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THEORY OF RAREFACTION WAVES IN A PLASMA
CHAPTER I
INTRODUCTION

In recent years consliderable research, both experi-
mentél and theoretical has been done on various problems in
plasma dynamics. This recent re-emphasis of fluid dynamics
has been stimulated by various problems such as thermo-
nuclear research, and research and development on new plasma
devices. A considerable portion of the recent work in plasma
dynamics has been directed toward the understarding of the
nature and structure of compressional shock waves. Every
shock wave 1s accompanled by a rarefaction process; conse-
quently the nature of the rarefaction process in a plasma
must also be understood if the complete plasma flow problem
is to be solved.

The principal concern in this paper is the analysis
of rarefaction waves in a strongly 1ohized plasma in which
the electron temperature 1is much greater than the massive
particle temperature. Principles of continuum plasma dynamics
will be employed through the Eulerian formulation of the

equations of motion.
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Historical Background

Theory. The term “hydrodynamics' was first used by
Bernoulli (1700-1783) as the name for the combined sciences
of hydrostatics and hydraulics. The equations of motion for
a perfect fluid'were first derived by Euler (1) who 1s respon-
sible for both the "Eulerian" and the "Lagrangian" formula-
tions of the equations of hydrodynamics. Poisson (2) deter-
mined a simple wave solution of the differential equations
of motion for an isothermal gas. ‘Stokes (3) introduced the
concept of balancing mass and momentum across a discontinuity
surface 1n an isothermal gas marking the beginning of the
theoretical analysis of shoék waves., Riemann (4) developed
a complete theory for simple isentropic waves by introducing
a transformation of variables in the fluld dynamical equa-
tions. The technique for handling simple waves introduced
by Riemann is the well known method of "Riemann invariants".
Riemann also developed a theory for shock waves but incor-
rectly assumed that the shock transition was adiabétic and
reversibie. Hugoniot (5) showed that conservation of energy
requires an increase 1h the specific entropy across a com-
pressional shock. Rayleigh (6) pointed out that the entroby
condition prevents the occurrence of a rarefaction shock in
a perfect gas.

Thomson and Thomson (7) developed # phenomenological
theory for small amplitude compressional wavés in a plasma

which was the first theoretical work on acoustical plasma.
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‘waves. Recently, Fowler (8) has developed a theory for elec-
tron driven shock waves in which the plasma 18 treated as a
three component fluld composed of neutral atoms;, ions, and
electrons. |

Paxton and Fowler (9) have derived a theory for elec-
tron acoustic shock waves and have pointed out that electrical
breakdown waves observed in thé laboratory by Wheatstone (10),
Thomson (11), Beams (12), and Loeb (13) and in lightning dis-
charges by Schonland (14) are in fact electron acoustic shdck

waves,

Experiment. As jJust mentioned, the early experiments

on electrical breakdown in gases were observations of hydro-
dynamical waves in a plasma. Strutt (15) demonstrated that
the luminosity of an electrodeless discharge which extended
beyond the exciting field resulted from a hydrodynamical mo-
tion of the plasma. Fowler, et al. (16, 17) found that the
flow expansion observed by Strutt was composed of a succession
of acoustical waves which could be made to reflect from ob-
stacles placed in their path. Fowler, Paxton, and Hughes

(18) observed a new class of shock waves in the electric
shock tube and pointed out that the waves were driven by the
electron gas. This marked the first realization of the im-
portance of the electrons as a hydrodynamical fluid. A com- |
prehensive treatment of the experiments and theory pertaining
to the plasma flow in the electric shock tube has recently

been given by Fowler (19).
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Description of the Problem

The work presented in this paper has been motivated
by the need for a theory of the rarefactlion wave found in the
“"driver"” section of the electric shock tube when thg electron
temperature is muéh greater than the massive pafticle tem-
perature. This rarefaction of the plasma takes place during
the early stages of the discharge before the massive particles
have been appreciably heated (18) but after the electrical
current has risen to a high value. Such a rarefaction will
be named an "electrodiabatic" rarefaction.*®

Fowler (8) has pointed out that the electrons in a
plasma usually play a significant role in problems of plasma
dynamics and that thelr fluid dynamical behavior must be in-
cluded in the treatment of these problems.

The significance of the electrons can be demonstrated
dualitatively by considering the relative effectiveness of
electrons and heavy particles in transferring momentum to
other heavy particles. For simplicity, let us assume that
the heavy target particles are at rest and the incident elec-
tron and heavy particle have average velocities of Vand V
respectively. It 1s well known that the average transfer of
momentum in a coll;sion between the electron and a heavy
particle 1is

(8P ) = mv

#The word "electrodiabatic" means "electricity goes
across"; hence an "electrodiabatic" rarefaction wave has a
net electrical current flowing across it.
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while the average transfer of momentum between two like,

heavy particles in a collision is
(8P,) = = MV
M 2 )

The collision frequency v_ for the electron-heavy particle
collisions is quaiitatively related to the collision

frequency VH for collisions between the heavy particles by

V_ = v

H

consequently the average momentum transfer per unit time per

electron (APm) V_ 1s related to that for the heavy particles

<APM) VH By

2

(8P ) v_ = %i‘% (8Ry) vy .
If the impact electrons and heavy particles are in thermal
equilibrium (m'v2 = MVQ), it is observed that each electron
transfers half as much momentum per unit time as does each
heavy particle. Thus for a strongly lonized plasma the
mechanicél effects of the electrons are significant even when
the electrons and heavy particles are in thermal equilibrium.
If the electron temperature is much greater than the heavy
particle temperature (mve >> HVQ), which is the case con-
sideréd in this paper, it is evident that the momentum trans-
fer for the electrons far exceeds that of the heavy particles;
thus the ;lectrons will play the dominant role in the rarefac-

tion process in a strongly ionized plasma with electron
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temperature much greater than the massive particle
temperature.

As mentioned above, Rayleigh (6) observed that a
rarefaction shock is an impossibility in a perfect gas due to
the entropy restriction. In the case of a plasma that 1s
. subjected to an applied electric field, the bossible exis-
tence of a rarefaction shock must be re-examined. 1In fact,
it is shown in the following sections that under certain con-
ditions a rarefaction shock exists in a plasma.

- In Chapter II a éeneral theory for waves in a plasma
is developed from the basic equations of motion. The general
criﬁeria for simple waves and rarefaction shocks are derived,
and general descriptions oé each type of wave are given.

Electrodiabatic rarefactioh waves are treated in de-
téil in Chapter III by specializing the general theory of
Chapter II to fit this case.

Chapter IV contains an application of the electro-
diabatic wave theory to the case of a strongly ionized
hydrogen plasma. It 1s shown that electrodiabatic rarefac-
tion shocks indeed exist in the hydrogen plasma for certain
values of the electron temperature and degree of ionization.

In Chapter V the electrodiabatic wave theory 1s ap-
plied to the rarefaction wave in the "driver" section of the
electric shock tube. The relations connecting the shock
velocit& of the compressional shock produced in the electric

shock tube to the known conditions.ih the driver section are
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formulated for both simple rarefaction waves and rarefaction

shocks.

A very brief treatment of the effects of the plasma
microfields on the structure of a rarefaction wave has been

developed in Chapter VI.



