture content. It would be worthwhile to know 
how their behaviors change with the moisture content of the 
environment.

e. In the case of total or partial removal of the 
load, does the thermal-expanslon coefficient return to the 
values which have been predicted theoretically for the case
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of Increasing stress and if so, now rapidly does tnis occur 
after removal of tne load?

f. Development of experimental techniques for three- 
dimensional stress analysis of viscoelastic materials.

g. Stress dependency of other thermal coefficients 
such as thermal conductivity.



LIST OF SYMBOLS

a,b,c,d,A,B,C,D Viscoelastic material constants 
D Differential operator
e Deviatoric strain

 ̂J
E Elastic modulus
E Elastic modulus for Mcocwell type materialm
E^ Elastic modulus for Kelvin type material 
F Free energy of solids
0 Elastic snear modulus
@2 Volumetric relaxation function
Og Deviatoric relaxation function
O' Storage relaxation function
0” Loss relaxation function
J Creep compliance

Volumetric creep function 
Jg Deviatoric creep function
J ' Storage creep function
j ” Loss creep function
K Elastic bulk modulus
n Material constant
p Laplace operator
P^,Pg Operator notations
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Operator notations

Slj Deviatoric stress
t Time
T Temperature
T^ Reference temperature
e Strain
ê Strain rate
€* Laplace transform of strain

Volumetric strain
n Viscous coefficient

Viscous coefficient for Maxwell type material
Viscous coefficient for Kelvin type material

V Poisson's ratio
c Stress
a Volumetric stress11
Ô Stress rate
a Laplace transform of stress
a Thermal expansion coefficient
a Thermal expansion coefficient at zero stress
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Table 1
Creep Data at 90®P and 400 psi

Original Length 8 Inches
Time Elongation Strain € — 6 j

loiirs Minutes 1/10000 In. (in./in.) X 103 (in./In.) ;

0 0 74.0 0.925 .000
0 2 79.0 0.987 .062
0 3 79.4 0.992 .067
0 4 80.5 1.006 .081
0 6 8 0 .8 1.010 .085
0 7 8 0 .8 1.010 .085
0 8 80.9 1.011 .086
0 9 80.9 1.011 .086
0 10 81.5 1.013 .088
0 15 82.2 1.027 .102
0 20 82.7 1.033 .108
0 25 83.2 1.040 .115
0 30 84.0 1 .0 5 0 .125
0 35 85.3 1.066 .141
0 40 87.4 1.092 .167
0 45 88.4 1.105 .180
2 0 88.8 1.110 .185
3 0 91.5 1.143 .218
4 0 9 2 .0 1 .1 5 0 .225

21 0 100.0 1.250 .325
23 0 102.0 1.275 .350
24 0 102.1 1.276 .351
25 0 102.1 1.276 .351
26 0 102.8 1 .2 8 5 .360
27 0 105.5 1 .3 1 8 .393
44 0 107.5 1.337 .412
45 0 109.4 1.367 .442
49 0 109.5 1.368 .443
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Table 2 
.0Creep Data at 90 F and 266 psi 

Original Length 8 Inches

Tine 
Hours Minutes

Elongation 
1/10000 in.

0 0 48.0
0 2 5 0 .2
0 3 50.4
0 4 5 0 .8
0 6 50.9
0 7 50.9
0 8 50.9
0 9 50.9
0 10 51.3
0 15 5 1 .6
0 20 5 2 .0
0 25 52.9
0 30 53.1
0 35 53.2
0 40 53.4
0 45 54.2
2 0 54.9
3 0 56.0
4 0 57.0
21 0 65.5
23 0 67.2
24 0 67.3
25 0 68.3
26 0 70.2
27 0 7 0 .2
44 0 72.3
45 0 73.1
49 0 73.1

Strain _ 
(in./in.) X 10-̂ ® “  ®0 3(in./in.) X 10-)

.600 0

.627 .027

.630 .030

.635 .035

.636 .036

.636 .036

.637 .037

.637 .037

.641 .041

.645 .045

.650 .050

.661 .061

.663 .063

.664 .064

.667 .067

.667 .067

.686 .086

.700 .100

.712 .112

.820 .220

.840 .240

.841 .241

.853 .253

.877 .277

.877 .277

.903 .303

.913 .313

.913 .313
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Table 3
Creep Data at 90°P and 213 psl

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain _ 

(in./in.) X 10^ (in./in.) X 10^

0 0 40.0 .500 0
0 2 40.1 .501 .001
0 3 40.2 .502 .002
0 4 40.3 .503 .003
0 6 40.4 .505 .005
0 7 40.5 .506 .006
0 6 40.6 .507 .007
0 9 40.6 .508 .008
0 10 40.8 .510 .010
0 15 40.8 .510 .010
0 20 40.9 .511 .011
0 25 41.0 .512 .012
0 30 41.8 .522 .022
0 35 42.9 .536 .036
0 40 44.0 .550 .050
0 45 44.6 .557 .057
2 0 45.4 .567 .067
3 0 46.3 .577 .077
4 0 47.5 .593 .093

21 0 5 0 .2 .627 .127
23 0 50.4 .630 .130
24 0 50.5 .631 .131
25 0 50.5 .631 .131
26 0 50.5 .631 .131
27 0 5 0 .6 .632 .132
44 0 5 0 .6 .632 .132
45 0 5 0 .6 .632 .132
49 0 5 0 .6 .632 .132
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Table 4
Creep Data at 105°P and 480 psi

Original Length 8 Inches
Time Elongation Strain _ ® “ ®o q

Hours Minutes l/lOOOO in. (in./in. ) x 10^ (in./in. ) % lO^
0
0

0
1

116.0 1.450 0

0
0

2
3 125.0 1.562 .112

0 4 130.0 1.625 .175
0 5 130.5 1.631 .181
0 6 132.8 1.660 .210
0 7 132.8 1.660 .210
0 8 132.8 1.660 .210
0 9 133.0 1.662 .212
0 10 133.6 1.670 .220
0 15 135.6 1.695 .245
0 20 136.1 1 .7 0 1 .251
0 25 136.1 1.701 .251
0 30 136.2 1 .7 0 2 .252
0 35 136.2 1 .7 0 2 .252
0 40 136.2 1 .7 0 2 .252
0 45 136.3 1.703 .253
1 0 138.0 1.725 .275
2 0 146.0 1.825 .375
4 0 174.6 2 .8 1 2 .732
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Table 6

Creep Data at 105°P and 320 psi 
Original Length 8 Inches

e - e,Time 
Hours Minutes

Elongation 
1/10000 in.

