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ABSTRACT

In analyzing the dynamic stresses and deformations
in viscoelastic bodies as in elastic ones, the problem is
concerned with the solution of boundary-value problems in
which the time has a dominant role. For thermal stresses as
in classical elasticity the stress-strain relation will con-
tain terms due to thermal expansions. A few methods for
thermal stress analysis have been suggested and aﬁblied. In
all the previous work, the coefficient of thermal expansion
is considered either as invariant or as a temperature-
dependent parameter,

The basic objective of this study was to investigate
the stress and time dependency of the thermal expansion coef-
ficient of a viscoelastic material. The analytical part of
this investigation consisted of the theoretical development
of the stress and time dependency of thermal expansion coef-
ficient for a general viscoelastic material under the influ-
ence of three-dimensional stresses, To check the analysis,

a series of creep experiments was conducted at three constant

temperature levels and stress applied as a step function. In

all of the experimental cases, it was found that the applica-

tion of the developed theory gave a better creep prediction
111



than did use of the assumption that the thermal expansion
coefficient remained constant.

In the course of experimental investigation, the
creep behavior of polymethyl methacrylate was studied at d4if-
ferent temperatures and a relation developed among the stress,

strain, time and temperature.
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THERMOVISCOELASTICITY WITH TIME AND STRESS
DEPENDENT COEFFICIENT OF EXPANSION

CHAPTER I
INTRODUCTION

The increasing use of various kinds of high polymers
in machine parts and other products, as well as the use of
solid propellents_in rocket engines, has led many scientists
and engineers to investigate stress, strain, deformation and
thelr time dependence in viscoelastic materials. These mate-
rials in general have viscous properties as well as elastic
properties, or simply the stress-strain relation in visco-
elastic bodies 1s time dependent. The theory for simple
linear viscoelastic materials is well developed, while the
theory for nonlinear viscoelastic bodies is still in an early
stage of development.

Thermoviscoelasticity has been considered in the past
few years. It 1s concerned with the stress and strain condi-
tion in a viscoelastic body due to a temperature gradient in
the body. Different methods of solution have been proposed
for thermoviscoelastic problems.

In 1944 Alfrey (1)1 considered an isotropic,

1Numbers in parentheses refer to References at end.

1



2
incompressible, linear, viscoelastic material and extended
the theory of perfect elasticity for small strains to visco-
elastic bodies. He classified the problem into two categories:
(1) surface forces prescribed and (2) surface displacements
prescribed. In the first case, where the surface forces were
prescribed, he proved that the stresses in a viscoelastic
body subjected to a surface force f(x,t), where f(x,t) is an

analytic function of time for t > 0, is given by
Gik(x’t) = a-ik(x:t)i 1=1,2,3.

In the above equation Eik(x,t) is the static stress ¢l an in-
compressible perfectly elastic body subjected to a surface
force yi(x,t). To find the displacements, Alfrey assumed
that the force can be written as the product of two separate

functions of the independent variables as
f(x,t) = £, (x) g(t).
Then the stress would be
Gik(x.’t) = -U—ik(x) g(t)

Multiplication of the elastic displacements due to Eik(x) in
the perfectly elastic body with unit shear modulus and the
viscoelastic response due to a shear force of 2 g(t) will give
the displacements in the analogous viscoelastic medium. For
problems of the second kind he proved that the same operation

may be performed on displacements to get the stresses,
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Tobolsky and Andrews (2) studied the general molecular
theory of materials under stress. They stated that actual
substances, especlally rubberlike substances, exhibit a com-
plicated behavior under mechanical stress. @ross (3) formu-
lated a relation between creep and relaxation functions.

In 1949 Mindlinl(h) derived a mathematical optical-
stress-strain-time-temperature relation in which stress and
strain birefringence coefficients are time and temperature
dependent. Read (5) considered stress-strain relations for
compressible viscoelastic materials and proved that 1f stress,
birefringence, and their time derivatives are linearly related,
then the standard photoelastic technique can be used to deter-
mine the directions and differences of principal stresses.

Tsien (6) in 1950 generalized Alfrey's analogy for
isotropic compressible medla to cases where body forces are
present. Schwarzl and Staverman (7) treated the question of
whether or not, in the study of linear viscoelastic materials,
a change of temperature is exactly analogous to a shift of
the logarithmic time scale. When 1t 1s, they termed this
material thermorheologically simple.

Freudenthal (8) mathematically proved that at differ-
ent rates of heating or cooling the stresses produced in the
material would be quite different. Hilton (9) considered
temperature-dependent viscoelastic materials of the Kelvin2

type, presented the solution for a thick-walled cylinder, and

®See Chapter II, Section 2 for definition of a Kelvin
material.
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compared the results with the temperature independent visco-
elastic materials.

In 1955 Lee (10) considered the quasi-static case of
a viscoelastic body, in which loading i1s such that the
inertial force due to displacement 1s negligible, and by using
the Laplace transform he analyzed the problem of proportional
and nonproportional loading. He compared this method with the
other approaches of stress analysis in viscoelastic materials,
In the procedure of the Laplace transform method introduced
by Lee both the boundary conditions and the governing differ-
ential equations must be transformed and become time inde-
pendent. This will restrict the problem to those boundary
conditions which are transferable, or have zero initlal con-
ditions where the given surface traction and displacements
vanish at t < 0. But there are cases where this condition
does not exist, and it is not possible to make the boundary
conditions independent of time. For such a condition Radok
(11) introduced a functional eguation in which the boundary
conditions are not required to be transformed, and instead of
applying Laplace transform to the elastic solution, the elas-
tic coefficients may be replaced by operators. With this pro-
cedure Radok actually expanded the range of applicability of
Iee's method. In many cases involving simple elastic con-
stants, he found the functional equations become differential
equations in time which may be integrated for given initial

conditions.
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Olszak and Perzyna (12) derived variational theorems

for the various models of viscoelastic bodies. Yamamoto (13)
extended the classical linear theory of viscoelasticity to
three dimensions and discussed three-dimensional nonlinear
theory also. Morland and Lee (14) considered a thermo-
rheologically simple materlal, and by using a shift factor for
the temperature effect solved the problem of stress distribu-
tion 1n a cylinder with constant internal pressure and a
steady state nonuniform temperature distribution. They
pointed out the effect of nonuniform temperature distribution
on the material behavior and particularized their problem to
Kelvin and Maxwell type materilals,

In 1960 Segawa (15) stated that the spring and dash-
pot mechanical model is not valid for three dimensions and
large deformation. He derived Maxwell-body formulas for
three dimensions and large deformations and illustrated that
Alfrey's formula is a special case of it. Tschoegl (16)
developed a technique which allows the application of electric
circuit theory to the solution of mechanical and rheological
problems. Hilton and Russell (17) extended Alfrey's analogy
to thermal-stress problems. Since in most of the cases the
temperature distribution is a separable function of time and
space, the material behavior i1s also a function of time and

space. They proved that if the temperature is in the form of

T = z () F™(x)
m
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then the stress produced due to this temperature distributilon

is in the form of

o, ,(%:) = ; gn(t) oy, (x)

where aTJ(x) is the stress distribution in an elastic material
and gm(t) 1s a viscoelastic response which can be calculated
separately. The product of these two will give the stress
distribution in a viscoéiéstié'material.

Muki and Sternberg (18) considered the quasi-static
transient thermal-stress analysis of a linear viscoelastic
solid and solved two particular problems. Tokuoka (19) used
the generalized Novozhilov's (20) nonlinear theory of elas-
ticity for large deformation and expressed the generalized
equilibrium equation in the Lagrange representation and by
applying Hamilton's principle obtained the general stress-
strain relations for three-dimensional geometrically and
physically nonlinear viscoelasticity. He also applied (21)
Hamilton's principle to the viscoelastic deformation; and by
physically appropriate assumptlions he obtained the three
dimensional stress-strain relations for Maxwell-~type
materials.3

Pister (22) used the integral-transform method and
considered the viscoelastic plate on a viscoelastic foundation.

Lee and Rogers (23) discussed the constitutive relation for

3Maxwe11-type materials are defined in Chapter II,
Section 2.
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viscoelastic material in the form of integral equations which
are more general than the operator form. Shinozuka (24) con-
sidered the problem of thermal stresses in a hollow cylinder
with variable inside radius for the general linear visco-

4 Brener and Onat (25) investigated the

elastic material.
possibility of finding free energy F and entropy production @
of a solid from the knowledge of relaxation modulus with a

thermodynamics approach and using the following equation.
g (t) e(t) = F + TOQ

where T, is a reference temperature and the dots indicate the
time rate of change of the quantities.

Sternberg (26) extended Lee's Laplace-transform method
to the thermal-stress problem for a general linear visco-
elastic material, He assumed an incompressible linear visco-
elastic body with temperature independent behavior. This, of
course, 1s a crude assumption since vliscoelastic materials
are highly sensitive to temperature.

Except only in a very few papers the authors consider-
ed temperature independent viscoelastic characteristics, and
none of them considered the stress and time dependent thermal
coefficient of expansion.

In the course of the present investigation, it is theo-
retically proved that the thermal expansion coefficient of a

viscoelastic material is a function of stress and time as

4See Chapter II, Section 2 for the definition of a
general linear viscoelastic material.
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well as a function of temperature. A series of experiments
is also conducted to prove this theory. Behavior of poly-
methyl methacrylate is investigated at different temperature

levels and a general relation among the stress, strain, time

and temperature is developed.



CHAPTER II
BASIC THEORY

1. A Survey of the Literature

To date, in most of the books and research papers in
the field of thermal stresses, the thermal coefficient of ex-
pansion has been used either as a constant or a temperature
dependent coefficient. In 1956 Rosenfield and Averbach (27)
investigated the effect of uniaxial stress on the thermal
coefficient of expansion for an isotropic elastic materlal.
C. W. Bert (28) in 1963 developed expressions for the effect
of general three-dimensional stresses on the coefficient of
expansion of an orthotropic elastic material and applied the
results in general thermoelasticity theory. He proved that
the thermal coefficient of expansion for elastic bodies will
be influenced by the stresses as well as by the temperature
and derived that the stresses and the coefficient of expan-

sion are related by the following equations:

d3ai 3 1 1 3E;
aai‘ST(EI)"E’;’aT (2-1)

o

a v E -2 E
HNSTINE DR DI
9
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Thus,
1
1= Gor ¥ EI'[011°1 - Cygvigog t Ot | (2-3)
with
3E
1 %%
11 = - g 3T (2-4)

NGB NED -5

where g, Ei’ v,.s a and a,q are stress, modulus of elasticity,

i
Poisson's ratiof thermal coefficient of expansion, and thermal
coefficient of expansion at zero stress, respectively.
Although the theory of thermoviscoelasticity has been
developed to some extent (29), there has been no theory show-
ing the dependence of thermal expansion coefficlent on stress-
es and time for a viscoelastic material. The purpose of this
chapter 18 to derive theoretical relations showing the effect

of stress and time on coefficient of expansion.

2. Constitutive Relations

The constitutive relations for a general three-
dimensional linear viscoelastic body have been represented in
different ways by many authors. The two most common ways are
usually called the operator representation and the integral
representation.

The operator representation was used by Lee (30) in

the following form:

Progs = Qesys PoSiy = ey (2-6)
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where Py, Py, Ql and Q are the differential operators defined

as follows:

n 1
?
P = El 8 T
1=0 3
m i
2
P, = by &—
2= ) by
k 1
d
- L ol
i=0 dt

4 ai
Q@ = E: 4y =
1m0 dt

Here k, 4, m and n are not necessarily equal; the a4, bi’ cy
and d1 are material constants which may be temperature or
time dependent. With the above definitions it 1s obvious
that as the number of terms in the summations increases the
solution becomes more complicated. For a perfectly elastic
material, the coefficients ay, bi’ cy and di are zero for
is>1.