CHAPTER II
THEORY OF ONE-DIMENSIONAL PLASMA FLOW

In the theory developed in this paper the plasma is
treated as a continuum with the Eulerian form of the differ-
ential equations of motion used throughout the analysis.
These plasmadynamical equations differ from the classical
Eulerian equations of hydrodynamics only by the inclusion of
electric and magnetic force terms. In the case of one-
dimensional flow with no externally applied magnetic fields,
the internally induced and the externally applied electric
fields are the only new force terms in the plasma equations

of motion.

Equations
The mechanicai equations can be derived either by re-

quiring continuity of mass and momentum in an infinitesimal
volume of the plasma (20,21,22,23), or by taking moments of
the Boltzmann equation (24). The individual equations of
particle continuity of the three compoﬁents of the plasma in

the laboratory reference frame are

B+ () =8 (1)

8
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ON .

Tt a (L) = 6 @)
8N )

Bt—o' +'5J_(' (NoUo) = - 6' (3)

where 6 is the lonization rate per unit volume. The momentum

balance in the plasma gives

9 (mnu 2

3 -
+ EE'(mnu +p ) =-enE + P +P_ (4)
-} * d » U2
3t (MNU) + 355 (MN,U° +p,) =eNE+P,_ + P (5) .
3 3
35 (MN.U,) + 35 (MNGU° +p,) = B,_ + P, (6)
where,P_+, P+_, P-o’ Po-’ P+o’ and Po+ are the total momentum

transfers to the particles denoted by the first subscript per
unit volume per unit time by collisions with the particles
denoted by the second subscript.  Since the momentum is con-
served in collisions between particles, P_+ = - P+_; P_° =

- Po_; and‘P+o = - P°+. A set of energy balance equations
can also be obtained (8), but instead aL slightly different
apbroach will be used in order to characterize the plasma
flow. The energy balance equations are'actually relations
which define the dependence of the temperature of the plasma
particles on the other flow variables. In order to keep the
presentation in this sectlion as general aévp0881bie, instead
of using the usual energy balance équations, a general func-

tibnal dependence of the particle temperature on the flow
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variables 1s assumed, and in Chapter III this éssumption will
be Jjustified for the specific problem of electrodiabétic wave
hbtion in a plasma. The assumption regarding energy balance

is contained in the following:

p = p(N) , (7)
and .
a = a(N) , - (8)

where p 1s the total plasma pressure (p = p_ + p, + po), N

' 1s the total number density of.heavy particles (N = N, + No)’

and a is the degree of ionization of the plasma (a = N_/N).
The electrical current must also be conserved through-

out the medium, and in the case where displacement currents

are negligible, this principle 1is given by
J=e(NU - nu) = constant . (9)

It is shown in Chapter III that the conservation of electriecal
current through the wave determines the energj balance of the
electron gas.

If .macroscopic charge neutrality is assumed throughout
the plasma medium, one has

N,=n. (10)

This assumption 1s completely valid in regions of constant
state. In wave regions where the plasma is being accelerated
in a given direction by internal pressure gradients, the

electrons attempt to escape more quickly than the ions.
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Escape of the electrons from this macroscopic region destroys
charge neutrallty and generates electrostatic forces which
accelerate the positive ions in the direction of the expan-
sion. The electrostatic force fileld genérated by the charge
separation 1s proportional to the pressure gradient in the
plasma (Eo¢ 3p/3x). Poilsson's equation relates the deviation
from charge neutrality in the plasma to the gradient of the
electrostatic field by

29 e
* - 3;'(N+ - n) . (11)

When the equations of motion of the components of the
plasma are combined to give the plasmadynamical equations for
the plasma as a whole, terms emerge which are proportional
to the net charge density N_ - n; hence by equation (11) and
the proportionality between the electric field and the pres-
sure gradient, these terms are proportional to the second
derivative of the pressure (aap/axz). The charge separation
term 18 of the same order as heat conduction and viscosity
terms which have been neglected in the first order hydrody-
namic theory; consequently charge separation, thermal conduc-
tivity, and viscosity determine the limiting wave profile for
a wave which becomes discontinuous in the first order theory.

Because of the approximate equality of their masses,
the positive ions and neutral atoms exchange momentum and
energy quite rapidly. This rapid exchange of energy between
the ions and neutrals keeps them in thermodynamic equilibrium;



hence one has

U =U. (13)

and

Adding equations (2) and (3) and using equation (13)
along with the defihition of the total massive particle den-

sity N = N + No gives

%E N + %; (NU) = O . (14)

Adding equations (4), (5), and (6) and substituting equations
(9), (10), (12), and (13) gives

2
%F (MNU) + §E-<MNUQ + -gi;'- 2%12 + p> =0 . (15)
e

Equations (14) and (15) are the general mechanical
equations of a plasma. A transformation of the flow velocity

variable U defined by

—g-nJ
wzU-§eN (16)
reduces the equations of motion to the form:
d N ) »
3T +-3;-(Nu ) =0, (17)

and

%E(mu*) +%[HNu*2 +;—£§<§-§E>+P]=0 . (18)

If we now impose the assumptions o = a(N) and p =
p(N) and perform the differentiations, the equations of mo-

tion become



TEV*NE—*-u*ﬁ:o (19)
and
mg%f-+MNu*g,‘:—'+nc2§-)’“—:=o (20)

The quantity ¢ 18 called the effective sound speed
in the plasma. Again, it should be stated that the assump-
tions @ = a(N) and p = p(N) place certain restrictions on the
energy balance in the flow. Equations (19) and (20) com-
pletely determine the nature of the plasma flow and are ob-
served to be identical in form to the classical hydrodynamics
equations for isentropic flow.

2 45 negative (02 < 0), the equations

If the quantity c
are elliptic and no wave solutions exist. In the elliptic
case the hodograph transformation transforms the two non-
linear equations into linear equations which are valid in the
entire plasma region and which can be solved either analyti-
cally or numerically. When the equations of motion are
elliptic the rarefaction process will be called an "extrusion".

The "extrusion"” rarefaction process will not be treated in de-

tail in this paper.

2 45 positive (¢ > 0), the plasmadynamical equa-

If ¢
tions are hyperbolic and wave solutions exist. The analysis
of the hyperbolic case 1s accomplished by making use of the

notion of "characteristics".
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Characteristics

In the mathematical theory of hyperbolic flow.the de-
pendent variables in the equations are in general differen-
tiated in different directiors.

If a 1linear combination of the equations 1s taken so
that the dependent variables are all differentlated in the
same direction, such a direction which in general depends on
all variables both dependent and independent is called "char-
acteristic". In the case of only two independent variables
and two dependent variables the characteristic directions de-
fine two one-parameter families of "echaracteristic curves"
or simply "characteristiecs".

Some 1important physlcal interpretations and theorems
relative to the hyperbolic equations of motion are stated
without proof:#*

1. The characteristics in the (x,t) plane represent

sound wave trajectories.

2. Fundamental Theorem: The flow in a region adja-
cent to a region of constant state 1s a simple
wave. |

3. In a simple wave zone, the characteristic curves
of one family are straight lines. '

These definitions and theorems are necessary in 6rder to pro-
ceed with the analysis of plasma flow.

