
COMBINATIONAL LOGIC CIRCUITS FOR

WHICH TESTS CAN BE GENERATED

IN N2 TIME

BY

BIJAN KARIMI
I\

Bachelor of Science
Aryamehr University of Technology

Tehran, Iran
1977

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
DECEMBER, 1985

\~~<s
19~5 u
~J15c
Cop. ;;L

COMBINATIONAL LOGIC CIRCUITS FOR

WHICH TESTS CAN BE GENERATED

IN N2 TIME

Thesis Approved:

ii

ACKNOWLEDGMENT

I would like to thank Dr. Louis Johnson, my advisor, Dr. Rao

Yarlagadda, chairman of my committee, Dr. David Soldan, and John Wolfe

for all the help they gave me.

I dedicate this piece of work to my wonderful wife Taraneh, my

wonderful son Abteen, and the memory of my wonderful father.

i;;

Chapter

I.

II.

TABLE OF CONTENTS

INTRODUCTION ••

REVIEW OF RELATED LITATURE ••••••••••••••••••••••••••••••

Page

1

5

III. CLASSIFYING CIRCUIT TOPOLOGIES FOR
EASY TESTING.. 18

IV. DESIGN FOR TESTABILITY.................................. 69

V. CONCLUSIONS AND RECOMMENDATION.......................... 90

APPENDIXES ... 93

APPENDIX A - LISTING OF THE TEST GENERATION
PROGRAM.................................... 94

APPENDIX B - LISTING OF THE PROGRAM WHICH CHANGES
A COMBINATIONAL LOGIC CIRCUIT TO A PIFD
LOGIC CIRCUIT •••••••••••••••••••••••••••••• 119

APPENDIX C - COMPUTER RESULTS FROM THE TEST
GENERATION PROGRAM FOR
TWO EXAMPLES ••••••••••••••••••••••••••••••• 128

iv

LIST OF TALBES

Table Page

I. The Information Found Using the Algorithm in
Figure 19 ••••••••••••••••••••••• ~······················· 46

v

LIST OF FIGURES

Figure Page

1. Path Sensitization and Line Justification................... 6

2. Example for Controllability and Observability............... 6

3. Example for Uncontrollable and Unobservable points.......... 10

4. Example of Circuits Consisting of NAND Gates
and INVERTER'S ••• ~.. 11

~. Basic Building Block ••••••••••••••••••••••••••••••••••••••• ~ 13

6. Example of Circuits Consisting of NAND Gates
with Added Control Inputs................................. 14

7. Shift Register Latch.. 15

8. Typical LSSD LSI Chip....................................... 17

9. Simple Loops.. 20

10. Venn Diagram.. 22

11. Example for Lemma!... 22

12. Example for Theorem 1....................................... 25
13. Path Sensitization in Circuits Consisting of

Simple Loops ••• 27

14. Conflict on a Reconvergent Gate because of Feedback
Loops and Fanout Origins.................................. 28

15. Line Justification in Circuits Consisting of
Simple Loops.. 30

16. Example for Theorem 2....................................... 32
17. A Free Tree... 35

18. A Logic Circuit with only one Input......................... 37

vi

Figure Page

19. Algorithm for Theorem 4 ••••••••••••••••••••••••••••••••••••• · 40

20. Example of Redundant Circuits Consisting of
Simple Loops.. 45

21. A Circuit Consisting of Simple Nested Loops................. 48

22. Topology of Simple Nested Loops............................. 49

23. Path Sensitization in Circuits Consisting
of Simple Nested Loops.................................... 50

24. Topology of Simple Totaly Nested Loops...................... 54

25. An Example of Circuits Consisting of Simple
Totally Nested Loops...................................... 55

26. An Irredundant Circuit Including a Redundant Loop •••••• ~.... 56

27. Conflict in Test Generation for the Loops
with Unconnected Fanout Origins........................... 57

28. Path Sensitization in Circuits Consisting of
Simple Totally Nested Loops............................... 59

29. Topology of Simple Connected Loops.......................... 61

30. An Example of Circuits Consisting of Simple
Connected Loops... 62

31. Conflict if Two Branches of a Fanout Origin
Reconverge on more than one Gate ••••••••••••••••••••• w.... 63

32. Path Sensitization in Circuits Consisting of
Simple Connected Loops.................................... 65

33. Line Justification in Circuits Consisting of
Simple Connected Loops.................................... 67

34. Example of two Reconvergent Paths........................... 71

35. Conflict becau$e of Inproper use of Test Inputs............. 73

36. A Circuit with Added Blocking Gates and Test Inputs......... 76

37. Use of Shift Registers for Test Generation.................. 77

38. Saving the Test Vectors inside the Chip..................... 78

39. Exampie of Gates which can be used as Blocking Gates........ 80

vii

Figure Page

40. Alternatives for Blocking Gates............................. 81

41. Example of Inputs which can be used as Test Inputs.......... 82

42. Example of a Combinational Circuit.......................... 85

43. The Circuit in Figure 42 with Added Blocking
Gates and Test Inputs ••••••••• ~··························· 85

44. Timing Results from the Test Generation Program............. 88

45. The Plot of the Time for Test Generation Versus
Number of Gates (in Ln-Ln Scale). Circles
Represent the Data from ALU Function
Generator. Crosses Represent the
Data from Arbitrary Circuits.............................. 89

viii

CHAPTER 1

INTRODUCTION

Digital systems are subject to physical faults during their life

time. With the increased complexity of digital systems, with huge

numbers of elements in an IC chip, the problem of testing digital sys­

tems for reliable performance has become more important. In general, a

fault in a system can be considered as anything which makes a system to

behave in a different way than for which it was designed. Faults can

occur during manufacture, assembly, storage, or operation. Faults which

alter circuit parameters such as current, voltage, or speed are known as

parametric faults. Faults which alter logical behavior of a circuit are

known as logical faults. Since faults can occur in a system at any

time, the system must be tested during its life time.

Testing consists of applying a set of logical values to inputs of a

circuit and observing the output to see if it is different from what was

expected. To test a circuit there must be a fault model to identify the

period of time that the fault will be present, the number of such faults

present at the same time, and the effect of the fault on operation of

the circuit. The most common logical fault model is a single permanent

stuck-at model which assumes a line in the circuit is permanently stuck­

at-logic zero or logic one (this model will be used throughout this

research study).

1

2

One way to test a circuit is to apply all possible input combi­

nations and observe the output. This method is not reasonable to apply

for circuits with large numbers of inputs because possible input combi­

nations grow exponentially with increasing numbers of inputs. Then it

is desirable to find a subset of input combinations which detects all

faults in the circuits. In a circuit consisting of N lines (N includes

primary inputs and outputs, and internal lines) there are 2N single

stuck-at-0/1 type faults.

Attention in this research study is focused on combinational cir­

cuits. Basic elements of these kinds of circuits are called gates and

there are no feedbacks or memory elements in combinational circuits.

Different gates under consideration will be AND, OR, NAND, NOR, and

INVERTER. Because of the complex topology (interconnection of lines)

that combinational circuits may have, there is no known algorithm which

generates tests in polynomial time for an arbitrary combinational cir­

cuit. In general, it is accepted that there exist no such algorithms.

With the growing number of gates on a single chip, ,even high order

(greater than 2) polynomial in time algorithms are not :desirable. Then

it becomes important that a designer designs a circuit in such a topo­

logical form for which tests can be generated in N or N2 time.

Redundancy is one of the reasons that test generation is time

consuming. A circuit is redundant if one or more lines of it cannot be

tested. Redundancy is an unwanted feature in most designs and a good

design rarely suffers this problem except in fault tolerant systems.

Then if topologies for irredundant circuits can be identified which make

circuits testable in N2 time, a designer may keep circuit topology close

to those identified topologies and save a great deal of time in the test

3

generation process. It would even be more desirable if a method for

design can be found which makes any circuit testable in N2 time. An

effort has been made in this research to identify the topology of cir­

cuits which can be tested in N2 time. Also a design method is intro­

duced which makes any circuit (even redundant circuits) testable in N2

time. A program has been written which generates tests for circuits

designed according to the proposed design method.

During test generation for a given fault it is possible that a

value assignment on a line be inconsistent with other value assignments

in the circuit. Then that value assignment must be removed and another

choice must be considered. This process is called backtracking. It is

this process which makes the process of test generatioh exponential in

time because without the need for backtracking, each single stuck type

fault can be detected by at most N value assignments in the circuit. If

there are no reconvergent paths in the circuit then there wi 11 be no

need for backtracking. For this reason reconvergent pa~ths are the main

subject of this research. Every two reconvergent paths will be referred

to as a loop.

In this research an attempt has been made to identify relative

positions and properties of the loops for which circuit can be tested in

time proportion a 1 to N2• The most genera 1 topo 1 ogy which has been

identified with the above property in this research consists of recon­

vergent paths which do not reconverge on more than one gate if they

originated from the same fanout origin, and they do not share gates with

other reconvergent paths if there is no path between their fanout ori­

gins. Also it is shown that any circuit can be tested in time propor­

tional to N2 if certain gates and inputs, called blocking gates and

4

control inputs respectively, are placed in specific locations in the

circuit.

CHAPTER II

REVIEW OF RELATED LITERATURE

The two most widely used methods of test generation for single

permanent stuck at logic values (0/1) are the 0-algorithm (Roth, 1966)

and critical path sensitization (Thomas, 1971). These methods use the

path sensitization concept to propagate a fault signal from the sight of

the fault to the output (s) of the circuit under test, where it can be

compared with the expected value in the normal circuit. Since this

concept will be used throughout this research study, it will be reviewed

here. Consider Figure 1 and the fault line "a•• stuck at 0 (a -s-a-0).

In fact it must be determined if this line can be set to a logic 1. For

this purpose a logic value 1 must be assigned to line •a". Other lines

in the circuit must be set to values such that the effect of the value

assignment of line "a" can be seen on the output of the circuit. In

other words the fault signal can be propagated to the output. To

achieve this goal, line 5 must be set to logic 1. If this line is set

to 0, then the output of the gate 14 will be 0 regardl~ss of the value

assignment on line "a". For the similar reason line 8 must be set to

logic 1. With these value assignments the value of the !output will be 0

if line "a" is not stuck at 0 and the value of the out~ut will be 1 if

line "a" is stuck at 0. This process is called path sensitization. To
'

generate a test for this fault (an input vector); 1 og l c va 1 ues on the
I

inputs of the circuit must be determined such that they set the internal

5

2

10

4

Figure 1. Path Sensitization and Line Justification

•i~z
·2~
.)

Figure 2. Example for Controllability and Observability CJ)

7

lines of the circuit to the desired values found in the path

sensitization process. This is called a justification process. In

order to have a 1 on 1 ine "a", either 1 ine 3 or 1 ine 4 can be set to

1. To have a 1 on line 8, either rine 6 or line 7 can be set to 1. If

line 6 is selected then either line 1 or line 2 (or both) must be set to

o.
It is known that the following fault detection problems:

1. Can all single faults be detected in a combinatioal circuit (is

the circuit irredundant)?

2. Can a fault in a particular input line x; be detected by input­

output experiments?

3. Can all single input faults be detected by I/0 experiments?

4. Can faults in the output line be detected by I/0 experiments?

are NP-complete (Ibarra and Sahni, 1975), i.e. there is a polynomial

time algorithm to decide if the above single faults are detectable if

and only if there is a polynomial time algorithm for problems such as

the traveling salesman problem. Then it seems very unlikely that a

polynomial time algorithm can be found (in terms o~ the number of

i"nputs, gates, or lines) to detect single faults. In fact, it would

appear that only algrithms with a computing time line1ar or at most a

square of the number of input 1 i nes and gates wou 1 d be feas i b 1 e for

large combinational circuits (Ibarra and Sahni, 1975). Even for rela­

tively simple circuits such as monotone and unate circuits these

problems are NP-~omplete if the numbers of levels in those circuits are

greater than 2 (Fujiwara and Toida, 1982). A circuit is said to be

monotone if all the variables appear unnegated in the expression

describing the function of the circuit. A circuit is said to be unate

8

if all the variables appear either negated or unnegated.

In the processes of path sensitization and line justification, it

is possible that a test generation algorithm has to select a choice

among several choices. Also it is possible that some or all of those

choices lead to conflicting assignments of values to nodes in the cir­

cuits. Then the algorithms has to backtrack and try different choices

until either a test is generated or there is no choice left. This

backtracking is the reason that the time complexity of test generation

algorithms is exponential, because in general an algorithm has to try an

exponential number of value assignment combinations until it finds a

test. Sometimes there is no test for a certain fault. In this case the

circuit is said to be redundant. If a circuit is not redundant then it

is called irredundant (Breuer and Friedman, 1976) or nonredundant. Test

generation for redundant circuits is more time consuming because all

possible choices must be tried by the algorithm before it can decide

that no test exists for a certain fault.

A great deal of work has been done to simplify the process of test

generation for 1 ogi c circuits and severa 1 methods of design for test­

ability have been proposed since 1970. There are two key concepts in

design for testability, controllability and observability (Williams and

Parker, 1983). Controllability is the ability to apply test patterns to

internal circuitry by exercising the input pins of that circuitry.

Observability is the ability- to determine the internal states of a

circuit by observing the output pins. All methods of design for test­

ability try to enhance the controllability and observability of a system

by some means. To appreciate the problem consider the simple OR gate in

Figure 2. In order to generate a test for the input fault x1 s-a-0, it

9

is necessary to control x2 and x3 to 0 and x1 to 1. Also it is neces­

sary that z can be observed to determine if this fault actually exists

in the circuit. In this case it is possible to control the inputs to

the desired values and observe the output. In general it is not always

possible to control a line in a circuit or observe states of a circuit

on the output. For example in Figure 3, line "a" cannot be controlled

to 1 and the effect of any value assignment on "b" cannot be observed

from the output. One way to enhance contra 11 abi 1 ity and observabil ity

of a circuit is to use test points. If a test point is used as a

primary input to the network, then that functions to enhance control­

lability. If a test point is used as a primary output, then that can be

used to enhance the observabi 1 ity of a network. In Figure 3, if the

test point "c" is added to the circuit then, the value on line "b" can

be observed through "c". The use of input test points has been dis­

cussed by Hayes (1974) for circuits consisting of 2-input NAND gates and

inverters. An example of the circuits consisting of NAND gates and

inverters is shown in Figure 4. Hayes has discussed that if a circuit

with a structure 1 ike this is changed to another circuit according to

the following rules:

1. Every inverter is replaced by an EX-OR gate while the other

input of the EX-OR gate is connected to logic 1 for normal operation of

the circuit.

2. Each NAND gate has only two input lines.

3. One EX-OR gate is placed on input lines of each NAND gate if no

inverter is preceding that 1 ine. The other input of the EX-OR gate is

connected to logic 0 for the normal operation of the circuit.

then the resulting circuit needs only five tests for complete testing of

ul
I
I
I
I
I
I
I
L- ---

N

U'l
......
s:::
0

a..
Q)

..0
ctl
>
~
Q)
U'l

..0
0
s:::

:::>

"'0
s:::
ctl

Q)
..0
ctl

..-
0
~

......
s:::
0
u
s:::

:::>
~
0
4-

Q)
0..
E
ctl
X

u.J

("')

Q)
~

::::
O'l .,..

Ll..

10

11

Vl
QJ

......
10

'-!:1

0
z
c:(
z:
4-
0

C'l
l:::

......
Vl

VI
l:::
0
u
VI
::JVI
u-
~c::: ~
Ul-

a::
4-~
0::>

z:
QJ-
r-
0.."0
Ec
ttl<O
X
~

<::t .. QJ

... ~
::J
C'l, ..

LL..

12

the circuit single stuck at faults. The basic building block of such

circuits is shown in Figure 5, and the circuit in Figure 4 is shown in

Figure 6 after modifications. The second inputs of the EX-OR gates are

used as control inputs to put desired values for test generation on the

internal lines of the circuit. Drawbacks in this method are that a

circuit must be changed to a circuit with the properties mentioned

before and a great amount of circuitry must be added to the circuit.

Another method of design for testability is partitioning. Goel

(1980) has shown by imperical results that the computer run time to do

test generation is approximately proportional to the number of logic

gates used in a circuit to the power of 3. Then partioning a circuit

into modules which can be tested seperately seems to decrease the time

required for test generation (Williams and Parker, 1983). Drawbacks for

this method are cost, space, and it is in contradiction with the purpose

of integration.

Another method of design for testability, which has received much

attention, is Level Sensitive Scan Design (Berglund, 1978). This method

of design for testability is for sequential circuits but it is important

to be mentioned here because it reduces the complexity of the test

generation to that for combinational circuits. This design methodology

also uses the concept of controlling inputs. The only type of storage

element permitted in this technique is a shift register latch (SRL),

which is a pair of D flip-flops, as shown in Figure 7. The output of

the first latch (L1) serves as data input to the second latch (L2). L1

is used as storage element and Lz is used to enhance testing of the

circuit. The D input of L1 comes from the output of a Lz and the output

of Lz is an input to another L1• Then all latches in the circuit are

~
u
0 ,.......
c:c
t:n
s:::

"0 ,.......
:::::s

c:c
u
Vl ..,

c:c

....
LJ...

13

14

Cl
:z:
c:r::
:z:
4- Vl
0-i->

:::l
O'l Cl..
c:: c:: .,...

.j...)
Vl,.... 0
Vl ~
C::-i->
0 c
u 0

u
Vl

.j...) "'0 .,... Q)
:::l"'O
U"'O
~c:r:: .,...
u .c

.j...)
'+- .,...
0 3:

Q) Vl ,.... Q)
Cl.. .j...)

E ttl
ttS<.!:l
X

LLJ

• • • 1.0 ~ ~ ~

Q) .- I" ~

~ .
:::l
O'l .,...

LL.

N
,..l

I

....
,..l

Q <

..c:
u

+->
1'0

...J

~
QJ

+->
Ill .,..
O'l
QJ

0:::

+->
4-

..c::
(,/)

15

16

chained together by this scheme. The first L1 in this chain is

connected to an input pin called SOl (Scan Data In) and the output of

the last L2 is connected to an output pin called SDO (Scan Data Out).

There are four input to each L1 which have the following functions.

Input 0 is connected to a L2 latch, input A is a clock which is used to

clock 0 into L1, input I is a data line for the use of the designer, and

input C is a clock which clocks data from the I into L1• Input B to L2

is a clock used to clock the data output from L1 into L2• Figure 8 is

typical to circuits which use LSSD technique. In this figure, if the

output of a combinational circuit is directly connected to a primary

output then that output can be used to detect faults in the combi­

national part, and if the output of the combinational part is input to a

latch then this output signal can be run through the chain of latches

until it reaches the SOO pin. Thus, using this technique reduces the

. complexity of testing to that for combinational circuits.

I ..
I U
I
I

r-----,
• I
I

I ! I c •

. ..
1
A

l

17

c.

CHAPTER III

CLASSIFYING CIRCUIT TOPOLOGIES

FOR EASY TESTING

In this chapter different topologies for combinational circuits

which make them testable in N2 time and restrictions on these topologies

will be discussed. In chapter IV a simple design method will be

presented so that if a combinational circuit is designed according to

that method, then it will be testable in N2 time. There are some terms

which will be used throughout this chapter and chapter IV. The

following definitions are needed to understand the meaning of each term.

DEFINITION: A propagation value is a value which must be assigned

to some inputs of a gate in order that fault(s) on other input(s) of

that gate can be propagated through that gate. This value is "0" for OR

and NOR gates "1ft for AND and NAND gates.

DEFINITION: A path in a circuit from a point to an output is sen­

sitized if all inputs to the gates in that path (other than those on the

path) are set to propagation values.

DEFINITION: A point in a circuit is justified for a logic value if

inputs of the circuit have values which generate that logic value on

that point.

DEFINITION: A circuit is redundant if it contains untestable nodes.

DEFINITION: A circuit is totally irredundant if all subcircuits of

that circuit are irredundant. A subcircuit consists of a subset of

18

19

gates in the circuit and the inputs to those gates.

DEFINITION: The path sensitization process is the process of sen­

sitizing a single path and finding all the forced values in the circuit

because of the assignment of propagation values on the sensitized path.

DEFINITION: The justification process is the process of assigning

proper values to the inputs of a circuit in order to justify the values

on the outputs of the gates which some values have been assigned to

their outputs during the path sensitization process but the inputs to

those gates have not been forced to propagation values because of the

values on the outputs of those gates.

DEFINITION: A .. fanout origin .. is a point in a circuit 'r'lith more

than one line exiting from it. Lines which exit from this point are

called 11 fanout branches .. of that fanout origin.

DEFINITION: A 11 reconvergent gate .. is a gate that at least two

branches from the same fanout origin have a path to that gate.

DEFINITION: A loop is part of a logic circuit which consists of two

branches of a fanout origin which reconverge on a gate. This includes

the fanout origin, the gates, and the outputs of a 11 gates on the two

branches.

DEFINITION: A 11 Simple loop .. is a loop which has no fanout origin on

outputs of gates on any of its branches and does not share any gate with

other loops with different fanout origins or reconvergent gates. Then

loops with the same fanout origin and reconvergent gate can share

gates. Figure 9 shows a circuit consisting of four simple loops. The

four simple loops include the following set of points and the gates

between each two points: (E,A,D}, (E,A,C}, (D,A,C}, (G,B,F}.

DEFINITION: A point in a circuit is 11 blocked 11 for a certain value

20

Q

Vl
0.
0
0

....J

CIJ·
..-
0.
E .,_

(/')

C'l

ClJ
s...
:::l
C'l

u..

< ..

21

if that value cannot be propagated through gates to primary outputs.

DEFINITION: A conflict occurs during the path sensitization or

justification process if the assignment of a value at some point in the

circuit be inconsistent with previous value assignment(s) in the cir­

cuit.

DEFINITION: A point which is part of a loop is marked as conflict

for a value if assigning that value to that point forces the input to

the reconvergent gate on the other branch of the loop to a value which

is not a propagation value for that gate.

DEFINITION: A circuit is called "path independent fault detecting"

(pifd) if a fault can be detected through any path from the sight of the

fault to the primary output(s) without facing any conflict.

LEMMA 1: In any logic circuit if "A is true" implies "B is true" then

"complement of B is true" implies "complement of A is true".

PROOF: The proof for this lemma is a direct conclusion from Venn dia­

grams for logic functions. Figure 10 shows this property.

From Lemma 1 it can be concluded that if assigning a value "a" at

some point "A" of a logic circuit forces another point "B" to value 11 b"

then assigning the complement of 11 b" to "B" forces the value of "A" to

complement of "a'.

EXAMPLE: In Figure 11 assigning a logic "1" to "A" forces "B" to logic

"0" and assigning logic "1" to "B" forces "A" to logic "0".

THEOREM 1: Consider a circuit with reconvergent fanouts restricted to

simple loops and initially all lines have don't care values. If assign­

ing a value on one branch of a fanout origin forces a value at some

point of another branch of the same fanout origin then this dependency

22

@
Figure 10. Venn Diagram

II

Figure 11. Example for Lemma 1

23

can be found in time proportional to N where N is the number of lines in

a circuit.

PROOF: If a value assignment on one branch of a fanout origin forces a

value on the other branch of the same fanout origin, then it must force

the fanout origin to some value which in turn forces the point on the

other branch to some va 1 ue. The reason that the fanout origin wi 11 be

forced to some value is that since initially all lines in the circuit

are set to don•t care values then the first value assingment on a branch

of a fanout origin does not have to satisfy any condition with respect

to the other value assignments in the circuit. Then the only way that a

point on the other branch can be forced to some value is by forcing the

fanout origin to some value first and then propagating the effect of

this value on the other branch. Then using Lemma 1, assigning the

complement of the value on the fanout origin forces the point in the

first branch to the complement of the value it has. According to this

conclusion there is a procedure which can find this dependency as fol­

lows:

1. Put a "0" on a fanout origin and find forced values on branches

of the fanout origin (call them branch one and two).

2. Put a "1" on the fanout origin and find forced values on branches

of the fanout origin.

3. Consider the set of points on branch one which were forced to

some values in step 1. If the complement of values in step 1 are

assigned to any of these points, then by Lemma 1, the fanout origin must

be forced to a "1" which forces the points found in step 2 on the second

branch to the values found in step 2. The same thing is true for branch

2.

24

Since this process needs at most 2N value assignments then this

process can be done in time proportional to N. This process is called

"preprocessing of fanout origins".