In the integral representation used by Gross (3), in
which he formulated the relations between creep and relaxation
functions, the constitutive relations are:

SiJ(x:t) = Gg(t - 1) g; eiJ(x:T)d‘h

(2-7)

O (Xst) = C @ (¢ - 1) %;.ekk(x,f)dw,

OVt OVt
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-t
eiJ(x,t) -=§) Jz(t - 1’) Sa—; SiJ(x:T)dT:

. (2-7)
exk (x,t) = S Jl(t - 1) %;-akk(x,w)dw,
0

where G; and G, are the relaxation modulus in shear and the
bulk modulus, respectively; J, and J2 are creep functions;
Ok and €pi are the volumetric stress and straliln respectively
with the regular tensor notation with summation on repeated
indices and SiJ and eiJ are the deviatoric stresses and
strains with the following definitions;

1
515 =035 =3 814%¢ °

= 21
eiJ €1J 3 613ekk ’

where 61J denotes..the Kronecker delta function. 1In the case
of sinusoidal deformation, the relaxation modulus G and creep
function J amy be separated into two parts, namely the

storage modulus and the loss modulus (31) as follows:

G=G'+1G"’
J=J' + 13",

where 1 denotes /-1, G' and J' are storage relaxation mcdulus
and creep function and correspond to the elastic energy
stored in the body in a cycle; G" and J" are the loss relaxa-

tion modulus and creep function and correspond to the energy
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dissipated in the viscoelastic body due to the internal fric-
tion in one cycle; G' is defined as the ratio of stress to
the strain, in phase with each other in a sinusoidal deforma-
tion; G" 1s the ratio of stress to the strain, 90° out of
phase with each other in a sinusoidal deformation; J' is the
ratio of strain to the stress in phase with each other and J"
is the ratio of strain to the stress 60° out of phase in a
sinusoidal deformation. The ratio of G"/G' is called the
loss tangent. Although J and G are related by J = (1/G),
their individual components are not reciprocally related (32).

The behavior of different linear viscoelastic mate-
rials can be represented by different combinations of mechan-
ical elements, namely Hookean (linear) springs and Newtonian
(1inear) dashpots. In general linear viscoelastic materials
under instantaneously applied stress have three distinct
phases of stralning, called

1. Instantaneous elastic response assoclated with the

spring element.

2. Delayed elastic response assoclated with spring

and dashpot in parallel.

3. Viscous flow associated with the dashpot.

The first response 1s purely elastic and recoverable
immediately after removing the stress. The second part is
also recoverable but at a delayed time. The third part is
not recoverable.

To find the exact behavior of a general linear visco-

elastic body, it would be necessary to use an infinite number
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of terms in the differential operators P and Q; then, as
mentioned before, the mathematical solution of the problem
becomes more complicated. This is one reason why some authors
choose to use integral equations in their analyses. This
corresponds to employing an infinite number of elements in
the mechanical models. Yamamoto (13) started his analysis
from the elementary model of the classical linear theory of
viscoelasticity and extended it to three dimensions and showed
that for three-dimensional nonlinear theory the spring must
be non-Hookean and the dashpot non-Newtonian.

The simple viscoelastic models are those known as
Maxwell, Kelvin (or Voigt), and Maxwell-Kelvin bodies (29).
Behavior of each of these three models corresponds to the
mechanical models shown in Figures 1, 2, and 3, respectively,
with the following mathematical relations:

a. For a Maxwell body

e =L+ (2-8)
En 1y
. De-(—D-— !'—>
Em+nm o
Thus,
1 1
°‘<'E;+agp)° (2-9)

where D = 9;..
dt

b. For a Kelvin or Voigt body

o = Eye + Me (2-10)
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or
o = (B + ﬂkD)e .

Then

C‘Cﬁc—:ln—kEDU. (2-11)

¢. For a Maxwell-Kelvin body (General Linear Viico-
elastic Material),

e =cy, + € (2-12)
where
1
em=( Fm + NpD Do
and
1
(550 -
Thus,
1 1 1
e =| — + + -
[Em leD Ek"'nkn] (213)
or
2 2
(ay + a;D + a;D")o = (DD + D7)e¢ (2-14)

Comparison of equations (2-13) and (2-14) results in the fol-
lowing relationships:

(2-15)
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A material represented by a Kelvin model with a spring in
series exhibits 1nstantan¢ous and delayed elasticity but no

viscous flow; this 1s sometimes referred to as the Standard

Linear Solid (30).

3. Effect of Stress and Time on Thermal

Coefficlent of Expansion

In the previous section the constitutive relations
for the various simple viscoelastic materials were described.
. In the present section are derived the mathematical relation-
ships among time, stress and thermal coefficient of expansion
for viscoelastic materials.

From the definition of expansion coefficlent

3¢y

% %37

the following relations are obtained

Lo 4 €
i d 1 (
- 2-16)
aai aai AT
aa.i 3 aei
30, "3, 3T (2-17)

J J

Assuming that ay is a continuous function of 045 °J and T,

then it 1s possible to interchange the order of differentia-
tion. Thus,

day o d Cbei
30y aT 30,
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3_“3,9_(33_1_)

d T

oJ d aoJ

day 3 deq

=08 _( 22 2-18
aok T C aak > ( )

In an elastic body the relation among the stress, strain,

volumetric and deviatoric stresses and strains are

1
ek ~ 3K kk

1

eiJ = EE'S

1J (2'19)

1 [ 911 ¥ 0pp * 033 1 [ 2011~ 0922~ 033
11+ b = o1 " 3 | T2 gl =2

en=on[w-36] e w4 o lanx)

where G and K are shear and bulk modulus. For a viscoelastic
material it is possible to derive expressions analogous to
equations (2-19) as follows.
A. Using the constitutive equations (2-6)
h
Pa
11 =g, "1l

P + + P - -
6% [ 911 70227033 ] + 62'[ 011 “022- 033 ]

€ + €113 =11 ™ 3 3
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or
2P
811 011 [ 3Q1 2 ] 022 [ 3Q1 ] 033 [ 3Q1 }
2P P c P P c P P
weBlgg)-Flg-g)-Plg gl

(2-20)

Equations analogous to equation (2-20) can be obtained for

e and €33 in a similar fashion. Equation (2-20) can be used

22
to obtain expressions for 5511, 3€11 snq 3€11 , yith the
following results:
de1; 11 Pp Py
= | == 4= 2-21
s, 3 [ QB Q ] ( )
3e1] 1ir P2 _ P
B - =" = 5 . (2-22)
3022 3 [ Q2 Ql ]
d¢11 1 P2 Py
= -1 3 -5 (2-23)

Substitution of equations (2-21), (2-22) and (2-23) into
(2-18) results in

20y .l.a_[fp_2+P_1]
aaii 33T Q2 1

(2-24)
¥ . .la 2 A1)
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daq 1 Po
el L [ —-——] (2-24)

After integration of equations (2-24); for the three-

dimensional case, g becomes

@ = Ggy *+ Cyq05y + Cy 04y + Cppop (2-25)
with

P P

12 2 1

c B = e e mm— T —— 2-
yeoimly o) (2-26)

cik=-;a_[fg_i]

337LQ @

for an isotropic material
®ik T %15 -

For the one-dimensional case, equations (2-21), (2-22) and
(2-23) simplify as follows:
1. For the case of a Maxwell body, equation (2-8)
defines the constitutive relation
e = g +o_ )
Em  "m

Jf the stress 18 a function of time

g = f(t)

then t can be expressed in terms of ¢
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t = F(o) (2-27)
Differentiation of equation (2-27) gives

at = 3F(0) 4o
a0

or
( it _ 1 :
3 - &~ (2-29)

Now substitution of equation (2-29) into (2-28) results in
the following expression:
1
dt = + 4o (2-30)
o

Integration of equation (2-8) with (2-30) gives

dt

JIQ

®
L
£ °
+
oAt

or

e-%—+Sggﬂ;dc (2-31)

m
Now differentiating equation (2-28) with respect to ¢ glves

the following expression:

I

or

o/
™

g

— (2-32)
STm

[« d

1
= — 4
o Em

Substitution of equation (2-32) into (2-17) gives
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Aa 3
% " 'E; ey
or
1
- gz —:'2 o (2-33)

After integration the expression for g becomes

3Ep 2 23
a =a + 'EET _O'E':I"m (2-34)

for the special case when stress 1s constant
¢ = %

the constitutive equation (2-8) becomes

o
¢ =40y (2-35)
En ™
Differentiation of equation (2-35) with respect to % results

in

-]

(3]

1
s J6) Em

t
+ o (2-36)

o

Substitution of (2-36) in (2-17) gives

L-Io S 3_2% a d_ [ .l. + _t_ :l
3, aTas OoTLE  my
or
R . . (2-37)

aoo Ei T ;‘Ea"r

now integrating equation (2-37) with the condition



23

G‘aoatao=o

A3E

.

1 °m t My

a=a0+[-_2._—-._2..—___] (2-38)
E d N aT

A Maxwell body approaches a perfectly elastic body when

M ™ ®° To compare the results with those previously obtained
for perfectly elastic materials, n,; = « is substituted into
(2-34) and (2-38) then in both cases (g = constant and g #

constant) gives
3E

= a—-
GG0+2T

9
En
which 1s identical to the equation which has been derived for

a perfectly elastic material.

2. For the case of a Kelvin body equation (2-11) de-

fines the constitutive relation

e
¢ T E +nD

Differentiating with respect to ¢ to get

-1

1l
3 = W (2-39)

Taking %g—: ¥, then equation (2-39) becomes

1

VR + mD

or

(B + mD)y = 1



& 1 (2-40)

Equation (2-40) is a differential equation with the following

solution
-Sp at ¢ ,Sp at
y=e e q dt (2-41)
o
Here
P = Ek/'nk
q= l/nk
Therefore
e
de k k 1
y=3g=¢ S e — dat .
4 Mk

After integration the following expression is obtained

'
-g-g-y-Elk-[l-e"“ ] (2-42)

Integrating the above equation gives
1 1 i ¢
3a_( 2 .4 -
a =ag + [ 3T ( B By e ) ] g (2-43)
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A Kelvin body approaches a perfectly elastic material when

n = O. Substitution of n = O in equation (2-43) results in

which again is the same as the one which has been derived for
perfectly elastic materials.
3. For the case of a Maxwell-Kelvin body equation

(2-14) defines the constitutive relations
(ay + a,D + a,D°)g = (b;D + D?)
ao al 8.2 (4] 1 €
To solve the above equation, Laplace transform is applied (33)

(p° + bp) €(p) = (a,p° + a;p + ay) a(p)  (2-44)

where p is transformed variable, ¢(p) and g(p) are transformed

strain and stress respectively

8.2]32 + alp + 8.0 -
5 o(p

(p2 + blp) )

e(p) =

2
aosp”~ + a8,p + a5 _
= =251 (2-45)
(p© + byp)

e(t) = g7t [

After transforming equation (2-45) to the original variable
(t), it 1s possible to differentiate with respect to o¢(t).



26
Considering a step function for a(t), then
¢ = gq u(t) (2-46)
Substituting this into equation (2-14) ylelds

(b,0 + D?) ¢(t) = (ag + a,D + a5D° )y u(t)

Now applying the Laplace transform gives
a2p2 + a;p + &g

D oO (2-'47)

(02 + byp) €(p) =

Solving for transformed strain in terms of transformed stress

82p2 + alp + ao

-48
pjéﬁ(p + bl) (2 )

¢(p) =

To get the strain in terms of time and stress, equation (2-48)
should be transformed back to the original system (t). To do

this equation (2-48) can be written in the following form

a a a
- 2 1 0
e(p) = [ ]o, (2-49)
P + Db p(P + by) p2(p + bl) 0
The inverse Laplace transform of equation (2-49) is as
follows:
-b,t a -b1t a -byt
1 1 1 0 1
e(t) = [ age + s (1-e ) += (e + bt - 1)] o,
Substitution of coefficients 8,5, 81, 8 and b; from equations

(2-15) results in

g
e(t).[(_+—-) %‘;-.Elze"“ ]ao (2-50)



27
Differentiation with respect to % gives

+ st (2-51)

Now substitution of equation (2-51) into (2-18) results in

-Ek
w2 (1, PRI SR
30 “T L Ey, "B "m By
or
B o
R S R LT T
do d 3 .} T
Em Ek ﬂm F’( 2
B
t Mk 3 _
+ — e = (2-52)
Integration of equation (2-52) gives the expression for q
9, aEm 50 aEk oot 3n, , 90 nkEkt aEk
a=Qa, 7 I "~ —E"T"' __?"T— 2 € ;AT
O, 7 E o By
..Ekt
to E
0 ""k
+gk— %(;ﬁ%) (2-53)

A Maxwell-Kelvin body reduces to a perfectly elastic body
by letting m, - = and o - O (14). Tnus, substituting into
equation (2-53)

nmnﬂandﬂkno,
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then finally g becomes

05 3 0n 2
TP P (2-5%)
m B

Equation (2-54) is the same as the one obtained for a per-

fectly elastic material. 1In this case it corresponds to a

model with two springs in seriles.