Strain 
(in./in.) X

0 0 7 2 .0 0 .9 0 0
0 1 05.0 1.062
0 2 0 7 .0 1 .007
0 3 0 7 .0 1 .007
0 4 08.0 1.100
0 5 0 9 .0 1.112
0 6 9 0 .0 1 .125
0 7 9 0 .0 1 .125
0 0 9 1 .0 1 .13 7
0 9 9 1 .0 1.137
0 10 9 2 .0 1 .1 5 0
0 15 9 2 .6 1 .1 5 8
0 20 9 3 .0 1.162
0 25 9 5 .0 1 .187
0 30 9 6 .0 1.200
0 35 96.0 1.200
0 40 97.0 1.212
0 45 9 8 .0 1 .22 5
1 0 9 9 .0 1 .237
2 0 100.0 1 .2 5 0
4 0 104.0 1 .3 0 0

0
.162
.107
.107.200
.212
.225
.225
.237
.237
.250
.258
.262
.207
.300
.300
.312
.325
.337.350
.400
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Table 7
Creep Data at 105** P and 280 psi

Original Length 8 Inches
Time Elongation Strain g ® “ ®o l

Hours Minutes 1/10000 In. (in./in. ) x 10^ (in./In. ) x ICr
0
0

0
1

70.0 0.875 0

0
0

2
3 7 1 .0 0.887 .012

0 4 72.0 0.900 .025
0 5 74.0 0.925 .050
0 6 75.0 0.937 .062
0 7 76.0 0.950 .075
0 8 76.2 0.953 .078
0 9 76.3 0.953 .078
0 10 76.7 0.956 .081
0 15 77.7 0.956 .081
0 20 8 0 .0 1.000 .125
0 25 8 1 .1 1.014 .139
0 30 8 2 .0 1 025 .150
0 35 8 2 .0 1.025 . 150
0 40 8 2 .2 1 .0 2 8 .153
0 45 82.4 1.030 .155
1 0 83.0 1.037 .162
2 0 88.0 1 .ion .225
4 0 100.0 1 .2 5 0 .375
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Table 8

Creep Data at 120°P and 400 psi

Time
Original Length 8 Inches 

Elongation Strain q
Hours Minutes 1/10000 in. (in./in.) X lO"' (in./in. ) ;

0 0 174.0 2 .1 7 5 0
0 1 178.2 2 .2 2 7 .052
0 2 179.0 2 .2 3 7 .062
0 3 183.0 2 .2 8 7 .112
0 4 18 5 .0 2 .3 1 2 .137
0 5 186 .1 2.326 .141
0 6 186 .2 2 .3 2 7 .152
0 7 186 .2 2 .3 2 7 .152
0 a 186 .2 2 .3 2 7 .152
0 9 186 .5 2 .3 3 1 .156
0 10 18 7 .0 2.337 .162
0 15 189 .6 2 .3 7 0 .195
0 20 189 .7 2 .3 7 1 .196
0 25 189 .7 2 .3 7 1 .196
0 30 189 .7 2 .3 7 1 .196
0

îî
19 1 .0 2 .3 8 7 .212

0 191 .1 2 .3 8 9 .214
0 45 191 .2 2 .3 9 0 .216
1 0 193 .3 2.416 .241
1 15 196 .1 2 .4 5 1 .376
1 30 196.1 2 .4 5 1 .376
1 45 196.2 2 .4 5 2 .377
2 0 196.2 2 .4 5 2 .377
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Table 9
Creep Data at 120°P and 320 psi

Original Length 8 Inches
Time Elongation Strain o ® " ®0 3Hours Minutes 1/10000 in. (in./in.) x 10"̂  (in./in. ) x 10

1.750 0
1 .7 8 0 .030
1 .7 8 8 .038
1 .7 8 8 .038
1 .7 8 8 .038
1 .7 9 2 .042
1 .7 9 2 .042
1.793 .043
1 .8 8 2 .132
1 .8 8 3 .133
1 .8 8 5 .135
1 .9 0 8 .158
1 .9 5 8 .208
2.012 .262
2 .0 1 8 .268
2 .0 2 8 .278
2 .0 3 8 .288
2 .0 3 8 .288
2 .1 2 5 .375

0 0 140.0
0 1 142.4
0 2 143.1
0 3 143.1
0 4 143.1
0 5 143.4
0 6 143.4
0 7 143.5
0 8 1 5 0 .6
0 9 1 5 0 .7
0 10 1 5 0 .8
0 15 1 5 2 .7
0 20 156 .7
0 25 161.0
0 30 161.5
0 35 162.3
0 40 163.1
0 45 163.1
2 0 1 7 0 .0



119

Table 10
Creep Data at 120®P and 280 psi

Original Length 8 Inches
Time Elongation Strain , / " xOHours Minutes 1/10000 in. (in./In.) X 10^ (in./In.) ;

0 0 1 1 7 .0 1.462 0
0 1 11 9 .0 1.487 .025
0 2 119.1 1.488 .026
0 3 119.5 1.492 .030
0 4 119.5 1.492 .030
0 5 1 1 9 .8 1.496 .034
0 6 119.9 1.497 .035
0 7 119.9 1.497 .035
0 8 1 2 0 .0 1 .5 0 0 .038
0 9 120.0 1.500 .038
0 10 120.4 1.505 .043
0 15 122.0 1.525 .043
0 20 122.1 1.526 .064
0 25 122.3 1.528 .066
0 30 122.4 1.530 .068
0 35 122.4 1.530 .068
0 40 122.4 1.530 .068
0 45 — — — — — — — — — — — — — —
1
1

0
15 140.2 1.752 .290

1 30 140.2 1.752 .290
1 45 140.2 1.752 .290
2 0 140.2 1.752 .290
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Table 11 
.o.Creep Data at 135 F and 525 psl 

Original Length 8 Inches
Time 

Hours Minutes
Elongation 
1/10000 in.

