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PART I. SPATIAL CORRELATION OF THE OUTER ELECTRONS
IN TWO-ELECTRON SYSTEMS

CHAPTER I
INTRODUCTION

Several attempts have been made in recent years to
obtain a more accurate solution of the two-electron Schrodinger
equation by the use of correlated wave functions. The first
such attempt was made by Hylleraas in his accurate treatment
of the normal helium atom.l In this case the relative elec-
tronlc coordinates were introduced into the wave function and
the variation principle was used to determine some adjustable
parameters. This method has been very successful and is con-
siderably simpler than configuration interaction. ILennard-
Jones and Pople (8) and Brickstock and Pople (2) have treated
electron correlation in two-electron systems in a more general
way for both the ground states and excited states. This is
presented in Chapter II and it will be shown how the Hylleraas
correlation becomes a special case. A general theory of

correlated wave functions has also been published more

1For a bibliography of several of the early papers on
electron correlation in the helium atom see Reference (10) in
Bibliography.
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recently by Szasz (14), however its complexity makes it im-
practical for the present work. Indeed, the obJect of this
. work 1s to develop a simplified method of including
correlation.

Most of the previous work has dealt with the cofrela-
tion between two s-electrons or between two electrons which
do not have zero angular momentum but which are coupled to-
gether in their lowest multiplet level. The most recent work
in the case of the latter was by Breene (1) in which the 3p
level of two and four p-electrons was treated with consider-
able improvement in the energy of that level, The main fea-
ture of this work 1s to use correlation of the two outer
electrons in a simplified manner for obtaining more accurate
theoretical values for the spacing between the various L~
multiplets. In Chapter III the method will be applied to
carbon-like atoms which have the ground configuration
(13)2(23)2(2p)2 and to atoms which have the ground configura-
tion (13)2(23)2(2p)6(3s)2(3p)6(3d)2. Here it will be assumed
that the two outer electrons move in the sphericélly symmetric
field of the nucleus and those electrons in the inner closed
shells. The first-order wave function will be taken as a
Clebsch-Gordan combination of hydrogenic orbitals with an
effective charge determined by Slater's rules for (2p)2 and
by several other methods for the (3d)2 case.

It is éuite well established that the solutions of

the Hartree-Fock (HF) equations provide, perhaps, the best



3

radial functions.yet obtainable for a many;electron atom. 1In
the analytic HF method one uses some intuition to decide on
the most probable functional form of the radial functions and
theh uses the variatlon method to fix the adjustable param-
eters. Such a procedure has been used by R. E. Watson (15)
td'obtaih radial functions for many possible configurations
in the iron-series elements. Although Watson's 1s probably
the best calculation yet made on these elements, an examina-
tion of his results reveals values of the Slater-Condon
parameters F(E)(né,né) which are about 20% larger than the
experimental values, Since, according to the Slater-Condon
theory, the multiplet spacing depends quite strongly on these -
parameters one might expect‘Watson's results to give a poor
fit of the experimentally determined multiplet spacing. This
1s indeed the case.

There are several ways to improve on Watson's results.
First, the effect of configuration interaction could be super-
posed on the HF theory. This amounts to using a linear com-
bination of Slater determinants instead of a single one and
should certainly lower the energy, the higher levels being
lowered more than the ones below them. This effect is ob-
viously in the right direction to produce the necessarj cor-
rection to Watson's results. Second, one might expect that-
although the HF equations provide for some correlation between
electrons of like spln, they may not adequately include any

correlation arising from opposite spins or from electrostatic
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repulsion. Therefore, a Hylleraas-type of correlation could
be superposed on the HF equations. This 1s roughly analogous
to taking into account the effect of one or two additional
configurations.’ It 1s this latter method which is considered

in Chapter IV. A Hylleraas r. -type of correlation is also

12
used in this case and the theory 1s applied to the (3d)2-type
of transition metal lons for which the HF radial functions
are available. |

A discussion of the results for the HF model is given
in Chapter V. Also presented here are some general remarks

about the theory as well as some concluding statements.




CHAPTER II
SPATIAL CORRELATION IN TWO-ELECTRON SYSTEMS

‘Inclusion of Correlation

Spatial correlation of electrons has been treated in
a somewhat general way in a series of papers by ILennard-Jones,
Brickstock, and Pople (8),(2). These authors treated two-
electron atoms and were successful in deriving a set of cou-
pled differential equations for the radial part of the wave
function. The theory was applied to the case of separable
radial functions and to linear combinations of such. Some of
the general formulation of these authors will be presented
here and it will be shown that the Hylleraas rlz-type of
function, which will be used later, results from a special
choice of non-separable radial function.

The Hamiltonlan of a system of two electrons moving
in a spherically symmetric field V(r) may conveniently be
written asl

H, =H + H2 + Hoop (2.1)

5 12
whe re

1Subscripts 1l and 2 will always refer to the outer
electrons.

2
- Hartree atomic units will be used throughout this

work unless otherwise stated.
5
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2 2 ' 1 -
Hy = -%Vl + V(rl), H, = -%VQ + V(ra), Hop = 57— - V(rl,rg)

12
(2.2)
In (2.2), rlé is the scalar dlistance between the two eleqtrons,
v2 13 the usual Laplace operator, and V(rl,re) is a function
which represents the amount by which one electron screens the
other from the central field of the core. The functional
form of V(rl,re)lis dictated by the choice of the central

field V(r). However, in most cases V(r.,r.) will be an addi-

1+7p)
tive function of the form fl(rl) + fe(rz) and for equivalent
electrons fl and f2 are the same functilon. For'the latter
case,

V(rl,re) = 2Y(rl). (2.3)

The dependence on the choice of central field has still not
been removed but merely shifted to the function Y(rl). If
V(rl) is taken to be a central field which does not depend on
the wave functions of the other electrons in the atom then
the choice of the functional form of Y(rl) is almost arbitrary.
This will be conslidered in the next chapter. For this case,
however, one must make the additional assumptions that (2.1)
and (2.2) are valid only if the Coulomb energy between the
outer electron and the core electrons 1s included in V(rl)
.and i1f the exchange energy between the outer electron and

the core 1s neglected. If these assumptlions are made it is
possible to write the total wave function as a product of the

form ¥(core)-¥(1,2). This would cause an increase in the
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total energy and one may expect, then, that‘spatial correla-~
tion could be used to pull the energy back down to i1ts proper
level. When used in this way,_the spatial correlation should
be regarded merely as an artifice for correcting the results
obtained by using a poor approximation. Nevertheless, this
hypothesis seems to be worth pursuing further because of its
simplicity. A slightly more physical argument for spatial
correlation 1s'given in a later chapter.

Before leaving the discussion of the central fileld
it should be pointed out that if V(rl) is the HF field for
electron 1 then Y(rl) is a very complicated but known func-
tion depending on the orbital assoc¢liated with electron 2.
Also, (2.1) and (2.2) are perfectly valid without any addi-
tional assumptions.

The correlated two-electron wave function may be

written as

Ya(1,2) = (5 + ;}; 0, (F,5,) B (cos w)  (2.4)

where w is the angle between the two radius vectors and
Pk(cos w) is the ordinary Legendre polynomial. By letting

¥° and *k be functions of the vector distances it is possible
to include states which are not spherically symmetric as well
as those which are. #o(;l,gz) will be called the first-order
wave function and wili always be chosen as an exact elgen-
function of H, + H,. The form of both ¥° and ¥, will be
taken as |
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- - 1)
wo(rl,rz) =R, (r)) Rc:w (r,) £10(01%1,8,%)

(2.5)

-~

¢k(rl,r2) = Rk(rl,rz) fLM(91@1,92¢b)

where f M'is the appropriate Clebsch-Gordan comblnation of
the two angular momentd which simultaneously diagonalizes the
square of the total angular momentum operator L2 and the
operator Lz. This function glves the proper anti-symmetry
property when multiplied by the spin functions for the two-
electron system as demanded by the Paulli principle. |

Although 1t will not be considered here, 1t 1s inter-
esting to note at this point that a set of coupled differen-
tial equations whose solutions are Rk(rl,rz) may be derived.
The procedure is to substitute (2.5) into (2.4) and write
down the two-electron Schrddinger equation using the operator
(2.1). After re-coupiing all the spherical harmonics and
integrating over all the angles the result 1s the desired set
of radial equations. Of course, some form of Y(r) and Rﬁb(r)
must be assumed. The detailé of a similar procedure are pre-
sented in Reference (2).

In this work, the one-electron radial function Rg&(r)
will be treated as a known analytic form containing possibly
some adJustable parameters. It is also convenlent to assume
an analytic form for Rk(rl,re). To make a reasonable choice
of such function it 1s observed that Hcor in (2.1) contains

?l— which may be expanded as

12
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E#;-= E:Uk(r<,r>) Pk(cos w) (2.6)
12 k A
where Kk
- r<
Uk(r<,r>) = k41 (2.7)
rs

Here, r. is the lesser of r_. and r2, r, the greater of r. and

1 1
r.. Now may also be expanded as
o P12 y b
T, = E:Vk(r<,r>) Pk(cos w) (2.8)
k
where
k+2 k .
V. (ro,ry) T s < (2.9)
r.,ry) = - — .
k (2k43) ToF" (2k-1) rl: o

Obviously the angular dependence in (2.6) and (2.8) is the
same and any matrix element of r12 will have the same angular

coefficients as those of ;l— . Since (2.1) contains (2.6) it
12

seems reasonable that the wave function YLM(l,Q) should also
contain the relative electron coordinates in some manner. A
somewhat heuristic clue 1is given by (2.8) and, indeed, it
turns out to be convenient if one chooses Rk(rl’r2) to have

the following form
o) )
Rk(rl’rQ) = RnL(rl) RnL(rQ) Cy Vk(rl,ra) (2.10)

where ck is a coefficient to be determined by the variation
method. With this choice for the radial function and with

(2.5), YLM(I,Q) may be written as
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4

YLM(].,2) = vo(;l:;e) [1 + g Ck Vk(rl-’rg) Pk(cos w)] (2.11)

It 1s interesting to note that if ¢, = O for all k,

k
YLM(1,2) is approximated by the first-order function. This

would give the familiar Slater-Condon parameters for each

multiplet level. Also if C) Were the same constant for all

K, YLM(l,Q) would become the conventional Hylleraas rlz-type
of function given by
o, -
YLM(1,2) = § (rl,re)(l + ¢ r12) (2.12)

Either of these possibillities may be used with any suitable
choice for the central field. It 1s the form (2.12) which
will be investigated in this work. It should be'pointed out
that the correlation function aé written in (2.12) does not
11ft the M-degeneracy in YLM(1,2) nor does it destroy the
orthogonality of YLM(I,E) with respect to the various L~
multiplets. It does, however, destroy the normalization and

any calculation using YLM(1,2) must be re-normalized.

Effective Hamiltonian and the Variation Method

Physically, the correlation should properly be asso-
ciated with the wave function as 1n,(2.12)'§ince it 1is
YLM(l,Z) which 1s supposed to represent the motion of the two
electrons in the central fileld. However, for energy calcula-
tions 1t 1s more convenient to associate the correlation with

the Hamiltonian. To do this, recall that the energy is given
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by

(Tl 1Y) = (%@ +er )H, V0@ +er )

which can be written as

_ o} (o)
(Y Ep ) = (01 +erpp) B (2 +er ) I0)

After expanding the operator in the last expression an effec-

tive Hamlltonlan may be defined as

) +c°r. H r (2.13)

+ H
12712 12712712

=H + c(r

H12 12 12H12

The energy may now be expressed as the diagonal element of
this effective Hamiltonian 1n the original coupled representa-
tion. For equivalent electrons, (2.13) may be further ex-
panded using (2.1), (2.2), (2.3) and noting that T o commutes
with those operators which are merely scalar functions of the
radial distance. Furthermore, if ¥° 1s chosen to be an eigen-
function of Hl + Hy then the matrix of this operator 1is diag-
onal and r commutes with it also. With these observations

12
(2.13) becomes

— _ 1 _ _
H, = 2H + rs 2¥(r,) + 2¢ [2r12H1 +1 2r12Y(r1)]
+ c2 [2r Hr +pr - 2r° Y(r )] (2.14)
12 1 12 12 12 1

In (2.14), the term quadratic in ¢ may be simplified
by using a vector ldentity for the Laplaclan operator. It is

easy to derive the following operator lidentity
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-t -

2
ripHirip = TyoHy - 1 - ryp¥yryn0 ¥y (2.15)

The last operator on the right in (2.15) appears very compli-
cated but if the indicated operations are carried out, then
in the diagonal element, integration over the angular co-
ordinates of electron 2 causes all the térms to vanish except
the first one, which in the operator is rldr where dr is

1 1
the partial derivative operator with respect to r.. This is

1

true only for equivalent electrons and 1s a result of the
selection rules on the spherical harmonics. Thus, in the
diagonal element, one must evaluate a'purely radial integral
and it 1s easy to show that for any well-behaved radial func-
tion its value is always -3/2. This is worked out in Appendix
I and will be used at the outset in (2.15). Also if one ex-
pands r?z by the law of cosines the same selection rules cause
the angular dependent term to vanish leaving only (ri + rz)_=
2 (ri) for equivalent electrons. One 1s not allowed to make
this last replacement, however, if ria 1s multiplied by one
of the scalar functions of Iy, €.8., riz Y(rl). With all of

this, (2.15) may be written, for both electrons, as

2

Thus with the use of (2.16) the effective Hamiltonian now

becomes
H = 2H + 1 - 2Y(r,) + 2c [Qr Hy + 1 - 2r1-Y(r )]
10 T 1 12H; 12¥(ry

- 2r§Y(rl) - 2r§Y(rl)]
(2.17)

2 2
+ ¢ [MrlHl + 1 + T,
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The energy 1s now the diagonal element of (2.17)

subjJect to the normalization condition

N T (1(1,2) l1y(1,2)) = 1+ 2e (rpp) + 260 5)  (2.18)

where the bra-ket notation has been used to denote a dilagonal
element in the Ll 1, LM representation. The variational

energy W 1s identified as
W = (H12)/N (2.19)

The condi@ion which determines the correlation coefficient ¢

is given by‘the variational method as
dW=20 (2.20)

where agaln dc is the partial derivative operator with
respect to ¢. Thus, in principle, the problem of using a
correlated wave function is solved and it remains to see how
effective such a procedure will be in theoretically predict-
ing the multiplet spacing. This 1s done in the next two

chapters for the (2p)2 and (3d)2 configurations.



CHAPTER III
THE HYDROGENIC CORE MODEL

2
Formulation for (n, n-1) Configuration

In this section, the theory wlll be applied to two
equivalent (n, n-l)-electrons moving in a purely hydrogenic
type of central field. This implies that the one-electron
radial functions should be of hydrogenic type and that the

screening function Y(r) should be of the form
s
Y(r) =7 (3.1)

where s 1s a constant since only then will the central field

be hydrogenic in form. Also V(r) will be chosen as
Zl
v(r) = 3 (3.2)
where Z' is identified as the effective charge which makes
the one-electron orbital an eigenfunction of the one-electron
Hamiltonian given in (2.2). The choice of 2' will also deter-
mine s. All the properties of hydrogenic functions will be

used, e.g.,

z'2
one-electron energy = - ~—
2n
1 zZ'
average value of = = — , etc.
r n2 -

14
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With these remarks the diagonal element of (2.17)

becomes

(= - (222 + 2 ) 2™ P (ne,ne) - (2z18/m2)
k t

- 2¢ [(Z'/nz) EZa(k) M(k)(né,né)
K

+ 28 E;a(k) N(k)(nL,nL)] - ¢® [(s/2') (en + 1)?
k .