B. Using constitutive equations (2-7)

t
381 (x:-r )
ey = § Jo(t - 7) s;—i————- dr

t
aakk(mr)
ekk-§J1(t - 'r)-a—T———-df

Applying the Laplace transform to the above equations gives

ey5(p) = p T2(p) 5y4(p)

2-55)
Ekk(p) = D J.l(p) ;kk(p) (

where the barred symbols denote the transformed variables and
p is the Laplace transform parameter., Now adding Eil(x) and

Ekk(p) to get the following relation

_ _ 2€17 - €np - €. €17 + €00 + €. _
&17(p) + T (p) = —22 322 3,31 322 33 . ey, (P)
—_ - - pJé - - -
pIi -— - -
+ -5"[ 911 * 022 * 933 ]



29
After simplification the above equation becomes

e, @ =250 [ Tye) + 1) ] - B3, [ 7,00 - 7))
5y3 L To(P) - T,(p) ] (2-56)

Findley (34, 35, 36, 37) and Onaran and Findley (38) showed
that J(t) 1s also a function of g. Thus,

7, = T1(p,5)

- (2-57)
T, = T,(p,3)
Now differentiating equation (2-56) with respect to Eil’ Eéz
and 353 and considering equations (2-57) yields
2e11(p) _ - - - 3T, 5{1
3511(1)) %{ 232(15:0) + Tl(p,a) - (522 + 0'33) [ 3311 3011 ]
I 331
= 2-58
+a,(0) [ 2 °11+3°11]} (2-58)
ey (P) _ 2
— == J. ) -J ’ + + pre
) § {7200, - 7,(0,3) + (G5 + 733) [ 622 o
- 33'2 33'1
711 [ 2 3-0-22 * 3;22 ] } (2-59)
3ey1(p) - — — — 3y 3y
o) " 5 a8 - T03) + Gy + T3y) [ )
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ad» aT
-5y [ 2 o, 3022 ] } (2-60)

Transformation of equations (2-58), (2-59) and (2-60) to the

original variable t results in

aell(t)

t
01;TET [ 2J2(t:0) + Jl(t,o)] + %-%E-S oll(t) 'l(t"X)dX
(o]
q :
- %‘af'j {022(t) + 033(t)}¢1(t -2)a  (2-61)
0
d
a::: = - g'af [ Jo(tse) - I,(t,0) + S{aze(t) + 033(t)}¢(t 2 )dA
t
NI EACERILY (2-62)
0
de a
30;; = - %'HE [Ja(t,c) - Jl(t,o) + S{Uea(t) + 033(t)}w3(t_ X)dk
t
- S o'll(‘t:) .3(t - X)dl] (2-63)
0
where

ad ad

*1 = " 2 + 1 2
931 %1
J ad

‘2 = 2 372 1 3

3°11 3022
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ado ady

= 2

'3 -4 * a0 ’

33 33

3do aJy

P = - s
307, 39y,
3do 3d ,

¢2 == -
3050  ¥pp
3J2 3J1

o = had .

"3

Substitution of equations (2-61), (2-62) and (2-63) into
(2-18) leads to:

day 3 1d ¢
aoii - 3T { '3'3'5 [2J2(t10) + Jl(txd) +(S) all(t) ‘l(t = X)dl

t
- § {o20(8) + a33()} oy (¢ - 1)x] }
0

:ZjJ = %T'{ %,Q_ [Jz(t:c) - 3, (t,0) + S {aeg(t)
- t
+a53(6)} wy(t - 0)ar - C oy (8) 4p(t -2 )]},
0
:Zik A3 LACOREN TR S {oaat®)

+oy5(t) et -2)an - S 01, (E) ¥(t - Aar ] } s
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Integration of the above equations gives the g as follows

@, =0a, + S °11d°1 + S cinaJ + S ¢y1.99), (2-64)
where Cyq> ciJ and cik are defined as
day
Cy4 = ’ (2-65)
i1 aoii
J de¢
JJ
Cipe = 3a1_ . (2-67)
aokk

Similar relations can be obtained for q_, and )y by the same

J
procedure,

For the one-dimensional case, equations (2-62) and

(2-63) will vanish and equation (2-61) becomes
ae(t) d t
S = [3(60) + oy (8) ¢ (6 -2)ar]  (2-68)
0

where aJ

V=3 (2-69)

For the case of a constant applied stress

equation (2-68) becomes
delt) _d 3 -
3o, 3t J(t,co) + 0, 30, J(t,oo) (2-70)

substitute in equation (2-18) to get
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aa

-2 74 _
30, 2T [ & 3(t200) + o %Q I(ts0y)] (2-71)

Integration of equation (2-T71) gives the ¢ as follows

q,sa.o +SZdO, (2-72)
where
Z = 30 (2-73)
300

Equations (2-25), (2-38), (2-43), (2-53), (2-64) and (2-72)
are the relations among thermal coefficient of expansion,
time and stresses applied on different materials. As it can
be seen from these equations in the regular viscoelastic
materials for which E and n decrease with the increase of
temperature, g increases with the stress and in the few mate-
rials which E and n increase with the temperature, o de-
creases with the stress.

Therefore, i1t has been shown that according to the
theory developed here g is not a conastant but a time,
temperature and stress dependent factor.

By the same procedure it is possible to find the math-
ematical relations for any combinations of springs and

dashpots.



CHAPTER III
PLANNING OF EXPERIMENTS

In the preceding chapter it was derived that, for the
uniaxial state of stress, the relation for the stress de-

pendency of thermal expansion coefficient would be

2 _ 3 d
== ST'[ IE J(t,ao) + 0, %33 J(t,oo)] .

To investigate the validity of the above equation, two stages
of experiment were planned: (1) low-stress-level experiments

and (2) high-stress-level experiments.

l. Low-Stress-lLevel Experiments

In order to have enough information to carry out the
second stage of experiments, it 1s necessary to know the
variations of creep constant J with time, temperature and
stress explicitly. Several methods have been developed (35,
42) to represent the stress-strain relation with time-
dependent creep modulus. In parallel there have been some
experimental investigations on the creep properties of visco-
elastic materials (41, 44). However, the experimental inves-
tigations were not concerned with the change of creep coeffi-
cient with temperature. 1In the constitutive equation

34
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suggested by Findley (48)

e = a s8inh % + ct™ sinh %. (3-1)

there are constants a, b, ¢, d and n. At least some of these
constants are highly affected by the temperature changes ac-
cording to Findley.

To find the varlations of these coefficients with
temperature, it was planned to conduct some creep experiments
at different temperatures. Since i1t was expected, according
to the theory derived in Chapter II, that the thermal expan-
sion coefficient varies with the stress, the experiments were
planned to be conducted at low stress levels at this stage,
in order to minimize the error due to this effect. On the
other hand, to avoid a transient state of temperature dis-
tribution and consequent inconsistency of the results, it was
decided to keep the temperature constant at each level during
the experiments. From the experimental information the co-
efficients of creep can be determined such that equation (3-1)
fits the experimental data. The procedure for doing this is
explained in Chapter V.

Since the creep at l1)>w stress levels is very small
and any small error due to the reading or due to the non-
uniform condition may cause a major deviation in the results,
four sets of experiments with different stresses were planned
to be carried at each temperature level in order to check the

consistency of the fitted curves and to be able to compare
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them statistically. It was also planned to repeat these ex-
periments at different temperatures, so that curves could be
plotted for a, b, ¢, 4 and n versus temperature. From this
information it is possible to predict the creep at any tem-
perature and any stress level for the material consldered
with the assumption of constant thermal expansion coefficient.

It is interesting to note that, although the tempera-
tures were kept constant during each experiment, after ob-
taining the above information the creep can be predicted at
any variable temperature simply by considering the coeffi-
cients as a function of temperature and integrating equation

(3-1) over the range of temperature change.

2. High-Stress-lLevel Experiments

At this stage it was planned to apply stresses of the
order of 3000-5000 psi in order to observe the effect of
stress on thermal expansion coefficient as much as possible,
Again at this stage the temperature is kept constant. For
the specified temperature the values of the constants of
equation (3-1) can be obtained from the curves previously
explained in section 1. With these coefficients and the
specified stress, the curve for the strain versus time may
be plotted. This is the creep curve assuming the thermal ex-
pansion coefficient is constant.

Now from equations (2-71) and (2-72) the predicted
additional strain due to the variation of the thermal expan-

sion coefficient can be calculated and added to the basic
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creep deformation calculated from equation (3-1). The calcu-
lated strains may be compared with the experimental data ob-
tained for creep at high stress level., With this procedure
it was planned to check the derived equations at three dif-
ferent temperatures and different stresses.

It should be realized that equation (2-72) has two
terms, the first term g has already been compensated by
letting the experimental models expand and stabillize at each
temperature without any stresses, and then applying the

stress.



CHAPTER IV

MATERIAL, SPECIMENS, AND EXPERIMENTAL APPARATUS

l. Material

A methyl methacrylate copolymer plastic* was employed
in these experiments. This material is a slightly cross-
linked copolymer. To predict any trouble in evaluating the
creep and other experimental data, several materials were
considered. These included copolymers like "Lucite,"
"pPlexiglas," and polyvinyl chloride (39, 40, 41), From a
study of the technical data on these materials, "Lucite" was
selected. It has good creep properties (42) and also 1is
relatively insensitive to humidity change (0.2-0.4 per cent
water absorption in 24 nhours, A.S.T.M. test method D570).
Furthermore, it has almost the same machining characteristics
and thermal conductivity as polyvinyl chloride (3.6 x 10'“
calories per second per square centimeter per °C per centi-
meter thickness) but it can stay at higher temperature (43).
Commercial Lucite contains little plasticizing agent and
mechanical properties of this material are known to be

strongly affected by temperature, thus permitting a wide
range of investigation.

#"Lucite," manufactured by E.I. du Pont.
38
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Unfortunately, all of the avallable experimental
creep data on "Lucite" indicate that the creep tests were
carried at only one temperature level. Therefore, as a part
of the present investigation, the creep behavior of "Lucite"
has been investigated at several temperature levels. This
was necessary in order to find the variation of creep coef-
ficient of the material versus temperature as discussed in

Chapter III.

2. Specimens

Several models were made to be used at different
sets of experiments; they were all made out of a 1/4-inch-
thick flat sheet of "Lucite." The gage lengths of all of the
models were 8 in. and they were made stronger at the ends as
shown in Figure 4. In order to be able to use and statisti-
cally compare the results of the tests, it 1s required to cut
the models from the materials having the same condition as
much as possible. To fulfill this requirement, all of the
models were cut from one piece of plastic. Furthermore to
prevent any nonhomogenelty amoﬂ& the models due to the mold-
ing stresses in different directions, all of the models were
cut along the same axis. The models were 1/4 inch x 3/8 inch
in cross section. One 1/4-inch-diameter hole was prepared
on the centerline of the model at each end to center the
model and apply the tension. But since the bearing area at
the holes was only

bearing area = 1/4" x 1/4" = 1/16 sq.in.
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and in comparison with cross section of the model

cross sectional area = 3/8" x 1/4" = 3/32 8q.1in.

at the gage length
was small, there was a chance for bearing failure due to com-
pression force exerted by the steel pin and consequently mis-
leading results. To prevent this situation, two clamps were
prepared for each model as shown in Figure 5, to exert the
tension load through the whole square area at the ends in-
stead of using jJust the holes. Before tightening the clamps
at each experiment, the model was centered by applying a
small load and then the clamps were tightened. The dial
gages used for the elongation measurements were numbered to
read 1/10,000 in., but it was possible to estimate the frac-
tions of 1/10 and therefore get measurement up to 1/100,000
in. The dial gages were installed in such a way to read
directly the elongation of the gage length, as shown in the
installation of the gage (Figure 6). To avoid friction between
the clamps and loading frame, washers were used on each side
of the specimen to increase the spacing between the two
pleces of clamp.