Strain 0 
(in./in.) X 10

e - G Q 
(in./in. ) :

0 0 263.0 3 .2 8 7 0
0 1 273.0 3.412 .125
0 2 275.3 3.441 .154
0 3 275.3 3.441 .154
0 4 2 8 0 .0 3 .5 0 0 .213
0 5 2 8 0 .0 3 .5 0 0 .213
0 6 2 8 0 .0 3 .5 0 0 .213
0 7 2 8 5 .1 3 .5 6 3 .276
0 8 2 8 5 .1 3.563 .276
0 9 2 8 9 .0 3.612 .325
0 10 2 9 3 .0 3.662 .375
0 15 2 9 3 .4 3.667 .380
0 20 29 5 .6 3.695 .408
0 25 3 0 3 .0 3 .7 8 7 .500
0 30 3 0 3 .0 3 .7 8 7 .500
0 35 3 0 3 .0 3 .7 8 7 .500
0 40 3 0 3 .0 3 .7 8 7 .500
0 45 3 0 3 .0 3 .7 8 7 .500
1 0 3 0 5 .0 3 .8 1 2 .525
1 15 3 0 5 .0 3 .8 1 2 .525
1 30 3 0 5 .5 3 .8 1 8 .531
1 45 3 1 3 .5 3 .9 1 8 .631
2 0 3 1 5 .0 3 .9 3 7 .650
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Table 12
Creep Data at 135** P and 4lO psi

Original Length 8 Inches
Time Elongation

Honrs Minutes 1/10000 in.
Strain

(in,/in.) X 10"
€ - € q  3

(in./in. ) jc lO

0 0 213.0 2.662 0
0 1 220.5 2.756 .09 4
0 2 221.0 2.762 .100
0 3 222.5 2 .7 8 1 .1 1 9
0 4 2 2 3 .2 2 .7 9 0 .12 8
0 5 224.0 2 .8 0 0 .1 3 8
0 6 227.4 2.843 .181
0 7 233.4 2 .8 9 3 .231
0 8 236.8 2.960 .292
0 9 240.6 3 .0 0 8 .3̂ 0̂
0 10 241.7 3 .0 2 2 .35 4
0 15 246.8 3 .0 8 6 .428
0 20 250.0 3 .1 2 5 .463
0 25 254.0 3 .1 7 5 .513
0 30 254.9 3 .1 8 6 .524
0 256.0 3 .2 0 0 .53 8
0 So 2S8.0 3 .2 2 5 .563
0 45 2 5 8 .0 3 .2 2 5 .563
1 0 2 5 9 .6 3.245 .583
1 15 2 5 9 .6 3.245 .583
1 30 260.0 3 .2 5 0 .58 8
1 45 260.0 3 .2 5 0 .5 8 8
2 0 261.0 3.262 .600
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Table 13
Creep Data at 135°F and 360 psi

Original Length 8 Inches
Time Elongation

Hours Minutes 1/10000 in.
0 0 170.0 2 .1 2 5
0 1 176.0 2.200
0 2 178.5 2 .2 3 1
0 3 1 8 0 .0 2 .2 5 0
0 4 18 0 .1 2 .2 5 1
0 5 1 8 0 .9 2.261
0 6 1 8 9 .0 2 .3 6 2
0 7 189 .6 2 .3 7 0
0 8 18 9 .8 2 .3 7 2
0 9 1 8 9 .8 2 .3 7 2
0 10 1 8 9 .8 2 .3 7 2
0 15 190 .5 2 .3 8 1
0 20 19 9 .0 2.487
0 25 19 9 .5 2 .4 9 3
0 30 2 0 0 .0 2 .5 0 0
0 35 2 0 0 .1 2 .5 0 1
0 40 2 0 0 .1 2 .5 0 1
0 45 2 0 0 .2 2 .5 0 2
1 0 2 0 0 .2 2 .5 0 2
1 15 2 0 0 .2 2 .5 0 2
1 30 2 0 1 .5 2 .5 1 8
1 45 2 0 8 .5 2.606
2 0 210.0 2.625

Strain ^ ® “ ®o ?
(in./in.) X 10-̂  (in./in. ) x 10

0
.075
.106
.125
.126
.136
.237
.245
.247
.247
.247
.256
.362.368
.375
.376
.376
.377
.377
.377
■Ml
.500
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Table 14
Creep Data at 135°P and 240 psl

Original Length 8 Inches
Time 

Hpurs Minutes
Elongation 
1/10000 In.

Strain , ® “ ®o o
(in./ln.) X 10-̂  (in./ln. ) x 10^

0 0 110.0 1.375 0
0 1 112.0 1.400 .025
0 2 117.0 1.462 .088
0 3 119.0 1.487 .112
0 4 120.0 1.500 .125
0 5 121.0 1.512 .137
0 6 123.0 1.537 .162
0 7 123.0 1.537 .162
0 8 127.0 1.587 .212
0 9 128.0 1.600 .225
0 10 1 2 9 .0 1.612 .237
0 15 130.0 1.625 .250
0 20 131.0 1.637 .262
0 25 131.0 1.637 .262
0 30 132.0 1.650 .275
0 35 133.0 1.662 .387
0 40 135.0 1.687 .412
0 45 136.0 1 .7 0 0 .425
1 0 136.0 1.700 .425
1 15 137.0 1.712 .437
1 30 137.0 1.712 .437
1 45 13». 0 1.725 .450
2 0 138.0 1.725 .450
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Table 15
Creep Data at 150°P and 400 psl

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain o t, - o

(in./in,) X 10^ (in./ln.) x 10
c - e,

0 0 242.0 3 .0 2 5 0
0 1 254.0 3 .1 7 4 .149
0 2 261.0 3.262 .237
0 3 264.0 3 .3 0 0 .275
0 4 269.0 3.362 .337
0 5 2 7 4 .0 3.425 .400
0 6 2 8 1 .0 3 .5 1 2 .487
0 7 2 8 1 .0 3 .5 1 2 .487
0 8 2 8 3 .0 3 .5 3 7 .512
0 9 284.0 3 .5 5 0 .525
0 10 2 8 5 .0 3.562 .537
0 15 2 9 1 .0 3.637 .612
0 20 2 9 8 .0 3 .7 2 5 .700
0 25 3 0 1 .0 3.762 .737
0 30 3 0 1 .0 3 .7 6 8 .743
0 35 30 1 .5 3.768 .743
0 40 3 0 2 .0 3 .7 7 5 .750
0 45 3 0 2 .0 3 .7 7 5 .750
1 0 3 0 2 .0 3 .7 7 5 .750
1 15 3 0 2 .0 3 .7 7 5 .750
1 30 3 0 2 .0 3 .7 7 5 .750
1 45 3 0 2 .0 3 .7 7 5 .750
2 0 3 0 2 .0 3 .7 7 5 .750
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Table 16
Creep Data at 150®P and 320 psl

Original Length 8 Inches
Time 

Hours Minutes
Elongation 
1/10000 In.