EXAMPLE: In Figure 12 assigning a "0" on point "H" forces points "A"

and "B" to "0", and points "C" and "D" to "1". Assigning a "1" on point

"H" forces points "E" and "F" to "1", and point "G" to "0". Then

assigning a "0" on points ,.C" or "D" or a "1" on points "B" or "A"

forces points "E" and "F" to "1" and point "G" to "0".

NOTE 1: Assume only one reconvergent gate exists for branches of some

fanout origin. If assigning a value on one branch of a fanout origin

which has a path to the reconvergent gate, forces one or more of inputs

of the reconvergent gate on other branches to va 1 ues which are not

propagation values, then faults on the original point for the complement

of the assigned value cannot be tested through the output of the recon­

vergent gate. This point is marked as a "conflict" for that value.

NOTE 2: Theorem 1 does not indicate that all fQrced values in a circuit

due to a value assignment can be found in N2 time because it was assumed

that all lines were initially set to don•t cares.

NOTE 3: Theorem 1 can be applied to any circuit topology as long as the

propagation of a value assignment on one branch of a fanout origin in

the forward direction does not force a value on the other branch(es) of

the fanout origin. In general the preprocessing of fanout origins can

be used to predict some of the sources of backtracking before starting

the test generation.

THEOREM 2: The process of test generation, which consists of sensiti­

zation and justification of a single path for each fault, for irre­

dundant circuits with reconvergent fanouts restricted to simple loops is

--..

"" "'

E
ClJ
~
0
ClJ

.;:::.
1-

~
0
4-

ClJ .­
a.
E
rc
X

1.1..1

25

26

proportional to N2 in time where N is the number of inputs to all the

gates in a circuit (number of lines). It is assumed that all the lines

in the circuit have don•t care values prior to test generation and the

fault signal on an input of a gate will not be propagated to the output

of that gate until the backward effect of value assignments on all

inputs of the gate is found throughout the circuit (the two 1 atter

conditions will be considered for the other theorems as well).

PROOF: Consider Figure 13 which can be part of a larger combinational

circuit. Suppose a test is to be generated for a fault on line A by

propagating the value on A to the output through the gates

G3, •• ,GR,OUT. First, only the value assignments necessary for sensiti·

zation of the path will be considered. If value assignment on A forces

C to some value Cv then A and C must be on a loop with GR as recon­

vergent gate. Notice that there are two ways that value assignment on A

can force C to some value without being on a loop with it. The first

one is to force the output of GR to some value which in turn forces C to

some value. The second one is to force a fanout origin, in the forward

direction, to some value which in turn forces C to some value. If the

first case happens then it means that there is either a feedback from

the output of a gate GN, to which GR has a path, to A or the output of

the two gates GN and GM are connected together as shown in Figure 14.

It is obvious that both connections are in contradiction with the

definition of (topology of) combinational circuits. For the second case

consider Figure 14. If a value assignment on A forces F1 to some value

which in turn forces C to a nonpropagation value then at least one of

the faults on one of the branches of F is undetectab 1 e which is in

contradiction with the assumptions made in this theorem. If Cv is not a

27

!/)

(.) !/)

Q.
::I 0
~ 0

......I
w

Q)
s:::,..... Q.

E
S:::•r-
0 (/)

...... 4-
ttl 0
N 0\ s:::
Vl
s::: 1/')

Q)•r-
(/) 1/')

s:::
.s::: 0 u
ttl

c..

(V)

Q)
~
:::1 Q 0\

I
I.J..

I I
L ____ T ____ _j

I

r..' I
I

A I -~-~ -----' . -rr

--GJ------~

Figure 14. Conflict on a Reconvergent Gate because of
Feedback Loops and Fanout Origins

N
co

29

propagation value then the fault on A cannot be propagated through GR.

Since all the loops are simple, then there is no other way for the fault

on A to be detected through, which means fault on A cannot be detected

which is in contradiction with the assumptions made in this theorem.

Notice that inputs like D, which are not part of the loop but are inputs

to the gates on the loop, cannot be set to any value becasue if value

assignment on A forces D to some value then it means th'at two inputs to

G4 are on a loop which indicates that two loops with reconvergent gates

G4 and GR are sharing gates. Then no conflict can occur because of the
'

value assignments on inputs like D. If value assignment on B, or any

line which is set to propagation value on the sensitize~ path, forces C

to a non-propagation value then GR is a reconvergent gate for two dif­

ferent loops, one with (A,C,GR) and the other one with (B,C,GR). If A

and C are not on a loop but B and C are and C is forced to a

nonpropagation value because of the value assignment on ~' then at least

one fault on B cannot be detected. If a propagation value on a line

like B, which is forced to a value in order to satisfy the requirements

for path sensitization, needs the requirments which cannot be satisfied,

for example if B is the output of an AND gate and has the value "1" but

a "1" on one the inputs of this gate forces another input of this gate

to a "0", then there is a redundancy in the circuit (line B is stuck at

some value) which is in contradiction with the assumptions made in this

theorem. Since no value assignment in path sensitization can· create

conflict then there is no need for backtracking.

Now suppose there are two gates G1 and G2 with some values on their

outputs but the inputs to G1 and G2 are not justified for those values,

as shown in Figure 15. Consider one of the inputs to G1 , "A", which is

Q

I
I
I
I
I
I
I

~
I
I
I

~
I
I

I ~ L ______ r _____ _J

c:n
1::

.j..)

Vl
!

Vl
1::
0

u
Vl

.j..) .,....

1::
0 Vl

c..
+-'0
ttl 0
u _J

'+-QJ .,.... ,.....
.j..) a.
Vl E
:::! ttl
'J V'1

QJ'+-
1::0

_J

30

31

to take a value in order to partly (part of the condition for justifying

the va 1 ue on the output of G1) or camp 1 ete ly justify the va 1 ue on the

output of G1• Suppose that because of value assignmerts from A to a

primary input, a va 1 ue assignment on a point B forces. the input C of

gate G2 to some value Cv· Since both G1 and G2 have ~ path to a gate

which is (or its output is) part of the sensitized path, and also there

is a different path from B to C, then it means that they are on a

loop. Since all the loops are simple, again no input ~uch as D can be

set to a value by value assignment from A to B or there will be two

loops which are sharing gates. If Cv does not have a correct value to

justify the value on the output of G2, then D can be set to that value

and no value assignment from A to primary inputs can seti D to some other

value or loop (E,C,B,A,GR) is shar:ing gates with another loop. The

reason that only a correct value on one input of G2 is enough to justify

the value on the output of G2 comes from the fact that the value on the

output of G2 does not force all the inputs to G2 to pr~pagation values

according to the definition of justification process given at the begin­

ning of this chapter. Then a nonpropagation value on one of the inputs

of G2 is enough to justify the value on the output. Then no conflict

can occur during the line justification and there is no need for back­

tracking.

Since both processes of path sensitization and line justification

are conflict free then to detect each fault in the circuit not more than

N value assignments are necessary and since there can be 2N such faults

then the whole process can be done in time proportional to N2•

EXAMPLE: Consider the circuit in Figure 16. To detect faults on "d",

the two other inputs of G5 must be set to logic "1". To justify a "1"

u .,

N

E
(J)
~
0
(J)

..1::
1-

4-
0

(J)
.-
c..
E
n:!
>< w

(J)
~
::s
O'l

LL...

32

33

on the output of G2, a "1" is required on either of the inputs of G2•

Suppose the output of G1 is selected in this step. Now to justify a "1"

on the output of G1 requires logic ''1" on "a" and "b". A "1" on "b"

will force the output of G3 to logic "0" which in turn will force the

output of G4 to logic "0" which is a conflic for propagating a fault on

"d" through G5• According to theorem 1, such a circuit must be redun­

dant and at least the fault on the input of G1 which is a branch of "b"

cannot be detected through G5 for the comp 1 ement va 1 ue on this 1 i ne.

The value on this input of G1 is a "1". To detect a s-a-0 on this line

a "1" must be assigned to "b". Assigning a "1" to "b" forces the output

of G4 to "0" which violates the propagation rules on G5• Then the fault

s-a-0 on the branch of "b" which is an input to G1 cannot be detected

which makes the circuit redundant.

NOTE 1: In Figure 13 since the fault on "F" can be propagated through

both branches, and the type of circuits presented in Theorem 2 consist

of only isolated simple loops, then faults on any point of this kind of

circuit can be propagated and detected through any path which includes

that point. Then this type of circuit is path independent fault

detecting.

NOTE 2: There is no 1 imi t on the number of fanout branches as 1 ong as

assumptions made in Theorem 2 hold.

NOTE 3: A circuit with the topology given in Theorem 2 is redundant if

a value assignment on a fanout origin forces one or more of the inputs

of a reconvergent gate to a value other than the propagation value for

that reconvergent gate. This is a direct result from Theorem 2.

Now an upper bound will be found for the number of tests for path

independent fault detecting circuits.

34

LEMMA 2: The number of paths in a combinational circuit with no recon­

vergent fanout from one of the primary inputs to any of the primary

outputs is equal to:

A-B+1

where

A = # of fanout branches on the paths which connect the primary

input to primary outputs

B = # of fanout origins on the paths from primary input to primary

outputs.

PROOF: A circuit as described above can be considered as a free tree

where a free tree is defined to be a finite connected graph with no

simple cycle (Standish). The fanout origins and the primary input and

outputs are vertices of the tree and lines connecting ve,rtices are edges

of the tree.

In a free tree we have the relation e=v-1 where "e" is the number

of edges and "v" the number of vertices. In a tree as shown in Figure

17, the number of paths is equal to the number of primary outputs. The

reason for this is that any distinct path (two paths are distinct if

they are different in at least one edge) originated from the primary

input will end with one primary output in a free tree.

If vertices other than primary outputs are called ~internal nodes"

then we have:

e= # of paths + # of internal nodes - 1

or

of paths = e - # of internal nodes + 1

but "e" in a combinational circuit is nothing other than the number of

fanout branches and internal nodes are fanout origins. Then we have:

35

figure 17. A Free Tree

36

of paths = # of fanout branches - # of fanout origins + 1

or

of paths = A - B + 1

NOTE: In circuits with one primary input and the topology given in

Lemma 2, only two tests are necessary to detect all single stuck at

faults on a given path. Then, the maximum number of tests in these

circuits is as follow:

max # of tests = 2(A - B + 1)

THEOREM 3: The maximum number of tests to detect all :single stuck at
I

faults for path independent fault detecting circuits is as follows:
I

2(# of fanout branches - # of fanout origins + # of primary inputs)

PROOF: Consider Figure 18 which without dotted lines has no recon­

vergent fanout as required to apply Lemma 2. To detect ~ll single stuck

at faults on the dotted sub-path no more than two tests are needed

because it is enough to select a path which covers this line from a

primary input to a primary output and generate tests for this path.

Since one additional fanout branch is added and two more tests are

needed then the maximum number of tests for circuit in Figure 3.8

including the dotted line is still :

2(# of fanout branches - # of fanout origins + 1)

Now assume we have a circuit with n primary inputs. For the first

input we find all the paths which connect this input to primary out­

puts. For input i>1, we find all paths which connect that input to

primary outputs which have at least one edge that has not appeared in

paths found for primary inputs 1 to i-1. There could be edges on the

paths originating from input i and merging to one of the paths covered

by those for primary inputs 1 to i-1. For each of these edges, which

+-'
::::s
c...
s::

(J)
s::
0

>,
.-
s::
0

~
+-'

3:

+-'

::::s
u s.. .,_
u
u

O'l
0
-'
c::(

co

(J)
s..
::::s
O'l

LJ...

37

38

are fanouts with paths to input i and are not covered by paths found for

inputs 1 to i-1, we need two tests (the same thing as for· the dotted

line). Then there is no line in the circuit which is not covered and no

path from primary inputs to primary outputs which has a 11 its edges

covered more than one time. Then for the paths found for input i with

fan outs which do not merge in to any path covered by another input we

have the same relation for maximum number of tests as in Figure 18 and

for each fanout merging to another path covered by anot~er input we need

at most two tests. Then for the paths found for inp~t i and merging

edges on these paths we have:

max # of test(i) = 2(# of fanouts(i) - # of fanout origins(i) + 1)

Adding up "max # of test(i)n for i=1 to n we will have:

max # of tests = 2 (# of fanouts - # of fanout origins + # of primary

inputs)

Now the process of test generation for redundant circuits with

reconvergent fanouts restricted to simple loops will be studied. It

should be kept in mind that because of the properties stated in the

proof of Theorem 2 for the circuits with the same topology, Theorem 1

can be applied to these circuits.

THEOREM 4: The blocking process (determining the blocked points) for

redundant circuits with reconvergent fanouts restricted to simple loops

is proportional to N2 in time.

PROOF: First the preprocessing of fanout oringins presented in Theorem

1 should be applied to all fanout origins of the loops in order to find

all the points in a loop which cannot be tested for some values. For

each point found this way and marked as conflict for a propagation value

consider all the other inputs to the gate that has this point as its

39

input if those inputs are not affected by the assignment of propagation

value on the conflict point. Because this input can be one of the

inputs to the reconvergent gate and some of the inputs to the recon-

vergent gate are affected by this value assignment. Conflicts on the

other branch will be found seperately. For each of those inputs travel

backward on all the possible paths and mark all those points as

"blocked" until a fanout origin is faced. If all branches of a fanout

origin are marked as blocked again travel backward and mark those points
I

as "blocked" until another fanout origin or a primary input is faced.

Using preprocessing of fanout origins, a 11 the outpu~s of the recon­

vergent gates which are stuck at some value can be ide~tified and their
I

effects can be propagated throughout the circuit, an~ using backward

traveling on the inputs of the affected gates the points which are

blocked can be identified (if an input of a gate is ,stuck at a non­

propagation value then the other inputs are blocked). If all inputs of

a gate are marked as stuck at some value then its output must be marked

as "stuck at value", if it is not already marked, and the effect must be

propagated throughout the circuit and all blocked • points must be

found. If all inputs of a gate are marked as "conflict" and "stuck at

value" then the input marked as flconflict" (there is only one such input

because loops are simple) must be treated as if it were a fanout origin

for the loop on which it lies if the output of the gate is not marked as

stuck as a value, and preprocessing of fanout origins must be done for

that input and all blocked points due to this situation must be identi­

fied. Notice that the forced values which are already found do not need

to be found again. Since the preprocessing of all fanout origins

requires time proportional to N2 and the rest of the process does not

NO

TAKE ONE FANOUT ORIGIN fROM THE LIST
AND DO THE PREPROCESSING FOR THAT.
FIND All CONFLICTS AND POINTS WHICH
ARE STUCK AT SOME VALUE.

FIND All THE OTHER
STUCK AT SOME VALUE
POINTS BECAUSE OF
THIS VALUE ASSIGN­
MENT.

Figure 19. Algorithm for Theorem 4

40

NO

NO

PROPAGATE THE CONFLICTING VALUE
FORWARD AND HARK ALL AFFECTED
LINES AS CONFLI~. FIND GATES
WITH ALL INPUTS HARKED AS CONF­
LICT AND STUCK AT SOHE VALUE.

Figure 19. (Continued)

41

!I()

YES

YES

TAKE ONE OF SUCH INPUTS AND
OMIT IT FROM LIST OF SUCH
INPUTS.

Figure 19. (Continued)

42

YES

TRAV!:L S.O.CKWAAD FROH TRAT POINT AND
11ARX ALL THE LINES AS BLOCKED AND
UNSTA8LE fOR BOTH 0 AND 1 UNTIL A
fANOUT QRICIN OR PRIMARY INPUT IS
fACED.

NO

Figure 19. (Continued)

43

44

need marking more than N points as "conflict", "stuck at value", or

"blocked" then this process is proportional to N2 in time. An algorithm

is given for Theorem 4 in Figure 19.

THEOREM 5: The process of test generation for redundant circits with

reconvergent fanouts restricted to simple loops is proportional to N2 in

time.

PROOF: Using "blocking process" presented in Theorem 4,~ all paths which

are blocked for certain faults can be found in time proportional to N.

In the justification process there will be no conflict because all the

choices for justifying a value on output of a gate which cause conflicts

are already marked and will not be chosen. Since to detect each fault

no more than N value assignments are required and at most for 2N faults

(factor of 2 is for stuck-at-1 and stuck-at-0 faults) tests must be

generated seperately, then the time for the whole process is propor­

tional to N2.

EXAMPLE: Figure 20 shows a redundant circuit with reconvergent fanouts

restricted to simple loops. Applying the preprocessing of fanout

origins and the blocking pr.ocess on the circuit in this figure give the

results shown in Table I. As can be seen in this figure, all the points

which are not testable or must not be chosen in the justification

process are marked.

Identifying Reconvergent Gates in Circuits Consisting of Simple Loops:

One of the requirements for making the table in the previous

example is to identify reconvergent gates. The following procedure

presents a method by which reconvergent gates can be identified in time

proportional to N2:

45

::: 0'1
1::

~
Ul .,...
Vl
1::
0
u

~ Vl
~ .,...
::l
u
s...

u
~
1::
~

"'0
1::
::l

"0 Vl
Q) c.

c::: 0
0 4-J ..,

0
Q)

Q).-..... c.
C..E
E·.-
~(/')
X

w

0
N

Q)
s...
::l
0'1

~

'4 "' N

46

TABLE I

THE INFORMATION FOUND USING THE ALGORITHM
IN FIGURE 19

LINE # STUCK BLOCKED CONFLICT CONFLICT NOT TESTABLE
AT FOR FOR VALUE ON RECON. FOR STUCK

GATE AT

1
2
3 1,0 1,0
4
5 1 1 8 0
6 0 0 8 1
7 1 1 8 0
8 0 0
9 0 0 8 1

10 1 1 27 0
11 1 1 27 0
12 1,0 1,0
13 0 0 27 1
14 1 1 27 0
15 1,0 1,0
16 1 1 27 0
17 1,0 0 23 1,0
18 1,0 1,0
19 1,0 1,0
20 1,0 1,0
21 1,0 0 23 1,0
22 1,0 1,0
23 1,0 1,0
24 1,0 1,0
25 1,0 1,0
26 0 0 27 1
27 1 0 1
28
29
30
31
32
33

47

For all fanout origins do the following:

Travel on all branches of a fanout origin until a primary output, a

fanout origin, or a reconvergent gate is faced. Mark all gates in

between by the number assigned to the branch which has been traveled.

If a gate which is already marked by another branch is faced, mark that

as a reconvergent gate of those branches on which this gate lies. Stop

the process on that branch and process a new branch.

As can be seen from the abov~ procedure, at most marking N gates is

necessary to identify the reconvergent gate and the corresponding fanout

branches of a simp 1 e fanout origin, and a reconvergent gate will be

marked at most N times. Then this process is proportional to 2N for one

fanout origin. Since there are no more than N fanout origins then the

whole process can be done in time proportional to N2•

DEFINITION: A simple nested loop is a simple loop with the excep­

tion that it can share gates with loops with different reconvergent

gates.

An example of circuits consisting of simple nested loops is given

in Figure 21. An example of the topology of the loops in such circuits

is given in Figure 22.

THEOREM 6: The process of test generation for irredundant circuits with

reconvergent fanouts restricted to simple nested loops is proportional

to N2 in time.

PROOF: Consider Figure 23 in which the fault on line A is supposed to be

propagated through the path (G2, ••• , G3, ••• , GR, ••• , OUT). If the value

assignment on A forces E to some value Ev then as it was shown in the

proof of Theorem 2, A and E must be on a loop with GR as reconvergent

en
Q.

0
0
--l

-o
(J)

+->
en
(J)
z:
(J)

.--
0.
E
V)

4-
0

01
c:
+->
en

en
c:
0
u
+->

:::l
u
~

. u
~

N

(J)
~
:::l
01

LL.

48

Vl
c..
0
0
_J

-c
Q)

+-'
Vl
Q)
:z:
Q)
r-
0..
E
(/)

4-
0

>,
C'l
0
r-
0
c..
0
I-

N
N

Q)
~
:::l
C'l .,...

I..L..

49

~!

u "'·
'

~
I I

~'W ..

z -

Vl
s::
0
u
Vl
.l-)
.,_
::l
u
~

•r- Vl
u c..

0
s:: 0

•r-J

S::"'C
0 QJ

.,_ .l-)

-l->Vl
tOQJ
NZ: .,_
.l-)QJ
.,_ r-
VlCl..
s:: E
QJ•r­

(/') (/')

~ 4-
-l->0
tO

c..

('"'")

N

QJ
~
::l
Ol

50

51

gate. If Ev is not a propagation value then the fault on A will be

undetectable because there is no fanout origin between G2 and GR which

introduces a different path from A to a primary output. It is true

because reconvergent fanouts are restricted to simple nested loops. If

value assignment on B forces E to a nonpropagation value then at least

one fault on B cannot be detected for the same reason stated for A. The

same reasoning can be used to show that if value assignment on C or D

forces E to a nonpropagation value then there are undetectable faults on

C or D. Now suppose that value assignment on E (Ev) is inconsistent

with the values on C or D. Then E is on a loop with C or 0 (or both).

The values Cv and Dv on C and 0 force E to Ev which is a nonpropagation

value, then at least one fault on C or D cannot be detected because it

cannot be propagated through GR. The rest of the proof for path

sensitization is the same as stated in Theorem 2. Since no value

assignment can create a conflict during the path sensitization then

th~re will be no need for backtracking.

For the proof during the justification process, consider Figure

15. Since there are simple nested loops in the circuit, it is possible

because of a value assignment on B that both lines C and D be forced to

propagation values which are inconsistent with the value on the output

of G2. But if that happens then there is at least one fault on B which

cannot be propagated through GR (notice that the only way that a value

assingment on B and the other lines from B to the primary inputs can

force C and 0 to some value is through F) and since due to the topology

of the simple nested loops there is no other path for the fault on B to

be detected through, this fault is undetectable which means the circuit

is redundant, which is in contradiction with the assumptions made in

52

this theorem. Then there is no need for backtracking in the line just­

ification.

Since there is no need for backtracking in path sensitization and

line justification then at most N value assignments in the circuit are

necessary to detect a fault. At most there are 2N such faults, then

there is no need for more than 2N value assignment in the circuit which

means the required time for test generation is proportional to· N2•

NOTE: Since the faults on a fanout origin can be propagated and

detected through any branch of that fanout origin then circuits of this

kind are path independent fault detecting.

The next topology of loops which will be considered is "simple

totally nested loops."

DEFINITION: Simple totally nested loops are loops with the following

characteristics:

1. They can have fanout origins on their branches providing that the

branches of these fanout origins must reconverge on the gates which have

paths to the reconvergent gate of the loop from which they are origi­

nated.

2. No two loops may share gates if in forward traveling of paths in

the circuit there is no path between their fanout origins.

3. No two branches of a fanout origin may reconverge on more than one

gate.

An example of the above topology is given in Figure 24 and an

example of the circuit consisting of simple totallynested loops is given

in Figure 25.

The conditions in the definition of simple totally nested loops

eliminate the possibility that if a point on a loop cannot be tested

53

through the reconvergent gate of that loop then it may be tested through

another path. Figure 26 shows an example of what may happen if con­

dition 1 is eliminated. In this figure the fault a-s-0 cannot be propa­

gated through "c" but it can be detected through "b" while the circuit

is irredundant. Elimination of condition 2 makes it possible for a gate

which is on different loops to be affected by value assignments on

fanout origins of those loops. Although all the loops are irredundant,

those value assignments may cause a conflict to occur on a reconvergent

gate and the test generation process may not be conflict free. An

example of such a situation is given in Figure 27. Suppose "a".must be

justified for value "1" and arbitrary choices have assigned a "1" on

"b", "g", and "c". Then "d" and "e" wi 11 be forced to "0" and "1"

respectively for a "1" on "h" and "i". These value assignments put a

"0" on "f" which is a conflict. Note that no value assignment on a

single fanout origin causes a conflict on a reconvergent gate, but to

justify "g 11 for a "1" a certain combination of value assignments on

fanout origins are required although the whole circuit is totally irre­

dundant. Condition three guarantees that no two branches of a fanout

origin can reconverge on more than one gate·because if two branches of a

fanout origin reconverge on more than one gate then it is possible that

not all paths in a circuit can be sensitized even in totally irredundant

circuits as will be discussed later where the definition of simple

totally nested loops will be modified for totally irredundant circuits

with more complex topology.

THEOREM 7: The process of test generation for irredundant circuits

consisting of simple totally nested loops is proportional to N2 in time.

