TABLE OF CONTENTS

SUBJECT

PAGE \#

ABSTRACT 1
I. INTRODUCTION 2
II. AVAILABLE TECHNOLOGIES 3
A. Energy Efficient Fluorescent Lamps 3
B. Solid State (Electronic) Ballasts 4
C. Fluorescent Reflectors 5
D. Metal Halide Lamps 5
E. Parabolic Fluorescent Fixtures 6
III. CURRENT LIGHTING SYSTEM 7
IV. LIGHTING ALTERNATIVES 12
A. Alternative 1 12
B. Alternative 2 13
C. Alternative 3 14
D. Alternative 4 14
V. ECONOMIC ANALYSIS OF LIGHTING ALTERNATIVES 15
A. Discussion Of Economic Analysis 15
B. Economic Analysis Of Alternatives 16

1. PROPOSED LAYOUTS OF LIGHTING ALTERNATIVES 16
2. ENERGY SAVINGS 17
3. LIGHTING EQUIPMENT COSTS 20
4. ECONOMIC SUMMARY 22
5. ILLUMINATION LEVELS 26
VI. RECOMMENDATION 29
A. Pros \& Cons Of Each Alternative 29
B. Decision Making Criteria Summary 29
C. Recommendation 32
VII. CONCLUSION 35
VIII. REFERENCES 37
IX. APPENDICES 39
A. FORMULAS USED 40
B. PROPOSED LAYOUTS OF LIGHTING ALTERNATIVES 43
C. ECONOMIC ANALYSIS OF ALTERNATIVES 48
D. ILLUMINATION LEVELS PROVIDED BY THE ALTERNATIVES 60

Abstract

This report presents the results of a research project which was undertaken at an Oklahoma manufacturing facility from September 1989 through May 1990. This report is serving as a master's project for an M.S. degree in Industrial Engineering and Management at Oklahoma State University, which will be completed in May 1990. This project consists of research and identification of the most current lighting technologies available today which can reduce the lighting energy costs at this manufacturing facility, as well as provide any environmental benefits to it, such as improved aesthetics. Several different lighting alternatives are identified in this report and the most probable ones are selected from this group.

I. INTRODUCTION

Energy conservation was a very important issue to companies several years ago during the energy crisis, in which energy prices were escalating rapidly. Many companies even started their own energy conservation programs. However, due to the fall of energy prices in many areas of the country during the last several years, such as Oklahoma, the perceived importance of energy conservation has diminished and consequently, many programs have been reduced or eliminated altogether. This action may seem acceptable while prices are low and the need for energy conservation appears to be reduced. However, companies taking this non-conservative attitude are in danger of being in financial jeopardy should another energy crisis arise. Therefore, it is worthwhile for companies to start and maintain good energy conservation programs because they will save these companies money during the "good" economic times, while preparing them to deal adequately with any energy crisis. Lighting is just an example of the many different areas which an energy conservation program can positively affect.

The remainder of this report discusses the results of the research which was done on the possible lighting systems available for the Oklahoma manufacturing facility. It presents the available lighting technologies, the current lighting system, the most probable lighting alternatives, an economic analysis of these alternatives, and the recommended actions to be taken.

II. AVAILABLE TECHNOLOGIES

This section discusses the current lighting alternatives available in the market today. Many of the new technologies available require completely different lighting systems with all new equipment, while others require some new equipment which can operate with an old system. Due to the primary use of fluorescent lighting at the Oklahoma facility in 4^{\prime} foot (F40T12) and 8^{\prime} foot (F96T12) applications, only those alternatives which are possible fluorescent replacements for these fixtures and lamps are presented.

A. Energy Efficient Fluorescent Lamps

Energy efficient (EE) fluorescent lamps consume less energy than standard lamps while providing nearly the same light levels. These EE lamps cost more initially, but the incremental cost will be recovered through energy savings. There are basically two types of EE fluorescent lamps:
1). Lamps that do not alter the color rendition and visual definition. Lamps considered within this category are Supersavers and Octron T-8 lamps made by Sylvania.
2). Lamps that have a higher lumen output and an improved color rendition. Lamps considered within this category are the Aurora IV made by VL Service Lighting Corporation and the Advantage X made by North American Philips Lighting Corporation.

B. Solid State (Electronic) Ballasts

Solid state ballasts, also called electronic ballasts, are designed with solid state electronics, whereas the standard, electromagnetic ballasts are designed from a specialized electrical transformer. The solid state ballasts operate on a much higher frequency than standard ballasts, approximately $20,000 \mathrm{~Hz} .$, which allows the fluorescent lamps to operate more efficiently, consuming less energy, while providing light levels equal to or greater than those of electromagnetic ballasts. In addition to the consumption savings, solid state ballasts also can provide considerable energy savings through reduced chilling and air conditioning needs, due to the ballasts' cooler operation. Other benefits over standard ballasts include longer lamp life, no lamp flicker, broader range of operation, lighter weight, smaller size, and no audible hum. Solid state ballasts, made by MagneTek Triad and Electronic Ballast Technology, Inc. (EBT), are considered later in the alternatives.

In addition to the savings provided, a major incentive to use solid state ballasts has just recently been created by the U.S. government. A law has been passed that requires all ballast manufacturers to stop manufacturing standard electromagnetic ballasts and begin manufacturing either energy efficient electromagnetic ballasts or electronic ballasts as of January 1, 1990. Specifically, beginning January 1990, no ballast manufacturer can produce any non-energy saving ballasts for the following lamp types: F40T12, F96T12, and

F96T12HO. Due to this law, companies in the U.S. will have to replace their old standard ballasts with some type of energy efficient ballasts whenever new ballasts are needed.

Ultimately, this law should increase the demand for electronic ballasts, since they are more efficient than the energy efficient electromagnetic ballasts. Therefore, it is very evident that electronic ballasts are the way of the future. C. Fluorescent Reflectors

Fluorescent reflectors are devices, having an optical design and a specular finish, which are installed into fluorescent fixtures to direct light out of those fixtures more efficiently. Reflectors are primarily comprised of one of two materials; either various grades of specular aluminum (polished or with anodic coating applied) or silver film laminated to a metallic substrate of aluminum or steel. In addition to the material comprised of, the position of the reflective surfaces, with respect to the lamps, can affect the performance of the fixture. In the proper application, reflectors allow for a decrease in the number of lamps required for a fixture while providing approximately the same light levels. Therefore, reflectors can provide reduced energy consumption as well as reduced air-conditioning loads. Silver film relectors, made by the Silverlight Corporation, are considered as a possible alternative.
D. Metal Halide Lamps

Metal halide lamps are in the category of high-intensity discharge (HID) lamps. Metal halide applications involve the
use of a single metal halide lamp with its own fixture and ballast. This light source is most useful in high-ceiling applications where color rendition and white light are required, but task lighting is not. Metal halide lamps are more efficient than fluorescent lamps, thus, providing for energy savings. In addition, they have a longer expected life which can reduce the replacement costs. However, the initial cost of changing to metal halide lamps is quite high due to the high cost of the lamp, the fixture and its ballast, and the installation, which involves the removal of the fluorescent fixtures. Metal halide lamps of 400 Watts each, made by Sylvania and Venture, are possible alternatives.

E. Parabolic Fluorescent Fixtures

Parabolic fluorescent fixtures are fixtures which are much more efficient than standard fluorescent fixtures due to their deep cell construction. The louvers control light coming from optimally contoured cells which reduce the amount of light loss within the fixture and concentrate the light out, where it is needed. These fixtures are so efficient that, in the proper application, the total number of fixtures and lamps required can be reduced. Therefore, energy savings will be realized, not to mention the tremendous impact on the aesthetics or looks of the environment surrounding the lighting system. These parabolic fixtures are perfect for office applications. Parabolic fixtures produced by Metalux Lighting, a division of Cooper Industries, Inc., are considered as a possible alternative.

III. CURRENT LIGHTING SYSTEM

This section presents the current lighting system at the Oklahoma manufacturing facility. Since the majority of the lighting in this facility is fluorescent, the only areas of concern are those with this lighting source. The major areas of interest are in the office and the plant buildings. The office building is a separate building from the plant building, with the two being connected by an inner breezeway. This office building has four floors in it, with the first three floors having the largest number of fluorescent fixtures. The first three floors have the same basic ceiling lighting arrangement (9' ceiling), as shown in Figure 1 on page 9.

The plant building, on the other hand, has both ceiling lighting for general lighting needs and task or "dropped down" lighting for high activity areas. The area of interest, in this report, is the ceiling lighting which is mounted at $17^{\prime \prime}$. This lighting can be changed without affecting the task lighting arrangements. Figure 2, on page 10, illustrates the plant lighting of concern.

The office building is currently using 1'x4' two lamp fluorescent fixtures with two 34 watt Sylvania Supersaver fluorescent lamps and one Mark III (2 lamp) electromagnetic ballast. The Sylvania lamps in use are energy efficient lamps, while the Mark III ballasts are energy efficient electromagnetic ballasts. The plant area is using 8^{\prime} two lamp
slimline fluorescent fixtures equipped with two 60 watt Sylvania Supersaver fluorescent lamps and one Mark III
(2 lamp) electromagnetic ballast.
Due to the existing use of energy efficient lamps and ballasts throughout this facility, the possibilities for finding plausible alternatives becomes more difficult, because switching to energy efficient lighting equipment is the easiest and usually the most economical alternative. The data, shown in Table 1 on page 11, presents the lighting equipment currently being used, as well as other important information about this facility, which will be used throughout the remainder of this report.

An additional item, which is considered throughout the economic analysis, is the lighting replacement program that the Oklahoma facility currently uses. This program provides for the periodic replacement of all fluorescent lamps, the cleaning of all fixtures, and the replacement of any needed ballasts. The F40T12 fixtures, which are primarily in the office building, are given this service every third year because the $\mathrm{F} 40 / \mathrm{LW} / \mathrm{SS}$ lamps currently being used have operating lives of 20,000 hours. The F96T12 fixtures, on the other hand, are given this service more frequently because the F96T12/LW/SS lamps being used have operating lives of 12,000 hours. Ballasts for these fixtures are normally replaced as they wear out or during a planned relamping.

