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CHAPTER 1 

INTRODUCTION 

Digital systems are subject to physical faults during their life 

time. With the increased complexity of digital systems, with huge 

numbers of elements in an IC chip, the problem of testing digital sys­

tems for reliable performance has become more important. In general, a 

fault in a system can be considered as anything which makes a system to 

behave in a different way than for which it was designed. Faults can 

occur during manufacture, assembly, storage, or operation. Faults which 

alter circuit parameters such as current, voltage, or speed are known as 

parametric faults. Faults which alter logical behavior of a circuit are 

known as logical faults. Since faults can occur in a system at any 

time, the system must be tested during its life time. 

Testing consists of applying a set of logical values to inputs of a 

circuit and observing the output to see if it is different from what was 

expected. To test a circuit there must be a fault model to identify the 

period of time that the fault will be present, the number of such faults 

present at the same time, and the effect of the fault on operation of 

the circuit. The most common logical fault model is a single permanent 

stuck-at model which assumes a line in the circuit is permanently stuck­

at-logic zero or logic one (this model will be used throughout this 

research study). 

1 



2 

One way to test a circuit is to apply all possible input combi­

nations and observe the output. This method is not reasonable to apply 

for circuits with large numbers of inputs because possible input combi­

nations grow exponentially with increasing numbers of inputs. Then it 

is desirable to find a subset of input combinations which detects all 

faults in the circuits. In a circuit consisting of N lines (N includes 

primary inputs and outputs, and internal lines) there are 2N single 

stuck-at-0/1 type faults. 

Attention in this research study is focused on combinational cir­

cuits. Basic elements of these kinds of circuits are called gates and 

there are no feedbacks or memory elements in combinational circuits. 

Different gates under consideration will be AND, OR, NAND, NOR, and 

INVERTER. Because of the complex topology (interconnection of lines) 

that combinational circuits may have, there is no known algorithm which 

generates tests in polynomial time for an arbitrary combinational cir­

cuit. In general, it is accepted that there exist no such algorithms. 

With the growing number of gates on a single chip, ,even high order 

(greater than 2) polynomial in time algorithms are not :desirable. Then 

it becomes important that a designer designs a circuit in such a topo­

logical form for which tests can be generated in N or N2 time. 

Redundancy is one of the reasons that test generation is time 

consuming. A circuit is redundant if one or more lines of it cannot be 

tested. Redundancy is an unwanted feature in most designs and a good 

design rarely suffers this problem except in fault tolerant systems. 

Then if topologies for irredundant circuits can be identified which make 

circuits testable in N2 time, a designer may keep circuit topology close 

to those identified topologies and save a great deal of time in the test 
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generation process. It would even be more desirable if a method for 

design can be found which makes any circuit testable in N2 time. An 

effort has been made in this research to identify the topology of cir­

cuits which can be tested in N2 time. Also a design method is intro­

duced which makes any circuit (even redundant circuits) testable in N2 

time. A program has been written which generates tests for circuits 

designed according to the proposed design method. 

During test generation for a given fault it is possible that a 

value assignment on a line be inconsistent with other value assignments 

in the circuit. Then that value assignment must be removed and another 

choice must be considered. This process is called backtracking. It is 

this process which makes the process of test generatioh exponential in 

time because without the need for backtracking, each single stuck type 

fault can be detected by at most N value assignments in the circuit. If 

there are no reconvergent paths in the circuit then there wi 11 be no 

need for backtracking. For this reason reconvergent pa~ths are the main 

subject of this research. Every two reconvergent paths will be referred 

to as a loop. 