Strain - « - 9
(In./In. ) X 10^ (In./In. ) %

€ “ €

0 0 1 8 0 .0 2 .2 5 0 0
0 1 1 8 6 .0 2.325 .075
0
0

2
3

1 9 0 .0
195.0

2.375
2.437

.125

.187
0 4 1 9 6 .0 2.450 .200
0 5 2 0 1 .0 2 .5 1 2 .262
0 6 2 0 9 .0 2.612 .362
0 7 2 1 0 .0 2.625 .375
0 8 2 1 0 .0 2.625 .375

.3870 9 2 1 1 .0 2.637
0 10 2 1 1 .0 2.637 .387
0 15 2 1 3 .0 2.662 .412
0 20 2 1 5 .0 2.687 .437
0 25 2 1 8 .0 2.725 .475
0 30 2 2 1 .0 2 .7 6 2 .512
0 35 242.0 2.775 .525
0 40 242.0 2.775

2.787
.525

0 45 243.0 .537
1 0 2 3 1 .0 2.887 .637
1 15 2 3 1 .0 2.887 .637
1 30 2 3 2 .0 2 .9 0 0 .6 5 0
1 45 233.0 2 .9 1 2 .662
2 0 233.0 2 .9 1 2 .662
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Table 17
Creep Data at 150°P and 240 psl

Original Length 8 Inches
Time 

Hours Minutes
Elongation 
1/10000 in.

0 0 135.0 1.687
0 1 140.0 1.750
0 2 140.5 1.756
0 3 140.5 1.756
0 4 140.8 1 .7 6 0
0 5 140.8 1 .7 6 0
0 6 142.8 1.785
0 7 143.0 1.787
0 8 143.0 1.787
0
0

9
10

143.5
150.5 Ï-MI

0 15 1 5 2 .0 1 .9 0 0
0 20 152.5 1 .9 0 6
0 25 162.5 2.031
0 30 162.5 2.031
0 35 162.5 2.031
0 4o 162.5 2.031
0 45 162.5 2.031
1 0 162.5 2.031
1 15 162.5 2.031
1 30 162.5 2.031
1 45 1 6 3 .0 2.037
2 0 1 6 3 .0 2.037

Strain . ® 9
(in./in.) X 10^ (in./in.) x 10^

0
.063
.069
.069
.073
.073
.098.100.100
.106
.194
.213
.319
.344
.344
.344
.344
.344
.344
.344
.344
.350
.350
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Table l8
Creep Data at 150°P and 200 psi

Original Length 8 Inches
Time Elongation Strain / “ »oHours Minutes 1/10000 in. (in./in.) X 10^ (in./in.) 3

0 0 1 2 8 .0 1.600 0
0 1 132.0 1.650 .050
0 2 133.0 1.662 .062
0 3 134.0 1.675- .075
0 4 134.0 1.675 .075
0 5 135.0 1.687 .087
0 6 1 3 6 .0 1 .7 0 0 .100
0 7 137.0 1 .7 1 2 .112
0 8 1 3 8 .0 1.725 .125
0 9 139.0 1.737 .137
0 10 139.0 1.737 .137
0 15 142.0 1.775 .175
0 20 144.0 1 .8 0 0 .200
0 25 146.0 1.825 .225
0 30 147.0 1.837 .237
0 35 148.0 1 .8 5 0 .250
0 40 148.0 1 .8 5 0 .250
0 45 149.0 1.862 .262
1 0 1 5 0 .0 1.875 .275
1 15 1 5 1 .0 1 .8 8 7 .287
1 30 1 5 2 .0 1 .9 0 0 .300
1 45 1 5 2 .0 1 .9 0 0 .300
2 0 1 5 2 .0 1 .9 0 0 .300
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Table 19
Creep Data at 165** P and 400 psl

Original Length 8 Inches
Time 

Hours Minutes
Elongation 
1/10000 in.

Strain € • Sq ~
(in./in. ) IX 10̂ '

0 0 3 0 0 .0 3 .7 5 0 0
0 1 3 0 9 .0 3.862 0.112
0 2 3 1 3 .0 3 .9 1 2 0.162
0 3 3 1 9 .0 3 .9 8 7 0.237
0 4 3 2 2 .0 4 .0 2 5 0.275
0 5 3 2 8 .0 4.100 0.350
0 6 3 3 0 .0 4 .1 2 5 0.375
0 7 3 3 2 .0 4 .1 5 0 0.400
0 8 333.0 4.162 0.412
0 9 340.0 4 .2 5 0 0.500
0 10 3 4 3 .0 4 .2 8 7 0.537
0 15 355.0 4 .4 3 7 0.687
0 20 366.0 4 .5 7 5 0.825
0 25 3 7 3 .0 4.662 0.912
0 30 376.0 4 .7 0 0 0.Q50
0 35 3 8 0 .0 4 .7 5 0 1.000
0 40 3 8 0 .0 4 .7 5 0 1.000
0 45 3 8 0 .0 4 .7 5 0 1.000
1 0 3 8 0 .0 4 .7 5 0 1.000
1 -15 3 8 1 .0 4.762 1.012
1 30 3 8 2 .0 4.775 1 .025
1 45 3 8 2 .0 4.775 1 .025
2 0 3 8 2 .0 4 .7 7 5 1 .025
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Table 20
Creep Data at 165** P and 320 psl

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain o " ''O i

(in./in.) X 10^ (in./in.) x 10
e - e,

0 0 2 3 0 .0 2 .8 7 5 0
0 1 242.0 3 .0 2 5 .150
0 2 242.0 3 .0 2 5 .150
0 3 2 5 0 .0 3 .1 2 5 .250
0 4 253.0 3.162 .287
0 5 260.0 3 .2 5 0 .375
0 6 260.0 3 .2 5 0 .375
0 7 262.0 3 .2 7 5 .400
0 8 2 6 3 .0 3 .2 8 7 .412
0 9 2 6 9 .0 3.362 .487
0 10 2 7 2 .0 3.400 .525
0 15 2 8 1 .0 3 .5 1 2 .637
0 20 2 8 2 .0 3 .5 2 5 .650
0 25 2 8 5 .0 3.562 .687
0 30 2 8 9 .0 3.612 .737
0 35 2 9 0 .0 3.625 .750
0 > 40 2 9 0 .0 3.625 .750
0 45 2 9 0 .0 3 .6 2 5 .75 0
1 0 2 9 0 .0 3.625 .75 0
1 15 2 9 0 .0 3.625 .750
1 30 2 9 0 .0 3.625 .750
1 45 2 9 0 .0 3.625 .750
2 0 2 9 0 .0 3 .6 2 5 .750
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Table 22 
.0Creep Data at 165 P and 200 psi 

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain  ̂

(in./in.) X 10^
G - G

(in./in.) X 10^

0 0 143 1.787 0
0 1 149 1.862 .075
0 2 155 1.937 .150
0 3 157 1.962 .175
0 4 159 1 .9 8 7 .200
0 5 159 1 .9 8 7 .200
0 6 160 2.000 .212
0 7 160 2.000 .212
0 8 162 2 .0 2 5 .237
0 9 163 2 .0 3 7 .250
0 10 164 2 .0 5 0 .262
0 15 167 2 .0 8 7 .300
0 20 168 2.100 .312
0 25 168 2.100 .312
0 30 169 2.112 .325
0 35 169 2.112 .325
0 40 169 2.112 .325
0 45 170 2 .1 2 5 .337
1 0 176 2.200 .413
1 15 177 2.212 .425
1 30 178 2 .2 2 5 .437
1 45 179 2 .2 3 7 .450
2 0 179 2 .2 3 7 .450
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Table 23
Creep Data at l80°P and 400 psl

Original Length 8 Inches
Time 

Hours Minutes
Elongation 
1/10000 In.