The characteristics of equations (19) and (20) are

#For the proofs of these theorems see Courant (25).
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determined by taking a linear combination of the equations:
du* du#* 3N 2 N AN
W+(u*+'N)3x—+tgf+<vu"f+cT>H=O (21)
where § 1s a varliable parameter. We now ask when this com-
bination involves the derivatives of u* and N in oniy one
direction given by ( %%4%%._ . Evaluation of the coeffi-

cients in equation (21) shows that this condition is fulfilled

by
= (u* + W) 3T (22)
and
2
] d
*3’6“("”"’%’)3‘6‘ (23)
Solving for ¥, one finds
c2 c
t—N— or ¥ = & (24)

With this result thé two families of characteristic curves
C, and C_ in the (x,t) plane are determined by the two

directions

I,: dx = (u* + c)dt (25)
and

I: dx = (u®* - e¢)dt . (26)

In order to determine how the variables u* and N vary along
the characteristic curves, the values of § in equation (24)

are substituted back into equation (21) giving

. Cc
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and

II_: du* = £ 4N , | (28)

Zlo

where II, and II_ are valld along C, and C_ respectively.
The equations I+, I_, 11, and II_ are in some places
referred to as the "characteristic equations" of the flow.

Since ¢ = ¢(N), equations (27) and (28) can be integrated to

give o
u* + S E%E = constant along C_ (29)

and ‘
u* - S S%l = constant along C_ . - (30)

, 1
Equations (29) and (30) are the usual Riemann'invariants".

Characterization of Rarefaction Waves

As mentioned earlier, a basic property of simple waves
is that the characteristics of one kind are straight lines.
We will consider here rarefaction waves in 'which the C, char-
acteristics are straight linés. These waves are called
"forward-facing" waves since pﬁfticles enter the wave zone
from a regioh with greater values of x. This is assured
since these waves are propagated with a constant velocity
(u* + ¢) which is always‘greater than the particle velocity
u* (c 18 the + rootvof 02); Illustrations of "forward-facing"
rarefaction waves are shown in Figures 1 and 2. The charac-
teristic which separates the wave region from a region of

constant state is called the "head" of the wave if the gas

enters the wave across 1t or the "tail" of the wave if the
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Particle

——
X

Pigure 1. Porward-facing rarefaction wave with flattening
wave profile - a simple wave at all times,
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Particle
Path

s
X

Figure 2, Forward-facing rarefaction wave with steepening
wave profile - a rarefaction shock at the firat intersection
of C, characteristics.
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gas.leaves the_wave across 1t.

Figures 1 and 2 are seen to represent quite different
situations in that the characteristics are diverging in the
former and converging in the latter. 1In the divergent case
the i1llustration shows that the width of the wave increases
as the wave propagates; consequently the rarefaction remains
a simple wave. In the convergent case illustrated in Figure
2, the width of the wave decreases as the wave propagates.
Eventually the characteristics intersect giving rise to an
envelope on which mﬁltiple values of the propagation velocity
exist. Beyond the point where the envelope forms, a unique
continvation of a simple wave is mathematically impossible.
This mathematical failure of the continuous plasma hydrody-
namic theoryAcorrésponds physically to the production of a
shock wave. Any flow in which the characteristics in the
(x,t) plane converge as the wave propagates becomes a "shock"
wave and must be analyzed.by conservation of the flow through
the wave front.

There are then mathematically two possibilities for
a rarefaction wave in a plasma - a simble wave or a rarefac-
tion shock.

Determining the nature of the rarefaction wave is
equivalent to ascertaining how the slope of the straight C_
characteristics changes across the wave. The slope of the
C, characteristics 1s given by equation (25) to be dx/dt =

(u* + c); hence it 1s necessary to determine how the quantity
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(u* + c¢) changes through the wave zone. To determine (u* + ¢)
on-different C, characteristics, we examine the C_ character-
isties which are called in this case the "cross-characteris-
ties". For forward facing waves the C_ characteristics
through'the wave zone are curved lines in the (x,t) plane.
The characteristic equation II_, equation (28), gives a dif-
ferential :relationship which holds along the C_. characteris-
tics, and since the C_ characteristics intersect the differ-
ent straight C, characteristics in the wave zone, this rela-“
tionship determines u* as a function of the other variables
on the different C+ characteristics. Flgure 3 1llustrates
these important points in the wave zone of a "forward facing"
rarefaction wave.

A rarefaction wave is basically a wave across which
the density decreases. In the case of the rarefaction of a
plasma, the total number density N of the plasma particles
decreases as the particles flow through the wave.- With these

remarks it follows that if, in the wave,

d‘u’ + c! <0 | (31)

" the C, characteristics will converge causing a rarefaction

d‘u* + CZ >0 : (32)

the C+ characteristics will diverge resulting in a simple

shock and if

rarefaction wave. By using the characteristic equation II_,

equation (28), we find
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facing rarefaction wave.

C_ in a steepening forward-



d(u* + ¢) _ du* dc

c 1
4N dN daN N N N dN (33)

Thus the rarefaction wave 1s characterized by the quantity
d(Nc)/dﬁ in that d(Nc)/dN < 0 implies a rarefaction shock
while d(Nc)/dN > O implies a simple rarefaction wave.

General Comments on the Rarefaction Shock Wave

As mentioned in Chapter I, Rayleigh (6) pointed out
that a rarefaction shock wave cannot occur in a perfect gas.
This deduction was based on the fact that the specific en-
tropy would decrease across a rarefaction shock which is pro-
hibited by thermodynamics. Also, an analysis of isentropic
waves in a perfect gas (25) shows that the nature of the
waves 1s characterized by c® and d(Nc)/dN in exactly the same
manner as derived above for plasma waves. For a perfect gas
c2 and d(Nc)/dN are always positive; hence the rarefaction
wave will always be a simple wave. ‘ |

On the other hand, in a plasma which is being "heated"
by an electric field at the same time it 1s undergoing expan-
sioh, the change in the specific entropy of the plasma is not
a useful criterion for'deterﬁining the nature of the rarefac-
tion wave. In this case there is no thermodynamic restriction
on the éxistence of a rarefaction shock wave. Also, exam;na-

2 and d(Nc)/dN indicates that the

tion of the quantities ¢
conditions ¢® > 0 and d(Nc)/dN < O can exist in a plasma;
therefore a rarefaction shock wave is a poasible expansion

process in a plasma.
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Rarefaction Process in a Plasma

General. In the above analysis we have seen that
there are three distinct possibilities for the rarefaction
process in a current bearing plasma. These three possibil-

ities are given by the following:

Extrusion: 02 <0

Simple Rarefaction Wave: 02 > 0 and di{Ne) 0

Rarefaction Shock Wave: 02 > 0 and d(Ne <0.

Simple Rarefaction Wave. 1In the case of the simple

rarefaction wave the states on each side of the "forward
facing" wave are related by the Riemann invariant, equation

(30). Thus across the wave we find

aN (34)

where for reasons which will become apparent later subscript
4 refers to the region in front of the rarefaction wave and
subsceript 3 refers to the region behind the rarefaction wave.
Explicit determination of c(N) will be dealt with in Chapter
III.

