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- CHAPTER I 

INTRODUCTION 

Efficient pork production dictates that market hogs be produced by 

some form of crossbreeding system. Evaluation of experimental swine 

crossbreeding data is required in order to identify superior breeds and 

exploitable heterosis for important production traits. This thesis 

presents analysis of growth performance data from purebred, two, three 

and four breed cross matings involving the Duroc, Yorkshire, Landrace, 

and Spotted breeds of pig. Parameter estimates for (numerically) 

relatively minor breeds, such as the Landrace and Spotted, are required 

in order to assess their potential contribution to crossbreeding system 

efficiency in the u.s. 
The number of breeds available, and the variety of alternative 

static, rotational and combined crossbreeding systems, makes comparisons 

among alternative systems a task well suited to the computer. In 

addition, the number of economically important traits requiring 

simulaneous evaluation and the need to not only consider performance in 

the market hog producing sector, but also to make allowance for purebred 

and other breeding stock generators required by the system, increases 

the complexity of obtaining valid comparisons among alternative 

crossbreeding systems. Experimental evaluation of all possible systems 

is impractical. Therefore it is necessary to use breed effect and 

heterosis estimates in order to predict expected performance of systems 

1 



and breed combinations not evaluated in the field. The quality of such 

predictions naturally depends upon the accuracy of both parameter 

estimates and the system model assumed. 

2 

This thesis presents individual heterosis estimates for postweaning 

growth and carcass traits from a crossbreeding experiment involving the 

Duroc, Yorkshire, Landrace and Spotted breeds of swine carried out at 

the Oklahoma Agricultural Experiment Station between 1976 and 1979. 

Effects of purebred and crossbred boars on progeny growth and feed 

efficiency are also discussed. Parameters estimated from these data, 

and from reproductive performance data from the same experiment, were 

used as driving variables in static, deterministic computer models. The 

models were designed to calculate production efficiency, defined as 

production cost/kg product, for alternative static, rotational and 

combination crossbreeding systems involving the above four breeds. The 

lack of available software in this area prompts the planned modification 

of the models into more "user-friendly" form in order to provide tools 

for use in Animal Breeding classes and Extension demonstrations. 



CHAPTER II 

REVIEW OF LITERATURE 

Theoretical Basis for Crossbreeding 

Introduction. Crossbreeding can be defined as the mating of 

individuals from genetically different groups (i.e., breeds, strains or 

lines) within a species. Systematic crossbreeding programs in farm 

livestock species are designed to exploit the benefits of heterosis and 

complementarity (in all but strictly rotational systems) in order to 

improve production efficency. Grading-up of inferior stock to superior 

breeds, and the development of new (synthetic) breeds from crossbred 

foundations, are additional applications of crossbreeding. 

The basis of complementarity is primarily the existence of breed 

differences in maternal effects (Sellier, 1976). Superiority of a cross 

over the parental mean, ignoring nonadditive (heterotic) gene effects, 

is due to differences in sex linked and maternal effects. Choosing the 

appropriate breed(s) to use as the dam line(s) in a static crossbreeding 

system allows exploitation of these differences. 

The term heterosis is often considered synonymous with hybrid 

vigor, an expression first used in the 18th century to describe the 

superiority of certain interspecific plant crosses (Zirkle, 1952). It 

was not until 1907 that a general concept of heterosis emerged, a 

concept Shull (1952, p. 48) described as "the interpretation of 

3 
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increased vigor, size, fruitfulness, speed of development, resistance to 

disease and to insect pests, or to climatic rigors of any kind, 

manifested by crossbred organisms as compared with corresponding 

inbreds, as the specific results of unlikeness in the constitutions of 

uniting parental gametes." The term heterosis itself was first proposed 

by Shull in 1914 to describe the increased vigor of crossbreds relative 

to their parents (Shull, 1948). 

However, much ambiguity as to the precise meaning of the term 

heterosis has existed for many years. Shull •s definition intentionally 

precluded any unfavorable departure from additivity in crossbred 

populations - and such a definition of heterosis is still adhered to by 

many animal breeders today (e.g., Sheridan, 1981; Hill and Webb, 1982). 

However, a substantial body of evidence suggests that hybrid disvigor 

also exists (Manwell and Baker, 1970). Stern (1948) suggested the terms 

positive heterosis and negative heterosis be used in referring to 

crossbred improvement or decline relative to parental performance. While 

disputed by Shull (1948), Stern's suggestion seems appropriate in that 

it allows for generality of the heterosis concept. 

Another source of confusion stems from the fact that the original 

idea of hybrid vigor was of hybrid superiority to both parents. However, 

Lambert (1940) defined heterosis as the superiority of the crossbred 

over either parent, and similarly Herskowitz (1967) defined it as 

heterozygotic superiority to one or both homozygotes. Nevertheless, 

heterosis is conventionally measured as the deviation of the crossbred 

from the average of parental lines (Mather, 1949; Lerner, 1958; 

Falconer, 1960). This is the definition assumed in this manuscript. 
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Heterosis Models. A number of hypotheses relating to (positive) 

heterosis have been proposed. Three 'classical • hypotheses discussed by 

Gowen (1952), Lerner (1954), Mather (1955) and Sang (1956) were reviewed 

by Bowman (1959). These are: 

(a) The dominance model, which assumes dominant alleles are 

favorable and that parental lines or breeds are homozygous dominant at 

different loci; 

(b) The overdominance model, which assumes the heterozygote to be 

superior to either homozygote at various loci and 

(c) The epistasis model, which assumes heterosis to be the result 

of some form of inter-locus interaction (see Kinghorn, 1980, 1982 and 

Sheridan, 1981 for more recent considerations of epistatic models). 

Naturally these models are not mutually exclusive. Rather, a number 

of genetic mechanisms are likely to be involved in heterosis, the 

relative importance of each depending upon the specific trait and 

populations involved. Dickerson (1952), for instance, suggested that 

under long-term, uni-directional selection it is likely that favorable 

dominant alleles will become fixed, whereas loci exhibiting 

overdominance will have intermediate gene frequencies. Thus, if 

overdominance is important, its greatest effect should logically be for 

traits such as litter size and viability (under continuous •automatic• 

selection), while dominance and epistasis may be the primary genetic 

mechanisms involved in postweaning trait heterotic effects. 

The genetic models described above have also been proposed as 

explanations for inbreeding depression. Indeed, a number of workers have 

equated heterosis to a reversal of inbreeding depression (Fredeen, 1956; 

Lerner, 1958; Falconer, 1960). Certainly, traits exhibit1ng the greatest 
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inbreeding depression also show the greatest heterotic response in 

crosses. However, such observations do little to help elucidate the 

genetic mechanisms responsible for heterosis. Sarkissian (1967, cited by 

Manwell and Baker, 1970, p. 13) maintained that 

"our knowledge of the intimate mechanism(s) of heterosis has not 
flourished in spite of the fact that we have been aware of heterosis 
since the time of Koelreuter and Darwin in the 18th and 19th centuries 
••• That heterosis is a genetic phenomenon cannot be doubted. In fact, 
one can be somewhat specific in describing the genetic make-up necessary 
for heterosis by stating that heterosis is associated with 
heterozygosity. Statements that go beyond this point in attempting to 
explain further the genetic aspects of heterosis are rather general and 
vague. Dominance, masking of harmful recessive genes in the 
heterozygote, epistasis, overdominance, adaptive superiority of the 
hybrid or 'physiologically active• genes, controlling reactions 
responsible for heterotic expression - all of these, unfortunately, are 
circular definitions stating in essence that a given organism exhibits 
heterosis because it is superior ••• " 

In an attempt to overcome these shortcomings, Manwell and Baker 

(1970) proposed the complementation theory. Rather than considering the 

mechanism of heterosis at the gene or locus level, they proposed a 

molecular model. The classic example of complementation involves 

heterokaryon formation in fungi. Two strains, each deficient in a 

different enzyme required by the same metabolic pathway, combine such 

that each cell contains nuclei from both strains. Each strain, 

therefore, complements the deficiency of the other, resulting in 

restoration of the pathway. Manwell and Baker (1970) proposed that 

overdominance and epistasis can be viewed as genetic complementation 

involving proteins or their subunits, providing a noncircular 

explanation for heterosis bridging genotype and phenotype and amenable 

to biochemical testing. 

More recently, Orozco (1976) proposed a model (similar to one 

proposed by Langridge in 1962), in which heterosis would occur only in 
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non-optimal environments. Results of the author's work with Tribolium 

suggested heterosis might involve two types of genes: those acting 

girectly on the trait, and those acting indirectly via effects on 

tolerance to environmental stress. Barlow (1981), reviewing the evidence 

for heterosis x environment interactions in animals, concluded that, 

taken collectively, the evidence indicated that heterosis for most 

traits appeared to be greater in sub-optimal environments. 

Analysis of Crossbreeding Data 

The analysis and genetic interpretation of crossbreeding 

experimental data has received considerable attention from both 

geneticists and statisticians over the past 40 years (see Wearden, 1964; 

Willham, 1980 and Eisen et al., 1983 for brief reviews). 

The diallel cross (all possible (p2) matings among a set of p 

parental lines) has been used extensively in plants to partition genetic 

variation into general and specific combining abilities of inbred lines 

(Sprague and Tatum, 1942; Griffing, 1956). Henderson (1948, 1952) 

presented a method of analysis appropriate for animal experiments to 

obtain least-squares estimates of maternal effects in addition to 

general and specific combining abilities. 

Touchberry and co-workers at the University of Illinois (Shreffler 

and Touchberry, 1959; Dickinson and Touchberry, 1961; Verley and 

Touchberry, 1961; Touchberry and Bereskin, 1966a,b; Bereskin and 

Touchberry, 1966, 1967) developed and used various statistical models to 

analyze dairy cattle crossbreeding data. The basic model assumed was: 

y .. kl = ll + a. + b. . + ck + ( ac) . k + (be) .. k + e .. kl ( 1) 
1J 1 1J 1 1J 1J 

where 
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y ijkl = an observable random variable; 

ll = the overall mean (an unknown constant); 

the effect of the .th breed of sire; a; = 1 

b .. the effect of the .th sire within the ;th breed of = J lJ sire; 

ck = the effect of the kth breed of dam; 

( ac) i k' (be) i j k = interaction terms and 

eijkl = the random residu~~ effect associated with the lth 
anima2 in the ijk progeny group, assumed NID 
(O,cr e). 

All effects (except the residual) were considered fixed- including 

sires, more often thought of as random variables in such experimental 

designs. Later analyses involving a similar model (Batra and Touchberry, 

1974 a,b), while not specifically identifying fixed and random effects 

in the model, used variation among sires as the error term for testing 

differences among breeds of sire. This is the appropriate test (Sellier, 

1980), and implies that sires are considered as random effects in the 

model. 

Variations of the basic model (i.e., including additional fixed 

effects such as season and sex, and covariables such as age and weight 

of dam) were used, but do not alter interpretation of the genetic 

(breed) effects. Significant breed of sire and breed of dam effects 

indicate differences among additive genetic effects for the breeds. 

Differences between breed of sire and breed of dam effects are explained 

by maternal and (or) paternal effects, assuming direct genetic 

differences between sires and dams of the same breed to be unimportant. 

Differences due to breed crosses (the breed of sire x breed of dam 

interaction) indicate nonadditive (heterotic) effects exist. The 
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importance of differences among sires within a breed can also be 

determined from this type of analysis. Significance of sires nested 

within breed of sire x breed of dam interaction provides evidence as to 

the importance of •nicking• (specific combining ability) between certain 

sires and different dam breeds. Parekh and Touchberry (1974) later 

modified the basic model by including percent heterozygosis effects in 

addition to breed of sire and breed of dam effects. 

Gardner and Eberhart (1966) extended Griffing•s (1956) diallel 

model for analysis of plant crossbreeding experiments by subdividing 

direct heterosis (hij) into average (h), variety (hi) and specific (sij) 

direct heterosis. 

i.e. 

where: 

h .. = h + h,. + h. + s .. 
lJ J lJ 

h = the average direct heterosis contributed by the set of 
varieties used in crosses; 

( 2) 

hi (hj)= the average direct heterosis contributed by variety i (j) in 
its crosses, as a deviation from h (~hi = 0); 

and s .. 
lJ 

Where 

= specific direct heterosis occurring when variety 
to variety j (r.s .. = ~s .. = 0 and s .. = s .. ). 

i lJ j lJ lJ Jl 

parental varieties can be selfed, this model allows 

is mated 

for the 

separate estimation of additive and dominance effects. Otherwise, these 

effects are confounded and must be estimated jointly. The partitioned 

heterosis parameters (h, hij and sij) are estimable in either case, but 

only where all p2 diallel matings are made. An important result of such 

partitioning is that parameter estimates can be used to predict 

performance of populations not included in the experiments analysed -

thus enhancing the power of experimental data to help in decisions 

relating to utilization of available varieties and mating systems. As 
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such, Gardner and Eberhart•s work represented a significant advance in 

the analysis of crossbreeding data. 

Another milestone in the design and analysis of crossbreeding 

experiments was Dickerson•s (1969) presentation of an analytical 

approach to the problem of how best to utilize available animal breed 

resources. He defined various statistical genetic parameters, estimable 

from crossbreeding data, that could be used to predict performance of 

alternative crossbreeding schemes. These genetic parameters, defined as 

mean deviations in offspring performance from average purebred 

performance of a specified set of breeds, were: 

= deviation due to average direct effects of the individual •s 
own genes, for breed A; 

gM 
A = 

M• 
g A = 

I 
h AB = 

M 
h AB = 

M• 
h AB = 

I 
r AB = 

M 
r AB = 
M• 

r AB = 

deviation due to average effects through maternal 
environment, for genes of breed A dams; 

deviations due to average effects of genotype for breed A 
maternal granddams, through modification of direct maternal 
effects; 

deviation due to increased average heterozygosity of F1 
crossbreds from A males x B females, or reciprocals, 
including any nonallelic interaction of A with B gametes; 

as hiAR' but for maternal environmental effects of F1 
crossored dams; 

as hM , but through maternal environmental interaction 
effec~~ of F1 crossbred maternal granddams on the maternal 
influence of the dam; 

deviation due to change in nonallelic gene interaction 
effects in F2 individuals, relative to those of the F1, 
from gametic recombinations between chromosomes of the 
parent breeds A and B; 

as riAB' but fo~ indirect maternal environmental effects; 

as rM , but through maternal environmental interaction 
effec~~ of maternal granddams on the maternal influence of 

-the dams. 
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Dickerson's (1969) model therefore included direct, maternal and 

grand-maternal average genetic effects, heterosis and epistatic 

recombination effects. Sex-linked and paternal effects were considered 

negligible, although paternal effects were included in a subsequent 

model (Dickerson, 1973). Nongenetic effects (e.g., age, year, season) 

must, of course, be removed, either in the analysis or by experimental 

design. Assuming random mating, linkage equilibrium, additivity (no 

interaction) of gametic and heterotic contributions of different breeds 

to various crosses and absence of interaction between different 

parameters, expected performance of various types of mating can be 

expressed in terms of the above parameters. For example: 

E(AxA) = A + gi + gM + gM' 
A A A 

I I M M' I E(AxB) = AB + .5(g A+g 8) + g B + g B + h AB 

E(CxAB) = ABC+ .25(2giC+giA+gi8) + .5(gMA+gM8) + M' 
g B + 

I I M I 
.S(h CA+h CB) + h AB + •25 r AB 

By further assuming a linear relationship between percent 

(3) 

(4) 

(5) 

heterozygosity and heterosis (dominance and recombination effects), 

expectations can be given for mating systems such as rotations and 

synthetics that maintain between 0 and 100% heterozygosity. Dickerson 

(1969) pointed out that although the relationship may in fact be 

curvilinear, expectations obtained assuming linearity should still 

provide useful approximations for comparison of alternative 

crossbreeding schemes. 

The recombination (r) parameters in the model measure deviations 

from a linear relationship between percent heterozygosity and heterosis 

(Dickerson, 1973). Coefficients of these parameters represent the 
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proportion of gametes from both parents expected (assuming linkage 

equilibrium) to be recombinants, i.e., gametes not present in the 

original parental populations. That such effects will generally be 

negative is logical given that favorable combinations of various gene 

pairs are probably established at different loci, as adaptations to 

specific environments, during the development of breeds or lines. Thus 

where such populations are adapted to similar environments, epistatic 

recombination losses (i.e., the magnitude of r) from crossing these 

populations may indeed be negligible. Wider crosses, however, may result 

in recombination losses of practical significance (Falconer, 1960). 

Sheridan (1981, p. 140) concluded a review of crossbreeding and 

heterosis in poultry, pigs, cattle and sheep by stating "the limited 

experimental evidence available indicates that, in many cases, the level 

of heterosis in crossbred populations other than F1 populations is less 

than would be predicted on the basis of percentage of heterozygosity." 

Results were, however, far from conclusive - particularly for pigs. 

McGlaughlin (1980), working with mice, demonstrated a clear linear 

relationship between heterozygosity and heterosis for litter size and 

weight, and for individual progeny weight at birth and weaning. She 

cited a number of studies involving corn, mice, dogs, and cattle which 

also demonstrated linearity--as well as conflicting evidence from 

experiments with Drosophila, corn and poultry that found nonlinearity 

suggesting recombination loss. North American breeds of pig, relative to 

breeds of other livestock species, may be considered to be adapted to 

somewhat similar environments (Sellier, 1976). Therefore, despite the 

decided lack of experimental evidence, it may be reasonable to assume 



that epistatic recombination losses are negligible when comparing 

alternative swine crossbreeding schemes. 
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Given the assumptions discussed above (but not that recombination 

effects are zero), Dickerson (1969, 1973) presented expectations for 

various crossbreeding schemes in terms of statistically defined genetic 

parameters (see table 1). In the 1973 paper, grand-maternal effects were 

dropped from the model, and paternal effects included (to accommodate 

systems involving crossbred males not considered in 1969). Different 

coefficients on the recombination parameters were presented for the same 

mating systems in the two papers. The revised (1973) coefficients are 

presumed to be appropriate. 

Although Dickerson (1969, 1973) did not discuss estimation of 

genetic parameters, his work had a profound effect on subsequent design 

and analysis of animal crossbreeding experiments. Least-squares 

regression procedures that equated genetic group means to their 

expectations based on Dickerson•s model- were adopted by a number of 

workers (e.g., Gregory et al., 1978; Alenda et al., 1980; Dillard et 

al., 1980; Robison et al., 1980). 

Robison et al. (1981) formally proposed a model developed at North 

Carolina State University as an improvement over conventional techniques 

for the analysis of crossbreeding data. They set out to extend Gardner 

and Eberhardt•s (1966) work with plants to the development of a model 

suitable for analyzing animal crossbreeding data. Robison et al. (1981) 

claimed three advantages for their procedure over alternative analytical 

techniques. Firstly, that theirs was a statistically less complex 

procedure; secondly, that it provided a clearer understanding of genetic 



TABLE 1. FRACTION OF HETEROSIS AND RECOMBINATION LOSS EXPECTED FOR 
ALTERNATIVE SYSTEMS OF BREED USEa. 

Heterosis Recombination 
Mati ngb 
System hi hM hp ri rM 

A X B 1 0 0 0 0 
A X A-B 1/2 1 0 1/4 0 
c X A-B 1 1 0 1/4 0 
A-B X c 1 0 1 1/4 0 
C-D X A-B 1 1 1 1/2 0 

Rotations 
2 breed 2/3 2/3 0 2/9 2/9 
3 breed 6/7 6/7 0 6/21 6/21 
4 breed 14/15 14/15 0 14/45 14/45 

C x Rotation 
2 breed 1 2/3 0 2/9 2/9 
3 breed 1 6/7 0 6/21 6/21 
4 breed 1 14/15 0 14/45 14/45 

Synthetic 
2 breed 1/2 1/2 1/2 1/2 1/2 
3 breed 2/3 2/3 2/3 2/3 2/3 
4 breed 3/4 3/4 3/4 3/4 3/4 

a After Dickerson (1973) 
b Breed of sire x breed of dam. 
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l 

0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 

1/2 
2/3 
3/4 
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components and thirdly, that it allowed prediction of breed crosses not 

included in the experimental data. The model proposed was as follows: 

where 

c .. 
l,J 

Ci . = mean performance of the ijth cross; ,J 
1..1 = a constant; 

{6) 

=percentage of genes contributed by breed i{j) through the 
sire {dam); 

= average effect of the ith{jth) breed; 

ki,{kj,) =percentage of genes in the sire (dam) from breed i(j); 

pi = paternal effect of the ith breed as a sire; 

= maternal effect of the jth breed as a dam; 

= percentage of loci in individuals w!~h one gene from the ith 
breed and the other gene from the j breed; 

I h.. = 
lJ 

heterosis due to intra-locus interaction of two alleles from 
breeds i and j; 

kii' =as kij' but for the male parent rather than the individual; 

h .. ,P =paternal heterosis; 
11 

kjj' =as kii'' but for the female parent; 

and hjj'M =maternal heterosis. 

Thus far, the model follows the parameterization suggested by 

Dickerson {1969, 1973). However, Robison et al. {1981) also suggested 

that, where data were sufficient {i.e., where all possible purebred and 
I p crosssbred matings have been made), the heterosis effects {hij , hii' , 

hjj'M) be partitioned into average, breed average and specific heterosis 

components as proposed by Gardner and Eberhart {1966). Robison et al. 
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(1981) also pointed out that comparison of the results from their model 

and from a model fitting breed groups (and thus allowing for any 

linkage, epistatic and nonlinear genetic effects) would provide evidence 

as to the importance of these effects. 

Eisen et al. (1983) presented a somewhat more theoretical expansion 

of Gardner and Eberhart•s (1966) model, again designed to allow genetic 

interpretation of diallel crosses involving animals when maternal 

effects may be important. The authors commented on the frequent lack of 

clear genetic interpretations placed upon statistical parameters 

obtained from analysis of animal crossbreeding data, and attempted to 

clarify interpretation of various parameters. As discussed above, 

Gardner and Eberhart (1966), partitioned direct heterosis as: 

h .. =h •• +h.+h.+s.. (2) 
1J 1 J 1J 

Eisen et al. (1983) pointed out that hi (direct heterosis of line i 

as a deviation from overall heterosis, h .. ) is not identical to the more 

usual definition of line heterosis (hi.) found in the animal breeding 

literature. Rather: 

hi = (hi. - h •• )(p-1)/(p-2) 

where p = number of breeds or lines; 

hi • = j 1 ~ i ) hi/ ( P-1 ) 
- L: L: and h •• = .<. h .. /(p(p-1)/2). 

1 J 1J 

(7) 

Eisen et al. (1983) cited Casas and Wellhauser (1968) as having 

shown that: 

(8) 
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=frequency of the favorable allele at the kth locus in the ith 
line; 

L: 
= ( 1/P) i qi k 

and dk = dominance value of the heterozygote at the kth locus. 

In addition, they credit the work of Vencovsky (1970) (reviewed by 

Hallauer and Miranda, 1981), as having provided considerable insight 

into the genetic interpretation of h •• , hi and sij by deriving zi in 

terms of parental and crossbred means. Now, hi can be expressed as: 

hi = (zi - z.)(p/(p-2)) 

where z = (1/p)1zi = ~cr 2qk dk 

frequency at the kth 

and 2 is the variance of gene a qk 

locus among all lines. 

(9) 

Due, therefore, to the exact linear relationship between hi, hi and 

zi, only one of these statistics needs to be presented. In favor of hi 

is the fact that it is presently in common use in animal breeding 

literature. However, Eisen, at al. (1983) claimed that hi would be more 

appropriate to evaluate the relative contribution of line heterosis to 

heterosis and to general combining ability; and that zi more directly 

measures gene frequency divergence from mean gene frequency among lines. 

Eisen et al. (1983) demonstrated interpretation of various crosbreeding 

statistics using a diallel experiment involving five mouse lines. 

Clear definition of the parameters to be investigated, and an 

awareness of the requirements of statistical models to be used to 

estimate these parameters, are prerequisites to the design of any 

crossbreeding experiment. The diallel cross allows for the most detailed 

genetic analysis possible. However, the limited experimental facilities 

available to researchers working with farm livestock species places 

practical restrictions on experimental design in many cases (Sellier, 
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1980). In order to maintain sufficient matings/cell, it may not be 

possible to make all desired crosses concurrently. Such was the case for 

the experiment analyzed in this present study--with the total number of 

'lines' consisting of four pure breeds of pig plus all possible two-way 

crosses. 

The analysis of any particular set of animal crossbreeding data is 

likely to be unique to some extent, demanding the creative application 

of concepts outlined in this section. Genetic parameter estimates can 

(and, in practice, usually will) be obtained by making appropriate 

contrasts among linear model solutions. The number of contrasts to be 

made often exceed available degrees of freedom. Use of such contrasts, 

developed a priori to provide insight into the importance of various 

effects is, however, considered a valid technique (Eisen et al., 1983). 

Crossbreeding Experiments with Pigs 

Introduction. Comprehensive reviews of swine crossbreeding 

experiments have been published by a number of American, Canadian and 

European workers (Dickerson, 1973; Jonsson, 1975; Sellier, 1976; 

Johnson, 1980, 1981; Glodek, 1982). The objective of this section is to 

selectively consider reports relevant to the present study. To help 

establish the context of the present experiment, swine crossbreeding 

experiments carried out at Oklahoma State University are briefly 

reviewed. This is followed by a summary of reported heterosis and breed 

effect estimates for growth and carcass traits for the Duroc, Yorkshire, 

Landrace and Spotted breeds of swine. 

The Oklahoma Swine Crossbreeding Experiments. Foundation herds of 

Duroc, Hampshire and Yorkshire swine were established at the Oklahoma 
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State University Experimental Swine Farm at Stillwater in 1969. These 

herds then supplied breeding stock for a crossbreeding experiment 

conducted at the USDA Southwest Livestock and Forage Research Station, 

El Reno, Oklahoma. Phase I of this experiment consisted of diallel 

matings involving the three breeds, with litters farrowing in the spring 

and fall of 1971. Johnson et al. (1973) reported results for growth and 

carcass traits. Reproductive performance data (including numbers of 

corpora lutea and embryos 30 d postbreeding) were analyzed by Johnson 

and Omtvedt (1973) and Young et al. (1974). Phase I also served to 

provide females for Phase II, where purebred boars were mated to 

purebred and F1 females to produce all possible two and three breed 

static cross litters, which farrowed in the spring and fall of 1972. 

Individual heterosis for ovulation rate and maternal heterosis for 

litter productivity were estimated from these data (Johnson and Omtvedt, 

1975). 

Phase I was subsequently replicated in the spring and fall of 1973 

(Young et al., 1976a,b), and Phase II in the spring and fall of 1974 and 

the spring of 1975 (Johnson et al., 1978). These later reports 

represented complete analyses of the data. In conjunction with this 

work, Wilson et al. (1977) reported testicular and reproductive 

characteristics of Ouroc, Hampshire and crossbred Duroc x Hampshire and 

Hampshire x Duroc boars produced at the Stillwater Station between the 

fall of 1973 and the spring of 1975. Young et al. (1977a,b) also 

investigated the relationships between a gilt•s prebreeding and 

reproductive performance using data on gilts produced at both the El 

Reno and Stillwater stations between the fall of 1970 and spring of 

1974. 
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Backcross and three breed static systems involving Duroc, Hampshire 

and Yorkshire breeds were evaluated at the El Reno Station between the 

fall of 1975 and the spring of 1977 (Wilson and Johnson, 1981a,b). 

In the spring of 1976, Landrace and Spotted purebred herds were 

established at the Stillwater Swine Farm. This marked the start of a new 

crossbreeding project with the following objectives: 

1. To evaluate purebred performance and combining ability of Duroc, 

Yorkshire, Landrace and Spotted breeds of swine in two, three and four 

breed crosses. 

2. To investigate the importance of heterosis for male reproductive 

performance. 

3. To identify mating systems that maximize total and lean tissue 

production efficiency. 

There were two phases to the experiment. Diallel matings involving 

all four breeds produced purebred and all possible two breed cross 

litters between the fall of 1976 and the fall of 1978 at the Stillwater 

Experimental Swine Farm. The Stillwater phase was designed to allow 

evaluation of purebred and two breed cross performance, and to supply 

breeding stock for use in the El Reno phase. Three and four breed cross 

litters were farrowed at the El Reno station between the fall of 1977 
' and the fall of 1979. 

Wilson et al. (1978) presented preliminary results for performance 

of purebred and two breed cross pigs from the first two seasons of the 

Stillwater phase of the experiment. Hutchens et al. (1981, 1982) 

reported results of an investigation into the relationship between 

pubertal and growth characteristics of gilts, and compared age and 

weight at puberty for breed groups. The gilts were purebred and F1 
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crosses farrowed at Stillwater between the fall of 1976 and the spring 

of 1978. Fent et al. (1983) studied the influence of breed and heterosis 

on testicular development and serum LH and testosterone (after GnRH 

challenge) in purebred and crossbred boars produced at the Stillwater 

Farm between the spring of 1977 and the spring of 1979. Sow productivity 

comparisons for the four breeds producing purebred and crossbred litters 

at Stillwater between the fall of 1976 and the fall of 1978 were 

presented by Gaugler et al. (1984). Buchanan and Johnson (1984) reported 

reproductive performance of the various crossbred female and purebred 

and crossbred boar groups that comprised the El Reno phase of the 

experiment. 

Complete analyses of data collected in this experiment have yet to 

be reported. This present investigation aims to complete analyses of 

growth and carcass performance data from both phases of the experiment; 

and to meet the third project objective by using parameters estimated 

from the entire experiment to simulate performance of alternative swine 

crossbreeding systems. 

Individual and Maternal Heterosis for Postweaning Performance and 

Carcass Traits. Individual heterosis estimates for postweaning 

performance traits are presented in tables 2 and 3. Specific estimates 

for all traits are reasonably consistent between crosses and between 

experiments (table 2). Most estimates were significant. Note that two 

figures are reported for Toelle and Robison (1983) in tables 2 and 3. 

The first (4a) represents estimates from data on purebred and F1 

litters. The second (4b) included data from 'mixed' litters--i.e., 

purebred and crossbred pigs crossfostered in the same litter. Vigor of 



TABLE 2. SPECIFIC INDIVIDUAL HETEROSIS ESTIMATES FOR POSTWEANING 
PERFORMANCE TRAITS 

Trait 

Postweaning 1 
average 2 
daily 3 
gain (kg/d) 4a 

4b 

154d.wt./154 4a 
(kg/d) 4b 

154 d. wt. 
(kg) 

4a 
4b 
5 

DL 

.07 

7 .27+1.65 

Age @ 95.3kg 5 -16.14+3.20 

Age @ 104kg 4a 
4b 

Probed back- 4a 
fat @ 104kg 4b 

Gain/feed 2 

Feed/gain 5 
56d-154d 

Feed/gain 5 
56d-95.3kg 

-.09+ .08 

-.18+ .06 

Reciprocal Breed Crossesc 

OS 

.09 

.08 

.06 

.09 

DY 

.06+ .01 

.09+ .01 

.05+ .01 

.ot+ .01 

8.0 +1.7 
11.3 +1.8 

. 10. 07+1. 93 

-21.91+3.71 

-17.4 +3.8 
-28.05+4.4 

-.23+ .09 
-.35+ .08 

.009 

.03+ .08 

-.17+ .06 

LS 

.05 

LY 

.05 

4.71+1.62 

-12.64+3.13 

.02+ .08 

-.09+ .06 

c D=Duroc, L=Landrace, S=Spot, Y=Yorkshire. 
d 1-3 estimates cited by Johnson (1981): !=Schneider (1978), 

2=Young et al. (1976b), 3=Hutchens & Johnson (unpublished). 
4a,b=Toelle and Robison (1983), 5=Wheat et al. (1981) 
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SY 

.05 



TABLE 3. AVERAGE INDIVIDUAL HETEROSIS ESTIMATES FOR POSTWEANING 
PERFORMANCE TRAITS 

Trait 

Postweaning 
average 
daily gain 

154d.wt./154 

154 d. wt. 

Age @ 95.3 kg 
II II 100 .o kg 
II II 100.0 kg 
II II 104.0 kg 

1 
2 
3 

3 

3 
4 
4 
1 
2 
3 

Probed backfat 3 
@ 104 kg 

Gain/feed 

Feed/gain 

Feed/gain 
56d-154d 

Feed/Gain 

1 

2 

4 

4 

5,002 
NA 
885 ( 548) 

885 (548) 

885 (548) 
823 
823 

5,002 
NA 
885 ( 548) 

885 (548) 

485 pens 

NA 

179 1 i tters 

179 1 itters 

Heterosis 

.06 kg/d 

.04 kg/d 

7.35 kg 
-16.9 d 
-12.7 d 
-10.0 d 

.017 

-.08 

-.01 

-.11 

% Heterosis 

8.8 
6.0 
13.7 (11.1) 

13.6 ( 11.1) 

14.1 (11.4) 
12.1 
-7.9 
-6.9 
-5.0 

-10.2 (-8.0) 

-8.0 ( -6 .6) 

5.9 

-3.0 

-.0 

-3.3 

a 1=Johnson (1981); 2=Sellier (1976); 3=Toelle and Robison (1983); 
4=Wheat et al. (1981). 

b n=number of pigs, unless otherwise stated. Sellier (1976) 
summarized 13 crossbreeding experiments (including Kuhlers et al., 
(1972), mostly European. Figures in parentheses indicate a subset 
of the data (see text for details). 
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crossbred pigs in these litters appeared to have a detrimental effect on 

the purebred pigs, thus inflating the heterosis estimates. 

Averaging over a number of studies (table 3} there appeared to be a 

6 to 10% advantage for crossbred individuals over the average of 

parental contemporaries for postweaning growth. Experimental estimates 

of individual heterosis for feed to gain ratio and carcass traits have 

tended to be small and not significant (Johnson, 1981}. Estimates of 

individual heterosis for carcass measurements are given in table 4. 

Smaller numbers involved in these evaluations explain the greater 

variation evident among estimates. 

Average maternal heterosis values for postweaning performance and 

carcass merit are presented in table 5. Estimates are small and suggest 

that the advantages of a crossbred dam are confined to preweaning 

performance. 

Breed Effects. Johnson's (1981} weighted least-squares analysis of 

crossbreeding data from a number of experiment stations indicated that 

Duroc sired pigs gained .02 kg/d faster and reached market weight 3.2 d 

sooner than average (see table 6}. Results reported by Wheat et al. 

(1981} supported the Duree's superiority for rate of gain, and also 

indicated that Yorkshire sired pigs grew more slowly than Landrace sired 

pigs (in contrast to Johnson's, 1981, results}, and were less feed 

efficient (see table 6}. Duroc sired pigs had the highest feed 

efficiency (lowest feed to gain ratio}. Johnson's (1981} analysis did 

not include feed to gain ratio due to insufficient data. Young et al. 

(1976b} reported significant breed effects for feed efficiency. 

Hampshire sired pigs were more efficient than Duroc or Yorkshire sired 



TABLE 4. INDIVIDUAL HETEROSIS ESTIMATES FOR CARCASS TRAITS 

Trait 

Length 
(em) 

Reciprocal Breed Crossesc 

DL OS OY LS LY SY 

1 .60+.26 
2 .56+".23 

Aver agee 

.00 em 
3 .5 .3 -.95- -.30 -1.2 -1.3 .0% 
4 -.31+.19 
5 .08+.43 .36+".46 

Back fat 
(em) 

Loin eye2 
area (em ) 

% 4 Lean 
cuts 

1 
2 
3 .08 
4 
5 -.18+.08 

1 
2 
3 -1.4 
4 
5 . 71+.84 

5 .82+.84 

% 5 Primal 5 .66+.97 
cuts 

% Ham & 
loin 

Marbling 
score 

Firmness 
score 

Color 
score 

5 .33+.67 

1 
2 

1 

1 
2 

.22 

-.00+.05 
-.01+".06 

.23+.04 

.08+.10 

.77+.49 
1.03+.58 

-.9 2.05-
.06+.34 
.32+".90 

.20+.88 

.66+1.02 

.59+ • 71 

6.3% 
-4.6% 

3.3% 

-.4% 
-2.9% 

.14 

-1.0 

.00+.43 

.13 

.13+.08 

-.35 

-1.16+.84 

-.70+.80 

-.62+.92 

-.63+.64 

.25 

• 90 

.04 em 

.20 
1.3% 

.23cm2 

.8% 

.5% 

1.5% 

-4.1% 

~ D=Duroc, L=Landrace, S=Spot, Y=Yorkshire. 
1-4 estimates cited by Johnson (1981): 1=Young et al. (1976b), 

2=Schneider (1978) et al. (1982), 3=Hutchens and Johnson 
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c {unpublished), 4~Bereskin et al. (1971); 5=Wheat et al. (1981). 
from Johnson (1981). Average of reported literature results excluding 

5, but including results from additional studies involving breed 
crosses other than those above. 
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TABLE 5. AVERAGE MATERNAL HETEROSIS VALUES FOR POSTWEANING PERFORMANCE 
AND CARCASS MERIT 

Trait 

Postweaning 
average daily 
gain 

Age @ 100 kg 

Gain/feed 

Carcass length 

Carcass backfat 

Carcass yield 

Loin eye area 

% Fat corrected 
muscle 

Johnson et al. 
(1978) 

.00~.01 kg/d 

-.4 +.9 d 

-.00+.003 

.00+.2 em 

.07+.04 em 

.7 +.3 cm2 

Firmness score -4.5% 

Marb 1 i ng score -2.1% 

Color score -2.5% 

Reference 

Schneider 
(1982) 

-.01~ .01 kg/d 

1.2 +1.8 d ( .6%) 

.17+ .19 em .2%) 

.00+ .05 em .0%) 

.42~ • 28 kg .6%) 

.01+ .54 cm2 .0%) 

-.15+ .35 (-.3%) 

-.8% 

-.7% 
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TABLE 6. BREED EFFECTS (LEAST-SQUARES CONSTANTS) FOR POSTWEANING 
PERFORMANCE TRAITS 

Johnson (1980,1981)a 

nc Postwean. Age @ 
gain kg/d lOOkg 

A 

1l 5002 .67 179.7 

Breed of Sired 

D 1443 .02+.006 -3.2+1.0 
y 1610 .oo+.oo6 -1.0"+1.0 
L 193 .oo+.o12 -1.6+2.3 
s 198 .01+.012 -4.0+2.1 

Breed of Damd 

D 1348 .02+.006 -3.2+1.1 
y 1452 .01+.006 -2.0"+1.1 
L 213 -.00+.012 .1+2 .3 
s 185 .02"+.012 -2.4+2.3 

n 

823 

Wheat et al. (1981)b 

Age @ Wt. n Feed/gain 
95kg 154-d 56-l54d 56-95kg 

202.6 65.89 179 

-3.5+1.6 1.6+.8 
5.7+1.7 -2.9"+.9 

-2.2+1.5 1.3+.7 

3.4+1.7 -2.1+.8 
3.5+1.6 -.3+.8 

-6. 9"+1.6 2.4+.8 

3.02 3.34 

-.08+.02 -.08+.02 
.08+.02 .06+.02 
.oo+.o2 .02+.02 

-.04+.02 .01+.02 
.01+.02 .oo+.o2 
.03"+.02 -.01+.02 

a From weighted least-squares analysis of experimental results (Young et 
al., 1976b; Schneider, 1977; Kuhlers et al., 1972, 1977; Bereskin et 
al., 1971; Hutchens and Johnson, unpublished). Note: breed constants 
not given above (Chester White, Hampshire, Poland China) account for 
breed constants not summing to zero and numbers (n) not summing to the 

b total. 
c Calculated from least-squares means reported. 
d Number of pigs unless otherwise specified. 

D = Duroc, Y = Yorkshire, L = landrace and S = Spotted. 



pigs; and Yorkshire dams had more efficient pigs than dams of either 

other breed. Johnson et al. (1978) reported similar differences. 
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Johnson (1981) maintained that breed of sire effects estimated 

one-half the average direct genetic effect of the breed, while breed of 

dam effects estimated one-half the direct genetic plus the maternal 

effect in his analysis. Breed of dam effects for growth rate were in 

general similar to breed of sire effects (table 6), suggesting maternal 

effects for rate of gain were small. Differences were more evident in 

the findings of Wheat et al. (1981), but their estimates are based on 

far fewer data (table 6). 

Breed of dam and breed of sire effects did not appear to be the 

same for carcass traits, however (table 7), suggesting that maternal 

effects were important for these traits. An estimate of breed average 

direct genetic effects was obtained by doubling the breed of sire 

effects, assuming Johnson's (1981) contention that these effects 

estimated one-half the direct genetic effects. Maternal effects were 

estimated as the difference between breed of dam and breed of sire 

effects. To aid interpretation of tables 6 and 7, these values were 

calculated and presented in table 8. Relative to direct genetic effects, 

maternal effects were moderately important for carcass length, backfat 

and loin eye area. Additional breed effect estimates are presented in 

table 9. Ahlschwede and Robison (1971a) reported that prenatal and 

postnatal maternal effects represented approximatly 17% and 11% of the 

variance in postweaning growth and backfat, respectively. Maternal 

sources of variation in 140-d weight were also reported to be larger 

than direct genetic effects for both the Duroc and Yorkshire breeds 

(Ahlschwede and Robison, 1971b). Toelle and Robison (1983) found breed 
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TABLE 7. BREED EFFECTS (LEAST-SQUARES CONSTANTS) FOR CARCASS TRAITS 

n 

A 

Johnson (1980,1981)a 

Length 
(em) 

Backfat Loin ey2 
(em) area(cm ) 

f.! 1382 76.80 3.27 29.08 

Breed of Sire 

D 412 -.21+.20 .02+.04 .55+.41 
y 456 • 64"+.19 .14+. 04 -.33"+.39 
L 38 • 62+. 45 .02+".10 -1.28+".93 
s 37 -. 65+. 46 .15+.10 -.97+".94 

Breed of Dam 

0 406 .01+.19 .09+.04 -1.44+.40 
y 472 .66"+.18 -.03"+.04 1.02+.38 
L 45 • 52+. 43 • 23+. 09 -. 90+. 90 
s 33 .38+.48 -.05+".10 -.11+. 82 

Wheat et al. (1981 )b 

n Length Backfat Loin ey2 
(em) (em) area(cm ) 

823 77.66 3.28 30.13 

-.33+.22 -.04+.04 .96+.39 
-.04"+.23 .03"+.04 -1.04"+.38 

.38+".22 .01+.04 .06+".38 - -

-.78+.22 -.02+.04 .19+.39 
.58+.23 -.05"+.04 .65+.38 
.20+".22 .07+.04 -.84+".37 - -

~ See footnote to table 6 above. 
Calculated from least-squares means reported. 
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TABLE 8. DIRECT (gi) AND MATERNAL (gM) GaNETIC EFFECTS FOR POSTWEANING 
PERFORMANCE AND CARCASS TRAITSc 

Trait Ref Duroc Yorkshire Landrace Spotted 

gi gM gi gM gi gM gi gM 

Postwean a .04 .00 .oo • 01 .00 .00 • 02 • 01 
gain(kg/d) 

Age@100 kg a -6.4 • 00 -2.0 -1.0 -3.2 1.7 -8.0 1.6 
(d) 

Age@95. 3kg b -7.0 6.9 11.4 -2.2 -4.4 -4.7 
(d) 

Wt 154d b 3.2 -3.7 -5.8 2.6 2.6 1.1 
(kg) 

Feed/gain b -.16 .04 .16 -.07 • 00 .03 
56-154d 

Feed/gain b -.16 • 09 .12 -.06 • 04 -.03 
56d-95.3kg 

Carcass a .42 • 22 1.28 • 02 1.24 -.10 -1.30 1.03 
length (em) b -.66 -.45 -.08 .62 . 76 -.18 

Carcass a .04 .07 .28 -.17 . 04 .21 • 30 -.20 
backf at (em) b -.08 • 02 • 06 -.08 • 02 • 06 

Loin-ey2 a 1.10 -1.99 -.66 1.35 -2.56 • 38 -1.98 -.86 
area(cm ) b 1.92 -. 77 -2.08 1.69 .12 -.90 

~ Johnson (1981) 
Wheat et al. (1981) 

~Calculated form breed effects in table 6 and 7 (see text for details). 
See footnotes to table 6 for information regarding source and 
interpretation of data. 



TABLE 9. DIRECT GENETIC (gi)~ GENERAL COMBINING ABILITY (GCA) AND 
MATERNAL EFFECTS (g ) FOR POSTWEANING PERFORMANCE AND 
CARCASS TRAITSa 

Refb Trait Duree Yorkshire 

GCA gi gM GCA gi 

1. Age @ 100kg -2.7 -3.1 -.8 

2. Age @ 100kg -5.5 .5 .0 

1. Carcass length -.38 .64 .61 

1. Carcass back fat .06 -.02 .08 

2. Carcass backfat .20 .22 .00 

1. Loin-eye area 1.10 -1.87 -1.10 

a After Johnson (1981) 
b 1 =Schneider (1978); 2 =Wilson and Johnson (unpublished) 
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gM 

-.5 

.0 

-.19 

-.06 

.00 

1.74 



prenatal effects to be important for backfat and 154-d weight, but 

postnatal effects were important for adjusted backfat only. 
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Assuming sires and dams of each breed to be of equivalent average 

genetic merit, maternal effects can be estimated from differences in 

reciprocal crosses. Reported reciprocal cross differences for 

postweaning gain, feed to gain ratio and carcass backfat are given in 

table 10. Differences were small for growth rate, but large for feed to 

gain ratio and backfat. The Duroc-Yorkshire reciprocal cross difference 

suggested that feed to gain ratio and carcass backfat were improved when 

Yorkshire was the dam breed. 

Crossbred Sires. Interest in using crossbred boars for market hog 

production has arisen for a number of reasons. Theoretically, crossbred 

boars are expected to be more vigorous and hardier than purebreds, and 

to possess greater libido, higher fertility, and improved longevity. 

Consequently commercial use of crossbred boars might reduce breeding 

problems. However, any advantages that accrue from the use of crossbred 

boars must outweigh the disadvantages of having to maintain additional 

pure lines in the system, as well as the possibly important increase in 

recombination losses in terminal offspring (table 1). 

A number of studies have found young crossbred boars to be more 

sexually mature (e.g., to have significantly larger testes and more 

sperm/ejaculate) than purebred boars of the same age (Hauser et al., 

1952; Sellier et al., 1971; Wilson et al., 1977; Conlon and Kennedy, 

1978; Fent, 1980; Neely et al., 1980). Conception rate following natural 

service was found to be 8% higher for crossbred than purebred boars 

(Wilson et al., 1977). Similarly, Anderson et al. (1981) reported a 12% 

advantage in conception rate for crossbred vs purebred boars. Conlon and 
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TABLE 10. BREED MATERNAL EFFECTS (LEAST-S~UARES MEANS) FOR POSTWEANING 
PERFORMANCE AND CARCASS BACKFAT 

Trait 

Postweaing 
average daily 
gain (kg/d) 

Gain to feed 
ratio 

Carcass 
back fat (em) 

Refc 

1. 
2. 
3. 
4. 

2. 
3. 

1. 
2. 
3. 
4. 
5. 

Reciprocal Cross Differencesb 

DY-YD DL-LD DS-SD LY-YL SY-YS SL-LS 

-.01 
.00 

-.01 
-.02 -.04 .02 -.01 -.02 .02 

.019 

.022 

-.04 
-.22 
-.25 
-.89 .11 -.36 -.59 .05 .26 
-.34 

a After Johnson (1981) 
b D = Duroc, Y = Yorkshire, L = Landrace, S = Spotted. 

e.g., DY-YD = Difference in least-squares means between D x Y pigs 
and Y x D pigs. 

c 1 =Schneider (1978); 2 =Young et al. (1976b); 3 =Johnson et al 
(1978); 4 =Hutchens and Johnson (unpublished); 5 = Bereskin et al 
(1971). 
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Kennedy (1978), however, found only a very small advantage for crossbred 

boars when gilts were artifically inseminated--suggesting that the 

advantage of the crossbred boar may be due to increased libido rather 

than increased fertility. Results presented by Buchanan and Johnson 

(1984) from the Oklahoma four breed swine crossbreeding experiment 

support this hypothesis. They found crossbred boars averaged an 18% 

higher first service conception rate than purebred boars. This advantage 

ranged from 6% for Yorkshire x Spotted boars, to 20% for Landrace x 

Spotted boars. Heterosis was significantly different from zero for all 

six crossbred boar groups. When the entire 8 wk breeding season was 

evaluated, however, average paternal heterosis was only 5%. The authors 

suggested purebred boars maturing over the 8 wk breeding season as a 

likely explanation of the results. 

No significant differences among boar breeding groups were reported 

by Buchanan and Johnson (1984) for litter size, weight or survivability. 

Although King and Thorpe (1974) reported an increase in size and weight 

of litters sired by crossbred boars, their results have not been 

supported by other studies. Schlote et al. (1974), Lishman et al. 

(1975), Fahmy and Holtmann (1977), Conlon and Kennedy (1978) and 

Anderson et al. (1981) all found the use of crossbred sires to have no 

effect on litter size and weight traits. 

Similarly, little evidence exists for real differences in 

growing-finishing performance and carcass traits of pigs sired by 

crossbred vs purebred boars. Rempel et al. (1964), reporting an 

experiment with--Minnesota lines of swine, found no significant 

differences between progeny of crossbred and purebred sires for feed to 

gain ratio, percent lean cuts and loin eye area. They did, however, find 
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pigs sired by crossbred boars to be significantly fatter and slower 

gaining than those sired by purebred boars. The authors pointed out that 

this result was probably an artifact as purebred boars were selected for 

decreased backfat thickness and increased average daily gain, whereas 

crossbred boars were chosen at random. 

Lishman et al. (1975) compared postweaning growth and carcass 

performance of pigs sired by Large White x Landrace and Hampshire x 

Landrace or Large White boars vs pigs sired by purebred Large White and 

Landrace boars. No significant differences between purebred and Large 

White x Landrace sired progeny were detected for average daily gain, 

feed to gain ratio or 16 of 18 carcass traits. Only loin eye area and 

fat over the loin were significantly different for the two groups--the 

purebred sired group having less fat and a larger loin eye area. 

Differences were not large, however, and only just significant at the 5% 

level. Given the large number of tests carried out, these •significant• 

differences were likely due to chance. Fahmy and Holtmann (1977), 

comparing Landrace x Yorkshire, Duroc x Yorkshire and Duroc x Lacombe 

boars to purebred Landrace, Yorkshire, Duroc and Lacombe sires, reported 

negligible differences for growth rate and carcass quality traits 

between pigs sired by purebred and crossbred boars. Kennedy and Conlon 

(1978) also found that progeny of Hampshire x Duroc boars performed 

similarly to pigs sired by purebred Hampshire and Duroc boars. 

Certainly, the overall conclusion suggested by these studies is 

that paternal heterosis for litter productivity and postweaning 

performance and carcass traits is negligible. The misconception that use 

of crossbred sires will increase variability among progeny relative to 

use of purebred sires has existed in the past (Fahmy and Holtmann, 
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1977). However, this expectation has not been borne out by experimental 

results. Rather, a number of workers (Rempel et al., 1964; Lishman et 

al., 1975; Fahmy and Holtmann, 1977) have reported little difference in 

the variability of three vs four breed cross pigs. Although use of 

crossbred boars does not appear disadvantageous in terms of progeny 

performance, the principal advantage (increasing conception rate when 

using young boars) must offset the cost to the system of producing such 

boars in order to be an effective strategy. 

Evaluation of Alternative Crossbreeding Systems 

Introduction. For clarity, this section has been divided into four 

parts. The first part outlines alternative breeding systems and the 

second discusses the development of profit functions and breeding 

objectives. Computer simulation (the third section) considers how such 

functions have been used in computer simulation models for various 

species. The final section specifically discusses results (rather than 

techniques) of crossbreeding system evaluation in swine. 

Crossbreeding Systems. Various alternative crossbreeding systems 

exist, each with its own expected levels of heterosis and recombination. 

Some common systems and expected fraction of heterosis and recombination 

effects are given in table 1 above. 

"Essentially maximum utilization of heterosis and breed differences 

in maternal and paternal performance is obtained in the specific three 

breed cross of a superior •male' with the F1 cross of two superior 

•female• breeds" (Dickerson, 1973, p. 61). Use of a crossbred male 

exploits paternal heterosis, but also doubles the frequency of 
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recombinant gametes, potentially depressing performance. A fourth breed 

also has to be maintained in the production system. 

