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CHAPTER I 

INTRODUCTION 

Motivation 

Spectral estimation is an important research area for geophysical 

signal processing, especially as applied to seismic data; other possible 

geophysics applications include the full wave acoustic log. A frequency 

wavenumber (F-K) spectral display may aid in identifying and 

interpreting the various propagating waves contained within sonic log 

data; this technique may be especially effective if an array of data is 

available from the logging tool. For seismic applications the F-K plane 

offers a convenient means of separating signal and noise components; two 

dimensional (2-D) filtering can be applied to remove undesireable noise 

and/or interfering signals. Both seismic data and full wave acoustic 

data generally possess a limited spatial aperture due to physical 

constraints or design criteria; the sonic logging tool, for example, is 

designed with a small spatial aperture to achieve sufficient vertical 

resolution. 

It is known that Fourier spectral estimation techniques exhibit 

poor resolution on limited record length data, since resolution is 

proportional to the observation interval (a form of Heisenberg's 

uncertainty principle). The past 15 years have seen the emergence of 

powerful new spectral estimation algorithms designed to improve 

resolution over that available from the Fourier transform, especially 

1 
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when using short data records. These alternative methods (termed 

parametric or model based) include maximum entropy spectral estimation 

(MESE), maximum likelihood spectral estimation (MLSE), and auto­

regressive or linear predictive techniques (AR or LP). In one dimension 

LP and MESE are equivalent, however this is not true for 2-D spectral 

estimation; indeed MESE becomes very complicated and involves solving a 

set of non-linear equations (Lang and McClellan, 1982). LP extends 

naturally to the 2-D case however and provides a convenient framework 

for developing spectral estimation algorithms that take advantage of the 

two dimensional structure of array data. 

2-D LP a 1 gorithms have emerged the past sever a 1 years based upon 

least squares (LS) solutions. This is natural since least squares 

solutions are easy to generate and analytically tractable. Many prob­

lems, however, are not amenable to a least squares solution; for 

example, if the data are contaminated by impulsive noise a LS approach 

wi 11 weight the impu 1 ses equally with the good data and produce poor 

results. What is required in this case is a L1 solution (in general LP, 

1 ~ p ~ 2) which will on the average result in a better estimator since 

the "outliers" will be ignored rather than be given equal weight. 

Although general Lp solution methods have computational and analytical 

disadvantages, several rapidly converging LP algorithms have been 

developed recently and research directed at 2-D spectral estimation 

utilizing the Lp norm is justified. 

Two dimensional linear predictive spectral estimation via the Lp 

norm is currently being researched. For the impulsive noise case it has 

been shown that an LP (p = 1) solution to a set of linear prediction 

equations may offer increased frequency resolution over that obtainable 
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via L2 techniques. An improved formulation of the residual steepest 

descent algorithm (RSO) was used to generate the required L1 solution. 

Other research included within this thesis includes a comparison of 

the Lp (p = 1) 1-0 spectral estimator against a variety of noise 

sources. The noise types under investigation are: Gaussian, Rayleigh, 

uniform, and impulsive, Laplacian, and Cauchy. Another section of this 

thesis will consider the application of the proposed 2-D spectral 

estimation algorithm to synthetic acoustic well log data. As this data 

type possesses a sufficiently long time record, discrete Fourier 

transform (OFT) techniques will be blended with the LP (Lp, p = 1, 2 

norm) method in order to simplify computations; namely, a OFT is applied 

in the time dimension and LP analysis is applied in the spatial 

dimension. 

Overview 

Chapter II of this report will review the field of spectral esti­

mation and highlight a number of applications where spectra~ estimation 

has found widespread use. Emphasis will be placed on applications of AR 

or LP techniques as that is the focus of this report. Applications of 

spectral estimation to geophysics will also be covered in a section of 

Chapter II. A review of linear prediction, especially applied to 

spectral estimation, will be given in Chapter III. Chapter IV presents 

the results of applying an L1 normed solution to the 1-0 LP spectral 

estimation problem. Results of an L1 normed solution for a 2-0 LP 

spectral estimator are given in Chapter V. Additionally, in Chapter V, 

OFT techniques are blended with LP Methods, in order to reduce the 

computation burden inherent in 2-0 spectral estimation. Finally, in 
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Chapter VI, the conclusions reached in this research are summarized, and 

future areas of research are indicated. 

Four appendices are included in this thesis. In Appendix A the 

sinusoidal frequency locations are calculated that result in a singular 

linear prediction matrix. The separability of a discrete Fourier 

transform and linear prediction techniques as applied to two dimensional 

data is shown in Appendix B. Appendix C presents a simple example in 

which an Lp normed solution to a matrix equation is calculated; a few 

interesting characteristics of non L2 normed solutions are 

demonstrated. Finally, in Appendix D, an alternate least squares 

spectral representation of time series data is developed; namely, the 

Fourier-Bessel series expansion. 



CHAPTER II 

SPECTRAL ESTIMATION SURVEY 

Spectral Estimation Overview 

The history of Fourier analysis dates back to the eighteenth cen­

tury when Gauss made use of the trigonometric Fourier series in his 

orbital mechanics work. Although the Fast Fourier Transform (FFT) is 

widely attributed to Cooley and Tukey (1965), apparently similar form­

ulas were in use as long ago as 1754. A detailed account of the histor­

ical development of the FFT can be. found in Heideman, et al (1984). 

Since 1965, with widespread dissemination of the Cooley-Tukey FFT algo­

rithm, Fourier analysis has found application in numerous engineering 

and scientific fields. In Robinson (1982), a historical perspective of 

spectrum estimati'on is available covering the time frame 600 B.C. to the 

present! 

Possibly, Schuster (1898) originated the field of spectral analysis 

with his attempt to fit sunspot data to a Fourier series in order to 

detect periodicities within the data. Wiener (1930) utilized the 

Fourier transform to study the harmonic properties of stochastic proc­

esses, allowing a spectral interpretation of random data. Khinchine 

(1934), as well, related the autocorrelation function of a random proc­

ess to the power spectral density, apparently independently of Wiener. 

Although Wiener and Khinchine developed the theory necessary to analyze 
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random processes (or deterministic data) via the Fourier transform, 

workable techniques were not developed until 1958. Blackman and Tukey 

(1958) developed a spectral estimation method for discrete data based 

upon the autocorrelation function. In their method, a data window is 

first applied to the estimated auto correlation function (i.e. computed 

from the raw data) and a Fourier transform applied to the windowed 

autocorrelation sequence in order to estimate the spectral density. 

With rediscovery of the FFT algorithm by Cooley and Tukey (1965), 

spectral estimates could more efficiently be computed via the 

periodogram method originally proposed by Schuster (1898). The FFT can 

be directly applied to the data set (or windowed data if desired) and 

the spectral estimate is given by the resultant magnitude squared. Much 

has been written about the -FFT based peri odogram method of spectra 1 

estimation and its various modifications; see, for example, Bingham et 

al (1967), Brigham and Morrow (1967), Brigham (1974), Jenkins and Watts 

(1968), Welch (1967), and Welch (1977) to name just a few. 

Although the FFT based periodogram approach is computationally 

efficient and produces sufficiently accurate spectral estimates in many 

cases, difficulties arise that may preclude use of this technique when 

insufficient data samples are available. A fundamental limitation of 

FFT based techniques is frequency resolution. As is well known, fre­

quency resolution is proportional to data length (a form of Heisenberg•s 

uncertainty principle); therefore, poor frequency resolution is an 

unavoidable byproduct of limited record length data. Since the data is 

necessarily of finite duration, another limitation of the FFT method, 

termed .. leakage .. , arises. Spectral leakage refers to the phenomena of 

spectral energy in one spectral band spilling over (leaking) into other 
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spectral bands; as a result, spectral energy may be indicated where none 

exists. The leakage problem is unavoidable with finite length data 

records (Brigham, 1974), although the problem may be alleviated to some 

extent via windowing techniques. Windowing (tapering) the data, 

although reducing leakage, reduces the available frequency resolution of 

the .. main lobe. 11 Unfortunately, short data records result in greater 

leakage problems, due to increased sidelobe amplitudes, further compli­

cating the problem of decreased frequency resolution previously 

mentioned. 

In order to overcome the intrinsic limitations of the FFT based 

methods (periodogram or Blackman-Tukey), other methods have been sought 

to estimate the spectral density of discrete data, especially limited 

record length data. These- newer spectral estimation methods, often 

termed 11 Modern Spectral Analysis, .. are model based or parametric (i.e. a 

function of the data) in contrast to the FFT based methods that are data 

independent or non-parametric. Since information (known or assumed) 

about the discrete data is incorporated into the spectral estimation 

algorithm, it is reasonable to expect some improvement in performance; 

usually increased frequency resolution results, although at the price of 

added algorithm complexity. The increase in complexity of parametric 

spectral estimation algorithms over that required by non-parametric (FFT 

based) is quite significant and it pays to ascertain whether the in­

creased frequency resolution is necessary. In many cases of interest, 

however, especially when faced with a short data record ( 4 to 8 data 

samples is not unheard of), a modern spectral analysis algorithm may be 

necessary to effect the desired frequency resolution. 
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Beginning in the late 1960's, parametric spectral estimation re­

search began in at least two distinct quarters: geophysical data pro­

cessing and statistical estimation theory. Burg (1967, 1968, 1970) 

developed the theory of maximum entropy (ME) spectral analysis. Since 

truncation of the autocorrelation function results in "smearing" of the 

spectral estimate, a fundamental limitation of the Blackman-Tukey 

method, Burg (1967) proposed extending the autocorrelation function 

beyond the known lags in some statistical manner. The appropriate 

criteria, Burg argued, is the principle of "maximum entropy," or most 

randomness. In other words, the unknown autocorrelation function lags 

are estimated with the least possible constraints imposed upon them. 

Clearly, setting the unknown lags to zero, as is done in the Blackman­

Tukey method, is not optimum. The maximum entropy method (MEM) of 

spectral estimation offers increased frequency resolution over that 

obtainable via FFT based techniques. Additionally, the Levinson-Durbin 

recursion, (Levinson, 1947; Wiggins and Robinson, 1965; and Durbin, 

1960), may be applied to the MEM in order to efficiently calculate the 

unknown predictor coefficients required to form the spectral estimate. 

MEM, until recently, has resisted extension to higher dimensions. Lang 

(1981) and McClellan and Lang (1982) have proposed a solution to this 

difficult nonlinear problem. A comprehensive survey of the multi­

dimensional spectral estimation problem can be found in McClellan 

(1982), however, this subject will be covered in greater detail in a 

later section of this report. As a final remark, it should be mentioned 

that the so called, "Burg Algorithm," Burg (1967), is distinctly dif­

ferent from MEM spectral estimation. The Burg algorithm will be covered 
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elsewhere in this thesis. Additionally, a complete treatment of MEM can 

be found in Jaynes (1982). 

Independently of Burg, Parzen (1968) proposed the idea of utilizing 

autoregressive (AR) modelling as a spectral estimation technique. AR 

modeling has its origins in economic time series forecasting: see 

Walker (1931), Yule (1927), or the more accessible Box and Jenkins 

(1970). The Yule-Walker equations (Box and Jenkins, 1970) form a linear 

relationship between the AR parameters and the autocorrelation function 

of the assumed data model, thus the entire body of statistical time 

series theory can be applied to this spectral estimation method. The 

Yule-Walker equations may be efficiently solved by the Levinson-Durbin 

algorithm; as a result, calculation of the AR coefficients is relatively 

simple. Additionally, the AR parameters may be calculated directly from 

the data (solution of the Yule-Walker equations first requires auto­

correlation estimates) using techniques from the linear prediction 

theory that have found extensive application in the fields of speech 

processing and geophysical predictive deconvolution. Therefore, as a 

complement to the statistical time series approach, any techniques 

ava i 1 ab 1 e from 1 i near prediction theory can be app 1 i ed to AR spectra 1 

estimation. AR spectral estimation from the viewpoint of linear pre­

diction will be covered in more detail in the separate section of this 

thesis; extensive surveys of linear prediction can be found in, for 

example, Makhoul (1975) and Schroeder (1984). Obviously, any of the 

linear predictive coding techniques prevalent in speech processing may 

be applied to AR spectral estimation (Rabiner and Schafer, 1978; or 

Markel and Gray, 1976). Within the science of geophysical data pro­

cessing, specifically predictive deconvolution via least squares fil-
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tering techniques, a large body of theoretical and experimental work is 

available (Robinson and Treitel, 1980; Robinson, 1967; Robinson, 1967; 

or Claerbout, 1976). Spectral estimation within the geophysical 

community will be covered in some detail in another section of this 

thesis. Underlying the application of AR spectral estimation to a 

specific problem is the appropiate choice of model order and model 

selection (Nitzberg, 1979; or Gutowski, Robinson, and Treitel, 1978) and 

will be covered in a later section. Before closing this brief dis­

cussion of AR spectral estimation, it should be said that Van den Bas 

(1971) has shown one-dimensional (1-D) MEM equivalent to the AR spectral 

estimator. Burg (1972) developed a theoretical relationship between the 

MEM spectral estimator and the maximum likelihood method (MLM) which 

proved that MEM offers increased frequency resolution. In higher dimen­

sions, however, AR and MEM are not equivalent. 

AR and MEM have found extensive use in many diverse fields such as 

direction finding (Gabriel, 1980; Thorvaldsen, Waterman, and Lee, 1980), 

oceanography (Holm and Hovem, 1979), environmental modeling (Hacker, 

1978), biomedicine (Gersch and Yonemoto, 1977), radio astronomy 

(Wernecke and D'Addario, 1977), image reconstruction (Hsu, 1975), sonar 

(Haykin, 1985), radar (Haykin, 1985; Haykin, 1979; Gibson, Haykin, and 

Kes 1 er, 1979; Kes 1 er and Hayk in, 1978), and geophysics ( Barroda 1 e and 

Erickson, 1980; Burg, 1967; Claerbout, 1976; Griffiths and Prieto-Diaz, 

1977; La Coss, 1976; Landers and La Coss, 1977; McDonough, 1974; Ulrych 

and Clayton, 1976). A recent compilation (Haykin, 1985) focuses on the 

fields of exploration seismology, sonar, radar, radio astronomy, and 

tomographic imaging and as such contains, in one volume, a diverse 

application of AR and MEM spectral estimation (as well as many other 
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methods). A comprehensive survey by Kay and Marple (1981) contains a 

detailed treatment of many spectral estimation methods: Periodogram and 

Blackman-Tukey methods, modeling approach, transfer function modeling 

techniques, AR/LP methods, MEM, moving average (MA) methods, 

autoregressive moving average (ARMA) techniques, Pisarenko Harmonic 

Decomposition (PHD) estimator, Prony methods, and the maximum Likelihood 

method (MLM). In addition to the detailed technical presentation 

offered, many diverse applications of spectral estimation are developed 

and/or indicated; a summary of algorithm complexity for the various 

spectral estimators is particularly useful. 

Remaining sections of this thesis will survey the applications and 

developments of spectral estimation with the field of geophysical data 

processing, present a more detailed treatment of AR spectral estimation 

from the linear prediction approach, develop an L1 normed linear pre­

dictive spectral estimator (1-D and 2-D), and blend the FFT method with 

the 1-0 AR/LP technique. This hybrid method (DFT/LP) provides a 

computationally efficient 2-D spectral estimator with increased 

frequency resolution over that obtainable with 2-D FFT techniques. 

Spectral Estimation in Geophysics 

This section will cover several of the more common applications of 

spectral analysis to geophysical data processing. Where appropiate, 

past research efforts from the geophysical literature concerning 

spectra 1 estimation advancements, wi 11 be indicated. Areas of 

geophysical spectral estimation applications covered in this section 

include seismic data analysis, acoustic well log analysis, and 

earthquake detection. Inevitably, some overlap will occur between this 
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section and the previous section; although this will lead to some 

redundancy in presentation, it is unavoidable due to the pervasive 

nature of the field of spectral estimation. 

Use of the F-K p 1 ane for the analysis of seismic data has been 

routine practice for many years. For example, in Burg (1964), the F-K 

representation is used to indicate the distribution of signal and noise 

components of their assumed theoretical seismic model. Another example 

of F-K plane utilization can be found in Green, Frosch, and Romeny 

(1965); here, an F-K representation aids in theoretical analysis of the 

experimental Large Aperture Seismic Array (LASA). Although Burg (1967) 

developed a high resolution parametric spectral estimator, namely the 

previously discussed ME method, other researchers were equally active. 

Capon, Greenfield, and Kolke_r (1967), in an F-K analysis of the LASA, 

formulated the multidimensional Maximum Likelihood Method (MLM) of two 

dimensional spectral estimation. Somewhat later, Capon (1969), pub­

lished details of the ML spectral estimation method including analytical 

expressions for the means and variances of both conventional and high 

resolution (here, MLM) F-K estimates. The effect of the 2-D ML spectral 

estimator is such that an optimal (in the mean square sense) bandpass 

filter is formed for each desired wavenumber; significantly, uniform 

array spacing is not required. Although the ME spectral estimator 

possesses higher resolution than ML (see Burg, 1972), applying the MEM 

to a nonuniformly spaced array requires an interpolation step; MLM 

spectral estimation algorithms may be applied directly to nonuniformly 

spaced arrays with little added complexity. Velocity and frequency 

properties of seismic noise structure were analyzed via F-K methods in 

LaCoss, Kelly, and Toksoz (1969); in this work a frequency domain beam 
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forming (FDBF) method of spectral estimation was utilized in order to 

generate F-K data. Additionally, the mean and variance of the FDBF 

technique were derived. La Coss (1971) reviews Fourier based F-K esti­

mators and presents results of an experimental investigation of two high 

resolution methods: Capon's MLM and Burg's MEM. Also, in this work, 

use of F-K analysis in the study of long period seismic noise is indi­

cated. No general conclusions were drawn concerning the relative per­

formance of ME vs ML. Woods and Lintz (1973) applied the MLM of 

spectral estimation to the case of two correlated plane waves impinging 

on a seismic array; a claim of arbitrarily high frequency resolution is 

made in the limit of zero background noise and unlimited computational 

complexity. As a final comment concerning F-K spectral estimation of 

seismic array data, the reader is referred to the MEM tutorial by 

McDonough (1974). The separability of the ME spectral estimator is 

noted, thus if sufficient data is available in one dimension (usually 

the 11 time 11 dimension) a OFT may be applied in time and ME estimation 

applied in 11 space 11 with considerable reduction in algorithm 

complexity. Additionally, McDonough notes that an interpolation step 

may be inserted in order to handle the nonuniformly spaced array 

problem. 

In addition to the numerous applications of F-K analysis to seismic 

data interpretation and/or filtering, another potential use of the F-K 

plane arises in sonic well logging. The recent geophysical literature 

contains significant work aimed towards the interpretation of the full 

waveform acoustic log; generally, the desired goal in these efforts is 

separation of the compression wave components from the overlapping shear 

wave. Although most research seems to be directed at non F-K plane 
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methods, recent work (Parks, McClellan, and Morris, 1983) indicates that 

the F-K plane may be of some value to the geologist as an aid in the 

interpretation of sonic logs in cases where an array of data is 

available. More will be said about the results of Parks et al, later; 

first, however, the extent of some current research concerning sonic 

well log analysis will be indicated. Utilizing "semblance" processing, 

a normalized correlation function, coupled with controlled window 

moveouts, Willis and Toksoz (1983), Cheng, Toksoz, and Willis (1981), 

and Cheng and Toksoz (1983) have successfully extracted formation shear 

velocity information from sonic log data. Correlation techniques 

implemented in the frequency domain were used by Ingram, Morris, 

Macknight, and Parks (1981) in order to determine shear velocities from 

acoustic waveform logs. Other recent efforts targeted specifically 

towards shear velocity determination include Minear and Fletcher (1983), 

Dennis and Wang (1984), Chen and Willen (1984), Tanner and Koehler 

(1969), and Kimball and Marzetta (1984). Typically, one or two traces 

were utilized in these studies, rather than an array (perhaps of size 6 

or 8) of data traces. If an array of acoustic well log data is 

available, perhaps currently an unrealistic assumption, F-K plane 

analysis may offer some advantages in separating the various wave 

components of interest. Preliminary work by Parks, Morris, and Ingram 

(1982) indicated potential use of F-K plane spectral analysis to 

separate compressional and shear wave components, at least if an array 

of data were available. Synthetic acoustic well log data was utilized 

(real-axis integration model of Tsang and Rader, 1979), therefore array 

data could readily be generated. This early research continued and 

results presented in Parks, McClellan, and Morris (1983) demonstrated 
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the separation of multiple components, including the compressional head 

wave, casing arrival, nondispersive cement wave, stoneley wave (mode 0), 

mode 1, and a shear wave. The F-K data, in both reports just mentioned, 

were generated by performing a DFT along the time dimension (sufficient 

data is available in time for required frequency resolution) and 

applying a Prony spectral estimator in the spatial dimension. The 

spatial dimension is necessarily of limited aperture to ensure 

acceptable vertical resolution and as such requires a high resolution 

spectral estimation technique. Although their F-K plane method has not 

been tested on anything other than synthetic data, the results appear 

encouraging. 

Before leaving the sonic log application of spectral analysis, it 

is worth mentioning one othe~ promising research area that, however, is 

not pursued in this thesis. Modern spectral estimators are known to 

perform rather poorly on data that violate the assumptions of the under­

lying model (for example, AR) or that contain transient phenomena such 

as a first order exponential decay; acoustic well log data exhibit these 

nonstationary characteristics and can be expected to cause some modeling 

problems. The Burg algorithm, for example, is applied to a signal with 

an exponential decay in the work by Swingler (1979) and is shown to 

exhibit relatively poor performance. A modified Burg algorithm, (Nikias 

and Scott, 1981 or Scott and Nikias, 1982), incorporating an energy 

weighting criteria to the linear.prediction equations, offers improved 

performance when tested against an envelope modulated sinusoidal test 

signal. In Nikias and Scott (1983), a "covariance least squares" 

spectral estimation technique is developed which resulted in improved 

performance (frequency resolution and robustness); here, the class of 
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test signals consisted of a first order exponential decay, cosine 

function plus an additive transient, and an envelope modulated signal. 