Rarefaction Shock Wave. Relating the flow parameters

across the rarefaction shock by integrating along the C_
characteristic is not possible since it has been shown that

this analysis of the flow 1s not valid after the shock is
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' are derived

formed. Instead, the so called "jump conditions'
from the following basic laws of physics:

1. Conservation of mass

2. Conservation of momentum

'3. Conservation of energy

4. Conservation of current.

The jJump conditions giviﬁg conservation of mass and
momentum are derived by transforming equations (17).and (18)
'1nto a frame of reference attached to the shock wave. In
this reference frame plasma pérticles éome in one side at
constant velocity and density and leave the other side at a
different constant velocity and density; therefore the mass

and momentum equations become steady state equations in the

shock frame. These equations are given by

= (W) =0 (35)
and
2 w2, fo(m_o
= | +;§;<E'T‘>+p]=° (36)

where V is a velocity vector in the shock frame defined by V

u* - UR' The rarefaction shock velocity in the laboratory
frame is represented by Up. Integration of equations (35)
and (36) across the shock wave ylelds the jump conditions of

mass and momentum balance:

N3V3 = Ny, (37)



2 2 m m2 2 2 m ma
MN3V3 +eN3(E--M—>+p3=.MNuV4 +eN4<E-T>+pu
| (38)

The general Jump condition for the current is given by
J3=J4=J . . (39)

The general jump condition for energy could also be written
down here; however we will forego this and will consider only
specific approximations to the energy equation in the next

chapter.



CHAPTER 11I
ELECTRODIABATIC RAREFACTION WAVES

A rarefaction wave 1n a plasma with electron tempera-
ture much greater than massive particle temperature (T_ >> T)
and with a time independent electric current driven by an ex-
ternal electric field normal to the wave has been named an
"electrodiabatic" rarefaction wave. It has been pointed out
in the previous chapter that conservation of the electric
current through an electrodiabatic wave requires a definite
energy balance in the electron gas. In this chapter the re-
lation of the energy balance of the electrons to the nature

of the electrodiabatic rarefaction wave is examined in detail.

Current Balance

Under the conditions just mentioned the conservation
of energy loses its hydrodynamical importance since the elec-
tron gas, which is the energetic component of this plasma,
is constantly gaining energy from the electromagnetic field
by means of the Poynting vector and losing energy in colli-
sions with the massive particles. This energy balance in the
electron gas 1s controlled bj the conservation of'current;

consequently current conservation is extremely important in

26



27
determining the nature of the rarefaction wave. Since in the

case under consideration the current 1is carried almost entirely

by the electrons, one finds
J = - enV; = constant (40)

where Va i1s the drift velocity of the electrons in the applied
electric fileld. We must now determine the dependence of the
electron drift veloclty on the electron temperature and the

degree of ionization in the plasma.

Electron Drift Velocity

It was Just noted that to a very good approximation
the electric current through the electrodiabatic wave is
carried entirely by the electrons. In equation (40) we see
that the current dénsity is proportional to the product of
the electron density and the electron drift velocity; conse- '
quently it 1s necessary to determine the functional depend-
ence of the electron drift velocity Vd on the plasma variables
in order to characterize the rarefaction wave.

In the following derivatidn‘average values (mean free
path, average collision frequency, average thermal velocity,
and etc.) are used from the beginning instead of integrating
the microsddpic processes over the velocity,distriﬁution.

E#en though the velocity distributiQn functioﬁ is certainly
warped in an appligd electric field, the average value tech-
nique has been found to be quite useful in gaseous electronics

| in that the results obtained are quite simple and reasonably
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valid (26).

Let us assume the plasma is composed of eleqtrons,
neutral atoms, and one species of positive ions. In this
case the electrons gain energy from the applied electric
field and lose energy through collisions with both the neutfal
atoms and the positive ions. In the steady state of the
heating procesé the energy loss rate of the electrons 1is
equal to the rate the electrons receive energy from the
field; therefore the functional dependence of the electron
drift velocity on the plasma variables is determined by
equating the electron's energy loss rate to its energy gain
rate. The rate an electron gains energy from the applied
electric field 1is

Energy Gailn Rate = - eEava (41)

while 1f T_ >> T the energy loss rate of the electrons is

)
Energy lLoss Rate = %%—'(nivi + 1yV,) (42)

where E, 1s the applied electric field, %y 1s the average
fraction of its energy an electron loses to a positive ion
during a cbllision, %1, 18 the average fraction of its energy
an electron loses to a neutral atom during a collision, vy
1s the collision frequency for electron-ion collisions, and
Vo is the collision frequency for electron-atom coliisions.
Since the collisipns tend to randomize the electron motion,
the drift velocity is given approximately by

-eE
Vd = ma T (43)
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where 1 is the average collision time for an electron in the

plasma. In terms of the "mean free paths" A, and Ay, the

average electron collision time is

* - —— | (4)
Yy 4+ ¥
Xo l1

Equating the energy gain rate to the energy loss rate and
substituting the relations for the drift velocity and the

collision time given in equations (43) and (44) gives

2 ¥ [ Mro t oM

Substituting the electron temperature (32 = 3kT_/m) into

equation (45) gives

2 3kT_ ( nyko + Moy ) . (46)

V.S =
d om Ao + 34

- For electrons with energies greater than a few elec-

tron volts, the electron-atom "mean free path" is

- A+BT (u7)

(o) NO

where A and B are parameters which depend on the atomic
structure of the atom involved in the cbllision but are in-
dependent of the classical thermodynamic variables in the
plasma. The electron-ion "mean free path" for singly charged
ions is determined principally by coulombic scattering of the
electron by the ions and is given by Spitzer (24):



A, = 2= (48)

where D = (18ﬂe§k2)/(ln A eu) in MKS units. The dimension-
less quantity 1n A 1s a weakly dependent function of the
electron temperature T_ and electron density n which takes
into account the scattering of an electron by "distant" en-
counters due to the long range of the coulomb force.
Recalling that Ny = (1 - ¢)N and N, = aN and substi-

tuting equations (47) and (48) into equation (46) gives

v =t { 3. [ *4@(A +BT.) + x (1 - a) pT° ] }é (49)‘

a(A +BT.) + (1 - a)

The positive or negative root is to be chosen so thﬁt Vd'and
Ea have opposite sense.

In general a4 and ko are functions of the electron
temperature only - x; = ui(T_) and ®, = x,(T_) - and vary
from a minimum of (2m)/M* and (2m)/M respectively to a maxi-
mum of one half (2m/M* < ny < % and 2m/M < xy < 4). The
upper'limit approaches one half because when the collision
produces idnization the impact electron shares its excess:
energy with the ionized electron. However, if the ion has
been completely stripped of its electrons as in the case of
ut, He't, etc., the function x; is equal to (2m)/M¥ for all

electron impact energles. The general temperature dependence

of %o, and #; ("non-stripped" ion) 1s illustrated in Figure 4.
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Figure 4, The average fractions n, and x4 of electron
energy lost in collisions with atoms and Ions respectively
as functions of the electron temperature T. (qualitative

dependence).
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Equation (49) relates the electron drift velocity in
the plasma to the electron temperature and degree of ioniza-
tion. Tﬁis equation plus the law of current conservatiop
détermines a functional relation between the total plasma.
density N, the electron temperature T;, and the degree of
ionization. The functional relation between T_, N, and a
along with an assumption on & (namely that o i1s approximately
constant through the wave) is used to determine the effective
séund speed ¢ in the plasma as a functionvof the total plasma
density. In the theory developed in Chapter II, the effective
sound speed c(N) determines the nature of the rarefaction wave

through the quantity d(Ne)/dN.