The two breed rotation or crisscross system was first advocated as 

a swine breeding strategy 50 years ago (Winterset al., 1935). More 

recently, Sellier (1976) and Bichard (1977) proposed crisscross females 

as a viable alternative to F1 hybrid gilts for European pig breeding 

programs. Where recombination losses are negligible, and little 

additional economic advantage is to be gained from using specialized 

sire and dam lines, rotational crossbreeding may be economically 

advantageous. Rotational systems require only purebred male replacements 

as crossbred female progeny from one generation provide dams for the 

next generation. A rotation system, therefore, reduces the proportion of 

the population kept as pureline parental stock. The loss in heterosis 

expected for the rotation vs the specific cross may conceivably be 

offset by the greater proportion of crossbreds exhibiting some heterosis 

in the population. In addition, factors such as ease and cost of 

acquiring female replacements, and the reduced disease risk from use of 

home-bred females, encourage the use of simple rotations such as the 

crisscross system. 

Using males from a superior sire breed on females produced by 

rotational crossing among maternal breeds combines advantages of both 

specific and rotational crossbreeding. Breed differences in maternal and 

paternal performance are made use of, and only purebred sire 

replacements are required. Terminal crosses exhibit 100% of the 

individual heterosis, and have the same expectations for maternal 

heterosis and recombination, as the rotation (table 1). 
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Synthetics, while retaining a proportion of individual, maternal 

and paternal heterosis, are subject to maximum recombination effects and 

make no use of maternal and paternal breed differences. Lack of success 

in developing commercially useful synthetic lines in the U.S. has 

probably been due in large part to the effects of inbreeding in 

populations with small effective size. The Lacombe breed in Canada 

provides an example of a successful synthethic that avoided inbreeding 

(Bichard and Smith, 1972). 

From this consideration of alternative crossbreeding systems, it is 

apparent that the relative magnitudes of breed effects, individual, 

maternal and paternal heterosis and recombination effects will determine 

the most efficient production system(s). Just what is meant by 

'efficiency• depends in part upon the bioeconomic objective set for the 

production system. The system necessarily includes not only a terminal 

phase, but also all breeding stock generators necessary for the system 

to function. Reliable estimates of the bioeconomic parameters involved 

in such a program are therefore required in order to meaningfully 

compare alternative systems and thus to provide useful guidelines for 

breed utilization. 

Evaluation of Crossbreeding Systems. Smith (1964) divided traits 

associated with meat production into two groups, those concerned with 

reproductive performance of the dam and those concerned with meat 

production and quality in the progeny. He discussed how lines and 

crosses could be ranked based upon actual or predicted performance and 

relative economic weights for various traits. 

Moav (1966a,b,c) developed algebraic and graphical procedures for 

determining relative profitability of pure lines and their crosses. He 



considered profitability to be a function of reproductivity (X 1) and 

productivity (X 2), for example: 

where P = profit/pig; 

K1 = gross income minus fixed costs; 

x1 = number of weaned pigs/sow/year; 

x2 = feed to gain ratio and 

K2, K3 = economic constants. 

(10) 
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"Profit contours" (iso-profit curves) were plotted, with x1 and x2 

as axes, and their use to identify potentially profitable crosses 

discussed. Moav•s (1966a) aim was to exploit heterosis for profit, and 

he identified five classes of "profit heterosis": 

1. Component trait heterosis; 

2. Sex linkage; 

3. Maternal effects; 

4. Nonlinearity heterosis and 

5. Sire-dam heterosis. 

Sex linkage and maternal effects result in differences between 

reciprocal crosses. Nonlinearity heterosis refers to the fact that some 

traits affect profit in a nonlinear manner. For example, in equation 

(10) variable costs associated with reproduction are proportional to the 

reciprocal of the number of pigs reared/litter. Another example would be 

where returns/carcass depended upon certain threshold values. Thus, even 

for a genetically additive trait, a nonlinear relationship between the 

trait and profit will result in mean-offspring profit unequal to 

mid-parent profit and, thus, "profit heterosis" as defined. Sire-dam 
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heterosis considers the fact that sire and dam lines may contribute 

unequally to profit. For example, reproductive costs are largely 

determined by the dam line, whereas both sire and dam lines contribute 

to progeny production efficiency. Thus if, from a group of available 

lines, the line with the best reproductive performance is used as the 

dam line, then the profit of the sire-dam combination will deviate from 

the mid-parent even in the absence of nonlinearity and component trait 

heterosis. Although involving only two traits and considering only the 

terminal crossbred population, Moav established the necessity for 

evaluation of alternative breeding systems based on an objective, 

probably nonlinear, profit function. 

Based upon this fundamental work by Smith and Moav, Jackubec and 

Fewson (1970a,b} developed profit functions for crossbreeding in swine, 

and used these functions to simulate the efficiency of various systems 

of crossbreeding. They concluded that productivity exerted a far greater 

influence on profitability than on reproductivity, that efficiency was 

dependent upon both heterosis and breed differences, and that commercial 

crossbreeding had the potential to improve the profitability of pig 

production. 

Systems analysis demands precise definition of objectives. Harris 

(1970} argued that, in the long term, improved efficiency in a livestock 

sector will result in lower costs to the consumer, increased consumption 

and increased production, rather than greater profit for producers. 

Therefore, long-term profitability for a livestock producer will lie in 

his efficiency relative to other producers. Harris (1970}, writing from 

a breeding company perspective, proposed that animal breeders should 

adopt the objective of improving the relative efficiency of their 
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"potential customers", i.e., producers. In a capitalist economy, such 

improvement should result from efficient (and thus profitable) producers 

increasing their share of the market. Aiming to improve the relative 

profitability of producers therefore will serve the objectives of 

society (and the consumer) at large. 

Given the objective was to increase efficiency at the producer 

level, Harris (1970) maintained that the goal of improvement should be 

either profit, return on investment or cost/unit of production. All 

three are functions of expenses (costs of production) and income 

(product adjusted for quality), i.e.: 

Profit = Income - Expenses (11) 

Return on Investment = Income/Expenses 

Cost/Unit Product= Expenses/(Product *Quality) 
= Expenses/Income 

Harris presented equations for income and expenses, on a/animal 

basis, that account for all costs and income incurred, both in the 

( 12) 

(13) 

breeding herd and market animals, during the entire life cycle of the 

animal (Figure 1). 

Dickerson (1970, 1976, 1978) similarly expressed net or life-cycle 

economic efficiency as the ratio of total costs to total animal product. 

He presented a comprehensive equation for the ratio of expenses/yr to 

product value/yr (Figure 2), and used it to predict the impact of 

genetic change upon life-cycle production efficiency. 

Although biological measures of efficiency (e.g., feed, energy or 

protein input/unit edible protein or protein energy output) have often 

been used to describe animal efficiency, Dickerson (1978) pointed out 

that their usefulness is limited. Firstly, cost/unit feed input 
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generally varies considerably with the maturity and productivity of the 

animals. Secondly, the price/unit may vary greatly with animal product 

or composition of product. Lastly, nonfeed costs are not negligible, 

they vary with phase of production, and they are greatly influenced by 

biological differences in performance. A series of papers by European 

workers (Ollivier, 1977; Siler et al., 1977; Lindhe and 

Holmquist-Albrandt, 1977; Bichard, 1977) explored the question of 

objectives and strategy for improved economic efficiency of pig breeding 

schemes in widely different production environments (from the 

centralized economy of Czechoslovakia to the free-market economy of the 

United Kingdom). 

From equations (14) and (16) (Figures 1 and 2) it can be seen that 

reproductive rate, rate of gain and feed consumption to market weight 

and product value are all important in the evaluation of mating systems. 

Sow costs/pig are inversely proportional to number of progeny, thus at 

higher rates of reproduction the economic advantage of increasing the 

number of progeny becomes less (Moav and Hill, 1966). 

Moav (1973), again using a two trait model, developed profit 

equations for different objectives (e.g., producer vs national 

interest). A "profit map" with feed to gain ratio as the vertical axis 

and number of weaned pigs/sow/year as the horizontal axis, was plotted. 

Profit centers (connecting points with the same profit value) were 

nonlinear, and those for the fixed demand (national) equation differed 

from those for a fixed number of sows (producer). Thus, it is 

conceivable that a group of breeds might rank differently due to subtle 

changes in objectives, demonstrating the need for clearly determined 



objectives when comparing alternative breed utilization and selection 

schemes. 
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Dickerson (1973) calculated the number of sows required/1,000 

market pig equivalents for alternative crossbreeding systems. Breed 

performance and heterosis levels were assumed, and efficiency judged by 

sow numbers--the fewer required, the more efficient the system. 

Dickerson's approach served to highlight the organization of the entire 

system, with purebreeding and crossbreeding sectors, and to emphasize 

the need for comparisons involving every aspect of the system, not 

simply terminal crossing sectors. 

Sellier (1976) proposed that a crossbreeding system could be 

analyzed either at equilibrium (a static model), or over time starting 

from a purebred foundation (a dynamic model). As approach to equilibrium 

varies for different systems, Sellier suggested a dynamic evaluation 

would be more appropriate, but also considerably more complex. 

The fact that most recent evaluations of alternative crossbreeding 

stategies have involved the computer is not surprising, given the 

complexity and systems nature of the desired evaluations. Systems 

modeling techniques and applications in animal science are discussed in 

the following sections, with particular emphasis on beef and swine 

production models. 

Computer Simulation. Simulation modeling techniques have been 

applied to agricultural problems for many years (Dent and Blackie, 1979; 

France and Thornley, 1984). Various computer models have been 

constructed in an attempt to gain a better understanding of biological 

systems, and to target areas in need of experimental research. Other 

models have aimed to predict animal responses to environmental variables 
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such as nutrition and temperature. More recently, models have been used 

to predict system responses to changes in animal performance through 

genetics--i.e., alternative breeds, mating systems and selection 

practices. 

Most of the models reported in the animal science literature have 

simulated ruminant systems. Rice et al. (1974) modeled a ruminant 

grazing system and simulated forage production as well as animal 

performance, which was dependent on simulated available energy and 

nitrogen. Boyd and Kroger (1974) simulated nutrient intake and cow-calf 

costs, including postweaning performance, for purebred Hereford and 

Angus, crisscross Angus - Hereford, Angus - Brahman and Santa Gertrudis 

- Hereford systems. System efficiency was measured as net returns/brood 

cow maintained in the herd, and net returns/unit TON consumed by the 

entire herd. 

Joandet and Cartwright (1975) discussed beef production systems 

modeling, and concluded that available models had failed to consider 

either the entire system or the dynamic nature of such systems. 

Researchers at Texas A & M University subsequently used linear 

programming (LP) to investigate the effects on beef production 

efficiency of cow size and herd management (Long et al., 1975), 

heterosis and complimentarity (Fitzhugh et al., 1975) and different 

mating plans (Cartwright et al., 1975). Nutritional and fixed costs, cow 

size and milk production and differences in growth and attrition rates 

were included in the model. Systems were evaluated based upon cow-calf 

production and feeder cattle performance. 

LP is a computerized procedure allowing maximization (or 

minimization) of some objective function (e.g., profit, cost) subject to 
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various constraints (e.g., limited land, labor, capital). McCarl and 

Nuthall (1982) provided a relatively brief, but very useful, 

introduction to LP. Over the past decade, LP has proved to be a popular 

tool among animal scientists. 

Workers at the University of Guelph (Wilton et al., 1974) 

constructed an LP beef production model. The model described an 

integrated on-farm enterprise, i.e., cropping as well as beef production 

activities were included. Alternative systems were compared using 

simulated gross margins (revenue over variable costs). Morris et al. 

(1976) used this model to evaluate the effects of creep feeding, cow 

size, and milk yield; Wilton and Morris (1976) evaluated effects of 

reproductive performance and mating systems and Morris and Wilton (1976) 

used it to study alternative mating and management systems. 

Cartwright (1979) and Wilton (1979) provided informative outlines 

of systems theory and its applications to animal breeding. Although 

presented at a symposium nine years ago, these papers continue to 

represent a useful introduction for animal scientists unfamiliar with 

the field of systems analysis. 

Sanders and Cartwright (1979a,b) presented the Texas A & M Cattle 

Production Systems Model. Not to be confused with the LP model discussed 

above, in which levels of cattle performance were specified as input 

data and requirements simulated, the new model simulated levels of 

performance from specified feed resources and cattle production 

potentials. Equations used in the model were designed to be biologically 

interpretable, as opposed to simply statistical 'best fits' to available 

data. The model simulated the production of cattle varying widely in 

genotype, with any breeding season length and culling and selling 
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policy, alternative supplementation programs, and any set of 

environmental conditions that could be expressed as feed resources. 

Davis et al. (1976) used the model to evaluate alternative management 

strategies in two different regions of Guyana, and Ordonez (1978) used 

it to study effects of different genotypes and management alternatives 

in Venezuela. Using a modification of the model, allowing simulation of 

dual-purpose systems, Cartwright et al. (1977) simulated milk and beef 

production for cattle of different genetic potentials under three 

different sets of forage conditions in Colombia. The model was also used 

to simulate production of cattle differing in genotype for size and milk 

production under alternative environments and management systems 

relevant to Central Texas. 

Notter et al. (1979a,b,c) at the University of Nebraska modified 

the model to allow simulation of crossbreeding systems. They used the 

modified version to simulate performance of cattle with different 

genetic potentials in various crossbreeding systems under a Midwestern 

cow-calf- feedlot management system. Sullivan et al. (1981) interfaced 

the Texas model with a forage model and adapted the result for tropical 

production conditions in East Africa. Kahn and Spedding (1983, 1984) and 

Kahn and Lehrer (1983) also modified the Texas model, using it to test 

the accuracy of equations predicting weight changes in growing steers 

under grazing conditions in Botswana and the United Kingdom. Baker 

(1982) modified the model to account for individual animals, rather than 

age-sex or month of lactation or gestation classes. This new model, 

renamed the Texas A & M Beef Cattle Simulation Model, was used recently 

to simulate the effects of 79 sets of management alternatives on beef 



cattle growth, reproduction and lactation under conditions typical of 

the Coastal Prairie region of Texas (Doren et al., 1985). 
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Workers from Kentucky (Congelton and Goodwill, 1980a,b,c) developed 

a dynamic model to evaluate the effect of mating plan on herd age 

structure and productivity. Productivity was measured as kg of calf 

produced/cow bred; in contrast to the input to output ratio biological 

and economic efficiency measures used with the Texas model. Nine mating 

systems were evaluated using the model, under alternative culling and 

heifer replacement policies. 

Simulation of beef cattle systems has also been undertaken by 

scientists at Oregon State University. Levine et al. (1981) and Levine 

and Hohenboken (1981) presented a model designed to study beef cattle 

production on tropical ranges of the Colombian Llanos. Another model, 

presented by Clarke et al. (1982), was designed to study alternative 

culling criteria. This model represented a 500-head spring calving 

cow-calf enterprise, and, with modifications, was subsequently used to 

study alternative crossbreeding, culling and selection strategies 

(Clarke et al., 1984a,b). 

Chudleigh and Cezar (1982) reviewed eight beef production 

simulation models proposed since 1970, one of which was the Texas model. 

The other seven were variously developed in Australia, England, Brazil 

and Colombia. The authors stressed the need for generalized simulation 

models, and commented that the Texas model was the only one of the eight 

reviewed that could be classified as such. Apart from problems of 

adaptability of models, poor documentation often prevents scientists 

from using the models. The Texas model is relatively well documented in 



the literature, but no user's manual or program listing has been 

published (as far as I am aware). 
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Evaluation of Swine Systems. The development and early use of 

profit equations to measure economic efficiency in swine production 

systems (Moav, 1966, 1973; Moav and Hill, 1966; Dickerson, 1970, 1976, 

1978; Harris, 1970; Jackubec and Fewson, 1970) has been discussed above. 

Bichard and Smith (1972) explored alternative crossbreeding strategies 

and concluded that the "optimum crossing system" was likely to involve a 

specialized male line mated to F1 females. The male line could be 

purebred, an F1 or a synthetic line. 

Computer simulation models of swine production systems, although 

less numerous than beef models, cover many aspects of swine production. 

Agricultural engineers have worked with a number of models to simulate 

effects of temperature and housing (Teter et al., 1973; DeShazer and 

Teter, 1974; Phillips and MacHardy, 1979). More recently, Allen and 

Stewart (1983) presented a model designed to investigate the impact of 

alternative management strategies for a confinement feeder pig 

production operation. The model simulates performance, feed, labor, 

space and feed requirements from entry of replacement gilts through 

production of feeder pigs. 

Whittemore and Fawcett (1974) presented a biological model which 

predicted gain, composition and feed to gain ratio for growing pigs 

under different energy and protein intake regimes. Discussion of this 

model (Whittemore and Fawcett, 1976) identified important aspects and 

questions related to the physiological utilization of feed for lean and 

fat tissue growth. 
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Dickerson (1973) compared the number of sow-years required/1,000 

market pig-equivalents for alternative systems, relative to a static 

three breed cross. Five theoretical breeds with assumed litter size, 

growth efficiency, cutability and product value were presumed to be 

available. Heterosis values and replacement rates were assumed, and 

systems compared based upon predicted requirements for all stages 

(purebreeding and crossbreeding) of the system. A two breed cross 

required 15% more sow-years/1,000 pig-equivalents than the static three 

breed cross. A four breed rotation required 6% more sow-years/1000 pigs. 

Development and use of synthetic lines was also considered. 

Sellier (1976) cited Brun (1974, unpublished) as having used a 

number of methods to compare purebreds, single crosses, backcrosses and 

crisscrosses involving the Large White and Landrace breeds in France. 

Brun calculated Moav's (1966) profit function (for the slaughter 

generation only); considered the entire system using a procedure similar 

to that of Dickerson (1973); and considered each system dynamically over 

a 15 yr period starting from a purebred Large White base population. 

Moav's profit function suggested a 4 to 5% advantage for crossbreeding 

over purebreeding, and Dickerson's method a 6 to 8% advantage, plus an 

additional 1 to 2% for systems with crossbred dams. The dynamic analysis 

indicated crisscrossing to be most efficient for the breeds considered. 

Alsmeyer et al. (1975) presented multiple regression equations for 

annual net income from 100 sow production units. Regression coefficients 

were obtained by analysis of simulated data. Eleven cost factors, some 

related to animal performance, e.g., litter size weaned, conception rate 

and feed to gain ratio, were used as input variables. The model was 

designed to allow evaluation of market conditions and production 
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efficiency. Regression coefficients could also be used as economic 

weightings where merit is defined as net income. 

Fahmy et al. (1976) used an index to evaluate different crossbreds 

for production traits. The index combined postweaning average daily 

gain, backfat thickness and feed to gain ratio (subscripted 1, 2 and 3, 

respectively) by the formula: 

I;= cv1;- v1.>Js1 - 1.6s<v2;- v2.>Js2 - 2.49<Y3;- v3.>Js3 <17> 

where 1.65 and 2.49 represented relative economic values of backfat 

and feed to gain ratio to average daily gain, S the estimated standard 

deviation of the traits and (Y. 1.- Y. ) the least-squares deviation of 
J J. 

the ;th cross from the overall mean for each of the three traits. Five 

sire breeds and six types of F1 dam produced 20 different three breed 

cross progeny groups which were ranked based upon this index. 

Siler et al. (1977) developed profit functions to use in the 

selection of possible crosses for final hybrid production in 

Czechoslovakia. Bichard (1977) used Dickerson's (1973) method to 

evaluate alternative crossbreeding systems in the United Kingdom. He 

reported little variation among two breed systems, although the 

crisscross system required 2% fewer sow-years/1,000 pig-equivalents than 

the backcross. Under the conditions assumed, no additional advantage was 

likely for three breed systems. 

Niebel and Fewson (1979a,b) described (in German) a computer model 

designed to optimize purebreeding in swine. Performance testing 

procedures were compared, and the efficiency of including reproductive 

traits in selection indexes for boars and gilts were investigated. 

Workers at Texas A & M University have predicted profitability for 

alternative crossbreeding systems involving the Duroc, Yorkshire and 
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Hampshire breeds (Merrell et al., 1979; Roberson and Sanders, 1981). 

Their model was a 320 sow-equivalents confinement system. Literature 

estimates for breed effects and heterosis were used to predict crossbred 

litter size weaned, 63-d weight, age at 100 kg and feed to gain ratio. A 

computerized procedure was used to optimize net income (from predicted 

costs and returns). Unfortunately, both published reports were 

abstracts. Just what constituted the "optimum mating combinations" 

discussed is unclear, limiting interpretation of their results. Merrell 

et al. (1979), however, concluded a three breed static system raising 

replacement females was more profitable than the optimized three breed 

rotation, but similar to the criss-outcross system. Roberson and Sanders 

(1981) appeared to demonstrate that the optimized three breed rotation 

was very similar in net income to both the criss-outcross and a modified 

three breed rotation, somewhat at variance with the earlier report. 

A bioeconomic model reported by Singh et al. (1980) aimed to 

estimate the expected impact of future research and extension activities 

on profit of a typical 100 sow farrow to finish operation in Hawaii. 

Designed and used to generate information for use in making funding 

decisions, the model simulated impact on income and return to capital 

for various actions. For example, increasing litter size weaned by one 

pig was predicted to increase average annual income $8,626 and return to 

capital 3.3%. In contrast, increasing conception rate during first heat 

from .85 to .90 for sows and .80 to .85 for gilts had only a marginal 

effect. Decreasing age at market weight by 25 d, at the same feed 

efficiency, increased average annual income $2,494 and return to capital 

1.8%. Improving feed efficiency 10% had a dramatic effect increasing 

income $11,130 and return to capital 4.9%. 
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Nimis et al. (1981) reported using a profit function to rank 

purebred Hampshire, Minnesota No. 1 and their F1 reciprocal crosses for 

net returns in total economic performance. Ahlschwede (1981a,b) 

evaluated potential production of the three breed rotation, production 

of the same rotation when compromised by a need to continuously replace 

sows and gilts, and production of four breed static crossbreeding 

systems. Hampshire, Yorkshire and Duroc breeds were used in the 

rotations, and Landrace was included for systems involving four breeds. 

A deterministic model, developed on the Apple II computer for use in 

producer workshops, calculated breed composition and heterosis levels 

and assigned economic outcomes. Relative to the three breed rotation, 

four breed terminal crosses with Yorkshire x Landrace F1 females were 

$50 superior/litter. If maternal purebreds were included in the system, 

the advantage fell to $37. Four breed systems with Yorkshire - Landrace 

crisscross females were $32 superior. Compromising the rotation by 

backcrossing cost an average $30/backcross litter. 

Wilson and Johnson (1981b) used linear programming (LP) to compare 

the efficiency of 21 different crossbreeding systems involving Duroc, 

Hampshire and Yorkshire breeds of swine. Mating systems were defined to 

include purebred and crossbred commercial matings needed to maintain 

10,000 farrowings. Breed and heterosis effects were estimated from 

experimental data, and LP used to maximize the number of Yorkshire 

equivalent pigs for each system. An index with economic weights for age 

at 100 kg, feed to gain ratio and probed backfat thickness, expressed as 

deviations from Yorkshire, was calculated for each breed cross. 

Multiplication by number of pigs weaned yielded Yorkshire equivalent 

pigs for each cross. Relative efficiency of alternative systems, where 
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purebreds averaged 100, was 127 for three breed statics, 125 for three 

breed rotations, 124 for static males on crisscross females, 123 for 

crisscrosses, 122 for backcrosses and 115 for two breed static crosses. 

Comparing specific systems, the backcrossing of Yorkshire males to F1 

Duroc x Yorkshire females produced the greatest number of Yorkshire 

equivalent pigs/10,000 farrowings. Duroc males mated to F1 Hampshire x 

Yorkshire females was the most efficient terminal cross. However, when 

all matings needed to support the system were included, it was three 

percent less efficient than the backcross. 

Quintana and Robison (1984), in a simi)ar study, estimated breed 

and heterosis effects from the results of U.S. and Canadian 

crossbreeding experiments reported over the past decade. The objective 

was to evaluate the performance of Duroc, Hampshire, Yorkshire and 

Landrace swine as purebreds and in two breed rotation and static 

crosses, three breed rotations and four breed static crosses. A total 

population of 1,000 sows and a herd life of 20 years was assumed. Based 

upon predicted reproductive performance, the number of pigs produced by 

each genetic group within the system and for the total system, annually 

and over 20 years, were computed. All systems started from a purebred 

base, rotations approaching equilibrium after five to seven years of the 

system's dynamic span. Predicted litter size weaned, conception rate, 

age at 100 kg and backfat thickness were used as a basis for breed 

comparisons. An economic index, with the above traits expressed as 

deviations from predicted Yorkshire values, was computed for each 

genetic group and for the total system. The index represented net 

dollars/sow exposed, compared to the Yorkshire, and was used to compare 

systems. Relative to purebreds, the two breed static crosses were $6.00 
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superior on average and two and three breed rotations $12.15 and $12.93 

superior, respectively. Four breed static crosses averaged only 37 cents 

over the three breed rotations assuming no male heterosis, but $7.04 

where paternal heterosis of 7.5% for conception rate and 10% for litter 

size was assumed. Differences among systems and among breed combinations 

within purebred and four breed static crosses were largely a function of 

differences in the reproductive component of the index. Conversely, 

differences among breed combinations within two and three breed systems 

were influenced mainly by the production component of the index. The 

Yorkshire-Landrace crisscross had the highest economic index of all 

systems, assuming no male heterosis. When male heterosis was assumed, 

three of the four breed static crosses were superior. Three breed 

rotation systems always had lower economic value than the best two breed 

static or crisscrosses due to the addition of a third breed. It was 

apparent that no one system was superior--average breed effects exerting 

an important effect on the results. Two and three breed rotation systems 

were rated to be quite variable in performance from generation to 

generation, three breed rotations more so than two breed rotations. 

Undoubtedly the most elaborate and potentially generalizable 

bioeconomic computer model of swine production to date is that developed 

at the University of Nebraska by Tess and Bennett (Tess, 1981; Tess et 

al., 1983a). This deterministic model was developed to simulate 

biological and economic inputs and outputs for life cycle pork 

production in a Midwestern system with environmentally regulated, 

slatted floor farrowing and nursery units and open-front finishing 

buildings. Driving variables were mean genetic potentials for number of 
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pigs born alive, birth weight, preweaning viability, lean and fat growth 

rates, age at puberty, conception rate, milk production and various 

management decisions (first estrus to mating interval, rebreeding 

interval, maximum number of parities, age at weaning and marketing 

strategies). Production inputs included matabolizable energy, crude 

protein, feed costs and fixed and variable nonfeed costs. Outputs 

included pigs and culled sows. Efficiency was measured as Meal or $ 

input/kg of liveweight, empty body weight or carcass lean output. The 

model was used to simulate the effect of improved genetic potential on 

system efficiency (Tess et al., 1983b), allowing prediction of the 

relative importance of different traits for alternative measures of 

efficiency (number born alive and viability were found to be of great 

importance, both for measures of biological and, especially, for 

economic efficiency). Effects of management systems and feed prices on 

the relative importance of different traits was also simulated (Tess et 

al., 1983c). Smith et al. (1983) examined relative response to selection 

for alternative sets of economic values derived using the model. 

Bennett et al. (1983a) simulated the effects of individual and 

maternal heterosis on efficiency of swine production. Heterosis was 

simulated by manipulating the values of mean genetic potentials used by 

the model, based upon results of crossbreeding experiments at Iowa and 

Oklahoma. Purebred, two and three breed crosses were simulated. Where 

pigs were sold at 100 kg liveweight, individual heterosis was found to 

reduce both $/kg lean and $/kg liveweight by four percent. Marketing at 

average 185-d weight reduced $/kg lean six percent and $/kg liveweight 

eight percent. Maternal heterosis reduced both measures about four 

percent. However, where biological measures of efficiency were 
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simulated, individual heterosis reduced feed Meal/kg lean by only 1% and 

Meal/kg liveweight by 3%. Maternal heterosis supplied an additional 1% 

reduction. Most heterosis effects on the economic efficiency measures 

were due to traits reducing litter costs/kg output. However, heterosis 

for growth rate was important for biological efficiency measures. 

Nonfeed costs/kg output were reduced more than feed costs by heterosis. 

The percent reductions in total costs due to heterosis were about 

one-third as large as corresponding increases in output/litter. 

In addition to this analyses, Bennett et al. (1983b) reported 

simulated breed and crossbreeding effects on costs of pork production. 

Heterosis and breed effect estimates from the Iowa and Oklahoma 

crossbreeding experiments were used to simulate integrated industry-wide 

efficiency for alternative systems involving the Duroc, Hampshire, 

Yorkshire, Landrace, Spotted and Chester White breeds of swine. Breeding 

systems investigated were purebred, two breed static, backcross and 

crisscross, and three breed static and rotation crosses. Cost reductions 

from crossbreeding were found to be greater /100 kg lean marketed at 

mean 185-d weight than /100 kg live weight or lean. For cost of lean, 

carcass percent fat was found to be as i~portant as number born alive in 

all but maternal breed roles. Marketing at mean 185-d weight, age at 100 

kg was important for costs/100 kg in all breed roles, but not for 

costs/100 kg liveweight or lean marketing at 100 kg liveweight. In 

ranking breeds for use as terminal sires in static systems, only 

viability was important for costs/100 kg liveweight marketed at 100 kg, 

viability and carcass fat for costs/100 kg lean at 100 kg and viability, 

carcass fat and age at 100 kg for costs/100 kg lean marketing at mean 



185-d weight. Breeds ranked differently for paternal, maternal and 

general purpose roles. Greater cost reductions were predicted for the 

best three breed static (7 to 10%) than for the best three breed 

rotation (6 to 8%) systems. 
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Harris et al. (1984) outlined a systematic, nine-step approach to 

designing animal breeding programs. They reported development of a 

computer model for analysis of alternative broiler chicken systems, but 

results were not given. Recently Newman et al. (1985a,b) reported 

experimental evaluation of the Harris procedure using the mouse as a 

model for swine. 

Interest in models simulating swine production seems likely to 

continue. Whether duplication of research effort expended in developing 

such models will occur to the extent it has with cattle production 

modeling remains to be seen. Recommendations for a methodological 

development of systems modeling made by Chudleigh and Cezar (1982, p. 

288) seem pertinent: 

11 Both biological and economic components of models can be 
transferred more readily among model builders. This may mean that 
instead of whole models being reported in the literature, we may see 
whole papers devoted to a single component, but orientated towards an 
integration with neighboring components ••• This would allow 
individuals more readily to shop around for particular components to 
suit the overall objectives of the model they wish to build. Reviews of 
the various ways in which specific model components can be handled would 
become more prevalent in the literature." 

Without such cooperative development, needless redundancy in model 

development will occur. 
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Genotype x Environment Interactions 

Efficiency of breed utilization is in part determined by the 

importance of interactions between genetic components and management or 

marketing systems (Dickerson, 1973). A review of the evidence for 

genotype x environment interactions in swine is therefore appropriate. 

In the context of crossbreeding, •genotypes• of interest are both 

breed differences and heterosis. The environments most commonly studied 

in breed x environment interaction experiments with pigs have been 

nutritional regimes. Tables 11-14 summarize these studies. Of a total of 

40 different experiments, 24 (60%) studied breed x energy intake (mostly 

ad lib vs limit feeding), 8 (20%) investigated breed x .Protein intake 

and 24 (60%) reported breed x sex, year, season, parity etc. 

interactions. 

The primary objective of genotype x environment experiments is to 

determine the most suitable environment for selection. Given the 

economic importance of feeding performance, and the management and 

testing alternatives in use, the interest in breed x nutritional regime 

interactions is understandable. It has also probably been assumed that 

the controlled climatic environment usually imposed on swine would 

result in negligible genotype x yr or season interactions. A number of 

studies provide evidence that such an assumption may, however, be false 

(table 13). The complex of factors involved in such environments may 

well prove to be more variable than has previously been considered to be 

the case. 
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Kempster (1974), in a review of genotype x environment interactions 

in swine, pointed out that environmental and genotypic differences 

employed in many experiments were greater than differences likely to 

be found in practice. The generally low frequency of significant 

experimental interactions in tables 11 and 12, bearing in mind the above 

statement, suggests that genotype x environment interactions are 

unlikely to be of practical importance for conventional feeding 

practices. This is not meant to imply that such interactions do not 

occur. Rather, to quote Kuhlers et al. (1977, p. 556): 

..... each study has some trait(s) which show significant genotype 
x environment interaction. The problem is that there does not appear to 
be a method of predicting which genotypes will respond differentially to 
the environments to which they are exposed and which traits will be 
involved ... 

Table 14 summarizes experiments involving heterosis x environment 

interactions. Experimental evidence for interaction between heterosis 

and environment in animals has been reviewed by Barlow {1981). The idea 

that level of heterosis can be influenced by environmental factors seems 

reasonable. Lerner•s (1954) concept of genetic homeostasis--that 

heterozygotes are less influenced by environmental effects than 

homozygotes--suggests a mechanism for interaction. Sang (1964), Griffing 

and Zsiros (1971), Knight (1971) and Orozco (1976) have presented 

evidence and models for heterosis x environment interaction in 

Drosophila, Arabidopsis, Dactylis and Tribolium, respectively. 

Experimental evaluation of such interactions in pigs have been few, and 

have yielded contradictory results (table 11). However they do serve to 

emphasize the fact that assuming such interactions to be nonexistent, 

while possible practical, is probably a false assumption. 



TABLE 11. SUMMARY OF GENOTYPE X ENERGY INTAKE INTERACTION EXPERIMENTS 

Experiment 

1. Cummings and 
Winters 
(1951) 

2. Warren and 
Dickerson 
(1952) 

3. Gregory and 
Dickerson 
( 1952) 

4. Lucas and 
Calder 
( 1956) 

5. Cole 
(1957) 

6. Bowland 
and Berg 
(1959) 

Genotypes Environments 

50 in- & outbred Minn., Ad lib 
Poland, Duroc & Chester vs 85% 
White lines & crosses 

In- & outbred Landrace, Ad lib 
Hampshire & Duroc x vs 80% 
Poland China lines 

Inbred Poland China 
& Hampshire, outbred 
Durocs, crosses 

Trial 1: landrace, 
Wessex Saddleback x 
large White 
Trial 2: large White 
x Essex Saddleback 

5 Minnesota lines, 
Yorkshire 

Yorkshire & 
lacombe x Yorkshire 

Ad lib 
vs 87% 

'High-high' vs 
'high-low• vs 
'low-low• rations 
As above 

Ad 1 i b vs 85, 
78, 71%, & 
diluted with 
ground corncobs 

6 rations: high 
medium & low 
energy & protein 

a s· Traits 1g 

Dressing % 
Carcass length 
BF, LC, fat cuts 

** ADG , F/G 
Wt 154-d 
BF, % Loin 

ADG 
F/G 
20 Carcass traits 

* * ADG , F/G 
Carcass length, 
BF, LEA, KO% * * 
Carcass*length '*streak 
% Fore , Middle , Ham 

ADG, Age @ 100kg 
Wt 140-d, Dressing % 
Carcass length, BF, 
Est carcass lean, fat 

** * ADG* , ADF 
F/G 
9 Carcass traits 

Remarks 

. * Carcass fat tra1ts 

Breed rank changes 

Significant interactions 
(not specified) were 
found 

Growing period only 
Finishing period only 

0'1 
N 



TABLE 11. (Continued) 

Experiment 

7. Jonsson 
( 1959) 

B. Brundstad 
and Fowler 
(1959) 

9. Fowler and 
Ensminger 
( 1960) 

10. Salmela et 
al. (1960) 

11. King 
(1963) 

12. Hale and 
Coey(l963) 

13. Plank and 
Berg (1963) 

Genotypes 

Danish Landrace, 
Black Spotted 

4 selection lines 
from Danish Landrace 
x Chester White stock 

2 lines selected for 
ADG from the same 
crossbred foundation 

Minnesota No.2,2A & 
3 x Minn. No.1 

Large White, Wessex 
Saddleback & Landrace 
x Large White 

Litters, mostly 
Large White 

Yorkshire & 
Lacombe x Yorkshire 

Environments 

Standard ration 
vs sugar beet 

Ad 1 i b 
vs 70% 

Ad lib 
vs 70% 

Ad 1 i b vs 85% 
vs hay ration 

Std. vs ••hi gh 
growth 11 ration 
.. to appetite .. 

Ad lib vs 
80-100% 

11 tO appetite 11 

vs 60% 

a s· Traits lg 

ADG 
BF 

Slaughter age * 
Primal cut yield 
LEA, BF 

Selection * 
Response in: ADG* 

~G 

** ** ADG , Age @ lOOkg 
F/G 

ADG, ADF, F/G 
Carcass weight, * 
length, BF, streak 

ADG, F/G, KO%, 

Remarks 

Concluded selection 
under ad lib vs 70% for 
2 different genotypes 

Breed rank changes 

Breed rank changes 

Carcass length, fat, belly 
** * ADG , ADF , F/G Breed rank changes 

Carcass length, BF, LEA (growing period only) 

en 
w 



TABLE 11. (Continued) 

Experiment 

14. Davey et al. 
( 1969) 

15. Richmond 
and Berg 
(1971) 

16. Kuhlers et 
al. (1972) 

17. Kuhlers et 
al. (1977) 

18. Clark et 
al. (1972, 

1973) 

19. Dailey et 
al. (1975) 

Genotypes 

Duroc, Yorkshire 
high & low fat lines 

Duroc x Yorkshire 
Hampshire x Yorkshire 
Yorkshire x Yorkshire 

Yorkshire, Poland 
China, reciprocal 
crosses 

As above (with sires 
& dams in stat. model) 

Yorkshire, Poland 
China & F1 females 
Gi 1 ts as above 

Hampshire, Poland 
China, Yorkshire & 
F1 cross gilts 

Environments 

85% vs 
65% 

High vs low 
energy I 
protein rations 

55% vs 75% TON 
rations, fed 
ad lib 

As above 

Ad 1 i b vs 
1.82 kg/d 
As above 

As above 

a S. Traits 1g 

* ADG , F/G * 
Carcass lean , 
weight, fat, bone 

Remarks 

Breed x diet 
Breed x line x diet 

* ADG of carcass wt Breed rank changes 
ADG of live wt, muscle, fat, bone 
F/G, KO%, Care. wt, BF, grade, muscle, fat, bone 

19 Growth, carcass & 
efficiency traits @ 4 
stages of development 

5 of 264 comparisons 
(2%) were significant 

15 Grth, care. & effie. 4 of 45 comparisons 
traits@ 3 stgs devel. (9%) were significant 

OR, CL wt, Follicular fluid wt, 
#follicles, ant. pit. wt 
As above 

# follicles, %milky follicles, 
% gilts with hemorrhagic follicle * 
mean diameter of 4 largest follicles 

m 
.j::>. 



TABLE 11. (Continued) 

Experiment Genotypes 

20. Beresk in High & low BF 
et al (1975) Duroc & York lines 

21. Bereskin and As above 
Davey (1976) 

22. Bereskin and As above 
Davey (1978) 

23. Stewart and Duroc, Hampshire 
Drewry (1983) & Landrace back-

Sig: ** P<.01 
* P<.05 
+ P<.10 

cross gilts 

Environments aTraitsSig Remarks 

High vs low ADG, ADF 
energy I protein F/G 

* As above Carcass BF , length, belly, 
LEA, %LC, LCG, Ham: %lean, fat, bone 

12% vs 16% CP * Car~ass B~, lena~h, belly , ** ** 
vs 12%+lys+met LEA , %LC , LCG , Ham: %lean , fat , bone 

Normal vs high Litter size born, weaned 
fiber gilt post- Pig weights, litter weights 
weaning rations Sow Productivity Index 

§enotype x environment interaction non-significant for unmarked traits 
Traits: ADG = postweaning average daily gain 

ADF = average daily feed consumption 
BF = backfat thickness 
CL = corpora lutea 
FIG = feed to gain ratio 
KO% = killing out % 
LC = lean cuts 
LCG = lean cuts gain 
LEA = loin-eye area 
OR = ovulation rate 

0'1 
01 



TABLE 12. SUMMARY OF GENOTYPE X PROTEIN INTAKE INTERACTION EXPERIMENTS 

Experiment Genotypes Environments aTraitsSig 

1. Hale and Hampshire, Duroc 15-18% vs 13-16% * . FIG , ADG, Dress1ng %, 
Southwell vs 11-14% CP Carcass length, 
(1967) ad 1 i b BF, LEA, LC 

2. Bayley and Exp.1: Lacombe, 
* Summers Yorkshire, Landrace 13% vs 16% CP ADG , FIG 

( 1968) & crossbreds 
Exp.2: Yorkshire, 12% vs 14% CP 
Landrace, Hampshire + 2 levels of ADG, FIG 
x Landrace syn. lys & met 

3. Davey and Duroc,Yorkshire 12% vs 20% CP ADG 
* * Morgan high & low fat 85% of ad 1 i b Carcass fat , lean 

( 1969) lines wt, bone. 

4. King (1972) 14-16% vs 16-18% ADG 
CP ad lib FIG BF 

5. Bereskin High & low BF Duroc High vs low ADG, ADF 
et al. (1975) & Yorkshire lines energy I protein FIG 

Remarks 

line x diet 

0'1 
0'1 



TABLE 12. (Continued) 

Experiment 

6. Beresk in and 
Davey (1976) 

7. Bereskin et 
a 1. (1976) 

8. Christian et 
a 1 • (1980) 

Sig: ** P<.Ol 
* P<.05 
+ P<.10 

Genotypes 

As above 

As above 

Hampshire, Poland 
China x 
Duroc-Yorkshire 

Environments 

As above 

12% vs 16% CP vs 
12% + lys + met 

12% vs 16% CP 

aTraitsSig Remarks 

** Carcass BF LEA, line x protein 
length, %LC, LCG, Ham: %lean, fat, bone 

ADG** 
F/G 1 ine x diet 

* F/G , ADG 
LEA+ 7 Carcass traits 

genotype x environment interaction non-significant for unmarked traits 
Traits: ADG = postweaning average daily gain 

BF = backfat thickness 
FIG = feed to gain ratio 
LC = lean cuts 
LCG = lean cuts gain 
LEA = loin-eye area 

0'\ 
........ 



TABLE 13. SUMMARY OF GENOTYPE X YEAR, SEASON, SEX, ETC. INTERACTION EXPERIMENTS 

Experiment 

1. Kristjansson 
(1957) 

2. Bowl and and 
Berg (1959) 

3. Omtvedt et 
a 1 • (1962) 

4. Hale and 
Coey (1963) 

5. Plank and 
Berg (1963) 

I 

6. Hale and 
Southwell 
( 1967) 

7. Bayley and 
Summers 
(1968) : 

Genotypes 

Canadian Yorkshire 
sires 

Yorkshire & 
Lacombe x Yorkshire 

Hampshire & Duroc 
1 i nes, crosses 

Litters, mostly 
Large White 

Yorkshire,Lacombe 
& Landrace sires 

Hampshire, 
Duroc 

Exp.1: Lacombe, 
Yorkshire, Landrace 
& crossbreds 

Environments 

Piggery vs 
pasture rearing 
Barrows vs gilts 

Barrows vs 
gilts 

Barrows vs 
gilts 
Confinement 
vs pasture 

Barrows vs 
gi 1 ts 

Barrows \(S 

gi 1 ts 

Barrows vs 
gi 1 ts 

Boars vs 
barrows vs 
gilts 

a S. Traits lg 

+ . + ADG , Carca~s sco~e , 
length, BF , LEA 

As above 
** ADG , ADF, F/G 

9 Carcass traits 

ADG 
BF 

Remarks 

Sire rank changes 
Sire rank changes 
Sire x sex non-sig. 

ADG, Carca~s length, ~utout, 
Dressing %*,Probed BF 
Carcass BF , 

LEA, 
2 of 3 trials 
1 of 3 trials 

** ** ADG , F/G 1 of 3 groups 
Carcass length, fat, belly 

ADG, ADF, F/G, 
Carcass length, BF, LEA 

* ADG, F/G, LC , Dressing % 
Carcass length, fat~ LEA 

ADG* 
FIG 

No significance 
in Exp. 2 

m 
co 



TABLE 13. (Continued) 

Experiment Genotypes Environments 

8. Bruner and Yorkshire, Duroc, Barrows vs 
Swiger Poland China, gilts (=X) 
(1968) Hampshire, 8 Years (=Y) 

Spotted and (1959 - 1966) 
Landrace Spring I fa 11 

seasons ( =S) 

9. o• Ferrall 7 Inbred lines 4 Years 
et al. (1968) (1950 - 1953) 

10. Davey and Duroc, Yorkshire Barrows vs 
Morgan high & low fat lines gi 1 ts 
( 1969) 

11. Quijandria Duroc, Yorkshire, Barrows vs 
et al. Hampshire, Poland gilts (=X) 
(1970) China & Spotted 7 Years (=Y) 

(1961 - 1967) 
Spring I fall 
seasons ( =S) 

12. Richmond Duroc x Yorkshire Barrows vs 
and Berg Hampshire x Yorkshire gilts 
( 1971) Yorkshire x Yorkshire 

aTraitsSig Remarks 

** ** * ADG X y** s** 
FIG ** y** s 
Carcass BF, %ham X y** 

LEA y** ** length ** y** s** % loin, % LC X y s 

Litter size & weight 
@ birth, 21- & 56-d 

ADG * * Carcass wt , fat line x sex 
1 ean, bone 

* ** ** ADG X y s 
FIG * * * Age off test X y* s 
Carcass BF y** 

LEA, % shoulder y 
% ham , 1 o i n , t C 

* * ADG of live wt , fat , Breed rank changes 
carcass wt, lean, bone 

FIG, KO%, Carcass wt, 
grade, BF, muscle, fat, bone 

0'\ 
1.0 



TABLE 13. (Continued) 

Experiment 

13. Kuhlers et 
al. (1972) 

14. Kuhlers et 
al. (1977) 

15. Clark et 
al. (1972) 

Genotypes 

Yorkshire. Poland 
China, F1 crosses 

As above (+ sires & 
dams in stat. model) 

Yorkshire. Poland 
China. F1 crosses 

Environments 

3 Years 
(1966-1968) 

2 Years 
(1968-1969) 

Gilts vs 
sows 

16. Johnson and Yorkshire. Duroc. Spring I fall 
Omtvedt(1973) Hampshire & F1 crosses seasons 

17. Johnson et 
al. (1973) 

18. Fahmy et 
al. (1975) 

19. Holtmann 
et al.(1975) 

As above 

Poland China x ea. of 
28 different 2-breed 
cross dam groups 

28 different 2-breed 
cross groups 

As above 

2 Stations 

Boars vs gilts 

2 Stations 
2 Parities 

a s· Traits 1g Remarks 

19 Growth. carcass & 
efficiency traits @ 4 
stages of development 

3 of 36 comparisons 
(8%) were significant 

15 Gth. care & effie. 
traits @ 3 stgs devel 

4 of 45 comparisons 
(9%) were significant 

* Ovulation rate 
Several follicular traits (see table 11) 

# CL, # live embryos. %live 
embryos of CL. av. embryo length 

** ADG* Season 
ADG** ** ** 
ADG • Ag~ 100kg • ADF 
Probed BF 

x Breed of Sire(BOS) 
Season x Breed of Dam 

Season x BOS x BOD 
Season x BOS x BOD 

G/F.~~rcas~*length. BF. ** 
LEA**• LC • qual. scores 
LEA 

** ** Age @ 73kg carcass wt • BF 

* Age @ 73kg carcass wt. BF 

Season x BOD 
Season x BOS x BOD 

112-d wt. Age @ puberty. % farrowing 
Litter size & wt born & @ 21-d 

""-.! 
0 



TABLE 13. (Continued) 

Experiment 

20. Bereskin 
et a 1. (1975) 

Genotypes 

High & low BF Duroc 
& Yorkshire lines 

21. Bereskin As above 
et a 1. (1976) 

22. Bereskin and As above 
Davey (1976) 

23. Bereskin and As above 
Davey (1978) 

24. Johnson et 
al. (1978) 

25. Miller et 
al (1979) 

Duroc, Hampshire, 
Yorkshire F1 females 
x purebred boars 

Duroc, Hampshire, 
Yorkshire & DxY, HxY, 
Yx(DY) & Yx(HY) 

Environments 

Barrows vs 
gi 1 ts 

As above 

As above 

As above 

Year-seasons 
farrowed (YRS) 
(spg•72-spg 1 75) 

a S. Traits 1 g 

** * ADG • ADF 
F/G 

** ** ADG* , F/G 
FIG 

Remarks 

breed & line x sex 

line x sex 
breed x sex 

** Several carcass line x sex : all*~ut ha~*%bone 
traits (table 12) breed x sex: LEA , LCG 

* ** As above line x sex: LEA , LCG ** ** 
breed x sex: ham %bone ,LEA 

Age @ 100kg, @ breeding, 
CR, OR, Litter size & wt 
@ birth, 21- & 42-d 

** ** 

6 of 84 BOD x 
YRS F-tests 
had P<.lO 

6 Seasons Birth wt ** Weaning wt * 
ADG: pre- , postw~aning 
weaning to 95kg, d 

Barrows vs gilts Traits as above No significance 

'-I 
1-' 



TABLE 13. (Continued) 

Experiment 

26. Christian 
et al. (1980) 

27. Hutchens 
et al. 
(1982) 

Sig: ** P<.Ol 
* P<.05 
+ P<.10 

Genotypes 

Hampshire, Poland 
China sires x 
Duroc-Yorkshire 
sows 

Duroc, Yorkshire, 
Landrace & Spotted 
purebred & Fl gilts 

Environments aTraitsSig 

91 vs 114kg ADG, F/G 
slaughter wt 7 Carcass traits 
3 Seasons As above 
Barrows vs gilts As above 

2 Years Age @ puberty 
Spring vs fall Wt @ puberty 
Rearing 

§enotype x environment interaction non-significant for unmarked traits 
Traits: ADG = postweaning average daily gain 

ADF = average daily feed consumption 
BF = backfat thickness 
CL = corpora lutea 
F/G = feed to gain ratio 
LC = 1 ean cuts 
LEA = loin-eye area 
OR = ovulation rate 

Remarks 

+ 
LEA * * * * % ham , loin , LEA , BF 
No significance 

No significant inter-
actions with Breed of 
sire, BOD or BOSxBOD 

u 

""'-.~ 
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TABLE 14. SUMMARY OF HETEROSIS X ENVIRONMENT INTERACTION EXPERIMENTS 

Experiment Heterosis Environments aTraitsSig 

1. Gregory and Individual heterosis Ad 1 i b (F) vs ADG Heterosis: 
Dickerson (inbred Poland China 87% (L) F/G 
(1952) & Hampshire, outbred 

Durocs, crosses) Ad lib vs 87% ADG 
(linecross gilts) F/G 

2. Skarman Individual heterosis Ad lib (F) vs Slaughter age 
( 1965) (landrace, 1 imit (l) ADG 

Yorkshire, crosses) fed F/G 
Wt 140-d 

3. Lean et al Individual heterosis Ad 1 i b (F) vs ADG, Slaughter age 
(1972) (Pietrain, Landrace, limit (L) 21 carcass traits 

crosses) fed F/G 

4. Comberg et al. Individual heterosis Temperaturg: 
(1972 '1973. (Pietrain, Landrace, 8° vs 18 c ADG 
Cited by crosses) 18° vs 30°C ADG 
Bar 1 ow, 1981) 

5. Kuhlers et Individual heterosis 55% (lo) vs 75% Av d TON consumption 
a 1. (1977) (Yorkshire, Poland (Hi) TDN rations Protein efficiency 

China, F1 crosses) fed ad 1 i b BF 

Remarks 

F:13% L: 26% 
F:-7% l:-19% 

F:30% L: 13% 
F:-9% l: 9% 

F: -.6% l: -1.9% 
F: .3% l: 2.1% 
F: -.1% L: -1.2% 
F: .1% L: 3.3% 

Comparable estimates 
Comparable estimates 
F:13.4% L: -3.1% 

8° 7.9% 18~ -5.0% 
18° 5.5% 30 -6.7% 

lo: .9% Hi: 9. 7% 
lo: 9.3% Hi: 2. 2% 
lo: 7.0% Hi:-3.8% 

......, 
w 



TABLE 14. (Continued) 

Experiment 

6. Schneider et 
al. {1982a) 

aSig: ** P<.Ol 
* P<.05 
+ P<.lO 

Heterosis 

Individual & maternal 
heterosis (Chester 
White, Duroc, Hamp 
Yorkshire, crosses) 

Environments 

Sex 
Parity 
Year 
Season 

Traits: ADG = postweaning average daily gain 
BF = backfat thickness 
F/G = feed to gain ratio 
LEA = loin-eye area 

aTraitsSig 

Age lOOk~ 
Wt 1~4-d 

* 

LEA 
% fat corr. muscle 
litter wt born 

Remarks 

Sex x ind. & mat. heterosis 
Sex x maternal heterosis 

** Sex x maternal heterosis 
Sex x maternal heterosis 
Par x maternal heterosis 

" .j::o 
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CHAPTER III 

INDIVIDUAL HETEROSIS AND BREED EFFECTS FOR POSTWEANING PERFORMANCE 
AND CARCASS TRAITS IN FOUR BREEDS OF SWINE 

Summary 

Individual heterosis and breed effects for postweaning average daily 

gain (ADG), off-test age (AGE) and probed backfat thickness (BF) were 

estimated from data on 1,664 pigs produced by diallel matings involving 

the Duroc, Yorkshire, Landrace and Spotted breeds. Genetic parameter 

estimates for various carcass traits were obtained by least-squares 

analysis of data collected on 269 barrow carcasses. Significant breed x 

environment interactions were found for ADG, AGE and BF. Specific 

heterosis estimates for ADG and AGE were all highly significant and 

reasonably consistent between crosses. Overall heterosis for BF was 

significant, although specific estimates were not. Overall heterosis 

estimates were .07 kg/d (10.5%) for ADG, -14d (7.5%) for AGE and .83 mm 

(3.2%) for BF. Of 78 specific heterosis estimates for carcass traits, 

only six were significantly different from zero. Duroc and Spotted 

sired pigs grew faster and were younger off-test than Yorkshire and 

Landrace sired pigs. Landrace sired pigs were fatter, and Duroc sired 

pigs leaner than pigs with Spotted or Yorkshire sires. Breed of dam 

effects for ADG were similar to breed of sire effects. Off-test age of 

pigs with Landrace dams, however, was significantly less than that for 

Yorkshire dams. Significant breed of sire effects for carcass traits 

reflected the superiority of Duroc sired pigs for carcass backfat, loin 

eye area, lean cuts yield and muscle quality (marbling and firmness). 
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Breed of sire and breed of dam effects were somewhat dissimilar for 

carcass traits, suggesting the importance of maternal effects for these 

traits. 