Strain , 
(In./In.) X 10^

e - e.
(ln./ln.)^x 10^

0 0 360.0 4 .5 0 0 0
0 1 3 8 3 .0 4 .7 8 5 0.285
0 2 3 9 1 .0 4 .8 8 7 0.387
0 3 393.0 4 .9 1 2 0.412
0 4 401.0 5 .0 1 2 0.512
0 5 403.0 5 .0 3 7 0.537
0 6 413.0 5.162 0.662
0 7 420.0 5 .2 5 0 0.750
0 8 423.0 5 .2 8 7 0.787

0.8750 9 4 3 0 .0 5.375
0 10 4 3 1 .0 5 .3 8 7 0 887
0 15 442.0 5 .5 2 5 1 .025
0 20 4 5 1 .0 5.637 1 .137
0 25 460.0 5 .7 5 0 1 .2 5 0
0 30 462.0 5.775 1 .275

■ 0 35 463.0 5 .7 8 7 1 .287
0 40 463.0 5 .7 8 7 1 .287
0 45 463.0 5 .7 8 7 1 .287
1 0 4 7 3 .0 5 .9 1 2 1.412
1 15 481.0 6.012 1 .512
1 30 481.0 6.012 1 .512
1 45 483.0 6 .0 3 7 1.537
2 0 483.0 6 .0 3 7 1.537
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Table 24
Creep Data at l80°P and 320 psi

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain  ̂

(in./in.) X 10^ (in./in. 10̂ '

0 0 300.0 3 .7 5 0 0
0 1 311.0 3 .8 8 7 0 .1 3 7
0 2 316.0 3 .9 5 0 0.200
0 3 322.0 4 .0 2 5 0 .2 7 5
0 4 330.0 4 .1 2 5 0.375
0 5 336.0 4.200 0.450
0 6 342.0 4 .2 7 5 0 .5 2 5
0 7 348.0 4 .3 5 0 0.600
0 8 354.0 4.425 0.675
0 9 357.0 4.462 0 .7 1 2
0 10 370.0 4.625 0 .8 7 5
0 15 372.0 4.650 0 .9 0 0
0 20 374.0 4.675 0 .9 2 5
0 25 380.0 4 .7 5 0 1.000
0 30 3 8 1 .0 4.762 1.012
0 35 3 8 2 .0 4.775 1 .0 2 5
0 40 3 8 2 .0 4.775 1 .0 2 5
0 45 3 8 3 .0 4 .7 8 7 1 .0 3 7
1 0 3 8 6 .0 4 .8 2 5 1 .0 7 5
1 15 3 8 8 .0 4 .8 5 0 1.100
1 30 3 9 0 .0 4 .8 7 5 1 .1 2 5
1 45 3 9 1 .0 4 .8 8 7 1 .1 3 7
2 0 3 9 1 .0 4 .8 8 7 1 .1 3 7
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Table 25
Creep Data at l80°P and 240 psl

Original Length 8 Inches
Time 

Hours Minutes
Elongation 
1/10000 in.

Strain , e - Cq
(in./in.) x 10^ (in./in.) x 10-̂

0 0 230.0 2 .8 7 5 0
0 1 240.0 3 .0 0 0 .125
0 2 250.0 3 .1 2 5 .250
0 3 253.0 3.162 .287
0 4 253.0 3.162 .287
0 5 255.0 3 .1 8 7 .312
0 6 210.0 3 .2 5 0 .375
0 7 264.0 3 .3 0 0 .425
0 8 265.0 3 .3 1 2 - .437
0 9 272.0 3.400 .525
0 10 2 7 4 .0 3.425 .550
0 15 2 7 8 .0 3 .4 7 5 .600
0 20 2 8 5 .0 3.562 .687
0 25 2 8 6 .0 3 .5 7 5 .700
0 30 2 8 6 .0 3 .5 7 5 .700
0 35 2 8 7 .0 3 .5 8 7 .712
0 40 2 8 8 .0 3.600 .725
0 45 2 8 9 .0 3 .6 1 2 .737
1 0 2 8 9 .0 3.612 .717
1 15 2 8 9 .0 3 .6 1 2 .73 7
1 30 2 8 9 .0 3.612 .737
1 45 2 8 9 .0 3.612 .737
2 0 2 8 9 .0 3.612 .737
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Table 26
Creep Data at 180®P and 200 psl

Original Length 8 Inches
Time 

Hours Minutes
Elongation 
1/10000 In.

Strain o ® ?
(in./In.) X 10 (in./ln. ) % K) '

0 0 190.0 2 .3 7 5 0
0 1 202.0 2 .5 2 5 .150
0 2 212.0 2 .6 5 0 .275
0 3 213.0 2.662 .287
0 4 222.0 2 .7 7 5 .400
0 5 223.0 2 .7 8 7 .412
0 6 229.0 2.862 .487
0 7 234.0 2 .9 2 5 .550
0 8 236.0 2 .9 5 0 .575
0 9 236.0 2 .9 5 0 .575
0 10 237.0 2.962 .587
0 15 242.0 3 .0 2 5 .650
0 20 246.0 3 .0 7 5 .700
0 25 2 4 7 .0 3 .0 8 7 .712
0 30 248.0 3 .1 0 0 .725
0 35 248.0 3 .1 0 0 .725
0 40 248.0 3 .1 0 0 .725
0 45 249.0 3 .1 1 2 .737
1 0 2 5 2 .0 3 .1 5 0 .775

.8001 15 2 5 4 .0 3 .1 7 5
1 30 2 5 5 .0 3 .1 8 7 .812
1 45 2 5 6 .0 3 .2 0 0 .825
2 0 2 5 8 .0 3 .2 2 5 .850
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Table 27
Creep Data at 195** P and 400 psi

Original Length 8 Inches
Time 

Houra Minutes
Elongation 
1/10000 in.

Strain  ̂ e - eg _
(in./in.) X 10^ (in./in.) x 10^

G - e.