PROOF: Consider Figure 28 and assume that a test is to be generated for

VI
c.
0
0

...J

"C
Q)

-1-'
VI
Q)
s::::

..-
<0
-1-'
0
1-

Q)
..-
c.
E
(/)

4-
0

>,
O'l
0
..-
0
c.
0
I-

'<t'
N

Q)
s...
::l
O'l

I.J....

54

Figure 25. An Example of Circuits Consisting of Simple
Totally nested Loops

55

u

+-'

~
u
s..

u a.
0

+->0
C-l
n::l

"'0+-'
c c
~ n::l

"'0 -a
<ll c
!- ~
s--o
-<ll

0:::
c

c:(

.,...
LJ...

56

b

Figure 27. Conflict in Test Generation for the Loops
with Unconnected Fanout Origins

tTl
'-1

58

the fault on line A. Suppose that the fault signal is to be propagated

through GR. If va 1 ue assignment on A forces C to a nonpropagat ion

value, then A and C are on a loop as was stated in the proof of Theorem

2. Although there can be fanout origins between A and GR, according to

the definition of simple totally nested loops the fault on A must be

propagated through GR. Then the fault on A will be undetectable which

is in contradiction with the assumptions made in this theorem. If value

assignment on B forces C to a nonpropagation value then B and C are on a

loop and at least one fault on B is undetectable because the fault has

to be propagated through GR. If value assignment on a line between G1

and GR forces C to nonpropagation value, such as D or E, since it has to

be on a loop with C then at least one fault on that line remains unde­

tectable. This effect is independent of other value assignments during

the path sensitization. For example, if value assignment on B forces

one input to G2 to a propagation value and value assignment on D forces

the other input of G2 to a propagation value which forces the output of

G2 to a value which in turn forces C to a nonpropagation value, then it

means that there are two loop.s, (B, G2, GR) and (D, G2, GR), with uncon­

nected fanout origins which share gates which is in contradiction with

the assumptions made in this theorem. Then there is no conflict during

the path sensitization. The proof for line justification is similar to

the one for Theorem 6. Since there is no backtracking in path sensiti­

zation and line justification then only N value assignment is necessary

to generate a test for a given fault which makes the time complexity of

the test generation proportional to N2.

NOTE: Irredundant circuits consisting of any combination of topologies

discussed so far can be tested in time proportional to N2 because they

F

--------~-----------

.--- ---------
1
I

Lr, --p I
I L ______ _

figure 28. Path Sensitization in Circuits Consisting
of Simple Totally nested Loops

U1
lO

60

all share the property that if a value assignment on one branch of a

loop causes a conflict on the reconvergent gate of that loop then that

point is not testable for the complement of the value it has.

If the circuits with the topologies discussed so far are irre­

dundant then it means that each loop in the circuit is trredundant. But

a circuit can be irredundant with some redundant loops as was shown in

Figure 26. Now one of the conditions can be omitted from the definition

of simple totallynested loops and still circuit with the topology in the

modified definition can be testable in time proportio11al to N2 if all

loop are irredundant. The condition which can be omitted is condition 1

which expands the topology under consideration to circuits of which one

example is given in Figure 29. An example of the topology of circuits

with the above definition is given in Figure 30. Notice that condition

three in the modified definition is necessary because there are circuits

which are totally irredundant but not path-independent fault-detecting

s i nee two branches of a fanout origin reconverge on more than one

gate. An example of this kind of circuits is given in Figure 31. In

this figure the fault a-s-0 cannot be detected through the path (G1, G3,

G5) although the circuit is totally irredundant. The class of circuits

recognized by the modified definition of simple totally nested loops is

called "SIMPLE CONNECTED LOOPS".

THEOREM 8: The process of test generation for the circuits consisting

of simple connected loops in which all loops are irredundant is propor­

tional to N2 in time.

PROOF: Consider Figure 32. Suppose that the fault on A is to be propa-

Suppose that G is forced to a

nonpropagation value at some point during the path sensitization because

Vl
c..
0
0

....J

-o
QJ

-1-l
u
QJ
c:::
c:::
0
u
QJ ,......
c..
E .,....

V)

~
0

>,
0'1
0 ,......
0
c..
0
1-

61

QJ ,.....
c..
E .,....

V)

\f-
0

c::n
1::

•r-

Ul
1::
0
u
Ul
+l

:;:,
(.)
S..Ul .,... c..
uo

0
\!- -I
0

"C
QJQJ

,..... +.l
0..(.)
EQJ
ct:l!::
Xi::
QJO

u
1::

c:c

0
("'")

QJ s..
:;:,
c::n .,...

LL.

62

a

Figure 31. Conflict if two Branches of a Fanout Origin
Reconverge on More than one Gate

0"1
w

64

of value assignment on some lines such as A,B, ••• , and E. Then either

value assignment on one of these lines, for example C, has forced G to

the nonpropagation value independent of the other value assignments in

the circuit or value assignments on several or all of lines (A,B,.,F)

have forced G to that value. In the first case if G and C are on a

loop, then at least one fault is not detectable through GR which is in

contradiction with the assumption that all loops are irredundant. If C

and G are not on a loop then C has to force a fanout origin to some

value which in turn the value assignment on this fanout origin forces G

to a nonpropagation value. In this case at least one of the faults on

one of the branches of this fanout origin cannot be detected through GR

which means that there is a redundant loop in the circuit. If value

assignments on several points forces G to a nonpropagation value and

those points are on some loops with G, then as it can be seen from

Figure 32, two branches of a fanout origin reconverge on more than one

gate, G4 and GR, and loops which their fanout origins have no path to

each other are sharing gates, which is in contradiction with the assump­

tions made in this theorem. If all of those value assignments forces

only one fanout origin to some value which in turn forces G to a non­

propagation value, then at least one fault on one of the branches of the

fanout origin cannot be detected through GR which means there is at

least one redundant loop in the circuit. If A, B, •• , and F are not on a

loop with G, then either they have to force one fanout origin to some

value which in turn creates a conflict on G or they force several fanout

origins to some value which in turn force the line G to a nonpropagation

value. In the first case there is a redundant loop in the circuit and

in the second case one of the rules for simple connected loops has been

Figure 32. Path Sensitization in Circuits Consisting
of Simple Connected Loops

...

0'1
c.n

66

violated. Then there is no need for backtracking in path sensitization.

Now it will be shown that the line justification process is also

conflict free. Consider Figure 33 and suppose that the lines A and B

are to be justified for the values that they have. Also assume that the

lines A and B are outputs of the gates GA and G8• Then only assigning

nonpropagation values on one of the inputs of GA and G8 is enough to

justify the values on A and B. Suppose that because of the value

assignment on a point C, for justifying the value on A, all the inputs

to G8 which have don't cares be changed to propagation values. If that

happens then it means that A and B are on a 1 oop because both can be

merged to the sensitized path through some paths. If the value on C

forces the inputs of G8 to some value then it must first forces a fanout

origin(s) to a value which in turn forces the inputs of G8 to some value

(or other fanout origin(s) which forces the inputs of G8 to some

value). If more than one fanout origins, F1 and F2, are forced to some

values then as it can be seen from the Figure 33 the two loops

(A,F1,B,GR) and (A,F2,B,GR) which have no path between their fanout

origins are sharing gates which is in contradiction with the assumptions

made in this theorem. Suppose that value assignment on F1 and F3 have

forced all the inputs of G8 which have don't cares to propagation

values. If that happens then consider the other input of G8, D, which

has been assigned a value during the path sensitization or line just­

ification to justify a value on a line E. Then D and E must be on a

loop, as it is shown in Figure 33, and the loops (B,D,E,GQ) and

(A,F1,B,GR) which have no path between their fanout origins are sharing

gates which is in contradiction with the assumptions made in this

theorem. Now suppose that during the line justification for point A, a

f2

c ------~ -o- --· ___ ___, Gc !-=- --- I ,-

'-1~ GG ----
1 G

----- Q

Fl-j ~-----~-:.=p--I -o---_j ! F) 'r··-- G8 ----- I --- 1 r---
--- __ j: I 0 I

r·-" :f~ I

Figure 33.

r4 I !

____ J -----~------------"

Line Justification in Circuits Consisting of
Simple Connected Loops

0"1
-....!

68

value assignment on C forces all the inputs to Gc to propagation values

but because of the value assignment on H, the input I to Gc be forced to

a nonpropagation value. If that happens then at least one fault on the

branch of F6 which has a path to H is undetectable through Gc which

means a loop in the circuit is redundant which is in contradiction with

the assumptions made in this theorem. Then there is no conflict during

the line justification. Since only N value assignments are necessary to

generate a test for a given fault and there are no more ·than 2N such

faults in the circuit, then the required time for test generation is

proportional to N2•

CHAPTER IV

DESIGN FOR TESTABILITY

Now attention will be focused on circuits such that two branches of

a fanout origin may reconverge on more than one reconvergent gate, and

loops whose fanout origins have no path to each other may share gates.

Different comments can be made, as design aids, on the topology of these

kinds of circuits such that all paths can be sensitized and no conflict

be faced in the justification process. For example "loops \'lith uncon­

nected fanout origins must not reconverge on gates which have paths to

each other". But none of these comments seems to be easy to apply when

designing a circuit and will put restrictions on the topology of a

circuit and may not be always applicable. Instead a design method will

be introduced which makes any circuit testable in time proportional to

N2.

It is obvious that there cannot be any inconsistency in value

assignments in the path sensitization and justification process for the

circuits with no reconvergent fanouts providing that any value assign­

ment in the circuit is for the prupose of sensitizing a path or justify­

ing a line. By adding reconvergent fanouts to the circuit, there could

be inconsistency in value assignments when generating tests for the

circuit. Since this inconsistency in value assignments is only because

of the existence of the reconvergent fanouts in the circuit, then any

conflict in value assignments can be transfered to a conflict on a

69

70

reconvergent gate. And that reconvergent gate is either part of a

sensitized path or is to be justified for some value on its output.

Then if the value assignments on the inputs of the reconvergent gates in

the circuit can be controlled, any inconsistency in value assignments

can be avoided. If a reconvergent gate is part of a sensitized path

then a value which is not a propagation value for that gate must not

reach the gate. If this gate is to be justified for some value on its

output which forces all its inputs to propagation values then, like the

previous case, no nonpropagation values must reach the gate. If the

inputs of a reconvergent gate must be justified for values which are not

propagation values then not all the inputs of the reconvergent gate must

be forced to propagation values.

To see how the situations mentioned above can be avoided consider

the loop in Figure 34 and add two gates after GNl and GM2 according to

the following rules:

1. If GR is an OR or NOR gate then the two gates must be AND gates.

If GR is an AND or NAND gate then the two gates must be OR gates. Call

these gates "BLOCKING GATES".

2. Each blocking gate has two inputs. One is the output of GNl or

GM2 and the other input is called the "CONTROL" or "TEST" input. This

input can be treated as a primary input.

By adding the blocking gates to the circuit, no inconsistency in

value assignments can occur during sensitizing a path because the

control inputs can be set to the values needed on the inputs of the

reconvergent gates. The same thing is true for the case that the output

of a reconvergent gate must be justified for a value which needs assign­

ments of propagation values on all the inputs of that gate. Now

Gll G21

-E J I c, ~ - - -- -

Figure 34. Example of Two Reconvergent Paths

-....1

72

consider a reconvergent gate which has a value on its output that needs

at least a nonpropagation value assignment on one of its inputs. Also

assume that all the inputs to this gate are set to propagation values

because of a value assignment on a point "P" (the last value assignment

which set all the inputs of the reconvergent gate with don't care values

to propagation values is important, otherwise there are still choices

available on the inputs of the reconvergent gate). Since. the value on

the output of this gate has been determined independent of values on its

inputs, then it means that the reconvergent gate itself is on another

loop with "P" (if it is not true then either the value assignment on the

output of the reconvergent gate or the value assignment on "P" is arbi­

trary and not forced by the requirments for the path sensitization or

justification process). Then this inconsistency or conflict could be

transfered to the reconvergent gate of this new loop where it could have

been avoided by controlling a test input. This suggests that inproper

use of test inputs could cause problems. Notice that adding the block­

ing gates and the test inputs to a circuit guarantee that no conflict

may arise in path sensitization for a certain fault because nonpropa­

gation values can not reach reconvergent gates. But propagation values

may reach reconvergent gates and cause conflicts if test inputs are not

used properly. An example of such a situation is given in Figure 35.

Suppose "a" is to be tested for s-a-0, then a series of value assign­

ments on b, c, and d (all of them have value "1") forces "a" to "0"

which is a conflict. This situation can be taken care of and tests can

be generated in one of the three following ways:

1. Whenever there is a choice between a test input and the other

input of a blocking gate, take the test input. This gives freedom to

.j-1

Vl
QJ
1-

4-
0

QJ
Vl
::I

<;....
Q)
0.
0
<;....
0.
c:

4-
0

Q)
Vl
::I
10
u
Q)

_Q

.j-1

u
·~ ,....
4-
c::
0
u

73

74

the other input of a blocking gate to be set to any logic value

(prevents the inproper use of the test inputs).

2. Completely justify a given point for a value until primary inputs

are faced before continuing path sensitization or justifying any other

line. Since no value assignment on fanout origins is able to force the

inputs of the reconvergent gates in the sensitized path to nonpropa­

gation values, then no conflict occurs and test inputs can be set to

appropriate values for the path sensitization or justification

process. This solution has the advantage that there will be no need to

make special use of test inputs whert choices occur.

3. Start test generation for the circuit by sensitizing paths begin­

ning at primary inputs and cover all paths in the circuit. The just­

ification process must be finished entirely for a line before just­

ification of another line is started. This solution has the advantage

that longer paths will be covered, the number of tests will be reduced,

and there will be no need to make special use of (to keep track of) test

inputs when choices occur.

Since there is no conflict in the path sensitization and line

justification process, then no more than N value assignments are nec~s­

sary to generate a test for a given fault. Since there are no more than

2N stuck at 0/1 faults in the circuit then the time complexity of the

test generation in the worst case will be proportional to N2.

In general test icnputs can be treated as primary inputs to the

circuit, but for chips with built-in test facilities they do not have to

appear on the external input pins. This issue will be discussed

later. The value of a test input is a propagation value for the normal

operation of a circuit.

75

Note that the number of test inputs and blocking gates cannot be

more than N, and consequently, the number of lines in the circuit can

not exceed 2N. The only thing needed to identify places where blocking

gates and test inputs must be placed is identifying reconvergent gates

and inputs to that gate which are part of a loop.

The process of identifying reconvergent gates is proportional to N2

in time according to the following procedure:

Take one fanout origin and travel on all paths from that fanout
origin to primary outputs and mark all the gates and gates •
inputs which are traveled. If in this process a gate which has
already been marked is found, mark it as a reconvergent gate.
Also mark the inputs to this gate which are on a loop. Repeat
this for all fanout origins.

Since there are no more than N fanout origins and the above process

for each of them does not need marking more than N gates, then the whole

process can be done in time proportional to N2• The example in Figure

31 is redrawn in Figure 36 ~~th the exception that the blocking gates

and the test inputs are added. When it is worthwhile to have built-in

test facilities a shift register can be used to load desired values for

test inputs when the circuit is under test. In normal operation test

inputs have propagation values. Figure 37 demonstrates this scheme.

For faster testing, the scheme shown in Figure 38 can be used. The ROM

in this figure can be used to save the whole test pattern or only the

values of the test inputs for each test. Notice that the latter scheme

is faster because all the test inputs can be set to desired values at

the same time. In Figure 37 and 38, only one input is added to the pins

of the chip.

It is obvious that a designer of a circuit prefers not to add

blocking gates and test inputs as much as possible. One way to decrease

-o
s:::
l1:l

VI
Q),
l1:l

(.!J

0)
s::: .,....

...:.::
u
0 ,.....
co
-o
Q)

-o
-o
<(

..s::::
+'VI
.,.... +'
3:::::1

Cl..
+'S::: .,....
::I
U+'
S...VI

.,.... Q)

Ul-

<(

76

PRIMARY
INPUTS

TEST M
INPUT

.........

-/

ODE

COMB INA TJ ONAL
")

CIRCUIT

(\
I f\

TEST
INPUTS

SHIFT
REGISTER

Figure 37. Use of Shift Registers for Test Generation

77

TE

IN

78

ST MODE !

PUT

\

\I ~PRIMARY
COM!} I 'J·\TIONAL ROM

PRI~1ARY OUTPUTS
CIRCUIT

INPL'TS

/ " TEST
K r ADDR.ES. I~Pl!TS s

J)
I COUNTER I

l
O'S AND I PROPAGATION VALUES
l's I FOR TEST INPUTS

Figure 38. Saving the Test Vectors inside the Chip

79

the number of blocking gates is to identify the type of the gate placed

in a loop immediately before the reconvergent gate. If this gate has

the type which matches the required gate type for the blocking gate,

then only one extra input need be added to that gate as a test input and

there is no need to add an extra blocking gate. An example of this

situation is given in Figure 39. In this figure no blocking gates need

to be added after gates 1,2,3, and 4. Only on extra input to each gate

is enough. There are other alternatives for blocking gates that some of

them are shown in Figure 40.

There can be even a more drastic improvement to the design if one

of the gates identified in the previous phragraph has an input which is

not a part of any loop. Then this input can be considered as a test

input and there will be no need to add any extra input to the circuit.

An example of such situation is given in Figure 41. In this figure

1 ines "A", "B", "C", and "D" can be considered as test inputs because

none of them are on any loop and they can be set to appropriate values

to control the values on the inputs of reconvergent gates. These inputs

are called "FREE INPUTS".

One thing which can be done to ha 1 ve the number of attempts to

generate tests, and eventually the time required for the test genera­

tion, is to set all the control inputs which are not on the sensitized

path to their nonpropagation values whenever a blocking gate is faced

during the path sensitization process. The reason for this is that

control inputs can be either set to nonpropagation values or don't cares

and the value assignment on the sensitized path has no effect neither on

the set of gates which should be considered for justification process

nor on the va 1 ues on the output of these gates. Then if the program

Figure 39. Example of Gates which can be used as
Blocking Gates

co
0

81

<A>

T

(C)

T

<D>

Figure 40. Alternatives for Blocking Gates

Vl
ttl

"0
(])
Vl
:::1

(])
..0

c
ttl
u

..c
u
..c
:::::
Vl
:::1
c..
CVl

:::1
4- c..
OS::
(])

...-
C..Vl
E(])
ttl I­
X

LLJ

Q"

(])
s...
::::s
0'1

LL.

82

83

chooses the same paths to propagate both s-a-0 and s-a-1 faults on a

primary input to the outputs of the circuit (1 ike the one written for

this research study), a test for primary input s-a-0/1 is the same for

the fault s-a-110 on the same primary input except that the value on

that primary input is complemented.

A program has been written in PASCAL programming language which

generates tests for the circuits with the added blocking gates and test

inputs, or having the same property. This program starts test genera­

tion from the primary inputs and covers all the distinct paths in the

circuit. If a conflict is found during the path sensitization, it will

be flagged out and another choice will be tried. A choice is either a

primary input or a branch of a fanout origin. Since this program gen­

erates tests only for the complete paths from the primary inputs to the

primary outputs, then if a conflict is found in the path sensitization

process, it may be that no tests will be generated for some of the lines

on that path. In the other words there is no guarantee that test will

be generated for all the testable lines in the circuit. In the just­

ification process, all the choices will be considered until either a

test is generated or no test exist for the path. However, any conflict

will be reported. The following information should be provided for each

gate in the circuit for the use of program by a user:

1. Gate number (an integer)

2. Gate type (ANDE, ORE, NAND, NOR, !NV, INPUTE OUTPUTE)

3. # of inputs to the gate

4. Fanin numbers (to what gates the inputs are connected)

5. Number of fanout branches

6. To what gate each fanout branch is connected

84

It should be kept in mind that the input to an INPUTE gate is itself and

the output of an OUTPUTE gate is also itself. A listing of this program

is given in appendix A which includes a sample input data in the second

page. The general performance of the program can be described as fol­

lows. A primary input will be considered as the starting point. It

will be tried to find a sensitized path from that input to a primary

output. ·Whenever a value is assigned in this process, the effect will

be propagated forward and backward. It means that if a value is assign­

ed to the output of a gate, then it will be determined if any of the

inputs to that gate has to be set to a certain value because of the

value assignment on the output of that gate. This is called the back­

ward propagation. If any of the inputs of that gate is fanout origin

and that input is forced to some va 1 ue because of the backward propa­

gation of the value on the output of that gate, then effect of that

value assignment on that origin must be found on all the other branches

of that fanout origin. This is called the forward propagation. If

there is no inconsistency in value assignments then the program proceeds

to camp 1 ete the sensitized path, otherwise a flag wi 11 be set and an­

other choice will be considered and all the value assignments due to the

last choice will be erased. After successful completion of the path

sensitization, the gates which have been found during the path sensiti­

zation for the justification process will be processed. If a conflict

is found in this process then the program reports ·that conflict and

tries other choices unt i 1 either a test is found or • no choice is re­

mained.

Figure 42 shows a redundant circuit and Figure 43 shows the same

circuit in Figure 42 with the exception that blocking gates and test

(lj

c:
0 .,....

.,....

..0
E
0
u
(lj

4-
0

Q)
..-
0..
E
(lj

X
LLJ

85

3

2

4

21

1---- 14

5------------------~

Figure 43. The Circuit in Figure 42 with Added Blocking
Gates and Test Inputs

():)
CJ)

87

inputs are added. The results from the test generation program after

running on these two circuits are given in the appendix C. From those

results it can be seen that how the testability of the circuit has been

improved.

In Figure 44 the normalized measured times for the circuits, which

are designed according to the proposed design method, with different

numbers of gates are shown. Figure 45 shows a plot of the data shown in

Figure 44. From this figure it can be seen that the required time for

test generation is growing proportional to N2• In Figure 45, the data

points marked by circles correspond to the different combinations of TI

arithmetic logic unit/function generator, type SN54181, and look-ahead

carry generator, type SN54182. Each circuit was changed to a pifd

circuit using the program on appendix B. The data points marked by

crosses correspond to an arbitrary pifd circuit which was dup 1 i cated

each time and the outputs of one circuit were used as inputs to some of

the gates of the other circuit to make a larger circuiit. Each circuit

was made a pifd circuit using the program in appendix B. One of the

advantages of this method is that a designer can freely design the

desired circuit without considering this design method and after the

design is complete then necessary blocking gates and test inputs can be

added to the circuit. The disadvantage of this design method is the

addition of gates and inputs which sometimes can be very large. One way

to cope with this problem is to identify the reconvergent gates that

most of the conflicts occurs on them and add the blocking gates and test

inputs only to those reconvergent gates.

88

NUMBER OF GATES NORMALIZED TIME

18

36 I. 7

78 6.45

209 46.58

458 324.65

875 1 153

Figure 44. Timing Results from the Test Generation Program

Ln(TIMEJ
Y=3X

• 0

Ln(# OF GATES)

Figure 45. The Plot of the Time for Test Generation
Versus Number of Gates (In Ln-Ln Scale).
Circles Represent the Data from ALU
Funcation Generator. Crosses Represent
the Date from Arbitrary Circuits.

89

CHAPTER V

CONCLUSIONS AND RECOMMENDATION

In the last two chapters, several circuit topologies have been

identified for which tests can be generated in N2 time. The concept of

preprocessing of fanout origins has been introduced which for a certain

type of circuit make the behavior of a circuit completely conflict free

regarding the test generation process. The path-independent fault-

detecting (pifd) circuits have been introduced for which tests can be

generated in N2 time. Also an upper bound has been found for the number

of tests for such circuits. A simple design method has been proposed

which can change any arbitrary combinational circuit to a pifd

circuit. Also it has been shown that the required time for the test

generation will be halved if a circuit is designed according to the

proposed design method. It has been shown that by using some of the

properties of a circuit, it is possible to reduce the number of gates

and inputs which must be added to the circuit. Also it has been shown

that it is possible to have only one extra input to a chip for all the

added gates and inputs to the circuit.

Experimental results show that the number of gates and inputs added

to a circuit using the the proposed design method can be excessive.

Further research is needed to extract the properties of pifd circuits

which may be used to improve the proposed design method. Also there may

be other circuit topologies which are testable in N2 time for which

90

91

further research is needed to identify such topologies. The preproces­

sing of fanout origins seems to be a powerful tool for predicting the

behavior of the circuits regarding the test generation process. In this

research, this process was used only for a simple topology for the loops

but actually for many of the other circuit topologies this process is

app 1 i cab 1 e. Further 'research is needed to identify the further app 1 i­

cation of this process.

