COMBINATIONAL LOGIC CIRCUITS FOR
WHICH TESTS CAN BE GENERATED
IN N2 TIME

BY

BIJAN KARIMI
W)

Bachelor of Science
Aryamehr University of Technology
Tehran, Iran
1977

Master of Science
Oklahoma State University
Stillwater, Oklahoma
1981

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfiliment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
DECEMBER, 1985

’\’M.Bis
1935 D

KiTSe
Cop- A

COMBINATIONAL LOGIC CIRCUITS FOR
WHICH TESTS CAN BE GENERATED
IN N2 TIME

Thesis Approved:

s B A

4 Thes¥s Adviser
() \SZ\N 4 K\AJ\ﬁ\A/LK%QK\ﬂ/&&

)of/w 0 ﬂrt

S S tie D ALt

Dean of the Graduate College

1(‘“ - (,,7(
Pt

ii

ACKNOWLEDGMENT

I would 1like to thank Dr. Louis Johnson, my advisor, Dr. Rao
Yarlagadda, chairman of my committee, Dr. David Soldan, and John Wolfe
for all the help they gave me.

I dedicate this piece of work to my wonderful wife Taraneh, my

wonderful son Abteen, and the memory of my wonderful father.

Chapter
I.
II.
ITI.

Iv.

V.

TABLE OF CONTENTS

Page
INTRODUCTION..CC...I.....CC....l.'.............,III....I 1
REVIEW OF RELATED LITATURE..eeeeecesescscsseacscsscscnes 5

CLASSIFYING CIRCUIT TOPOLOGIES FOR
EASY TESTING'..........‘..............I....I..I.......... 18

DESIGN FOR TESTABILITY.......................I.........l 69
CONCLUSIONS AND RECOMMENDATION..eeoesesesecssscscscsecses 90

APPENDIXES © 000000 000000000 00000000000000000000000000000000000 93

APPENDIX A - LISTING OF THE TEST GENERATION
PROGRAM...............I.II.......'.I.I..... 94

APPENDIX B - LISTING OF THE PROGRAM WHICH CHANGES
A COMBINATIONAL LOGIC CIRCUIT TO A PIFD
LOGIC CIRCUIT......I..I.....I..I..I....O... 119

APPENDIX C - COMPUTER RESULTS FROM THE TEST

GENERATION PROGRAM FOR
Two EXAMPLES....O...Ol.'................... 128

iv

LIST OF TALBES

Table ' Page

I. The Information Found Using the Algorithm in

Figure 19.l‘.Il‘.0.......'.0.'0".000'...000...0'..00...0 46

LIST OF FIGURES

Figure

15,

16.
17.
18,

Path Sensitization and Line Justification.ceeeceeces cescscose
Example for Controllability and Observabilityeeeeeesees coese
Example for Uncontrollable and Unobservable pointS.ceeececses

Example of Circuits Consisting of NAND Gates
and INVERTER'S.....‘..........0..................l........

BaSiC BUi]ding B]oCk..oooto.oo..o..oo..o!oolcoo..oo..o..ooo;

Example of Circuits Consisting of NAND Gates :
with Added Contro.l Inputs...........Q....................v.

Shift Register LatCheeeeceeececceccoscsscoscoccosscsccoscnss
Typical LSSD LSI ChiPeeecsecsccessoscecscessccscecsccanccnces
SiMPle LOOPSeteseesescccacscccscssosssssassoscscscacssscscsnses
Venn DiagramMeeecescscescscscscescesssccossscscosscscsssscscnse
Example for Lemma l.seceecececascccoscssenccscsscscsscscanes
Exampie for Theorem l..eeeeececcescocscessnssccsssssassssncas

Path Sensitization in Circuits Consisting of
Simp]e Loops ® 0 000000000 OO O OO OO OO OOOONO OO OOOOOSSOSEOEOESPOSON OSSN

Conflict on a Reconvergent Gate because of Feedback
LOOpS and Fanout Orig.inso..............................0..

Line Justification in Circuits Consisting of
s.imp:|e Loops.........l....0...............................

EXamp]e for Theorem 2000..0.......-.-..-.0...00.0.00...0.0.0
A Free Treeootooos000‘......00.....00000000.0.00000.oooo.o..

A Logic Circuit with only one Input.eceececeeccscscecsccconces

vi

Page

10

11
13

14
15
17
20
22
22
25

27

28

30
32
35

Figure

19,
20.

21,
22.
23.

24,
A

26.
27.

28.

29.

30.

31.

32.

33.

34,
35,
36.
37.
38.
39.

A.lgorithm for Theorem 4....'.‘l.......O"..........'...O.'...

Example of Redundant Circuits Consisting of
S‘imp1e LOOpSo0-ooo

A Circuit Consisting of Simple Nested LOODPSceeeecescecnccccs
Topology of Simple Nested LOOPSeeececcsccessoscccesssscscoses

Path Sensitization in Circuits Consisting
Of S‘imp]e NESted LOOpS...Q.........................;.......

Topology of Simple Totaly Nested LOOPS.ececocecscscccscacces

An Example of Circuits Consisting of Simple
TOta]]y NeSted Loops...0.....0......‘.......Q.....Q.'......

An Irredundant Circuit Including a Redundant LoOP.cecececcs.

Conflict in Test Generation for the Loops
with Unconnected Fanout OriginSececcecececccccsccsccccccans

Path Sensitization in Circuits Consisting of
Simp]e Tota‘l1y Nested Loops.........Q.....'.....O..OO....O

Topology of Simple Connected LOOPSecececscecececccsscocsansse

An Example of Circuits Consisting of Simple
ConneCted Loops.QOOQQOQQ..OI..............00........0.....

Conflict if Two Branches of a Fanout Origin
Reconverge on more than one Gat@eeeeecceeccescecsecccncesns

Path Sensitization in Circuits Consisting of
Simple Connected LOOPS.eeeccescssecssacsscsscsccscssccsnnsse

Line Justification in Circuits Consisting of
Simp]e Connected LOOpS'Q.......'.'....0.0'O............'.l

Example of two Reconvergent PathS.cecesecscccscccscacscacses
Conflict because of Inproper use of Test InputS.cececececess
A Circuit with Added Blocking Gates and Test InputS.cececess
Use of Shift Registers for Test GeneratioNececcececccecccses
Saving the Test Vectors inside the ChiPeecececscescscoccscases

Exampie of Gates which can be used as Blocking GateSeeeeeese

vii

Page

40

45
48
49

50
54

55
56

57

59
61

62

63

65

67
71
73
76
77
78

80

Figure
40, Alternatives for B1oCking GateSeeeeescesceccesccsccascsscnss
41, Example of Inputs which can be used as Test InputS.eeececess
42, Example of a Combinational Circuit.eceeeeccecececescecoscnses
43, The Circuit in Figure 42 with Added Blocking

Gates and Test INPUtS.cceeeesecesescsccccscscscscccscccses
44, Timing Results from the Test Generation Program...ccecececess
45, The Plot of the Time for Test Generation Versus

Number of Gates (in Ln-Ln Scale). Circles

Represent the Data from ALU Function

Generator. Crosses Represent the

Data from Arbitrary CirCuitSeeecececescssescsseccscassccse

viii

Page

81
82
85

85
88

89

CHAPTER 1
INTRODUCTION

Digital systems are subject to physical faults during their life
time. With the idincreased complexity of digital systems, with huge
numbers of elements in an IC chip, the problem of testing digital sys-
tems for reliable performance has become more important. 1In general, a
fault in a system can be considered as anything which makes a system to
behave in a different way than for which it was designed. Faults can
occur during manufacture, assembly, storage, or operation. Faults which
alter circuit parameters such as current, vo1tage, or speed are known as
parametric faults. Faults which alter logical behavior of a circuit are
known as 1ogfca1 faults. Since faults can occur in a system at any
time, the system must be tested during its life time.

Testing consists of applying a set of logical values to inputs of a
circuit and observing the output to see if it is different from what was
expected. To test a circuit there must be a fault model to identify the
period of time that the fault will be present, the number of such faults
present at the same time, and the effect of the fault on operation of
the circuit. The most common logical fault model is a single permanent
stuck-at model which assumes a line in the circuit is permanently stuck-
at-logic zero or logic one (this model will be used throughout this

research study).

One way to test a circuit is to apply all possible input combi-
nations and observe the output. This method is not reasonable to apply
for circuits with large numbers of inputs because possible input combi-
nations grow exponentially with increasing numbers of inputs. Then it
is desirable to find a subset of input combinations which detects all
faults in the circuits. In a circuit consisting of N Tines (N includes
primary inputs and outputs, and internal 1lines) there are 2N single
stuck-at-0/1 type faults.

Attention in this research study is focused on combinational cir-
cuits. Basic elements of these kinds of circuits are called gates and
there are no feedbacks or memory elements in combinational circuits.
Different gates under consideration will be AND, OR, NAND, NOR, and
INVERTER. Because of the complex topology (interconnection of Tines)
that combinational circuits may have, there is no known algorithm which
generates tests in polynomial time for an arbitrary cdmbinationa] cir-
cuit. In general, it is accepted that there exist no such algorithms.
With the growing number of gates on a single chip, even high order
(greater than 2) polynomial in time algorithms are notjdesirab]e. Then
it becomes important that a designer designs a~c1rcuit11n such a topo-
logical form for which tests can be generated in N or N2 time.

Redundancy 1is one of the reasons that test generation is time
consuming. A circuit is redundant if one or more lines of it cannot be
tested. Redundancy is an unwanted feature in most designs and a good
design rarely suffers this problem except in fault tolerant systems.
Then if topologies for irredundant circuits can be identified which make
circuits testable in N2 time, a designer may keep circuit topology close

to those identified topologies and save a great deal of time in the test

generation process. It would even be more desirable if a method for
design can be found which makes any circuit testable in N2 time. An
effort has been made in this research to identify the topology of cir-
cuits which’can be tested in N2 time, Also a design method is intro-
duced which makes any circuit (even redundant circuits) testable in N?
time. A program has been written which generates tests for circuits
designed according to the proposed design method.

During test generation for a given fault it 1is possible that a
value assignment on a line be inconsistent with other value assignments
in the circuit. Then that value assignment must be removed and another
choice must be considered. This process is called backtracking. It is
this process which makes the process of test generation exponential in
time because without the need for backtracking, each single stuck type
fault can be detected by at most N value assignments in the circuit. If
there are no reconvergent paths in the circuit then there will be no
need for backtracking. For this reason reconvergent paths are the main
subject of this research., Every two reconvergent paths will be referred
to as a loop.

In this research an attempt has been made to identify relative
positions and properties of the loops for which circuit can be tested in
time proportional to N2. The most general topology which has been
identified with the above proﬁerty in this research consists of recon-
vergent paths which do not reconverge on more than one gate if they
originated from the same fanout origin, and they do not share gates with
other reconvergent paths if there is no path between their fanout ori-
gins. Also it is shown that any circuit can be tested in time propor-

tional to N2 if certain gates and inputs, called blocking gates and

control inputs respectively, are placed in specific locations in the

circuit.

CHAPTER II
REVIEW OF RELATED LITERATURE

The two most widely used methods of test generation for single
permanent stuck at logic values (0/1) are the D-algorithm (Roth, 1966)
and critical path sensitization (Thomas, 1971). These methods use the
path sensitization concept to propagate a fault signal from the sight of
the fault to the output(s) of the circuit under test, where it can be
compared with the expected value in the normal circuit. Since this
concept will be used throughout this research study, it will be reviewed
here, Consider Figure 1 and the fault line "a" stuck at 0 (a s-a-0).
In fact it must be determined if this 1ine can be set to a logic 1. Fo?
this purpose a logic value 1 must be assigned to 1ine "a"., Other Tines
in the circuit must be set to values such that the effect of the value
assignment of line "a" can be seen on the output of the circuit. In
other words the fault signal can be propagated to the output. To
achieve this goal, line 5 must be set to logic 1. If this line is set
to 0, then the output of the gate 14 will be 0 regardless of the value
assignment on line "a". For the similar reason line S must be set to
logic 1. With these value assignments the value of the!output will be 0
if line "a" 1is not stuck at 0 and the value of the outbut will be 1 if
line "a" is stuck at 0. This process is called path sénsitization. To

|
generate a test for this fault (an input vector); 1ogjc values on the

inputs of the circuit must be determined such that they iset the internal

] —

:D———D_

Figure 1. Path Sensitization and Line Justification

Figure 2. Example for Controllability and Observability

lines of the circuit to the desired values found in the path
sensitization process. This is called a justification process. 1In
order to have a 1 on line "a", either line 3 or Tline 4 can be set to
1. To have a 1 on line 8, either tine 6 or line 7 can be set to 1. If
line 6 is selected then either 1line 1 or 1ine 2 (or both) must be set to
0.

It is knoWn that the following fault detection problems:

1. Can all single faults be detected in a combinatioal circuit (is
the circuit irredundant)?

2. Can a fault in a particular input line x; be detected by input-
. output experiments?

3. Can all single input faults be detected by I/0 experiments?

4, Can faults in the output Tine be detected by I/0 experiments?
are NP-complete (Ibarra and Sahni, 1975), i.e. there is a polynomial
time algorithm to decide if the above single faults are detectable if
and only if there is a polynomial time algorithm for problems such as
the traveling salesman problem. Then it seems very unlikely that a
polynomial time algorithm can be found (in terms of the number of
inputs, gates, or 1lines) to detect single faults. In fact, it would
appear that only algrithms with a computing time linear or at most a
square of the number of input lines and gates would be feasible for
large combinational circuits (Ibarra and Sahni, 1975). Even for rela-
tively simple circuits such as monotone and unate circuits these
problems are NP-complete if the numbers of levels in those circuits are
greater than 2 (Fujiwara and Toida, 1982). A circuit 1is said to be
monotone if all the variables appear unnegated in the expression

describing the function of the circuit. A circuit is said to be unate

if all the variables appear either negated or unnegated.

In the processes of path sensitization and line justification, it
is possible that a test generation algorithm has to select a choice
among several choices. Also it is possible that some or all of those
choices lead to conflicting assignments of values to nodes in the cir-
cuits. Then the algorithms has to backtrack and try different choices
until either a test is generated or there is no choice Tleft. This
backtracking is the reason that the time complexity of test generation
algorithms is exponential, because in general an algorithm has to try an
exponential number of value assignment combinations until it finds a
test. Sometimes there is no test for a certain fault. In this case the
circuit is said to be redundant. If a circuit is not redundant then it
is called irredundant (Breuer and Friedman, 1976) or nonredundant. Test
generation for redundant circuits 1is more time consuming because all
possible choices must be tried by the algorithm before it can decide
that no test exists for a certain fault,

A great deal of work has been done to simplify the process of test
generation for Tlogic circuits and several methods of design for test-
ability have been proposed since 1970. There are two key concepts in
design for testability, controllability and observability (Williams and
Parker, 1983). Controllability is the ability to apply test patterns to
internal circuitry by exercising the input pins of that circuitry.
Observability 1is the ability- to determine the idinternal states of a
circuit by observing the output pins. A1l methods of design for test-
ability try to enhance the controllability and observability of a system
by some means. To appreciate the problem consider the simple OR gate in

Figure 2. In order to generate a test for the input fault X1 s-a-0, it

is necessary to control X, and X3 to 0 and X; to 1. Also it is neces-
sary that z can be observed to determine if this fault actually exists
in the circuit. In this case it 1is possible to control the inputs to
the desired values and observe the output. In general it is not always
possible to control a line in a circuit or observe states of a circuit
on the output. For example in Figure 3, line "a" cannot be controlled
to 1 and the effect of any value assignment on "b" cannot be observed
from the output. One way to enhance controllability and observability
of a circuit is to use test points. If a test point is used as a
primary input to the network, then that functions to enhance control-
lability. If a test point is used as a primary output, then that can be
used to enhance the observability of a network. In Figufe 3, if the

test point "c" is added to the circuit then, the va1ue‘on line "b" can
be observed through "c". The use of input test points has been dis-
cussed by Hayes (1974) for circuits consisting of 2-input NAND gates and
inverters. An example of the circuits consisting of NAND gates and
inverters is shown in Figure 4, Hayes has discussed that if a circuit
with a structure 1like this is changed to another circuit according to
the following rules:

1. Every inverter 1is replaced by an EX-OR gate while the other
input of the EX-OR gate is connected to logic 1 for normal operation of
the circuit.

2. Each NAND gate has only two input lines.

3. One EX-OR gate is placed on input lines of each NAND gate if no
inverter 1is preceding that line. The other input of the EX-OR gate is

connected to logic 0 for the normal operation of the circuit.

then the resulting circuit needs only five tests for complete testing of

10

SIULO4 9[QeA43SqOUN pue d|qe}|043Uodun 404 B |dwex]

*¢ 24nbiry

11

saj3en ONYN 40 BuLysisuo) s3t

S Y31YIANI pue
noaL) 40 afdwexy ¢ a4nbi4

12

the circuit single stuck at faults. The basic building block of such
circuits is shown in Figure 5, and the circuit in Figure 4 is shown in
Figure 6 after modifications. The second inputs of the EX-OR gates are
used as control inputs to put desired values for test generation on the
internal lines of the circuit. Drawbacks in this method are that a
circuit must be changed to a circuit with the properties mentioned
before and a great amount of circuitry must be added to the circuit.

Another method of design for testability is partitioning. Goel
(1980) has shown by imperical results that the computer run time to do
test generation 1is approximately proportional to the _number of logic
gates used in a circuit to the power of 3. Then partioning a circuit
into modules which can be tested seperately seems to decrease the time
required for test generation (Williams and Parker, 1983). Drawbacks for
this method are cost, space, and it is in contradiction with the purpose
of integration.

Another method of design for testability, which has received much
attention, is Level Sensitive Scan Design (Berglund, 1978). This method
of design for testability is for sequential circuits but it is important
to be mentioned here because it reduces the complexity of the test
generation to that for combinational circuits. This design methodology
also uses the concept of controlling inputs. The only type of storage
element permitted in this technique is a shift register latch (SRL),
which 1is a pair of D flip-flops, as shown in Figure 7. The output of
the first latch (L) serves as data input to the second latch (L2). Ly
is used as storage element and Lp is used to enhance testing of the
circuit. The D input of L; comes from the output of a Lo and the output

of L, is an input to another Lj. Then all latches in the circuit are

13

yo0lg buip|ing doiseg

*G a4nbi4

—

O

@

14

synduy [043U0) P3PPY Y3LM sarey
ANYN JO BuLlsLsuo) S3LndouaL) jo ajpdwexi g aunbrg

15

yoge 433sLbay 241uS

*/ 24nbL4

|

16

chained together by this scheme. The first Ly in this chain is
connected to an input pin called SDI (Scan Data In) and the output of
the last L, is connected to an output pin called SDO (Scan Data Out).
There are foué input to each L; which have the following functions.
Input D is connected to a L, latch, input A is a clock which is used to
-clock D into Ly, input I is a data line for the use of the designer, and
input C is a clock which clocks data from the I into Li. Input B to Ly
is a clock used to clock the data output from L; into Lz. Figure 8 is
typical to circuits which use LSSD technique. In this figure, if the
output of a combinational circuit is directly connected to a primary
output then that output can be used to detect faults in the combi-
national part, and if the output of the combinational part is input to a
latch then this output signal can be run through the chain of latches
until it reachés the SDO pin. Thus, using this technique reduces the

_complexity of testing to that for combinational circuits.

17

008 = m oo

diyy 1S7 Qss1 LeordAy

*g aanbL{

Lo)ty

£) g §) VO WAL

1) g () WO WA

@ | o)y

tefinding @

Fe====9

[18R @

crsommd o

e B L]

1
leeml) PO §

pmn— PP Y

cmcnap U3

CHAPTER III

CLASSIFYING CIRCUIT TOPOLOGIES
FOR EASY TESTING

In this chapter different topologies for combinational circuits
which make them testable in N2 time and restrictions on these topologies
will be discussed. In chapter IV a simple design method will be
presented so that if a combinational circuit is designed according to
that method, then it will be testable in N2 time. There are some terms
which will be wused throughout this chapter and chapter IV, The
following definitions are needed to understand the meaning of each term,

DEFINITION: A propagation value is a value which must be assigned
to some inputs of a gate in order that fault(s) on other input(s) of
that gate can be propagateﬁ through that gate. This value is "0" for OR
and NOR gates "1" for AND and NAND gates.

DEFINITION: A path in a circuit from a point to an output is sen-
sitized if all inputs to the gates in that path (other than those on the
path) are set to propagation values.

DEFINITION: A point in a circuit is justified for a logic value if
inputs of the circuit have values which generate that logic value on
that point.

DEFINITION: A circuit is redundant if it contains untestable nodes.

DEFINITION: A circuit is totally irredundant if all subcircuits of

that circuit are irredundant, A subcircuit consists of a subset of

18

19

gates in fhe circuit and the inputs to those gates.

DEFINITION: The path sensitization process is the process of sen-
sitizing a single path and finding all the forced values in the circuit
because of the assignment of propagation values on the sensitized path.

DEFINITION: The justification process is the process of assigning
proper values to the inputs of a circuit in order to justify the values
on the outputs of the gates which some values have been assigned to
their outputs during the path sensitization process but the inputs to
those gates have not been forced to propagation values because of the
values on the outputs of those gates.

DEFINITION: A "fanout origin" is a point in a circuit with more
than one Tline exiting from it. Lines which exit from this point are
called "fanout branches" of that fanout origin.

DEFINITION: A "reconvergent gate" is a gate that at Teast two
branches from the same fanout origin have a path to that gate.

DEFINITION: A loop is part of a logic circuit which consists of two
branches of a fanout origin which reconverge on a gate. This includes
the fanout origin, the gates, and the outputs of all gates on the two
branches.

DEFINITION: A "simple loop" is a loop which has no fanout origin on
outputs of gates on any of its branches and does not share any gate with
other loops with different fanout origins or reconvergent gates. Then
loops with the same fanout origin and reconvergent gate can share
gates. Figure 9 shows a circuit consisting of four simple loops. The
four simple Tloops include the following set of points and the gates
between each two points: (E,A,D), (E,A,C), (D,A,C), (G,B,F).

DEFINITION: A point in a circuit is "blocked" for a certain value

20

sdoo a|dwts

‘6 24nb1l4

21

if that value cannot be propagated through gates to primary outputs.

DEFINITION: A conflict occurs during the path sensitization or
justification process if the assignment of a value at some point in the
circuit be inconsistent with previous value assignment(s) in the cir-’
cuit,

DEFINITION: A point which is part of a loop is marked as conflict
for a value if assigning that value to that point forces the input to
the reconvergent gate on the other branch of the loop to a value which
is not a propagation value for that gate.

DEFINITION: A circuit is called "path independent fault detecting"
(pifd) if a fault can be detected through any path from the sight of the
fault to the primary output(s) without facing any conflict.

LEMMA 1: In any Tlogic circuit if "A is true" implies "B is true" then
"complement of B is true" implies "complement of A is true".
PROQF: The proof for this lemma isla direct conclusion from Venn dia-
grams for logic functions. ngure 10 shows this property.

From Lemma 1 it can be concluded that if assigning a value "a" at
some point "A" of a logic circuit forces another point "B" to value "b"
then assigning the complement of "b" to "B" forces the value of "A" to
complement of "a'.
EXAMPLE: In Figure 11 assigning a logic "1" to "A" forces "B" to logic
"0" and assigning logic "1" to "B" forces "A" to logic "0".
THEOREM 1: Consider a circuit with reconvergent fanouts restricted to
simple loops and initially all lines have don't care values. If assign-
ing a value on one branch of a fanout origin forces a value at some

point of another branch of the same fanout origin then this dependency

©

Figure 10. Venn Diagram

Figure 11.