In this research an attempt has been made to identify relative 

positions and properties of the loops for which circuit can be tested in 

time proportion a 1 to N2• The most genera 1 topo 1 ogy which has been 

identified with the above property in this research consists of recon­

vergent paths which do not reconverge on more than one gate if they 

originated from the same fanout origin, and they do not share gates with 

other reconvergent paths if there is no path between their fanout ori­

gins. Also it is shown that any circuit can be tested in time propor­

tional to N2 if certain gates and inputs, called blocking gates and 
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control inputs respectively, are placed in specific locations in the 

circuit. 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

The two most widely used methods of test generation for single 

permanent stuck at logic values (0/1) are the 0-algorithm (Roth, 1966) 

and critical path sensitization (Thomas, 1971). These methods use the 

path sensitization concept to propagate a fault signal from the sight of 

the fault to the output ( s) of the circuit under test, where it can be 

compared with the expected value in the normal circuit. Since this 

concept will be used throughout this research study, it will be reviewed 

here. Consider Figure 1 and the fault line "a•• stuck at 0 (a -s-a-0). 

In fact it must be determined if this line can be set to a logic 1. For 

this purpose a logic value 1 must be assigned to line •a". Other lines 

in the circuit must be set to values such that the effect of the value 

assignment of line "a" can be seen on the output of the circuit. In 

other words the fault signal can be propagated to the output. To 

achieve this goal, line 5 must be set to logic 1. If this line is set 

to 0, then the output of the gate 14 will be 0 regardl~ss of the value 

assignment on line "a". For the similar reason line 8 must be set to 

logic 1. With these value assignments the value of the !output will be 0 

if line "a" is not stuck at 0 and the value of the out~ut will be 1 if 

line "a" is stuck at 0. This process is called path sensitization. To 
' 

generate a test for this fault (an input vector); 1 og l c va 1 ues on the 
I 

inputs of the circuit must be determined such that they set the internal 
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Figure 1. Path Sensitization and Line Justification 
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Figure 2. Example for Controllability and Observability CJ) 
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lines of the circuit to the desired values found in the path 

sensitization process. This is called a justification process. In 

order to have a 1 on 1 ine "a", either 1 ine 3 or 1 ine 4 can be set to 

1. To have a 1 on line 8, either rine 6 or line 7 can be set to 1. If 

line 6 is selected then either line 1 or line 2 (or both) must be set to 

o. 
It is known that the following fault detection problems: 

1. Can all single faults be detected in a combinatioal circuit (is 

the circuit irredundant)? 

2. Can a fault in a particular input line x; be detected by input­

output experiments? 

3. Can all single input faults be detected by I/0 experiments? 

4. Can faults in the output line be detected by I/0 experiments? 

are NP-complete (Ibarra and Sahni, 1975), i.e. there is a polynomial 

time algorithm to decide if the above single faults are detectable if 

and only if there is a polynomial time algorithm for problems such as 

the traveling salesman problem. Then it seems very unlikely that a 

polynomial time algorithm can be found (in terms o~ the number of 

i"nputs, gates, or lines) to detect single faults. In fact, it would 

appear that only algrithms with a computing time line1ar or at most a 

square of the number of input 1 i nes and gates wou 1 d be feas i b 1 e for 

large combinational circuits (Ibarra and Sahni, 1975). Even for rela­

tively simple circuits such as monotone and unate circuits these 

problems are NP-~omplete if the numbers of levels in those circuits are 

greater than 2 (Fujiwara and Toida, 1982). A circuit is said to be 

monotone if all the variables appear unnegated in the expression 

describing the function of the circuit. A circuit is said to be unate 
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if all the variables appear either negated or unnegated. 

In the processes of path sensitization and line justification, it 

is possible that a test generation algorithm has to select a choice 

among several choices. Also it is possible that some or all of those 

choices lead to conflicting assignments of values to nodes in the cir­

cuits. Then the algorithms has to backtrack and try different choices 

until either a test is generated or there is no choice left. This 

backtracking is the reason that the time complexity of test generation 

algorithms is exponential, because in general an algorithm has to try an 

exponential number of value assignment combinations until it finds a 

test. Sometimes there is no test for a certain fault. In this case the 

circuit is said to be redundant. If a circuit is not redundant then it 

is called irredundant (Breuer and Friedman, 1976) or nonredundant. Test 

generation for redundant circuits is more time consuming because all 

possible choices must be tried by the algorithm before it can decide 

that no test exists for a certain fault. 