For analyzing sonic log array data, the combination of OFT in time and 

the covariance least squares (CLS) algorithm of Nikias and Scott (1983) 

in space, may provide improved spectral estimation performance. 

In addition to the numerous applications of F-K plane analysis of 

seismic data cited, and the potential application of F-K analysis to 

sonic log data, other areas of geophysical data processing make use of 

modern spectral estimation methods as well. No attempt will be made to 

exhaustively list all potential applications of spectral analysis to 

geophys ica 1 data, however, a few references wi 11 be provided for the 

interested reader. Landers and La Coss (1977) apply Burg's algorithm to 

three different data sets of geophysical interest. First, the log 

spectrum of a short period seismogram (i.e. cepstrum) is estimated in 

order to determine the depth of a seismic event. The second application 

i nvo 1 ves analysis of earthquake rate occurrence in order to check for 

possible periodicities related to known astronomical and/or terrestrial 

rotational periods. A final data set, analyzed for spectral content, 

was extracted from core samples of ocean bottom sediment. In this 

application, core displacement corresponds to "geologic" time and 

periodicities of various chemical parameters are correlated with ice age 

occurrence and past solar heating conditions. Finally, Griffiths and 

Prieto-Diaz (1977) apply the Burg MEM of spectral estimation to earth­

quake time series data; additionally, the earthquake data is analyzed 

via an adaptive AR method developed by Griffiths (1975). 
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Multichannel/Multidimensional Spectral Estimation 

Many of the references cited in the previous section concerned 

either multichannel or multidimensional spectral estimation. This is 

especially the case for geophysical data applications of spectral esti­

mation, naturally, with the emphasis placed on array processing. In 

this section, an attempt will be made to highlight research concerned 

with multichannel and multidimensional spectral estimation that has not 

been mentioned previously; in fact, emphasis will be placed on work 

reported the past 5 to 10 years, reflecting the current level of 

interest in higher dimensional spectral estimation. 

Fortunately, a recently compiled and comprehensive tutorial is 

available on the topic of multidimensional spectral estimation; namely, 

McClellan (1982). Seven types of estimators are discussed in some 

detail: Fourier, separable, data extension, MLM, MEM, AR, and Pisarenko 

methods. In Haykin (1985), for obvious reasons, the emphasis is on 

multidimensional methods and provides a convenient summary of recent 

work in a single volume. Here, the focus will be primarily on linear 

predictive (AR) research and MEM. 

If sufficient data are available, the obvious choice for a spectral 

estimator is an FFT based method, such as a windowed autocorrelation or 

periodogram technique. In 2-0 fewer windows are available, (see Huang, 

1972), and the periodogram method suffers the same maladies in 2-0 as in 

1-0: excessive sidelobe leakage and poor resolution when analyzing 

short data records. 

For data co 11 ected from a 1 i ne array, it often occurs that suf­

ficient data is available in time, but since a relatively small number 

of array elements are generally used, the spatial dimension is charac-
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terized by a rather small aperture. Therefore, a computationally 

efficient estimator results if a OFT is applied in the time dimension, 

followed by a high resolution method in the spatial dimension, (see 

Joyce, 1979 or Parks, McClellan, and Morris, 1983 for examples). Joyce 

blended the OFT with Burg's MEM and Parks et al applied the OFT in time 

and performed a Prony analysis in space. See also McDonough (1974) for 

a DFT/MEM estimator. Since the output of a OFT is complex, the high 

resolution estimator applied in the spatial dimension is required to 

handle complex valued inputs. 

Another method of increased frequency resolution consists of first 

extrapolating the available data in both dimensions, prior to performing 

conventional Fourier analysis via FFT techiques. Frost and Sullivan 

(1979) extend their 2-D data-via the Burg algorithm and apply a 2-D OFT 

to the extrapolated data to form the spectral estimate. Joyce (1979) 

extrapolates the data in one dimension, then applies a OFT in the 

extended dimension; the remaining dimension, however, is accomodated via 

MEM as mentioned previously. Another extrapolation method is available 

in Roucos and Childers (1979). 

MLM was originally posed as a multidimensional spectral estimator, 

(see Burg, 1969), however, the resulting frequency resolution is known 

to be inferior to that of the MEM (Burg, 1972). Despite lower available 

frequency resolution, the MLM is simpler to implement, especially for 

arbitrary array spacing, and remains a viable spectral estimation 

method. Lim and Dowla (1983) developed an improved formulation of the 

MLM, based upon the known relation between the MEM and the MLM, (Burg, 

1972), that offers increased spectral resolution. They claim, also, 

that the algorithm complexity is about that of a conventional ML esti-
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mater. Marzetta (1983) re-solves the ML estimation problem by max­

imizing the power of a .planewave at each wavenumber, rather than the 

planewave complex amplitude. 

Although in 1~0 ME and AR are equivalent, this is not true in the 

m-D problem, possibly due to the lack of time ordering in the 2-D plane, 

(Marzetta, 1978). Significant mathematical detail is available con­

cerning the m-D MEM spectral estimation problem, (McClellan, 1982); 

here, however, the purpose is to highlight a few key efforts. Exten­

sions of the MEM to multichannel spectral estimation were developed 

initially, (see Strand, 1977 or Morf, Vieira, Lee, and Kailath, 1978), 

however, formulation of an m-D MEM solution has been difficult. Appar­

ently, the form of the 2-D ME spectral estimator was discovered by Burg, 

(unpublished, see Woods, 1976). A solution to the 2-D MEM problem is 

given by Woods (1976), based upon a proof of the existence of a 2-D 

discrete Markov field. Di~kinson (1980), however, claims that such 2-{) 

Markov spectral estimates need not exist, thus the viability of this 

spectral estimator may be in doubt. In Ulrych and Walker (1981), 

several methods of 2-D spectral estimation are discussed that 

approximate the true 2-D MEM solution; additionally, a least squares 

estimate of the 2-D autocorrelation matrix is developed that results in 

increased frequency resolution. Lim and Malik (1981) proposed an 

iterative algorithm for ME power spectrum estimation that is 

computationally efficient (FFT based), however, convergence is not 

guaranteed. Their algorithm, significantly, does not require uniformly 

spaced array sampling. Recently, a convergent 2-D MEM a 1 gori thm has 

been developed, (Lang and McClellan, 1982) that does not require uniform 

array spacing. Additionally, a necessary and sufficient condition is 
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derived for the existence and uniqueness of the the MEM spectral 

estimate. A potential disadvantage of the algorithm by Lang and 

McClellan (1982) is the required estimate of the autocorrelation 

function; Sharma and Chellappa (1984) have developed a model based 2-D 

MEM estimator that circumvents this step. A different application of 2-

D ME techniques can be found in Wernecke and D'Addario (1977), in which 

a ME solution is applied to the image reconstruction problem. 

Although the AR spectral estimate and the ME spectral estimate are 

different in higher dimensions, the AR method based on LP equations is 

an attractive alternative. The extension of 1-D linear prediction to 

2-D is not difficult and as a result there is currently considerable re­

search directed towards 2-D LP spectral estimation. Difficulties do 

arise, however, such as frequency bias and non-circular symmetri·c esti­

mates; disadvantages will be pointed out as specific r-eferences are 

mentioned. 

Jackson and Chien (1979) formulated a 2-D LP spectral estimation 

algorithm in order to simultaneously estimate frequency and bearing. 

With a single quadrant filter, they found that spectral peaks exhibited 

a definite skew. By calculating two sets of prediction error filter 

coefficients (say from quadrants one and two) and combining the results 

in a circular symmetric manner to form a single estimate, the frequency 

skew was diminished. Marzetta (1980) considers the selection of a 

prediction filter mask and develops a class of 2-D minimum mean square­

linear prediction error filters that may be solved by a 2-D Levinson's 

algorithm. Therrien (1981) applies the multichannel Levinson's re­

cursion to solve a set of 2-D normal equations, although the resulting 

2-0 prediction error filter may be unstable. In addition to an AR based 



21 

2-D spectral estimator, Cadzow and Ogino (1981) develop an 

autoregressive moving average (ARMA) model based 2-D estimator. The 

resulting spectral estimator is empirically shown to exhibit superior 

frequency resolution relative to Fourier based methods; additionally, an 

ARMA model generally requires fewer parameters than an AR model to 

achieve comparable statistical data representation. Kumaresan and Tufts 

(1981) combine the work of Jackson and Chien (1979) and Ulrych and 

Clayton (1976) into a maximum length prediction error filter formulation 

that is subsequently solved via the minimum norm solution (this 

formulation is underdetermined). Simulation results are presented that 

indicate their method will resolve two closely spaced plane waves in 

Gaussian noise. The applicability of representing array date via single 

quadrant AR models has been studied by Tj+stheim (1981) from a 

theoretical statistical time series viewpoint, also, a practical 

spectral estimation algorithm is developed and demonstrated on simulated 

array data. Chellapa and Sharma (1983) fit noncausal spatial AR models 

to array data in order to estimate the 2-D spectrum; empirical evidence 

indicates that fewer parameters are required compared to causa 1 AR 

modeling to achieve the same frequency resolution. The computation 

burden, though not excessive, of 2-D AR spectral estimation is reduced 

via decimation in Zou and Lin (1984) with little loss of frequency 

resolution ability. Application of an AR lattice parameter model to 2-D 

spectral estimation is considered in Kayran, Parker, and Klich (1984) 

that forms the estimate from the autocorrelation matrix. The resulting 

algorithm was quite efficient (approximately 5 to 10 seconds on an IBM 

3033) and no frequency bias was observed. Improved algorithm robustness 

(resistance to outliers) was achieved by Sharma and Chellappa (1984) and 
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involves fitting a 2-D noncausal spatial autoregressive model to the 

given data. 

Finally, other 2-D spectral estimation methods will now be indi­

cated, generally without comment, in order to indicate the broad scope 

of current research efforts. Extensions of. Pi sarenko' s decomposition 

method can be found in McClellan (1982) and Lang and McClellan (1982). 

2-D spectral estimation via unconstrained minimization of estimated 

covariance recursion error is investigated in Nikias et al (1982) and 

Nikias and Raghuveer (1983). In Durrani and Chapman (1983) eigenfilter 

methods for 2-D spectral estimation are presented, which can be viewed 

as an extension of Pisarenko's method. Another eigenvector technique 

can be found in Kumaresan and Tufts (1983). A multidimensional digital 

filtering approach, (Halpeny and Childers, 1975), is applied to the 

wavefront decomposition problem. Nawab, Dowla, and La Coss (1984) have 

developed a time averaged covariance method to estimate 2-D spectrums. 

A principle component algorithm was utilized in Rao and Kung (1984) for 

a state space approach to 2-D spectral estimation. Another application 

by Miao and Chen (1984) uses singular value decomposition techniques for 

spectral estimation. Obviously, many dozens of references concerning 2-

D spe~tral estimation could be listed; the intent here, however, is to 

demonstrate the variety of active research within this field. 

Linear Predictive Spectral Estimation Review 

Autoregressive (AR) or linear predictive (LP) methods as applied to 

spectral estimation have been previously mentioned. Although some 

overlap will result, the purpose of this section is to highlight some of 

the more recent work in this area. Additionally, several topics, such 
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as line splitting and model order selection, not previously discussed, 

will be mentioned. Chapter III of this report presents a detailed 

mathematical treatment of linear predictive spectral estimation; the 

focus in this section will be held to a broad brush literature survey. 

Although this section is limited to AR and/or LP techniques, it should 

be remembered that in 1-D AR/LP and MEM are equivalent. Linear 

prediction (and AR) are very active fields of research, especially with 

applications to spectral estimation, speech processing, and predictive 

deconvolution, and as a result comprehensive tutorials are available. 

The reader is referred to Kay and Marple (1981) for a spectral 

estimation viewpoint, Makhoul (1975) or Markel and Gray (1976) for 

speech applications, Schroeder (1984) with a slight philosophical orien­

tation, or Robinson and Treitel (1980) for geophysical applications. 

All pole models (AR) have their origins in statistical time series 

analysis, (see Box and Jenkins, 1970) based upon the Yule-Walker (Y-W) 

autocorrelation technique (Makhoul, 1975 or Kay and Marple, 1982). 

Basically, the Y-W method uses biased estimates of the autocorrelation 

lags calculated from the data set in the Y-W normal equations. As the 

autocorrelation matrix of the Y-W normal equations is Toeplitz the 

Levinson recursion may to used to efficiently compute the AR coef­

ficients. A positive-definite autocorrelation matrix is guaranteed if 

biased autocorrelation estimates are used, however, frequency resolution 

is decreased, a phenomena termed 11 line splitting .. may result, and the 

frequency estimate may exhibit bias. In Marple (1975) a discussion of 

frequency bias and poor reso 1 uti on can be found, and Kay and Marp 1 e 

(1979) consider the line splitting problem inherent in AR spectral 
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estimation with an assumed Toeplitz structure to the autocorrelation 

matrix. 

The Y-W method has the disadvantage of first requiring estimates of 

the autocorrelation lags, an added computational step that in addition 

to introducing possible numerical instabilities (Barrodale and Erickson, 

1980), may be avoided by calculating the AR coefficients directly from 

the available data. This improvement was recognized early on by Burg 

(1967). The so called 11 Burg Algorithm .. , distinct from Burg•s MEM (al­

though the two estimators are mathematically equivalent), estimates the 

AR parameters directly from data samples (no autocorrelation lag esti­

mates required) by minimizing in a least squares sense the forward and 

backward 1 i near predict ion errors (one step predictor). Burg further 

constrained the AR parameter-s to satisfy the Levinson recursion, which 

guarantees a stable all pole prediction error filter. Unfortunately, 

this constraint, though guaranteeing a stable prediction filter (neces­

sary if the AR model will be used for data prediction), causes frequency 

bias and line splitting in the resulting spectral estimate (Chen and 

Stegen, 1974; Fougere, 1976). A theoretical treatment of frequency bias 

in AR spectral estimation (noiseless case) can be found in Swingler 

(1980) and experimental results for noisy data are presented in Chen and 

Stegen (1974). Another disadvantage of the Burg algorithm is apparent 

when applied to non-stationary signals (Swingler, 1979; Nikias and 

Scott, 1981); generally poor spectral estimates are obtained in such 

cases. 

In an attempt to overcome the frequency bias and line splitting 

problems of the Burg algorithm (a result of the Levinson constraint or 

enforced Toeplitz structure), Ulrych and Clayton (1976) and Nuttal 
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(1976) suggested the forward-backward least squares method with the 

Levinson•s constraint removed. Marple (1980) demonstrates that less 

frequency bias and no line splitting results with application of such an 

algorithm; additionally, a computationally efficient recursive algorithm 

(including detailed flowchart) is presented. 

In another development, \-lith the introduction of energy weights 

(EW) into the Burg algorithm, Nikias and Scott (1981) proposed an 

algorithm that improved the frequency bias and line splitting 

difficulties noted previously. Further details of the E-W method are 

available in Scott and Nikias (1982). Nikias and Scott (1983), 

furthermore, improved the performance of the E-W algorithm, especially 

for non-stationary and/or transient signals, by removal of the Levinson 

constraint; this algorithm has been designated (by Nikias and Scott) as 

the covariance least squares (CLS) method. 

Other approaches to eliminating the frequency bias and line split­

ting problem, inherent in the Burg algorithm, have been developed. 

Already mentioned is the technique developed by Marple (1980) that is 

nearly as efficient (computationally) as the Burg algorithm, however, 

this algorithm demonstrates less frequency bias; no line splitting has 

been observed. Additionally, Fortran source code is included, which 

should result in further testing of this algorithm. Kumaresan and Tufts 

(1980) set the number of linear prediction equations equal to the number 

of sinusoids, increased the number of filter coefficients to the maximum 

available, and utilized the minimum norm solution to the resulting 

underdetermined set of equations. This method is shown to offer 

improved performance over that available from the FBLP method of Nuttal 

(1976), Ulrych and Clayton (1976), and Marple (1980) at low signal to 
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noise ratios. As the so called Kumaresan-Prony (K-P) method requires a 

matrix inversion of order equal to the number of sinusoids that are 

expected (or desired), difficulties may arise in a complex signal 

scenario. Marple (1983) developed a fast algorithm for solving the 

pseudo-inverse operation required in the K-P method and further tests 

the algorithm against complex test signals; specifically, poor spectral 

estimates were obtained when applied to a broad band signal. Additional 

theoretical work concerning the K-P method may be found in Tufts and 

Kumaresan (1982). 

The previous AR spectral estimation techniques are widely used and 

computationally efficient. Direct least squares solution methods have 

not generally been applied to the prediction equations in order to 

generate the AR parameters. -The reasons usually cited are the increased 

computational complexity and a potentially non minimum phase prediction 

filter. If a minimum phase filter is required (not a mathematical 

necessity}, poles outside the unit circle may be ••reflected .. back inside 

the unit circle(see Claerbout, 1976; Atal and Hanauer, 1971). In 

Barrodale and Erickson (1980) direct algorithms for least squares linear 

prediction are presented, with considerable numerical analysis 

considerations, based upon Cholesky•s method (see Lawson and Hanson, 

1974) for solving overdetermined normal equations. Their algorithm also 

incorporates a dynamic choice of model order; the recursion is 

terminated via the Akaike criteria (Aka ike, 1970). Determination of 

model order and model selection is always a difficulty in applying AR 

technique~ to real data. See Gutowski, Robinson, and Treitel (1978) for 

detailed consideration of this practical difficulty. (A new model order 

determination strategy is given in Fougere, 1985). The least squares 
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approach of Barrodale and Erickson (1980) is demonstrated to result in 

less frequency bias and line splitting when compared to the Burg algo­

rithm. Additionally, the Fortran source code is listed in a separate 

part (Part II) of the same reference for the convenience of other re-

searchers. 

Such direct approaches to AR parameter estimation as just mentioned 

lead to consideration of solutions other than the L2 norm (least 

squares). In genera 1 , an LP ( 1 ~ p ~ 2) normed so 1 uti on may be gen­

erated and potential advantageous in the spectral estimation problem may 

be possible in certain cases. For example, an L1 solution is known to 

be more robust in the presence of impulsive noise than the L2 solution 

(L2 weights all data and noise equally) and may result in improved 

spectral estimation performance in such cases, (see Claerbout and Muir, 

1973). An L1 solution to an overdetermined system of equations, based 

upon a modification of the simplex method, is given in Barrodale and 

Roberts (1974). More recently (Yarlagadda, Bednar, and Watt, 1985), 

efficient iterative solutions to a set of overdetermined equations in 

the Lp (1 ~ p ~ 2) norm have been developed. This algorithm forms the 

basis of the L1 spectral estimation work presented in later chapters of 

this report. It is remarked here that little work has been accomplished 

concerning the application of L1 normed solutions to spectral 

estimation; an example may be found in Levy et al. (1982) in which the 

simplex algorithm was invol<ed. Other L1 norm applications via the 

simplex algorithm are given in Mammone, Wang, and Gay (1985) and Garcia­

Gomez and Alcazar-Fernandez (1985). In Figueiras-Vidal et al. (1985) 

the simplex algorithm is used to generate an L1 solution to a set of 

over determined ARMA equations. Spectral extrapolation via an L1 norm 
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(simplex algorithm) is postulated in Mammone (1983). As previously 

mentioned, an efficient version of the basic simplex algorithm may be 

found in Barrodale and Roberts (1974). The simplex algorithm, however, 

is restricted to L1 solutions (the more general Lp problem can not be 

considered), is computationally inefficient, and requires significant 

memory storage availability. Although direct solutions of LP equations 

currently are unpopular in spectrum estimation research, this is not the 

case in other disciplines. As an example, linear regression analysis, 

which also involves solution of an overdetermined system of equations, 

is a research field in which the Lp (1~ p ~ 2) norm is considered 

extensively. A good starting point from which to survey linear 

regression research, especially concerning non L2 norm criteria, is 

Arthanari and Dodge (1981); see also Huber (1981). As a general 

indication of the level of research activity directed towards Lp 

solutions (including the normed LP space, 1 ~ p ~ 2; 0 ~ p ~ 1, a non 

normed space; and the Chebyshev criteria or L00 ), the reader's attention 

is directed to the following reference sampling from linear regression 

oriented literature: Appa and Smith 

estimation, Barrodale and Young (1966) 

approximations, Barrodale and Roberts 

(1973) on L1 and Chebyshev 

for L1 and L00 (Chebyshev) 

(1970) on Lp solution 

approximations, Ekblom and Henriksson (1969) over Lp criteria in 

parameter estimation, and McCormick and Sposito (1976) covering L1 

estimation. It is expected that many results concerning the application 

of the Lp norm to linear regression will find application to spectrum 

estimation, now that the computation burden has been significantly 

reduced (eg. Yarlagadda et al., 1985 and Barrodale and Erickson, 1980). 
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Another area of increasing interest with respect to linear 

predictive spectral estimation is that of singular value decomposition 

(SVD) methods; just a few references will be briefly mentioned here for 

the interested reader. , An SVD tutorial, in the context of linear 

systems theory, can be found in Klema and Laub (1980). Successful 

applications of SVD to spectral estimation are given in Tufts, 

Kumaresan, and Kirsteins (1982) and Tufts and Kumaresan (1982). 



CHAPTER III 

LINEAR PREDICTION/AUTOREGRESSIVE MODELING 

Introduction 

The spectrum estimation algorithms that will be developed in 

Chapter IV, based upon an Lp (p = 1) solution to a system of 

overdetermined equations, start with linear prediction equations formed 

from the available data set. This chapter will develop the mathematical 

foundation of the linear prediction equations that will be utilized in 

the following chapter. For historical reasons, and to demonstrate the 

link between AR modeling and LP, the Yule-Walker (Y-W) equations will be 

first presented. Next, an efficient computational method of solving the 

Y-W equations, the so called Levinson-Durbin recursion, which avoids 

matrix inversion, will be discussed. Following presentation of the 

Levinson-Durbin recursion, linear prediction equations will be 

developed, and two popular solution techniques will be indicated: 

Burg•s algorithm and the forward backward linear prediction (FBLP) 

method. Finally, direct Lp normed solution of LP equations. will be 

discussed; at this point the material in Chapter IV will follow 

logically and directly. 