0 0 400.0 5 .0 0 0 0
0 1 421.0 5.262 0.262
0 2 427.0 5 .3 37 0.337
0 3 429.0 5.362 0 .3 62
0 4 437.0 5.462 0.462
0 5 447.0 5 .5 8 7 0 .5 8 7
0 6 450.0 5.625 0 .6 2 5
0 7 455.0 5 .6 8 7 0 .6 8 7
0 8 459.0 5.837 0 .8 3 7
0 9 4 7 0 .0 5.875 0 .8 7 5
0 10 4 7 9 .0 5 .9 8 7 0 .9 8 7
0 15 486.0 6 .075 1 .075
0 20 4 9 6 .0 6.200 1.200
0 25 5 0 0 .0 6 .2 5 0 1 .2 5 0
0 30 5 1 1 .0 6 .3 8 7 1 .3 87
0 35 5 1 8 .0 6 .4 75 1 .4 7 5
0 40 5 2 2 .0 6 .5 25 1 .52 5
0 45 5 2 9 .0 6.612 1.612
1 0 5 3 8 .0 6 .7 2 5 1 .72 5
1 15 5 4 7 .0 6.837 1 .8 3 7
1 30 560.0 7 .0 0 0 2.000
1 45 567.0 7 .0 8 7 2 .0 8 7
2 0 577.0 7 .2 1 2 2.212
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Table 28
Creep Data at 193°P and 320 psi

Original Length 8 Inches
Time Elongation Strain « / ” \0Hours Minutes 1/10000 in. (in./in.) X 10^ (in./in. ) x

0 0 3 0 0 .0 3 .7 5 0 0
0 1 320.0 4.000 0 .2 5 0
0 2- 323.0 4 .0 3 7 0 .2 8 7
0 3 332.0 4 .1 5 0 0.400
0 4 332.0 4 .1 5 0 0.400
0 5 341.0 4.262 0 .5 1 2
0 6 350.0 4.375 0.625
0 7 352.0 4.400 0.650
0 8 352.0 4.400 0 .6 5 0
0 9 362.0 4 .5 2 5 0.775
0 10 3 7 2 .0 4 .6 5 0 0 .9 0 0
0 15 3 8 3 .0 4 .7 8 7 1 .0 37
0 20 393.0 4 .9 1 2 1.162
0 25 410.0 5 .1 2 5 1 .37 5
0 30 412.0 5 .1 5 0 1.400
0 35 420.0 5 .2 5 0 1 .5 0 0
0 40 420.0 5 .2 5 0 1 .5 0 0
0 45 421.0 5.262 1 .512
1 0 422.0 5 .2 7 5 1 .52 5
1 15 424.0 5 .3 0 0 1 .5 5 0
1 30 426.0 5 .3 2 5 1.575
1 45 426.0 5 .3 2 5 1.575
2 0 428.0 5 .3 5 0 1.600
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Table 29
Creep Data at 195** P and 240 psi

Original Length 8 Inches
Time Elongation Strain 0 / ®/ “ \0Hours Minutes 1/10000 in. (in./in.) X 10 (in./in.) 3

0 0 236.0 2 .9 5 0 0
0 1 248.0 3 .1 0 0 .1 5 0
0 2 258.0 3 .2 2 5 .275
0 3 262.0 3 .2 7 5 .325
0 4 264.0 3 .3 0 0 .3 5 0
0 5 265.0 3 .3 1 2 .362
0 6 2 7 0 .0 3.375 .425
0 7 273.0 3.412 .462
0 8 275.0 3 .4 3 7 .487
0 9 276.0 3 .4 5 0 .5 0 0
0 10 276.0 3 .4 5 0 .5 0 0
0 15 283.0 3 .5 3 7 .537
0 20 285.0 3.562 .612
0 25 2 8 6 .0 3 .5 7 5 .625
0 30 294.0 3.675 .725
0 35 296.0 3 .7 0 0 .7 5 0
0 40 296.0 3 .7 0 0 .7 5 0
0 45 296.0 3 .7 0 0 .7 5 0
1 0 297.0 3 .7 1 2 .762
1 15 2 9 8 .0 3 .7 2 5 .775
1 30 2 9 8 .0 3 .7 2 5 .775
1 45 3 0 0 .0 3 .7 5 0 .8 0 0
2 0 3 0 2 .0 3 .7 7 5 .825
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Table 30
Creep Data at 195°F and 200 psi

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain o 

(in./in.) X 10
® - ®0 9

(in./in.) X 10
0 0 200.0 2 .5 0 0 0
0 1 206.0 2.575 .075
0 2 2 0 7 .0 2 .5 8 7 .087
0 3 2 1 0 .0 2.625 .125
0 4 2 1 5 .0 2 .6 8 7 .187
0 5 2 1 8 .0 2 .7 2 5 .225
0 6 2 2 0 .0 2 .7 5 0 .25 0
0 7 220.0 2 .7 5 0 .2 5 0
0 8 221.0 2.762 .262
0 9 221.0 2.762 .262
0 10 223.0 2 .7 8 7

2.862
.287

0 15 2 2 9 .0 .362
0 20 236.0 2 .9 5 0 .4 5 0
0 25 240.0 3 .0 0 0 .5 0 0
0 30 244.0 3 .0 5 0 .5 5 0
0 35 250.0 3 .1 2 5 .625
0 40 251.0 3.137 .637
0 45 251.0 3 .1 3 7 .637
1 0 253.0 3.162 .662
1 15 260.0 3 .2 5 0 .7 5 0
1 30 261.0 3.262 .762
1 45 262.0 3 .2 7 5 .775
2 0 262.0 3 .2 7 5 .775
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Table 31
Creep Data at 210°P and 8 Inches

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain 3 

(in./in.) x 10
® - ®0 3(in./in.) X 10^

0 0 3 0 5 .0 3 .8 1 2 0
0 1 3 1 5 .0 3.937 0 .1 2 5
0 2 3 3 0 .0 4 .1 2 5 0 .3 1 3
0 3 340.0 4 .2 5 0 0 .4 3 8
0 4 3 5 0 .0 4.375 0.563
0 5 365.0 4.562 0 .6 5 0
0 6 3 8 2 .0 4.775 0.963
0 7 400.0 5 .0 0 0 1 .1 8 8
0 8 4l4.0 5 .1 7 5 1.363
0 9 4 2 5 .0 5.312 1 .5 0 0
0 10 4 3 3 .0 5.412 1.600
0 15 460.0 5 .7 5 0 1 .9 3 8
0 20 4 7 4 .0 5 .9 2 5 2 .1 1 3
0 25 484.0 6 .0 5 0 2 .2 3 8
0 30 5 0 0 .0 6 .2 5 0 2 .4 3 8
0 35 5 0 5 .0 6 .3 1 2 2 .5 0 0
0 40 5 1 5 .0 6 .4 3 7 2.625
0 45 5 2 0 .0 6 .5 0 0 2.688
1 0 540.0 6 .7 5 0

1 : 81 15 5 8 0 .0 7 .2 5 0
1 30 5 9 4 .0 7.425 3.613
1 45 600.0 7 .5 0 0 3.688
2 0 604.0 7 .5 5 0 3 .7 3 8
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Table 32
Çreep Data at 210®P and 200 pal

Original Length 8 Inches
Time 

Hours Minutes
Elongation 
1/10000 In.