(Key Words: Swine, Growth Rate, Carcass Traits, Heterosis, Breed Direct 

Effects, Maternal Effects.) 

Introduction 

While the greatest benefits of crossbreeding in swine arise from 

moderate to high degrees of heterosis exhibited by sow productivity 

traits, the impact of heterosis and breed effects on postweaning 

performance and carcass traits should not be overlooked. Reported 

estimates of individual heterosis for feed to gain ratio and carcass 

measurements have, in general, been small and not significant, although 

postweaning rate of gain appears to be moderately (6 to 10%) heterotic 

(Sellier, 1976; Johnson, 1981; Wheat et al., 1981; Toelle and Robison, 

1983). Significant breed direct effects have been demonstrated for 

postweaning growth and carcass traits. Maternal effects, apparently 

negligible for postweaning rate of gain, may be important for feed to 

gain ratio and carcass traits (Johnson, 1981; Wheat et al., 1981). 

Duroc, Yorkshire, Landrace and Spotted purebred and crossbred 

matings were made as part of a crossbreeding experiment carried out at 

the Oklahoma Agricultural Experiment Station. The relative paucity of 

experimental results for the Landrace and Spotted breeds prompted their 

inclusion in the study. Heterosis and breed effects for sow 

productivity traits from this experiment have been reported previously 

(Gaugler et al., 1984). The objectives of this present study were to 



evaluate individual heterosis and breed effects for postweaning 

performance and various carcass traits for the four breeds. 

Materials and Methods 
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Experimental Procedure. Postweaning performance data were collected 

on 1,664 purebred and crossbred pigs produced by diallel matings 

involving the Duroc, Yorkshire, Landrace and Spotted breeds. Pigs were 

farrowed at the Oklahoma State University Experimental Swine Farm at 

Stillwater during five consecutive fall and spring seasons starting in 

the fall of 1976. Establishment and management of the purebred herds 

have been discussed by Hutchens et al. (1982) and Gaugler et al. (1984). 

Foundation boars and gilts of each breed were obtained from several 

different sources, and semi-annual introduction of at least one new boar 

of each breed was practiced in order to maintain a broad genetic base in 

the purebred herds. 

Boars were randomly mated to at least one female of each purebred 

herd. Distribution of animal numbers by breed group is given in table 

1. Spring litters were farrowed in March and April, fall litters in 

September and October. Pigs had access to creep feed from between 2 and 

3 wk of age, and were weaned at approximately 6 wk of age. The two 

heaviest boars at weaning from at least four litters of each breed group 

were left intact. All other males were castrated. At approximately 8 

wk of age barrows and some of the gilts were moved to pasture lots, 

stocking approximately 50 pigs/lot. The other gilts had been randomly 

allotted within litter to be grouped in pens of 10 and fed in an 

open-front confinement building adjacent to pens containing the boars. 

Hutchens et al. (1981, 1982) reported breed comparisons for age and 
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TABLE 1. NUMBER OF PIGS (CARCASSES) BY BREED GROUP 

Breed of dam 

Breed of sire D y L s 

Duroc (D) 125 ( 15) 85 (14) 110 (20) 102 (15) 

Yorkshire (Y) 107 ( 21) 93 (11) 108 (19) 90 (17) 

Landrace (L) 101 ( 19) 87 (13) 142 (20) 87 ( 18) 

Spotted (S) 107 (16) 109 (21) 102 (17) 109 ( 13) 



weight at puberty, and relationships between these and growth 

performance traits, for these gilts. 
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Pigs were fed a 14% crude protein corn (IFN 4-02-931) or sorghum 

grain (IFN 4-04-383) based diet from approximately 8 wk of age until the 

end of the test period. Gilts were weighed off-test and probed for 

backfat thickness at approximately 91 kg. Boars and barrows were 

weighed off-test and probed at approximately 100 kg. Gilt records were 

adjusted to 91 kg, boar and barrow records were adjusted to 100 kg. All 

barrows were slaughtered at the Oklahoma State University Meat 

Laboratory. Carcasses were chilled for at least 24 hr before car~ass 

measurements were made. One loin chop from each carcass was scored 

subjectively for marbling, firmness and color. 

Traits Measured. Postweaning performance traits measured were 

average daily gain, age off-test and probed backfat thickness. Records 

were adjusted to constant final weights of approximately 91 kg for gilts 

and 100 kg for males. Slaughter weight (adjusted for differences in gut 

weight), carcass weight, length, backfat, loin eye area, quality scores 

and weight of belly and closely trimmed lean cuts (ham, shoulder and 

loin) were recorded for 269 barrows (210 crossbred and 59 purebred). 

Loin chop scores (marbling, firmness and color) were integers between 

one and seven. One represented muscle devoid of marbling that was very 

soft and pale, and seven represented very firm very dark muscle with 

abundant marbling. Backfat was measured at the first rib, last rib and 

last lumbar vertebra and averaged. Complete gain-test records were 

collected on 976 gilts, 403 boars and 285 barrows. Due to limited 

finishing facilities a number of barrows were sold postweaning, 

resulting in the disproportionate number of males and females. In both 



the growth and carcass data sets only pigs with complete records (i.e. 

an observed value for each trait) were included in the analyses. 

Statistical Analyses. The following linear model, with the usual 

distributional assumptions and zero-sum restrictions on fixed 

parameters, was assumed in analyzing average daily gain, off-test age 

and probed backfat thickness: 
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Yijklmn = P + Bi + Fj + Sk + P1 + (BF)ij + (BS)ik + (BP)il + (FS)jk 

+ 1 .. +e. 'kl m1 J 1 J mn 
where 

Yijklmn = an observable random variable; 

l.l = an unknown constant; 

Bi fixed effect of the .th breed group, i = 1, 16; = 1 ... ' 
F. 
J 

= fixed effect of the jth farrowing season, j = 1, ... ' 5; 

sk = fixed effect of the kth sex, k = 1, ••• , 3. 

pl = fixed effect of the 1 th parity, 1 = 1, ... ' 3. 

(BF) .. 
1J and similar terms represent interaction effects; 

1 .. = random effect of the mth litter nested within the .. th 1J m1J breed-farrowing season combination; 

and eijklmn = random residual effect associated with the ijklmnth 
record. 

The SAS Harvey procedure (Joyner, 1983) was used to compute these 

analyses. The effect of litter nested within breed x year-season was 

treated as random by including the estimated ratio of residual to litter 

variances (4.76, assuming heritability of .38 for all three traits). 

Equations for litters were then absorbed. Where variances are known, 

solutions for fixed effects are generalized least-squares constants 

(Harvey, 1982). Preliminary analyses indicated parity x year-season 
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farrowed and parity x sex interactions not to be significant (P>.10). 

These terms were therefore excluded from the final model. 

The linear model assumed in analysing carcass data was: 

Yijklm = l.1 + A; + Bj + (AB)ij + Fk + sli + 8 wijklm + eijklm 

where 

Yijklm = an observable random variable; 

l.1 = an unknown constant; 

A; =fixed effect of the ;th breed of sire, i = 1, ••• , 4; 

=fixed effect of the jth breed of dam, j = 1, ••• , 4; B. 
J 

(AB)ij = fixed breed of sire x breed of dam interaction effect; 

Fk =fixed effect of the kth farrowing season, k = 1, ••• , 5; 

= random effect of the lth sire nested within the ;th breed 
of sire; 

e = linear regression of the dependent variable on adjusted 
slaughter weight (wijklm); 

and eijklm =random residual effect associated with ijklmth record. 

Carcass data were analysed using Harvey•s least-squares program, 

LSML76 (Harvey, 1977, 1982). The covariable slaughter weight was not 

included in the model for carcass length, backfat and loin eye area as 

these data had been adjusted to a constant final weight. Preliminary 

analyses indicated breed x year-season interactions were not significant 

for any carcass traits, and they were therefore excluded from the final 

model. 

Breed of sire and breed of dam effects were obtained directly from 

carcass data analyses, and calculated by averaging breed parameter 

estimates for growth performance traits. To estimate direct and 

maternal effects the following genetic model was considered: 



Yi,j = ~ + .5(gii + gji) + gjM + hiji 

where 

y. . = mean performance of purebred ( i=j) or crossbred 
l,J (i;~j); 

~ = a constant; 
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'I M g , g = direct and maternal breed effects, subject to the usual 

zero-sum restrictions and 

hi .. = individual heterosis. 
lJ 

Let, for example, OS and DO equal averages of least-squares means 

for the four breed groups having Duroc sires and dams, respectively. 

Under the above model: 

E(DD) 

E (OS) 

= l/2go I + 

= l/2goi + 

M I I I 
go + •25 <hov + HoL + hos > 

I I I 
.25(hov + hoL + hos > 

The difference between breed of sire and breed of dam effects 

therefore provides an unbiased estimate of maternal effects. Twice the 

breed of sire effect, however, does not provide an unbiased estimate of 

direct effects. Unbiased estimates were obtained by weighted 

least-squares analyses of breed group least-squares means assuming the 

above genetic model, i.e., as: 

" e = <x·o-1x>- 1x·o-1y 

where 

"' B = represents a vector of parameter estimates; 

X = a known design matrix and 

o-1 = n'I where n is a vector of the number of observations on - -
corresponding least-squares means in ¥· 
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Results and Discussion 

Analyses of Variance. Mean squares and significance of F-statistics 

for effects in the postweaning performance analyses are given in table 

2. Differences among breeds, year-seasons farrowed and the sexes were 

highly significant for postweaning rate of gain, off-test age and probed 

backfat thickness. The significant year-season x sex interaction 

reflected differences in the relative performance of gilts, boars and 

barrows, but not differences in how the sexes ranked across 

year-seasons. Boars outperformed barrows, averaging .74 kg/d 

postweaning rate of gain, 173-d of age and 24.1 mm probed backfat at 100 

kg. Barrows gained slower (.69 kg/d) and were older (185 d) and fatter 

(30.4 mm) at 100 kg. Gilt records (adjusted to an off-test weight of 91 

kg) averaged .67 kg/d, 174-d and 25.2 mm probed backfat. 

Parity differences were significant for off-test age and probed 

backfat thickness, but not for postweaning rate of gain. Pigs were 

classified as having first, second or third parity dams. Parity three 

represented sows of all parities greater than the second. Ranging from 

third to seventh parity, the 'average' female in this group was a fourth 

parity sow. Pigs from older dams were younger and fatter off-test. 

Parities one, two and three averaged 180, 177 and 175 d of age and 25.9, 

26.7 and 27.1 mm probed backfat thickness respectively. 

The breed x parity interaction approached significance for growth 

rate, and was significant for probed backfat thickness. Breed x sex was 

significant for growth rate and breed x year-season farrowed significant 

for all three postweaning performance traits. While literature reports 

of genotype x parity interactions for growth rate are virtually 
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TABLE 2. GENERALIZED LEAST-SQUARES ANALYSES OF VARIANCE FOR POSTWEANING 
PERFORMANCE TRAITS 

df Mean Squares 
Average daily Off-test Probed backfat, 

Source gain, kg. age, d. ITITI • 

Breed of pig (B) 15 .04230 ** 1955 ** 47.1s** 

Year-season ** ** 453.oo** farrowed (F) 4 .09268 4465 

Sex (S) ** ** 2930.2o** 2 .69722 10969 

Parity (P) 2 .00654 * ** 839 53.50 

F X s 8 .03501** 1406** 22.19 * 

B X F 60 .00792** 324** 12.56 * 

B X s 30 .00732 * ** 331 11.93 

B X p 30 .00641+ 255+ 15.18* 

Residual 1512 .00556 216 10.76 

+P<.10 

* P<.OS 
** P<.01 
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non-existant, significant genotype x sex (generally barrows and gilts) 

interactions have been reported for growth rate by a number of workers 

(Bowland and Berg, 1959; Hale and Coey, 1963; Bruner and Swiger, 1968; 

Quijandria et al., 1970; Richmond and Berg, 1971 and Bereskin et al., 

1975, 1976). However, even more studies have reported genotype x sex 

interactions not to be significant for growth rate (Kristjansson, 1957: 

Omtvedt et al., 1962; Plank and Berg, 1963; Hale and Southwell, 1967; 

Bayley and Summers, 1968; Davey and Morgan, 1969; Fahmy et al., 1975; 

Miller et al., 1979 and Christian et al., 1980). Significant breed x 

year and (or) season interactions have been reported for growth rate 

(Bruner and Swiger, 1968; Quijandria et al., 1970 and Miller et al., 

1979) and for both growth rate and probed backfat thickness by Johnson 

et al. (1973). Genotype x year and (or) season interactions, however, 

were unimportant for growth performance traits in a number of other 

studies (Kuhlers et al., 1972, 1977; Johnson et al., 1978; Christian et 

al., 1980 and Hutchens et al., 1982). 

Examination of subclass means suggested that the significant breed x 

sex and breed x parity interactions did not preclude examination of 

breed as a main effect. Rank changes between breeds were, in general, 

relatively minor. Averaging breed across sex (which included boars) 

resulted in parameter estimates that are biased with reference to a 

normal production population of only barrows and gilts. Although 

influencing absolute values of breed parameters, the effect upon breed 

comparisons is hopefully small. The 16 breed groups, in general, ranked 

similarly for both boar and barrow average daily gain and age off-test 

(although some rank changes did occur). The effect on constant 

estimates from including boars should therefore, in most cases, be 



similar for all breeds, resulting in negligable bias in breed 

comparisons. 
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Breed ranks appeared somewhat more variable across year-seasons 

farrowed. Many environmental factors undoubtedly contributed to the 

year-season effect, but seasonal temperature differences and fluctuating 

health status were probably both important for the Stillwater herd. 

Barlow (1981) reviewed the evidence for heterosis x environment 

interactions in animals and concluded that heterosis for most traits 

appeared to be greater in sub-optimal environments. Differences in 

purebred and crossbred performance levels might therefore be expected 

under various levels of disease and climatic stress. Conceptually, it 

seems appropriate to consider year-seasons as complex random effects. 

Estimating breed parameters for individual year-seasons would have 

little utility since we wish to make inferences to the breeds in 

general. In making breed comparisons, therefore, we not only assume 

adequate sampling of the breeds, but also that year-seasons are 

representative of those in the target population to which inference is 

made. 

Mean squares and significance of F-statistics for effects in carcass 

trait analyses are given in table 3. Preliminary analyses established 

that breed x year-season interactions were not significant. Breed of 

sire and breed of dam were significant for weight of ham, shoulder, 

total lean cuts and for marbling and firmness scores. Breed of sire was 

also significant for carcass weight, backfat thickness and loin eye 

area. The breed of sire x breed of dam interaction was significant for 

weight of ham, loin and loin eye area. Sires within breed of sire were 

important sources of variation for all traits except carcass weight, 



TABLE 3. LEAST-SQUARES ANALYSES OF VARIANCE FOR CARCASS TRAITS 

Mean Squares 
Carcass wt, Length, Backf at, Loin eye2 Ham, Low, Shaul der, Belly, Lean Cuts as a % or ------- -Quii.li ty scores 

Source df kg em 111n area, em kg kg kg kg ailj 1 ive wL carcass wL Marlllwg Firmness• 

Bre~d gf 
a s1re 

18.48* ** ** ** * ** ** ** ** (80S) 3 10.35 228.26 245.38 22.45 18.70 2. 75 34.41 107.58 211.00 11.76 7.81 

Sires w/in 
** ** ** ** • 73+ ** * BOS 33 4. 31 19.68 36.51 18.04 1.56 164.68 170.46 8.13 12.49 1.92 1.55 

Breed of 
** ** ** * ** ** dam (BOO) 3 2. 41 18.66 53.00 16.22 5. 31 .89 2.24 .93 19.59 24.36 6.46 7.93 

Year-
season 

** 92.07** ** ** * ** ** ** ** ** ** farrowed 4 44.27 153.12 70.58 1.90 1. 76 .09 2.58 94.97 244.44 12.85 12.08 

* * BOS x BOO 9 7.94 6.00 22.00 19.00 1.28 * 1.15 .53 .55 7. 71+ 13.44 1. 57 1.28 

Adj. Live 
** ** ** 23.91** ** .. ** weight 1 2285.45 - - 76.90 50.41 53.19 284.24 145.50 .63 .14 

Residualb 215 4.82 10.87 25.35 9.23 .58 .50 .53 .56 4.52 8.30 1.56 1. 51 

+P<.lO 

* P<.05 

**P<.Ol 

aError term for BOS F-statistic is sires w/in BOS. Error ter·m for all other effects is the residual mean square. 

b216 df for length, backfat and loin eye area (adjusted data, no covariable in the model). 

Color 

.83 

• 79 

1.04 

** 10.53 

.68 

.02 

• 76 

t-' 
0 
.j:::> 
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backfat, shoulder weight and quality scores. Breed group least-squares 

means for growth and carcass traits are given in tables 4 and 5. 

Heterosis Estimates. Individual heterosis estimates for postweaning 

performance traits are given in table 6. Specific estimates for average 

daily gain and off-test age were all highly significant and reasonably 

consistent between crosses. Although specific estimates for probed 

backfat thickness were not significantly different from zero, overall 

heterosis was significant. These data suggest that average heterosis 

values for growth rate and probed backfat should be adequate when 

comparing alternative crossbreeding systems. The overall performance of 

crossbreds relative to the contemporary purebred mean was .07 kg/d 

(10.5%) for postweaning average daily gain; -14d (7.5%) for off-test age 

and .83 mm (3.2%) for probed backfat. 

Literature estimates of specific individual heterosis for 

postweaning gain and off-test age are also reasonably consistent, both 

among crosses and experiments, in agreement with the findings of this 

study. Johnson (1981), in a weighted least-squares analysis of results 

from crossbreeding experiments in the U.S. and Canada, reported an 

average heterosis of .06 kg/d (8.8%) for postweaning average daily gain. 

Sellier (1976), in a summary of mostly European experiments, reported a 

.04 kg/d (6.0%) crossbred advantage. A higher estimate (13.7%) reported 

by Toelle and Robison (1983) included data from 'mixed' litters--i.e., 

purebred and crossbred pigs crossfostered in the same litter. Vigor of 

crossbred pigs in these litters appeared to have a detrimental effect on 

the purebred pigs, thus inflating heterosis estimates. Ignoring 'mixed' 

litter data, heterosis of 11.1% was calculated from means presented by 

Toelle and Robison (1983)--similar to the 10.5% estimate of the present 
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TABLE 4. PUREBRED & Ft CROSSBRED GENERALIZED LEAST-SQUARES MEANS 
FOR POSTWEAN NG PERFORMANCE TRAITS 

Breed No. Postweaning Age off- Probed 
of pig pigs Av. d. gain test, d. backfat, mm. 

(kg/d) 

Overall 1164 • 7015 177.1 26.56 

Duroc (D) 125 .6625 183.8 24.98 

Yorkshire (Y) 93 .6384 193.5 25.13 

Landrace (L) 142 .6352 189.5 27.60 

Spotted (S) 109 .6655 184.2 26.06 

D X Y 85 • 7187 174.9 23.94 

D X L 110 • 7318 171.7 25.85 

D X S 102 • 7400 170.1 25.71 

Y X D 107 • 7388 170.1 27.74 

Y X L 108 • 7003 175.4 27.15 

Y X S 90 .6953 180.1 25.32 

L X D 101 • 7127 172.8 28.41 

L X Y 87 .6809 183.8 27.61 

L X S 87 • 7293 170.1 27.56 

S X D 107 • 7305 171.7 27.76 

S X Y 109 • 7298 171.9 26.64 

S X L 102 • 7142 170.8 27.55 



TABLE 5, PUREBRED AND F1 CROSSBRED LEAST-SQUARES MEANS FOR CARCASS TRAITS 

Breed No. 

Overall 269 

Duroc (0) 15 

York (Y) 11 

Land (L) 20 

Spot (S) 13 

0 X Y 

D X L 

D X s 

Y X 0 

y X L 

Y X S 

L x 0 

L X Y 

L X s 

S X 0 

S X Y 

S X L 

14 

20 

15 

21 

19 

17 

19 

13 

18 

16 

21 

17 

Carcass 
wt., kg 

67.98 

66.40 

67.68 

67.29 

68.69 

68.92 

67.83 

68.55 

68.58 

68.12 

67.36 

67.24 

67.64 

67.33 

69.33 

68.82 

67.88 

Length, 
em 

78.29 

77.25 

79.11 

78.77 

77.04 

78.68 

78.38 

79.46 

76.80 

78.81 

78.25 

78.60 

78.89 

78.60 

77.43 

78.90 

77.70 

Backf at, 
mm 

32.75 

29.08 

33.03 

33.47 

34.16 

29.49 

30.99 

30.70 

36.21 

35.49 

31.49 

33.36 

33.07 

30.93 

34.18 

33.02 

35.32 

Loin-eye2 
area, em 

29.78 

32.05 

28.56 

29.90 

28.07 

34.74 

32.11 

31.96 

27.93 

27.35 

30.88 

29.15 

29.29 

28.58 

28.50 

29.45 

28.03 

Ham, 
kg 

14.29 

14.79 

14.45 

13.84 

14.59 

15.79 

14.54 

15.25 

13.79 

13.73 

14.59 

13.51 

13.70 

13.61 

13.90 

14.42 

14.11 

Loin, 
kg 

12.79 

12.37 

12.44 

13.61 

12.32 

13.53 

12.67 

12.88 

12.50 

12.27 

12.67 

13.66 

13.60 

13.20 

12.34 

12.36 

12.25 

Shoulder, 
kg 

12.31 

12.48 

12.31 

12.35 

11.96 

13.07 

12.57 

12.35 

12.37 

12.06 

12.26 

12.10 

12.60 

11.76 

12.26 

12.38 

12.07 

Belly, 
kg 

8. 76 

7.78 

9.61 

8.64 

8.56 

7.88 

7.87 

7.94 

9.96 

9.74 

9. 34 

8. 94 

9.05 

8.84 

8.99 

8.62 

8.36 

Lean cuts as a % of 
ailj n ve wt care ass wt. 

43.31 

44.05 

44.05 

42.65 

43.42 

46.73 

44.44 

45.51 

42.92 

41.98 

43.53 

42.02 

42.73 

41.37 

42.52 

42.87 

42.23 

59.67 

62.02 

60.90 

59.37 

59.13 

63.66 

61.42 

62.20 

58.56 

57.82 

60.51 

58.39 

59.06 

57.51 

57.50 

58.56 

58.16 

Qua 1 ity scores 
Marbling Firmness Color 

3.51 

4.84 

3.09 

2.90 

3.98 

3.51 

3.54 

4.47 

3.54 

2.93 

3.06 

3.02 

3.44 

3.45 

3. 76 

3.56 

3.06 

4.22 

5.17 

3.92 

3.59 

4.61 

4.50 

4.00 

5.23 

4.28 

3.87 

3. 72 

4.44 

4.17 

3.86 

4.42 

4.10 

3.57 

4.97 

5.14 

5.10 

4. 79 

5.39 

4.80 

4. 50 

5.06 

5.18 

4.83 

4.86 

4.64 

5.19 

4.96 

5.11 

4.98 

5.03 

....... 
0 
'-J 
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TABLE 6. INDIVIDUAL HETEROSIS ESTIMATES FOR POSTWEANING PERFORMANCE 
TRAITS 

Reciprocal Average daily gain, Off-test age, Probed backfat, 
crosses a kg/d % d % mm % 

D-Y .080 + .015 ** (12.0) -16.3 + 2.9 ** (-8.6) • 85 + • 65 (3.2) 

D-L .074 + .014 ** ( 11.3) -14.4 + 2.7** (-7.7) .85 :+ .60 (3.2) 

D-S .071 + .014 ** ( 10. 7) -13.1 + 2.8 ** (-7.1) + 1.21 + .62 (4.8) 

Y-L • 055 + • 013 ** (8. 5) -12.2 + 2.5 ** (-6.2) + 1.01 + .56 (3.9) 

Y-S .062 + .014 ** (9.3) -13.2 + 2.7 ** (-6.8) .44 + .60 (1. 5) 

L-S .070 + .013 ** (11. 0) -16.2 + 2.6 ** (-8.8) • 73 + • 57 (2. 7) 

Overall • 069 + • 008 ** (10. 5) -14.2 + 1.6 ** (-7.5) * . 86 + • 35 ( 3. 2 ) 

+P<.lO 

* P<.05 
** P<.01 

aD=Duroc, Y=Yorkshire, L=Landrace, S=Spotted. 
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study, but somewhat higher than earlier reported estimates. It should 

be noted that while the estimate from Toelle and Robison•s results was 

based on 548 pigs, Johnson•s (1981) estimate was based on data from 

approximately 5,000 pigs.~ 

Heterosis estimates of -13 d (6.9%) and -10 d (5.0%) for age at 100 

kg, and of -17 d (7.9%) for age at 95 kg have been reported by Johnson 

(1981), Sellier (1976) and Wheat et al. (1981), respectively. Ignoring 

•mixed• litters, heterosis of -8.0% was evident from results reported by 

Toelle and Robison (1983). Overall heterosis of -14 d (7.5%) obtained 

in the present study was in good agreement with previous estimates. 

Least-squares means presented by Toelle and Robison (1983), 

again excluding •mixed• litters, indicated a -6.6% heterosis for probed 

backfat thickness, in contrast to the 3.2% estimate of this study. 

Experimental estimates of individual heterosis for carcass traits 

have in general been small and mostly not significant (Johnson, 1981; 

Wheat et al., 1981). Estimates obtained from this study (table 7) 

provide additional evidence that individual heterosis for carcass traits 

is close to zero. Of 78 specific estimates, only six were significantly 

different from zero. 

Breed Effects. Breed of sire and breed of dam effects for 

postweaning performance traits are given in table 8. Duree and Spotted 

sired pigs gained approximately .02 kg/d faster, and reached off-test 

weight approximately 4.5 d earlier, than Yorkshire and Landrace sired 

pigs. Spotted and Yorkshire sired pigs had average probed backfat, 

while Landrace sired pigs were 2.7 mm fatter than pigs with Duree sires. 

Breed of dam effects for average daily gain, apart from a not 

significant change in rank between Yorkshire and Landrace, were similar 



TABLE 7. INDIVIDUAL HETEROSIS ESTIMATES FOR CARCASS TRAITS 

Reclproc~l Carcass wt, Length, Backf at, Loin eye2 Ham, Loin, 
crosses kg em mm area, em kg kg 

D-Y 1. 71+.62** -.47+.92 1. 96+1.40 .B5~.85 .12+. 21 .57+.20 

D-L .69+.55 .47+.82 • 90+ 1. 26 -.35+,76 -.30+.19 .18+.18 

D-S 1. 40+. 62* 1. 29+. 92 • 79+ 1. 41 .19+.85 -.12+.22 .27+.20 

Y-L .44+.60 .00+.89 • 98+1. 37 -.94~.82* -.43~.21* -.09~.19 

Y-S -.07+,60 .53+.92 -1. 28+ 1. 40 L 76~.86* -.03~.21 .12+. 20 

L-S -.37+.57 .25+.85 -. 70+1.29 -.69+.78 -.36~.20+ -.24~.18 

Overal I .58+.36+ .35+.53 .43+ .81 .00+.49 -.22+.12+ .11+.12 

aD=Duroc, Y=Yorkshire, L=Landrace, S=Spotted. 

+P<.lO 

* P<.05 

** P<.01 

Shoulder, Belly, Lean cuts as a % of 
kg kg adj llVe wt. carcass wt. 

** • 32+. 20 -.24+.21 • 72+.60 -.45+,81 

-.08+.18 .20+.19 -.13+.52 -.81+.72 

.09+.21 .30+.21 .28+.60 -.73+.82 

-.03+.20 .27+.20 -1.04+.58+ -1. 77+. 78* 

.17+. 21 -.10~. 21. -.59+.60 -.56+.81 

-.25+.19 .00+.19 -1. 25+. 55* -1.45+. 75+ 

.00+.12 .15+.12 * -. 39+. 35 -.99+.47 

Quality scores 
Marbling Firmness 

-. 38~. 35 -.14+. 35 

-.58+.31+ -.16+.31 

-.30+.35 -.07+.35 

.17+.34 .29+.33 

-.20+.35 -.34+.35 

-.18+. 32 -.38+.32 

-.27+.20 -.14+.20 

Color 

-.11+.25 

-.40+.22+ 

-.19+.25 

. 04+. 24 

-.33+.25 

-.10+.23 

-.19+.14 

....... 

....... 
0 
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TABLE 8. BREED EFFECTSa (GENERALIZED LEAST-SQUARES CONSTANTS) 
FOR POSTWEANING PERFORMANCE TRAITS 

Average daily gain, Off-test age, Probed backfat, 
kg d mm 

A • 701 + • 004 177.15 +.69 26.56 + .15 ll 

Breed of sire 

Duree .012 -2.03 -1.44 

Yorkshire -.008 2.64 -.22 

Landrace -.012 1. 90 1.23 

Spotted .008 -2.51 .43 

Breed of dam +.003 +.65 +.58 

Duree .010 -2.56 • 66 

Yorkshire -.010 3.89 -.73 

Landrace -.006 -.29 .47 

Spotted .006 -1.04 -.40 

Std. Errora +.003 +.65 +.58 

a approximate (average) breed effect standard errors. 
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to breed of sire effects. Pigs with Duree dams took 6.5 fewer d to 

reach final weight than those with Yorkshire dams. Pigs with Spotted 

and Landrace dams were approximately 2 d older off-test than those with 

Duree dams. Breed of dam differences were not significant for probed 

backfat thickness. 

These results are very similar to those presented by Johnson (1981) 

for postweaning average daily gain and age at 100 kg. Breed effects for 

age at 95 kg, from least-squares means reported by Wheat et al. (1981), 

showed Yorkshire sired pigs to be significantly older (-8 d) than Duree 

or Landrace sired pigs, which were not significantly different. Pigs 

with Landrace dams, however, were approximately 10 d younger than pigs 

with either Duree or Yorkshire dams. 

Breed of sire and breed of dam effects for carcass traits are given 

in table 9. The largest differences among sire breed effects for traits 

for which breed of sire was significant were due to superiority of the 

Duree as a sire breed. Duree sired pigs were significantly leaner, with 

larger loin eye areas and heavier hams, and shoulders. Lean cuts as a 

percent of both live and carcass weight, and marbling and firmness 

scores, were also greater for Duroc than for Yorkshire, Landrace or 

Spotted sired pigs. Landrace sired pigs were superior for yield of 

closely trimmed loin, however. With the exception of carcass weight, 

backfat and loin eye area, breed of dam was significant for the same 

traits as breed of sire. Dam breed effects, however, were generally 

dissimilar to breed of sire effects, suggesting that maternal effects 

were important for carcass traits. Pigs with Yorkshire and Spotted dams 

had heavier hams than those with Duroc and Landrace dams. Yorkshire 

dams produced pigs with the highest shoulder weight, but pigs with 



TABLE 9. BREED EFFECTS (LEAST-SQUARES CONSTANTS) FOR CARCASS TRAITS 

Carcass wt, Length, Backfat, Loin eye2 Ham, 
kg em mm area, em kg 

Jl 67.98 78.29 32.75 29.78 14.29 
+.18 +.41 +.54 +.40 +.12 

Breed of sire 

Ouroc -.05 .15 -2.68 2.93 .80 

Yorkshire -.04 -.05 1.30 -1.10 -.15 

L andrace -.60 .42 -.04 -.56 -.62 

Spotted • 70 -.52 1.42 -1.27 -.03 

Std. Errora +.24 +.55 +. 72 +.53 +.16 

Breed of dam 

Ouroc -.09 -. 77 .46 -.38 -. 29 

Yorkshire .29 .60 -.60 • 73 . 30 

Landrace -.20 .12 1.07 -.44 -.23 

Spotted .oo .05 -.93 .09 . 22 

Std. Errora +.25 .:!"_.37 +.57 .:!"_.34 +.09 

aapproximate (average) breed effect standard errors are shown. 

Loin Shoulder, Belly, 
kg kg kg 

I 

12.79 12.31 8. 76 
+1.39 +.08 +1. 41 

.07 • 31 -.89 

-. 32 -.06 .91 

• 73 -.11 .11 

-.47 -.14 -.13 

.:!"_1.82 +.10 +1.85 

-.07 -. 01 .16 

.19 . 28 .03 

-.09 -.05 -.11 

-.03 -.22 -.09 

+.08 +.08 +.08 

Lean cuts as a % of 
ailj 1 i ve wt. carcass wt. 

43.31 59.67 
+. 27 +.32 

1.87 2.65 

-.19 -.22 

-1.12 -1.09 

-.55 -1.34 

+. 36 +.43 

-.44 -.56 

. 78 .87 

-.4g -.48 

.14 .16 

+.24 +.33 

Quality scores 

Marbling Firmness 
3.51 4.22 
+.58 +.10 

.58 • 51 

-. 35 -.27 

-.31 -.20 

.08 -. 04 

+.16 +.14 

.28 .36 

-.11 -.04 

-.40 -.46 

.23 .14 

+.14 +.14 

Color 
4.97 
+.07 

-.10 

.02 

-. 08 

.15 

+.10 

.05 

.04 

-.18 

.09 

+.10 

...... 

...... 
w 
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Spotted dams had the lightest shoulders. Yorkshire was the most 

favorable dam breed for lean cuts as a percent of live and carcass 

weights. Pigs with Duroc and Landrace dams had the lowest lean cut 

yield and those with Spotted dams were intermediate. Duroc and Spotted 

dam breed effects for marbling and firmness were superior to Yorkshire, 

and Yorkshire superior to Landrace • 

Average Direct and Maternal Effects. Sires• influence on progeny 

was limited to genes transmitted in the sperm. Breed of dam effects 

represented an equivalent direct genetic contribution, plus average 

maternal effects. Such effects may involve cytoplasmic inheritance, the 

pre-natal environment and post-natal milk production and mothering 

ability (Robison, 1972). 

Estimates of direct genetic and maternal effects are presented in 

tables 10 and 11. Table 10 illustrates that, compared to direct 

effects, maternal effects were relatively unimportant for average daily 

gain. Maternal effects were somewhat larger for off-test age, as might 

be expected given the dam•s influence on preweaning growth rate. More 

surprisingly, perhaps, maternal effects were found to be substantial 

relative to direct effects for probed backfat and carcass traits in many 

cases (table 11). Johnson (1981) and Wheat et al. (1981) have also 

reported maternal effects as being important for carcass length, backfat 

and loin eye area; and Toelle and Robison (1983) found breed prenatal 

effects to be important for backfat and 154-d weight. Considering the 

Duroc in this present study, average direct effects were for leaner pigs 

with lighter bellies, increased loin eye area and increased ham and 

shoulder weights relative to the other three breeds. However Duroc 

maternal effects were for fatter pigs with heavier bellies, decreased 
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TABLE 10. AVERAGE DIRECT (gi) AND MATERNAL 
POSTWEANING PERFORMANCE TRAITSa 

(gM) GENETIC EFFECTS FOR 

Trait Duroc Yorkshire Land race Spotted 
I M gi M gi M gi M g g g g g 

Average d 
gain, kg .015 -.003 -.011 -.001 -.021 .006 .018 -.003 

Off-test 
age -3.50 -.46 4.59 1.20 3.94 -2.20 -5.03 1.46 

Probed 
backfat, -3.04 2.08 -.32 -.49 2.41 -.75 • 94 -.83 mm 
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TABLE 11. AVERAGE DIRECT (gi) AND MATERNAL &gM) GENETIC EFFECTS 
FOR CARCASS TRAITS 

Duroc Yorkshire Landrace Spotted 
Trait gi gM gi gM gi gM gi gM 

Carcass 
wt, kg -1.07 -.04 -.18 • 35 -.62 .40 1.87 -.70 

Carcass 
length, em • 09 -.88 • 37 .69 1.08 -.35 -1.54 .54 

Carcass 
back fat, mm -6.55 3.19 2.48 -1.88 -.08 1.12 4.16 -2.43 

Loin eye2 
area, em s. 73 -3.32 -2.86 1.77 .14 .11 -3.01 1.43 

Ham, kg 1. 45 -1.07 -. 41 .44 -.95 • 38 -.08 • 25 

Loin, kg -.18 -.13 -.75 .so 1. 75 -.83 -.82 • 46 

Shoulder, kg .53 -.32 -.29 • 33 • 01 • 07 -.24 -.07 

Belly, kg -1.91 1.04 1.83 -.87 .21 -.21 -.13 .04 

Lean cuts as 
% adj 1 i ve wt 2.79 -2.28 -.43 • 94 -1.52 • 63 -.84 • 72 

Lean cuts as 
% carcass wt 4.84 -3.18 -.49 1.04 -1.60 .61 -2.75 1. 53 

Marbling 1.44 -.31 -.86 • 25 -. 72 -.08 .14 .14 

Firmness .97 -.13 -.64 • 24 -.46 -.27 .13 .16 

Color -.10 .14 -.03 • 02 -.21 -.10 -.35 -.07 
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loin eye area and decreased ham and shoulder weights. At the other 

extreme, average direct effects for the Spotted were for increased 

backfat, decreasd loin eye area and decreased lean cuts yield--whereas 

maternal effects were just the opposite (table 11). 

Fat as a percent of carcass weight in the pig increases dramatically 

from approximately 1% to 25% in the first month of life, and hyperplasia 

(increasing fat cell numbers by cell division) appears to be important 

during the first two months of life (Leat and Cox, 1980). Maternal 

effects on carcass traits, mediated via establishment of adipose cell 

number, might not seem unreasonable therefore. Pre-natal determination 

of muscle fiber number, and evidence that dietary restriction of pigs 

during the first month of life does not reduce subcutaneous fat cell 

number (Leat and Cox, 1980), suggests the possible importance of the 

prenatal environment in determining carcass characteristics of progeny. 

However the mechanism(s) by which dams transmitting relatively desirable 

genes for carcass traits (such as the Duroc) have undesirable maternal 

effects, and vice versa, is by no means clear and warrants further 

investigation. 

Assuming sires and dams of each breed to be of equivalent average 

genetic merit, maternal effects can also be estimated from differences 

in reciprocal crosses (tables 12 and 13). Dif~erences for average daily 

gain were not significant. Two of six contrasts were significant for 

off-test age, three of six for probed backfat. Reciprocal cross 

differences for carcass traits are given in table 13. Of 78 contrasts, 

only eight were significant, little more than might be expected due 

solely to chance. 



TABLE 12. DIFFERENCES AMONG RECIPROCAL CROSS MEANS FOR 
POSTWEANING PERFORMANCE TRAITS 
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Oifferencea Average daily gain, Off-test age, Probed backfat, 

DxY - YxO 

OxL - txO 

OxS - SxO 

YxL - LxY 

YxS - SxY 

LxS - SxL 

kg d mm 

-.020 + .020 4.7 + 4.0 

.019 + .018 -1.0 + 3.6 

.010 + .018 -1.6 + 3.6 

.019 + .019 -8.4 + 3.7 

-.035 + .020 + 8.1 + 3.9 

.015 + .019 -.7 + 3.8 

* 

* 

-3.81 + .90 ** 

-2.56 + .81 ** 

* -2.05 + .80 

-.46 + .83 

-1.32 + .87 

.01 + .85 

a D=Duroc, Y=Yorkshire, L=Landrace, S=Spotted. 
First letter indicates breed of sire, second letter indicates breed 
of dam. 

+ P<.lO 

* P<.05 

**P<.Ol 



TABLE 13. DIFFERENCES AMONG RECIPROCAL CROSS MEANS FOR CARCASS TRAITS, 

Quality scores Carcass wt, Length, Backf at, Loin 2eye Ham, loin, Shoulder, Belly, lean Cuts as a % of 
Differencea kg em mm em kg kg kg kg adj live wt. carcass wt. Mar6Tfng-- FlT'mness ___ Color 

1.68+. 78* * '* DxY - YxD -.03+. 56 • 30+. 84 -1. 67+ 1. 29 • 45+.19 • 38~.18 • 04+.19 -.16+.19 .53+.55 .80+. 74 
--~~.-------~.~.------------------------------------------------~+----- + 

-.58+.32 -.15+.32 -.26+.22 

DxL - LxD .14~. 55 -.84+.82 -. 34+ 1. 25 -.47+.75 -. 45+.19 * -. 32+.18+ .09+.18 .20+.19 .52+.53 -.78+.72 • 32+. 31 -. 33+. 31 .11+.22 

DxS - SxD -.12+.57 .54+.85 2.01+1.30 -1.21+.78 -.00+.20 -.06+.19 -.14+.19 -.04+.19 -.01+.55 -.01+. 74 .26+.32 • 48+. 32• .15+.22 

YxL - LxY .41+.57 .87+.85 -. 60+ 1. 30 -.22+.78 .08+.20 .00+.18 -.26+.19 -.03+.19 -.40~.55 -. 76+. 75 -.17+. 32 .15+. 32 -.22+.23 

YxS - SxY -.43+.56 -.57+.83 -1. 08+ 1. 27 1.90+. n* .37+.191- • 37_!.18 * -. 31 +.18+ -.19+.19 • 93+. 54+ 1. 55+. 73 * -. 40_!. 32 -.33+.31 -.03+.22 

-.37_!.19+ -. 32_!.18+ -.92+.54+ * LxS - Sxl .55+.56 .03+.83 -. 93+ 1. 28 -.69+. 77 -.17+.18 .23+.19 -1. 54+. 73 .14+. 32 -.15+.31 -.12+.22 

aD=Duroc, Y=Yorkshire, l=landrace, S=Spotted. First letter indicates breed of sire, second letter indicates breed of dam. 

+P<.lO 

* P<.05 

** P<.01 

...... ...... 
1.0 
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Results of this study indicate a crossbred advantage for average 

daily gain and age off-test, but little or no heterosis for probed 

backfat thickness or carcass traits. The superiority of Duroc sired 

pigs for average daily gain, probed backfat, loin eye area and yield of 

lean cuts suggests utility of the Duroc as a sire breed. Gaugler et al. 

(1984) reported Landrace and Yorkshire to be superior for litter 

productivity traits, relative to Duroc and Spotted dams. The potential 

role of the Spotted breed is unclear. If more than one sire breed is 

required by a system it is important that each breed has desirable 

characteristics. Thus a breed excelling in carcass merit might seem to 

be a logical adjunct to the Ouroc. The Spotted breed did not fit this 

role. 
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CHAPTER IV 

GROWTH PERFORMANCE FOR FOUR BREEDS OF SWINE: 
CROSSBRED FEMALES AND PUREBRED AND CROSSBRED BOARS 

Summary 

Purebred and crossbred boars mated to two breed cross females 

produced all possible three and four breed cross pigs involving the 

Duroc, Yorkshire, Landrace and Spotted breeds. A total of 213 pens were 

evaluated for postweaning feed to gain ratio (F/G) and average daily 

feed consumption (ADF). Individual average daily gain (ADG), age at 100 

kg (AGE) and probed backfat thickness (BF) data were collected on 3,456 

pigs. Genotype x environment interactions, specifically breed x 

year-season farrowed and (for ADG) breed x parity, were found to be 

highly significant. Certain results, however, were reasonably 

consistent across environments. Duroc sired pigs grew more efficiently 

than other breed groups. They were also leaner than other three breed 

cross pigs involving the same dam breeds, whereas Landrace sired pigs 

were fatter. No real differences between purebred and crossbred sired 

pigs were apparent for F/G, ADF, ADG, AGE or BF. This suggested that 

mating crossbred rather than purebred boars to females of different 

breeding should have little or no impact on feedlot performance of the 

offspring produced. 

(Key Words: Swine, Crossbred Boars, Growth, Feed Efficiency, Genotype x 

Environment Interactions.) 
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Introduction 

Interest in the use of crossbred boars for market hog production has 

arisen for a number of reasons. Theoretically, they are expected to be 

hardier and more vigorous than purebreds, and to possess greater libido 

and higher fertility. Consequently their use might improve breeding 

herd efficiency in commercial operations. 

Any advantages that accrue from use of crossbred boars must, 

however, outweigh disadvantages inherent in the need to maintain 

additional pure lines in the production system. Literature reports of 6 

to 20% improvements in conception rates appear to be the result of 

accelerated maturity in crossbred boars (Wilson et al., 1977; Conlon and 

Kennedy, 1978; Anderson et al., 1981; Buchanan and Johnson, 1984). No 

difference between purebred and crossbred boars for sow productivity, 

growth or carcass traits characteristics of progeny is suggested by 

literature reports (Rempel et al.~ 1964; Lishman et al., 1975; Fahmy and 

Holtmann, 1977; Conlon and Kennedy, 1978; Kennedy and Conlon, 1978; 

Anderson et al., 1981; Buchanan and Johnson, 1984). 

The objective of this study was to evaluate growth performance and 

feed efficiency for three and four breed cross pigs involving the Duroc, 

Yorkshire, Landrace and Spotted breeds. In addition to estimating 

paternal heterosis for these traits, evalution of (numerically) 

relatively minor breeds in the U.S., such as the Landrace and Spotted, 

is needed in order to establish their potential role in an efficient 

pork production industry. 
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Materials and Methods 

A project aimed at evaluating purebred and crossbred performance of 

Ouroc, Yorkshire, Landrace and Spotted breeds of swine was carried out 

at the Oklahoma Agricultural Experiment Station between 1976 and 1979. 

As part of this project, three and four breed cross litters were 

produced over five consecutive farrowing seasons starting in fall of 

1977 at the USDA Southwest Livestock and Forage Research Station, El 

Reno, Oklahoma. Postweaning performance records on 1,339 four breed 

cross and 2,117 three breed cross pigs were available for analysis. 

Experimental Procedure. Seedstock for the three and four breed 

cross phase of the experiment was produced at the Oklahoma State 

University Experimental Swine Farm at Stillwater by mating purebred 

Duroc, Yorkshire, Landrace and Spotted males and females in all possible 

combinations to produce purebred and two breed cross offspring. 

Establishment and management of the purebred herds have been discussed 

by Hutchens et al. (1982) and Gaugler et al. (1984). Foundation boars 

and gilts of each breed were obtained from several different sources, 

and semi-annual introduction of at least one new boar of each breed was 

practiced in order to maintain a broad genetic base in the purebred 

herds. 

Boars from each breed group were selected for use in the second 

phase of the experiment based on an index of age and probed backfat at 

100 kg, and transported to El Reno to be used as herd sires each season. 

Crossbred gilts were sent to El Reno upon detection of estrus. Breeding 

stock from each breed group were used, but reciprocal crosses were 

combined for all analyses. 
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Generally three boars from each breed group were used at El Reno 

each season, although for some breeds in some seasons as few as two and 

as many as five different boars were used. Purebred boars were mated to 

crossbred females to produce all possible three breed cross litters, and 

crossbred boars were mated to crossbred females to produce four breed 

cross litters. The breeding season extended over an 8 wk period 

starting in mid May and mid November each year. The total number of 

litters farrowed per breed group is given in table 1. Only gilts were 

farrowed in the first season (fall 1977). In subsequent seasons about 

half the litters were from second parity sows and half from gilts. A 

total of 309 gilt and 178 sow litters were analyzed in this study. 

Litters were farrowed in a barn equipped with crates and slatted 

floors. Sows and litters were moved to a nursery 3 to 7 d 

postfarrowing, where they remained in individual pens until weaning at 

approximately 6 wk of age. Creep feed was made available, and male pigs 

castrated, at 3 wk of age. Buchanan and Johnson (1984) have reported 

reproductive performance for this phase of the experiment. 

Pigs were moved to one of two confinement finishing barns for gain 

test approximately 2 wk postweaning, and penned in groups of 12 to 20 

pigs/pen by breed of sire (Duroc, Yorkshire, Landrace, Spotted or 

Crossbred). A 7 d adjustment period was allowed before pigs were 

weighed on test at approximately 9 wk of age. A 16% crude protein corn 

(IFN 4-02-931) or sorghum grain (IFN 4-04-383) based diet was fed ad 

libitum until average pig wt/pen was approximately 54 kg. A 14% crude 

protein diet was fed ad libitum for the duration of the test period. 

Pigs were weighed off test weekly at approximately 100 kg, at which time 

probed backfat thickness was measured. Measurements were taken at the 
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TABLE 1. NUMBER OF LITTERS FARROWED AND PIGS COMPLETING GAIN TEST BY 
BREED GROUPa 

Breed of dam ,c 
Breed of No. of 

sirec siresd D-Y D-L D-S Y-L Y-S 

D 17 22 (168) 26(163) 

y 17 27 (192) 23 ( 151) 

L 15 20 (146) 25 (189) 23 ( 150) 

s 14 27 (189) 26 (187) 23 (181) 

X 15 29 (213) 35 (268) 34(242) 34(250) 30 (174) 

aN umber of pigs in parentheses. 

bReciprocal crosses combined (i.e., D-Y represents DxY and YxD). 

cD=Duroc, Y=Yorkshire, L=Landrace, S=Spotted, X=Crossbred. 
For each dam breed group, crossbred boars represented F1•s 
involving the two breeds not included in the F1 dam. 

L-S 

28(212) 

24 (189) 

31 (192) 

dn=15 for each crossbred sire group except for Y-L sires, where n=14. 
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level of the first rib, last rib and last lumbar vertebra and averaged. 

Average daily gain, age and backfat records were adjusted to a 100 kg 

basis. Total gain, total feed consumed and total days on test were 

obtained for each pen. During the five seasons of this phase of the 

experiment, 80 four breed cross pens and 133 three breed cross pens were 

tested. 

Statistical Analyses. The following linear model, with the usual 

zero-sum restrictions on fixed parameters, was assumed in analyzing pen 

data (feed to gain ratio and average daily feed consumption): 

where 

Yijkl = ~ + Bi + Fj + (BF)ij + Rk + (FR)ik + eijkl 

Yijkl = an observable random variable; 

Bi = fixed effect of the ith sire breed group, 
i=1, ••• , 5; 

Fj = fixed effect of the jth farrowing season, 
j=1, ••• , 5; 

Rk = fixed effect of the kth finishing barn, k=1, 2; 

(BF)ij' (FR)jk = interaction terms; 

and eijkl = random residual effect, e's assumed NID(o,cr 2). 

Preliminary analyses revealed the remaining two way and all three 

way interactions to be non-significant (P>.20). Number of pigs/pen, 

included as a covariable in preliminary models, failed to approach 

significance (P>.50). These terms were therefore not included in the 

final model. 

The model assumed in analysing postweaning average daily gain, age 

at 100 kg and probed backfat thickness at 100 kg was: 

where 

yijkmno = ~ + 8i + Fj + (BF)ij + 1kij + 5m + pn + (BP)in + 
eijkmno 

Yijkmno = an observable random variable 



11 = an unknown constant; 

Bi = fixed effect of the ith 

F. = fixed effect of the jth 
J 

sm = fixed effect of the 

Pn = fixed effect of the 

(BF).. (BP) 1.n = interaction effects; 1J, 

kth 

nth 
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breed of pig, i=1, ... ' 18; 

farrowing season, j=1, ... ' 5; 

sex, k=1, 2; 

parity, n=1, 2; 

lk .. = random effect of the kth litter nested within the ijth 
lJ breed-farrowing season subclass; 

and e. "k = random residual effect, e•s assumed NID(O,a 2). 1J mno 
The estimated ratio of the residual to litter components of variance 

(4.76, assuming heritability of .38 for all three traits) was included 

in litter equations, which were then absorbed. Where variances are 

known, solutions are generalized least squares estimates of fixed 

effects (Harvey, 1982). Additional fixed interactions, found not to be 

significant in preliminary analyses (P>.lO), were not included in the 

final model. All analyses were computed using the SAS Harvey procedure 

(Joyner, 1983). 