Figure 1: TYPICAL OFFICE BUILDING FLOOR LAYOUT

528'
SMALL RECTANGLES REPRESENT 1'X4' FLUORESCENT FIXTURES
TOTAL NUMBER OF FIXTURES = 1,677 FIXTURES / FLOOR (1st $\mathbf{3}$ FLOORS)

Figure 2: PLANT BUILDING LAYOUT

Table 1: CURRENT LIGHTING INFORMATION

Yearly Operating Hours:

```
OPERATING HOURS/YR = 6,552 (18 HRS/DAY, 7 DAYS/WK, 52 WKS/YR)
```

Lighting Equipment Currently In Use:
OFFICE LIGHTING:
FIXTURE: 1'X4' (2 LAMP) METALUX P3GAX-240S28H EQUIVALENT LAMPS: F40LW/SS 34W RAPID START SUPERSAVER BALLAST: MARK III V-2S40-TP (2 LAMP)
PLANT LIGHTING:
FIXTURE: SLIMLINE (2 LAMP) METALUX STN-296 EQUIVALENT
LAMPS: F96T12/LW/SS 60W INSTANT START SLIMLINE SUPERSAVER BALLAST: MARK III V-2E75-S-TP (2 LAMP)

Number Of Fixtures:
OFFICE LIGHTING: \# 4' (1'X4') P3GAX-240S28H FIXTURES = 5,372
AVERAGE NUMBER OF FIXTURES (1ST THREE FLOORS) $=1,677$
TOTAL \# 4' (1'X4') P3GAX-240S28H FIXTURES $=6,240$
PLANT LIGHTING: \# 8' SLIMLINE STN-296 FIXTURES = 7,022
TOTAL \# 8' SLIMLINE STN-296 FIXTURES = 7,224

Floor Space:

OFFICE AREAS:
TOTAL AREA / AVERAGE FLOOR $=50,668$ SQ. FT.
TOTAL AREA FOR ALL FLOORS $=106,904$ SQ. FT.
PLANT AREA:
TOTAL AREA FOR PLANT $=552,000$ SQ. FT.
Labor Rates:
UNION $=\$ 42.58 /$ HOUR
SUB-CONTRACTOR $=\$ 25.00 /$ HOUR

Energy Costs:

CONSUMPTION CHARGE $=\$ 0.02951 / \mathrm{kwh}$ (RATE ALTERNATIVES AFFECT)
DEMAND CHARGE $=\$ 5.20 / \mathrm{MONTH}$ (1989 AVERAGE)
C.O.P. USED $=3.0$ (FOR OKLAHOMA)

Lighting Requirements:

FOR OFFICE AREA: LIGHT TO DESKTOP = 3^{\prime} (9 ' CEILING) LIGHT LEVEL RECOMMENDED (MAINTAINED) $=80 \mathrm{FC}$
FOR PLANT AREA : DISTANCE TO FLOOR = 17 ' (17 ' CEILING) LIGHT LEVEL RECOMMENDED (MAINTAINED) $=65 \mathrm{FC}$

Reflectances (Recommended By Smith Lighting of OKC):
CEILING $=70 \%$
ALL WALLS $=50 \%$
FLOOR $=20 \%$

Lighting Level Factors:

COEFFICIENT OF UTILIZATION (CU): FIXT. PHOTOMETRIC TABLE LUMEN DIRT DEPRECIATION (LDD):GRAPH

IV. LIGHTING ALTERNATIVES

This section presents the four most promising lighting alternatives which the manufacturing facility in Oklahoma should consider. After careful analysis, these alternatives have been selected as the most plausible ones to reduce its energy consumption and costs. The first and third alternatives are concerned with the office building only. The second alternative involves both the office and plant buildings, while the fourth alternative considers the plant building only.

A. Alternative 1

The first alternative looks at the possibilities of using one lamp reflectors in the office building. The office building is currently using $1^{\prime \prime} \mathrm{X} \mathbf{A}^{\prime}$ two lamp fixtures with 34 watt Supersaver lamps (F40/LW/SS) and Mark III two lamp ballasts (V-2S40-TP). This alternative analyzes the use of one Silverlight reflector per fixture with one Sylvania octron 32 watt lamp (F032/4100K) and a two lamp electronic ballast.

The 32 watt octron lamps were selected as the primary lamps for analysis because of their measured increase in light output over 34 watt lamps (via research done by Oklahoma State's Industrial Engineering Department). In addition to the octron lamp, the Aurora IV lamp made by VL Service Lighting Corporation and the Advantage X lamp made by North American Philips Lighting Corporation are analyzed.

Through the use of two lamp ballasts, each ballast can serve two different one lamp fixtures. Since the octron lamp requires a special ballast, two types of $T-8$ octron electronic ballasts are considered. One is manufactured by MagneTek Triad, the B232I277 ballast, while the other is manufactured by Electronic Ballast Technologies (EBT), the SSB1-277-2/32 ballast.

B. Alternative 2

The second alternative looks at the possibilities of replacing the current Mark III energy efficient electromagnetic ballasts in both the 4^{\prime} and 8^{\prime} fluorescent fixtures with electronic ballasts. All of the 4^{\prime} and 8^{\prime} fixtures throughout the facility are used in this analysis, not just those in the office or plant buildings. On the 4^{\prime} fixtures, both two lamp ballasts (one ballast per fixture) and four lamp ballasts (one ballast per two fixtures) are analyzed to see which is more appropriate. On 8' fixtures, only two lamp ballasts (one ballast per fixture) are considered. MagneTek Triad and EBT ballasts are considered in this analysis. The MagneTek ballasts that are evaluated are the B240R277 (4' fixture, 2 lamp), the B440R277 (4' fixture, 4 lamp), and the B275I277 (8' fixture, 2 lamp) ballast. EBT's ballasts that are evaluated are the SSB1-277-2/40 (4' fixture, 2 lamp), the SSB2-277-4/32IS (4' fixture, 4 lamp), and the SSB2-277-2/96IS (8' fixture, 2 lamp) ballast.

C. Alternative 3

The third alternative looks at replacing the current 1'X4' two lamp fixtures (Metalux P3GAX-240S28H equivalents) in the office building with $2^{\prime} X 4^{\prime}$ three lamp parabolic fixtures. The parabolic fixtures evaluated are the 2P3GAX-340S36M fixtures made by Metalux. These fixtures are much more efficient and produce better light levels than standard fixtures, thus, allowing for fewer total lamps. Therefore, they can provide substantial energy savings. Three lamp ballasts are used in these fixtures to provide for reduced ballast costs. Both MagneTek Triad and EBT ballasts are again considered for use in these new fixtures. MagneTek's B440R277 three lamp ballast and EBT's SSB1-277-3/40 three lamp ballast are evaluated.

D. Alternative 4

The fourth alternative looks at replacing the current 8' two lamp slimline fixtures in the plant area with metal halide lamps and fixtures. The plant area is currently using 8' two lamp slimline fixtures (Metalux STN-296 equivalents) equipped with 60 watt Sylvania Supersaver lamps (F96T12/LW/SS) and Mark III two lamp ballasts (V-2E75-S-TP). The alternative is to use a metal halide fixture equipped with a metal halide lamp. Both Sylvania and Venture metal halide products are evaluated as possible alternatives. In addition, several different sizes of lamps are evaluated.

V. ECONOMIC ANALYSIS OF LIGHTING ALTERNATIVES

This section presents the economic analysis for each of the four lighting alternatives discussed in the previous section. First, a brief description of the economic analysis and its purpose are presented. Next, the economic analysis comparing the four alternatives is discussed and presented through several different tables.

A. Discussion Of Economic Analysis

The purpose of an economic analysis is to evaluate project alternatives, through a number of different methods, to determine the return on investment for each alternative over a certain period of time. The following economic analysis is presented to help the manufacturing facility recognize and choose the best lighting alternative(s). The analysis consists of comparing the initial costs of the alternatives to their yearly returns.

One method used in this comparison is the payback period, which is simply the number of years that it takes to return the initial investment without considering the time value of money, interest. The payback period should only be used as a comparison figure between the alternatives, not as a decision maker because it fails to take into account the time value of money.

Another method used is the annual worth of each project, which is simply the initial investment and yearly savings annualized into receipts (+) or costs (-) of that project over
a given planning horizon, considering the time value of money. The annual worth should be used as the criteria for decision making. If the annual worth is positive or greater that $\$ 0$, then the alternative should be considered. However, if the annual worth is negative or less than $\$ 0$, then the alternative should not be considered because its returns are insufficient. B. Economic Analysis of Alternatives

Presented in the following pages is the economic analysis for the four lighting alternatives. The interest rate used to consider the time value of money was selected at 21%. This analysis includes several different tables which compare the alternatives. These tables show only the final numbers; however, the actual calculations used to obtain these numbers can be found in Appendices C and D at the end of this report. In addition, Appendix A shows the raw formulas used in these calculations should any questions arise.

1. PROPOSED LAYOUTS FOR LIGHTING ALTERNATIVES

For alternatives 1 and 2, the current fixture layouts will not change. Both of these alternatives just require modification of the current lighting fixtures, without changing the positioning or placement of the fixtures. Alternatives 3 and 4, however, use totally different lighting fixtures than those that currently exist, and therefore, require new layouts for the lighting system.

Based on the requirement of a maintained illumination level of 80 footcandles (FC) at desktop heigth in the office building, alternative 3 requires 820 parabolic fixtures per
floor. The total number of fixtures required for all four floors is 2,604. The proposed layout is to have 10 rows of 68 fixtures each and 2 rows of 70 fixtures each (the outside rows on each floor). These fixtures will be evenly spaced, placed end-to-end, and positioned parallel with the length of the floor. The calculations and detail of this proposed layout are shown in Appendix B for alternative 3.

Also based on the requirement of a maintained illumination level of 65 footcandles (FC) at the floor in the plant building, alternative 4 requires 1,590 Venture 400 watt metal halide fixtures. Venture lamps are used because they proved to be the most economical of the two selected, as seen from the coming sections. The proposed layout is to have 30 rows of 53 fixtures each positioned parallel with the length of the plant building. These fixtures will be evenly spaced and should provide acceptable levels of light for the plant. The calculations and detail of this proposed layout are shown in Appendix B for alternative 4.

2. ENERGY SAVINGS

Lighting alternatives can basically have two purposes. One purpose is to reduce energy consumption, thus, providing for an energy cost savings. The second possible purpose is to simply improve the quality of lighting or the aesthetics of the environment, without saving energy or money. In this situation, a company is simply making a capital investment to improve the lighting system or its looks, while neglecting the concern of financial returns from the new system. For the
purpose of this report, lighting alternatives which have the purpose of providing energy savings, while maintaining or even improving lighting quality, are of primary concern.

Energy consumption is measured by the amount of electricity (watts) consumed by an electric device, lighting fixtures in this particular project. Therefore, energy consumption savings are measured by the wattage saved per fixture. It can also be quantified as the percent of original energy consumption saved per fixture. Table 2, on the next page, presents the energy consumption savings for the four alternatives. The calculations for the numbers in this table are in Appendix C at the end of this report.

As seen from Table 2, each of the four alternatives provide energy savings, either through reduced wattage consumed per fixture (alternatives 1 and 2) or reduced wattage required per square foot of area being lit (alternative 3 and 4). Alternative 0 is the do nothing alternative, which represents the current lighting system, both in the office and plant buildings. This alternative is used and presented throughout the economic analysis as a gauge to measure the other four alternatives against.