+n(2n + 3) - (1/2") E:a(k) M(k)(nb’nb)] (3.3)
A k

In (3.3) the radial integrals are defined as

F(k)(nL,nL) = S& Uk(r<,r>)|R§L(rl)|2 ‘RzL(ra)‘ riridrldrz
M(k)(nb,nL) = SS Vk(r<,r>)|R2L(rl)|2 |Rié(r2 )12 P er 147,
) (3.4)
(nt,nt) = SS — V (r<,r> anL(r )I |RnL(r2)| rlrgdr dr2

The Z'—dependence has already been extracted.from the inte-
grals in (3.4), i.e., to evaluate them the Z' in the radial
fuhctions should be set to unity. The a(k) coefficients in
(3.3) are the angular coefficients which precede each of the
Slater-Condon parameters for a given multiplet and are given

by ' ~ a(k) =

Led LiL
Co, C. ! 1e (Lml,L -) c (LM-m

) AM-m, ) (3.5)
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14
where CL are the well-known Clebsch-Gordan coefficlents

mlM-m1
for two equivalent electrons and ck(Lm,Lm') are the result of
integrating over the products of three spherical harmonics.
Both of these coefficients are tabulated in any standard texf
on quantum mechanics (4).. *

‘The normalization condition (2.18) becomes

N=1+ (202 Y a® w9 (ne,nt) 4 Plen 4 1)(n + 1) 22? ,
k z "
(3.6)
To facilitate the discussion of particular configura-
tions it is convenient'to define two other quantities. Ob-
viously, if the correlation coefficient ¢ were set té zero
the energy of the various levels would be that obtained from
the usual Slater-Condon theory of multiplets. This eneréy
will be denoted as E. The energy obtained by using the
correlated wave functibns is given by (2.19) and identified
as W and shouldlbe lower than E. Since the positive differ-
ence between these two quantities 1s not a true correlation
energy 1t willl be referred to simply as the energy correction
and denoted by
E, =E - W (3.7)

while the experimental value for the multiplet energy is Eexp'

. The (2p)2 Configuration
In the carbon-like atoms it 1s assumed that the two

outer electrons move in the central field of the nucleus and’
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the spherically symmetric fleld produced by the closed elec-
tronic shells (15)2(23)2. However, due to the statistical
nature of the quahtum theory, one of the outer electrons is
supposed to spend a fraction of its time between the other
2p-electron and the core, thus producing some screening also.
According to Slater's rulés for determining effectlve nuclear
charge this fraction‘should be 0.35 for anything but 1ls-
electrons (11). Thus, s is taken as this fraction and Z' is

glven by the same set of rules as

Z =2 -sg =2 -2,4 -8
core

where Z is the true atomic number.
According to the Slater-Condon theory the energy of

the multiplets arising frOm.(2p)2'is-given by

g(ls) = plo) | (10/é5) p(2)
e('p) = p°) 4 (1/25) @
£3p) = 7% - (5/25) 2%
and
e(’s) - E('p) _ 15 (3.8)

E(*p) - E(3p)

This ratlio 1s obviously independent of the radial function
and thus independent of the choice of the central fleld.
Furthermore, it should be the same for all carbon-like atoms.

This ratio has been measured experimentally for the three
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elements studied here and found to be somewhat less than

1.5 (7). The experimental values are:

CI 1.13
N II 1.14

. 0 IIT 1.14

The ratio (3.8) maj be adopted as a criterion for measuring
the improvement obtained by using“the correlated wave
funcﬁion.

In Table I are presented some results of using the
present method for the three atoms listed above. The mailn
features of these fesults are the following: the higher
energy levels are suppressed more as would be expééted from
configuration interaction and the ratio (3.8) is considerably
less than the experimental values but improves with increas-
ing lonization. The latter feature is also displayed in
Table II where the individual multiplet separations were
calculated and compared with the observed values., From this
table 1t 1s obvious that the 1D -“3P separation is 1n quite
good agreement with the observed value and the error remains
rather constant as the stage of ionization is increased.
This 1s probably because both of these levels lie low
enough so that the ;l— perturbation always remains quite

12
small compared to the central field potential thus making the

1 1

core model a reasonably good approximation. In the °S - D

separation practically all of the error must be attributed
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FOR (2p)2.

ALL ENERGIES IN a.u.

Atom Multiplet c E W E, Ratio
1s 0.670 -2.504785 -2.609547 0.104762
C1I 1p 0.308 -2.697622 -2.640127 0.032505 0.75
3p 0.078 -2.676171 -2.680801 0.004629
s 0.582 -4.337988 -4.451176 0.113188
N II D 0.244 -4 L72461 -4.506738 0.034277 0.93
» 3p 0.076 -4.562109 -4.566785 0.004677
is 0.534 -6.671191 -6.789910 0.118718
C III 3D 0.234 -6.837305 -6.872462 0.035157 1.03
P 0.075 -6.948046 -6.952753 0.004706
TABLE II. MULTIPLET SEPARATIONS Fon'(ap)2 IN a.u.
Calculated
Atom Separation No Corr. With Corr. Observeda % Error
c1I %s - 1p  0.102837 0.030580  0.052190  41.4
D - 3P 0.068549 0.0L0BTY 0.046315 12.2
N II is 1p  0.134473  0.055562  0.079155  29.8
D - 3P 0.0B9648  0.060048  0.069380 13.4
0 III is - 1p o0.166114  0.082552 0.104400  20.9
D - 3p 0.110741 0.080291 0.091415 12.2

@ 0bserved values taken from Slater, Ref. (11).
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to the 'S level alone. This level lies so high that the ;l—

energy 1s not small compared to the central field potentiaia
thus making the set of hydrogenic orbltals a poor b;sis set
for the unperturbed Hamiltonian. The improvement in this :
separation with stage of ionization is explained by essen-
tially the same argﬁment,'i.e., as the nuclear charge increases
the interaction with the central field increases. This de-
creases the relative magnitude of the ;%;—term which causes
the core model to become more accurate.

In all of the results the absolute significance of
the deviations from the observed values must be attributed
to the choice of the correlation function (1 +c¢ rip). In-
deed, there are other ways to include the relative electronic
coordinates and it 1s difficult to ascertain the best method.
The particular function used here was chosen because bf its
simplicity but on the basis of the results it 1s felt that

1

1t represents a fairly good choice for the “D and 3P levels.

The (3d)2 Configuration

The procedure here is the same as in the (2p)2 case
except for the cholce of the central field, i.e., the choice
of Z' and s. Now the two outer electrons move in the field
of the nucleus and the spherically symmetric central field
of the closed electronic shells (13)2(23)2(2p)6(3s)2(3p)6.'
According to Slater's rules for effective charge, s should
"again be 0.35 and Z' should behgiyen by (see Ref. 11)

Z2' = 0.652 - 11.35 + 0.35p (3.9)
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where p 1s the stage of lonlization, equal to zero for the
neutral atom, unity for a singly charged ion, etc. The cal-
culation has been carried out using these rules for the 1so-
.electronic sequence Ti III - Ni IX and a few of the signifi-
cant results are presented in Table III. It is obvious from
the table that the calculated values for the multiplet spac-
ings are in poor agreement with the observed values and the
improvement with increasing ionization is only slight. This
is not too surprising since it is well known that Slater's
rules become a poor approximation very rapidly as one pro-
ceeds to the larger atoms. There 1s much evidence that these
rules produce a value of Z' which is much too small and the
inclusion of correlation cannot do anything but make matters
worse since 1ts effect 1s to suppress the energy levels dif-
ferentlally as is indicated by the correlation coefficient.
The competition between improvement with increasing ionization
and the decreasing validity of Slater's rules as one goes to
higher Z is responsible for the slight improvement with stage
of ionization.

The above problem was not apparent in the (2p)2 case
because the effective charge determined by this method is

always within the range of, or slightly higher than,‘the

‘ values obtained from a simplified Hartree-Fock calculation
(11).

From Table III the stability of the correlation coef-

ficlent for the SF level as one proceeds through the
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TABLE III. CALCULATED AND OBSERVED MULTIPLET SPACINGS
USING SLATER'S EFFECTIVE CHARGE®

Atom, Calculated Obserged

71 Ilevel c Separation om-1 em
T III }s 1.62 Is - gp 3033 140532
3,65 3@ 0.463 3¢ - 3F 2630 14398

5P 0.386 JP - 3F 2341 10570
3D 0.303 D - 3F 2040 8473
F 0.117
vV IV is 1.12 18 - gF 6381 ——-
4,65 38 0.391 3¢ - 3F 4580 18389
>p 0.321 3P - 3F 3985 13180
33 8.§§é D - °F 3363 10960
Cr V is 0.929 1s gp 10380 ——-
5.65 G 0.354 %G - 2F 6716 [22060]
%P 0.288 P - 3F 5733 15500
3D 0.282 D - 3F 4792 13200
F 0.1 '
Mn VI Is 0.825 is - gF 14857 -
6.65 36 0.331 36 - 3F 8967 25511
3p 0.269 JP - IF 7536 17782
33 8.%3; D - °F 6282 15336
Fe VII %s 0.759 %s - gp 19711 ——-
7.65 3G 0.315 3G - 3F 11303 28915
°P 0.256 3P - 3F 9386 20037
33 g.ggg D - JF 7825 17475
Co VIII is 0.714 is - gF 24842 -
8.65 3G 0.304 38 - 3F 13691 " _—
3P 0.246 P - 3F 11256 -—
3D 0.227 D - 3F 9393 ——
F 0.098 :
1 1 |
Ni IX S 0.680 s - 3p 30190 -
9.65 %G 0.296 lg - %F 16118 ——
2P 0.239 - %P - 3F 13142 _—
3D 0.223 D - 3F © 10983 -
F 0.09

2p11 observed values taken from "Atomic Energy levels",
Circular 467, U.S. Dept. of Commerce, National Bureau of -
Standards, 1952.
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. 1soelectronic sequence is very striking but no conclusions
. can be made from it due to the obviously poor choice for the
zero-order functions.

Better methods exist for determining effective charge.
The method of ionizatlon potentials has been used by Lane and
Lin to determine Z' for many configurations in the iron-series
elements (7). For each atom in the sequence their results
for Z' were éonsiderably larger than those given by (3.9) and
they give results for the multiplet spacings without correla-
tion which are only slightly less than the observed values.
However, because of the differential suppression of the
levels with the inclusion of correlation this small devia-
tion 1s sufficient to produce the same general trends as
given in Table III. The basic differences between the re-
sults of Table III and the results of a calculation using
these larger values of Z' were a more rapid improvement with
ionization and the correlatioh coefficlients in each case were
approximately one-half as large as those in the table. The
calculation was carried out using s = 0.35 and s = 0.5 which
is the value determined by these two writers and appears to
be sliéhtly more reallistic than the former value due to
Slater.

From the above discussion it seems at least heuris-
tically obvious that if one uses some other criterion for
choosing 2' and 1f this choice produces multiplet results

which are too large then the inclusion of correlation should
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produce a correction in the right direction. One possibility
is to choose Z' which will reproduce the experimentally deter-
mined value of F(2)(3d,3d). The difficulty here is deciding
on the correct experimental value to use since several experi-
menters have some quite different results. Cady has measured
F(z)(3d,3d) and F(q)(3d,3d) for probably the largest number

of the transition elements having a (3d)2 electron configura-

(2)(3d,3d) appear in Table IV as

tion (3). His results for F
well as the Z' (exp Z') calculated from them using the
relation

F(2)(3d,3d) = 202.499 2' em™t (3.10)

Also in Table IV are values of Z' (HF Z') calculated by
(3.10) using Watson's Hartree-Fock results (15).

The results of the correlation calculation using
Exp Z' and s = 0.5 are given in Table V for those atoms in
Table IV for which the multiplets have been observed experi-
mentally. The correlation coefficient is tabulated for the
same order of levels as in Table III. The improvement with
ionization 1is rather rapid here but the inclusion of correla-
tion appears to over-cofrect the Slater-Condon theory for
this cholice of central field.

To retain the theoretical nature of this work the
HF Z' from Table IV were used in a similar calculation. This
was done for two values of s, 0.35 and 0.5, for each atom,
These results are presented in Table VI where the correlation

coefficient for each muitiplet level is given in the same
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(2)

TABLE IV. EXPERIMENTAL F (3d,3d) DATA IN

CM™1 AND EFFECTIVE CHARGE |

TL{ IIT VIV Cr V Mn VI Fe VII Co VIII N1 IX

F(e)(3d,3d) 1110 1456 1758 2062 2402 2670 2871

Exp Z' 5.40 T.19 8.68 10.18 11.86 13.18 14,18
HF Z' 6.77 8.26 9.52  --- _— _—- _—
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TABLE VI. EFFECT OF CORRELATION USING HF Z'. (ALL ENERGIES IN CM-l) .

s = 0.35 s = 0.5
Without With Without With
Atom Separation gbse:rl'ved c Correla- Correla- c Correla- Correla-
pacing tion tion tion tion
T4 III lg - 3p 140532  0.815 L3775 17644 0.674 43775 18458
lg - 3F 14398 0.329 17526 9247 0.256 17526 11047
3p - 3F 10570 0.267 13174 7761 0.200 13174 8985
1p - 3F 8473 0.240 11378 6470 0.181 11378 7563
0.120 0.058 »
v IV g _ 3p — 0.729 53409 22812 0.620 53409 26159
lg - 3F 18389 0.308 21383 12754 0.246 21383 14412
3p - 3F 13180 "0.249 16074 10525 0.191 16074 11786
1p - 3F 10960 0.230 13882 8779 0.176 13882 9930
0.099 0.057
Cr vV s _ 3p —- 0.688 61556 29485 0.591 61556 33043
lg - 3p [22060] 0.297 2465 15801 0.239 24645 17509
3p - 3F 15500 0.240 18526 12897 0.186 18526 14178
1p - 3F 13200 0.223 16000 10776 0.173 16000 11962
0.097 0.057

L2
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order as in the previous tables. Again the correction seems
to be over-emphaéized with the results using correlation
being about as far below the observed values as they are
above without correlation. The difference between the s =
0.35 and s = 0.5 cases seems to be insignificant for predict-
ing the multiplet structure. However, for all choices of Z'
the results turned out to be slightly better for the larger
value of s. This gives some support to the work of Lane and
Lin. An obvious result of Table VI is that the values of ¢
are conslderably smaller for s = 0.5 than for s = 0.35. This
1s because c¢ depends quite strongly on the "uncorrelated
energy" E and the larger value of s produces a larger absolute
magnitude for E as one would expect if the screening is in-
creased. No further conclusion can be made from this observa-
tion, however, since each choice of central field produces
new values for c.