Characterization of Electrodiabatic Rarefactions

Substituting the drift velocity determined in equation
(49) into the principle of current conservation which is
given by equation (40) yields

1="7F eaN 32:’“ ) = constant (50)

or
a°N°T_x = constant (s0')

where : 2
= nja(A + BP-) + x (1 - a)DT_ (51)
" a(A +BT.) + (1 - a)DP® >

The function » = x(a,P.) defined by equation (51) is called
~ the "effective" fraction of 1its energy an electron in a

plasma loses per collision with a heavy plasma particle.
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If a 1s constant through the wave, it can be treated as a
parameter and equation (50) in principle can be solved for
T_ = T_(N). Since in a strongly ionized plasma with the
electron temperature much greater than the heavy particle
temperature the total pressure 1s approximately equal to the

electron partial pressure, we have
P =~ p_. = aNkT_ = p(N) . (52)

Equation (52) and the assumption that the degree of
ionization is constant through the wave satisfy the assump-
tions that were made in developing the general theory in the
preceding section; consequently electrodiabatic flow in a
plasma with constant lonization through the wave can be
analyzed using the general theory developed in Chapter II.

The effects of the electric microfieldslon the plasma
equation of state have been neglected in equation (52) where
the electron partial pressure is assumed to be produced by
an "ideal" electron gas. The effects of the electric micro-
fields on the nature of the plasma flow are examined quite
briefly in Chapter Vi for isentropic and isothermal expan-
slons in a plasma in thermal equilibrium.

With the degree of ionizatlion constant through the
wave, the square of the effective sound speed given in equa¥

tion (20) can be written

2 _ -32 m _ m? ak 3T |
c Meanz o _M_>l+_ﬁ-<T-+N8N_- (53)
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The conservation of current given by equation (50.)'
18 now used td calculate 3T_/3N. Let us define a new quan-
tity ¢ by ®(T_.) = »(T_)T_ which gives on substitution into
equation (50)
2 @(T_) = constant. (54)

Differentiating equation (54) with respect to N gives

where @' = 39/3T_. Substituting the values for the current
density J and 3T_/3N into equation (53) yields

2 _ _ 3 _am ) ak ak 29
=-3 (1 N >—M nT. + (‘I‘_ -3 ) (56)
or approximately

2%k (p _20_3) (56')

Since the quantity d(Nc)/dN which characterizes a

rarefactlon wave as elther a shock or a simple wave is

d(Ne) _ _1 d(N?c?)
dN 2NC th

and since the quantity Nc is always ﬁositive‘,' the quantity
d(N2c2)/&N can be used to characterize the electrodiabatic

rarefaction process. Using equation (53) we find

2 "
d(gic ) _ 2akN< cp 2cp2cp ) (57)

where " = 32¢P/BT% .
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Equations (56) and (57) completely characterize the
electrodlabatic flow process in the plasma. The different
possible rarefaction processes predicted by the general
theory for the electrodlabatic case afe listed in the

following:

n

Extrusion: T_ - $$ - % <0 (58)

Simple Rarefaction: T - %$ - g-v >0

® 2¢°9"
andT_-W-—;;?->0 (59)

N
‘

Rarefaction Shock: T_ - ¥ % >0

- gﬂggﬂ.< 0 (60)

The quantities in inequalities (58), (59) and (60) determine
the nature of the rarefaction process in terms of the func-
tion ¢ and its derivatives. 1In general, numerical determina-
tion of @, ®' and 9" 1s possible but would be quite involved.

In the case of a hydrogen plasme @, @', and ®" can be
determined as explicit functions of T_ and a. This analysis
of a hydrogen plasma 1s developed in Chapter IV.

Simple Electrodiabatic Rarefaction Waves

The general theory relating the thermodynamic states
on each side of the rarefaction wave which was developed in
Chapter 1II 1s applied here to the electrodiabatic rarefaction.

For an electrodlabatic rarefaction wave with effective sound
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speed given by equation (56'), equation (34) - a Riemann

invariant across the wave - becomes
N

M
o - ul - S—[akCT—%?--g-QJ)FdN. (61)
N3

Equations (54) and (55) are used to transform equation (61)

to the following form:
T
uy - uj = - ; gé [ %%—( T_-59 - Q) ]% ar_ . (62)

Equation (6?).relates the change in velocity u* across the
simple electrodiabatic rarefaction wave to a function of the
thermodynamic variables on each side of the wave given by the
integral on the right side of the equation. In Chapter IV

the integral will be expressed as an integral over an explicit
function of T_ for the case of an electrodiabatic wave in a

hydrogen plasma.

Electrodiabatic Rarefaction Shocks

The three Jump conditions, for conservation of mass,
momentum, and current across an electrodiabatic rarefaction
shock have been derived in Chapter II. With the functional
dependence of the electron drift velocity developed in this
chapter, the equation of current conservation - equation (39) -
becomes

N2 oy = N2 o (63)

and the momentum conservation equation becomes
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2 + (a - ———-> 3 kN3¢p3 + aN3kT = MN4V4 +

-3
(@ - —> KNy + oMKy (64)

The equation of mass conservation, equation (37), is recalled
to be the foilowing:

NAVh = N3V3
Solving equations (37), (63) and (64) for the relative
velocity ahead of the wave in terms of the states on each

side of the wave, one finds

Yy - p ﬂégl‘%& 3+ 13
T (TR #)n ]

(3G - vy ]} (65)

If ¢ 1s replaced by xT_ and if (ma)/M is neglected, equation

(65) can be rewritten approximately

y =3 ak 1+ 23wy, Ty
TEI DN L

SC LR IOLIS LI

The relative velocity behind the shock is given by
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[(2 >%<1+3"u>T-4

ATTRES

Gedmorg 1. (67)

For a "forward facing" wave the negative value of the square
root 1s the correct solution.

The velocity of the rarefaction shock in the labora-

tory frame 1is

Ug = uy - Vy , (68)
but by definition
* - i
uy = Uy MeN, (69)
which gives
=g, - B
UR U4 MeNu Vu . (70)

Since in the electrodiabatic rarefaction the velocity
Uy of the massive particles ahead of the wave is zero, one

obtains

Ug = - __1_ {

e[ (R >*']
(&) Gl 1

Equation (71) shows that the electrodiabatic

[ (1 + 2 "y ) T_y



39
rarefaction shock velocity depends on the polarity of the
current J. It can be shown that the magnitude of the first

term in equation (71) 1s smaller than that of the second
term; consequently the rarefaction shqck velocity is only

slightly dependent on the polarity of the current J.

Degree of Ionization

Since the degree of ionization in the plasma has been
assumed constant through the wave, this quéntity enters the
theory as a parameter. Even if this assumption is valid,

" there are other restrictions on the degree of ionization that
must be fulfilled. N

In the electrodiabatic rarefaction process the elec-
trons are assumed to have a temperature much greater than the
massive particle temperature (T_ >> T). As discussed in
Chapter II the rarefactidn wave 1in a plasma accelerates the
lons by the induced electric fileld resultiné from the chérge
separation caused by the electrons escaping from a fegion of
changing state faster thaq the ions. The ions in turn give
momentum and energy to the neutrgl atoms by collisions. The
ion-neutral atom colliéions tend to randomize the energy of
both the ions and neutrals; consequently, if the neutral atom
density is too }arge the.atoms and ions will actually be
"heated" by the rarefaction wave. The result of this "heat-
ing" for a < 4 would be that the ion and atom partial pres-
sures would increase through the rarefaction wave and would
not be negligible. For this reason the theory developed here

is applicable only for a > %.



CHAPTER IV
APPLICATIONS OF THE ELECTRODIABATIC THEORY

It has been noted in the previous chapter that the
nature of the electrodiabatic rarefactibn wave in a strongly
jonized plasma 18 determined by.the conservation of the
electric current which in turn requires a'definite energy
balance in the electron gas. The average energy per collision
thét an electron loses has been shown to be a very complex
function of the electron temperature. 1In genergl this func-
tion 1s not known analytically; hence the analysis of these
rarefaction waves must in general be handled numerically.