A great deal of work has been done to simplify the process of test 

generation for 1 ogi c circuits and severa 1 methods of design for test­

ability have been proposed since 1970. There are two key concepts in 

design for testability, controllability and observability (Williams and 

Parker, 1983). Controllability is the ability to apply test patterns to 

internal circuitry by exercising the input pins of that circuitry. 

Observability is the ability- to determine the internal states of a 

circuit by observing the output pins. All methods of design for test­

ability try to enhance the controllability and observability of a system 

by some means. To appreciate the problem consider the simple OR gate in 

Figure 2. In order to generate a test for the input fault x1 s-a-0, it 
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is necessary to control x2 and x3 to 0 and x1 to 1. Also it is neces­

sary that z can be observed to determine if this fault actually exists 

in the circuit. In this case it is possible to control the inputs to 

the desired values and observe the output. In general it is not always 

possible to control a line in a circuit or observe states of a circuit 

on the output. For example in Figure 3, line "a" cannot be controlled 

to 1 and the effect of any value assignment on "b" cannot be observed 

from the output. One way to enhance contra 11 abi 1 ity and observabil ity 

of a circuit is to use test points. If a test point is used as a 

primary input to the network, then that functions to enhance control­

lability. If a test point is used as a primary output, then that can be 

used to enhance the observabi 1 ity of a network. In Figure 3, if the 

test point "c" is added to the circuit then, the value on line "b" can 

be observed through "c". The use of input test points has been dis­

cussed by Hayes (1974) for circuits consisting of 2-input NAND gates and 

inverters. An example of the circuits consisting of NAND gates and 

inverters is shown in Figure 4. Hayes has discussed that if a circuit 

with a structure 1 ike this is changed to another circuit according to 

the following rules: 

1. Every inverter is replaced by an EX-OR gate while the other 

input of the EX-OR gate is connected to logic 1 for normal operation of 

the circuit. 

2. Each NAND gate has only two input lines. 

3. One EX-OR gate is placed on input lines of each NAND gate if no 

inverter is preceding that 1 ine. The other input of the EX-OR gate is 

connected to logic 0 for the normal operation of the circuit. 

then the resulting circuit needs only five tests for complete testing of 
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the circuit single stuck at faults. The basic building block of such 

circuits is shown in Figure 5, and the circuit in Figure 4 is shown in 

Figure 6 after modifications. The second inputs of the EX-OR gates are 

used as control inputs to put desired values for test generation on the 

internal lines of the circuit. Drawbacks in this method are that a 

circuit must be changed to a circuit with the properties mentioned 

before and a great amount of circuitry must be added to the circuit. 

Another method of design for testability is partitioning. Goel 

(1980) has shown by imperical results that the computer run time to do 

test generation is approximately proportional to the number of logic 

gates used in a circuit to the power of 3. Then partioning a circuit 

into modules which can be tested seperately seems to decrease the time 

required for test generation (Williams and Parker, 1983). Drawbacks for 

this method are cost, space, and it is in contradiction with the purpose 

of integration. 

Another method of design for testability, which has received much 

attention, is Level Sensitive Scan Design (Berglund, 1978). This method 

of design for testability is for sequential circuits but it is important 

to be mentioned here because it reduces the complexity of the test 

generation to that for combinational circuits. This design methodology 

also uses the concept of controlling inputs. The only type of storage 

element permitted in this technique is a shift register latch (SRL), 

which is a pair of D flip-flops, as shown in Figure 7. The output of 

the first latch (L1) serves as data input to the second latch (L2). L1 

is used as storage element and Lz is used to enhance testing of the 

circuit. The D input of L1 comes from the output of a Lz and the output 

of Lz is an input to another L1• Then all latches in the circuit are 
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chained together by this scheme. The first L1 in this chain is 

connected to an input pin called SOl (Scan Data In) and the output of 

the last L2 is connected to an output pin called SDO (Scan Data Out). 