In the next chapter the more realistic Hartree-Fock
atom will'be congsidered in which Z'.and s are no longer arbi-

trary. Thus one could expect some improvement in the results.



CHAPTER IV
THE HARTREE-FOCK ATOM

The results of the last chapter made it obvious that
the over-simplified hydrogenic core model was not adequate
for predicting the multliplet structure of the ions of the
first transition elements. The indication was that the
multiplet spacing was sensitive to the uncorrelated energy
of the L - multiplets for which the hydrogenic core model is
a poor approximation. Thus, 1t seems natural to extend the

correlation effect to the more accurate Hartree-Fock field.

Hartree-Fock Theory of Two-Electron Systems

Only a brief outline of *the Hartree-Fock theory for
two 3d-electrons will be given here. Consider an atom having
Z protons and N electrons, fwo of these N electrons being in
a single 1ncomp1etg group which lies outside of a number of
complete groups, or closed shells.. These closed shells will
be referred to as the core. Let the two outer electrons be
denoted by 1,2 and the core electrons by the indices 1, |
where each of the latter runs from 3 to N (over the core
electrons only). The Hamiltonlan for the entire atom can be

written as

29



30

N N
= 2 Hy + 2 (%)
i=1 i,J=1
where Hi 1s the one-electron Hamiltonian given by
B o= - 19 - (z/r) (4.2)
i~ "2 1 1 :

Equation (4.1) may also be written as
N N, N
1

N .
1
= Hy + 1+ H +H o+
fa 12? ! ; 3 T1J Zg T13. Jig 23 12
(4.3) -

The terms in (4.3) may be identified as follows:

N N
_ E: zﬁ 1. contains coordinates of the
He = H + ri‘ core electrons only
1=3 1,J=3 1J
N N
- _, E: IS z; 1 . . contains coordinates of all
e - T r ' the electrons
¢-¢  4=3 13 423 "2
H < Hl + H2 + 1 : contains coordinates of the
12 T12 outer electrons only

With this notation then

H =H, + H + H (4.4)

a c c-e 12

If Hc—e were not present in (4.4) one could expect

to separate the complete wave function into a product as
= ¥(e¢) ¥(1,2) and the energy would be given by E, = E,
+ E._,. However, this is not the case and, furthermore, Y

12
must be anti-symmetric with respect to interchange in the
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coérdinates.of any two electrons including those electrons
in the core with either of the two outer electrons. A single
Slater-type determinantal wave function constructed from one-
electron orbitals ”nc(i) is sufficlent to satisfy the anti-
symmetry property. When this is used with (4.3) the total

energy may be written as

(]
o)
il
=1
(¢]
+
1=

N
J1J + E: J2J - JZ? Klj - JZ? KQJ +E; + E2 + dJ

J=3
(4.5)

[
It
w

The Coulomb and exchange integrals are defined as

1= 8 e ()8R () S J #3q(1) @, (3) ary dr

cy
|

~
I

=) ol e ) 77 Tl 95 (9) aryary (.6)

* * 1 .
T =8 O ) e () Fim 93q(1) 93(2) 8y ary

1J

Theicomplete HF equation for the 3d-orbital is obtained by
varying this orbital, subJect to the usual normalization and
orthogonality conditions, in such a way that E, in (4.5) is
a minimum. The angular integrals may be integrated at the
outset and the minimization process produces a differential
equation for the radial part of the 3d-orbital. The result,

as given by Slater (12), is

{_

N |-

2 2 1

ETE [ L Ny(at) Y, (nt,3a5m)) (4.7)
1 1 all core
electrons

12



32

N.(nt)
=) ), (2,05 44,0) ¥, (nt,3d;r;)
2 all core (QLJ'*I) k
electrons
Rnt (r1) 1V (k) . _
X m] + ?l—ga Yk(3d,3d’ rl)} R3d(r1) = - e]_ R3d(rl)

In (4.7),_Nj(nb) is the number of electrons in the nt-closed
shell, ck(2,O;LJ,O) are the coefficlents discussed in connec-
tion with (3.5), a(k) are the same as given by (3.5) with one
exception to be discussed later, and the Yk(n&,3d; rl) are
functions obtained by integrating the Coulomb integral over
-one of the electrons only. These functions were flrst intro-
duced by Hartree and later generalized by Slater (11). They

are defined as

r

1
. 1 k+2
Yy (nd,3d;7,) = ;E S RnL(rz) R3d(r2)r2 dr2

10

- (4.8)
~k+l

+ rljfﬂ & RnL(PE) R3d(r2)r2 dr,

r .

1
Also in (4.7), € according to Koopman's theorem is the
ionlzatlion energy of the first 3d-electron.
It is obvious that the unknown radial function will
be different for each multiplet level because the a(k) coef-
ficients will change. This i1s referred to as the unrestricted
HF method. In the restricted HF method, one finds the center

of gravity, or average of the "configuration (a of c¢) as it
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is called, of all the terms and minimizes this energy with -
respeét to the radial function. The result is a siﬁilar one -
electron differential equation whose solution 1s a single
radial function which best fits all the multiplet levels.
Precisely the same equation is obtained by substituting
a(k) for a(k)‘in (4.7) where these coefficients are re-

a of e
lated as follows.

(k)

1

(2L + 1)(2S + 1) a

k) .
a: of ¢ I§§ - (%.9)
), (2L + 1)(2s + 1)
L,S
For (34)°,
(o) (2) By 2
aa of ¢ 1, aa of ¢ - aa of ¢ - 83 (#.20)

There are two ways to obtain an approximate solution
to (4.7). One is to use numerical integration, the other 1is
an analytic method in which one uses some intultion to decide
~on a reasonable analytic form for R3d(rl). This analytic
form which contains some adjustable parameters 1s substituted
into (4.7) and the parameters are adjusted to give a minimum
value for el' Such a procedure has been used by Watson, in
most cases for the a of ¢ (6). The form of Watson's 3d-

function, which is the only one needed here, is

—8121‘ -8 r -S r -3 ‘I"
Ryg(r) = r°(Cppe + Cqqe 137 4 cpe i C1ce 157)
(4.11)
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where Ci and 8y are the adJustable parameters which are tab-
ulated in Ref. (€) for the various ions of the iron-series
elements. These results are probably the best yet obtained
for these atoms and the lonization potentials are in good
agreement with the observed values. However, the results for

4
F(g) ( )(3d,3d) are about 20% too large which

(38,3d) and F
causes the levels to be spaced too far apart as shown in
Table VI. It is hoped that the inclusion of correlation
will correct this situation.

Before leaving the HF theory 1t 1s worthwhile to
interpret the various terms in (4.7). The first two terms
represent the kinetic plus nucleér potential energy. The
square bracket represents the shielding of the nucleus by
the core electrons and the last term 1s the shielding pro-
duced by one of the 3d-electrons on the other. Both of the
shielding terms are obviously functions of rl and are not
constant as was assumed in the last chapter. From (4.7) the

one-electron HF Hamiltonian can be written symbolically in

an obvious notation as

2 _ Z - s,(r)) - sy(ry) (5.12)

= _ 1
Hy =-57 ”
1

To understand the assumptions underlying the hydrogenic core
model of the last chapter it 1s only necessary to consider
the form of Yo(nL,3d;rl) and Yk(nL,3d;rl)‘and, thus, the form

of sé(rl). These functions always have the form
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-crl -
Yo~1-e .  (polynomial in r

)

(polynomial in rq)

The constant term in Yo when summed over all the electrons
in the core gives N-2. Factoring this constant and denoting
everything that remains between the square bracket in (4.7)
simply by -sc(fl), Hy can be written as

oo 1 VQ_Z -N+2 + sc(rl) - sg(rl)
1~ 2 1

or

i 2 -N+2 _Sclr1) sa(r) (4.13)

I’l I'l r'l

Obviously, 2 - N + 2 1s the charge experienced by one of the
outer electrons 1f 1t moved in the fleld of a hard spherical
core. 8, and s, represent the statistical nature of the

charge distribution. As written here s, and S, are both

c
positive quantities with 8o being a measure of the amount of
time the core charge cloud spends outside the 3d-orbit caus-
ing an increase in effective charge and 8, a measure of the
amount of time the other 3d-electron spends between the core
and the electron being considered and thus causes a decrease
in effective charge. By Slater's rules these two Quantities
are taken as constants.

" If (4.13) is used for the one-electron Hamiltonian,

then for the whole atom,
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H = H, + H +H + (1/r,) - ¥(r)) - ¥(rp)  (4.14)

s5(rp)
where Y(rﬁ has been written for ——2’ to bring the notation
r
1
closer to that defined in Chapter I. Again for equivalent

electrons this becomes
Hy = Ho + H) + H + (1/r12) - 2Y(r1) (4.15)

From (4.15) it appears that Hc-e has been eliminated from H,
and ¥, could be written again as a simple product ¥(c)-¥(1,2)
where each of these 1s antli-symmetric with respect to inter-
change of any two of thelr separate electrons. It is obvious
now that such a product amounts to neglecting the exchange
between the outer electrons and the core electrons thus in-
creasing the energy. Actually, Hc-e is not eliminated but
has been distributed between the two outer electrons since
one needs the orbltals for the core charge distribution. It
will be shown that this calculation is not necessary when
correlation i1s introduced since it 1s already included in

Watson's radial functions. However, an explicit form of

Y(rl) is needed.

Effect of Correlation

Since the correlation function 1s related to the
coordinates of the outer electrons only, Hc may be dropped
from (4.15). This is because it will make no contribution
to ¢ when the variation method is used. The effective

Hamiltonian (2.17) may now be used with H; given by (4.13)
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or (4.7) and Y(ry) given as

Y(r)) = I}—IZa(k) Y, (3d,3d;7,) (4.16)
K

The explicit form of Yk(3d,3d;r1) is given in the Appendix.
' (k)

If the unrestricted HF theory is used the a coef-

ficlents in (4.16) and those arising from integration of ;%;
in (4.15) will be identical resulting in some cancellation

in the last two terms of (4.15). It is easy to show that in
this case (4.15) can jJust as well be written, after dropping

Hc, as

Ho o= H +Hy - (1/r)) (4.16)

where the HF functions are now eigenfunctions of the one-
electron Hamiltonians. To retain the latter property in the
a of ¢ case one must use (4.15) as written with a(k) given
by (4.9). Matrix elements containing Y(rl) then have to be
evaluated.

The diagonal element of (2.17) becomes

o) = - 26 + ) a®) 5 (34,30) - 208(r))
k

- 2c [261 z:a(k) M(k)(Bd,3d) -1
k

.2 ;a(k) ) (30,30)] - ¢ [He ) -2



38

- E:a(k) M(k)(3d,3d) + 2(r§Y(rl)) + 2(r§)(Y(rl)>

k
(4.17)
where the radial integrals are defined in (3.4) except
'R(k)(3d,3d) is defined. as
k 2
r(*) (34,34) - SS ¥(ry) Vie(roor,) IRy (r)) 17 [Ryq (rp) 2
2 2
X rlr2drldr2 (4.18)

and € is the one-electron ionization energy calculated by
Watson and entered as a positive quantity in (4.17). The
a(k) which appear explicitly in (4.17) are those appropriate
to the multiplet level being considered and are given by
(3.5). The normalization condition is the same as (2.18).
For studying the multiplet spacing it is convenient
to eliminate the one-electron ionization energy from (4.17).
This can be done by grouping the first terms in each line of
(4.17) together and factoring the matrix element of (1 +

crl2)2 which is Jjust the normalization constant. After nor-

malizing, the result is
W' = -2e; + (1/N) { E:a(k) F(k)(3d,3d) - 2(¥(ry)? (4.18)
k
+2cf1-2 E:a(k) g (k) (34,34) ]
k .

+ o? [1 + ;:a(k) () (34,34) - 2(r§Y(rl)) - 2(r§)(Y(rl))] }
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where N is again given by (2.18). By introducing othefA
radial integrals and making use of the definition of Y(rl),
(4.18) can be written for the a of ¢ case, after dropping

-261, as

a of ¢

k
W=%{g@&) pa () );)Bmw)

z a(k) a(k') 'R(k)

2 or o B (3,3850) ]

(k) (k>

+ o [1 + z a(k) (k )(3d 3d) - 2 z: a . N (34,3d)
k
k) |
- 2r® (30) g:a:kif . 3 (3¢,3d) ] } (4.19)
and
N=1+2c EZa(k) " 5a,3) + 262 R (3a)  (v.20)
k

where the new radial integrals are defined as

k)
RO(30,305k ) = ) 5 Velroom,) % (30,305 ) IRgy (r))Rgy () 12

2 2
X rlrgdrldrg

2
) (34,34) = S& ry ¥,(34,3d5r;) [Ryy (2 )R3q (7, ) |2 rlradrler

2
R( )(3d) = S r§|R3d(r1)|2 r?drl
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Written in this form, all a(¥) coefficients are explicitly
stated, those without the a of ¢ subscript belong to the ap-
propriate L-multiplet being considered. The radial integrals
are to be calculated using a of c.ra?iil functions. \If the
k

need only be re-
a of ¢

placed by a(k) and the unrestricted radial functions used in

unrestricted HF theory 1s used the a

the integrals.
The variational method (2.20) is now used to find the

correlation coefficient and thus the multiplet energies.

Such a calculation has been made for the tWo'(3d)2—type ions
whose a of ¢ radial functlions were available, namely, Ti III
and Cr V. These results are given in Table VII. The experi-

mental data are the same as in the previous tables.
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TABLE VII. (a) RESULTS FOR Ti III USING RESTRICTED HF THEORY

Level c E (a.u.) W (a.u.) Eq (cmfl)
3p 0.070478 -0.677022 -0.681043 882

p 0.177952 -0.626789 -0.647514 7359

3p 6.198211 -0.616256 -0.639331 5064
lg 0.245053 -0.598432 -0.631686 7298

1g 0.587385 -0.482976 -0.627349 31686

Calculated (cm‘l) Deviation

Spacing Obs.(cm’l) No Corr. With Corr. No. Corr. With Corr.
lp - 3F 8473 11025 7359 + 30.1% - 13.1%
3p - 3F 10570 13337 9155 + 26.24 - 13.4%
lg - 3p 14398 17249 10833 + 19.8% - 24.8%
ls - 3F  14053(?) 42588 11784 - -
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TABLE VII. (b) RESULTS FOR Cr V USING RESTRICTED HF THEORY

Level c E (a.u.) W (a.u.) E, (em™1)
3F 0.072525 -0.934298 -0.938856 1000
1p 0.179709 -0.861935  -0.885135 5092
3p 0.195103 -0.847776 -0.873253 5592
1g 0.241684 -0.821558 -0.858753 8163
1g 0.554401 -0.655069 -0.783719 28235

Calculated (cm'l) Deviation

Spacing Obs.(cm'l) No Corr. With Corr. No Corr. With Corr.