The unknown quantities in » are »y and x,- These
functions can be calculated by considering all of the possible
collislon cross sections for each type of collision, buﬁ this
approach would not permit an analytical evaluation of the
nature of the electrodiabatic wave as a function of the
electron temperaturé.

In the case of a partially ionized h&drogen Pplasma
the requirement of the theory that the plasma have only three
types of particles - electrons, neutral atoms, and one species
of ions - 1s fulfilled. We assume that there are no hydrogen

molecules or molecular ions in the plasma. Also, if the

4o



b1
electron temperature in the hydrogen plasma undergoing rare-
factlon 1s of the order of the ionization energy, i.e. kT_ &
eVy, then ny = 1/2 while since an electron can only lose
energy to the hydrogen ion H' elastically x4 = (2m)/M* for

all electron energies.

Characterization of the Waves

The theory developed in Chapters II and III 1s now
applied to a hydrogen plasma in which the electron temperature
is on the order of the ionization energy (kT = eVi). Under
the conditions which exist in the hydrogen plasmé, the n
function is according to equation (51) the following explicit

function of the electron temperaturé

%% o(A +BT.) + #(1 - a)DTg'

" a(A +BT_) + (1 - a)DT® . (72)

The functions ®, @', and ®" (® = aT_, @' = 3p/3T_, @" =

a2¢/aT? which determine the nature df the rarefaction by the
inequalities (58), (59), and (60) can now be calculated from
equation}(72) as explicit functions of electron temperature.

Carrying out the differentiation gives

o =25= (73)

BRC* - AND®
®' = - ’ (T4)

"o_ B* (B*E* - A®F#) . 2D#* (B*C# - A#D*) .

B3 T (75)

)
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The functions in equations (73), (T4), and (75) are defined

by the following:

= 2m 1 2
A% = ﬁ;.a(A + BT.) +-§-(1 - a) DT ,
B* = a(A +BT.) + (1 - a) DI? ,
c* = 2m g(p + 2BT.) +3 (1 - @) DI?
- MF - -
D* = 0BT_ + 2(1 - a) DT- ,
' = 4m | 2
E*-FGBT_+3(1-O~) DT< ,
and ' ‘
F* = 2(1 - o) DT .

(76)
(77)
(78)
(79)

(80)

(81)

If equations (73), (T4), and (75) are substituted

into equations (56') and (57) for ¢® and d(N2c2)
obtains
2 _ akT. QAR 3 A%
¢ =™ <1'B*c*-A*D*"§'B_5>’
and
22
d(N c ) _ 20kNT. {1 _ A%B#%
aN M B#*C#* _ A®D#®

/dN, one

- 2A*2B*[B*(B*E* ~ A%P%) - 2D% (B¥C# - AWD®)]

(B#C* - A#D®)3

(82)

}(83)
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According to the inequalities (58), (59), and (60)
developed in the previous chapter, the nature of the electro-
diabatic rarefaction process in a hydrogen plasma in terms

of the above quantities depends on these inequalities:

: 2A%B* 3 A% _
Extrusion: 1 - mood ™~ pwpw ~ 5 pF - O (84)

2A%B* 3 A*
H - — o. 8
Wave Solption 1 F¥C* _ A¥D* _ > BF (85)

If the rarefaction is accomplished through a wave, the nature

of the wave 1s given by

A*B*

Simple Rarefaction: 1 - B¥C* - AvD¥
2A*2B*[B*(B*E* - A®F¥) - 2D*(B*C¥ - A%D*)] _ I(86)
(B*C* - a%D*)3 .
. A*B*
Rarefaction Shock: 1 - B¥C* - A¥D*
_ pA#°pe B* (BXE* - A¥F*) - OD* (B*C* - AD*
[ ( ) ( 1 .o, (87)

(BRC* - A%D#*)3

We now turn to the determination of the essential
constants A, B and D. The mean free path for electrons in a
gas of hydrogen atoms at 1 mm Hg pressure (Ny = 3.5 10%°
atoms/m3) is plotted as a function of the electron temperature
in Figure 5. The total collislon cross section data used to

plot this graph have been taken from Brackmann, et al. (27)
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Figure 5. Electron-atom mean free path Ay in a(gas of H
atoms as a functi of electron temperature T. -(atom
density = 3.54 10gg atoms/mgy?
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for the low energy scattering while the high energy cross sec-
tions have been apprbximated from high energy cross sections
in molecular hydrogen (28). The values for A and B are then
obtained from the 1ntercept and the slope of the curve by
multiplying these numbers by the neutral particle density N,
corresponding to 1 mm Hg pressure. This graphical determina-

tion of the constants A and B in atomic¢c hydrogen gives

A =5.3 1088 per m?
and
B = 8.1 1013 per m3 per °K .

The constant D in the equation for the electron-ion

mean free b&th is calculated to be approximately
D = 2.1 10% per n? per °K2 .

The electron-ion mean free path Ay is plotted in Figure 6 as
4 function of electron temperature for an ion density of
3.54 1022 1ons/m3.

Calculations of c°

and d(N2c2)/dN for electron tem-

6 °k and for degrees of

peratures ranging from 104 to 10
ionization of a = 0.5, 0.9, and 0.95 are plotted in Figures
7, 8, and 9 showing the dependence of the nature of the rare-
faction process on the electron temperature and degree of
ionization in the plasma. The illustrations show that all
three rarefaction processes - extrusion, simple rarefaction,
and rarefaction shock - can be expected in a given hydrogen

plasma depending on the values of the electron temperature
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and degree of 1lonization that prevail.

Simple Rarefaction Wave

For the case of the simple electrodiabatic rarefaction
wave 1n a hydrogen plasma, the functions derived in this
chapter can be substituted interquation (62) to give the
foliowing relation between the flow varliables on each side

of the wave:

* % 1ok \Y( " prcx - pepe £ 2pmps
Uy -~ Uz = - ) S T% BeA* (1 B¥*C* - A¥D%
. |
- VEar. . (88)

No attempt to evaluate this integral has been made; however,
since the integrand 18 a known function of the electron tem-

perature, numerical integration can readily be performed}

Rarefaction Shock Wave
The velocity of the electrodiabatic rarefaction shock
as a function of the electron temperature on each side of
the wave 1s obtained by substituting the quantities derived
above into equation (71). Performing this substitution gives

UR“"ﬁE'%; Aal;a 3 [(1“33—.)'1'-4
" [ C‘B3A4 1]'

SEUQT

u>¢k»t

)T-3 ] }%_- (89)



51
In Chapter V the quantities derived in this section
are applied to the electrodiabatic rarefaction waves that are

produced in the "driver section" of the electric shock tube.



CHAPTER V
ELECTRIC SHOCK TUBES

A simple electric shock tube is constrﬁcted from a
long cylindrical tube in which the heating discharge takes
place between a plane cathode placed'in‘oﬁé'epd of the tube
and a hollow rihg anode placed a short distanéé from the
cathode. The regionApétween'the;two electrodes'ls called the'

"driver section"” while the region beyond the hollow ring
anode 1s referred to as the "expansion chamber". A large
capacitor charged to a high voltage is quickly switched
across tq§ two electrodes 1in the driver section resulting in
“an electrical discharge through the gas. This electrical
discharge creates a high temperatﬁre, high pressure plasma
in the driver section which expands beyond the ring electrode
causing a rarefactioh wave to propagate through the plasma
from the ring anode back to the plane cathode and causing a
compressional shock to propagate up the tube. A schematic
of the electric shock tube is shown in Figure 10.