There are four input to each L1 which have the following functions. 

Input 0 is connected to a L2 latch, input A is a clock which is used to 

clock 0 into L1, input I is a data line for the use of the designer, and 

input C is a clock which clocks data from the I into L1• Input B to L2 

is a clock used to clock the data output from L1 into L2• Figure 8 is 

typical to circuits which use LSSD technique. In this figure, if the 

output of a combinational circuit is directly connected to a primary 

output then that output can be used to detect faults in the combi­

national part, and if the output of the combinational part is input to a 

latch then this output signal can be run through the chain of latches 

until it reaches the SOO pin. Thus, using this technique reduces the 

. complexity of testing to that for combinational circuits. 
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CHAPTER III 

CLASSIFYING CIRCUIT TOPOLOGIES 

FOR EASY TESTING 

In this chapter different topologies for combinational circuits 

which make them testable in N2 time and restrictions on these topologies 

will be discussed. In chapter IV a simple design method will be 

presented so that if a combinational circuit is designed according to 

that method, then it will be testable in N2 time. There are some terms 

which will be used throughout this chapter and chapter IV. The 

following definitions are needed to understand the meaning of each term. 

DEFINITION: A propagation value is a value which must be assigned 

to some inputs of a gate in order that fault(s) on other input(s) of 

that gate can be propagated through that gate. This value is "0" for OR 

and NOR gates "1ft for AND and NAND gates. 

DEFINITION: A path in a circuit from a point to an output is sen­

sitized if all inputs to the gates in that path (other than those on the 

path) are set to propagation values. 

DEFINITION: A point in a circuit is justified for a logic value if 

inputs of the circuit have values which generate that logic value on 

that point. 

DEFINITION: A circuit is redundant if it contains untestable nodes. 

DEFINITION: A circuit is totally irredundant if all subcircuits of 

that circuit are irredundant. A subcircuit consists of a subset of 

18 
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gates in the circuit and the inputs to those gates. 

DEFINITION: The path sensitization process is the process of sen­

sitizing a single path and finding all the forced values in the circuit 

because of the assignment of propagation values on the sensitized path. 

DEFINITION: The justification process is the process of assigning 

proper values to the inputs of a circuit in order to justify the values 

on the outputs of the gates which some values have been assigned to 

their outputs during the path sensitization process but the inputs to 

those gates have not been forced to propagation values because of the 

values on the outputs of those gates. 

DEFINITION: A .. fanout origin .. is a point in a circuit 'r'lith more 

than one line exiting from it. Lines which exit from this point are 

called 11 fanout branches .. of that fanout origin. 

DEFINITION: A 11 reconvergent gate .. is a gate that at least two 

branches from the same fanout origin have a path to that gate. 

DEFINITION: A loop is part of a logic circuit which consists of two 

branches of a fanout origin which reconverge on a gate. This includes 

the fanout origin, the gates, and the outputs of a 11 gates on the two 

branches. 

DEFINITION: A 11 Simple loop .. is a loop which has no fanout origin on 

outputs of gates on any of its branches and does not share any gate with 

other loops with different fanout origins or reconvergent gates. Then 

loops with the same fanout origin and reconvergent gate can share 

gates. Figure 9 shows a circuit consisting of four simple loops. The 

four simple loops include the following set of points and the gates 

between each two points: (E,A,D}, (E,A,C}, (D,A,C}, (G,B,F}. 

DEFINITION: A point in a circuit is 11 blocked 11 for a certain value 
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if that value cannot be propagated through gates to primary outputs. 

DEFINITION: A conflict occurs during the path sensitization or 

justification process if the assignment of a value at some point in the 

circuit be inconsistent with previous value assignment(s) in the cir­

cuit. 

DEFINITION: A point which is part of a loop is marked as conflict 

for a value if assigning that value to that point forces the input to 

the reconvergent gate on the other branch of the loop to a value which 

is not a propagation value for that gate. 