1y 3F 13200 15882 11790 +20.3% - 10.7%
3p - 3F 15500 18989 14398  + 22.5% - 7.1%
1g - 3p  [22060] oUThY 17581  + 12.2% - 20.3%

1s - 3F — 61284 34049 - -




CHAPTER V
DISCUSSION OF RESULTS AND CONCLUDING REMARKS

There are several features contained 1in Table VII
which are obvious at the outset. First, while the percentage
deviation is improved, the inclusion of correlation still
over-corrects the multiplet spacing. Second, the percentage
deviation decreases with increasing atomic number. Third,
the results are very nearly the same as those obtained from
the hydrogenic core model using the HF value for Z' and 0.5
for the screening constant. These will be discussed in re-
verse order in the following paragraphs.

Considerable insight may be galned by asking how the
minimum energy depends upon various quantities. To do this,

wrlite W in the form

_ al + a2c + 3.302

=1 2
W= - a502 2§ (a7 + apc + age ) (5.1)
where
a; = (l/ry,) -2 (Y(r1)>
a, = 2[1 - 2(r, Y(rl))]

ay =1+ (rpp) - 6] ¥(r))) - 2¢r5)(¥(ry))
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by

ay = 2 (rip)

2 (ri)

as
Now assume W has already been minimized and the proper value
of ¢ inserted in (5.1). To find out how W depends on the
individual matrix elements, vary W with respect to each, as

well as with respect to c. One gets

N 6W = [-W(ay + 2age) + ap + 2agelée + cc - 2W) & (rp)

2c% (W - (¥(r))) 6(rs) + 8(1/r )

2 2
- 8 :
2(1 + ¢ (rl>) 5 (Y(ry)) - lbe (rlQY(rl)>
_ 2¢° 8 (r?Y(rl)> (5.2)
Since ¢ is a function of all the a's, éc 18 not independent

of variations in them. The expression for ¢ 1s obtalned

from the variational principle and 1is

_ - (a3 - a1a5) +-J(a3 - a1a5)2-(a3a4 - a2a5)(a2 - ajay)

(a3a)+ - a2a5)

For calculations of 6c the radical may be expanded without

making much error in 6c. Then

an - a - -
2 184 [1 + _]__ (a3al|, 3.28.5)(8.2 alau) ]

a3 - 88 (5.3)

~_ 1
C o = o —m———
2

(8.3 - 3135)2

Equation (5.3) may now be varied with respect to each of the
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a's. The result is

SRS SRS § S SO
2(a3 - ala5) a3 - aag

au(a3a4 - a2a5)(a2 - alau)
2(a3 - alas)2

+

2
_ 38.5(8.2 - 8.18.4) (6.38.14 - 8.28.5) ] bal + [1

4lag - a;a5)"
( ) ( ) agl )?
_ (agay - a?a5 ay - 218, ) ag(ay - 3,8y ] o
2(a3 - ala5)2 4(az - a1a5)2 2
2
[ a, - a;a au(a2 - alau)
+ | - -
83 7 %1% k(ag - ajag)?
3(azay - acsac)(an - aqa )2
U Y A
h(a3 - alas)
2
al(a3au - a2a5)(a2 - alau) : a3(a2 - alau) ] .
- 2 ay
2(a3 - ala5)2 b(az - 3135)2

N [ al(ae - alau) i a2(a2 - a1a4)2
az - a;

a5 h(ag - ajag)?

Bl e )
4(a3 - a1a5)3 : 5
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In terms of the individual matrix elements the first term in

(5.2) becomes, for the 3F level of Ti III,

first term in (5.2) = - 0.06236(1/r12> + o.11446<y(rl)>
- 0.04858(r, ¥ (r))) + 0.01936(r,) - o.oo&15<r§Y(rl)>

+ 0.00086(r§)

The remaining terms in (5.2) for the same level give

remaining terms = 1.006<l/r12> - 2.058(¥(ry)) -
- 0.2808(r ,Y(r ) + 0.2438(r ;) - 0.0108(r8¥(r )}

+ 0.0136(r§>

It 1s obvious that, compared with the remaining.terms, the
first term 1s relatively insensitlve to a variation in the
individual matrix elements. Such variations could be géﬁ-
erated by round-off error in the calculation but this is be-
lieved to be small since all matrix elements were calculated
using 16-digit arithmetic and retaining only the first 8-
digits. Therefore, these variations may be regarded as
arising from the choice of the radial functions and the
screening function Y(rl). After combining the last two

expressions the result is

NoW = 0.9388(1/ry,) - 1.948(¥(r{)) - 0.3286(r ,¥(r1))



4t
+ O.2626<r12) - 0.0146<r§Y(r1)> + o.01u6<r§>

It is seen that the largest contribution arises from (l/rlg)
and (Y(r;)) but these determine the uncorrelated energy and
certainly the results should depend quite strongly on them
as was stated earlier. The next largest contribution is from
those matrix elements containing the screening function
Y(rl). It was not apparent earlier that the minimum energy
was so sensitive to this function. It 1s also interesting

to note that (Y(rl)) would not change the multiplet spacings
without correlation since it is the same for all the terms
(in the a of ¢ approximation), but with correlation it makes
a different contribution to each multiplet‘through the matrix
element (rleY(r1)>.

It can now be understood how the hydrogenic model can
give results so near those of the HF model. In the hydro-
genlc case Y(rl) was chosen almost arbltrarily and with such
freedom of cholice 1t is possible to make W depend on this
function to about the same degree as in the more accurate
case., This 1s apparently what happened in using the HF Z'
and 8 = 0.5 for the hydrogenic calculation. This is Jjustified
since <r12) and (ri) depend only on Z' and HF Z' causes these
matrix elements to be about the same as their HF values.

This is shown below for SF of Ti III.

(ry,) Hy d/(r Yyp = 1.08

, A
(r1 nya’ 10y = 1020
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The improvement with atomic number, or with stage of
ionization, 1s expected for the same reason as in the hydro-
genic model. The central field becomes stronger, making thé
HF functions more accurate so that the correlation effect 1s
smaller.

It is not obvious why inclusion of correlation should
over-correct the multiplet spacing. However, the HF model
does contain several basic assumptlions, among them are the
use of a single configuration or a single Slater determinant
to describe the ion and short analytical expansions for the
radlial part of the one-electron orbitals. These two were
inherent in Watson's original work and his results represent
the most current attempt, and perhaps the only one, to solve
the Hartree-Fock equations analytically for the first-row
transition elements. Baslically, the inclusion of correlation
was suppose to correct for these two assumptions. Although
Watson obtained, for some lons, the unrestricted radial func-
tions these were always for the ground level only and since
all five multiplet levels were to be considered here 1t was
declded to use the a of ¢ approximation so that the same
radial function could be used for each of the levels. This
approximation neglects the polarization of the closed-shell
core by the outer electrons, an effect which is expected to
contribute very little to the multiplet spacing. However,
Watson and Freeman have shown recently that this effect makes

an appreclable contribution to certain magnetic properties
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of these lons, especially the Sternheimer anti-shieiding
factor (5), (6), (16).

The remaining assumptions are inherent in this work.
The first of these is the assumption that the atomic wave
function can be written as a product of the core wave func-
tion and a two-electron wave function for the outer electrons.
This neglects the exchange between the outer electrons and
the core. However, this was lncluded by Watson in obtaining
the HF functions and it would not affect the energy levels
until the correlation function is introduced. In this work
the antisymmetric two-electron function was simply multiplied
by the symmetric correlation function, thus leaving the
symmetry unchanged. As a consequence, the central field 1n
which the outer electrons "move" is unaffected by the correla-
tion function. This introduces an approximation since the
central fileld is partially determined in the Hartree-Fock
formulation by one of the outer-electron orbitals whicech is
being correlated. To remove this approximation the two 3d-
orbitals should be correlated first and the resulting func-
tion antisymmetrized again. This would properly correct the
core potential but at the expense of introducing an enormous
number of three-electroﬁ integrals into the calculation.
Although Szasz has devised a method for evaluating such
integrals (13), fhe increased difficulty defeats part of the
obJectives of this work. At first, it was believed that this

alteration 1n the core would produce a small effect, perhaps
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of the ordef of the spin polarization described by Watson
and Freeman and referred to in the above paragraph. In fact,
if correlated wave functionsfare‘to be used in a study of
the magnetlic properties the above approximation should not
be used. It is difficult to even estimate its effect and
could indeed account for a large part of the over-correction
here.

One other consideration which belongs to this work
is the choice of the correlation function. It was desired
to use a function which introduces the relative eléctronic
coordinate. There are many such functions whigh do this,
for example, 1 + criz, 1+ c(rl - r2)2, and 1 + ¢ cos w
where w is the angle between radius vectors of the two elec-
trons. The second of these introduces pure radial correla-
tion very similar to the radlal part of the first one. The
calculation was carried through for the hydrogenic model
using this function and i1t produced very little change in
the energy levels. The last function introduces pure angular
correlation. The problem was formulated for this function
also but the calculation was not carried out since 1t was
already known that 1 + cr12 produces much simpler matrix
elements and there was no a priorl reason for favoring cos w
over r12. Very similar problems arise with 1 + criz since
the angular part of this funetion 1s also proportional to

cos w, Furthermore, cos ®w has no diagonal elements for any

of the multiplet levels so it could never produce an effect
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similar to configuration interaction as does 1 + crlg. These
considerations made it seem reasonable to use the latter
function.

In usihg'i + Ccr the tacit assumption is being made

12’
that this is the only type of correlation that exists when,
indeed, there may be other types co-existing with it. Judging
from the size of the correlation coefficient the rla-type
becomes more prominent with increasing energy which 1mpliés
that all the other types become less prominent. If this 1s
the case the other types would suppress the 3-F level a 1little
more thus decreasing the over-correction. This 1s purely
conjJecture but it seems to have some merit.

In concluslon, it is still felt that spatial correla-
tion i1s an effective way of treating the many-electron atom.
The major unsolved problem 1s still the choice of the correla-
tion function and the proper way to include it while still
retaining a degree of simplicity which appears to be several
orders of magnitude greater than configuration interaction.

It is worth pointing out again that 1 + cr

12
equivalent to using two or three higher configurations but

is roughly

the symmetry problems are reduced considerably, mainly be-

cause r,, has the same angular dependence as ;l— and the

. 12
symmetry considerations for this operator within a single

cdnfiguration are well known.



PART II. MAGNETIC PROPERTIES OF V203

CHAPTER VI
INTRODUCTION

Recent theoretical and experimental work on VARBEET
corundum has provided much information about the magnetic
properties of the transition element lon and the crystalline

properties of the Al structure (19). This work was based

203
on the properties of single ¢rystals having high magnetic
dilution so that the nearest cation neighbors to the vanadlum
ion were aluminum which are known to be diamagnetic (33).

Thus, Al acts merely as a host crystal, providing only an

203
electrostatic field at the position of the magnetic ion. In
pure V‘203 the situation is quite different. Although the
crystal structure is still the corundum-type (24), at least
in the paramagnetic region, the nearest cation neighbors are
now vanadium and the lonic exchange interactioné must be in-
cluded. Some experimenﬁal work has been done on pure V’203
(21), (20) which shows that the magnetic susceptibility
undergoes two transitions of quite different character. The
first of these occurs around 168°K and is a cooperative

transition since the crystal symmetry 1s apparently lowered

52
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to monoclinic as the temperature 1s decreased through 168°K
(24). The electrical conductivity also indicates a metallic
to semlconducting transition as the tempefature is lowered
through this point (29). Upon raising the temperature through
" this point the crystal was found to crumble into small pleces
(36). The second transition occurs over aitempefature range
from about 390°K to about 500°K. According to Goodenough
(24) this i1s a non-cooperative transition since it produces
no change in the crystal symmetry. The susceptibility over
this temperature range 1s constant. Moreover, the Curle-
Welss law 1s not obeyed over any temperature range. None of
these characteristics is observed in the dilute crystal and
it 1s inferred that i1f the exchange interaction were properly
1nclﬁded they would account for this anamolous behavior.
The present theory applies to temperatures above 170°K and
the exchange interactions are included in a purely phen-
omenological manner with some parameters to be adjusted by
fitting the theory to the experimental data. The theory does
not predict either of the transitions and must be regarded
as a correction to the Curle-Weiss law over the separate
temperature ranges of 170°K to 370°K and 500°K to about TO0°K.

The one-ion approximation i1s adopted here as in the
case of the dilute crystal. The Hamiltonian is then the same
with the addition of the exchange term. Furthermore, the
ground configuration of V1t 1s (3d)2 and the usual approxi-

mation of a two-electron system moving in the field of a
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shielded nucleus will be made. The Hamiltonlan c¢an then be

written as

2 } - - .-4
H=H +H + (e /r12) +V, + Vo + H o+ H o+ Ho (L + 28)-¥ .
(6.1)
The various terms in (6.1) have the following meaning.
Hi==-(h2/2m)V2 + U(ry): one-electron Hamiltonian
3 with central field potential
U(I'i) .

(e2/r12): electrostatic energy operator between the
two electrons.

Vc: potential energy for the cubic electrostatic
field.

Vt’ potential energy for the trigonal electrostatic
field.

HS_ ¢ spln-orbit interaction energy.
Héx: ionic exchange interaction energy.
uo(i + 25)-3: interaction with external magnetic
field where My 1s the Bohr magneton.
It 1s well known that in a (d)Z configuration the
electrostatic energy operator produces the multiplet terms

lG, 1S in order of increasing energy. Taking

3p, 1p, 3p,
the first three terms in (6.1) as the unperturbed Hamiltonian
Hb the eigenfunctions become the usual Clebsch-Gordan com-
bination of one-electron orbitals. These are tabulated in
Reference 32 for the 3F and 3P terms. Thlis provides a start-
ing point for a successive perturbation treatment of the

remaining terms in the Hamiltonian.




CHAPTER VII

THE CRYSTAL FIELD

The Cubilec PFileld

With H taken as the first three terms in (6.1) the
next perturbation term arises from the cubic portion of the
crystalline electrostatic field. Presumably the same field

acts on each of the two electrons so that

V= ) Vo), (7.1)
i=1,2
As in the case of corundum it will be assumed that the cubie
field has octahedral symmetry so that (vc)i can be expanded
about the trigonal axis as (18)

(V) = &y rt (Y, o(81,94) + (10/7)% (¥y 5(81,%)
- Y, _5(84,%)1 . (7.2)

The operator (7.2) belongs to the Oh symmetry group and it
is found from group theory that such an operator will
partially remove the (2L + 1)-orbital degeneracy of the

Russell-Saunders multiplets of H,. Specifically, it is
55
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found that the various terms decompose in the following way:

3. . 3 3 2
F = T, + 35T, + %A,

Ip ~ i, 4+ 1E

1 1 1

G- "T. + 17 + 1B +1a

2 1

Since'group theory does not predict the order of the cubie
field levels this must be obtained from other sources. One
possible source for obtalning this information is from the
optical spectrum. D. S. McClure has analyzed the spectrum
for V+++-doped corundum and his results are shown in the
diagram of Fig. 1 (28). However, a difficulty arises with
V203. This crystal has a black color and apparently is
opaque to any optical absorption. Therefore, it can only

be assumed that the energy diagram in V203 is the same as in
the doped-corundum crystal.