REFERENCES

Berglund, N.C. "Processor Development in The LSI Environment." IBM
System/38 Technical Development, Dec. 1978.

Breuer, M.A., and Friedman A.D. Diagnosis and Reliable Design Systems.
New York: Computer Science Press, Inc., 1976.

92

Fujiware Hideo., and Toida Shunichi. "The Complexity of Fault Detection
Problems." IEEE Trans. on computers, Vol. C-31, No.6 (1982), pp 555-
559.

Gael, P. "Test Generation Costs Analysis and Projections." presented at
the 17th Design Automation Conf., Minniapolis, MN. 1980.

Hayes, P. John. "On Modifying Logic Networks to Improve Their Diagnos­
ability." IEEE Trans. on computers, Vol. C-23, No. 1 (1974), pp 56-62.

Ibarra, H. Oscar., and Sahni, K. Sataj. "Pollynomially Complete Fault
Detection Problems for Combinational Logic Circuits." IEEE Trans. on
computers, Vol. C-24, No.3 (1975), pp 242-249.

Roth, J. Paul. "Diagnosis of Automate Failure: A Calculus and a
Method." IBM Journal of Research & Development, 10 (1966), pp 278-281.

Standish, A. Thomas. Data Structure Techniques. Addison-Wesely Publish­
ing Company, Inc., 1980.

Thomas, J.J. "Automatic Diagnostic Test Program for Digital Networks."
Computer Design (1971), pp 63-67~

Williams, W. Thomas. and Parker, P. Kenneth. "Design for Testability-A
Survey." Proc. IEEE, Vol. 71, No. 1, Jan. 1983, pp 98-112.

Williams, W. Thomas. and Parker, P. Kenneth. "Testing Logic Networks and
Designing for Testability." Computer, Oct. 1979, pp 9-18.

APPENDIXES

93

APPENDIX A

LISTING OF THE TEST GENERATION PROGRAM

94

TEST.PAS:2 4-JUN-1985 14:17 !?age 1

PROGRAM TESTLOGICCIRCUIT(INPIJT.OUTPUT.INFILE.OUTFILEl;

<"'THE PURPOSE OF THIS PROGRAM IS TO GENERATE TESTS FOR LOGIC
CIRCUITS IN WHICH r-IO BACK-TRACKING IS NEEDED r-lEITHER IN PATH
SENSITIZATION NOR IN JUSTIFICATION PROCESSES.THIS PROGRAM
GENERATES TESTS ONL'l FOR COMBINATIONAL CIRCUITS. THIS PROGRAM
STARTS GENERATING TESTS FROM PRIMARY INPUTS • BUT IT WILL COVER ALL
THE DISTINCT I?ATHS IN THE CIRCUIT.IF A CONFLICT IS FOUND DURING
THE PATH SENSITIZATION IT FLAGS OUT THAT CONFLICT AND TRIES
~OTHER CHOICE.IN THE JUSTIFICATION I?ROCESS ALL THE CHOICES WILL
BE CONSIDERED UNTIL A TEST IS GENERATED.HOWEVER.ANY CONFLICT WILL
BE REPORTED.THIS I?ROGRAM DOES NOT GENERATE TESTS FOR THE REMAINIG
NETS WHICH HAVE NOT BEEN TESTED EVEN THERE EXIST TESTS FOR
THEM.THE WAY THAT CHOICES ARE MADE IN PATH SENSITIZATION IS AS
F0LLOWING. THE FIRST CHOICES ARE I?RIMARY INPUTS. WHENEVER A FANOUT
r:.RIC;IN IS FACED.DEPENDING ON THE NUMBER OF INPUTS TO THE GATE
WHICH HAS THAT fANOUT ORIGIN ON ITS OUTPUT OR NUMBER OF FANOUT
BRANCHES WHICH HAVE NOT BEEN TESTED YET.ONE OR MORE BRACHES OF THE
FANOUT ORIGIN WILL BE ADDED TO THE CHOICES.FOR EXAMPLE CONSIDER
THE FOLLOWING GATE WITH 2 INPUTS AND THE FANOUT ORIGIN WIITH 3
BRANCHES. IF LINE l IS UNDER TEST AND LINE 2 HAS NOT BEENTED TESTED
BEFORE.I'HEN THE TWO OF BRANCHES WILL BE CONSIDERED AS CHOICES FOR
LINE l. AND THE THIRD BRANCH WILL BE CONSIDERED WHEN LINE 2 IS
GOING TO BE TESTED.

--------- 3
------- I

I I--------- 4
l --------1 I I

I G 1----------------- 5
2 --------1 I

I I

THEN FOR THE FIRST TIME IF THE NUMBER OF FANOUT BRANCHES ARE MORE
THAN THE NIMBER OF INPIJTS TO THE GATE.~OF FANOUT BRANCHES-#OF
mFrJTS+l OF FANOUT BRANCHES WILL BE CONSIDERED FOR ONE OFl THE
INPTJTS AND EACH 'iF THE REMAINING INPUTS WILL Tlu<E ONE OF THE
REMAINIG FANOUT BRANCHES WHICH HAS NOT BEEN TESTED BEFORE.
"'HE!~EVER AN INPUT TO M. .;ATE IS CONSIDERED FOR PATH
~ENSITIZATION .FIRST THE 1JTHER INPUTS WILL BE SET TO PROPJI!GATION
;lALUES ONE AT A TIME AND THE EFFECT OF THIS VALUE ASSIGN~'IJT WILL
BE f•jUND FORWARD AND BACKWARD IN THE CIRCUIT. IF NO CONFLICT IS
rACED THEN THE E.qROR 3IGNAL WILL BE PROPAGATED TO THE t)UTFTJTOF THE
·~ATE MID ThE I?ROCE.S:::; (ONTINUES. OTHERWISE ALL THE VALUE ASSIGNMENTS
3 Il'-ICE THE LAST •:HO ICE WILL BE ERASED AND ANOTHER CHOICE ~ILL BE
~""ONS IDERED. AT THE END USER WILL BE PROVIDED WITH THE FOLDOWING
INFORMATION.

1 . TESTS GENERATED.
:. CRITICAL vALUES AND NON-O:~'RITICALVALUES 1)F ALL INTENAL LINES OF

THE CIRCUIT t="OR EACH TEST.
3 .ALL THE •:ONFLICTS FACED DURING THE I?ATH SENSITIZATION AND THE

.JUSTIFICATION PROCESS.
4. LIST Of THE INCOMLETE TESTS.
5. LIST •)F LiifES THAT N'O TESTS HAVE BEE!f r;ENERATED FOR THEM.

##################~###################~###############################

INPUT FORMAT:
fOR EACH GATE IN THE CIRCUIT THE FOLLOWING INFORMATION MUST BE

FRO;;IDED BY THE USER TO THE i?ROGRAM:
l . L I liE: :IUMBEF:
: .•. :;,;TE T'iFE• rJJ[Z. JRE ,;r;..;m. :JOR. Iif'v'. IIIPJTE, ·}UTPTJTE;

95

TEST.PAS;2 4-JUN-1985 14:17

"3.t0F INPUTS
4 . TO WHAT GATE EACH INPUT IS CONNECTED
5. tOF FANOUT BRANCHES
.; • TO WHAT GATE EACH FANOUT BRACH FANS IN

EXAMPLE:
3 ANDE 2 8 9 4 10 15 25 30
6 INPUTE 1 8 2 7 27
14 OUTPUTE 1 12 1 14

Page 2

W THE INPUT FILE THO OTHER ITEMS MUST ALSO APPEAR BEFORE ANYTHING
ELSE.THE FIF:ST ONE IS NAME OF THE CIRCUIT AND THE SECOND ONE THE
NIMBER OF GATES IN THE CIRCUIT.WHICH MUST BE AN INTEGER. THE
PROGRAM WILL PROMPT A MESSAGE ASKING FOR THE NAME OF THE INPUT

96

FILE.

OUTPUT:
THE OUTPUT INCLUDES ALL THE INFORMATION MENTIONED ABOVE,AND THE

NAME OF OUTPUT FILE IS 'OUTFILE'.

DATA STRUCTI.IRE:
TEST' ARFA Y :

FOR EACH GATE IN THE INPUT FILE A RECORD IS DEFINED WHICH KEEPS
.U.L THE INFORMATION PROVIDED BY ·THE USER AND OTHER INFORMATION
PROVIDED BY THE PROGRAM WHEN EXECUTED. THESE INFORMATION CONSIST OF
THE VALUE ON THE OUTPTJI' OF EACH GATE,THE VALUE<Sl THAT THAT OUTPUT
HAS BEEN TESTED FOR .AND THE STATUS OF THE VALUE ON THE OUTPUT OF THE
~ATECWHETHER OR NOT THAT VALUE IS A CRITICAL VALUEl FOR A

PARTICULAR TEST.AN ARRAY OF THIS RECORD TYPE KEEPS SUCH INFORMATION
('oN ALL THE GATES Il'l THE CIRCUIT.THIS ARRAY IS CALLED 'TEST'.

WI.IST' ARRAY:
i\N IMPORTANT ARRAY USED BY THIS PROGRAM IS

WLISTCWAITWGLIST!' .AT THE BEGINNING IT CONTAINS INPUTE-GATES IN A
C'ODED FORM<. INPTJTE#*MAX3+INPUT# 1 • THE. REASON FOR ENCODING THE INPUTE
GATES IS COMFATIBILITY WITH THE OTHER INFORMATION WHICH WILL BE
ADDED TO THE WLIST' ENCODED IN THE SAME FORM.AS THE PROGAAM FACES
DIFFERENT CHOICES IN THE PATH SENSITIZATION,IT WILL ADD TiiEM TO THE
·wr.IST' .IF A PATH HAS BEEN SENSITIZED SUCCESSFULLY THEN THE
.JUSTIFICATION PROCESS START. THE SAME 'WLIST' ARRAY WILL BE USED TO
KEEP TRACK OF THE CHOICES ENCOUNTERED IN THIS PROCESS,AND THE
PROGRAM REMEMBER WHERE IT LEFT THE PATH SENSITIZATION PROCESS.THE
POINTER TO THE 'WLIST' ARRAY WILL BE RESTORED WHEN THE
.JUSTIFICATION PROCESS IS FINISHED. THE POINTER TO THIS ARRAY IS
CALLED 'FWLIST' •

CONST MAX1=10;
MAX~=100;
MAiO= 1000;

TYPE GTYPE=<ANDE.ORE,NAND,NOR,INPUTE,OUTPUTE,INVl;

t:IRCUITDES=
RECORD

GATETYPE
GATENTJM

:GTYPE;
:1 •• MAX2;

TEST.FAS;Z 4-JUN-1985 14:17

:1 •• MAX1;
:ARRAYCl. .MAX1J OF INTEGER;
:ARRAYCl. .MAX1J OF INTEGER;
:1. .MAX1;
: ARRA YC 1 •• MAXl J OF INTEGER;
:INTEGER;

F'age 3

NO INPUTS
INPUTS
IN"JALUE
FANOUTNUM
FAN OUTS
OUTVALUE
CRITICAL :ARRAYC1 •• MAX1l OF INTEGER;<~0&1

FOR CRITICAL 0&1.2 FOR BOTH~\
TEMPCV : ARRA YC 1. . MAXlJ OF INTEGER;

END;

ilAR TEST :ARRAYCl. .MAX2J OF CIRCUITDES;
WLIST :ARRAYCl. .MAX2J OF INTEGER;< ~KEEPS TRACK OF LINES

WAITING TO BE USED IN PATH SENSITIZATION OR
.JUSTIFICATION PROCESS.~ l

FWLIST :INTEGER; <~POUlTER TO WLIST~ •
_:•.DAR :AERAYCl •• MAX2l OF INTEGER;<~THIS ARP.AY KEEPS THE

STARTING ADDP.ESS OF THE SET OF LINES
ON 'i\SAR' FOR EACH ENTRY OF 'WLIST' ."'l

A.DJADAR :ARRAYCl. .MAX2J OF INTEGER;
ASAR : AF.RA YC 1 .• MAX2 J OF INTEGER; < "'KEEPS TRACK OF THE

LiliES THAT SOME VALUES ARE ASSIGNED TO THEM.~ l
FASAR : INTEGER; <*PO INTER TO ASAR"' l
MCRITJAL :INTEGER;
CRITVAL :INTEGER;
Il , Jl , .1\l : INTEGER ;
FLAGP :INTEGER;<"'THIS FLAG IS SET TO '1' IF THERE IS A

CONFLICT."'\
l~OOFNODES : INTEGER;
FARRAY :ARRAYCl. .MAX2JOF INTEGER;< "'KEEPS THE LIST OF

FANOUTS TO BE IMPLEMENTED FOR FORWARD
PP.OCEDURE."'l

FPOINTER :INTEGER;<"'POINTER TO FARRAY~l
ADJUST :ARRAYCl. .MAX2JOF INTEGER;< "'KEEPS TRACK OF THE

!-lODES WITH THE VALUE OF THE OUTPUTS SPECIFIED
BUT THE-INPUTS ARE NOT JUSTIFIED FOR THAT
VALUE.~l

FADJUST :INTEGER;<"'POINTER TO ADJUST ARRAY.~l
INPUTLIST :ARRAYCl. .MAX2J OF INTEGER;
INPUTCOUNT : INTEGER;
GUT : INTEGER ;
IUT : INTEGER;
FLAGC :INTEGER;
1~.r..DAF: :ARRAHl..MAX2J OF INTEGER;<"'FOR EACHENTRY OF THE

WLIST KEEPS POINTER TO 'CGATES' ARRAY WHERE THE
CRITICAL GATES ADDED TO 'CGATES' ARRAY AFTER THAT
ENTRY MUST BE ERASED WHEN THAT ENTRY OF THE · WLIST'
IS GOING TO BE PROCESSED."'\

CGATES :ARRAYC1 •• MAX2J OF INTEGER;<~KEEPS TRACK OF
CRITICAL GATES.~\

ri!ALUES :ARRAYCl. .MAX2J OF INTEGER;< ~KEEPS THE OUTPUT
ilALUE OF CGATES.~\

FCGATES : INTEGER; < ~PO INTER TO ' CGATES ' ARRAY. * \
TEMPCRITVAL:INTEGER;
!'lAME :PACKED ARRAY[l.. 40] OF CHAR;
PCOUNT :INTEGER;< *KEEPS TRACK OF TEST-NUMBER IN

INFILE
OUTFILE

PRINTTEST PROCEDURE.*\
:TEXT;
:TEXT;

97

TEST.PAS;'2

PROCEDURE STATUS ;

'liiR PS, FS : INTEGER;
BEGIN

4-JUN-1985 14:17 Fage 4

FOR PS:=l TO NOOFNODES DO
BEGIN

FOR
END;

~ITELN< 'TEST[' ,PS:2,'J.OUTVALUE' ,TESTCPSJ.GUTVALUE:2l;
FOR FS:=l TO TESTCPSJ.NOINPUTS DO

BEGIN

END;

HRITELN< 'TEST[' ,PS:2,'J.INVALUEC' ,FS:2,'J=',
TEST[PSJ.INVALUECFSJ:2,'----·,
'TESTC' .PS:2,'J.TEMPCV[' ,FS:2,'J=',
TESTCPSJ.TEMPCV[FSJ:2,'----·,
'TEST[' ,PS:2,'J.CRITICAL[' ,FS:2,'J=',
TESTCPSJ.CRITICALCFSJ:2l;

PS:=l TO FWLIST DO

98

WRITELN< 'WLIST[' ,PS:2,'J=' ,WLIST[PSJ:6,'----' ,'ADARC' .PS:2,'J='
,ADARCPSJ: 2 l ; .

FOR FS:=l TO FASAR DO
WRITELN<FS:2,'-----· ,'ASAR[' ,FS:2,'J=' ,ASARCFSJ:6l;

END;

PROCEDURE INITIALIZE;

ilAR .CIRCTJITNAME:PACKED ARRAY[!. .40J OF CHAR;
I,J,K :INTEGER;

BEGIN
FWLIST:=O;
FhSAR:=O;
FADJUST: =0;
E'GATES: =0;
PC'OUNT: =0;
READIINFILE,CIRCUITNAMEl;
WRITELN<OUTFILE,CIRCUITNAMEl;
READ<INFILE,NOOFNODESl;
FOR K:=l TO NOOFNODES DO

BEGIN
READ< INFILE,Il;
TESTCIJ.GATENUM:=I;
READ<INFILE,TESTCIJ.GATETYPE,TESTCIJ.NOINPUTSl;
IF<TESTCIJ.GATETYPE=INPUTElTHEN

BEGIN

END;

FWLIST:=FWLIST+l;
WLISTCFWLISTJ:=I~MAX3+I;
HJPUTLISTCFWLISTJ: =I>'•MAX3+I;
HRITELN < 'WL=' , WLISTCF'WLISTJ l ;

FOR ,J: = 1 TO TEST[IJ . NO INPUTS DO
READ<INFILE,TEST[IJ.INPUTS[JJl;
READ<INFILE,TEST[IJ.FANOUTNUMl;
FOR J:=l TO TEST[IJ.FANOUTNUM DO

READ<INFILE,TESTCIJ.FANOUTS[JJl;
END;

INPTJTCOUNT:=FWLIST;
FOR .J: = 1 TO NOOFNODES DO

TEST.PAS;2

END:

4-JUN-1985 14:17

BEGIN
FOR K:=l TO MAXI DO

BEGIN
TESTCJJ.CRITICALCKJ:=-1;
TESTCJJ.TEMPCV[KJ:=-1;
TESTCJJ.INVALUECKJ:=-1

END;
TEST[JJ.OUTVALUE:=-1

END;
FOR J:=l TO FWLIST DO

BEGIN

END;

ADARCJJ:=l;
ADJADAR[JJ:=O;
CADAR[JJ:=O;

Page 5

t *THE FOLLOWING PROCEDURE ADDS ONE ELEMENT TO 'ASAR' ARRAY AND
~SSIGNS THE DESIRED VALUE TO THAT LINE. GATENUMBER=X,GATEINPUT=Y*l

PF.OC.EDURE ADDONETOASAR < VAR
GATENUMBER ,GATEINPUT ,FLAGCORRECT: INTEGER l;

ii AR J AA : INTEGER ;

BEGIN
.JAA: =l;

~ITELNI 'GATENUMBER=' ,GATENUMBER: 3,

END;

' . , 'GATEINPUT=' ,GATEINPUT:3l;
WHILE<TEST[GATENUMBERJ.INPUTS[JAAJ<>GATEINPUTlOO

.JAA: =JAA+l;
TEST[GATENUMBERJ.I~vALUE[JAAJ:=TEST[GATEINPUTJ.OU?vALUE;
FASAR: =FASAR+l;
ASARCFASARJ:=FLAGCORRECT~<GATENUMBER~MAX3+GATEINPUTl;

PROCEDURE MAINFORWARD<VAR GATENO,INPUTNUM:INTEGERl ;FORWARD;
PROCEDURE BACKWARD<VAR BGUT,BVALUE:INTEGERl;FORWARD;

~~THE FOLLOWING PROCEDURE CHECKS THE VALUE ASSIGNMENT ON THE INPUT
OF A GATE < FCGATE=X> TO SEE IF IT IS COMPATIBLE WITH THE OUTPUT
'TM.UE OF THAT GATE WHICH IS NOT A PROPAGATION VALUE. THIS
PROCEDURE IS CALLED FROM THE 'FIRSTFORWARD' PROCEDURE.
FCGATE=X,FCINPUT=Y,FCI~vAL=O FOR AND & NAND,1 FOR OR & NOR.~<>

PPOCEDURE FORWARDCORF.ECTION<VAR FCGATE,FCINPUT,FCINVAL:INTEGERl;
VAR JFC,COUNTF,KFC:INTEGER;

BEGIN
FLAGF: =0;
.JfC: =1;
WHILE< ITEST(fCGATEJ.INVALUE[JfCJ<>FCINVALlAND

tJFC<TEST[FCGATEJ.NOINPUTSl lDO
,JfC: =JFC+ l;
IFITESTCFCGATEJ.INVALTJE[JFCJ<>FCINVALlTHEN

BEGIN
COUNTF:=O;
FOR JFC:=l TO TEST[FCGATEJ.NOINPUTS DO

IF<TESTCFCGATEJ.INVALUE[JFCJ=-l>THEN
COUNTF:=COUNTF+l;

99

TEST.PAS;2

100

4-JUN-1::85 14:17 Page 6

IF<COUNTF=llTHEN<*THIS CASE MAY
NEVER OCCURES.JUST FOR INSURANCE*l

BEGIN

END

IF<TEST[FCINPUTJ.OUTVALUE
=FCINVALlTHEN

BEGIN

END

KFC:=-1;
ADDONETOASAR<FCGATE,

FCINPUT,KFCl;

ELSE
FLAGP:=1;

ELSE<* IF COUNTF> = V ·,
BEGIN

IF(CQUNTF=2lTHEN
BEGIN

IF<TEST[FCINPUTJ.OUTVALUE=
FC INVAL l THEN

BEGIN

END
ELSE

KFC:=-1;
ADDONETOASAR<FCGATE,

FCINPUT,KFCl;

BEGIN
KFC:=-1;
ADDONETOASAR<FCGATE,

FCINPUT,KFCl;
,JFC: =1;
HHILE<TEST[FCGATEJ

.INVALUE[JFCJ<>-1lDO
.JFC: =JFC+ 1;

TEST[TEST[FCGATEJ.INPUTS
[JFCJJ.OUTVALUE:=FCINVAL;
KFC:=-1;
ADDONETOASAR<FCGATE,

TEST[FCGATEJ.
INPUTS[JFCJ,KFCl;

FOR KFC:=1 TO TEST[TEST
[FCGATEJ.INPUTS[JFCJJ
. FANOUTNUM DO

IF<TEST[TEST[FCGATEJ
.INPUTS[JFCJJ.
FANOUTS[KFCJ<>
FCGATElTHEN

MAINFORWARD<TEST[FCGATEJ.INPTJTS[JFCJ.TEST[TEST[FCGATEJ.
HIPUTS[JFCJJ.FANOUTS[KFCJl;

BACKWARD<TEST[FCGATEJ.INPUTS[JFCJ,FCINVAL>;

END
ELSE

BEGIN

END; < *OF ELSE* l
END<*OF COUNTF=2"'l

ELSE<*COUNTF>2*1
BEGIN

KFC:=-1;
ADDONETOASAR<FCGATE,

FCINPUT,KFCl;
END;

END;<*OF IF COUTF>1*l

TEST .P!-.S; 2

E!-lrl;

4-JUN-1985 14:17

KFC:=-1;
ADDONETOASAR!FCGATE,FCINPUT,KFCl;

Fa.ge 7

END; l "'END OF FOF:WARDCORRECTION"' l

r"'THE FOLLOWING PROCEDURE CHECKS THE VALUE ASSIGNMENT ON ONE INPUT
OF A GATE · TO SEE IF IT IS COMPATIBLE WITH THE OUTPUT VALUE OF THAT
GATE WICH HAS BEEN ALREADY ASSIGNED AND IT IS A PROPAGATION
VALUE."'>

PROCEDURE FIRSTFORWARDCORRECTION!VAR
FFCGATE,FFCINPUT,FFCINVAL:INTEGER>;

VAR KFFC: INTEGER;

BEGIN
IFr rTESTCFFCGATEJ.GATETYPE=ANDEl

0RrTEST[FFCGATEJ.GATETYPE=OREl lTHEN
BEGIN

END

IFrTEST[FFCGATEJ.OUTVALOE=1-FFCINVALlTHEN
BEGIN

IF(TESTCFFCINPUTJ.OOT"vALUE=FFCINVALlTHEN
FLAGP:=1

ELSE
BEGIN

KFFC: =-1;
ADDONETOASAR! FFCGATE, FFC INPUT, KFFC l ;

END;
END

ELSE
FORWARDCORRECTION<FFCGATE,FFCINPUT,FFCINVALl;

ELSEr"'NAND&NOR"'\
BEGIN

IF(TEST[FFCGATEJ.OUTVALUE=FFCINVALlTHEN
BEGIN

IF<TEST[FFCINPUTJ.OOT"vALUE=FFCINVALlTHEN
FLAGP:=1

ELSE
BEGIN

101

KFFC:=-1;
ADDONETOASAR<FFCGATE,FFCINPUT,KFFCl;

END;

END;
END

ELSE
FORWARDCORRECTION<FFCGATE,FFCINPUT,FFCINVALl;