Yule-Walker Equations 

An Autoregressive model of order p can be expressed as 

30 
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(3.1) 

where, wn, represents the error, and ak are termed the AR parameters. 

Note that the present value of this process is given by a weighted 

combination of p past values plus an error term, thus the process is 

"regressed" (from its statistical roots) on to itself; hence, the term 

"autoregressive process" has been applied to this representation. Of 

course, without the wn term Equation (3.1) bears a striking resemblance 

to a linear prediction equation, however, that subject will be covered 

separately. From Box and Jenkins (1970), the AR power spectral density 

may be expressed ~s 

.P l2 
+ ~ ak exp(-j2~kf)J 

k=1 . 

(3.2) p (f) 

with ~2 as the variance of the error term, and ak are the AR parameters 

from Equation _(3.1)~ Equation (3.2) may also be written in z-transform 

notation, with z = exp( j2nf), to highlight the engineering terminology 

of "all pole model" that is applied to an AR process: 

P(z) = (3.3) 
p -k 2 

1 + !: ak z 
k=1 

z = e j2~f 

From the fundamental theorem of algebra, it is known that the 

denominator of Equation (3.3) has exactly p roots (i.e. poles); with the 

roots designated zk, alternatively, Equation (3.3) may be expressed in 

factored form as 

P(z) = 
~2 

p 2 ' ·zk 
:E (1 - -) 

k=1 z 

(3.4) 
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which explicity shows the all pole structure of an AR process. Note 

that a unit sampling interval has been assumed for notational 

simplicity, therefore, 0 ~ f ~ 1/2. The important idea here, from the 

spectrum estimation viewpoint, is that one only needs to estimate the 

parameters {a1, a2, ••• , ap, IT 2} and apply Equation (3.2) in order to 

form P(f). The denominator of Equation (3.2) may be evaluated directly 

or, for p sufficiently large, an FFT algorithm may be desired, since 

(3.2) has the same form as the OFT. Since the Y-W equations form a 

linear relationship between the autocorrelation function and the AR 

parameters, they may be used in order to estimate the unknown ak. 

Derivation of the Y-W equations will generally follow Box and Jenkins 

(1970), although using notation generally found in engineering 

literature, and the AR parameter sign convention implicit in equation 

(3.1). The autocorrelation is defined as 

Rk = E[xn-kxnJ· 

Since, from Equation (3.1), 

Xn = -a1xn-1 - a2xn-2 - ••• 

-apxn-p + wn , then 

Xn-kXn = -a1xn-kXn-1 a2xn-kxn-2 

* - ••• - apxn-kxn-p 

+ Xn-kWn· 

(3.5) 

(3.6) 

Taking the expected value of both sides of Equation (3.6) and applying 

the autocorrelation definition of Equation (3.5) results in 

Rk = -a1Rk-1 - a2Rk-2 - ••• - apRk-p , 

for k > 0 (3. 7) 

Note that for k > 0, xn-k and Wn are uncorrelated, thus E[xn-kWn) = 0, 
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and Equation (3.7) holds. The case of k = 0 will be handled later. If 

we substitute k = 1, 2, ••• , p into Equation (3.7) we obtain a set of 

linear equations for a1, a2, ••• , ap in terms of R1, R2, ••• , Rp that 

are termed the Yule-Walker equations. Expanding Equation (3.7) as just 

indicated leads to the equation set 

R1 = -a1Ro a2R1 ••• apRp-1 

R2 = -a1 R1 a2Ro ... aPRP_ 2 
. . . . . . 
• • • 

- ... (3.8) 

In practice, Rk are generally unknown, and must be replaced by 

autocorrelation estimates. With_!= (a1, a2, ••• 

R = (R1, R2, ••• , Rp )T, and matrix R defined as 

Ro R1 R2 ••• 

R1 Ro R1 ... 
R = . . 

• 

Rp-1 Rp-2 ••• 

Equation (3.8) can be expressed more compactly in matrix notation as 

R a = - R • (3.9) 

Equation (3.9) represents p equations in p unknowns and therefore may be 

solved directly for the AR parameters,_!, which results in 

a = -R-1 R (3.10) 

The matrix inversion in Equation (3.10) may be avoided by use of the 

Levinson-Durbin recursion, which will be illustrated in a later section 
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of this chapter. The awkward notation used in Equations (3.9, 3.10) 

serves to emphasize that vector, ~' is comprised of certain elements of 

matrix, R plus Rp; this fact, along with the Hermitian and Toeplitz 

structure of matrix R allows application of the Levinson-Durbin 

recursion. When, k = 0, in Equation (3.6), another contribution from 

the expectation operation is E(wnwn) = ~2 ; thus, Equation (3.7) becomes 

R0 = -a1R_ 1 - a2R_ 2 - ••• - apR-p 

+~ 2 ,k=O. (3.11) 

Therefore, once the AR parameters have been computed from Equation 

(3.10), Equation (3.11) may be used to calculated ~ 2 , if an estimate of 

the "true" power spectral density via Equation (3.2) is desired, rather 

than just the spectral peak l~cations. 

Levinson - Durbin Recursion 

Since use of Equation (3.10), developed in the previous section, 

assumes a priori knowledge of AR mode1 order and, furthermore, requires 

a matrix inversion, other means of solution are desired. One widely 

used technique involves application of the Levinson-Durbin recursion 

(Levinson, 1947; Durbin, 1960) to Equation (3.10). The recursion will 

be developed and illustrated by way of a simple example before the 

general recursive formulae are given. 

In the previous section theoretical autocorrelations of lag k were 

denoted by Rk; this section will use the notation, rk, for an estimated 

autocorrelation at lag k. Also, an additional subscript will be added 

to the AR coefficients, ak, in order to indicate model order; for 

ex amp 1 e, ap2 is the second AR parameter from a p th order mode 1. The 
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camp 1 ete AR parameter set is { ap1, ap2, ••• , appl, for an AR ( p) mode 1 

specification. With the notation just specified, the Y-W equations may 

be written 

rk = -ap1rk-1 - ap2rk-2 - ... 
-apprk-p , k = 1, 2, ••• , p. 

For an AR(2) process, Equation (3.12) becomes (r0 = 1): 

r2 = -(a21r1 + a22l 

r1 = -(a21 + a22r1). 

An AR(3) process is e~pressed as 

r3 = -(a31r2 + a32r1 + a33) 

r2 = -(a31r1 + a32 + a33r1) 

r1 = -(a31 + a32r1 + a33r2l· 

(3.12) 

(3.13) 

(3.14) 

The last two equations of Equation set (3.14) may be solved for 

coefficients a31 and a32 in terms of a33 • In matrix form the solution 

is 

= 
(3.15) 

Rewritting Equation (3.J5) results in 

(3.16) 

From Equation (3.13) we find 
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= 
(3.17) 

which upon substitution into Equation (3.16) leads to 

(3.18) 

Expanding Equation (3.18), we have 

= + 

= + (3.19) 

Next, solve the first equation from Equation set (3.14) for a33 , thus 

a33 = -r3 - a31r2 - a32r1 ' 

whic~, upon substitution of a31 and a32 from Equation (3.19), and 

solving for a33 : 

-(r3 + a21 r2 + a33 r1) 
a - ~r--:-~-~--:-~-~ 33 - 1 + a21 r1 + a22 r2 • (3.20) 

In general, the recursion may be expressed 

apk = ap-l,k + app ap-l,p-k , k=1, 2, ••• , p-1 (3.21) 

(3.22) 

A final important point will be made concerning the coefficient, app• 

In the statistical literature, the last coefficient, aPP' is termed the 
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partial autocorrelation coefficient (PARCOR). Thus, for example, if the 

true process is AR(q), p = 1, 2, ... ' q, defines a set of partial 

autocorrelations coefficients {a11 , a22 , ••• , aqql· It is known that 

(see Box and Jenkins, 1970) the partial autocorrelation coefficients, 

aPP' are non zero for p less than or equal to q and zero for p greater 

than q. Also, for N data points, the estimated partial autocoefficients 

of order q + 1 and higher are approximately independent with variance 

Var{appl ~ 1/N , p ~ q + 1 • 

The partial autocorrelation coefficients, therefore, may be used as a 

guide for choosing the 11 Correct 11 AR model order. A slightly different 

formulation, though equivalent, of the Levinson-Durbin recursion is 

given in Kay and Marple (1981); specifically the denominator of Equation 

(3.22) is formulated as a function o.f s2 and partial autocorrelation 

coefficient, app• In the engineering literature, the partial 

autocorrelation coefficients, {all' a22 , ••• , aqql are often termed 

reflection coefficients. Additionally, it can be shown (lang and 

McClellan, 1979) that a necessary and sufficient condition for a 

positive semidefinite autocorrelation matrix is lappl ~ 1, p = 1, 2, 

••• , q. lappl ~ 1, p = 1, 2, ••• , q is also a necessary and sufficient 

condition that the poles-of the prediction error filter lie on or within 

the unit circle (Lang and McClellan, 1979). 

Linear Prediction 

The autoregressive process, AR(p), expressed in Equation (3.1) can 

also be cast into a linear predjction equation. Consider the case where 

xn is predicted from a linear combination of the previous p data samples 
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{hence, the term linear prediction). Denoting the predicted value by 

xn, we have 

p 
xn = - ~ ak xn-k 

k=l 
The error between the actual value, 

given by 
..... 

en = X - xn n 

p 
en = Xn + ~ akxn-k ' k=l 

where en is known as the residual. 

{3.23) 
..... 

xn, and the predicted value, xn, is 

{3.24) 

may be chosen to minimize the prediction error power, Ep, defined as 

Ep = E { e~) 
..... 2 

Ep = E{{xn - Xn) } {3.25) 

Substituting Equation {3.24) into Equation {3.25) results in 

{3.26) 

which may be minimized by setting 

.aE 
__:_Q_=O lS1'< aA. ' .-p. 

1 
{3.27) 

Carrying out the differentiation indicated in Equation {3.27) leads to 

the normal equations 

{ 3. 28) 

For a stationary process xn, we have 

E { Xn- k Xn- i) = R I i- k I ' (3.29) 

with Ri denoting the process autocorrelation. Under a stationary 

assumption, Equation {3.28) becomes 



R· = -1 

p 
z 

k=1 

The minimum average error 

Ep min = E(x~) + 

p 
EP min = Ro + ~ 

k=1 
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i = 1, 2, ••• , p. (3.30) 

is 
p 
2: ak E(xn Xn-k) 

k=1 

ak R k (3.31) 

The error sequence en is uncorrelated with prediction values xn and, 

further, en is a white process if xn was generated by an AR(p) 

process. A comparison of Equation (3.30) with Equation (3.10) and a 

comparison of Equation (3.31) with Equation (3.11) demonstrates the 

equivalence of AR parameter identification via the Y-W equations and 

linear prediction of an AR process. 

As seen in the previous sections, the Y-W equations that resulted 

from either the AR parameter i dent ifi cation approach or from 1 i near 

prediction theory may be solved for the unknown AR coefficients using 

estimates of the autocorrelation lags. Several methods exist, however, 

that do not require autocorrelation estimates and operate directly on 

the raw data. One method uses forward and backward linear prediction 

with a Levinson•s constraint (Burg, 1967), while the other technique 

combines forward and backward linear prediction (Ulrych and Clayton, 

1976; Nuttall, 1976) without the Levinson•s constraint. Both methods 

will be briefly highlighted, as they are perhaps the most popular in 

use. Detailed derivation may be found in the indicated references; 

here, however, the key equations will be summarized, (see Kay and 

Marple, 1981). 

The Burg algorithm (Burg, 1967) minimizes the sum of the forward 

and backward prediction error energies under a constraint that the AR 
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parameters satisfy the Levinson recursion. Let the predicted sample be 

given by a linear combination of p previous data samples (N total 

samples), then the forward prediction error is (from Equation 3.24): 

p 
= xn + ~ 

k=1 

p 
epn = ~ apk Xn-k (3.32) 

k=O 

where apo = 1 and n is defined for p _:. n _:. N - 1. If the process is 

wide sense stationary the backward prediction parameters are the complex 

conjugates of the forward prediction coefficients, thus the backward 

prediction error may be written (* denotes complex conjugate) 

p * 
= ~ apkxn-p+k 

k=O 
(3.33) 

with p.:.n_:.N- 1 and apo = 1. In order to estimate the AR parameters, 

Burg minimized the sum of the forward and backward prediction error 

energies 

(3.34) 

subject to the Levinson constraint 

* apk = ap-1,k + app ap-1,p-k (3.35) 

over the AR model order 1, 2, ••• , p. As details of the Burg algorithm 

are quite complex they will be omitted. A complete listing of the 

necessary recursions (the equations are readily programmable) and a 

flowchart is available in Kay and Marple (1981). The Burg algorithm is 
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known to exhibit line splitting and frequency bias (see Kay and Marple, 

1979; Chen and Stegan, 1974; Fougere, 1976). These problems have been 

reduced or eliminated by a method introduced by Ulrych and Clayton 

(1976) and Nuttall (1976) in which the forward and backward prediction 

error energies are minimized, as in the Burg algorithm, but with the 

Levinson constraint removed. This forward-backward linear prediction 

(FBLP) algorithm follows by setting the derivatives of Ep with respect 

to AR parameters ap1 to app to zero. Thus. 

~=0 a ' i = 1, 2, ••• , p 
a pi 

which results in 

where 

p 
2 .~ apj rp(i, j) = 0 

J=O 

N-p-1 
~ 

k=O 
* * (xk+p-jxk+p-i + xk+i xk+j)' 0 ~ i' j ~ P 

The minimum prediction error energy is 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

The p normal equations from (3.37) and (3.39) may be expressed in matrix 

form as 

(3 .40) 

T where .!p = (1, ap1 , ••• , app) , 

_E.p = (Ep, 0, ••• , O)T , and 
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... 
R = p • 

• •• • 

Equation (3.40) rvay be solved by Gaussian elimination or via a fast 

recursive algorithm by Marple (1980). An iterative least squares 

solution has been developed by Barrodale and Erickson (1980) for 

Equation (3.40). Iterative least squares (or other Lp normed solutions 

for that matter) have the additional advantage of less round off error 

than Levinson•s recursion for p large (Barrodale and Erickson, 1980). 

Iterative Linear Prediction Parameter Estimation 

The so called direct methods, such as the Burg algorithm and the 

FBLP method briefly covered previously, are used extensively. For one 

thing, the solution techniques are based on the Levinson-Ourbin 

recursion, which in addition to possessing computational efficiency, 

allows the often difficult choice of model order to proceed in a logical 

manner. Various termination rules, for example Akaike•s criteria, 

provide convenient means for stopping computations when an "optimal" AR 

model order is reached. Curiously, statisticians may consider the 

Levinson-Durbin recursion numerically unstable (see Box and Jenkins, 

1970) and suggest caution if such a recursion is invoked. The Levinson-

Durbin recursion, however, is used extensively in engineering 

applications and such numerical instabilities have apparently not been 

reported. Possibly, due to the widespread success of such recursive 

solutions to AR/LP equations, iterative methods have not found much 

application within engineering spectrum estimation research. The 
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potential use of iterative methods, however, is indicated in Makhoul 

(1975). 

Many iterative methods from the field of numerical analysis are 

available, including gradient methods, steepest descent techniques, 

Newton's method, the conjugate gradient method, and the stochastic 

approximation method (Hildebrand, 1974). Wang and Treitel (1973) used 

gradient methods in the design of digital Wiener filters; such a 

problem, naturally, is quite similar to AR modeling and parameter 

estimation. Barrodale and Erickson (1980) reported excessive rounding 

errors from app 1 i cation of the Levi nson-Durbi n recursion based Burg 

algorithm and sought to develop an iterative least squares solution to 

the normal equations; an efficient implementation of the numerically 

stable Cholesky method was- developed and applied to the spectrum 

estimation problem. The new technique reportedly resulted in less 

frequency bias and line splitting compared to the Burg algorithm. Lp 

(1 ~ p ~ 2) solutions of normal equations for predictive deconvolution 

of seismic wavelets were considered by Yarlagadda, Bednar and Watt 

(1985). Efficient algorithms were developed based upon the iterative 

reweighted least squares (IRLS) algorithm and the residual steepest 

descent (RSD) method. There may be good reasons for consideration of 

the LP (1 ~ p ~ 2) norm. L1 solutions, for example, are known to be 

more robust in the presence of data contaminated by outliers (Huber, 

1981; Claerbout and Muir, 1973); in such cases iterative techniques are 

required to generate the appropiately normed solution, whatever 

disadvantages may exist relative to the recursive direct method of 

solution (Burg algorithm). Estimation of AR parameters by iterative 

techniques for spectral estimation applications has not been rigorously 
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pursued, probably due to the additional computational burden. 

Additionally, the AR parameters calculated via iterative methods need 

not result in a minimum phase prediction error filter, which may be a 

problem in some applications. If the location of the frequencies to be 

estimated is the end goal, the prediction error filter need not be 

stable. If the estimated AR parameters will eventually.be utilized in 

an AR model, however, perhaps for data extrapolation, then filter 

stability is necessary. Atal and Hanauer (1971) present a technique for 

reflecting any poles generated by a LS method inside the unit circle, 

with the amplitude response left unchanged, if filter stability is 

required. 

That the AR parameter estimation problem can be recast into a set 

of linear algebraic equation·s will be demonstrated. Equation (3.23), 

with prediction filter length m and n total data points, may be written 

in matrix form as 

X~=1.. 

where 

X = . . 
• 

••• 

• • • 

••• 

T 
• • • Xn) • 

. . 
• 

(3.41) 

Note that if n > 2m this system is overdetermined and in general no ~ 

will exist that satisfies equation (3.41). With a residual vector~= 1... 

- X ~defined, with n > 2m, and assuming matrix X has rank m, a solution 



is known that minimizes the residual sum of squares eT.£_. 

solution to equation (3.41) in this case is 

a = (X T X) -1 X T..t 
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The LS 

(3.42) 

Equations (3.39) and (3.40) could be utilized to estimate the AR 

parameters, or alternatively LS iterative algorithms applied (e.g. 

Barrodale and Erickson, 1980), however, use of forward prediction 

equations alone may result in a non positive definite autocorrelation 

function (see Ulrych and Clayton, 1976). The FBLP method discussed in 

an earlier section of this report guarantees a positive definite 

autocorrelation matrix, furthermore, the F-B equations are easily 

incorporated into equation (3.41) by redefining X,_!, and ..t• Again, for 

a prediction filter of order m, and n data points, we have X ..! =.r. 

(equation 3.41 repeated) wit~ 

X = 

. . 
• 

. . 
• 

* xn-m+1 * xn-m+2 

a= (a1, a2, ••• , am)T , and 

••• 

• • • 

... 
••• 

••• 

... 

* * .Y. = - ( xm+ 1' xm+2' • • ·' Xn' x1' x2' 

Xn-m 

* Xm+1 

* xm+2 

* T ••• , Xn-ml 

(3.43) 

Thus, the FBLP equations of Ulrych and Clayton (1976) and Nuttall (1976) 

can be expressed in the linear algebra form of X_!= ..t• Note that the 

system is overdetermined for n > 3m/2. Equations of the form of (3.41) 
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are readily solvable in the Lp (1 ~ p~ 2) norm via algorithms developed 

by Yarlagadda, Bednar, and Watt (1985) and the effect of non L2 

solutions upon the spectral estimation problem can be ascertained. 

Specific algorithms used to generate Lp (p = 1) normed solutions will be 

presented in the next chapter when applied to specific spectral 

estimation problems. 



CHAPTER IV 

1-0 LP (Lp Normed) SPECTRAL ESTIMATION 

Introduction 

Spectral estimation has applications to many fields such as radar, 

sonar, radio astronomy, and seismic prospecting to name a few. If 

enough data are available and the frequency spacing adequate, discrete 

Fourier transform (OFT) techniques are preferred for resolving the 

sinusoids. However, if the spacing of the sinusoids is within the 

resolution limits of the OFT, as is often the case with a limited data 

record length, other methods must be used to extract frequency informa­

tion. 

A number of modern spectral estimation methods (i.e. parametric or 

model based) are available for use; these include the maximum likelihood 

method (MLM), the maximum entropy method (MEM), and the auto-regressive 

method (AR) or linear predictive (LP) techniques. A comprehensive 

summary of modern spectral estimation methods can be found in Kay and 

Marple (1981). The AR based forward-backward linear prediction (FBLP) 

method introduced in Nuttal (1976) and Ulrych and Clayton (1976) is 

particularly amenable to an L1 solution and forms the basis of this 

work. 

L2 solutions are widely used and offer computational and theo­

retical advantages; it is well known, however, that for certain noise 

types, for example impulsive noise, the L2 solution is not optimal. For 

47 



48 

the impulsive noise case an absolute value error criteria applied to the 

linear prediction equation (i.e. an L1 solution) offers better results 

than an L2 solution. A mean square error criteria equally weights the 

data and as a result a single bad data point (impulsive noise) may have 

a disproportionately large effect on the solution. By contrast· an L1 

solution will tend to reject a few bad data points (outliers) and result 

in a solution that is more representative of the original data. For the 

spectral estimation problem the end result may be increased frequency 

resolution. Levy et al (1982) have presented an application of the L1 

norm to spectral estimation based upon the simplex algorithm; however, 

the simplex algorithm is restricted to generating an L1 solution and 

furthermore, possesses computational disadvantages. The residual 

steepest descent (RSD) algor-ithm can be used to generate Lp solutions 

(generally 1 ~ p ~ 2), however, convergence has been a problem. A 

modification of the RSD algorithm (Yarlagadda et al., 1985) has 

eliminated the convergence problem and a viable method is now available 

for generating Lp normed solutions. 

Unpublished work by Schroeder and Yarlagadda has shown that 

increased frequency resolution is possible for linear predictive 

spectral estimation utilizing an L1 norm solution to the prediction 

equations. Specifically, an L1 solution demonstrated increased 

frequency resolution for the case of two 2-D sinusoids in impulsive 

noise; other types of noise were not considered. This chapter presents 

an L1 solution to a set of overdetermined 1-D linear prediction 

equations, the FBLP method of (Nuttal, 1976; Ulrych and Clayton, 1976), 

and tests the resulting spectral estimator against the case of two 

sinusoids in noise; the noise considered in this work is Gaussian, 

Rayleigh, uniform, impulsive, Laplacian, and Cauchy. 