The theory derived in the preceding sections is ap-
plied here to the rarefaction wave in the driver section of
the electric shock tube. The development in this section
will be limited to éhe formulation of the equations giving

52
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Figure 10. Schematic of a simple electric shock tube.
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the functional dependence between the compressional shock

velocity and the known conditions in the driver section of

" the tube.

General Description of the Flow

There are 15 general four distinct plasma regions 1in
the simple one-dimensional electric shock tube. These four
regions are separated by three different hydrodynamical
waves - a compressional shock wave, a contact surface, and a
rarefaction wave. |

The first region, located in the expansion chamber,
i; composed of the as yet undisturbed stationary gas. The
second region is composed of a partially lonized plasma which
1s moving with a constant velocity up the expansion chamber
6f the tube.' All particles in region 2 have been produced
from gas.qriginally exterior to the driver sec@ion. Regionsj
1l and 2 are separated by a compfessional shock wave which
ionlzes, heats, compresses and accelerafes the gas passing
through it.

The plasma in region 3 was generated from gas which
was originally in the driver section of the tube;' The con-
sfant flow velocity in region 3 is equal to the flow velocity
in region 2; consequently there is no plasma flow through the
wave separating the two regions. The wave separating regions
2 and 3 1s called a "contact surface". The temperature and
density change discontinuously across a contact surface, but

the pressure remains constant across the wave. The plasma in
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- region 3 can be pictured as a gaseous piston moving with a
constant velocity into the expansion chamber.

Region 4 is composed of plasma in the driver section
that has as yet not been disturbed by the hydrodynamical ex-
pansion of the plasna. The electrons in region 4 have a
drift velocity in the applied electric field of the discharge;
however, during the early stages of the discharge, the lons
and neutrals are approximately static. Regions 3 and 4 are
separated by an electrodiabatic rarefaction wave which has
been shown in the preceding sections to be either a simple
rarefaction wave or a rarefaction shock depending on the tem-l
perature and. degree pf ionization in the plasma. It should
also be noted that thevmass density in region 4 i1s equal to
the known mass density in region 1. ‘

When the expansion takes ﬁhe form of an extrusion,'
‘-_region 4 disappears and region 3 extends instanbaneously to
~ the end.electrode of the tube.

Figure 11 i1llustrates the wave profiles and the .
changes of the different thermodynanic variables across the
three waves. )

Fowler (8) has developed a theory for electron driven
shock waves which gives the following relationship between
the compressional shock velocity US’ the electron temperature
T_2, and the degree of lonization o, behind the shock for

the strong shock approximation (pp >> p,):
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Figure 1l1. Schematic of the hydrodynamical waves in an
electric shock tube showing the changes of the variables
p_, N, and T_ across the waves,
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2eV, 2
@y kT_, (& + kT_: )

Ug = - [
w (3 +i§‘_’2)

7’ (90)

The negative sign has been chosen for a shock traveling to
the left as shown in Figure 11. The following equation for
the plasma flow velocity U, and the total density N2 behind

the shock can also be determined from the above cited work:

2eV
@ kT-o (3 + k;_; > 3
U, = - . . (91)
and - |
. |
Ny = (4 + kT_: DR (92)

Combining equations (90) and (91) yields

2eV
i
(3 +‘kT'2 )
Uy = (ﬁ 5ev; ) Ug . (93)
+
kT-5
It has just been pointed out that Py = p3 which
implies

Ny @ kT, = N3 a3 kT3 . (94)

If the theory for the electrodiabatic rarefaction
- process is now used to relate the variables in region 3 to

the known variables in region 4, the velocity of the
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compressional shock wave 1is determined by the variables in
region 4 of the plasma.

The density Ny in region 4 1s determined by the ini-
tial gas pressure in the tube. This leaves only the electron
temperature and degree of ionization in region 4 to be deter-
mined. The so called "heating theory" (8,18,19) of the
plasma determines the electron temperature and degree of
ionization in reglon 4 in terms of the applied electric field
and current. The heating theory of the electron gas 1s quite
complex and as yet incomplete; however, in principle the
electron temperature and degree of ionization in region 4
are known.

The velocity of the advancing compressional shock not
only depends on the plasma density, applied electric field,
and electric current in the driver section; but also depends
on the nature of the electrodiabatic rarefaction wave.

We now assume that the expansion in the driver sec-
tion of the electric shock tube is an electrodiabatic rarefac-
tion wave with the degree of ionization constant across the
wave, The assumption that the degree of 1oniéation is con-
stant across tﬁe electrodiabatic rarefaction wave is valid
when the degree of ionization in region 4 is large (oy > 4).
The theory developed in Chapter III is used to relate the
plasma variables across the wave for the two cases - simple

rarefaction wave and rarefaction shock.
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Simple Rarefaction

If the electron temperature and degree of ionization
satisfy the inequalities (59), the rarefaction is a simple
wave across which equation (62) must be satisfied. With the
definition u* = U - (mJ)/MeN and equation (50) for the cur- |

rent density, equation (62) 1s rewritten

with the * sign depending on the polarity of the applied
electric field. The constant degree of ionization through
the rarefaction 1s denoted by a3(a3 = au). The flow velocity
Uy of the massive particles 1n the region ahead of the rare-

factlon wave is zero for the electrodiabatic rarefaction wave

giving
-%ﬂ%%(%)"’(%%-%*)

Ty
16 DAY ICEE S DL S
T-3

The current continuity given by equation (50') transforms
equation (94) into

22 =, (g )é ('r_u'r-3)% . (97)
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If equation (92) and the fact N; = Ny are substituted into

equation (97), one finds

<u ¥ I‘QC:"_,; > 0-2T_2 =93 ( -:_‘; >% (T~4T-3)é . (98)

Equations (91) and (96) along with the fact U, = U3'give the

following:

[ Gt -+3 c=3( <) @t - wh

3 (F >%S .%—(--_%?-gep)*w_. (99)
T-3

Equations (98) and (99) approximately determine the

quantity GQT_Q ; hence these equations coupled with the ap-

propriate heating theory give the velocity of the compression-

al shock in terms of the applied electric field, electrical

current, and plasma density in the driver section.

Rarefaction Shocks

If the rarefaction wave in the driver sectién of the
electric shock tube 1s a rarefaction shock, an analysis
similar to that Jjust completed relates the velocity of the
compression shock to the known parameters in the driver sec-
tion of the tube.

Equations (67 ) and (71) along with the definition

* = Ug +V give
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u;“.'ﬁe%'*{ 4a.3k [<1+%n4>‘r_4

W[ ()]
() Gegngdr P

-1

[ <n4>ﬂ[(n4><1+-"u>'r-u

-(l +é3-n3>'1‘_3]}%. | (100)

The definition u* = U - (mj)/MeN and equation (50) reduce
equation (100) to

vy =¥ oy (38 )é ["‘3’1'-3)% - (my7-y)? ]

o3K 143wy )Ty - 4 %1
e rIAMARERCHL

+%n3)'r_3]}%-{ [ Z”‘)ﬂ[( )(

+3u )1y - Qedng)rg ]} (201)

If equation (91) along with U, = Uj 1s substituted

into equation (10l1), one has
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%m1(3+§“>

[ e g () [yt

- (uuT_u)% ] {

. [ ( >§. ] [ (1 +’§'”4 > ?—4

i 1+ 3 T_q J O3k
ESICTISER {M[1-< 7

X [ ( ) (1 + §-n4 > T <ﬁ + 3_13 ) T_3 ] }%,;

Since the current continuity condition for the

(102)

rarefaction shock is the same as for the simple rarefaction,

equation (98) holds here also. Equations (98) and (102)

determine a2T_2 in terms of a3T_4. As before, these quan-

tities are determined by the heating theory. Thus the com-

pression shock velocity given by equation (90) is determined

by the conditions in region 4 of the plasma.