DEFINITION: A circuit is called "path independent fault detecting" 

(pifd) if a fault can be detected through any path from the sight of the 

fault to the primary output(s) without facing any conflict. 

LEMMA 1: In any logic circuit if "A is true" implies "B is true" then 

"complement of B is true" implies "complement of A is true". 

PROOF: The proof for this lemma is a direct conclusion from Venn dia­

grams for logic functions. Figure 10 shows this property. 

From Lemma 1 it can be concluded that if assigning a value "a" at 

some point "A" of a logic circuit forces another point "B" to value 11 b" 

then assigning the complement of 11 b" to "B" forces the value of "A" to 

complement of "a'. 

EXAMPLE: In Figure 11 assigning a logic "1" to "A" forces "B" to logic 

"0" and assigning logic "1" to "B" forces "A" to logic "0". 

THEOREM 1: Consider a circuit with reconvergent fanouts restricted to 

simple loops and initially all lines have don't care values. If assign­

ing a value on one branch of a fanout origin forces a value at some 

point of another branch of the same fanout origin then this dependency 
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@ 
Figure 10. Venn Diagram 

II 

Figure 11. Example for Lemma 1 
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can be found in time proportional to N where N is the number of lines in 

a circuit. 

PROOF: If a value assignment on one branch of a fanout origin forces a 

value on the other branch of the same fanout origin, then it must force 

the fanout origin to some value which in turn forces the point on the 

other branch to some va 1 ue. The reason that the fanout origin wi 11 be 

forced to some value is that since initially all lines in the circuit 

are set to don•t care values then the first value assingment on a branch 

of a fanout origin does not have to satisfy any condition with respect 

to the other value assignments in the circuit. Then the only way that a 

point on the other branch can be forced to some value is by forcing the 

fanout origin to some value first and then propagating the effect of 

this value on the other branch. Then using Lemma 1, assigning the 

complement of the value on the fanout origin forces the point in the 

first branch to the complement of the value it has. According to this 

conclusion there is a procedure which can find this dependency as fol­

lows: 

1. Put a "0" on a fanout origin and find forced values on branches 

of the fanout origin (call them branch one and two). 

2. Put a "1" on the fanout origin and find forced values on branches 

of the fanout origin. 

3. Consider the set of points on branch one which were forced to 

some values in step 1. If the complement of values in step 1 are 

assigned to any of these points, then by Lemma 1, the fanout origin must 

be forced to a "1" which forces the points found in step 2 on the second 

branch to the values found in step 2. The same thing is true for branch 

2. 
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Since this process needs at most 2N value assignments then this 

process can be done in time proportional to N. This process is called 

"preprocessing of fanout origins". 

EXAMPLE: In Figure 12 assigning a "0" on point "H" forces points "A" 

and "B" to "0", and points "C" and "D" to "1". Assigning a "1" on point 

"H" forces points "E" and "F" to "1", and point "G" to "0". Then 

assigning a "0" on points ,.C" or "D" or a "1" on points "B" or "A" 

forces points "E" and "F" to "1" and point "G" to "0". 

NOTE 1: Assume only one reconvergent gate exists for branches of some 

fanout origin. If assigning a value on one branch of a fanout origin 

which has a path to the reconvergent gate, forces one or more of inputs 

of the reconvergent gate on other branches to va 1 ues which are not 

propagation values, then faults on the original point for the complement 

of the assigned value cannot be tested through the output of the recon­

vergent gate. This point is marked as a "conflict" for that value. 

NOTE 2: Theorem 1 does not indicate that all fQrced values in a circuit 

due to a value assignment can be found in N2 time because it was assumed 

that all lines were initially set to don•t cares. 

NOTE 3: Theorem 1 can be applied to any circuit topology as long as the 

propagation of a value assignment on one branch of a fanout origin in 

the forward direction does not force a value on the other branch(es) of 

the fanout origin. In general the preprocessing of fanout origins can 

be used to predict some of the sources of backtracking before starting 

the test generation. 