END;!"'ENL OF FIRSTFORWARDCORRECTION"'l

I"'THE FUNCTION OF THE FOLLOWING PROCEDURE IS AS FOLLOWS:
IF OUTPUT OF GATE Y IS INPUT TO GATE X; THEN ACCORDING TO VALUES

•)N Y AND OTHER INPUTS TO X; THE VALUE ON THE OUTPUT OF THE GATE X
WILL BE DETERMINED AND THE LINE CONNECTING Y TO X WILL BE KEPT ON
!\RRAY 'ASAR' . v-.-rlEN THIS ENTRY OF 'ASAR' IS TO BE REMOVED; THEN IF
THE OUTPUT OF X WAS FORCED TO SOME VALUE BECAUSE OF THE VALUE
ASSIGNMENT ON THE LINE CONNECTING X TO Y; THE VALUE ON THE OUTPUT OF
THE X SHOULD BE ERASED AS WELL AS THE VALUE ON THE LINE CONNECTING
X AND Y. ONLY THE VALUE ON THE LINE CONNECTING X TO Y MUST BE
ERASED OTHERWISE. VARIABLE FLAGR IS SET TO 1 AND -1 TO INDICATE

TEST.PAS;2 4-JUN-1985 14:17 Page 8

WHETHER THE OUTPUT OF X IS FORCED TO SOME VALUE BY THE VALUE
ASSIGNMENT ON THE LINE CONNECTING Y TO X<THE OUTPUT OF Yl. ENTRIES
OF THE 'ASAR' ARRAY HAVE THE FOLLOWING FORM: <X*MAX3+Yl. FGATENO=X,
FGATEINPUT=Y*l

PROCEDURE FORWARDCVAR FGATENO,FGATEINPUT:INTEGERl;

VAR J , IN"' vAL, FLAGR :INTEGER;

BEGIN
IFI<TEST[FGATENOJ.OUTVALUE<>-1lAND

ITEST[FGATENOJ.GATETYPE<>OUTPUTEll THEN
BEGIN

END

IFI ITEST[FGATENOJ;GATETYPE=ANDElOR
. ITEST[FGATENOJ.GATETYPE=NANDl lTHEN
INVAL:=O

ELSE
INVAL: =1;
FIRSTFORWARDCORRECTIONC

FGATENO, FGATEINPUT, INVAL l.;

ELSE<*TEST[FGATENOJ.OUTVALUE=-1*l
BEGIN

IF<TEST[FGATENOJ.GATETYPE=OUTPUTElTHEN
BEGIN

END;

TEST[FGATENOJ.OUTVALUE:=
TEST[FGATEINPUTJ.OUTVALUE;

TEST[FGATENOJ.INVALUE[1J:=
TEST[FGATEINPUTJ.OUTVALUE;

FASAR:=FASAR+1;
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT;

IF<TEST[FGATEINPUTJ.OUTVALUE=OlTHEN
BEGIN

IF<TEST[FGATENOJ.GATETYPE=ANDElTHEN
BEGIN

TEST[FGATENOJ.OUT"vALUE:=O;
.J:=1;
WHILECTEST[FGATENOJ.INPUTS[JJ<>

FGATEINPUTlDO
.J: =J+l;

TEST[FGATENOJ.INVALUE[JJ:=O;

102

FASAR: =FASAR+1;
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT;

END;
IF<<TEST[FGATENOJ.GATETYPE=NANDlOR

ITEST[FGATENOJ.GATETYPE=INVl >THEN
BEGIN

TEST[FGATENOJ.OUTVALUE:=1;
J:=1;
WHILECTEST[FGATENOJ.INPUTS[JJ<>

FGATEINPUTlDO
J:=J+1;

TEST[FGATENOJ.INVALUE[JJ:=O;
FASAR: =FASAR+1;
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT;

END;
IF<<TEST[FGATENOJ.GATETYPE=ORElOR

ITEST[FGATENOJ.GATETYPE=NORllTHEN
BEGIN

TSST.PAS;2

103

4-JUN-1985 14:17 Page 9

FLAGR: =1;
J:=1;
HHILE<TEST[FGATENOJ.INPUTS[JJ<>

FGATEINPUTlDO
.r:=J+1;

TESTCFGATENOJ.I~vALUE[JJ:=O;
FOR J:=1 TO TESTCFGATENOJ.NOINPUTS DO

BEGIN

END;

IFCTESTCFGATENOJ.INVALUE[J]
OOlTHEN

FLAGR: =-1;

IF<FLAGR=llTHEN
IF<TESTCFGATENOJ.GATETYPE=NOR>~~

TEST[FGATENOJ.OUTVALUE:=l
ELSE

TESTCFGATENOJ.OUTVALUE:=O;
FASAR:=FASAR+1;
ASAR[FASARJ: =

FLAGR*<FGATENO*MAX3+FGATEINPUTl;
END;

END;
IFITEST[FGATEINPUTJ.O~vALUE=1lTHEN

BEGIN
IFtTEST[FGATENOJ.GATETYPE=ORElTHEN

BEGIN

END;

TEST[FGATENOJ.OUTVALUE:=1;
J:=1;
WHILE<TEST[FGATENOJ.INPUTS(JJ

<) FGATEINPUT l DO
J:=J+1;

TEST[FGATENOJ.INVALUE[JJ:=l;
FASAR: =FASAR+l;
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT;

IF(<TEST[FGATENOJ.GATETYPE=NORlOR
ITEST[FGATENOJ.GATETYPE=INVl lTHEN

BEGIN

END;

TEST[FGATENOJ.OUTVALUE:=O;
J:=1;
WHILE<TEST[FGATENOJ.INPUTS[JJ<>

FGATEINPUTlDO
J:=J+1;

TESTCFGATENOJ.I~vALUE(JJ:=l;
FASAR: =FASAR+ 1;
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT

IF((TEST[FGATENOJ.GATETYPE=ANDElOR
CTEST[FGATENOJ.GATETYPE=NANDllTHEN

BEGIN
FLAGR: =1;
.r: = 1;
WHILE<TEST[FGATENOJ.INPUTS[JJ<>

FGATEINPUTlDO
J:=J+l;

TEST[FGATENOJ.INVALUE[JJ:=1;
FOR J:=1 TO TEST[FGATENOJ.NOINPUTS DO

BEGIN
IFCTEST[FGATENOJ.INVALUE[J]

<)1lTHEN

TEST.PAS;2 4-JUN-1985 14:17

FLAGR:=-1
END;

Page 10

IF<FLAGR=l>THEN
IF<TEST(FGATENOJ.GATETYPE=ANDElTHEN

TESTCFGATENOJ.OUTVALUE:=1
ELSE

TEST(FGATENOJ.OUTVALUE:=O;
FASAR: =FASAR+1;
ASARCFASARJ : =
tFGATENO~MAX3+FGATEINPUT!~FLAGR;

END;
END;

END;

END: <~END OF FORWARD~\

r ~THE FTJCTION OF THE FOLOOWING PROCEDURE IS TO TAKE THE VALUE ON ONE
BRANCH OF A FANOUT ORIGIN AND PROPAGATE IT FORWARD AS FAR AS
POSSIBLE. ENTRIES OF THE 'FARRAY HAVE THE FOLLOWING
FORMAT: t INFTJTNUM*MAX3+GATENO l ~ l

PROCEDURE MAINFORWARD;<~INPUTNUM=X,GATENO=Y~l

VAR X,Y,FLAG,J :INTEGER;

BEGIN
FPOINTER:=O;
FPOINTER:=FPOINTER+1;
FARRAY(FPOINTERJ:=INPUTNUM*MAX3+GATENO;
WHILE<FPOINTER>O!DO

BEGIN
X:=TRUNC<FARRAY[FPOINTERJ/MAX3!;
Y:=FARRAY[FPOINTERJ-X~MAX3:

r ~ WR ITELN < ' X : = ' , X : 2 • ' Y : = ' , Y : 2 l ; "' >

END;

FPOINTER:=FPOINTER-1:
FLAG: =0;
IF<TEST[XJ.OUTVALUE=-1lTHEN

FLAG: =1;
FORWARD<X, Yl;
IF<<FLAG=l>AND<TEST[XJ.OUTVALUE<>-1>>THEN

BEGIN

END;

IFrX<>TEST[XJ.FANOUTS[lJlTHEN
r "'IF X IS NOT AN OUTPIJT* l

FOR J:=l TO TEST[XJ.FANOUTNUM DO
BEGIN

END;

FPOINTER:=FPOINTER+l:
FARRAYCFPOINTERJ:=
TEST[XJ.FANOUTS[JJ*MAX3+X;

END;< *END OF MAINFORWARD"' l

r "'THE FOLLOWING PROCEDURE "BACKWARD" IS A RECURSIVE PROCEDURE WHICH
TAKES A GATE AND FINDS THE EFFECT OF THE VALUE ASSIGNMENT ON THE
OUTPUT OF THAT GATE BACKWARD AS FAR AS POSSIBLE. WHEN A FANOUT
ORIGIN IS FACED THE EFFECT WILL BE FOUND FORWARD ON THE BRANCHES

104

TEST.PAS;2 4-JUN-196: l4.li Page 11

OF THAT FANOUT ORIGIN. IF A VALUE ASSIGNMENT ON THE OUTPUT OF A
GATE CANNOT BE PROPAGATED BACKWARD ANYMORE.THEN THAT GATE WILL BE
ADDED TO ADJUSTMENT ARRAY FOR JUSTIFICATION PROCESS.*l

PROCEDURE BACKWARD • < * BGU'l': A GATE NUMBER , BVALUE: VALUE OF OUTPUT OF
BGU'l'* l

VAR JB,JJB,AVAL,BCOUNT :INTEGER;

BEGIN
IF<TEST[BGUTJ.GATETYPE=INPUTEITHEN

BEGIN
TEST[BGUTJ.INVALUE[lJ:=BVALUE;
FASAR: =FASAR+l;
ASAR[FASARJ:=BGUT~MAX3+BGUT;

END
ELSE<*TEST[BGUTJ.GATETYPE<>INPUTE*l

BEGIN
IF<BVALUE=OlTHEN

BEGIN
IF<<TEST[BGUTJ.GATETYPE=ORElOR

ITEST[BGUTJ.GATETYPE=NANDlOR
ITEST[BGUTJ.GATETYPE=INVllTHEN
BEGIN

FOR JB:=1 TO
TEST[BGUTJ.NOINPUTS DO
BEGIN

IF<TEST[BGUTJ.
INVALUE[JBJ=-llTHEN

BEGIN
IF<TESTCBGUTJ.

GATETYPE=ORElTHEN
BEGIN

END<

TEST[BGUTJ.
INVALUE(JBJ:=O;

AVAL:=O;
TEST[TEST[BGUTJ.

INPUTS[JBJJ.
OUTVALUE:=O;

FASAR : = FASAR+ 1 ;
hSAR[FASARJ:=
BGUT~<MAX3+
TEST[BGUTJ.
INPUTS[JBJ;

IF< <TEST[BGUTJ .
GATETYPE=NANDlOR

ITEST[BGUTJ.
GATETYPE=INVllTHEN

BEGIN
TEST[BGUTJ.

105

INVALUE[JBJ:=1;
TEST[TEST[BGUTJ.

INPUTS[JBJJ.
OUTVALUE:=1;

AVAL:=l;
FASAR: = FASAR+ 1 ;
ASAR[FASARJ:=
BGUT~<MAX3+

106

TEST.FAS·2 4-JUN-1985 14:17 Page 12

BEGIN

END;

END;

TEST[BGUTJ.
INPUTS[JBJ;

FOR JJB:=l TO TEST[TEST[BGUTJ.INPUTS[JBJJ.FANOUTNUM DO
IF FLAGP=(} THEN
IF<TEST[TEST[BGUTJ.INPUTSCJBJJ.FANOUTS[JJBJ<>BGUTlTHEN

HAINFORWARD<TESTCBGUTJ.INPUTS[JBJ,TEST[TEST[BGUTJ.
INPUTSCJBJJ.FANOUTS[JJBJl;

IF FLAGP=O THEN
BACKWARD<TESTCBGUTJ.INPUTSCJBJ,AVALl;

END;
END;

END

ELSE<*BVALUE=O AND TEST[BGUTJ.GATETYPE=NOR,ANDE*l
BEGIN

BCOUNT:=O;
FOR JB:=l TO TEST[BGUTJ.NOINPUTS DO

BEGIN
IF<TEST[BGUTJ.INVALUE[JBJ<>-llTHEN

BCOUNT:=BCOUNT+l;
END;

IF((TESTCBGUTJ.NOINPUTS-BCOUNTl<>1lTHEN
'*NOT ALL INPUTS OF 'BGUT' CAN BE

SPECIFIED NOW.THEN ADD IT TO THE
ADJUSTMENT ARRY FOR JUSTIFICATION
PROCESS.*>

BEGIN

END
ELSE

FADJUST:=FADJUST+l;
ADJUSTCFADJUSTJ:=BGUT;<*ADD ONE

GATE TO ADJUSTMENT ARRAY* l
FASAR: =FASAR+ 1;
ASARCFASARJ:=BGUT; <*PUT ONLY

THE GATE NUMBER OF BGUT
IN 'ASAR' ARRAY TO INDICATE
THAT ONLY THE VALUE ASSIGNMS~
ON THE' OUTPUT 'BGUT' MUST BE
ERASED WHEN 'ERASE' PROCEDURE
IS CALLED.*>

BEGIN
JB:=l;

WP.ITELN('BGUT=' ,BGUT:3l;
WHILE<TEST[BGUTJ.INVALUE[JBJ

0 -l>DO

WRITELN('BACKWARDJB=' ,JB:2l;
JB: =JB+l;

IF(TEST[BGUTJ.GATETYPE=ANDElTHEN
BEGIN

TEST[BGUTJ.INVALUE[JBJ:=O;
AVAL: =0;
TESTCTESTCBGUTJ.INPUTS[JBJJ.

OUTVALUE: = 0 ;

FASAR: =FASAR+ l;
ASAR[FASARJ:=BGUT*

MAX3+TESTCBGUTJ.INPUTS[JBJ;

TE.ST . F.r..S ; 2 4-JUN-1985 14:17

END
ELSE

Page 13

BEGIN
TESTCBGUTJ.INVALUECJBJ:=1:

107

AVAL:=l;
TESTCTESTCBGUTJ.INPUTSCJBJJ.

END;

OUTVALUE: = 1 ;
FASAR: =FASAR+ 1;
ASARCFASARJ:=BGUTkMAX3+

TESTCBGUTJ.INPUTSCJBJ;

FOR JJB:=1 TO TESTCTESTCBGUTJ.
INPUTSCJBJJ.FANOUTNUM DO

IF FLAGP=O THEN
IF<TESTCTESTCBGUTJ.INPUTSCJBJJ.

FANOUTSCJJBJ<>BGUTJTHEN
MAINFORWARD<TESTCBGUTJ.INFUTSCJBJ,

TESTCTESTCBGUTJ.INPUTSCJBJJ.FANOUTSCJJBJJ;
IF FLAGP=O THEN

BACKWARD<TESTCBGUTJ.INPUTSCJBJ,AVALl;
END;

END
END;

ELSE
BEGIN

IF I BVALUE= 1 l THEN
BEGIN

IF<<TESTCBGUTJ.GATETYPE=ANDEJOR
ITESTCBGUTJ.GATETYPE=NORJOR
ITESTCBGUTJ.GATETYPE=INVl lTHEN
BEGIN

FOR JB:=1 TO TESTCBGUTJ.
NOINPUTS DO

BEGIN
IF<TESTCBGUTJ.

INVALUECJBJ=-1 lTHEN
BEGIN

IF<TESTCBGUTJ.
GATETYPE=ANDElTHEN

BEGIN
TESTCBGUTJ.
INVALUECJBJ:=1;
AVAL:=l;
TESTCTESTCBGUTJ.

INPUTSCJBJJ.
OUTVALUE:=l;

FASAR: =FASAR+1;
ASARCFASARJ:=

BGUTkMAX3+
TESTCBGUTJ.
INPUTSCJBJ;

END;
IF<<TESTCBGUTJ.GATETYPE

=NORJOR<TESTCBGUTJ.
GATETYPE=INVllTHEN

BEGIN
TESTCBGUTJ.

INVALUECJBJ:=O;
TESTCTESTCBGUTJ.

108

TEST.FhS;2 4-JUN-1985 14:17 Page 14

._

END;

INPUTS(JBJJ.
OUTVALUE:=O;

AVAL:=O;
FASAR: =FASAR+l;
ASAR(FASARJ: =

BGUT"'MAX3+
TEST(BGUTJ.
INPUTSCJBJ;

FOR JJB:=1 TO TEST(TEST(BGUTJ.INPUTS[JBJJ.FANOUTNUM DO
IF F:':..AGP=O THEN
IF<TESTCTESTCBGUTJ.INPUTSCJBJJ.FANOUTS[JJBJ<>BGUTlTHEN

MAINFORWARD<TEST[BGUTJ.INPUTS(JBJ,TEST(TESTCBGUTJ.
INPUTS[JBJJ.FANOUTS(JJBJJ;

IF FLAGP=O THEN
BACKWARD<TESTCBGUTJ.INPUTS[JBJ,AVALl;

END;
END;

END

ELSE l"'BGUT IS 'OR' GATE OR 'NAND' GATE"'l
BEGIN

BCOUNT:=O;
FOR JB:=l TO TESTCBGUTJ.NOINPUTS DO

BEGIN
IFrTEST(BGUTJ.INVALUE[JBJ<>-1lTHEN

BCOUNT:=BCOUNT+l;
END;

IF<TEST[BGUTJ.NOINPIJTS-BCOUNT<>llTHEN
BEGIN

END
ELSE

FADJUST:=FADJUST+l;
ADJUST[FADJUSTJ:=BGUT;
FASAR: =FASAR+ 1;
ASAR[FASARJ:=BGUT;

BEGIN
JB:=1;
WHILE<TEST(BGUTJ.INVALUE[JBJ<>-llDO

JB;=JB+1;
IF(TEST[BGUTJ.GATETYPE=ORElTHEN

BEGIN

END
ELSE

TEST[BGUTJ.INVALUE[JBJ:=l;
AVAL: =1;
TESTCTEST[BGUTJ.INPUTS[JBJJ.

OUTVALUE: = 1 ;

FASAR: =FASAR+l;
ASARCFASARJ:=BGUT*MAX3+
TESTCBGUTJ.INPTJTS(JBJ;

BEGIN
TEST[BGUTJ.INVALUE[JBJ:=O;
AVAL:=O;

END;

TEST(TESTCBGUTJ.
INPUTS[JBJJ.OUTVALUE:=O;

FASAR: =FASAR+l;
ASARCFASARJ:=BGUT*MAX3+

TESTCBGUTJ.INPUTS[JBJ;

TEST.PAS;2 •l-JUN-1985 14:17 Page 15

FOR JJB:=l TO TEST[TEST[BGUTJ.
INPUTS[JBJJ.FANOUTNUM DO

IF FLAGP=O THEN
IF<TEST[TEST[BGUTJ.INPUTS[JBJJ.

FANOUTS[JJBJ<>BGUTlTHEN
MAINFORWARD<TEST[BGUTJ.INPUTS[JBJ,

TEST[TEST[BGUTJ:INPUTS[JBJJ.FANOUTSCJJBJl;
IF FLAGP=O THEN

BACKWARD<TEST[BGUTJ.INPUTS(JBJ,AVAL>;
END;

END;
END;

END;

END;
END;!*END OF BACKWARD*!

·r*THE FUNCTION OF THE FOLLOWINGPROCEDURE IS AS FOLLOWS: SUPPOSE THAT
THE OUTPUT OF THE GATE Y=GUTC IS CONNECTED TO THE INPUT OF THE GATE
X=IUTC. THIS PROCEDURE PUTS PROPAGATION VALUES ON THE INPUTS OF X
OTHER THAN THE ONE CONNECTED TOY. AND FINDS THE EFFECT OF THESE
"vALUE ASSIGNMENTS FORWARD AND BACKWARD. IF NO CONFLICT IS FOUND THEN
VALUE ON THE OUTPUT OF X WILL BE DETERMINED AND GATE X WILL BE ADDED
TO THE CRITICAL GATE ARRAY<CGATES>. THE CORRESPONDING CRITICAL
VALUE WILL BE KEPT ON 'CVALUES' ARRAY; THE INPUT OF THE X CONNECTED
TO Y WILL BE MARKED AS CRITICAL FOR THE VALUE ON THE OUTPUT OF
Y<CRITICAL VALUE> IN THE CORRESPONDING FIELD IN THE RECORD OF EACH
GATE."' l

PROCEDURE CRITICALPATH< VAR GUTC, IUTC ,CVALC: INTEGER l;

VAR JCP, KCP : INTEGER;

BEGIN
WKITELN< 'CRITICALPATH ENTERY' l;

FLAGP:=O;
IF!TEST[IUTCJ.OUTVALUE<>-llTHEN

BEGIN
FLAGP:=l;<*THIS PATH CANNOT BE SESITIZED.*l

WRITELN< 'FLAGF=' ,FLAGP: l,' ' , 'TEST[' , IUTC: l, 'J. OUTVALUE=' ,

END
ELSE

TEST[IUTCJ.OUTVALUE:ll;

BEGIN
IF<TEST[IUTCJ.GATETYPE=INV>THEN

BEGIN

END
ELSE

TEST[IUTCJ.INVALUE(lJ:=CVALC;
TEST[IUTCJ.OUTVALUE:=l-CVALC;
TEST[IUTCJ.TEMPCV(lJ:=CVALC;
FCGATES:=FCGATES+1;
CGATESCFCGATESJ:=IUTC;
CVALUES[FCGATESJ:=l-CVALC;
FASAR: =FASAR+l;
ASAR[FASARJ:=IUTC~MAX3+TEST[IUTCJ.INPUTS[lJ;
CRITVAL:=l-CVALC;

BEGIN
JCP:=l;

109

TE.3T. p,;s; 2

110

4-JUN-1985 14:17 Page 16

WHILE< <JCP<=TESTCIUTCJ.NOINPUTSlAND<FLAGP=Ol >DO
BEGIN

IF<TESTCIUTCJ.INPUTSCJCPJ<>GUTC>THEN
BEGIN

WRITELN< 'El' l;
IF<<TESTCIUTCJ.GATETYPE=

ANDElOR<TESTCIUTCJ.
GATETYPE=NANDl >THEN

BEGIN
WRITELN< 'E2' l;
IF<TESTCTESTCIUTCJ.