Example for Lemma 1

22

23

can be found in time proportional to N where N is the number of lines in
a circuit,
PROOF: If a value assignment on one branch of a fanout origin forces a
value on the other branch of the same fanout origin, then it must force
the fanout origin to some value which in turn forces the point on the
other branch to some value, The reason that the fanout origin will be
forced to some value is that since initially all lines in the circuit
are set to don't care values then the first value assingment on a branch
of a fanout origin does not have to satisfy any condition with respect
to the other value assignments in the circuit. Then the only way that a
point on the other branch can be forced to some value is by forcing the
fanout origin to some value first and then propagating the effect of
this value on the other branch., Then using Lemma 1, assigning the
complement of the value on the fanout origin forces the point in the
first branch to the complement of the value it has. According to this
conclusion there is a procedure which can find this dependency as fol-
Tows:

1. Put a "0" on a fanout origin and find forced values on branches
of the fanout origin (call them branch one and two).

2. Put a "1" on the fanout origin and find forced values on branches
of the fanout origin,

3. Consider the set of points on branch one which were forced to
- some values 1in step 1. If the complement of values in step 1 are
assigned to any of these points, then by Lemma 1, the fanout origin must
be forced to a "1" which forces the points found in step 2 on the second
branch to the values found in step 2. The same thing is true for branch

2.

24

Since this process needs at most 2N value assignments then this
process can be done in time proportional to N. This process is called
"preprocessing of fanout origins".

EXAMPLE: In Figure 12 assigning a "0" on poiht "H" forces points "A"
and "B" to "0", and points "C" and "D" to "1". Assigning a "1" on point
"H" forces points "E" and "F" to "1", and point "G" to "0". Then
assigning a "O“ on points “C" or "D" or a "1" on points "B" or "A"
forces points "E" and "F" to "1" and point "G" to "0".

NOTE 1: Assume only one reconvergent gate exists for branches of some
fanout origin. If assigning a value on one branch of a fanout origin
which has a path to the reconvergent gate, forces one or more of inputs
of the reconvergent gate on other branches to values which are not
propagation values, then faults on the original point for the complement
of the assigned value cannot be tested through the output of the recon-
vergent gate. This point is marked as a "conflict" for that value.

NOTE 2: Theorem 1 does not indicate that all forced values in a circuit
due to a value assignment can be found in N time because it was assumed
that all lines were initially set to don't cares.

NOTE 3: Theorem 1 can be applied to any circuit topology as long as the
propagation‘of a value assignment on one branch of a fanout origin in
the forward direction does not force a value on the other branch(es) of
the fanout origin. In general the preprocessing of fanout origins can
be used to predict some of the sources of backtracking before starting
the test generation.

THEOREM 2: The process of test generation, which consists of sensiti-
zation and justification of a single path for each fault, for irre-

dundant circuits with reconvergent fanouts restricted to simple loops is

25

| waJo3y| 404 ajdwex]

o
1/a !

"ZL 34nbiy

o/e

o/v

O/H

26

proportional to N2 in time where N is the number of inputs to all the
gates in a circuit (number of 1lines). It is assumed that all the lines
in the circuit have don't care values prior to test generation and the
fault signal on an input of a gate will not be propagated to the output
of that gate until the backward effect of value assignments on all
inputs of the gate 1is found throughout the circuit (the two latter
conditions will be considered for the other theorems as well).

PROOF: Consider Figure 13 which can be part of a larger combinational
circuit. Suppose a test is to be generated for a fault on line A by
propagating the value on A to the output through the gates
G3,..,GR,0UT. First, only the value assignments necessary for sensiti-
zation of the path will be considered. If value assignment on A forces
C to some value Cy then A and C must be on a loop with Gp as recon-
vergent gate. Notice that there are two ways that value assignment on A
can force C to some value without being on a loop with it. The first
one is to force the output of Gp to some value which in turn forces C to
some value. The second one is to force a fanout origin, in the forward
direction, to some value which in turn forces C to some value. If the
first case happens then it means that there is either a feedback from
the output of a gate Gy, to which Gy has a path, to A or the output of
the two gates Gy and Gy are connected together as shown in Figure 14.
It 1is obvious that both connections .are in contradiction with the
definition of (topology of) combinational circuits. For the second case
consider Figure 14, If a value assignment on A.forces F' to some value
which in turn forces C to a nonpropagation value then at least one of
the faults on one of the branches of F is undetectable which is in

contradiction with the assumptions made in this theorem. If Cy is not a

27

—_—]

sdoo7 a|duits jo Bullsisuo)
SILNJL) Ul uollezLlLsuas yjeq

"€l 94nb14

1no

A F/ —_ = GR I~ T T GN
—— GM fr—— — — i — — ——
Figure 14. Conflict on a Reconvergent Gate because of

Feedback Loops and Fanout Origins

8¢

29

propagation value then the fault on A cannot be propagated through Gg.
Since all the loops are simple, then there is no other way for the fault
on A to be detected through, which means fault on A cannot be detected
which is in contradiction with the assumptions made in this theorem,
Notice that inputs 1ike D, which are not part of the loop but are inputs
to the gates on the loop, cannot be set to any value becasue if value
assignment on A forces D to some value then it means that two inputs to
Gy are on a Toop which indicates that two Toops with reconvergent gates
Gq and Gp are sharing gates. Then no conflict can occur because of the
value assignments on inputs like D. If value assignmént on B, or any
line which is set to propagation value on the sensitized path, forces C
to a non-propagation value then Gp is a reconvergent gate for two dif-
ferent loops, one with (A,C,Gp) and the other one with (B,C,Gg). If A
and C are not on a loop but B and C are and C is forced to a
nonpropagation value because of the value assignment on B, then at least
one fault on B cannot be detected. If a propagation value on a line
like B, which is forced to a value in order to satisfy the requirements
for path sensitization, needs the requirments which cannot be satisfied,
for example if B is the output of an AND gate and has the value "1" but
a "1" on one the inputs of this gate forces another input of this gate
to a "0", then there is a redundancy in the circuit (1ine B is stuck at
some value) which is 1in contradiction with the assumptions made in this
theorem, Since no value assignment in path sensitization can create
conflict then there is no need for backtracking.

Now suppose there are two gates G; and G, with some values on their

outputs but the inputs to Gy and G, are not justified for those values,

as shown in Figure 15, Consider one of the inputs to Gy, "A", which is

30

sdoo7] ajdueg jo0
BULJSLSUOY) SILNOAL) UL UOLIBILILISNE BuL] *G| dunbi4

31

to take a value in order to partly (part of the condition for justifying
the value on the output of G;) or completely justify the value on the
output of Gy. Suppose that because of value assignments from A fo a
primary input, a value assignment on a point B forces. the input C of
gate G, to some value Cy. Since both G; and G, have a path to a gate
which is (or its output is) part of the sensitized path, and also there
is a different path from B to C, then it means that they are on a
loop. Since all the loops are simple, again no input ;uCh as D can be
set to a value by value assignment from A to B or there will be two
Toops which are sharing gates. If Cy does not have a correct value to
justify the value on the output of G,, then D can be set to that value
and no value assignment from A to primary inputs can set D to some other
value or Tloop (E,C,B,A,Gp) 1is sharing gates with another loop. The
reason that only a correct value on one input of GZ is enough to justify
the value on the output of G, comes from the fact that the value on the
output of G, does not force all the inputs to G, to propagation values
according to the definition of justification proces§ given at the begin-
ning of this chapter. Then a nonpropagation value on one of the inputs
of G, is enough to justify the value on the output. Then no conflict
can occur during the line justification and there is no need for back-
tracking.

Since both processes of path sensitization and line justification
are conflict free then to detect each fault in the circuit not more than
N value assignments are necessary and since there can be 2N such faults
then the whole process can be done in time proportional to N2,

EXAMPLE: Consider the circuit in Figure 16. To detect faults on "d",

the two other inputs of Gg must be set to logic "1". To justify a "1"

32

2 wau4ody] 40 3|dwex]

"9| 84nb1y

33

on the output of G,, a "1" 1is required on either of the inputs of G,.
Suppose the output of G is selected in this step. Now to justify a “1"
on the output of G; requires logic "1" on "a" and "b". A "1" on “b"
will force the output of G3 to logic "0" which in turn will force the
output of G4 to logic "0" which is a conflic for propagating a fault on
"d" through 65. According to theorem 1, such a circuit must be redun-
dant and at least the fault on the input of G; which-is a branch of "b"
cannot be detected through Gy for the complement value on this Tline,
The value on this input of G; is a "1". To detect a s-a-0 on this line
a "1" must be assigned to "b". Assigning a "1" to "b" forces the output
of G4 to "0" which violates the propagation rules on Gg. Then the fault
s-a-0 on the branch of "b" which is an input to G; cannot be detected
which makes the circuit redundant.
NOTE 1: In Figure 13 since the fault on "F" can be propagated through
both branches, and the type of circuits presented in Theorem 2 éonsist
of only isolated simple loops, then faults on any point of this kind of
circuit can be propagated and detected through any path which includes
that point. Then this type of circuit 1is path independent fault
detecting.
NOTE 2: There is no limit on the number of fanout branches as long as
assumptions made in Theorem 2 hold.
NOTE 3: A circuit with the topology given in Theorem 2 is redundant if
a value assignment on a fanout origin forces one or more of the inputs
of a reconvergent gate to a value other than the propagation value for
that reconvergent gate. This is a direct result from Theorem 2.

Now an upper bound will be found for the number of tests for path

independent fault detecting circuits.

34

LEMMA 2: The number of paths in a combinational circuit with no recon-
vergent fanout from one of the primary inputs to any of the primary
outputs is equal to:

A-B+1

where

A = # of fanout branches on the paths which connect the primary

input to primary outputs

B = # of fanout origins on the paths from primary input to primary

outputs.
PROOF: A circuit as described above can be considered as a free tree
where a free tree 1is defined to be a finite connected graph with no
simple cycle (Standish). The fanout origins and the primary input and
outputs are vertices of the tree and lines connecting vertices are edges
of the tree.

In a free tree we have the relation e=v-1 where "e" is the number
of edges and "v" the number of vertices. In a tree aé shown in Figure
17, the number of paths is equal to the number of primary outputs. The
reason for this 1is that any distinct path (two paths are distinct if
they are different in at Tleast one edge) originated from the primary
input will end with one primary output in a free tree,

If vertices other than primary outputs are called "internal nodes"
then we have:
e= # of paths + # of internal nodes - 1
or
of paths = e - # of internal nodes + 1
but "e" in a combinational circuit is nothing other than the number of

fanout branches and internal nodes are fanout origins. Then we have:

Figure 17.

A Free Tree

35

36

of paths = # of fanout branches - # of fanout origins + 1
or
of paths = A-B + 1

NOTE: In circuits with one primary input and the topology given in
Lemma 2, only two tests are necessary to detect all single stuck at
faults on a given path., Then, the maximum number of tests in these
circuits is as follow:

max # of tests = 2(A - B + 1)

THEOREM 3: The maximum number of tests to detect all single stuck at
faults for path independent fault detecting circuits is as follows:

2(# of fanout branches - # of fanout origins + # of primary inputs)
PROOF: Consider Figure 18 which without dotted lines has no recon-
vergent fanout as required to apply Lemma 2. To detect §11 single stuck
at faults on the dotted sub-path no more than two tésts are needed
because it is enough to select a path which covers this Tline from a
primary input _to a primary output and generate tests for this path,
Since one additional fanout branch is added and two more tests are
needed then the maximum number of tests for circuit in Figure 3.8
including the dotted line is still :

2(# of fanout branches - # of fanout origins + 1)

Now assume we have a circuit with n primary inputs. For the first
input we find all the paths which connect this input to primary out-
puts. For input i>1, we find all paths which connect that input to
primary outputs which have at least one edge that has not appeared in
paths found for primary inputs 1 to i-1., There could be edges on the
paths originating from input i and merging to one of the paths covered

by those for primary inputs 1 to i-1. For each of these edges, which

37

andul auo Aj{uo yitm 3LnduL) 21bo7 y

L

"8l dJnbL4

L]

L]

HiN
L]

= — —

38

are fanouts with paths to input i and are not covered by paths found for
inputs 1 to i-1, we need two tests (the same thing as for' the dotted
line). Then there is no line in the circuit which is not covered and no
path from primary inputs to primary outputs which has all its edges
covered more than one time. Then for the paths found for input i with
fanouts which do not merge in to any path covered by another input we
have the same relation for maximum number of tests as in Figure 18 and
for each fanout merging to another path covered by anotder 1nputvwe need
at most two tests. Then for the paths found for input i and merging
edges on these paths we have:

max # of test(i) = 2(# of fanouts(i) - # of fanout origins(i) + 1)
Adding up "max # of test(i)" for i=1 to n we will have:

max # of tests = 2(# of fanouts - # of fanout origins + # of primary
inputs)

Now the process of test generation for redundant circuits wit
reconvergent fanouts restricted to simple loops will be studied. It
should be kept in mind that because of the properties stated in the
proof of Theorem 2 for the circuits with the same topology, Theorem 1
can be applied to these circuits.

THEOREM 4: The blocking process (determining the blocked points) for
redundant circuits with reconvergent fanouts restricted to simple loops
is proportional to N2 in time.

PROOF: First the preprocessing of fanout oringins presented in Theorem
1 should be applied to all fanout origins of the loops in order to find
all the points in a loop which cannot be tested for some values. For
each point found this way and marked as conflict for a propagation value

consider all the other inputs to the gate that has this point as its

39

input if those inputs are not affected by the assignment of propagation
value on the conflict point. Because this input can be one of the
inputs to the reconvergent gate and some‘of the inputs to the recon-
vergent gate are affected by this value assignment, Conflicts on the
other branch will be found seperately. For each of those inputs travel
backward on all the possible paths and mark all those points as
"blocked" until a fanout origin is faced. If all branches of a fanout
origin are marked as blocked again travel backward and mark those points
as "blocked" until another fanout origin or a primary input is faced.
Using preprocessing of fanout origins, all the outputs of the recon-
vergent gates which are stuck at some value can be identified and their
effects can be propagated thr§ughout the circuit, and using backward
traveling on the inputs of the affected gates the points which are
blocked can be identified (if an input of a gate is stuck at a non-
propagation value then the other inputs are blocked). If all inputs of
a gate are marked as stuck at some value then its output must be marked
as "stuck at value", if it is not already marked, and the effect must be
propagated throughout the circuit and all blocked ?points must be
found. If all inputs of a gate are marked as “conf]i?t" and “"stuck at
value" then the input marked as “conflict" (there is on?y one such input
because loops are simple) must be treated as if 1t'weré a fanout origin
for the loop on which it lies if the output of the gate is not marked as
stuck as a value, and preprocessing of fanout origins must be done for
that input and all blocked points due to this situation must be identi-
fied. Notice that the forced values which are already found do not need

to be found again. Since the preprocessing of all fanout origins

requires time proportional to N2 and the rest of the process does not

MAKE A LIST OF
FANOUT ORIGINS

LIST YES
EMPTY?

NO

TAKE ONE FANOQUT ORIGIN FROM THE LIST
AND DO THE PREPROCESSING FOR THAT.
FIND ALL CONFLICTS AND POINTS WHICH
ARE STUCK AT SOME VALUE.

ANY GATE
WITH ALL INPUTS
STUCK AT SOME
VALUE?

FIND ALL THE OTHER

STUCK AT SOME VALUE

POINTS BECAUSE OF
THIS VALUE ASSIGN-
MENT.

SPECIFY VALUE OF THE OUTPgﬂ

Figure 19. Algorithm for Theorem 4

40

ANY
GATE WITH
ALL INPUTS MARKED
AS CONFLICT OR
STUCK AT SOME,
VALUE?

1S
THE OUTPUT
DETERMINED BECAUSE
OF THAT CONFLICTING
VALUE?

PROPAGATE THE CONFLICTING VALUE
FORWARD AND MARK ALL AFFECTED
LINES AS CONFLICT. FIND GATES
WITH ALL INPUTS MARKED AS CONF-
LICT AND STUCK AT SOME VALUE.

]

l

MARK ALL CONFLICTING POINTS AS
UNTESTABLE FOR THE COMPLEMENT
OF CONFLICTING VALUE.

Figure 19. (Continued)

4]

MARK ALL POINTS WHICH ARE
STUCK AT SOME VALUES AS
UNTESTABLE FOR THAT VALUE.

ANY
CONFLICT
POINT
EFT?

1S THERE ANY
OTHER INPUT TO THE
GATE THAT CONFLICT
PCINT IS ALSO ONE
QF ITS INPUTS?

TAKE ONE OF SUCH INPUTS AND

OMIT IT FROM LIST OF SUCH
INPUTS.

Figure 19. (Continued)

42

TRAVEL BACKWARD FROM THAT POINT AND
MARK ALL THE LINES AS BLOCKED AND
UNSTABLE FOR BOTH O AND 1 UNTIL A

FANOUT ORIGIN OR PRIMARY INPUT IS
FACED.

ALL
BRANCHES OF
THAT FANOUT ORIGIN
MAKKED AS
BLOCKED?

Figure 19. (Continued)

43

44

need marking more than N points as "conflict", "stuck at value", or
"blocked" then this process is proportional to N in time. An algorithm
is given for Theorem 4 in Figure 19.

THEOREM 5: The pfocess of test generation for redundant circits with
reconvergent fanouts restricted to simple loops is proportional to R
time.

PROOF: Using "blocking process" presented in Theorem 4,;a11 paths which
are blocked for certain faults can be found in time préportiona] to N.
In the justification process there will be no conflict because all the
choices for justifying a value on output of a gate which cause conflicts
are already marked and will not be chosen. Since to detect each fault
no more than N value assignments are required and at most for 2N faults
(factor of 2 is for stuck-at-1 and stuck-at-0 faults) tests must be
generated seperately, then the time for the whole process 1is propor-
tional to N2,

EXAMPLE: Figure 20 shows a redundant circuit with reconvergent fanouts
restricted to simple Tloops. Applying the preprocessing of fanout
origins and the blocking process on the circuit in this figure give the
results shown in Table I. As can be seen in this figure, all the points
which are not testable or must not be chosen in the justification

process are marked.

Identifying Reconvergent Gates in Circuits Consisting of Simple Loops:
One of the requirements for making the table in the previous

example 1is to identify reconvergent gates. The following procedure

presents a method by which reconvergent gates can be identified in time

proportional to N2

45

sdoo a|dulg
butysisuo) s3inouat) juepunpay jo ajdwex3y -0z d4nbL4’

1€

113 62

113

144 (114

TABLE 1

THE INFORMATION FOUND USING THE ALGORITHM
IN FIGURE 19

LINE #

STUCK
AT

BLOCKED CONFLICT CONFLICT NOT TESTABLE
FOR FOR VALUE ON RECON. FOR STUCK
GATE AT

OOONO O WN

| I N A I o> B R |

LI T o |

—
o
—
o

—
H Qe HFMHFEO I FPFOF J1e

(e

]
—
OrFe OO OOFO 1

o

—
o
1
—
o

N
~
Qe

[S W U G T S g g)

1l OOe v vw v v v v v v e
ODOO0OODODOLOOOO
nN
w
— e

I 1 1 e v v v o v v v oe

111 O ! 1T o1l 1l O 1 PO PP O PO |
N
~J
OCOO OO OOOO

46

47

For all fanout origins do the following:

Travel on all branches of a fanout origin until a primary output, a
fanout origin, or a reconvergent gate is faced. Mark all gates in
between by the number assigned to the branch which has been traveled.
If a gate which is already marked by another branch is faced, mark that
as a reconvergent gate of those branches on which this gate lies. Stop
the process on that branch and process a new branch.

As can be seen from the above procedure, at most marking N gates is
necessary to identify the reconvergent gate and the corresponding fanout
branches of a simple fanout origin, and a reconvergent gate will be
marked at most N times. Then this process is proportional to 2N for one
fanout origin. Since there are no more than N fanout origins then the
whole process can be done in time proportional to N2,

DEFINITION: A simple nested loop is a simple loop with the excep-
tion that it can share gates with loops with different reconvergent
gates. |

An example of circuits consisting of simple nested Toops is given
in Figure 21. An example of the topology of the loops in such circuits
is given in Figure 22.

THEOREM 6: The process of test generation for irredundant circuits with
reconvergent fanouts restricted to simple nested loops is proportional
to N2 in time,

PROOF: Consider Figure 23 in which the fault on line A is supposed to be
propagated through the path (G,,..., G3,.c., GRyees, OUT). If the value
assignment on A forces E to some value Ey then as it was shown in the

proof of Theorem 2, A and E must be on a loop with Gp as reconvergent

48

sdoo] paisaN 3ajdwis Jo Bullsisuo) 3LnoAL) Y

"Lg @unbLy

49

sdoo] paisaN aduts jo Abolodo]

"22 3unbly

50

sdoo pairsaN alduLs jo
BuLISLSUO) SILNOUL) UL UOLIRZLILSUDS yied °€2 d4nbL4

e Yo] St e, T -

51

gate. If Ey 1is not a propagation value then the fault on A will be
undetectable because there is no fanout origin between G, and Gp which
introduces a different path from A to a primary output. It is true
because reconvergent fanouts are restricted to simple nested loops. If
value assignment on B forces E to a nonpropagation value then at least
one fault on B cannot be detected for the same reason stated for A. The
same reasoning can be used to show that if value assignment on.C or D
forces E to a nonpropagation value then there are undetectable faults on
C or D. Now suppose that value assignment on E (Ey) is inconsistent
with the values on C or D. Then E is on a loop with C or D (or both).
The values Cy and Dy on C and D force E to Ey which is a nonpropagation
value, then at least one fault on C or D cannot be detected because it
cannot be propagated through Gp. The rest of the proof for path
sensitization is the same as stated in Theorem 2. Since no value
assignment can create a conflict during the path sensitization then
there will be no need for backtracking.

For the proof during the justification process, consider Figure
15. Since there are simple nested loops in the circuit, it is possible
because of a value assignment on B that both lines C and D be forced to
propagation values which are inconsistent with the value on the output
of Go. But if that happens then there is at least one fault on B which
cannot be propagated through Gp (notice that the only way that a value
assingment on B and the other Tlines from B to the primary dinputs can
force C and D to some value is through F) and since due to the topology
of the simple nested loops there is no other path for the fault on B to
be detected through, this fault is undetectable which means the circuit

is redundant, which is 1in contradiction with the assumptions made in

52

this theorem. Then there is no need for backtracking in the line just-
ification,

Since there is ho need for backtracking in path sensitization and
line justification then at most N value assignments in the circuit are
necessary to detect a fault. At most there are 2N such faults, then
there is no need for more than 2N value assignment in the circuit which
means the required time for test generation is proportional to NZ.
NOTE: Since the faults on a fanout origin can be propagated and
detected through any branch of that fanout origin then circuits of this
kind are path independent fault detecting.

The next topology of 1loops which will be considered is "simple
totally nested loops."

DEFINITION: Simple totally nested loops are loops with the following
characteristics:

1. They can have fanout origins on their branches providing that the
branches of these fanout origins must reconverge on the gates which have
paths to the reconvergent gate of the loop from which they are origi-
nated,

2. No two loops may share gates if in forward traveling of paths in
the circuit there is no path between their fanout origins.

3. No two branches of a fanout origin may reconverge on more than one
gate.

An example of the above topology is given in Figure 24 and an
example of the circuit consisting of simple totallynested loops is given
in Figure 25,

The conditions in the definition of simple totally nested loops

eliminate the possibility that if a point on a loop cannot be tested

53

through the reconvergent gate of that loop then it may be tested through
another path. Figure 26 shows an example of what may happen if con-
dition 1 is eliminated. In this figure the fault a-s-0 cannot be propa-
gated through "c" but it can be detected through "b" while the circuit
is irredundant. Elimination of condition 2 makes it possible for a gate
which 1is on different loops to be affected by value assignments on
fanout origins of those loops. Although all the loops are irredundant,
those value assignments may cause a conflict to occur on a reconvergent
gate and the test generation process may not be conflict free. An
example of such a situation is given in Figure 27. Suppose "a" must be
justified for value "1" and arbitrary choices have assigned a "1" on
"b", "g", and "c". Then "d" and "e" will be forced to "0" and “1"
respectively for a "1" on "h" and "i". These value assignments put a
"0" on "f" which is a conflict. Note that no value assignment on a
single fanout origin causes a conflict on a reconvergent gate, but to
justify "g" for a "1" a certain combination of value assignments on
fanout origins are required although the whole circuit is totally irre-
dundant, Condition three guarantees that no two branches of a fanout
origin can reconverge on more than one gate because if two branches of a
fanout origin reconverge on more than one gate then it is possible that
not all paths in a circuit can be sensitized even in totally irredundant
circuits as will be discussed later where the definition of simple
totally nested loops will be modified for totally irredundant circuits
with more complex topology.