Paternal heterosis was estimated as the deviation of the four breed 

cross least-squares mean from the average of corresponding three breed 

cross means. Significance was tested using the t statistic. 

Results and Discussion. 

Pen Feed Data. Mean squares and significance of F-statistics for 

pen data analyses are given in table 2. Breed of sire and year-season x 

breed of sire were significant for feed to gain ratio, but not for 

average daily feed consumption. 



TABLE 2. LEAST-SQUARES ANALYSES OF VARIANCE FOR PEN DATA 

Mean Squares 

Source df 

Breed of 
sire (BOS) 4 .08087** 

Year-season 
farrowed 
(YRS) 4 .04814* 

Barn 1 .12246* 

YRS x Barn 4 .03675+ 

YRS x BOS 16 .03365* 

Residual 183 .01867 

afeed to gain ratio 

baverage daily feed intake, kg/pig/d 

+P<.10 

* P<.05 

**P<. 01 

.04447 

.69471 ** 

0 01156 

.00979 

.02902 

.03341 
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Feed to gain ratio, averaged across year-seasons, was 3.11 for Ouroc 

sired pens, 3.20 for Crossbred and Yorkshire sired pens, 3.22 for 

Landrace and 3.23 for Spotted sired pens. Given the significant 

interaction, breed of sire x year-season least-squares means are 

illustrated graphically in Figure 1. Ouroc sired pigs were consistently 

more efficient than other breed groups throughout the experiment. The 

significant breed x year-season interaction was due to the similarity of 

the breeds for the fall 1977 and spring 1979 farrowings, and changes in 

rank of breed groups other than the Ouroc sires in other year-seasons 

(Figure 1). Pigs farrowed in the fall of 1977 suffered badly from 

Atrophic Rhinitis, and those farrowed in the spring of 1979 from 

Mycoplasmal Pneumonia. It is conceivable that disease stress prevented 

expression of potential differences in feed efficiency between breed 

groups in these two year-seasons. Analyzing the data by year-season 

revealed significant differences between breeds of sire in the spring 

1978 and the fall 1979 farrowed pigs, and differences approached 

significance in the fall 1978 pigs. 

Ouroc sired pens were significantly more efficient than both 

Landrace and Spotted sired pens in the spring 1978 farrowed group, and 

more efficient than·Landrace sired pens in the fall 1979 farrowed group. 

A different set of boars was used each breeding season. Thus the 

significant year-season x breed of sire interaction may reflect the fact 

that sires selected were more important than the breed the sires were 

from--with the exception of the consistent advantage for Ouroc sired 

pigs. 

Comparing average feed efficiency for purebred sired pens to that 

for crossbred sired pens revealed no significant difference in any 
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o = Yorkshire sires 

6 = Landrace sires 

x = Spotted sires 
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Figure 1. Feed to Gain Ratio (F/G) for Purebred and 
Crossbred Sired Pens by Year-Season Farrowed. 
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individual year-season or overall. Average paternal heterosis was .015 

+ .020 for feed to gain ratio and -.005 ~ .027 for average daily feed 

intake. Mating two breed cross rather than purebred males to females of 

different breeding would therefore be expected to have little or no 

impact on subsequent feed efficiency of offspring produced. 

Theoretically, differences in progeny performance from using 

crossbred vs purebred boars is only expected assuming an epistatic 

heterosis model and significant recombination effects. Under such a 

model the coefficient for recombination effects for three breed crosses 

is one-quarter, vs a coefficient of one-half for four breed crosses 

(Dickerson, 1973). 

Breed of sire was not significant for average daily feed consumption 

(table 2). Differences in feed efficiency were therefore not associated 

with differences in average daily feed consumption. 

Genotype x Environment Interactions. Mean squares and significance 

of F-statistics for postweaning average daily gain, age and probed 

backfat thickness at 100 kg are given in table 3. Breed of pig, 

year-season farrowed and sex were highly significant for all three 

traits. Parity was highly significant for growth rate and age at 100 

kg, but not for probed backfat. The breed x parity interaction was 

highly significant for average daily gain, approached significance for 

age at 100 kg, but was not significant for probed backfat. The breed x 

year-season farrowed interaction, however, was highly significant for 

all three traits. Signiffcant breed x year and (or) season interactions 

have been reported for growth rate (Bruner and Swiger, 1968; Quijandria 

et al., 1970 and Miller et al., 1979) and for both growth rate and 

probed backfat ·thickness by Johnson et al. (1973). Genotype x year and 



TABLE 3. GENERALIZED LEAST SQUARES ANALYSIS OF VARIANCE FOR GAIN 
TEST DATA 

Source df ADGa 

Breed (BR) 17 .01567** 

Year-season 
.19218** farrowed (YRS) 4 

Sex 1 4.36946** 

Parity (PAR) 1 .19755** 

BR X PAR 17 .01233** 

BR x YRS 68 .01564** 

Residual 3347 • 00717 

aPostweaning average daily gain, kg/d. 

bAge at 100 kg, d. 

cProbed backfat thickness at 100 kg, mm. 

+P<.10 

* P<.OS 
** P<.01 

Mean Squares 

AGEb BFc 

** ** 451.1 58.49 

9572.3 ** 598.95** 

74314.3 ** 8672. n** 
8153.3** 11.40 

255.9+ 5.66 

** 13.25** 349.9 

188.2 8.75 
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(or) season interactions, however were unimportant for growth 

performance traits in a number of other studies (Kuhlers et al., 1972, 

1977; Johnson et al., 1978; Christian et al., 1980 and Hutchens et al., 

1982). 

To illustrate some consequences of the breed x year-season 

interaction in these data, consider the following examples for probed 

backfat thickness: 

1. The leanest Yorkshire sired pigs overall (Yorkshire x Duroc-Spotted) 

were the fattest Yorkshire sired pigs farrowed in the spring of 

1978. 

2. While Duroc x Yorkshire-Spotted pigs were, overall, slightly leaner 

than the Duroc-Landrace x Yorkshire-Spotted pigs, they were fatter 

in three year-seasons. 

3. Landrace x Duroc-Spotted pigs were significantly leaner than 

Yorkshire-Landrace x Duroc-Spotted pigs in the fall of 1979, 

although the reverse was true in other year-seasons. 

4. There was very little difference in Duroc-Landrace dam means for the 

sire groups overall (table 4). Significant differences did 

exist in different year-seasons, but due to rank changes those 

differences were not seen when means were averaged across 

year-seasons. 

Many factors undoubtedly contributed to year-season effects, but 

fluctuating disease status and seasonal temperature differences were 

probably both important. Conceptually, it seems reasonable to regard 

year-season effects as random. Comparing breed group performance in 

individual year-seasons decreases precision, and would restrict 

inference to populations under the same environmental conditions, 



TABLE 4. BREED GROUP PROBED BACKFAT THICKNESS GENERALIZED 
LEAST-SQUARES MEANSa 

Breed of damb,c 
Breed of 

sirec D-Y D-L D-S Y-L Y-S L-S 

D 25.13 24.95 

y 27.40 25.97 

L 28.11 28.10 27.39 

s 27.20 27.63 26.92 

X 27.77 27.13 27.34 27.61 25.39 

astandard error, range ~.33 to .50 mm. 

bReciprocal crosses combined (i.e., D-Y represents DxY and YxD). 

cD=Duroc, Y=Yorkshire, L=Landrace, S=Spotted, X=Crossbred. 

25.65 

26.73 

27.22 

For each dam breed group, crossbred boars represented F1•s involving 
the two breeds not included in the F1 dam. 
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conditions which cannot be adequately characterized. The objective of 

the study was to compare breed performance, necessitating averaging over 

such effects. In making breed comparisons we assume not only adequate 

sampling of the breeds, but also that year-seasons were representative 

of environments to which the population of inference is exposed. These 

data do serve as a caution, however, that the importance of genotype x 

'physical' environment interactions in swine should not be overlooked. 

Despite many changes in ranking of breeds in different year-seasons, 

certain consistant results were observed. Rank for the three sire breed 

groups mated to Yorkshire-Landrace dams was consistent from one 

year-season to the next and, for all practical purposes, consistent for 

sire breeds mated to Landrace-Spotted dams. · Duroc-Landrace x 

Yorkshire-Spotted pigs were the leanest four breed cross pigs in all but 

the first year-season. Comparisons between purebred breeds of sire 

mated to the same breed of dam revealed that Landrace sired pigs were 

fatter than the alternative purebred sired pigs for each breed of dam 

each year-season (i.e., Landrace x Duroc-Yorkshire pigs were fatter than 

Spotted x Duroc-Yorkshire pigs each year-season; Landrace x 

Duroc-Spotted pigs were fatter than Yorkshire x Duroc-Spotted pigs each 

year-season; etc.). Similarly, Duroc sired pigs were leaner than the 

alternative sired pigs for each breed of dam each year-season. 

Probed Backfat. Breed group means for probed backfat thickness are 

presented in table 4. Averaged over year-seasons, comparison of three 

breed cross probed backfat means indicated no breed of sire x breed of 

dam interaction. In pairwise comparisons between sire pure breeds by 

breed of dam, sire breeds ranked Duroc, Yorkshire, Spotted and Landrace 

from leanest to fattest. 
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A comparison of average probed backfat of all purebred sired pigs vs 

crossbred sired pigs yielded no significant differences either overall, 

or in any individual year-season's data. Paternal heterosis estimates 

are given in table 5. Contradictory signs on significant differences 

resulted in a small overall estimate, probably not different from zero. 

Paternal heterosis was significantly different from zero in 6 of 30 

breed of dam x year-season subclasses, apparently at random (once in 

each year-season, involving all but one dam breed group and with four 

positive and two negative differences). It seems likely, therefore, 

that observed differences were due to chance. 

Age at 100 kg. In addition to breed, sex, year-season and the breed 

x year-season interaction, parity was also highly significant for age at 

100 kg, and the breed x parity interaction approached significance 

(table 3). Barrows averaged 10 d younger at 100 kg than gilts. Pigs 

from second parity sows averaged 6 d younger at 100 kg then those 

farrowed in gilt litters. 

Breed group least-squares means, averaged across year-seasons, are 

presented in table 6. As with probed backfat thickness, three breed 

cross means suggest no breed of sire x breed of dam interaction. 

Pairwise comparisons of purebred sires within breed of dam ranked sire 

breeds Yorkshire, Landrace, Duroc, Spotted from youngest to oldest at 

100 kg. 

Paternal heterosis estimates are given in table 5. Two estimates 

approached significance--one suggested positive heterosis, the other 

negative heterosis. The Duroc-Landrace breed of dam estimate reflected 

a large difference among gilts in only one year-season. The Yorkshire -

Spotted estimate reflected significant differences for gilt and sow 



TABLE 5. PATERNAL HETEROSIS ESTIMATESa 

Paternal Heterosis (hp) 

Breed a of 
Sire ADGb 

Landrace-Spotted .015 + .014 

Yorkshire-Spotted .020 + .012 

Yorkshire-Landrace .016 + .013 

Duroc-Spotted -.001 + .013 

Duroc-Landrace -.021 + .014 

Duroc-Yorkshire -.004 + .013 

Overall .000 + .005 

aReciprocal crosses combined. 

bPostweaning average daily gain, kg/d. 

cAge at 100 kg, d. 

dProbed backfat thickness at 100 kg, mm. 

+P<.10 

* P<.05 

** P<.01 

AGEe BFd 

-1.81 + 2.30 .11 + • 50 

-3.72 + 1.95 + • 39 + • 42 

-2.11 + 2. 06 -. 89 + • 44 

.35 + 2.06 1. 58 + • 44 

3.94 + 2.22 + -.78 + .48 

-.12 + 2.06 1. 03 + • 44 

-.10 + • 86 • 31 + .19 
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TABLE 6. BREED GROUP AGE AT 100 KG GENERALIZED LEAST-SQUARES MEANSa 

Breed of damb,c 
Breed of 

sire b,c D-Y D-L D-S Y-L Y-S L-S 

D 180.3 184.4 184.7 

y 183.3 179.6 181.3 

L 178.6 181.4 183.1 

s 190.0 186.7 184.5 

X 182.5 181.3 181.3 182.7 187.7 182.9 

aStandard error, range~ 1.5 to 2.3 d. 

bReciprocal crosses combined (i.e. D-Y represents DxY and YxD). 

cD=Duroc, Y=Yorkshire, L=Landrace, S=Spotted, X=Crossbred. 
For each dam breed group, crossbred boars represented F1•s involving 
the two breeds not included in the F1 dam. 
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litters in different year-seasons. However, this estimate was negative, 

in contrast to other specific estimates, and overall paternal heterosis 

was not significant. 

Average Daily Gain. Breed, year-season, sex and parity were all 

highly significant for postweaning average daily gain, as were the breed 

x year-season and breed x parity interactions (table 3). Barrows grew 

significantly (.075 kg/d) faster than gilts. Pigs born to second parity 

sows gained significantly (.031 kg/d) faster than these farrowed in gilt 

litters. Breeds, however, ranked differently for average daily gain not 

only in different year-seasons, but also across parities. 

Additional analyses were therefore conducted by parity. Breed, 

year-season, sex and the breed x year-season interaction were highly 

significant for both parities. Yorkshire x Landrace-Spotted and 

Yorkshire-Spotted x Duroc-Landrace were the only breed groups for which 

pigs farrowed in gilt litters had faster postweaning rate of gain than 

those farrowed by second parity sows. The reverse was true for all 

other breed groups. Change in rank of the Landrace x Duroc-Yorkshire 

was particularly noticeable between parities (from 15th in parity one to 

1st in parity two). If sire breed ranks within breed of dam were 

considered, rank changes across parities were evident for all but the 

Yorkshire-Spotted dams. Considering only purebred sire breeds, however, 

the only rank change occurred between Duroc and Yorkshire sired pigs 

with Landrace-Spotted dams. As well as rank changes, differences 

between breed groups were in many cases of very different magnitudes for 

the two parities. For example, Landrace and Spotted sired pigs by 

Duroc-Yorkshire gilts had very similar growth rates--but by second 

parity sows these breed groups represented the extremes of the range in 
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breed average daily gain least-squares means. The breed x parity 

interaction was also apparent if dam breed rankings within purebred sire 

breed groups were compared. Dam breeds mated to Duroc and Spotted sires 

ranked the same in both parities, but this was not the case for 

Yorkshire or Landrace sires. 

Despite significant interactions, breed group means averaged across 

year-seasons and parities are presented in table 7. Pairwise 

comparisons among three breed cross means by breed of dam ranked sire 

breeds Yorkshire, Duroc, Landrace and Spotted from fastest to slowest 

postweaning gain. The same result was obtained for pigs farrowed in 

gilt litters. However, a breed of sire x breed of dam interaction was 

evident in parity two means, Duroc sires ranking inconsistently. These 

results for Spotted sires are at variance with those obtained from the 

purebred and F1 phase of this experiment, in which Spotted sired pigs 

gained almost as well as the fastest gaining sire breed group, the Duroc 

(Mclaren et al., 1985). Postweaning average daily gain of crossbred 

sired pigs from second parity litters was not found to be significantly 

different from that of purebred sired second parity litter pigs in any 

year-season's data, or overall. For pigs farrowed in gilt litters, 

significant differences in growth rate were found in two year-seasons. 

Crossbred sired pigs farrowed in the spring of 1978 grew significantly 

faster than purebred sired pigs. However the reverse was true in the 

fall of 1979 pigs, the three breed cross pigs gaining significantly 

faster than the four breed cross pigs. Overall, no significant 

difference was detected between growth rate of purebred and crossbred 

sired pigs. Estimates of paternal heterosis are given in table 5. 
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TABLE 7. BREED GROUP POSTWEANING AVERAGE DAILY GAIN GENERALIZED 
LEAST-SQUARES MEANSa 

Breed of damb,c 
Breed of 

sireb,c D-Y D-L D-S Y-L Y-S L-S 

D .723 .698 .689 

y .703 .719 .708 

L .716 .703 .681 

s .665 . 677 .690 

X .707 .710 .704 .706 .668 .694 

aStandard error, range~ .009 to • 014 kg/d. 

bReciprocal crosses combined (i.e. D-Y represents DxY and YxD). 

cD=Duroc, Y=Yorkshire, L=Landrace, S=Spotted, X=Crossbred. 
For each dam breed group, crossbred boars represented F1•s involving 
the two breeds not included in the F1 dam. 
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These results indicated zero paternal heterosis for feed efficiency, 

growth rate and probed backfat, in agreement with the concensus of 

published studies. Rempel et al. (1964) reported pigs sired by 

crossbred boars to be significantly fatter and slower gaining than those 

sired by purebred boars. However the purebred boars used were selected 

for decreased backfat and increased average daily gain, whereas 

crossbred boars were chosen at random. Lishman et al. (1975) reported 

no significant difference between average daily gain and feed to gain 

ratio for pigs sired by Large White vs Large White x Landrace boars. 

Fahmy and Holtmann (1977), compared Landrace x Yorkshire, Duroc x 

Yorkshire and Duroc x Lacombe boars to boars of the four pure breeds and 

found negligible differences for growth rate of progeny. Kennedy and 

Conlon (1978) found progeny of Hampshire x Duroc boars performed 

similarly to those sired by purebred Hampshire and Duroc boars. 

The misconception that use of crossbred boars is expected to 

increase variability among progeny relative to use of purebred sires has 

existed in the past (Fahmy and Holtmann, 1977). While the residual mean 

square from analysis of four breed cross data in this study was greater 

than that for the entire (three and four breed cross) dataset for 

average daily gain (.0074 vs .0056 kg2;d2), the reverse was true for age 

and probed backfat @ 100 kg. For these traits the four breed cross 

residual mean squares were 189d2 and 9.8 mm2, respectively, vs 216 d2 

and 10.8 mm2 for the entire data set. A number of workers have also 

reported little difference in variability of three vs four breed cross 

pigs (Rempel et al., 1964; Lishman et al., 1975; Fahmy and Holtmann, 

1977). 
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Buchanan and Johnson (1984) found no significant differences among 

boar breed groups for litter size, weight or survivability, but did 

report an 18% increase in first service conception rate for crossbred vs 

purebred boars. Over the 8 wk breeding season, however, this advantage 

was only 5%, due probably to purebreds maturing as the season 

progressed. Crossbred boars have not been shown to adversely affect 

progeny performance. •Hybrid• boars might therefore be advantageous to 

a system using young boars. This advantage must, however, at least 

offset the costs of maintaining an additional pure breed in the 

production system if it is to improve overall efficiency. A subsequent 

paper will pool results from the Oklahoma four breed swine crossing 

experiment and compare economic efficiency of alternative crossbreeding 

systems involving the Duroc, Yorkshire, Landrace and Spotted breeds 

using a computer simulation model. 
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CHAPTER V 

ECONOMIC EVALUATION OF ALTERNATIVE CROSSBREEDING 
SYSTEMS INVOLVING FOUR BREEDS OF SWINE 

Summary 

Static, deterministic computer models, developed on the IBM PC, were 

used to calculate production efficiency (costs/kg product) for four 

purebred and 69 alternative crossbreeding systems involving the Duroc, 

Yorkshire, Landrace and Spotted breeds of swine. Crossbreeding systems 

were defined as including all purebred, crossbred and commercial matings 

necessary to maintain a total of 10,000 farrowings. Driving variables 

for the models were predicted mean conception rate, litter size born, 

percent survival to 42-d, postweaning average daily gain, feed to gain 

ratio and carcass backfat. Predictions were computed using genetic 

parameter estimates obtained from crossbreeding experimental data 

involving the four breeds collected at the Oklahoma Agricultural 

Experiment Station. Breeding systems involving the Spotted breed were 

predicted to be at a decided disadvantage relative to the Duroc, 

Landrace and Yorkshire breeds. The most efficient breed combinations 

for each of the nine types of crossbreeding system evaluated were 

predicted to reduce costs/kg of product by 14.7 to 17.5%, relative to 

the most efficient purebred (Duroc). The Landrace x (Duroc x Yorkshire) 

three breed static was predicted to be the most efficient system, 

followed by the Duroc x (Yorkshire x Landrace). The Duroc, Landrace two 

breed rotation, and the Duroc, Landrace, Yorkshire three breed rotation 

ranked third and fourth overall, respectively. Backcross, three breed 
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combination and four breed static systems also ranked in the 10 most 

efficient systems. Results of this study suggested that a two or three 

breed rotation system utilizing efficient breeds should prove almost as 

effective as a three breed static system. 

(Key Words: Swine Crossbreeding, Mating Systems, Economic Efficiency, 

Computer Simulation.) 

Introduction 

Efficient pork production dictates that market hogs be produced by 

some form of crossbreeding system. Due to the impracticality of 

experimentally evaluating all possible systems, breed effects and 

heterosis estimates must be used to predict expected performance for 

crossbreeding systems not evaluated in the field. The number of 

available breeds, and the variety of alternative, crossbreeding systems, 

makes comparisons among systems a task well suited to the computer. In 

addition, the number of economically important traits requiring 

simultaneous evaluation, and the need to not only consider performance 

in the market hog producing sector, but to also make allowance for 

purebred and other breeding stock generators required by the system, 

increases the complexity of obtaining meaningful comparisons among 

alternative systems. 

The objectives of this study were to develop simulation models to 

calculate economic efficiency for alternative pure- and crossbreeding 

systems based upon user-input genetic, economic and management 

parameters. Models were used to compare predicted efficiencies of 73 

alternative mating systems involving the Duroc, Yorkshire, Landrace and 

Spotted breeds. Genetic parameters for conception rate, litter size 
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born, percent survival to 42-d, postweaning average daily gain, feed to 

gain ratio and carcass backfat were estimated from experimental data and 

used to predict performance for the different systems. Each system was 

defined as including all purebred and crossbred sub-systems required to 

maintain 10,000 total females farrowing in the system. 

Materials and Methods 

The Data. Heterosis and breed effects were required input data for 

the simulation models. Reproductive, growth and carcass data for Ouroc, 

Yorkshire, Landrace and Spotted purebreds and crosses were collected 

between 1976 and 1979 at the Oklahoma Agricultural Experiment Station. 

Genetic parameter estimates used in the models (table 1) were obtained 

by weighted (by number of observations) least-squares analyses of breed 

group means reported for this experiment (Buchanan and Johnson, 1984; 

Gaugler et al., 1984; Mclaren et al., 1985 a,b). Models were 

parameterized based upon Dickerson•s (1969, 1973) crossbreeding effects 

models. The full model assumed was: 

where 
y = XS + e (1) 

y = a vector of breed group means, _ N(X~,a2 D); 

D = a diagonal matrix, elements are reciprocals of the 
no. observations on corresponding elements of I; 

X = a known design matrix; 

S = vector of direct genetic (gi i ), maternal (gMi) and 

individual, maternal and paternal heterosis 

I M P (h .. , h .. , h .. ) parameters, i.e., 
lJ lJ lJ 

I I I I M M M 
§ =( g D g Y g L g 0 g Y g L 

I I M M P P 
h DY h LS h DY ••• h LS h DY ••• h LS), 
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TABLE 1. GENETIC PARAMETER ESTIMATES 

Trait a 

Parameterb CR LSB SURV ADG F/G BF 

MU 69.76 10.58 70.81 • 6504 3.212 32.43 

GID -10.01 • 35 -.88 .0148 -.210 -6.55 
GIY 1.34 • 78 -4.48 -. 0111 -.027 2.48 
GIL 8.62 • 07 5.05 -.0215 .020 -.08 
GIS .05 -1.20 -.31 .0178 .217 4.16 

GMD above estimates -2.13 -.0026 0 3.19 
GMY represent -2.12 -.0010 0 -1.88 
GML GI + GM 1.12 .0062 0 1.12 
GMS 3.13 -.0026 0 -2.43 

HIDY .23 4.31 .0796 .009 1. 96 
HIDL .23 5.73 .0736 .009 • 90 
HIDS .23 7.86 .0712 • 009 • 79 
HIYL .23 9.88 .0545 .009 .98 
HIYS .23 6.41 .0622 • 009 -1.28 
HILS .23 -.18 .0705 .009 -. 70 

HMDY 2.8 • 93 0 0 0 0 
HMDL 2.8 • 93 0 0 0 0 
HMOS 2.8 • 93 0 0 0 0 
HMYL 2.8 • 93 0 0 0 0 
HMYS 2.8 .93 0 0 0 0 
HMLS 2.8 .93 0 0 0 0 

HPDY 7.31c • 09 1. 92 .015 -.008 .11 
HPDL 9.39~ -. 09 -.41 .020 -.008 • 39 
HPDS 4.25c .71 -3.58 • 016 -.008 -.89 
HPYL 4.23c -. 05 -1.71 -.001 -.008 1. 58 
HPYS 3.70 .61 -8.72 -.021 -.008 -.78 
HPLS 9.33c • 23 -1.60 -.004 -.008 1.03 

aCR=conception rate (%); LSB=litter size born; SURV=% survival to 42-d; 
ADG=postweaning average daily gain (kg/d); F/G=feed to gain ratio; 
BF=average carcass backfat thickness (probed backfat for HP). 

bMU=a constant; GI=direct genetic effects; GM=breed maternal effects. 
H=heterosis: !=individual, M=maternal, P=paternal. D, Y, L, S suffixes 
represent the Duroc, Yorkshire, Landrace and Spotted breeds. 

cFigures are one-half paternal heterosis for first service conception 
rate. 
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subject to the restrictions Eg1. = EgM. = o 
1 1 

2 and e = vector of residual effects, -N(O,o D) 

Appropriate reduced models were used to analyse the purebred, F1, 

three and four breed cross means reported. Solutions were obtained as: 

s = <x·D-1x>-1x·D-1y (2) - -
Direct and maternal effects were confounded for conception rate and 

litter size born, and were therefore estimated jointly. Paternal 

heterosis for conception rate (table 1) represents one-half the estimate 

obtained for first service conception rate. This assumed boars were 

used for two distinct breeding seasons, and that the crossbred advantage 

was present only during the first breeding season. Note also that 

backfat parameters were for carcass measurements, except for paternal 

heterosis where estimates for probed backfat thickness were used. 

Maternal heterosis estimates (table 1) were taken from Johnson 

(1981), except for the zero assumed for percent survival to 42-d, for 

which no literature estimates were available. Maternal breed effects 

for feed to gain ratio were also assumed to be zero due to the lack of 

experimental estimates for the breeds involved in this study. 

The Crossbreeding Model. The swine production system modeled 

included purebred, crossbred and commercial matings necessary to 

maintain a total of 10,000 farrowings. For example, a three breed 

static cross (C x (A x B)) system consisted of C, A and B purebreds, 

plus hybrid Ax B gilt and terminal C x (Ax B) market hog producing 

sub-systems, with a total of 10,000 A, B, C and A x B females farrowing. 

Static, deterministic computer models, written in Basic, were 
' developed on the IBM PC. The models predicted performance, structure and 

economic efficiency for 10 alternative types of mating system involving 
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the Duroc, Yorkshire, Landrace and Spotted breeds. One program modeled 

purebreds, two, three and four breed rotations and combination systems 

(a terminal sire breed mated to two or three breed rotation females). 

All rotational systems were assumed to be at equilibrium. A second 

program modeled purebreds, backcrosses and two, three and four breed 

static cross sytems. Program listings are given in Appendixes A and B. 

Copies of the programs (on diskette) may be obtained from the author. 

A diagramatic overview of calculations performed by the programs is 

given in Figure 1. 

Driving variables for the models were predicted mean conception 

rate, litter size born, percent survival to 42-d, postweaning average 

daily gain, feed to gain ratio and carcass backfat. Predictions for 

alternative sub-systems were computed from parameter estimates which 

served as input to the programs. Base parameters were as given in table 

1, except for paternal heterosis which was assumed to be 6.22 for 

conception rate for all crosses and zero for all other traits. Where 

systems involved F1 females, reciprocal crosses were compared based upon 

litter size born/female exposed (conception rate* litter size born). 

Only the most prolific cross in each of six reciprocal pairs was used as 

the hybrid female, restricting the total number of systems considered. 

It might be argued that, as approach to equilibrium varies for 

different systems, a dynamic model (i.e., simulating performance over 

time starting from a purebred foundation) would be more appropriate than 

the static, equilibrium models developed in this study. While true for 

the producer concerned with short-term relative efficiency of systems, 

where the objective is long-term efficiency of pork production 

comparisons at system equilibrium would seem to be more appropriate. 



INPUT 

MANAGEMENT 

PARAMETERS 

Litter Size 

Weaned 

CALCULATE NO. 

FEMALES FARROWING 

IN EACH SUB-SYSTEM 

INPUT 

GENETIC 

PARAMETERS 

CALCULATE 

PREDICTED PERFORMANCE 

FOR TERMINAL 

OFFSPRING OF EACH 

SUB-SYSTEM 

CALCULATE WEIGHTED 

EFFICIENCY FOR 

EACH ENTIRE SYSTEM 

INPUT 

ECONOMIC 

PARAMETERS 

,1/ '/ 

CALCULATE 

EFFICIENCY FOR 

EACH SUB-SYSTEM 

Figure 1. Diagramatic Overview of Calculations Performed by 
the Crossbreeding Simulation Models. 
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Breed Cross Performance Simulation. The model used to predict 

conception rate, litter size born, percent survival to 42-d, postweaning 

average daily gain, feed to gain ratio and carcass backfat thickness 

was: 

y .. 
1J 

where 

s I 
= ll + .5(.l:1k.g. 1 = 1 1 

d M 
r • ~ .k • • 1 h • • 1 + 

ZJrJ' JJ JJ 

d M sd I 
l: k .g . + r l: k .• h .. + 

j=1 J J Xifj 1J 1J 

y .. = predicted mean of the cross for a given trait; 
1J 

ll = an overall constant; 

i = sire breed index, i=l, ••• , s. 

j =dam breed index, j=1, ••• , d; 

k. . 
1 'J 

= proportion of genes from the ith and (or) jth breed; 

gi = direct breed effects; 

gM = maternal breed effects; 

hi,M,P =individual, maternal and paternal heterosis; 

(3) 

rx = 1 for all but strict rotation systems, where rx = 2/3, 6/7 and 

14/15 for 2, 3 and 4 breed rotations, respectively 

and rz = rx for all but combination systems, where rz = 2/3 and 6/7 for 

the 3 and 4 breed combinations, respectively. 

For rotational systems, breeds were entered as both sire and dam 

breeds in the above equation. For conception rate and litter size born, 

gii and gij were considered effects of the sire and dam of the female. 

Thus only the four breed static cross acknowledges breed of sire effects 

(crossbred vs purebred boars) on conception rate. 

System Structure. Calculating the number of females farrowing in 

each sub-system required the following user-input information: 



T = total number of females farrowing in the system; 

MR = proportion of males replaced each breeding cycle; 

FR = proportion of females replaced each breeding cycle; 

MS =proportion of male offspring in herds generating replacement 
males that are used as breeding stock; 

157 

FS = proportion of female offspring in herds generating replacement 
females that are used as breeding stock; 

SB = number of females/boar in the breeding herd; 

PS = prob. surviving from weaning to marketing at 100 kg, and 

= predicted litter size weaned for the ith breed group. LSW. 
1 

Simulations assumed the following values: T = 10,000; MR = FR = .5; 

MS = .6; FS = .8; SB = 10 and PS = .97 (purebreds), .98 (crossbreds). 

Different purebred and crossbred values for MR and FR can also be input 

to the model. These values were used to calculate the number of females 

required to produce boars of the ith breed, as a proportion of the total 

number of females farrowing in the sub-system(s) that these boars were 

used in (FMi); and the equivalent statistic for females needed to 

produce gilts, again as a proportion of all farrowings involving such 

females (FFi). Formulas were: 

FM. = 
1 2 * MR/(SB * MS * PS * LSWi) 

= 2 * FR/(FS * PS * LSWi) FF. 
1 

(4) 

(5) 

Values of FM averaged .023 for purebreds and .021 for crossbred males, 

i.e., a little over 2% of females were required to produce replacement 

boars. Replacement gilts were either purebred, two breed crosses or the 

product of two or three breed rotation systems. Average values of FF 

were .174, .159, .156 and .151, respectively. 

Derivation of system structure equations can be illustrated using 

the two breed rotation as an example. Let the two breeds be called A 
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and B. Critical needs for the system, then, are purebred A and B males, 

the rotation generating its own females replacements. Let A equal the 

number of purebred A females farrowing, B equal the number of purebred B 

females farrowing and AB equal the number of rotation females, half 

mated to breed A and half to breed B boars. Then: 

A + B + AB = T 

By definition: A = FMA*(A + AB/2), giving 

2A*(1-FMA) = FMA*AB, thus 

A = (FMA*AB)/(2-2FMA). 

Similarly: B = FM8 (B + AB/2), giving 

B = (FMB*AB)/(2-2FMB) 

(6) 

(7) 

(8) 

Substituting (7) and (8) into (6) above, collecting terms in AB and 

simplifying gives: 

AB = T/[(FMA/(2-2FMA)) + (FM8/(2-2FM8)) + 1] (9) 

All elements in the right hand side of equation (9) are known, 

therefore AB is calculated and substituted into equations (7) and (8) to 

yield A and B. The same logic was followed in developing equations for 

all crossbreeding system. Complete formulae for all systems are given 

in Appendix C. 

Calculating Efficiency. Efficiency of terminal production for each 

sub-system was measured as cost/unit product (Dickerson, 1970, 1976, 

1978; Harris, 1970; Newman, 1985). Efficiency (E) was computed from 

predicted performance values for sub-systems, and from assumed economic 

parameter values, as: 

Ei = (Lifetime Costs/Dam)/(Lifetime Product/Dam) 

= (CBi + (no. litters)* CGi)/(PBi + (no. litters)* PGi) 

= (CBi + (1/FR) * CGi)/(PBi + (1/FR) * PGi) (10) 



where i = breeding system index, i=1, ••• , 10; 

CB =reproduction costs, $/dam-lifetime; 

CG =costs of postweaning growth, $/litter; 

PB = salvage breeding stock product, kg/dam-lifetime and 

PG = postweaning growth product, kg/litter. 

Additional parameters involved in efficiency equations were: 

BCI. =average breeding to rebreeding interval for the ith female 
1 breed group, 
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= 160 + 21*(1-CRi), d 

and the following constants: 

(11) 

FIB = breeding herd (including boars, replacements and baby pigs to 
18 kg) feed intake, kg/sow/day; 

GP = gilt costs from 100 kg until first breeding, $; 

FCB = cost of breeding herd ration, $/kg; 

FCG = cost of growing-finishing ration, $/kg; 

LOCR = labor and overhead costs of reproduction, $/sow farrowed/d 
and 

LOCG = growing-finishing labor and overhead costs from 
18-100 kg, $/market pig/d. 

Breeding to rebreeding interval assumed 113 d from conception to 

farrowing, 42 d lactation and 5 d from weaning to first estrus (160 d 

total), plus (1-CRi) of females who conceived 21 d later at second 

estrus. The following constant values were assumed in the base model: 

FIB= 3.728 kg; GP = $30; FCB = $ .129; FCG = $ .126; LOCR = $ .867 

and LOCG = $ .136. These values were based upon data from 11 Estimated 

Returns from Farrowing and Finishing Hogs in Iowa 11 , averaged over the 10 

yr 1974- 1983 (Futrell, 1974, 1980, 1983). Breeding herd feed intake 

(FIB) accounted for replacements needed by a system farrowing sows only 

twice. Hence FR was set at .5 in the base program. Varying FR would 
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require consideration of changes in FIB. Gilt costs (GP) were computed 

as 110% of costs/finishing pig/d over the 60 d interval from finishing 

(100 kg) to entering the breeding herd at 118 kg. Feed costs and labor 

and overhead costs were based on averages of monthly figures presented 

by Futrell (1974, 1980, 1983). 

Components of efficiency (costs/unit product) have been identified 

as costs and products of reproduction and growth (equation (10)). These 

components are now defined in turn: 

Growth phase product 

PGi =Relative Value* P(Survive) *Litter Size Weaned* 

S 1 aughter wt 

= RV * PS * LSW. * 100, kg/dam/litter 
1 

The above equation was used except for purebred herds and herds 

( 12) 

producing crossbred boars, where it was assumed that 10% of males were 

castrated, and that boar meat was worth 70% of equivalent (100 kg) 

market hog meat. Therefore, in those herds: 

PGi = RV * .865 * PS * LSWi * 100, kg/dam/litter (13) 

Relative value was determined according to NPPC 11 pork val ue 11 

guidelines (NPPC, 1984) for 211-230 lb market hogs, based upon carcass 

backfat at the last rib. The simulations, however, predicted average 

backfat thickness. Average backfat was assumed to equal last rib 

backfat plus 7.6 mm. The regression of relative values recommended by 

NPPC (1984) on average carcass backfat was: 

RV = 114 - .3937 * (av. backfat, mm) (14) 

Thus predicted backfat of 35.56 mm had a relative value of 100. Plus or 

minus 5 mm corresponded to approximately minus or plus two points on the 

value index. 
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Salvage Breeding Stock Product. 

PBi = Relative Value * Cull Female Wt 

+Relative Value* Cull Boar Share , kg/dam-lifetime. 

= RVs *(cull sow wt} + [no. open females/sow] * 

[prop. gilts * RV6 * cull wt + prop. sows * RVs * cull wt] + 

(no. boars/sow} * RVB * cull wt. 

= .85 * (129.3 + 27.2/FR} + [(1/FR) * ((100/CRi)-1}] * 

[FR * .9 * 129.3 + (1-FR) * .85 * (129.3 + (27.2/FR)}] 

+ (MR/(SD * FR)} * .65 * 181.4 (15) 

The program then allows for a 1.5% breeding herd death loss/cycle by 

setting PB. = .985 PB .• 
1 1 

Cost of Postweaning Growth. 

CGi =[No. Pigs/Litter]* No. Days* Costs/Day 

= [(LSBi * SURVi/100)((1 + PS)/2] * (81.65/ADGi) 

* (LOCG + FCG * ADG. * F/G.) 
1 1 

, $/dam/litter (16} 

Reproduction Costs. 

CBi = [Cost of Breeding Stock] + No. Days in Breeding Herd * Costs/d 

= [Cost of Stock] +No. Litters * BCii * (LOCR +FIB* FCB) 

= [(1 + MR/(SB * FR)(100 * FR * CBj)/(PS * LSWj * CRj) 

+ 100 * (Gj/(PS * LSWj * CRj) + 100 * GP/CRj)] + (1/FR) * BCii 

* (LOCR +FIB* FCB) , $/dam-lifetime (17) 

where j indexed the sub-system replacements were produced in. 

System Efficiency. Having calculated efficiency for terminal 

offspring of systems, and the number of sows farrowing in different 

sub-systems, the programs proceed to compute system efficiency as the 

weighted (by number of females) average of sub-system efficiencies. 
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Model Evaluation and Sensitivity Analysis. 

Comparison of predicted mean performance (table 2 and Appendix D) 

for different crosses to data used to estimate parameters helped 

evaluate that aspect of the programs. Comparison with results of other 

studies that predicted expected relative efficiency for different swine 

crossbreeding systems also helped evaluate the models. 

Results obtained were not found to be sensitive to substituting 

average for specific heterosis estimates. Assuming individual heterosis 

for litter size born, percent survival to 42-d, average daily gain and 

backfat to be 0 pigs, 5.66%, .0688 kg/d and .43 mm, respectively, the 

same combinations ranked highest for each system as when specific 

estimates were used. 

Excluding the NPPC "pork value" aspect of the economic evaluation 

was also found not to affect system ranking. However systems were 

generally 1 to 2% more efficient under the pork value program, 

indicating that the average pig was earning a premium for decreased 

back fat. 

Results and Discussion 

Evaluation Techniques. Profit equations and simulation techniques 

aimed at predicting economic efficiency for swine production systems 

have been developed by a number of workers over the past two decades. 

Smith (1964) discussed ranking lines and crosses based upon actual or 

predicted performance and relative economic weights for various traits. 

Moav (1966, 1973) developed algebraic and graphical procedures to 

determine the relative profitability of purebreds and crosses, assuming 
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TABLE 2. PREDICTED DRIVING VARIABLES FOR PUREBREDS 

Breed Concepti on Litter % Litter Average Carcass Feed 
rate size Survival size d gain backfat to gain 
% born -42d weaned kg/d mm ratio 

Duree 59.8 10.9 67.8 7.4 .663 29.1 3.00 

Yorkshire 71.1 11.4 64.2 7.3 .638 33.0 3.19 

Landrace 78.4 10.7 77.0 8.2 .635 33.5 3.23 

Spotted 69.8 9.4 73.6 6.9 .666 34.2 3.43 

11 Exotic 11 69.8 14.0 82.6 11.6 .350 39.4 4.00 
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profitability to be a function of reproductivity (number of weaned 

pigs/sow/yr) and productivity (feed to gain ratio). Moav established 

the necessity for evaluation of alternative breeding systems based on an 

objective, probably nonlinear, profit function. 

Systems analysis demands precise definition of objectives. Harris 

(1970) argued that, in the long term, improvement of efficiency in a 

livestock sector will result in lower costs to the consumer, increased 

consumption and increased production, rather than in greater profit for 

producers. Long term profitability for a livestock producer therefore 

lies in his efficiency relative to other producers. In a capitalist 

economy, improvement of production efficiency should result from 

efficient (and thus profitable) producers increasing their share of the 

market. Aiming to improve the relative profitability of producers 

therefore serves the wider objectives of society (and the consumer) at 

the same time. Harris (1970) maintained that the goal of improvement 

should be either profit, return on investment or cost/unit of 

production. All three are functions of expenses (costs of production) 

and income (product adjusted for quality), and Harris (1970) presented 

equations that accounted for all costs and income, both in the breeding 

herd and market animals, during the entire life cycle of an animal. 

Dickerson (1970, 1976, 1978) also expressed net or life-cycle 

economic efficiency as the ratio of total costs to total animal product. 

He presented a comprehensive equation for the ratio of expenses/yr to 

product value/yr. Although biological measures of efficiency (e.g., 

feed, energy or protein input/unit edible protein or protein energy 

output) have often been used to describe animal efficiency, Dickerson 

(1978) pointed out limitations on their usefulness. Firstly, cost/unit 



feed input generally varies considerably with the maturity and 

productivity of the animals. Secondly, income/unit may vary greatly 

with animal product or composition of product. Lastly, nonfeed costs 

are not negligible, they vary with phase of production, and they are 

greatly influenced by biological differences in performance. 
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Predicted Efficiency. Alternative crossbreeding systems, and 

predicted efficiencies for the most efficient (lowest cost/kg product) 

breed combination in each system, are given in table 3, and illustrated 

in Figures 2-4. The 10 most efficient of the 73 systems evaluated are 

listed in table 4. Economic efficiencies for each of the 73 mating 

systems are presented in Appendix E. 

Breeding systems involving the Spotted breed were found to be at a 

decided disadvantage relative to the Duroc, Yorkshire and Landrace 

breeds. This was despite the assumed superiority of the Spotted breed 

for average daily gain (table 1). In contrast to the Spotted, the Duroc 

was involved in the most efficient combination for each of the 10 mating 

systems (table 3), and in the top 10 most efficient systems overall 

(table 4). 

The most efficient of the 73 systems considered was the three breed 

static Landrace x (Duroc x Yorkshire), at .7029 $/kg. As Dickerson 

(1973) pointed out, the three breed static system essentially maximizes 

use of heterosis and breed differences. Bichard and Smith (1972) 

maintained an optimum crossing system was likely to involving a 

specialized male line mated to F1 females, but did not rule out the 

possibility of using crossbred or synthetic line boars. This present 

study found the best four breed static ((Yorkshire x Landrace) x 

(Spotted x Duroc)), assuming 6.22% paternal heterosis for conception 



TABLE 3. ALTERNATIVE CROSSBREEDING SYSTEMS AND THE MOST EFFICIENT 
BREED COMBINATIONS 

System No. Breed 
Combinations 

3 Breed Static 12 

2 Breed Rotation 6 

3 Breed Rotation 4 

Backcross 12 

3 Breed Combination 12 

4 Breed Static 6 

4 Breed Rotation 1 

4 Breed Combination 4 

2 Breed Static 12 

Purebred 4 

aBreed of sire x breed of dam 

Efficiencyb 
Most Efficient 
Combinationa $/kg % 

L x (DxY) .7029 117.5 

D, L • 7088 116. 8 

D, Y, L .7098 116.7 

L x (DxL) .7124 116.4 

L x (D, Y) .7148 116.1 

(SxL) x (DxY) .7148 116.1 

D, Y, L, S .7195 115.6 

D x (Y, L, S) .7241 115.0 

L X D .7271 114.7 

D .8521 100.0 

D=Duroc, Y=Yorkshire, L=Landrace, S=Spotted. 

b$/kg=costs of producing 1 kg-equivalent of product 
%=reduction in cost/kg as a percent of purebred Duroc efficiency. 
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Figure 2. Relative Efficiencies (cost/kg product) for the 69 
Alternative Crossbreeding Systems Evaluateda. 

aThe y axis represents efficiency, $/kg, as a deviation from .70. 
More efficient systems therefore have shorter bars. Different types 
of system are separated by a blank. Systems are identified by 
the legend on the following page. 



A=Three Breed Static 

Al = 0 X (Yxl) 
A2 = 0 X (SxY) 
A3 = 0 X (Sxl) 
A4 = y X (OxL) 
AS = y X (SxO) 
A6 = Y X (Sxl) 
A7 = L x (OxY) 
A8 = L x (SxO) 
A9 = L X (SxY) 
AlO= S x (OxY) 
All= S X (OxL) 
Al2= S X (YxL) 

B=Two Breed Rotation 

Bl = 0, Y 
B2 = 0, L 
B3 = 0, S 
B4 = Y, L 
B5 = Y, S 
B6 = L, S 

C=Three Breed Rotation 

Cl = D, Y, L 
C2 = 0, Y, S 
C3 = D, L, S 
C4 = Y, L, S 
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O=Backcross F=Four Breed Static 

01 = 0 X (OxY) F1 = (OxY) x (SxL) 
02 = 0 X (OxL) F2 = ( OxL) x (SxY) 
03 = 0 X (SxO) F3 = (Yxl) x (SxO) 
04 = Y X (OxY) F4 = (SxO) X (Yxl) 
05 = Y X (Yxl) F5 = (SxY) X (Oxl) 
06 = Y X (SxY) F6 = (SxL) x (OxY) 
07 = L X (Oxl) 
08 = L X (Yxl) 
09 = L X (SxL) G=Four Breed Rotation 
010= S X (SxO) 
011= S X (SxY) 0, Y, L, S 
012= S X (Sxl) 

H=Four Breed Combination 

E=Three Breed Combination 

El = 0 X (Y, L) 
E2 = 0 x (Y, S) 
E3 = 0 x (L, S) 
E4 = y X (0, L) 
E5 = Y X (0, S) 
E6 = Y x (L, S) 
E7 = L x (0, Y) 
E8 = l x (0, S) 
E9 = l x (Y, S) 
ElO= S x (0, Y) 
Ell= S X (0, L) 
E 12 = S X ( Y, L) 

Hl = D x (Y, L, S) 
H2 = y X ( 0' L' s) 
H3 = l x (0, Y, S) 
H4 = S X ( 0, Y, L) 

I=Two Breed Static 

Il=OxY 
!2 = 0 X l 
!3 = 0 X S 
!4 = y X D 
!5 = y X L 
!6 = Y X S 
!7 = L X 0 
!8 = L X Y 
!9 = l X S 
IlO= S x 0 
Ill= S X Y 
Il2= S X l 

Figure 2 (Continued). Legenda 

aNumbers indicate relative position, from left to right, of systems on 
the above figure. Systems are coded as breed of sire x breed of dam. 
D=Ouroc, Y=Yorkshire, L=Landrace, S=Spotted. 
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aThe y axis represents system efficiency, $/kg, as a deviation from .70. 
More efficient systems therefore have shorter bars. Systems are 
identified on the x axis. Breeds are D=Duroc, Y=Yorkshire, L=Landrace, 
S=Spotted. Systems are coded as breed of sire x breed of dam. Commas 
between breed codes denote rotations. 
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Most Efficient Breed Combinations for Each Crossbreeding 
Systema. 

aThe y axis represents system efficiency, $/kg, as a deviation from 
.70. More efficient systems therefore have shorter bars. Systems 
are identified on the x axis. Breeds are D=Duroc, Y=Yorkshire, 
L=Landrace, S=Spotted. Systems are coded as breed of sire x breed 
of dam. Commas between breed codes denote rotations. 



TABLE 4. HIGHEST RANKING BREEDING SYSTEM EFFICIENCIES 

Rank 

1 

2 

3 

4 

5 

6 

6 

8 

9 

10 

System 

3 Breed Static 

3 Breed Static 

2 Breed Rotation 

3 Breed Rotation 

Backcross 

3 Breed Combination 

4 Breed Static 

4 Breed Static 

3 Breed Combination 

Backcross 

aBreed of sire x breed of dam 

Breed 
Combinationa 

l x (DxY) 

D x (Yxl) 

D, L 

D, Y, L 

L x (Dxl) 

l x (0, Y) 

(Sxl) x (DxY) 

(Yxl) x (SxD) 

D X (Y, L) 

0 x (Dxl) 

D=Duroc, Y=Yorkshire, L=Landrace, S=Spotted. 

b$/kg=costs of producting 1 kg-equivalent of product 

Efficiencyb 

$/kg % 

• 7029 117.5 

.7061 117.1 

.7088 116.8 

• 7098 116.7 

.7124 116.4 

• 7148 116.1 

• 7148 116.1 

.7196 115.5 

• 7205 115.4 

• 7215 115.3 

%=reduction in cost/kg as a percent of purebred Duroc, efficiency 
(.8521) 
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rate, to be 1.4% less efficient than the best 3 breed static system as a 

result of including a fourth (relatively inferior) breed in the system. 

The simple two breed rotation or crisscross system was first 

advocated as a swine breeding strategy 50 yr ago (Winterset al., 1935). 

The most efficient two breed rotation (Duroc, Landrace) ranked third 

overall, with efficiency of .7088 $/kg, only .7% less efficient than the 

best three breed static. The Duroc, Landrace rotation outperformed the 

best three breed (Duroc, Yorkshire, Landrace) rotation by .2%. The most 

efficient three breed combination system, Landrace boars mated to Duroc, 

Yorkshire rotation females (.7148 $/kg), ranked sixth overall, as did 

the best four breed static. The Landrace x (Duroc x Landrace) backcross 

was the fifth ranked system at .7124 $/kg. 

The importance of considering purebred and other breeding stock 

generators when calculating system efficiency was demonstrated by 

examining efficiency considering only terminal matings for each system. 

The most efficient crossbreeding systems appeared to decrease cost/kg 

product by 15.6 to 19.0% under this simplification, vs the 14.7 to 17.5% 

increases in efficiency where breeding stock genertors were included in 

the system (table 3). Failing to allow for these sub-systems, while not 

altering the most efficient breed combinations predicted for each 

system, did change system ranking based upon these combinations. 

Ignoring required breeding stock generators, the Landrace x (Duroc x 

Landrace) backcross was the most efficient system, followed by the three 

breed static cross. Other noticeable changes in rank were the Landrace 

x Duroc two breed static cross, which ranked ninth based upon the entire 

system, but third if only the terminal cross was considered. Two and 
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three breed rotations ranked fifth and sixth by this model, as ~pposed 

to second and third where the entire system was considered (table 3). 

Use of an Exotic Breed. An exotic swine breed was evaluated in 

place of the Spotted by assuming the following parameters: direct 

genetic plus maternal effects of 3.41 pigs for litter size born, direct 

and maternal genetic effects each of 5.91% for percent survival to 42-d, 

and direct effects for average daily gain, carcass backfat and feed to 

gain ratio of -.30 kg/d, 7.0 mm and .788, respectively. Maternal 

effects were assumed to be zero for these traits, and conception rate 

effects set equal to those for the Spotted breed. The exotic breed 

averaged 14 pigs born and 11.6 pigs weaned/litter, with postweaning 

average daily gain of .35 kg/d and feed to gain ratio of 4.0 (table 2). 

These values were based on averages for Chinese breeds of swine reported 

by Gianola et al. (1982). 

Good reproductive performance, however, failed to compensate for the 

poor growth performance of the breed, and the exotic failed to be 

utilized in the most efficient breed combination for any system (except, 

of course, for four breed systems). Compared to using the Spotted 

breed, use of the Exotic increased costs/kg of product by an average 

3.3, 1.8 and 1.2% for two, three and four breed rotations involving the 

breed, respectively. However, as a rotation breed in three and four 

breed combination systems costs were decreased 1.3 and 1.0%, and as the 

maternal breed in two and three breed static systems the exotic 

decreased costs by 1.6 and 1.1%, respectively. No advantage was seen 

for backcrosses to the breed of the sire of the dam, however, and where 

used as a sire breed in backcross and three and four breed combination 

systems costs were increased approximately 6.5%. 
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Genetic parameters for average daily gain and feed to gain ratio for 

the Exotic breed were varied in order to determine at what level of 

performance the breed would be included in least cost systems. 