THEOREM 2: The process of test generation, which consists of sensiti­

zation and justification of a single path for each fault, for irre­

dundant circuits with reconvergent fanouts restricted to simple loops is 
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proportional to N2 in time where N is the number of inputs to all the 

gates in a circuit (number of lines). It is assumed that all the lines 

in the circuit have don•t care values prior to test generation and the 

fault signal on an input of a gate will not be propagated to the output 

of that gate until the backward effect of value assignments on all 

inputs of the gate is found throughout the circuit (the two 1 atter 

conditions will be considered for the other theorems as well). 

PROOF: Consider Figure 13 which can be part of a larger combinational 

circuit. Suppose a test is to be generated for a fault on line A by 

propagating the value on A to the output through the gates 

G3, •• ,GR,OUT. First, only the value assignments necessary for sensiti· 

zation of the path will be considered. If value assignment on A forces 

C to some value Cv then A and C must be on a loop with GR as recon­

vergent gate. Notice that there are two ways that value assignment on A 

can force C to some value without being on a loop with it. The first 

one is to force the output of GR to some value which in turn forces C to 

some value. The second one is to force a fanout origin, in the forward 

direction, to some value which in turn forces C to some value. If the 

first case happens then it means that there is either a feedback from 

the output of a gate GN, to which GR has a path, to A or the output of 

the two gates GN and GM are connected together as shown in Figure 14. 

It is obvious that both connections are in contradiction with the 

definition of (topology of) combinational circuits. For the second case 

consider Figure 14. If a value assignment on A forces F1 to some value 

which in turn forces C to a nonpropagation value then at least one of 

the faults on one of the branches of F is undetectab 1 e which is in 

contradiction with the assumptions made in this theorem. If Cv is not a 
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propagation value then the fault on A cannot be propagated through GR. 

Since all the loops are simple, then there is no other way for the fault 

on A to be detected through, which means fault on A cannot be detected 

which is in contradiction with the assumptions made in this theorem. 

Notice that inputs like D, which are not part of the loop but are inputs 

to the gates on the loop, cannot be set to any value becasue if value 

assignment on A forces D to some value then it means th'at two inputs to 

G4 are on a loop which indicates that two loops with reconvergent gates 

G4 and GR are sharing gates. Then no conflict can occur because of the 
' 

value assignments on inputs like D. If value assignment on B, or any 

line which is set to propagation value on the sensitize~ path, forces C 

to a non-propagation value then GR is a reconvergent gate for two dif­

ferent loops, one with (A,C,GR) and the other one with (B,C,GR). If A 

and C are not on a loop but B and C are and C is forced to a 

nonpropagation value because of the value assignment on ~' then at least 

one fault on B cannot be detected. If a propagation value on a line 

like B, which is forced to a value in order to satisfy the requirements 

for path sensitization, needs the requirments which cannot be satisfied, 

for example if B is the output of an AND gate and has the value "1" but 

a "1" on one the inputs of this gate forces another input of this gate 

to a "0", then there is a redundancy in the circuit (line B is stuck at 

some value) which is in contradiction with the assumptions made in this 

theorem. Since no value assignment in path sensitization can· create 

conflict then there is no need for backtracking. 

Now suppose there are two gates G1 and G2 with some values on their 

outputs but the inputs to G1 and G2 are not justified for those values, 

as shown in Figure 15. Consider one of the inputs to G1 , "A", which is 
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to take a value in order to partly (part of the condition for justifying 