For the magnetics problem only the two triplet terms
need be considered. The 3p term must be considered since it
has the same symmetry as one of the symmetry components of
3F and one can expect matrix elements of Vc connecting these
two levels. This will cause some mixing between the 3F and
3P wave functions. A first-order degenerate perturbation may

now be performed to obtain the energy of each level in terms

of the cubic field parameter defined as

g = - «ohy/1u(m?t . (7.3)
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When this is done it is found that in the 3F-manifold the
secular equation contains one 3 x 3 block and two 2 x 2
blocks which can be diagonalized exactly. The matrix ele-
ments are given in Table VIII. In first-order, all matrix
elements of Vc in the 3P-man1fold vanish. Upon solving the
secular equation the energy eigenvalues assocliated with the .

various symmetry components of 3F are found to be

3Tl(BF): - 98 , 3-fold orbital degeneracy
3T2(3F): 38 , 3-fold orbital degeneracy
3A2(3F): 188 , no orbital degeneracy.

TABLE VIII. MATRIX ELEMENTS OF V, IN FREE-ION
REPRESENTATION FOR SF.2

M, o 3 -3 1 2 4 2
o 6  -3010% 300}

3 -3(100% 3 0

3 3010 o 3

) | 1 2(5)?

-2 2(5)% 1

-1 1 -2(5)}
2 2t 7

@The free-ion Mp,-value 1s glven along the top and
side, Mg = 1. The matrix elements are given in units of the
cubic field parameter defined in (7.3).
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The unitary transformation which gives the proper

linear combination of free-ion wave functions in the cubice

field representation 1s expressed as

Y, = g:Aki 4y, AU HA = E (7.4)

where ¥, are the free-ion functions. The cubic field func-
tions Yk are given in Table IX. |

The 3P-3P mixing is obtained by solving the 6 x 6
secular equation resulting from matrix elements of Vc between
the two 3T1 levels. The equation factors into three identical
2 x 2 blocks with matrix elements

Cr(3ry) Ive P (31))) = sp

e Cry) v, 13Cry)) = - 68 (7.5)
Cre)) v 1PrCT;)) = - 98 .
Where Ap 1s the energy separation between the 3P and 3F free-

ion levels and 1s expressed 1n terms of the Slater-Condon
parameters as

bp = 15 F, - T5 Fy . (7.6)

Solving the 2 x 2 secular equation one obtains the following

energy eigenvalues:
B3P (3r,)1 = L (8p - 98) + 3 [(sp + 98)2 + 108623},

| (7.7)
BR(T))) = 5 (sp - 98) - L [(p + 98)2 + 10482} .
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TABLE IX. CUBIC FIELD FUNCTIONS OF 3F AND p.2’P

w

-G -Lg) + ()3 Cr2,m) /(602
(24 (3F,0,M) + (5/2)304(37,3.m)

- v(3F,-3,14)1)
- Brmg) - (512 Gr 2,49 1/(6)}

T, : Y(BTI,-,MS)

v(3r ,0,M5) = %

YT, +M)

r,: YO, 4m5) = (59} (R 1mg) + 1(3r,2,m9)1/(6)2
Y(31,,0,M5) = [¥(OF.3,M5) + 1(3F,-3,Ms)1/(2)*
131y, -,Mg) = [(5)3CF, -1,M5) - ¥(3F,2,45)1/(6)?

ot 10C,m5) = 2 ()} Cri0mg) - @204 CR,3,m)
- *(3F:“'3:Ms)]}

3, Y31y, +,M5) = ¥ (P, 1,mg)
*(3r,,0,M5) = ¥(3p,0,Mg)
(3 ,-,M5) = +(3P,-1,1)

8Phe notatlon ¥ refers to the atomic wave functions
of Vtt*, The first symbol inside the parenthesis signifies
the values of S and L, the second gives My, and the last, Mg.
The cubic-field functions are denoted by Y with the first
symbol inside the parenthesis for the symmetry properties and
the second as an index of the components of the degenerate
.states. The free-ion functions ¥ are constructed from linear
combinations of the products of one-electron 4@ orbitals. The
Clebsch-Qordan coefficlents are taken to be those given in
Condon and Shortley.

This table taken from Brumage, et al., Ref. 19.
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The eigenfunctions may also be obtalined from the proper
uniﬁary transformation but the mixing coefficients turn out
to be very complicated functions of B and the eilgenvalues
_(7.7). Since these coefficients are treated as parameters

anyway they will be designated symbolically by simply writing

o°r(3r,)] = 21037 (%)) 1 + 5103231,

(7.8)
o’p(Cry) 1 = 210032 (C1y) 1 - ap03r (1)
For V-_+++_doped corundum a; and a, are taken Eo be (19)
a; = 0.959, ap = 0.285 . (7.9)

These same values will be used for V203, since the magnetic
susceptibility was found to be practically unaffected by a
small variation in a; and ap at the temperatures of interest
here.

This treatment of the cubic field has been given for
the purpose of developing certain parameters which appear in
the susceptibility expressions. In the absence of any optical
data for v203 the energy differences and mixing coefficients
which have been developed thus far will be taken to be the
same as those found for corundum. That is, the corundum
values for a;, a,, and g (see Fig. 1) will be used. For
the vanadium alum V(Héo)g+, Hartman, et al. (25) found Ag
to be 12,400 em™l and the 37,-3T, spacing to be 26,200 em~l.
The first of these represents a decrease of about 28% from

1ts corundum value of 17,400 cm > (28), but the latter is
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very nearly the same as its corundum value of 25,200 cm'l.

Neither of these represent unreasonable deviations from
corundum and such an approximation is not expected to be any
worse for pure Vé03. This 1is discusged more fully in Chapter
XI where some rather heuristic evidence 1s given to show that
such an approximation produces very little effect on the

. susceptibility. However, there are oéher parameters which

do affect the susceptibility considerably. One of these 1is
the splitting of the 3T1(3F) level by a trigonal distortion
in the crystal. This trigonal-field splitting will be

developed in the next section.

The Trigonal Field

In the doped-corundum crystal it was found that many
of the optical and magnetic properties could be accounted
for by introducing a small trigonal correction to the pre-
dominantly cubic field. There is some experimental evidence
for such a distortion in pure vanadium compounds possessing

the same 0h symmetry as Al This is evident from the

2O3°
paramagnetic data by Carr and Foner which was taken'from
single crystals with the external magnetic field both
parallel and perpendicular to the c-axis (20). While some
anisotropy exists, it seems rather small compared with A1203
and it is known that the trigonal distortion is primarily
responsible for this, at least in the crystal field approxi-
mation. Also calculations based on data for V(Héo)z+ which
has O, symmetry indicate a large trigonal distortion (18),

(25).
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The trigonal electrostatic field may also be expanded

in spherical harmonics as

v, = .EI [B; yi Y2’0(91,¢1) + Bﬁ gf Yu,o(ei’wi)]'
1=1,2 a (7.10)
This potential function which possesses only axial symmetry
can be regarded as a small perturbation to the Hamlltonian
through Vc and further 1ifting of the orbital degeneracy of
the cubic levels can be accomplished by another first-order
degenerate calculation. The splitting of the cubic levels

is again predicted by group theory to be (19)

3, - 3 4 3a,, 31, - B+ 3A1 (7.11)

with E, Al’ and A2 unchanged. This splitting 1s also shown
in Fig. 1 for the doped-corundum crystal.

A first-order degenerate perturbation may now be per-
formed to find the two energy levels of 3Tl(3F) in terms of

the trigonal-field parameters defined as

r= - (5/m?% B3 ¢+?) 180 ,

.12
Y = - Bi (ru)/lh(ﬂ)% . (7 . )

Using the mixed cubic-field functions of (7.8) as a basis
the 3 x 3 secular equation is found to be diagonal. The non-

vanishing matrix elements are

2
Crem) v, 1PPCrd)) = o a + 228, B + a5 C, (7.13)
2 2
1 2

D +2a.,a, E +a- F, (7.13b)

Crer) v, 13 () = a 12
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Wwhere '
Az-T-17Y, B=-8T‘-3Y, C‘-‘-"lu'l’,

' ' (T.14)
D =27 + 13y, E = 167 - 8y , F = 287 ,

The basis functions are still the cuble-field functions.

3E trigonal level and is

3

Equation (7.13a) is energy of the
two-fold degenerate while (7.13b) is the energy of the 2
level and is non-degenerate (orbitally). From the work of

Brumage, et al. the trigonal parameters were found to be (19)
-1 -1
T~ -T7.3em™, y=38.5c¢cm” . (7.15)

These are expected to change considerably for V203.

A quantity which is important in the susceptibility
theory 1s the energy difference between the two trigonal
levels of 3Tl(3F). This trigonal-field splitting Ap is ex-
pressed 1n terms of the trigonal parameters and mixing coef-

ficlients as
2
bp = - a3 (37 + 30Y) - 2aja, (241 - 5Y) - a, 421 . (7.16)

Ap 1s a positive quantity for V203:A1203 since al is much

larger than as and both trigonal parameters are found to be

negative. This means that 3E lies higher than JA, and the

same result 1s expected to hold for pure V203.



CHAPTER VIII
SPIN-ORBIT, EXCHANGE, AND MAGNETIC FIELD IRTERACTIONS

The remaining terms in the Hamiltonian (6.1) represent
magnetic effects. H -6 represents an intraiénic magnetic
interaction between the spin and orbit of each electron, Héx
represents an interionic interaction assoclated with ex-
change effects, and the last term is the interaction of the
cation with an external magnetic fleld. All of these will
be combined into a single perturbation calculation for finding
the energy but first each operator willlbe discussed

separately.

Spin-Orbit Interaction
The interaction between the spin angular momentum

and orbital angular momentum for two equivalent d-electrons

is
Hs_o = §(41~s1 + 4y°85) . (8.1)
This can be written as (32)
1 - - - - - - - -
H, = E-g[(Ll + L2)°(sl + 85) + (Ll - 1) (87 - 85)] . |
(8.2)

From the definition of angular momentum it is apparent that
65
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L=4) +4 , S=38)+8p. (8.3)

In (8.3), L and S is the usual Russell-Saunders notation for
total orbital and spin angular momentum, respectively. HS o
can now be written as

H = ALS +A[(¢, - 1)+ (5, - 5,)1, A=25. (8.4)

The flrst term 1s the spin-orbit interaction expressed 1n
the Russell-Saunders coupling scheme and the bracket term 1s
a measure of the-deviation from L-S couplingi The bracket
term will connect levels having different symmetry in the
Russell-Saunders scheme. It 1s not expected to affect the
paramagnetic susceptibility a great deal since most of the
contribution is from the 3Tl(3F) level. Therefore, it will

be neglected and HS o will be taken as

Hy_, = AL:S . (8.5)

In (8.4), X is a function of the radial distance and the
matrix elements will all contain this function averaged over
the radiél electronic distribution. It will be taken as a

pérameter in what follows.

Exchange Interaction

Since the neighboring cations in V203 are vanadium
some exchange degeneracy exists between these ions. This
exchange effect greatly alters the magnetic susceptibility

and will be introduced here in a purely phenomonological
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manner. The mechanism for this interaction is the same as
in many other magnetic sesquioxides having the corundum
structure (24). It is related to the extent and manner of
the overlap of the electronic distributions centered én the
different cations. The total exchange interaction is gen-
erally the sum of two distinctly different types of inter-
actions, the strength of each type being related to the type
of crystal symmetry and geometry and to the number of outer
d-electrons associlated with each cation (23). The cation-
cation interactions arise from the direct overlap of the d-
electron wave functions. In the corundum structure, two
cases are distinguishable: the interaction between c-axis
pairs of catiohs which share a common anion octahedral edge.
" The other type of contribution to the exchange effect is the
cation-anion-cation interaction in which the d-wave functions
overlap via an anion intermediary. In the corundum structure
the interaction between c-axls pairs is much stronger than
thé other two but in this work no distinction will be made
and some sort of averaged exchange will be deduced.

The Helsenberg exchange operator is used for the ex-
change interaction between a single cation and all of its
neighbors. Thus, for a cation whose spin is 51 the inter-

action can be written as

Hex = 51°27 ) §y . (8.6)
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This operator assumes that all the cations are equivalent
and that J, the exchange integral, is the same for each.
The summation 1s extended over all the cations in the crystal
but most of the contribution will come from the first nearest
cation neighbors and there are five of these for corundum.
For identical cations, this summation can be replaced by the
number of ﬁearest neighbors times the average spin per cation.
Letting z be the number of neighbors, (8.6) can be approxi-
mated by’ |

| Hoy = §~2Jz(§) g g'ﬁ ' (8.7)

where the subscripts have been dropped since all the spins
are the same and (5) i1s the average spin per cation. The
average 1s taken over the Boltzman temperature distribution
and will be determined self-consistently later.

An internal molecular field 1s now introducéd which
has a magnitude of 2Jz (S) and a direction which is parallel
to the direction of an externally applied magnetic field.
This should be the case 1f one neglects such things as an-
isotropic exchange and demagnetizing fields sinceithe ex-
ternal field should cause the spin to precess about the
directlion of this applied field. Thus, for an external
field in the z-direction the internal fileld H will split each
triplet level into three components according to the Mg-value.
The self-consistent determination of (S) will cause this ex-
change splitting to depend on temperature. The quantity 2Jz

will be treated as a parameter to be determined from
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experimental data. When treated this way, one cannot deduce
how many neighbors participate in the exchange effect nor
what kind of interactions contribute to the exchange integral.

Magnetic Fleld Interactlon

The last term in the Hamiltonian (6.1) is the inter-
action between the spin and orbital magnetic moments with an
externally applied magnetic field go Such an interaction
depends upon the direction of the external field and the two
cases of 3 parallel to the trigonal axis and perpendicular
to this axis will be worked out. The interaction can be
written in terms of the g-factor associated with spin only
as

H=u,(L +gg 8) ¥ . (8.8)

The lowest trigonal level, 3A is orbitally non-degenerate

o2
and 1ts average orbital angular momentum vanishes in a first-
order theory. This represents the quenching effect of the
crystal field. That total quenching does not occur is
evident from a second-order calculation in which matrix
elements of E'g are found connecting different orbital levels
in the crystal field. This deviation from total quenching
produces an effectlve g-value which is slightly less than

the spin-only value of 2.

The Energy Matrix

The eigenvalues and eigenfunctions of the Hamiltonian

matrix up through the trigonal field have already been found.
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Therefore, thlis much of the Hamiltdnian may be regarded as
the unperturbed Hamiltonilan Ho and all the other terms as
the pertur‘qation° Then
H=H +H (8.9)
where '

H' = AL-S + S<h + uo(i + 28)°H . (8.10)

In (8.10) the spin-orbit and exchange interaction have been
interchanged which makes no difference in a single perturba-
tion calculation. H' will be carried through first- and
second-order using as a representation the mixed cuble-field
functions of Table IX and equation (7.8). The spin functions
are the usual ones for triplet states.

The energy matrix is constructed using the 3Tl(BF)

(3

3¢

2
given in Table X. 1In this table a, a', a" are related to

and F) cubic field functions. The matrix elements are

the mixing coefficients as follows (19):

a = (3/2) ai _ a°

s, o =2t a, o -ad-(3/2) a; .