Table 2: WATTAGE PER FIXTURE AND PERCENT ENERGY SAVINGS

ALTERNATVE	FIXTURE WATTAGE (WATSS)	SAVINGS PER FIXTURE (WATTS)	\% ENERGY SAVINGS
0.DONOTHING			
4'FIXTURES: F40CWISS: MARK III BALLAST:V-2S40-TP	72	0	0
8' FIXTURES:F96T12CWISS:MARK IIIBALLAST:V-2E75-S-TP	123	0	0
1. REFLECTORS IN 4' OFFICEFIXTURES WTH 10 CTRON LAMP			
MAGNETEK TRIAD (2LAMP) BALLASTS: B24R277	29	43	59.7
EBT (2LAMP) BALLASTS: SSB1-277-240	31	41	56.9
2. ELECTRONICBALLASTS IN4'8 8' FIXTURES			
MAGNETEK TRIAD BALLASTS			
4:2LAMP BALLAST:B240R27	61	11	15.3
4:4 LAMP BALAST:B440R27	59	13	18.1
8:2 LAMP BALLAST:B275127	113	10	8.1
EBT BALLASTS			
4:2LAMP BALAST:SSB1:27.240	57	15	20.8
4:4 LIMP BALLAST: $5 S B 22.27 .43215$	54.5	17.5	24.3
8:2LAMP BALLAST:SSB2-277.2966	105	18	14.6
	FIXTURE WATTAGE	WATTSSAVED	
ALTERNATIVE	(WATTS)	PERSQ.FT.	
3.PARABOLLC FIXTURES INOFFICE BUILDING (2X4:3LAMP)			
MAGNETEK TRIAD BALLASTS			
3LAMP BALLAST:B440R27	94	0.86	
EBT BALLASTS			
3LAMP BALLAST:SSB1-271-340	90	0.92	
4. METAL HALIDE LAMPS INPLANT BULIDING			
400 W. SYLVANA METAL HALIDE:M400U (36,000 LUMENS)	400	0.09	
400W. VENURE METAL HALIDE:MH400U (40,00 LUMENS)	460	0.23	

3. LIGHTING EQUIPMENT COSTS

Equipment costs are the capital expenditures required to obtain the lighting equipment needed for implementation of the alternatives. For each of the four lighting alternatives of concern, the total equipment installation cost consists of lamp costs, ballast costs, fixture costs, and installation labor costs. Lamp and ballast costs are simply the cost of each individual lamp or ballast to be used in an alternative's installation. The total fixture costs are the costs of the fixtures plus any additional hardware, such as reflectors, which will be needed in an alternative's installation. Installation labor costs are the total labor costs for equipment installation for an alternative. These installation costs are calculated using both union labor and subcontractor labor. All of the equipment costs for the four alternatives are shown in Table 3 on the next page. A good comparison between the alternatives is to look at the last column of Table 3, which shows the total cost per fixture for all possible equipment combinations for an alternative.

Table 3: EQUIPMENT COSTS FOR LIGHTING ALTERNATVES

				INSTALLATION COST		TOTAL INSTALLED COST (\$FIX) SUBCONT.LAB.
	LAMP	BALLAST	FIXTURE	UNON	SUBCONT	
	COST	COST	COST	LABOR	LABOR	
ALTERNATVE	(\$/UNIT)	(\$/UNIT)	(\$IUNIT)	(S/FIXT.)	(β / FIXT.)	
0.00NOTHNG						
4'FIXTURES: F4OCWISS: WARK III BALLAST:V-VS40-TP	1.13	7.31	NA	NA	NA	9.57
8^{8} FIXTURES: F96T12CWSS: MARK III BALLAST:V-2E75-S-TP	238	12.25	NA	NA	NA	17.01
1. REFLECTORS IN 4' OFFCE FIXTURES WTH HOCTRON LAMP			REFLECTOR			
MAGNETEX TRIAD (2LAMP) BALLAST: B232127	3.67	34.52	19.00	19.60	11.67	68.86
EBT (2LANP) BALLAST: SSB1-27-232 $^{\text {a }}$	3.67	21.00	19.00	19.60	11.67	55.34
2. EIECTRONC BALIASTS IN4' 888 FIXTURES						
MAGNETEK TRIAD BALLASTS						
4:2LAMP BALLAST:B240R27	NA	26.95	NA	7.10	4.17	31.12
4:4 LAMP BALLAST:B4APR27	NA	39.92	NA	8.87	5.21	45.13
8:2 LAMP BALLAST:B27527	NA	35.51	NA	7.10	4.17	39.68
EBT BALLASTS						
4:2 LAMP BALIAST:SS81-27.240	NA	20.00	NA	7.10	4.17	24.17
4:4 LAMP BALLAST:SS82-2774321S	NA	25.00	NA	8.87	5.21	30.21
8:2LAMP BALLAST:SSB2-277.2966	NA	27.00	NA	7.10	4.17	31.17
3. PARABOLC FIXTURES NOFFICE BUILDNG (2X4: 3LAMP)						
MAGNETEK TRIAD BALLASTS			FIXTURE			
3LAMP BALLAST:B40R27	1.13	39.92	56.66	42.58	25.00	124.97
EBTBALLASTS						
3LAMP BALLAST:SSB1-27.340	1.13	24.00	56.66	42.58	25.00	109.05
4. METAL HALIDE LAMPS NPLANT BUILDNG			FIXTURE			
400 W. SYV VNA METAL HALIDE: W400N (36,00 LUMENS)	29.39	NA	85.00	127.74	75.00	189.39
400W. VENTURE METAL HALIDE: WH 400 (40,000 LUMENS)	26.35	NA	85.00	127.74	75.00	186.35

4. ECONOMIC SUMMARY

The following economic summary presents the most pertinent economic decision making information which should be used in evaluating the four lighting alternatives. It takes into account the initial capital investment required and the yearly savings provided and then uses the payback period and the annual worth to evaluate each alternative. As mentioned earlier, the annual worth should be used as the criteria for economic decision making. Table 4 and Table 5, on the next two pages, present the economic summary of the four alternatives using subcontractor and union labor, respectively.

The initial investment is the total equipment cost for each alternative. It is based on the price per fixture from Table 3 and the number of fixtures being used.

The yearly savings is the total dollar savings provided per year by each alternative. This yearly savings includes consumption savings, demand savings, air conditioning savings, and replacement savings. Consumption savings were just discussed in part 2 above. Demand savings, on the other hand, are the savings provided by a utility company due to a reduction in the energy demand required by the operating company, during the utility's peak demand hours. Air conditioning savings are energy savings from reduced air conditioning loads that are provided by lighting fixtures which operate cooler, giving off less operating heat. Replacement savings are savings realized from the reduced
material and labor costs required to replace lamps and ballasts for an alternative in comparison with the old system.

The payback periods and the annual worths are straightforward numbers, derived from formulas in Appendix A. The calculations for all of the table numbers are shown in Appendix C.

As seen from both Table 4 and Table 5, alternative 1 seems to be the most favorable alternative because of the small payback periods and the annual worth values. In addition, alternative 2 looks favorable when the right combination of EBT ballasts are used (4 lamp ballasts in 4^{\prime} fixtures and 2 lamp ballasts in 8' fixtures). Alternatives 3 and 4, however, show unfavorably long payback periods and negative annual worths. Therefore, the implementation of these alternatives does not look very plausible at this time, based on the information in Table 4 and Table 5.

Table 4: ECONOMIC SUMMARY (SUBCONTRACTOR LABOR)

ALIERNATVE	INTITAL INVESTMENT (\$)	YEARLY SAVINGS (\$)	PAYBACK PERIOD (PEARS)	ANNUAL WORTH (\$)
1.REFLECTORS IN 4' OFFICE FIXTURES WTH 1 OCTRONLAMP				
MAGNETEK TRIAD (2LAMP) BALLAST: 8232127	27,195	73,966	3.7	12,207
EBT (2LAMP) BALLAST:SSB1-27-232	240,340	70,524	3.4	16,976
2. ELECTRONC BALLASTS IN4' 88 ${ }^{\text {F FXXTURES }}$				
MAGNETEK TRIAD BALASTS				
2 LAMP BALLASTS:4' B240R277, 8 ' 82751277	481,414	45,181	10.7	62,078
4LAMP BALL.:4' B400R27,2 LAMP BALL.:8' 82751277	444,178	48,25	9.2	-50,708
EBT BALLASTS				
2 LAMP BALLASTS:4' SSB1-271-240, 8' SSB3-277-2961S	376,431	71,701	5.3	-12,68
4 LAMP:4' SSB2-277-4321S, 2 LAMP:8' SSB2-277-2961S	305,902	76,712	4	8,557
3. PARABOLIC FXTURES N OFFICE BULLDING (2X4:3LAMP)				
MAGNETEK TRIAD BALLASTS				
3LAMP BALLAST:B400R27	604,097	44,310	13.6	-90,283
EBT BALLASTS				
3LAMP BALLAST:SSB1-277-3140	562,641	47,400	11.9	$\cdot 77,556$
4. METAL HALIDELAMPS INPLANT BUILDNG				
400 W. SYLVANAMETAL HALIDE:M40ON (36,000 LUMENS)	324,303	16,934	19.2	-55,321
400W. VENTURE METAL HALLDE: MH400U (40,000 LUMENS)	286,151	44,348	6.4	-19,406

Table 5: ECONOMIC SUMMARY (UNIONLABOR)

ALIERNATVE	INTAL INVESTMENT ($\$$	YEARLY SAVIIGS (\$)	PAYBACK PERIOD (YEARS)	ANNUAL WORTH (\$)
1. REFLECTORS IN4' OFFICE FIXTURES WTH 1 OCTRON LAMP				
MAGNETEK TRIAD (2LAMP) BALAST:Bz32127	321,28	73,966	4.3	2,358
EBT (2LAMP) BALLAST:SSB1-27-232	284,913	70,524	4	7,045
2. ELECTIRONC BALLASTS IN4' 88 FIXTURES				
MAGNETEK TRIAD BALASTS				
2 LAMP BALLASTS:4' B240227, 8 B275127	520,922	45,181	11.5	-70,880
4LAMP BALL.:4' B40R277,2 LAMP BALL: 88 B2751277	488,271	48,255	10.1	60,532
EBT BALLASTS				
2LAMP BALLASTS:4 SSB1-27-240,8 SSB2-27-296\|S	415,939	71,701	5.8	-20,970
4 LAMP:4' SSB2-27-4321S,2 LAMP:8 SS82-27-2966	328,829	76,712	4.3	3,449
3. PARABOLC FIXTURES IN OFFICE BULLDNG (2X4:3LAMP)				
MAGNEEEK TRIAD BALLASTS				
3LAMP BALLAST:B440R2T	711,609	44,310	17.4	-127,611
EBT BALLASTS				
3LAMP BALLAST:SSB1-271-340	730,183	47,400	15.4	. 115,285
4. METAL HALIDELAMPS IN PLANT BUILDING				
400 W. SYLVANA METAL HALIDE: M400N(36,000 LUMENS)	410,370	16,334	24.2	-74,496
400 W. VENTURE METAL HALIDE: WH 400 ($40,00 \mathrm{LL}$ LUMENS)	362,866	44,348	8.2	-36,499

5. ILLUMINATION LEVELS

In addition to the economic considerations, the choice of a particular lighting alternative depends on the lighting or illumination level provided by the alternative. Lighting illumination level is measured in footcandles (FC), which is the illumination on a surface one square foot in area on which there is a uniformly distributed flux of one lumen. In simple terms, the illumination level describes how much light is distributed to a particular area. However, determining lighting illumination levels is often not an easy task.

The easiest method to use is simply to measure the light level, or $F C s$, at a specific height by using a light meter. However, the use of a light meter is limited to existing lighting systems or an experimental environment created for the system being analyzed. Due to time constraints on this project, an experiment was not setup to evaluate the four alternatives using a light meter.

Therefore, the illumination levels provided by these alternatives had to be calculated. This calculation becomes rather complicated because so many factors must be considered. The calculation of initial FCs provided requires the consideration of the coefficient of utilization (CU), which involves the efficiency of the fixture to put out light. The CU values used come from fixture photometric tables. In addition, lumen dirt depreciation (LDD), which involves how much the illumination levels will diminish due to environmental conditions, such as dirt, must be considered.

The LDD also considers the light reflectance abilities of the ceiling, the walls, and the floor surrounding the light fixture. The LDD factor is determined with a graph through a calculated room cavity ratio (RCR).

For average FCs maintained, the calculation requires the above two factors as well as the lamp lumen depreciation (LLD) factor. LLD involves the depreciation of the lamp over time, due to normal operating conditions. The illumination levels provided by the four alternatives are illustrated in Table 6 on the next page. The calculations for the numbers in this table are shown in Appendix D.