Increasing predicted average daily gain from .35 kg/d to .45 kg/d, while 

litter size weaned and feed to gain ratio remained at 11.6 pigs and 4.0, 

respectively, resulted in the Duroc x (Yorkshire x Exotic) becoming the 

most efficient system. The Duroc x (Yorkshire, Exotic) rotation was the 

most efficient three breed combination system. Increasing average daily 

gain to .55 kg/d resulted in the Duroc x Exotic and Duroc x (Duroc x 

Exotic) also becoming the most efficient two breed static and backcross 

systems. 

Improving feed to gain ratio for the exotic from 4.0 to 3.8, again 

with litter size weaned and average daily gain fixed at 11.6 pigs and 

.35 kg/d, the Duroc x (Yorkshire x Exotic) became the most efficient 

system. Further improvement to 3.6 resulted in the Duroc x (Yorkshire, 

Exotic) rotation becoming the most efficient three breed combination. 

With a feed to gain ratio of 3.4 the exotic was involved in the most 

efficient backcross, two and three breed static and three breed 

combination systems (as for the high rate of gain above). 

System Structure. Structure (i.e., the number of females farrowing 

in different sub-systems) for the most efficient breed combinations for 

each system is presented in table 5 and illustrated in Figure 5. 

Structure for each of the 69 alternative crossbreeding systems is given 

in Appendix F. Systems not shown in Figure 5 have similar structures to 

the examples given. The most efficient three and four breed rotations 

required 2.3% purebred farrowings. Structure for the best four breed 

combination was .3% Landrace, Yorkshire and Spotted purebred farrowings, 



TABLE 5. STRUCTURE FOR ALTERNATIVE CROSSBREEDING SYSTEMS 

System a 

L x (OxY) 

0, L 

D, Y, L 

L x (Oxl) 

L X 0, y 

(SxL) x (OxY) 

0, Y, L, S 

DxY, L, S 

L X 0 

0 

No. Females farrowing/sub-system 

31 0, 176 L, 276 Y, 1,288 DxY, 8,229 L x (OxY) 

105 L, 116 0, 9,779 0, L 

70 L, 77 D, 79 Y, 9,779 0, L 

30 0, 183 L, 1,254 DxL, 8,533 0 x (OxL) 

18 D, 19 Y, 177 L, 1,540 D, Y, 8,246 LxD, Y 

4 S, 30 0, 32 L, 2,75 Y, 173 SxL, 1,283 DxY, 
8,201 (SxL)x(OxY) 

52 L, 58 0, 59 Y, 62 S, 9,769 0, Y, L, S 

10 L, 12 Y, 12 S, 197 0, 1,452 Y, L, S, 
8,316 DxY, L, S 

174 L, 1709 0, 8,117 LxD 

10,000 0 

aBreed of sire x breed of dam. 
See table 2 for system descriptions 
D=Duroc, Y=Yorkshire, L~Landrace, S=Spotted. 
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L + D 
(2.2X) 

4a. Two Breed Rotation 

L 
(1."') 

4b. Two Breed Static 

D + y 
(u,;) 

l 

L x 0, Y 

4c. Three Breed Combination 
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S + D + L + (Sxl) 
(2.4,;) 

(Sxl) x (DxY) 

4d. Four Breed Static 

4e. Four Breed Static: Sub-systems 

D 
(o.a,;) 

L x (DxY) 

4f. Three Breed Static 

Figure 5. Structure for Alternative Crossbreeding Systems 



177 

14.5% three breed rotation, 2.0% purebred Duroc and 83.2% terminal Duroc 

x (Yorkshire, Landrace, Spotted) rotation females farrowing. The 

backcross required .3% Duroc, 12.5% Duroc x Landrace and 1.8% Landrace 

farrowings to support 86.3% Landrace x (Duroc x Landrace) farrowings. 

Literature Reports. A number of workers have reported economic 

evaluations of alternative swine crossbreeding systems. Dickerson 

(1973) compared the number of sow-years required/1,000 market 

pig-equivalents for alternative systems, relative to a static three 

breed cross. Five theoretical breeds with assumed litter size, growth 

efficiency, cutability and product value were presumed to be available. 

Heterosis values and replacement rates were also assumed, and systems 

compared based upon all purebreeding and crossbreeding sectors of the 

system. A static two breed cross required 15% more sow-years per 1,000 

pig-equivalents than the three breed cross, and a four breed rotation 

required 6% more sow-years/1,000 pigs. The expected advantage of the 

most efficient three breed static vs two breed static and four breed 

rotation systems was noticeably smaller (2.8% and 1.9%, respectively) in 

this study. 

Bichard (1977) used Dickerson's (1973) method to evaluate 

alternative crossbreeding systems in the United Kingdom. He reported 

little variation among two breed systems, although the two breed 

rotation required 2% fewer sow-years per 1,000 pig-equivalents than the 

backcross. In the present study, the best two breed rotation was .4% 

more efficient than the best backcross, and 2.1% superior to the best 

two breed static system. 

Selfier (1976) cited Brun (1974, unpublished) as having used a 

number of methods to compare crossbreeding systems involving the Large 
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White and Landrace breeds in France. Moav•s (1966) profit function 

suggested a 4 to 5% advantage of crossbreeding over purebreeding, and 

Dickerson•s (1973) method suggested a 6 to 8% advantage, plus an 

additional 1 to 2% for systems with crossbred dams. A dynamic analysis 

over a 15 yr period starting from a purebred Large White base population 

indicated crisscrossing to be the most efficient two breed system, in 

agreement with results of the present static analysis involving American 

breeds. However, this present study suggested a 15 to 18% avantage for 

crossbreeding over purebreeding--noticeably greater than Brun•s 

estimates. 

Wilson and Johnson (1981) used linear programming to compare the 

efficiency of 21 different crossbreeding systems involving Ouroc, 

Hampshire and Yorkshire breeds of swine. Mating sytems were defined, as 

in the present study, as including purebred and crossbred matings 

necessary to maintain 10,000 total farrowings. Breed and heterosis 

effects were estimated from experimental data collected at the Oklahoma 

Agricultural Experiment Station. Relative efficiency of alternative 

systems, where purebreds averaged 100, was 127 for three breed statics, 

125 for three breed rotations, 124 for three breed combinations, 123 for 

two breed rotations, 122 for backcrosses and 115 for two breed static 

crosses. These results suggested a greater advantage for crossbreeding 

than the earlier reports discussed above, but are in closer agreement to 

the results of this study. Comparing the most efficient combination of 

each system, where the Duroc averaged 100, the three breed static was 

118, the two breed rotation 117, the three breed combination and 

backcross 116 and the two breed static 115 in the present study (table 

3). Wilson and Johnson (1981) found backcrossing of Yorkshire boars to 
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Duroc x Yorkshire females to be the most efficient system. The six most 

efficient systems were two backcrosses, two three breed statics, one two 

breed rotation and a three breed combination system. 

Quintana and Robison (1984) evaluated the performance of Duroc, 

Hampshire, Yorkshire and Landrace swine as purebreds and in various 

crosses, based upon breed and heterosis effects from the results of U.S. 

and Canadian crossbreeding experiments reported over the past decade. A 

population of 1,000 sows and a herd life of 20 yr was assumed. Number 

of pigs produced by each genetic group within the system and for the 

total system, annually and over 20 years, were computed, based upon 

predicted reproductive performance. All systems started from a purebred 

base. An economic index of litter size weaned, conception rate, age at 

100 kg and backfat was computed for each genetic group and for the total 

system. Relative to purebreds, two breed static crosses were $6.00 

superior/sow exposed on average, and two and three breed rotations 

$12.15 and $12.93 superior, respectively. Somewhat at variance to 

results of the present study, which suggested a 2% advantage for two and 

three breed rotations over the two breed static, relative to a 15% 

advantage for the two breed static over the purebred Duroc. Quintana 

and Robison (1984) also reported four breed static crosses as averaging 

only 37 cents over three breed rotations assuming no male heterosis, but 

$7.04 where paternal heterosis of 7.5% for conception rate and 10% for 

litter size was assumed. There is, however, no evidence for such an 

effect on litter size (Buchanan and Johnson, 1984). 

Tess et al. (1983) reported a bioeconomic computer model designed to 

simulate biological and economic inputs and outputs for life cycle pork 

production. Simulated breed and crossbreeding effects on costs of pork 
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production using this model were reported by Bennett et al. (1983). 

Heterosis and breed effect estimates from crossbreeding experiments at 

Iowa and Oklahoma were used to simulate efficiency for alternative 

systems involving the Duroc, Hampshire, Yorkshire, Landrace, Spotted and 

Chester White breeds. Breeding systems investigated were purebred, two 

breed static, rotation and backcross, and three breed static and 

rotation crosses. Breeds ranked differently for paternal, maternal and 

general purpose roles. Greater cost reductions were predicted for the 

best three breed static (7 to 10%) than for the best three breed 

rotation (6 to 8%) systems, noticeably lower than the 17% cost 

reductions estimated for these systems by the present study. 

Discussion. Rotational systems require only purebred male 

replacements as crossbred female progeny from one generation provide 

dams for the next generation. A rotation system, therefore, 

substantially reduces the proportion of the population required as 

breeding stock generators (2.2% for the two breed rotation vs 18.8% for 

the two breed static, Figure 5). The loss in heterosis expected for the 

rotation vs the specific cross is offset to some extent by the greater 

proportion of crossbreds exhibiting some heterosis in the population. 

In addition, factors such as ease and cost of acquiring female 

replacements, and the reduced disease risk from use of home-bred 

females, encourage the use of simple systems such as the two breed 

rotation. Results of this present study suggested only a three breed 

static system to be superior to the best two breed rotation for the 

breeds considered (table 3). 

Simulations did, however, assume recombination losses to be 

negligible. If such effects are important, static crossbreeding systems 
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have an additional advantage over rotations (Dickerson, 1969, 1973). 

Evidence for important deviations from a linear relationship between 

percent heterozygosity and heterosis (suggesting recombination loss) is 

far from conclusive, particularly for swine (Sheridan, 1981). 

Theoretically such losses are expected due to the breaking up favorable 

parental combinations of various gene pairs, established at different 

loci as adaptations to specific environments during breed development. 

North American breeds of pig, relative to breeds of other livestock 

species, may be considered to be adapted to somewhat similar 

environments. Therefore, despite the lack of experimental evidence, it 

may be reasonable to assume that epistatic recombination losses are 

negligible when comparing alternative swine crossbreeding schemes. 

Using males from a superior sire breed on females produced by 

rotation crossing among maternal breeds combines advantages of both 

specific and rotational crossbreeding. Breed differences in maternal 

and paternal performance are made use of, and only purebred female 

replacements of the sire breed are required. Terminal crosses exhibit 

100% of the individual heterosis and have the same expectations for 

maternal heterosis as the rotation. Sellier (1976) and Bichard (1977) 

proposed two breed rotation females as a viable alternative to F1 hybrid 

gilts for European pig breeding programs. While practical 

considerations lend support to this idea, results presented in table 3 

suggested introduction of a third breed into the system, except for the 

three breed static, would have a deleterous effect on overall efficiency 

given the parameters assumed. Considering predicted driving variables 

for the purebreds (table 2), it is clear that while the Duroc was 

superior for growth and the Landrace for litter size weaned, the 
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Yorkshire was inferior to the Duree for all traits. Thus despite the 

improved heterosis expected in combination systems, the Duree, Landrace 

rotation was still more efficient. 

It should, however, be stressed that differences in predicted 

efficiency for the alternative crossbreeding systems were generally 

small. In advising producers, emphasis should be placed upon the 

practicality of available systems as regards the individual producer's 

situation. More important, possibly, than which system is adopted is 

that the chosen plan be adhered to. Level of management and the 

relative complexity of different systems are therefore important 

considerations. The disease risk associated with importing breeding 

stock onto the farm should also not be overlooked. To quote Bichard and 

Smith (1972, p. 51): "It is vital that the disease risks involved 

should not outweigh the planned genetic advantages". 

Unless recombination losses are in fact important, the results of 

this study suggest that a two or three breed rotation system utilizing 

efficient breeds should prove almost as effective as the three breed 

static. It is proposed to further develop the programs used in this 

study into more "user-frien~ly" form in order to provide models for use 

in Animal Breeding classes and Extension demonstrations. 
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APPENDIX A 

ROTATIONAL CROSSBREEDING 
SIMULATION PROGRAM 
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10 'SAVE "ROTATE", A 
20 ' 
30 ' PERFORMANCE VARIABLES ARE INDICATED BY THE FOLLOWING PREFIXES 
THROUGHOUT THE PROGRAM: 
40 ' 
50 'CR - FIRST SERVICE CONCEPTION RATE (%) 
60 'SUR - SURVIVAL TO 42 d (%) 
70 'LSB - LITTER SIZE BORN 
80 'LSW - LITTER SIZE WEANED ( = LSB*SUR/100 ) 
90 'LSFE - LITTER SIZE WEANED / FEMALE EXPOSED ( =LSW*CR/100 ) 
100 'ADG - POSTWEANING AVERAGE DAILY GAIN (kg/d) 
110 'FG - FEED TO GAIN RATIO 
120 'BF - CARCASS BACKFAT (mm) 
130 ' 
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140 ' THE FOLLOWING SUFFIXES INDICATE THE DIFFERENT BREEDING SYSTEMS: 
150 ' 
160 'P - PUREBRED 
170 'AB - 2 BREED ROTATION (crisscross) 
180 'ABC - 3 BREED ROTATION 
190 'ABCD - 4 BREED ROTATION 
200 '3BC - 3 BREED COMBINATION (i.e. terminal sire breed x crisscross 
females) 
210 '4BC - 4 BREED COMBINATION (i.e. term. sire x 3 breed rotation 
females) 
220 ' 
230 ' THE FOLLOWING SUFFIXES REFER TO GENETIC PARAMETERS: 
240 ' 
250 'MU - CONSTANT 
260 'GIM - DIRECT AVERAGE BREED + MATERNAL EFFECTS 
270 'GI - DIRECT AVERAGE BREED EFFECT 
280 'GM - DIRECT AVERAGE MATERNAL EFFECT 
290 'HI - INDIVIDUAL HETEROSIS 
300 'HM - MATERNAL HETEROSIS 
310 'HP - PATERNAL HETEROSIS 
320 ' 
330 'DIMENSIONING ARRAYS 
340 ' 
350 CLS:PRINT:PRINT:PRINT "ROTATE.BAS":PRINT 
360 ' 
370 DIM 
CRGIM(4),CRHM(6),CRHP(6),CRP(4),CRAB(6),CRABC(4),CRABCD(1),CR3BC(12),CR4 
BC(4) 
380 DIM 
LSBGIM(4),LSBHI(6),LSBHM(6),LSBHP(6),LSBP(4),LSBAB(6),LSBABC(4),LSBABCD( 
1),LSB3BC(12),LSB4BC(4) 
390 DIM 
SURGI(4),SURGM(4),SURHI(6),SURHM(6),SURHP(6),SURP(4),SURAB(6),SURABC(4), 
SURABCD(1),SUR3BC(12),SUR4BC(4) 
400 DIM 
ADGGI(4),ADGGM(4),ADGHI(6),ADGHM(6),ADGHP(6),ADGP(4),ADGAB(6),ADGABC(4), 
ADGABCD(1),ADG3BC(12),ADG4BC(4) 
410 DIM 
BFGI(4),BFGM(4),BFHI(6),BFHM(6),BFHP(6),BFP(4),BFAB(6),BFABC(4),BFABCD(l 
),BF3BC(12),BF4BC(4) 
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420 DIM 
FGGI(4),FGGM(4),FGHI(6),FGHM(6),FGHP(6),FGP(4),FGAB(6),FGABC(4),FGABCD(1 
),FG3BC(12),FG4BC(4) 
430 DIM 
LSWP(4),LSWAB(6),LSWABC(4),LSWABCD(1),LSW3BC(12),LSW4BC(4),LSFEP(4) 
440 'THE FOLLOWING VARIABLES ARE DEFINED AS THEY OCCUR IN THE PROGRAM 
450 DIM 
FMP(4),FFP(4),FMAB(6),FFAB(6),FMABC(4),FFABC(4),STRAB(6,3),STRABC(4,4),S 
TRABCD(5),STR3BC(12,5),STR4BC(4,6) 
460 DIM BCIP(4),BCIAB(6),BCIABC(4),BCIABCD(1),BCI3BC(12),BCI4BC(4) 
470 DIM CGP(4),CGAB(6),CGABC(4),CGABCD(1),CG3BC(12),CG4BC(4) 
480 DIM CBP(4),CBAB(6),CBABC(4),CBABCD(1),CB3BC(12),CB4BC(4) 
490 DIM CP(4),CAB(6),CABC(4),CABCD(1),C3BC(12),C4BC(4) 
500 DIM PGP(4),PGAB(6),PGABC(4),PGABCD(1),PG3BC(12),PG4BC(4) 
510 DIM PBP(4),PBAB(6),PBABC(4),PBABCD(1),PB3BC(12),PB4BC(4) 
520 DIM PP(4),PAB(6),PABC(4),PABCD(1),P3BC(12),P4BC(4) 
530 DIM EP(4),EAB(6),EABC(4),EABCD(1),E3BC(12),E4BC(4),XP(4),B$(12) 
540 DIM SEP(4),SEAB(6),SEABC(4),SEABCD(1),SE3BC(12),SE4BC(4) 
550 DIM RVP(4),RVAB(6),RVABC(4),RVABCD(1),RV3BC(12),RV4BC(4) 
560 ' 
570 ' READING GENETIC PARAMETER VALUES 
580 ' 
590 'GI, GM, GIM DATA ARE READ IN ORDER 
600 ' I=1 : DUROC 
610 ' I=2 : YORK 
620 ' I=3 : .LAND 
630 ' I=4 : SPOT 
640 'HI, HM, HP DATA ARE READ IN ORDER 
650 ' I=1 DUROC-YORK 
660 ' I=2 DUROC-LAND 
670 ' I=3 DUROC-SPOT 
680 ' I=4 YORK-LAND 
690 ' I=5 YORK-SPOT 
700 ' I=6 LAND-SPOT 
710 ' 
720 CRMU=69.76 
730 FOR I=1 TO 4: READ CRGIM(I): NEXT I 
740 FOR I=1 TO 6: READ CRHM(I): NEXT I 
750 ' 
760 DATA -10.01,1.34,8.62,.05,2.8,2.8,2.8,2.8,2.8,2.8 
770 ' 
780 LSBMU=10.58 
790 FOR I=1 TO 4: READ LSBGIM(I): NEXT I 
800 FOR I=1 TO 6: READ LSBHI(I): NEXT I 
810 FOR I=1 TO 6: READ LSBHM(I): NEXT I 
820 DATA .35,.78,.07,-
1.2,.23,.23,.23,.23,.23,.23,.93,.93,.93,.93,.93,.93 
830 ' 
840 SURMU=70.81 
850 FOR I=1 TO 4: 
860 FOR I=l TO 4: 
870 FOR I=l TO 6: 
880 FOR I=l TO 6: 

READ SURGI(I): 
READ SURGM(I): 
READ SURHI(I): 
READ SURHM (I) : 

NEXT I 
NEXT I 
NEXT I 
NEXT I 



890 DATA -.88,-4.48,5.05,-.31,-2.13,-
2.12,1.12,3.13,4.31,5.73,7.86,9.88,6.41,-.18,0,0,0,0,0,0 
900 ' 
910 ADGMU=.6504 
920 FOR I=1 TO 4: READ ADGGI(I): NEXT I 
930 FOR I=1 TO 4: READ ADGGM(I): NEXT I 
940 FOR I=1 TO 6: READ ADGHI(I): NEXT I 
950 FOR I=1 TO 6: READ ADGHM(I): NEXT I 
960 DATA .0148,-.0111,-.0215,.0178,-.0026,-.0010,.0062,
.0026,.0796,.0736,.0712,.0545,.0622,.0705,0,0,0,0,0,0 
970 ' 
980 BFMU=32.43 
990 FOR I=1 TO 4: READ BFGI(I): NEXT I 
1000 FOR I=1 TO 4: READ BFGM(I): NEXT I 
1010 FOR I=1 TO 6: READ BFHI(I): NEXT I 
1020 FOR I=1 TO 6: READ BFHM(I): NEXT I 
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1030 DATA -6.55,2.48,-.08,4.16,3.19,-1.88,1.12,-2.43,1.96,.90,.79,.98,-
1.28,-.70,0,0,0,0,0,0 
1040 ' 
1050 FGMU=3.212 
1060 FOR I=1 TO 4: 
1070 FOR I=1 TO 4: 
1080 FOR I=1 TO 6: 
1090 FOR I=1 TO 6: 

READ FGGI(I): 
READ FGGM(I): 
READ FGHI(I): 
READ FGHM(I): 

NEXT I 
NEXT I 
NEXT I 
NEXT I 

1100 DATA -.210,
.027,.020,.217,0,0,0,0,.009,.009,.009,.009,.009,.009,0,0,0,0,0,0 
1110 PRINT:INPUT "PRESS ENTER ";Z$ :CLS 
1120 ' 
1130 'CALCULATING PREDICTED PERFORMANCE FOR TERMINAL OFFSPRING OF 
ALTERNATIVE CROSSBREEDING SYSTEMS 
1140 ' 
1150 'NOTE THAT CR IS ASSUMED TO BE A FUNCTION OF DAM BREED EFFECTS, 
PLUS THE 
1160 'EFFECT OF USING A CROSSBRED SIRE IN THE CDXAB SYSTEM. EXPANSION OF 
THE 
1170 'PROGRAM TO INCLUDE HAMPSHIRE SIRES WILL REQUIRE PROGRAM 
MODIFICATIONS 
1180 ' 
1190 'PUREBREDS 
1200 FOR I=1 TO 4 
1210 CRP(I)=CRMU+CRGIM(I) 
1220 LSBP(I)=LSBMU+LSBGIM(I) 
1230 SURP(I)=SURMU+SURGI(I)+SURGM(I) 
1240 LSWP(I)=LSBP(I)*SURP(I)/100 
1250 LSFEP(I)=LSWP(I)*CRP(I)/100 
1260 ADGP(I)=ADGMU+ADGGI(I)+ADGGM(I) 
1270 BFP(I)=BFMU+BFGI(I)+BFGM(I) 
1280 FGP(I)=FGMU+FGGI(I)+FGGM(I) 
1290 NEXT I:I=O 
1300 PRINT: PRINT: PRINT "PUREBREDS": PRINT 
1310 PRINT "PREDICTED DRIVING VARIABLES ":PRINT 
1320 PRINT STRING$ (70, "-"): B$ (1 )="D" :B$ (2)="Y" :B$ (3)="L" :B$ ( 4) ="S" 
1330 PRINT "BREED CR LSB SUR LSW LSFE ADG BF 
FG":PRINT STRING$(70,"-") 
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1340 FOR I=1 TO 4 
135 0 PRINT usING II 3 3 1111.11 1111. II 1111.11 1111.11 1111.11 .111111 
1111 • II II .1111 
";B$(I),CRP(I),1SBP(I),SURP(I),1SWP(I),1SFEP(I),ADGP(I),BFP(I),FGP(I):NE 
XT I: PRINT STRING$(70,"-") 
1360 PRINT:INPUT "PRESS ENTER ";Z$:C1S:I=O 
1370 ' 
1380 '2 BREED ROTATIONS 
1390 FOR J=1 TO 3: FOR K=2 TO 4 
1400 IF K§=J GOTO 1550 
1410 IF J=1 AND K=2 OR J=2 AND K=1 THEN 1=1 
1420 IF J=1 AND K~3 OR J=3 AND K=1 THEN 1=2 
1430 IF J=1 AND K=4 OR J=4 AND K=1 THEN 1=3 
1440 IF J=2 AND K=3 OR J=3 AND K=2 THEN 1=4 
1450 IF J=2 AND K=4 OR J=4 AND K=2 THEN 1=5 
1460 IF J=3 AND K=4 OR J=4 AND K=3 THEN 1=6 
1470 I=I+1 
1480 CRAB(I)=CRMU+.5*(CRGIM(J)+CRGIM(K))+2*CRHM(1)/3 
1490 1SBAB(I)=1SBMU+.5*(1SBGIM(J)+1SBGIM(K))+2*1SBHM(1)/3 
1500 
SURAB(I)=SURMU+.5*(SURGI(J)+SURGI(K))+.5*(SURGM(J)+SURGM(K))+2*SURHI(1)/ 
3+2*SURHM(1)/3 
1510 1SWAB(I)=1SBAB(I)*SURAB(I)/100 
1520 
ADGAB(I)=ADGMU+.5*(ADGGI(J)+ADGGI(K))+.5*(ADGGM(J)+ADGGM(K))+2*ADGHI(1)/ 
3+2*ADGHM(1)/3 
1530 
BFAB(I)=BFMU+.5*(BFGI(J)+BFGI(K))+.5*(BFGM(J)+BFGM(K))+2*BFHI(L)/3+2*BFH 
M(1)/3 
1540 
FGAB(I)=FGMU+.5*(FGGI(J)+FGGI(K))+.5*(FGGM(J)+FGGM(K))+2*FGHI(1)/3+2*FGH 
M(L)/3 
1550 NEXT K,J:I=O 
1560 PRINT:PRINT:PRINT "2 BREED ROTATION":PRINT 
1570 PRINT "PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING ":PRINT 
1580 PRINT STRING$(62,"-"):FOR I=1 TO 6:READ B$(I):NEXT I 
1590 DATA DY,D1,DS,YL,YS,1S 
1600 PRINT "BREED CR 1SB SUR 1SW ADG BF 
FG" :PRINT STRING$ (62, "-") 
1610 FOR I=1 TO 6 
1620 PRINT USING "3 3 /Ill .II 1111.11 1111.11 1111.11 .111111 1111.11 
11.1111 
";B$(I),CRAB(I),1SBAB(I),SURAB(I),LSWAB(I),ADGAB(I),BFAB(I),FGAB(I):NEXT 
I: PRINT STRING$(62,"-") 
1630 PRINT:INPUT "PRESS ENTER ";Z$:CLS:I=O 
1640 ' 
1650 '3 BREED ROTATIONS 
1660 FOR J=1 TO 3: FOR K=2 TO 4 
1670 FOR 1=3 TO 4 
1680 IF 1§=K OR K§=J THEN 1950 
1690 IF K=1 AND 1=2 OR K=2 AND 1=1 THEN M=1 
1700 IF K=1 AND 1=3 OR K=3 AND 1=1 THEN M=2 
1710 IF K=1 AND 1=4 OR K•4 AND 1=1 THEN M=3 
1720 IF K=2 AND 1=3 OR K=3 AND 1=2 THEN M=4 
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1730 IF K=2 AND 1=4 OR K=4 AND 1=2 THEN M=5 
1740 IF K=3 AND 1=4 OR K=4 AND 1=3 THEN M=6 
1750 IF J=1 AND K=2 OR J=2 AND K=1 THEN N=1 
1760 IF J=1 AND K=3 OR J=3 AND K=1 THEN N=2 
1770 IF J=1 AND K=4 OR J=4 AND K=1 THEN N=3 
1780 IF J=2 AND K=3 OR J=3 AND K=2 THEN N=4 
1790 IF J=2 AND K=4 OR J=4 AND K=2 THEN N=5 
1800 IF J=3 AND K=4 OR J=4 AND K=3 THEN N=6 
1810 IF J=1 AND 1=2 OR J=2 AND 1=1 THEN 0=1 
1820 IF J=1 AND 1=3 OR J=3 AND 1=1 THEN 0=2 
1830 IF J=1 AND 1=4 OR J=4 AND 1=1 THEN 0=3 
1840 IF J=2 AND 1=3 OR J=3 AND 1=2 THEN 0=4 
1850 IF J=2 AND 1=4 OR J=4 AND 1=2 THEN 0=5 
1860 IF J=3 AND 1=4 OR J=4 AND 1=3 THEN 0=6 
1870 I=I+1 
1880 
CRABC(I)=CRMU+(CRGIM(J)+CRGIM(K)+CRGIM(1))/3+6*(CRHM(N)+CRHM(O)+CRHM(M)) 
/21 
1890 
1SBABC(I)=1SBMU+(1SBGIM(J)+1SBGIM(K)+1SBGIM(1))/3+6*(1SBHM(N)+1SBHM(0)+1 
SBHM(M)) /21 
1900 
SURABC(I)=SURMU+(SURGI(J)+SURGI(K)+SURGI(1))/3+(SURGM(J)+SURGM(K)+SURGM( 
1))/3+6*(SURHI(N)+SURHI(O)+SURHI(M))/21+6*(SURHM(N)+SURHM(O)+SURHM(M))/2 
1 
1910 1SWABC(I)=1SBABC(I)*SURABC(I)/100 
1920 
ADGABC(I)=ADGMU+(ADGGI(J)+ADGGI(K)+ADGGI(1))/3+(ADGGM(J)+ADGGM(K)+ADGGM( 
1))/3+6*(ADGHI(N)+ADGHI(O)+ADGHI(M))/21+6*(ADGHM(N)+ADGHM(O)+ADGHM(M))/2 
1 
1930 
BFABC(I)=BFMU+(BFGI(J)+BFGI(K)+BFGI(1))/3+(BFGM(J)+BFGM(K)+BFGM(1))/3+6* 
(BFHI(N)+BFHI(O)+BFHI(M))/21+6*(BFHM(N)+BFHM(O)+BFHM(M))/21 
1940 
FGABC(I)=FGMU+(FGGI(J)+FGGI(K)+FGGI(L))/3+(FGGM(J)+FGGM(K)+FGGM(L))/3+6* 
(FGHI(N)+FGHI(O)+FGHI(M))/21+6*(FGHM(N)+FGHM(O)+FGHM(M))/21 
1950 NEXT L,K,J:I=O 
1960 PRINT:PRINT:PRINT "3 BREED ROTATION" :PRINT 
1970 PRINT "PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING ":PRINT 
1980 PRINT STRING$(62,"-"):FOR I=1 TO 4:READ B$(I):NEXT I 
1990 DATA DYL,DYS,DLS,YLS 
2000 PRINT "BREED CR 1SB SUR LSW ADG BF 
FG" :PRINT STRING$ (6 2, "-") 
2010 FOR I=1 TO 4 
2020 PRINT USING "3 3 1111.11 1111.11 1111.11 1111.11 .111111 1111.11 
11.1111 . 
";B$(I),CRABC(I),LSBABC(I),SURABC(I),LSWABC(I),ADGABC(I),BFABC(I),FGABC( 
I):NEXT I: PRINT STRING$(62,"-") 
2030 PRINT:INPUT "PRESS ENTER ";Z$:CLS:I=O 
2040 ' 
2050 '4 BREED ROTATION 
2060 J=1:K=2:L=3:M=4 
2070 N=4:0=l:P=2:Q=3:R=5:S=6:I=1 
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2080 
CRABCD(I)=CRMU+.25*(CRGIM(J)+CRGIM(K)+CRGIM(L)+CRGIM(M))+14*(CRHM(O)+CRR 
M(P)+CRHM(Q)+CRHM(N)+CRHM(R)+CRHM(S))/90 
2090 
LSBABCD(I)=LSBMU+.25*(LSBGIM(J)+LSBGIM(K)+LSBGIM(L)+LSBGIM(M))+14*(LSBHM 
(O)+LSBHM(P)+LSBHM(Q)+LSBHM(N)+LSBHM(R)+LSBHM(S))/90 
2100 
SURMGIM=SURMU+.25*(SURGI(J)+SURGI(K)+SURGI(L)+SURGI(M))+.25*(SURGM(J)+SU 
RGM(K)+SURGM(L)+SURGM(M)) 
2110 
SURABCD(I)=SURMGIM+14*(SURHI(O)+SURHI(P)+SURHI(Q)+SURHI(N)+SURHI(R)+SURH 
I(S))/90+14*(SURHM(O)+SURHM(P)+SURHM(Q)+SURHM(N)+SURHM(R)+SURHM(S))/90 
2120 LSWABCD(I)=LSBABCD(I)*SURABCD(I)/100 
2130 
ADGMGIM=ADGMU+.25*(ADGGI(J)+ADGGI(K)+ADGGI(L)+ADGGI(M))+.25*(ADGGM(J)+AD 
GGM(K)+ADGGM(L)+ADGGM(M)) 
2140 
ADGABCD(I)=ADGMGIM+14*(ADGHI(O)+ADGHI(P)+ADGHI(Q)+ADGHI(N)+ADGHI(R)+ADGH 
I(S))/90+14*(ADGHM(O)+ADGHM(P)+ADGHM(Q)+ADGHM(N)+ADGHM(R)+ADGHM(S))/90 
2150 
BFABCD(I)=BFMU+.25*(BFGI(J)+BFGI(K)+BFGI(L)+BFGI(M))+.25*(BFGM(J)+BFGM(K 
)+BFGM(L)+BFGM(M))+14*(BFHI(O)+BFHI(P)+BFHI(Q)+BFHI(N)+BFHI(R)+BFHI(S))/ 
90+14*(BFHM(O)+BFHM(P)+BFHM(Q)+BFHM(N)+BFHM(R)+BFHM(S))/90 
2160 
FGABCD(I)=FGMU+.25*(FGGI(J)+FGGI(K)+FGGI(L)+FGGI(M))+.25*(FGGM(J)+FGGM(K 
)+FGGM(L)+FGGM(M))+14*(FGHI(O)+FGHI(P)+FGHI(Q)+FGHI(N)+FGHI(R)+FGHI(S))/ 
90+14*(FGHM(O)+FGHM(P)+FGHM(Q)+FGHM(N)+FGHM(R)+FGHM(S))/90 
2170 PRINT:PRINT:PRINT "4 BREED ROTATION" :PRINT 
2180 PRINT "PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING ":PRINT 
2190 PRINT STRING$(62,"-"):READ B$(I) 
2200 DATA DYLS 
2210 PRINT "BREED CR LSB SUR LSW ADG BF 
FG" :PRINT STRING$ (62, "-") 
2220 PRINT USING "3 3 1111.11 1111.11 1111.11 1111.11 .111111 1111.11 
11.1111 
";B$(I),CRABCD(I),LSBABCD(I),SURABCD(I),LSWABCD(I),ADGABCD(I),BFABCD(I), 
FGABCD(I): PRINT STRING$ (62, "-") 
2230 PRINT: INPUT "PRESS ENTER ";Z$:CLS:I=O 
2240 I 

2250 '3 BREED COMBINATIONS 
2260 FOR J=1 TO 4: FOR K=1 TO 3: FOR L=2 TO 4 
2270 IF J=K OR J=L THEN 2550 
2280 IF L§=K THEN 2550 
2290 IF K=1 AND L=2 OR K=2 AND L=1 THEN M=1 
2300 IF K=1 AND L=3 OR K=3 AND L=1 THEN M=2 
2310 IF K=1 AND L=4 OR K=4 AND L=1 THEN M=3 
2320 IF K=2 AND 1=3 OR K=3 AND 1=2 THEN M=4 
2330 IF K=2 AND L=4 OR K=4 AND 1=2 THEN M=S 
2340 IF K=3 AND 1=4 OR K=4 AND 1=3 THEN M=6 
2350 IF J=1 AND K=2 OR J=2 AND K=1 THEN N=1 
2360 IF J=1 AND K=3 OR J=3 AND K=1 THEN N=2 
2370 IF J=1 AND K=4 OR J=4 AND K=l THEN N=3 
2380 IF J=2 AND K=3 OR J=3 AND K=2 THEN N=4 
2390 IF J=2 AND K=4 OR J=4 AND K=2 THEN N=5 



2400 IF J=3 AND K=4 OR J=4 AND K=3 THEN N=6 
2410 IF J=1 AND 1=2 OR J=2 AND 1=1 THEN 0=1 
2420 IF J=1 AND 1=3 OR J=3 AND 1=1 THEN 0=2 
2430 IF J=1 AND 1=4 OR J=4 AND 1=1 THEN 0=3 
2440 IF J=2 AND 1=3 OR J=3 AND 1=2 THEN 0=4 
2450 IF J=2 AND 1=4 OR J=4 AND 1=2 THEN 0=5 
2460 IF J=3 AND 1=4 OR J=4 AND 1=3 THEN 0=6 
2470 I=I+1 
2480 CR3BC(I)=CRMU+.5*(CRGIM(K)+CRGIM(L))+2*CRHM(M)/3 
2490 LSB3BC(I)=LSBMU+.5*(LSBGIM(K)+LSBGIM(L))+2*LSBHM(M)/3 
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2500 
SUR3BC(I)=SURMU+.25*(2*SURGI(J)+SURGI(K)+SURGI(L))+.5*(SURGM(K)+SURGM(L) 
)+.5*(SURHI(N)+SURHI(0))+2*SURHM(M)/3 
2510 LSW3BC(I)=LSB3BC(I)*SUR3BC(I)/100 
2520 
ADG3BC(I)=ADGMU+.25*(2*ADGGI(J)+ADGGI(K)+ADGGI(L))+.5*(ADGGM(K)+ADGGM(L) 
)+.5*(ADGHI(N)+ADGHI(0))+2*ADGHM(M)/3 
2530 
BF3BC(I)=BFMU+.25*(2*BFGI(J)+BFGI(K)+BFGI(L))+.5*(BFGM(K)+BFGM(L))+.5*(B 
FHI(N)+BFHI(0))+2*BFHM(M)/3 
2540 
FG3BC(I)=FGMU+.25*(2*FGGI(J)+FGGI(K)+FGGI(L))+.5*(FGGM(K)+FGGM(L))+.5*(F 
GHI(N)+FGHI(0))+2*FGHM(M)/3 
2550 NEXT L,K,J:I=O 
2560 PRINT:PRINT:PRINT "TERMINAL SIRE BREED X 2 BREED ROTATION 
FEMALES" :PRINT 
2570 PRINT "PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING ":PRINT 
2580 PRINT STRING$(62,"-"):FOR I=1 TO 12:READ B$(I):NEXT I 
2590 DATA DxYL,DxYS,DxLS,YxDL,YxDS,YxLS,LxDY,LxDS,LxYS,SxDY,SxDL,SxYL 
2600 PRINT "BREED CR LSB SUR LSW ADG BF 
FG":PRINT STRING$(62,"-") 
2610 FOR I=1 TO 12 
2620 PRINT USING "3 3 tlf/.11 1111.11 1111.11 1111.11 .111111 1111.11 
11.1111 
";B$(I),CR3BC(I),LSB3BC(I),SUR3BC(I),LSW3BC(I),ADG3BC(I),BF3BC(I),FG3BC( 
I):NEXT I: PRINT STRING$(62,"-") 
2630 PRINT:INPUT "PRESS ENTER ";Z$:CLS:I=O 
2640 I 

2650 '4 BREED COMBINATIONS 
2660 FOR J=1 TO 4: FOR K=1 TO 2: FOR 1=2 TO 3: FOR M=3 TO 4 
2670 IF L§=K OR M§=L THEN GOTO 3130 
2680 IF J=K OR J=L OR J=M THEN 3130 
2690 IF K=1 AND 1=2 OR K=2 AND 1=1 THEN N=1 
2700 IF K=1 AND 1=3 OR K=3 AND 1=1 THEN N=2 
2710 IF K=1 AND 1=4 OR K=4 AND 1=1 THEN N=3 
2720 IF K=2 AND 1=3 OR K=3 AND 1=2 THEN N=4 
2730 IF K=2 AND 1=4 OR K=4 AND 1=2 THEN N=5 
2740 IF K=3 AND 1=4 OR K=4 AND 1=3 THEN N=6 
2750 IF J=1 AND K=2 OR J=2 AND K=1 THEN 0=1 
2760 IF J=1 AND K=3 OR J=3 AND K=1 THEN 0=2 
2770 IF J=1 AND K=4 OR J=4 AND K=1 THEN 0=3 
2780 IF J=2 AND K=3 OR J=3 AND K=2 THEN 0=4 
2790 IF J=2 AND K=4 OR J=4 AND K=2 THEN 0=5 
2800 IF J=3 AND K=4 OR J=4 AND K=3 THEN 0=6 
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2810 IF J=1 AND 1=2 OR J=2 AND 1=1 THEN P=1 
2820 IF J=1 AND 1=3 OR J=3 AND 1=1 THEN P=2 
2830 IF J=1 AND 1=4 OR J=4 AND 1=1 THEN P=3 
2840 IF J=2 AND 1=3 OR J=3 AND 1=2 THEN P=4 
2850 IF J=2 AND 1=4 OR J=4 AND 1=2 THEN P=5 
2860 IF J=3 AND 1=4 OR J=4 AND 1=3 THEN P=6 
2870 IF J=1 AND M=2 OR J=2 AND M=1 THEN Q=1 
2880 IF J=1 AND M=3 OR J=3 AND M=1 THEN Q=2 
2890 IF J=1 AND M=4 OR J=4 ~~ M=1 THEN Q=3 
2900 IF J=2 AND M=3 OR J=3 AND M=2 THEN Q=4 
2910 IF J=2 AND M=4 OR J=4 AND M=2 THEN Q=5 
2920 IF J=3 AND M=4 OR J=4 AND M=3 THEN Q=6 
2930 IF K=1 AND M=2 OR K=2 AND M=1 THEN R=1 
2940 IF K=1 AND M=3 OR K=3 AND M=1 THEN R=2 
2950 IF K=1 AND M=4 OR K=4 AND M=1 THEN R=3 
2960 IF K=2 AND M=3 OR K=3 AND M=2 THEN R=4 
2970 IF K=2 AND M=4 OR K=4 AND M=2 THEN R=5 
2980 IF K=3 AND M=4 OR K=4 AND M=3 THEN R=6 
2990 IF 1=1 AND M=2 OR 1=2 AND M=1 THEN S=1 
3000 IF 1=1 AND M=3 OR 1=3 AND M=1 THEN S=2 
3010 IF 1=1 AND M=4 OR 1=4 AND M=1 THEN S=3 
3020 IF 1=2 AND M=3 OR 1=3 AND M=2 THEN S=4 
3030 IF 1=2 AND M=4 OR 1=4 AND M=2 THEN S=5 
3040 IF 1=3 AND M=4 OR 1=4 AND M=3 THEN S=6 
3050 I=I+1 
3060 
CR4BC(I)=CRMU+(CRGIM(K)+CRGIM(L)+CRGIM(M))/3+6*(CRHM(N)+CRHM(R)+CRHM(S)) 
/21 
3070 
LSB4BC(I)=LSBMU+(LSBGIM(K)+LSBGIM(L)+LSBGIM(M))/3+6*(LSBHM(N)+LSBHM(R)+L 
SBHM(S))/21 
3080 
SUR4BC(I)=SURMU+(3*SURGI(J)+SURGI(K)+SURGI(L)+SURGI(M))/6+(SURGM(K)+SURG 
M(L)+SURGM(M))/3+(SURHI(O)+SURHI(P)+SURHI(Q))/3+6*(SURHM(N)+SURHM(R)+SUR 
HM(S))/21 
3090 LSW4BC(I)=LSB4BC(I)*SUR4BC(I)/100 
3100 
ADG4BC(I)=ADGMU+(3*ADGGI(J)+ADGGI(K)+ADGGI(L)+ADGGI(M))/6+(ADGGM(K)+ADGG 
M(L)+ADGGM(M))/3+(ADGHI(O)+ADGHI(P)+ADGHI(Q))/3+6*(ADGHM(N)+ADGHM(R)+ADG 
HM(S))/21 
3110 
BF4BC(I)=BFMU+(3*BFGI(J)+BFGI(K)+BFGI(L)+BFGI(M))/6+(BFGM(K)+BFGM(L)+BFG 
M(M))/3+(BFHI(O)+BFHI(P)+BFHI(Q))/3+6*(BFHM(N)+BFHM(R)+BFHM(S))/21 
3120 
FG4BC(I)=FGMU+(3*FGGI(J)+FGGI(K)+FGGI(L)+FGGI(M))/6+(FGGM(K)+FGGM(L)+FGG 
M(M))/3+(FGHI(O)+FGHI(P)+FGHI(Q))/3+6*(FGHM(N)+FGHM(R)+FGHM(S))/21 
3130 NEXT M,L,K,J:I=O 
3140 PRINT:PRINT:PRINT "TERMINAL SIRE BREED X 3 BREED ROTATION 
FEMALES" :PRINT 
3150 PRINT "PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING ":PRINT 
3160 PRINT STRING$(62,"-"):FOR I=1 TO 4:READ B$(I):NEXT I 
3170 DATA DxYLS,YxDLS,LxDYS,SxDYL 
3180 PRINT "BREED CR LSB SUR LSW ADG BF 
FG":PRINT STRING$(62,"-") 
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3190 FOR I=1 TO 4 
3200 PRINT USING " 3 3 INF.fl 1111.11 1111.11 INF.II .111111 1111.11 
11.1111 
";B$(I),CR4BC(I),LSB4BC(I),SUR4BC(I),LSW4BC(I),ADG4BC(I),BF4BC(I),FG4BC( 
I) :NEXT I: PRINT STRING$(62,"-") 
3210 PRINT:INPUT "PRESS ENTER ";Z$:CLS:I=O 
3220 ' 
3230 '------------------------------------------------------------------

3240 ' 
3250 ' CALCULATING THE NUMBER OF FEMALES FARROWING IN EACH SUB-SYSTEM 
3260 ' 
3270 ' T - TOTAL NUMBER FEMALES FARROWING IN THE SYSTEM 
3280 ' FMR - NUMBER OF FEMALES / MALE IN BREEDING HERD 
3290 ' PSP - PROBABILITY OF SURVIVING FROM WEANING (42d) TO 100KG 
(PUREBREDS) 
3300 ' PSC - PROBABILITY OF SURVIVING FROM WEANING (42d) TO 100KG 
(CROSSBREDS) 
3310 ' NOTE: POSTWEANING SURVIVAL SHOULD REALLY BE CALCULATED FOR EACH 
SYSTEM, 
3320 ' 
ESTIMATES 
3330 ' 
DIFFERENT 

AS FOR THE OTHER TRAITS. LACK OF LITERATURE PARAMETER 

AND THE RELATIVELY SMALL EXPECTED DIFFERENCES BETWEEN 

3340 ' CROSSBREEDING SYSTEMS MAKE THIS SIMPLIFYING ASSUMPTION 
REASONABLE.4440 ' REASONABLE 
3350 ' FRP - PROPORTION OF FEMALES REPLACED EACH BREEDING CYCLE 
(PUREBREDS) ' FRC - PROPORTION OF FEMALES REPLACED EACH 
BREEDING CYCLE (CROSSBREDS) 
3360 ' MRP - PROPORTION OF MALES REPLACED EACH BREEDING CYCLE (PUREBRED 
HERDS) 
3370 ' MRC - PROPORTION OF MALES REPLACED EACH BREEDING CYCLE (CROSSBRED 
HERDS) 
3380 ' FS 
HERDS 

- PROPORTION OF FEMALE OFFSPRING SELECTED AS REPLACEMENTS IN 
GENERATING FEMALE REPLACEMENTS 

3390 ' MS 
HERDS 

- PROPORTION OF MALE OFFSPRING SELECTED AS REPLACEMENTS IN 
GENERATING MALE REPLACEMENTS 

3400 ' 
3410 T=10000 
3420 FMR=10 
3430 PSP=.97 
3440 PSC=.98 
3450 FRP=.5 
HOWEVER SEE 

' .15 ? PROBABLY MORE REASONABLE IN PRACTISE, 

3460 FRC=.5 NOTE WITH FIB IN ECONOMIC CALCULATIONS BELOW 
3470 MRP=.5 
3480 MRC=.5 
3490 FS=.8 
3500 MS=.6 
3510 ' 
3520 ' 
3530 'The next section calculates FM and FF for purebreds and 2 and 3 
breed rotations. These are the only ones necessary for these 
calculations.' 