(8.11)
The 18 x 18 matrix'can be regarded as two 9 x 9 blocks, one
for each of the cubic levels, with matrix elements connecting
~ the two blocks. Furthermore, each of these blocks may be
regarded as three 3 x 3 blocks with matrix elements connect-
ing them. Within the 5T, block, one of the 3 x 3 blocks can
be identified as belonging to the 3a,(31,) trigonal level

and the other two as belonging to the 3E(3T1) trigonal level.
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TABLE X. MATRIX ELEMENTS OF H' = AL-S + s-h + u (T + g8)-¥
IN MIXED CUBIC REPRESENTATION®’P

(1) Within the 37, (3F) block
(0,0|H |0,21) = (2)¥(h + gu,)/2
(0,x1[H'f0,%1) = = (h + g¥,)
(£,0[H'|%,0) = F an,
(+,2|H" |+,21) = F ax - a¥, = (h + gH,)
(-,*1|H'|-,21) = 2ad + a¥; £ (h + g¥y)
(+,0|H" |+,1) = (2)5(h + gh,)/2
(-,0lH" |-,41) = (2)3(n + gu,)/2

(0,0|H' |£,F1) = - aA

(0,21 ]|H'|%,0) = - a)
(0',0..|.H’|:L,O) = - (2)‘5aux/2
(0,1 |H'|+,£1) = - (2)%0,33(/2
(0,21|H"|-,41) = - (2)3an, /2

(2) Between the 3T, (3F) block and 3T, (3F) block: (37, |H'|3T,)
(0,21 |H']0,21) = = (2)¥a"r + (a)ia'u
(0,%1[H' |+,0) = (2)¥arr/2
(0,0 |H' |£,71) = (2)%a'2/2
(0,0]H"|%,0) = a'H, /2
(0,1 [H' |+,41) = a'y /2
(0,31|H"[-,%1) = a'¥y/2
= (2)‘5(?? a'X - a'd,)/2

(2)§(:_t a'} + a'¥,)/2

(+,21|H' |+,11
(-,x1|H'|-,11
(0,0|H'|0,0)¢ = (e)ia'nz

]

)
)
31)
)
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TABLE X -- CONTINUED

(+,71|H' [0,0) = + (2)}a'n/2
(£,0|H'|0,21) = % (2)}a'r/2
(1,0 |H' |7,71) = - (2)%a'r-

(,+1]H' |F,0) = - (2)¥a"2
(-,#1|H'|0,21) = - a'H /2
(+,21 |H'|-,21) = - a'¥,
JA1[H']0,41) = o'y, /2
(-,x1|H" |4,%1) = - o',
(£,0|H' |F,0) = - a'¥,
(£,0]H']0,0) = & a'¥, /2

(3) Within the ST, (3F) block
(0,0|L-8|F,41) = T %
0,41|L-S|+,0) = + %
(+,41 |8 |+,41) = + 3
(-,21|LeS|-,21) = £ 3

(4) Within the 37, (3P) block
1
(0,0|L-8 |F,41) = a"
i a.ll

('hil 'z'g I+:il)

-,illi-s |-,£1) = F a"

(0,41 |L-S|%,0) = a"

4The two indices in the matrix elements correspond to
the second and the third label of the wave funcetions in Table
IX.

Prable taken from Brumage, et al., Ref. (19) except
for elements containing h.

CPhis matrix element i1s omitted in the table of
Brumage, et al., Ref. (19).
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In the magnetics problem it i1s assumed that only the 3A2

trigonal level 1s populated so it 1s necessary to obtain the
elgenvalues of this small block only. To account for the
elements connecting this block with all the others in the
energy matrix, a secénd-order Van Vleck transformation is
applied to reduce the relative magnitude of these connecting
elements (27). For H in the z-direction (along trigonal

axis) the 3 x 3 3T§-block reduces to three. diagonal elements

which'are
2 2 22' 2.2
20 'y 2  a“A a2
(Mg=21|Mg=t1l) =t h * u g ¥ - —2 ¥° _ -2
° " vz Ao z Ay 2 g
» 2 (8.12)
2.2 1
(Mg=0lMge0) = - 2A _ at®r% E¢THo 2
STEISTES T T Ty A A z’
T c c

and for ¥ in the x-direction (perpendicular to trigonal axis),

2,2 a'2)2 2
a A A a'
(Mg=11 [Mg=%t1) = - By -g— - Ko ( >H
2,2 2.2 2 2
2a°\ a'S\ 2/ a a! 2
(Mg=0 [Mg=0) = - e L ( = 'Z'c'> W, (8.13)

(MS=O|MS=11) = (h + My 8 Hx)/(2)% .
In (8.12) and (8.13), Oc 1s defined in Fig. 1 and g, and g,
are defined as

Ma'zx a'2\ _ 202 (8.14)
be by




v T4
Presumably, the exchange fileld ﬁ vanishes when the applied
field 1s removed, especially in the paramagnetic region.
This makes some of the terms in (8.12) and (8.13) field-
independent and it is still possible, as in the doped-
corundum case, to define the zero-field splitting as
c"2)\2‘ ‘2k2

6 = ™ -;23.°‘A ) | (8.15)
C

The two matrices obtained from (8.12) and (8.13) have
three eigenvalues corresponding to three different energy
levels and it 1s convenlient to denote them by their Jm-
sybscript, m = - 1,0,1. Since (8.12) is already diagonal
the energy of each level for B parallel to the trigonal axis
may be wrlitten down at once, in terms of the zero-field

splitting, as

o H
Wim = ij + Wy (8.16)
where

2,2 2,2

o 2 2a“A a'“a
W, =W, + 8S - - (8.17)

Jm J Zim  bp bg ’

H 2a'® 2 2

wjm = h ssz + o 8, ¥, ssz - y M uz . (8.18)

In (8.17), Wj is the_energy associated with H, in (8.9) and
does not depend on the m-subscript. S, is -1,0,1 depending
on the m-value, The matrix of (8.13) can be diagonalized

and the energy levels expressed in a similar way providing

one assumes that the zero-field splitting is much larger
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than the total magnetic energy, including the exchange energy.
Although the exchange term will decrease the magnetic energy
it 1is expected that 6 will be élightly less in the pure
crystal than in the dilute crystal becauéé of the greater
trigonal distortion. Nevertheless, this 1s not expected to
alter the validity of such an assumption a great deal and it
will be made in what follows. The energy levels of (8.13)
are again expressed by (8.16) with (8.17) unchanged. How-
ever, for the perpendicular case (8.18) becomes

2 1

H 2 ( a ate 2 2
Wi = -5 (v ZE_'> W, - (1/8) (0 + uog )7 (1 - 35,

Jm Jm

-2s8 ). (8.19)

All symbols in (8.19) have the same meaning as before.

The energy matrix for the 3A2(3Tl) trigonal level
has been reduced to diagonal form, at least approximately,
and the energy of each magnetic level has been expressed in
terms of the molecular exchange field h which still includes
the unknown quantity (S). The next chapter is devoted to a

self-consistent determination of this quantity.



CHAPTER IX
SELF-CONSISTENT DETERMINATION OF THE MOLECULAR FIELD

The determination of the molecular field should ful-
fill two intuitive requirements. First, in the paramagnetic
region and in the absence of an applied field one could ex-
pect the molecular field to vanish since there 18 no axis of
quéntiZation.for the spin system and the average spin per
cation would be zefoo Secoﬁd, at‘very high temperature even
with an applied field, the thermal energy would de-couple
the spins, again causing the molecular field to vanish. Both
of these requirements are met i1n the self-consistent method
developed by Kanamori for FeO and Co0(26). This method
neglects any distortion 1n the spin system by spin-orbit
coupling and inecludes only first-order distortion by the
applied field. 1In operator form, the spin per cation 1s ob-
tained from (6.1) using (8.7) as

oH
Sop = 323z (8Y) (9.1)
and the spatial average is |
) m
S =0 (9.2)
d(23z(s))

The thermal average 1is then obtained using the Boltzman
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(s) = 48 : (9.3)
Z e-WJm/kT
Jm
This may be simplified using (8.16) and assuming the magnetic
energy 1s small compared to the thermal energy. This permits

an expanslon of the exponentlals to give

Wo_/xT H WS /kT
(S)‘[ E:e Jm/ - i%.Z'me.e »jm/ ]

W W W /KT
=Z -a—(g?z_(—s_ﬁ (l - %) e ° (9-4)

For the parallel case, {9.4) with (8.17) and (8.18) gives

M, g, # -8/kT
sy = - L2 6/k§e =5 - (9.5)
1 + 2e 2dz g -8/KT
kT
Again 1f the zero-field splitting 1is much less than the
thermal energy as well as 2Jz, (9.5) becomes
(8) = - 21, g, ¥, 1 : (9.6)
3 XT + (2/3)(2J2)

The following equation defines the temperature dependence of
(9.6).

(S) = - uy gy Wy C . (9.7)
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It is obvious that (9.6) meets the requirement of vanishing
applied field and the high temperature condition. The energy

(8.18) can now be written as

H , 2 2
Wi = Ho & (1 - 272C)H, - (20 2/80) W2 A | (9,g) _

As stated earlier, the exchange term decreases the magnetic
energy as is evident from (9.8).

For the perpendicular case, (9.4) is again used with
(8.17) and (8.19). No additional assumptions are needed,
however sécond-order terms in the total magnetic energy and
zero-field splitting must be retained. The previous assump-
tions are sufficient to reduce the original cublc equation
in (S) to a simple linear form which can be solved immediately

with the result

(8) = - %-uo g, ¥, 5 ) (9.9)
+3 (23z)
or
(8) = " ug g, ¥x C . (9.10)

This is the same as (9.7) except for the effective g-value.

The energy (9.19) now becomes

-gi )]u

(9.11)

[——+9-'—2—+'5*'(12JC)(1 L
- VA _2 ij

Again the exchange term reduces the magnetic energy.

Both (9.8) and (9.11) represent the magnetic energy
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for a single cation in an effectivg molecular field. In the
susceptibility theory the total energy for the entire crystal
is needed and a correction term in the susceptibility equa-
tion is needed because in the molécular field approximation

the exchange interactions are counted twice. This is shown

in the next chapter.



CHAPTER X
MAGNETIC SUSCEPTIBILITY

The classical expression for magnetic susceptibility

(10.1)

=]

X = WH , M=N

where M i1s the total magnetization, ¥ is magnetic field, m
is the average magnetic moment per vanadium atom, and N is

the number of vanadium atoms. According to Van Vleck, m is

given by (35)

-ij/kT
E:mjm e |
— Jm
m = (10.2)
z e—WJm/kT
Jm
e oW BWH
" (10.3)

The magnetic energy can be written as

H 2
. wjm = W' +W"8 Myp = - W' - 2W'y (10.4)

The field-independent susceptibility is obtained by expanding
the exponentials in (10.2), using (10.4), and neglecting any

permanent moment. The result is

79
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o

N z l: W' - oW n] e-me /KT
X = Z: ’ij/kT ’ (10.5)
Jm

Equation (10.5) i1s applied to both the parallel and
perpendicular cases in the usual way. For H parallel to the
trigonal axis the susceptibility is

2
N “o

{ g L (1 -ewzc) zuz)c ] + 6Ka'2 }

g (10.6)

wir

For ¥ perpendicular to the trigonal axis the result is

2

2 Ny ¢ 2 1___chz o2 ko’ | 3ka'?
X, =3 % { [ k(QJz) ] + > + ™ } .
(10.7)

Both of these expressions apply only to the high-temperature
region. For these temperatures, (10.6) and (10.7) are
identical to the results for the doped-corundum problem ex-
cept for the terms containing (2Jz). The second term in each
square bracket is the correction terﬁ mentioned earlier.

The contribution to the energy from exchange interaction only

1s found from (8.7), (9.7), (9.1C) to be

n

W 2Jz(§)'(§)

ex

2

23z (ng g,,, Yz,x c)

3

i

w" ¥
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Now using (10.5).with W' =0,
Xex = - 2NW" = - 2N(2Jz) (u, & | ¢)?
‘To avold counting twice the contribution to thg susceptibility
from exchange, one-half of Xex 1s subtracted from the un-
corrected susceptibility. Thus the correction term in (10.6)
and (10.7) is established.
The tabulated susceptibility data for V203, over the
range of temperatures of interest here, was published by
J. Wucher in 1952 (37). This was for four different powder
samples of Vé03 and the one which will be used here for com-
parison is the sample prepared at 1300°C since it is the one
with the highest stoichiometric purity. Thus, it will be
convenient to have an expression for the powder susceptibility.

According to Van Vleck, this i1s given by (34)

N

Wi~
w

Using (10.6) and (10.7) the result is

2 2 2
2 N ug -2JzC) 4ka! 2ka
= g_ﬁ._ [ L— k(2J )c ] + C }

(10.9)

where
2 1 2 2 2

€p =38y +§gl . (10.10)

Equation (10.9) contains several unknown parameters,

namely, gp, 2Jdz, a', a, Ac, Op. Normally the last four of
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these can be determined from the optical spectrum but this

is not possible for V203. Also, gp 1s usually determined in
the dilute crystal from the low-temperature data, but again
this 1s not possible for V203 since it undergoes a crystallo-
graphlic phase change at about 168°K., However, it is still
possible to make some reasonable estimates of some of these
parameters. In Fig. 2 equation (10.9) is compared with the
experimental data of Wucher for several values of some of
the parameters. 1In all the curves the values of a', a, Ag
obtained from the dilute crystal are used. This cholce will
be discussed later. From Fig. 2 1t 1s obvious that reason-
ably good agreement 1s obtained in the two different tem-
perature regions but only with a different set of parameters.

This is also discussed later.
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CHAPTER XI
DISCUSSION AND ANALYSIS OF RESULTS

In fitting the theoretical curve . to the experimental
data it was found that the magnitude of the susceptibility
was mostly controlled by the temperature-independent term in
(10.9) while the slope, or gentle curvature, was more sensi-
tive to the exchange parémeter, 2Jz. This is shown by the
various curves in Fig. 2. To Justify using some of the
parameters from the doped-coruﬁdum problem, a simple calcula-
tion was made in which first-order variations in the unknown
parameters about thelr corundum values were permitted. These

consisted of making the following replacements in (10.9) and
(8.14):

a-~a+ €, a' = a' + €', A= A+ A
Ag = Bg - 8", Ap = bp+oT,

where all the variations are taken as positive quantities.
After the replacements were made all appropriate terms were
expanded through first-order in small quantities. To get an
estimate of the sensitivity of xp to these variations, the
following values (all in em™l) were then used:

84
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\'=5, &' =5000, T=300, €=0.13%x10°,
€' = 7.9 x 1073 .,

These produced a value for gp approximately 2.8% larger than
its corresponding corundum valﬁe but a value for the
temperature-independent term in (10.9) which was about 20%
smaller than its corundum value. Furthermore, the contribu-
tion from each of the variations could be isolated and for
the same percentage variation in each of the parameters the
contribution from the variation 1n Ap was at least one order
of magnitude greater than any of the other variations. Thus,
the corundum values seemed to be a reasonable estimate for A,
a, a', Ag for the purpose of fitting the susceptibility.
The larger V-0 distances in pure V203'shou1d actually cause
Ac to decrease from its corundum value of 17,400 em™1 (28).
In the case of V(Héo)g+, Ac was found to be 12,400 em ! (18).
The 3F-3P'spacing, A, o, a' could also be expected to ap-
proach more closely their free-ion values.