Table 6: ILLUMNNATIONLEVELS PROVIDED BY ALTERNATIVES

ALTERNATVE	INTTAL ILLUMNATON (FC)	AVERAGE ILLUMNATION (FC)	MEASURED ILLUMNATION (FC)
O.DONOTHNG		REQUREMENT:	
OFFICE BULLDNG 4 ' FIXTURES (AT DESKTOP)		80	75
PLANT BULLDNG ${ }^{\text {a FIXTURES (ATDESKTOP) }}$		65	65
1. REFLECTORS IN4 OFFICE FIXTURES WTTH $10 C T R O N$ LAMP			
MAGNETEK TRIAD (2LAMP) BALLAST:B232127	70.1	56.1	NA
EBT (2LAMP) BALLAST: SSB1-27-238	70.1	56.1	NA
2.EIECTRONCBALASTS ${ }^{\text {a }} 4^{\prime} 88$ ' FIXTURES			
MAGNETEK TRIAD BALLASTS			
2LAMP BALLASTS:4' B240227,8 827527	NA	NA	NA
4LAMP BALL:4'4440R27,2 LAMP BALL.: 8 B275127	NA	NA	NA
EBT BALLASTS			
2 LAMP BALASTS:4' SSB1-27.240, 8 SSB2-27-2961S	NA	NA	NA
4 LAMP:4' SS82-27-430215, 2 LAMP:8 8 SS8-277-2961S	NA	NA	NA
3. PARABOLC FIXTURES IN OFFCE BUILDNG (2X4:3LAMP)			
MAGNETEK TRIAD BALLASTS			
3LAMP BALLAST: B40R27	100	80.1	NA
EBT BALLASTS			
3LAMP BALLAST:SSB1-27.340	100	80.1	NA
4. METAL HALIDE LAMPS INPLANT BUILDNG			
400 W. SYLVANA METAL HALIDE: M4OON (36,000 LUMENS)	812	65	NA
400 W. VENTURE METAL HALIDE:MH400 (40,000 LUMENS)	81.3	65	NA

VI. RECOMMENDATION

This section discusses the best recommendation for the Oklahoma manufacturing facility, based on the economic analysis presented in the previous section. A great deal of information can be gathered from the analysis of each of the four alternatives. Therefore, that information is first used to create a table summarizing the pros and cons of each alternative. Next, a table is shown which presents the two most important decision making criteria provided by each alternative, the annual worth and the illumination level. Based on these two tables, a recommendation can be formulated. A. Pros \& Cons of Each Alternative

From the economic analysis presented in the previous section, the four alternatives can be evaluated objectively by their advantages and disadvantages in implementation. These pros and cons are presented in Table 7 on the next page. B. Decision Making Criteria Summary

As mentioned several times before, the annual worth and the light illumination level provided by each alternative are the two primary decision making criteria. The annual worth gives a true picture of each alternative's financial returns over time because it considers the time value of money. On the other hand, a lighting alternative is not worthwhile if it does not provide sufficient light levels, despite how good its financial returns are. Therefore, Table 8, on page 31, is presented to show the true expected performance of each alternative over time (using subcontractor labor).

Table 7: PROS AND CONS OF ALTERNATVES

Table 8: SUMMARY OF DECISION MAKING CRITERIA

$\left.\begin{array}{|l|c|c|c|}\hline & \begin{array}{c}\text { ANNUAL } \\ \text { WORTH }\end{array} & \begin{array}{c}\text { INITILL } \\ \text { ILLUMINATION } \\ \text { (FC) }\end{array} & \begin{array}{c}\text { AVERAGE } \\ \text { ILLUMINATION } \\ \text { (}\end{array} \\ \text { (FC) }\end{array}\right]$

C. Recommendation

Based on the data presented in Table 8, on the previous page, the following conclusions can be made. Alternative 1 provides considerable energy dollar savings for both types of ballasts because the AW is greater than $\$ 0$ for both subcontractor and union labor, but it fails to provide sufficient light levels. For analysis purposes, two other lamps were analyzed to see if they would provide enough light in the office area.

The Aurora IV lamp made by VL Service Lighting Corporation was one analyzed. This lamp provides 3450 initial lumens and using the same Silverlight reflector proposed, provides 83.4 initial footcandles and 66.8 maintained footcandles.

The Advantage X lamp made by Philips Lighting Company was another lamp analyzed. This lamp provides 3700 initial lumens and using the same reflector proposed, provides 89.5 initial footcandles and 71.6 maintained footcandles.

Although these two lamps provide better light levels, they still do not provide sufficient light levels to warrant the acceptance of alternative 1. Therefore, alternative 1 is not recommended.

Alternative 2 fails to provide sufficient energy dollar savings using any of the ballasts, except for using the EBT ballasts SSB2-277-4/32IS and SSB2-277-2/96IS. The light levels should remain the same as they currently are, if not increasing, due to the better efficiency of these electronic
ballasts. Therefore, this alternative is recommended using the particular ballasts just mentioned.

Alternative 3 fails to provide enough energy dollar savings using either subcontractor labor or union labor, but it provides sufficient light levels. However, light level is not enough, therefore, it is not recommended.

Alternative 4 also fails to provide sufficient energy dollar savings using subcontractor labor or union labor, while providing adequate light levels. Therefore, it is also not recommended.

A summary of the above recommendations is presented in Table 9 on the next page. This table provides a clearer picture of the recommended actions that this facility should now take.

Table: SUMMARY OF RECOMMENDATIONS

ALTERNATIVE	RECOMMENDATION
1. REFLECTORS N4' OFFICEFIXTURES WTH 1 OCTRONLAMP	
MAGNETEK TRAD (2LAMP) BALLAST:B232127	NOT RECOMMENDED
EBT (2LAMP) BALLAST: SSB1-27-2232	NOT RECOMMENDED
MAGNETEK TRIAD BALLASTS	
2LAMP BALLASTS:4' B240R27, 8 8 82751277	NOT RECOMMENDED
4 LAMP BALL.:4'4340R277,2 LAMP BALL.:88 82751277	NOT RECOMMENDED
EBT BALLASTS	
2LAMP BALLASTS:4' SSB1-27-2440, 8^{\prime} SSB8-277-2961S	NOT RECOMMENDED
4LAMP:4'SS82-27-41321S, 2 LAMP:8' SSB2-27-2961S	RECOMMENDED
3.PARABOLC FXXTURES INOFFICE BULLDNG (2XA:3LAMP) MAGNETEKTRIAD BALLASTS	
3LAMP BALLAST: B40R227	NOT RECOMMENDED
EBT BALLASTS	
3LAMP BALLAST:SSB1-277-340	NOT RECOMMENDED
4. METAL HALIDE LAMPS INPLANTBULLDNG	
400 W. SYLVANA METAL HALIDE: M400N (36,000 LUMENS)	NOT RECOMMENDED
400W. VENTURE METAL HALIDE: MH 400 U (40,000 LUMENS)	NOT RECOMMENDED

VII. CONCLUSION

Lighting is just one operational area which can be affected positively by an energy conservation program. Since the office and plant buildings at the Oklahoma manufacturing facility primarily use fluorescent lighting, that source of lighting was the focus. As presented in the report, many different alternatives exist today for reducing the energy costs of fluorescent lighting. This equipment includes energy efficient lamps and ballasts, fixture reflectors, efficient fluorescent fixtures (parabolics), and high intensity discharge (HID) fixtures, such as metal halide, for high ceiling applications.

This report primarily focused on showing the economic analysis of four fluorescent lighting alternatives that were chosen as possibilities for the manufacturing facility. The annual worths and illumination levels provided by these alternatives were the primary decision making criteria. After careful analysis, the alternative which replaces the existing ballasts with EBT electronic ballasts was the only acceptable alternative. The other alternatives failed to provide sufficient returns on investment and / or adequate light levels.

Even though this project failed to provide many acceptable alternatives, it has provided a great deal of information about energy efficient lighting systems. One of the major reasons that the economic analyses failed to show acceptable alternatives is the fact that the Oklahoma facility
pays a very minimal price for electricity. This price has a great deal to do with how much energy dollar savings a lighting alternative can provide. Just because an alternative saves a large amount of energy does not mean that its investment will pay off, especially, when energy charges are low. Therefore, this project could become much more attractive if this electricity rate increased sometime in the future. It could be used at this facility at a later date or even at other manufacturing facilities which pay higher prices for their electricity.

This report has provided important information about the possible benefits from an effective energy conservation program. These types of programs are not only a benefit, but are a necessity in today's business environments. Energy conservation programs can better prepare companies for energy crises, not to mention increasing their competitiveness through reduced overhead expenses.

VIII. REFERENCES

1. Advance Transformer Co. 2950 No. Western Ave. Chicago, IL. 60618
(312) 267-8100
2. Burrus \& Matthews, Inc.

1330 Classen Blvd. Oklahoma City, OK. (405) 232-0011
3. Electronic Ballast Technology, Inc. (EBT)

2522 W. 237th Street
Torrance, CA. 90505
(213) 534-1717
4. GE Lighting

Nela Park
Cleveland, OH. 44112
(216) 266-2121
5. HMI Energy Controls, Inc.

108 South Chickasaw St. Pauls Valley, OK. 73075 (405) 238-7741
6. Hunzicker Brothers, Inc.

Box 25248, 501 N. Virginia
Oklahoma City, OK. 73125
(405) 239-7771
7. Light Bulb Supply Co., Inc.

629 W. Hefner
Oklahoma City, OK. 73114 (405) 840-2852
8. MagneTek Triad

1124 E. Franklin Street
Huntington, IN. 46750 (219) 356-7100
9. Metalux
P.O. Box 1207

Americus, Georgia 31709
(912) 924-8000
10. Oklahoma State University

Industrial Engineering Department Stillwater, OK. 74074
(405) 744-6055
11. Philips Lighting Company 200 Franklin Square Drive P.O. Box 6800

Somerset, NJ. 08875-6800 (201) 563-3000
12. Silverlight Corporation 16 W. 151 Shore Court Burridge, IL. 60521 (312) 986-1651
13. Smith Lighting Sales, Inc.

4307 N. Walnut
Oklahoma City, OK. 73105 (405) 521-0093
14. Sylvania U.S. Lighting Sylvania Lighting Center Danvers, MASS. 01923
15. Venture Lighting International Cleveland, OH .
16. Voss Electric Supply Co. 1001 Enterprise Ave. No. 3 Oklahoma City, OK. 73128 (405) 949-1919
17. White, John A., Marvin H. Agee, \& Kenneth E. Case. Principles of Engineering Economic Analysis, 2nd Ed., Wiley, New York, 1984.