As shown in Figure 4, the ends of the section called
gage length have been smoothly enlarged to prevent failures
at the grips. However, in the data reduction, it is assumed
that the cross section is constant. The following calcula-
tions give an estimate of the percentage of error to be ex-

pected due to this assumption. These calculations are based
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Figure 5. Model Assembly
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Figure 6. 1Installation of Dial Indicators
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on elementary theory, in which stress-concentration effects

are neglected.
Let F denote the applied load and E the Young's

modulus. Then the strain is

P
€ *31/h x 3/8 x E

total elongation Af = 4¢c = 8F in. 4o
assuming constant cross section 1/4 x 3/8 x E (4-1)

actual total elongation = a¢' + AL" (4-2)

' mg'le = (8 -2) —F/E__ T.375 F/E
st =tle=(8-9) 38 k<38

To find A¢", the strain is calculated at an arbitrary point
on the curved section and then integrated to give the

elongation.

stress at any point
of the curved section ™

psi

(1 - £ cos @)

L
Cojwun j=d

F/E
g (1 - g cos g)

strain =

Referring to Figure 7,

L = !i.sin )
16

dL = 5_ cos 8
6 4
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dL
L
I% in.
M\

Figure 7
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(F/E) cos g .

(1 -%cos o)

elongation for small length 4L = dg

He e

(F/E) cos g

% (1 - g-cos 9)

total elongation for the
curved sections at both ends

dg

oM

-2
8

or n

z
n S5(F/E cos §
ats == S 8 -5 cos g %0
AL" = 5F/E [ 8 4+ 16 .. -1 ( JE tan 3—) ]"/2 (4-3)
I;E "5 5 /39 3 2 0

After substitution of limits, equation (4-3) becomes

- 1:.31 F/E

AL 1/

Thus:

actual total elongation = pt' + A" = 7.375 F/E + 1.31 F/E 1

1/4 x 3/8 1/4

n.

1 n
and percentage of error = W x 100

7.375 F/E . 1.31 F/E F/E
/b x3/8*Y " 1/h - T/kx 378
7.375 F/E _ 1.31 F/E
1/k x 3/8 1

x 100

or
35.7
ercentage error = 2=l = 1.6
P ag 20.9 9%

Therefore the error entering the calculations for the
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above assumption would be less than 1.7%. Consideration of
the stress-concentration effects by making an elasticity-

theory analysis would be expected to result in an even smaller

estimated error.

3. Experimental Setup

To carry out the experiments at each temperature
level as nearly similarly as possible, four loading frames
were designed with different loading ratios (Figure 8), so
that tests under four different loads could be carried at the
same temperature and humidity conditions. This avoids the
possibility of different temperature and humidity fluctua-
tions at different loadings but the same temperature level.
The frames were prepared such that they could be used for any
specimen length up to 12 inches.

All of the loading frames were completely enclosed
in an oven speclally designed and built for this purpose as
shown in Figure 9. The heating system of the oven consisted
of an electric heater which was mounted on the wall and was
controlled by an automatic temperature controller. One
electric fan was installed at the bottom under the loading
frames, and the other one on the opposite wall where the
heater was mounted. Since the viscoelastic materials are
highly sensitive to vibrations, especially at higher tem-
peratures, the fans were mounted on two separate stands in
order to minimize the transfer of vibrations due to the fans

through the structures. The fans were in continuous operation
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while the oven was in use and the heater was in control.
With this procedure the temperature was fairly well distrib-
uted, so that there was only about one degree Fahrenheit
temperature difference between the front and back of the
oven, Tﬁe temperature was controlled within 1°F.

A glass door was prepared at the front, to be able
to take all readings without opening the door and disturbing
the temperature. In order to avold the development of local
hot spots on the specimens and to prevent temperature varia-
tions from one spgcimen to another due to direct radiation,
a shield was used in front of the ngater. Furthermore, the
locations of specimens were so arranged that they were all

almost the same distance from the heater.



CHAPTER V
EXPERIMENTAL RESULTS

In this chapter an effort has been made to express
the creep behavior of the material by a mathematical
expression.

As explained in Cnapter III, experiments were con-
ducted at low stress levels and at different temperatures
to obtain the variations of the creep constants of the mate-
rial with temperature. At low temperatures the experiments
were conducted at periods of time up to 49 nours, but at
higher temperatures a two-hour period was sufficient to get
the necessary information. At the same time at higher tem-
peratures the lower stresses were applied.

The results of creep experiments at different tem-
peratures are tabulated in Tables 1 through 35, Appendix A,
and the curves for the experimental strain versus time are
plotted in Figures 25 through 34,

To find the creep coefficients, it is necessary to
establish a constitutive relation among the stress, strain
and time which fits the experimental data as closely as
possible. Different kinds of equations have been suggested
and applied by various investigators.

51
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Marin (42) assumed a time-dependent stress-strain

relation in the form of
¢ = Do™ + Btg" (5-1)

Where ¢ is the creep strain, t is the time, and ¢ 18 the
stress level; D, B, m and n depend on the material.
Leaderman (45) suggested the following equation for

ereep in torsion
¢ = Alog,,t+ Bt +C (5-2)

Where A, B and C are constants depending on material and
stress,

Cottrel and Aytekin (46) used equation (5-3) for
single crystal materials.

¢ = eq + At/ + Bt (5-3)

Here A and B are constants of the material and LA is the ir-
stantaneous strain.
Pao and Marin (47) also introduced the creep math-

ematical relations in the following form.
-Ct
enA+B(l"e )+Dt (5""")

Where A, B, C and D are material constants and functions of
stress,
Findley and Knosla (48) employed the creep equation

in the form of n
c = eo + mt (5'5)
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Where €gs M and n are material constants and €0 and m depend
on stress as well. They showed that stress dependence of €0

and m can be expressed by a hyperbolic sine function such as

co = & 8inh % (5-6)
m = ¢ sinh % (5-7)

which yields an equation for creep as follows:

¢ = a sinn %-+ ct? sinn % (5-8)

For the present investigation equation (5-8) has
been employed also. In equation (5-8) the first term is in-
dependent of time with a and b material constants depending
on temperature but independent of stress. The second term
of equation (5-8) is time dependent, and constants ¢, n and
d are agaln material constants independent of stress but
temperature dependent.

To obtain the coefficients a, b, ¢, 4 and n from the

experimental data, equation (5-5) can be rearranged as
€ - eo = mtn (5-9)
Taking logarithm from both sides of equation (5-9) ylelds:

log. (¢ - co) = 10g, m+nlog ., t (5-10)

10

Equation (5-10) is the equation of a straight line taking
log (¢ - eo) as ordinate and log t as abscissa. The quantity

n i1s the slope of the line and the value of m may be obtained
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by letting t = 1 hour. The experimental curves corresponding
to equation (5-10) are plotted in Figures 10 through 19.
Having €o and m for the different stresses and by the use of
equations (5-6) and (5-7), the coefficients a, b, ¢ and 4
Réan be cbtained by trial such that the plot of €o versus
sinh %.and m versus sinh %-yield a straight line, This is
done in Figures 20, 21 and 22 for different temperatures,
where the values of a and ¢ are the slopes of the lines., It
was found that to get the straight lines for eg versus sinnh %
and m versus sinh %'the values of b and 4 are constant and
independent of temperature

b = 40,000 d = 3,300,
but the values of a, ¢ and n vary with temperature. The
variation of these coefficients are tabulated in Table 36,
Appendix A and are plotted in Figure 23.

In order to be able to differentiate the creep func-
tion J as necessary in equation (2-71), it is much more con-
venient and accurate to get mathematical expressions for
variation of the constants with temperature. To do this, in
Figure 24 log10 n, loglo 100¢ and loglo a are plotted versus
temperature. It is seen that the resulting curves are nearly
straight lines. Now the mathematical expressions can be ob-

tained very easily. let

Jp = - log, o n=1u +v,T (5-11)
Yo = - 10og15 & = Uy + V,T (5-12)
y3 = - log,, 100c = ug + V3T (5-13)
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Where Uy, Vi, Up, Vp, Ug and v3 may be obtained by choosing
two arbitrary points on each line and putting their
coordinates in equatiens (5-11), (5-12) and (5-13) and
solving for the unknowns. In this way

u; = 1.800 V) = - %gég

u, = 1.490 Vp = - 3%%5
68

BT B T3T g

Substitution of these values in equations (5-11), (5-12) and '
(5-13) results in: |

- logy n = -2.3 log n = 2.3(1.800 - %%3% ™),

- log, & = -2.3 1l0g,5 0 = 2.3(1.490 - §%§6 T,
- log, 100c = -2.3 log,, 100c = 2.3(1.935 - 3%%6 )
or
o (01797 - 4.14) ’ (5-14)
a = o(-0141T - 3.4) (5-15)
c =L e(.0211'1' - 4,45) . (5-16)

100

With equations (5-14), (5-15) and (5-16) the creep
expression (equation 5-8) is completely defined in terms of
stress, time, temperature and material behavior for Lucite

as follows:
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sinh 75-560

(.0141T - 3.4)
c = @€

+ Lo o(.02HT - B.A5) .\ e (5-17)

Where T is the temperature in degrees Fahrenheit and n is
given by equation (5-14).

With the obtained coefficients a, b, ¢, 4 and n and
‘equation (5-8) the theoretically predicted creep is calculated
and plotted in Figures 25 through 34.

It should be mentioned here that although the oxperiQ
mental curves and the curves from equation (5-8) differ from
one another and in the worst cases as much as 10 percent,
but in comparison with the worst cases of (38) and (42) which
nave 8 percent and 30 percent deviation respectively, these

curves seem to be in reasonable agreement,
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CHAPTER VI
ANALYSIS OF EXPERIMENTAL RESULTS

As explained in Chapter III, experiments were carried
out at high stress level in the range of 2600-5000 psi and
at different temperatures. The creep data for the high-
stress experiments are tabulated in Tables 37 through 41,
Appendix A and experimental creep curves are plotted in
Figures 35 through 39. The theoretical creep curves based on
information obtained in Chapter V and equation (5-8) are also
plotted in Figures 35 through 39. These curves correspond
to the assumption that the thermal expansion coefficient is
not a function of stress. But as it is clear the theoretical
and experimental creep strains differed about 17 to 23 percent
after a two-hour period, while in previous chapter where
theoretical creep equations were fitted to the low-stress
experimental data, the deviation was only about zero to 10
percent. This indicates that it would be a better prediction
of creep if the additional strains due to the change of
thermal expansion coefficient be added to the predicted
creep which has been calculated from equation (5-8).

As mentioned in Chapter III, since the models are

stabilized at any particular temperature and are expanded
82
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under no stress with the thermal expansion factor °‘O before

the experiment starts, the first term of equation (2-72)
Q = U.o +S Z do ’

is already compensated and it only remains to calculate the
strain corresponding to the second term. To do this, equa-
tion (5-8) is employed to obtain the creep function J(t,0)
c ¢
a 0 ¢ .n 0
J(t,05) = j.-a sinh - + Q t sinh 3 . (6-1)
To apply J in equation (2-71) and get Z in equation
(2-T2), equation (6-1) is differentiated with respect to time

and stress,

3y (t,c - c
__(..’.__0_) = N 1 sinh -2 (6-2)
3t % d
dJ(t,0,) o o n o
_a__f__o__.%s:lnh—9+—a—cosh—o-215"2—~sinh--Q
% o5 bco b o5 d
n c
+ -2t cosh 2 (€-3)
dco d ‘

Substitution of equations (6-2) and (6-3) into equation (2-71)

results in

% d cn n-1 % a a %
Z-&-O-a-f a—o-t sinh—d—-a-—sinh—ﬁ-+5-cosh-5
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n

cth 90 . ct o)
T sinh -l cosh e ] (6-4)
or
[-Is2 d
Z = 336-- ar (8] (6-5)
where
n-1 o o c n o]
g « Bt “ginh 0 _a sinh 2 + & cosh 2. EE—vsinh 2
d ] b b b o d
0 0 0
ct? oO
+ -3 cosh e (6-6)
and
gs_ag_d_n_.,_ag da+a§ de (6-7)

dT 3n dT da dT 3dc 4T
But from equations (5-14), (5-15), and (5-16)

dn (-0179T - u.IU)

g= = 0179 e (6-8)
da (.0141T - 3.4)

a-f = .0141 e (6-9)
de .o24 e(.ozu'r - 4.45) (6-10)

-d—T'.—Iw

To differentiate t® and t° © with respect to n the following
approach is used

t" = P
then

loge P = n logg t
and
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n log, t
P=ce ©
Thus
n log, ¢t
E e thee © loggt=t loggt  (6-11)
Therefore:
L1 ¢ n-1 °0  en .n-1 %

33-331: SinhT+U-6t logetsinh—d-

c n c
ct" 0 . ¢t 0
% loge t sinh | + 3 loge t cosh 3

L1 n-1 n-1 _ B c %
== [t + nt logg t t loge ’c] a.b_ sinh T

ctn %
+ =g~ log, t cosh g (6-12)
Y3 1 9 %
il 35 sinh = + i cosh -~ (6-13)
af g ,n-1 % 0 99 P %
= = sinh — - “— sinh — 4+ =—— cosh —= 6-14
3¢ " T % a 3 d (6-14)