THEOREM 7: The process of test generation for irredundant circuits

consisting of simple totally nested loops is proportional to NZ in time.

PROOF: Consider Figure 28 and assume that a test is to be generated for

54

sdoo paasau A|e30] a|duis 4o Abojodoj g dunbL4

Figure 25.

= O ‘ !—3_

e
=

e [T ——
T

An Example of Circuits Consisting of Simple
Totally nested Loops

55

56

doo juepunpay
e Bulpn{oul 31NdUL) JuepUNPBUU] uy

"9 94nb4

Figure 27. Conflict in Test Generation for the Loops
with Unconnected Fanout Origins

LS

58

the fault on line A. Suppose that the fault signal is to be propagated
through Gp. If value assignment on A forces C to a nonpropagation
value, then A and C are on a loop as was stated in the proof of Theorem
2. Although there can be fanout origins between A and Gp, according to
the definition of simple totally nested Toops the fault on A must be
propagated through Gp. Then the fault on A will be undetectable which
is in confradiction with the assumptions made in this theorem. If value
assignment on B forces C to a nonpropagation value then B and C are on a
loop and at least one fault on B is undetectable because the fault has
to be propagated through Gp. If value assignment on a line between G
and Gp forces C to nonpropagation value, such as D or E, since it has to
be on a loop with C then at least one fault on that line remains unde-
tectable. This effect is independent of other value assignments during
the path sensitization. For example, if value assignment on B forces
one input to Gy to a propagation value and value assignment on D forces
the other input of G, to a propagation value which forces the output of
Go to a value which in turn forces C to a nonpropagation value, then it
means that there are two loops, (B, Gy, Gg) and (D, Gy, Gg), with uncon-
nected fanout origins which share gates which is 1in contradiction with
the assumptions made in this theorem. Then there is no conflict during
the path sensitization. The proof for line justification is similar to
the one for Theorem 6. Since there is no backtracking in path sensiti-
zation and line justification then only N value assignment is necessary
to generate a test for a given fault which makes the time complexity of
the test generation proportional to NZ,

NOTE: Irredundant circuits consisting of any combination of topologies

discussed so far can be tested in time proportional to N2 because they

|~

Figure 28.

Path Sensitization in Circuits Consisting
of Simple Totally nested Loops

65

60

all share the property that if a value assignment on one branch of a
loop causes a conflict on the reconvergent gate of that loop then that
point is not testable for the complement of the value it has.

If the circuits with the topologies discussed so far are firre-
dundant then it means that each loop in the circuit is irredundant. But
a circuit can be irredundant with some redundant loops as was shown 1in
Figure 26. Now one of the conditions can be omitted from the definition
of simple totallynested loops and still circuit with the topology in the
modified definition can be testable in time proportional to N if all
loop are frredundant. The condition which can be omitted is condition 1
which expands the topology under consideration to circufts of which one
example is given in Figure 29. An example of the topology of circuits
with the above definition is given in Figure 30. Notice that condition
three in the modified definition is necessary because there are circuits
which are totally irredundant but not path-independent fault-detecting
since two branches of a fanout origin reconverge on more than one
gate. An example of this kind of circuits 1is given in Figure 31. In
this figure the fault a-s-0 cannot be detected through the path (G;, G3,
Gg) although the circuit is totally irreduhdant. The class of circuits
recognized by the modified definition of simple totally nested loops is
called "SIMPLE CONNECTED LOOPS".

THEOREM 8: The process of test generation for the circuits consisting
of simple connected loops in which all loops are irredundant is propor-
tional to N2 in time.

PROOF: Consider Figure 32. Suppose that the fault on A is to be propa-
gated through Gy, Gy, G3, and Gp. Suppose that G is forced to a

nonpropagation value at some point during the path sensitization because

61

sdooq] pajoauuo) adwis Jo Abojodol

"62 d4nb L

62

sdoo pajoauuo)
91dwts Jo burlsLsuoly s3Lnhout)y Jo ajdwexs uy

"0€ 24nb14

a
G
i 1 >
Gjy

Figure 31. Conflict if two Branches of a Fanout Origin
Reconverge on More than one Gate

€9

64

of value assignment on some lines such as A,B,..., and E. Then either
value assignment on one of these lines, for example C, has forced G to
the nonpropagation value independent of the other value assignments in
the circuit or value assignments on several or all of lines (A,B,.,F)
have forced G to that value. In the first case if G and C are on a
Toop, then at least one fault is not detectable through Gp which is in
contradiction with the assumption that all loops are irredundant., If C
and G are not on a loop then C has to force a fanout origin to some
value which in turn the value assignment on this fanout origin forces G
to a nonpropagation value. In this case at Tleast one of the faults on
one of the branches of this fanout origin cannot be detected through Gp
which means that there 1is a redundant loop in the circuit. If value
assignments on several points forces G to a nonpropagation value and
those points are on some loops with G, then as it can be seen from
Figure 32, two branches of a fanout origin reconverge on more than one
gate, G4 and Gp, and loops which their fanout origins have no path to
each other are sharing gates, which is in contradiction with the assump-
tions made in this theorem, If all of those value assignments forces
only one fanout origin to some value which in turn forces G to a non-
propagation value, then at least one fault on one of the branches of the
fanout origin cannot be detected through Gp which means there is at
least one redundant Toop in the circuit. If A, B,.., and F are not on a
lToop with G, then either they have to force one fanout origin to some
value which in turn creates a conflict on G or they force several fanout
origins to some value which in turn force the line G to a nonpropagation
value, In the first case there is a redundant loop in the circuit and

in the second case one of the rules for simple connected loops has been

Figure 32. Path Sensitization in Circuits Consisting
of Simple Connected Loops

66

violated. Then there is no need for backtracking in path sensitization.

Now it will be shown that the 1line justification process is also
conflict free. Consider Figure 33 and suppose that the lines A and B
are to be justified for the values that they have. Also assume that the
lines A and B are outputs of the gates Gp and Gg. Then only assigning
nonpropagation values on one of the inputs of Gy and Gg is enough to
justify the values on A and B. Suppose that because of the value
assignment on a point C, for justifying the value on A, all the inputs
to Gg which have don't cares be changed to propagation values. If that
happens then it means that A and B are on a loop because both can be
merged to the sensitized path through some paths. If the value on C
forces the inputs of Gg to some value then it must first forces a fanout
origin(s) to a value which in turn forces the inputs of Gg to some value
(or other fanout origin(s) which forces the inputs of Gp to some
value). If more than one fanbut origins, F; and F,, are forced to some
values then as it can be seen from the Figure 33 the two loops
(A,F1,B,Gg) and (A,F,,B,Gg) which have no path between their fanout
origins are sharing gates which is in contradiction with the assumptions
made in this theorem. Suppose that value assignment on Fy and F; have
forced all the inputs of Gg which have don't cares to propagation
values, If that happens then consider the other input of Gg, D, which
has been assigned a value during the path sensitization or line just-
ification to justify a value on a line E. Then D and E must be on a
loop, as it 1is shown in Figure 33, and the Tloops (B,D,E,GQ) and
(A,F1,B,6)) which have no path between their fanout origins are sharing
gates which 1is 1in contradiction with the assumptions made in this

theorem. Now suppose that during the line justification for point A, a

Figure 33. Line Justification in Circuits Consisting of
Simple Connected Loops

L9

68

value assignment on C forces all the inputs to Gg to propagation values
but because of the value assignment on H, the input I to G. be forced to
a nonpropagation value., If that happens then at Teast one fault on the
branch of Fg which has a path to H is undetectable through G which
means a loop in the circuit is redundant which is in contradiction with
the assumptions made in this theorem. Then there is no conflict during
the line justification. Since only N value assignments are necessary to
generate a test for a given fault and there are no more than 2N such
faults in the circuit, then the required time for test generation is

proportional to NZ.

CHAPTER IV
DESIGN FOR TESTABILITY

Now attention will be focused on circuits.such that two branches of
a fanout origin may reconverge on more than one reconvergent gate, and
loops whose fanout origins have no path to each other may share gates.
Different comments can be made, as design aids, on the topology of these
kinds of circuits such that all paths can be sensitized and no conflict
be faced in the justification process. For example "“loops with uncon-
nected fanout origins must not reconverge on gates which have paths to
each other". But none of these comments seems to be easy to apply when
designing a circuit and will put restrictions on the topology of a
circuit and may not be always applicable. Instead a design method will
be introduced which makes any circuit testable in time proportional to
N2,

It is obvious that there cannot be any inconsistency in value
assignments in the path sensitization and justification process for the
circuits with no reconvergent fanouts providing that any value assign-
ment in the circuit is for the prupose of sensitizing a path or justify-
ing a line. By adding reconvergent fanouts to the circuit, there could
be inconsistency in value assignments when generating tests for the
circuit. Since this inconsistency in value assignments is only because
of the existence of the reconvergent fanouts in the circuit; then any
conflict in value assignments can be transfered to a conflict on a

69

70

reconvergent gate. And that reconvergent gate 1is either part of a
sensitized path or is to be justified for some value on its output.
Then if the value assignments on the inputs of the reconvergent gates in
the circuit can be controlled, any inconsistency in value assignments
can be avoided. If a reconvergent gate is part of a sensitized path
then a value which is not a propagation value for that gate must not
reach the gate. If this géte is to be justified for some value on its
output which forces all its inputs to propagation values then, like the
previous case, no nonpropagation values must reach the gate. If the
inputs of a reconvergent gate must be justified for values which are not
propagation values then not all the inputs of the reconvergent gate must
be forced to propagation values.

To see how the situations mentioned above can be avoided consider
the Toop in Figure 34 and add two gates after Gy; and Gyp according to
the following rules:

1. If Gp is an OR or NOR gate then the two gates must be AND gates.
If GR is an AND or NAND gate then the two gates must be OR gates. Call
these gates "BLOCKING GATES".

2. Each blocking gate has two inputs. One is the output of Gyp or
Gyo and the other input is called the "CONTROL" or "TEST" input. This
input can be treated as a primary input.

By adding the blocking gates to the circuit, no inconsistency in
value assignments can occur during sensitizing a path because the
control inputs can be set to the values needed on the inputs of the
reconvergent gates. The same thing is true for the case that the output
of a reconvergent gate must be justified for a value which needs assign-

ments of propagation values on all the dinputs of that gate. Now

11 Cpp [———— — 7 Gyt
G12 G22 e Cy2
Figure 34. Example of Two Reconvergent Paths

LL

72

consider a reconvergent gate which has a value on its output that needs
at least a nonpropagation value assignment on one of its inputs. Also
assume that all the inputs to this gate are set to propagation values
because of a value assignment on a point "P" (the last value assignment
which set all the inputs of the reconvergent gate with don't care values
to propagation values is important, otherwise there are still choices
available on the inputs 6f the reconvergent gate). Since the value on
the output of this gate has been determined independent of values on its
inputs, then it means that the reconvergent gate itself is on another
Toop with "P" (if it is not true then either the value assignment on the
output of the reconvergent gate or the value assignment on "P" is arbi-
trary and not forced by the requirments for the path sensitization or
justification process). Then this inconsistency or conflict could be
transfered to the reconvergent gate of this new loop where it could have
been avoided by controlling a test input. This suggests that inproper
use of test inputs could cause problems, Notice that adding the block-
ing gates and the test inputs to a circuit guarantee that no conflict
may arise in path sensitization for a certain fault because nonpropa-
gation values can not reach reconvergent gates. But propagation values
may reach reconvergent gates and cause conflicts if test.inputs are not
used properly. An example of such a situation is given in Figure 35.
Suppose "a" is to be tested for s-a-0, then a series of value assign-
ments on b, c, and d (all of them have value "1") forces "a" to "0"
which is a conflict., This situation can be taken care of and tests can
be generated in one of the three fo]1ow1hg ways:

1. Whenever there is a choice between a test input and the other

input of a blocking gate, take the test input. This gives freedom to

73

sinduy 3s3] jo0 asn uadouadutr jo

asnessaq 391 4U09)

"GE dunbLy

\

(

74

the other 1input of a blocking gate to be set to any logic value
(prevents the inproper use of the test inputs).

2. Completely justify a given point for a value until primary inputs
are faced before continuing path sensitization or justifying any other
line. Since no value assignment on fanout origins is able to force the
inputs of the reconvergent gates in the sensitized path to nonpropa-
gation values, then no conflict occurs and test inputs can be set to
appropriate values for the path sensitization or justification
process. This solution has the advantage that there will be no need to
make special use of test inputs when choices occur.

3. Start test generation for the circuit by sensitizing paths begin-
ning at primary inputs and cover all paths in the circuit. The just-
ification process must be finished entirely for a 1line before just-
ification of another line is started. This solution has the advantage
that longer paths will be covered, the number of tests will be reduced,
and there will be no need to make special use of (to keep track of) fest
inputs when choices occur,

Since there 1is no conflict in the path sensitization and 1line
justification process, then no more than N value assignments are neces-
sary to generate a test for a given fault. Since there are no more than
2N stuck at 0/1 faults in the circuit then the time complexity of the
test generation in the worst case will be proportional to N2,

In general test inputs can be treated as primary inputs to the
circuit, but for chips with built-in test facilities they do not have to
appear on the external input pins. This dissue will be discussed
later, The value of a test input is a propagation value for the normal

operation of a circuit.

75

Note that the number of test inputs and blocking gates cannot be
more than N, and consequently, the number of lines in the circuit can
not exceed 2N. The only thing needed to identify places where blocking
gates and test inputs must be p1aced is identifying reconvergent gates
and inputs to that gate which are part of a loop.

The process of identifying reconvergent gates is proportional to N2
in time according to the following procedure:

Take one fanout origin and travel on all paths from that fanout
origin to primary outputs and mark all the gates and gates'
inputs which are traveled. If in this process a gate which has
already been marked is found, mark it as a reconvergent gate.
Also mark the inputs to this gate which are on a loop. Repeat
this for all fanout origins.

Since there are no more than N fanout origins and the above process
for each of them does not need marking more than N gates, then the whole
process can be done in time proportional to NZ. The example 1in Figure
31 is redrawn in Figure 36 with the exception that the blocking gates
and the test inputs are added. When it is worthwhile to have built-in
test facilities a shift register can be used to load desired values for
test inputs when the circuit is under test. In normal operation test
inputs have propagation values, Figure 37 demonstrates this scheme,
For faster testing, the scheme shown in Figure 38 can be used. The ROM
in this figure can be used to save the whole test pattern or only the
values of the test inputs for each test. Notice that the latter scheme
is faster because all the test inputs can be set to desired values at
the same time. In Figure 37 and 38, only one input is added to the pins
of the chip.

It is obvious that a designer of a circuit prefers not to add

blocking gates and test inputs as much as possible. One way to decrease

76

sinduy 3s9]
pue sajeg HuLyd0[g Pappy UILM 1LNOUL] Y

9¢ d4nbi4

PRIMARY ~ COMBINATIONAL
INPUT
UTs - CIRCUIT
TEST
INPUTS
TEST MODE — SHIFT
REGISTER

INPUT

Figure 37. Use of Shift Registers for Test Generation

77

TEST MODE -
INPUT
A ~| PRIMARY
DINY
——— COMEINATIONAL OUTPUTS ROM
: CIRCUIT
INPUTS
N
TEST T
[NPUTS N——] | ADDRESS
{ D COUNTER
0's anp | PROPAGATION VALUES
1's FOR TEST INPUTS

Figure 38. Saving the Test Vectors inside the Chip

78

79

the number of blocking gates is to identify the type of the gate placed
in a loop immediately before the reconvergent gate. If this gate has
the type which‘matches the required gate type for the blocking gate,
then only one extra input need be addéd to that gate as a test input and
there is no need to add an extra blocking gate. An example of this
situation is given in Figure 39. 1In this figure no blocking gates need
to be added after gates 1,2,3, and 4., Only on extra input to each gate
is enough. There are other alternatives for blocking gates that some of
them are shown in Figure 40.

There can be even a more drastic improvement to the design if one
of the gates identified in the previous phragraph has an input which is
not a part of any loop. Then this input can be considered as a test
input and there will be no need to add any extra input to the circuit.
An example of such situation is given in Figure 41. In this figure
lines "A", "B", "C", and "D" can be considered as test inputs because
none of them are on any loop and they can be set to appropriate values
to control the values on the inputs of reconvergent gates. These inputs
are called "FREE INPUTS".

One thing which can be done to halve the number of attempts to
generate tests, and eventually the time required for the test genera-
tion, is to set all the control inputs which are not on the sensitized
path to their nonpropagation values whenever a blocking gate is faced
during the path sensitization process. The reason for this 1is that
control inputs can be either set to nonpropagation values or don't cares
and the value assignment on the sensitized path has no effect neither on
the set of gates which should be considered for justification process

nor on the values on the output of these gates. Then if the program

)
/

I L~ O

Tl
Ly

Figure 39. Example of Gates which can be used as
Blocking Gates

08

81

(R)

D e py
by

o

(B)

:)& >

2V,
<)

(ON]

Figure 40. Alternatives for Blocking Gates

82

sanduj 1s9]
Se pasn aq ued Yyotym sinduy jo aldwex3i |y s4nbL4

83

chooses the same paths to propagate both s-a-0 and s-a-1 faults on a
primary input to the outputs of the circuit (1ike the one written for
this research study), a test for primary input s-a-0/1 is the same for
the fault s-a-1/0 on the same primary input except that the value on
that primary input is complemented.

A program has been written in PASCAL programming language which
generates tests for the circuits with the added blocking gates and test
inputs, or having the same property. This program starts test genera-
tion from the primary inputs and covers all the distinct paths in the
circuit, If a conflict is found during the path sensitization, it will
be flagged out and another choice will be tried. A choice is either a
primary input or a branch of a fanout origin. Since this program gen-
erates tests only for the complete paths from the primary inputs to the
primary outputs, then if a conflict is found in the path sensitization
process, it may be that no tests will be generated for some of the lines
on that path. In the other words there is no guarantee that test will
be generated for all the testable lines in the circuit. In the just-
ification process, all the choices will be considered until either a
test is generated or no test exist for the path. However, any conflict
will be reported. The following information should be provided for each
gate in the circuit for the use of program by a user:

1. Gate number (an integer)

2. Gate type (ANDE, ORE, NAND, NOR, INV, INPUTE OUTPUTE)
3. # of inputs to the gate

4, Fanin numbers (to what gates the inputs are connected)
5. Number of fanout branches

6. To what gate each fanout branch is connected

84

It should be kept in mind that the input to an INPUTE gate is itself and
the output of an OUTPUTE gate is also itself, A listing of this program
is given in appendix A which includes a sample input data in the second
page. The general performance of the program can be described as fol-
lows. A primary input will be considered as the starting point. It
will be tried to find a sensitized path from that input to a primary
output. ~Whenever a value 1is assigned in this process, the effect will
be propagated forward and backward. It means that if a value is assign-
ed to the output of a gate, then it will be determined if any of the
inputs to that gate has to be set to a certain value because of the
value assignment on the output of that gate. This is called the back-
ward propagation. If any of the inputs of that gate is fanout origin
and that input is forced to some value because of the backward propa-
gation of the value on the output of that gate, then effect of that
value assignment on that origin must be found on all the other branches
of that fanout origin. This is called the forward propagation. If
there is no inconsistency in value assignments then the program proceeds
to complete the sensitized path, otherwise a flag will be set and an-
other choice will be considered and all the value assignments due to the
last choice will be erased. After successful completion of the path
sensitization, the gates which have been found during the path sensiti-
zation for the justification process will be processed. If a conflict
is found in this process then the program reports that conflict and
~ tries other choices until either a test is found or no choice is re-
mained.

Figure 42 shows a redundant circuit and Figure 43 shows the same

circuit 1in Figure 42 with the exception that b]ockihg gates and test

85

1LNdUL) |euoLjeuLquo) e jo ajduex3

"2 4nbL4

Figure 43.

The Circuit in Figure 42 with Added Blocking
Gates and Test Inputs

98

87

inputs are added. The results from the test generation program after
running on these two circuits are given in the appendix C. From those
results it can be seen that how the testability of the circuit has been
improved.

In Figure 44 the normalized measured times for the circuits, which
are designed according to the proposed design method, with different
numbers of gates are shown. Figure 45 shows a plot of the data shown in
Figure 44, From this figure it can be seen that the required time for
test generation is growing proportional to N2. In Figure 45, the data
points marked by circles correspond to the different combinations of TI
arithmetic logic unit/function generator, type SN54181, and look-ahead
carry generator, type SN54182, Each circuit was changed Ato a pifd
circuit using the program on appendix B, The data points marked by
crosses correspond to an arbitrary pifd circuit which was duplicated
each time and the outputs of one circuit were used as inputs to some of
the gates of the other circuit to make a larger circuit. Each circuit
was made a pifd circuit using the program in appendix B. One of the
advantages of this method is that a designer can ffee1y design the
desired circuit without considering this design method and after the
design is complete then necessary blocking gates and test inputs can be
added to the circuit., The disadvantage of this design method is the
addition of gates and inputs which sometimes can be very large. One way
to cope with this problem is to identify the reconvergent gates that
most of the conflicts occurs on them and add the blocking gates and test

inputs only to those reconvergent gates.

NUMBER OF GATES

NORMAL [ZED TIME

18
36
78
209
458
875

Figure 44. Timing Results from the Test Generation Program

6.45
46.58
324.65
1153

88

Ln(TEME)

Y=2X

Ln(# OF GATES)

—

Figure 45. The Plot of the Time for Test Generation

Versus Number of Gates (In Ln-Ln Scale).

Circles Represent the Data from ALU
Funcation Generator. Crosses Represent
the Date from Arbitrary Circuits.

89

CHAPTER V
CONCLUSIONS AND RECOMMENDATION

In the last two chapters, several circuit topologies have been
identified for which tests can be generated in N2 time. The concept of
preprocessing of fanout origins has been introduced which for a certain
type of circuit make the behavior of a circuit completely conflict free
regarding the test generation process. The path-independent fault-
detecting (pifd) circuits have been dintroduced for which tests can be
generated in N2 time. Also an upper bound has been found for the number
of tests for such circuits. A simple design method has been proposed
which can change any arbitrary combinational circuit to a pifd
circuit. Also it has been shown that the required time for the test
generation will be halved if a circuit is designed according to the
proposed design method. It has been shown that by using some of the
properties of a circuit, it is possible to reduce the number of gates
and inputs which must be added to the circuit. Also it has been shown
that it is possible to have only one extra input to a chip for all the
added gates and inputs to the circuit.

Experimental results show that the number of gates and inputs added
to a circuit using the the proposed design method can be excessive.
Further research is needed to extract the properties of pifd circuits
which may be used to improve the proposed design method. Also there may

be other circuit topologies which are testable in N2 time for which

90

91

further research is needed to identify such topologies. The preproces-
sing of fanout origins seems to be a powerful tool for predicting the
behavior of the circuits regarding the test generation process. In this
research, this process was used only for a simple topology for the loops
but actually for many of the other circuit topologies this process is
applicable. Further research is needed to identify the further appli-

cation of this process.

92

REFERENCES

Berglund, N.C. "Processor Development in The LSI Environment.," IBM
System/38 Technical Development, Dec. 1978.

Breuer, M,A., and Friedman A.D. Diagnosis and Reliable Design Systems.
New York: Computer Science Press, Inc., 1976,

Fujiware Hideo., and Toida Shunichi. "The Complexity of Fault Detection
Problems." IEEE Trans. on computers, Vol. C-31, No. 6 (1982), pp 555-
559,

Goel, P, "Test Generation Costs Analysis and Projections." presented at
the 17th Design Automation Conf., Minniapolis, MN, 1980.

Hayes, P. John. "On Modifying Logic Networks to Improve Their Diagnos-
ability." IEEE Trans. on computers, Vol. C-23, No. 1 (1974), pp 56-62.