IX. APPENDICES

A. FORMULAS USED
B. PROPOSED LAYOUTS FOR LIGHTING ALTERNATIVES
C. ECONOMIC ANALYSES FOR THE ALTERNATIVES
D. ILLUMINATION LEVELS PROVIDED BY THE ALTERNATIVES

APPENDIX A

FORMUILAS USED

FORMULAS USED

1) . kw SAVINGS = (kw SAVINGS / FIXTURE) x (\# FIXTURES)
2). kwh SAVINGS $=$ (kw SAVINGS) $\mathrm{x}(6552$ OPERATING HOURS/YEAR)
2) $\cdot \mathrm{kwh} \$$ SAVINGS $=$ (kwh SAVINGS) x ($\$ / \mathrm{kwh}$ PAID)
4). DEMAND $\$$ SAVINGS $=(k w$ SAVINGS)*(AVG. DEMAND CHARGE)
5). A/C \$ SAVINGS = (kwh SAVINGS/C.O.P.) x (\$/kwh PAID)
6). TOTAL YEARLY SAVINGS $=\# 3+\# 4+\# 5$ ABOVE
7). PAYBACK PERIOD = (TOTAL INSTALLATION COST) / (TOTAL YEARLY SAVINGS)
8). INITIAL LUMENS/SQ.FT. = (TOTAL \# LAMPS IN AREA) x (LUMENS/LAMP) / (AREA IN SQ.FT.)
9). AVERAGE LUMENS/SQ.FT. = (TOTAL \# LAMPS IN AREA) x (LUMENS/LAMP) x(LAMP LUMEN DEPREC.) / (AREA IN SQ.FT.)
10). CURRENT WATTS/SQ.FT. = (TOTAL \# FIXTURES) x (TOTAL WATTS/FIXT) /
(AREA IN SQ.FT.)
11). AREA / FIXTURE = (TOTAL AREA IN SQ.FT.) / (TOTAL \# FIXTURES)
12). FOOTCANDLES INITIAL (FCI) $\begin{aligned}= & (\# \operatorname{LAMPS}) \mathrm{x} \text { (LUMENS/LAMP) } x \\ & (\mathrm{CU}) \mathrm{x}(\mathrm{MF}) / \text { (AREA IN SQ.FT.) }\end{aligned}$
13). FOOTCANDLES MAINTAINED (FCM) $=$ (\# LAMPS) x (LUMENS/LAMP) x (CU) x (MF) x (LLD) / (AREA IN SQ.FT.)
14). MOUNTING HEIGTH =WORK PLANE - HEIGHT OF ROOM CAVITY (HRC)
15). ROOM CAVITY RATIO (RCR) $=5 \mathrm{x}$ (HRC) x (LENGTH + WIDTH) / (AREA IN SQ.FT.)
16). LAMP LUMEN DEPRECIATION (LLD) $=$ (INITIAL LAMP LUMENS) / (LAMP LUMENS AT AVG LIFE)
17). $N=$ FIXTURE QUANTITY REQ'D $=(F C M) \quad x$ (AREA IN SQ.FT.) / (LAMP LUMENS/FIXT) x (CU) x (MF)
18). L (NEW) = SPACE BETWEEN FIXTURES (LENGTHWISE) $=($ AREA/FIXTURE)**. 5
19). SPACE TO MOUNTING HEIGTH RATIO = (SPACE BETWEEN FIXTURES) / (FIXTURE MOUNTING HEIGTH)
20). ANNUAL WORTH (AW) $=(-$ INITIAL INVESTMENT) x (INTEREST FACTOR) + YEARLY SAVINGS

APPENDIX B

PROPOSED IAYOUTS OE LIGHTING ALTERNATIVES

ALTERNATVE 3: USNG PARABOLIC FXTURES IN OFFCE BUILDING

DETERMNATONOF THE NUMBER OF PARABOLC FXXURES REQUIRED:

PARABOLIC FIXTURE TO USE:METALUX ZP3GAX-34OS36W 3 LAMP FIXTURE
USIMG FORIULLAS PRESENTEDIN APPENOXXA:
ILLUMNATIONLEVES REQUIRED AT DESKTOP IN OFFICE AREAS:
$\mathrm{FC}(\mathbb{N T T A L})=100 \mathrm{FC}$
$\mathrm{FC}($ MANTANED $)=80 \mathrm{FC}$
FROM TABES FOR PARABOLLC FIXTURE (METALUX), $C U=0.83$

$$
\mathrm{RCR}=\frac{(5)(93 \mathrm{FFEET})(528+96 \text { FEET })}{(528)(96) S Q U A R E F E E T}=0.37
$$

USNG RCR $=0.37$, TME MANTENANCE FACTOR MF $=0.85$
LAUP LUMEN DEPRECATION (LLO) $=\frac{2340 \text { LUMENS AT AVERAGE LIFE }}{=0.8}$
2285 NTITAL LUMENS
$N=$ THE NUMBER OF PARABOLC FIXTURES REQURED PERFLOOR
$N=\frac{(80 \text { FC) })(588 \times 96 \text { SOUARE FEET) }}{(2285 \text { LUMENSLAMP)(3 LAMPSFIXTURE/(0.83])(0.85) (0.80) }}=819$ FXXTURES
FOR SYMMETRY, USE $\mathrm{N}=820$ RXTURES/FLOOR
USE 82O FIXTURES FOR FIRST3FLOORS INOFFICE BUILDNG
USE 144 FIXTURES FOR FOURTH FLOOR (BASED ON THE TYPCCAL FLOOR ANALYSIS)
TOTAL NUMBER OF RXTURES REQUREDIN OFACE BUIDING $=3(320)+144=2604$ FIXTURES
INTTAL ILLUMNATIONLEVEL PROVVDED:

ALTERNATVE 3: USING PARABOLIC FXTURES IN OFFICE BULLDING

PROPOSED LAYOUT OF PARABOLIC FIXTURES:

FROM THE PREVIOUS PAGE, THE NUMBER OF FIXTURES REQUIRED/FLOOR $=820$
USIMG FORIULAS PRESEMTEDIN APPENDXX A:
AREA/FIXTURE $=\frac{(528) \mid(96) \text { SQUARE FEET }}{820 \text { FIXTURES }}=61.81$ SQUARE FEET/FIXTURE

L(NEW) = THE MAXIMUM SPACE BETWEENFIXTURES LENGTHWISE
LNEW) $=$ (61.81 SQUARE FEET/FIXTURE"0.5 $=7.86$ FEET
MINMUU NUMBEROF FIXTURES INLENGTH $=\frac{528 \text { FEET }}{7.86 \text { FEET/FIXTURE }}=67.18$ FIXTURES
MAXXMUM NUMBER OF FIXTURES IN WIDTH

USING THE INFORMATION GATHERED FROM ABOVE, THE FOLOWING DESIGN APPLES:
THE FIXTURES ARE LINED UP END TO END, PARALLEL TO THE LENGTHOF THEFLOOR
THE DESIGN CONSTRANT IS 68 REQUURED FIXTURES INLENGTH:

NUMBER OF FIXTURES INLENGTHFORTHE $10=68$ FIXTURES
MIDDLE ROWS ON THE FLOOR
NUMBER OF FIXTURES INLENGTHFORTHE2 $=70$ FIXTURES
OUTSDE ROWS ONTHEFLOOR
TOTAL NUMBER OF FIXTURES $=(68)(10)+(70) 22)=820$ FXTURES
SPACE BETWEENFXTURES LENGTHWISE $=\frac{528 \text { FEET LENGTH }}{69 \text { SPACES }}=7.65$ FEET
SPACE TOMOUNTNG HEIGTHRATIO $=\frac{7.65 \text { FEET BETWEEN FIXT. }}{9 \text { FOOTCELLING }}=0.86$
SINCE 0.86 IS LESS THAN 1.0, THIS DESSGN IS ACCEPTABLE.

ALTERNATVE 4: USING METAL HALIDE FXTURES IN PLANT BULLDNG

DETERMNATION OF THE NUMBER OF MEAL HALIDE FIXTURES REOUIRED (FOR VENTURE FIXTURES ONLY:

USIIG FORRULLAS PRESENTEDINAPPENDXA:
RLLUMINATION LEVELS REQURED ATTHEFLOOR INTHE PLANT:
$\mathrm{FC}(\mathbb{N T T I A L)}=80 \mathrm{FC}$
$\mathrm{FC}($ MANTANED $)=65 \mathrm{FC}$
FROM TABLES FOR VENTURE METAL HALDE FIXTURE, CU $=0.85$
RCR $=\frac{(5)(17 \text { FEET) (980 }+600 \text { FEET) }}{(920)(600) \text { SOUARE FEET }}=0.23$
USING RCR $=0.23$, THE MANTENAMCE FACTOR (MF $=0.83$
LAMP LUMEN DEPRECLATON (LDD) $=\frac{32,000 \text { LUMENS AT AVERAGE LIFE }}{40,000 \text { INTTAL LUMENS }}=0.8$
$N=$ THE NUMBER OF METAL HALIDE FXTURES REOURED
$N=\quad(65$ FC) (SCOXXDOO SOUARE FEET)
$=1550$ FIXTURES
(40, OO LUMENSLAMP)|(LAMPFFIXURE|(O.85)|0.83)|(0.80)
USE 1,59O FXTURESIN PLANT AREA SPECTRED
NTTAL LLUMNNATONLEVEL PROVIDED:
$\mathrm{FC}\left(\right.$ (NTTAL) $\quad=\frac{40,000 \text { LUMENSLAMP)|(LLAMPFIXTURE)/(1590 FIXTURES)|(0.85)|0.83) }}{(920) \mid(60) \text { SOUARE FEET }}$
$=81.3 \mathrm{FC}$

ALTERNATVE 4: USING METAL HALIDE FXTURESIN PLANT BUILDNG

PROPOSED LAYOUT OF METAL HALDE FXXTURES:

FROM THE PREVIOUSPAGE, THE NUMBER OF FIXTURES REQURED = 1550
USING FORMULAS PRESENTED IN APPENDXX A:
AREA/FIXTURE $=\frac{(920) / 600) \text { SQUARE FEET }}{1590 \text { FIXTURES }}=347.17$ SQUARE FEET/FIXTURE

L(NEW) = THE MAXIMUM SPACE BETWEEN FIXTURES LENGTHWISE
L(NEW) = (347.17SQUAREFEET/FIXTURE" $0.5=18.63$ FEET
MINMMM NUMBEROF FIXTURES INLENGTH $=\frac{\text { g20 FEET }}{18.63 \text { FEET/FXTURE }}=49.38$ FIXTURES

MAXXMUM NUMBER OF FIXTURES IN WIDTH $=\frac{1550 \text { FIXTURESFLLOOR }}{49.38 \text { FIXTURES INLENGTH }}=32.20$ FIXTURES

USING THE INFORMATION GATHERED FROM ABOVE, THE FOLOWNG DESIGN APPLES:
THE DESIGN CONSTRANTIS 5OREQURED FIXTURES INIENGTH:

NUMBEROF FIXTURES INLENGTH $=53$ FIXTURES

NUMBEROF ROWS OF 53 FXXTURES REQUIRED $=30$ ROWS

TOTAL NUMBER OF FXTURES : (53)/30) : 1590 FXTURES
SPACE BETWEEN FXXTURES LENGTHWISE $=\frac{\text { 92OFEET LENGTH }}{54 \text { SPACES }}=17$ FEET
SPACE TOMOUNTNG HEGGTHRATO (LENGTHWSE) $=\frac{17 \text { FEET BETWEEN FIXT. }}{17 \text { FOOTCEILING }}=1$
SPACE BETWEEN FIXTURES WIDTHWISE $=\frac{600 \text { FEET LENGTH }}{31 \text { SPACES }}=19.35$ FEET
SPACE TO MOUNTNG HEIGTHRATO (WIDTHWISE $=\frac{19.35 \text { FEET BETWEENFIXT. }}{17 \text { FOOTCELING }}=1.14$
THE RATIO FOR THE LENGTH DIRECTON IS ACCEPTABLE WHIE THE RATO FOR THE WIDTH DIRECTON IS BARELY ACCEPTABLE. HOWEVER, THS DESIGNSHOULD PROVIDEACCEPTABLELEVELSOFLIGHT FOR THE PLANT.