Substitution of equations (6-8), (6-9), (6-10), (6-12),
(6-13) and (6-14) in equation (6-7) and (6-5) results in:

aa n-1 n-1 n ¢ %
Z = 356.- { [t + nt loge t -t loge t] EB'Sinh T
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n g -
+ Eg— loge t cosh —dg-} [.0179 e('0179T 4.14) ]

. {_ PR gbg . % cosh ‘;_o} [.0141 o (-0141T - 3.4) ]

c n c

n ,n-1 0O ¢t 0

—- i —_ - 2 8inh —

+{°0t snhd OOBnd
(.024T - 4.45)

cosh 90 }[ .024 o

“100 °© ] (6-15)

Now equation (6-15) can be substituted into equation (2-72)

and integrated to obtain:

Aa-a-ao-SZdao

[.0179 o (01797 - 4.14)'] {(tn-l n-1

Aa = C + nt loge t
Binh-a— n
t
- P loge t)S—O-—dao+-d—103e tS cosh——dgo}
(.0141T - 3.4) ] oo
+ [.0141 e ] { FS cosh - doo

c
sinh -5-

_S - 8o, } [ .024 (.024T - 4.45) ] {(ntn-l

90
n sinh 3~ n
-t) { —— & r -
S o doy + g cosh do } (6-16)
c
sinh 0
To integrate -—;—— the following procedure has been applied:
0
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S sinh Ef.dq c e(co/d) _ e(-oo/d) g6, - e(oo/d)
g0 0 ‘ 200 0 J  ap
1 c e('Oo/d) g .
2 3 00 o'O
But
(Oo/d) 2 3 u 5
e EQ 90 90 g0 oQ
—~— do, = log + + — + + + —
S 0 e %0 7 d T 5042 T 3.31a3 44187 5.5
+ ... (6-17)
(-g0/d) 2 3 4
e 0 do 1 % % 00 %
= d0y = 1l0g g5 - — + 5 - 3+ T
9 d 2.2/ 3.3!d° 4.4!d
5
o
-9 _ .. (6-18)
5517

In equations (6-17) and (6-18) the terms after the sixth

term are neglected because in comparison with other terms
they are small enough that theilr effects are negligible.

Subtraction of equation (6-18) from (6-17) gives

o)
sinh (0p/d) (-gp/d)
S———I“o-%Se——doO-%S?———
00 00 00
% °g °g
=T+ 3+ 5 (6-19)
3.3!d° 5.5 ,

Now with equation (6-19) equation (6-16) becomes
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AQ = C [.0179 e('m'79T - h.14) ] {(tn'l + ntn'1 logg t
o c 5 %
n 0 0
+ t log, t) + + + t° loge t sinh
e C d 3'3.’d3 5 S'd ) q
0141T 4) g 03
+ [.0141 o (-01MIT - 3. ] {sinh bo 0
3.3!b3
0 Jo24 _(.024% - 4.45) n-1
n o 05 n c
-t 0., 0 0 + t" sinh -2 (6-20)
>< 33183 | 5.518 ) d }

Equation (6-20) describes pq in terms of temperature and
stress for the material used. The following equations are
the same equation particularized to the specific temperatures
and stresses in which the high-stress level experiments were

carried out.

For 140°F:
-8 - - . .
A = 975 x 10 [(t .63 + .17t 83loge t -t 17loge t) ( %9
: ) 2] 5 [stnn 2
+ t log t sinh +366 x10 sinh =
18d3 600d5 € a b

3 5

o} -
-( °—b°- + 1833 600b5)] + 77 x 107 [(.17t

.83
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3

17)( 2+ ) +t sinh—-—] (6.21)

18d3 600d5

For 160°F:

g = 228 x 107 [(t"76 + .24t"7610ge t - t'auloge t) ( %9
3 | -5
+ 18d3 600d5 ) +t° loge t sinh - - ] +456 x 10 [sinh 2
-(°_0+ a?l_+ 5>]+127x108[(24t 76
b 1843  600b°
) t.ah) ( 39 3 ) +t°° * sinh —-] (6-22)
d 18d3 600d5

For 190°F:
s = 85 x 1070 [(t"56 + .44t"56loge t - t'uuloge t) ( %9

3 (o)
0
+ + t log t sinh —=
18d3 600c15 ) € d ]
-5 % % . 9%
+ 705 x 10 sinh - =+
\: o b 18p3 600b5 ) ]
+ 259 x 1078 [( yrg™ 28 t’uu) (oo 03 )
a 1843 600d5

44 o0

+t sinh 2 ] (6-23)
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From equations (6-21), (6-22), and (6-23), the additional

strain can be calculated from the elementary equation
ae = (aa)(aT) (6-24)

where AT is measured from the reference temperature T g_o.
The additional strains have been calculated and added to the
strains obtained from equation (5-8) in Figures 35 through 39.

Comparison can be made between the experimental data
and the additional strains Just obtained plus the strains
previously calculated from equation (5-8).

In Figure 40 the percentage deviation from experi-
mental data after thirty minutes is plotted for the same
stress level versus temperature.

In the next chapter will be shown the percentage of

error expected if the additional strain term is not added.



CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

1. Conclusions

Based on the theoretical derivations of Chapter II
and the experimental information presented in Chapters V and
VI, the following conclusions can be reached.

a. The thermal expansion coefficient of viscoelastic
materials is not a constant or a function of temperature
alone, but it is a function of stress and time as well. For
the materials in which the relaxation function decreases with
the temperature, the expansion coefficlent will increase with
the stress. The elastic solution can be reached as a partic-

ular case simply by substitution of

nm-. and nk-O.

For the elastic case Brock (49) has mentioned that
the results of analysis would be identical, using the expan-
sion coefficient corresponding to zero stress and the value
of elastic modulus at the final temperature, instead of using
the expansion coefficient as a function of stress. This can
be proved by taking a partial integral; however, this will

not hold for viscoelastic materials, since the relaxation

97
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modulus at any temperature varies also with time.

To show how much error would enter in analyzing a
thermal-stress problem in viscoelasticity, ay the thermal
expansion coefficient at zero stress is measured and tabu-
lated for polymethyl methacrylate. The experimental values
and variations of expansion coefficients with time for d4if-
ferent stresses are plotted in Figure 41. As it can be seen
in Figure 41, after two hours the percentage error consider-
ing the thermal-expansion coefficient constant would be be-
tween 13.2 to 26 percent.

b. The nonlinear relation for the creep of plastics sug-

gested by Findley in the form of

- g n g
e a sinh b + ¢t sinn q

is developed for polymethyl methacrylate at a varlety of
temperature levels. Results indicate that the coefficlents
b and 4 remain constant with temperature variations, but a,
¢ and n vary exponentially with temperature as follows.

a = e(.01u1'r - 3.4)

c w1 e(.024’1‘ - b4,45)
100

(.0179T - 4.14)

n==e

2. Some Suggestions for Future Research

Viscoelasticity being a relatively new field of re-

search, there are still many aspects to be studied and
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theoretical and experimental methods to be developed. For
further development of this field, it is important to inves-
tigate the following points as well as the other phases:

a. Possibilities of using strain gages to get more
accurate readings of any kind of deformation without any in-
fluence due to the strain-gage mounting which has been a sub-
Ject of discussion for a long time among the investigators.

b. Often in practical problems the load is not con-
stant, therefore, experimental methods should be extended to
cover this situation and the results correlated with theo-
retical results. There are possibilities of using a step
loading as 1s explained by Felgar (50).

¢. The experimental work in the present investiga-
tion was carried out at constant temperature levels; however,
this is not always the case in practical problems. There-
fore, it is necessary to develop the theory for obtaining
the change of expansion coefficient of a viscoelastic mate-
rial at transient temperatures,

d. Although some viscoelastic materlials have less
tendency to absorb moisture than others, in general they are
affected by moisture content. It would be worthwhile to know
how their behaviors change with the moisture content of the
environment.

e. In the case of total or partial removal of the
load, does the thermal-expansion coefficient return to the

values which have been predicted theoretically for the case
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of increasing stress and if so, how rapidly does this occur
after removal of the load?
f. Development of experimental techniques for three-
dimensional stress analysis of viscoelastic materials.
g. Stress dependency of other thermal coefficients

such as thermal conductivity.



LIST OF SYMBOLS

a,b,c,d4,A,B,C,D Viscoelastic material constants
D Differential operator
eiJ Deviatoric strain
E Elastic modulus
Em Elastic modulus for Maxwell type material
Ek Elastic modulus for Kelvin type material
F Free energy of solids
G Elastic shear modulus
@, Volumetric relaxation function
02 Deviatoric relaxation function
G' Storage relaxation function
a" Loss relaxation function
J Creep compliance
J1 Volumetric creep function
J2 Deviatoric creep function
J'! Storage creep function
" Loss creep function
K Elastic bulk modulus
n Material constant
P Laplace operator
Pl,P2 Operator notations
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Operator notations
Deviatoric stress
Time
Temperature
Reference temperature
Strain
Strain rate'
Laplace transform of strain
Volumetric strain
Viscous coefficient
Viscous coefficient for Maxwell type material
Viscous coefficient for Kelvin type material
Poisson's ratio
Stress
Volumetric stress
Stress rate
Laplace transform of stress
Thermal expansion coefficient

Thermal expansion coefficient at zero stress
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Table 1
Creep Data at 90°F and 400 psi
Original Length 8 inches

Time Elongation Strain € - €p
Hours Minutes 1/10000 in. (in./in.) x 103 (in./in.) x 103
0 0 74.0 0.925 .000
0 2 79.0 0.987 .062
0 3 79. 0.992 .067
0 i 80.5 1.006 .081
0 6 80.8 1.010 .085
0 7 80.8 1.010 .085
0 8 80.9 1.011 ,086
0 9 80.9 1.011 .086
0 10 81.5 1.013 .088
0 15 82.2 1.027 .102
0 20 82.7 1.033 .108
0 25 83.2 1.040 .115
0 30 84,0 1.050 .125
0 35 85.3 1.066 141
0 140 87.4 1.092 .167
0 45 88.4 1.105 .180
2 0 88.8 1.110 .185
3 0 91.5 1.143 .218
0 92.0 1.150 .225
21 0 100.0 1.250 .325
23 0 102.0 1.275 .350
2l 0 102.1 1.276 .351
25 0 102.1 1.276 .351
26 0 102.8 1.285 .360
27 0 105.5 1.318 .393
4y 0 107.5 1.337 A12
45 0 109.4 1.367 Al
49 0 109.5 1.368 443
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Table 2
Creep Data at 90°F and 266 psi
Original Length 8 Inches

Time Elongation Strain € - €9
Hours Minutes 1/10000 in. (in./in.) x 103 (in./in.) x 103
0 0 48.0 .600 0
0 2 50.2 .627 . 027
0 z 50.4 .630 .030
0 50.8 .635 .035
o] 6 50.9 .636 \ .036
0 g 50.9 .636 .036
0 50.9 .637 .037
0 9 50.9 .637 .037
0 10 51.3 .641 .041
0 15 51.6 . 645 .0l5
0 20 52.0 .650 . 050
0 25 52.9 .661 .061
0 30 53.1 .663 .063
o] 35 53.2 .664 . 064
0 40 53.4 .667 . 067
0 45 54,2 .667 .067
2 o] 54,9 .686 .086
3 0 56.0 .T00 .100
(o] 57.0 .T12 .112
21 o] 65.5 . 820 .220
2 o] 67.2 .840 240
2 (0] 65.3 .841 21
25 o} 68.3 .853 .253
26 0 70.2 877 277
2 0 70.2 877 277
4 0 T2.3 . 903 .303
45 o] 73.1 .913 .313
49 0 73.1 .913 .313
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Table 3
Creep Data at 90°F and 213 psi
Original Length 8 Inches