INPUTSCJCPJJ.
OUTVALUE=OlTHEN

FLAGP:=1
ELSE

BEGIN
WRITELN< 'E3' l;

IF<TESTCTESTCIUTCJ.INPUTS[JCPJJ.OUTVALUE=-1lTHEN
BEGIN

WRITELN< 'E4' l;
FASAR: =FASAR+l;
ASARCFASARJ:=-<IUTC*MAX3+TESTCIUTCJ.INPUTSCJCPJl;
TESTCIUTCJ.INVALUECJCPJ:=l;
TESTCTESTCit~CJ.INPt~SCJCPJJ.OUTvALUE:=l;

FOR KCP:=l TO TESTCTESTCIUTCJ.INPTJTSCJCPJJ.FANOUTNUM DO
IFtTESTCTESTCIUTCJ.INPUTSCJCPJJ.FANOUTSCKCPJ<>IUTC>THEN

MAINFCtRWARD< TESTCIUTCJ. INPUTSCJCPJ,
TESTCTESTCIUTCJ.INPUTSCJCPJJ.FANOUTSCKCP]l;

KCP:=l;
IF FLAGP=O THEN

BACKWARD<TESTCIUTCJ.INPUTSCJCPJ.KCPl;

END~

END;
JCP:=JCP+l;

END
ELSE<~IF<TESTCIUTCJ.GATETYPE=ORE

OR NORlTHEN*l
BEGIN I

IF<TESTCTESTCIUTCJ
.INPUTSCJCPJJ.
OU'lVALUE=l lTHEN

FLA(;P:=1
ELSE I

BEGIN
IF<TESTCTESTCit~CJ.INPUTSCJCPJJ.OUTVALUE=-llTHEN

BEGIN
FASAR: = FASAR+ 1 ;
ASARCFASARJ:=-<IUTC~MAX3+TESTCIUTCJ.INPUTSCJCPJl;

TESTCIUTCJ.IWvALUECJCPJ:=O;
TESTCTESTCIUTCJ.INPUTSCJCPJJ.OUTVALUE:=O;
FOR KCP:=1 TO TESTCTESTCIUTCJ.INPUTSCJCPJJ.FANOUTNUH DO

IF<TESTCTESTCIUTCJ.INPUTSCJCPJJ.FANOUTSCKCPJ<>IUTCJTHEN
MAINFORWARD<TESTCIUTCJ.INPUTSCJCPJ,

TESTCTESTC IUTCJ. INFUTSCJCPJJ. FANOUTSCKCP'J l ;
KCP:=O;
IF FLAGP=O THEN

BACKWARD<TESTCIUTCJ.INPUTSCJCPJ,KCPJ;

END;

END;
JCP:=JCP+l;

END;

TEST.PAS;2 4-JUN-1985 14:17 Page 17

END
ELSE

JCP:=JCP+1;
END;

IFlFLAGP=OJ THEN
BEGIN

IFCCTESTCIUTCJ.GATETYPE=ANDE>ORlTESTCIUTCJ.GATETYPE=OREJ >THEN
BEGIN

END;

CR IT\TAL: =CVALC: .
TESTCIUTCJ.OUTVALUE:=CVALC;
FCGATES:=FCGATES+l;
CGATESCFCGATESJ:=IUTC;
CVALUESCFCGATESJ:=CVALC;

IF I r TEST(IUTCJ. GATETYPE=NAND lOR< TEST(IUTCJ·. GATETYPE=NOR > >THEN

END;
END;

END;

BEGIN
TESTCIUTCJ.OUTVALUE:=l-CVALC;
CRITVAL:=l-CVALC;
FCGATES:=FCGATES+l;
CGATESCFCGATESJ:=IUTC;
CVALUESCFCGATESJ:=1-CVALC;

END;
FASAR: =FASAR+l;
ASARCFASARJ:=IUTC~MAX3+GUTC;

JCP:=l;
WHILElTESTCIUTCJ.INPUTSCJCPJ<>GUTCJDO

JCP:=JCP+l;
TESTCIUTCJ.INVALUECJCPJ:=CVALC;
TESTCIUTCJ.TEMPCVCJCPJ:=CVALC;

END;C*END OF CRITICALPATH*>

PP.OCEJ)URE EEASE;

iiAR CHECKFLAG, JE,M ,N, Q ,WLISTEMPTY: INTEGER;

BEGIN
'* STATTJS;*l

IFIFWLIST=OlTHENl~THIS OCCURES WHEN NO TEST EXIST FOR LAST
ENTRY OF WLIST.*l

BEGIN

END;

WL ISTEMPTY: = l;
FWLIST:=l;
ADARCFWLISTJ:=l;
ADJADARCFWLISTJ:=O;
CADARCFWLISTJ:=O;

FOR JE:=ADARCFWLISTJ TO FASAR DO
BEGIN

IFllASARCJEJ<MAXJJANDlASAR(JEJ>O> >THEN
BEGIN
TESTCASARCJEJJ.OTJT\TALUE:=-1
END

ELSE
BEGIN

CHECKFLAG:=l;
IFlASAREJEJ<OJTHEN
CHECKFLAG:=-1;

111

TEST.PAS:2 4-JUN-1985 14:17

M:=TRUNCt!CHECKFLAG~ASARCJEJltMAX3l;
N:=CHECKFLAG~ASARCJEJ-M~MAX3;

Page 18

END;

Q:=l;
HHILE<TESTCMJ.INPUTSCQJ<>NlDO

Q:=Q+l;
TESTCMJ.INVALUECQJ:=-1;
IF<CHECKFLAG=1lTHEN

BEGIN
TESTCMJ.TEMPCVCQJ:=-1;
TESTCMJ.OUTVALUE:=-1;

END;

END;
FASAR:=ADARCFWLISTJ-1;
FADJUST:=ADJADARCFWLISTJ;
FCGATES:=CADARCFWLISTJ;
IF WLISTEMPTY=l THEN

FWLIST:=O;
WLISTEMPTY: =0;

END; <~END OF 'ERASE'*>

PROCEDURE PRINTTEST;FORWARD;

PROCEDURE ADJUSMENT; <*CALLED FROM PROCEDURE TESTGENERATION* l

LABEL 100;
iiAP. ADJFASAR ,ADJFWLIST ,ADJUSTVALUE,TEMPGATE,TEMPINPUT

,MAINADJVALUE,ADJGATE,JADJ:INTEGER;

REG IN

100:

I* ADJFASAR:=FASAR;*l
ADJFWLIST:=FWLIST;
FLAGP:=O;
WHILE< (FADJUST>OlAND<FLAGP=OllDO !*WHILE NOT ALL GATES

WAITING FOR JUSTIFICATION ARE PROCESSED DO*l
BEGIN

l\DJGATE: =ADJUSTCFADJUSTJ ;.
FADJUST:=FADJUST-1;
IF!!TESTCADJGATEJ.GATETYPE=ANDElOR

tTESTCADJGATEJ.GATETYPE=NANDllTHEN
ADJUSTVALUE:=O

ELSE
l\DJUSTVALUE:=1;

MAINADJVALUE:=ADJUSTVALUE;
JADJ:=1;

HHILE!<TESTCADJGATEJ.INVALUECJADJJ<>ADJUSTVALUElAND
IJADJ<TESTCADJGATEJ.NOINPIJTSllDO

.JADJ: =JADJ+1;
IF!TESTCADJGATEJ.INVALUECJADJJ<>ADJUSTVALUElTHEN

FOR JADJ:=l TO TESTCADJGATEJ.NOINPUTS DO
IF<TESTCADJGATEJ.INVALUECJADJJ=-llTHEN

BEGIN
FWLIST:=FWLIST+l;
WLISTCFWLISTJ:=ADJGATE*MAX3+

T.ESTCADJGATEJ.INPUTSCJADJJ;
ADARCFWLISTJ:=FASAR+l;
ADJADARCFWLISTJ:=FADJUST;!*FOR USE

OF 'ERASE' ONLY*>
END;

IF<FWLIST>ADJFWLISTlTHEN

112

TEST . PF,S ; 2 4-JUN-1985 14:17

BEGIN
FLAGP: =0;
TEMPGATE: ,;TRUNC<WLIST[f'WL!STJ/MAX3);
TEMPINPUT:=WLIST[f'WLISTJ-TEMPGATE*MAX3;
FWLIST:=FWLIST-1;
IF<<TEST[TEMPGATEJ.GATETYPE=ANDE>OR

<TEST[TEMPGATEJ.GATETYPE=NAND) lTHEN
ADJUST"vALUE: =0

ELSE
ADJUSTVALUE: =1;

rage 19

IF<TEST[TEMPINPUTJ.OUTVALUE=1-ADJUSTVALUEiTHEN
'*THIS CHECK IS NECESSARY BECAUSE MAY BE IN ADJUSTMENT PROCESS SOME
OF THE VALUES ON INPUTS OF GATES FOR ADJUSTMENT ARE CHANGED TO
>TALUES OTHER THAN DON'T CARES.*- l

GOTO 100
ELSE

IF! TEST[TEMPINPUTJ .OUTVALUE=-1 1THEN
BEGIN

JADJ:=l;
WHILE<TEST[TEMPGATEJ.INPUTS[JADJJ

(>TEMP INPUT l DO

113

JADJ:=JADJ+l;
TEST[TEMPGATEJ.INVALUE[JADJJ:=ADJUSTVALUE;
TEST[TEMPINPUTJ.OUT"vALUE:=ADJUSTVALUE;
FASAR: =FASAR+l;
~SAR[FASARJ:=TEMPGATE*-MAX3+TEMPINPUT;
JADJ:=l;
WHILE<JADJ<=TEST[TEMPINPUTJ.

FANOUTNUMlAND<FLAGP=Ol DO
BEGIN

MAINFORWARD<TEMPINPUT,TEST[TEMPINPUTJ.FANOUTS[JADJJl;
JADJ: =JADJ+l;

END;
IF<FLAGP=OlTHEN

BACKWARD!TEMPINPTJT,ADJUSTV~LUEl;
IF<FLAGP=liTHEN

IF!FWLIST>ADJFWLISTlTHEN
BEGIN

WRITELN<OUTFILE,'CONFLICT FOUND INJUSTIFICATION PROCESS BETWEEN GATES',
TEMPINPUT:2,' ',TEMPGATE:2,' FOR VALUE ', ADJUSTVALUE:l,'
IN ,JTJSTIFYING ',ADJGATE:2,' FOR VALUE ',MAINADJVALUE:ll;

END
ELSE

WRITELN<OUTFILE,'GATE ',ADJGATE:2,

ERASE;
GOTO 100;

HAS NOT JUSTIFIED FOR ',MAINADJVALUE:l,' .·);

END;
END;

PRINTI'EST;
FWLIST:=AOJFWLIST;

END;<*-END OF AOJUSTMENT*-l

END;

PROCEDURE ADDONEFANOUTTOWLIST<VAR GUTAW,JAF:INTEGERl;

BEGIN
FWLIST:=FWLIST+l;

TEST.PAS;2

END;

4-JUN-1985 14:17

WLISTCFWLISTJ:=ITEST[GUTAWJ.FANOUTS(JAFJl~MAX3+GUTAW;
ADAR[FWLISTJ: =FASAR+1;
ADJADAR[FWLISTJ:=FADJUST;
CADARrFWLISTJ:=fCGATES;

FUNCTION FINDFANOUTFORWLIST < VAR GATE: INTEGER l :INTEGER;

VAR JA,KA :INTEGER;

BEGIN
JA:=1;
WHILE<JA<=TESTCGATEJ.FANOUTNUMlDO

BEGIN

Page 20

KA:=l;
HHILE<TEST[TESTCGATEJ.FANOUTSCJAJJ.INPUTSC!~J<>GATEiDO

KA:=KA+l;

114

IF<<TESTCTEST[GATEJ.FANOUTSCJAJJ.CRITICAL[KAJ=CRITVALl
OR<TESTCTESTCGATEJ.FANOUTSCJAJJ.CRITICAtCKAJ=2l >THEN

BEGIN

END;
END;

If(JA=TESTCGATEJ.FANOUTNUM>THEN
FTNDFANOUTFORWLIST:=JA;

JA:=JA+1;
END

ELSE
BEGIN

END;

FINDFANOUTFORWLIST:=JA;
JA:=TESTCGATEJ.FANOUTNUM+l;

I?P.OCEDIJRE PUTFANOUTSINWLIST<VAR GUTP: INTEGER>;

VAR JP,KP:INTEGER;

BEGIN
WRITELN< 'ENTERED PUTFANOUTSINWLIST' l;

JP:=1;
IF< <TESTCGUTPJ.GATETYPE=ANDE>OR<TEST[GUTPJ.GATETYPE=ORE>

OR< TESTCGUTPJ .GATETYPE= INPUTE l l THEN
BEGIN

WHILE<<<TESTCGUTPJ.CRITICAL[JPJ<>CRITVAL>AND
1. TESTCGUTPJ. CRITICALCJPJ < > 2 l l
AND<JP<TESTCGUTPJ.NOINPUTSllDO

JP: =JP+l;
IF<<TESTCGUTPJ.CRITICALCJPJ=CRITVALlOR

ITESTCGUTPJ.CRITICAL[JPJ=2l
OR<<TESTCGUTPJ.FANOUTNUM-TESTCGUTPJ.NOINPUTS><=OllTHEN

BEGIN
KP:=FINDFANOUTFORWLIST<GUTPl;

WRITELN< 'GUTP=' ,GUTP: 3,' ' , 'KP=' ,KP: 3 l;

END
ELSE

ADDONEFANOUTTOWLIST< GUTP ,KP l;

FOR JP:=l TO <TESTCGUTPJ.FANOUTNUM­
TESTCGUTPJ.NOINPUTS+1lDO

•.

TEST. ?.t..S; 2 4-JUN-1985 14:17

BEGIN
KP: =JP:
ADDONEFANOUTTOWLI ST C GUTP, KP l :

END;
END

ELSE(*TESTCGUTPJ.GATETYPE=NAND,NOR,INVERTER*>
BEGIN

Page 21

<* WRITELN< 'CRITVAL=' ,CRITVAL:2,' ','TESTC' ,GUTP:2,'J.GATETYPE=',
TESTCGUTPJ.GATETYPEl;*l

WHILE<<TESTCGUTPJ.CRITICALCJPJ<>
1-CRITVAL>AND<TESTCGUTPJ.CRITICALCJPJ<>2l
AND<JP<TESTCGUTPJ.NOINPUTSl >DO

JP:=JP+1;
I* WRITELN< 'JP=' ,JP:2l;*l

IF!<TESTCGUTPJ.CRITICALCJPJ=
l-CRITVALlOR<TESTCGUTPJ.CRITICALCJPJ=2l
OR< <TESTCGUTPJ.FANOUTNUM-

TESTCGUTPJ.NOINPUTSl<=Ol >THEN
BEG HI

KP:=FINDFANOUTFORWLIST<GUTPl;
I *WRITELN< 'KP= .• KP:2) ;"')

ADDONEFANOUTTOWLIST<GUTP,KPl;
END

ELSE
FOR JP:=1 TO (TESTCGUTPJ.FANOUTNUM+1-

TESTCGUTPJ.NOINPUTS>DO
BEGIN

KP:=JP;
'"'WRITELN< 'KPALL=' ,KP:2l;"'l

ADDONEFANOUTTOWLIST<GUTP,KPl;
END;

END;
END;

PROCEDURE MAKECRITICAL;

VAR JM,KM:INTEGER;

BEGIN

END;

FOR JM:=1 TO NOOFNODES DO
FOR KM:=l TO TESTCJMJ.NOINPUTS DO

IF< (TESTCJMJ.TEMPCVCKMJ<>-1>
AND<TESTCJHJ.CRITICALCKMJ<>2llTHEN

IF<<TESTCJMJ.CRITICALCKMJ<>-llAND
cTESTCJMJ.TEMPCVCKMJ<>TESTCJMJ.CRITICALCKMJllTHEN

TESTCJMJ.CRITICALCKMJ:=2
ELSE

TESTCJMJ.CRITICALCKMJ:=TESTCJHJ.TEMPCVCKMJ;

PROCEDURE PRINTTEST;
VAR JPR: INTEGER;

BEGIN
WRITELN<OUTFILE,'************"'"'*"'*"'******"""'"'""***"'"'"'***"'*' l;
IF<FLAGP=llTHEN

115

WRITELN<OTJTFILE,'CRITICAL PATH NOT COMPLETED FOR THE FOLLOWING GATES:' l;

TF.:ST.FAS;2

IF<FLAGP=OlTHEN
BEGIN

PCOUNT:=PCOUNT+1;

4-JUN-1985 14:17

WRITELN<OUTFILE,'TEST NUMBER ',!?COUNT,':' l;
END;

116

Page 22

WRITELN<OUTFILE,'CRITICAL-GATE NUMBER',' ','CRITICAL-GATE OUTPUT-VALUE' l
FOR JPR:=l TO FCGATES DO

WKITELN<OUTFILE.· ',CGATESCJPRJ:3,' ',CVALUE~

WF<ITELIHOUTFILE, 'GATE NUM',' ','OUTPUT VALUE' l;
FOR JPR:=l TO NOOFNODES DO

WRITELN<OUTFILE,JPR:3,' ',TESTCJFRJ.OUTVALUE:1l;
IF FLAGI?=O THEN

BEGIN

END;

WRITELN<OUTFILE,'TEST VECTOR:' l;
WRITELN<OUTFILE,'INPUT NUMBER-----------------VALUE' l;
FOR JPR:=l TO INPUTCOUNT DO

BEGIN

END;

Il:=TRUNC<INPUTLISTCJPRJ/MAX3l;
WRITELN<OUTFILE,Il:2,'-----------------)' ,TESTCilJ.INVALUE[

END;<~END OF PRINTTEST*l

PROCEDURE TESTGENERATION;
VAR JT , J'IT : INTEGER ;

BEGIN
FOR MCRITVAL:=O TO 1 DO
BEGIN

IF<MCRITVAL=1lTHEN
BEGIN

END;

FOR JT:=l TO INPUTCOUNT DO
BEGIN'

END;

FWLIST:=fWLIST+l;
WLISTCr~ISTJ:=INPu~LISTCJT];

ADARCFWLISTJ:=l;
CADARCFWLISTJ:=O;
~ADARCFWLISTJ:=O;

WHILE<FWLIST>OJDO
BEGIN

GUT:=WLISTCFWLISTJ-TRUNC<WLISTCFWLISTJ/MAX3l*MAX3;
IUT: =TRUNC(WLISTCFWLISTJ/MAX3 l;
IF<TESTCIUTJ.GATETYPE<)INPUTElTHEN

CRITVAL:=TESTCGUTJ.OUTVALUE;
IF<TESTCIUTJ.GATETYPE=INPUTEJTHEN

BEGIN
CRITVAL:=MCRITVAL;
FWLIST:=FWLIST+1;
TESTCGUTJ.IWvALUEClJ:=CRITVAL;
TESTCGUTJ.OUTVALUE:=CRITVAL;
TESTCGUTJ.TEMPCVC1J:=CRITVAL;
FCGATES:=FCGATES+l;
CGATESCFCGATESJ:=GUT;
CVALUESCFCGATESJ:=CRITVAL;
FASAR: =FASAR+ 1;
ASARCFASARJ:=IUT*MAX3+IUT;

TEST.PA5;2

117

4-JUN-1985 14:17 Fage 23

PUTFANOUTSINm.ISTl IUTl; <"'ADD FANOUTS OF THIS INFU'
END

ELSE
BEGIN

IF<TESTCIUTJ.GATETYPE=OUTPUTElTHEN
BEGIN

TESTCIUTJ.INVALUECll:=CRITVAL;
TESTCIUTl.OUTVALUE:=CRITVAL;
TESTCIUTl.TEMPCVClJ:=CRITVAL;
FCGATES:=FCGATES+l;
CGATESCFCGATESJ:=IUT;<~ADD

END

THE GATE MADE CRITICAL TO
'CGATES' ARRAY.*l

CVALUESCFCGATESJ:=CRITVAL;l~KEEF
THE CRITICAL VALUE OF THIS GATE
IN 'CVALUES' ARRAY.*>

FASAR: =FASAR+l;
ASARCFASARJ:=IUT~MAXJ+GUT;C"'ADD

THIS OUTPUT TO 'ASAR' ARRAY."' l
ADJUSMBiT;(~DO THE JUSTIFICATION~>
IF FLAGP=O THEN
MAKECRITICAL;l~MARK ALL THE LINES

WHICH HAVE BEEN MADE CRITICAL
AND SEE IF THEY TESTED
COMPLETELY."' l

FWLIST:=FWLIST-1;
ERASE;
FLAGP :=0;

ELSE<*IT MEANS THAT ONE BRANCH OF A FANOUT
ORIGIN IS GOING TO BE TAKEN.*l

BEGIN
FWLIST:=FWLIST-1;
FOR JT:=l TO TESTCGUTJ.FANOUTNUM DO

r*FIND THE INPUT TO THE 'IUT' WHICH IS CONNECTED TO THE FANOUT ORIGIN AND
FOF. THE OTrtER BRANCH ot THAT FANOUT ORIGIN PROPAGATE THE VALUE FORWARD.*l

IF<TESTEGUTJ.FANOUTSEJTJ
<) IUTlTHEN

MAINFORWARD<GUT,TESTEGUTJ.
FANOUTS[JTJ l;

IF FLAGP=O THEN
BEGIN

TEMPCRITVAL:=CRITVAL;
CRITICALPATHCGUT,IUT,TEMPCRITVALl;

END;
IF!FLAGP=1lTHEN <*A CONFLICT WAS FOUND IN THE PATH SENSITIZATION PROCESS.*l

END;.
END;

END;
END;

<* PROCEDURE CPTJTIMER;EXTERN;*l

BEGIN
PRINTTEST;
EP.ASE;
FLAGP:=O;

END
ELSEl*IF<FLAGP=OlTHEN*l

PUTFANOUTSINWLISTCIUTl;
END;

118

TEST.FAS;2 4-JUN-1985 14:17 Page 24

I"'MAIN PROGRAM"'>

BEGIN

ttt CPUTIMER;tt)
WRITELNC 'TYPE NAME OF THE INPUT FILE:'>;
READ C NAME l ;
OPEN<FILE VARIABLE:=INFILE,FILE NAME:=NAME,HISTORY:=OLDl;
RESEI<INFILEl; -
REWRITECOUTFILEl;
INITIALIZE;
TESTGENERATION;

I"' CPUTIMER;ttl
Itt FOR !1:=1 TO NOOFNODES DO

END.

BEGIN
WP.ITElTESTI:IlJ.GATENUM:2,TEST[IlJ.GATETYPE:8,TEST[IlJ.NOINPUTS:2l:
FOR Jl:=l TO TEST[IlJ.NOINPUTS DO
WRITE< TESTI:IlJ. INPUTS[JlJ: 2,' ' , TEST[IlJ .CRITICAL[JlJ: 3, ·

TEST[IlJ. TEMPCV(JlJ: 3,' ',' INVALUE[' ,Jl: 2, 'J='
,TESTI:IlJ.INVALUEI:JlJ:2>;

WRITEC' ';TEST[I1J.FANOUTNUM:2l;
FOR Jl:=l TO TEST[IlJ.FANOUTNUM DO
WRITE<' ',TEST[IlJ.FANOUTS[JlJ:2l;
WRITE<' ',TEST[IlJ.OUTVALUE:3l;
WRITELN;
END;*>
WRITELN<OUTFILE,'LIST OF NODES WHICH ARE NOT COMPLETELY TESTED:' l;
WRITELN< OUTFILE,' FROM GATE

TO GATE VALUE TESTED FOR' l ;
Kl:=O;
FOR Il:=l TO NOOFNODES DO

FOR Jl:=l TO TESTI:IlJ.NOINPUTS DO
BEGIN

IFITEST[IlJ.CRITICAL(JlJ<>2lTHEN
BEGIN

WRITELNIOUTFILE,' '.TEST[IlJ.INFUTS(JlJ:2,

END;
IF<Kl=OlTHEN

END;

·-------------- ',!1:2.
' . ------------------ .
TEST[IlJ.CRITICAL(JlJ:2l;

Kl::Kl+l;

WRITELN<OUTFILE,'CIRCUIT WAS COMPLETELY TESTED.' l;

APPENDIX B

LISTING OF THE PROGRAN WHICH CHANGES

A COMBINATIONAL LOGIC CIRCUIT

TO A PIFD LOGIC CIRCUIT

119

FROGRAM FINDLOGFS(INPUT,OUTPUTl;

I""THE FUEFOSE GF THIS PROGRAM IS TO IDENTIFY THE RECONVERGENT GATES
AND ADD THE BLOCKING GATES AND TEST INPUTS WHERE THEY ARE NEEDED. THE
INPUT FILE MUST HAVE THE FORMAT AS THOSE NEEDED FOR THE TEST GENERATION
PROGRAM.THE OUTPUT FILE WILL BE IN A FORMAT USABLE BY THE TEST GENERATION
PROGRAM.AT THE END OF THE OUTPUT FILE THERE WILL BE SOME INFORMATION ABOUT
THE ADDED BLOCKING GATES AND TEST INPUTS.THIS PROGRAM ALWAYS PROCESSES
FIRST THE BRANCHES OF FANOUT ORIGINS WHICH ARE FACED FIRST IN THE FORWARD
TRAVELING OF THE CIRCUIT.THIS GUARANTEES THAT THE RECONVERGENT GATES WILL
BE FOUND IN TIME PROPORTIONAL TO N2.ALSO IT GUARANTEES THAT THE GATES OR
LINES WHICH ARE PART OF LOOP CAN BE FOUND IN TIME PROPORTIONAL TO N2.""l
C"ONST MAX1=20;

MAX2=4000;

TYPE GTYPE= I ANDE, ORE, NAND, NOR, INPTJTE, OUTPUTE, INV l ;

'"THE RECORD WHICH KEEPS NECESSARY
C"IRCUITDES=

RECORD
GATETYPE
GATENUM

INFORMATION FOR EACH GATE.""l

:GTYPE;
:1 .. MAX2;
:1 .. MAX1;
:INTEGER;
:ARRAY[l. . MAXlJ OF INTEGER ;
:ARRAYC1 .. MAX1J OF INTEGER;
:ARRAYCl. .MAXlJ OF INTEGER;
:.1. .MAXl;
:ARRAYCl •. MAXlJ OF INTEGER;
:INTEGER;