Strain _ 
(in./In.) X 10^

€ • C i
(In./In. 10^

0 0 290.0 3 .6 2 5 0
0 1 3 0 0 .0 3 .7 5 0 0 .1 2 5
0 2 3 0 8 .0 3 .8 5 0 0 .2 2 5
0 3 3 1 0 .0 3 .8 7 5 0 .2 5 0
0 4 325.0 4.062 0 .4 3 7
0 5 338.0 4 .2 2 5 0.600
0 6 352.0 4.400 0.775
0 7 370.0 4.625 1.000
0 8 3 8 1 .0 4.762 1 .1 3 7
0 9 391.0

400.0
4 .8 7 7 1 .2 5 2

0 10 5 .0 0 0 1.375
0 15 420.0 5 .2 5 0 1.625
0 20 4 3 0 .0 5 .3 7 5 1 .7 5 0
0 25 442.0 5 .5 2 5 1 .9 0 0
0 30 4 7 2 .0 5 .9 0 0 2 .2 7 5
0 35 5 0 0 .0 6 .2 5 0 2 .5 2 5
0 40 5 0 7 .0 6.337 2 .7 1 2
0 45 516.0 6 .4 5 0 2 .8 2 5
1 0 5 3 0 .0 6.625 3.000
1 15 540.0 6 .7 5 0 3 .1 2 5
1 30 556.0 6 .9 5 0 3 .3 2 5
1 45 5 5 8 .0 6 .9 7 5 3 .3 5 0
2 0 560.0 7 .0 0 0 3.375
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Table 33
Creep Data at 210®P and 160 psi

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
0 0 263.0
0 1 272.0
0 2 283.0
0 3 290.0
0 4 2 9 2 .0
0 5 300.0
0 6 312.0
0 7 3 2 2 .0
0 8 352.0
0 9 373.0
0 10 390.0
0 15 400.0
0 20 409.0
0 25 421.0
0 30

35
442.0

0 463.0
0 40 468.0
0 45 471.0
1 0 488.0
1 15 4 9 0 .0
1 30 4 9 2 .0
1 45 4 9 2 .0
2 0 4 9 3 .0

Strain . 
(in./in.) X 10^

3.287
3.400 
3.537 
3.625 
3.650 
3.750 
3.900 
4.025
4.400 
4.662 
4.875 5.000 
5.112 
5.262 
5.5%
5.787
5.850
5.8876.100
6.1256.150 6.150 
6.162

€ * €
(in./In/) X 10^

0
0.1130.250
0.338
0.363
0.4630.610
0.738
1.113
liiei
1.713
1.825
1.9752.238
2 .5 0 0
2.563
2.600
2-8132.838
2.863
2.863 
2.875
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Table 34
Creep Data at 225®P and 200 psi

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain 

(in./in.) x 10'

® o
(in./in. ) X 10"̂

0 0 400.0 5 .0 0 0 0
0 1 412.0 5 .2 7 5 0 .2 7 5
0 2 430.0 5.375 0.375
0 3 443.0 5.537 0.537
0 4 463.0 5 .7 8 7 0 .7 8 7
0 5 492.0 6 .1 5 0 1 .1 5 0
0 6 5 0 2 .0 6 .275 1 .2 7 5
0 7 510.0 6.375 1 .3 7 5
0 8 533.0 6.662 1.662
0 9 542.0 6.775 1.775
0 10 5 8 0 .0 7 .2 5 0 2 .2 5 0
0 15 603.0 7 .5 3 7 2.537
0 20 673.0 8.412 3.412
0 25 7 1 3 .0 8 .9 1 2 3 .9 1 2
0 30 7 3 0 .0 9 .125 4 .1 2 5
0 35 8 1 2 .0 10 .150 5 .1 5 0
0 40 862.0 10.775 5 .7 7 5
0 45 9 1 0 .0 11.375 6.375
1 0 9 5 0 .0 11 .875 6.375
1 15 9 8 3 .0 12 .287 7 .2 8 7
1 30 ' 1010.0 12.625 7.625
1 45 1 0 50 .0 13 .125 8 .1 2 5
2 0 1061.0 13.262 8.262
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Table 35
Creep Data at 225®P and 160 psi

Original Length 8 Inches
Time Elongation

Hours Minutes l/lOOOO in.
Strain  ̂

(in./in.) x 10^
6 •• € i

(in./in.)^x 10^

0 0 330.0 4 .1 2 5 0
0 1 340.0 4 .2 5 0 0 .12 5
0 2 342.0 4 .2 7 5 0 .1 5 0
0 3 352.0 4.400 0 .2 75
0 4 362.0 4 .5 2 5 0.400
0 5 371.0 4.637 0 .5 1 2
0 6 3 8 2 .0 4.775 0 .6 5 0
0 7 3 9 2 .0 4 .9 0 0 0.775
0 8 403.0 5 .0 3 7 0 .9 1 2
0 9 424.0 5 .3 0 0 1.175
0 10 4 7 2 .0 5 .9 0 0 1.775
0 15 532.0 6 .6 5 0 2 .5 2 5
0 20 5 9 0 .0 7.375 3 .2 5 0
0 25 632.0 7 .9 0 0 3.775
0 30

35
6 8 3 .0 8.537 4.412

0 7 4 4 .0 9 .3 0 0 5 .1 7 5
0 40 7 9 2 .0 9 .9 0 0 5 .7 7 5
0 45 8 5 2 .0 10 .6 5 0 6.775
1 0 8 9 3 .0 11.162 7 .0 3 7
1 15 9 2 3 .0 11.537 7.412
1 30 9 3 0 .0 11.625 7 .5 0 0
1 45 9 7 1 .0 12.137 8.012
2 0 9 7 5 .0 12 .187 8.062
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Table 36
Variation of Constants with Temperature