Time Elongation Strain € - €q
Hours Minutes 1/10000 in. (in./in.) x 103 (in./in.)°x 103
0 0 4o.0 .500 0
(0] 2 40,1 .501 .001
o) 3 4o.2 .502 .002
0 4 4o, .503 .003
0) 6 4o, .505 . 005
(0] g 40.5 .506 .006
(0] 40.6 507 . 007
(0] 9 40.6 .508 .008
0 10 40.8 .510 .010
(o) 15 40.8 .510 .010
0 20 40.9 .511 011
(0] 25 41,0 .b12 .012
(0] 30 4.8 522 . 022
0 35 42.9 .536 .036
o) 4o 4.0 .550 . 050
o] 45 Ly, 6 557 .057
2 o} 45.4 .567 . 067
3 0 46.3 STT 077
4 0 4.5 .593 .093
21 0 50.2 .627 127
2 o} 50.4 .630 .130
2 o} 50.5 .631 .131
25 o} 50.5 .631 .131
26 o} 50.5 .631 .131
27 o} 50.6 .632 .132
44 o} 50.6 .632 .132
45 o} 50.6 .632 .132
49 0 50.6 .632 .132
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Table 4
Creep Data at 105°F and 480 psi
Original Length 8 Inches

Time Elongation Strain € - €,
Hours Minutes 1/10000 in. (in./in.) x 103 (in./in.)'x 103
0 0] 116.0 1.450 0
0 ) el ———-
o) 2 @ eeee- eeee- ————
0 3 125.0 1.562 112
0 4 130.0 1.625 175
(o) 5 130.5 1.631 181
0 6 132.8 1.660 210
0 g 132.8 1.660 210
0 132.8 1.660 210
o) 9 133.0 1.662 212
0 10 133.6 1.670 220
0 15 135.6 1.695 245
0 20 136. 1.701 .251
0) 25 136.1 1.701 .251
0 30 136.2 1.702 .252
. 0 35 136.2 1.702 .252
o) 40 136.2 1.702 .252
o) 45 136.3 1.703 .253
1l 0 138.0 1.725 275
2 0 146, 1.825 .375
4 0 174.6 2.812 .T32
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Table 6
Creep Data at 105°F and 320 psi
Original length 8 Inches

Time Elongation Strain € - € 3
Hours Minutes 1/10000 in. (in./in.) x 103 (in./in.)°x 10>

0 o} 72.0 0.900 0

0 1 85.0 1.062 .162
0 2 87.0 1,087 .187
0 3 87.0 1.087 .187
0 4 88.0 1.100 . 200
0 5 89.0 1.112 .212
0 6 90.0 1.125 .225
0 7 90.0 1.125 .225
0 8 91.0 1.137 237
0 9 91.0 1.137 .237
0 10 92.0 1.150 .250
0 15 92.6 1.158 .258
0 20 93.0 1.162 .262
0 25 95.0 1.187 .287
0] 30 96.0 1.200 .300
0 35 96.0 1.200 .300
0 4o a7.0 1.212 .312
0 45 98.0 1.225 .3256
1l 0] 99.0 1.237 .337
2 0 100.0 1.250 .350
4 0 104.0 1.300 .400
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Table 7
Creep Data at 105°F and 280 psi
Original Length 8 Inches

Time Elongation Strain 3 € - €9
Hours Minutes 1/10000 in. (in./in.) x 10 (1n./1n.)‘x-103

0 0 70.0 0.875 0
0 1 ———- ———v .
0 2 ———— ——— ———
0 z T71.0 0.887 012
0 T2.0 0.900 . 025
0 5 T4.0 0.925 . 050
0 6 75.0 0.937 .062
0 T 76.0 0.950 075
0 8 76.2 0.953 .078
0 9 76.3 0.953 .078
0 10 76.7 0.956 .081
0 15 7.7 0.956 .081
0 20 0.0 1.000 .125
0 25 81.1 1.014 .139
0 30 82.0 1 "N2§8 . 150
0 35 82.0 1.025 . 150
0 40 82.2 1.028 .153
0o 45 82.4 1.030 .155
1l o} 88.0 1.037 .162
2 0 88.0 1.100 .225
4 o} 100.0 1.250 .375
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Table 8
Creep Data at 120°F and 400 psi
Original lLength 8 Inches

Time Elongation Strain 3 € - €, 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.)"x 10

0 o} 174.0 2.175 0

0 1l 178.2 2.227 .052
0 2 179.0 2.237 .062
0 3 183.0 2.287 .112
0 4 185.0 2.312 .137
0 5 186.1 2.326 .141
0 6 186.2 2.327 .152
0 7 186.2 2.327 .152
0 8 186.2 2.327 .152
0 9 186.5 2.331 .156
0 10 187.0 2.337 .162
0 15 189.6 2.370 .195
0 20 189.7 2.371 .196
0 25 189.7 2.371 .196
0 30 189.7 2.371 .196
0 5 191.0 2.387 .212
0 o} 101.1 2.389 .214
0 45 191.2 2.390 .216
1 0 193.3 2.416 241
1 15 196.1 2.451 .376
1 30 196.1 2.451 .376
1 45 196.2 2.452 377
2 0 196.2 2.452 377
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Table 9
Creep Data at 120°F and 320 psi
Original Length 8 Inches

Time Elongation Strain 3 € - € 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10~

0 0 140.0 1.750 0

0 1 142.4 1.780 .030
0 2 143.1 1.788 .038
0 3 143.1 1.788 .038
0 4 143.1 1.788 .038
0 5 143.4 1.792 .042
0 6 143.4 1.792 .02
0 7 143.5 1.793 . 043
0 8 150.6 1.882 .132
0 9 150.7 1.883 .133
0 10 150.8 1.885 .135
0 15 152.7 1.908 .158
0 20 156.7 1.958 .208
0 25 161.0 2.012 .262
0 30 161.5 2.018 .268
0 35 162.3 2.028 .278
0 Lo 163.1 2.038 .288
0 45 163.1 2,038 .288
2 0 170.0 2.125 .375
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Table 10
Creep Data at 120°F and 280 psi
Original Length 8 Inches

Time Elongation Strain 3 € - €9
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 103

0 0 117.0 1.462 0
0 1 119.0 1.487 . .025
0 2 119.1 1.488 .026
0 3 119.5 1.492 .030
0 b 119.5 1.492 .030
0 5 119.8 1.496 .034
0 6 119.9 1.497 .035
0 7 119.9 1.497 .035
0 8 120.0 1.500 .038
0 9 12000 10500 .0 8 -
0 10 120.4 1.505 .ob3
0 15 122.0 1.525 043
0 20 122.1 1.526 .064
0 25 122. 1.528 .066
0 30 122 1.530 068
0 35 122.4 1.530 068
0 30 122.4 1.530 068
0 s ————
1 0  emmeemmeem emee-
1 15 140.2 1.752 290
1 30 140.2 1.752 290
1 L5 140.2 1.752 290
2 0 140.2 1.752 290
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Table 11
Creep Data at 135°F and 525 psi
Original Length 8 Inches

Time Elongation Strain 3 € - €, 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10~

0 0 263.0 3.287 0

0 1 273.0 3.412 .125
0 2 275.3 3.4 .154
0 3 275.3 3.441 .154
0 4 280.0 3.500 .213
0 5 280.0 3.500 .213
0 6 280.0 3.500 .213
0 7 285.1 3.563 .2T6
0 8 285.1 3.563 .27T6
0 9 289.0 3.612 .325
0 10 293.0 3.662 .375
0 15 293.4 3.667 .380
0 20 295.6 3.695 .4o8
0 25 303.0 3.787 .500
0 30 303.0 3.787 .500
0 35 303.0 3.787 .500
o] 40 303.0 3.787 .500
0 45 303.0 3.787 .500
1 0 305.0 3.812 .525
1 15 305.0 3.812 .525
1 30 305.5 3.818 .531
1 b5 313.5 3.918 .631
2 0 315.0 3.937 .650
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Table 12
Creep Data at 135°F and 410 psi
Original lLength 8 Inches

Time Elongation Strain 3 € - €j 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10~

0 0 213.0 2.662 0

0 1 220.5 2.756 .094
0 2 221.0 2.762 .100
0 3 222.5 2.781 .119
0 Y 223.2 2.790 .128
0 5 224.,0 2.800 .138
0 6 227.4 2.843 .181
0 T 233.4 2.893 .231
0 8 236.8 2.960 .292
0 9 240.6 3.008 .340
0 10 241.7 3.022 .354
0 15 246.8 3.086 428
0 20 250.0 3.125 .463
0 25 254.,0 3.175 .513
0 30 254.9 3.186 524
0 5 256.0 3.200 .538
0 0 258.0 3.225 .563
0 s 258.0 3.225 .563
1 0 259.6 3.245 .583
1 15 259.6 3.245 .583
1 30 260.0 3.250 .588
1 45 260.0 3.250 .588
2 0 261.0 3.262 .600
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Table 13

Creep Data at 135°F and 360 psi

Original Length 8 Inches

Time Elongation Strain 3 € - €q 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10~

0 0 170.0 2,125 0

0 1 176.0 2.200 .075
0 2 178.5 2.231 .106
o] 3 180.0 2.250 .125
0 4 180.1 2.251 .126
0 5 180.9 2.261 .136
0 6 189.0 2.362 .237
0 7 189.6 2.370 .245
0 8 189.8 2.372 LouT
0 9 189.8 2.372 .out
0 10 189.8 2.372 -4
0 15 190.5 2.381 .256
0 20 199.0 2,487 .362
o] 25 199.5 2,493 .368
0 30 200.0 2.500 .375
0 35 200.1 2.501 .376
0 40 200.1 2.501 .376
0 45 200.2 2.502 377
1 0 200.2 2.502 377
1 15 200.2 2.502 377
1 30 201.5 2.518 .393
1 45 208.5 2.606 .481
2 0 210.0 2.625 .500
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Table 14
Creep Data at 135°F and 240 psi
Original Iength 8 Inches

Time Elongation Strain € - €q
Hours Minutes 1/10000 in. (in./in.) x 103 (in./in.)'x 103

0 0 110.0 1.375 0
0 1 112.0 1.100 .025
0 2 117.0 1.462 .088
0 3 119.0 1.487 .112
0 L 120.0 1.500 .125
0 5 121.0 1.512 .137
0 6 123.0 1.537 .162
0 7 123.0 1.537 .162
0 8 127.0 1.587 .212
0 9 128.0 1.600 .225
0 10 129.0 1.612 .237
0 15 130.0 1.625 .250
0 20 131.0 1.637 .262
0 25 131.0 1.637 .262
0 30 132.0 1.650 .275
0 35 133.0 1.662 .387
0 10 135.0 1.687 B2
0 45 136.0 1.700 425
1 0 136.0 1.700 425
1 15 137.0 1.712 437
1 0 137.0 1.712 437
1 5 138.0 1.725 L1450
2 0 138.0 1.725 .450
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Table 15
Creep Data at 150°F and 400 psi
Original Length 8 Inches

Time Elongation Strain 3 € - €q 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.)’x 10~

0 0 242.0 3.02 0

0 1 254.0 3.17 .149
0 2 261.0 3.262 .237
0 3 264,0 3.300 .275
0 u 269.0 3.362 .337
0 5 274.0 3.425 .400
0 6 281.0 3.512 487
0 7 281.0 3.512 487
0 8 283.0 3.537 .512
0 9 284.0 3.550 .525
0 10 285.0 3.562 .537
0 15 291.0 3.637 .612
0 20 298.0 3.725 .T700
0 25 301.0 3.762 .T37
0 30 301.0 3.768 .T43
0 35 301.5 3.768 .T43
0 Lo 302.0 3.775 .750
0 45 302.0 3.775 .T750
1 0 302.0 3.775 .750
1 15 302.0 3.775 .750
1 30 302.0 3.775 .750
1 45 302.0 3.775 .750
2 0 302.0 3.775 .750
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Table 16

Creep Data at 150°F and 320 psi
Original Iength 8 Inches

Time Elongatlion Strain € - €p
Hours Minutes 1/10000 in. (in./in.) x 103 (in./in.) x 10°

0 0 180.0 2.250 0
0 1 186.0 2.325 .075
0 2 190.0 2.375 1125
0 3 195.0 2.1437 1187
0 I 196.0 2.450 .200
0 5 201.0 2.512 .262
0 6 209.0 2.612 .362
0 T 210.0 2.625 1375
0 210.0 2.625 315
0 9 211.0 2.637 .387
0 10 211.0 2.637 -387
0 15 213.0 2.662 12
0 20 215.0 2.687 JU437-
0 25 218.0 2.725 U75
0 30 221.0 2.762 .512
0 35 242.0 2.775 .525
0 10 242.0 2.775 .525
0 45 243.0 2.787 1537
1 0 231.0 2.887 1637
1 15 231.0 2.887 1637
1 30 232.0 2.900 .650
1 is5 233.0 2.912 662
2 ) 233.0 2.912 .662
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Table 17
Creep Data at 150°F and 240 psi
Original Length 8 Inches
Time Elongation Strain € - €