3540 'FM =( 
FEMALES 
3550 'FF =( 
FEMALES 
3560 CLS 

# FEMALES REQUIRED TO PRODUCE NEEDED BOARS) I (TOTAL # 
IN SUB-SYSTEMS THE BOARS ARE USED IN) 

# FEMALES REQUIRED TO PRODUCE NEEDED GILTS) I (TOTAL # 
IN SUB-SYSTEMS THE GILTS ARE USED IN) 

3570 PRINT "FM and FF for purebreds" 
3580 FOR I = 1 TO 4 
3590 FMP(I) = 2*MRPIFMRIMSIPSPILSWP(I) 
3600 FFP(I) = 2*FRPIFSIPSPILSWP(I) 
3610 PRINT USING "flfltNIINNIINNI. fi/NN/11" ;FMP(I), FFP (I) 
3620 NEXI' I 
3630 PRINT 
3640 PRINT "FM and FF for 2 breed rotations" 
3650 FOR J = 1 TO 6 
3660 FMAB(J) = 2*MRCIFMRIMSIPSCILSWAB(J) 
3670 FFAB(J) = 2*FRCIFSIPSCILSWAB(J) 
3680 PRINT USING "flllllfiiiiNiflflll.flflflllfi";FMAB(J) ,FFAB(J) 
3690 NEXI' J 
3700 'INPUT "PRESS ENTER ";Z$ 
3710 PRINT 
3720 PRINT "FM and FF for 3 breed rotations" 
3730 FOR K = 1 TO 4 
3740 FMABC(K) = 2*MRCIFMRIMSIPSCILSWABC(K) 
3750 FFABC(K) = 2*FRCIFSIPSCILSWABC(K) 
3760 PRINT USING "flflflfNIIIINNIII.IIflflflll" ;FMABC (K), FFABC (K) 
3770 NEXI' K . 
3780 INPUT "PRESS ENTER ";Z$:CLS 
3790 PRINT 
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3800 'This section calculates the structure for the 2 BREED ROTATIONS. 
The screen output shows the two breeds and the numbers for Purebred 
A, Purebred B and the AB rotation.' 
3810 PRINT " STRUCTURE FOR 2 BREED ROTATIONS" :PRINT 
3820 PRINT" (l=DUROC, 2=YORK, 3=LAND, 4=SPOT)":PRINT STRING$(42,"-
") 
3830 PRINT" A B //A fiB /IAB":PRINT STRING$(42,"-") 
3840 K=O 
3850 FOR I=1 TO 3: FOR J=2 TO 4 
3860 IF J §=I GOTO 3920 
3870 K=K+l 
3880 STRAB(K,3)=TI((FMP(I)I(2*(1-FMP(I))))+(FMP(J)I(2*(1-FMP(J))))+1) I 

ABrot 
3890 STRAB(K,1)=FMP(I)*STRAB(K,3)1(2*(1-FMP(I))) I 

Purebred 
3900 STRAB(K,2)=FMP(J)*STRAB(K,3)1(2*(1-FMP(J))) I 

Purebred 
3910 PRINT USING "flfl/111/lfl. 11 ; I ,J, STRAB(K, 1), STRAB(K, 2), STRAB (K, 3) 
3920 NEXI' J,I 
3930 PRINT:INPUT "PRESS ENTER ";Z$ 
3940 CLS 
3950 PRINT 
3960 'This section calculates the structure for the 3 BREED ROTATIONS. 
The screen output shows the three breeds and the numbers for 
Purebred A, Purebred B,Purebred C and the ABC rotation. ' 
3970 PRINT " STRUCTURE FOR 3 BREED ROTATIONS":PRINT 
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3 980 PRINT II (1=DUROC, 2=YORK, 3=LAND, 4=SPOT)":PRINT STRING$(50,"-
") 
3990 PRINT II A B c IIA fiB tiC tiABC" :PRINT 
STRING$(50,"-") 
4000 L=O 
4010 FOR I=1 TO 2: FOR J=2 TO 3 
4020 IF J §= I GOTO 4120 
4030 FOR K=3 TO 4 
4040 IF K§= J GOTO 4110 
4050 L = 1+1 
4060 STRABC(L,4) = T/((FMP(I)/(3*(1-FMP(I))))+(FMP(J)/(3*(1-
FMP(J))))+(FMP(K)/(3*(1-FMP(K))))+1) 
' ABC rotation 
4070 STRABC(L,1) = FMP(I)*STRABC(L,4)/(3*(1-FMP(I))) 
purebred A 
4080 STRABC(L,2) = FMP(J)*STRABC(L,4)/(3*(1-FMP(J))) 
purebred B 
4090 STRABC(L,3) = FMP(K)*STRABC(L,4)/(3*(1-FMP(K))) 
purebred C 
4100 PRINT USING 
"tlll/1111111."; I, J, K, STRABC (L, 1) , STRABC (L, 2) , STRABC (L, 3) , STRABC (L, 4) 
4110 NEXT K 
4120 NEXT J,I 
4130 PRINT:INPUT "PRESS ENTER ";Z$ 
4140 CLS 
4150 PRINT 
4160 'This section calculates the structure for the 4 BREED ROTATION. 
With 4 breeds there is only one. The screen output shows the 4 breeds 
and the numbers for each purebred type and the ABCD rotation.' 
4170 PRINT " STRUCTURE FOR 4 BREED ROTATIONS" :PRINT 
4180 PRINT STRING$(46,"-") 
4190 PRINT" tiD flY IlL tiS t/DYLS":PRINT STRING$(46,"-") 
4200 STRABCD(5) = T/((FMP(1)/(4*(1-FMP(1))))+(FMP(2)/(4*(1-
FMP(2))))+(FMP(3)/(4*(1-FMP(3))))+(FMP(4)/(4*(1-FMP(4))))+1) 
' ABCD rotation 
4210 STRABCD(1) = FMP(1)*STRABCD(5)/(4*(1-FMP(1))) 
Purebred D 
4220 STRABCD(2) = FMP(2)*STRABCD(5)/(4*(1-FMP(2))) 
Purebred Y 
4230 STRABCD(3) = FMP(3)*STRABCD(5)/(4*(1-FMP,(3))) 
Purebred L 
4240 STRABCD(4) = FMP(4)*STRABCD(5)/(4*(1-FMP(4))) 
Purebred S 
4250 PRINT USING 
"11111/tll/11. "; STRABCD( 1), STRABCD (2), STRABCD(3), STRABCD( 4), STRABCD (5) 
4260 PRINT:INPUT "PRESS ENTER ";Z$ 
4270 CLS 
4280 PRINT 
4290 'This section calculates the structure for the 3 BREED SPECIALIZED 
CROSSES where C males are mated to ABrot females. The M variables are 
used to recall theFM and FF values for the rotation females.' 
4300 ' The screen output shows the breeds involved (C, A, B) and the 
numbers for the 3 purebreds (C, A, B), the ABrot, and the CxAB terminal 
cross' 



199 

4310 PRINT "STRUCTURE FOR TERMINAL SIRE BREED X 2 BREED ROTATION FEMALES 
4320 PRINT:PRINT II (l=DUROC, 2=YORK, 3=LAND, 4=SPOT)" :PRINT 
STRING$(54,"-") 
4330 PRINT " c A B fie fiA fiB flAB fiCxAB" :PRINT 
STRING$(54,"-") 
4340 L=O 
4350 FOR I = 1 TO 4 
4360 LL=O 
4370 FOR J=1 TO 3: FOR K=2 TO 4 
4380 IF I = J OR I = K GOTO 4530 
4390 IF K §=J GOTO 4530 
4400 IF J = 1 AND K = 2 THEN M = 1 
4410 IF J = 1 AND K = 3 THEN M = 2 
4420 IF J = 1 AND K = 4 THEN M = 3 
4430 IF J = 2 AND K = 3 THEN M = 4 
4440 IF J = 2 AND K = 4 THEN M = 5 
4450 IF J = 3 AND K = 4 THEN M = 6 
4460 L=L+l 
4470 STR3BC(L,5)=T/((FFAB(M)/(2*(1-FFAB(M)))*(FMP(J)/(1-
FMP(J))+FMP(K)/(1-FMP(K))))+FMP(I)/(1-FMP(I))+FFAB(M)/(1-FFAB(M))+1) 
' Crossbred CxABrot 
4480 STR3BC(L,4)=FFAB(M)*STR3BC(L,5)/(1-FFAB(M)) Crossbred ABrot 
4490 STR3BC(L,3)=FMP(I)*STR3BC(L,5)/(1-FMP(I)) Purebred C 
4500 STR3BC(L,2)=FMP(K)*STR3BC(L,4)/(2*(1-FMP(K))) Purebred B 
4510 STR3BC(L,1)=FMP(J)*STR3BC(L,4)/(2*(1-FMP(J))) Purebred A 
4520 PRINT USING 
"flflflflflfl. 11 ; I ,J ,K, STR3BC (1, 3) , STR3BC (L, 1), STR3BC (L, 2), STR3BC (L, 4), STR3BC (L 
,5) 
4530 NEXT K,J,I 
4540 PRINT:INPUT "PRESS ENTER ";Z$ 
4550 CLS 
4560 PRINT 
4570 'This section calculates the structure for the 4 BREED SPECIALIZED 
CROSSES (DxABCrot). TheM variable is used to recall the values for FM 
and FF for the rotation females.' 
4580 'The screen output shows the breeds used (D,A,B,C) and the numbers 
for the purebreds (D, A, B, C), the ABC rotation and the DxABCrot 
terminal crosses.' 
4590 PRINT "STRUCTURE FOR TERMINAL SIRE BREED X 3 BREED ROTATION FEMALES 
4600 PRINT:PRINT II (l=DUROC, 2=YORK, 3=LAND, 4=SPOT)":PRINT 
STRING$(64,"-") 
4610 PRINT II D A B c liD fiA fiB tiC IIABC 
fiDxABC" :PRINT STRING$ (64, "-") 
4620 1=0 
4630 FOR I=1 TO 4: FOR J=1 TO 2: FOR K=2 TO 3 
4640 IF K §=J GOTO 4810 
4650 FOR N = 3 TO 4 
4660 IF N §= K GOTO 4800 
4670 IF I = J OR I = K OR I = N GOTO 4800 
4680 IF J = 1 AND K = 2 AND N = 3 THEN M = 1 
4690 IF J = 1 AND K = 2 AND N = 4 THEN M = 2 
4700 IF J = 1 AND K = 3 AND N = 4 THEN M = 3 
4710 IF J = 2 AND K = 3 AND N = 4 THEN M=4 
4720 L=L+l 



4730 STR4BC(L,6)=T/((FFABC(M)/(3*(1-FFABC(M))))*(FMP(J)/(1-
FMP(J))+FMP(K)/(1-FMP(K))+FMP(N)/(1-FMP(N)))+FMP(I)/(1-
FMP(I))+FFABC(M)/(1-FFABC(M))+1) 'Cross DxABC 
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4740 STR4BC(L,5)=FFABC(M)*STR4BC(L,6)/(1-FFABC(M)) I Rot 
ABC 
4750 STR4BC(L,4) = FMP(I)*STR4BC(L,6)/(1-FMP(I)) 
Purebred D 
4760 STR4BC(L,3) = FMP(N)*STR4BC(L,5)/(3*(1-FMP(N))) 
Purebred C 
4770 STR4BC(L,2) = FMP(K)*STR4BC(L,5)/(3*(1-FMP(K))) 
Purebred B 
4780 STR4BC(L,1) = FMP(J)*STR4BC(L,5)/(3*(1-FMP(J))) 
Purebred A 
4790 PRINT USING 
"f!flflflf/11. ";I, J, K, N, STR4BC (L, 4) , STR4BC (L, 1) , STR4BC (L, 2) , STR4BC (L, 3) , STR4BC 
(L,5),STR4BC(L,6) 
4800 NEXT N 
4810 NEXT K,J,I 
4820 PRINT:INPUT "PRESS ENTER ";Z$ 
4830 I 

4840 I 

4850 1 CALCULATING BREEDING TO REBREEDING INTERVAL 
4860 I 

4870 'NOTE: 160 = 113d GESTATION + 42d LACTATION + 5d TO FIRST ESTRUS 
4880 'FEMALES THAT FAIL TO CONCEIVE BY SECOND ESTRUS ARE CULLED. 
THEREFORE: 
4890 I 

4900 BCIABCD(1)=160+(1-CRABCD(1)/100)*21 
4910 FOR I=1 TO 4 
4920 BCIP(I)=160+(1-CRP(I)/100)*21 
4930 BCIABC(I)=160+(1-CRABC(I)/100)*21 
4940 BCI4BC(I)=160+(1-CR4BC(I)/100)*21 
4950 NEXT I:I=O 
4960 FOR I=1 TO 6 
4970 BCIAB(I)=160+(1-CRAB(I)/100)*21 
4980 NEXT I:I=O 
4990 FOR I=1 TO 12 
5000 BCI3BC(I)=160+(1-CR3BC(I)/100)*21 
5010 NEXT I 
5020 I 

5030 '------------------------------------------------------------------

5040 I 

5050 1 CALCULATE EFFICIENCY FOR EACH SUB-SYSTEM 
5060 I 

5070 ' NOTE : EFFICIENCY = (LIFETIME COSTS/DAM) / (LIFETIME PRODUCT/DAM) 
E()=C()/P() 
5080 ' 
5090 ' BCI() - BREEDING TO REBREEDING INTERVAL (DAYS) 
5100 1 CONSTANTS : 
5110 1 LOCG - GROWING-FINISHING LABOR & OVERHEAD COSTS FROM 40-2201b/ 
5120 I MARKET 
PIG/DAY ($) 
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5130 ' LOCR - LABOR & OVERHEAD COSTS OF REPRODUCTION/SOW FARROWED/DAY 
($) 
5140 ' GP - GILT COSTS FROM 220lb TO FIRST BREEDING ($) 
5150 ' FIB - BREEDING HERD (MALES, FEMALES, LITTERS) FEED 
INTAKE/SOW/DAY (KG) 
5160 ' (SHOULD PROBABLY BE A VARIABLE, SEE NOTE BELOW) 
5170 ' FCB - COST OF BREEDING HERD RATION ($/KG) 
5180 ' FCG - COST OF GROWING / FINISHING RATION. ($/KG) 
5190 ' 
5200 ' ECONOMIC PARAMETER ESTIMATES ARE CALCULATED FROM "ESTIMATED 
RETURNS FROM 
5210 ' FARROWING AND FINISHING HOGS IN IOWA" FOR THE 10 YEARS 1974-1983, 
5220 ' PUBLISHED BY THE IOWA STATE UNIVERSITY COOPERATIVE EXTENSION 
SERVICE 
5230 ' (REPORTS M-1171, FEB 1974; M-1198(REV), JUNE 1980; M-1231, 
JAN 1983 )5408 ' 
5240 LOCG=.136 
5250 LOCR= .86 7 
5260 GP=30! ' CALC. AS 110% OF TOTAL FINISHING COSTS FOR 60 DAY 
PERIOD 
5270 FIB=3.728 ' NOTE: FIB SHOULD REALLY BE TREATED AS VARIABLE. THE 
IOWA 
5280 FIGURES ARE BASED ON REPLACING SOWS AFTER 2 
LITTERS, 
5290 i.e. FIB DEPENDS UPON FR, AS WELL AS LSW, 
ETC. 
5300 FCB= .129 
5310 FCG=.126 
5320 ' 
5330 CLS:PRINT:PRINT:PRINT " ECONOMIC CONSTANTS ASSUMED":PRINT 
5340 PRINT " LOCG LOCR GP FIB FCB 
FCG":PRINT 
5350 PRINT USING " .111111 .111111 1111.11 11.111111 .111111 
• 111111"; LOCG, LOCR, GP, FIB, FCB, FCG: PRINT 
5360 PRINT"LOCG - GROWING-FINISHING LABOR & OVERHEAD COSTS FROM 40-
220lb/" 
5370 PRINT" MARKET 
PIG/DAY ( $)" 
5380 PRINT"LOCR - LABOR & OVERHEAD COSTS OF REPRODUCTION/SOW 
FARROWED/DAY ($)" 
5390 PRINT" GP - GILT COSTS FROM 220lb TO FIRST BREEDING ($)" 
5400 PRINT" FIB - BREEDING HERD (MALES, FEMALES, LITTERS) FEED 
INTAKE/SOW/DAY (KG)" 
5410 PRINT" FCB - COST OF BREEDING HERD RATION ($/KG)" 
5420 PRINT" FCG - COST OF GROWING / FINISHING RATION. ($/KG)" 
5430 PRINT:INPUT "PRESS ENTER ";Z$ 
5440 ' 
5450 ' CALCULATING CG (COST OF POSTWEANING GROWTH / DAM / LITTER) 
5460 ' 
5470 ' CG = [ (1+PS)/2 * LSW ] * [ (final -wean wt)/ADG * (LOCG + 
FCG*ADG*FG) ]9745 ' CG = [ pigs/dam/litter ]*[ costs/pig ] 
5480 ' 
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5490 
CGABCD(1)=(1+PSC)I2*LSWABCD(1)*81.64701IADGABCD(1)*(LOCG+FCG*ADGABCD(l)* 
FGABCD(1)) 
5500 CLS:PRINT" CGABCD(1)":PRINT:PRINT CGABCD(1):PRINT 
5510 PRINT 11 CGP(I) CGABC(I) CG4BC(I)":PRINT 
5520 FOR I=1 TO 4 
5530 CGP(I)=(1+PSP)I2*LSWP(I)*81.64701IADGP(I)*(LOCG+FCG*ADGP(I)*FGP(I)) 
5540 
CGABC(I)=(1+PSC)I2*LSWABC(I)*81.64701IADGABC(I)*(LOCG+FCG*ADGABC(I)*FGAB 
C(I)) 
5550 
CG4BC(I)=(1+PSC)I2*LSW4BC(I)*81.64701IADG4BC(I)*(LOCG+FCG*ADG4BC(I)*FG4B 
C(I)) 
5560 PRINT CGP(I),CGABC(I),CG4BC(I) 
5570 NEXT I 
5580 PRINT:PRINT II CGAB(I) 11 :PRINT 
5590 FOR I=1 TO 6 
5600 
CGAB(I)=(1+PSC)I2*LSWAB(I)*81.64701IADGAB(I)*(LOCG+FCG*ADGAB(I)*FGAB(I)) 
5610 PRINT CGAB(I) 
5620 NEXT I 
5630 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
5640 PRINT:PRINT II CG3BC(I)":PRINT 
5650 FOR I=1 TO 12 
5660 
CG3BC(I)=(1+PSC)I2*LSW3BC(I)*81.64701IADG3BC(I)*(LOCG+FCG*ADG3BC(I)*FG3B 
C(I)) 
5670 PRINT CG3BC(I) 
5680 NEXT I 
5690 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
5700 ' 
5710 ' CALCULATING CB (REPRODUCTION COSTS I DAM I LIFETIME) 
5720 ' 
5730 1 CB = (COST OF BREEDING STOCK (GILT + BOAR SHARE ) AT FIRST MATING 
5740 ' + (# LITTERS) * BCI() * (LOCR + FCB*FIB) 
5750 ' 
5760 ' = [1 + MRI(FMR*FR)] * [ CB()I(PS*LSWIFR) + CG()I(PS*LSW) + GP 
] 
5770 ' note : cb & cg values for the system replacements produced 
in 
5780 ' + [ (1IFR) ] * BCI * [ LOCR + FCB*FIB ] 
5790 ' 
5800 ' FOR PUREBRED SYSTEMS, CB & CB() ARE FOR THE SAME SYSTEM. 
MULTIPLYING THRU AND SIMPLIFYING RESULTS IN : 
5810 ' CB = [ (1+MRI(FM*FR))*(CGI(PS*LSW)+GP) + 
(IIFR)*BCI*(LOCR+(FCB*FIB)) I [ 1 - FRI(PS*LSW) -
MR/(FMR*PS*LSW) ] i.e., 
5820 ' 
5830 PRINT:PRINT II CBP(I)":PRINT 
5840 FOR I=1 TO 4 
5850 
CBP(I)=((1+(MRPI(FMR*FRP)))*((100*CGP(I))I(PSP*LSWP(I)*CRP(I))+(100*GPIC 
RP(I)))+((1IFRP)*BCIP(I)*(LOCR+(FCB*FIB))))I(1-
(100*FRP)I(PSP*LSWP(I)*CRP(I))-(100*MRP)I(FMR*PSP*LSWP(I)*CRP(I))) 



5860 PRINT CBP(I) 
5870 NEXT I 
5880 ' 
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5890 ' FOR ALL SYSTEMS REQUIRING ONLY PUREBRED MALES FROM OUTSIDE THE 
SYSTEM 
5900 ' (I.E. ROTATIONAL SYSTEMS), THE BOAR SHARE OF COSTS 
5910 ' (CALCULATED BY THE MR/(FMR*FR) COEFFICIENT) DEPENDS UPON THE 
WEIGHTED 
5920 ' AVERAGE CB(I) AND CG(I) FOR THE PUREBREDS INVOLVED. THE FOLLOWING 
5930 ' VARIABLE (XP) IS FIRST CALCULATED FOR EACH PUREBRED 
5940 ' 
5950 PRINT:PRINT " XP(I)":PRINT 
5960 FOR I=1 TO 4 
5970 XP(I)=(FRP*CBP(I)+CGP(I))/(PSP*LSWP(I)) 
5980 PRINT XP(I) 
5990 NEXT I 
6000 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
6010 ' 
6020 'AND USED IN THE FOLLOWING EQUATIONS, WHERE BOAR IS THE WEIGHTED 
AVERAGE: 
6030 ' 
6040 '4 BREED ROTATION 
6050 
BOAR=(STRABCD(1)*XP(1)+STRABCD(2)*XP(2)+STRABCD(3)*XP(3)+STRABCD(4)*XP(4 
))/(STRABCD(1)+STRABCD(2)+STRABCD(3)+STRABCD(4)) 
6060 
CBABCD(1)=(CGABCD(1)/(PSC*LSWABCD(1))+(1+MRC/(FMR*FRC))*(100*GP/CRABCD(1 
))+(MRC/(FMR*FRC))*BOAR+(1/FRC)*BCIABCD(1)*(LOCR+FCB*FIB))/(1-
FRC/(PSC*LSWABCD(1))) 
6070 PRINT:PRINT" CBABCD(1)":PRINT:PRINT CBABCD(1):PRINT 
6080 ' 
6090 '3 BREED ROTATIONS 
6100 PRINT " CBABC(I)":PRINT 
6110 FOR I=1 TO 4 
6120 IF I=1 THEN J=1:K=2:L=3 
6130 IF I=2 THEN J=1:K=2:L=4 
6140 IF I=3 THEN J=1:K=3:L=4 
6150 IF I=4 THEN J=2:K=3:L=4 
6160 
BOAR=(STRABC(I,1)*XP(J)+STRABC(I,2)*XP(K)+STRABC(I,3)*XP(L))/(STRABC(I,l 
)+STRABC(I,2)+STRABC(I,3)) 
6170 
CBABC(I)=(CGABC(I)/(PSC*LSWABC(I))+(1+MRC/(FMR*FRC))*(100*GP/CRABC(I))+( 
MRC/(FMR*FRC))*BOAR+(1/FRC)*BCIABC(I)*(LOCR+FCB*FIB))/(1-
FRC/(PSC*LSWABC(I))) 
6180 PRINT CBABC(I) 
6190 NEXT I 
6200 ' 
6210 '2 BREED ROTATIONS 
6220 PRINT:PRINT " CBAB(I)":PRINT 
6230 FOR I=1 TO 6 
6240 IF I=1 THEN J=1:K=2 
6250 IF 1=2 THEN J=1:K=3 
6260 IF I=3 THEN J=1:K=4 



6270 IF I=4 THEN J=2:K=3 
6280 IF I=5 THEN J=2:K=4 
6290 IF I=6 THEN J=3:K=4 
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6300 BOAR=(STRAB(I,1)*XP(J)+STRAB(I,2)*XP(K))/(STRAB(I,1)+STRAB(I,2)) 
6310 
CBAB(I)=(CGAB(I)/(PSC*LSWAB(I))+(1+MRC/(FMR*FRC))*(100*GP/CRAB(I))+(MRC/ 
(FMR*FRC))*BOAR+(1/FRC)*BCIAB(I)*(LOCR+FCB*FIB))/(1-FRC/(PSC*LSWAB(I))) 
6320 PRINT CBAB(I) 
6330 NEXT I 
6340 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
6350 ' 
6360 ' COMBINATION SYSTEMS REQUIRE PUREBRED MALES AND ROTATIONAL 
FEMALES, 
6370 ' RESULTING IN THE FOLLOWING EQUATIONS 
6380 ' 
6390 '3 BREED COMBINATIONS 
6400 PRINT:PRINT 11 CB3BC(I)":PRINT 
6410 FOR I=1 TO 12 
6420 IF I=1 THEN J=2:K=3:L=1:M=4 ' J,K,L INDEX PUREBREDS 
6430 IF I=2 THEN J=2:K=4:L=1:M=5 ' M INDEXES 2 BREED ROTATIONS 
6440 IF I=3 THEN J=3:K=4:L=1:M=6 
6450 IF I=4 THEN J=1:K=3:L=2:M=2 
6460 IF I=5 THEN J=1:K=4:L=2:M=3 
6470 IF I=6 THEN J=3:K=4:L=2:M=6 
6480 IF I=7 THEN J=1:K=2:L=3:M=1 
6490 IF I=8 THEN J=1:K=4:L=3:M=3 
6500 IF I=9 THEN J=2:K=4:L=3:M=5 
6510 IF I=10 THEN J=1:K=2:L=4:M=1 
6520 IF I=11 THEN J=1:K=3:L=4:M=2 
6530 IF I=12 THEN J=2:K=3:L=4:M=4 
6540 
BOAR=(STR3BC(I,1)*XP(J)+STR3BC(I,2)*XP(K)+STR3BC(I,3)*XP(L))/(STR3BC(I,1 
)+STR3BC(I,2)+STR3BC(I,3)) 
6550 
CB3BC(I)=(CBAB(M)*FRC+CGAB(M))/(PSC*LSWAB(M))+(1+MRC/(FMR*FRC))*(100*GP/ 
CRAB(M))+(MRC/(FMR*FRC))*BOAR+(1/FRC)*BCI3BC(I)*(LOCR+FCB*FIB)/(1-
FRC/(PSC*LSW3BC(I))) 
6560 PRINT CB3BC(I) 
6570 NEXT I 
6580 ' 
6590 '4 BREED COMBINATIONS 
6600 PRINT:PRINT II CB4BC(I)":PRINT 
6610 FOR I=1 TO 4 
6620 IF I=1 THEN J=2:K=3:L=4:M=1:N=4 ' J,K,L & M 
INDEX 
6630 IF I=2 THEN J=1:K=3:L=4:M=2:N=3 ' PUREBREDS, 
6640 IF I=3 THEN J=1:K=2:L=4:M=3:N=2 ' N INDEXES 3 
BREED 
6650 IF I=4 THEN J=1:K=2:L=3:M=4:N=1 ' ROTATIONS 
6660 
BOAR=(STR4BC(I,1)*XP(J)+STR4BC(I,2)*XP(K)+STR4BC(I,3)*XP(L)+STR4BC(I,4)* 
XP(M))/(STR4BC(I,1)+STR4BC(I,2)+STR4BC(I,3)+STR4BC(I,4)) 
6670 
CB4BC(I)=(CBABC(N)*FRC+CGABC(N))/(PSC*LSWABC(N))+(1+MRC/(FMR*FRC))*(100* 
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GPICRABC(N))+(MRCI(FMR*FRC))*BOAR+(1IFRC)*BCI4BC(I)*(LOCR+FCB*FIB)I(1-
FRCI(PSC*LSW4BC(I))) 
6680 PRINT CB4BC(I) 
6690 NEXT I 
6700 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
6710 ' 
6720 ' CALCULATING C (LIFETIME COSTS I DAM) FROM CB, CG & # OF 
LITTERS(1IFR ) 
6730 ' -
6740 CABCD(1)=CBABCD(1)+(1IFRC)*CGABCD(1) 
6750 FOR I=1 TO 4 
6760 CP(I)=CBP(I)+(1IFRP)*CGP(I) 
6770 CABC(I)=CBABC(I)+(1IFRC)*CGABC(I) 
6780 C4BC(I)=CB4BC(I)+(1IFRC)*CG4BC(I) 
6790 NEXT I:I=O 
6800 FOR I=1 TO 6 
6810 CAB(I)=CBAB(I)+(1IFRC)*CGAB(I) 
6820 NEXT I:I=O 
6830 FOR I=1 TO 12 
6840 C3BC(I)=CB3BC(I)+(1IFRC)*CG3BC(I) 
6850 NEXT I 
6860 ' 
6870 ' CALCULATING PG (GROWTH PHASE PRODUCT I DAM I PARITY) 
6880 ' 
6890 ' PG = RELATIVE VALUE*P(SURVIVE WEAN-100kg)*LITTER SIZE 
WEANED*SLAUGHTER WT 
6900 ' = RV * PS * LSW * 100 (kg) 
6910 ' EXCEPT FOR PUREBRED HERDS, AND HERDS PRODUCING CROSSBRED BOARS 
(CXD), WHERE IT IS ASSUMED THAT 10% OF MALES ARE 
6920 ' CASTRATED, AND THAT BOAR (100kg) MEAT IS WORTH 70% OF EQUIVALENT 
6930 1 BARROW I GILT MARKET HOG MEAT. THEREFORE, IN THESE HERDS : 
6940 ' PG = RV * (Prop. gilts & barrows + 70% prop. boars) * PS * LSW * 
100(kg) 
6950 ' = RV * .865 * PS * LSW * 100 
6960 ' 
6970 ' THE FOLLOWING SET OF EQUATIONS MAY BE USED TO FIX RV = 1.00 
6980 ' 
6990 'PGABCD(1)=100*PSC*LSWABCD(1) 
7000 'FOR I=1 TO 4 
7010 'PGP(I)=86.5*PSP*LSWP(I) 
7020 'PGABC(I)=100*PSC*LSWABC(I) 
7030 'PG4BC(I)=100*PSC*LSW4BC(I) 
7040 'NEXT I:I=O 
7050 'FOR I=1 TO 6 
7060 'PGAB(I)=100*PSC*LSWAB(I) 
7070 'NEXT I:I=O 
7080 'FOR I=1 TO 12 
7090 'PG3BC(I)=100*PSC*LSW3BC(I) 
7100 'NEXT I 
7110 I 

7120 1 THE FOLLOWING EQUATIONS PAY A PREMIUM FOR LEANER HOGS, ACCORDING 
TO 
7130 ' NPPC "PORK VALUE" GUIDELINES FOR 211-230 lb MARKET HOGS, I.E., 
7140 'fat,last rib,in.: .7 .8 .9 1.0 1.1 1.2 1.3 



7150 ' av. backfat, in.: 1.0 1.1 
7160 ' relative value 104 103 
7170 ' NOTE: THE RELATIONSHIP "av. fat = 
ASSUMED 

1.2 1.3 1.4 1.5 
102 101 100 99 
last rib fat+ .3 in." IS 

7180 ' NPPC USES LAST RIB FAT TO ASIGN VALUE 
7190 ' THE REGRESSION OF VALUE ON AV. FAT IS: 
7200 ' RELATIVE VALUE = 114 - 10. * (av. fat, in) 
7210 ' = 114 - .3937 * (av. fat, mm) 
7220 ' RV IS CALCULATED FOR TERMINAL OFFSPRING OF EACH SYSTEM: 
7230 ' 
7240 RVABCD(1)=(114-.3937*BFABCD(1))/100 
7250 FOR I=1 TO 4 
7260 RVP(I)=(114-.3937*BFP(I))/100 
7270 RVABC(I)=(114-.3937*BFABC(I))/100 
7280 RV4BC(I)=(114-.3937*BF4BC(I))/100 
7290 NEXT I 
7300 FOR I=1 TO 6 
7310 RVAB(I)=(114-.3937*BFAB(I))/100 
7320 NEXT I 
7330 FOR I=1 TO 12 
7340 RV3BC(I)=(114-.3937*BF3BC(I))/100 
7350 NEXT I 
7360 ' 
7370 ' PG IS THEN CALCULATED: 
7380 ' 
7390 PGABCD(1)=RVABCD(1)*100*PSC*LSWABCD(1) 
7400 PRINT:PRINT " PGABCD(l)":PRINT:PRINT PGABCD(l) :PRINT:PRINT 
7410 PRINT 11 PGP(I) PGABC(I) PG4BC(I)":PRINT 
7420 FOR I=1 TO 4 
7430 PGP(I)=RVP(I)*86.5*PSP*LSWP(I) 
7440 PGABC(I)=RVABC(I)*100*PSC*LSWABC(I) 
7450 PG4BC(I)=RV4BC(I)*100*PSC*LSW4BC(I) 
7460 PRINT PGP(I),PGABC(I),PG4BC(I) 
7470 NEXT I:I=O 
7480 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
7490 PRINT:PRINT 11 PGAB(I)" 
7500 FOR 1=1 TO 6 
7510 PGAB(I)=RVAB(I)*100*PSC*LSWAB(I) 
7520 PRINT PGAB(I) 
7530 NEXT I:I=O 
7540 PRINT:PRINT II PG3BC(I)" 
7550 FOR I=1 TO 12 
7560 PG3BC(I)=RV3BC(I)*100*PSC*LSW3BC(I) 
7570 PRINT PG3BC(I) 
7580 NEXT I 
7590 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
7600 ' 
7610 ' 
7620 ' CALCULATING PB (SALVAGE PRODUCT / DAM LIFETIME) 
7630 ' 
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1.6 
98 

7640 ' PB =PRODUCT (AS % SLAUGHTER WT) * [ CULL FEMALE WT + (CULL BOAR 
WT / (FMR*(MALE HERD LIFE/FEMALE HERD LIFE)) ] 
7650 ' 
7660 ' EQUATIONS WERE DEVELOPED AS FOLLOWS : 



7670 ' 
7680 ' SALVAGE PRODUCT CONSISTS OF SOWS CULLED AT THE END OF THEIR 
7690 ' REPRODUCTIVE LIFE ( i.e. AFTER 1/FR LITTERS, FR=PROP FEMALES 
REPLACED 
7700 ' EACH CYCLE ), OPEN SOWS AND GILTS AND CULL BOARS. 
7710 ' EACH CYCLE ), OPEN SOWS AND GILTS AND CULL BOARS. 
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7720 ' FOR EVERY FEMALE CONCEIVING EACH CYCLE, (100/CR)-1 FEMALES ARE 
SOLD AS 
7730 ' OPEN. OVER A FEMALES LIFETIME, (1/FR)*((100/CR)-1) CULL FEMALES 
HAVE 
7740 ' BEEN SOLD. 
7750 ' 
7760 ' 
7770 ' 
7780 ' 
7790 ' 
7800 ' 
7810 ' 

ASSUMING THE FOLLOWING RELATIVE PRODUCT VALUES : 
220lb MARKET BARROW/GILT 1.00 
OPEN GILT (255lb) = .90 
OPEN/CULL SOW (255lb + 30lb / PARITY ,f 1 ) = .85 
CULL BOAR (400lb) = .65 

7820 ' PB = .85*(255+(30/FR)) + (1/FR)*((100/CR)-1) * 
7830 ' cull sow # open females/dam lifetime 
7840 ' 
7850 ' [ .9*255*FR + .85*(255+(15/FR))*(1-FR) ] + 
(.65*400)/(FM*FR/MR) 
7860 ' open gilts open sows 
7870 ' 

cull boars 

7880 ' CONVERTING TO KG AND SIMPLIFYING GIVES THE EQUATIONS USED BELOW, 
EXCEPT 
7890 ' FOR THE CONSTANT MULTIPLIER OF .985, USED TO REFLECT THE ASSUMED 
1.5% 
7900 ' BREEDING HERD DEATH LOSS / CYCLE 
7910 I 

7920 PBABCD(1)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CRABCD(1)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
7930 PRINT:PRINT" PBABCD(1)":PRINT:PRINT PBABCD(1):PRINT:PRINT 
7940 PRINT " PBP(I) PBABC(I) PB4BC(I)" 
7950 FOR I=1 TO 4 
7960 PBP(I)=.985*(109.883+(23.133/FRP)+(1/FRP)*(100/CRP(I)-
1)*(116.346*FRP+(1-FRP)*(109.883+23.133/FRP))+117.934/(FMR*FRP/MRP)) 
7970 PBABC(I)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CRABC(I)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
7980 PB4BC(I)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CR4BC(I)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
7990 PRINT PBP(I),PBABC(I),PB4BC(I) 
8000 NEXT I:I=O 
8010 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
8020 PRINT:PRINT 11 PBAB(I)" 
8030 FOR I=l TO 6 
8040 PBAB(I)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CRAB(I)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
8050 PRINT PBAB(I) 
8060 NEXT I:I=O 
8070 PRINT:PRINT II PB3BC(I)" 
8080 FOR I=1 TO 12 



8090 PB3BC(I)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CR3BC(I)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
8100 PRINT PB3BC(I) 
8110 NEXT I 
8120 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
8130 I 
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8140 1 CALCULATING P (LIFETIME PRODUCT / DAM) FROM PB, PG & # LITTERS 
PRODUCED 
8150 I 

8160 PABCD(1)=PBABCD(1)+(1/FRC)*PGABCD(1) 
8170 FOR I=1 TO 4 
8180 PP(I)=PBP(I)+(1/FRP)*PGP(I) 
8190 PABC(I)=PBABC(I)+(1/FRC)*PGABC(I) 
8200 P4BC(I)=PB4BC(I)+(1/FRC)*PG4BC(I) 
8210 NEXT I 
8220 FOR I•1 TO 6 
8230 PAB(I)•PBAB(I)+(1/FRC)*PGAB(I) 
8240 NEXT I 
8250 FOR I=1 TO 12 
8260 P3BC(I)=PB3BC(I)+(1/FRC)*PG3BC(I) 
8270 NEXT I 
8280 I 

8290 ' CALCULATING E (EFFICIENCY) FROM C & P 
8300 I 

8310 EABCD(1)•CABCD(1)/PABCD(1) 
8320 FOR I=1 TO 4 
8330 EP(I)=CP(I)/PP(I) 
8340 EABC(I)•CABC(I)/PABC(I) 
8350 E4BC(I)=C4BC(I)/P4BC(I) 
8360 NEXT I:I=O 
8370 FOR I=1 TO 6 
8380 EAB(I)=CAB(I)/PAB(I) 
8390 NEXT I:I=O 
8400 FOR I=1 TO 12 
8410 E3BC(I)•C3BC(I)/P3BC(I) 
8420 NEXT I 
8430 ' 
8440 1 E REPRESENTS EFFICIENCY FOR TERMINAL SUB-SYSTEMS OF EACH SYSTEM. 
8450 ' TOTAL SYSTEM EFFICIENCY (SE), HOWEVER, IS THE WEIGHTED AVERAGE OF 
EFFICIENCIES OF BOTH THE BREEDING STOCK GENERATORS AND TERMINAL 
8460 ' CROSSES THAT COMPRISE THE 10,000 FEMALES FARROWING IN EACH 
SYSTEM. 
8470 ' THUS : 
8480 I 

8490 'PUREBREDS 
8500 FOR I•1 TO 4 
8510 SEP(I)=EP(I) 
8520 NEXT I 
8530 I 

8540 '4 BREED ROTATION 
8550 
SEABCD(1)=(STRABCD(1)*EP(1)+STRABCD(2)*EP(2)+STRABCD(3)*EP(3)+STRABCD(4) 
*EP(4)+STRABCD(5)*EABCD(1))/10000 
8560 I 



8570 '3 BREED ROTATIONS 
8580 FOR I=1 TO 4 
8590 IF I=1 THEN J=1:K=2:L=3 
8600 IF I=2 THEN J=1:K=2:1=4 
8610 IF I=3 THEN J=1:K=3:L=4 
8620 IF I=4 THEN J=2:K=3:L=4 
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8630 
SEABC(I)=(STRABC(I,1)*EP(J)+STRABC(I,2)*EP(K)+STRABC(I,3)*EP(L)+STRABC(I 
,4)*EABC(I))/10000 
8640 NEXT I 
8650 ' 
8660 '2 BREED ROTATIONS 
8670 FOR I=1 TO 6 
8680 IF I=1 THEN J=1:K=2 
8690 IF I=2 THEN J=1:K=3 
8700 IF I=3 THEN J=1:K=4 
8710 IF I=4 THEN J=2:K=3 
8720 IF I=5 THEN J=2:K=4 
8730 IF I=6 THEN J=3:K=4 
8740 SEAB(I)=(STRAB(I,1)*EP(J)+STRAB(I,2)*EP(K)+STRAB(I,3)*EAB(I))/10000 
8750 NEXT I 
8760 ' 
8770 '3 BREED COMBINATIONS 
8780 FOR I=1 TO 12 
8790 IF I=1 THEN J=2:K=3:L=1:M=4 'L INDEXES THE BREED OF TERMINAL SIRE 
8800 IF I=2 THEN J=2:K=4:L=1:M=5 'M INDEXES THE FEMALE 2 BREED ROTATION 
GROUP 
8810 IF I=3 THEN J=3:K=4:L=1:M=6 'J,K INDEX PUREBREDS IN THE ROTATION 
8820 IF I=4 THEN J=1:K=3:1=2:M=2 
8830 IF I=5 THEN J=1:K=4:L=2:M=3 
8840 IF I=6 THEN J=3:K=4:L=2:M=6 
8850 IF I=7 THEN J=1:K=2:L=3:M=1 
8860 IF I=8 THEN J=1:K=4:L=3:M=3 
8870 IF I=9 THEN J=2:K=4:L=3:M=5 
8880 IF I=10 THEN J=1:K=2:L=4:M=1 
8890 IF I=11 THEN J=1:K=3:L=4:M=2 
8900 IF I=12 THEN J=2:K=3:L=4:M=4 
8910 
SE3BC(I)=(STR3BC(I,1)*EP(J)+STR3BC(I,2)*EP(K)+STR3BC(I,3)*EP(L)+STR3BC(I 
,4)*EAB(M)+STR3BC(I,5)*E3BC(I))/10000 
8920 NEXT I 
8930 ' 
8940 '4 BREED COMBINATIONS 
8950 FOR I=1 TO 4 
8960 IF I=1 THEN J=2:K=3:L=4:M=1:N=4 'M = BREED OF TERMINAL SIRE 
8970 IF I=2 THEN J=l:K=3:L=4:M=2:N=3 'N = FEMALE 3 BREED ROTATION 
GROUP 
8980 IF I=3 THEN J=1:K=2:L=4:M=3:N=2 'J,K,L =PUREBREDS IN THE 
ROTATION 
8990 IF I=4 THEN J=1:K=2:L=3:M=4:N=1 
9000 
SE4BC(I)=(STR4BC(I,1)*EP(J)+STR4BC(I,2)*EP(K)+STR4BC(I,3)*EP(L)+STR4BC(I 
,4)*EP(M)+STR4BC(I,5)*EABC(N)+STR4BC(I,6)*E4BC(I))/10000 
9010 NEXT I 



9020 SUMP=O: SUMAB=O: SUMABC=O: SUM3BC=O: SUM4BC=O 
9030 AVGABCD=SEABCD 
9040 FOR L=1 TO 4 
9050 SUMP=SEP(1)+SUMP 
9060 SUMABC=SEABC(1)+SUMABC 
9070 SUM4BC=SE4BC(1)+SUM4BC 
9080 NEXT 1 
9090 FOR 1=1 TO 6 
9100 SUMAB=SEAB(1)+SUMAB 
9110 NEXT 1 
9120 FOR 1=1 TO 12 
9130 SUM3BC=SE3BC(1)+SUM3BC 
9140 NEXT 1 
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9150 AVGP=SUMPI4: AVGABC=SUMABCI4: AVG4BC=SUM4BCI4: AVGAB=SUMABI6: 
AVG3BC=SUM3BCI12 
9160 ' 
9170 C1S:PRINT TAB(12)" NO. BREED EFFICIENCY ( COST I KG 
PRODUCT )" 
9180 PRINT "SYSTEM COMBINATIONS MEAN MIN 
MAX" 
9190 PRINT STRING$(70,"-") 
9200 PRINT USING " P 
111111.1111"; AVGP ,MINP ,MAXP 
9210 PRINT USING " AB 
111111.1111" ;AVGAB ,MINAB ,MAXAB 
9220 PRINT USING " ABC 
111111.1111" ;AVGABC ,MINABC ,MAXABC 

4 

6 

4 

9230 PRINT USING "ABCD 1 
111111.1111" ;SEABCD (1) ,SEABCD (1) ,SEABCD ( 1) 
9240 PRINT USING " 3BC 12 
111111. 1111" ;AVG3BC ,MIN3BC ,MAX3BC 
9250 PRINT USING II 4BC 
111111.1111" ;AVG4BC ,MIN4BC ,MAX4BC 

4 

9260 PRINT:INPUT "PRESS ENTER";Z$:C1S 
9270 ' 
9280 PRINT:PRINT:PRINT " PUREBREDS":PRINT 

111111 • 11111111 

IIIII! • 11111111 

111111. 11111111 

/IIIII • 11111111 

IIIII! • IIIII! II 

111111 • 11111111 

111111.1111 

IIIII! • 1111 

IIIIIF • 1111 

IIIII! • 1111 

111111 • till 

9290 PRINT "BREEDS EFFICIENCY ( COST I KG PRODUCT )":PRINT 
9300 PRINT STRING$ ( 48, "-"): B$ (1) ="D" :B$ (2)=''Y": B$ ( 3) ="1" :B$ ( 4) ="S" 
9310 FOR I=1 TO 4 
9320 PRINT USING "3 3 

I 
9330 PRINT:INPUT "PRESS ENTER ";Z$:C1S 
9340 ' 

11/ftf.tllltltl" ;B$ (I) , EP (I) :NEXT 

9350 PRINT:PRINT:PRINT " 2 BREED ROTATIONS":PRINT 
9360 PRINT "BREEDS EFFICIENCY ( COST I KG PRODUCT ) ":PRINT 
9370 PRINT STRING$(48,"-"):FOR I=1 TO 6:READ B$(I):NEXT I 
9380 DATA DY,DL,DS,YL,YS,1S 
9390 FOR I=1 TO 6 
9400 PRINT USING " 3 3 

111111.11111111"; B$ (I) , SEAB (I) :NEXT I 
9410 PRINT:INPUT "PRESS ENTER ";Z$:C1S 
9420 ' 
9430 PRINT:PRINT:PRINT II 

9440 PRINT "BREEDS 
3 BREED ROTATIONS":PRINT 

EFFICIENCY ( COST / KG PRODUCT )":PRINT 



9450 PRINT STRING$(48,"-"):FOR I=1 TO 4:READ B$(I):NEXT I 
9460 DATA DYL,DYS,DLS,YLS 
9470 FOR I=1 TO 4 
9480 PRINT USING "3 3 

tllftl. tltltltl"; B$ (I) , SEABC (I) :NEXT I 
9490 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
9500 ' 

4 BREED ROTATION" :PRINT 
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9510 PRINT:PRINT:PRINT II 

9520 PRINT "BREEDS EFFICIENCY ( COST I KG PRODUCT )":PRINT 
9530 PRINT STRING$(48,"-") 
9540 PRINT USING "DYLS 
9550 PRINT:INPUT ''PRESS ENTER ";Z$:CLS 
9560 ' 

1111 II. 1111 till II ; s EABCD ( 1 ) 

9570 PRINT:PRINT:PRINT " 
FEMALES" :PRINT 

TERMINAL SIRE BREED X 2 BREED ROTATION 

9580 PRINT "BREEDS EFFICIENCY ( COST I KG PRODUCT )":PRINT 
9590 PRINT STRING$ ( 48, "-") :FOR I=1 TO 12 :READ B$(I) :NEXT I 
9600 DATA DxYL,DxYS,DxLS,YxDL,YxDS,YxLS,LxDY,LxDS,LxYS,SxDY,SxDL,SxYL 
9610 FOR I=1 TO 12 
9620 PRINT USING " 3 3 

tltltl.tltlllti";B$(I) ,SE3BC(I) :NEXT I 
9630 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
9640 'OPEN "0",1,"SE4BC.PRN" 
9650 ' 
9660 PRINT:PRINT:PRINT II 

FEMALES":PRINT 
TERMINAL SIRE BREED X 3 BREED ROTATION 

9670 PRINT "BREEDS EFFICIENCY ( COST I KG PRODUCT )":PRINT 
9680 'PRINT tll,STRING$(48,"-") :FOR I=1 TO 4:READ B$(I) :NEXT I 
9690 PRINT STRING$(48,"-"):FOR I=1 TO 4:READ B$(I):NEXT I 
9700 DATA DxYLS,YxDLS,LxDYS,SxDYL 
9710 FOR I=1 TO 4 
9720 PRINT USING "3 3 

tltlll. tltltltl" ;B$ (I), SE4BC (I) :NEXT I 
9730 'CLOSE 
9740 'PRINT:INPUT "PRESS ENTER ";Z$:CLS 



APPENDIX B 

STATIC CROSSBREEDING 
SIMULATION PROGRAM 
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10 'SAVE "STATIC",A 
20 I 

30 1 PERFORMANCE VARIABLES ARE INDICATED BY THE FOLLOWING PREFIXES 
THROUGHOUT THE PROGRAM: 
40 I 

50 'CR - FIRST SERVICE CONCEPTION RATE (%) 
60 'SUR - SURVIVAL TO 42 d (%) 
70 'LSB - LITTER SIZE BORN 
80 'LSW - LITTER SIZE WEANED ( = LSB*SUR/100 ) 
90 'LSFE - LITTER SIZE WEANED / FEMALE EXPOSED ( =LSW*CR/100 ) 
100 'ADG - POSTWEANING AVERAGE DAILY GAIN (kg/d) 
110 'FG - FEED TO GAIN RATIO 
120 'BF - CARCASS BACKFAT (mm) 
130 I 
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140 1 THE FOLLOWING SUFFIXES INDICATE THE DIFFERENT BREEDING SYSTEMS: 
150 I 

160 'P - PUREBRED 
170 'AXB - 2 BREED SPECIFIC CROSS 
180 'AXAB - BACKCROSS 
190 'CXAB - 3 BREED SPECIFIC CROSS 
200 'CDXAB - 4 BREED SPECIFIC CROSS 
210 I 

220 1 THE FOLLOWING SUFFIXES REFER TO GENETIC PARAMETERS: 
230 I 

240 'MU - CONSTANT 
250 'GIM - DIRECT AVERAGE BREED + MATERNAL EFFECTS 
260 1 GI - DIRECT AVERAGE BREED EFFECT 
270 'GM - DIRECT AVERAGE MATERNAL EFFECT 
280 'HI - INDIVIDUAL HETEROSIS 
290 'HM - MATERNAL HETEROSIS 
300 'HP - PATERNAL HETEROSIS 
310 I 

320 'DIMENSIONING ARRAYS 
330 I 

340 CLS:PRINT:PRINT:PRINT "STATIC.BAS":PRINT 
350 DIM 
CRGIM(4),CRHM(6),CRHP(6),CRP(4),CRAXB(12),CRAXAB(12),CRCXAB(12),CRCDXAB( 
6) 
360 DIM 
LSBGIM(4),LSBHI(6),LSBHM(6),LSBHP(6),LSBP(4),LSBAXB(12),LSBAXAB(12),LSBC 
XAB(12),LSBCDXAB(6) 
370 DIM 
SURGI(4),SURGM(4),SURHI(6),SURHM(6),SURHP(6),SURP(4),SURAXB(12),SURAXAB( 
12),SURCXAB(12),SURCDXAB(6) 
380 DIM 
ADGGI(4),ADGGM(4),ADGHI(6),ADGHM(6),ADGHP(6),ADGP(4),ADGAXB(12),ADGAXAB( 
12),ADGCXAB(l2),ADGCDXAB(6) 
390 DIM 
BFGI(4),BFGM(4),BFHI(6),BFHM(6),BFHP(6),BFP(4),BFAXB(12),BFAXAB(12),BFCX 
AB(12),BFCDXAB(6) 
400 DIM 
FGGI(4),FGGM(4),FGHI(6),FGHM(6),FGHP(6),FGP(4),FGAXB(12),FGAXAB(12),FGCX 
AB(12),FGCDXAB(6) 
410 DIM LSWP(4),LSWAXB(12),LSWAXAB(12),LSWCXAB(12),LSWCDXAB(6),LSFEP(4) 
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420 'THE FOLLOWING VARIABLES ARE DEFINED AS THEY OCCUR IN THE PROGRAM 
430 DIM 
FMP(4),FFP(4),STRAXB(12,3),STRCXAB(12,5),STRAXAB(12,4),FMAXB(12),FFAXB(1 
2) ,STRCDXAB(6, 7) 
440 DIM BCIP(4),BCIAXB(12),BCIAXAB(12),BCICXAB(12),BCICDXAB(6) 
450 DIM CGP(4),CGAXB(12),CGAXAB(12),CGCXAB(12),CGCDXAB(6) 
460 DIM CBP(4),CBAXB(12),CBAXAB(12),CBCXAB(12),CBCDXAB(6) 
470 DIM CP(4),CAXB(12),CAXAB(12),CCXAB(12),CCDXAB(6) 
480 DIM PGP(4),PGAXB(12),PGCXD(12),PGAXAB(12),PGCXAB(12),PGCDXAB(6) 
490 DIM PBP(4),PBAXB(12),PBAXAB(12),PBCXAB(12),PBCDXAB(6) 
500 DIM PP(4),PAXB(12),PCXD(12),PAXAB(12),PCXAB(12),PCDXAB(6) 
510 DIM 
EP(4),EAXB(12),ECXD(12),EAXAB(12),ECXAB(12),ECDXAB(6),XP(4),B$(12) 
520 DIM SEP(4),SEAXB(12),SEAXAB(12),SECXAB(12),SECDXAB(6) 
530 DIM RVP(4),RVAXB(12),RVAXAB(12),RVCXAB(12),RVCDXAB(6) 
540 I 

550 ' READING GENETIC PARAMETER VALUES 
560 I 

570 'GI, GM, GIM DATA ARE READ IN ORDER 
580 ' I=1 DUROC 
590 I I=2 YORK 
600 ' I=3 LAND 
610 ' I=4 SPOT 
620 'HI, HM, HP DATA ARE READ IN ORDER 
630 ' I=1 DUROC-YORK 
640 ' I=2 DUROC-LAND 
650 ' I=3 DUROC-SPOT 
660 ' I=4 YORK-LAND 
670 ' I=5 YORK-SPOT 
680 ' I=6 LAND-SPOT 
690 ' 
700 CRMU=69.76 
710 FOR I=1 TO 4: READ CRGIM(I): NEXT I 
720 FOR I=1 TO 6: READ CRHM(I): NEXT I 
730 FOR I=1 TO 6: READ CRHP(I): NEXT I 
740 ' 
750 'DATA -
10.01,1.34,8.62,.05,2.8,2.8,2.8,2.8,2.8,2.8,7.31,9.39,4.25,4.23,3.7,9.33 
760 'PRINT "THIS RUN ASSUMES BOARS USED FOR 2 MATING SEASONS" 
770 DATA -
10.01,1.34,8.62,.05,2.8,2.8,2.8,2.8,2.8,2.8,6.22,6.22,6.22,6.22,6.22,6.2 
2 
780 PRINT" THIS RUN ASSUMES AVERAGE HP FOR CR OF 6.22" 
790 'DATA -10.01,1.34,8.62,.05,2.8,2.8,2.8,2.8,2.8,2.8,0,0,0,0,0,0 
800 'PRINT "THIS RUN ASSUMES BOARS USED CONTINUOUSLEY, I.E. HP FOR CR = 
O" 
810 ' 
820 LSBMU=10.58 
830 FOR I=1 TO 4: READ LSBGIM(I): NEXT I 
840 FOR I=l TO 6: READ LSBHI(I): NEXT I 
850 FOR I=l TO 6: READ LSBHM(I): NEXT I 
860 FOR I=1 TO 6: READ LSBHP(I): NEXT I 