.b.J. Solution To Forward-Backward Linear 

Prediction Equations 
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The FBLP method provides a convenient framework for applying the 

RSD algorithm to the linear prediction spectral estimation problem. As 

the RSD algorithm requires an overdetermined system of equations, one 

can choose the prediction filter length such that this condition is 

satisfied. Additionally, for the case of two sinusoids in noise, the 

necessary computations are minimal since the filter length can be kept 

quite short. It has been shown, (Kumaresan, 1982), that forM sinusoids 

and N data values the prediction error filter length, L, should be 

between M and (N - M/2); L = N/2 or L = N/3 is often used as a rough 

rule of thumb in selecting L (see Ulrych and Clayton, 1976). Since the 

focus of this section is on a relative comparison of an L1 solution 

under various noise types rather than to produce the highest possible 

resolution at low signal to noise ratios (SNR) the prediction filter 

length has been set to the minimum allowable, L = M (here M = 2) for 

computational simplicity. 

The test data (N = 8 data points) is generated from: 

x(n) = a1 exp{w1n) + a2 exp{w2n) + w(n), n = 1,2, ••• N (4.1) 

where a1 and a2 are in general unknown complex numbers. In this work, 

both have been set to one for simplicity. w(n) are independent complex 

noise samples. Applying the prediction filter to the N data samples 

without going off the data segment, in the forward and backwards direc­

tion the prediction error equations can be written (see equation 3.41 

with vector ..! now denoted _gJ: 



x(L) x(L - 1) 
x(L + 1) x(L) 

. . 
• 

x(N - 1) x(N - 2) 
* * X (2) X (3) 
* * X (3) X (4) 
. . . . 

* • * • 
x (N - L + 1) X (N - L +2 

or more compactly, 

Xn = b :.oz. _, 

••• 

••• 

x(1) 
x(2) 

• • • x(N - L) 
* ••• X (L + 1) 
* • • • X (L + 2) 

••• 

. . 
-lo 

x (N) 

where (*) corresponds to complex conjugation. 

The prediction coefficients are given by: 

g = ( g1 , g2' • • • , gl) T • 

The prediction error filter is given by: 

L -k 
H(z) = 1 + E gkz • 

k=1 

The frequency estimate is calculated from: 

S(Z) = 1 - , z = ej2'1Tf 
IH(z) 12 

g1 
g2 = -
. . 
• 
gl 
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x(L + 1) 
x(L + 2) 

. . 
• 

x(N) 
* X (1) 
* 

X (2) 
. . 

* • 
x (N - L) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

For this work, L = 2, M = 2, and N = 8, thus equation (4.2) repre­

sents an overdetermined system with matrix X having dimensions 12 x 2, 

co 1 umn vector, Jl., 1 ength 2, and co 1 umn vector, ..Q., 1 ength 12. LP ana­

lysis can now be applied directly to equation (2) via the complex RSD 

algorithm (Yarlagadda et al,. 1985) summarized below. 

Complex RSD Algorithm 

1. Jl.(O) = (x*x)-1x*..Q. 

2. 'Y;(k) = sgn(IXJl.(k)l- Ill;· I(X.[(k) -..Q.);I(p-1) 



51 

3. _r_(k) = X_g_(k) - .£ 

4. Minimize with respect to~k 

E(k) = .!.(k) - ~k X(x*x)-1x* !.(k) 

5. _g_(k+1) = _g_(k) - Ak(x*x)-1x* r_(k) 

6. Go to stop 2 or stop if convergence is achieved. 

* Here, X corresponds to comp 1 ex conjugate transpose. All matrices and 

vectors in the RSD algorithm just presented are defined over the complex 

field as mentioned previously; this allows use of the analytic signal in 

the computer simulations. In particular, step 2 of the RSD algorithm 

has been modified such that the magnitude of the residual vector is 

tested by the sgn(.) function. The matrix inverse operation is defined 

over the complex field and no modification is required. Note that in 

this case with L = 2, calculating (x*x)-1, required in step 1, of the 

RSD algorithms is trivial; in a more complex scenario the inverse 

computation could be avoided employing Cholesky•s algorithm. The 

minimization in step 4 involves only vectors and as such is not 

difficult; in this work the iterative reweighted least squares (IRLS) 

algorithm (Yarlagadda et al., 1985) was used to calculate Ak• The 

minimization of the 4k factor using IRLS techniques has typically 

required six or seven iterations, however, since only vectors are 

involved the computations involved are minimal. The RSD algorithm 

generally converges within two or three iterations. This method of 

generating an Lp solution, namely RSD coupled with IRLS as previously 

explained, is computationally quite efficient. 

In the following section simulation results will be presented to 

verify that the L1 solution to the linear prediction equations allows 

the detection of two sinusoids in noise. Additionally, in some cases an 
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L1 solution of two sinusoids will be shown to provide greater resolution 

than that obtainable via L2 techniques. 

Simulation Results 

An 8 point test data segment was chosen to realistically represent 

a rather short data segment; thus N = 8. The unknown complex constants, 

a1 and a2, have been set to one (a1 = a2 = 1). Since the goal of this 

section is to compare an L1 based spectral estimator with an L2 based 

spectral estimator in a variety of noise backgrounds and not to arrive 

at a 1 ower bound on performance re 1 a ted to SNR, a very short fi 1 ter 

length has been chosen. Here, the prediction filter length is set to 

two, L = 2. Six different noise types have been simulated for this 

work: Gaussian, Rayleigh, uniform, impulsive, Laplacian, and Cauchy. 

For the case of Gaussian, Rayleigh, and uniform noise, SNR = 30 dB; the 

impulsive noise consists of a single complex spike with both real and 

imaginary parts having a value of 2.0. A unit sampling period was 

chosen for convenience which results in the maximum frequency range of 0 

to .5Hz. All spectral data in Figures 9-40. are plotted on the interval 

(0. - .25) Hz with a resolution of .001 Hz. The relative frequency 

spacing between the two sinusoids was chosen such that the L2 based 

spectral estimator just failed to resolve the two complex sinusoids for 

each noise type; the result of applying the L1 based estimator is then 

given for comparison. It must be remembered that this data represents 

just one realization of what is a random process; i.e. the sinusoidal 

locations are random variables with unknown mean, variance, and 

underlying probability density functions (pdf). Note that in all cases 

the frequency spacing of the two sinusoids exceeds the resolution 



53 

available from the OFT (1/8 = .125 Hz). As the prediction error filter 

has just two coefficients Equation (4.5) is evaluated directly (a OFT is 

more efficient for longer filters); Equation (4.6) is used to form an 

estimate of the sinusoid locations. 

In this work uniform noise is generated from the FORTRAN RAN(.) 

function call. Gaussian noise is derived from uniform noise, based upon 

the Central Limit Theorem, by summing twelve (12) independent samples of 

uniform noise. Rayleigh noise can be generated from Gaussian noise 

using the probability density function transformation, Y =.,[x~ + X~, 
where x1 and x2 are N(0,1). Laplacian noise is generated from unifrom 

noise by the transformation Y = 'Y2 sign(x) log (1 - 21x1) and Cauchy 

noise by the transformation Y = .3183099 tan (1rx). The power is 

normalized in all cases by scaling the random samples by the factor (1/ 

i). 
Prior to looking at data which compares L2 normed spectral 

estimation with L1 normed spectral estimation, it is instructive to 

first compare OFT techniques with LP methods. An L2 normed solution 

wi11 be used for the model based estimator and the OFT based periodogram 

~ethod is used for the nonparametric estimator. The eight sample data 

record is padded with zeros to 512 points prior to application of the 

OFT. From Figure 1 it can be seen that use of a OFT on short record 

length data has difficulties, even with widely spaced sinusoids in 

moderate noise (f1 = .1 Hz, f 2 = .4 Hz with 10 dB Gaussian noise). 

Although the two spectral peaks are easily discernable, the excessive 

sidelobe amplitude, due to a short data record, gives rise to the 

possibility of a third spectral peak at .25 Hz. By comparison, as seen 

in Figure 2 , the LP spectral estimator unambiguously depicts the 



r 
0 

Figure 1. 1-D DFT Spectral Estimate (N = 8; f1, f2 = 
.1, .4Hz; 10 dB Gaussian noise) 
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Figure 2. 1-D LP (L2 Norm) Spectral Estimate (N = 8; 
f1, f2 = .1, .4Hz; 10 dB Gaussian noise) 
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correct spectrum. In the data just presented, although 10 dB of 

Gaussian noise was added, the difficulty of the DFT method resulted from 

limited record length data rather than signal to noise ratio. This case 

is repeated with no noise to demonstrate this; compare Figure 3 (OFT 

method) with_Figure 4 (LP method). Next, the relative poor resolution 

capabilities of a OFT spectral estimator will be shown. For this 

example, f1 = .2 Hz, f2 = .27 Hz, and 20 dB of Gaussian noise has been 

added. From Figure 5 it can be seen that the OFT method is unable to 

resolve the spectral peaks, however, the LP estimator is able to resolve 

the spectral peaks (Figure 6). Again, this example is repeated with no 

noise added. The OFT method is still unable to resolve the peaks 

(Figure 7), but the LP method easily resolves the spectral peaks (Figure 

8). Indeed, for this no noi~e case, within the limits of computer word 

precision the peaks tend towards a pair of impulses. The remaining data 

sets offer a comparison of an L2 normed LP method and an L1 normed 

estimator in Gaussian and non Gaussian noise. 

For the case depicted in Figures 9 and 10, f1, f2 = .15, .18Hz and 

the noise is impulsive (a single complex impulse). The results of an L2 

based solution is shown in figure 9 and it can be seen that the 

sinusoids can not be resolved. In contrast, the L1 based estimator 

easily separates the two sinusoids as seen in Figure 10. This is not 

surprising, of course, since the L1 norm is known to reject outliers, 

while the L2 norm gives equal weight to all data values. With Gaussian 

noise (SNR = 30 dB) added to the test data (Frequency spacing f1, f2 = 

.15/.185 Hz) the results from applying the L2 based estimator is shown 

in Figure 11; the results of applying the L1 estimator can be seen in 

Figure 12. Again, the sinusoids are unresolved when using the L2 
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Figure 3. 1-D OFT Spectral Estimate (N = 8; f 1, f 2 = 
.1, .4 Hz; No noise) 
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Figure 4. 1-D LP (L2 Norm) Spectral Estimate (N = 8; 
f1, f2 = .1, .4Hz; No noise) 
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1-0OFT Spectral Estimate (N = 8; f1, f2 = 
.2, .27 Hz; 20 dB Gaussian noise) 
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Figure 6. 1-0 LP (L2 Norm) Spectral Estimate_(N = 8; 
· f1! f2 = .2, .27 Hz; 20 dB Gauss1an 

no1se) 
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Figure 7. 1-D OFT Spectral Estimate (N = 8; f 1, f 2 = 
.2, .27 Hz; No noise) 
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Figure 8. 1-D LP (L2 Norm) Spectral Estimate (N = 8; 
f 1, f 2 = .2, .27 Hz; No noise) 
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Figure 9. 1-D LP (L2 Norm) Spectral Estimate (N = 8; 
f1, f2 = .15, .18Hz; Impulsive noise) 
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Figure 10. 1-D LP (L1 Norm) Spectral Esti~ate (~ = 8; 
f1, f 2 = .15, .18Hz, Impuls1ve no1se) 
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Figure 11. 1-D LP (L2 Norm) Spectral Estimate (N = 8; 
f1! f2 = .15, .185 Hz; 30 dB Gaussian 
no1se) 
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Figure 12. 1-D LP {L1 Norm) Spectral Estimate {~ = 8; 
f1! f2 = .15, .185 Hz; 30 dB Gauss1an 
no1se) 
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estimator, while the L1 estimator is just able to resolve the sin­

usoids. Figures 13 and 14 depict the results of applying an L21L1 

estimator respectively to the test data with uniform noise (SNR = 30 dB) 

added. Here f 1 , f 2 = .15, .187 Hz. Again, the L2 solution can not 

resolve the sinusoids while the L1 estimator shows the possible presence. 

(weakly) of a second sinusoid. The case of two complex sinusoids plus 

Rayleigh noise proved to be a somewhat more difficult case to handle for 

both estimators (Figures 15 and 16). The frequency spacing in the 

example is f1 , f 2 = .15, .20 Hz; at this spacing the L2 estimator is 

unable to clearly resolve the two sinusoids, however the L1 estimator 

does not indicate conclusively the presence of a second sinusoid. In 

fact both estimators result in approximately the same performance for 

this test case. The case of two complex sinusoids plus additive 

Laplacian noise will be used to illustrate the effect of choosing 

various p values for the Lp normed solution. For this example f1, f2 = 

.1, .17 Hz and SNR = 30 dB; p = 2.5, 2.0, 1.5, 1.1, 1.0, and .9. Upon 

viewing, in succession Figures 17-22, it can be seen that as p tends 

towards p = 1.0 the peaks become increasingly distinct, indicating 

perhaps that an L1 norm may be preferred over an L2 normed solution for 

data exhibiting Laplacian noise. 

It is quite instructive at this point to consider that no noise 

case; for this test, f1, f 2 = .1, .11 Hz, and p = 2.0, 1.5, and 1.0. 

From Figure 23 and Figure 24 it is seen that the Lp normed (p = 1.0, 

1.5) solution results in the detection of both sinusoids. The L2 normed 

solution, however, is unable to separate the sinusoids, as seen in 

Figure 25. 

This has been stated previously, but it bears repeating; all data 
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Figure 13. 1-D LP (L2 Norm) Spectral Estimate (N = 8, 
f1, f2 = .15, .187 Hz; 30 dB Uniform 
noise) 
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Figure 14. 1-D LP (L1 Norm) Spectral Estimate (N = 8; 
f1, f2 = .15 .187 Hz; 30 dB Uniform 
noise) 
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Figure 15. 1-0 LP (L2 Norm) Spectral Estimate.(N = 8; 
f1! f2 = .15, .2 Hz; 30 dB Rayle1gh 
no1se) 
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Figure 16. 1-0 LP (L1 Norm) Spectral Estimate.(N = 8; 
fl! f2 = .15, .2Hz; 30 dB Rayle1gh 
no1se) 
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Figure 17. 1-D.LP (L2•5_Norm) Spect~al Estimate (~ = 
8, f 1, t 2 - .1, .17 Hz, 30 dB Laplac1an 
noise) 

0 S.OE-02 l.OE-01 l.SE-01 2.0E-01 2.5E-01 
.FREQUENCY <HZ) 

Figure 18. 1-D LP (L2 Norm) Spectral Estimate (N = 
8; f 1, ·t2 = .1, .17 Hz; 30 dB Laplacian 
noise) 

0 S.OE-02 1.0E-01 1.5E-01 2.0E-01 2.5E-01 

Figure 19. 

FREQUENCY <HZ) 

1-D LP (Ll 5 Norm) Spectral Estimate (N = 
8; f1, f2 = .1, .17 Hz; 30 dB Laplacian 
noise) 
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0 S.OE-02 l.OE-01 1.5E-01 2.0E-01 2.5E-01 

Figure 20. 

FREQUENCY CHZ) 

1-0.LP (L1•1_Norm) Spect~al Estimate (~ = 
8, f1, f2 - .1, .17 Hz, 30 dB Laplac1an 
noise) 

0 S.OE-02 l.OE-01 1.5E-01 2.0E-01 2.5E-01 
FREQUENCY <HZ) 

Figure 21. 1-0 LP (L1 Norm) Spectral Estimate (N = 8; 
f1! f2 = .1, .17 Hz; 30 dB Laplacian 
no1se) 

0 S.OE-02 1.0E-01 1.5E-01 2.0E-01 2.5E-01 
FREQUENCY CHZ) 

Figure 22. 1-0 LP (L 9 Norm) Spectral Estimate (N = 
8; f1, r2 = .1, .17 Hz; 30 dB Laplacian 
noise) 
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0 5.0E-02 l.OE-01 ·1.5E-Ol 2.0E-01 2.5E-01 
FREQUENCY <HZ) 

Figure 23. 1-0 LP (L1 Norm) Spectral Estimate (N = 8; 
f1, f2 = .1, .11 Hz; No noise) 

0 5.0E-02 l.OE-01 1.5E-01 2.0E-01 2.5E-01 
FREQUENCY <HZ) 

Figure 24. 1-D LP (L1 5 Norm) Spectral Estimate (N = 
8; f1, fi = .1, .11 Hz; No noise) 

0 5.0E-02 l.OE-01 1.5E-01 2.0E-01 2.5E-01 
FREQUE~CY <HZ) 

Figure 25. 1-D LP (L2 Norm) Spectral Es~imate (N = 8; 
f1, f2 = .1, .11 Hz; No no1se) 
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so far (Figures 1-25) are the result of a single experiment. Obviously, 

however, the location of f1 and f2 is a random variable with unknown 

mean and variance. Linear predictive spectral estimation is non-linear 

and analytical expressions for E{fi} and E{fi 2} have not been found. 

One hopes, naturally, that E{fi} = fi and the E{fi 2} is not too large. 

As even asymptatic expressions are not currently available, confidence 

in the resulting frequency requires repeated experiments to be performed 

with independent noise sequences. Such repeated experiments, sometimes 

termed 11Monte-Carlo 11 methods, are not entirely rigorous, however, this 

exercise will serve to develop some feel for expected outcomes. In any 

event, there is very little recourse, until further theoretical results 

are produced. 

For this data, f1, f2 = .1, .2 Hz, SNR = 30 dB, and the number of 

independent trials is 100. L2 and L1 normed solutions to the prediction 

equations are generated. The noise types include: Gaussian, Uniform, 

Rayleigh, Laplacian, and Cauchy. It should be noted that for Cauchy 

noise, stating SNR = 30 dB has no particular meaning since the second 

order (and greater) moments for this distribution are undefined. The 

Cauchy pdf is valid, however, and L2 normed results may be compared to 

L1 normed results for the same relative noise 11 power... The Gaussian 

noise case is depicted in Figure 26 and Figure 27; the frequency 

estimates for both L1 and L2 normed solutions are apparently unbiased 

with a concentrated variance. The L1 normed result (Figure 27) shows a 

single 11Wild point 11 estimate, but this is probably of little statistical 

significance. The results of applying the L2 and L1 normed solution in 

the present of uniform noise is shown in Figure 28 and Figure 29. 

Although both estimators seem unbiased, the L1 normed solution has a 



Figure 26. 1-D LP (L2 Norm) Spectral Estimate (N = 8; 
f1, f2 = .1, .2 Hz; 30 dB Gaussian 
noise; 100 Monte Carlo trials) 

0 5.0 

Figure 27. 1-D LP (L1 Norm) Spectral Estimate (N = 8; 
f1, f2 = .1, .2 Hz; 30 dB Gaussian 
noise; 100 Monte Carlo trials) 
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Figure 28. 1-D LP (L2 Norm) Spectral Esti~ate (N ~ 8; 
f1 , f2 = .1, .2Hz; 30 dB Un1form no1se; 
100 Monte Carlo trials) 

- 01 

Figure 29. 1-D LP (L1 Norm) Spectral Estimate (N = 8; 
f1 , f2 = .1, .2Hz; 30 dB Uniform noise; 
100 Monte Carlo trials) 
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somewhat greater variance; since the L~ norm is preferred for uniformly 

distributed errors, perhaps this is not too surprising. From Figure 30 

and Figure 31 it appears that the addition of Rayleigh noise results in 

biased frequency estimation for both L2 and L1 normed solutions. Also, 

from Figure 31, it can be seen that invoking an L1 normed solution 

results in a slightly greater variance, especially around f2• It is not 

known for sure why the estimated sinusoid locations appear biased, 

however, it may be due to the fact that the Rayleigh distribution is 

highly skewed with no negative values. It was hoped that in the 

presence of Laplacian noise an L1 normed solution would prove superior 

since choosing an L1 norm effects a maximum likelihood (ML) estimate in 

the parameter estimation problem. Indeed, individual examples that 

demonstrate the increased frequency resolution possibility from an L1 

normed solution are easy to generate as mentioned previously. Comparing 

Figure 32 (L2 normed solution) with Figure 33 (L1 normed solution) it 

can be seen that both estimators appear to be unbiased. 

graphs are overlaid, the estimated variances are 

Also, if the 

the same. 

Unfortunately, however, the L1 normed estimator exhibits several "wild 

points". At present, this phenomena has no explanation; fortunately, 

this problem is not severe and represents only about two percent of the 

trials. As seen from Figure 34 and Figure 35 both L1 and L2 normed 

estimators performed about the same. The estimates of sinusoid location 

are apparently unbiased. Both solutions result in a higher estimator 

variance than the previous noise sources; however, that is probably not 

a fair comparison for reasons previously mentioned. 