120

NO INPUTS
FACED
INPUTS
FACED INPUT
LOOP
FANOUTNUM
FAN OUTS
PROCESSED
LOOPS
RECON

:INTEGER;!""'1' IF THE GATE IS ON A LOOP""l
:INTEGER;!""'l' IF THE GATE IS A

PERRECON

PERLOOPS

PERLOOP
MAKELOOP

END;

RECONGATES=

FANBRANCH=

RECORD
RG
BG
FG

END;

RECORD

:INTEGER
:INTEGER
:INTEGER

RECONVERGENT GATE""l
:INTEGER;< "KEEP THE NUMBER OF TIMES THAT

A GATE HAS BEEN MARKED AS
RECONVERGENT GATE""l

:INTEGER; < "KEEP THE NUMBER OF TIMES THAT
A GATE HAS BEEN MARKED AS BEING
ON A LOOP""l

:ARRAYCl. .MAXlJ OF INTEGER;
:ARRAYCl. .MAXlJ OF INTEGER;
1""'1' IF IT IS ONE OF THE BRANCHES OF
A FANOUT ORIGIN WHICH CREATES A
RECONVERGENT PATH""l

FAN
BRANCH

:INTEGER;
:INTEGER;

END;

ilAF. TEST
RGATE
fO'J'!'LIST
FANOUT
NAME
INF!LE
•:•UTFILE
I,J,K,L,M,N
FANGUTF
FC•IJTLISTP
FR0NTIEP.GATE
BLOCKGATE
l~OOFN'ODES
OLDNOOFNODES

FOGATE
BACKTF.ACE
RGATEP
R.B
LFO
FOF.MJ:.""RBT

4-CUN-1~85 16:04

:ARRAYCl .. MAX2J OF CihCUITDES:
:ARPAY(l .• MAX2J OF RECONGATES;
:ARRAY(l .. M/o.iG!J. OF INTEGER;
:AF.RAY(l .. MAX2J OF FANBRANCH;
:?ACKE!) ARRAY[l. .40] OF CHAF.;
:TEXT;
:TEh"T;
:INTEGER;
:INTEGER; <*POINTER TO F.n.NOIJT ARRAY"'l­
:INTEGER; !*POINTER TO FOIJTLIST ARFAY*l

F'age 2

:INTEGER: <*THE HEAD GATE UNDER PROCESS ONA PATH*l
:INTEGER; <*THE GATE BEFORE FRONTIERGATE ON A PATH*l
:INTEGER; <*NUMBER OF GATES IN THE CIRCUIT*!
:INTEGER; <*# OF NODES BEFORE ADDING MlY TEST INPUT

OR BLOCKING GATE*l
: I~"TEGER; c *A FANOUT GATE* l
:INTEGER; <*KEEPS THE GATE IN BACKTRACING"'l
:INTEGER; c "'POINTER TO RGATE ARRAY* l
:INTEGER;
:INTEGER; C*LAST FANOUT ORIGIN UNDER PROCESS*!
:INTEGER; <*FORMER BACKTRACE GATE"'•

PROCEDURE INITIALIZE;

t*INITIALIZE THE NECESSARY RECORDS,FILES,AND VARIABLES.*!
BEGIN

FOIJTLISTP:=O;
I=:EAD< INFILE,Nht'.El;
~ITELNc OUTFILE,NAMEl;
READCINFILE,NOOFNODESl;
E•R K: = l TO NOOFNODE.S DO

BEG It~

END;

REAr/(INFILE, I l;
TEST(IJ. GATEN'uM: =I;
TEST[IJ.FACED:=O;
TESTCIJ.PROCESSED:=O;
TESTCIJ.LOOPS:=O;
TESTCIJ.PERLOOPS:=O;
TEST[IJ.RECON:=O;
TESTCIJ.PERRECON:=O;
REAr•<INFILE,TESTCIJ.GATETYPE,TEST[IJ.NOINPUTSl;
FOR J:=l TO TESTCIJ.NOINPUTS DO

BEGIN
READ!INFILE,TEST[IJ.INPUTS[J]l;
TEST[IJ.LOOP(JJ:=O;
TEST[IJ.PEP.LOOP[JJ:=O; ·
TEST[IJ.FACEDINPIJT[JJ:=O;

END;
P.EAD c INFILE, TEST(I J . FANOUTNUM l ;
FOR J:=l TO TEST[IJ.FANOUTNUM DO

BEGIN
READCINFILE.TESTCIJ.FANOUTSCJJl;
TESTCIJ.MAKELOOP[JJ:=O;

END;

FOR K:=l TO NOOFNODES DO
IF TEST[KJ.GATETYPE=INPUTE THEN

121

4-c.l01~-l.:i35 1.6:04

BEGIN
B:=K:

END;

WrliLE <TEST[BJ.FANOUTNUM=ll AND
tTESTCBJ.GATETYPE<>OUTPUTEl DO

'B: =TEST[BJ. FANOUTS[lJ;
IF TEST[BJ.FANOUTNUM>l THEN

BEGIN
FOUTLISTF:=FOUTLISTP+l;
FOUTLISTCFOUTLISTPJ:=E:

END;

END; <*INITIALIZE*l

PROCE:•;JF.E EACKTAAC ING;
'*IF A RECO~v~GENT GATE IS FOUND. THEN TFAVEL BACKWARD AND MARK
;;:.;:, THE .:;;..7E l-JJ:. LINES V-l'HICH HA\i'E BEEN FACED IN THE LAST A'ITEMPT
AS BE:N·,:; ON A LOOP UNTIL A. FANOUT ORIGIN. A RECON'v"ERGENT GATE. OR
A FR H·L;;::z INFTJ1' IS FACED. * 1

BEGIN

("'

fO~ L: ,;;_ TO TEST[FF:ONTIEP.GATEJ . NG :NPUTS DO
I:F 1 TEST(fF.C,NTIERGATEJ. FACEDINPUTCLJ=l l

AN.U ITESTCFRONTIERGATEJ.LOOPCLJ=Ol THEN
BEGIN

END;

.J:=O:
TESTCFF.ONTIERGATEJ.LOOPCLJ:=l;
BACKTRACE:=TESTCFF.ONTIERGATEJ.INFUTSCLJ;
WrliLE (TESTCBACKTRACEJ.RECON=Ol AND

tBACKTRACE<>LFOl AND <BACKTRACE<>FOGATEl DO
BEGIN

J:=l;
M:=l;

END;

WrliLE NOTtTESTCBACKTRACEJ.FACEDINPUTCMJ=ll DO
M:=M+l;

TEST(BACKTRACEJ.LOOP[MJ:=l;
TESTCBACKTRACEJ.LOOPS:=l;
fOF.MEF.BT:=BACKTRACE;
BACKTRACE:=TESTCBACKTRACEJ.INPUTSCMJ;

IF BACKTRACE=LFO THEN
BEGIN

IF J=O THEN
FORMERBT:=FF.ONTIERGATE:

M:=l;
WHILE NOT(TESTCBACKTRACEJ.FANOUTSCMJ=FORMERBTl DO

M: =M+l;
TESTCBACKTRACEJ.MAKELOOPCMJ:=l;

END;* I

END; '*BACKTRACING*l

122

,,..THE FOLLOWING PROCEDURE IS SUPPOSED TO IDENTIFY THE INPUTS TO THE BLOCKING
GATES <THE GATES RIGHT BEFORE A RECONVERGENT GATE WHICH ARE ON A LOOP WITH
THAT RECONVERGENT GATE! WHICH ARE ON A LOOP. ALSO IT IDENTIFIES ALL THE OTHER
GATES AND GATES' INPUTS WHICH ARE ON A LOOP." l

PROCEDURE LOOP;

BEG I!~

1 000:

123

.: -.1i_iN ··1 ~t-~·· J .:. : tJ4

F•)F I:" l Tlj FOUTLISTF [1(1

E.t::,_;IN
F•:<GATE: =FOf.TTLISH I J;
F A.Nt) lTTP : =I) ;
!="t,F: M: = l TO NOOFNt:1DES [1('

BEGIN
FOR L:"l T0 TEST[MJ.NOINFUTS DO

BEGIN
TEST[MJ. PERLOOP[LJ: =TEST[MJ. PERLC10P[LJ+

TEST[MJ.LOOP[LJ:
TEST[MJ.LOOP[LJ:=O;
TEST[MJ.FACEDINPUT[LJ:=O;

END;
TEST[MJ.PERLOOPS:=TEST[MJ.PERLOOPS+TEST[MJ.LOOPS;
TEST[MJ.LOOPS:=O;
TEST[MJ.FACED:=O;
TEST[MJ.PERRECON:=TEST[MJ.PERRECON+TEST[MJ.RECON;
TEST[MJ.RECON:=O;

END; .
IF TEST[FOUTLIST[IJJ.PROCESSED=O THEN

BEGIN
TEST[FOUTLIST(IJJ.PROCESSED:=l;
FOR J:=l TO TEST[fOGATEJ.FANOUTNUM DO

BEGIN

END;
N:=O;

FANOUTP:=FANOUTP+l;
FANOUTCFANOUTPJ.BRANCH:=TESTCFOGATEJ.FANOUTSCJJ;
FANOUT[FANOUTPJ.FAN:=FOGATE;

WHILE NOT<N=FANOUTP\ DO
BEGIN

N:=N+l;
BLOCKGATE:=FANOUT[NJ.FAN;
LFO:=FANOUT[NJ.FAN;
TESTCFANOUT[NJ.FANJ.PROCESSED:=l;
FRONTIEF:GATE:=FANOUT[NJ.BRANCH;
IF TEST[FRONTIERGATEJ.FACED>l THEN

·"'THIS GATE HAS BEEN FACED AT LEAST TWO MORE TIMES WHEN PROCESSING
THE SAME FOGATE. THEN IT HAS BEEN ALREADY MARKED AS RECON. GATE!< i

BEGIN
/"KEEP TRACK OF RECONVERGENT GATES AND THEIR CORRESPONDING BLOCKING

GATES. IF THE BLOCKING GATE HAS MOR THAN ONE FANOUT, THEN MAY BE
IT CANOT BE CONSIDERED AS A BLOCKING GATE ALTHOUGH IT MAY HAVE
THE GATE TYPE. THEN KEEP ITS GATE NUMBER NEGATED IN ORDER TO
REMEMBER THIS CASE."\

RGATEP:=RGATEP+l;
RGATECRGATEPJ.RG:=FRONTIERGATE;
M:=l;
WHILE <TEST[FRONTIERGATEJ.INPUTS[MJ,>

BLOCKGATE\ OR
ITEST[FF:ONTIERGATEJ.FACEDINFUT[MJ=li
DO

M:=M+l;
TEST[fRONTIERGATEJ.FACEDINPUT[MJ:=l;
IF TEST[BLOCKGATEJ.FANOTJTNUM=l THEN

RGATECRGATEPJ. BG: =ELOCKG!-.TE
ELSE

~-JUN-1~65 1~:04 Fage 5

END;

RGATECRGATEPJ.BG:=-BLOCKGATE:
TESTCFRONTIERGATEJ.RECON:=

TESTCFRONTIERGATEJ.RECON+l;
BACKTRACING:

IF TESTCFRONTIERGATEJ.FACEO=l THEN

124

t *RG HAS BEEN FACED JUST ONE TIME BUT IT WAS NOT MARKED AS RG&BLOCKGATE-" l
BEGIN

BEGIN

ENJ:•;

M:=l;
WHILE tTESTCFRONTIERGATEJ.INPUTS[MJ<>

BLOCKGATEl OR
ITESTCFRONTIERGATEJ.FACEDINPUTCMJ=ll

DO
M:=M+l;

TESTCFRONTIERGATEJ.FACEDINPUTCMJ:=l;

END;

FOR K:=l TO TESTCFRONTIEP.GATEJ.NOINPTJTS DO
IF l TESTCTESTCFRONTIEF:G;..TEJ. INPUTSCKJ J

.FACED>O> OR
tTESTCFRONTIERGATEJ.INPUTSCKJ=FOGATEl

OR
•TESTCFRONTIERGhTEJ.INPUTSCKJ=LFOl

THEN
BEGIN

RGATEP: =RGATEP+l; -
RGATECRGATEPJ.RG:=FRONTIERGATE;
RGATECRGhTEPJ.FG:=FOGATE;
IF TESTCTESTCFRONTIERGATEJ.

INPUTSCKJJ.FANOUTNUM=l THEN
RGATECRGATEPJ.BG:=

TESTCFRONTIERGATEJ.INPUTSCKJ
ELSE

RGATECRGATEPJ.BG:=
-TESTCFP.ONTIERGATEJ.INPUTSCKJ:

TESTCFRONTIERGATEJ.RECON:=l;
TESTCFRONTIERGATEJ.LOOPS:=

TESTCFRONTIERGATEJ.LOOFS+l;
BACKTP.ACING;

END;
TESTCFRONTIERGATEJ.FACEO:=

TESTCFRONTIERGATEJ.FACED+l;

IF TESTCFRONTIERGATEJ.FACED=O THEN
BEGIN

WHILE tTESTCFRONTIERGATEJ.FACED=Ol DO
BEGIN

TESTCFRONTIERGATEJ.FACED:=l;
M:=l;

WHILE tTESTCFRONTIERGATEJ.INPUTSCMJ<)BLOCKGATEl OR
ITEST[FRON'IIERGATEJ.FACEDINPUT[MJ<>Ol DO

1-:lF:ITELNt ·FE=' .fr .. :•NTIEF:GATE:4,' M=' ,M: 2, 'BLOCKGATE= .• BLOCKGATE:4 l;
WF:ITEL!{I · TFIM=' , TESTCFRONTIERGATEJ. INPUTS[MJ l;

M: =M+l;

TESTCFRONTIERGATEJ.FACEDINPUTCMJ:=l;
IF TESTCFRONTIERGATEJ.GATETYPE

<>OUTPUTE THEN
BEGIN

BLOCKGATE:=FRONTIERGATE:
IF TESTCFRONTIERGATEJ.

FANOUTNUM> 1 THEN

END;
END:

4-JGN-i~B~ :6:04

125

FOR L: =2 TO TEST
CFRONTIERGATEJ.FANOUTNUM DO
BEGIN

FANOUT?: =FANOUT?+ l;
FANOUT[FANOUT?J.BRANCH:=TESTCFRONTIERGATEJ.FANOUTSCLJ;
FANOUTCFANOUTPJ. FAN: =FRONTIERGATE;

END;

END;
FFONTIEF:GATE:=TESTCFRONTIERGATEJ.FANOUTS[lJ;

END;
END;

IF TE2·TCFR•:,NTIERGATEJ. GATETYPE< > OUTPIJTE THEN
GOTO 1000;

END;

f?H,CEDTJRE ADDTESTINFUT;
~~IF iriE GATES BEFORE RECO~VERGENT GATES HAVE THE RIGHT TYPE FOR
BLOCKING GATES , THEN ONLY ADD TEST INPUTS TO THEM.~>

BEGIN
TESTCBJ.NOINFUTS:=TESTCBJ.NOINPUTS+l;
NOOFNODES:=NOOFNODES+l;
TEST[BJ.INPUTSCTESTCBJ.NOINPUTSJ:=NOOFNODES;
TESTCNOOFNODESJ.GATENUM:=NOOFNODES;
TEST[NOOFNODESJ.GATETYPE:=INFUTE;
TEST[NOOFNODESJ.NOINPUTS:=l;
TEST[NOOFNODES J. INPUTS[lJ: =NOOFNODES;
TEST[NOOFNODESJ.FANOUTNUM:=l;
TEST[NOOFNODESJ.FANOUTS[lJ:=B;

8IT;;

FF.•)CEI:.URE ADD BLOCK INGGATE;
; "ADD ELuO:ING GATES BEFORE RECON"'v'"ERGENT GATES.~>

13EGIN
FOR J:=l TO TEST[BJ.FANOUTNUM DO

IF TESTCBJ.F&~OUTSCJJ=R THEN
BEGIN

NOOFNODES:=NOOFNODES+l;
IF rTEST[RJ.GATETYPE=ORE> OR

ITEST[RJ.GATETYPE=NOR> THEN
TEST[NOOFNODESJ.GATETYPE:=ANDE

ELSE
TEST[NOOFNODESJ.GATETYFE:=ORE;

TEST[BJ.FANOUTS[JJ:=NOOFNODES;
TESTCNOOFNODESJ.GATENTJM:=NOOFNODES;
TEST[NOOFNODESJ.NOINPIJTS:=2;
TEST[NQOFNODESJ.INPIJTS(lJ:=B;
TESTCNOOFNODESJ.INFUTSC2J:=NOOFNODES+l;
TEST[NOOFNODESJ.FANOUTNUM:=l;
TEST[NOOFNODESJ.FANOUTS[lJ:=R;
M:=l;
WHILE TEST[RJ.INPTJTS[MJ<>B DO

M: =M+l;

END;
END;

~-JUN-1985 16:04

TESTCP.J.INPUTS(MJ:=NOOFNODES;
NOOFNODES: =NOOFNODES+1;
TESTCNOOFNODESJ.GATETYPE:=INPUTE;
TESTCNOOFNODESJ.GATENUM:=NOOFNODES;
TESTCNOOFNODESJ.NOINPUTS:=1;
TE5T(NOOFNODESJ.INPUTSC1J:=NOOFNODES:
TESTCNOOFNODESJ.FANOUTNUM:=l;
TESTCNOOFNODESJ.FANOUTSC1J:=NOOFNODES-1;

PROCEDURE INSERTGATES;
r *INSERT BLOCKING GATES AND TEST INPUTS WHERE THEY ARE NEEDED.* l
BEGIN

I)LDNOOFNODES: =NOOFNODES;
FOR I:=l TO NOOFNODES DO

TESTCIJ.PROCESSED:=O;
WHILE RGATEF)O DO

IFrTESTCRGATECRGATEFJ.P.GJ.FROCESSED=ll AND
•TESTCABS<RGATECRGATEFJ.BGlJ.PP.OCESSED=1l THEN
RGATEP:=RGATEF-1

F::LSE
BEGIN

~:=RGATECP.GATEFJ.RG;
R:=AESIRGATECRGATEPJ.BGl;
TESTCF.J.PF.OCESSED:=l;
TESTCBJ.PF.OCESSED:=1;
K:=O;
FOR J:=l TO TESTCBJ.FANOUTNtTM DO

IF TESTCBJ.FANOUTS(JJ=R TH~~
K:=K+1;

N:=O;
IF (<rTESTCRJ.GATETYFE=OREl OR <TESTCRJ.GATETYPE=NORl l

~ ITESTCBJ.GATETYPE=ANDEl l OR
I r ITESTCRJ.GATETYPE=ANDEl OR <TEST(RJ.GATETYPE=NhNDl l

Aim ; TEST[BJ. GATETYPE=ORE l l THEN
IF K=l THEN

BEGIN
FOR M:=l TO TESTCBJ.FANOUTNUM DO

IF <TESTCTESTCBJ.FANOUTSCMJJ.PERLOOPS>Ol AND
rTESTCBJ.FANOUTSCMJ<>Rl THEN

FOR J:=l TO TESTCTESTCBJ.FANOUTSCMJJ.NOINPUTS DO
IF tTESTCTESTCBJ.FANOUTSCMJJ.INPUTSCJJ=Bl AND

rTESTCTESTCBJ.FANOUTSCMJJ.PERLOOPCJJ>Ol THEN
N:=l;

126

IF N=O THEN l*NO ADDITIONAL BLOCKING GATE IS NECESSARY.*!
BEGIN

L:=l:
WrliLE rTESTCBJ.PERLOOPCLJ>Ol AND

IL<=TESTCBJ.NOINPUTSl DO
L:=L+l;

IF L'>TESTCBJ .NO INPUTS Tl·iEN
I*~D AN EX~RA INPTJT TO THE BLOCKING GATE.*l

WDTESTINPUT:

END

END;
IF N> 0 THEN l *ADD BLOCKING GATE AND TEST INPUT* l

ADDBLOCKINGGATE;

ELSE
ADDBLOCKINGGATE

MODGATE.?A:=;l4 4-JUN-lS65 16:04 !?age 8

ELSE
ADDELOCKINGGATE;

RGATEP:=RGATEP-1;
END;

END;

BEGIN
WF: ITELN < 'TYPE NAME OF THE INFUTFILE' l ;
READLN t NAME i ;
OPEN! FILE_ VARIABLE: =IN'FILE,FILE_NAME: =NAME,HISTORY: =OLDl;
EESETt INFILEi;
WF:ITELNi 'TYPE NAHE OF THE OUTPUTFILE' l;
READLN < NAHE i ;
C·?E!J, FILE ·v·AF:IABLE: =()tlTFILE ,FILE N.Z.J1E: =Nh..'1E ,HISTChY: =NEWi ;
REWRITE!OUTFILEi; -
INITIALIZE;
L;)OP;

l*fOR I:=l TO RGATEF DO
WhiTELN!OUTFILE,'RGATE.RG=' ,RGATECIJ.RG:3,' RGATE.BG=' ,RGATECIJ.BG:3l ;*i

INSERTGATES;

END.