Ibarra, H. Oscar., and Sahni, K. Sataj. "Pollynomially Complete Fault
Detection Problems for Combinational Logic Circuits." IEEE Trans. on
computers, Vol, C-24, No. 3 (1975), pp 242-249.

Roth, J. Paul, "Diagnosis of Automate Failure: A Calculus and a
Method." IBM Journal of Research & Development, 10 (1966), pp 278-281.

Standish, A. Thomas. Data Structure Techniques. Addison-Wesely Publish-
ing Company, Inc., 1980.

Thomas, J.J. "Automatic Diagnostic Test Program for Digital Networks."
Computer Design (1971), pp 63-67.

Williams, W. Thomas. and Parker, P. Kenneth. "Design for Testability-A
Survey." Proc. IEEE, Vol, 71, No. 1, Jan, 1983, pp 98-112,

Williams, W. Thomas. and Parker, P. Kenneth, "Testing Logic Networks and
Designing for Testability." Computer, Oct. 1979, pp 9-18.

APPENDIXES

93

APPENDIX A

LISTING OF THE TEST GENERATION PROGRAM

94

TEST.PAS:2 4-JUN-1985 14:17 Page 1
PROGRAM TESTLOGICCIRCUIT(INPUT,OUTPUT, INFILE,QUTFILE);

{*THE PURPOSE OF THIS PROGRAM IS TO GENERATE TESTS FOR LOGIC
CIRCUITS IN WHICH NO BACK-TRACKING IS NEEDED NEITHER IN PATH
SENSITIZATION NOR IN JUSTIFICATION PROCESSES.THIS PROGRAM
GENERATES TESTS ONLY FOR COMBINATIONAL CIRCUITS. THIS PROGRAM
STARTS GENERATING TESTS FROM PRIMARY INPUTS,.BUT IT WILL COVER ALL
THE DISTINCT PATHS IN THE CIRCUIT.IF A CONFLICT IS FOUND DURING
THE PATH SENSITIZATION IT FLAGS OUT THAT CONFLICT AND TRIES
ANOTHER CHOICE.IN THE JUSTIFICATION PROCESS ALL THE CHOICES WILL
BE CONSILDERED UNTIL A TEST IS GENERATED.HOWEVER.ANY CONFLICT WILL
BE REPORTED.THIS PROGRAM DOES NOT GENERATE TESTS FOR THE REMAINIG
NETS WHICH HAVE NOT BEEN TESTED EVEN THERE EXIST TESTS FOR
THEM.THE WAY THAT CHOICES ARE MADE IN PATH SENSITIZATION IS AS
FOLLOWING.THE FIRST CHOICES ARE PRIMARY INPUTS. WHENEVER A FANOUT
QRIGIN [S FACED,DEPENDING ON THE NUMBER OF INPUTS TO THE GATE

WHICH HAS THAT FANOUT ORIGIN ON ITS OUTPUT OR NUMBER OF FANOUT
BRANCHES WHICH HAVE NOT BEEN TESTED YET,ONE OR MORE BRACHES OF THE
FANOUT ORIGIN WILL BE ADDED TO THE CHOICES.FOR EXAMPLE CONSIDER
THE FOLLOWING GATE WITH 2 INPUTS AND THE FANOUT ORIGIN WITH 3
BRANCHES.IF.LINE 1 IS UNDER TEST AND LINE 2 HAS NOT BEENTED TESTED
BEFORE, THEN THE TWO OF BRANCHES WILL BE CONSIDERED AS CHOICES FOR
LINE 1 AND THE THIRD BRANCH WILL BE CONSIDERED WHEN LINE 2 IS
GOING TO BE TESTED.

9]
5,

THEN FOR THE FIRST TIME IF THE NUMBER OF FANOUT BRANCHES ARE MORE
THAN THE NIMBER OF INPUTS TO THE GATE,#0F FANOUT BRANCHES-#0OF
INFUTS+1 OF FANOUT BRANCHES WILL BE CONSIDERED FOR ONE OF THE
INPITS AND EACH OF THE REMAINING INPUTS WILL TAKE ONE OF THE
REMAINIG FANOUT BRANCHES WHICH HAS NOT BEEN TESTED BEFORE.
WHENEVER AN INPUT TO A SATE IS CONSIDERED FOR PATH :
3ENSITIZATION,FIRST THE OTHER INFUTS WILL BE SET TO PROPAGATION
ALUES ONE AT A TIME AND THE EFFECT OF THIS VALUE ASSIGNMENT WILL
BE FAUND FORWARD AND BACKWARD IN THE CIRCUIT.IF NO CONFLIGT IS
FACED THEN THE ERROR 3SIGNAL WILL BE FROPAGATED TO THE OUTEUTOF THE
FATE AND THE PROCESZ CONTINUES,OTHERWISE ALL THE VALUE ASSIGNMENTS
3INCE THE LAST THOICE WILL BE ERASED AND ANOTHER CHOICE WILL BE
TONSIDERED.AT THE END USER WILL BE PROVIDED WITH THE FOLLOWING
INFORMATION.

1.TESTS GENERATED. :

2.CRITICAL VALUES AND NON~CRITICALVALUES OF ALL INTENAL LINES OF
THE CIRCUIT FOR EACH TEST.

3.ALL THE CONFLICTS FACED DURING THE PATH SENSITIZATION AND THE
JUSTIFICATION PROCESS.

4.LIST OF THE INCOMLETE TESTS.

S.LIST OF LINES THAT NG TESTS HAVE BEEN SENERATED FOR THEM.

e b b e b b 2 § bbb e b b e e e b
FHER HEFFHHF

INPYUT FORMAT:
IR EACH GATE IN THE CIRCUIT THE FOLLOWING INFORMATION MUST BE

FROVIDED B8Y THE USER TO THE PROGRAM:

1.LINE WUMBEER

L.>aTE TYFE: ANDZ, ORE, HAND . JOR, INV .. INFUTE, JUTFUTE,

" TR T T TG T T TR TR TG TG G TR TR T TR T T T TR TR TIPS TINT R
HHH R AR AT AR AR AR AR AR TR RS

95

96

TEST.PAS;2 4-JUN-1985 14:17 _ Page 2

3.#0F INFUTS

4.TO WHAT GATE EACH INFUT IS CONNECTED
S.#0F FANOUT BRANCHES

».TO WHAT GATE EACH FANOUT BRACH FANS IN

EXAMPLE:
3 ANDE 2 8 9 4 10 15 25 30
8 INFUTE 1 8 2 7 27
14 OUTPUTE 1 12 1 14

IN THE INFUT FILE TWO OTHER ITEMS MUST ALSO APPEAR BEFORE ANYTHING
ELSE.THE FIEST ONE IS NAME OF THE CIRCUIT AND THE SECOND ONE THE
NIMBER OF GATES IN THE CIRCUIT,WHICH MUST BE AN INTEGER. THE
FROGRAM WILL PROMPT A MESSAGE ASKING FOR THE NAME OF THE INPUT
FILE.
HAEHHHAHHLFHBAERBAHBRERFHHAHHERHEFHEFHURF R AR EF B AR BB R AR H B H R HH SR B USRS F RS
OUTFUT:
THE OUTFUT INCLULCES ALL THE INFORMATION MENTIONED ABOVE,AND THE
NAME OF OUTPUT FILE IS 'OUTFILE’.
HERHHBH B R BB H B HEHHAH B R R B AR HASF R HEHRBEERBHE R B SR H RS S HHR S B H S B SR H B S SH S
DATA STRUCTUERE:
TEST® ARRAY:
FOR EACH GATE IN THE INPUT FILE A RECORD IS DEFINED WHICH KEEPS
ALL THE INFCEMATION PROVIDED BY THE USER AND OTHER INFORMATION
FROVIDED BY THE PROGRAM WHEN EXECUTED. THESE INFORMATION CONSIST OF
THE VALUE ON THE OQUTPUT OF EACH GATE,THE VALUE(S) THAT THAT OUTPUT
HAS BEEN TESTED FOR,AND THE STATWUS OF THE VALUE ON THE OUTPFUT OF THE
GATE(WHETHER OR NOT THAT VALUE IS A CRITICAL VALUE) FOR A
FARTICULAR TEST.AN ARRAY OF THIS RECORD TYPE KEEPS SUCH INFORMATION
ON ALL THE GATES IN THE CIRCUIT.THIS ARRAY IS CALLED 'TEST'.

"WLIST® ARRAY:

AN IMPORTANT ARRAY USED BY THIS PROGRAM IS
"WLIST(WAITINGLIST) .AT THE BEGINNING IT CONTAINS INPUTE-GATES IN A
TODED FORM(INFUTE#*MAX3+INFUT#) .THE REASON FOR ENCODING THE INPUTE
GATES IS COMPATIBILITY WITH THE OTHER INFORMATION WHICH WILL BE
ADDED TO THE WLIST® ENCODED IN THE SAME FORM.AS THE PROGRAM FACES
DIFFERENT CHOICES IN THE PATH SENSITIZATION,IT WILL ADD THEM TO THE
"WLIST'.IF A PATH HAS BEEN SENSITIZED SUCCESSFULLY THEN THE
JUSTIFICATION FROCESS START.THE SAME 'WLIST' ARRAY WILL BE USED TO
KEEF TRACK OF THE CHOICES ENCOUNTERED IN THIS PROCESS,AND THE
FROGRAM REMEMBER WHERE IT LEFT THE PATH SENSITIZATION PROCESS.THE
POINTER TO THE 'WLIST' ARRAY WILL BE RESTORED WHEN THE
JUSTIFICATION PROCESS IS FINISHED. THE POINTER TO THIS ARRAY IS
CALLED 'FWLIST'.

CONST MAX1=10;
MAXZ=100;
MAX3=1000;

TYPE GTYPE=(ANDE,ORE,NAND,NOR, INPUTE,QUTPUTE, INV) ;

CIRCUITDES=
RECORD
GATETYPE :GTYPE;
GATENUM :1..MAX2;

VAR

S;2 4-JUN-1985 14:17 Fage 3
NGINPUTS :1..MAX]1;
INFUTS :ARRAY[1..MAX1] OF INTEGER:
INVALUE :ARRAY[L1. .MAX1] OF INTEGER;
FANOUTNUM :1..MAX1;
FANOUTS :ARRAYC1l..MAX1] OF INTEGER:;

OUTVALUE : INTEGER;
CRITICAL :ARRAY[1..MAX1] OF INTEGER; (*0&1
FOR CRITICAL 0&1.2 FOR BOTH#*)

TEMPCV :ARRAY[L1..MAX13 OF INTEGER;
END;
TEST :ARRAYC1..MAX2] OF CIRCUITLDES;
WLIST :ARRAYC1. .MAX2] OF INTEGER: (*KEEPS TRACK OF LINES

WAITING TO BE USED IN PATH SENSITIZATION OR
JUSTIFICATION PROCESS.*!

FWLIST : INTEGER; (*POINTER TO WLIST*)

ADAR :ARRAYC1. .MAXZ] OF INTEGER; (*#THIS ARRAY KEEPS THE
STARTING ADDRESS OF THE SET OF LINES
ON 'ASAR' FOR EACH ENTRY OF 'WLIST'.=*)

ADJADAR :ARRAYC1. .MAX2] OF INTEGEK;

ASAF :ARRAYL1. .MAXZ] OF INTEGER; (*KEEPS TRACK OF THE
LINES THAT SOME VALUES ARE ASSIGNED TO THEM.*)

FASAR : INTEGER; (*POINTER TO ASAR*)

MCRITVAL + INTEGER ;

CRITVAL : INTEGER ;

I1,J1,K1 : INTEGER;

FLAGP : INTEGER ; (*THIS FLAG IS SET TO '1‘ IF THERE IS A
CONFLICT.*)

NOOFNODES :INTEGER;

FARRAY :ARRAYC1. .MAX2JOF INTEGER; (*KEEPS THE LIST OF
FANOUTS TO BE IMPLEMENTED FOR FORWARD
PROCEDURE. *) '

FPOINTER : INTEGER ; (*POINTER TO FARRAY*)

ADJUST :ARRAYL1l..MAX2]OF INTEGER;(*KEEPS TRACK OF THE

NODES WITH THE VALUE OF THE OUTPUTS SPECIFIED
BUT THE -INPUTS ARE NOT JUSTIFIED FOR THAT
VALUE. *)

FADJUST : INTEGER ; { *<POINTER TO ADJUST ARRAY.*)

INPUTLIST :ARRAY[1l..MAX2] OF INTEGER;

INPTTCOUNT :INTEGER:;

GUT : INTEGER ;
IUT : INTEGER;
FLAGC : INTEGER;
TADAR +ARKAYL1. .MAX2] OF INTEGER;(*FOR EACHENTRY OF THE

WLIST KEEFS POINTER TO "CGATES® ARRAY WHERE THE
CRITICAL GATES ADDED TO 'CGATES' ARRAY AFTER THAT

ENTRY MUST BE ERASED WHEN THAT ENTRY OF THE ‘WLIST'

IS GOING TO BE PROCESSED.*)

CGATES :ARKAYL1..MAXZ] OF INTEGER; (*KEEPS TRACK OF
CRITICAL GATES.*)

"VALUES :ARRAY[1..MAX2] OF INTEGER; (*KEEPS THE QUTPUT
VALUE OF CGATES.*)

FCGATES : INTEGER; (*POINTER TO ‘CGATES’' ARRAY.*)

TEMPCRITVAL : INTEGER:;

NAME :PACKED ARRAY[1..401 OF CHAR;

PCOUNT : INTEGER ; (*KEEPS TRACK OF TEST-NUMBER IN
PRINTTEST PROCEDURE. *)

INFILE : TEXT

v we

OUTFILE TEXT

97

98

TEST.FAS;? 4-JUN-1985 14:17 Fage ¢

FROCEDURE STATUS;
VAR PS,FS:INTEGER;

BEGIN
FOR PS:=1 TO NOOFNODES DO
BEGIN ’
WrRITELN('TESTLC' ,PS:2,'1.0UTVALUE' ,TESTCPS].QUTVALUE:2);
FOR FS:=1 TO TESTCPSJ].NOINPUTS DO
BEGIN
WRITELN(TESTC' ,PS:2,’'J.INVALUEL’ ,FS:2,'1=",
TESTCPS]. INVALUELFS]:2, ' ----",
'TESTC’ ,PS:2,'3.TEMPCVL’ ,FS:2,'1=",
TESTCPS]1.TEMPCVLFS]:2, ' ----',
‘TESTC' ,PS:2,'J.CRITICALL' ,FS:2, '1=",
TESTLPS].CRITICALLFS]:2);
END;
END;
FOR PS:=1 TO FWLIST DO
WRITELN('WLISTC',PS:2,’'J=',WLISTCPS]:6, ----', ADARL',PS:2,'1=’

,ADARCPS]:2);
FOR FS:=1 TO FASAR DO
WRITELN(FS:2, ' =-==-- ‘,"ASARC’ ,FS:2,']J="' ,ASARCFS]:6);
END; .

FROCEDURE INITIALIZE;

VAR CIRCUITNAME:PACKED ARRAYC1..40] OF CHAR;

I,J.,K : INTEGER;
BEGIN
FWLIST:=0;
FASAR:=0;
FADJUST:=0;
FTGATES:=0;
FCOUNT:=0;

READ(INFILE,CIRCUITNAME) ;
WRITELN(OQUTFILE,CIRCUITNAME) ;
READ(INFILE,NOOFNGDES) ;
FOR K:=1 TO NOOFNODES DO
BEGIN
READ(INFILE,I);
TESTCIJ].GATENUM:=I;
READ(INFILE,TESTCI].GATETYPE,TESTCI].NOINPUTS) ;
IF(TESTCLIJ].GATETYPE=INPUTE)THEN
BEGIN
FWLIST:=FWLIST+1;
WLISTCFWLIST]:=I4AMAX3+1;
INPUTLISTCFWLIST]:=14MAX3+I;
WRITELN('WL=',WLISTCFWLISTI) ;
END;
FOR J:=1 TO TESTCLIJ.NOINPUTS DO
READ(INFILE,TESTCIJ.INPUTSCJ]) ;
READ(INFILE,TESTCIJ].FANOUTNUM) ;
FOR J:=1 TO TESTCIJ.FANOUTNUM DO
READ(INFILE,TESTLIJ].FANOUTSLCJD) ;
END;

INPUTCOUNT : =FWLIST;
FOR J:=1 TO NOOFNODES DO

TEST.FAS:2 4-JUN-1985 14:17

BEGIN
FOR K:=1 TO MAX1 DO
BEGIN
TESTLJ].CRITICALLCK]:=-1;
TESTCJ].TEMPCVLK]:=-1;
TESTLJJ.INVALUELK]:=-1

END;
TESTCJ].OUTVALUE:=-1

. END;
FOR J:=1 TO FWLIST DO
BEGIN
ADARCJI]:=1;

ADJADARCJ]:=0;
CADARCJ]:=0;
END;
END;

(+*THE FOLLOWING PROCEDURE ADDS ONE ELEMENT TO 'ASAR’ ARRAY AND
ASSIGNS THE DESIRED VALUE TO THAT LINE. GATENUMBER=X,GATEINPUT=Y*)

FROCEDURE ADDGNETGASAR (VAR '
GATENUMBER , GATEINFUT , FLAGCORKECT : INTEGER) ;
VAR JAA :INTEGER:

BEGIN
JAA:=1;
WRITELN('GATENUMBER=' ,GATENUMBER: 3,

’ ", 'GATEINPUT="' ,GATEINPUT:3);

WHILE(TESTLGATENUMBER]. INPUTSCJAAJI<>GATEINPUT)DO
JAA:=JAA+1;

TESTCLGATENUMBER]. INVALUELJAA]: =TESTLGATEINFUT]. OUTVALUE;

FASAR:=FASAR+1;

ASARLCFASAR]: =FLAGCORRECT* (GATENUMBER*MAX3+GATEINPUT) ;

FROCEDURE MAINFORWARD(VAR GATENO, INPUTNUM:INTEGER) ; FORWARD;
PROCEDURE BACKWARD(VAR BGUT, BVALUE:INTEGER) ; FORWARD;

{ *THE FOLLOWING PROCEDURE CHECKS THE VALUE ASSIGNMENT ON THE INPUT
OF A GATE (FCGATE=X) TO SEE IF IT IS COMPATIBLE WITH THE OUTPUT
VALUE OF THAT GATE WHICH IS NOT A PROPAGATION VALUE. THIS
FROCEDURE IS CALLED FROM THE 'FIRSTFORWARD’ PROCEDURE.
FCGATE=X,FCINPUT=Y,FCINVAL=0 FOR AND & NAND,1 FOR OR & NOR.*)

FROCEDURE FORWARDCORRECTION(VAR FCGATE,FCINPUT,FCINVAL:INTEGER) ;
VAR JFC,COUNTF ,KFC:INTEGER;

BEGIN
FLAGF:=0;
JFC:=1;
WHILE((TESTCFCGATE]. INVALUECJFCI1<>FCINVAL)AND
{ JFC(TESTLFCGATE].NOINFUTS))DO

JFC:=JFC+1;
IF(TESTCFCGATE]. INVALUELJFCI< >FCINVAL)THEN
BEGIN
COUNTF:=0;

FOR JFC:=1 TO TESTCFCGATE].NOINPUTS DO
IF(TESTLFCGATE]. INVALUELJFCJ=-1) THEN
COUNTF : =COUNTF+1;

Fage

99

TEST.PAS;2

4-JUN-1985 14:17 Page 6

IF(COUNTF=1)THEN(ATHIS CASE MAY
NEVERK OCCURES.JUST FOR INSURANCE*)
BEGIN
IF (TESTCFCINPUT].OUTVALUE
=FCINVAL)THEN
BEGIN
KFC:=-1;
ADDONETOASAR (FCGATE,
FCINPUT,KFC) ;
END

E
FLAGP:=1;

END
ELSE(*IF COUNTF>=1%)
BEGIN
IF (COUNTF=2)THEN
BEGIN
IF(TESTCFCINPUT].OUTVALUE=
FCINVAL)THEN
BEGIN
KFC:=-1;
ADDONETOASAR (FCGATE,

FCINPUT,KFC) ;

END
ELSE
BEGIN
KFC:=-1;

100

ADDONETOASAR (FCGATE,
FCINPUT,KFC) ;

JFC:=1;
WHILE(TESTLFCGATE]

. INVALUELJFC1<>-1)DO

JFC:=JFC+1;

TESTLTESTLFCGATE]. INPUTS
CJFC1].0UTVALUE: =FCINVAL;

KFC:=-1;

ADDONETOASAR (FCGATE,

TESTLFCGATE].
INPUTSLJFC],KFC) ;

FOR KFC:=1 TO TESTLTEST
CFCGATE]. INPUTSLJFCI1]

.FANOUTNUM DO

IF(TESTCTESTCFCGATE]
. INPUTSCJFCI1.
FANOUTSLKFCI<>

FCGATE) THEN

MAINFORWARD(TESTCFCGATE]. INPUTSLJFC]. TESTLTESTLFCGATE].