APPENDIX C

ECONOMIC ANALYSIS OF ALTERNATIVES

ALTERNATVE 1:USING MAGNETEK TRIAD BALLASTS

LIGHTING EQUIPMENT COSTS:						
EQUPMENT	UNIT COST (\$)	VENDOR	QTY. REQUIRED			
1. FO332410OK OCTRONLANP 2. MAGNETEK TRIAD BALLAST B232127 3. SILVERLIGHT REFLECTOR	3.67 34.52 19.00	SYLVANIA MAGNETEK TRIAD SILVERLIGHT CORPORATION	$\begin{aligned} & 5,372 \\ & 5,372 \\ & 5,372 \end{aligned}$			
ENERGY SAVINGS:						
CURRENT INPUT WATTS	PROPOSED INPUT WATIS	WATTS SAVEDI FIXTURE	\% ENERGY SAVINGS			
72W/FIXTURE	$58 \mathrm{~W} / 2 \mathrm{FIXTURES}$	43	59.7			
ENERGY DOLLAR SAVINGS:						
FIXTURE	TOTALKW SAVIING	TOTAL KWH SAYINGS	TOTAL KWHS SAVINGS/YR	TOTAL DEMAND SAVIIMGS (\$)/YR	TOTAL AC SAVIINSS (\$)/YR	TOTAL YEARLY SAVINGS (\$)
4. P3GAX-240S28H EQUNALENT	231	1,513,512	44,664	14,414	14,888	73,966
INSTALLATION COST:						
LABOR USED	TOTAL LAMP $\operatorname{cost}(\$)$	TOTAL FIXTURE $\cos (\$)$	TOTAL BALLAST $\cos T(\$)$	TOTAL LABOR $\cos (\xi)^{1}$	TOTAL COSTOF INSTALLATON (S)	$\begin{array}{\|c\|} \hline \text { PAYBACK } \\ \text { PERIOD (YEARS) } \\ \hline \end{array}$
$\begin{gathered} \hline \text { SUBCONTRACTOR } \\ \text { UNON } \\ \hline \end{gathered}$	$\begin{aligned} & 19,715 \\ & 19,715 \\ & \hline \end{aligned}$	$\begin{aligned} & 102,068 \\ & 100,068 \end{aligned}$	$\begin{aligned} & 92,721 \\ & 92,721 \end{aligned}$	$\begin{aligned} & 02,691 \\ & 106,724 \\ & \hline \end{aligned}$	$\begin{aligned} & 27,195 \\ & 321,228 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.3 \end{aligned}$
ANNUAL WORTH (AW) ANALYSIS:						
SUBCONTRACTOR LABOR:		AW(29\%) $=$ - $277,195(.208)+\$ 73,966=\$ 12,207$			$(A P 21,15)=0.2288$	
UNON LABOR:		$A W(21 \%)=-581,2281.228)+\$ 73,966=\$ 2,396$				
- TIME TO INSTALL REFLECTORS = 10 MINUTES/REFLECTOR (FRON HMI) COST TOCHANGE BALLAST, CLEAN FIXURE, \& RELAMP$=\$ \$ 7.50 /$ FIXTURE (SUBCONTRACTOR LABOR)						

ALTERNATVE 1: USING EBT BALLASTS

LIGHTNG EQUPMENT COSTS:

ENERGY SAVINGS:

CUREENT INPUT WATTS	PROPOSED INPUT WATTS	WATTS SAVED/ FIXXURE	\% ENERGY SAVINGS			
72W/FXTURE	QW/2FXXTUES	41	56.9			

ENERGY DOLLARSAVNGS:

FIXTURE	TOTAL KW SAVIMGS	TOTALKWH SAVIMGS	TOTALKWHS SAVINGS/YR	TOTAL DEMAND SAIVIGS (s)/YR	TOTAL AC SAVIMGS (\$)/YR	TOTAL YEARLY SAYMGS(\$)
4. P3GAX-240528H EQUNALENT	2025	1,43,078	42,565	13,74	14,195	70,54
INSTALLATION COST:						
$\begin{aligned} & \text { LABOR } \\ & \text { USSED } \end{aligned}$	TOTALLAMP $\operatorname{cost}(S)$	TOTAL FXTUNE $\operatorname{cost}(\$)$	TOTAL BALLAST $\cos ($ ($)$	TOTAL LABOR $\cos T(\xi)^{*}$	TOTAL COSTOF INSTALLATON (S)	PAYBACK PERIOD (YEARS
SUBCONTRACTOR	19,75	10,208	56,46	Q2,691	240,30	3.4
UNON	19,75	102080	56,46	106,724	284,913	4

ANNUAL WORTH (AM) ANALYIS:

SUBCONTRACTOR LABOR:	$A W(219)=$ - $240,340(228)+570,54=\$ 16,976$	$(\mathrm{AP21,15)}=0.228$
UNON LABOR:	$A(2149)=$ - $28,9113(.288)+570,24=57,045$	

-TME TO NSTRLL REFECTOPS = 10 MINUTES/RFFEECTOR FFROW HMO
COST TOCHAMGE BALLST, CLEANFXXTVE, \& RELAMP $=\$ 7.50 /$ FIXTURE (SUBCONTRCCOR LABOR)
'RATE FFPOW LST RELAPPNG) $=\$ 127 / F$ FXXURE (WNON LABOR)

ALTERNATVE 2: USING MAGNETEK TRIAD BALLASTS

LLCHTING EQUPMENTCOSTS:

EQUPMENT	UNITCOST(3)	VENDOR	QTY. REQUIRED			
4:2 LAMP BALLAST. B240R27	26.95	MAMVEEEK TRAD	6,280			
4:4 4 AMP BALLAST-	39.98	MAGVEEEK RIAD	6,280			
8:2 LaNP BaLLAST- B2752T	35.51	MAMVEEEK TRAD	7,24			
ENERGY SAVINGS:						
FIXTURE	CURRENT INPUT WATTS	PROPOSED INPUT WATS	WATIS SAVEDI FIXTURE	\% ENERGY SAVINGS		
4:2LAMP BALLAST	2W/FXXTVE	61W/FEXTVE	11	15.3		
4:4LAMP BALLAST	$14 \mathrm{~W} / 2$ FXTURES	118W/2FKXURE	13	18.1		
8:2LAMP Ballast	123W/FIXTUE	113W/FXTURE	10	8.1		
ENERGY DOLLAR SAVINGS:						
	TOTALKW	TOTA LKW	TOTAL KWHS	TOTAL DEMAND	TOTALAC	TOTAL YEARLY
FXXURE	SAIVGS	SAVIMCS	SAIIIGS/YR	SAVINCS (s)/YR	SAVINGS (\$) / YR	SAIINGS (\$)
4:2LAMP BALLSST	68.86	451,711	13,314	4297	4,438	20,49
4:4LAMP BALLAST	81.38	509,49	15,04	5,078	5,011	25,123
8:2LAMP BALLST	7224	47,316	13,988	4,508	4,656	23,18

NSTALLATION COST:

$\begin{aligned} & \text { LABOR } \\ & \text { USED } \end{aligned}$	TOTAL LAMP $\operatorname{cost}(\$)$	TOTAL FXXURE $\operatorname{cost}(\$)$	$\begin{gathered} \text { TOTAL BALLAST } \\ \cos (\$) \\ \hline \end{gathered}$	$\begin{aligned} & \text { TOTAL LABOR } \\ & \operatorname{COST}(\xi)^{*} \end{aligned}$	TOTAL COSTOF INSTALLATON (s)	PAYBACK PERIOD (IEARS)
SUSCONTRACTOR:						
488:2LAMP BAL	NA	NA	425,231	56,183	481,14	10.7
444 AMP, 82 LAMP UNON:	NA	NA	381,474	Q2, 704	44,178	92
488:2LAMP BAL	NA	NA	425,231	95,691	520,920	11.5
444AMP, 82 LAMP	NA	NA	381,474	106,797	488,271	10.1

ANNUAL WORTH (AM) ANALYSIS:		
SUBCONTRACTORLABOR:	2LAMP BALLASTS: $\quad A W(2140)=-\$ 481,414(2288)+\$ 45,181=-\$ 20,078$ 44 LAMP, 82 LAMP BALL.: $\mathrm{AW}(21 \%)=. \$ 444,178(2288)+\$ 48,255=. \$ 50,708$	$(A P 21,15)=0.228$
UNON LABOR:	2LAMP BALLASTS: $\quad A W(21 \%)=-\$ 520,522(2228)+\$ 45,181=\$ 70,880$ 4 4 LAMP, 82 LAMP BALL.: AW $(21 \%)=. \$ 488,271(228)+\$ 48,255=\$ 60,532$	
-BALLAST REPLACEMENT TIME: 2 LAMP BALLAST = 10 MIN. /FXTURE, 4 LAMP BALLAST $=22$ MIN. /2FIXTURES (FROM EBT)		

ALTERNATVE 2: USING EBT BALLASTS

LIGHTING EQUIPMENTCOSTS:						
EQUPMENT	UNIT COST (\$)	VENDOR	QTY. REQURED			
4:2 LAMP BALLAST- SSB1-27.240	20.0	EBT, MC.	6,260			
4:4 LAMP BALLAST. SS88-27 4323	25.00	EBT, NC.	6,260			
8:2LAMP BALLAST- SSB8-27.2966/S	27.00	EBT, NC.	7,24			
ENERGY SAVINGS:						
FIXTURE	CURRENT INPUT WATTS	PROPOSED INPUT WATS	WATTS SAVED/ FIXTURE	\% ENERGY SAVINGS		
4:2LAMP BALLAST	72 W/FIXTURE	57W/FIXTURE	15	20.8		
4:4LAMP BALLAST	144W/2FIXTURES	109W/2FIXTURE	17.5	24.3		
8:2LAMP BALLAST	123W/FIXTURE	105 W/FIXTURE	18	14.6		
ENERGY DOLLAR SAVINGS:						
	TOTAL KW	TOTAL KWH	TOTAL KWHS	TOTAL DEMAND	TOTAL AC	TOTAL YEARLY
FIXTURE	SAVINGS	SAVINGS	SAVINGS/YR	SAVINGS (\$)/YR	SAVINGS (\$)/YR	SAVINGS(\$)
4:2LAMP BALLAST	93.90	615,233	18,155	5,859	6,052	30,066
4:4LAMP BALLAST	109.55	717,72	21,181	6,836	7,060	35,07
8:2 LAMP BALLAST	130.03	851,957	25,141	8,114	8,380	41,035
INSTALLATION COST:						
LABOR USED	TOTAL LAMP $\cos T(\$)$	TOTAL FXTURE $\cos (\$)$	TOTAL BALLAST $\operatorname{cost}(\$)$	TOTAL LABOR $\cos (\xi)^{*}$	TOTAL COSTOF INSTALLATON (\$)	PAYBACK PERIOD (YEARS)
SUBCONTRACTOR:						
4'88:2LAMP BALL	NA	NA	320,248	56,183	376,431	5.3
$\begin{gathered} 4^{\prime} 4 \text { LAMP }, 8^{\prime} 2 \text { LANP } \\ \text { UNION: } \end{gathered}$	NA	NA	273,298	32,604	305,902	4
4'88:2LAMP BALL	NA	NA	320,248	95,691	415,939	5.8
4'4LAMP, 822 LAMP	NA	NA	273,298	55,531	328,829	4.3
ANNUAL WORTH (AW) ANALYSIS:						
SUBCONTRACTOR LABOR:						
UNON LABOR:		2LAMP BALLASTS: $\quad A W(21 \%)=-\$ 415,939(.228)+\$ 71,701=.520,970$ 4' 4 LAMP, 82 LAMP BALL: $\mathrm{AW}(21 \%)=. \$ 288,829.2288)+\$ 76,712=\$ 3,449$				
'BALLASTREPLACEMENT TME: 2 LAMP BALLAST = 10 MIN./FIXTURE, 4 LAMP BALLAST $=25$ MIN. 12 FIXTURES (FROM EBT)						