)e rature °P n a b c X 10^ d

90 .065 .095 40000 1.20 3300
105 .080 .136 40000 1 .5 0 3300
120 .125 .234 40000 2.00 3300
135 .160 .242 40000 3.00 3300
150 .200 .291 40000 3.00 3300
165 .280 .362 40000 6 .5 0 3300
180 .350 .458 40000 9.00 3300
195 .490 .5 0 0 40000 11.00 3300
210 .600 .720 40000 50.00 3300
220 .970 1.020 40000 200.00 3300
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Table 37
Creep Data at l4o°P and 5000 psi

Original Length 8 Inches
Time Elongation Strain -

Hours Minutes l/lOOOO in. (in./in.) x 10^
2503.0 31.287
2 7 2 8 .0 3 4 .1 0 0
2848.0 35.600
2 9 5 8 .0 3 6 .975
3 0 3 8 .0 37.975
3 0 7 9 .0 38.487
3 1 2 1 .0 3 9 .012
3143.0 3 9 .2 8 7
3160.0 3 9 .5 0 0
3 1 8 8 .0 3 9 .8 5 0
3 2 1 9 .0 40.237
3333.0 41.662
3440.0 4 3 .0 0 0
3540.0 4 4 .2 5 0
3620.0 4 5 .2 5 0
3680.0 46.000
3 7 5 0 .0 46.875
3992.0 47.400
3 8 9 0 .0 48.375
3 9 7 3 .0 49.662
4043.0 5 0 .3 5 3
4100.0 5 1 .2 5 0
4132.0 5 1 .6 5 0

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
0 10
0 15
0 20
0 25
0 30
0 35
0 40
0 45
1 0
1 15
1 30
1 45
2 0
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Table 38 

Creep Data at 160°P and 4000 psi

Time 
lurs Minutes

Original Length 8 Inches
Elongation 
1/10000 in.

Strain - 
(in./in.) X 10^

0 0 2463.0 30 .787
0 1 2 5 2 3 .0 3 1 .537
0 2 2618.0 32 .725
0 3 2680.0 33 .500
0 4 2 7 4 9 .0 34.362
0 5 2 8 0 8 .0 35 .100
0 6 2843.0 35.537
0 7 2 8 6 9 .0 35.862
0 8 2 8 9 9 .0 36.237
0 9 2 9 3 8 .0 36 .725
0 10 2963.0 37 .03 7
0 15 3 0 7 0 .0 38 .375
0 20 3 1 3 5 .0 39 .187
0 25 3 3 0 5 .0 41.312
0 30 3391.0 42 .387
0 35 3463.0 43 .287
0 40 3514.0 43 .925
0 45 3562.0 44 .525
1 0 3 6 8 1 .0 46.012
1 15 3 7 8 1 .0 47.262
1 30 3 8 7 0 .0 48.375
1 45 3 9 5 0 .0 49 .375
2 0 4028.0 5 0 .3 5 0
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Table 39
Creep Data at 190°P and 2600 psi

Original Length 8 Inches
Time Elongation Strain

Hours Minutes 1/10000 in. (in./in.) X 10^
0 0 2564.0 3 2 .0 5 0
0 1 2674.0 33.425
0 2 2739.0 3 4 .2 3 7
0 3 2 8 3 4 .0 35.425
0 4 2 9 1 4 .0 36.425
0 5 3004.0 3 7 .5 5 0
0 6 3 0 3 9 .0 3 7 .9 8 7
0 7 3 0 9 1 .0 38.637
0 8 3149.0 39.362
0 9 3 2 0 1 .0 40.012
0 10 3241.0 40.512
0 15 3 4 5 1 .0 4 3 .1 3 7
0 20 3639.0 45.487
0 25 3 7 8 9 .0 47.362
0 30 3 9 1 0 .0 48.875
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Table 40
Free Thermal Expansion of Methyl Methacrylate

Temperature
. , , p p

Original Length 10 Inches
Extension

in.
Strain Expansion Coefficient 
in./in. in./in. ________

98 0 0
102 .001 .0001 .0000333
105 .002 .0001 .0000333
108 .003 .0001 .0000333
111 .004 .0001 .0000333
114 .005 .0001 .0000333
117 .006 .0001 .0000333
120 .007 .0001 .0000333
123 .008 .0001 .0000333
126 .009 .0001 .0000333
129 .010 .0001 .0000333
142 .015 .0005 .0000380
154 .202 .0005 .0000416
102 .030 .0010 .0000343
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Table 4l
Creep Data at 160°P and 2600 psl

Original Length 8 Inches
Time Elongation Strain

Hours Minutes l/lOOOO in. (in./in. ) x 10
1792.0 22.400
1040.0 2 3 .0 0 0
1884.0 2 3 .5 5 0
1 9 2 0 .0 24.000
1940.0 24.250
1968.0 24.600
1984.0 24.8002012.0 25.150
2 0 3 2 .0 2 5 .4 0 0
2048.0 2 5 .6 0 02076.0 25.950
2144.0 2 6 .8 0 0
2 1 8 0 .0 2 7 .2 5 0
2224.0 27.300
2252.0 28.150
2 2 7 3 .0 28.4122276.0 28.450
2 2 8 8 .0 2 8 .6 0 0
2 3 1 2 .0 28.900
2 3 5 2 .0 29.400
2368.0 29.600
2400.0 3 0 .0 0 0
2424.0 3 0 .3 0 0

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
0 10
0 15
0 20
0 25
0 30
0 35
0 40
0 45
1 0
1 15
1 30
1 45
2 0

,3
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Table 42
Creep Data at 140®P and 2600 psi

Time

Original Length 8 Inches 
Elongation Strain 3

lurs Minutes 1 /10000 in. (in./in,) X 10

0 0 1 5 2 0 .0 1 9 .000
0 1 1544.0 19 .30 0
0 2 1 5 68 .0 1 9 .600
0 3 16 16 .0 2 0 .200
0 4 1664.0 2 0 .8 0 0
0 5 17 12 .0 21.400
0 6 1744.0 2 1 .8 0 0
0 7 1748.0 2 1 .8 5 0
0 8 17 60 .0 2 2 .0 0 0
0 9 1792.0 22.400
0 10 1 808 .0 22.600
0 15 1848.0 2 3 .1 0 0
0 20 1 8 6 8 .0 2 3 .3 5 0
0 25 1 9 0 8 .0 2 3 .8 5 0
0
0

30
35

1 9 3 7 .0  
194e . 0

24.212
2 4 .3 5 0
24.4000 40 1 9 5 2 .0

0 45 2 0 5 6 .0 2 5 .7 0 0
1 0 2016.0 2 5 .2 0 0
1 15 2040.0 2 5 .5 0 0
1 30 2044.0 2 5 .5 5 0
1 45 2056.0 2 5 .7 0 0
2 0 2064.0 2 5 .8 0 0