INPUTSCLJFCJ].FANOUTSLKFC) ;

BACKWARD(TESTLFCGATEJ . INFUTSCJFC],FCINVAL) ;

END; (*OF ELSE*)
END(*OF COUNTF=2*)
ELSE(*COUNTF > 2*)
BEGIN
KFC:=-1;
ADDONETOASAR (FCGATE,

FCINPUT,KFC) ;

END;
END; (*OF IF COUTF>1%)

101

TEST.FAS:2 4-JUN-1985 14:17 Fage 7

KFC:=-1;
ADDONETOASAR(FCGATE,FCINPUT,KFC) ;
END;
END; (*END OF FORWARDCORRECTIONX)

(*THE FOLLOWING PROCEDURE CHECKS THE VALUE ASSIGNMENT ON ONE INPUT
OF A GATE - TC SEE IF IT IS COMPATIBLE WITH THE OUTPUT VALUE OF THAT
GATE WICH HAS BEEN ALREADY ASSIGNED AND IT IS A PROPAGATION
VALUE. *)

FROCEDURE FIRSTFORWARDCORRECTION(VAR
FFCGATE,FFCINPUT,FFCINVAL: INTEGER) ;

VAR KFFC:INTEGEKR;

BEGIN
IF((TESTCFFCGATE].GATETYPE=ANDE)
OR(TESTCFFCGATE].GATETYPE=0RE)) THEN
BEGIN
IF(TESTCFFCGATE].OUTVALUE=1-FFCINVAL)THEN
BEGIN
IF(TESTLFFCINPUT]. OUTVALUE=FFCINVAL) THEN
FLAGF:=1
ELSE
BEGIN
KFFC:=-1;
ADDONETOASAR(FFCGATE,FFCINPUT ,KFFC) ;
END;
END
ELSE
FORWARDCORRECTION(FFCGATE, FFCINPUT,FFCINVAL) ;
END
ELSE(*NAND&NOR*)
BEGIN
IF(TESTLFFCGATE]. OUTVALUE=FFCINVAL) THEN
BEGIN
IF(TESTCFFCINPUT] . OUTVALUE=FFCINVAL)THEN
FLAGFP:=1
ELSE
BEGIN
KFFC:=-1;
ADDONETOASAR (FFCGATE ,FFCINPUT,KFFC) ;
END;
END
ELSE
FORWARDCORRECTION(FFCGATE,FFCINPUT,FFCINVAL) ;
END;
END; (*END OF FIRSTFORWARDCORRECTION*)

{~THE FUUNCTION OF THE FOLLOWING PROCEDURE IS AS FOLLOWS:

IF OUTFUT OF GATE Y IS INPUT TG GATE X; THEN ACCORDING TO VALUES
ON ¥ AND OTHER INPUTS TO X; THE VALUE ON THE OUTPUT OF THE GATE X
WILL BE DETERMINED AND THE LINE CONNECTING Y TO X WILL BE KEPT ON
ARRAY 'ASAKR'. WHEN THIS ENTRY OF 'ASAR’ IS TO BE REMOVED; THEN IF
THE OUTPUT OF X WAS FORCED TO SOME VALUE BECAUSE OF THE VALUE
ASSIGNMENT ON THE LINE CONNECTING X TO Y; THE VALUE ON THE OUTPUT OF
THE X SHOULD BE ERASED AS WELL AS THE VALUE ON THE LINE CONNECTING
X AND Y. ONLY THE VALUE ON THE LINE CONNECTING X TO Y MUST BE
ERASED OTHERWISE. VARIABLE FLAGR IS SET TO 1 AND -1 TO INDICATE

TEST.PAS:2

4-JUN-1585 14:17 Page

WHETHER THE OUTPUT OF X IS FORCED TO SOME VALUE BY THE VALUE
ASSIGNMENT ON THE LINE CONNECTING Y TO X(THE OUTPUT OF Y). ENTRIES
"ASAR’ ARRAY HAVE THE FOLLOWING FORM: (X*MAX3+Y). FGATENO=X,
FGATEINPUT=Y*)

PROCEDURE FORWARD(VAR FGATENO,FGATEINPUT:INTEGER) ;

J,INVAL,FLAGR : INTEGER;

BEGIN

IF((TESTCFGATENO].OUTVALUE<>~-1)AND
(TESTCFGATENOJ].GATETYPE(>OUTPUTE)) THEN
BEGIN
IF (¢ TESTCLFGATENC].GATETYPE=ANDE)OR
(TESTCFGATENOJ.GATETYPE=NAND)) THEN
INVAL:=0
ELSE
INVAL:=1;
FIRSTFORWARDCORRECTION()
FGATENO, FGATEINPUT, INVAL) ;
END
ELSE(*TESTLFGATENOJ].OUTVALUE=-1x%)
BEGIN) ‘
IF(TESTLFGATENOJ].GATETYPE=0UTPUTE) THEN
BEGIN
TESTLFGATENO].OQUTVALUE: =
TESTLFGATEINPUT].OUTVALUE;
TESTLFGATENO]. INVALUEL1]:=
TESTCFGATEINPUT].OUTVALUE;
FASAR:=FASAR+1;
ASARCFASAR]: =FGATENO*MAX3+FGATEINPUT;
END;
IF(TESTCFGATEINPUT].OUTVALUE=0)THEN
BEGIN
IF(TESTCFGATENO].GATETYPE=ANDE) THEN
BEGIN '
TESTCFGATENCJ].OUTVALUE:=0;
J:=1;
WHILE(TESTLFGATENOJ]. INPUTSCJI1<>
FGATEINPUT) DO
J:=J+1;
TESTCFGATENOJ]. INVALUECLJ]:=0;
FASAR:=FASAR+1;

102

ASARLCFASAR]: =FGATENOAMAX3+FGATEINPUT;

END;
IF((TESTCFGATENOJ].GATETYPE=NAND) OR
(TESTCFGATENOJ].GATETYPE=INV)) THEN
BEGIN
TESTCFGATENO].OUTVALUE:=1;
J:=1;
WHILE(TESTCFGATENGI. INPUTSLJI<)>
FGATEINPUT)DO
J:=J+1;
TESTCFGATENOJ]. INVALUELJ]:=0;
FASAR:=FASAR+1;

ASARLCFASARI]: =FGATENO*MAX3+FGATEINPUT;

END;
IF((TESTCFGATENO].GATETYPE=0RE)OR
(TESTLFGATENO].GATETYPE=NOR)) THEN
BEGIN

T=ST.PAS:2

103

4-JUN-1985 14:17 Fage 9
FLAGR:=1;
J:=1;

WHILE(TESTLFGATENO]. INPUTSCJI¢>
FGATEINPUT)DO
J:=J+1;

TESTLFGATENOJ. INVALUELJ]:=0;

FOR J:=1 TO TESTLFGATENOJ].NOINPUTS DO

BEGIN
IF(TESTCFGATENOJ]. INVALUELJ]
¢>0)THEN
FLAGR:=-1;
END;

IF(FLAGR=1)THEN
IF(TESTLFGATENOJ].GATETYPE=NOR) THEN
TESTCFGATENO].QUTIVALUE: =1
ELSE
TESTLFGATENG].OUTVALUE:=0;
FASAR:=FASAR+1;
ASARCFASAR]:= :
FLAGR* (FGATENO*MAX3+FGATEINPUT) ;

END;
END;
IF(TESTCFGATEINPUT]. OUTVALUE=1)THEN
BEGIN
IF(TESTLFGATENO].GATETYPE=0RE) THEN
BEGIN
TESTCFGATENOJ].OUTVALUE:=1;
J:=1;
WHILE(TESTCFGATENC]. INPUTSLJ3]
¢ >FGATEINPUT) DO
J:=J+1;
TESTCFGATENO]. INVALUELJ]:=1;
FASAR:=FASAR+1;
ASARCFASAR]: =FGATENG*MAX3+FGATEINPUT;
END;

IF((TESTCLFGATENO].GATETYPE=NOR)OR
(TESTCFGATENO].GATETYPE=INV)) THEN
BEGIN
TESTCFGATENOJ].QUTVALUE:=0;
J:=1;
WHILE(TESTCFGATENO]. INPUTSLJI<>
FGATEINPUT) DO
J:=J+1;
TESTCFGATENO]. INVALUELJ]:=1;
FASAR:=FASAR+1;
ASARCFASAR]: =FGATENOAMAX3+FGATEINPUT
END;
IF ((TESTLFGATENOJ].GATETYPE=ANDE) OR
(TESTLFGATENOC].GATETYPE=NAND)) THEN
BEGIN
FLAGR:=1;
J:=1;
WHILE(TESTCFGATENO]. INPUTSLJJ<>
FGATEINPUT) DO
J:=J+1;
TESTLFGATENOJ]. INVALUELJ]:=1;
FOR J:=1 TO TESTLFGATENOJ1.NOINPUTS DO
BEGIN
IF(TESTCFGATENOJ]. INVALUELJ]
¢>1)THEN

104

TEST.FAS;2 4-JUN-1985 14:17 Fage 10

FLAGR:=-1
END;
IF(FLAGR=1)THEN
IF(TESTCFGATENOJ].GATETYPE=ANDE) THEN
TESTLFGATENOJ].OUTVALUE: =1
ELSE
TESTLFGATENO].OUTVALUE:=0;
FASAR:=FASAR+1;
ASARCFASAR]:=
({ FGATENOAMAX3+FGATEINPUT) *FLAGR ;

END;
END;
END; (*END QF FORWARD*)

(*THE FUJCTION OF THE FOLOOWING PROCEDURE IS TC TAKE THE VALUE ON ONE
BRANCH OF A FANOUT ORIGIN AND PROPAGATE IT FORWARD AS FAR AS
FOSSIBLE. ENTRIES OF THE 'FARRAY HAVE THE FOLLOWING

FORMAT : (INFUTNUMAMAX3+GATENO) *)

PROCEDURE MAINFORWARD; (AINPUTNUM=X,GATENQ=Y*)
VAR X,Y,FLAG,J : INTEGER;

BEGIN

FPOINTER:=0;

FPOINTER : =FPOINTER+1;

FARRAYLFPOINTER]: =INPUTNUMAMAX3+GATENO ;

WHILE(FPOINTER>0)DO

BEGIN

X:=TRUNC(FARRAYLFPOINTER1/MAX3) ;
Y:=FARRAYLFPOINTERJ-X#MAX3;

(% WrITELN('X:=' ,X:2,'Y:=',Y:2);%)
. FPOINTER: =FPCINTER-1;
FLAG:=0;
IF(TESTLX].0UTVALUE=-1)THEN
FLAG:=1;
FORWARD(X,Y) ;]
IF((FLAG=1)AND(TESTLX].0UTVALUE(>~-1))THEN
BEGIN

IF ¢ X<>TESTLX]1.FANOUTSC11)THEN
(*IF ¥ IS NOT AN OUTPUT*)
FOR J:=1 TO TESTLXJ1.FANOUTNUM DO
BEGIN
FPQINTER: =FPOINTER+1;
FARRAYLFPOINTER]: =
TESTLXJ.FANOUTSCJI*MAX3+X;
END;
END;
END;
END; (xEND OF MAINFORWARD*)

(~THE FOLLOWING PROCEDURE "BACKWARD" IS A RECURSIVE PROCEDURE WHICH
TAKES A GATE AND FINDS THE EFFECT OF THE VALUE ASSIGNMENT ON THE
OUTPUT OF THAT GATE BACKWARD AS FAR AS POSSIBLE. WHEN A FANOUT
ORIGIN IS FACED THE EFFECT WILL BE FOUND FORWARD ON THE BRANCHES

105

TEST.PAS;:2 4-JUN-198° 14.17 Fage 11

OF THAT FANOUT ORIGIN. IF A VALUE ASSIGNMENT ON THE OUTPUT OF A
GATE CANNOT BE PROPAGATED BACKWARD ANYMORE.THEN THAT GATE WILL BE
ADDED TG ADJUSTMENT ARRAY FOR JUSTIFICATION PROCESS.*)

PROCEDURE BACKWARD; (*BGUT:A GATE NUMBER,BVALUE:VALUE OF OUTPUT OF
BGUT*)

VAR JB,JJB,AVAL,BCOUNT + INTEGER ;

BEGIN :
IF(TESTCLBGUT].GATETYPE=INPUTE) THEN
BEGIN
TESTCBGUT]. INVALUEL1]:=BVALUE;
FASAR:=FASAR+1;
ASARCFASARJ: =BGUTAMAX3+BGUT;
END
ELSE(4ATESTLBGUT].GATETYPE(> INPUTE*)
BEGIN
IF(BVALUE=0) THEN
BEGIN
IF((TESTCBGUT].GATETYPE=0RE)OR
(TESTCBGUT].GATETYFE=NAND)OR
(TESTCBGUT].GATETYPE=INV)) THEN
BEGIN
FOR JB:=1 TO
TESTCBGUT1.NOINPUTS DO
BEGIN
IF(TESTCBGUT].
INVALUELJB3=-1)THEN
BEGIN
IF(TESTLBGUT].
GATETYPE=0RE) THEN
BEGIN
TESTLRGUT].
INVALUELJB]:=0;
AVAL:=0;
TESTLTESTLBGUT].
INPUTSCJBI].
OUTVALUE:=0;
FASAR:=FASAR+1;
ASARLCFASAR]: =
BGUT*MAX3+
TESTCBGUT].
INPUTSCJB];
END;
IF((TESTLCBGUT].
GATETYPE=NAND) OR
(TESTCBGUT].
GATETYFE=INV)) THEN
BEGIN
TESTLCBGUT].
INVALUELJBl:=1;
TESTCTESTLBGUT].
INPUTSCJBI].
OUTVALUE:=1;
AVAL:=1;
FASAR:=FASAR+1;
ASARCFASAR]: =
BGUTAMAX3+

106

TEST.FAS-2 4-JUN-1985 14:17 Fage 12

TESTCBGUT].
INPUTSCJBI];
END;
FOR JJB:=1 TO TESTLTESTLBGUT].INPUTSCJB1].FANOUTNUM DO
IF FLAGP=0- THEN
IF(TESTLTESTCBGUT]. INPUTSCLJIB1]1.FANOUTSCJJB1()>BGUT) THEN
MAINFORWARD(TESTCBGUT]. INPUTSCJB], TESTCTESTLBGUT].
INPUTSCJIBI].FANOUTSCJJB]) ;
IF FLAGP=0 THEN
BACKWARD(TESTLBGUT]. INPUTSLJB] ,AVAL) ;
END;
END;
END

ELSE(#BVALUE=0 AND TESTCBGUTJ.GATETYPE=NOR,ANDE*)
BEGIN
BCOUNT:=0;
FOR JB:=1 TO TESTLBGUTJ.NOINPUTS DO
BEGIN
IF(TESTCBGUT1. INVALUELJBI<>~1)THEN
BCOUNT : =BCOUNT+1;
END;
IF((TESTLBGUT1.NOINPUTS-BCOUNT) < >1)THEN
(~ANOT ALL INPUTS OF 'BGUT’' CAN BE
SPECIFIED NOW.THEN ADD IT TO THE
ADJUSTMENT ARRY FOR JUSTIFICATION
PROCESS. *)

BEGIN
FADJUST : =FADJUST+1;
ADJUSTCFADJUST] :=BGUT; (AADD ONE
GATE TO ADJUSTMENT ARRAY*)
FASAR:=FASAR+1;
ASARLCFASAR]:=BGUT; (#PUT ONLY
THE GATE NUMBER OF BGUT
IN 'ASAR’ ARRAY TO INDICATE
THAT ONLY THE VALUE ASSIGNMENT
ON THE OUTPUT °‘'BGUT’' MUST BE
ERASED WHEN 'ERASE’' PROCEDURE
IS CALLED.*)
END
ELSE
BEGIN
JB:=1;
WRITELN(' BGUT=',BGUT:3);
WHILE(TESTLCBGUT]. INVALUELJB]

¢>»-1)D0
BEGIN
JB:=JB+1;
WRITELN(' 'BACKWARDJB=',JB:2);
END;
IF(TESTLBGUT].GATETYPE=ANDE) THEN
BEGIN

TESTCBGUT]. INVALUELJIB]:=0;

AVAL:=0;

TESTLTESTLBGUT]. INPUTSCJB]1].
OUTVALUE:=0;

FASAR:=FASAR+1;
ASARCFASAR] : =BGUT*
MAX3+TESTCBGUT]. INPUTSLJB];

107

TEST.FAS;?2 4-JUN-1985 14:17 Page 13

END
ELSE
BEGIN
TESTLBGUTJ]. INVALUELJB]:=1;
AVAL:=1;
TESTLTESTCBGUT]. INPUTSCJB]].
OUTVALUE:=1;
FASAR :=FASAR+1;
ASARLCFASAR] : =BGUT*MAX3+
TESTCBGUT]. INPUTSCJB];
END;
FOR JJB:=1 TO TESTLTESTCLBGUT1.
INPUTSCJIB]1.FANOUTNUM DO
IF FLAGP=0 THEN
IF(TESTCTESTCBGUT]. INPUTSCJB1].

FANOUTSCJJBI<>BGUT) THEN
MAINFORWARD (TESTLBGUT]. INFUTSLJB],
TESTCTESTCBGUT]. INPUTSCJB1].FANCGUTSCJJBI) ;
IF FLAGP=0 THEN
BACKWARD(TESTLBGUT]. INPUTSLJB],AVAL) ;

’

END;

IF(BVALUE=1)THEN
BEGIN
IF((TESTLBGUT].GATETYPE=ANDE)OR
(TESTCBGUT].GATETYPE=NOR)OR
(TESTCBGUT].GATETYPE=INV)) THEN
BEGIN
FOR JB:=1 TO TESTCBGUT].
NOINFUTS DO
BEGIN
IF(TESTCBGUT].
INVALUELJBJ=-1)THEN
BEGIN
IF(TESTCBGUTI.
GATETYPE=ANDE) THEN
BEGIN
TESTCBGUT].
INVALUELJB]:=1;
AVAL:=1;
TESTLTESTCBGUT].
INPUTSCJBI].
OUTVALUE:=1;
FASAR:=FASAR+1;
ASARLCFASAR]: =
BGUT*MAX3+
TESTLBGUT].
INPUTSCJB];
END:;
IF ((TESTCBGUT].GATETYPE
=NOR)OR(TESTLBGUT].
GATETYPE=INV))THEN
BEGIN
TESTLBGUT].
INVALUELJB]:=0;
TESTLTESTCBGUT].

108

TEST.FAS;2 4-JUN-1985 14:17 Fage 14

INPUTSCJBI].
QUTVALUE:=0;
AVAL:=0;
FASAR:=FASAR+1;
ASARCFASAR]: =
BGUTAMAX3+
TESTCBGUT].
INPUTSCJR];
END;
FOR JJB:=1 TO TESTLTESTLBGUTI1.INPUTSCJBI].FANOUTINUM DO
IF FLAGP=0 THEN
IF(TESTCTESTLBGUT1. INPUTSCLJBI].FANOUTSLJJIB1<(>BGUT) THEN
MAINFORWARD(TESTCBGUTI]. INPUTSLJIB], TESTLTESTLBGUT].
INPUTSCJIBI1.FANOUTSLJJB]) ;
IF FLAGP=0 THEN
BACKWARD(TESTCBGUT]. INPUTSCJIB1,AVAL) ;

END;
END;
END
ELSE (#BGUT IS 'OR’ GATE OR ‘NAND' GATE*)
BEGIN
. BCOUNT:=0;
. FOR JB:=1 TO TESTCBGUTJ].NOINPUTS DO
: BEGIN
IF(TESTCBGUT]. INVALUELJB1<>-1)THEN
BCOUNT : =BCOUNT+1;
END;
IF(TESTCBGUT].NOINPUTS-BCOUNT< >1)THEN
BEGIN
FADJUST:=FADJUST+1:;
ADJUSTLFADJUST]: =BGUT;
FASAR:=FASAR+1;
ASARCFASAR]:=BGUT;
END
ELSE
BEGIN
JB:=1;
WHILE(TESTLBGUT]. INVALUELJB1<(>-1)DO
JB:=JB+1;
IF (TESTCLBGUT].GATETYPE=0RE) THEN
BEGIN
TESTCBGUT]. INVALUECJB1:=1;
AVAL:=1;
TESTLTESTLBGUT]. INPUTSCJB]].
OUTVALUE:=1;

FASAR:=FASAR+1;
ASARLCFASAR]: =BGUTAMAX3+
TESTCBGUTI. INPUTSLJBI;

END
ELSE
BEGIN
TESTCLBGUT]. INVALUELJB]:=0;
AVAL:=0;
TESTLTESTLBGUT].

INPUTSCJBJ]1.0UTVALUE:=0;
FASAR:=FASAR+1;
ASARCFASAR] : =BGUTAMAX3+

TESTCBGUT]. INPUTSLJIB];

END;

TEST.PAS;2 4-JUN-1985 14:17 Page 15

FOR JJB:=1 TO TESTLTESTCBGUTI.
INPUTSCJB1].FANOUTNUM DO
IF FLAGP=0 THEN
IF(TESTCTESTCBGUT]. INPUTSCJB]].
FANOUTSCJJB1<>BGUT) THEN
MAINFORWARD(TESTL BGUT]. INPUTSLJR],
TESTLTESTCBGUT]. INPUTSCLJB1]1.FANOUTSCLJJB]) ;
: IF FLAGP=0 THEN
BACKWARD (TESTCBGUT1. INPUTSCJB] ,AVAL) ;
END;
END;
END;
END;

END;
END; (*END OF BACKWARD*)

“(*THE FUNCTION CF THE FOLLOWINGPROCEDURE IS AS FOLLOWS: SUPPOSE THAT
THE OUTPUT OF THE GATE Y=GUTC IS CONNECTED TO THE INPUT OF THE GATE
X=IUTC. THIS PROCEDURE PUTS PROPAGATION VALUES ON THE INPUTS OF X
OTHER THAN THE ONE CONNECTED TO Y. AND FINDS THE EFFECT OF THESE
VALUE ASSIGNMENTS FORWARD AND BACKWARD. IF NO CONFLICT IS FOUND THEN
VALUE ON THE OUTPUT OF X WILL BE DETERMINED AND GATE X WILL BE ADDED
TO THE CRITICAL GATE ARRAY(CGATES). THE CORRESPONDING CRITICAL
VALUE WILL BE KEPT ON 'CVALUES' ARRAY. THE INPUT OF THE X CONNECTED
TO Y WILL BE MARKED AS CRITICAL FOR THE VALUE ON THE OUTPUT OF
Y(CRITICAL VALUE) IN THE CORRESPONDING FIELD IN THE RECORD OF EACH
GATE. *)

PROCEDURE CRITICALPATH(VAR GUTC,IUTC,CVALC:INTEGER);
VAR JCP,KCP :INTEGER;

BEGIN
WRITELN('CRITICALPATH ENTERY');
FLAGF:=0;
IF(TESTCIUTC].0UTVALUE(>-1)THEN
BEGIN
FLAGP:=1; (~ATHIS PATH CANNOT BE SESITIZED.*)
WRITELN('FLAGF=' ,FLAGP:1, ' ‘,'TESTC’ ,IUTC:1, '1.0UTVALUE=",
TESTCIUTC].OUTVALUE: 1) ;

ELSE
BEGIN
IF(TESTLIUTC].GATETYPE=INV)THEN
BEGIN
TESTCIUTC]. INVALUEL1]:=CVALC;
TESTLIUTC].0UTVALUE: =1-CVALC;
TESTLIUTC].TEMPCVE11:=CVALC;
FCGATES : =FCGATES+1;
CGATESCFCGATES]:=IUTC;
CVALUESLFCGATES]:=1-CVALC;
FASAR:=FASAR+1;
ASARCFASAR]: =IUTCAMAX3+TESTLIUTC]. INPUTSE1];
CRITVAL:=1-CVALC;
END
ELSE
BEGIN
JCP:=1;

109

110

TEST.FAS:2 4-JUN-1985 14:17 Page 16
WHILE((JCP¢(=TESTLIUTC].NGINPUTS)AND(FLAGP=0))D0
BEGIN
IF(TESTLIUTCI. INPUTSCJCPI<>GUTC) THEN

BEGIN
WRITELN('El1");
IF((TESTLIUTC].GATETYPE=
ANDE)OR(TESTLIUTC].
GATETYPE=NAND)) THEN
BEGIN
WRITELN('E2');
IF(TESTLTESTLIUTC].
INPUTSCJCP]].
OUTVALUE=0)THEN
FLAGP:=1
ELSE
BEGIN
WRITELN('E3');
IF(TESTLTESTLIUTC]. INPUTSLJCP]1].O0UTVALUE=~1)THEN
BEGIN
WRITELN('E4’);
FASAR: =FASAR+1;
ASARCFASAR]:=-(IUTCAMAX3+TESTLIUTC]. INPUTSCJCP]) ;
TESTCIUTC]. INVALUELJCF]:=1;
TESTLTESTCIUTC]. INFUTSCJCPI]1.0UTVALUE:=1;
FOR KCP:=1 T0O TESTLTESTLIUTCJ.INPUTSCJCP]1].FANOUTNUM DO
TFTESTCTESTCIUTC]. INFUTSCJIJCPI11.FANOUTSCKCP1< > IUTC) THEN
MAINFORWARD(TESTCIUTC]. INPUTSCJCP],
TESTCTESTCIUTC]. INPUTSCJIJCP1]1.FANOUTSCKCP]) ;
KCP:=1;
IF FLAGP=0 THEN
BACKWARD(TESTLIUTCJ]. INPUTSCJCP],KCP) ;
END;
JCP:=JCP+1;
END; ’

END
ELSE(*IF(TESTLIUTC].GATETYPE=0RE
OR NOR)THEN*)
BEGIN
IF(TESTCTESTLIUTC]
. INPUTSCJCP]].
OUTVALUE=1)THEN
FLAGP:=1
ELSE
BEGIN
IF(TESTCTESTLIUTC]. INPUTSCLJCPJ1].0UTVALUE=-1)THEN
BEGIN
FASAR:=FASAR+1;
ASARCFASAR]:=-(IUTCAMAX3+TESTLIUTC]. INPUTSCJICPI) ;
TESTCIUTC]. INVALUELJCP]:=0;
TESTCLTESTCLIUTCI. INPUTSLJICP11.0UTVALUE:=0;
FOR KCP:=1 TO TESTLTESTLIUTCI].INPUTSCJCP1].FANOUTNUM DO
IF(TESTCLTESTLIUTCJ. INPUTSLJICP1].FANOUTSLKCP1< > IUTC)THEN
MAINFCRWARD(TESTCIUTCI]. INPUTSLJICP],
TESTLTESTLIUTC]. INFUTSLJCP1]1.FANOUTSLKCP]) ;
KCP:=0; :
IF FLAGP=0 THEN
BACKWARD(TESTLIUTC]. INPUTSCJCP],KCP);

END;
JCP:=JCP+1;
'END;