The next five data plots (Figure 36-40) have been added for reader 

interest, although the results have no theoretical foundation; more will 



Figure 30. 1-0 LP (L2 Norm) Spectral Estimate (N = 8; 
f 1, f 2 = .1, .2Hz; 30 dB Rayleigh 
noise; 100 Monte Carlo trials) 

Figure 31. 1-0 LP (L1 Norm) Spectral Estimate (N = 8; 
f 1, f 2 = .1, .2Hz; 30 dB Rayleigh 
noise; 100 Monte Carlo trials) 
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Figure 32. 1-D LP (l2 Norm) Spectral Estimate.(N = 8; 
f 1, f 2 = .1, .2 Hz; 30 dB Laplac1an 
noise; 100 Monte Carlo trials) 

Figure 33. 1-D LP (L1 Norm) Spectral Estimate (N = 8; 
f1, f2 = .1, .2 Hz; 30 dB Laplacian 
noise; 100 Monte Carlo trials) 

72 



-02 1. -01 1.5E-01 2. 0 - 01 2 .5E-01 
FREQUENCY CHZ ) 

Figure 34. 1-D LP (L2 Norm) Spectral Estimate (N = 8; 
f1, f2 = .1, .2Hz; 30 dB Cauchy noise; 
100 Monte Carlo trials) 

Figure 35. 1-D LP (L1 Norm) Spectral Estimate (N = 8; 
f1, f2 = .1, .2Hz; 30 dB Cauchy noise; 
100 Monte Carlo trials) 
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be said about valid norm space and convergence properties later. In 

Figures 36-40 an L 11 norm•• p (p = -1.5) has been used to generate 

estimates of the prediction coefficients. The term .. norm•• has been 

enclosed in parenthesis since p < 1 is not strictly a normed space 

because the Holder inequality is violated (Royden, 1968). The RSD 

algorithm still converges, however, and even though we no longer have a 

firm theoretical foundation, we may still proceed to generate a spectral 

estimate with p = -1.5. This has been demonstrated for the five noise 

sources used previously via Monte Carlo techniques (100 runs). For the 

cases of Gaussian, Uniform, Rayleigh, and Laplacian noise, (SNR = 30 

dB), the spectral estimates of f1, f2 = .1, .2 are quite stable (Figure 

36-40). There is no apparent frequency bias and the sample variance 

appears quite small. The Cauchy noise case, however, exhibits 

significantly greater variance, although the estimate appears 

unbiased. The reason for the higher sample variance in the presence of 

Cauchy noise is unclear; as mentioned previously though, second order 

and greater monments of a Cauchy ditribution are undefined which results 

in an ambiguous SNR. This data has bee included primarily to 

demonstrate the robustness of the modified RSD algorithm and to 

hopefully cause the reader to consider such improper values of p such as 

p = -1.5. Perhaps further research in this direction may someday lead 

to fruitful results and even ·new theoretical developments within the 

field of measure theory. 

An important result of the Lp 11 normed 11 (p = -1.5) solution to a set 

of linear prediction equations is that the RSD algorithm seems to be 

very robust with such a value of p. This result is not entirely 

expected since the Lp space (p < 1) is not a normed space (Royden, 1968) 



Figure 36. 

Figure 37. 

1-0 LP (L_1 5 Norm) Spectral Estimate (N = 
8; f1, f 2"= .1, .2Hz; 30 dB Gaussian 
noise; 100 Monte Carlo trials) 

I 

1-0 LP (L_1 5 Norm) Spectral Estimate (N = 
8; f1, f2"= .1, .2Hz; 30 dB Uniform 
noise; 100 Monte Carlo trials) 

5.0 -02 1. -01 1.5E-01 
FREQUENCY CHZ ) 

Figure 38. 1-0 LP (L-1.5 Norm) Spectral Estimate (N = 
8; f1, f2 = .1, .2 Hz; 30 dB Rayleigh 
noise; 100 Monte Carlo trials) 
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Figure 39. 1-D LP (L_1 5 Norm) Spectral Estimate (N = 
8; f1, t 2"= .1, .2 Hz; 30 dB Laplacian 
noise; 100 Monte Carlo trials) 

Figure 40. 1-0 LP (L_ 1_5 Norm) Spectral Estimate (N = 
8; f1, f2 = .1, .2Hz; 30 dB Cauchy 
noise; 100 Monte Carlo trials) 
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and any convergence proof (for example Fletcher, Grant, and Hebden, 

1971) is no 1 anger theoretically va 1 id. As far as form.a l convergence 

proofs are concerned, little theorectical work has been accomplished; 

most researchers apparently depend upon empirical evidence in order to 

demonstrate that convergence is guaranteed. One exception is the I RLS 

algorithm briefly mentioned in an earlier section. This algorithm has 

been analyzed rather extensively by Byrd and Payne (1979), however the 

report is not generally available. An Lp norm convergence analysis 

(continuous functions, although valid for the discrete case) has been 

published by Fletcher, Grant, and Hebden (1979) that indicates possible 

divergence for p >- 3. The analysis is quite tedious and as such will 

not be reproduced here; the material is easily obtainable in the open 

literature for the interested reader. Their analysis is fairly general 

and should be applicable for most least squares type iterative schemes, 

particularly IRLS. Setting ~p = 3 in this work caused divergence as 

predicted by the convergence analysis just mentioned. 

Additionally, Tables 1, 2, and 3 summarize the statistical results 

of the Monte Carlo simulations (100 runs, SNR = 30 dB) for the five 

noise cases. The sample mean, sample variance, and 95% confidence 

limits are computed and tabulated. The confidence interval is computed 

under the large sample limiting distribution 

x - iJ. N(O, 1) SNn 1 -- ( 4. 7) 

with 

- 1 n 
x=- ~ X. n i=1 1 

(4.8) 

and 



78 

(4.9) 

Thus Equation (4.7) may be solved for ~ and the 95% confidence interval 

is computed from 

-
{ X - !..1. } Pr a < S7 n _ 1 < b = .95 (4.10) 

From a standard normal table, a ~-2.0 and b ~+2.0, which results in 

-X - 2S 1 < !..1. < X + 2S 
n - n - 1 • (4.11) 

From Table 1 (L2 normed solution) it can be seen that the estimates 

appear nearly unbiased, except for the Rayleigh noise case. Rayleigh 

noise is especially difficult to handle since all noise samples are 

positive, hence a non-zero mean noise vector. In fact, for Rayleigh 

noise, the 95% confidence interval does not include the known frequency 

locations of f1, f2 = .1, .2 Hz. Some bias .is also observed for the 

case of Laplacian noise, though not as severe as the Rayleigh, however, 

an explanation is not readily apparent. The Laplacian distribution is 

symmetric with a zero mean, therefore one expects that the frequency 

estimates should be reltively unbiased. Perhaps further simulations 

would be required to clarify this case. An L1 normed solution to the 

linear prediction equations also performed quite well. As noted 

previously, the variance is slightly higher than when an L2 normed 

solution is invoked. For Laplacian noise, the L1 normed solution 

exhibited slightly less· frequency bias than the L2 normed solution, 

although the variance is greater, however, this is probably not 

statistically significant. The 95% confidence interval does include the 

known sinusoidal frequency locations, however, in the L1 normed case. 



Noise Type f1 Sf1 
(30 dB) 

Gaussian .0998 .0026 

Uniform .1000 .0021 

Rayleigh .0967 .0024 

Laplacian .0989 .0033 

Cauchy .0994 .0051 

TABLE I 

L2 NORMED SPECTRAL ESTIMATE DATA 

95% C.I. f2 

.0993 .2003 

.1003 

,-.,., .0996 .2000 
.1004 

.0962 .2023 

.0972 

.0982 .2011 

.0996 

.0984 .2010 

.1004 

sf2 

.0024 

.0020 

.0025 

.0031 

.0055 

95% C.I. 

.1998 

.2008 

.1996 

.2004 

.2018 

.2028 

.2005 

.2017 

.1999 

.2021 

....... 
1.0 



Noise Type f1 sf1 
(30 dB) 

-

Gaussian .0997 .0032 

Uniform .0997 .0036 

Rayleigh .0970 .0035 

Laplacian .0994 .0047 

Cauchy .0986 .0075 

TABLE II 

L1 NORMEO SPECTRAL ESTIMATE DATA 

95% C.I. f2 

.0991 .2003 

.1003 

;·;;...,· .0990 .1998 
.1004 

.0963 .2024 

.0977 

.0985 .2008 

.1003 

.0971 .2007 

.1001 

sf2 

.0036 

.0034 

.0041 

.0045 

.0083 

95% C.I. 

.1996 

.2010 

.1991 

.2005 

.2016 

.2032 

.1999 

.2017 

.1990 

.2024 

00 
0 



TABLE III 

L-1.5 NORMED SPECTRAL ESTIMATE DATA 

Noise Type f1 sf1 95% c.I. f2 Sf2 95% c.r. 
(30 dB) 

Gaussian .0998 .0032 .0992 .2004 .0037 .1997 
.1004 .2011 

Uniform .0999 .0033 ,, .0992 .2001 .0035 .1994 
.1006 .2008 

Rayleigh .0971 .0035 .0964 .2023 .0032 .2017 
.0978 .2029 

Laplacian .0992 .0047 .0983 .2008 .0047 .1999 
.1001 .2017 

Cauchy .0999 .0089 .0981 .2002 .0090 .1984 
.1017 .2020 

CX> ...... 
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Again, as was mentioned earlier, the results for the Lp (p = -1.5) 

"norm" have no theoretically foundation. The fact that the RSD and IRLS 

algorithms converged, however, may eventually prove to be quite 

significant. In any event, the statistical data is summarized in Table 

3 for the interested reader. In fact, for whatever reason, the L_1. 5 

"normed" solution performed better than the L1 or L2 normed solution for 

the case of Cauchy noise. At this time no explanation is available for 

this phenomena. 

From the above we conjecture that there exists a space ca 11 ed a 

"pseudo normed space," which we define as a space where-in Lp algorithms 

converge. Further research in this would be very fruitful. 

Conclusions and Future Research 

A computational simple algorithm (RSD) that allows solutions with a 

Lp norm ( 1 ~ p ~ 1) to be : generated has been app 1 i ed to a set of 

overdetermined linear prediction equations. For the case of impulsive 

noise the L1 solution has been shown to be clearly superior (with fre­

quency resolution as a comparison criteria) to the L2 solution. In the 

presence of Gaussian noise, the L1 solution in this case performed 

slightly better than the L2 solution, however the Monte-Carlo 

simulations did not prove this out. The uniform and Laplacian noise 

cases show an L1 solution to possibly offer a minor increase in 

resolution capabilities; the Rayleigh noise case is inconclusive. 

Again, it must be stated that this data is a result of a single 

experiment. As pointed out in the data discussions, although, single 

experiments may easily be found that show the L1 norm to be superior (in 

two sinusoid resolution ability), we simply can not generalize from the 
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specific. The Monte-Carlo simulations bear this point out (albeit non-

rigorously) as was demonstrated. A problem with Monte-Carlo type 

experiments is that one never really knows when enough trials have been 

run. For example, the two sinusoids in Laplacian noise case under an L1 

normed spectral estimator exhibited a single 11Wild point 11 , over the 

course of 100 runs. Upon running the exact same experiment for 500 

trials, however, results in still the same single 11Wild point ... And 

that is the dilemma: is it fair to ignore that single case or not. 

Since in general the RSD algorithm can be utilized to obtain a 

solution vdth the Lp norm criteria, this method is not restricted to 

studying the L1 norm. Additional work in applying the RSD algorithm to 

the linear predictive spectral estimation method has considered the more 

general Lp problem, 1 ~ p ~ 2. Possibly, intermediate values of p, say 

p = 1.2, win blend the characteristics of the L1 and L2 norm in some 

advantageous way. Additio~ally, p = 1 may produce an unstable 

prediction error filter in some cases. A somewhat higher value of p may 

result in a stable filter and still retain the desired characteristics 

of an L1 normed solution. So far, with the limited experimentation 

performed to date, it appears that an Lp (p 11 near 11 1.0) normed solution 

possesses characteristics similar to an L1 normed solution. 

One final comment is in order in this conclusion section concerning 

the performance of the L1 normed spectral estimator against two 

sinusoids plus Laplacian noise. As was pointed out in the literature 

survey section, the L1 normed solution can be shown to be the maximum 

likelihood parameter estimator in the presence of Laplacian noise. This 

being the case it is natural to expect that the calculated linear 

prediction coefficients (under an L1 norm) will be a more accurate 
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parametric representation of the underlying process. A better model 

characterization may possibly lead to improved spectral resolution. 

This was not observed, however, and a quick comment is probably in 

order. In this simulation the data length consisted of just eight 

points. Such a short length is obviously not going to result in 

accurate noise statistics, however, increasing the data length negates 

the reason for justifying the added complexity of parametric spectral 

estimators in the first place! 



CHAPTER V 

Introduction 

As pointed out previously, two-dimensional spectral estimation has 

important applications in many fields such as geophysics, radar, sonar, 

and radio astronomy. If the frequencies are spaced sufficiently far 

apart and if enough data are available, 2-0 discrete Fourier transform 

(OFT) techniques are adequate for resolving the sinusoids. However, if 

the spacing of the sinusoids is within the resolution limits of a OFT, 

as is often the case with a limited data record length, other methods 

must be used to extract frequency and wavenumber locations. 

A number of modern spectral estimation techniques that have been 
· .. 

applied successfully to the one-dimensional problem have been extended 

to multiple dimensions; these include the maximum-likelihood method 

(MLM), the maximum-entropy method (MEM), and the auto-regressive method 

(AR). In contrast to the one-dimensional problem, multiple-dimensional 

MEM and AR methods are different. A summary of current research efforts 

in multi-dimensional spectral estimation can be found in the 

comprehensive survey by McClellan (1982). A simultaneous frequency and 

wavenumber estimation technique introduced by Kumaresan and Tufts 

(1981) based upon 2-0 linear prediction is especially attractive from a 

computa t i ana 1 point of view; their method forms the prediction error 

filter via a minimum norm solution. 
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As pointed out earlier, L2 solutions are widely used and offer 

computational and theoretical advantages, however it is well known that 

for certain noise types, for example impulsive noise, the L2 solution is 

not optimal. In cases where impulsive noise is present an L1 {i.e. 

absolute value) error criteria is better suited as a minimization 

criteria. Due to the increased computational complexity of computing L1 

solutions this error criteria has not been extensively researched, 

especially with respect to multi-dimensional spectral estimation. One 

application of the L1 norm, however, was presented by Levy et al (1982) 

that utilized the simplex algorithm to generate the required solution. 

The residual steepest descent (RSD) algorithm (Huber, 1981) can be used 

to generate Lp so 1 ut ions (generally 1 ~ p ~ 2), however, convergence has 

been a problem. As noted in Chapter IV, a modification of the RSD 

algorithm (Yarlagadda et al., 1985) has eliminated the convergence 

problem and a viable method ·:.is now available for generating LP norm 

solutions. 

The remainder of this chapter presents an L1 solution of the 2-D 

linear prediction method for frequency-wavenumber estimation (formulated 

in Kumaresan and Tufts, 1981) based upon the RSD algorithm (Yarlagadda 

et al., 1985). The next section of this chapter will briefly summarize 

the 2-D linear prediction method given for the case of two 2-D complex 

sinusoids in noise and the following section will develop the problem 

reformulation necessary to utilize the RSD algorithm. Simulation 

results will be presented that show the improved resolution possible 

with an l1 solution. As an alternative to the 2-D LP formulation, a 

hybrid technique that blends a OFT along one dimension and LP methods 

(L1 and L2 norm) along the remaining dimension. This procedure offers 
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the computational advantages of the OFT (assuming sufficient data are 

available in the dimension for the required resolution) plus the high 

resolution capabilities in the dimension with limited record length 

data. 

2-D Linear Prediction Equations 

In Kumaresan and Tufts (1980) a computationally efficient method of 

extracting complex sinusoids in noise is developed based upon a minimum 

norm solution of an underdetermined set of linear prediction 

equations. A key feature of this technique is that the maximum size 

matrix inverse required is equal to the number of complex sinusoids 

assumed present within the data set; thus a considerable computational 

savings can be achieved since the number of sinusoids present is 

typically rather small. Therefore, with two sinusoids in noise as a 

test example a 2x2 inverse isrrequired. A straight-forward extension of 

this method from one-dimension to two-dimensions is given in Kumaresan 

and Tufts (1981). 

The relevant equations 

formulation will now be given. 

comprising the 2-D Linear Prediction 

Note that two prediction error filters 

are formed, each based upon a forward prediction equation and a backward 

prediction equation across opposite corners of the data array (valid for 

detecting two complex sinusoids only). Thus, each corner of the data 

array is utilized as a predicted sample with the remaining data used as 

support for the prediction filter (see Figure 41). The two prediction 

filters are then combined in a circular symmetric manner in order to 

form the frequency-wavenumber estimate. 

The test data array is generated from: 
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y(n,m) = A1 exp(j(w1n + w2m)) + A2 exp(j(w3n + w4m)) + W(n,m) (5.1) 

where A1 and A2 are unknown complex numbers. In this work, both have 

been set to one for simplicity. W(n,m) are independent complex noise 

samples. With n the space index and m the time index, w1 and w3 are 

unknown wavenumbers and w2 and w4 are. the unknown frequencies. N and M 

are the total number of spatial and time samples respectively. 

The prediction equations are given by: 

H1 filter: Y 1 .! = 1.J. 

[
y;N-1, M-2) 

y (0,1) 

[y~O, M-2) 

y (N-1,1) 

y(N-1, M-3) 

* y (0,2) 

y(O,M-3) 

* y (N-1,2) 

••• 

... ' 

••• 

••• 

y(O,O) ] 

y*(N-1,M-1) · 

y;N-1,0) ] b = 
y (O,M-1) 

a = [y;N-1, M-1)] 
y (0,0) 

(5. 2) 

[ 
y;o, M-1)] 

. y (N-1,0) 

The prediction coefficients for the H1 filter are given by: 

.!= [ao1' ao2' ••• , aN-1,M-1JT (5.4) 

and the prediction coefficients for the H2 filter are given by: 

.Q. = [bo1' bo2' ••• , bN-1,M-1]T • (5.5) . 
The asterisk (*) denotes complex conjugation. 

The prediction error filters are given by: 

N-1 M-1 
H1 = 1 - (5.6) 

i=O k=O 

(5 .3) 
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N-1 M-1 
(5.7) 

i=O k=O 

with i, k ~ 0. It has been shown (Kumaresan, 1982) that for noiseless 

data H1(ejw1, ejw2) and H2(ejw3, ejw4) are equal to zero with~ and l 

calculated as the minimum norm solution as follows (here * is complex 

conjugate transpose): 

* * -1 ~ = Y1 [Y1 Y1 ] 1.J. (5.8) 

* * -1 l = y 2 [Y 2 y 2 ] :t.2. • (5.9) 

The simultaneous frequency-wavenumber estimate is then calculated 

from: 

1 

(5.10) 

~1 Solution of 2-D LP Equations 

It is desired to reformulate the 2-D linear prediction equations in 

order that the RSD algorithm may be used to generate an L1 solution. 

This is necessary since the RSD method requires an over-determined 

system of equations, while the 2-D linear prediction equations are 

under-determined. Alternatively the simplex algorithm could be used to 

solve the set of under-determined prediction equations directly, however 

the goal here is to make use of the rapidly converging RSD algorithm. 

Additionally, use of the RSD algorithm will allow investigation of the 

general Lp norm with 1~<2. For example, choosing L1•2 may result in a 

blending of the characteristics of an L1 norm and the L2 norm. 
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Consider the set of under-determined equations: 

[Yn Y!2 ... Y!Q] al [ :~] Y21 Y22 ••• Y2Q a2 = (5.11) 
. . 
• 
aq 

or more compactly Y .! = .s!_. For obvious reasons we assume that the 

matrix Y has a full rank; i.e., the rank here is 2. In linear 

prediction terminology the vector a is the array of prediction 

coefficients, d1 and d2 are the predicted samples, and matrix Y contains 

the data samples used to estimate d1 and d2• Equation (5.11) may be 

written: 

[Yll Y12J 
[::] + 

[ Y!3 Y14 ••• Y!Q] a3 

Y21 Y22 Y23 Y24 ... Y2Q a4 = [ ::J . 
aq (5.12a) 

which can be written in symbolic form 

Y1 a1 + y2 £.2 = d (5.12b) 

where 

a 1T = [a1, a2], ~T = [a3 , a4 , ••• , aq], .s!_T = [d1, d2] (5.12c) 

and the matrices v1 and v2 are implicitly defined by comparing (5.12a) 

with (5.12b). For the following discussion we will assume without 

losing any generality that v1 is nonsingular. If Y1 is a singular 

matrix, then we need to find two columns in Y that are independent and 

rewrite (5.12a), where now v1 will have the new columns. For two 

sinusoids plus no noise the occurrence of singularity is predictable 

(see Appendix A). 

Solving (5.12b), we have 
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-1 +Y1-1.Q. Cl'l = -Y1 Y2 ~ (5.13) 

Equation (13) can be augmented and is 

[:] = [ -:1-1v~ £2 + [ y~ -1_1] (5.14) 

where I is an identity matrix of order (Q-2). It is clear that 

minimization of the vector aT= [a1T £2T] simply corresponds to solving 

the overdetermined system of Q· equations in (Q-2) unkowns: 

J!2= (5.15a) 

For simplicity, we will write this in the symbolic form 

X b = c (5.15b) 

where l = ~· 

Equation (5.15b) has the general form of an overdetermined system of 

equations and Lp analysis methods can be applied to solve for~· 

Before considering the solutions, we want to point out that the 

coefficient matrix X in (5.15b) has a special form, i.e., the last (Q-2) 

rows corresponds to an identity matrix. This allows an efficient 

implementation for Lp solutions. An additional problem is that the 

entries in X and ~ in (5.15b) are over the complex field. LP solutions 

are computed using the RSD algorithm presented in Yarlagadda et al. 

(1985). This algorithm is modified to fit the complex case at hand and 

the steps are summarized below. Although this algorithm is given in 

Chapter IV, it is repeated here for the reader•s convenience. 
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Complex RSD Algorithm 

1. J?..(O) = (x*x) -1x* ..£. 

2. qi(k) = sgn (IXJ?..(k)l- l£1)i • I(X.Q_(k) -..£.)il 
(p-1) 

3. rJk) = x ..!?..< k) - ..£. 

4. Minimize with respect to ~k 

E{k) = £(k) - 6-k X(x*x)-1x* ,!_{k) 

5. J?..(k+1) = J?..(k) - 6.k(x*x)-1x* y(k) 

6. Go to step 2 or stop if convergence is achieved. 

It is clear from these steps that the inverse of * (X X) is 

required. Since the matrix has a special structure, a simple procedure 

can be used to invert this matrix. The matrix identity used· in the 

simulation, termed the matrix inversion lemma, can be found in Brogan 

{1974) and is given here for easy reference: 

[P-1 + HTQH]-1 = P - PHT [HPHT + QJ-1HP. (5.16) 

With the matrix X in (5.15b) partitioned as 

X = [ ~~-J (5.17) 

(x*x)-1 can be expressed as 

(x*x)-1 = 

(5.18a) 

or 

(5.18b) 

The identity given by (16) may now be applied to the right side of 

(5.18b) by choosing P = 1m-2, Q = !2, and H = x1• Thus, by application 
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of (5.16), we now have 

* I ]-1 X * X * ) -1x [X1 X1 + Q-2 = IQ-2- 1 (X1 1 + I2 1• (5.19) 

Note that the large inverse on the left side of (5.19) is replaced by a 

2x2 inverse on the right side of (5.19). 