Hours Minutes 1/10000 in. (in./in.) x 103 j;p./in.)ox 103
0 0 135.0 1.687 0
0 1. 140.0 1.750 .063
0 2 140.5 1,756 .069
0 3 140.5 1.756 .069
0 L 140.8 1.760 073
0 5 140.8 1.760 073
0 6 142.8 1.785 .098
0 7 143.0 1.787 .100
0 8 143.0 1.787 .100
¢} 9 143.5 1.793 .106
0 10 150.5 1.881 .194
0 15 152.0 1.900 .213
0 20 152.5 1.906 .319
0 25 162.5 2.031 . 344
0 30 162.5 2.031 .344
0 35 162.5 2,031 344
0 40 162.5 2.031 .344
0 45 162.5 2.031 .344
1 0 162.5 2.031 .344
1l 15 162.5 2.031 344
1 30 162.5 2.031 .344
1 45 163.0 2.037 . 350
2 0 163.0 2.037 .350
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Table 18
Creep Data at 150°F and 200 psi
Original ILength 8 Inches

Time Elongation Strain € - €q
Hours Minutes 1/10000 in. (in./in.) x 103 (4n./in.) x 103

0 0 128.0 1.600 0
0 1 132.0 1.650 .050
0 2 133.0 1.662 .062
0 3 134.0 1.675. .075
0 1 134.0 1.675 .075
0 5 135.0 1.687 .087
0 6 136.0 1.700 .100
0 7 137.0 1.712 .112
0 8 138.0 1.725 .125
o} 9 139.0 1.737 .137
0 10 139.0 1.737 .137
0 15 142.0 1.775 .175
0 20 144.,0 1.800 .200
0 25 146.0 1.825 .225
0 30 147.0 1.837 .237
0 35 148.0 1.850 .250
0 5o 148.0 1.850 250
0 45 149.0 1.862 262
1 0 150.0 1.875 275
1 15 151.0 1.887 287
1 30 152.0 1.900 300
1 L5 152.0 1.900 300
2 0 152.0 1.900 300
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Table 19
Creep Data at 165°F and 400 psi
Original Length 8 Inches
Time Elongation Strain € - €

Hours Minutes 1/10000 in. (in./in.) x 103 (in. /1n.‘)‘0:x 103
0 0 300.0 3.750 0
0 1 309.0 3.862 0.112
0 2 313.0 3.912 0.162
0 3 319.0 3.987 0.237
0 4 322.0 4,025 0.275
0 5 328.0 4,100 0.350
0 6 330.0 4,125 0.375
0 T 332.0 4.150 0. 400
0 8 333.0 4,162 o.412
0 9 340.0 4,250 0.500
0 10 343.0 4,287 0.537
0 15 355.0 4, 437 0.687
0 20 366.0 4.575 0.825
0 25 373.0 4,662 0.912
0 30 376.0 4. 700 0.950
0 35 380.0 4.750 1.000
0 40 380.0 4,750 1.000
0 45 380.0 4,750 1.000
1l 0] 380.0 4,750 1.000
1l —15 381.0 4,762 1.012
1 30 382.0 4,775 1.025
1 45 382.0 4,775 1.025
2 o} 382.0 4,775 1.025



Creep Data at 165°F and 320 psi
Original Length 8 Inches
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Table 20

Time Elongation Strain 3 € - €4 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10~

0 0 230.0 2.875 0

0 1 242.0 3.025 .150
0 2 242.,0 3.025 .150
0 3 250.0 3.125 .250
0 4 253.0 3.162 .287
0 5 260.0 3.250 .375
0 6 260.0 3.250 .375
0 7 262.0 3.275 .400
0 8 263.0 3.287 412
0 9 269.0 3.362 .487
0 10 272.0 3.400 .525
0 15 281.0 3.512 .637
0 20 282.0 3.525 .650
0 25 285.0 3.562 .687
0 30 289.0 3.612 737
0 35 290.0 3.625 .750
0 40 290.0 3.625 .750
0 45 290.0 3.625 .750
1 0 290.0 3,625 .750
1 15 290.0 3.625 .750
1 30 290.0 3.625 .750
1 45 290.0 3.625 .750
2 0 290.0 3.625 .750
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Table 22
Creep Data at 165°F and 200 psi
Original Length 8 Inches

Time Elongation Strain € - €5
Hours Minutes 1710000 in. (in./in.) x 103 (in./in.)°x 10°

0 0 143 1.787 0
0 1 149 1.862 ,075
0 2 155 1.937 .150
0 3 157 1.962 .175
0 i 159 1.987 .200
0 5 159 1.987 .200
0 6 160 2,000 .212
0 7 160 2.000 .212
0 8 162 2.025 .237
0 9 163 2.037 .250
0 10 164 2,050 .262
0 15 167 2,087 .300
0 20 168 2.100 .312
0 25 168 2.100 .312
0 30 169 2.112 .325
0 35 169 2.112 .325
0 40 169 2.112 .325
0 45 170 2.125 .337
1 0 176 2.200 L3113
1 15 177 2,212 425
1 30 178 2.225 437
1 45 179 2.237 450
2 0 179 2.237 450
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Table 23
Creep Data at 180°F and 400 psi
Original Length 8 Inches

Time Elongation Strain € - €, 3
Hours Minutes 1/10000 in. (in./in.) x 103 (in./in.)"x 10~
0 0 360.0 4,500 0
0 1 383.0 4,785 0.285
0 2 391.0 4,887 0.387
0 3 393.0 4,912 0.412
0 Y 401.0 5.012 0.512
0 5 403.0 5.037 0.537
0 6 K13.0 5.162 0.662
0 7 420.0 5.250 0.750
0 8 423.0 5.287 0. g87
0 9 430.0 5.375 0.875
0 10 431.0 5.387 0
0 15 442,0 5.525 1.025
0 20 451.0 5.637 1.137
0 25 460.0 5.750 1.250
0 30 462.0 5.775 1.275
0 35 463.0 5.787 1.287
0 4o 463.0 5.787 1.287
0 45 463.0 5.787 1.287
1 0 473.0 5.912 1.412
1 15 481.0 6.012 1.512
1 30 481.0 6.012 1.512
1 45 483.0 6.037 1.537
2 0 483, 6.037 1.537
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Table 24
Creep Data at 180°F and 320 psi
Original ILength 8 Inches
Time Elongation Strain

€ =
Hours Minutes 1,/10000 in. (in./in.) x 105 (in./4in.)°x 10>

0 0 300.0 3.750 0

0 1 311.0 3.887 0.137
0 2 316.0 3.950 0.200
0 3 322.0 %.025 0.275
0 i 330.0 4.125 0.375
0 5 336.0 4. 200 0.5450
0 6 3h2.0 4.275 0.525
0 7 348.0 4,350 0.600
0 354.0 4,425 0.675
0 9 357.0 4,462 0.712
0 10 370.0 4,625 0.875
0 15 372.0 4. 650 0.900
0 20 374.0 4,675 0.925
0 25 380.0 4,750 1.000
0 30 381.0 4.762 1.012
0 35 382.0 4,775 1.025
0 10 382.0 4.775 1.025
0 45 383.0 L. 787 1.037
1 0 386.0 4.825 1.075
1 15 388.0 4,850 1.100
1 30 390.0 4.875 1.125
1 15 391.0 4,887 1.137
2 0 391.0 4,887 1.137
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Table 25
Creep Data at 180°F and 240 psi
Original Length 8 Inches

Time Elongation Strain € - €9
Hours Minutes 1/10000 in. (in./in.) x 103  (in./in.) x 103

0 0] 230.0 2.875 0
0 1 240.0 3.000 .125
0 2 250.0 3.125 .250
0 3 253.0 3.162 .287
0 4 253.0 3.162 ‘ .287
0 5 255.0 3.187 .312
0 7 264.0 3.300 .425
0 8 265.0 3.312 - 437
0 9 272.0 3.400 .525
0 10 274.0 3.425 .550
0 15 278.0 3.475 .600
0 20 285.0 3.562 .687
0 25 286.0 3.575 .T700
0 30 286.0 3.575 .T700
0 35 287.0 3.587 .T12
0 40 288.0 3.600 .725
0 45 289.0 3.612 .T37
1 0 289.0 3.612 .737
1l 15 289.0 3.612 L7137
1 30 289.0 3.612 137
1 45 289.0 3.612 L7137
2 0 289.0 3.612 .T37
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Table 26
Creep Data at 180°F and 200 psi
Original Iength 8 Inches

Time Elongation Strain 3 € - €, 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 120~

0 0 190.0 2.375 0

0 1 202.0 2.525 .150
0 2 212.0 2.650 275
0 3 213.0 2.662 287
0 4 222.0 2.775 .400
0 5 223.0 2.787 12
0 6 229.0 2.862 487
0 7 234.0 2.925 .550
0 8 236.0 2.950 : 575
0 9 236.0 2.950 575
0 10 237.0 2,962 .587
0 15 242,0 3.025 .650
0 20 246.0 3.075 . 700
0 25 247.0 3.0 .T12
0 30 248.0 3.100 725
0 35 248.0 3.100 .725
0 40 248.0 3.100 .T25
0 45 249.0 3.112 JT37
1 0 252.0 3.150 775
1 15 254.0 3.175 .800
1l 30 255.0 3.187 .812
1 45 256.0 3.200 .825
2 0 258.,0 3.225 .850
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Table 27

Creep Data at 195°F and 400 psi

Original Length 8 Inches

Time Elongation Strain 3 € - €q
Hours Minutes 1/10000 in. (in./in,) x 105 (in./in.) x 10°

0 0 400.0 5.000 0
0 1 421,0 5.262 0.262
0 2 427.0 5.337 0.337
0 3 429.0 5.3 2 0.362
0 1 437.0 5.562 0.462
0 5 4.0 5.587 0.587
0 6 450.0 5.625 0.625
0 7 455, 0 5.687 0.687
0 8 459,0 5,837 0.837
0 9 470.0 5.8%5 0.875
0 10 ugg.o 5.987 0.987
0 15 486.0 6.075 1.075
0 20 496.0 6.200 1.200
0 25 500.0 6.250 1.250
0 30 511.0 6.387 1.387
0 35 518.0 6.475 1.475
0 40 522.,0 6.525 1.525
0 us 529.0 6.612 1.612
1 ) 538.0 6.725 1.725
1 15 547 .0 6.837 1.837
1 30 560.0 7.000 2.000
1 Lis 567.0 7.087 2,087
2 0 577.0 T7.212 2,212



137

Table 28
Creep Data at 195°F and 320 psi
Original Length 8 Inches

Time Elongation Strain 3 € - €q 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10~

0 0 300.0 3.750 0

0 1l 320.0 4,000 0.250
0 2 323.0 4,037 0.287
0 3 332.0 4,150 0.400
0 4 332.0 4,150 0.400
0 5 341.0 4,262 0.512
0 6 350.0 4,375 0.625
0 7 352.0 4,400 0.650
0 8 352.0 4,400 0.650
0 9 362.0 4,525 0.775
0 10 3%2.0 4,650 0.900
0 15 383.0 4,787 1.037
0 20 393.0 4,912 1.162
0 25 430.0 5.125 1.375
0 30 412.0 5.150 1.400
0 35 420.0 5.250 1.500
0 40 420.0 5.250 1.500
0 45 421.0 5.262 1.512
1l o . 422.0 5.275 1.525
1 15 424 ,0 5.300 1.550
1 30 426.0 5.325 1.575
1 45 426.0 5.325 1.575
2 0 428.0 5.350 1.600
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Table 29
Creep Data at 195°F and 240 psi
Original Length 8 Inches

Time Elongation Strain 3 € - €p 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10

0 0 236.0 2.950 0

0 1 248.0 3.100 .150
0 2 258.0 3.225 275
0 3 262.0 3.275 .325
0 4 264.,0 3.300 .350
0 5 265.0 3.312 .362
0 6 270.0 3.375 425
0 T 273.0 3.112 U462
0 8 275.0 3.437 LAU8T
0 9 276.0 3.450 .500
0 10 276.0 3.450 .500
0 15 283.0 3.537 .537
0 20 285,0 3.562 .612
0 25 286.0 3.575 .625
0 30 294,0 3.675 .725
0 35 296.0 3.700 .750
0 40 296.0 3.700 .750
0 45 296.0 3.700 .750
1 0 297.0 3.712 .762
1 15 298.0 3.725 775
1 30 298.0 3.725 775
1 45 300.0 3.750 .800
2 0 302.0 3.775 .825
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Table 30
Creep Data at 195°F and 200 psi
Original ILength 8 Inches