The curves in Fig. 2 which best fit the experimental
data are assoclated with the following set of parameters. |

200°K < T < 320°K:

2Jz = 770 em™l ,  Ap = 2410 cm ™ , gp = 1.946
500°K < T < TOO°K:
2Jz = THO em™l ,  Mp = 2200 em™t , gp = 1.905

If only the five nearest neighbors participate equally in

1

the exchange interactions, this would give J = 77 em — and

T4 cm"l, respectively. The difference in these two values
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is not considered significant in view of the molecular field
approximation which has been used. Even the magnitudes
themselves should be considered strictly as an empirical
value,

In both temperature regions the value of Ap needed
to fit the data 1s considerably iarger than its corundum
value of 1200 em™1 (19). That V,05 has more trigonal dis-
tortion than corundum is not unexpected since the lattice
geometry is different. For chromium ions in ruby and in
Cr203 the trigonal field was found to be so sensitive to the
lattice geometry that ruby electric-effect constants could
not be used in Cr203 magnetic calculations (17). In fact,
for these two crystals, Foner's observations indicate that
the trigonal field reverses sign and its magnitude decreases
by 1/9 in going from ruby to Cry04 (22). Therefore, one
should be cautious 1n relating any physical meaning to the
large AT obtained here although physical arguments could
be proposed which would seem to support it, but these should
also be applicable to Cr203 as well. The fact that two
different values of Ap are needed to fit the two temperature
regions appears to be 1in qualitative agreement with Good-
enough's explanation of the high temperature transition (24).
According to Goodenough, as the temperature is decreased
through the transition region, homopolar c¢-axls bonding sets
in and the cations move toward their c-axis mates away from

the center of symmetry of thelr respective interstices
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‘causing an increase in the c¢/a rati& for the crystal.' It 1is
possible thgt such displacement of the cations away from
their centers of symmetry could produce a chahge in the
trigonal splitting.

: The results presented so far have been based on a
one-ion approximation where the electrical and magnetic en-
vironment of the crystal has been treated phenomenologically
as a perturbation to the energy levels of a single cation.
However, because of the palring of cations along the c-axis
in the corundum structure it 1s possible to treat the ex-
change interactions between the pair exactly and use the
effective internal magnetic field to describe the effect on
the pair of the "off-axis" cations. This possibillity is ex-

plored in the following chapter.




CHAPTER XII

THE COUPLED PAIR MODEL

The coupled pair model treats the exchange inter-
actlons between the c-axis pairs exactly and the resulting
homonuclear diatomlic molecule is coupled to the remainder of
the magnetic lattice by an effective internal magnetic field,
Just as 1n the one-ion approximation. Such a model has been
applied to Cr203 below the Nee; temperature but has not been
extended to the paramagnetic region (31). Generally, the
low temperature data 1s used to determine if the dominant
mégnetic interactions are antiferromagnetic or ferromagnetic
in nature but because of the anomalous properties of V203
near the low temperature transition this is not possible.
Therefore, there i1s no a priori reason to assume one or other
so both cases are tfeated separately.

Since the orbital contribution to the magnetic sus-
ceptibility 1s a second-order effect it is possible. to study
the qualitativé features of the model by considgping a pure

spin system. The orbital contribution will be discussed later.

The Antiferromagnetic-Ferromagnetic Model

The direct exchange interaction between the c-axis
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pair is assumed to be antiferromagnetic while the coupling
of the pair to the effective field is ferromagnetic. It is
also assumed that the formér is much stronger than the latter.
This model will be referred to as the AF-F model. A more
precise formulatlon follows,

Consider a two-layer structure where each layer con-
tains one of the cations belonging to a c-axis pair. Iet a
and b be indices which label the two layers and 1 and J be
indices associated with the cations within a layer. Then
the Hamiltonian for the two-layer spin system in an external
magnetic field is
He) g8 8- ) 200 . 8#+8. §3) +2u, ) 8 - ¥

i
i ] 1#£3 J i

+2u ) B0 W (12.1)
1

In (12.1) the signs have been chosen so that both J and J'
are positive exchange parameters for the AF-F formulation.
The 2 appearing in the last two terms of (12.1) is the elec-
tron g-factor which should nof be altered in the absence of
any orbital contribution. Since all cations are assumed to
be 'in the triplet spin state, S1 = SJ = 1. It is possible

to express (12.1) in terms of the total spin as

- —ob - - -1 -t -t -
H=J2$a-s -3 z (S +.S;, +8, - 8,) +2u ZS . ¥
1 1
T i i 127 J i J o] T

(12.2)



Sy =S, +8;, L = (12.3)

In (12.2) i1t has been assumed at the outset that J and J'
are independent of all indices.

Purther simplication can be obtalined by considering
only the ferromagnetic terms. These are written in (12.1)
in terms of the strong field coupling scheme whereas in
(12.2) the first part can be recognized as the weak field
coupling scheme (analogous to Russell-Saunders coupling in
spin-orbit interactions) and the second part may be con-
sldered as a correction to the weak field scheme. This
correction term may be analyzed by recognizing gi as beling a
so called T-vector with respect to the total spin §1, and
similarly for g; (see Ref. 4). Then in the SaSbSMS repre-
sentatlon the correction term will connect states for which
ASi = ASJ = 0 £ 1 but either of these combinations represents
a second-order effect since 1 is never equal to J in this |
term. Therefore, the correction term in (12.2) will be
neglected and the weak fleld coupling scheme can now be used,

The Hamliltonlan for the coupled pair of 1th cations

can now be written, after dropping the l-subscript, as
H=J§a~§b-J'§-Z§J+2uO§-§. (12.4)
J
Since all pairs should be identical the Jj-summation can be
replaced by the number of "off-axis" neighbors to the pair

times the average spin for the coupled system. Thus,
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H=38 .52 -85-32¢(S) +2u, 8 H. (12.5)

This Hamiltonian serves as the starting point for a two-step
successlive perturbation treatment.

It is easy to show that the first term in (12.5) is
diagonal in the weak field representation and the energy

levels, apart from a constant term, are given by
Wy = 2JS(S + 1) (12.6)

where the total spin S takes the values 2, 1, 0. The basls
functions are Clebsch-Gordan combinations of the single ion
triplet spin functions and are given in Table XI. These are
used to treat the next two terms in (12.5).

At this point it should be noted that the Hamiltonian
(12.5) contains no anisotropic terms and it is only necessary
to treat a single direction, say the z-direction. Since the
ferromagnetic interaction now behaves as an effective mag-
netic fleld the energy will depend only on S, and similarly
for the last term in (12.5). Therefore, the energy of each

level can be written down immediately as
' wSMS‘= QJs(s_f 1) - (3'z (S) - 2 ug H)S,. (12.7)

The effective molecular exchange field 1s determined in the
same way as in Chapter IX. Using (9.1), (9.2), and (9.3)

the result is
(8) =2y, ¥ C (12.8)

where
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TABLE XI. CLEBSCH-GORDAN COMBINATIONS OF.
TRIPLET SPIN FUNCTIONS?

a b
S = 21 Spp = Sy Sy
ab a b
Sp; = (S84 + Sy Sg)/V2
S50 = (s% sP+2s3 8 + s? s0) 6
a b a b
S,_1 = (So 8- + SZ so)/V2
a _b
82-2 = S_ S__
a _b a b
S = 1t 5,1 = (S5 8, - 8 SJ)/V/2
8,5 = (85 8% -5 sh)/ve

b

a a_b
Sl_1 = (SO S_ - S_ SO)//2

-]
S = 0: S = {8, S

b
00 =

a b a b
- 89 Sg +S_ 8;)/V/3

8The subscripts on the coupled spin functions give
the SMg values and those on the one-lon functions are the Mg

values corresponding to +1, O, -1.
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- -3J/kT
o c' =c', 1 2e I/t + 10e 33/ (12.9)
E—3 ' - - - J .
1 + J'zC kT 3e J’/kT’+ 5e 3J/kT

Using (12.8), WSMS can be written as

2
WsMg = 3JS(S + 1)+ (1 - J'2C)" u, ¥ 8, (12.10)

which has the form

o] ' v
wSMS = Wg + wSMS - (12.11)

The magnetic susceptibility is obtained from (10.5) with W"

set equal to zero. The result is

2

o (1 - 7'20)% ¢ (12.12)

X = 4N u

where N now represents the number of pairs and is equal to

the number of V203 molecules in the crystal. Equation (12.12)
must again be corrected for double-counting in the molecular
field approximation. The procedure is the same as in Chapter

X with the result that
2
X =4 (1 -27'zC) ¢ (12.13)

with C given by (12.9). The exchange parameters J and J'z
‘contained in (12.13) can now be adjusted in an effort to fit
the experimental data. .

In Figure 3 the palr susceptibility is ploéted as a
function of temperature for various choices of the two
parameters. Several things are obvious from the figure.

First, all curves have a tendency to approach each other at
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the higher temperatures as one would expect. Second, 1t
appears that the position of the Neel point depends more
strongly on J whlile at the lower temperatures the absolute
value of the susceptibility depends more strongly on J'z.
The high temperature transition i1s still not accounted for

1 curve was about the best

and the J = 130 em %, J'z = 55 cm”
fit of the data that could be obtained. However, as stated
earlier, only the qualitative features of the model were to
be explored and from this viewpoint reasonable agreement is

obtained, especially above 500°K,

The Ferromagnetic-Antiferromagnetic Model

Because of the absence of any conclusive evidence for
taking the direct exchange interaction to be antiferromagnetic
it 1s reasonable to explore the possibility that it may indeed
be ferromagnetic. This is referred to as the F-AF model.
Everything is the same as in the AF-F model except for the
signs on the exchange parameters. However, this difference
is enough to change the susceptibility expression considerably.

The energy of each level can be written down at once as
wSMS = - #IS(S + 1) + (J'2(S) + 2 ygy ¥)S, . (12.14)

The same procedure 1is now used to determine the exchange

field with the result

(8) = -2, ¥ C (12.15)

where
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. J/kT T
2e / + 10e3J/k

c' ' 1
= e——— C' = — ¢ 12.16
C=17%Jz¢ T T/kT 37/KT ( )
1l + 3e + Se
Substituting (12.15) into (12.14) gives
Wey = - 3JS(S + 1) 4+ (1 - 3'2C)2 p, ¥ Sy . (12.17)

SMg
Thus, changing the signs on the exchange parameters has the
effect of inverting the exchange levels, placing the S = 2
level lowest.

Equatibn (10.5) agailn gives the magnetic suscep-
tibility which 1s the same as (12.12) but with C and C' given
by (12.16). However, because of the change in sign on J'
the molecular field correction term changes sign and this
causes the second term in (12.13) to drop out. The result
is simply |

x = 4N 15 ¢ (12.18)

where again N 1s the number of pairs and C is given by
(12.16).

The pair susceptibility for this case 1s plotted in
Figure 4 and on a larger scale in Figure 5 for various
choices of the exchange parameters. All the curves again
approach each other at the higher temperatures and tend
towards infinity at the lower temperatures. Such behavior
is also to be expected since at high temperatures the molec-
ular fileld vanishes and the thermal energy is sufficient to

decouple the pair thus "washing out" the direct exchange
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dependence. This is aiso true for the AF-F model in'this
temperature region. At the lower temperatures more magnetic
ions reside in the S = 2 ground level which has a non-
vanishing magnetic mohent, Thus, as the population of this
level'increases the susceptibility should increase as the
graphs indicate. On the other hand, the high temperature
transition 1s still not'predicted but there appears more
hope of obtaining a satisfactory fit of the data in the two
regions above and below this transition using two different
sets of parameters. However, this is not regarded by any
standards as being conclusive evidence that the dominant ex-
change interactions are ferromagnetic but merely suggests
that, in the absence of low temperature data, some caution
should be exercised in making an a priori assumption about

the nature of the interactions.

The Orbital Contribution

The.spin-only model 1s based on the assumption that
the trigonal field splitting for each magnetic ion is in-
finite. This means that the upper trigonal levels of Figure
1, which give rise to the orbital effect, never get populated,
thus eliminating any anisotropy and fendering the zero-field
splitting meaningless. Since it is known that a small amount.
of anisotropy exists in V503 (24), 1t is worthwhile to derive
the susceptibllity expressions taking into account a large
but filnite trigonal splitting. To demonstrate the effect,

the AF-F assumption will be made.
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The Hamliltonlan for the palr may be written down at

once as

b - - g - -b -b

b —=a b
H = Hi 4V eV eV 4 VR 4358 - 80 4 AL -8 4D . 3
o) c c t t )

-a - -b - ~ - -3
+ Lo ¥+l - ¥4 (uog H - ha) 3

-~ - —ob
+ (U8 ¥ - ) © S (12.19)

where Ra = J’z(ga) and similarly for ﬁbo ‘Because of the
antiferromagnetic coupling between layers a and b, ga and ﬁb
should have the same magnitude but opposite directions, how-
ever, this will be accounted for by using the coupled spin
representation. In Figure 1, the 3T2 cublc level will be
neglected but each ion in the pair may be in either of the
two trigonal levels belonging to 3T1' For each of these
levels the individual spin system may be in any one ofvthree
exchange levels produced by the direct exchange téfm énd
corresponding to a total spin of 2, 1, O. For the AF-F
model, the S =0 eXchange level lies lowest. Thus the
possible orbital assignments are AZAS, A;Eb, EaAg, EaEb.

The two-fold orbital degeneracy of the E level causes the
secular equation to be quite large but the EaEb orbltal pair
level may be dropped since 1t does not combine magnetically

with the AaAg ground level. This results from the complete

2
orthogonallity of the orbital functions for these two levels.
Also, the AZEband E?AD levels both lie, in energy, a dis-

tance Ap above AgAg and 1t 1s the interaction of these levels
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with the ground level which must be incorporated into the
susceptibility.
A secular equétién'is set up in the usual way for

the operator (12.19) using, as'a basls set, the orbital func-
tions in Table IX mixed according to (7.8) and the spin func-
tions of Table XI. Because of the directional effects, this
must now be done for the external field in the z-direction
and again.for the field in the x-direction. For each case
the elements of the secular equation are combinations of
those 1n the fifst bloeck of Table.x. The procedure 1s now
the same as for the one-ion approximation. That 1s, a Van
Vleck transformation is used to reduce the size of the matrix
elements connecting the AZAZ level with the higher level.
Ordinary second-order perturbation is then used to get the
energy 6f'each SMS level in the AZAZ block. Assigning zero
energy to the S = 0 level gives:
for ¥ = H,: |

WOO ='(8/3)6

Wip=4J+ (1/2)8

Wiy =3 + (3/2)8 £ (4o &, ¥y - h)

Woo = 37 + (5/3)8

Wo4r = 37 + (3/2)8 £ (uo g, ¥, - h)
=37 +6x2(u, gy ¥, - h),

Woio
for ¥ = Hx:

Z

Woo = (8/3)8 - (2a%/ap) W2 o |

T+ (1/2)8 - (20%/8g) W2 We - (ug &, ¥ -D)/s

w10
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Wy =7 + (3/2)6 - (2a2/AT) ue
+ (uy &) ¥y - h>2/(za>
= 37 + (5/3)8 - (202/8p) u2 2
"+ 18(u, g, ¥ - h)2/6

2 2

Wosy = 39 + (3/2)8 - (2a2/AT) u§ ﬁ
Tl g, ¥, - 0)2(26)
Woyp = 37 + 6 - (2a2/AT) u2 ﬁ
= 2(“0 g - h) /6

The subscripts on W above are the SMg values and a is the
same as 1n the one-ion case., The zero-field splitting 6 and

the g-values are given by
2.2
6"2a)\/ATs g“‘=83=2,
2 2
g, =85 - a°Nip , 8, =gg - 20 A/bp .,

It should be pointed out that the zero-field splitting is
- defined as a negative number here and is twice as large as
the corresponding quantity for the one-ion case.