870 'DATA .35,.78,.07,-
1.2,.23,.23,.23,.23,.23,.23,.93,.93,.93,.93,.93,.93,.09,-.09,.71,
.05, .61,-.23 
880 DATA .35,.78,.07,-
1.2,.23,.23,.23,.23,.23,.23,.93,.93,.93,.93,.93,.93,0,0,0,0,0,0 
890 PRINT:PRINT " LSB, HP=O" 
900 ' 
910 SURMU•70.81 
920 FOR I=1 TO 4: READ SURGI(I): NEXT I 
930 FOR I=1 TO 4: READ SURGM(I): NEXT I 
940 FOR I=1 TO 6: READ SURHI(I): NEXT I 
950 FOR I=1 TO 6: READ SURHM(I): NEXT I 
960 FOR I=1 TO 6: READ SURHP(I): NEXT I 
970 'DATA -.88,-4.48,5.05,-.31,-2.13,-
2.12,1.12,3.13,4.31,5.73,7.86,9.88,6.41,-.18,0,0,0,0,0,0,1.92,-.41,-
3.58,-1.71,-8.72,-1.60 
980 DATA -.88,-4.48,5.05,-.31,-2.13,-
2.12,1.12,3.13,4.31,5.73,7.86,9.88,6.41,-.18,0,0,0,0,0,0,0,0,0,0,0,0 
990 PRINT:PRINT " SUR, HP=O" 
1000 ' 
1010 ADGMU=.6504 
1020 FOR I=1 TO 4: READ ADGGI(I): NEXT I 
1030 FOR I=1 TO 4: READ ADGGM(I): NEXT I 
1040 FOR I=1 TO 6: READ ADGHI(I): NEXT I 
1050 FOR I=1 TO 6: READ ADGHM(I): NEXT I 
1060 FOR I=1 TO 6: READ ADGHP(I): NEXT I 
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1070 'DATA .0148,-.0111,-.0215,.0178,-.0026,-.0010,.0062,
•0026,.0796,.0736,.0712,.0545,.0622,.0705,0,0,0,0,0,0,.015,.020,.016,
.001,-.021,-.004 
1080 DATA .0148,-.0111,-.0215,.0178,-.0026,-.0010,.0062,
•0026,.0796,.0736,.0712,.0545,.0622,.0705,0,0,0,0,0,0,0,0,0,0,0,0 
1090 PRINT:PRINT " ADG, HP=O" 
1100 ' 
1110 BFMU=32.43 
1120 FOR I•1 TO 4: READ BFGI(I): NEXT I 
1130 FOR I=1 TO 4: READ BFGM(I): NEXT I 
1140 FOR I=1 TO 6: READ BFHI(I): NEXT I 
1150 FOR I•1 TO 6: READ BFHM(I): NEXT I 
1160 FOR I=1 TO 6: READ BFHP(I): NEXT I 
1170 'DATA -6.55,2.48,-.08,4.16,3.19,-1.88,1.12,-2.43,1.96,.90,.79,.98,-
1.28,-.70,0,0,0,0,0,0,.11,.39,-.89,1.58,-.78,1.03 
1180 DATA -6.55,2.48,-.08,4.16,3.19,-1.88,1.12,-2.43,1.96,.90,.79,.98,-
1.28,-.70,0,0,0,0,0,0,0,0,0,0,0,0 
1190 PRINT:PRINT " BF, HP•O" 
1200 ' 
1210 FGMU=3.212 
1220 FOR I=1 TO 4: READ FGGI(I): NEXT I 
1230 FOR I=1 TO 4: READ FGGM(I): NEXT I 
1240 FOR I•1 TO 6: READ FGHI(I): NEXT I 
1250 FOR I=1 TO 6: READ FGHM(I): NEXT I 
1260 FOR I=1 TO 6: READ FGHP(I): NEXT I 
1270 'DATA -.210,
.027,.020,.217,0,0,0,0,.009,.009,.009,.009,.009,.009,0,0,0,0,0,0,-.008,
.oo8,-.oo8,-.oo8,-.oo8,-.oo8 
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1280 DATA -.210,
.027,.020,.217,0,0,0,0,.009,.009,.009,.009,.009,.009,0,0,0,0,0,0,0,0,0,0 
,0,0 
1290 PRINT:PRINT " FG, HP=O" 
1300 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
1310 ' 
1320 'CALCULATING PREDICTED PERFORMANCE FOR TERMINAL OFFSPRING OF 
ALTERNATIVE CROSSBREEDING SYSTEMS 
1330 ' 
1340 'NOTE THAT CR IS ASSUMED TO BE A FUNCTION OF DAM BREED EFFECTS, 
PLUS THE 
1350 'EFFECT OF USING A CROSSBRED SIRE IN THE CDXAB SYSTEM. EXPANSION OF 
THE 
1360 'PROGRAM TO INCLUDE HAMPSHIRE SIRES WILL REQUIRE PROGRAM 
MODIFICATIONS 
1370 ' 
1380 'PUREBREDS 
1390 FOR I=1 TO 4 
1400 CRP(I)=CRMU+CRGIM(I) 
1410 LSBP(I)=LSBMU+LSBGIM(I) 
1420 SURP(I)=SURMU+SURGI(I)+SURGM(I) 
1430 LSWP(I)=LSBP(I)*SURP(I)/100 
1440 LSFEP(I)=LSWP(I)*CRP(I)/100 
1450 ADGP(I)=ADGMU+ADGGI(I)+ADGGM(I) 
1460 BFP(I)=BFMU+BFGI(I)+BFGM(I) 
1470 FGP(I)=FGMU+FGGI(I)+FGGM(I) 
1480 NEXT I:I=O 
1490 PRINT:PRINT:PRINT "PUREBREDS" :PRINT 
1500 PRINT "PREDICTED DRIVING VARIABLES ":PRINT 
1510 PRINT STRING$ ( 70, "-") : B$ (1) ="D": B$ (2) =''Y": B$ (3) ="L 11 : B$ ( 4) ="S" 
1520 PRINT "BREED CR LSB SUR LSW LSFE ADG BF 
FG" :PRINT STRING$ (70, "-") 
1530 FOR I=1 TO 4 
1540 PRINT USING "3 3 1111.11 1111.11 1111.11 1111.11 1111.11 .111111 
1111 • II II .1111 
";B$(I),CRP(I),LSBP(I),SURP(I),LSWP(I),LSFEP(I),ADGP(I),BFP(I),FGP(I):NE 
XT I: PRINT STRING$(70,"-") 
1550 PRINT:INPUT "PRESS ENTER ";Z$:CLS:I=O 
1560 ' 
1570 '2 BREED STATIC 
1580 FOR J=1 TO 4: FOR K=1 TO 4 
1590 IF J=K GOTO 1740 
1600 I=I+l 
1610 IF J=1 AND K=2 OR J=2 AND K=1 THEN L=1 'DY 
1620 IF J=1 AND K=3 OR J=3 AND K=1 THEN L=2 'DL 
1630 IF J=1 AND K=4 OR J=4 AND K=1 THEN 1=3 'DS 
1640 IF J=2 AND K=3 OR J=3 AND K=2 THEN L=4 'YL 
1650 IF J=2 AND K=4 OR J=4 AND K=2 THEN 1=5 'YS 
1660 IF J=3 AND K=4 OR J=4 AND K=3 THEN L=6 'LS 
1670 CRAXB(I)=CRMU+CRGIM(K) 
1680 LSBAXB(I)=LSBMU+LSBGIM(K)+LSBHI(L) 
1690 SURAXB(I)=SURMU+.5*(SURGI(J)+SURGI(K))+SURGM(K)+SURHI(L) 
1700 LSWAXB(I)=LSBAXB(I)*SURAXB(I)/100 
1710 ADGAXB(I)=ADGMU+.5*(ADGGI(J)+ADGGI(K))+ADGGM(K)+ADGHI(L) 



1720 BFAXB(I)=BFMU+.5*(BFGI(J)+BFGI(K))+BFGM(K)+BFHI(L) 
1730 FGAXB(I)=FGMU+.5*(FGGI(J)+FGGI(K))+FGGM(K)+FGHI(L) 
1740 NEXT K,J:I=O 
1750 PRINT:PRINT:PRINT "2 BREED STATIC":PRINT 
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1760 PRINT ''PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING ":PRINT 
1770 PRINT STRING$(62,"-"):FOR 1=1 TO 12:READ B$(I):NEXT I 
1780 DATA DxY,DxL,DxS,YxD,YxL,YxS,LxD,LxY,LxS,SxD,SxY,SxL 
1790 PRINT "BREED CR LSB SUR LSW ADG BF 
FG":PRINT STRING$(62,"-") 
1800 FOR 1=1 TO 12 
1810 PRINT USING " 3 3 1111.11 1111. II 1111. II 1111. II .111111 1111.11 
fl. fill 
";B$(I),CRAXB(I),LSBAXB(I),SURAXB(I),LSWAXB(I),ADGAXB(I),BFAXB(I),FGAXB( 
!):NEXT I: PRINT STRING$(62,"-") 
1820 PRINT:INPUT "PRESS ENTER ";Z$:CLS:I=O 
1830 ' 
1840 'BACKCROSS 
1850 FOR 11=1 TO 4:FOR J=1 TO 4: FOR K=1 TO 4 
1860 IF J=K GOTO 2080 
1870 IF II§,[K AND nnJ THEN 2080 
1880 IF LSFEP(K)§LSFEP(J) THEN 2080 
1890 IF LSFEP(K)=LSFEP(J) AND J,[K THEN 2080 
1900 IF J=1 AND K=2 OR J=2 AND K=1 THEN 1=1 
1910 IF J=1 AND K=3 OR J=3 AND K=1 THEN 1=2 
1920 IF J=1 AND K=4 OR J=4 AND K=1 THEN 1=3 
1930 IF J=2 AND K=3 OR J=3 AND K=2 THEN 1=4 
1940 IF J=2 AND K=4 OR J=4 AND K=2 THEN 1=5 
1950 IF J=3 AND K=4 OR J=4 AND K=3 THEN 1=6 
1960 1=1+1 

'DY & YD CROSSBRED DAM GRP 
'DL & LD 
'DS & SD 
'YL & LY 
'YS & SY 
'LS & SL 

1970 CRAXAB(I)=CRMU+.5*(CRGIM(J)+CRGIM(K))+CRHM(L) 
1980 LSBAXAB(I)=LSBMU+.5*(LSBGIM(J)+LSBGIM(K))+.5*LSBHI(L)+LSBHM(L) 
1990 IF II=J THEN 
SURAXAB(I)=SURMU+.25*(3*SURGI(J)+SURGI(K))+.5*(SURGM(J)+SURGM(K))+.5*SUR 
HI(L)+SURHM(L) 
2000 IF II=K THEN 
SURAXAB(I)=SURMU+.25*(3*SURGI(K)+SURGI(J))+.5*(SURGM(J)+SURGM(K))+.5*SUR 
HI(L)+SURHM(L) 
2010 LSWAXAB(I)=LSBAXAB(I)*SURAXAB(I)/100 
2020 IF II=J THEN 
ADGAXAB(I)=ADGMU+.25*(3*ADGGI(J)+ADGGI(K))+.S*(ADGGM(J)+ADGGM(K))+.5*ADG 
HI(L)+ADGHM(L) 
2030 IF II=K THEN 
ADGAXAB(I)=ADGMU+.25*(3*ADGGI(K)+ADGGI(J))+.5*(ADGGM(J)+ADGGM(K))+.5*ADG 
HI(L)+ADGHM(L) 
2040 IF II=J THEN 
BFAXAB(I)=BFMU+.25*(3*BFGI(J)+BFGI(K))+.5*(BFGM(J)+BFGM(K))+.5*BFHI(L)+B 
FHM(L) 
2050 IF II=K THEN 
BFAXAB(I)=BFMU+.25*(3*BFGI(K)+BFGI(J))+.5*(BFGM(J)+BFGM(K))+.5*BFHI(L)+B 
FHM(L) 
2060 IF II=J THEN 
FGAXAB(I)=FGMU+.25*(3*FGGI(J)+FGGI(K))+.S*(FGGM(J)+FGGM(K))+.5*FGHI(L)+F 
GHM(L) 
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2070 IF II=K THEN 
FGAXAB(I)=FGMU+.25*(3*FGGI(K)+FGGI(J))+.5*(FGGM(J)+FGGM(K))+.5*FGHI(L)+F 
GHM(L) 
2080 NEXT K,J,II:I=O 
2090 PRINT:PRINT:PRINT 11BACKCROSS 11 :PRINT 
2100 PRINT ''PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 11 :PRINT 
2110 PRINT STRING$(62, 11- 11):FOR I=1 TO 12:READ B$(I):NEXT I 
2120 DATA DxDY,DxDL,DxSD,YxDY,YxYL,YxSY,LxDL,LxYL,LxSL,SxSD,SxSY,SxSL 
2130 PRINT "BREED CR LSB SUR LSW ADG BF 
FG11 :PRINT STRING$(62,"-") 
2140 FOR I=1 TO 12 
2150 PRINT USING 113 3 {1//.{/ {1/1. # {/#. {/ #fl.# • {Iii# {1/1. {/ 
{/.## 
II ;B$ (I) ,CRAXAB(I) ,LSBAXAB(I) 'SURAXAB(I) ,LSWAXAB(I) ,ADGAXAB(I) ,BFAXAB(I)' 
FGAXAB(I):NEXT I: PRINT STRING$(62, 11 - 11 ) 

2160 PRINT:INPUT ''PRESS ENTER 11 ;Z$:CLS:I=O 
2170 I 

2180 '3 BREED STATIC 
2190 FOR J=1 TO 4: FOR K=1 TO 4: FOR L=1 TO 4 
2200 IF J=K OR J=L OR K=L GOTO 2500 
2210 IF LSFEP(L)§LSFEP(K) THEN 2500 
2220 IF LSFEP(L)=LSFEP(K) AND K,[L THEN 2500 
2230 IF K=1 AND L=2 OR K=2 AND L=1 THEN M=1 'M = CROSSBRED DAM GRP 
(KxL) 
2240 IF K=1 AND L=3 OR K=3 AND L=1 THEN M=2 
2250 IF K=1 AND La4 OR K=4 AND L=1 THEN M=3 
2260 IF K=2 AND L=3 OR K=3 AND L=2 THEN M=4 
2270 IF K=2 AND L=4 OR K=4 AND L•2 THEN M=5 
2280 IF K=3 AND L=4 OR K=4 AND L•3 THEN M=6 
2290 ' 
2300 IF J=1 AND K=2 OR J=2 AND K=1 THEN N=1 
2310 IF J=1 AND K=3 OR J=3 AND K=1 THEN N=2 
2320 IF J=1 AND K=4 OR J=4 AND K=1 THEN N=3 
2330 IF J=2 AND K•3 OR J=3 AND K=2 THEN N=4 
2340 IF J•2 AND K=4 OR J=4 AND K=2 THEN N•5 
2350 ' 
2360 IF J=1 AND L=2 OR J=2 AND L=1 THEN 0=1 
2370 IF J=1 AND L=3 OR J=3 AND L=1 THEN 0=2 
2380 IF J=1 AND L=4 OR J=4 AND L=1 THEN 0=3 
2390 IF J=2 AND L=3 OR J=3 AND L=2 THEN 0=4 
2400 IF J=2 AND L=4 OR J=4 AND L=2 THEN 0=5 
2410 IF J=3 AND L=4 OR J=4 AND L=3 THEN 0=6 
2420 I=I+1 

'J = BREED OF SIRE 
'N,O REQUIRED TO INDEX 

'SPECIFIC HETEROSIS 

2430 CRCXAB(I)=CRMU+.5*(CRGIM(K)+CRGIM(L))+CRHM(M) 
2440 
LSBCXAB(I)=LSBMU+.5*(LSBGIM(K)~LSBGIM(L))+.5*(LSBHI(N)+LSBHI(O))+LSBHM(M 
) 
2450 
SURCXAB(I)=SURMU+.25*(2*SURGI(J)+SURGI(K)+SURGI(L))+.5*(SURGM(K)+SURGM(L 
))+.5*(SURHI(N)+SURHI(O))+SURHM(M) 
2460 LSWCXAB(I)=LSBCXAB(I)*SURCXAB(I)/100 
2470 
ADGCXAB(I)•ADGMU+.25*(2*ADGGI(J)+ADGGI(K)+ADGGI(L))+.5*(ADGGM(K)+ADGGM(L 
))+.5*(ADGHI(N)+ADGHI(O))+ADGHM(M) 
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2480 
BFCXAB(I)=BFMU+.25*(2*BFGI(J)+BFGI(K)+BFGI(L))+.5*(BFGM(K)+BFGM(L))+.5*( 
BFHI(N)+BFHI(O))+BFHM(M) 
2490 
FGCXAB(I)=FGMU+.25*(2*FGGI(J)+FGGI(K)+FGGI(L))+.5*(FGGM(K)+FGGM(L))+.5*( 
FGHI(N)+FGHI(O))+FGHM(M) 
2500 NEXT L,K,J:I=O 
2510 PRINT:PRINT:PRINT "3 BREED STATIC":PRINT 
2520 PRINT "PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING ":PRINT 
2530 PRINT STRING$(62,"-"):FOR I=1 TO 12:READ B$(I):NEXT I 
2540 DATA DxYL,DxSY,DxSL,YxDL,YxSD,YxSL,LxDY,LxSD,LxSY,SxDY,SxDL,SxYL 
2550 PRINT "BREED CR LSB SUR LSW ADG BF 
FG" :PRINT STRING$ (62, "-") 
2560 FOR I=1 TO 12 
2570 PRINT USING "3 3 fill. fl fill .II fifi. fl fill. fl • tlfifi fill. fl 
fl. fill 
";B$(I),CRCXAB(I),LSBCXAB(I),SURCXAB(I),LSWCXAB(I),ADGCXAB(I),BFCXAB(I), 
FGCXAB(I) :NEXT I: PRINT STRING$ (62, "-") 
2580 PRINT:INPUT "PRESS ENTER ";Z$:CLS:I=O 
2590 ' 
2600 '4 BREED STATIC 
2610 FOR K=1 TO 4: FOR J=1 TO 4: FOR M=1 TO 4: FOR 1=1 TO 4 
2620 IF J=K OR J=L OR J=M OR K=L OR K=M OR L=M GOTO 3160 
2630 IF LSFEP(L)§LSFEP(M) THEN 3160 
2640 IF LSFEP(L)=LSFEP(M) AND 1,~ THEN 3160 
2650 IF LSFEP(J)§LSFEP(K) THEN 3160 
2660 IF LSFEP(J)=LSFEP(K) AND J,~ THEN 3160 
2670 IF K=1 AND 1=2 OR K=2 AND 1=1 THEN N=1 ' KxJ MALES x MxL FEMALES 
2680 IF K=1 AND 1=3 OR K=3 AND 1=1 THEN N=2 
2690 IF K=1 AND 1=4 OR K=4 AND 1=1 THEN N=3 ' N,P,Q,R INDEX SPEC. 
HETEROSIS 
2700 IF K=2 AND 1=3 OR K=3 AND 1=2 THEN N=4 ' 0 = CROSSBRED SIRE GROUP 
2710 IF K=2 AND 1=4 OR K=4 AND 1=2 THEN N=5 ' S = CROSSBRED DAM GROUP 
2720 IF K=3 AND 1=4 OR K=4 AND 1=3 THEN N=6 
2730 ' 
2740 IF J=1 AND K•2 OR J=2 AND K=1 THEN 0=1 
2750 IF J=1 AND K=3 OR J=3 AND K=1 THEN 0=2 
2760 IF J=1 AND K=4 OR J=4 AND K=1 THEN 0=3 
2770 IF J=2 AND K=3 OR J=3 AND K=2 THEN 0=4 
2780 IF J=2 AND K=4 OR J=4 AND K=2 THEN 0=5 
2790 IF J=3 AND K=4 OR J=4 AND K=3 THEN 0=6 
2800 ' 
2810 IF J=1 AND 1=2 OR J=2 AND 1=1 THEN P=1 
2820 IF J=1 AND 1=3 OR J=3 AND 1=1 THEN P=2 
2830 IF J=1 AND 1=4 OR J=4 AND 1=1 THEN P=3 
2840 IF J=2 AND 1=3 OR J=3 AND 1=2 THEN P=4 
2850 IF J=2 AND 1=4 OR J=4 AND 1=2 THEN P=5 
2860 IF J=3 AND 1=4 OR J=4 AND 1=3 THEN P=6 
2870 ' 
2880 IF J=1 AND M=2 OR J=2 AND M=1 THEN Q=1 
2890 IF J=1 AND M=3 OR J=3 AND M=1 THEN Q=2 
2900 IF J=1 AND M=4 OR J=4 AND M=1 THEN Q=3 
2910 IF J=2 AND M=3 OR J=3 AND M=2 THEN Q=4 
2920 IF J=2 AND M=4 OR J=4 AND M=2 THEN Q=5 



2930 IF J=3 AND M=4 OR J=4 AND M=3 THEN Q=6 
2940 ' 
2950 IF K=1 AND M=2 OR K=2 AND M=1 THEN R=1 
2960 IF K=1 AND M=3 OR K=3 AND M=1 THEN R=2 
2970 IF K=1 AND M=4 OR K=4 AND M=1 THEN R=3 
2980 IF K=2 AND M=3 OR K=3 AND M=2 THEN R=4 
2990 IF K=2 AND M=4 OR K=4 AND M=2 THEN R=5 
3000 IF K=3 AND M=4 OR K=4 AND M=3 THEN R=6 
3010 ' 
3020 IF 1=1 AND M=2 OR 1=2 AND M=1 THEN S=1 
3030 IF 1=1 AND M=3 OR 1=3 AND M=1 THEN S=2 
3040 IF 1=1 AND M=4 OR 1=4 AND M=1 THEN S=3 
3050 IF 1=2 AND M=3 OR 1=3 AND M=2 THEN S=4 
3060 IF 1=2 AND M=4 OR 1=4 AND M=2 THEN S=5 
3070 IF 1=3 AND M=4 OR 1=4 AND M=3 THEN S=6 
3080 I=I+1 
3090 CRCDXAB(I)=CRMU+.5*(CRGIM(L)+CRGIM(M))+CRHM(S)+CRHP(O) 
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3100 
LSBCDXAB(I)=LSBMU+.5*(LSBGIM(L)+LSBGIM(M))+.25*(LSBHI(P)+LSBHI(N)+LSBHI( 
Q)+LSBHI(R))+LSBHM(S)+LSBHP(O) 
3110 
SURCDXAB(I)=SURMU+.25*(SURGI(J)+SURGI(K)+SURGI(L)+SURGI(M))+.5*(SURGM(L) 
+SURGM(M))+.25*(SURHI(P)+SURHI(N)+SURHI(Q)+SURHI(R))+SURHM(S)+SURHP(O) 
3120 LSWCDXAB(I)=LSBCDXAB(I)*SURCDXAB(I)/100 
3130 
ADGCDXAB(I)=ADGMU+.25*(ADGGI(J)+ADGGI(K)+ADGGI(L)+ADGGI(M))+.5*(ADGGM(L) 
+ADGGM(M))+.25*(ADGHI(P)+ADGHI(N)+ADGHI(Q)+ADGHI(R))+ADGHM(S)+ADGHP(O) 
3140 
BFCDXAB(I)=BFMU+.25*(BFGI(J)+BFGI(K)+BFGI(L)+BFGI(M))+.5*(BFGM(L)+BFGM(M 
))+.25*(BFHI(P)+BFHI(N)+BFHI(Q)+BFHI(R))+BFHM(S)+BFHP(O) 
3150 
FGCDXAB(I)=FGMU+.25*(FGGI(J)+FGGI(K)+FGGI(L)+FGGI(M))+.5*(FGGM(L)+FGGM(M 
))+.25*(FGHI(P)+FGHI(N)+FGHI(Q)+FGHI(R))+FGHM(S)+FGHP(O) 
3160 NEXT L,M,J,K:I=O 
3170 PRINT:PRINT:PRINT "4 BREED STATIC":PRINT 
3180 PRINT ''PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING ":PRINT 
3190 PRINT STRING$(63,"-"):FOR I=1 TO 6:READ B$(I):NEXT I 
3200 DATA DYxSL,DLxSY,YLxSD,SDxYL,SYxDL,SLxDY 
3210 PRINT "BREED CR LSB SUR LSW ADG BF 
FG" :PRINT STRING$ (62, "-") 
3220 FOR I=1 TO 6 
3230 PRINT USING "3 3 1111.11 1111.11 1111.11 1111.11 .111111 INI.II 
11.1111 
";B$(I) ,CRCDXAB(I) ,LSBCDXAB(I) ,SURCDXAB(I) ,LSWCDXAB(I) ,ADGCDXAB(I) ,BFCDX 
AB(I),FGCDXAB(I):NEXT I: PRINT STRING$(63,"-") 
3240 PRINT:INPUT "PRESS ENTER ";Z$:CLS:I=O 
3250 I 

3260 ' 
3270 PRINT " PREDICTED CONCEPTION RATE":PRINT " HOW DO THESE COMPARE TO 
CONCEPTION RATES REPORTED BY BUCHANAN & JOHNSON ?":PRINT:PRINT " 
PREDICTED CR FOR 3 BREED CROSSES" 
3280 FOR I=1 TO 12:READ B$(I):PRINT USING" 
IIII.II";B$(I) ,CRCXAB(I) :NEXT I 

3 3 

3290 DATA DxYL,DxSY,DxSL,YxDL,YxSD,YxSL,LxYD,LxSD,LxSY,SxDL,SxYD,SxYL 



3300 PRINT:PRINT 11 PREDICTED CR FOR 4 BREED CROSSES" 
3310 FOR I=1 TO 6:READ B$(I):PRINT USING" 3 3 

1111./f"; B$( I) ,CRCDXAB(I) :NEXT I 
3320 DATA SDxYL,DYxSL,SYxDL,DLxSY,YLxSD,SLxDY 
3330 INPUT ''PRESS ENTER "; Z$: I=O 
3340 ' 
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3350 '------------------------------------------------------------------

3360 ' 
3370 ' CALCULATING THE NUMBER OF FEMALES FARROWING IN EACH SUB-SYSTEM 
3380 ' 
3390 ' T - TOTAL NUMBER FEMALES FARROWING IN THE SYSTEM 
3400 ' FMR - NUMBER OF FEMALES I MALE IN BREEDING HERD 
3410 ' PSP - PROBABILITY OF SURVIVING FROM WEANING (42d) TO 100KG 
(PUREBREDS) 
3420 ' PSC - PROBABILITY OF SURVIVING FROM WEANING (42d) TO 100KG 
(CROSSBREDS) 
3430 ' NOTE: POSTWEANING SURVIVAL SHOULD REALLY BE CALCULATED FOR EACH 
SYSTEM, 
3440 ' 
ESTIMATES 
3450 ' 
DIFFERENT 

AS FOR THE OTHER TRAITS. LACK OF LITERATURE PARAMETER 

AND THE RELATIVELY SMALL EXPECTED DIFFERENCES BETWEEN 

3460 ' CROSSBREEDING SYSTEMS MAKE THIS SIMPLIFYING ASSUMPTION 
REASONABLE.4440 ' REASONABLE 
3470 ' FRP - PROPORTION OF FEMALES REPLACED EACH BREEDING CYCLE 
(PUREBREDS) ' FRC - PROPORTION OF FEMALES REPLACED EACH 
BREEDING CYCLE (CROSSBREDS) 
3480 ' MRP - PROPORTION OF MALES REPLACED EACH BREEDING CYCLE (PUREBRED 
HERDS) 
3490 1 MRC - PROPORTION OF MALES REPLACED EACH BREEDING CYCLE (CROSSBRED 
HERDS) 
3500 ' FS 
HERDS 

- PROPORTION OF FEMALE OFFSPRING SELECTED AS REPLACEMENTS IN 
GENERATING FEMALE REPLACEMENTS 

3510 ' 
HERDS 

MS - PROPORTION OF MALE OFFSPRING SELECTED AS REPLACEMENTS IN 
GENERATING MALE REPLACEMENTS 

3520 ' 
3530 T=10000 
3540 FMR=10 
3550 PSP=.97 
3560 PSC=.98 
3570 FRP•.5 
HOWEVER SEE 
3580 FRC=.5 
3590 MRP=.5 
3600 MRC=.5 
3610 FS•.8 
3620 MS=.6 
3630 ' 
3640 ' 

' .15 ? PROBABLY MORE REASONABLE IN PRACTISE, 

NOTE WITH FIB IN ECONOMIC CALCULATIONS BELOW 

3650 'The next section calculates FM and FF for purebreds and 2 breed 
terminals.These are the only ones necessary for these calculations.' 
3660 'FM =( II FEMALES REQUIRED TO PRODUCE NEEDED BOARS) I (TOTAL If 
FEMALES IN SUB-SYSTEMS THE BOARS ARE USED IN) 



3670 'FF =( # FEMALES REQUIRED TO PRODUCE NEEDED GILTS) I (TOTAL # 
FEMALES IN SUB-SYSTEMS THE GILTS ARE USED IN) 
3680 CLS 
3690 PRINT "FM and FF for purebreds" 
3700 FOR I = 1 TO 4 
3710 FMP(I) = 2*MRPIFMRIMSIPSPILSWP(I) 
3720 FFP(I) = 2*FRPIFSIPSPILSWP(I) 
3730 PRINT USING "IIIIIIIIIIIIIIIIINI.IIIIINNI" ;FMP(I), FFP(I) 
3740 NEXT I 
3750 PRINT 
3760 PRINT "FM and FF for 2 breed terminals" 
3770 FOR L = 1 TO 12 
3780 FMAXB(L) = 2*MRCIFMRIMSIPSCILSWAXB(L) 
3790 FFAXB(L) = 2*FRCIFSIPSCILSWAXB(L) 
3800 PRINT USING "111111/NIIIINNNI./111111111"; FMAXB (L) , FFAXB (L) 
3810 NEXT L 
3820 INPUT "PRESS ENTER ";Z$ 
3830 CLS 
3840 PRINT 
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3850 'This section calculates the structure for the 2 BREED TERMINALS. 
There are12 of these. The screen output shows the two breeds and the 
numbers for PurebredA, Purebred Band the AB crossbred.' 
3860 PRINT " STRUCTURE FOR 2 BREED STATIC":PRINT 
3870 PRINT" (1=DUROC, 2=YORK, 3=LAND, 4=SPOT)":PRINT STRING$(42,"-
") 
3880 PRINT" A B /lA liB /IAxB":PRINT STRING$(42,"-") 
3890 L=O 
3900 FOR I=1 TO 4: FOR J=1 TO 4 
3910 IF I = J GOTO 3970 
3920 L=L+1 
3930 STRAXB(L,3) = TI((FMP(I)I(1-FMP(I)))+(FFP(J)I(1-FFP(J)))+1) 
'Crossbred AxB 
3940 STRAXB(L,1) = FMP(I)*STRAXB(L,3)1(1-FMP(I)) 
Purebred A 
3950 STRAXB(L,2) = FFP(J)*STRAXB(L,3)1(1-FFP(J)) 
Purebred B 
3960 PRINT USING "11/1/lflfltl."; I ,J, STRAXB (L, 1), STRAXB (L, 2), STRAXB(L, 3) 
3970 NEXT J,I 
3980 PRINT:INPUT "PRESS ENTER ";Z$ 
3990 CLS 
4000 PRINT 
4010 'This section calculates the structure for the 3 BREED TERMINALS. 
4020 'The cross is chosen so that the dam of the dam is from a breed 
with a larger litter size weaned I female exposed than the breed of the 
sire of the dam. 
4030 'The screen output shows the 3 breeds (C, A, B) and the numbers for 
Purebred A, Purebred B, Purebred C, Crossbred AB and Crossbred CxAB.' 
4040 PRINT " STRUCTURE FOR 3 BREED STATIC":PRINT 
4050 PRINT " (1=DUROC, 2=YORK, 3=LAND, 4=SPOT)":PRINT STRING$(54,"-
") 
4060 PRINT " C A B /lA liB /IC IIAxB IICill" :PRINT 
STRING$ (54,"-") 
4070 L=O 
4080 FOR I=1 TO 4: FOR J=1 TO 4: FOR K=1 TO 4 



4090 IF I=J OR I=K OR J=K GOTO 4310 
4100 IF LSFEP(K) § LSFEP(J) GOTO 4310 
4110 IF LSFEP(K) = LSFEP(J) AND J ,f K GOTO 4310 
4120 L=L+l 
4130 IF J = 1 AND K = 2 THEN M = 1 
4140 IF J = 1 AND K = 3 THEN M = 2 
4150 IF J = 1 AND K = 4 THEN M = 3 
4160 IF J = 2 AND K = 1 THEN M = 4 
4170 IF J = 2 AND K = 3 THEN M = 5 
4180 IF J = 2 AND K = 4 THEN M = 6 
4190 IF J = 3 AND K = 1 THEN M = 7 
4200 IF J = 3 AND K = 2 THEN M = 8 
4210 IF J = 3 AND K = 4 THEN M = 9 
4220 IF J = 4 AND K = 1 THEN M = 10 
4230 IF J = 4 AND K = 2 THEN M = 11 
4240 IF J = 4 AND K = 3 THEN M = 12 
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4250 STRCXAB(L,5) = T / ((FMP(J)*FFAXB(M)/(1-
FMP(J)))+(FFP(K)*FFAXB(M)/(1-FFP(K)))+(FMP(I)/(1-FMP(I)))+FFAXB(M)+1) 
' Crossbred CxAB 
4260 STRCXAB(L,4) = FFAXB(M)*STRCXAB(L,5) 
Crossbred AxB 
4270 STRCXAB(L,3) = FMP(I)*STRCXAB(L,5)/(1-FMP(I)) 
Purebred C 
4280 STRCXAB(L,2) = FFP(K)*FFAXB(M)*STRCXAB(L,5)/(1-FFP(K)) 
Purebred B 
4290 STRCXAB(L,1) = FMP(J)*STRCXAB(L,4)/(1-FMP(J)) 
Purebred A 
4300 PRINT USING 
11 flllliflllll. 11 ; I ,J ,K, STRCXAB(L, 1), STRCXAB(L, 2), STRCXAB (1, 3), STRCXAB(L ,4), STRC 
XAB(L,5) 
4310 NEXT K,J,I 
4320 PRINT:INPUT "PRESS ENTER ";Z$ 
4330 CLS 
4340 PRINT 
4350 'This section calculates the structure for the 4 BREED TERMINALS. 
Breeds are chosen similar to the manner for the 3 breed terminal 
crosses. The breeds for the sire are also paired so that the breed of 
the dam of the sire is larger 
4360 'The screen output shows the breeds (in order C,D,A,B) and the 
numbers for the 4 purebreds (C,D,A,B), the two crossbreds (CxD and AxB) 
and the terminal cross (CDxAB) 
4370 ' The N and 0 variables are used to recall FF and FM for the 
various two breed crosses' 
4380 PRINT 11 STRUCTURE FOR 4 BREED STATIC":PRINT 
4390 PRINT" (l=DUROC, 2=YORK, 3=LAND, 4=SPOT) 11 :PRINT STRING$(61,"-
") 
4400 PRINT " C D A B fiC fiD fiA fiB fiCxD fiAxB 
/ICDxAB 11 :PRINT STRING$(61, 11- 11 ) 

4410 L=O 
4420 FOR I=1 TO 4: FOR J=1 TO 4: FOR K=1 TO 4: FOR M=1 TO 4 
4430 IF I=J OR I=K OR I=M OR J=K OR J=M OR K=M GOTO 4810 
4440 IF LSFEP(J) § LSFEP(I) GOTO 4810 
4450 IF LSFEP(J) = LSFEP(I) AND I ,f J GOTO 4810 
4460 IF LSFEP(M) § LSFEP(K) GOTO 4810 



4470 IF LSFEP(M) = LSFEP(K) AND K ,[ M GOTO 4810 
4480 1=1+1 . 
4490 IF I = 1 AND J = 2 THEN N = 1 
4500 IF I = 1 AND J = 3 THEN N = 2 
4510 IF I = 1 AND J = 4 THEN N = 3 
4520 IF I = 2 AND J = 1 THEN N = 4 
4530 IF I = 2 AND J = 3 THEN N = 5 
4540 IF I = 2 AND J = 4 THEN N = 6 
4550 IF I = 3 AND J = 1 THEN N = 7 
4560 IF I = 3 AND J = 2 THEN N = 8 
4570 IF I = 3 AND J = 3 THEN N = 9 
4580 IF I = 4 AND J = 1 THEN N = 10 
4590 IF I = 4 AND J = 2 THEN N = 11 
4600 IF I = 4 AND J = 3 THEN N = 12 
4610 IF K = 1 AND M = 2 THEN 0 = 1 
4620 IF K = 1 AND M = 3 THEN 0 = 2 
4630 IF K = 1 AND M = 4 THEN 0 = 3 
4640 IF K = 2 AND M = 1 THEN 0 = 4 
4650 IF K = 2 AND M = 3 THEN 0 = 5 
4660 IF K = 2 AND M = 4 THEN 0 = 6 
4670 IF K = 3 AND M = 1 THEN 0 = 7 
4680 IF K = 3 AND M = 2 THEN 0 = 8 
4690 IF K = 3 AND M = 4 THEN 0 = 9 
4700 IF K = 4 AND M = 1 THEN 0 = 10 
4710 IF K = 4 AND M = 2 THEN 0 = 11 
4720 IF K = 4 AND M = 3 THEN 0 = 12 

'I=BREED OF SIRE OF SIRE 
'J=BREED OF DAM OF SIRE 
'K=BREED OF SIRE OF DAM 
'M=BREED OF DAM OF DAM 
'N=CROSSBRED SIRE GROUP (1-12) 
'O=CROSSBRED DAM GROUP (1-12) 
'L=SYSTEM ID # (1-12) 

4730 STRCDXAB(L,7) = T/ ((FMP(K)*FFAXB(O) /(1-
FMP(K))+FFP(M)*FFAXB(0)/(1-FFP(M)))+(FMP(I)*FMAXB(N)/(1-
FMP(I)))+(FFP(J)*FMAXB(N)/(1-FFP(J)))+FFAXB(O)+FMAXB(N)+1) 
4740 STRCDXAB(L,6)=FFAXB(O)*STRCDXAB(L,7) 
4750 STRCDXAB(L,5)=FMAXB(N)*STRCDXAB(L,7) 
4760 STRCDXAB(L,4)=FFP(M)*STRCDXAB(L,6)/(1-FFP(M)) 
4770 STRCDXAB(L,3)=FMP(K)*STRCDXAB(L,6)/(1-FMP(K)) 
4780 STRCDXAB(L,2)=FFP(J)*STRCDXAB(L,5)/(1-FFP(J)) 
4790 STRCDXAB(L,1)=FMP(I)*STRCDXAB(L,5)/(1-FMP(I)) 
4800 PRINT USING 
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"11/ltltl/1. ";I, J, K ,M, STRCDXAB (L, 1) , S TRCDXAB (L, 2) , STRCDXAB (L, 3) , STRCDXAB (L, 4) 
,STRCDXAB(L,5),STRCDXAB(L,6),STRCDXAB(L,7) 
4810 NEXT M,K,J,I 
4820 PRINT:INPUT "PRESS ENTER ";Z$ 
4830 CLS 
4840 PRINT 
4850 'This section calculates the structure for the BACKCROSSES. Treated 
as special cases of 3 breed crosses, the combination used for the 
dam is chosen as that for the 3 breed crosses. Both possibilities for 
sire breed are used. 
4860 'This involves another decision since AxAB, AxBA, BxAB and BxBA 
require rather different structures. If the sire is the same as the dam 
of the dam the critical needs are dependant upon the reproductive 
performance of the various purebreds' 
4870 'The screen output shows the breed combination and the numbers for 
Purebred A, Purebred B, Crossbred AB and Crossbred AxAB' 
4880 PRINT " STRUCTURE FOR BACKCROSS" :PRINT 
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4890 PRINT II 

II) 

(l=DUROC, 2=YORK, 3=LAND, 4=SPOT)":PRINT STRING$(48,"-

4900 PRINT II 

STRING$(48,"-") 
4910 1=0 

A A B /!A /FB /fAxB 

4920 FOR I=1 TO 4: FOR J=1 TO 4: FOR K=1 TO 4 
4930 IF J=K GOTO 5280 
4940 IF I §,[ K AND I §,[ J GOTO 5280 
4950 IF LSFEP(K) § LSFEP(J) GOTO 5280 
4960 IF LSFEP(K) = LSFEP(J) AND J ,[ K GOTO 5280 
4970 1=1+1 

//AxAB" :PRINT 

4980 IF J = 1 AND K = 2 THEN M = 1 
4990 IF J = 1 AND K = 3 THEN M = 2 
5000 IF J = 1 AND K = 4 THEN M = 3 
5010 IF J = 2 AND K = 1 THEN M = 4 
5020 IF J = 2 AND K = 3 THEN M = 5 
5030 IF J = 2 AND K = 4 THEN M = 6 
5040 IF J = 3 AND K = 1 THEN M = 7 

'I=BREED OF TERMINAL SIRE 
'J=BREED OF SIRE OF DAM 
'K=BREED OF DAM OF DAM 
'M=CROSSBRED DAM GROUP 
'L=SYSTEM ID IF 

5050 IF J = 3 AND K = 2 THEN M = 8 
5060 IF J = 3 AND K = 4 THEN M = 9 
5070 IF J = 4 AND K = 1 THEN M = 10 
5080 IF J = 4 AND K = 2 THEN M = 11 
5090 IF J = 4 AND K = 3 THEN M = 12 
5100 IF I = K GOTO 5180 
5110 ' These formulas calculate the structure when the sire breed is the 
same as the sire of the dam' 
5120 STRAXAB(L,4) = T / ((FMP(J)*(1+FFAXB(M))/(1-
FMP(J)))+(FFP(K)*FFAXB(M)/(1-FFP(K)))+FFAXB(M)+1) 
' Crossbred AxAB 
5130 STRAXAB(L,3) = FFAXB(M)*STRAXAB(L,4) 'Crossbred AxB 
5140 STRAXAB(L,2) = FFP(J)*STRAXAB(L,3)/(1-FFP(J)) ' Purebred B 
5150 STRAXAB(L,1) = (FMP(J)*STRAXAB(L,4)+FMP(J)*STRAXAB(L,4))/(1-FMP(J)) 
' Purebred A 
5160 GOTO 5270 
5170 'The next four lines determine the critical needs for the situation 
where the sire breed is the same as the dam of the dam' 
5180 FFB = FFP(K)*FFAXB(M)/(1-FFP(K)) 
5190 FMB = FMP(K)/(1-FMP(K)) 
5200 IF FFB § FMB THEN FB = FFB 
5210 IF FFB ,[= FMB THEN FB = FMB 
5220 'These formulas calculate the structure when the sire breed is the 
same as the dam of the dam' 
5230 STRAXAB(L,4) = T/((FMP(J)*FFAXB(M)/(1-FMP(J)))+FB+FFAXB(M)+1) 
'Cross AxBA 
5240 STRAXAB(L,3) = FFAXB(M)*STRAXAB(L,4) 
'Cross BxA 
5250 STRAXAB(L,2) = FB*STRAXAB(L,4) 
'Purebred B 
5260 STRAXAB(L,1) = FMP(J)*STRAXAB(L,3)/(1-FMP(J)) 
'Purebred A 
5270 PRINT USING 
"/NI/111111!. "; I,J ,K, STRAXAB(L, 1), STRAXAB(L, 2) ,STRAXAB(L, 3), STRAXAB(L,4) 
5280 NEXI' K,J,I 
5290 PRINT:INPUT "PRESS ENTER ";Z$ 



5300 ' 
5310 ' CALCULATING BREEDING TO REBREEDING INTERVAL 
5320 ' 
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5330 'NOTE: 160 = 113d GESTATION + 42d LACTATION + 5d TO FIRST ESTRUS 
5340 'FEMALES THAT FAIL TO CONCEIVE BY SECOND ESTRUS ARE CULLED. 
THEREFORE: 
5350 ' 
5360 FOR I=1 TO 4 
5370 BCIP(I)=160+(1-CRP{I)/100)*21 
5380 NEXT I:I=O 
5390 FOR I=1 TO 6 
5400 BCICDXAB{I)=160+(1-CRCDXAB(I)/100)*21 
5410 NEXT I:I=O 
5420 FOR I=1 TO 12 
5430 BCIAXB(I)=160+(1-CRAXB(I)/100)*21 
5440 BCIAXAB(I)=160+(1-CRAXAB(I)/100)*21 
5450 BCICXAB(I)=160+(1-CRCXAB(I)/100)*21 
5460 NEXT I 
5470 ' 
5480 '------------------------------------------------------------------

5490 ' 
5500 ' CALCULATE EFFICIENCY FOR EACH SUB-SYSTEM 
5510 ' 
5520 ' NOTE : EFFICIENCY = (LIFETIME COSTS/DAM) / (LIFETIME PRODUCT/DAM) 
E () = C () I P () 
5530 ' 
5540 ' BCI() - BREEDING TO REBREEDING INTERVAL (DAYS) 
5550 1 CONSTANTS : 
5560 ' LOCG - GROWING-FINISHING LABOR & OVERHEAD COSTS FROM 40-220lb/ 
5570 ' MARKET 
PIG/DAY ($) 
5580 ' LOCR - LABOR & OVERHEAD COSTS OF REPRODUCTION/SOW FARROWED/DAY 
($) 
5590 1 GP - GILT COSTS FROM 220lb TO FIRST BREEDING ($) 
5600 ' FIB - BREEDING HERD (MALES, FEMALES, LITTERS) FEED 
INTAKE/SOW/DAY (KG) 
5610 ' (SHOULD PROBABLY BE A VARIABLE, SEE NOTE BELOW) 
5620 ' FCB - COST OF BREEDING HERD RATION ($/KG) 
5630 ' FCG - COST OF GROWING / FINISHING RATION. ($/KG) 
5640 ' 
5650 ' ECONOMIC PARAMETER ESTIMATES ARE CALCULATED FROM "ESTIMATED 
RETURNS FROM 
5660 ' FARROWING AND FINISHING HOGS IN IOWA" FOR THE 10 YEARS 1974-1983, 
56 70 ' PUBLISHED BY THE IOWA STATE UNIVERSITY COOPERATIVE EXTENSION 
SERVICE 
5680 ' (REPORTS M-1171, FEB 1974; M-1198(REV), JUNE 1980; M-1231, 
JAN 1983 )5408 ' 
5690 LOCG=.136 
5700 LOCR=.867 
5710 GP=30! ' CALC. AS 110% OF TOTAL FINISHING COSTS FOR 60 DAY 
PERIOD 
5720 FIB=3.728 ' NOTE: FIB SHOULD REALLY BE TREATED AS VARIABLE. THE 
IOWA 
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5730 FIGURES ARE BASED ON REPLACING SOWS AFTER 2 
LITTERS, 
5740 i.e. FIB DEPENDS UPON FR, AS WELL AS LSW, 
ETC. 
5750 FCB=.129 
5760 FCG=.126 
5770 ' 
5780 CLS:PRINT:PRINT:PRINT " ECONOMIC CONSTANTS ASSUMED":PRINT 
5 790 PRINT " LOCG LOCR GP FIB FCB 
FCG":PRINT 
5800 PRINT USING " .111111 • /IIIII 1111.11 11.111111 ./IIIII 
.111111"; LOCG, LOCR, GP, FIB, FCB, FCG: PRINT 
5810 PRINT"LOCG - GROWING-FINISHING LABOR & OVERHEAD COSTS FROM 40-
220lb/" 
5820 PRINT" MARKET 
PIG/DAY ($)" 
5830 PRINT"LOCR - LABOR & OVERHEAD COSTS OF REPRODUCTION/SOW 
FARROWED/DAY ($)" 
5840 PRINT" GP - GILT COSTS FROM 220lb TO FIRST BREEDING ($)" 
5850 PRINT" FIB - BREEDING HERD (MALES, FEMALES, LITTERS) FEED 
INTAKE/SOW/DAY (KG)" 
5860 PRINT" FCB - COST OF BREEDING HERD RATION ($/KG)" 
5870 PRINT" FCG - COST OF GROWING / FINISHING RATION. ($/KG)" 
5880 PRINT:INPUT "PRESS ENTER ";Z$ 
5890 PRINT:PRINT "TAKES ABOUT A MINUTE NOW" 
5900 ' 
5910 ' CALCULATING CG (COST OF POSTWEANING GROWTH / DAM / LITTER) 
5920 ' 
5930 ' CG = [ (1+PS)/2 * LSW ] * [ (final - wean wt)/ADG * (LOCG + 
FCG*ADG*FG) ]9745 ' CG = [ pigs/dam/litter ]*[ costs/pig ] 
5940 CLS:PRINT:PRINT " CGP(I)":PRINT 
5950 FOR I=1 TO 4 
5960 CGP(I)=(1+PSP)/2*LSWP(I)*81.64701/ADGP(I)*(LOCG+FCG*ADGP(I)*FGP(I)) 
5970 PRINT CGP(I) 
5980 NEXT I 
5990 PRINT:PRINT:PRINT " CGCDXAB(I)":PRINT 
6000 FOR I=1 TO 6 
6010 
CGCDXAB(I)=(1+PSC)/2*LSWCDXAB(I)*81.64701/ADGCDXAB(I)*(LOCG+FCG*ADGCDXAB 
(I)*FGCDXAB(I)) 
6020 PRINT CGCDXAB(I) 
6030 NEXT I 
6040 PRINT:INPUT " PRESS ENTER ";Z$ 
6050 CLS:PRINT:PRINT " CGAXB(I) CGAXAB(I) CGCXAB(I)":PRINT 
6060 FOR 1=1 TO 12 
6070 
CGAXB(I)=(1+PSC)/2*LSWAXB(I)*81.64701/ADGAXB(I)*(LOCG+FCG*ADGAXB(I)*FGAX 
B(I)) 
6080 
CGAXAB(I)=(1+PSC)/2*LSWAXAB(I)*81.64701/ADGAXAB(I)*(LOCG+FCG*ADGAXAB(I)* 
FGAXAB(I)) 
6090 
CGCXAB(I)=(1+PSC)/2*LSWCXAB(I)*81.64701/ADGCXAB(I)*(LOCG+FCG*ADGCXAB(I)* 
FGCXAB(I)) 



6100 PRINT CGAXB(I),CGAXAB(I),CGCXAB(I) 
6110 NEXT I 
6120 PRINT:INPUT 11 PRESS ENTER 11 ;Z$ 
6130 ' 
6140 ' CALCULATING CB (REPRODUCTION COSTS I DAM I LIFETIME) 
6150 I 
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6160 ' CB = (COST OF BREEDING STOCK (GILT + BOAR SHARE ) AT FIRST MATING 
6170 ' + (# LITTERS) * BCI() * (LOCR + FCB*FIB) 
6180 ' 
6190 ' = [1 + MRI(FMR*FR)] * [ CB()I(PS*LSWIFR) + CG()I(PS*LSW) + GP 
] 
6200 ' note : cb & cg values for the system replacements produced 
in 
6210 ' + [ 1IFR ] * BCI * [ LOCR + FCB*FIB ] 
6220 ' 
6230 ' FOR PUREBRED SYSTEMS, CB & CB() ARE FOR THE SAME SYSTEM. 
MULTIPLYING THRU AND SIMPLIFYING RESULTS IN : 
6240 I CB = [ (1+MRI(FM*FR))*(CGI(PS*LSW)+GP) + 
(1IFR)*BCI*(LOCR+(FCB*FIB)) I [ 1 - FRI(PS*LSW) -
MRI(FMR*PS*LSW) ] i.e., 
6250 I 

6260 CLS:PRINT:PRINT II CBP(I) 11 :PRINT 
6270 FOR I=1 TO 4 
6280 
CBP(I)=((1+(MRPI(FMR*FRP)))*((100*CGP(I))I(PSP*LSWP(I)*CRP(I))+(100*GPIC 
RP(I)))+((1IFRP)*BCIP(I)*(LOCR+(FCB*FIB))))I(1-
(100*FRP)I(PSP*LSWP(I)*CRP(I))-(100*MRP)I(FMR*PSP*LSWP(I)*CRP(I))) 
6290 PRINT CBP(I) 
6300 NEXT I 
6310 ' 
6320 ' FOR ALL SYSTEMS REQUIRING ONLY PUREBRED MALES FROM OUTSIDE THE 
SYSTEM 
6330 ' (I.E. ROTATIONAL SYSTEMS), THE BOAR SHARE OF COSTS 
6340 ' (CALCULATED BY THE MR/(FMR*FR) COEFFICIENT) DEPENDS UPON THE 
WEIGHTED 
6350 1 AVERAGE CB(I) AND CG(I) FOR THE PUREBREDS INVOLVED. THE FOLLOWING 
6360 ' VARIABLE (XP) IS FIRST CALCULATED FOR EACH PUREBRED : 
6370 ' 
6380 PRINT:PRINT:PRINT II XP(I) 11 :PRINT 
6390 FOR I=1 TO 4 
6400 XP(I)=(FRP*CBP(I)+CGP(I))I(PSP*LSWP(I)) 
6410 PRINT XP(I) 
6420 NEXT I 
6430 PRINT:INPUT 11 PRESS ENTER 11 ;Z$ 
6440 ' 
6450 ' THE REMAINING (STATIC) SYSTEMS REQUIRE VARIOUSLY PUREBRED AND 
CROSSBRED 
6460 ' MALES AND FEMALES. AGAIN, BREED OF DAM OF DAM IS CHOSEN BASED 
UPON LITTER SIZE WEANED I FEMALE EXPOSED FOR BACKCROSS AND 3 & 4 
BREED STATIC SYSTEMS 
6470 I 

6480 '2 BREED STATIC 
6490 CLS:PRINT:PRINT II CBAXB(I) 11 :PRINT 
6500 FOR I=1 TO 12 



6510 IF I=1 THEN J=1:K=2 
6520 IF I=2 THEN J=1:K=3 
6530 IF I=3 THEN J=1:K=4 
6540 IF I=4 THEN J=2:K=1 
6550 IF I=5 THEN J=2:K=3 
6560 IF I=6 THEN J=2:K=4 
6570 IF I=7 THEN J=3:K=1 
6580 IF I=8 THEN J=3:K=2 
6590 IF I=9 THEN J=3:K=4 
6600 IF I=10 THEN J=4:K=1 
6610 IF I=11 THEN J=4:K=2 
6620 IF I=12 THEN J=4:K=3 
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' J INDEXES THE BREED OF SIRE 
' K INDEXES THE BREED OF DAM 