CHAPTER VI
ISENTROPIC AND ISOTHERMAL RAREFACTION WAVES

The effects of the plasma microfields on the nature
of the rarefaction wave are considered very briefly here.
For this derivation let us assume that there 18 no applied
electric field; hence the current density 1s taken to be zero
(3 - 0). The plasma is also assumed to be completely ionized
and in thermodynamic equilibrium at a temperatﬁréfT.f

Equations
The equations characterizing the plasma fiow are the

general equations derived in Chapter II. If the current
density J 18 zero and the degree of ionization a is unity,
the effective sound speed c¢ defined in equation (20) reduces

to the following:
2 13 | '
¢ = Fa° - (103)

'In order to determine the nature of the rarefaction
wave 1t 1s necessary to obtain an expression for the plasma
equation of state. For the case of the isentropic rarefac-
tion the specific gntropy must be expressed in terms of the

plasma temperature and density.
63
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The Debye-Huckel theory of electrolytes yields an

equation of state for a plasma given by

3/2

ONKT - B 5172 (104)
T

‘o
]

where

&3 3
BElSITT(egk)

The quantity B is given in MKS units. This theory also

determines the specific entropy to be

P3N g2
8 = k 4n ( §§-> - B H§7§ + 8, (105)
2l

‘where s, 1s a constant,

Théimer (29) from a différént approach has derived
equations fof the plasma pressure p and specific entropy s in
a plasma for the limiting case 6f very large plasma density.
Theimer's equations for the plasma pressure and specific
entrbpy as functions of plasma density and temperature are
identical to the Debye-Huckel equations (104) and (105).

The nature of the plasma rarefaction process can be
determined directly from equations (103), (104) and (105) for
either an isehtropic or isothermal expansion.

The rarefactlon process is characterized as before

by the following:

Extrusion: 02 <0
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2y
Simple Rarefaction Wave: c2 >0 %%Efg—l >0

, 2
Rarefaction Shock Wave: c2’> 0 %éﬂgg—l <0

Isentroplic Expansion

Combining.equations'(103) and (104) gives

1/2 _3/2
c2=%[2kT-%B§1ﬁ+-(2kN+%B:—‘37§.)%§' . (106)

For the case of 1sentroplec flow the specific entropy s in
equation (105) is constant. If equation (105) is differen-
tlated with respect to the density, one finds

2 , p N2
. 2T  (07)
R
T 5
2T

Thus the square of the effective sound velocity is

1012 4 B2 2pPN
2 _T( op3/2 g3 ) 8
© T 38N/ ° ' (108)
3k +=" 372
2T

Let us now examine d(N2c2)/dN. If equation (108) is mul-
tiplied by N° and then the product differentiated with re-
spect to N, it 1s found that
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d(NeF) - NT Conoi + 1029 BN 2
aN 3882 \3 + X 7L
M (3 + BN ) |
2 T
| 2 -
+ 135 82k2N _ 30 83kN3/ _a 84N2 ) . (109)
| 3 9/2 &
y 7 8 T 2 T

In order to illustrate the possible processes p = O,
¢ = 0, and d(N2¢2)/aN = O are plotted in Figure 12 with the
arrow on the curves indicating the. regions in which the
respective quantities are positive. This ;llustration shows
that the rarefaction'shock wave 1s physically 1mpossib;evbe-
cause d(Neca)/dN < 0 implies p < 0. Since p.> d implies

c2 > 0, the rarefaction process in an isentropic plasma is

a slimple wave for all values of temperature and density.

.- Isothermal Expansion

The nature of the rarefaction process of the plasma
described at the beginning of this chapter is now examined
© for the isothermal case. Since in this case the plasma

temperature T 1s constant, equation (106) reduces to
1/2
T N
c2=ﬁ<2k-3-8;37g> (110)

The quantity d(Nece)/dN is quite easily determined to be

22 1/2
d(N NT 15 BN
N ‘T<“k‘1'5"7r'37§> - ()
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Figure 12, Plots of p = 0, c2 = 0,
functions of density n and temperat
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The relations defined by p = O, c2 = 0, and
d(N%c?)/dAN = 0 are plotted in Figure 13. This illustration
shows that rarefaction shock waves are indeed possible for
the isothermal expansion.

Examination of the numerical values for temperature
and density indicates that for a reasonable value for the
plasma temperature the density must be extremely large for
the rarefaction to be a rarefaction shock. Even though
these densities for a rarefaction shock far exceed those
obtained in the electric shock tube, they are not unreason-

able for a high denslty metal plasma,.
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CHAPTER VII

CONCLUSIONS AND AN OBSERVATION

Conclusions

‘Perhaps the most significant result obtained in this
work has been the demonstration of the existence under sult-
able conditions of rarefaction shock waves in a plasma. It
has been shown that the existence of such a wave 1s the re-
sult of the energy balance in the electron gas of a plasma
in which the electrons are the principal plasma-motive agent.
Thus the characterization of the type of rarefaction process
present in a plasma has been shown to be critically dependent
on the microscopic interactions between the electrons and
the massive particles in the plasma.

In general the nature of the rarefaction process has

been shown to be characterized in the following way:

Extrusion: c2 < 0,

2
Simple Rarefaction Wave: c2 >0, %ﬁ!ﬁ&_l > 0.

2 .2
Rarefaction Shock Wave: c° > O, gé!.&.l.< 0.

The general functional dependence of c2 and
d(N2c2)/dN on the electron temperature and degree of
79
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jonization in an electrodiabatic rarefaction have been shown

to be given by the following:

d(N2c2 _ 2akN (T _e 202" )
N M - T T q)|'3

where the quantity ® is proportional to the average energy

an electron loses 1n a collision and is a function of the
electron temperature and degree of lonization in the plasmﬁ.

The explicit dependence of @ or » (9 £ aT_) on elec-
tron temperature and degree of ionization has been derived
for a strongly ionized hydrogen plasma. The result has beenu
applied to the above.criteria to determine the electron tem-
perature regions for each type of rarefaction process -
extrusion, simple wave, and rarefaction shock.

The theory for electrodiabatic rarefaction waves has
been utilized in the general flow problem of the electric
shock tube to determine the velocity of the compressional
shock wave produced in terms of thé known values of the
electron temperature and degree of ionization in the "driver"

plasma.

Observation

This work has been devoted principally to the rarefac-
tion waves in a plasma, but a point should be made pertaining

to compressional waves. If the conditions
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' 2 A2
c2 > 0 and géﬂfi_l <0

are satisfied 1n a plasma undergoing compression, the com-
pressional wave 18 propagated as a simple wave with 1ts pro-
file spreading out in time. Thus unider the conditions that

a rarefaction wave becomes a shock wave, a compressional wave

remains a simple wave.
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