the va 1 ue on the output of G1) or camp 1 ete ly justify the va 1 ue on the 

output of G1• Suppose that because of value assignmerts from A to a 

primary input, a va 1 ue assignment on a point B forces. the input C of 

gate G2 to some value Cv· Since both G1 and G2 have ~ path to a gate 

which is (or its output is) part of the sensitized path, and also there 

is a different path from B to C, then it means that they are on a 

loop. Since all the loops are simple, again no input ~uch as D can be 

set to a value by value assignment from A to B or there will be two 

loops which are sharing gates. If Cv does not have a correct value to 

justify the value on the output of G2, then D can be set to that value 

and no value assignment from A to primary inputs can seti D to some other 

value or loop (E,C,B,A,GR) is shar:ing gates with another loop. The 

reason that only a correct value on one input of G2 is enough to justify 

the value on the output of G2 comes from the fact that the value on the 

output of G2 does not force all the inputs to G2 to pr~pagation values 

according to the definition of justification process given at the begin­

ning of this chapter. Then a nonpropagation value on one of the inputs 

of G2 is enough to justify the value on the output. Then no conflict 

can occur during the line justification and there is no need for back­

tracking. 

Since both processes of path sensitization and line justification 

are conflict free then to detect each fault in the circuit not more than 

N value assignments are necessary and since there can be 2N such faults 

then the whole process can be done in time proportional to N2• 

EXAMPLE: Consider the circuit in Figure 16. To detect faults on "d", 

the two other inputs of G5 must be set to logic "1". To justify a "1" 
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on the output of G2, a "1" is required on either of the inputs of G2• 

Suppose the output of G1 is selected in this step. Now to justify a "1" 

on the output of G1 requires logic ''1" on "a" and "b". A "1" on "b" 

will force the output of G3 to logic "0" which in turn will force the 

output of G4 to logic "0" which is a conflic for propagating a fault on 

"d" through G5• According to theorem 1, such a circuit must be redun­

dant and at least the fault on the input of G1 which is a branch of "b" 

cannot be detected through G5 for the comp 1 ement va 1 ue on this 1 i ne. 

The value on this input of G1 is a "1". To detect a s-a-0 on this line 

a "1" must be assigned to "b". Assigning a "1" to "b" forces the output 

of G4 to "0" which violates the propagation rules on G5• Then the fault 

s-a-0 on the branch of "b" which is an input to G1 cannot be detected 

which makes the circuit redundant. 

NOTE 1: In Figure 13 since the fault on "F" can be propagated through 

both branches, and the type of circuits presented in Theorem 2 consist 

of only isolated simple loops, then faults on any point of this kind of 

circuit can be propagated and detected through any path which includes 

that point. Then this type of circuit is path independent fault 

detecting. 

NOTE 2: There is no 1 imi t on the number of fanout branches as 1 ong as 

assumptions made in Theorem 2 hold. 

NOTE 3: A circuit with the topology given in Theorem 2 is redundant if 

a value assignment on a fanout origin forces one or more of the inputs 

of a reconvergent gate to a value other than the propagation value for 

that reconvergent gate. This is a direct result from Theorem 2. 

Now an upper bound will be found for the number of tests for path 

independent fault detecting circuits. 
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LEMMA 2: The number of paths in a combinational circuit with no recon­

vergent fanout from one of the primary inputs to any of the primary 

outputs is equal to: 

A-B+1 

where 

A = # of fanout branches on the paths which connect the primary 

input to primary outputs 

B = # of fanout origins on the paths from primary input to primary 

outputs. 

PROOF: A circuit as described above can be considered as a free tree 

where a free tree is defined to be a finite connected graph with no 

simple cycle (Standish). The fanout origins and the primary input and 

outputs are vertices of the tree and lines connecting ve,rtices are edges 

of the tree. 

In a free tree we have the relation e=v-1 where "e" is the number 

of edges and "v" the number of vertices. In a tree as shown in Figure 

17, the number of paths is equal to the number of primary outputs. The 

reason for this is that any distinct path (two paths are distinct if 

they are different in at least one edge) originated from the primary 

input will end with one primary output in a free tree. 