ALTERNATVE 3: PARABOLIC FXTURES USING MAGNETEK TRIAD BALLASTS

LIGHTING EQUIPMENT COSTS:							
EQUPMENT	unit COST (s)	VENDOR	QTV. REQURED				
	56.66 39.92 96.58	METALUX MAGVEEEK TRAD	2,604 2,604 2,604				
ENERGY SAVINGS:							
$\begin{gathered} \text { CURRENT } \\ \text { WATS/SQ. } 7 . \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PROPOSED } \\ \text { WATS ISQ.FT. } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { WATSS SAVEDI, } \\ \text { r. } \\ \hline \end{array}$	$\begin{aligned} & \text { \% ENERGY } \\ & \text { SAVIMGS } \end{aligned}$				
238	1.52	0.86	36.13				
ENERGY DOLLAR SAVINGS:							
FIXTURE	TOTALKW SAVIIGGS	TOTALKWH SAVINGS	TOTAL KWHS SAVIIGS/YR	TOTAL DEMAND SAVINGS (SINR	$\begin{gathered} \text { TOTAL AC } \\ \text { SAVINGS (\$YRR } \end{gathered}$	$\begin{aligned} & \text { TOTAL YEARLY Y } \\ & \text { SANIIGS (\$) } \end{aligned}$	
$42330 \times \mathrm{A}$-3405301 EOUNALENT	138.38	900,666	26,76	8,05	8,919	4,310	
INSTALLATION COST:							
$\begin{aligned} & \text { LABOR } \\ & \text { USED } \end{aligned}$	TOTAL LANP $\cos T(\$)$	$\left\|\begin{array}{c} \text { TOTAL FIXTURE } \\ \operatorname{COST}(\$) \end{array}\right\|$	$\begin{gathered} \left\lvert\, \begin{array}{c} \text { Total ballast } \\ \operatorname{cosi}((S) \end{array}\right. \\ \hline \end{gathered}$	$\begin{aligned} & \text { TOTAL LABOR } \\ & \cos T(\xi)^{*} \end{aligned}$	$\begin{array}{c\|} \hline \text { COSTOF } \\ \text { NEWCELING } \\ \hline \end{array}$	$\begin{aligned} & \text { TOTAL INSTAL- } \\ & \text { LATION COST } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { PAFBACK } \\ \text { PER. (YRSS } \end{array}$
SUBCONTRCTOR UNON	$\begin{aligned} & 8,28 \\ & 8,28 \\ & \hline \end{aligned}$	$\begin{array}{r} 17,543 \\ 147,43 \\ \hline \end{array}$	$\begin{array}{r} 100,952 \\ 100,52 \\ \hline \end{array}$	$\begin{gathered} 02,142 \\ 105,838 \end{gathered}$	$\begin{aligned} & 281,588 \\ & 405,478 \\ & \hline \end{aligned}$	$\begin{aligned} & 644,007 \\ & 71,009 \\ & \hline \end{aligned}$	13.6 17.4
ANNUAL WORTH (AW) ANALYSIS:							
SUBCONTRACTOR LABOR:						$(\mathrm{AP21,15)}=0.228$	
UNONLABOR:							
"OFFCECELING REPACEMEN (INCLUDES LABOR \& MATERAL)							
	SUBCONTRACTOR UNON LABOA TOTA LIGHTMGA		75/ SOUARE FOOT S2 1 SUUAREFOOT .904 SOUARE FEET				

ALTERNATVE 3 : PARABOLLC FXTURES USING EBT BALLASTS

LIGHTNG EQUPMENT COSTS:

ENERGY SAVINGS:

CURRENT WATISISQ.FT.	$\begin{array}{\|c\|} \hline \text { PROPOSED } \\ \text { WATS SQ.F. } \\ \hline \end{array}$	WATS SAVED SQUARE FOOT	$\begin{aligned} & \text { \% ENERGY } \\ & \text { SAYNMS } \end{aligned}$				
238	1.46	0.9	33.66				

ENERGY DOLLAR SAVINGS:

FIXTURE	TOTALKW SAIINGS	TOTAL KWH SAVINGS	TOTAL KWH S SAIINGS/YR	TOTA DEMAND SAVINGS (S)VR	TOTALAC SAVIIGS (S)NR	$\left\|\begin{array}{c} \text { TOTAL YEARLY } \\ \text { SAVINGS }(S) \end{array}\right\|$
$\begin{aligned} & \text { 4' 2P3GAXX340S36M } \\ & \text { EOUNALENT } \end{aligned}$	148.03	9699,89	28,62	9,27	9,541	47,40

INSTALLATONCOST:

$\begin{gathered} \text { LABOR } \\ \text { USED } \end{gathered}$	$\begin{aligned} & \text { TOTAL LAMP } \\ & \operatorname{COST}(\$) \end{aligned}$	$\begin{gathered} \text { TOTAL FIXTURE } \\ \cos T(\$) \end{gathered}$	TOTAL BALLAST $\cos (\$)$	TOTAL LABOR $\cos (\xi)^{2}$	$\begin{array}{\|c\|} \hline \text { COSTOF } \\ \text { NEW CELLNG }{ }^{\#} \\ \hline \end{array}$	TOTAL ISTALLaTION COSTS	$\begin{aligned} & \text { PAYBACK } \\ & \text { PER. (YRS) } \end{aligned}$
SUBCONTRCTOR	8,288	147,543	20,46	Q2, 142	281,582	502,641	11.9
UNOW	8.828	147,543	02.46	106,888	405,47	733,183	15.4

ANNUAL WORTH (AM) ANALYSIS:

SUBCONTRACTORLABOR:	AW $(194)=5552,641(.288)+87,400=57,956$	$(A P 21,15)=0.228$
UNON LABOR:	AW $(1810)=\$ \$ 78,188(2888)+87,400=\$ 115,285$	

 - OFFICECELLNG REPLACEMENT (IMCLUDES LABOR\& MATERIAL)

$$
\begin{aligned}
\text { SUBCONTRACTOR LABOR RATE } & =\$ 1.75 / \text { SOUARE FOOT } \\
\text { UNON LABORRAIE } & =\$ 2.52 / \text { SOUARE FOOT } \\
\text { TOTAL LGHTING AREA } & =160,504 \text { SOUARE FEET }
\end{aligned}
$$

ALTERNATVE 3: USNG PARABOLIC FXTURESIN OFFICE BULLDING

DETERMNMATON OF REPLACEMENTSAIINGS:

LAMP AND BALLASTCOST TEPPLACEWENT SAVINGS ARE NEGIGLE; THEREEORE, THEY ARE NOT MCCLDED.
HOWEVER, REPACEEWENT LABOR SAVINGS ARE WORTH INC LUDNG.
FROW THE PROGBAM, LAMPSSHOLLDBE REPACED EVERY YYEARS AND BALLASTS SHOULD BE REPLACED VVERY 15 YEERS (BALLASTLIFE $=15 Y$ YEABS).

REPLACEMENL LABOR SAWMGG:
(APPLYTOBOTH MGGNEEEK TRAD ANO EBT BALLASTS)
NUMBEROF FXTURES SAVED $=2,76$ FXXTVES
SUBCONRACTOR LABOR:

INTERESTFACTOFS:
(PFF21,3) $=0.5645$
(PFF21,6) $=0.3186$
(PFF21,9) $=0.1799$
PFF21,12) $=0.1015$
PFF21, 15) $=0.0573$
(AP21,15) $=0.228$

LABORPATES:

1. COST TOREPLACE THE LAMPS NDCLEAN THEFIXTURE = S.7.5/FIXTURE (9MINUTES/FIXTURE
2. COST TO REPLACE HEL LAMPS \& BALLASTS AND CLEAN THE FXXTVE $=$ S $7.50 /$ FXXURE (BUUNUTES/FIXTURE)

BALLAST REPLACEUENTLLBORSAVIMGS $=\quad$ R2768FXTURES|(57.50/FXTURE $=\quad 20,700$

$=2,2,58 / \mathrm{YEAR}$
UNONLABOR:
LABORRATES:
3. COST TOREPLACE THE LAMPS ANOCLEAN HEFFXXURE = S6.33/FXXTURE (9MINUTES/FXTURE)

$A W(216)=[11,689 P F 21,3)+17,688 P(P 21,6)+17,688 P F 21,9)+17,689 P F 21,12)+35,377 P F 21,55] \times(A P 21,15)$
$=\$ 5,001$ YERR

ALTERNATVE 4:USING SYLVANIA METAL HALIDE FXTURES INPLANT

LIGHTING EQUJPMENT COSTS:						
EQUPMENT	UNIT COST (\$)	VENDOR	OTY. REQURED			
1.400 WATT LAMP: M4OOU $36,000 L U M$ 2.400 WATT METAL HALDE FIXTURE 3.EOUIPPED FIXURE	29.39 85.00 114.39	SYLVANA METALUX	1,765 1,765 1,765			
ENERGY SAVINGS:						
CURRENT WATTSISQ.FT.	PROPOSED WATIS SQ. FT.	WATIS SAVED/ SQUARE FOOT	\% ENERGY SAVINGS			
1.56	1.47	0.09	5.7			
ENERGY DOLLAR SAVINGS:						
FIXTURE	TOTALKW SAVINGS	TOTAL KWH SAVINGS	TOTAL KWH S SAVINGS/YR	TOTAL DEMAND SAVINGS (s)/YR	TOTAL AC SAVINGS (\$)/YR	TOTAL YEARLY SAVINGS $(\$)^{*}$
M400N 400 WATT	49.68	325,503	9,606	3,100	3,202	16,934
INSTALLATION COST:						
LABOR USED	TOTAL LANP $\operatorname{cost}(\$)$	TOTAL FXTURE $\operatorname{cost}(\$)$	TOTAL LABOR $\cos (\xi)^{\#}$	TOTAL COSTOF INSTALLATON(S)	PAYBACK PERIOD (YEARS)	
SUBCONTRACTOR UNON	$\begin{aligned} & 51,873 \\ & 51,873 \end{aligned}$	$\begin{aligned} & 150,025 \\ & 150,025 \end{aligned}$	$\begin{aligned} & 122,405 \\ & 208,472 \end{aligned}$	$\begin{aligned} & 324,303 \\ & 410,30 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 24.2 \end{aligned}$	
ANNUAL WORTH (AW) ANALYSIS:						
SUBCONTRACTOR LABOR:		$A W(21 \%)=\{524,303(.288)+\$ 16,934=. \$ 55,321$				(AP21, 15) 0.2228
UNONLABOR:		$A W(21 \%)=\$ \$ 10,370 .(228)+\$ 16,934=\$.874,496$				
- NUMBER INCLUDES \$1,066 INREPLACEMENT SAVINGS (SEE REPIACEMENT SAVINGS CALCULATIONS)						
- TIME TO INSTALL FXXTURES = 3 HOURS / FXTURE (INCLUDES TME TO REMOVE OLD FIXTURES) NUMBERS INCLUDE REPLLCEMENT LABOR SAVINGS (SEE REPLACEMENT SAVNGS CALCULATIONS)						