TEST.FAS;2 4-JUN-1385 14:17 Page 17

END
ELSE
JCP:=JCP+1;
END;
IF(FLAGP=0) THEN
BEGIN
IF((TESTCIUTC].GATETYPE=ANDE)OR(TESTCIUTC].GATETYPE=0RE)) THEN
BEGIN
CRITVAL:=CVALC;
TESTLIUTC].QUTVALUE: =CVALC;
FCGATES : =FCCATES+1;
CGATESCFCGATES]1:=IUTC;
CVALUESCFCGATES]:=CVALC;
: END;
IF((TESTLIUTCI.GATETYPE=NAND)OR(TESTLIUTC].GATETYPE=NOR)) THEN
BEGIN

TESTLIUTC].0UTVALUE:=1-CVALC;
CRITVAL:=1-CVALC;
FCGATES : =FCGATES+1;
CGATESLFCGATES]1:=1IUTC;
CVALUESLFCGATES]:=1-CVALC;
END;
FASAR:=FASAR~+1;
ASARLCFASAR]:=TUTCAMAX3+GUTC;

JCP:=1;
WHILE(TESTCIUTCI. INPUTSCLJICPI<>GUTC)DO
JCP:=JCP+1;

TESTLIUTC]. INVALUELJCP]:=CVALC;
TESTCLIUTC].TEMPCVLJICP]:=CVALC;
END;
END;
END;
END; (*END OF CRITICALPATH*)

FEOCEDURE EFASE;

VAR CHECKFLAG,JE,M,N,Q,WLISTEMPTY:INTEGER;

BEGIN
f* STATUS;*)
IFtFWLIST=0)THEN(*THIS OCCURES WHEN NO TEST EXIST FOR LAST
ENTRY OF WLIST.*)
BEGIN
WLISTEMPTY:=1;
FWLIST:=1;
ADARCFWLIST]):=1;
ADJADARLCFWLIST1:=0;
CADARCFWLIST]:=0;

END;
FOR JE:=ADARCFWLIST] TO FASAR DO
BEGIN

IF((ASARCJEJC(MAX3)AND(ASARCJE]>0))THEN
BEGIN
TESTLASARCJE]].OUTVALUE:=-1
END

ELSE

BEGIN

CHECKFLAG:=1;
IF(ASARCJEJ<0)THEN
CHECKFLAG:=-1;

TEST.FAS;2 4-JUN-1985 14:17 Fage 18

M:=TRUNC((CHECKFLAGAASARLJE]) /MAX3) ;
N:=CHECKFLAGAASARCJEJ]-MAMAX3;
Q:=1;
WHILE(TESTCM]. INPUTSCQI<>N)DO
Q:=0+1;
TESTCM]. INVALUECQ]:=-1;
IF(CHECKFLAG=1)THEN
BEGIN
TESTCM]1.TEMPCVLQJ:=-1;
TESTCM].0QUTVALUE:=-1;
END;
END;
END;

FASAR : =ADARCFWLIST1-1;

FADJUST : =ADJADARCFWLISTI];

FCGATES : =CADARLFWLISTI];

IF WLISTEMPTY=1 THEN

FWLIST:=0;
WLISTEMPTY:=0;
END: (*END OF 'ERASE’*)

FROCEDURE PRINTTEST;FORWARD;
FROCEDURE ADJUSMENT; (~#CALLED FROM PROCEDURE TESTGENERATION*)

LABEL 100;
VAR ADJFASAR,ADJFWLIST,ADJUSTVALUE,TEMPGATE, TEMPINPUT
»MAINADJVALUE,ADJGATE, JADJ : INTEGER;

REGIN
(> ADJFASAR:=FASAR;*)
ADJFWLIST:=FWLIST;
FLAGF:=0;
WHILE((FADJUST>0)AND(FLAGP=0))D0 (*WHILE NOT ALL GATES
WAITING FOR JUSTIFICATION ARE PROCESSED DO*)
BEGIN

ADJGATE: =ADJUSTLFADJUST];

FADJUST: =FADJUST-1;

IF((TESTLADJGATE].GATETYPE=ANDE) OR
(TESTCADJGATE].GATETYPE=NAND)) THEN
ADJUSTVALUE:=0

ELSE

ADJUSTVALUE:=1;
MAINADJVALUE:=ADJUSTVALUE;
JADJ:=1;
WHILE((TESTCADJGATEJ]. INVALUELJADJ 1< >ADJUSTVALUE)AND
{ JADJ<TESTLADJGATE] .NOINPUTS))DO
JADJ : =JADJ+1;
IF(TESTLADJGATE]. INVALUECJADJ 1< >ADJUSTVALUE) THEN
FOR JADJ:=1 TO TESTCLADJGATEJ].NOINPUTS DO
IF(TESTCADJGATE]. INVALUELJADJ1=-1)THEN
BEGIN
FWLIST:=FWLIST+1;
WLISTLFWLIST]:=ADJGATEAMAX3+
TESTLADJGATE]. INPUTSCJADJ];
ADARCFWLIST]:=FASAR+1;
ADJADARCFWLIST]:=FADJUST; (#FOR USE
OF 'ERASE’' ONLY*)
END;
100: IF(FWLIST>ADJFWLIST)THEN

112

113

TEST.PAS;2 4-JUN-1985 14:17 ‘ Fage 19

BEGIN
FLAGP:=0;
TEMPGATE : =TRUNC (WLISTLFWLISTI1/MAX3) ;
TEMPINPUT : =WLISTLFWLIST]-TEMPGATEAMAX3;
FWLIST:=FWLIST-1; .
IF((TESTLTEMPGATE].GATETYPE=ANDE) OR
(TESTCLTEMPGATE].GATETYPE=NAND)) THEN
ADJUSTVALUE: =0
ELSE
ADJUSTVALUE:=1;
IF({TESTLTEMPINPUT].OUTVALUE=1-ADJUSTVALUE) THEN
(#THIS CHECK IS NECESSARY BECAUSE MAY BE IN ADJUSTMENT PROCESS SOME
OF THE VALUES ON. INPUTS OF GATES FOR ADJUSTMENT ARE CHANGED TO
JALUES OTHER THAN DON'T CAKRES.*)
G0TO 100
ELSE
IF(TESTCTEMPINFUT].OUTVALUE=-1, THEN
BEGIN
JADJ:=1;
WHILE(TESTLTEMPGATE]. INPUTSLJADJ]
¢>TEMPINPUT)DO
JADJ : =JADJ+1;
TESTCTEMFGATE]. INVALUELJADJ] : =ADJUSTVALUE;
TESTCLTEMPINPUT].QUTVALUE: =ADJUSTVALUE;
FASAR:=FASAR+1;
ASARCFASAR]: =TEMPGATEAMAX3+TEMPINPUT;
JADJ:=1;
WHILE(JADJ<=TESTCTEMPINPUT].
FANOUTNUM)AND(FLAGP=0) DO
BEGIN
MAINFORWARD(TEMPINPUT, TESTCTEMPINPUT].FANOUTSLJADJ]) ;
JADJ : =JADJ+1;
END;
IF(FLAGP=0)THEN
BACKWARD (TEMPINPUT ,ADJUSTVALUE) ;
IF(FLAGP=1)THEN
IF(FWLIST>ADJFWLIST)THEN
BEGIN
WRITELN(OUTFILE, 'CONFLICT FOUND INJUSTIFICATION PROCESS BETWEEN GATES',
TEMPINPUT:2, ' ' ,TEMPGATE:2, ' FOR VALUE ', ADJUSTVALUE:1l, '
IN JUSTIFYING ‘' ,ADJGATE:2,' FOR VALUE ' ,MAINADJVALUE:1l);
ERASE;
GOTO 100;
END
ELSE
WRITELN(OUTFILE, 'GATE ' ,ADJGATE:2,
' WAS NOT JUSTIFIED FOR ' ,MAINADJVALUE:1l,'.");
END;
END;
PRINTTEST;
FWLIST:=ADJFWLIST;
END; (*END OF ADJUSTMENT*)

PROCEDURE ADDONEFANOUTTOWLIST(VAR GUTAW,JAF:INTEGER);

BEGIN
FWLIST:=FWLIST+1;

114

TEST.PAS;?2 4-JUN-1985 14:17 Fage 20

WLISTLFWLIST]: =t TESTLGUTAW].FANOUTSLJAF]) #AMAX3+GUTAN;
ADARCFWLIST]:=FASAR+1;
ADJADARCFWLIST]:=FADJUST;
CADARCFWLIST]:=FCGATES;
END;

FUNCTION FINDFANOUTFORWLIST(VAR GATE: INTEGER) : INTEGER;
VAR JA,KA : INTEGER;

BEGIN
JA:=1;
WHILE(JA<=TESTLGATEJ].FANOUTNUM)DO
BEGIN
KA:=1;
WHILE(TESTLTESTLGATE]. FANOUTSLJA]Y. INFUTSLKAIJ(>GATE) DO
KA:=KA+1;
IF((TESTLTESTCLGATE].FANOUTSLJAJ].CRITICALCKAJ=CRITVAL)
OR(TESTCLTESTLGATE].FANOUTSCJAJ]J.CRITICALLKAJ=2))THEN
BEGIN
IF(JA=TESTLGATE].FANOUTNUM) THEN
FINDFANOUTFORWLIST:=JA;
JA:=JA+1;
END
ELSE
BEGIN
FINDFANOUTFORWLIST:=JA;
JA:=TESTLGATE].FANOCUTNUM+1;
END;

FROCEDURE PUTFANOUTSINWLIST(VAR GUTP:INTEGER) ;
VAR JP,KP:INTEGER:

BEGIN
WRITELN(' ENTERED PUTFANOUTSINWLIST');
JP:=1;
IF((TESTLGUTPJ].GATETYPE=ANDE) OR(TESTLGUTP1.GATETYPE=0RE)
OR(TESTLGUTPJ.GATETYPE=INPUTE)) THEN
BEGIN -
WHILE(((TESTCLGUTP].CRITICALLJPI<(>CRITVAL)AND
(TESTCLGUTP1.CRITICALLJPI<(>2))
AND(JP<TESTLGUTP1.NOINPUTS))DO
JP:=JP+1;
IF((TESTLGUTP1.CRITICALLJPI=CRITVAL)OR
(TESTLGUTP].CRITICALLJP]=2)
OR((TESTLGUTP].FANOUTNUM-TESTLGUTPJ.NOINPUTS)<=0))THEN
BEGIN
KP : =FINDFANOUTFORWLIST(GUTP) ;
WRITELN('GUTP=',GUTP:3, "' ', 'KP=',KP:3);
ADDONEFANOUTTOWLIST (GUTP,KP);
END
ELSE .
FOR JP:=1 TO (TESTLGUTP].FANOUTNUM-
TESTLGUTPJ].NOINPUTS+1)DO

115

TEST.?7AS;2 4-JUN-1985 14:17 Fage 21
BEGIN
KP:=JP;
ADDONEFANOUTTOWLIST (GUTP,KP) ;
END;
END
ELSE(*TESTCLGUTP].GATETYPE=NAND,NOR , INVERTER*)
BEGIN
(* WRITELN('CRITVAL=',CRITVAL:2,’ *,'TESTCL' ,GUTP:2, ' 1.GATETYPE=",

TESTLGUTP]1.GATETYPE) ; %)

WHILE((TESTLGUTPJI.CRITICALLCJPI(>
1-CRITVAL)AND(TESTLGUTP].CRITICALLJPI<>2)
AND(JPC<TESTLGUTPJ1.NOINPUTS))DO

JP:=JP+1;
(* WRITELN('JP=',JP:2) ;%)

IF((TESTCLGUTP1.CRITICALLJP]=
1-CRITVAL)OR(TESTCLGUTP].CRITICALCJPI=2)
OR((TESTCGUTP1.FANOUTNUM-

TESTLGUTF1.NOINPUTS)<=0))THEN
BEGIN ’
KP : =FINDFANOUTFORWLIST(GUTP) ;
{ *WRITELN('KP="' ,KP:2) ;%)
ADDONEFANOQUTTOWLIST(GUTP,KP) ;
END

ELSE :

FOR JP:=1 TO (TESTLGUTP].FANOUTNUM+1-

TESTLGUTP].NOINPUTS)DO

BEGIN
KP:=JP;
(*WRITELN('KPALL=' ,KP:2) ;%)
ADDONEFANCUTTOWLIST(GUTP,KP) ;
END;
END;
END;

FROCEDURE MAKECRITICAL;
VAR JM,KM:INTEGEK;

BEGIN
FOR JM:=1 TO NOOFNODES DO
FOR KM:=1 TO TESTLJM].NOINPUTS DO
IF ((TESTCJMI.TEMPCVCKMI<(>-1)
AND(TESTCJIMI.CRITICALCKMI<>2))THEN
IF((TESTCJMJ.CRITICALLCKMI<>-1)AND
(TESTCJIM] . TEMPCVLKMI<>TESTCJM].CRITICALLKM])) THEN
TESTCIMI.CRITICALLCKM]:=2
ELSE
TESTCIMI.CRITICALLCKM]:=TESTCJM].TEMPCVCKM];

FROCEDURE PRINTTEST;
VAR JPR:INTEGER;

BEGIN
WRITELN(OUTFILE, ' AxAAAAAAAARARKAAARARARARAKRKARAKAARRRRRAK ‘) ;
IF(FLAGP=1)THEN
WRITELN(OUTFILE, 'CRITICAL PATH NOT COMPLETED FOR THE FOLLOWING GATES:');

116

TEST.PAS;2 ' 4-JUN-1985 14:17 Page 22

IF(FLAGP=0)THEN
BEGIN
PCOUNT : =PCOUNT+1;
WRITELN(OUTFILE, 'TEST NUMBER ' ,PCOUNT, ‘:");
END;
WRITELN(OUTFILE, ‘CRITICAL-GATE NUMBER',’ ‘', 'CRITICAL-GATE OQOUTPUT-VALUE')
FOR JPR:=1 TO FCGATES DO
WRITELN(OUTFILE, * ,CGATESCJPR]:3, " ' ,CVALUES
WRITELN(QUTFILE, 'GATE NUM',’ ‘', 'QUTPUT VALUE ') ;
FOR JPR:=1 TO NOGFNODES DO .
WRITELN(OUTFILE,JFR:3, "’ ' ,TESTCJFR].QUTVALUE:1) ;
IF FLAGP=0 THEN
BEGIN
WRITELN(OQUTFILE, 'TEST VECTOR:');
WRITELN(OUTFILE, ' INPUT NUMBER-------=====--m-=- VALUE")
FOR JPR:=1 TO INPUTCOUNT DO
BEGIN
I1:=TRUNC(INPUTLISTLJPRI/MAX3);
WRITELN(QUTFILE,Il1:2, ' ======-======c-m- > ,TESTCI1].INVALUEL
END;
END; :
END; (*END OF PRINTTEST*)

PROCEDURE TESTGENERATION;
VAR JT,JTT:INTEGER;
BEGIN
FOR MCRITVAL:=0 TO 1 DO
BEGIN
IF(MCRITVAL=1)THEN
BEGIN
FOR JT:=1 TO INPUTCOUNT DO
BEGIN
FWLIST:=FWLIST+1:
WLISTCFWLIST]:=INPUTLISTCJITI;
ADARLCFWLISTI:=1;
CADARCFWLIST]:=0;
ADJADARCFWLIST]1:=0;
END;

WHILE(FWLIST>0)DO
BEGIN
GUT : =WLISTCFWLISTI-TRUNC(WLISTLFWLIST]/MAX3)#MAX3;
IUT: =TRUNC(WLISTLFWLIST1/MAX3) ;
IF(TESTCLIUT].GATETYPE(> INPUTE) THEN
CRITVAL:=TESTLGUT1.0UTVALUE;
IF(TESTCIUT].GATETYPE=INPUTE) THEN
BEGIN
CRITVAL:=MCRITVAL;
FWLIST:=FWLIST+1;
TESTCGUT]. INVALUEL1]:=CRITVAL;
TESTCGUT].0UTVALUE: =CRITVAL;
TESTLGUT].TEMPCVL11:=CRITVAL;
FCGATES : =FCGATES+1;
CGATESCFCGATES]: =GUT;
CVALUESCFCGATES]:=CRITVAL;
FASAR:=FASAR+1;
ASARCFASAR] : =IUTAMAX3+IUT;

117

TEST.PAS:2 4-JUN-1985 14:17 Fage 23

PUTFANOUTSINWLIST(IUT) ; (*ADD FANOUTS OF THIS INFY

ELSE
BEGIN
IF(TESTLIUT].GATETYPE=0UTPUTE) THEN
BEGIN
TESTLIUT].INVALUEL1]:=CRITVAL;
TESTLIUT].QUTVALUE:=CRITVAL;
TESTCIUT].TEMPCVL13]:=CRITVAL;
FCGATES : =FCGATES+1;
CGATESCFCGATES]: =IUT; (~ADD
THE GATE MADE CRITICAL TO
‘CGATES® ARRAY.*)
CVALUESCFCGATES]:=CRITVAL; (AKEEP
THE CRITICAL VALUE OF THIS GATE
IN 'CVALUES' ARRAY.*)
FASAR:=FASAR+1;
ASARLCFASAR]: = IUTAMAX3+GUT; (#ADD
THIS OUTPUT TO ‘ASAR‘ ARRAY.*)
ADJUSMENT; (*xDO THE JUSTIFICATIONX)
IF FLAGP=0 THEN
MAKECRITICAL; (*AMARK ALL THE LINES
WHICH HAVE BEEN MADE CRITICAL
AND SEE IF THEY TESTED
COMPLETELY. %)
FWLIST:=FWLIST-1;
ERASE;
FLAGP:=0;
END
ELSE(~IT MEANS THAT ONE BRANCH OF A FANOUT
ORIGIN IS GOING TO BE TAKEN.*)
BEGIN
FWLIST:=FWLIST-1;
. FOR JT:=1 TO TESTLGUT1.FANOUTNUM DO
(»FIND THE INPUT TO THE ' IUT' WHICH IS CONNECTED TO THE FANOUT ORIGIN AND
FOk THE OTHER BRANCH OF THAT FANOUT ORIGIN PROPAGATE THE VALUE FORWARD.*)
IF(TESTLGUT]1.FANOUTSLCJT3]
¢>IUT)THEN
MAINFORWARD(GUT,TESTLGUT].
FANOUTSLJTI]) ;
IF FLAGP=0 THEN
BEGIN
TEMPCRITVAL: =CRITVAL;
CRITICALPATH(GUT, IUT, TEMPCRITVAL) ;
END; ’
IF(FLAGP=1)THEN (*A CONFLICT WAS FOUND IN THE PATH SENSITIZATION PROCESS.*)
BEGIN
PRINTTEST:;
EFASE;
FLAGP:=0;
END
ELSE(*~IF(FLAGP=0)THEN*)
PUTFANOUTSINWLIST(IUT) ;
END;

END;
END;

(* PROCEDURE CPUTIMER;EXTERN;*)

TEST.PAS;2

118

4-JUN-1985 14:17 Page 24

(*MAIN PROGRAM*)

BEGIN

(%

END.

(» CPUTIMER;*)
WRITELN('TYPE NAME OF THE INPUT FILE:');
READ(NAME) ;
OPEN(FILE_VARIABLE:=INFILE,FILE_NAME:=NAME,HISTORY:=0LD);
RESET(INFILE) ;
REWRITE(OUTFILE) ;
INITIALIZE;
TESTGENERATION;
(* CPUTIMER;*)
FOR Il:=1 TO NOOFNODES DO
BEGIN
WRITE(TESTLCI1].GATENUM:2,TESTCI1].GATETYPE:8, TESTLI1].NOINPUTS:2);
FOR Jl:=1 TO TESTCLI1J].NOINPUTS DO
WRITE(TESTCI1].INPUTSCJ13:2,’ ' ,TESTCLI1].CRITICALCJ1]:3,"
TESTCI1].TEMPCVLJ13:3,’ ','INVALUEL',J1:2, 1=’
,TESTCI1].INVALUELJ1]:2);
WRITE(’ ‘,TESTCLI1].FANOUTNUM:2);
FOR Jl:=1 TO TESTCI1].FANOUTNUM DO
WRITE(' ' ,TESTCLI1].FANOUTSCJ11:2);
WRITE(' *,TESTCI1].OUTVALUE:3);
WRITELN;
END; %)
WRITELN(OUTFILE, 'LIST OF NODES WHICH ARE NOT COMPLETELY TESTED:');
WRITELN(OUTFILE, ' FROM GATE
TO GATE VALUE TESTED FOR');

’

K1:=0;
FOR Il:=1 TO NOOFNODES DO
FOR J1l:=1 TO TESTCI1].NOINPUTS DO

BEGIN
IF(TESTCI11.CRITICALCJ11<>2)THEN
BEGIN
" WRITELN(OUTFILE, ' ‘,TESTLI1].INPUTSCJ11:2,
N ©,I1:2,
ESTCI1].CRITICALLCJ1]:2);
Kl:=K1+1;
END;
END;

IF(K1=0)THEN
WRITELN(OUTFILE, 'CIRCUIT WAS COMPLETELY TESTED.');

APPENDIX B

LISTING OF THE PROGRAM WHICH CHANGES
A COMBINATIONAL LOGIC CIRCUIT
TO A PIFD LOGIC CIRCUIT

119

MOLGATE FARZ 14 4-JUN-19£5% 16:04 Fage 1

FROGRAM FINDLOGES(INFUT, OUTPUT) ;

¢ *THE PURFOSE OF THIS FROGRAM IS TO IDENTIFY THE RECONVERGENT GATES
AND ADD THE BLOCKING GATES AND TEST INPUTS WHERE THEY ARE NEEDED.THE
INPUT FILE MUST HAVE THE FORMAT AS THOSE NEEDED FOR THE TEST GENERATION
PROGRAM.THE COUTPUT FILE WILL BE IN A FORMAT USABLE BY THE TEST GENERATION
PROGRAM.AT THE END OF THE OUTPUT FILE THERE WILL BE SOME INFORMATION ABOUT
THE ADDED BLOCKING GATES AND TEST INPUTS.THIS PROGRAM ALWAYS PROCESSES
FIRST THE BRANCHES OF FANOUT ORIGINS WHICH ARE FACED FIRST IN THE FORWARD
TRAVELING OF THE CIRCUIT.THIS GUARANTEES THAT THE RECONVERGENT GATES WILL
BE FOUND IN TIME FROPORTIONAL TC N2.ALSO IT GUARANTEES THAT THE GATES OR
LINES WHICH ARE PART OF LOOP CAN BE FOUND IN TIME PROPORTIONAL TO N2.%*)
CONST MAX1=20;

MAX2=4000;

TYPE GTYPE=(ANDE,ORE,NAND,NOR, INPUTE, OUTFUTE, INV) ;

¢ ~*THE RECORD WHICH KEEPS NECESSARY INFORMATION FOR EACH GATE.*)

120

CIRCUITDES=
RECORD
GATETYPE :GTYPE;
GATENUM :1..MAX2;
NOINPUTS :1..MAX1;
FACED : INTEGER;
INPUTS :ARRAY[C1..MAX1] OF INTEGER;
FACEDINPUT :ARRAY[1..MAX1]1 OF INTEGER;
LOOP :ARRAYL1..MAX1] OF INTEGER;
FANOUTNUM :1..MAX1;
FANOUTS :ARRAY[1. .MAX1] OF INTEGER;
PROCESSED : INTEGER ;
LOOPS :INTEGER; (%#‘1‘ IF THE GATE IS ON A LOOP#*)
RECON :INTEGER; (#'1' IF THE GATE IS A
RECONVERGENT GATE*)
PERRECON : INTEGER; (*KEEP THE NUMBER OF TIMES THAT
" A GATE HAS BEEN MARKED AS
RECONVERGENT GATE#*)
PERLOOPS : INTEGER ; (AKEEP THE NUMBER OF TIMES THAT
A GATE HAS BEEN MARKED AS BEING
ON A LOOP*)
PERLOOP :ARRAYC1. .MAX1]1 OF INTEGER;
MAKELOOP :ARRAY[C1..MAX1] OF INTEGER;
(%1’ IF IT IS ONE OF THE BRANCHES OF
A FANOUT ORIGIN WHICH CREATES A
RECONVERGENT PATH*)
END;
RECONGATES =
RECORD
RG :INTEGER;
BG :INTEGER;
FG :INTEGER;
END;
FANBRANCH=
RECORD

FAN : INTEGER ;
BRANCH : INTEGER ;
END;

MuolssalE.cAS; 14

121

4-JUN-1%6S 16:04

L=

Fage

TEST :ARRAYC1..MAXZ] OF CIRCUITLES:

RGATE :ARFAYLC1..MAX2] OF RECONGATES;

FOTTLIST :AREAYLC1l..MAX2] OF INTEGER;

FANOUT :ARKRAYC1. .MAX2] OF FANBRANCH;

NAME :FACKED ARRAY[L1..40] OF CHAK;

INFILE :TEXT;

GUTFILE :TEXT:;

I,J7,K,L,M,N : INTEGER;

FANGUTF : INTEGEFE: (#POINTER TO FANOUT ARRAY).