Time Elongation Strain 3 € - €g 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10~

o 0 200.0 2.500 0

0 1l 206.0 2.575 ' 075
o) 2 207.0 2.587 .087
o) 3 210.0 2.625 .125
0 4 215.0 2.687 .187
o 5 218.0 2.725 .225
0 6 220.0 2.750 .250
0 7 220,0 2.750 .250
0o 8 221.0 2.762 .262
o 9 221.0 2.762 .262
0 10 223.0 2.587 .287
0 15 - 229.0 2.862 .362
o 20 236.0 2.950 450
o 25 240.0 3.000 .500
o 30 244 .0 3.050 .550
0 35 250.0 3.125 .625
0 4o 251.0 3.137 .637
0 45 251.0 3.137 .637
1l 0 253.0 3.162 .662
1l 15 260.0 3.250 .T50
1l 30 261.0 3.262 .T62
1 L5 262.0 3.275 LT75
2 0 262.0 3.275 175
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Table 31

Creep Data at 210°F and 8 Inches

Original Length 8 Inches

Time Elongation Strain 3 € - ¢€q 3
Hours Minutes 1/10000 in. (in./in.) x 10" (in./in.) x 10

0 0 305.0 3.812 o}

0 1 315.0 3.937 0.125
0 2 330.0 4,125 0.313
0 3 340.0 4,250 0.438
0 L 350.0 4,375 0.563
0 5 365.0 4,562 0.650
0 6 382.0 4.775 0.963
0 7 400,0 5,000 1.188
0 8 4iy,o0 5.175 1.363
0 9 425.,0 5.312 1.500
0 10 433,0 5.412 1.600
0 15 460.0 5.750 1.938
0 20 74,0 5.925 2,113
0 25 484,0 6.050 2,238
0 30 500.0 6.250 2.438
0 35 505.0 6.312 2.500
0 Lo 515.0 6.437 2.625
0 45 520.0 6.500 2.688
1 0 540,0 6.750 2.238
1 15 580.0 7.250 3.438
1 30 594,0 7.425 3.613
1 45 600.0 7.500 3.688
2 0 604.0 7.550 3.738
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Table 32
Creep Data at 210°F and 200 psi
Original Length 8 Inches

Time Elongation Strain € - €g 3
Hours Minutes 1/10000 in. (in./in. ) x 103 (in./in.) x 10°

0 0 290.0 3.625 0

0 1 300.0 3.750 0.125
0 2 308.0 3.850 0.225
0 3 310.0 3.875 0.250
0 b 325.0 4,062 0.437
0 5 338.0 4.225 0.600
0 6 352.0 4,400 0.775
0 g 370.0 4,625 1.000
0 381.0 4,762 1.137
0 9 91.0 4,877 1.252
0 10 00.0 5.000 1 375
0 15 420.0 5.250 1.625
o) 20 430.0 5.375 1.750
0 25 442.,0 5.525 1.900
0 30 472.0 5.900 2.275
0 35 500.0 6.250 2,525
0 40 507.0 6.337 2.712
0 45 516.0 6.450 2.825
1 0 530.0 6.625 3.000
1 15 540,0 6.750 3,125
1 30 556 .0 6.950 3.325
1 45 558.0 6.975 3.350
2 0 560.0 7.000 3.375
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Table 33
Creep Data at 210°F and 160 psi
Original Length 8 Inches

Time Elongation Strain 3 € - ¢ 3
Hours Minutes 1710000 in. (in./in.) x 10° (in./in.)’x 10

0 0 263.0 3.287 0

o] 1 272.0 3.400 0.113
0 2 283.0 3.537 0.250
0 3 290.0 3.625 0.338
0 4 292.0 3.650 0.363
0 5 300.0 3.750 0.463
0 6 312.0 3.900 0.610
0 g 322.0 4,025 0.738
0 352.0 4,400 1.113
0 9 373.0 4,662 1.375
0 10 390.0 4,875 1.588
0 15 400.0 5.000 1,713
0 20 409.0 5.112 1.825
0 25 421.0 5.262 1.975
0 30 42,0 5.525 2.238
0 5 463.0 5.587 2.500
0 0 468.0 5.850 2.563
0 45 471.0 5.887 2,600
1 0 488.0 6.100 2.813
1 15 490.0 6.125 2.83

1 0 hg2,0 6.150 2.863
1 5 492.0 6.150 2.863
2 0 493.0 6.162 2.875
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Table 34
Creep Data at 225°F and 200 psi
Original Length 8 Inches
Time Elongation Strain -

€ =
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.)% 103

0 0 400.0 5. 000 0

0 1 412.0 5. 275 0.275
0 2 430.0 5.375 0.375
0 3 443,0 5.537 0.537
0 L 463.0 5. 787 0.787
0 5 492.0 6.150 1.150
0 6 502.0 6.275 1.275
0 T 510.0 6.375 1.375
o 533.0 6.662 1.662
0 9 542.0 6.775 1.775
0 10 580.0 7.250 2.250
0] 15 603.0 7.537 2.537
0 20 673.0 8.412 3.412
0 25 713.0 8.912 3.912
0 30 30.0 9.125 "125
0 35 12.0 10.150 5.150
0 40 862.0 10.775 5.7T75
0 45 910.0 11.375 6.375
1 0 350.0 11.875 6.375
1 15 983.0 12.287 7.287
1 30 - 1010.0 12.625 7.625
1 L5 1050.0 13.125 8.125
> 0 1061.0 13.262 8.262



Creep Data at 225°F and 160 psi
Original Length 8 Inches
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Table 35

Time Elongation Strain 3 € - €q 3
Hours Minutes 1/10000 in. (in./in.) x 10° (in./in.) x 10~

0 0 330.0 4,125 0

0 1 340.0 4,250 0.125
0 2 342.,0 4,275 0.150
0 3 352.0 4,400 0.275
0 4 362.0 4,525 0.400
0 5 371.0 4,637 0.512
0 6 382.0 4,775 0.650
o) 7 392.0 4,900 0.775
0 8 403.0 5.037 0.912
0 9 ol , 0 5.300 1.175
0 10 472.0 5.900 1.775
0 15 532.0 6.650 2.525
0 20 590.0 7.375 3.250
0 25 632.0 7.900 3.775
0 30 683.0 8.537 412
0 5 T4U,0 9.300 5.175
0 0 792.0 9.900 5.775
0 45 852.0 10.650 6.775
1 0 893.0 11.162 7.037
1 15 923.0 11.537 7.412
1 30 930.0 11.625 7.500
1 45 g71.0 12.137 8.012
2 0 975.0 12.187 8.062
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Table 36

Variation of Constants with Temperature

Temperature °F n
90 .065
105 .080
120 .125
135 .160
150 .200
165 .280
180 .350
195 490
210 .600
220 .970

a b c X 103 d
. 095 40000 1.20 3300
.136 40000 1.50 3300
.234 40000 2.00 3300
242 40000 3.00 3300
.291 40000 3.00 3300
«362 40000 6.50 3300
458 40000 9.00 3300
.500 40000 11.00 3300
.T20 40000 50.00 3300
1.020 40000 200.00 3300
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Table 37
Creep Data at 140°F and 5000 psi
Original Length 8 Inches

Time Elongation Strain

Hours Minutes 1/10000 1in. (in./4in.) x 103
0 0 asog.o 31.287
0 1 2728.0 34.100
0 2 2848.0 35. 600
0 3 2958.0 36.975
0 4 3038.0 37.975
0 5 3079.0 38. 1487
0 6 3121.0 39.012
0 7 3143.0 39.287
0 8 3160.0 39.500
0 9 3188.0 39. 850
0 10 3219.0 50,237
0 15 3333.0 41,662
0 20 3410.0 43.000
0 25 3540.0 4k, 250
0 30 3620.0 45.250
0 35 3680.0 46,000
0 50 3750.0 46.875
0 45 3992.0 47 . 400
1 0 3890.0 48.375
1 15 3gzs.o 49.662
1 0 4043.0 50.353
1 5 4100.0 51.250
2 0 4132,0 51,650
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Table 38
Creep Data at 160°F and 4000 psi
Original Length 8 Inches

Time Elongation Strain
Hours Minutes 1/10000 in. (in./4in.) x 103
0 0 2463.0 30.787
0 1 2523.,0 31.537
0 2 2618.0 32.725
0 3 2680.0 33.500
0 3 2349.0 3%4.362
0 5 2808.0 35.100
0 6 2843.0 35.537
0 7 2869.0 35.862
0 8 2899.0 36.237
0 9 2938.0 36.725
0 10 2963.0 35 037
0 15 3070.0 375
0 20 3135.0 39.187
0 25 3305.0 1.312
0 30 3391.0 42.387
0 35 3463.0 43,287
0 ) 351%.0 43.925
0 45 3562.0 41525
1 0 3681.0 46.012
1 15 3781.0 47.262
1 30 3870.0 48.375
1 45 3950.0 49,375
2 0 4028.0 50,350
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Table 39
Creep Data at 190°F and 2600 psi
Original Length 8 Inches
Time Elongation Straln

Hours Minutes 1/10000 in. (in./1n.) x 103
0 0 2564.0 32.050
0 1 2674.0 33.425
0 2 2739.0 34,237
0 3 2834.0 35.425
0 L 2914.0 36.425
0 5 3004.0 37.550
0 6 3039.0 3@.987
0 7 3091.0 38.637
0 8 3149.0 9.362
0 9 3201.0 0.012
0 10 3241.0 40,512
-0 15 3451.0 43,137
0 20 3639.0 ys ., 487
0 25 3789.0 45.362
0 30 3910.0 48.875
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Table 40
Free Thermal Expansion of Methyl Methacrylate
Original Length 10 Inches
Tempgrature Extension Strain Expansion Coefficient

----- F in. in./in. in./in. °F
98 ) 0
102 .001 ,0001 .0000333
105 .002 .0001 .0000333
108 .003 .0001 .0000333
111 .004 .0001 .0000333
114 .005 .0001 .0000333
117 .006 0001 .0000333
120 .007 .0001 .0000333
123 .008 .0001 .0000333
126 .009 .0001 .0000333
129 .010 ,0001 .0000333
142 .015 . 0005 .0000380
154 202 . 0005 .0000416

182 .030 .0010 -0000343
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Table 41
Creep Data at 160°F and 2600 psi
Original Length 8 Inches'

Time Elongation Strain 3
Hours Minutes 1/10000 in. (in./in.) x 10~
0 0 1792.0 22.400
0 1 1840.0 23.000
0 2 1884.0 23.550
0 3 1920.0 24,000
0 4 1940.0 24,250
0 5 1968.0 24,600
0 6 1984.0 24,800
0 7 2012.0 25,150
0 8 2032.0 25.400
o] 9 2048.0 25.600
0 10 2076.0 25.950
0 15 2144.,0 26.800
0] 20 2180.0 27.250
0 25 2224.,0 27 .300
0 30 2252.0 28.150
0 35 2273.0 28.412
0 Lo 2276.0 28,450
n 45 2288.0 28.600
1 0 2312.0 28,900
1 15 2352.0 29.400
1 30 2368.0 29,600
1 45 2400.0 30.000
2 0 2424 .0 30.300
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Table 42
Creep Data at 140°F and 2600 psi
Ooriginal length 8 Inches

Time Elongation Strain
Hours Minutes 1/10000 in. (in./in,) x 10~
0 0 1520.0 19.000
0 1 1544.0 19.300
0 2 1568.0 19.600
0 3 1616.0 20,200
0 4 1664.0 20,800
0 5 1712.0 21,400
0 6 1744.0 21,800
0 7 1748.0 21.850
0 8 1760.0 22,000
0 9 1592.0 22,400
0 10 1808.0 22,600
0 15 1848.0 23.100
0 20 1868.0 23.350
0 25 1908.0 23. 50
0 30 193;.0 24,212
0 35 1948.0 - 24,350
0 40 1952.0 24,400
0 45 2056.0 25,700
1 0 2016.0 25,200
1 15 2040.0 25.500
1 30 2044,0 25.550
1 45 2056.0 25.700
2 C 2064.0 25.800