The minimzation in step 4 involves only vectors and as such is not 

difficult. In this work the iterative reweighted least squares (IRLS) 

algorithm was used to solve for ~k; IRLS is discussed in considerable 

detail in Yarlagadda et al. (1985). 

It has been found that the RSD a 1 gori thm converges within two or 

three iterations making the computational aspect quite efficient for a 

solution of this complexity. The minimization of the ~k factor using 

IRLS techniques has typically required six or seven iterations, however, 

since only vectors are involved the computations required are minimal. 

Again, note that just a 2x2 invese is required by the above 

implemention. 

In the following section simulation results will be presented to 

verify that this L1 formulation allows the detection of two complex 

sinusoids in noise. Additionally, in the presence of impulsive noise, 

the L1 solution will be shown to offer increased resolution over that 

obtainable via the minimum norm solution. 

Simulation Results 

A 16x16 data array was chosen as a test example to realistically 

represent a rather short data record 1 ength; thus N = M = 16. For 

simplicity the constants A1 and A2 in (5.1) are set to one (A1=A2=1). 

In order to highlight the advantages of an L1 solution as compared to an 
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L2 solution, the noise is chosen to be impulsive; specifically, two 

complex impulses are added to the data at n = m = 8 and n = m = 12 with 

the amplitude of both real and imaginary components equal to 2.8 

approximately. The impulse amplitude has a negligible effect on the L1 

results, however the L2 solution is very sensitive to the impulse 

amplitude and a value of 2.8 was chosen to allow reasonable results from 

L2• The L2 solution can easily be forced to fail completely by 

arbitrarily increasing the amplitude of the noise spikes (see Figures 42 

and 43), however the intent here is to compare the relative spectral 

resolution properties of L1 vs. L2• A unit sampling period was chosen 

for convenience which results in a frequency range of 0 to 0.5 Hz (fs = 

1 Hz) and a wavenumber range of 0 to 0.5 cycles/unit sampling 

distance. Four sets of complex sinusoidal frequencies that have been 

used to demonstrate the relative resolution capabilities of L1 vs. L2: 

Case 1. 

Case 2. 

Case 3. 

Case 4. 

w1 = (2~)(.125), w2 = (2~)(.2), 
w3 = (2~)(.125), w4 = (2~)(.23) 

w1 = (2 }(.125), w2 = (2~)(.2), 
w3 = (2 }(.125), w4 = (2~)(.22) 

w1 = (2~)(.125), w2 = (2~)(.2), 
w3 = (2rr)(.125), w4 = (2~)(.21) 

w1 = (2~)(.125), w2 = (2~)(.2), 
w3 = (2v)(.125), w4 = (2~)(.205) 

Note that the frequency/wavenumber spacings in all cases exceed the 

resolution limit available via discrete Fourier transform methods ( ~f = 

1/16=.0625). With N=M=16 the prediction errors filters, H1 and H2, have 
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255 coefficients (NM-1); H1 and H2 are evaluated from (5.6) and (5.7) 

via a 2-0 OFT. Equation (5.10) is used to form the final simultaneous 

frequency-wavenumber estimate. 

As was done in the previous chapter, prior to presenting data 

demonstrating the potential advantages of L1 normed solutions versus L2 

normed solutions, a comparison of the OFT method versus an LP technique 

will be presented. With this limited size data array (16 x 16) the 2-0 

OFT spectral estimator will be seen to perform rather poorly (excessive 

sidelobes and low frequency resolution) relative to an LP 2-0 spectral 

estimator. With widely spaced sinusoids (f1 = .125 cycles/foot, f2 = 

.1875 Hz; f3 = .25 cycles/foot, f 4 = .3125 Hz) plus 0 dB Gaussian noise 

a 2-0 OFT technique exhibits high sidelobe amplitudes, although the two 

peaks may be seen without too much difficulty (Figure 44; of course the 

locations are known a priori). In Fig.ure 45, -for the same noise and 

frequency spacings, the results of applying a 2-0 LP estimator is given; 

the improvement is obvious and needs no further comment. This 

experiment is repeated with the same frequency spacing, however, now the 

noise (Gaussian) has been reduced so that the signal to noise ratio is 

increased to 10 dB. From Figures 46 (OFT method) and 47 (LP method) it 

can be seen that high sidelobes are present from the OFT; the LP 

spectral estimator, however, results in sharply defined peaks with such 

a relatively high signal to noise ratio. Next, the relative frequency 

resolution cpabilities of the 2-0 OFT method of the LP estimator will be 

compared, first with 10 dB signal to noise ratio (Gaussian noise), then 

with the signal to noise ratio increased to 30 dB; the frequencies 

are: f1 = .125 cycles/foot, f2 = .2 Hz, and f3 = .125 cycles/foot, f4 = 

.22 Hz. For the lOdB SNR case, the 2-0 OFT is unable to resolve the 
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closely spaced temporal frequencies (Figure 48), however, the 2-D LP 

estimator separates the sinusoids (Figure 49). With a 30 dB SNR, the 

results are the same (compare Figures 50 and 51). 

For case 1, the L2 formulation results in the frequency-wavenumber 

estimate shown in Figure 52 as compared to Figure 53. in which an L1 

solution was used. Both L1 and L2 methods resolve the spectral peaks, 

although the L1 solution is charaterized by a much sharper peak. Figure 

54. shows that for the spectral spacing of case 2 the L2 formulation is 

unable to resolve the peaks. L1 , however, still resolves the spectral 

peaks of case 2 as can be seen in Figure 55. Case 3 is presented in 

Figures 56 and 57. Naturally the peaks are merged for the L2 solution, 

(Figure 56) but an L1 solution resolves the spectral peaks (Figure 

57). Finally from Figure 58 (case 4) it is seen that the peaks have 

merged with the L1 solution. Thus, in -this example, an L1 solution of 

the 2-D LP equations suggested in Kumaresan and Tufts (1981), is able to 

resolve spectral peaks at a closer spacing than that achievable via the 

minimum norm solution. 

Although the results of applying an Lp (p=l and p=2) normed 

spectral estimator to the case of sinusoid detection in non Gaussian 

noise has been considered in some detail previously, a small set of data 

will be presented here to demonstrate the effect of non-Gaussi~n noise 

on a 2-D LP (L2 normed) spectral estimator. The test frequencies are 

that of case 2 and the SNR is 10 dB. In Figures 59 and 60 it is seen 

that the two sinusoids are resolvable for Gaussian noise and uniform 

noise. With Rayleigh noise, however, the 2-D LP spectral estimator is 

unable to resolve the two sinusoids (Figure 61); thus the underlying 

noise statistics play an important role in LP based spectral estimation. 
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For illustrative purposes, the efficiency of the proposed algorithm 

is demonstrated using IAkl as a measure of convergence. Consider case 

1; IAkl for k = 1,2 are respectively given by .98 and .00 with the ;th 

component (~(O))i = 1 + j1 selected as the initial vector. For (..Q.(O))i 

= -5000 - j3000 (obviously an unrealistic initial value) IAkl' k = 

1,2,3, are given as 4040., .003, and .0. A plot of the convergence data 

is given in Figure 62. 

A potentially serious disadvantage of this direct 2-0 LP spectral 

estimation method is that of algorithm complexity. Even though the data 

size is quite small (16 x 16), reltively large matrices are involved 

(255 x 255) due to the algorithm structure. Large matrices require 

significant storage requirements that may severaly tax the resources of 

mini-computer systems. Add.:itionally, numerical calculations such as 

multiplication and addition, require excessive execution times. For 

example, on a VAX 11/750 computer system, this 2-0 spectral estimation 

method typically required approximately three and one-half minutes. 

With other users logged on this time would increase proportionately. In 

the next section, a hybrid method that blends a OFT with LP is 

formulated that significantly reduces computational complexity. 
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Separable OFT/LP Spectral Estimation 

The previous section presented a 2-0 LP spectral estimator that was 

computationally inefficient and numerically ill conditioned; this 

section develops an improved method of 2-0 spectrum estimation. In two 

dimensional spectral estimation it is often the case that one dimension 

possesses a significant number of data samples (e.g. 256 samples), while 

very few (e.g. 8 samples) data samples are available in the other 

dimension. This situation arises in applications where a relatively 

short spatial array is utilized in order to collect data that is a 

function of time. Such a data collection scenario is prevalent in 

geophysical data processing, however, it is equally applicable to other 

disciplines: Sonar arrays, for example, are typically of small 

aperture, while collecting numerous time samples. Whatever the 

application it is apparent that a sufficient number of time samples are 

avail ab 1 e for app 1 i cat ion of the OFT. For 1 ong data records the OFT 

(periodogram method) provides more than adequate frequency resolution 

and minimal sidelobe leakage; additionally, the computational efficiency 

of FFT algorithms is well known. A high resolution spectral estimation 

technique, however, is required in the spatial dimension due to the 

limited number of available data samples. As the OFT output is complex 

valued, regardless of the high resolution technique selected, the 

estimator must be able to handle complex signals; this restriction 

should not generally be a problem and no difficulties have been noted in 

this work. The OFT/AR method was apparently first used by Jackson, 

Joyce, and Feldkamp (1979), where the Burg algorithm was utilized to 

calculate the AR parameters required for a high resolution spatial 

frequency estimate. Joyce (1979) considered the problem of limited data 
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samples in both dimensions, extrapolated the data in one dimension via 

AR methods prior to applying a OFT to the extrapolated dimension, and 

finally, applied the Burg algorithm in the second dimension (complex 

output of OFT of extrapolated data). In this work a OFT will be applied 

in the time dimension and an AR/LP estimator will be applied to the OFT 

output to form the spatial frequency estimate. LP parameter estimates 

will be generated by the iterative Lp normed solution method discussed 

in Chapter III that was applied to specific problems in Chapters IV and 

previous sections of this chapter. 

Before the results of this hybrid OFT/LP method are presented, the 

required steps of this algorithm will be highlighted. The following 

steps are necessary: 

step 1: Calculate a 1-0 OFT of each line of the data array in 

the long dimension (time). 

H(z1,m) = Zn{x(n,m)}, n = 1, 2, ••• , N 

m = 1, 2, ••• , M 

where Zn { } denotes a z-transform in the subscripted variable, 

evaluated on the unit circle, z1 = exp (j2rrf). 

step 2: Using H(z 1 ,m) as the complex input, calculate estimates 

of the AR parameters, ak. 

step 3: For each complex data set from OFT along other 

dimension, form the spectral estimate in the conventional 

manner (e.g. equation 3.2). 

After step 3, the result is a 2-0 spectral plane, with resolution in the 

long (time) dimension determined by the OFT and resolution in the short 
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(spatial) dimension determined by the AR/LP estimator. Again, the AR 

parameters are calculated iteratively via an Lp (1 < p ~ 2) normed 

solution (i.e. the modified RSO and IRLS algorithms). Consult Appendix 

B for additional detail on the separable LP/OFT estimator. 

Results of applying this hybrid method to the test case of two 2-0 

sinsoids in Gaussian noise will now be given. The data size used for 

testing against a 2-0 OFT based spectral estimator is 16 x 512, however, 

the OFT/LP spectral estimator was applied to an 8 x 512 data array in 

order to ensure that the spatial dimension was quite short. Here, it 

was not desired that the OFT estimator fail completely so the slightly 

larger data array was utilized. The two sinusoids are defined by the 

frequency pairs f1 = .125 cycles/foot, f2 = .1875 Hz, and f3 = .25 

cycles/foot and f4 = .3125 Hz; SNR is 30 dB. In this high SNR case, 

with widely spaced sinusoids and large data array, the OFT technique 

resolves the sinusoids (Figure 63). The OFT/LP method as applied to the 

same data performs equally well, as seen in Figure 64. Lowering the SNR 

to 0 dB, however, causes the OFT estimator to exhibit a high variance 

spectrum with obscured spectral peaks (Figure 65), while from Figure 66 

it is seen that the OFT/LP method resolves the two sinusoids. 

Additional sinusoids may be detected with higher order filters. From 

Figure 67 it is seen that a third order filter will detect three 

sinusoids and from Figure 68 the four sinusoid case is shown (fourth 

order filter). Also, a fifth component (obviously spurious) may be seen 

in Figure 68; since the data record length here equals 8, a filter_ 

length of 4 is a bit two long. A general rule of thumb is to restrict 

the filter length to values less than one-third the data length. 
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In the previous section it was noted that a direct 2-D LP 

formulation resulted in extensive execution time. By contrast, the 

hybrid method developed in this section executes significantly faster. 

Although, the execution is a function of RSD algorithm converge, 

typically about 30 second is required to process an 8x512 data array on 

a VAX 11/750 computer system. 

Application of F-K Analysis to the 

Acoustic Well Log 

The instrumentation used in sonic well logging consists of a long 

wireline type tool that contains a transmitter and a receiver or array 

of receivers. A single transmitter and receiver is depicted in Figure 

70, however we are interested in the situation where a small number of 

receivers are mounted on a single tool. As this type of logging tool is 

moved through the borehole, the transmitter emits pulses of acoustical 

energy at discrete instants of time that is limited only by the time 

required for the acoustical reverberation to die out within the borehole 

fluid. Since these acoustical pressure waves travel within the borehole 

surrounded by a geological formation, information about the surrounding 

formation such as porosity is encoded into the propagating waves. The 

array of receivers serves to sense the acoustical pressure variations 

occurring from the propagating waves. The signals collected from the 

array of receivers (both a function of space and time) are digitized and 

trasmitted to the surface via cable and stored for later analysis by the 

geologist. Thus, the data collected from a sonic well logging tool 

forms a two dimensional space-time data array and frequency-wavenumber 
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analysis may be applied to aid in interpretation of formational 

characteristics. 

In any array signal processing problem such as just described 

compromises must be made. In order to increase available spatial 

frequency reso 1 uti on it is desired to rna i nta in as 1 ong an array as 

possible; it is well known that frequency resolution increases with 

aperture. Unfortunately, the surrounding geologic formation is not 

likely to be homogeneous over a very long array length. In fact, 

adequate vertical resolution enabling the geologist to make an accurate 

determination of formation characteristics versus depth requires a short 

receiver array. The vertical resolution that is important to a 

geologist decreases with increased array lengths. Another problem, of 

course, is the limited number of receivers that is practical to mount on 

such a logging tool; thus we have the problem of a short array span 

(aperture) plus a limited number of data samples. Fortunately all of 

the temporal data samples are available and we do not have a limited 

time aperture problem to deal with. One solution to improving a data 

array characterized by limited data availability in one dimension has 

been mentioned in the previous section; namely, a hybrid approach 

whereby a OFT is applied in the time dimension and a higher resolution 

parametric spectral estimator is applied in the spatial dimension. 

Thus, the more complex techniques are only used in the dimension with 

limited data availability greatly reducing computational complexity. 

Basically two types of waves propagate within a borehole: guided 

waves that propagate in the fluid and refracted waves that travel 

through the formation. A fast formation has the property that the 

formation shear velocity is greater than the fluid velocity; in such a 
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case a shear wave is produced that is somewhat slower than the 

compression a 1 waves. Unfortunately, the shear wave does not always 

exist. The velocities of these various waves may be related by the 

geologist to various properties of the surrounding formation. It may be 

remarked in passing that the guided fluid waves are dispersive and 

include the so called stoneley wave as well as other propagating 

modes. If the borehole is cased, it is also possible for waves to 

propagate within the casing; this situation becomes quite complicated 

and tends to further increase the difficulty of obtaining an accurate 

frequency-wavenumber representation. As mentioned in the 1 iterature 

survey section, much research is currently directed at accurately 

modelling the highly nonlinear phenomena of acoustical waves propagation 

in various borehole types. In the frequency-wavenumber plane dispersive 

waves (velocity is a function of frequency} manifest themselves as 

curved lines while nondispersive waves appear as straight lines. Recall 

that velocity is the inverse of the slope of a line in the frequency­

wavenumber plane (1/sec I 1/ft = ft/sec}. 

Figure 71 and Figure 72 show typical array data characteristic of 

the acoustic well log; this data was generated by a synthetic modelling 

program, however, and did not arise from a real borehole. The 

nonstationary and transient characteristics of this type of data are 

obvious. A convential 2-D OFT generated spectral estimate (16 traces 

used} is shown in Figure 73. It is difficult to interpret a 2-0 

spectrum from a 3-D perspective plot, however, a contour plotting 

package is not currently available. Obviously, a trained geologist well 

versed in the subtle idiosyncrasies of acoustic well log data, would be 

invaluable here. In Figure 74 the results of applying DFT/LP (L2 
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normed) spectral estimator can be seen. As the filter length (2) is 

quite short the spectrum can not be compared directly to Figure 74, 

however, the general trend of the main spectra (visible in the OFT plot) 

is apparent. The OFT/LP (L1 normed) estimator was also tried with 

results shown in Figure 75. A slightly higher order filter may be 

required, however, , the viability of this technique has been 

demonstrated. Additionally, it is expected that a data window moving at 

the same rate as an expected velocity component may be used to isolate 

one or two components for more detailed frequency-wavenumber analysis. 

Conclusions and Future Research 

A computationally simple 2-0 technique of simultaneous frequency­

wavenumber estimation introduced in Kumaresan and Tufts (1981) has been 

modified in order to incorporate the L1 norm minimization criteria. For 

the case of impulsive noise the L1 norm solution has been shown to 

result in increased frequency resolution. Use of the RSO algorithm from 

Yarlagadda et al. (1985) allows an L1 solution to be calculated without 

undue computational burden. Additionally, only a 2x2 (in general Lxl 

for L sinusoids) matrix inverse is required for the detection of two (L) 

complex sinusoids in noise. Since this spectral estimation algorithm 

has been formulated assuming a complex space, it may easily be blended 

with OFT techniques if a sufficiently long data record is available in 

one dimension (typically the case for the "time" dimension), thus 

achieving a further simplification in algorithm complexity. Since in 

general the RSO algorithm can be utilized to obtain a solution with the 

Lp norm criteria, this method is not restricted to studying the L1 

norm. Current research efforts are focused on a better understanding of 



l_ _ ____ ,_ ,-/ 

~7 

~H~ ~,~==========~~-----------------------======~:;-~~ 
....... 

.r""'" 

---'"'---:---"'L-1"- ' ,r-"' 

~--lv. ~(( - s· ---:r__.....K. ) • • ) 
----~~--~---------------------------7 

~-----------------------------~~ ---------------------7·" __ ,_. ~· 

__....___ / 

r-· .. 

0 10000 20000 30000 4. OE +04 5. OE +04 
FREQUENCY <HZ) 

Figure 74. OFT/LP (L2 Norm) Spectral Estimate (N, M = 
8, 512; synthetic acoustic well log 
data) 

....... 
w 
co 



0 

.~•v~~~------~---'"-----------------------------~~ 

Figure 75. DFT/LP (L1 Norm) Spectral Estimate (N, M = 
8, 512; synthetic acoustic well log 
data) 

....... 
w 
~ 



140 

the L1 norm as applied to spectral estimation and consideration of the 

LP norm problem, 1 ~ p ~ 2. It is hoped that intermediate values of p, 

1 ~ p ~ 2, will offer the best of L1 and L2• Also, it has been shown 

that the computational burden may be reduced by combining a OFT with LP 

methods; in this technique, the computationally expensive high 

resolution estimator (LP estimator) is only applied where it is 

necessary (i.e. the dimension possessing a limited amount of data). 



CHAPTER VI 

CONCLUSION 

The purposes of this investigation were threefold: consideration 

of least squares iterative solutions for estimating AR/LP parameters, 

comparison of various Lp normed (1 ..:_ p ~ 2) solutions of AR/LP 

equations, and development of a viable method for application of Lp 

normed AR/LP spectrum estimation algorithms to 2-D array data. Although 

the ultimate test of any new spectral estimation scheme is success 

against realistic signal environments, for example a relatively broad 

band spectrum plus multiple sinusoids, at this stage of development the 

case of two sinusoids in noise (obviously simplistic) was utilized 

exclusively. There are sufficient difficulties during the research and 

development of new spectral estimation techniques as applied to the 

simple two sinusoids in noise problem that inclusion of a complex signal 

scenario would be unnecessarily chaotic. 

It has been shown that iterative least squares type numerical 

methods are a viable means of estimating the AR/LP parameters. 

Iterative algorithms used in this study include the iterative 

reweighted least squares (IRLS) algorithm and a modified residual 

steepest descent (RSD) method. The convergence properties of the 

modified RSD algorithm have been excellent, generally just two or three 

iterations resulted in a desired solution. With such a fast convergence 

the resulting algorithms are computationally efficient removing one of 

141 
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the major obstacles for consideration of iterative methods as a means of 

estimating AR/LP parameters, prior to forming the spectral estimate. 

Stability of the resulting prediction error filter has not been 

addressed. For one thing, the prediction error filter does not require 

stability for application to spectral estimation; also, it is somewhat 

complex to check stability, although, efficient methods are available 

should a stable filter be required (for example parametric signal 

representation). 

Despite the minor drawbacks of iterative methods, such as an 

unstable prediction error filter and an increased computational burden, 

an important advantage is the ability to consider the general Lp (1 ~ p 

~ 2) norm. Of particular interest may be the L1 norm ( abso 1 ute va 1 ue 

error criteria) since such an error criteria is known to be very robust 

in the presence of impulsive noise or data that are contaminated by 

outliers. By contrast, the L2 (least squares) norm exhibits rather poor 

performance on data containing impulsive noise or outliers since all 

data points (good or bad) receive equal weighting. In this work, it has 

been shown that choosing the L1 norm for estimating AR/LP parameters 

results in a spectral estimator that demonstrates markedly improved 

performance (compared to an L2 based estimator) when app 1 i ed to data 

with impulsive noise (outliers). Additionaly, spectra generated via an 

L1 normed solution exhibited a "peakier" shape than that generated via 

L2 methods. 