Using the above energies and (9.3) the molecular
field can again be determined self-consistently with the re-

sult, for the z-direction, being

(S) = uo 8y Hz Cy , Cy = E—:—§7EET (12.20)
with
-36/2kT , -J/kT -3J/kT -(3J 6
C' = ﬁ;-[ 2e 38/ (e / + e 33/ ) + 8e (37 + 8)/kT ] /B

and
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B = e-86/3kT + 2e-36/2kT(e-?/kT + e-3J/kT)

e-é/kT + e-55/3kT)

+ e-(J + 8/2)/kT N e-—3J/k‘1'(.2

Equation (10.5) again gives the susceptibility with W" set

to zero. Thus,

2 2 ,
X, = Nu, &) (1 -3 zca)c" . (12.21)

After correcting for double-cdunting the final expression is

2 2 , “
x, = N ug gy (1 -27°2¢,)c, . (12.22)

Again, N must be the number of pairs.

For the x-direction the procedure is the same but
the actual calculation is slightiyvmore complicated because
of the two types of g-factors which appear in the energy
expressions. After using (9.3), the terms which remsin quad-
ratic in magnetic energy are neglected just as in the one-

ion case. This allows the molecular field to be written as

'
with

¢, =B

c, = e I/KT (o-8/2KT _ -38/2kT

Cy = e 3I/KT (e =0/kT | 14-38/2KT _ 8¢ -58/3kT )

The susceptibility 1s again giVen by (10.5) with W' set to



104

zero. The result, after the molecular field correction, 1is

2 2
2N g (gi - J‘zcl)gce + (81 - J'zCL) C3
XL = & [ c1

2
- g J'zci.+ 20 6 ] . (12.34)

bp

The powder (or polycrystalline) susceptibility is given by
substituting (12.22) and (12.24) into (10.8).

The pair susceptibility including the orbital effect
is plotted in Fig. 6 and Fig. 7. It 1s obvious that the
curves do not fit the experimental data very well but some-
thing new has appeared, and that is the high temperature non-
cooperative transition which was one of the objectives of
the calculation. Before giving a physical explanation for
the formation of this transition it 1s convenilent, first, to
observe some of the more gross features of the graphs. By
comparing correéponding curves in the two figures, one can
see that a large change 1n the trigonal fleld splitting does
not alter the curvature very much but only shifts all curves
vertically. Therefore, adjustment of this parameter could
possibly be used to obtain the right order of magnitude. To
obtain the proper slope for the experimental data a small
J'z is necessary but it is obvious that decreasing this
parameter shifts the transition off to the left of the graphs.
In order to obtaln better quantitative results for Véo3 more

flexibility in the model must be allowed.
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There are several features related to the transition
which can be explained with the ald of an energy level diagram
as in Fig. 8. The figure 1s drawn for the z-direction but
the scheme 1s similar for the x-direction except the X1 and
12 magnetic levels are not split by the field. Since the
magnetic field includes the molecular field the spacing of
the Mg-levels depends on J'z. The important feature 1s the
ordering of te Mg-levels for S =1 and S = 2. The S = 1,
Mg-levels are observed to be inverted relative to the S = 2,
Ms-levelso Phis places the S =1, Mg = 0 level and the
S =2, Mg = 0 level adjacent to each other on the vertical
scale. Both of these are non-magnetic and as the temperature
rises the lower one beczcomes populated first but only at the
expense of the pair of magnetic levels just below it. How-
ever, since the magnetic spacing is small compared to J these
three levels will be about equally populated when kT is com-
parable to,dJ. This 1s even more true when J'z is small.
But a further increase in temperature wlll elevate some of
the pairs from the S = 1, Mg = O level to the S =2, Mg = 0
with no change in the susceptibility. This is why.the
transition can be expected to occur over a range of tempera-
tures as predicted by Goodenough (24). If the temperature
is increased still further the thermal energy 1is sufficient
to de-couple more pairs and the susceptibility begins to de-
crease as the graphs indicate.

The temperature for the onset of the transition



108

Q:”\ =:_, +2
N\ = -2
\ -= +
\ -— e
0
2J
S=1 X <
~
\ -= 0
\ - +1
= 1
J
=0 Y
S \
\
\
\\
- 0
Direct Second-Order Magnetic M
Exchange Spin-Orbit Field Value

Figure 8.

Schematic Energy level Diasgram for the Pair

Orbital Ground State and for ¥ = uz.



109

decreases with decreasing J since the S = 1 levels become
populated more rapidly. The temperature range over which
the transition may occur depends more strongly on J'z as
shown in the graphs. Referring again to Fig. 8, the magnetic
spacing_of the S = 1, MS = 11 levels decreases with increas-
ing J'z. This allows a greater energy separation between
these levels and the S = 2, MS = 0 level and T may increase
considerably before the thermal energy begins to de-couple
the spins. However, 1t 1s recognized that some interplay
between J and J'z affects both the onset temperature and the
range but the above considerations seem to have some merit,
especlally for a qualitative explanation.

One point which is almost inecidental to this dis-
cussion is the fact that at low temperatures only the S = 0
level 1is populated. Thus, continued decrease in temperature
should cause the susceptibility to decrease sharply. The
temperature at which this occurs is the ordinary Neel point
for antiferromagnets. This 1s a cooperative transition but
is not very well-behaved in V_O_ because of the crystalline

23
change at the transition temperature.

Application to T1203

T1203 also has the corundum structure but the mag-
netic ion only has a single 34 electron. Presumably, this
is the reason the non-cooperative transition occurs in the

low temperature phase of this crystal (24). Below about
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250°K the magnetic susceptibility is extremely small indi-
cating no appreciable magnetic moment. This is also con-
firmed by neutron diffraction data. If the exchange
coupling is applied in this case to find the exchange levels
for the palr one gets only two levels corresponding to S =
" 0,1 and separated in energy by the exchange parameter J. If
the orbital effect is to account for the magnetic behavior
in this crystal then the two Mg = O levels should be adjacent
to each other on the vertical scale and, furthermore, they
should both lie lower in energy than the two magnetic levels
corresponding to MS = 11. However, to place the MS = 0 level
lower than the Mg = #1 levels a zero-field splitting for the
pair 1s required and an actual calculation of the energy
levels did not produce such a splitting. This was not un-
expected, though, since one is coupling two Kramer's doublets,
neither of which 1s capable of being split in zero field.
In fact, for S = 1 the levels are ordered according to Mg =
-1,0,1 and the only way for the model to predict the magnetic
behavior is for J to be extremely large for T1203a

The above results are based on calculations for the
Zz-direction only but experimental data shows practically no
anisotropy throughout the range of temperature over which the
transition occurs (24). Thus, it is doubtful that the model
can explain the magnetic behavior of T1203 because of the

Kramer's degeneracy which is not present in v?o3.



- CONCLUSION

The effect of Hylleraas-type correlation of the outer
electrons has been studied for atoms having a (2p)2 and (3d4)2
outer-electron configuration. This was done using, first, a
screened coulomb potential for both types of atoms. The
screening constant was determined for the (2p)2 atoms by
Slater's rules and by several other methods for the (3d)2
atoms. In each case, the correlation function (1 + °r12)
was appended to the Clebsch-Gordan two-electron wave function
and the correlation coefficient ¢ was determined by the
variation principle. It was found that ¢ lncreased with the
higher multiplet levels causing a differential suppressioh
of these levels. This caused the multiplet spacings to be
too close together to be considered an improvement.

The same procedﬁre was repeated for the (3d)2 atoms
but the Hartree-Fock potential was used and the SCF radial
functions were taken as the first-order functions for atoms
where these were available and for those for which sufficient
experimental data could be found. In this calculation, ¢
still increased with energy but the resulting differential
suppression was not as severe. While the levels were still
drawn too close together there was satisfactory improvement

111
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in the multiplet spacings, Suggestions are made for refining
this calculation.

| The magnetic properties of the (3d)2 ion in V’203 were
also studied. Most of these appear when the ion is 1in the
3F ground level and since the correlation coefficient for
this level was Qery small, therefore affecting the energy of
this level very little, 1t was not necessary to use the
correlated wave function.

Several célculations were made in an effort to arrive

at a model for the crystal which satisfactorily predicted
the experimentally determined magnetic properties. A one-
ion model was first used in which the electrostatic and mag-
netiec environment of the central idn was treated phenomen-
ologlically as a perturbétion to the free-ion energy levels.
The electrical environment was represented by an electro-
static potential which satisfied Laplace's equation in the
vicinity of the central ion. The magnetic environment was
represented by an effective molecular field which had the
direction of an externally applied magnetic field and a
magnitude which was determined self-consistently. It was
found that on the basis of this model the magnetic suscepti-
bility daté could be fitted in two different temperature
regions but only with two different sets of adJustéSle param-‘
eters. One of these parameters, the trigonal field splitting,

had to be considerably larger than the corresponding corundum

value to obtain satisfactory agreement 1n both temperature
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regions.

Because of the c-axis palring of cations in the
corundum structure 1t was possible to make another series
of calculations in which the c-axis pairs.were coupled
together exactly by direct exchangg interactions and the
resulting homonuclear diatomic molecule was then coupled to
the magnetic lattice by a self-consistent molecular field.
This was done for the pure spin system, first, using an anti-
ferromagnetic direct exchange and a ferromagnetic molecular
field. The calculation was then repeated with these two
fields interchanged. In neither case was it possible to
_predict the non-cOOperative transition in V203 and only a
qualitative agreement with experiment in the high temperature
region could be claimed. | ‘

Finally, the coupled pair model was extended to in-
clude the orbital contribution. While quantitative agfeément
with experiment was not very good the results dild predict
the'non-cooperative transition. It was possible to explain
the formation of the transition on a physical basis using an
energy level diagram. A brief discussion of what could be
expected from the extended coupled pair model for T1203 was
also given and it appears that the model is not suitable for

magnetic ions which exhibit Kramer's degeneracy.



APPENDIX I
MATRIX ELEMENT

In (2.15) the operator r * v, appeared and

12 "1 T12
it was indicated how this could be reduced to a constant.
This derivation 1s given explicitly here. It 1s easy to show

using Cartesian coordinates that

r. v 13 /2
12 151272 "1 T2
and
Y 2 - 2 2
Yl ri, =Y (rl + 1, - 2ryry cos w)

where w 1s the angle between the two radius vectors ;1 and

Ty o Now 1
= _ 4 m#*
cos W = Pl(cos w) = 3 z Yl (2)
substituting,
Uyr3p = 17t 4 1V, - 2, - Z ¥I* (2) ¥ (r,¥(1))
1712 = 1T * Y1 T €T _ vy (e, 7]
and
v1r12 ° Vl = vlrl,vl + V1r2 1 -
4n L * m
2r, - ?;-mjzl ™ (2) ¥ (r ¥ (1)F) .

&
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Now the diagonal element for two equivalent 4-electrons con-

tains terms like

%(¢L(l) CPL(2)|V1 12° 1|¢L<1 q"’(z))

= é(wL(E)lcp,v_(z))(w,v(l)ivlrl 1|¢> (1))

1
1o -4 ) (@ @Iy (2) 194 (2)) (9 (1) 19 (171 (1)) |92 (1)),
m=-1 .

Consider each right-hand member separately. The first term

simplifies as follows.

3( (2) 9 (2)) (@4 (1) 7,759 oy (1)

2
r dr
arl arl 1771

3 S Rn&

3R._, (1)
nt 2 3
S Rn{,(l) rl —aT-— rldrl - 2 °

The above integral has the same value no matter what R , (1)
is used as long as it is a well-behaved radial function.
This is seen from integration by parts.

The second term i1s zero because

(9 (2) Y™ (2) |y (2))

= @) P dar - § 2 @)y™ @)y @2) an

o
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The angular integral is always zero since the sum of the

three 4-values 1is 24 + 1 which 1s always an odd integer.

Thus, the result
(r1p¥1rp° %) = - 3/2

which was to be proved.



APPENDIX II
(3d) -SCREENING FUNCTION

In the Hartree-Fock theory the function which repre-
sents the screening of one 3d-electron by the other was de-
fined as .

Y(ry) = -I:f‘-l-;a‘k) ¥ (38,3857)) . (11.1)

In (II.1), Yk(3d,3d;rl) is given by (4.8) where the radial
functions are those of Watson, (4.11). The square of

R3d(r)lwhich appears in the integral can be written as

10

M
IR (r)|2 = A, T
3d 1Z£ 1

—bir
e (11.2)

where the subscripted quantities are related to the Cy and

sy of (4.11) as follows.

Ay = C?e Ag = 2C,.C,, by =85 + 85
A2 = C§3 A9 = 2C13015 b6 = 85 + 814
Ay = ciu Ao = 201)Cy5 by =815 + 8y
Ay = °:2L5 by =28y, bg = 813 * 3y,
A5 = 2012013 b2 = 2313 b9 = 313 + 815
Ag = 2012014 b3 = 2314 big = 8,4 *+ 815
A7 = 2012015 b4 = 2315
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When (II.2) is substituted into (4.8) and the integrations

performed the results are:

10 5 s
Y (3d 3d;r ) =1 - 6! z ir e‘birl < r_]_ 10 1‘4 +§£.r3
1 1=1 b3y by ;)—f bi 1

t=r TB T1YH
b? . by bz
10
-bsr
8! 1 117 5 5 50 b4
Y, (3d,3d;r,) = ) A [ 2L - ( + 22 n
2 1 L [bfl‘l ;—f 1 ;?' 1
330 3 1680 o = 6720 20160 8! 1
by by T by by by
8! 1
+‘§—§>]
birl
10 .
-b.r m
Y.(3d,3d;r-)=ZA _12_1 e Y1 (9 5,9 K
, 720 3 +5040 2, 30240r , 151200 604800 1
S e A A

*
11 rll-

1814400 1 lO' _l_ 10. ! ) ]
b9 r2 b 3 b
i 1 i Ty i

Only three values of k appear because of the selection rules

assoclated with 3d-wave functions.
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