FOUTLISTP : INTEGER; (*POINTER TO FOUTLIST ARFAY*)

FRONTIERGATE :INTEGER: (~THE HEAD GATE UNDER PROCESS ONA PATH~*)

RLOCKGATE : INTEGER; (*THE GATE BEFORE FRONTIERGATE ON A PATH*)

NOOFNQDES : INTEGER; (*NUMBER OF GATES IN THE CIRCUITx*)

OLDNGOFNODES :INTEGER; (*# OF NODES BEFORE ADDING ANY TEST INPUT
OF BLOCKING GATE*)

FOGATE :INTEGER; (%A FANQUT GATEX)

BACKTRACE : INTEGER; (*KEEPS THE GATE IN BACKTRACINGx)

RGATEP :INTEGER; (*POINTER TO RGATE ARRAY*)

F.B « :INTEGER;

LFO : INTEGER; (*LAST FANOUT ORIGIN UNDER PROCESS*)

FOEMERBT : INTEGER; (*FOKRMER BACKTRACE GATE%:

PROCEDURE INITIALIZE;

(*INITIALIZE THE
BEGIN

FOUTLISTF:=0;

FEAD(INFILE,NAME) ;

WRITELN(CUTFILE,NAME) ;
FEAD(INFILE,NOGENODES) ;
Fok K:=1 TO NGOFNGODES

BEGIN

READ« INFILE.D);
TESTLIJ].GATENUM:=1I;
TESTCIJ.FACED:=0;
TESTCI].PROCESSED:=0;
TESTCIJ.LOOPS:=0;
TESTCIJ].PERLOGPS:=0;
TESTCLIJ.RECON:=0;
TESTCIJ.PERRECON:=0;
READ(INFILE,TESTCIJ.GATETYPE,TESTLI].NCINPUTS) ;
FOK J:=1 TO TESTCIJ.NOINPUTS DO
BEGIN

END;

NECESSARY RECORDS,FILES,AND VAKIABLES.*)

0o

READ(INFILE,TESTCIJ. INPUTSCJ]) ;
TESTCIJ.LOOPLJ]:=0;
TESTCIJ.PERLOOPLJI]:=0;
TESTCIJ.FACEDINPUTCLJ]:=0;

FEAD(INFILE,TESTCI].FANOUTNUM) ;
FOK J:=1 TO TESTLIJ.FANOUTNUM DO

BEGIN
READ(INFILE,TESTCIJ].FANOUTSLJD) ;
TESTCIJ.MAKELOOPLJ]:=0;
END;
END;
FOR K:=1 TO NOGFNGDES DO
IF TESTCK].GATETYPE=INPUTE THEN

122

T1
W
[1e]
m

(VY]

MOOGATE . EaS; 14 4-JGN-1285 1le:04

BESIN
B:=K;
WHILE (TESTLB].FANOUTINUM=1) AND
(TESTCB].GATETYPEC>QUTFUTE) DO
B:=TESTCB].FANQUTSC13];
IF TESTCB].FANOUTNUM>1 THEN
BEGIN .
FOUTLISTF:=FOUTLISTP+1;
FOUTLISTLFOUTLISTP1:=B;
END;
END;
END; (*#INITIALIZE*)

FROCEZJRE BACKTRACING:
t~IF A RECONVERGENT GATE IS FOUND, THEN TRAVEL BACKWARLD AND MAKK
ALL THE FATE &NT LINES WHICH HAVE BEZN FACED IN THE LAST ATTEMPT
AS BEING ON A LOCOP UNTIL A FANOUT GORIGIN, A RECONVERGENT GATE, OR
A FRIMAFY INFUT IS FACED.*)
BEGIN
FOR L:=1 TO TESTLFRONTIERGATE].NCINPUTS DO
TF ‘TESTCFRONTIERGATE].FACEDINPUTLLI=1)
AND (TESTCFRONTIERGATE].LOGPCLI=0) THEN
BREGIN
J:=0;
TESTCLFRONTIERGATE].LOGFCLI:=1;
BACKTRACE: =TESTCFRONTIERGATE]. INFUTSLCL];
WHILE (TESTUBACKTRACEI].RECON=0) AND
{ BACKTRACE(>LFG) AND (BACKTRACE<>FOGATE) DO
BEGIN
J:=1;
M:=1;
WHILE NOT(TESTCBACKTRACEJ].FACEDINPUTLM1=1) DO
M:=M+1;
TESTCBACKTRACE].LOOPLMI:=1;
TESTCBACKTRACE].LOCPS:=1;
FORMERBT : =BACKTRACE;
BACKTRACE : =TESTLBACKTRACEJ]. INPUTSCM];

END;
(& IF BACKTRACE=LFO THEN
BEGIN
IF J=0 THEN
FORMERBT : =FRONTIERGATE;
M:=1;
WHILE N?T(TEST[BACKTRACEJ.FANOUTSEM]=FORMERBT) DO
M:=M+1;
TESTCBACKTRACE].MAKELOOPCMI:=1;
END; *)
END;
END; (*BACKTRACING*)

+~THE FOLLOWING PROCEDURE IS SUFFGSED TO IDENTIFY THE INPUTS TO THE BLOCKING
GATES (THE GATES RIGHT BEFORE A RECONVERGENT GATE WHICH ARE ON A LOGP WITH
THAT RECONVERGENT GATE) WHICH ARE ON A LOOP. ALSO IT IDENTIFIES ALL THE OTHER
GATES AND GATES' INPUTS WHICH ARE ON A LOOP.*)

PROCEDURE LOOP;

123

MODGATE EAS 14 G-GUN- TSRS (a4 Fage 4

LABEL luiiug

BEGIN
FOR I:=1 TG FOUTLISTE DO
RIDGIN

FOGATE: =FOUTLISTCI];

FANOUTP:=0;

FOE M:=1 TO NOOFNODES DG

BEGIN
FOR L:=1 TO TESTCMI.NOINFUTS DO
BEGIN
TESTCM].PERLOOPCL]: =TESTCM] . PERLCOOPCLLI+

TESTCM].LOOPCL];
TESTCM1.LOOFCL]:=0;
TESTCM]1.FACEDINPUTCL1:=0;

END;
TESTCMJ.PERLOOPS : =TESTCM].PERLOOPS+TESTCM1.LOCPS ;
TESTCM1.LOOPS:=0;

TESTCM].FACED:=0;
TESTCMJ.PERRECON: =TESTCMJ.PERRECON+TESTCM].RECON;
TESTCM].RECON:=0;
END; .
IF TESTCFOUTLISTCIJ].PROCESSED=0 THEN
BEGIN
TESTCFOUTLISTCIJ].PROCESSED:=1;
FORK J:=1 TO TESTCFOGATEJ.FANOUTNUM DO
BEGIN
FANOUTP : =FANOUTP+1 ;
FANOUTCFANOUTPJ]. BRANCH: =TESTCFOGATE].FANOUTSCJ];
FANOUTCFANOUTP].FAN: =FOGATE;

END;
N:=0;
WHILE NOT(N=FANOUTP) DO
BEGIN
N:=N+1;

BLOCKGATE : =FANOUTCN1.FAN;
LFO:=FANOUTLN].FAN;
TESTCFANOUTCN].FAN].PROCESSED:=1;
FRONTIERGATE : =FANOUTCNJ].BRANCH;
1000 IF TESTCFRONTIERGATE].FACED>1 THEN
+~THIS GATE HAS BEEN FACED AT LEAST TWO MORE TIMES WHEN PROCESSING
THE SAME FOGATE. THEN IT HAS BEEN ALREADY MARKED AS RECON. GATE*)
BEGIN
(*KEEP TRACK OF RECONVERGENT GATES AND THEIR CORRESPONDING BLOCKING
GATES. IF THE BLOCKING GATE HAS MOR THAN ONE FANOUT, THEN MAY BE
IT CANOT BE CONSIDERED AS A BLOCKING GATE ALTHOUGH IT MAY HAVE
THE GATE TYPE. THEN KEEP ITS GATE NUMBER NEGATED IN ORDER TO
REMEMBER THIS CASE.*)
RGATEP : =RGATEP+1 ;
RGATECRGATEP].RG: =FRONTIERGATE;
M:=1;
WHILE (TESTCFRONTIERGATEJ].INPUTSCMI<>
BLOCKGATE) OR
(TESTCFRONTIERGATE].FACEDINFUTCMI=1)
DO
M:=M+1;
TESTCFRONTIERGATE].FACEDINPUTCMI:=1;
IF TESTCBLOCKGATE].FANOUTNUM=1 THEN
RGATECRGATEP].BG: =BLOCKGATE
ELSE

MODSATE . FAZ: 14

124

4-JUN-1235 1%:04 Fage 5

RGATELRGATEP]. BG: =-BLOCKGATE:;
TESTCFRONTIERGATE].RECON: =

TESTCFRONTIERGATE].RECON+1;
BACKTRACING;

END:
IF TESTCFRONTIERGATE].FACED=1 THEN

(#RG HAS BEEN FACED JUST ONE TIME BUT IT WAS NOT MARKED AS RG&BLOCKGATE*)

BEGIN
WEITELN(FE='

BEGIN L
M:=1;
WHILE (TESTLFRONTIERGATE].INPUTSCMI<>
BLOCKGATE) OR
(TESTCFRONTIERGATE] . FACEDINPUTCM]=1)
Do
M:=M+1;
TESTCFRONTIERGATE].FACEDINPUTCM]:=1;
FOR K:=1 TO TESTCFRONTIERGATEJ].NGINPUTS DO
IF (TESTLTESTCFRONTIERGATE]. INPUTSCKI]
.FACED>0) OR
{ TESTLFRONTIERGATE]. INPUTSCKI=FOGATE)
Ok
 TESTCFRONTIERGATE]. INPUTSCKI=LFO)
THEN
BEGIN
RGATEF : =RGATEP+1; -
RGATECRGATEPJ].RG: =FRONTIERGATE;
RGATECRGATEF].FG: =FOGATE;
IF TESTLTESTLFRONTIERGATE].
INPUTSCKJ1]1.FANOUTNUM=1 THEN
RGATECRGATEF].BG: =
TESTCFRONTIERGATE]. INPUTSCK]
ELSE
RGATELCRGATEFP].BG: =
-TESTCFRONTIERGATE]. INPUTSCK];
TESTCFRONTIERGATE].RECON:=1;
TESTLFRONTIERGATE].LOOPS: =
TESTLFRONTIERGATE].LOOPS+1;
BACKTRACING;
END;
TESTCFRONTIERGATE].FACED: =
TESTCFRONTIERGATE].FACED+1;
END;
IF TESTCFRONTIERGATE].FACED=0 THEN
BEGIN
WHILE (TESTCFRONTIERGATE].FACED=0) DO
BEGIN
TESTCFRONTIERGATE].FACED:=1;
M:=1;
WHILE (TESTCFRONTIERGATE].INPUTSCM1<>BLOCKGATE) OR
(TESTLFRONTIERGATE]. FACEDINPUTCMI<>0) DO

FRONTIERGATE:4, M=',M:2, ' BLOCKGATE=',BLOCKGATE:4);

WRITELN('TFIM;‘,TEST[FRONTIERGATE].INPUTSEM]);

END;

M:=M+1;

TESTCFRONTIERGATE].FACEDINPUTCM]: =1;
IF TESTCFRONTIERGATE].GATETYPE
¢>QUTPUTE THEN
BEGIN
BLOCKGATE: =FRONTIERGATE:
IF TESTCFRONTIERGATE].
FANOUTNUM>1 THEN

125

MODGATE . FAS; 14 4-JUN-1285 16:04 Fage o

FOR L:=2 TO TEST
CFRONTIERGATE].FANGUTNUM DO
BEGIN
FANOUTP: =FANOUTP+1;
FANOUTLFANOUTP]. BRANCH: =TESTLFRONTIERGATE].FANCUTSCLI];
FANOUTLTANOQUTF].FAN: =FRONTIERGATE;
END;
FFONTIERGATE: =TESTCFRONTIERGATE] . FANOUTSC13:;
END;
END:
IF TESTLCFROUNTIERGATED.GATETYFE<>OUTPUTE THEN
30TO 1000;
END;

END:

FROCEDURE ADDTESTINFPUT;
t*IF THE GATES BEFORE RECONVERGENT GATES HAVE THE RIGHT TYPE FOR
BLOCKING GATES, THEN ONLY ADD TEST INPUTS TO THEM.x)
BEGIN
TESTCBE].NOINFUTS:=TESTCLB].NCINPUTS+1;
NOCFNODES : =NGOFNODES+1;
TESTCB]. INPUTSLTESTCBI.NOINFUTS]: =NOOFNODES ;
TESTCNOOFNOLDES].GATENUM: =NOOFNODES ;
TESTCNGOFNOQDES].GATETYPE: =INFUTE;
TESTCNCOFNCDES].NOINPUTS:=1;
TESTLNOOFNODES]. INPUTSL11: =NGOFNODES ;
TESTCNOCOFNCODES].FANQUTNUM: =1;
TESTCNOCCOEFNODES].FANCGUTSC1]:=8;
END; :

FROCELURE ADDELOCKINGGATE:
t«ADD BLOCKING GATES BEFORE RECONVERGENT GATES. *)

REGIN
FOR J:=1 TO TESTCBJ].FANOUTNUM DO
TF TESTCB1.FANOUTSLJJ=R THEN
BEGIN
NOOFNGDES : =NOOFNODES+1;
IF (TESTCR].GATETYPE=0ORE) OR
(TESTLR].GATETYPE=NOR) THEN
TESTLNGOFNODES].GATETYPE: =ANDE
ELSE
TESTLNOOFNODES].GATETYPE: =0RE;
TESTLCB1.FANOUTSLJ]:=NOOFNOLES ;
TESTCNOOFNODES].GATENUM: =NOOFNODES ;
TESTLNCOFNODESJ.NOINPUTS:=2;
TESTLNOGFNODES]. INPUTSC11:=B;
TESTCNCOFNODES]. INFUTSL2]:=NOOFNODES+1;
TESTCNOOFNODES].FANOUTNUM:=1;
TESTCNOOFNODESJ1.FANCUTSLC1]:=R;
M:=1;
WHILE TESTCR1.INPUTSCMI<>B DO
M:=M+1;

126

TESTCR]. INPUTSCM] : =NOOFNODES ;
NOOFNODES : =NOOFNODES+1;
TESTCNOOFNODES].GATETYPE: = INPUTE;
TESTCNOOFNOLES].GATENUM: =NOOFNODES ;
TESTCNOOFNODES]1.NGINPUTS:=1;
TESTCNOOFNODESJ. INPUTSC11:=NOOFNQODES ;
TESTCNOGFNODESJ].FANOUTINUM:=1;
END TESTCNOOFNODES].FANOUTSC1]:=NOOFNODES-1;
END;

FROCEDURE INSERTGATES;
{ *INSERT BLOCKING GATES AND TEST INPUTS WHERE THEY ARE NEEDED. *)
BEGIN
OLDNOOFNODES : =NOOFNODES ;
FOR I:=1 TO NOOFNGCDES DO
TESTCLI].PROCESSED:=0;
WHILE RGATEF>0 DO
IF i TESTCRGATECRGATEF].EG].FROCESSED=1) AND
« TESTCABS (RGATECRGATEFJ.BG) 1.PROCESSED=1) THEN
RGATEP: =RGATEF-1

F:=FGATECLRGATEFJ].KG;
R:=AES(RGATELRGATEP].BG) ;
TESTCE].FROCESSED:=1;
TESTCB1.PROCESSED:=1;
K:=0;
FOR J:=1 TO TESTLCBJ.FANOUTNUM DO
IF TESTCB].FANOUTSCJI1=R THEN
K:=K+1;
N:=0;
TF (((TESTCLRJI.GATETYFE=0ORE) OR (TESTLR].GATETYFE=NOR))
AND (TESTCBJ].GATETYPE=ANDE)) OR
(((TESTCR].GATETYPE=ANDE) OR (TESTLERJ].GATETYFPE=NAND))
AND (TESTLB1.GATETYPE=0ORE)) THEN
IF K=1 THEN
BEGIN
FOR M:=1 TO TESTCB]1.FANOUTNUM DO
IF (TESTLTESTLB].FANOUTSCM1].PERLOOPS>0) AND
(TESTCB].FANOUTSCMI<(>R) THEN
FOR J:=1 TO TESTCLTESTCB].FANOUTSCM11.NOINPUTS DO
IF (TESTLTESTCB].FANOUTSCM3].INPUTSCJ1=B) AND
(TESTCLTESTCB].FANOUTSCM1].PERLOOPLJ]1>0) THEN
N:=1; .
IF N=0 THEN (*NO ADDITIONAL BLOCKING GATE IS NECESSARY.*)
BEGIN
L:=1;
WHILE (TESTCB].PERLOOPCLI>0) AND
(L<=TESTCB3.NOINPUTS) DO
L:=L+1;
IF L>TESTCLE]1.NOINPUTS THEN
(*ADD AN EXTRA INPUT TO THE BLOCKING GATE.x*)

ADDTESTINPUT;
END;
IF N>O) THEN (*ADD BLOCKING GATE AND TEST INPUT*)
ADDBLOCKINGGATE:
END
ELSE

ADDBLOCKINGGATE

127

MODGATE.Fas; 14 4-JUN-1%85 16:04 FPage 8
ELSE
ADDBLOCKINGGATE;
RGATEF : =RGATEP-1;
END;
END;

(RAkkAkRAkRhkrkkhkrhkhrhrrkrxrMATIN PROGRAMA * 7 ks 5 sk 7t % 5 & & sk 7 sk sk sk ok sk s)

BEGIN
WEITELN(TYFE NAME OF THE INFUTFILE');
READLN(NAME) ;
OPEN(FILE_VARIABLE:=INFILE,FILE_NAME:=NAME,HISTORY:=0LD);
EESET(INFILE);
WEITELN("TYFE NAME OF THE GOUTFUTFILE');
READLN(NAME ;
CrEN(FILE_VARIABLE:=0UTIrILE,FILE_NEME:=NAME,HISTCRY:=NEW) ;
REWRITE(CUTFILE) ;
INITIALIZE;
LOOF;
(*FOR I:=1 TO RGATEF DO
WRITELN(OUTFILE, ‘'RGATE.RG=' ,RGATECIJ.RG:3,’ RGATE.BG=',RGATELIJ.BG:3);*}
INSERTGATES ;
WRITELN(GUTFILE,NOOGFNGDES) ;
FOR I:=1 TO NCOFNODES DO
BEGIN
WRITE(OUTFILE,TESTCIJ].GATENUM:S5,TESTLI].GATETYPE,
TESTCIJ1.NOINFUTS:2);
FOR J:=1 TO TESTCIJ1.NOINPUTS DO
WRITE(OUTFILE,TESTCI]. INPUTSCJ]:S, "’ "y ;
WRITE(OUTFILE,TESTCIJ.FANOUTNUM:3);
FOR J:=1 TO TESTLCIJ.FANOUTNUM DO
WRITE(OUTFILE,TESTCIJ.FANOUTSCJ]:S, "’)
WRITELN(OQUTFILE) ;
END;
WRITELN(OUTFILE,
ALL THE GATES WITH THE GATE NUMBER GREATER THAN' ,OLDNOOFNGLES) ;
WRITELN(OUTFILE,
* ARE THE GATES ALDDED TO THE ORIGINAL CIRCUIT. THEN THE INPUTS');
WRITELN(OUTFILE, .
* WITH THE GATE NUMBERS GREATER THAN THIS VALUE ARE TEST_INFUTS. ')

APPENDIX C

COMPUTER RESULTS FROM THE TEST
GENERATIONS PROGRAM FOR
TWO EXAMPLES

128

129

TES.LIAT;3 ' 16-JAN-1985 16:51 Page 1
SAMFLE

14

1 INPUTE 1 1 1 8

2 INPUTE 1 2 2 7 13

3 INPUTE 1 3 1 7

4 INPUTE 1 4 2 g8 o

S INPUTE 1 S 1 9

6 INPUTE 1 6 1 1)

? ANDE 2 2 3 1 8

8 ANDE A 1 7 a4 13 1 10
9 NAND 2 4 S 2 10 11

10 OKE 3 8 13 9 1 12

11 NOK 2 9 & 1 2

12 ANDE 2 10 11 1 14

13 1NV 1 2 1 10

14 OQUTFUTE 1 12 1 14

AJTEILE.DIATS3 16-JAN-1985 18:17

SANMFLE
PRAAAARAARAARKAARRRRARARAAAARAKRARAARARAA
TEST NUMEEK 1:
CKITICAL-GATE NUMEEK CKITICAL-GATE OUTPUT-VALUE
6 o
11 1
2]
14 1
GATE NUM OUTPUT VALUE
1 -1
P 0
3 -1
4]
9 1
) G
7)
8 0
9 0
10]
11 1
2 1
13 1
14 1
TEST VECTOR:
INPUT NUMKER-------=---==----- VALUE
Jeemr e =]
R > 0
R e e »=1
L R kbl > 1
T ettt 2
fmmmmmmmmmmmmmmm-= > 0

tﬂiik*ikkk;ikﬂkkkkk***kkik*kkkikkkiﬂﬂii
CRITICAL PATH NOT COMPLETED FOK THE FOLLOWING GATES:

CRITICAL-GATE NUMEER CRITICAL-GATE OUTPUT-VALUE
5 0
o .]
10 1
GATE NUM OUTPUT VALUE
1 -1
2]
3 -1
L]]
)]
& -]
7 -1
8 0
9 1
10]
11]
2 0
13 0
14 (]

AAXRRAAKRAKKRAAAKRAARRARRRARKRAARARIARARAKRAKR
CRITICAL PATH NOT COMPLETED FOR THE FOLLOWING GATES:

CRITICAL-GATE NUREEK CKITICAL-GATE OUTFUT-YALUE
' 4 0
9 1
10)
GATE NUM QUTPUT VALUE
1 -1

hl 1

130

Page 1

131

wUIFiLE.UARL 3 SO WAt LRY ac.a/

3 -1
4 0

ARAKAARRAKARKAAARAARRKRARRAARKRARARRAKAKAA XK
CRITICAL PATH NOT COMPLETED' FOK THE FOLLOWING GATES:

CRITICAL-GATE NUMEEK CRITICAL-GATE OUTFUT-VALUE
4 0
GATE NUM OUTFPUT VALUE
1]
2 1
3]
4]
S -]
6 -1
7]
8 -1
9]
10 1
11 0
12 0
13 o
14 G

*RKKAAAEARARRARRRRARRARRRARRAAAAARAKAA £ A
CRITICAL PATH NOT COMFLETED FOF THE FOLLOWING GATES:

CRITICAL-GATE NUMEER CRITICAL-GATE OUTFUT-VALUE
3 0
7 (]
GATE NUM OUTPUT VALUE
1 1
2]
3 (o]
]]
S -1
) -1
7 0o
8 -1
9 -1
10 -]
11 -1
2 -1
13 0o
la =1
AAAKARRARARAARARARAARRARRAARARAARAARKR A X
TEST NUMEBEE 2:
CRITICAL-GATE NUMEER CRITICAL-GATE OUTPUT-VALUE
2 0
13 1
10]
12 1
14]
GATE NUM OUTPUT VALUE