WRITELN!OUTFILE,NOOFNODESi;
FOR I : = 1 TO NC•OFNODES DO

BEGIN
~~ITE!OUTFILE,TESTCIJ.GATENUM:S,TESTCIJ.GATETYPE,

TEST[IJ.NOINPUTS:2l;
FOR J:=1 TO TESTCIJ.NOINPUTS DO
WRITE<OUTFILE,TESTCIJ.INPUTS[JJ:S,' 'l;
WRITE<OUTFILE,TESTCIJ.FANOUTNUM:3l;
FOR J:=l TO TESTCIJ.FANOUTNUM DO
WRITE<OUTFILE,TESTCIJ.FANOUTS[JJ:5,' 'l;
WRITELN<OUTFILEJ;

END;
WhiTELN< OUTFILE,

J>.LL THE ,;,;TES WITri Th"E GATE NUMBER GREATER Ti:-I.AN' , OLDNOOFNODES l ;
WF.ITE=.:J! OUTFILE,

A.HE THE GATES ADDED TO THE ORIGINAL CIRCUIT. THEN THE INPUTS' l;
WRITELN<OUTFILE,
' WITH THE GATE WJMBERS GR~~TER THAN TriiS VALUE ARE TEST_INFUTS.' l;

127

APPENDIX C

COMPUTER RESULTS FROM THE TEST

GENERATIONS PROGRAM FOR

TVIO EXAMPLES

128

129

HS. LtAI; 3 lf.-JAN-1985 16:51 P~s• 1
SAI'If'LE
14
1 INPUT£ 1 1 1 8
2 lNf'Ul£ 1 2 2 7 13
3 IHf'UTE 1 3 1 1
4 INf'UTE 1 4 2 8 9
5 INf'LIT£ 1 5 1 9
6 lNf'UTE 1 G 1 ll
7 AN_DE ;;! 2. 3 1 8
8 AN[t£

"' 1 ' "' 13 1 10
C) NAN[t 2 4 5 2 10 11
10 OH 3 e 13 9 1 12
11 NOR 2 <) 6 1 12
12 AN[tE 2 10 11 1 14
13 lNV 2 l 10
14 OUUUT£ 1: 1 14

n.JH lLE •. t•ATi3 16-JAH-l98S 18:17

SAI1F'LF.
'**************************************
tESt NU..,BE~ 1:
(ilTlCAL-GATE NUM~E~ CRITICAL-GATE OUTPUt-VALUE

' ~ 11 l
1~ J
11 1

GATE NUH OUTPUT VALUE
1 -1
2 (l

3 -\
4 J
~ 1
.:. (i

7 n
8 0
q Q

10)
11 l
1.::)
\3 1
14 1

TEST VECTOR:
INPUT NUM~ER-----------------VALUE
1-----------------~-l
2-----------------~ 0
3------------~----~-l
4-----------------~ 1
5-----------------~]
6--------~--------~ 0

f.RITlCAL PATH NOT COMPLETED fOR THE fOLLOWING GATES:
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

~ 0
9)

10 l
GATE NU.., OUTPUT VALUE

1 -1

2]
1 -1
4]

".i Q
.:. -)
7 -1
B 0
q 1

10)
11 Q
l:;! 0
13 0
14 0

CRITICAL PATH NOT COMPLETED FOR THE FOLLOWING GATES:
CRITICAL-GAIE NUMBER CRITICAL-GATE OUTPUT-VALUE

4 0
~ 1

10)
~ATE NUH OUTPUT VALUE

1 -]
.,

130

3 -1
• 0
~ J
G -1
7 -)
9 0
9 I

10 l
ll 0
l~ 0
13 0
\4 0

'************************************** CRITICAL PATH NOT COMPLETED FOR THE FOLLOWING GATES:
CRIIIC~L-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

4 0
GATE NUM OUTPUT VALUE

I 1
a 1

.. -·
7

9
10
11

]

0
-]

-1
]

-l
)

1
0

12 0
11 0
14 0
'*********~****************************
CRITIC~L PATH NOT COMPLETED FOR THE FOLLOWING GATES:
CRITlC~L-GATE NUMBER CRITIC~L-GATE OUTPUT-VALUE

3 0
7 0

GATE NUM OUTPUT VALUE
l 1
2]
3 0
4]
5 -1
D -1
7 0
B -l
CJ -l

10 -]
11 -1
12 -1
13 0
14 -1

*************************************** TEST NUMBER 2:
CRITICAL-GATE NUMBER CR II ICAL-GAIE

0

GATE
1

.. ..
13
10
12
14

NUM OUTPUT VALUE
-J

1
]

1
J

OUTPUT-VALUE

131

2 0
3 -1
4 l
5 1
(. 0
7 0
& 0
~ 0

10]
11 1
12]
\3 1
14]

TEST VECTOT<:
INPUT NliHEcER-----------------VALUE
1-----------------~-l
2-----------------·~ 0
3-----------------~-l
4-----------------~ 1
~-----------------~ l
6-----------------~ 0

**************************************~ CRITICAL PATH NOT COMPLETED FOf< THE FOLLOWING GATES:
CRITICAL-GATE NUHBEi CRITICAL-GATE OUTPUT-VALUE

GATE
1
2
3
4

7

2 0
? 0
8 0

NUK OUTPUT VALUE
1
0
l
l
-1
·-]

0
B 0
q -l

1 () l
11 -1
12 -l
13 1
14 -l

*************************************** CRITICAL PATH NOT COMPLETED FOi THE FOLLOWING GATES:
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

l 0
GATE NUH OUTPUT VALUE

] 0
J 1
3]
4 1
~ -1
G -1
7 l
8 -1
9 -l

\0 -1
11 -]
12 -1
13 0
14 -1

132

:; U "' F i!. ~ • L: M 1 ; J

*************************************** TEST NUM~Ei 3:
r.RlTlCAL-GATE NUM~Ei

GATE
1
2
3
4
5
~
7
8
C)

10
11
12
13
14

t-
11
12
14

NUM

TEST VECTOR:

OUTPUT
-1
0
-1
1
1
1
0
()

0
1
0
0
1
0

VALUE

CiiTICAL-GATE OUTPUT-VALUE
1
0
0
0

INPUT NUMBER-----------------VALUE
1----------------->-1
2-----------------~ 0 3----------------->-1
"'-----------------~ 1
~-----------------~]
6----------~------~ 1

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
TEST NUMBER 4:
CRITICAL-GATE NUMBE~ CRITICAL-GATE OUTPUT-VALUE

r -· 1
9 0

10 0
12 0
14 ()

liA!E NUM OUTF'UT VA I.U E
1 -1
2 1
3 -]

4 1
r-] .,
6 0
7 -1
8 0
9 (•

10 0
11 1
12 0
13 0
14 0

TEST VEC!Oll:
INPUT NUMBER-----------------VALUE
1----------------->-J 2-----------------> 1 3----------------->-J 4-----------------> 1
s--~--------------> l
6-----------------~ 0

133

Li \..; ... c .1. L. t •. .,. r. J. ; I

1&
8

10
12
14

GATE NUH
J
2
3
4
s
6
'i
8
9

10
1 1
1.2
13
l4
15
16
17
18
19
20
21
22
23
24
2~

TEST VECTOI\:

OUTf'UT
]

l
-l
1
-l
-1
-J
0
-l
0
-l
0
0
0
0
0
-l
0
0
0
0
1
J
1
]

VALUE

•.

0
0
0
0
0

tNPUT NUMBER-----------------VALUE
1-----------~-----~] l-----------------· 1
3-----------------~-J
4-----------------~ 1 5-----------------)-] G----------------->-1
1~-----------------~ 0
17-----------------;-1
19-----------------~ 0
21-----------------~ 0
22-----------------~ 1
24-----------------~ 1
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
TEST NUMBER 7:
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

b 0
11 1
23 1
12 l
14]

GATE NUH OUTPUT VALUE
1 -1
2 -1
3 -1
4 1
5 1
6 0
7 -J

134

'~· u i i .i Lt. • ~· h 1 ; I

9
~

10
11
12
13
14
15
1t.
17
18
19
~0

21 ..,..,
23
24
25

TEST VECTO~:

-l
0
]

1
l
-1
]

-1
-J
-1
-]

-1
0
1
0
1
-1
-1

INPUT NUM~ER-----------------VA~UE
1-------------~--->-l
2-----------------~-1 3----------------->-J
4-----------------~ 1
5------~----------~ l 6-----------------; 0 15----------------->-l 17----------------->-1 19----------------->-l 21-----------------> 1 22-----------------> 0
~4-----------------•-l
************}*************************~ TEST NUMBE~ 8:
t~ITICAL-GAIE NUhBER CRITIC~L-GATE OUTPUT-VALUE

5 0
<) 1 ::o J

10 1
1:]
14 1

GAIE NUM OUTPUT VALUE
1 -1
~ l .
3 -1
4 1
5 0
b -J
7 - 1
8 0
q l

10 l
11 0
12 l
13 0
14]

15 0
16 0
17 0
18 0
19 1

135

'.I'- A. t. .0. l.o "- • ,. .• -, 1 ' I

20
~l
2:;:
23
24
25

TEST VECTO~-:

l
0
l
1 -1
-1

tH~UT NUM~ER-----------------VALUE

1-----------------~-1
2--~--------------~ 1 3----------------->-1
~--------~--------~ l 5-----------------) 0
6-----------------~-1 15-----------------) 0 17-----------------· 0

19-----------------) l
21-----------------> 0
22-----------------~ 1
~4-----------------~-1
~**~*********************************** TEST NUMBER 9:
C&IliCAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

4 0
9 1

11 0
23
1:
14

GATE NU11
1
2
3
4
5
6
7

8
9

10
ll
12
13
1 ..
15
1t.
17
18
19
:: (,

:1
22
23
24
~~

lEST VECTOJi:

OUTF'UT VALUE
-1
-1
-1
0
1
0
-1
0
1
1
0
0
-1
(i

-l
-1
-l
- I
-l
-]

1
0
0
-1
-1

0
0
0

INPUT NUMBER-------------~---VALUE
1----------------->-l 2----------------->-1 3----------------->-l
4~----------------) 0

136

11\.JJ.t .4Lt.. ,.it1J.;}

~----------------->]
6-----------------~ 0
1~----------------->-J
l7-----------------•-l
19-----------------~-] 21-----------------> 1 22-----------------·. 0
~~-----------------·-i
******************************''******* TEST NUMBER 10:
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

4
8

10
12
1 4

GATE NUM
1
:::!
3
4 .. -·
G
7
8
9

10
11
12
13
14
1~
l6
17
18
19
~0
21
2:!
23
24
2~

TEST VECTOR:

OU!f'UT VALUE
]

-1
-1
0
-]

-1
-1
0
l
0
0
0
-1
0
l
1
(•

0
0
v
0
1
l
1
l

0
0
0
0
0

INPUT NUM~ER-----------------VALUE
1----------------~> l
2-----------------i-l
3----------------->-1
4-----------------~ 0 s----------------->-1 G-----------------)-1
15-----------------~ l
17-----------------j 0
19-----------------> 0
21-----------------j 0
22-----------------~]
~4-----------------> 1
********''**********''*****'*********** TEST HUMBER 11:
CRITICAL-GATE NUMBER

3
7

CRITICAL-GATE OUTPUt-VALUE
0
0 .

137

uVJ.L.i.L!:. ... ·i-d.~l

2S
8

10
12
14

GATE HUH
1 ., ..
3
4
5
G
7
8
9

10
11
12
13
14
15
lG
17
18
19
20
21
22
23
24
2S

tESt VEC!Of<:

OU!J'UT
l
1
0
1
-l
-1
0
0
-)
0
-l
0
0
0
]

1
0
0
0
0
0
1
]

0
0

VALUE

I (,'\ ""i 1'! .L ~· C•..J .L C • I "i

0
0
0
t)

(•

INPUt NUMBER-----------------VALUE 1-----------------) l 2-----------------> 1 3-----------------) 0
~-----------------> 1
~-----------------~·-] G-----------------j-1
15-----------------~]
17------------~----j 0
19-----------------~ 0
21-----------------~ 0 22-----------------)]
24---------~-------· 0
~*~~***~~**~*~~~~********************** TEST NUMBER 1~·
CRITICAL-GATE NUMBER

2
13
lG

8
10
12
14

GATE NUH
1
2
3
4
s

OUTf'UT VALUE
]

0
-l
1
-1

CRITICAL-GATE OUTPUT-VALUE
0
1
J
1
l
l
1

138

·-· u L .t J. L t. ... ! t-1 .1 ; I

6
7
8
C)

10
\1
1 -. ..
13
14
15
lb
17
18
19
~(J

21,
;!3
24
25

TEST VECTOR:

-1
0
)

-1

. 1

l
1
l
0
l
0
0
0
0
0
l
1
l
1

INPUT NUMBER-----------------VALUE 1-----------------> l 2-----------------j 0 3----------------->-l
~-----------------> 1
~----------------->-1 G-----------------j-1
15-----------------~ 0
17-----------------~ 0
19-----------------~ 0 21-----------------> 0
22-----------------~ l :4-----------------· 1
A~~AAAAAAA~AA~~AAAAAAAAAAAAAAAAAAAAAAA~
TEST NUMBER 13:
CRITIC~L-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

0 -. ..
7 0 ... -•" 0
9 0

10 0
12 0
1 4 0

GATE NUH OUTPUT VALUE
1 l
2 0
3 1
4 1
r -] ..J

G -1
7 0
8 0
9 -l

10 0
1 1 -]

12 0
13 1
1.; 0
15 -l
1G 1

139

·.; U ! f J. L t. • ._, h L ; i

17 (I

18 0
19 0
20 0
21 0
~2 1
23 1
24 0
2~ 0

TEST VECTOR:
IN~UT NUMBER-----------------VALUE
1----------~------> l 2-----------------j 0 3-----------------, l 4-----------------j 1
~----------------->-1 6-----------------·-1

15----------------->-l
17-----------------~ 0
19-----------------~ 0
21-----------------~ 0
22-----------------~]
~4-----------------> 0
~**********~*************************** TEST NUMBER 14:
CRITICAL-GATE NUMBER

1
8

10
12

CR I! ICAL-GA!E
0
0
0
0
0 14

GATE NUH OU!F'UT
0

VALUE
1

3
4

G
7
8
9

10
11
1::
13
14
l:i
16
17
18
19
20
21
22
23
24
2~

TEST VECTOR:

- l
-1
1
-]

-1
-1
0
-1
0
-1
0
-]

0
1
1
0
0
0
0
0
1
1
1
1

INPUT NUMBER-----------------VALUE
1-----------------> 0
2----------------->-1

140

OUTPUT-VALUE

3----------------->-l
·-----------------~ 1 s----------------->-1
6-----------------~-1 15----------------->]
17-----------------~ 0 19-----------------) 0
21--------~--------~ 0
22-----------------> l
24--------~--------~ 1
~************************************** TESI NUMBER 15:
CRITICAL-GATE NUMBER ·CRITICAL-GATE OUTPUT-VALUE

24 l
25
e

10
12
14

GATE NUH
1
2
3
4
s
0
?
B
9

10
11
12
13
14
15
lG
li
18
19
20
21
~~ ·-23
24
25

TEST VECTO~:

OUTPUT VALUE
1
-1
0
)
-1
-1
0
]
-1
]
-1
]
-1
1

0
0.
0
0
0
)
1
1
1

1
l
1
)
1

INPUT NUMBER-----------------VALUE
1-----------------> 1
~-------------~---~-1
3-----------------~ 0
4-----------------> 1
5-----------------~-1
6-----------------~-1 15-----------------> J
17-----------------~ 0
19-----------------> 0
21-----------------~ 0 22----------------->)
24-----------------~ 1
*************************************** TEST NUMBER 1G:

141

·~· U <. L ..;, ~ r. • ... H. ! • I

CRITICAL-GATE NUM~ER
~::!
23
12
14

GATE NUI"'
)

~
3

"' s
6
7
a
9

10
11
12
13
14
1~
16
17
18
1~
20
:;:]
22
23
:!4 ...,

TEST VECTOR:

OUTPUT VALUE
-1
- 1
-l
-1
-1
1
-1
-1
-]

1
0
1
-1
1
-1
- 1
-]

-1
-1
-1

l
1
l
-1
-l

CRITICAL-GATE OUTPUT-VALUE
1
l
1
]

[NPUT NUMBER-----------------VALUE
]-----------------~-] 2-----------------•-l 3-----------------;-J 4-----------------•-l
~-----------------~-1
G-----------------~ 1

lS-----------------}-1
17-----------------j-l
19-----------------)-1
21-----------------> l
22-----------------~ 1
24-----------------~-l
*************************************** tEST NUMBER 17:
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

GATE
1
.;:
3 ..
5
b
7
8

21 1
10
12
H

NUH OUTPUT
-1
l
-1
-l
-1
-1
-1
0

VALUE

1
1
1

142

-------~---- ----------

' 10
11
1.3
13
1-l
lS
16
17
18
19
20
21
23
Z4

TEST VECTOl<:

-1
1
-1
1
0
1
0
0
0
0
0
0
]

1
]

-l
-1

[NPUT NUMBER-----------------VALUE 1-----------------/-l
~-----------------~ 1
3-----------------~-l
~-----------------~-1
~-----------------~-)
6-----------------~-1 15-----------------> 0
17-----------------~ 0
19-----------------) 0
21-----------------~ 1 22----------------->] 24----------------->-1
AAA~A~AAAAAA~AAAAAAAAAAAAAAAAAAAAAAAAA*
TEST NUMBER 18:
CRITICAL-GATE NUMBER Cl<ITICAL-GAtE OUTPUT-VALUE

fiA!E
1
2
3
4
5
,;
7

~
9

10
1 1
12
13
1-4
15
16
17
lS
19
20
21

19)
20
10
12
14

NUM OllTPUT
-l
1
-1
-l
()

- 1
-)

0
]

1
0
1
0
1
0
0
()

0
1
1
0

VALUE

1
)

l
l

143

IJ U H i L !:: • l• f.o I ; '1

22 l
23 1
24 -1
25 -1

TEST VECTOr.-:
tNPUT NUM&Ei-----------------VALUE
1----------------->-J
2-----------------> 1
3----------------->-l
~-----------------)-1 5-----------------> 0 G-----------------)-1

15-----------------) 0
17-----------------) 0
19----------------->)
21-----------------~ 0
22-----------------~)
24-----------------)-1
ftftAAAAAAAAAAAAAAAAftAAAAAAAAAAAAAAAAAAA•
TEST NUMBER 19:
CRITICAL-GATE NUM~ER CRITICAL-GATE OUTPUT-VALUE

17 l
18 1
10 1

GATE
l
2
3

"' 5
G
7
8
CJ

10
11
12
13
14
1~
1G
17
18
lCJ
20
21
22
23
24

12
14

NUM OUTPUT VALUE
-l
-1
-1
0
-1
-1
-l
0
l
1
0
1
-]

1
1
1
l
1
0
0
0
1
1
-1

2:i -1
tEST VECTOR:

1
1

INPUT NUMBER-----------------VALU~
1----------------->-l
2-----------------)-1
3-----------------/-1
4-----------------) 0
~----------------->-1 6----------------->-1
15~----------------> 1

144

I.J L' .., t .1..1.. t. • i .. d~ I ; '/

1?-----------------> l
19-----------------~ 0
21-----------------) 0
22-----------------~ 1 24-----------------/-)
'************************************** TEST NUH~ER 20:
CRIIICAL-GAIE NUH~Ei CRITICAL-GATE OUTPUT-VALUE

15 l
1& 1
18]

10 l
12)

14 1
GATE NUH OUT?UI VALUE

1 -1
2)

J -1
4 <'•
'5 -1
b -)
7 -1
B ()

C) 1
10]

ll 0
12)

13 0
14 l
l::i i
16 l
17 1
18)

19 0
20 0
:!1 0
... ~)
23 1
24 -)
25 -1

TEST VECTO~:

tNPU! NUMBER-----------------VALUE
1-----------------/-)
2-----------------· l 3----------------->-l
4-----------------~ 0
s-----------------~-1
G-----------------i-1

15-----------------)]
17-----------------» 1
19-----------------> 0
21-----------------> 0
22-----------------))
24----------------->-1
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
TEST NUMBER 21:
CRITICAL-GATE NUH~ER CRITICAL-GATE OUTPUT-VALUE

&)
11 0
23 0
12 0

145

•JU.~.c..,_t..~o.;n.t.;l

14
GATE NU11

1
2
3
.a
s
G
i
8
9

10
1 1
12
13
14
15
16
17
18
19
::o
21
22
23
24
2~

TEST VECTOR:

ounur
-l
-1
-]

l
]

1
-]

-1
0
1
0
0
-1
0
-l
-1
-]

-1
-]

0
]

0
0
-1
-]

0
VALUE

[NPUT NUMBER-----------------VALUE
)-----------------~-]
~-----------------i-1
3-----------------~-l 4-----------------· 1
~-----------------~ l
G-----------------~ 1

i~-----------------~-1 17-----------------·-1 19-----------------)-] ::1-----------------, 1
22-----------------) 0 ::4----------------->-l
~~***~****~~~~********~**************** tEST NUMBER 22:
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE

5 l
9 0

20 0
10 0
12 0
14 0

GATE NUH OUTPUT VALUE
1 -1
2]
3 -1
4]
5 1 ' -] 7 -1
8 0
q 0

10 (I

146

•.: 1.1t L L .1.. • .,. H J. ; i

ll -]

\2 0
1:'1 0
14 0
lS 0
1~ 0
17 0
18 0
19 l
20 0
21 0
~2 1
23]

24 -1 ..,-... ~· -]

TEST VECTOR:
tNPUI NUM~ER-----------------VALUE

)-----------------~-]
2-----------------~ i
3-----------------~-]
4-----------------~ 1
5-----------------~ l
G-----------------~-1

15-----------------> 0
17----------------- 0 19-----------------/)
~~-----------------~ 0 22-----------------/]
24-----------------~-1

•.

************~*******************~*****~ TEST NUMBER 23:
CRITICAL-GATE NUMBE~ CRITICAL-GATE OUTPUT-VALUE

GATE
1
2
3
4 .,.
-~

G
7
8
C)

10
tl
12
13
14
15
1t.
17
18
19
20
21
22

4 1
C) 0

11 1
23
12
14

NUI't OUIPUT
-1
-1
-1
]

1
0
-l
-1
0
]

l
)

-1
.]

- l
-1
-1
-1
-1
0
1
0

VALUE

1
1
1

147

23 J
24 -1
2S -1

TEST VECTOR:
tN~UT NUMBEi-----------------VALUE
1----------------->-l
~-----------------)-1 3----------------->-1 4-----------------) 1
~-----------------> l G-----------------> 0 15----------------->-1
17-----------------~-1 19----------------->-1
21-----------------~ 1
2~-----------------> 0
~4----------------->-1

**************************************' TEST NUMBER 24:
C~ITICAL-GATE NUMBER CRITI~AL-GATE OUTPUT-VAL~E

4]
8 1

10 1

GATE
1
2
3
4
5
G
i
13
9

10
11
12
1.3
H
l:i
1G
17
18
19
~0

21
22
23

12
14

NUH OUTPUT VALUE
1
-1
-1
1
-1
-1
- 1
1
-)

l
-)

1
-1
l
l
1
0
0
0
0
0
1
l

~4 1
2~ l

TEST VECTOR:

1
]

tNPUI NUMBER-----------------VALUE
1----------------->) 2-----------------)-1 3----------------->-J 4-----------------> 1 s----------------->-1 6----------------->-1 15-----------------> 1

17-----------------> 0

148

•J U ll: lL!:: • L' f.l i ; I

19-----------------> ~
~~-----------------) 0
22-----------------~ 1
~4-----------------> 1
~~··~**********************************
tEST HUM~ER 25:
CRITICAL-GATE NUMBER CRITICAL-GATE OUT~UT-VALUE

3 1
7

2S
8

10
1:.1
14

GATE HUM
1
:!
3 ..
s
6
-;
a
9

10
11
12
13
lot
1Z
16
17
16
19
:!0
21
~2
23
;!4

25
tEST VECTOT<:

OUTPUT
1
1
1
1
-1
-1
l
l
-]

1
-J
1
0
1
l
l
0
0
0
0
0
1
l
0
]

VALUE

1
1
1
1
1
1

INPUT NUHBET<-----------------VALUE
1----------------->)
2-----------------~ 1
3-----------------~ 1
4-----------------~ 1
5----------------->-l
6----------------->-l
1~----------------->)
17-----------------~ 0
19-----------------> 0
21-----------------~ 0
22-----------------~ l
2~-----------------> 0

TEST NUMBER 26:
CRITICAL-GATE NUMBER CRITICAL-GATE OUT~UT-VALUE

2)
13 0
16 0
18 0

149

Uu.I.L.:.:..t..~.~~i/

10
12
14

GAIE NUM
1
~
3
4
~
G
7
a
9

10
1 1
1:
13
14
15
1G
17
18
19
20
;:)
22
23
24

OUTPUT VALUE
-l
1
-l
- l
-l
-1
-]

0
- 1
0
- l
0

·(\

0
(l

0
l
0
0
0
0
1
]

-1
25 -1

TEST VECTOR:

0
0
0

tNPUT NUMBER-----------------VALUE
1-----------------~-] 2-----------------j 1 3----------------->-l 4-----------------.-1
5-----------------~-1 G----------------->-1

15-----------------) 0
17-----------------~ 1
19-----------------) 0
21-----------------> 0
22----------------->]
24----------------->-1
~*****************~**************** tESt NUMBER :7:
CRITICAL-GATE NU~BER

GATE
1
2
3
4
~
6 ..
'

7
25

8
10
12
14

NUM OUTPUT
l
1
l
1
-J
-1
)

Cl< IT ICAL-GATE
l
1
1
1
1
1
1

VALUE

150

OUTF'Ut-VALUE

IJ u ll: L I.£ • l' I'< l ; '1

8
9

lC
11
};;:

13
14
15
16
17
19
19
20
21
2~
23
24
25

TEST VECTOR:

]

- 1
l
- 1
]

0
l
l
1
0
0
0
0
0
]

1
0
1

INPUT NUH~E~-----------------VALUE 1-----------------) 1
2-----------------~ 1
3-----------------~ 1
~-----------------~ l
5-----------------~-]
G-----------------~-1 15-----------------) l 17-----------------j 0
19-----------------~ 0
21-----------------> 0
22-----------------~ 1
24-----------------~ 0
****~~~~*~*~*********~***~********~**** TEST NUHBE~ 28:
CRITICAL-GATE NUMBE~ C~ITICAL-GATE OUTPUT-VALUE

GATE
1
2
3
4
5
G
7
8
9

10
11
12
13
14
1~
16
17
18
19
20

l 1 a 1
10 1
12
14

NUH OUTPUT VALUE
]

-1
-1
1
-1
-1
-1
1
-1
1
-1
1
-·]

1
]

1
0
0
0
0

1
1

151

0
VITA

Bijan Karimi

Candidate for the Degree of

Doctor of Philosophy

Thesis: COMBINATIONAL CIRCUITS FOR WHICH TESTS CAN BE GENERATED IN N2
TIME

Major Field: Engineering

Biographical:

Personal Data: Born in Tehran, Iran, December 20, 1952, the son of
Mr. and Mrs. A. Karimi.

Education: Graduated from Aryamehr University of Technology,
Tehran Iran, in January 1977; received Master of Science degree
in Electrical Engineering from Oklahoma State University in May
1981; Completed requirements for the Doctor of Philosophy
degree at Oklahoma State University in December 1985.

Professional Experience: Electronics Instructor, Academy of Army,
Tehran, Iran; Graduate Teaching and Research Assistant;
Department of Electrical and Computer Engineering, Oklahoma
State University, 1980-1985; Design Engineer, Texas Analytical
Control Inc., 1985.