6630 
CBAXB(I)=XP(K)+(1+MRC/(FMR*FRC))*(100*GP/CRP(K))+(MRC/(FMR*FRC))*XP(J)+( 
1/FRC)*BCIAXB(I)*(LOCR+FCB*FIB) 
6640 PRINT CBAXB(I) 
6650 NEXT I 
6660 PRINT:INPUT 11 PRESS ENTER 11 ;Z$ 
6670 ' 
6680 'BACKCROSS 
6690 CLS:PRINT:PRINT II CBAXAB(I) 11 :PRINT 
6700 L=O 
6710 FOR I=1 TO 4: FOR J=1 TO 4: FOR K=1 TO 4 
6720 IF J=K GOTO 6910 
6730 IF I §,f K AND I n J GOTO 6910 
6740 IF LSFEP(K) § LSFEP(J) GOTO 6910 
6750 IF LSFEP(K) = LSFEP(J) AND J ,f K GOTO 6910 
6760 L=L+1 
6770 IF J = 1 AND K = 2 THEN M = 1 
6780 IF J = 1 AND K = 3 THEN M = 2 
6790 IF J = 1 AND K = 4 THEN M = 3 
6800 IF J = 2 AND K = 1 THEN M = 4 
6810 IF J = 2 AND K = 3 THEN M = 5 
6820 IF J = 2 AND K = 4 THEN M = 6 
6830 IF J = 3 AND K = 1 THEN M = 7 
6840 IF J = 3 AND K = 2 THEN M = 8 
6850 IF J = 3 AND K = 4 THEN M = 9 
6860 IF J = 4 AND K = 1 THEN M = 10 
6870 IF J = 4 AND K = 2 THEN M = 11 
6880 IF J = 4 AND K = 3 THEN M = 12 

'I=BREED OF TERMINAL SIRE 
'J=BREED OF SIRE OF DAM 
'K=BREED OF DAM OF DAM 
'M=CROSSBRED DAM GROUP 
'L=SYSTEM ID II 

6890 
CBAXAB(L)=(CBAXB(M)*FRC+CGAXB(M))/(PSC*LSWAXB(M))+(1+MRC/(FMR*FRC))*(100 
*GP/CRAXB(M))+(MRC/(FMR*FRC))*XP(I)+(1/FRC)*BCIAXAB(L)*(LOCR+FCB*FIB) 
6900 PRINT CBAXAB(L) 
6910 NEXT K,J,I 
6920 PRINT:INPUT " PRESS ENTER 11 ;Z$ 
6930 ' 
6940 '3 BREED STATIC 
6950 CLS:PRINT:PRINT II CBCXAB(I) 11 :PRINT 
6960 L=O 
6970 FOR I=1 TO 4: FOR J=1 TO 4: FOR K=1 TO 4 
6980 IF I=J OR I=K OR J=K GOTO 7160 
6990 IF LSFEP(K) § LSFEP(J) GOTO 7160 
7000 IF LSFEP(K) = LSFEP(J) AND J ,f K GOTO 7160 



7010 L=L+l 
7020 IF J = 1 AND K = 2 THEN M = 1 
ABOVE 
7030 IF J = 1 AND K = 3 THEN M = 2 
7040 IF J = 1 AND K = 4 THEN M = 3 
7050 IF J = 2 AND K = 1 THEN M = 4 
7060 IF J = 2 AND K = 3 THEN M = 5 
7070 IF J = 2 AND K = 4 THEN M = 6 
7080 IF J = 3 AND K = 1 THEN M = 7 
7090 IF J = 3 AND K = 2 THEN M = 8 
7100 IF J = 3 AND K = 4 THEN M = 9 
7110 IF J = 4 AND K = 1 THEN M = 10 
7120 IF J = 4 AND K = 2 THEN M = 11 
7130 IF J = 4 AND K = 3 THEN M = 12 
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' I,J,K,M,L AS FOR THE BACKCROSS 

7140 
CBCXAB{L)=(CBAXB(M)*FRC+CGAXB(M))/(PSC*LSWAXB(M))+(1+MRC/(FMR*FRC))*(100 
*GP/CRAXB(M))+(MRC/(FMR*FRC))*XP(I)+(1/FRC)*BCICXAB{L)*(LOCR+FCB*FIB) 
7150 PRINT CBCXAB{L) 
7160 NEXT K,J ,I 
7170 PRINT:INPUT 11 PRESS ENTER 11 ;Z$ 
7180 ' 
7190 '4 BREED STATIC 
7200 CLS:PRINT:PRINT II CBCDXAB(I)":PRINT 
7210 1=0 
7220 FOR I=1 TO 4: FOR J=1 TO 4: FOR K=1 TO 4: FOR M=1 TO 4 
7230 IF I=J OR I=K OR I=M OR J=K OR J=M OR K=M GOTO 7550 
7240 IF LSFEP{J) § LSFEP{I) GOTO 7550 
7250 IF LSFEP(J) = LSFEP{I) AND I ,[ J GOTO 7550 
7260 IF LSFEP(M) § LSFEP(K) GOTO 7550 
7270 IF LSFEP{M) = LSFEP{K) AND K ,[ M GOTO 7550 
7280 1=1+1 
7290 IF I = 1 AND J = 2 THEN N = 1 
7300 IF I = 1 AND J = 3 THEN N = 2 
7310 IF I = 1 AND J = 4 THEN N = 3 
7320 IF I = 2 AND J = 1 THEN N = 4 
7330 IF I = 2 AND J = 3 THEN N = 5 
7340 IF I = 2 AND J = 4 THEN N = 6 
7350 IF I = 3 AND J = 1 THEN N = 7 
7360 IF I = 3 AND J = 2 THEN N = 8 
7370 IF I = 3 AND J = 3 THEN N = 9 
7380 IF I = 4 AND J = 1 THEN N = 10 
7390 IF I = 4 AND J = 2 THEN N = 11 
7400 IF I = 4 AND J = 3 THEN N = 12 
7410 IF K = 1 AND M = 2 THEN 0 = 1 
7420 IF K = 1 AND M = 3 THEN 0 = 2 
7430 IF K = 1 AND M = 4 THEN 0 = 3 
7440 IF K = 2 AND M = 1 THEN 0 = 4 
7450 IF K = 2 AND M = 3 THEN 0 = 5 
7460 IF K = 2 AND M = 4 THEN 0 = 6 
7470 IF K = 3 AND M = 1 THEN 0 = 7 
7480 IF K = 3 AND M = 2 THEN 0 = 8 
7490 IF K = 3 AND M = 4 THEN 0 = 9 
7500 IF K = 4 AND M = 1 THEN 0 = 10 
7510 IF K = 4 AND M = 2 THEN 0 = 11 

'I=BREED OF SIRE OF SIRE 
'J=BREED OF DAM OF SIRE 
'K=BREED OF SIRE OF DAM 
'M=BREED OF DAM OF DAM 
'N=CROSSBRED SIRE GROUP (1-12) 
'O=CROSSBRED DAM GROUP (1-12) 
'L=SYSTEM ID # (1-12) 
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7520 IF K = 4 AND M = 3 THEN 0 = 12 
7530 
CBCDXAB(L)~(CBAXB(O)*FRC+CGAXB(O))I(PSC*LSWAXB(0))+(1+MRCI(FMR*FRC))*(10 
O*GPICRAXB(O))+(MRCI(FMR*FRC))*(CBAXB(N)*FRC+CGAXB(N))I(PSC*LSWAXB(N))+( 
1IFRC)*BCICDXAB(L)*(LOCR+FCB*FIB) 
7540 PRINT CBCDXAB(L) 
7550 NEXT M,K,J,I 
7560 PRINT:INPUT " PRESS ENTER ";Z$ 
7570 ' 
7580 ' CALCULATING C (LIFETIME COSTS I DAM) FROM CB, CG & # OF 
LITTERS(1IFR ) 
7590 ' -
7600 FOR I=1 TO 4 
7610 CP(I)=CBP(I)+(1IFRP)*CGP(I) 
7620 NEXT I:I=O 
7630 FOR I=1 TO 6 
7640 CCDXAB(I)=CBCDXAB(I)+(1IFRC)*CGCDXAB(I) 
7650 NEXT I:I=O 
7660 FOR I=1 TO 12 
7670 CAXB(I)=CBAXB(I)+(11FRC)*CGAXB(I) 
7680 CAXAB(I)=CBAXAB(I)+(11FRC)*CGAXAB(I) 
7690 CCXAB(I)=CBCXAB(I)+(1IFRC)*CGCXAB(I) 
7700 NEXT I 
7710 ' 
7720 ' CALCULATING PG (GROWTH PHASE PRODUCT I DAM I PARITY) 
7730 ' 
7740 ' PG = RELATIVE VALUE*P(SURVIVE WEAN-100kg)*LITTER SIZE 
WEANED*SLAUGHTER WT 
7750 ' • RV * PS * LSW * 100 (kg) 
7760 ' EXCEPT FOR PUREBRED HERDS, AND HERDS PRODUCING CROSSBRED BOARS 
(CXD), WHERE IT IS ASSUMED THAT 10% OF MALES ARE 
7770 ' CASTRATED, AND THAT BOAR (lOOkg) MEAT IS WORTH 70% OF EQUIVALENT 
7780 ' BARROW I GILT MARKET HOG MEAT. THEREFORE, IN THESE HERDS : 
7790 ' PG = RV * (Prop. gilts & barrows + 70% prop. boars) * PS * LSW * 
100(kg) 
7800 ' = RV * .865 * PS * LSW * 100 
7810 ' 
7820 ' THE FOLLOWING SET OF EQUATIONS MAY BE USED TO FIX RV = 1.00 
7830 ' 
7840 'FOR I=1 TO 4 
7850 'PGP(I)=86.5*PSP*LSWP(I) 
7860 'NEXT I:I•O 
7870 'FOR I=1 TO 6 
7880 'PGCDXAB(I)=100*PSC*LSWCDXAB(I) 
7890 'NEXT I:I=O 
7900 'FOR I=1 TO 12 
7910 'PGAXB(I)=100*PSC*LSWAXB(I) 
7920 'PGCXD(I)•.865*PGAXB(I) 
7930 'PGAXAB(I)=100*PSC*LSWAXAB(I) 
7940 'PGCXAB(I)=100*PSC*LSWCXAB(I) 
7950 'NEXT I 
7960 ' 
7970 ' THE FOLLOWING EQUATIONS PAY A PREMIUM FOR LEANER HOGS, ACCORDING 
TO 
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7980 ' NPPC "PORK VALUE" GUIDELINES FOR 211-230 lb MARKET HOGS, I.E., 
7990 ' fat,last rib,in.: .7 .8 .9 1.0 1.1 1.2 1.3 
8000 ' av. backfat, in.: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 
8010 ' relative value 104 103 102 101 100 99 98 
8020 ' NOTE: THE RELATIONSHIP "av. fat= last rib fat+ .3 in." IS 
ASSUMED 
8030 ' NPPC USES LAST RIB FAT TO ASIGN VALUE 
8040 ' THE REGRESSION OF VALUE ON AV. FAT IS: 
8050 ' RELATIVE VALUE = 114 - 10. * (av. fat, in) 
8060 ' = 114 - .3937 * (av. fat, mm) 
8070 ' RV IS CALCULATED FOR TERMINAL OFFSPRING OF EACH SYSTEM: 
8080 ' 
8090 FOR I=1 TO 4 
8100 RVP(I)=(114-.3937*BFP(I))/100 
8110 NEXT I 
8120 FOR I=1 TO 6 
8130 RVCDXAB(I)=(114-.3937*BFAXAB(I))/100 
8140 NEXT I 
8150 FOR I=1 TO 12 
8160 RVAXB(I)=(114-.3937*BFAXB(I))/100 
8170 RVAXAB(I)=(114-.3937*BFAXAB(I))/100 
8180 RVCXAB(I)=(114-.3937*BFCXAB(I))/100 
8190 NEXT I 
8200 ' 
8210 ' PG IS THEN CALCULATED: 
8220 ' 
8230 CLS:PRINT:PRINT " PGP(I)":PRINT 
8240 FOR I=1 TO 4 
8250 PGP(I)=RVP(I)*86.5*PSP*LSWP(I) 
8260 PRINT PGP(I) 
8270 NEXT I -
8280 PRINT:PRINT:PRINT" PGCDXAB(I)":PRINT 
8290 FOR I=1 TO 6 
8300 PGCDXAB(I)=RVCDXAB(I)*100*PSC*LSWCDXAB(I) 
8310 PRINT PGCDXAB(I) 
8320 NEXT I 
8330 PRINT:INPUT " PRESS ENTER ";Z$ 
8340 CLS :PRINT:PRINT " PGAXB(I) PGAXAB(I) PGCXAB(I)" :PRINT 
8350 FOR I=1 TO 12 
8360 PGAXB(I)=RVAXB(I)*100*PSC*LSWAXB(I) 
8370 PGCXD(I)=.865*PGAXB(I) 
8380 PGAXAB(I)=RVAXAB(I)*100*PSC*LSWAXAB(I) 
8390 PGCXAB(I)=RVCXAB(I)*100*PSC*LSWCXAB(I) 
8400 PRINT PGAXB(I),PGAXAB(I),PGCXAB(I) 
8410 NEXT I 
8420 PRINT:INPUT " PRESS ENTER ";Z$ 
8430 ' CALCULATING PB (SALVAGE PRODUCT / DAM LIFETIME) 
8440 ' 
8450 ' PB =PRODUCT (AS % SLAUGHTER WT) * [ CULL FEMALE WT + (CULL BOAR 
WT / (FMR*(MALE HERD LIFE/FEMALE HERD LIFE)) ] 
8460 ' 
8470 ' EQUATIONS WERE DEVELOPED AS FOLLOWS : 
8480 ' 
8490 ' SALVAGE PRODUCT CONSISTS OF SOWS CULLED AT THE END OF THEIR 



8500 ' REPRODUCTIVE LIFE ( i.e. AFTER 1/FR LITTERS, FR=PROP FEMALES 
REPLACED 
8510 ' EACH CYCLE ) , OPEN SOWS AND GILTS AND CULL BOARS. 
8520 ' EACH CYCLE ), OPEN SOWS AND GILTS AND CULL BOARS. 
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8530 ' FOR EVERY FEMALE CONCEIVING EACH CYCLE, (100/CR)-1 FEMALES ARE 
SOLD AS 
8540 ' OPEN. OVER A FEMALES LIFETIME, (1/FR)*((100/CR)-1) CULL FEMALES 
HAVE 
8550 ' BEEN SOLD. 
8560 ' 
8570 ' 
8580 ' 
8590 ' 
8600 ' 
8610 ' 
8620 ' 

ASSUMING THE FOLLOWING RELATIVE PRODUCT VALUES 
220lb MARKET BARROW/GILT = 1.00 
OPEN GILT (285lb) • • 90 
OPEN/CULL SOW (260lb + 60lb / PARITY ,I 1 ) = .85 
CULL BOAR (400lb) = • 65 

8630 ' PB = .85*(255+(30/FR)) + (1/FR)*((100/CR)-1) * 
8640 ' cull sow # open females/dam lifetime 
8650 ' 
8660 ' [ .9*255*FR + .85*(255+(15/FR))*(1-FR) ] + 
(.65*400)/(FM*FR/MR) 
8670 ' open gilts open sows 
8680 ' 

cull boars 

8690 ' CONVERTING TO KG AND SIMPLIFYING GIVES THE EQUATIONS USED BELOW, 
EXCEPT 
8700 ' FOR THE CONSTANT MULTIPLIER OF .985, USED TO REFLECT THE ASSUMED 
1.5% 
8710 ' BREEDING HERD DEATH LOSS / CYCLE 
8720 ' 
8730 CLS:PRINT:PRINT II PBP(I) 11 :PRINT 
8740 FOR I=1 TO 4 
8750 PBP(I)=.985*(109.883+(23.133/FRP)+(1/FRP)*(100/CRP(I)-
1)*(116.346*FRP+(1-FRP)*(109.883+23.133/FRP))+117.934/(FMR*FRP/MRP)) 
8760 PRINT PBP(I) 
8770 NEXT I 
8780 PRINT:PRINT:PRINT 11 PBCDXAB(I) 11 :PRINT 
8790 FOR I=1 TO 6 
8800 PBCDXAB(I)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CRCDXAB(I)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
8810 PRINT PBCDXAB(I) 
8820 NEXT I 
8830 PRINT:INPUT 11 PRESS ENTER 11 ;Z$ 
8840 CLS:PRINT:PRINT II PBAXB(I) 
8850 FOR I=1 TO 12 

PBAXAB(I) PBCXAB(I) 11 :PRINT 

8860 PBAXB(I)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CRAXB(I)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
8870 PBAXAB(I)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CRAXAB(I)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
8880 PBCXAB(I)=.985*(109.883+(23.133/FRC)+(1/FRC)*(100/CRCXAB(I)-
1)*(116.346*FRC+(1-FRC)*(109.883+23.133/FRC))+117.934/(FMR*FRC/MRC)) 
8890 PRINT PBAXB(I),PBAXAB(I),PBCXAB(I) 
8900 NEXT I 
8910 PRINT:INPUT 11 PRESS ENTER 11 ;Z$ 
8920 ' 



234 

8930 ' CALCULATING P (LIFETIME PRODUCT / DAM) FROM PB, PG & # LITTERS 
PRODUCED 
8940 I 

8950 FOR I=1 TO 4 
8960 PP(I)=PBP(I)+(1/FRP)*PGP(I) 
8970 NEXT I 
8980 FOR I=1 TO 6 
8990 PCDXAB(I)=PBCDXAB(I)+(1/FRC)*PGCDXAB(I) 
9000 NEXT I 
9010 FOR I=1 TO 12 
9020 PAXB(I)=PBAXB(I)+(1/FRC)*PGAXB(I) 
9030 PCXD(I)=PBAXB(I)+(1/FRC)*PGCXD(I) 
9040 PAXAB(I)=PBAXAB(I)+(1/FRC)*PGAXAB(I) 
9050 PCXAB(I)=PBCXAB(I)+(1/FRC)*PGCXAB(I) 
9060 NEXT I 
9070 I 

9080 1 CALCULATING E (EFFICIENCY) FROM C & P 
9090 ' 
9100 FOR I=1 TO 4 
9110 EP(I)=CP(I)/PP(I) 
9120 NEXT I:I=O 
9130 FOR I=1 TO 6 
9140 ECDXAB(I)=CCDXAB(I)/PCDXAB(I) 
9150 NEXT I:I=O 
9160 FOR I=1 TO 12 
9170 EAXB(I)=CAXB(I)/PAXB(I) 
9180 ECXD(I)=CAXB(I)/PCXD(I) 
9190 EAXAB(I)=CAXAB(I)/PAXAB(I) 
9200 ECXAB(I)=CCXAB(I)/PCXAB(I) 
9210 NEXT I 
9220 ' 
9230 1 E REPRESENTS EFFICIENCY FOR TERMINAL SUB-SYSTEMS OF EACH SYSTEM. 
9240 1 TOTAL SYSTEM EFFICIENCY (SE), HOWEVER, IS THE WEIGHTED AVERAGE OF 
EFFICIENCIES OF BOTH THE BREEDING STOCK GENERATORS AND TERMINAL 
9250 ' CROSSES THAT COMPRISE THE 10,000 FEMALES FARROWING IN EACH 
SYSTEM. 
9260 I THUS : 
9270 ' 
9280 'PUREBREDS 
9290 FOR I=1 TO 4 
9300 SEP(I)=EP(I) 
9310 NEXT I 
9320 I 

9330 '2 BREED STATIC 
9340 FOR I=1 TO 12 
9350 IF I=1 THEN J=1:K=2 1 J INDEXES THE BREED OF SIRE 
9360 IF I=2 THEN J=1:K=3 1 K INDEXES THE BREED OF DAM 
9370 IF I=3 THEN J=1:K=4 
9380 IF I=4 THEN J=2:K=1 
9390 IF I=5 THEN J=2:K=3 
9400 IF I=6 THEN J=2:K=4 
9410 IF I=7 THEN J=3:K=1 
9420 IF I=8 THEN J=3:K=2 
9430 IF I=9 THEN J=3:K=4 
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9440 IF I=10 THEN J=4:K=1 
9450 IF I=11 THEN J=4:K=2 
9460 IF I=12 THEN J=4:K=3 
9470 
SEAXB(I)=(STRAXB(I,1)*EP(J)+STRAXB(I,2)*EP(K)+STRAXB(I,3)*EAXB(I))/10000 
9480 NEXT I 
9490 ' 
9500 'BACKCROSS 
9510 L=O 
9520 FOR I=1 TO 4: FOR J=1 TO 4: FOR K=1 TO 4 
9530 IF J=K GOTO 9710 
9540 IF I U K AND I n J GOTO 9710 
9550 IF LSFEP(K) § LSFEP(J) GOTO 9710 
9560 IF LSFEP(K) = LSFEP(J) AND J ,I K GOTO 9710 
9570 L=L+1 
9580 IF J = 1 AND K = 2 THEN M = 1 
9590 IF J = 1 AND K = 3 THEN M = 2 
9600 IF J = 1 AND K = 4 THEN M = 3 
9610 IF J = 2 AND K = 1 THEN M = 4 
9620 IF J = 2 AND K = 3 THEN M = 5 
9630 IF J = 2 AND K = 4 THEN M = 6 
9640 IF J • 3 AND K = 1 THEN M = 7 
9650 IF J = 3 AND K = 2 THEN M = 8 
9660 IF J = 3 AND K = 4 THEN M = 9 
9670 IF J = 4 AND K = 1 THEN M = 10 
9680 IF J = 4 AND K = 2 THEN M = 11 
9690 IF J • 4 AND K • 3 THEN M = 12 

'!=BREED OF TERMINAL SIRE 
'J=BREED OF SIRE OF DAM 
'K=BREED OF DAM OF DAM 
'M=CROSSBRED DAM GROUP 
'L=SYSTEM ID II 

9700 
SEAXAB(L)=(STRAXAB(L,1)*EP(J)+STRAXAB(L,2)*EP(K)+STRAXAB(L,3)*EAXB(M)+ST 
RAXAB(L,4)*EAXAB(L))/10000 
9710 NEXT K,J, I 
9720 ' 
9730 '3 BREED STATIC 
9740 L=O 
9750 FOR 1=1 TO 4: FOR J=1 TO 4: FOR K=1 TO 4 
9760 IF I=J OR I•K OR J•K GOTO 9930 
9770 IF LSFEP(K) § LSFEP(J) GOTO 9930 
9780 IF LSFEP(K) = LSFEP(J) AND J ,I K GOTO 9930 
9790 L=L+1 
9800 IF J = 1 AND K = 2 THEN M = 1 
ABOVE 
9810 IF J = 1 AND K = 3 THEN M = 2 
9820 IF J = 1 AND K = 4 THEN M = 3 
9830 IF J = 2 AND K = 1 THEN M = 4 
9840 IF J = 2 AND K = 3 THEN M = 5 
9850 IF J = 2 AND K • 4 THEN M = 6 
9860 IF J = 3 AND K = 1 THEN M = 7 
9870 IF J • 3 AND K = 2 THEN M = 8 
9880 IF J = 3 AND K = 4 THEN M = 9 
9890 IF J =~AND K = 1 THEN M = 10 
9900 IF J = 4 AND K = 2 THEN M = 11 
9910 IF J • 4 AND K = 3 THEN M = 12 

' I,J,K,M,L AS FOR THE BACKCROSS 
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9920 
SECXAB(L)=(STRCXAB(L,1)*EP(J)+STRCXAB(L,2)*EP(K)+STRCXAB(L,3)*EP(I)+STRC 
XAB(L,4)*EAXB(M)+STRCXAB(L,5)*ECXAB(L))/10000 
9930 NEXT K,J,I 
9940 ' 
9950 '4 BREED STATIC 
9960 L•O 
9970 FOR !=1 TO 4: FOR J•1 TO 4: FOR K=1 TO 4: FOR M=1 TO 4 
9980 IF I-J OR I=K OR I=M OR J=K OR J=M OR K-M GOTO 10290 
9990 IF LSFEP(J) § LSFEP(I) GOTO 10290 
10000 IF LSFEP(J) • LSFEP(I) AND I ,I J GOTO 10290 
10010 IF LSFEP(M) § LSFEP(K) GOTO 10290 
10020 IF LSFEP(M) = LSFEP(K) AND K ,I M GOTO 10290 
10030 L=L+l 
10040 IF I = 1 AND J • 2 THEN N = 1 
10050 IF I = 1 AND J • 3 THEN N = 2 
10060 IF I • 1 AND J = 4 THEN N • 3 
10070 IF I = 2 AND J = 1 THEN N = 4 
10080 IF I = 2 AND J = 3 THEN N = 5 
10090 IF I = 2 AND J = 4 THEN N = 6 
10100 IF I = 3 AND J = 1 THEN N = 7 
10110 IF I • 3 AND J • 2 THEN N = 8 
10120 IF I = 3 AND J = 3 THEN N = 9 
10130 IF I = 4 AND J • 1 THEN N = 10 
10140 IF I = 4 AND J = 2 THEN N = 11 
10150 IF I = 4 AND J = 3 THEN N = 12 
10160 IF K • 1 AND M = 2 THEN 0 = 1 
10170 IF K = 1 AND M = 3 THEN 0 = 2 
10180 IF K = 1 AND M = 4 THEN 0 = 3 
10190 IF K • 2 AND M = 1 THEN 0 = 4 
10200 IF K = 2 AND M = 3 THEN 0 = 5 
10210 IF K = 2 AND M = 4 THEN 0 = 6 
10220 IF K = 3 AND M = 1 THEN 0 = 7 
10230 IF K • 3 AND M = 2 THEN 0 = 8 
10240 IF K = 3 AND M = 4 THEN 0 • 9 
10250 IF K = 4 AND M = 1 THEN 0 = 10 
10260 IF K = 4 AND M = 2 THEN 0 = 11 
10270 IF K = 4 AND M = 3 THEN 0 = 12 

'!=BREED OF SIRE OF SIRE 
'J=BREED OF DAM OF SIRE 
'K=BREED OF SIRE OF DAM 
'M=BREED OF DAM OF DAM 
'N=CROSSBRED SIRE GROUP (1-12) 
'O=CROSSBRED DAM GROUP (1-12) 
'L=SYSTEM ID # (1-12) 

10280 
SECDXAB(L)=(STRCDXAB(L,l)*EP(I)+STRCDXAB(L,2)*EP(J)+STRCDXAB(L,3)*EP(K)+ 
STRCDXAB(L,4)*EP(M)+STRCDXAB(L,5)*ECXD(N)+STRCDXAB(L,6)*EAXB(O)+STRCDXAB 
(L,7)*ECDXAB(L))/10000 
10290 NEXT M,K,J,I 
10300 SUMP=O: SUMAXB•O: SUMAXAB=O: SUMCXAB=O: SUMCDXAB=O 
10310 FOR L=1 TO 4 
10320 SUMP=SEP(L)+SUMP 
10330 NEXT L 
10340 AVGP-SUMP/4 
10350 ' 
10360 FOR L=1 TO 12 
10370 SUMAXB=SEAXB(L)+SUMAXB 
10380 SUMAXAB=SEAXAB(L)+SUMAXAB 
10390 SUMCXAB=SECXAB(L)+SUMCXAB 
10400 NEXT L 



10410 ' 
10420 AVGAXB=SUMAXBI12: AVGAXAB=SUMAXABI12: AVGCXAB=SUMCXAB/12 
10430 FOR L=1 TO 6 
10440 SUMCDXAB=SECDXAB(L)+SUMCDXAB 
10450 NEXT L 
10460 AVGCDXAB=SUMCDXABI6 
10470 ' 
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10480 CLS:PRINT TAB(l2) " NO. BREED EFFICIENCY ( COST I KG 
PRODUCT )" 
10490 PRINT "SYSTEM COMBINATIONS MEAN MIN 
MAX" 
10500 PRINT STRING$(70,"-") 
10510 PRINT USING " P 
111111.11#" ;AVGP ,MINP ,MAXP 
10520 PRINT USING " AxB 
###.#1/";AVGAXB,MINAXB,MAXAXB 
10530 PRINT USING " AxAB 
111111. #II" ;AVGAXAB ,MINAXAB ,MAXAXAB 
10540 PRINT USING " CxAB 
111111.1111" ;AVGCXAB ,MINCXAB ,MAXCXAB 

4 

12 

12 

12 

10550 PRINT USING "CDxAB 6 
##1/.##";AVGCDXAB,MINCDXAB,MAXCDXAB 
10560 PRINT:INPUT "PRESS ENTER";Z$:CLS 
10570 ' 
10580 PRINT:PRINT:PRINT " PUREBREDS":PRINT 

# .111111# 

II .11111111 

#.#### 

# .11111111 

# .11111111 

###.## 

111111 • 1111 

###.## 

111111 .1111 

111111. ## 

10590 PRINT "BREEDS EFFICIENCY ( COST I KG PRODUCT )":PRINT 
10600 PRINT STRING$(48,"-"):B$(1)•"D":B$(2)•''Y":B$(3)•"L":B$(4)="S" 
10610 FOR I•1 TO 4 
10620 PRINT USING " 3 3 ###.####";B${I),EP(I):NEXT 
I 
10630 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
1Q64Q I 

10650 PRINT:PRINT:PRINT "2 BREED STATIC" :PRINT 
10660 PRINT ''BREEDS EFFICIENCY ( COST I KG PRODUCT ) ":PRINT 
10670 PRINT STRING$(48,"-"):FOR I=1 TO 12:READ B$(I):NEXT I 
10680 DATA DxY,DxL,DxS,YxD,YxL,YxS,LxD,LxY,LxS,SxD,SxY,SxL 
10690 FOR I=1 TO 12 
10700 PRINT USING "3 3 

IIII#.IIIIII#";B$(I) ,SEAXB{I) :NEXT I 
10710 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
10720 ' 
10730 PRINT:PRINT:PRINT " 
10740 PRINT "BREEDS 
10750 PRINT "(Check!)" 

BACKCROSS" :PRINT 
EFFICIENCY ( COST I KG PRODUCT )":PRINT 

10760 PRINT STRING$(48,"-"):FOR I=1 TO 12:READ B$(I):NEXT I 
10770 DATA DxDY,DxDL,DxSD,YxDY,YxYL,YxSY,LxDL,LxYL,~SL,SxSD,SxSY,SxSL 
10780 FOR I•1 TO 12 
10790 PRINT USING n3 3 

IIII#.IIIIIIII";B$(I) ,SEAXAB(I) :NEXT I 
10800 PRINT:INPUT ''PRESS ENTER ";Z$ :CLS 
10810 ' 
10820 PRINT: PRINT: PRINT "3 BREED STATIC" :PRINT 
10830 PRINT ''BREEDS EFFICIENCY ( COST I KG PRODUCT ) ":PRINT 
10840 PRINT "(Check!)" 
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10850 PRINT STRING$(48,"-"):FOR I=1 TO 12:READ B$(I):NEXT I 
10860 DATA DxYL,DxSY,DxSL,YxDL,YxSD,YxSL,LxDY,LxSD,LxSY,SxDY,SxDL,SxYL 
10870 FOR I=1 TO 12 
10880 PRINT USING "3 3 

/liiii./IIIIIII";B$(I) ,SECXAB(I) :NEXT I 
10890 PRINT:INPUT "PRESS ENTER ";Z$:CLS 
10900 ' 
10910 PRINT:PRINT:PRINT "4 BREED STATIC":PRINT 
10920 PRINT ''BREEDS EFFICIENCY ( COST / KG PRODUCT ) ":PRINT 
10930 PRINT "(Check!)" 
10940 PRINT STRING$(48,"-"):FOR I==1 TO 6:READ B$(I):NEXT I 
10950 DATA DYxSL,DLxSY,YLxSD,SDxYL,SYxDL,SLxDY 
10960 FOR I=1 TO 6 
10970 PRINT USING "3 3 

/IIIII. /IIIII#" ;B$ (I), SECDXAB(I) :NEXT I 



APPENDIX C 
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2 Breed Rotation (A, B) 

A = (FMA * AB)/(2 - 2FMA) 

B = (FMB * AB)/(2 - 2FMB) 

AB = T/[(FMA/(2 - 2FMA)) + (FMB/(2 -2FMB)) + 1] 

3 Breed Rotation (A, B, C) 

A = (FMA * ABC)/(3 - 3FMA) 

B = (FMB * ABC)/(3 - 3FM8) 

C = (FMC * ABC)/(3 - 3FMC) 
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ABC = T/[(FMA/(3 - 3FMA)) + (FMB/(3 - 3 FMB)) + (FMc/(3 -3FMC)) + 1] 

4 Breed Rotation (A, B, C, D) 

As above, but now include breed D and 3 becomes 4 in all equations. 

2 Breed Static (A x B) 

A = (FMA * AB)/(1 - FMA) 

B = (FFB * AB)/(1 - FFB) 

AB = T/[(FMA/(1-FMA)) + (FFB/(1 - FFB)) + 1] 

3 Breed Static (C x (AxB)) 

A= (FMA * FFAB * CAB)/(1 - FMA) 

B = (FFB * FFAB * CAB)/(1- FFB) 

C = (FMC * CAB)/(1 - FMC) 

AB = FFAB *CAB 

CAB= T/[(FMA * FFAB)/(1- FMA) + (FF 8 * FFAB)/ (1- FMA) 

+ FMc/(1 - FMC) + FFAB + 1] 



4 Breed Static ((CxD) x (AxB)) 

A = (FMA * AB)/(1 - FMA) 

B = (FF 8 * AB)/(1 - FFB) 

C = (FMC * C0)/(1 - FMC) 

0 = (FF 0 * CD)/(1 - FF0) 

AB = FFAB * CDAB 

CD = FMCD * CDAB 

CDAB = T/[(FMA * FFAB)/(1- FMA) + (FMB * FFAB)/(1- FFB) 
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+ (FMC* FMCD)/(1- FMc)+ (FF 0 * FMco)/(1- FF 0) + FFAB + FMco 

+ 1] 

2 Breed Backcross (Ax (AxB)) 

A= FMA * AAB * (1 + FFAB)/(1- FMA) 

B = FFB * AAB * FFAB/(1 - FFB) 

AB = FFAB * AAB 

AAB = T/[(FMA * (1 + FFAB)/(1 - FMA)) + (FFB * FFAB/(1 - FFB)) 

+ FFAB + 1] 

2 Breed Backcross (B x (AxB)) 

A= FMA * BAB * FFAB/(1 - FMA) 

B = FMB * BAB/(1 - FMB), or 

B = FF 8 * BAB * FFAB/(1- FF 8), 

AB = FFAB *BAS 

(whichever is the greater) 

BAB = T/[(FMA * FFAB/(1 - FMA)) + [FF8 * FFAB/(1 - FFB) 

or FMB/(1 -FMB)] + FFAB + 1] 



3 Breed Combination (C x A,B) 

A= (FMA * FFAB * CAB)/(2(1- FMA)(1- FFAB)) 

B = (FMB * FFAB * CAB)/(2(1- FMB)(1- FFAB)) 

C =.(FMC * CAB)/(1 - FMC) 

AB = (FFAB * CAB)/(1 - FFAB) 

CAB = T/[(FFAB/(2 - 2FFAB)) * ((FMA/(1 - FMA)) + (FMB/(1 - FMB))) 

+ FMC/(1 - FMc) + FFAB/(1 - FFAB) + 1] 

4 Breed Combinations (0 x A, B, C) 

A= (FMA * FFABC * DABC)/(3(1 - FMA)(1 - FFABC)) 

B = (FMB * FFABC * DABC)/(3(1- FMB)(1- FFABC)) 

C = (FMC* FFABC * DABC)/(3(1- FMc)(1- FFABC)) 

D = (FM 0 * DABC)/(1 - FM 0) 

ABC = (FFABC * DABC)/(1- FFABC) 

DABC = T/[(FFABC/(3- 3FFABC)) * ((FMA/(1- FMA)) + (FM8/(1- FM8)) 

+ (FMc/(1 - FMc))) + FM0/(1 - FM 0) + FFABC/(1 - FFABC) + 1] 
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PREDICTED VALUES FOR MODEL 
DRIVING VARIABLES 
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PUREBREDS 

PREDICTED DRIVING VARIABLES 

----------------------------------------------------------------------
BREED CR LSB SUR LSW LSFE ADG BF FG 
----------------------------------------------------------------------
D 59.8 10.9 67.8 7.4 4.4 .663 29.1 3.00 
y 71.1 11.4 64.2 7.3 5.2 .638 33.0 3.19 
L 78.4 10.7 77.0 8.2 6.4 .635 33.5 3.23 
s 69.8 9.4 73.6 6.9 4.8 .666 34.2 3.43 

2 BREED ROTATION 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

--------------------------------------------------------------
BREED CR LSB SUR LSW ADG BF FG 

--------------------------------------------------------------
DY 67.3 11.8 68.9 8 .I .704 32.4 3.10 
DL 70.9 11.4 76.2 8.7 .698 31.9 3.12 
DS 66.6 10.8 76.0 8.2 .712 32.1 3.22 
YL 76.6 11.6 77.2 9.0 .673 33.9 3.21 
YS 72.3 11.0 73.2 8.0 .693 32.7 3.31 
LS 76.0 10.6 75.2 8.0 .697 33.3 3.34 

--------------------------------------------------------------

3 BREED ROTATION 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

--------------------------------------------------------------
BREED CR LSB SUR LSW ADG BF FG 

--------------------------------------------------------------
DYL 72.1 11.8 75.4 8.9 .705 33.0. 3.15 
DYS 69.3 11.4 73.9 8.4 .716 32.5 3.21 
DLS 71.7 11.1 76.6 8.5 .716 32.5 3.23 
YLS 75.5 11.3 76.2 8.6 • 700 33.3 3.29 

4 BREED ROTATION 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

BREED CR LSB SUR LSW ADG BF FG 

DYLS 72.4 11.4 75.9 8.7 .714 32.8 3.22 
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2 BREED STATIC 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

--------------------------------------------------------------
BREED CR LSB SUR LSW ADG BF FG 

--------------------------------------------------------------
DxY 71.1 11.6 70.3 8.2 .731 30.5 3.10 
DxL 78.4 10.9 79.7 8.7 .727 31.1 3.13 
DxS 69.8 9.6 81.2 7.8 .735 29.6 3.22 
YxD 59.8 11.2 70.3 7.8 .729 35.5 3.10 
YxL 78.4 10.9 82.1 8.9 .695 35.7 3.22 
YxS 69.8 9.6 78.0 7.5 .713 32.0 3.32 
LxD 59.8 11.2 76.5 8.5 .718 33.2 3.13 
LxY 71.1 11.6 78.9 9.1 .688 32.7 3.22 
LxS 69.8 9.6 76.1 7.3 .716 31.3 3.34 
SxD 59.8 11.2 75.9 8.5 • 735 35.2 3.22 
SxY 71.1 11.6 72.7 8.4 .715 32.6 3.32 
SxL 78.4 10.9 74.1 8.1 .725 34.9 3.34 

--------------------------------------------------------------

BACKCROSS 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

--------------------------------------------------------------
BREED CR LSB SUR LSW ADG BF FG 
--------------------------------------------------------------
DxDY 68.2 12.2 69.1 8.4 .697 29.8 3.05 
DxDL 71.9 11.8 73.8 8.7 .695 30.1 3.06 
DxSD 67.6 11.2 74.5 8.3 .699 29.3 3.11 
YxDY 68.2 12.2 67.3 8.2 .684 34.3 3.14 
YxYL 77.5 12.1 73.2 8.8 .667 34.4 3.20 
YxSY 73.3 11.4 71.1 8.1 .676 32.5 3.25 
LxDL 71.9 11.8 76.7 9.1 .677 33.3 3.18 
LxYL 77.5 12.1 77.9 9.4 .661 33.1 3.22 
LxSL 76.9 11.1 76.6 8.5 .676 32.4 3.29 
SxSD 67.6 11.2 74.8 8.4 .700 34.7 3.33 
SxSY 73.3 11.4 73.2 8.4 .690 33.4 3.37 
SxSL 76.9 11.1 73.9 8.2 .695 34.5 3.38 
--------------------------------------------------------------
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3 BREED STATIC 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

--------------------------------------------------------------
BREED CR LSB SUR LSW ADG BF FG 
--------------------------------------------------------------
DxYL 77.5 12.2 75.0 9.1 .729 30.8 3.11 
DxSY 73.3 11.5 75.8 8.7 • 733 30.0 3.16 
DxSL 76.9 11.2 80.5 9.0 .731 30.4 3.18 
YxDL 71.9 12.0 76.2 9.1 • 712 35.6 3.16 
YxSD 67.6 11.3 74.1 8.4 .721 33.8 3.21 
YxSL 76.9 11.2 80.0 8.9 .704 33.9 3.27 
LxDY 68.2 12.3 77.7 9.6 .703 33.0 3.17 
LxSD 67.6 11.3 76.3 8.6 .717 32.3 3.23 
LxSY 73.3 11.5 80.4 9.3 • 704 32.8 3.28 
SxDY 68.2 12.3 74.3 9.1 .725 33.9 3.27 
SxDL 71.9 12.0 75.0 9.0 .730 35.1 3.28 
SxYL 77.5 12.2 73.4 8.9 .720 33.7 3.33 
--------------------------------------------------------------

4 BREED STATIC 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

---------------------------------------------------------------
BREED CR LSB SUR LSW ADG BF FG 

--------------------------------------------------------------
DYxSL 83.1 11.2 80.3 9.0 .718 32.1 3.22 
DLxSY 79.5 11.5 76.6 8.8 .718 31.0 3.22 
YLxSD 83.8 12.2 74.2 9.0 .724 32.3 3.22 
SDxYL 73.8 11.3 75.2 8.5 .719 33.0 3.22 
SYxDL 78.1 12.0 75.6 9.0 .721 35.3 3.22 
SLxDY 74.4 12.3 76.0 9.4 .714 33.4 3.22 
---------------------------------------------------------------
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TERMINAL SIRE BREED X 2 BREED ROTATION FEMALES 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

--------------------------------------------------------------
BREED CR LSB SUR LSW ADG BF FG 

--------------------------------------------------------------
DxYL 76.6 11.6 75.0 8.7 .729 30.8 3.11 
DxYS 72.3 11.0 75.8 8.3 .733 30.0 3.16 
DxLS 76.0 10.6 80.5 8.6 • 731 30.4 3.18 
YxDL 70.9 11.4 76.2 8.7 .712 35.6 3.16 
YxDS 66.6 10.8 74.1 8.0 .721 33.8 3.21 
YxLS 76.0 10.6 80.0 8.5 .704 33.9 3.27 
LxDY 67.3 11.8 77.7 9.1 .703 33.0 3.17 
LxDS 66.6 10.8 76.3 8.2 .717 32.3 3.23 
LxYS 72.3 11.0 77.5 8.5 .702 32.0 3.28 
SxDY 67.3 ll.8 74.3 8.7 .725 33.9 3.27 
SxDL 70.9 11.4 75.0 8.6 .730 35.1 3.28 
SxYL 76.6 11.6 73.4 8.5 .720 33.7 3.33 

--------------------------------------------------------------

TERMINAL SIRE BREED X 3 BREED ROTATION FEMALES 

PREDICTED DRIVING VARIABLES FOR TERMINAL OFFSPRING 

--------------------------------------------------------------
BREED CR LSB SUR LSW ADG BF FG 
--------------------------------------------------------------
DxYLS 75.5 11.3 77.1 8.7 • 731 30.4 3.15 
YxDLS 71.7 11.1 76.8 8.5 .712 34.4 3.21 
LxDYS 69.3 11.4 77.2 8.8 .707 32.4 3.23 
SxDYL 72.1 11.8 74.3 8.7 • 725 34.2 3.29 
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PUREBREDS 

BREEDS EFFICIENCY ( COST I KG PRODUCT ) 

------------------------------------------------
D 
y 
L 
s 

0.8521 
0.9029 
0.8800 
0.9420 

2 BREED ROTATIONS 

BREEDS 

DY 
DL 
DS 
YL 
YS 
LS 

EFFICIENCY ( COST I KG PRODUCT ) 

o. 7175 
0.7088 
o. 7241 
o. 7277 
0.7499 
0.7582 

3 BREED ROTATIONS 

BREEDS 

DYL 
DYS 
DLS 
YLS 

EFFICIENCY ( COST I KG PRODUCT ) 

0.7098 
0.7218 
0.7226 
0.7366 

4 BREED ROTATION 

BREEDS EFFICIENCY ( COST I KG PRODUCT ) 

DYLS o. 7195 
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2 BREED STATIC 

BREEDS EFFICIENCY ( COST I KG PRODUCT ) 

------------------------------------------------
DxY 
DxL 
DxS 
YxD 
YxL 
YxS 
LxD 
LxY 
LxS 
SxD 
SxY 
SxL 

3 BREED STATIC 

BREEDS 

DxYL 
DxSY 
DxSL 
YxDL 
YxSD 
YxSL 
LxDY 
LxSD 
LxSY 
SxDY 
SxDL 
SxYL 

4 BREED STATIC 

BREEDS 

DYxSL 
DLxSY 

'YLxSD 
SDxYL 
SYxDL 
SLxDY 

0.7498 
0.7397 
0.7731 
0.7422 
o. 7571 
0.7954 
o. 7271 
0.7502 
0.7985 
0.7385 
o. 7679 
0. 7789 

EFFICIENCY ( COST I KG PRODUCT ) 

0.7061 
0.7155 
0.7171 
o. 7141 
0.7305 
o. 7371 
0.7029 
o. 7242 
0.7244 
0.7174 
o. 7230 
0.7355 

EFFICIENCY ( COST I KG PRODUCT ) 

0.7271 
o. 7260 
0. 7196 
0.7369 
0. 7217 
o. 7148 
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BACKCROSS 

BREEDS EFFICIENCY ( COST I KG PRODUCT ) 

DxDY 0.7223 
DxDL 0.7215 
DxSD 0.7298 
YxDY 0.7266 
YxYL 0.7558 
YxSY 0.7453 
LxDL o. 7124 
LxYL 0.7224 
LxSL 0.7451 
SxSD 0.7391 
SxSY o. 7725 
SxSL 0.7867 

TERMINAL SIRE BREED X 2 BREED ROTATION FEMALES 

BREEDS EFFICIENCY ( COST I KG PRODUCT ) 

DxYL o. 7205 
DxYS 0. 7325 
DxLS 0.7339 
YxDL 0. 7296 
YxDS 0.7424 
YxLS 0.7541 
LxDY o. 7148 
LxDS 0. 7352 
LxYS 0.7453 
SxDY 0.7303 
SxDL 0.7388 
SxYL 0.7505 

TERMINAL SIRE BREED X 3 BREED ROTATION FEMALES 

BREEDS EFFICIENCY ( COST I KG PRODUCT ) 

' ------------------------------------------------
DxYLS 
YxDLS 
LxDYS 
SxDYL 

0.7241 
0.7379 
0.7273 
0.7360 
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STRUCTURE FOR 2 BREED ROTATIONS 

(1=DUROC, 2=YORK, 3=LAND, 4=SPOT) 

A B t/A fiB /JAB 
------------------------------------------

1 2 116 118 9766 
1 3 116 105 9779 
1 4 116 124 9760 
2 3 118 105 9777 
2 4 118 124 9758 
3 4 105 125 9771 

STRUCTURE FOR 3 BREED ROTATIONS 

(1=DUROC, 2=YORK, 3=LAND, 4=SPOT) 

A B c IIA fiB fiC IIABC 
--------------------------------------------------

1 2 3 77 79 70 9774 
1 2 4 77 78 83 9761 
1 3 4 77 70 83 9770 
2 3 4 79 70 83 9769 

STRUCTURE FOR 4 BREED ROTATIONS 

liD IIY IlL liS /IDYLS 

58 59 52 62 9769 

STRUCTURE FOR BACKCROSS 

(1=DUROC, 2=YORK, 3=LAND, 4=SPOT) 
------------------------------------------------

A A B IIA liB IIAxB IIAxAB 
------------------------------------------------

1 1 2 390 271 1285 8213 
1 1 3 395 258 1223 8322 
1 1 4 386 280 1330 8140 
2 1 2 31 204 1321 8444 
2 2 3 403 256 1193 8354 
2 4 2 33 205 1283 8479 
3 1 3 30 183 1254 8533 
3 2 3 30 183 1223 8564 
3 4 3 34 181 1336 8449 
4 1 4 33 214 1370 8383 
4 4 2 421 286 1248 8243 
4 4 3 419 298 1299 8215 
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STRUCTURE FOR 2 BREED STATIC 

(l=DUROC, 2=YORK, 3=LAND, 4=SPOT) 

------------------------------------------
A B IIA liB 1/AxB 

------------------------~-----------------
1 2 192 1733 8076 
1 3 196 1541 8263 
1 4 189 1831 7980 
2 1 195 1705 8100 
2 3 199 1541 8260 
2 4 192 1830 7978 
3 1 174 1709 8117 
3 2 173 1736 8091 
3 4 171 1834 7995 
4 1 206 1703 8091 
4 2 206 1730 8064 
4 3 211 1539 8251 

STRUCTURE FOR 3 BREED STATIC 

(1=DUROC, 2=YORK, 3=LAND, 4=SPOT) 
------------------------------------------------------

c A B /lA fiB /IC /IAxB 1/CxAB 

------------------------------------------------------
1 2 3 29 223 198 1193 8357 
1 4 2 32 268 196 1249 8255 
1 4 3 33 243 195 1301 8227 
2 1 3 29 228 201 1223 8319 
2 1 4 32 305 196 1330 8137 
2 4 3 33 243 198 1301 8225 
3 1 2 31 276 176 1288 8229 
3 1 4 32 306 175 1333 8155 
3 4 2 32 269 177 1252 8270 
4 1 2 30 275 209 1284 8201 
4 1 3 29 228 212 1222 8310 
4 2 3 29 222 213 1192 8345 

STRUCTURE FOR 4 BREED STATIC 

(1=DUROC, 2•YORK, 3=LAND, 4•SPOT) 

-------------------------------------------------------------c D A B #C #D IIA #B #CxD #AxB #CDxAB 

-------------------------------------------------------------
1 2 4 3 4 37 33 242 171 1299 8213 
1 3 4 2 4 30 32 268 162 1250 8255 
1 4 2 3 4 42 29 222 182 1190 8332 
2 3 1 4 4 29 32 305 155 1331 8144 
4 2 1 3 4 36 29 228 168 1222 8313 
4 3 1 2 4 32 30 275 173 1283 8201 
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STRUCTURE FOR TERMINAL SIRE BREED X 2 BREED ROTATION FEMALES 

(1=DUROC, 2=YORK, 3=LAND, 4=SPOT) 
------------------------------------------------------c A B IIC IIA liB IIAB IICxAB 

------------------------------------------------------
1 2 3 199 17 15 1389 8381 
1 2 4 195 19 20 1549 8218 
1 3 4 195 17 20 1558 8210 
2 1 3 201 17 15 1433 8334 
2 1 4 199 18 19 1522 8242 
2 3 4 198 17 20 1558 8208 
3 1 2 177 18 19 1540 8246 
3 1 4 177 18 19 1525 8261 
3 2 4 176 19 20 1552 8234 
4 1 2 210 18 19 1535 8218 
4 1 3 212 17 15 1431 8324 
4 2 3 213 17 15 1387 8368 

STRUCTURE FOR TERMINAL SIRE BREED X 3 BREED ROTATION FEMALES 

(1=DUROC, 2=YORK, 3=LAND, 4=SPOT) 

----------------------------------------------------------------
D A B c liD IIA liB IIC IIABC IIDxABC 

----------------------------------------------------------------
1 2 3 4 197 12 10 12 1452 8316 
2 1 3 4 200 12 10 12 1462 8303 
3 1 2 4 178 12 12 13 1489 8297 
4 1 2 3 213 11 11 10 1402 8353 



VITA ~ 
David Gordon Mclaren 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: GROWTH PERFORMANCE AND CROSSBREEDING SYSTEM EFFICIENCY 
FOR FOUR BREEDS OF SWINE 

Major Field: Animal Breeding 

Minor Field: Statistics 

Biographical: 

Personal Data: Born in London, England, November 24, 1951, the son 
of Donald A. and Mary M. Mclaren. 

Education: Graduated from high school in Erith, Kent, in June 
1970; passed pre-clinical (medicine) qualifying examinations 
(2nd MbChb) at Bristol University, England, in June, 1972; 
received the Higher National Diploma in Agriculture from the 
Welsh Agricultural College, Aberystwyth, Wales, in June, 1980; 
received the Master of Science degree in Animal Science at 
Oklahoma State University in December, 1982; completed 
requirements for the Doctor of Philosophy degree at Oklahoma 
State University in July, 1985. 

Professional Experience: Worked as assistant swine herdsman, 
1975-76; on a beef and sheep farm, 1976-77; and on a dairy 
farm, 1978-79; research and teaching assistant, Department of 
Animal Science, Oklahoma State University, 1980-85; 
instructor, Department of Animal Science, Oklahoma State 
University, fall 1984. 

Professional Organizations: American Society of Animal Science; 
Gamma Sigma Delta; Phi Kappa Phi; Sigma Xi. 