1 -1

Uiuiiibbewiml, 3 1b~unh-1%ed loil/

2 °
3 -1
4]
S 1
6 0
7 0 -
& 0
9 0
10]
11 1
2 1
13 1
14]
TEST VECTOR:
INFUT NUMEBER-----------c-eee- VALUE
R e b et »=1
P ik > 0
R T T v=1
L il bbb > 1
N e e =1
L e b > 0

AKAAARAARKAKRKAAARAARARARARKAARAARKRA K kA& 4
CRITICAL PATH NOT COMPLETED FOK THE FOLLOWING GATES:

CRITICAL-GATE NUMEKEK CRITICAL-GATE OUTPUT-VALUE
2 (o]
? 0
8 o)
GATE NUM QUTPUT VALUE
1 1
2 0
3 1
- 4 1
+3 -1
) =1
7 [}
& 1d
9 -1
10 1
11 -1
12 -1
13 1
14 =]

ARARKAKAKKIAKAKRARARAAAAAAARAAARAAAKARAARAAX
CRITICAL PATH NOT COMFLETED FOK THE FOLLOWING GATES:

CRITICAL-GATE NUMEEE CRITICAL-GATE OUTFUT-VALUE
1 0
GATE NUM OUTPUT VALUE
1 0
2 1
k]]
4 1
S -1
6 -1
7]
8 -1
9 -1
10 -1
11 -1
12 -1
13 0

-
>

-1

132

133

Gdabirbaiinl 3 PO~ whN-1vby

- Cane 4
ARRAAAARRKAARAKAARAAAARARRRAAAAAKRARAKAK
TEST NUMEEK 3:
CRITICAL-GATE NUMEREK CKITICAL-GATE OUTFUT-VALUE
)]
11 (o]
12 (4
14 o]
GATE NUM OUTPUT VALUE
1 -1
2 0
3 -1
4 1
S 1
[]
7 0
8 0
9 0
10]
11 o
12 0
13 1
14 0
TEST VECTOKk:
INFUT NUMBER--=-------cemeeeu VALUE
D i Rt L T =1
P et > 0
Bommmmmmm e >-1
L e e > 1
R D L L L P P |
[> 1
ARXAARAAKRARAAARAKRKAAKRRAARAAARAAAKRAKARAAAA
TEST NUMEEK 4:
CRITICAL-GATE NUMEEK CRITICAL-GATE OUTFUT-VALUE
S]
9 o
10 o]
12 (o]
14 [
GATE NUM OUTPUT VALUE
1 -1
2 1
3 -1
q 1
S]
6 o]
7 -1
8 0
9 d
10 0o
11]
12 o]
13 0
14 0
TEST VECTOF:
INPUT NUMBER----------—=-—=-~- VALUE
R e it >=-1
D e b > 1
K e L L LDt >-1
L e DL DDt > 1
m e)

Ubacetbowrt g/

134

40 "enmitTalcu ac.4 sy

16 (]
8 (o}
10 0
12 0
14]
GATE NUM QUTPUT VALUE
]]
2 1
3 -]
4 1
S -1
6 -1
7 -1
8 o]
a -1
10 (o]
1) -1
12 0
13 0
14 (0]
15 0
16 (o}
17 -1
18 0 X
19 0 :
2 0
21 0
22 1
23]
24 1
25]
TEST VECTOR:
INPUT NUMBER-----==----cc---o VALUE
lommemmm e]
B e it £
R-mmm e =1
L R ket 1
R ettt TP =1
G-=====-mmmmmmmen s-1
) e w0
17-=mmmmmmmme e -1
R .0
ey - 0
22=-----mmmeem oo]
Y > 1
AKAAXARAARARKARAKARKAAKARAKRARAAAKAKARAA
TEST NUMEEK 7:
CRITICAL-GATE NUMEEK CRITICAL-GATE OUTPUT-VALUE
6) 0
11 1
23 1
12 1
14 1
GATE NUM OUTFUT VALUE
-1
2 11
3 -1
4 1
S 1
6 (o]
Vi -1

135

Uit bbbkt / PO-LAN-IVEY 1E144 Fige
8 =1
9 0
10]
11 1
12]
13 -1
14]
1S -1
lo ~1
17 -1
18 =1
19 -1
20 (o
21 1
22 0
23 1
24 -1
29 -1
TEST VECTOFR:
INPUT NUMBER--~=-==c-ceoeno VALUE
l--mmmmmmmcee e »=1
2= mmmmm e =1
e D =1
i LR B TR > 1
P L T EED |
(R el b e » 0
P LT R >=1
17 mmmmmmeme e >-1
19--cmmmmmreee e w=1
el m e 21
22-----cmmm e > 0
R e et T =1
APKRRAKRRARRIIKRARK AR ARAKARAA KK AKK KA A & 4
TEST NUMEEK :
CRITICAL-GATE NUMEEER CKITICAL-GATE OQUTPUT-VALUE
S G
9 1
20]
10 1
12]
14 1
GATE NUM QUTPUT VALUE
1 -1
2 1
3 -1
4]
S o]
6 -1
7 -1
8 0
9 1
10 1
11 ()
12]
13 o
14)|
13 V]
16 V]
7 o
18 [}
19 1

e sk slbanimdy

20
21
22
23
24
25

TEST VECTOFR:

)
I
19--=====-==
P

o S .
-

‘

_______ s=1

PO TunivT A Oy L.t

ARKARAAARRAAXKAARARARARAKRAARRRRRAARAAAKAKK

TEST NUMEER
CRITICAL-GAT

'y

9

11

23

12

14
GATE NUM

DN D W

1¢
11
12
13
14
15
le
17
18
19
2
21
22
23
24
25

TEST VECTIOF:

9:
E NUMEEK

OUTPUT VALUE
-1

CRITICAL-GATE OUTFUTI-VALUE

0000 ~0O

136

137

UULE ALE ./ 1e-JdhAN-1ved loisd rize B8
R DL L DL Bt > 1
[et DL D >0
D Sttt »=)
[e L ’=1
19-==cccceccconnaa- =1
2l--mrememccencnnee] !
e ittt -0
24--mmm e mm e e e e i=1
ARAKRARKARAKARARARARKRKRAARARRKARAARKRARAAK
TEST NUMEBEK 102
CRITICAL-GATE NUMBEEK CRITICAL-GATE OUTPUT-VALUE
4 0
8 o]
10 0
12 0
) 14 0
GATE NUM OUTFUT VALUE
1 1
2 -1
3 -1
4 (o]
S -1
6 -1
7 =1
8 0
9]
10 o
1n 0
12 (o]
i3 -1
14)
1% 1
16 1
17 o
i8 0
19 0
2 o
21 0
2 1
23 1
24 1
~e 1

15
17
19
21

22

ARAKARKRAAARXKARKARKAARKAAKAAAARAAAAKkAXA XK
TEST NUMEEK 112

CRITICAL-GATE NUMEEK CRITICAL-GATE OUTPUT-VALUE
3 0

7 [o]

138

Uit ibkacit,/ r e

i 1% L sTW sQ et 35
25 [
8 o
10 0
12 0
14 G
GATE NUM OUTPUT VALUE
2 1
3 0
4 1
] -]
6 -1
7 (o}
3 0
9 -1
10 0
11 -1
2 0
13 0
14 (o]
15]
16 1
17 0
18 Q
19 0
20 [}
21 0
2 1
23]
24 o
29 0
TEST VECTOK:
INPUT NUMBER----==-=ceceuo—-—o VALUE
2o LTI 1
e e e L >0
L > 1
M e e TP =1
e b e L T =1
18- mmmmmm e D |
L R el e > 0
I 0
2l-=---mmmemeeee g
e e I |
24---mmm s >
AKAKARKAAAKRAKARAAAXRKAKRAARAAXRAKRAKRAKA KA AKX
TEST NUMEEK 12:
CRITICAL-GATE NUMEEK CKITICAL-GATE OUTFUT-VALUE
2 0
13 1
16 1
8 1
10 1
12 1
14]
GATE NUM OUTFUT VALUE
1]
2 o
3 -1
4 1
9 -1

139

culEuLELdRr g/ 16-JAN-1Y0S 16.44 Fege 1Q
6 -]
7 0
8]
9 -1
10]
11 -1
12 1
13 1
14]
15 /]
16]
17 o]
§:] 0
19 o}
=G 0
2l (o]
22]
23 1
24]
25 1
TEST VECIOFR: :
INPUT NUMBER----=-----cc-ao-- VALUE
oo > 1
PR e > Q
3 e - =1
Ammmm oo 1
R e L =1
R »=1
15—~ w0
l7 v mc e c e cee e > 0
19--ccmmme ey (4]
P e e D > 0
2= |
B e T T |
AAAARARRARAAAAARKARAARAARAAAARKRAAAARAAR KA
TEST NUMEEK 13:
CRITICAL-GATE NUMEEK CRITICAL-GATE QUTFUT-VALUE
b 0
. - o
20 0
8 0
10 0
2 [o)
14) 0
GATE NUM OUTFUT VALUE
1]
2 (o)
3]
4 1
S -1
6 -1
7 0
8 0
9 -1
10 [+]
1 -1
12 0
13]l
14 (]
15 -1

-
[
-

MUY iLb ekt g/ 1o-Girid=ivey fusad
17
18
19
20
2]
22
23
24
29

TEST VECTIOk:

o
[v)
(1]
o]
0
1
]
0
0

1 _________________
b TP,
e e ettt -
R bt T TR
Rt L e L P =
G- >=-1
19-----rmmmmee e =1
e e T > 0
19— e o
PR e T 0
e e e B LT L L |
d4-—mmmmmmmm e e > 0
AXAKRAKRAAKARARAARAAAAAKXAARAAARARKAAAAARAK
TEST NUMEEER 14:
CRITICAL-GATE NUMEEK CKITICAL-GATE OUTPUT-VALUE
] : 0
8 [v)
10 (1]
12 o]
14 0
GATE NUM QUTPUT VALUE
1 0
2 -1
3 -1
4 1
9 -1
6 -1
7 -]
8 [o]
9 -1
10 o)
11 -1
12 [o]
13 -1
14 0
13]
16 1
17 0
18 [v]
19 0
2 [o)
2 o
22 1
23 1
24 1
295 1
TEST VECTOR:
INPUT NUMBER---—-=-----cce—o VALUE

140

viae

il

141

GUIELLEsuAL /7 16-2AN-1985

16144 Paze 12
D ————=>=]
R > 1
S-===- m—eeemec———- ->-1
6-=mmm—-- ————————— >-1
15-----cmcoue- —====>1
17-==mmmmmmmm -—--=>0
19--=ccceca-- —————- >0
2l-emcmmmeme e > 0
22-=—mmrmmre e P |
B et > 1
RAAARKAKARKRARKAARRARRAKAAAKRAARARKAK KK & *
TEST NUMEER 152
CRITICAL-GATE NUMEER -CKITICAL-GATE OUTPUT-VALUE
24 1
25 1
e]
10 1
12 1
14 1
GATE NUM OUTPUT VALUE
1 1
2 -1
3 0
4 1
S -1
) -1
? 0
8]
9 -1
10]
11 -1
12]
13 -1
14 1
19 1
16]
17 (s}
1a 0
19 Q
20 G
21 0]
e=]
23 1
24]
Pi] 1
TEST VECTOK:
IHPUT NUMBER----=------------- VALUE
D e e]
P =1
Jrmmmmmec e —a- > 0
4= mmmmm - > 1
e Ll D =]
b= ——m b=1
15-------movmcmne- >]
17-=-=mmmmmm e > 0
19----cccmcmmemme e > 0
D > 0
22--=-=---=-se——==- > 1
P e et > 1

AKAKRARAARRARAARARRRARARRARARAAKARRRARAAAARK
TEST NUMBEK 16:

NS R N [S T S RN COVRS R TR ¥

CRITICAL-GATE NUMEKEK CRITICAL-GATE OUTFPUT-VALUE
22 1
23]
12 1
la 1
GATE NUM OUTFUT VALUE
;]
3 - -1
4 -1
S -1
6 1
7 -1
8 -1
9 -1
10 1
11 0
12 1
13 -1
14 1
15 -1
16 -1
17 -1
18 -1
19 -1
° -1
2]]
22 1
23]
24 -1
20 -]
TEST VECTOER:
INFUT NUMBER-------==cce—ee o YVALUE
e e - - =1
B et e | 0
e L DRt »=1
L Rt i=1
P D D e L T =1
[ettt > 1
R LTt »=1
17— mmm e =1
19-==-vmmecmm e w=1
2l-mmm e » 1
22— mmmm e]
24 o >=1
AARRARRAKRAAIRARRARKARRAAAKARKRKRRRAARAAR KA
TEST NUMEEER 17:)
CRITICAL-GATE NUMEEK CKITICAL-GATE OUTFUT-VALUE
21]
10 1
12 1
14 1
GATE NUM OUTPUT VALUE
1 -1
2 1
3 -1
4 -]
S -1
6 -1
7 -1
8 0

142

JULELLE AL 7

9
10
11
12
13
14
15
16
17
18
19
20
21
<2
23
24
23 =]

TEST VECTOKk:

U]
[

| O O00O00O0OMmMO

[INPUT NUMBER-==-=====ceo

15-=—cmmmmmmee oo >0
17==mmmmmme e >0

P e e LT T . 1
e > 1

Q4 mmmmm e >=1

lal
]

(4]

16-JAN-1 i6:44

RAKKRRKAKKRRAAARAKRRAKARARARAKAKARKAAKAKX

TEST NUMEEK 18:

CRITICAL-GATE NUMEEK
19
20
10
12
14

GATE NUM OUTFUT VALUE

VD NGWU L W~
o

(&)
Or=O0000~0~0~~=0 |

CRITICAL-GATE OUTPUT-VALUE

etk et et b

143

Pase 14

144

GUILLILE.LGI? P o-3AN-1VES 1uiad R

tige 1t
22 1
23 1
24 -}
P31 -1
TEST VECIOF:
INPUT NUMBER------=---------= VALUE
R =1
e e c e r e ———— > 1
Bmmmmmmmmmmeeemoe ¥=1
fmm—mcmmmcem————ea =1
Emmmmmmmmm oo >0
G--———=———mmm————— 2=-1
L > 0
7= 2 0
19-=---—-cemrmmm - LI |
P R 0
22-==m—mmm e D |
- m e »=1
AXAAKAARARRARARRKARARAAAARKRAKRAAARAAAKKA
TEST NUMEERK 19:
CRITICAL-GATE NUMEEK CRITICAL-GATE OUTPUT-VALUE
17 1
18 1
10 1
12 1
14 1
GATE NUM QUTPUT VALUE
2 3
3 -1
Ky (o]
) -1
6 -1
7 -1
3 (0]
9]
10 1
11 [}
12 1
13 -1
14 1
S 1
16 1
17]
18 1
19 (]
20 o]
21 0o -
2 1
23 1
24 -1
o) 1
TEST VECTOR:
INPUT NUMBER---—====-—-—-=--=- vaLUE
P =1
Qe e =1 R
T i ¥=1
e = > 0
R ettt »-1
[t Tl bk -

UlaclLbaiAl 37 16-JdRN~-1Y0Y 18.44
17-ecmecccrcccccccea- > 1
19--wrcmoccccnaene- >0
PR L DL L > 0
Pt talls 1
24-c-mmmmme e e =1
AAARRRRAARRRRRKRARKRAARRARARRAKKAARA LA KRR
TEST NUHMBEF 20:
CRITICAL-GATE NUMEEK CRITICAL-GATE OUTFUT-VALUE
15]
16 1
18]
10 1
12]
14 1
GATE NUM OUTPUT VALUE
1 -1
2 1
3 -1
4 ¢
S -1
) -1
7 -1
3] o]
9 1
10)]
11 [0
12)]
13 (o)
14]
19 i
16]
17 1
18 |
19 o]
20 0
21 [}
22 1
23 1
24 -1
25 -1
TEST VECIOQFk:
INFUT NUMBER----------=------ VALUE
O T
Bommmm s W=1
e i = 0
e it el D =1
G--—=-mmmm e =1
16— rmm e ¥ 1
l7--vmemmm e e - 21
19- -~ > 0
2l-==mmm e + 0
22---=——--m == ¥]
4= »=1
AAKRAAAKRKRkARRkARARARARRKARAKAAAAAKRAAA KA XX
TEST NUMERER 21:
CRITICAL-GATE NUMBEK CRITICAL-GATE OUTPUT-VALUE
6]
11 0
23 0
12 o]

145

T3ge

W&

146

UL sk eialy/ ORI YEY Lkl a4 Cagd
14 0

GATE NuM OUTFUT VALUE

1 -1

2 -1

3 -1

) 1

S]

6 1

7 -1

8 -1

9 0

10 1

11 0
12 0
13 -1
14 0
15 -1
16 -1
17 =1
18 -1
19 =1
20 0
21 1
22 o]

23 0
24 -1
25 -1

TEST VECTOK:

INPUT NUMBER--~-=----ceeem VALUE
D it T =1
D =1
e e L e]

L e 1
R b L L P LT TP]

B e 1

e et =1

L e T TP 1

19--oomrmme e - =1

el 1

e e L T 0

P e it -1

ARAKKRKAKARAAAKRRRKRAKRRKAARAARAAAAKAKAAR

TEST NUMEEE 223

CRITICAL-GATE NUMEEKR CRITICAL-GATE OUTFUT-VALUE

S]
9 Q
20 0
10 Q
12 0
14]
GATE NUM OQUTFUT VALUE
1 -1
2]
3 -1
4]
S 1
6 -1
? -1
e 0
9 0
10 0

147

it ibbechi g/ s8N aYeY 10054 Fise
11 -]
12 o
13 0
14 o
15 0
16 0
17 0
18 o
19]
20 0
21 0
22 1
23 1
24 -1
235 -1
TEST VECTOK:
INPUT NUMBER-----===-=c-co-oo VALUE
Jommm e »=]
d-=mmmmmm e > 1
J-mmmmmm e »=1
L e T > 1
R e |
[i v=1
15-=---mmmmmee e eeee >0
L e e D L LD LT 0 .
19----cecmm e e > 1
P e et > 0
22-=-mmmmm e ¥ 1
24~ mmmmmm e =1
AKAKRARARAAKARARAARAAAKAKRAARK AR A KK AKR KKK *
TEST NUMEEK 23:
CRITICAL-GATE NUMEEK CKITICAL-GATE OUTPUT-VALUE
9]
9 0
11 1
23 1
12]
14 1
GATE NUM OUTPUT VALUE
1 -1
2 -1
3 -1
4 1
] 1
6 0
7 -1
8 -1
9 0
106]
11 1
12]
13 -1
14 1
15 -1
le -1
17 -1
18 -]
19 -1

[SENE R
N -
o O

Uit icbevrnly?

16-JAN-19Y80 18:44

23]
24 -1
25 -1
TEST VECTOR:
INPUT NUMEER--==-===--=—eeo——o VALUE
| R et D e »=]
PR e =1
K et it =1
LR L L P > 1
N et bttt > 1
f-=—mmmcr e c e ———- > 0
15-—---~—~-mmmmemme =1
| B R ittt =1
19--ccmm e =1
2l-=-==mmmmmm e m e > 1
e e D > 0
24----mmm e »=1
AXAKRARARKRARRAARAAAKRAARARAKKRAAKAAAKAR A *
TEST NUMERER 24:
CRITICAL-GATE NUMEKEK CRITICAL-GATE OUTFUT-VALUE
4 :]
8 1
10 1
12 1
14 1
GATE NUM OUTFUT VALUE
1]
2 -1
3 -1
K 1
S -1
6 -1
7 -1
3 1
9 -1
10 1
11 -1
12 1
13 -1
14 1
15]
16 1
17 0
18]
19 0
20 o]
21 (]
22 1
23 1
24 1
25 1
TEST VECTOR:
INFPUT NUMBER--------—-=~—-—=—=—-- VALUE
l-———mmmmmmmce e > 1
2=mmmmmm e -1
R e DT >-1
L e e atatadted >1
R L L R >=1
G-~ >~1
15---—-mmmmemeeo >
>0

-

148

agze 19

149

GULYLILE. a7/ Po-dabN-1UbY 1634 rzgze <Q
19--=--cmmemmeem oo >0
D e >0
P R e et ¥ 1
Py et >1 -
ARKRRKARKKARKAARAARKKARRARKRAAARARARARA
TEST NUMEEK 252
CRITICAL-GATE NUMEER CRITICAL-GATE OUTPUT-VALUE
3 ’ 1
7 1
25]
8 1
10]
12 1
14]
GATE NUM OUTFPUT VALUE
: i
3 1
4 1
S -1
6 -1
7]
8 1
9 -1
19 1
1] -1
12 1
13 0
14 1
15]
16 1
17 0
18 0
19 0
2 Q
21 o]
22 1
23]
24 o
25 1
TEST VECTOK:
INPUT NUMBER--------==~=--—=-- VALUE
D e T >3
A m e m e e = o1
R e 1
L e >
S----mmmm - =]
[e e L »-1
15-=——==—-—-—mm - v
17======—mmmmmemm o >0
19-——mmmmmmmme e 7 0
P > 0
22-—---—mmmmmm o > 1
23— —mmmmmm - > 0
AARRAARRAAARAKARAARRAARARRARRAKRAAKAAAAX
TEST NUMEER 26:
CRITICAL-GATE NUMEEK CRITICAL-GATE OUTPUT-VALUE
2 1
13 Q
16 0
18 o

TGRN-LUBY 15144

GATE QUTFUT-VALUE

ULk thRekMly/ ¥
10 (]
12 o]
14 0
GATE NUM OUTFUT VALUE
1 -1
2 1
2 -]
2 -1
S =]
6 -1
7 -1
3 o
9 -1
10 Q
11 -1
12]
13 -0
14 o
15 0
16 [o]
17]
18 Qo
19 0
20 (o]
2 0o
22 1
23 1
24 -1
25 1
TEST VECTOK:
INPUT NUMBER-----=~=-=c-ceuue VALUE
R
I o -]
e it b e T i=1
R e e -1
G-=----mmmmm - i=1
Pl e D L > 0
17— rmm e e s 1
19~ o
el--mmmmmmm e e Q
23— mmmm e 1
.7 YOS 1
kk*kk*k*kkkkik*k**k*ﬁk}kk*k*kkkf*
TEST NUMEEK 27:
CRITICAL-GATE NUMEEK CKRITICAL-
2 1
7 1
25 1
8 1
10 1
12 1
14 1
GATE NUM OUTFUT VALUE
1]
2 1
3 1
4 1
S -1
6 -1
7]

-

Y

150

w

151

HULELLE LAY 7 P16-J&N-198% ib:44

8

9
16
11
12
13
14
15
16
17
18
19
20
el
22
23
24
25

TEST VECTOK:

-

-

HOHEOOOOOM I =MO « ' !t w

B el L T S S

24— e > 0
kkkkki*kk*k*kkkkkﬁk*kk*kk*ﬁk*k**ki*k*kﬁ
TEST NUMEEK ‘ 28:
CRITICAL-GATE NUMEEK CFITICAL-GATE OUTFUT-VALUE
1
8
10
12
14
GATE NUM OUTPUT VALUE
1
-1
-1
1
-1
-1
-1

Nt ot bt Pt Pt

VDN WUL W~

[¥

|5

VITA
Bijan Karimi
Candidate for the Degree of

Doctor of Philosophy

Thesis: COMBINATIONAL CIRCUITS FOR WHICH TESTS CAN BE GENERATED IN N2
TIME

Major Field: Engineering
Biographical:

Personal Data: Born in Tehran, Iran, December 20, 1952, the son of
Mr, and Mrs, A, Karimi,

Education: Graduated from Aryamehr University of Technology,
Tehran Iran, in January 1977; received Master of Science degree
in Electrical Engineering from Oklahoma State University in May
1981; Completed requirements for the Doctor of Philosophy
degree at Oklahoma State University in December 1985,

Professional Experience: Electronics Instructor, Academy of Army,
Tehran, Iran; Graduate Teaching and Research Assistant;
Department of Electrical and Computer Engineering, Oklahoma
State University, 1980-1985; Design Engineer, Texas Analytical
Control Inc., 1985,