ALTERNATVE 4: USING VENTURE METAL HALIDE FXTURES IN PLANT

LLGHTNG EOUPMENTCOSTS:

ENERGYSAVMGS:

CURPENT WATTS $/$ SQ. F.	PROPOSED WATTS SQ. F.	WATTS SAVED SQUARE FOOT	\% ENERGY SAVIMGS			
1.56	1.33	0.23	14.74			

ENERGY DOLLAR SAVINGS:

FIXTURE	TOTALKW SAVINGS	TOTAL KWH SAVMGS	TOTAL KWHS SAVIMGS/YR	TOTAL DEMAND SAYMGS ($(5) / Y R$	TOTALAC SAYMGS (s) NR	TOTAL YEARLY SAVINGS (\$) ${ }^{\text {t }}$
400WATVENTURE	126.5	883, 842	24,588	7,92	8,183	4,388

INSTALLATON COST:

$\begin{aligned} & \text { LABOR } \\ & \text { USED } \end{aligned}$	TOTAL LAMP $\cos (\mid(3)$	TOTAL FXXURE $\operatorname{cost}(\$)$	TOTAL LABOR $\operatorname{cosi}(\xi){ }^{H}$	TOTAL COSTOF INSTALLATON (\$)	PAYBACK PERIOD (YEARS)		
SUBCONTRACTOR	41,897	135,150	109,104	288,151	6.4		
UNOW	41,87	135,150	188,819	3202866	8.2		

ANNUAL WORTH (AM) ANALYSIS:

SUBCONTRACTOR LABOR:	$A W(21 \%)=\$ 886,151(.228)+\$ 44,348=\$ 19,406$	$(A P 21,15)=0.2228$
UNIONLABOR:	$A W(21 \%)=\$ 362,866(.288)+\$ 44,348=\$ 36,499$	
* NUMBER NLUDES REPLLCEMENT SAVINGS (SEE REPLACEMENTSAVINGS CALCULATIONS)		
" TMME TO NSTALL FXTURES = 3 HOURSS FKXTURE (IMCLUDES TME TO REMOVEOD FXTURES) NUMBERS NCCUDE REPLACEMENT LABORSAINGS (SEE REPLACEMENT SANNGS CALCULITIONS)		

ALTERNATVE: U:USNG SYLLVANA METALLAALDE FXXURES NPLLANT

DETERMNATON OF REPLACEMENT SAWINGS (SUBCONTRACTOR LABOR):BALLAST COST REPMCEMENT SAVIMGS ARE NEGLLEE; THEREFORE, THEY ARE NOT MCLUDED.HOWEVER, LAMPREPACEEMENT SANIGG AND REPACEMENT LABORSAVINGS ARE WORTH INCLUDNG.
LAMPS SHOUL BE REPLCED ATEND OF LIFE SICE BOTHOF THEU DO NOT HAVELNES OF 3YEARSBALLASTS SHOULD BE REPLACED EVERY 15 YEARS (BALLAST LIFE = 15 YEARS).
USE A3 YEAR PLANNNG HORIZON FOR AW ANALYSIS (CONSISTENT WTH REP LACEMENT PROGRAN)
LABORRATES:

1. SUBCONTRACTOR COST TOREPLACE THE LAMP AND CLEAN THE FIXTURE = $\$ 3.75 /$ FIXTURE (9 MINUTES/FIXTURE)2. THE UNON COST TO REPLACE THE LAMP AND CLEAN THE FIXTURE $=\$ 6.39$ FIXTURE (9MINUTES/FIXTURE)
LAUP COST REPLACEMENT SAMMGS:
LAUPLIFES: FF6T12LWISS $\rightarrow 12,000$ HOURS, VENTURE 40OW $\rightarrow 20,000$ HOURS

REPLACE.COST $=(3$ YEARS)/(12,1000 HOURS LIFE 6552 HOURSNR) $) \times(33,425)=\$ 54,750$
COST TOREPLACE 4OWW LAMPS $=\quad(1,765$ M.H. LAMPS)|(S29.394.AMP) $=$ $\$ \$ 1,873$
REPLACE.COST $=\beta$ YEARS $)(20,000$ HOURS LIFEG655 HOURSNR $) \times(51,873)=\$ 50,881$
AW(21\%) $=(54,750 \cdot 50,881)(A F 21,3)=\quad \$ 1,020$ $(A F 21,3)=0.2722$
SUBCOUTRACTOR LABOR SAWNCS:
 $\$ 43,133$
 $\$ 6,505$
AW(2 1%) $=(43,133 \cdot 6,505)(A F 21,3)=$ $\$ 8,970$
UNDN LABOR SAMNGS:
LABORCOSTOF F96T12 = (7022 FIXTURES)/(S6.39FIXTURE|(3YEARS/|(12O00 HRLIFEG552 HOURSNR)] $=\$ 73,498$ LABOR COST OF $400 W$ LAMP $=(1765$ FIXTURES $|\$ 6.39 F| X T U R E|(3 Y E A R S)|(20,000 ~ H R L I F E G 552 ~ H O U R S N R) ~=~ \$ 11,084$
AW(21\%) $=\quad(73,498 \cdot 11,084 /(\mathrm{AF} 21,3)=\quad \$ 16,989$

ALTERNATVE 4: USING VENTURE METAL HALIDE FXTURES INPLANT

DETERHNNATON OF REPLACEMENT SAVMGS (SUBCONTRACTOR LABOR):
BALLASTCOST REPLACEMENT SAVINGS ARE NEGLGLE; THEREFORE, THEY ARE NOT INCLUDED.
HOWEVER, LAMP REPLACEMENT SAVINGS AND REPLACEMENT LABOR SAVMGGS ARE WORTH INCLUDING
LAMPS SHOULD BE REPLACED AT END OFLIFE SINCE BOTHOF THEN DO NOT HAVELNES OF 3YEARSBALLASTS SHOULD BE REP ACED EVERY 15 YEARS (BALLAST LIFE $=15$ YEARS).
USE A 3 YEAR PLANNIMG HORZON FOR AW ANALYSSS (CONSISTENT WITH REPLCEMENT PROGRAN)
LABORRATES:
1.SUBCONTRACTOR COST TOREPLACE THE LAMP AND CLEAN THE FIXTURE = $\$$ D.75/FIXTURE (9 MINUTES/FIXTURE)
2 TRE UNONCOST TOREPLLCE THE LAMP AND CLEAN THE FIXTURE $=\$ 6.39 / F I X T U R E(S$ IINUTES/FIXTURE)

LAMP COST REP LACEMENT SAWMGS:

LANPLIFES: F56T12LWSS $\rightarrow 12,000$ HOURS, VENTURE $40 W$. $\rightarrow 20,000$ HOURS
COST TO REPLACE F96T12LAMPS $=7002$ FIXTURES)(2LAMPSFIXTURE)(S.382AMP) $=\$ 33,425$ REPLACE.COST $=(3 Y E A R S /(12,100$ HOURS LIFE $/ 6552$ HOURSNR $) \times(33,425)=\$ 54,750$
COST TO REPLCE 4OW LAMPS $=\quad(1,590$ M.H. LAMPS $)(\$ 26.351$ LAMP $)=\quad \$ 41,897$
REPLACE.COST $=$ (3YEARS)|(20,000HOURS LIFE6552 HOURSNR) $) \times(41,987)=\$ 41,176$
$A W(21 \%) \quad=(54,750 \cdot 41,176)(A F 21,3)=\quad \$ 3,655 \quad(A F 21,3)=0.272$

SUBCONTRACTOR LABOR SAWNCS:

$\operatorname{AW}(21 \%) \quad=(43,133-5,360)(A F 21,3)=\quad \$ 10,146$
UNON LABOR SANMCS:

$\operatorname{AW}(21 \%) \quad=(73,498 \cdot 9,985)(A F 21,3)=\$ 17,288$

APPENDIX D

ILLUMINATION LEVELS PROVIDED BY THE ALTERNATIVES

ALTERNATVE 1:USING REFLECTORS WITH 1 OCTRON LAMP

OFFICE AREA LLLUMNATION LEVEL ANALYSS FOR PROPOSED SYSTEM:

$F C=F O O T C A N D L E S$

TYPICALOFFICEFLOORDIMENSIONS $=528^{\circ} \times 96^{\circ}$
CEIINGHEIGTH $=9$
DESKTOP HELGTH = 3^{3}
SPACE TOLIGHT $=9^{\circ} \cdot 3^{\prime}=6^{\circ}$
FC (AVERAGE REQUIRED) $=80 \mathrm{FC}$
FC (MEASURED) $\quad=75 \mathrm{FC}$

USING FORMULAS PRESENTED IN APPENDXXA:
$\mathrm{RCR}=\frac{(5)(6 \mathrm{FEET}) /(528+96 \mathrm{FEET})}{(5288) /(90) \text { SQUARE FEET }}=0.37$

USED RCR = 0.37 TOFNDMF (MANTENANCE FACTOR) FOR CALCULATIONS:
ORIGINALSYSTEM: $\quad C U=0.63, \mathrm{WF}=0.85, L \mathrm{LD}=0.80$

PROPOSED SYSTEM: $\quad C U=0.88, M F=0.85, L D=0.80$

FC(INTIAL) $=$ (2900 LUMENSLAMP)|(LLAMPSFIXTURE)(1677 FIXTURESFLLOOR) (0.86)|(0.85) (588)|(90) SQUARE FEET
$=70.1 \mathrm{FC}$

FC(MANTANED) $=$ (2000 LUMENSLAMP)/(LAMPSFIXTURE)(167T FIXTURESFLOOR)/(0.86)/(0.85)/0.80) (528)(98) SQUARE FEET
$=56.1 \mathrm{FC}$

ALTERNATVE 3: USNG PARABOLIC FXXURESIN OFFICE BULDING

OFFICE AREA ILLUMMNATION LEVEL ANALYSIS FOR PROPOSED SYSTEM:
$F C=F O O T C A N D L E S$
TYPICALOFFICEFLOORDIMENSIONS $=528^{\prime} \times 90^{\circ}$
CELLINGEEGTH = 9
DESKTOP HEGTH $=3$
SPACE TOLLGHT $=9 \cdot 3^{\prime}=6^{\circ}$
FC (AVERAGE REQUIRED $)=80 \mathrm{FC}$
FC (MEASURED) $\quad=75 \mathrm{FC}$
USIMG FORIULLAS PRESENTEDIN APPENDIX A:
$R C R=\frac{(5) /(6 \mathrm{FEE}) /(528+96 \mathrm{FEET})}{(5288 / 90) \text { SQUARE FEET }}=0.37$
USED RCR $=0.37$ TOFND MF (MANTENANCE FACTOR) FOR CALCULATIONS:
ORIGINAL SYSTEM: $\quad C U=0.63, M F=0.85, L L D=0.80$
(528)/POB) SOUARE FEET $=103.6 \mathrm{FC}$
[528)(P6) SOUARE FEET
PROPOSED SYSTEM: \quad BASED ON 820 FIXTURES, CU $=0.83, \mathrm{MF}=0.85$, LLD $=0.80$
(528)/(8) SOUARE FEET $=100.1 \mathrm{FC}$
(528)\|(8) S SUUARE FEET $=80.1 \mathrm{FC}$

ALTERNATVE 4:USNG METAL HALIDE FIXTURES NN PLANT