The Lp normed solution methods were also successfully applied to 

the 2-D spectral estimation problem. Two 2-D implementations were 

considered: direct application to a small sized data array and a hybrid 

method that combined a discrete Fourier transform (OFT) with the 
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proposed Lp normed AR/LP spectra 1 estimator. For a sma 11 data array 

contaminated by impulsive noise, an L1 based estimator was able to 

resolve two closely spaced sinusoids to a greater degree than the 

corresponding L2 solution. Although a very small data array was used, 

the computation load was quite heavy; additionally, the problem was ill 

conditioned, which may limit practicality of the technique. Since it 

often occurrs that a relatively long data record is available in one 

dimension of 2-0 data (often the time dimension), OFT techniqes may be 

blended with with high resolution methods to greatly simplify 

computations. It was found that the LP iterative method blended easily 

with the OFT method which results in a computationally efficient 2-0 

spectral estimator that may be used in cases where sufficient data are 

available along one dimension in order for a OFT to provide adequate 

resolution. 

Future Research 

As always there is significant work left undone. An important 

aspect of any spectral estimation algorithm is performance against 

complex signal environments; the transition from the two sinusoids in 

noise case to multiple sinusoids and/or broadband signals plus unknown 

noise statistics can be very difficult and is usually very ad hoc. 

Selection of the appropiate ·model order can be difficult if the true 

spectrum is unknown, although a few guidelines are available. Most 

likely, when applying an Lp normed iterative solution to the spectral 

estimation problem, one will need to resort to hypothesis testing 

against the partial autocorrelation coefficients in order to select a 

model order, as the Levinson-Ourbin recursion is not available. 
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Clearly, a Levinson-Durbin type recursion would be helpful in selecting 

an appropiate model order when estimating AR/LP parameters via Lp normed 

iterative methods. A possible solution is to first apply a conventional 

L2 normed estimator, perhaps the FBLP method, and terminate according to 

some criteria (for example Akaike's criteria). The resulting L2 

solution if then used as the initial condition for the Lp normed RSD 

algorithm. 

Another area of importance is the variance and bias of the 

frequency estimates available from this Lp method. Excessive frequency 

bias or 1 i ne sp 1 itt i ng has not been noted in any cases encountered to 

date, however, it probably would be advisable to exhaustively exercise 

this new spectral estimator. Undoubtedly there is much that is not 

understood concerning the reliability of the spectral estimates via the 

Lp method and the only means available to pin down the variance of these 

estimates is an experimental investigation with uncorrelated noise 

sequences. 

This research has only been concerned with the L1 norm. In 

general, the modified RSD algorithm may be used to generate Lp (1 ~ p ~ 

2) normed solutions; it may be that an L1•2 normed solution offers some 

advantages. If a stable prediction filter is required, for example, 

perhaps L1. 1 or L1. 2 may be sufficiently resistant to outliers yet 

retain stability. Statisticians working within the field of linear 

regression use the so called Chebyshev criteria (also called MINMAX or 

the L norm). It may be possible, via the RSD algorithm, to approximate 

this norm with say p = 10. LP criteria (0 ~ p < 1) have also been 

studied within the context of linear regression; some work is being done 

with p < 0. Unfortunately, LP space 0 ~ p < 1 is not a linear normed 
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space. The general field of error criteria selection from the 

statistical literature may be fertile ground for new spectral estimation 

research. 
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APPENDIX A 

In this appendix a~ equation relating the singularity condition of 

the linear prediction matrix to sinusoidal frequency location will be 

derived. With .a deterministic test signal (noiseless case) given by 

(A .1) 

where a. and a are constants re 1 at i ng the s i nusoi ds locations, choose 

n=n1, m=m1 for one sinusoid and n=n 2, m=m2 for the other sinusoid 

location. From equation (5.3 ), it is seen that the linear prediction 

matrix is 

y , [ ••• 
• •• y(n1, m1) 

y*(N-1-n1 , M-1-m1) 

y( n2, m2) ••• 

y*(N-1-n 2 , M-1-m2) 

and the 2x2 partition of Y, denoted here as matrix P is 

. ..J . (A.2) 

(A.3} 

In order to arrive at the desired result, we set det (P) = 0, that is 

with y(n,m) evaluated from equation (A.1). Although the algebra is 

somewhat messy, straightforward manipulations lead to 
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with 

Q1 =w1[n1 + an2 + a{l- N)] +w2[m1_+ sm2 + a(1- M)] 

Q2 =w1[n1 + an2 + (1- N)] +w2[m1 + fm2 +(1-M)] 

Q3 = w1[an1 + n2 + (1 - N)] + w2[am1 + m2 + (1 - M)] 

Q4 = w1[an1 + n2 + a(l - N)] + w2 [am1 + m2 + a(1 - M)]. (A.S) 

Solving Equation (A.S) and equating real and imaginary parts results in 

the set of equations 

cos(Q1) + cos(Q3) = cos(Q2) + cos(Q4) 

sin(Q1) + sin(Q3) = sin(Q2) + sin(Q4) , (A.6) 

with Qi defined as in Equation (A.S), that must be satisfied in order 

that det(P) = D. By application of the trigonometric identity 

cos(A) + cos(B) = 2cos[1/2(A + B)] cos ~/aA - B)] (A. 7) 

to the left and right side of the first Equation in (A.6) the following 

condition for det (P) = 0 results in 

(A.8) 

1 = 0, 1, 2, ••• 

Upon substituting oo= 2~f into Equation (A.8) an equivalent expression is 

obtained: 

(a- 1)(M- 1)f2 + (a- 1)(N- 1)f1 =an integer • (A.9) 

Since f3 = af1 and f4 = ~f2 , Equation (A.9) may also be written 
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(A.lO) 

Solving the second equation in Equation set (A.6) involving the sin{·) 

function leads to the same results summarized in Equations (A.8, A.9, or 

A.lO) and will. not be repeated here. Thus, Equations (A.8, A.9, or 

A.lO) may be used to predict the combinatinns of f1, f2, f3, f4 that 

will to a singular linear prediction equation matrix. In practice, 

however, with noise added, the singularity problem has not been noted. 
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APPENDIX B 

In this appendix, the separability of a discrete Fourier transform 

(OFT) and the linear prediction spectral estimation method as applied to 

a sum of two-dimensional sinusoids. A 1 though this derivation will 

consider a test signal composed of two sinusoids for algebraic and 

notational simplicity, the extension to multiple sinusoids is 

striaghtforward. Essentially three basic steps are required to complete 

the derivation: first, with the two-dimensional signal considered as an 

N x M matrix, N distinct M point OFT's will be applied along the data 

matrix rows; second, closed form expressions are developed for the M 

point summations that result from application of the OFT; and third, 

after application of a OFT to the rows of the data matrix plus 

appropiate simplification, the resulting two-dimensional function will 

be shown to have significant sinusoidal components located only at the 

frequency pairs defining that set of two-dimensional sinusoids of the 

test signal. Thus, a linear prediction spectral estimation algorithm 

(or any other method for the matter) may be app 1 i ed to the co 1 umns of 

the comp 1 ex OFT resu 1 t and the pair of s i nusoi ds wi 11 be correctly 

located in the frequency-wavenumber (F-K) plane. The derivation 

follows. 

The pair of two-dimensional sinusoids are modelled as: 

y(n,m) = exp(j(w3n +w 2m)) 

+ 
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(B.l) 
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which, in the F-K plane, gives rise to a pair of impulses (or relative 

maxima with finite data records) at coordinates (w1, w2) and (w3, w4). 

A one-dimensional M-point OFT is given by 

M 
X(z) = ~ 

m=1 
x(m) z -m 

' 
(8.2) 

with z = exp(j w}. Applying Equation (8.2) to the rows of the data 

matrix defined by Equations (8.1), n = 1,2, ••• , N, m = 1,2, ••• , M 

results in 

M 
Y(n,w) = ~ (exp(j(w1n + w2m)) + 

m=1 

exp(j(w3n + w4m))) • 

exp (- jwm). (8.3) 

Factoring out terms not involved in the summation defined by (8.3) and 

combining common exponentials leads to 

M 
Y(n ,w) = exp(jw,n) ~ exp(jm(w2 - w) • 

m=1 

+ 

M 
exp(jw3n) • ~ exp ( jm ( w4 - w) ) • (8.4) 

m=1 

This completes the first step of the derivation and Equation (8.4) 

defines the M-poi nt DFT a 1 ong the rows of a data matrix described by 

y(n,m). The complex exponential summations in (8.4) have a closed form 

that simplifies this development considerably. The following identity 

wi 11 be used: 

K 
~ 

k=1 
rk = r - r k+1 

I - r 
r 1- 1, (8.5) 



with r = exp ( j ( wi - w)). 

Thus, 

M exp(j(w. - w)) - exp(j(w. - w) )M+1 
~ exp (j m ( w. - w) ) = ----::-1.;__..-~...,.------.~1----

m=1 1 1 - exp ( j ( wi - w)) 
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(8.6) 

Equation (8.6) simplifies by re-expressing (8.6) in magnitude-phase 

format. The details are somewhat tedious, though straightforward, and 

therefore will be omitted. In polar form, then, Equation (8.6) becomes 
wi - w 

M sin(M( 2 )) M 1 
m~1 exp(jm(wi - w.)) = --w-.-_-w-- exp(j ( ; )(wi - w)) 

sin( 1 2 ) 
(8.7) 

Now Equation (8.4), which is the result of applying a OFT to the rows of 

y(n,m}, can be written 

Y(n,w) = K1 exp(j~n) + K2 exp(jw3n) 

with 

W2-W M+1 
= sin ( M ( 2 } ) ej 2 ( w2 - w) 

K1 W2- W 
sin( 2 ) 

w4- w M + 1 
sin (M ( 2 ) ) ej 2 ( w 4 - w} 

K2 = • 
1.114- w 

s i.n ( 2 ) 
(8.8) 

The magnitude of Ki has the functional form of 



166 

K _ sin(Mx) 
- sfn(x) ' (B.9) 

which peaks sharply at x = 0 with value K = M; for x f 0, the magnitude 

falls off very rapidly. This will be illustrated with more clarity a 

bit later. First, however, we will expres Y(n,w) from equation (B.8) 

with w = w-2, w4 , which are the columns of Y(n,w) that define the two­

dimensional sinusoids located in the F-K plane at (w 1 , w2) and (<.ll 3 , 

w4). Picking these values of results in 

and 

* J·w n J·c.J3-n Y(n,w4) = K e 1 + M e , 

with 

w4 - w2 M + 1 
sin[M( 2 )] . 2 (w4- w2) 

K =------eJ (B.10) 
w4 - w2 

sin( 2 ) 

* Note that K is the complex conjugate of K and w2 f w4• Next, a simple 

sketch will be given that will show lkl « M for practical values of 

(w 4 - w2); it is useful to recall at this point that the frequency 

resolution imposed by application of a OFT is Aw= 27T/M. In Figure 76, 

jkj/M is plotted as a function of (w4 - w2) • As a practical matter, 
2 

t 4 2 w2) must be greater than the unit frequency resolution of 2 /M; 

that is 

(w4 - w2 
2 ) > 7T /M (B.ll) 
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and it can be seen that lkl << M. Therefore, Equation (B.10) becomes 

(B.12) 

and any desired spectral estimation method may be applied to Y(n,wi) to 

locate the peaks at w1 and w3, which in the F-K plane results in a peak 

at ("''1, w2) and (w3 , w4). In this work, a linear prediction spectral 

estimator is applied to Y(n, wi), n = 1,2, ••• , N; wi is defined by 

k 2~/M, k = 0,1, ••• , M/2 - 1. 

w· = , 



1.0 

.8 

.6 

.4 

.2 

L!S._I 
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0 1T' 
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37T 
M 

Figure 76. Sampling Function sin (mx)/sin (x) 
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APPENDIX C 

Many physical problems of interest to the engineer or applied 

mathematician may be described by a system of equations such as 

described by Equation (C.l). 

X.,!=:t... (C.l) 

In (C.l) X is a matrix and ..! and 1.. are vectors; depending on the 

specific problem formulation, the resulting dimensions of X, _!, and 1.. 

may lead to a system of equations that is underdetermined, 

overdetermined, or exactly determined. Thus with X a matrix of 

dimension mxn, ..! a vector of length n, and 1.. a vector of length M, for m 

> n, the system of equations is overdetermined, for m < n the system is 

underdetermined, and with m = n, the system is exactly determined. 

Obviously, in the exactly determined case, matrix X has full rank, i.e. 

rank X is m = n. For the underdetermined system, matrix X has rank m 

and for the overdetermined case matrix X is rank n. In this thesis in 

which Equation (C.l) is used to represent a linear predictive spectral 

estimation formulation vector 1.. contains the 11 predicted 11 data values and 

vector ..! is the unknown prediction coefficients. Once the linear 

prediction coefficients have been estimated it is an easy matter to form 

a spectral estimate from the so called prediction error filter. In the 

deconvolution problem the prediction coefficients are utilized to form a 

filter that attempts to remove undesirable effects of the data 

collection system from the data samples. For the curve fitting problem, 

vector..! may represent relative weights applied to a certain choice of 
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basis functions. Numerous examples may be listed, however, in all cases 

vector a needs to be calculated in some manner. Probably, the most 

common (and easiest) method of calculating ~ is by means of a least 

squares solution since analytic solutions are known and easily 

calculated. For an overdetermined system of equations, the solution to 

Equation (C.1) is given by 

For an underdetermined system of equations,~ is known to be 

~ = X(XXT)-1XT..i 

(C.2) 

(C.3) 

If the system of equations represented by (C.1) is exactly determined, 

the solution is simply 

(C.4) 

Obviously, x-1, (XTX)-1, and (XXT)-1 must exist or one needs to improve 

the numerical conditioning of the data before a solution is feasible. 

Although least squares solutions are quite popular and effective, the 

thrust of this thesis has been consideration of general Lp (1 ~ p ~ 2) 

normed solution to Equation (C.1). Unfortunately, analytic solutions to 

Equation (C.1) for p f 2 are not possible, however, in simple cases the 

error minimization may be carried out explicitly for a general Lp (1 ~ p 

~ 2) norm. This will be demonstrated next for the simplest possible 

example. 

In this example matrix X is 2x1, vector~ is 1x1 (i.e. a scalar), 

and vector .1. is 2xl. A general LP (1 ~ p ~ cc) normed solution to (C.1) 

may easily be calculated by taking the partial derivatives of an 

appropiate error measure, setting the derivates equal to zero, and 

solving the resultant equation(s) for p. With the dimensions of this 

example Equation (C.1) may be written 
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a = (C.5) 

. 
which shows the components of X, a, and 1.. explicitly facilitating the 

differentiation process. An Lp norm is calculated by minimizing an 

error measure, E, as given by 

E = ~ IIE·IIp 
. 1 
1 

where the ith component of the error residual is 

Ei = (X ..! - J...) i • 

In this simple example 

(C.6) 

(C.7) 

E = (X1 a - y1)P + (X2 a - y2)P (C.8) 

Taking the partial derivative of E with respect to a in (C.8) and 

setting the result equal to zero leads to 

Simplifying Equation (C.9) and solving for a results in 

1 1 1 1 
a= [X1XiP-1 - X2(-X2)P-1] -1 •[x1P-1y1 - (-X2)P-f y2] (C.10) 

which is an Lp (1 ~ p ~co) normed solution to Equation (C.5). Five 

special cases of p will now be considered: p = 2., p = , p = 3, p = 

1.5,- and p = a. The case of p = 0 is not strictly valid since p~O is 

assumed in the calculations, however the result is interesting. Of 

course, p < 1 does not constitue a normed space as pointed out earlier 

in this thesis. 

For p = 2, Equation (C.10) becomes 

a = (x12 + x22)-1(x1 Y1 + x2 y22) 

or 
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(C.ll} 

as expected and here mainly serves a partial verification check on the 

minimization calculations. 

An Lp(P = a) } norm is also known as the Chebyshev norm and is 

commonly used in filter design. Statistician seem to favor the L norm 
co 

in problems for which uniform noise is expected. A characteristic of 

the Chebyshev (L~} norm is an error vector exhibiting "equal ripple" and 

this will be clearly seen in this simple example. With p =c.o Equation 

(C.10} is now 

a= (X1 - X2}-1(y1 - y2} (C.12} 

which, since the quantity (X1 - x2} is a scalar, may be expressed 

Note that 

e:1 = X1 a - Y1 

e2 = X2 a - Y2 

(C.13} 

(C.14} 

(C.15} 

and Equation (C.13} results from setting e1 = e:2 and solving for a; thus 

the "equal error (ripple}•• characteristic of an L~ norm. 

In case 3, p = 3, a difficulty is noted. The solution for a with 

p = 3 is 

(C.16} 

to be a real valued coefficient. 

With p = 1.5, another peculiarity is noted. Now Equation (C.10} 

has solution 
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2 2 
xl Y1 - x2 Y2 

X 3 - X 3 
1 2 

a = • (C.17) 

Obviously, from Equation (C.l7) it can be seen that x1 ~ x2 to prevent a 

from going to infinity, a decidedly pathelogical solution. 

Finally, in case 5, consider p = 0 (though p ~ 0 is assumed!), 

which leads to 

(C.18) 

Thus a is the average of the two possible solutions for a considering 

the rows of matrix X individually. What this means is an open question 

and one needs to be careful that no generalizations are attempted! 



APPENDIX D 

SIGNAL DECOMPOSITION 

Introduction 

Although this thesis was concerned with primarily linear predictive 

spectral estimation, this appendix is included to provide an alternative 

"spectral" characterization techni~ue. Fourier series coefficients are 

known to provide a least squares fit to a function expanded into a 

series of sinusoidal basis functions and as such may be concerned an L2 

spectral estimation method. Other series, such as the Fourier-Bessel 

series considered in this appendix, thus may in this generalized 

spectral characteristic viewpoint be considered as a non sinusoidal 

"spectral" estimate. "Spectral" is enclosed in quotes to emphasize the 

fact that the physical interpretation of Fourier-Bessel coefficients is 

uncertain. 

In many cases it may not be desireable or even practical to repre­

sent a signal by its sample values directly or by an analytical function 

if a suitable function is available. For example, a signal may be 

determined by time domain sample values when the parameters of interest 

are better describable within the frequency domain. Many practical 

signa 1 s are highly redundant, both image and speech signa 1 s fa 11 into 

this category, and it may be desirable and possibly necessary to repre­

sent the signal with a fewer number of samples for economy of storage 

and/or transmission bandwidth limitations. Generally signals are 
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processed or filtered to 11 improve 11 low signal-to-noise ratios or to 

emphasize or de-emphasize certain characteristics. Voice signals, for 

example, possess information content within a relatively narrow range of 

frequencies and therefore can be successfully fi 1 tered to remove noise 

energy outside of the frequency range of interest. Whatever the desired 

goal the processing of signals can many times be carried out more effi­

ciently in another domain than that of the original signal. An obvious 

example here with the advent of hardware Fast Fourier Transform (FFT) 

devices is the widespread frequency domain processing of naturally 

occurring time domain signals. The field of speech processing has 

benefited tremendously from the abi 1 i ty to represent voice signa 1 s in 

domains other than the time domain. Pattern recognition techniques rely 

on the ability to generate a set of coefficients from the raw data (time 

domain samples) that are more compact (i.e. fewer samples) and hopefully 

are more closely related to the signal characteristics of interest. 

Clearly, if one is interested in frequency content, a Fourier series 
I 

representation packs the frequency information in to fewer samples 

(Fourier series coefficients) than a time domain representation. For 

these reasons, and many others not mentioned, the theory of signa 1 

decomposition by means of series representation is important to such 

applications as seismic, speech and image processing. 

Series Representations 

Possibly the first example of using a series representation dates 

back to 1753 when D. Bernoulli achieved success in expressing the func­

tional form of a vibrating string as the series (Bracewell, 1964): 

f(x,t) = A1 sin (x) cos (at) + A2 sin (2x) cos (2at) + ••• 
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The idea of representing an arbitrary function as a sum of sinu­

soids was quite new and controversial at the time and opposition to the 

correctness of such a series or possibly any series was voiced by Euler 

and Lagrange. Lagrange, in fact, publicly disagreed with Fourier's 

claim in 1807 that series representations were possible and it was not 

until 1829 that rigorous treatment of this idea was initiated by Diri­

chlet. Well, as they say, the rest is history. Since those beginnings 

many important mathematical theories have resulted such as the invention 

of the Riemann integral and research continues unabated today. For 

example, the well known Dirichlet conditions are sufficient only and re-

search continues for necessary and sufficient conditions. 

The theory of series representation of an arbitrary signal is more 

general then expressing a signal as a sum of sinusoids. In fact, any 

orthonormal set of basis functions can be used to represent some arbi-

trary function. For examp 1 e, if we define an orthogona 1 set of func­

tions as follows: 

/) <l>m(t) <Pn(t)dt = 
-co 

1, m = n 
0, m 'I n 

the function f(t) can be written 

where 

co 

f(t) = ~ en <Pn(t) 
n=O 

co 
en= J f(t) <l>n(t)dt 

-co-

(D.1) 

(D.2) 

(D.3) 

This result can easily be demonstrated (disregarding convergence consid­

erations) by multiplying both sides of (2) by ~n(t) and integrating each 

side over all values of time, t. If we restrict f(t) to signals pas-
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sessing finite energy and bandl imited frequency spectra a useful prop­

erty can be stated: The energy, E, of f(t) is given by 

(0.4) 

This is merely a re-statement of Parseval•s well known formula con­

cerning Fourier series coefficients. 

A 1 though the genera 1 i zed form of series representation is usefu 1 

for the construction of mathematical proofs, we are more interested in 

specific choices of the basis function, ~n(t). Obviously, choosing 

~n (t) = ejnwt (0.5) 

results in a Fourier series, but many other functions have found use 

also. If f(t) is only available over a finite segment of time (-T, T), 

a realistic assumption, it may be desirable to concentrate the energy 

within this interval. Denoting the concentrated energy by the frac-

tional energy ratio 

E = 

it can be shown (Papoulis, 1977) that E is maximized for ~n(t) 

corresponding to prolate spheroidal functions. This choice of basis 

functions has been investigated thoroughly by Slepien, et al. (1961) and 

has found use within many areas of digital signal processing and filter 

design. 

Another possible choice for ~n(t) is a family of Besse1 Functions, 

which results in an expansion termed the Fourier-Bessel Series. In this 

case, choosing a zero order Bessel function for illustration, 
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(0.6) 

and f(t) can then be expressed as 

co 

f(t) = ~ en J (xnt) 
n=l 0 

The Fourier-Bessel (F-B) series has found applications in optics 

and acoustics; additionally, certain unique properties of this series 

may be useful to the speaker identification problem and acoustical well 

log signal analysis. Properties of the F-B series will be covered in 

more detail within another section of this appendix. 

A few possible choices of basis functions have been briefly men­

tioned, however generally speaking the choice is very problem spe­

cific. The exponential kernel is an obvious and attractive choice. For 

one thing, most people are quite familiar and comfortable with Fourier 

series theory; also, the Fourier series possesses some very nice analyt­

ical properties such as shift invariance that make the various math­

ematical manipulations inevitably required much simpler. Fourier series 

theory includes the happy result that the series coefficients are given 

by a discrete Fourier transform; thus coefficient generation is an easy 

process with the numerous FFT algorithms that abound. By contrast, 

prolate spheroidal functions are more complicated to generate and their 

use may be difficult to justify in many cases, even though possessing 

possible theoretical advantages in a particular application. As we will 

see later, calculation of the Fourier-Bessel series coefficients 

requires computation of a Hankel transform, which until recently greatly 

diminished consideration of this series for potential applications. 

Fast Hankel transforms (FHT) have now been developed which allow 
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computation of F-B coefficients at a speed somewhat greater than Fourier 

coefficients; this should result in increased use of the F-B expan­

sion. One possible-application of the F-B series is the speaker identi­

fication problem, however, discussion of this topic will be deferred 

until the F-B series has been presented in more detail. Another signal 

type of interest is obtained from an acoustic well log and the F-B 

series expansion may prove useful in recovering geologic information 

concerning the surrounding rock formation. 

The remaining sections of the appendix will discuss the F-B series 

in some detail, computation of the F-B series via a FHT, and some 

simulation results obtained to test the feasibility and accuracy of a 

F-B series signal representation. 

Fourier-Bessel Series 

Bessel functions arise as solutions of the differential equation 

(D. 7) 

which is called Bessel's differential equation. The general solution of 

(0.7) is given by 

(0.8) 

where Jn(x) is called a Bessel function of the first kind of order n and 

Yn(x) is called a Bessel function of the second kind of order n. Bessel 

functions are expressable in series form; for example Jn(x) can be 

written 

=; Jl:l)r (x/2)n+2r 
J n ( x) r=O r r ( n + r + 1 ) 

(0.9) 
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and in particular 

i x4 x6 
J o(x) = 1 - 7 + 22 42 - 22 42 62 + ••• (0.10) 

It can be readily shown that Bessel functions are orthogonal with res-

pect to the density function x. This can be seen by computing 

1 13J (a) J 1 (a) - a J ( 13) J 1 (a) 
f xJn(ax)Jn(l3x)dx = n ~ 2 n n 
0 a - 13 

(0.11) 

and 

(0.12) 

Now if a and are different roots of Jn(x) = 0 we can write 

(0.13) 

and thus Jn(ax) and Jn(l3x) are-orthogonal with respect to the weighting 

function x. 

Having established orthogonality, a series expansion of an arbit­

rary function can be written in terms of Bessel functions with the form 

CD 

f(x) = ~ em Jn(~mx) 
m=1 

(0.14) 

where ~1 , ~ 2 , ••• are the positive roots of Jn(x) = a. The 

coefficients, em, are given by 

(0.15) 

If we wish to expand f(t) over some arbitrary interval (o, a) the zero 

order Bessel series expansion becomes [5] 

(0.16) 

wit:1 the coefficients, em, calculated from 



c = m a2 [J1(~ma)] 2 
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(0.17) 

and Am, m = 1, 2, ••• are the ascending order positive roots of Jo(aAm)= 

0. The integral in the numberator of (0.17) is the finite Hankel 

transform; recent formulations of fast Hankel transforms based upon fast 

Fourier transform (FFT) algorithms now makes computation of (0.16) and 

(0.17) feasible. Expansion of a speech or seismic signal using Bessel 

functions will result in a feature set having different properties than 

that obtainable via Fourier techniques. Several unique properties of 

the Hankel transform (and consequently a Fourier-Bessel series) will be 

presented in the next section. 

Properties of the Hankel Transform 

The Hankel transform is defined by 

Cl) 

F(W) = f r f(r) J (Wr)dr 
0 0 

(0.18) 

and the corresponding inversion formula is 

Cl) 

f(r) = f W F(W) J (rW)dW • 
0 0 

(0.19) 

If 

h h f 1(r}- F1(W), f 2(r} -F2(W) 

then 

Cl) * Cl) * f r f1 (r)f2 (r)dr = f WF1 (W}F2(W)dW 
0 0 

(0.20) 

which is Parseval's formula. 

The differential formula is 



d2f(r) + 1 df(r) h _ W2F(W) • d";2 ~r- dr 

Other properties include: 

Similarity 

f(ar) 11-1- F(!L) 
a2 a 

and 

Addition 

f(r) + g(r) - F(W) + G(W) • 
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(0.21) 

(0.22) 

(0.23) 

A shift eroperty does not exist as the Bessel function Kernel is 

shift variant under argument translation. The shift variant property 

may be advantageous in the speaker identification. 

Bracewell (1964) contains -a fairly complete table of Hankel trans­

forms; additional transform pairs are provided by Gerardi (1959) along 

with a relationship between the Hankel transform and the Laplace trans-

form. 

Fast Hankel Transform Algorithms 

Recently, algorithms for efficient numerical evaluation of the 

Hankel transform have appeared in the literature. These timely results 

enable applications of Fourier-Bessel series techniques to be investi-

gated without undue computational burden; additionally the fast Hankel 

transform algorithms are based upon readily available FFT algorithms. 

Perhaps the earliest fast Hankel transform algorithm was published 

by Siegman. Siegman's technique is based upon what might be called a 

Gardner transform (1979) which transforms the shift variant Bessel 

Kernel to a kernel that is shift invariant. The new integral becomes a 
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cross correlation integral which then is computed via an FFT. A 

disadvantage of this technique is that the original function under 

transformation requires sampling at exponentially spaced points; non­

linear sampling does not generally match the physical realities of data 

collection techniques and thus is awkward to implement. 

A similar algorithm was published by Johansen and Sorensen (1979) 

which mapped the Hankel transform integral to a convolution integral. 

Again, however, this mandates exponential sampling of the function under 

transformation. 

Oppenheim, Frisk, and Martinez (1978) have proposed an algorithm 

based upon the two dimensional Fourier transform 11 projection-slice 11 

theorem {Papoulis, 1977). Although this approach is· also FFT based, 

transformation of a data series in one dimension requires a relatively 

complex interpolation step prior to applying the FFT. If the data 

naturally arises from a two dimensional circular symmetric pattern on a 

rectangular grid, however, this approach is well formulated. 

A unique approach has been proposed by Cavanagh and Cook {1979) 

that involves expansion of the function under transformation into a set 

of Gaussian-Laguerre polynomials that have known analytic transforms. 

Their algorithm, however, suffers convergence problems and will not be 

considered further. 

An algorithm allowing uniform sampling of the time series to be 

transformed has been published recently by Candel {1981, 1982). Since 

most time series are sampled equidistantly in time, this algorithm is 

very attractive. Additionally, the algorithm is simple to implement and 

is based upon computation of an FFT. As Candel•s method was chosen to 

develop the results presented later in this report, the computation 
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procedure will be briefly summarized. 

Reproducing (0.18) with slightly different notation to emphasize 

the functional dependence on time we have 

co 
F(W) = I t f(t)J 0 (Wt)dt • 

0 
(0.24) 

Substituting an integral form of the zero order Bessel function 

1 1 ejxu 
Jo(W) = - f --~---.-7~~ du 

~ -1 (1 - u2) y1 L 

results in 

where 

F(W) 
~/2 

f <P(rcose)d 
0 

<jl(y) = fco· t f(t)ejyt dt. 
-co 

(0.25) 

(0.26) 

(0 .27) 

(y) in (0.27) is seen to be a Fourier transform of the product t f(t) 

and can easily be evaluated via FFT techniques. F(W) in (0.26) is then 

formed by sampling <P(y) with an rcos 8 spacing. cp(y) need not be 

interpolated, however, as nearest neighbor selection is sufficiently 

accurate provided the FFT length is chosen to provide adequate 

resolution. 

With f(t) discretized as 

f(n) = f(n~t), n = 0, 1, ••• , N- 1 , 

F(W) discretized as 

F ( l) = F ( l~W) , 
(~t)2 

and with the sampling contraint 

(0.28) 

(0.29) 
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(.6.W) (at) = ~7T (D.30) 

the algorithm follows directly. 

The computation steps are summarized below: 

N-1 j 27T nk 
1.) <I>( k) = ~ f ( n) ne N 

n=O 

2.) ei = (w) (~- i + ~ ), i = 1, 2, ••• , N/2 

3.) K(i, 1) = Integer part [1 cos ei + 1/2] 

4.) F(l) = ~ ~£i <l>[k(i, 1)], 1 = 0, 1, ••• , N/2 

Candel•s algorithms will now be re-written in pseudo-code to highlight a 

computation bottle neck: 

<l>(k) = FFT{n • f(n)} 

Do 1 = 0, N/2 

sum = 0. 

Do i = 1, N/2 

ei = (~'lN)(N/2- i + 1/2) 

K(i,l) = int [1 cos{ei) + 1/2] 

sum= sum+ [K(i,l)] 

end do 

F(l) = (liN) • sum 

end do 

Note that computation of F(l), 1 = 0, 1, 2, ••• , N/2 requires a nested 

"do loop" with the inner loop executing (N/2) squared times. Obviously, 

this is unacceptable, since such a structure negates the savings gained 

by recasting the Hankel transform integral into a Fourier integral 

suitable for implementation via FFT techniques. 



186 

Can de 1 proposes a simp 1 e so 1 uti on based upon an asymptotic series 

expansion of the Bessel function kernel. For x » 1, J (x) can be 
0 

expressed 

J (x) ~ (2/(~x)) 112 cos(x- ~/4) 
0 

and now the Hankel transform may be written 

m 

F(W) = J tf(t)(2/~tw) 112 cos(tW- 7T/4)dt. 
0 

By defining 

f(t) = f(-t)ei7T/ 2, t ~ 0 

(0.31) 

(0.32) 

the asymptotic Hankel transform may be expressed as a Fourier integral 

F{\~) = ~ Jm (7T~) 1/2 f(t) ltl1/2 e-j~Jtdt ; 
-m 

(0.33) 

now a fast Fourier transform algorithm can be used to evaluate F(W). 

With f(n) = f(n·~t), F(l) = F(l Aw)/(t) 2, and 

(At) • (AW) = 2v/N, F(W) can be estimated by: 

1/2 N-1 ·-rr. l 71ln 
F(l) = ~N-172 ~ 1n1 f(n)e-J 14 e N 

2! 1 n=O 
(0.34) 

Therefore, F(l) may be computed by performing a fast Fourier transform 

on the new sequence [ lnl 112 f(n)e-jv/ 4]. The resulting FFT is then 

scaled by N112t(27Tl1/2) and the calculations are completed. Since a 

single FFT is required with no frequency interpolation necessary this 

algorithm is very efficient. Unfortunately, the asymptotic expansion is 

inaccurate _for values· near the origin so a combination algorithm is 

required; that is, the very efficient algorithm is used for large argu­

ment values and the inefficient interpolation algorithm is used for 

small argument values. The crossover point is dependent upon the func-
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tion under transformation, but hopefully relative few values need calcu­

lation via the 11 Slow 11 fast Hankel transform (frequency interpolation 

method}. Further study of Fourier-Bessel expansion techniques would 

include an investigation into convergence rates of the asymptotic 

method, but that has not been pursued in this appendix. 

Simulation Results 

A computer simulation was developed in order to evaluate the poten­

tial use of Fourier-Bessel series expansion coefficients as a feature 

set in speaker identification algorithms or well log signal decompo­

sition. The simulation is set up such that several test functions are 

available for transformation for coefficient accuracy checking as well 

as a short segments of digitized speech for comparison against its 

spectrogram. Additionally, the transformed function can be regenerated 

using the computed F-B coefficients and a normalized error metric com­

puted. Also available is synthetically generated acoustic well log data 

obtained from the Amoco Corporation. No attempt has been made to mini­

mize execution speed other than utilizing an FFT based fast Hankel 

transform (Candel's algorithm 1981) •. 

As demonstrated previously in the discussion of Candel's fast 

Hankel transform, although the time domain samples are equally spaced, 

computation of values in the transform domain requires rcos8 type sampl­

ing of the FFT output. To avoid complex interpolation schemes, the FFT 

is zero padded to such a length that the resulting frequency resolution 

permits nearest neighbor selection of frequency samples. In order to 

quantify somewhat the FFT length required for accurate coefficient 

generation several test functions were expanded in a F-B series then 
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reconstructed with the ca 1 cul a ted coefficients to form an estimated of 
.... 

the original function. With the estimate formed, denoted f(n), an error 

measure was computed as 

- 1 N 
E-M !:: 

n=l 
[f(n) - f(n) ]2 (0.35) 

with M equal to the number of coefficients selected to construct f(n) 

and N equal to the time series length. For comparison purposes the 

standard Fourier series coefficients were also computed and then used to 

generate an estimate of the transformed function. Functions transformed 

for this test were: 

2.) f(t) = sin(t) 

3.) f(t) = J0 (t) 

4.) f(t) = e-t 

(chirp signal) 

5.) -ext f(t) = 4cx t e sin(w0 t) 

In addition to the above five test functions, an acoustic well log 

synthetic trace and a short segment of speech were expanded in a F-B 

series. 

Table 1. Summarizes the relative error magnitude as· a result of 

computing the F-B and Fourier series expansion for the five test func­

tions and two sets of real data. The series expansion coefficicents 

were calculated with a 512 point FFT, 256 test data points, and using 

256 coefficients to reconstruct the original time series. 
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Relative error entries in Table 1 were calculated by the following 

sequence of steps: 

1.) Compute 256 Fourier-Besel series coefficients and 256 

Fourier series coefficients utilizing 256 samples of the 

test signal (a 512 point FFT was used to compute the 

Fourier coefficients and also to implement the FHT algor-

ithm) 

2.) Reconstruct the test signal by performing a finite sum­

mation of the respective series using 256 coefficients 

calculated in step 1.; namely, 

a) Fourier series given by 

128 . t 
f(t) ~ ~ C eJnwo 

n=-128 n 

b) Fourier-Bessel series given by 

256 
f{t) ~ ~ CnJ0 (Ant) 

n=1 

where An, n=1,2, ••• ,256 are the positive roots of 

Jo{t) = D. 

3.) Calculate the error measure using Equation (0.35). 
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TABLE IV 

COMPARISON OF FOURIER-BESSEL 
SERIES AND FOURIER SERIES 

Fourier-Bessel Fourier Series 

Signal Error Error 

Linear FM 1.00 .0001 

Jo (t) .005 .0000 

te- t sin( w t) .005 .004 

e -t/2 .001 .0003 

sin (t) 1.05 .oooo 
clean speech .13 .003 

Acoustic Log .047 .oooo 
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The Fourier-Series expansion wins this type of comparison hands 

down, however it must be pointed out that this evaluation is not entir­

ely fair to the Fourier-Bessel series. For example, computation of a 

fast Hankel transform requires "interpolation" of the FFT samples (near­

est neighbor rule) while the Fourier series coefficients coincide exac­

tly with the FFT samples. Thus, the only errors reflected in the Four­

ier series expansion are due to truncation, but the Fourier-Bessel 

series suffers in addition to truncation errors, inaccuracies from 

"interpolating" the FFT samples. The only apparent solution to this 

shortcoming of a F-B series expansion is to improve the FFT resolution 

by increasing the number of samples (zero padding). By way of illus­

tration consider the acoustic well log data; as can be seen from Table 

1, E = .047. Increasing the FFT length to 8192 and still retaining 256 

criefficients reduced the error to .0004. An FFT length of 8192 with 500 

coefficients computed further reduced the error to .0001. As the FFT 

length is becoming rather long a more fruitful approac~ may be to comb­

ine a more accurate interpolation scheme with a shorter FFT (say 512 or 

1024 point FFT). 

The goal at this stage, however, is not to solve the algorithm 

complexity problem, but rather to look for ways in which the Fourier­

Bessel expansion leads to a feature set that is somehow "better'' than 

say a feature set based on Fourier coefficients. For example, a signal 

exhibiting both amplitude and frequency modulation characteristics (such 

as speech or an acoustic well log) may be more compactly represented by 

Bessel function basis vectors rather than by pure sinusoids. Also, it 

is possible that the F-B coefficients in some sense better capture the 

fundamenta 1 nature of the speech waveform; the shift variant property 
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may be desireable and possibly result in improved speaker 

identification/authentication probabilities. 

A final point should be made concerning the data presented in Table 

1. For the test function, f(t) = J0 (t), the Fourier series coefficients 

produced an extremely accurate reconstruction of the function under 

transformation. A F-B series expansion resulted in a higher error, but 

the number of coefficients required was dramatically different. Regen­

erating f(t) = Jo(t) from Fourier coefficients required all 256 values 

to achieve the result; by contrast just one Fourier-Bessel coefficient 

is required to reconstruct the function. Admittedly, this is a pathe­

logical case in that any function decomposed into basis vectors of the 

same analytic form will produce a single coefficient. Indeed, expanding 

the test signal f(t) = sin(t) via Fourier series requires a single 

coefficient. Nevertheless, the point being made is that an unknown 

signal will be more efficiently (more information in fewer coefficients) 

represented if expanded in the set of basis functions that "resemble" 

itself. Obviously, much research remains to be done concering the 

potential use of Fourier-Bessel series for date compression before one 

can draw definite conclusions. 

The error metric comparison between a Fourier series expansion and 

a Fourier-Bessel series expansion provides a "quick look", however a 

better method is to inspect some actual time series plots and the resul­

ting series expansions. Additionally a plot of the reconstructed data 

gives one a very good "feel" for the relative accuracy of the series 

expansion coefficients. 

Two types of data were considered in this evaluation: a short 

sample of relatively clean speech (no noise added) and a synthetic 
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acoustic well log trace. The results of expanding the acoustic well log 

trace (Figure 77) into a Fourier-Bessel series (512 coefficients) can be 

viewed in Figure 78. A fair degree of data compression is available and 

the dynamic range has not increased. Significant research would be 

required, however, to determine if the Fourier-Bessel coefficients can 

be related to the geologic properties of the formation from the acoustic 

log was generated. As another example, a segment of speech (Figure 79) 

was also expanded into a Fourier-Bessel series. The coefficients are 

shown in Figure 80; whether or not these coefficients constitute a 

desirable feature set in the speaker identification problem is an open 

question. 

Fourier-Bessel Decomposition Use 

Given that the Fourier-Bessel series coefficients can be generated, 

a natural question is what use to make of them. One choice is to view 

the coeffi cents as a feature set to be input to any desired pattern 

recognition strategy and hope for improved performance. 

We might also wonder how the coefficients vary with time; after all 

speech is quasi-stationary (or stationary over short time segments) and 

it is reasonable to expect that the F-B coefficients can put to good use 

in a display format similar to that of the spectrogram. To test this 

hypothesis a segment of speech signal could be broken up into short 

analysis windows (as with the short time Fourier transform), F-B 

coefficients calculated for each piece, and finally converted to a grey 

scale image for convenient viewing. 

After the F-B coefficients are calculated for each analysis frame, they 

would be displayed as a function of time to form a two-dimensional 
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"image" quite analogous to the spectrogram. 

One intriguing possible use of the F-B coefficient-time dispay 

that comes to mind is to subject this "image" to conventional 2-D signal 

processing algorithms and hope for improved results. Since the F-B 

coefficients are real the noisy phase problem upon reconstruction is 

avoided, which may be advantagous. The entire range of image processing 

algorithms developed over the past several decades would be available 

for exploitation to improve upon the speech characteristics. 

It appears that the application of F-B series to speech processing, 

particularly speaker identification, bears further research. The shift 

variant property of the Hankel transform may prove valuable for non­

stationary analysis and some indications exist that fewer coefficients 

may be required. Since the coefficients are real the speech can be 

directly reconstructed from its coefficient time index plot without need 

to retain phase components; this may prove to be of some use when 

conversion back to the time domain is desired. The performance of 

specific classification algorithms utilizing the F-B coefficients as a 

feature set needs to be evaluated. 

One topic not mentioned at all in this appendix is that of window 

functions. It was felt that at this stage of the game a rectangular 

window was best so as not to "muddy the waters" with excessive test 

parameters to control. Proper choice of data smoothing windows can be 

expected to improve F-B series convergence at points of discontinuity, 

however, "proper choice" is probably an open question. Windows designed 

to suppress Fourier sidelobe leakage, for example, may no longer be the 

best choice; indeed, there may be undesireable and as of yet unforeseen 

side effects when computing a Fourier-Bessel expansion. One expects 
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though that optimum window choice for F-B coefficient generation would 

be a fruitful research endeavor. 

Conclusions 

The purpose of this appendix was to present the general signal 

decomposition problem in terms of an orthogonal series expansion. Focus 

was primarily held on the Fourier-Bessel series expansion with the 

Fourier series expansion utilized here and therefore comparison 

purposes. A fast Hankel transform algorithm was presented that allows 

the Fourier-Bessel series coefficients to be computed efficiently and 

hopefully new applications will now be investigated. The fast Hankel 

transform technique was illustrated with several test functions, 

segments of acoustic well log data, and a clean speech sample. Obvi­

ously, much research remains to be accomplished concerning the F-B 

series and now an efficient computational algorithm makes such research 

feasible. 
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