If vertices other than primary outputs are called ~internal nodes" 

then we have: 

e= # of paths + # of internal nodes - 1 

or 

# of paths = e - # of internal nodes + 1 

but "e" in a combinational circuit is nothing other than the number of 

fanout branches and internal nodes are fanout origins. Then we have: 
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figure 17. A Free Tree 
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# of paths = # of fanout branches - # of fanout origins + 1 

or 

# of paths = A - B + 1 

NOTE: In circuits with one primary input and the topology given in 

Lemma 2, only two tests are necessary to detect all single stuck at 

faults on a given path. Then, the maximum number of tests in these 

circuits is as follow: 

max # of tests = 2(A - B + 1) 

THEOREM 3: The maximum number of tests to detect all :single stuck at 
I 

faults for path independent fault detecting circuits is as follows: 
I 

2(# of fanout branches - # of fanout origins + # of primary inputs) 

PROOF: Consider Figure 18 which without dotted lines has no recon­

vergent fanout as required to apply Lemma 2. To detect ~ll single stuck 

at faults on the dotted sub-path no more than two tests are needed 

because it is enough to select a path which covers this line from a 

primary input to a primary output and generate tests for this path. 

Since one additional fanout branch is added and two more tests are 

needed then the maximum number of tests for circuit in Figure 3.8 

including the dotted line is still : 

2(# of fanout branches - # of fanout origins + 1) 

Now assume we have a circuit with n primary inputs. For the first 

input we find all the paths which connect this input to primary out­

puts. For input i>1, we find all paths which connect that input to 

primary outputs which have at least one edge that has not appeared in 

paths found for primary inputs 1 to i-1. There could be edges on the 

paths originating from input i and merging to one of the paths covered 

by those for primary inputs 1 to i-1. For each of these edges, which 
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are fanouts with paths to input i and are not covered by paths found for 

inputs 1 to i-1, we need two tests (the same thing as for· the dotted 

line). Then there is no line in the circuit which is not covered and no 

path from primary inputs to primary outputs which has a 11 its edges 

covered more than one time. Then for the paths found for input i with 

fan outs which do not merge in to any path covered by another input we 

have the same relation for maximum number of tests as in Figure 18 and 

for each fanout merging to another path covered by anot~er input we need 

at most two tests. Then for the paths found for inp~t i and merging 

edges on these paths we have: 

max # of test(i) = 2(# of fanouts(i) - # of fanout origins(i) + 1) 

Adding up "max # of test(i)n for i=1 to n we will have: 

max # of tests = 2 (# of fanouts - # of fanout origins + # of primary 

inputs) 

Now the process of test generation for redundant circuits with 

reconvergent fanouts restricted to simple loops will be studied. It 

should be kept in mind that because of the properties stated in the 

proof of Theorem 2 for the circuits with the same topology, Theorem 1 

can be applied to these circuits. 

THEOREM 4: The blocking process (determining the blocked points) for 

redundant circuits with reconvergent fanouts restricted to simple loops 

is proportional to N2 in time. 

PROOF: First the preprocessing of fanout oringins presented in Theorem 

1 should be applied to all fanout origins of the loops in order to find 

all the points in a loop which cannot be tested for some values. For 

each point found this way and marked as conflict for a propagation value 

consider all the other inputs to the gate that has this point as its 
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input if those inputs are not affected by the assignment of propagation 

value on the conflict point. Because this input can be one of the 

inputs to the reconvergent gate and some of the inputs to the recon-

vergent gate are affected by this value assignment. Conflicts on the 

other branch will be found seperately. For each of those inputs travel 

backward on all the possible paths and mark all those points as 

"blocked" until a fanout origin is faced. If all branches of a fanout 

origin are marked as blocked again travel backward and mark those points 
I 

as "blocked" until another fanout origin or a primary input is faced. 

Using preprocessing of fanout origins, a 11 the outpu~s of the recon­

vergent gates which are stuck at some value can be ide~tified and their 
I 

effects can be propagated throughout the circuit, an~ using backward 

traveling on the inputs of the affected gates the points which are 

blocked can be identified (if an input of a gate is ,stuck at a non­

propagation value then the other inputs are blocked). If all inputs of 

a gate are marked as stuck at some value then its output must be marked 

as "stuck at value", if it is not already marked, and the effect must be 

propagated throughout the circuit and all blocked • points must be 

found. If all inputs of a gate are marked as "conflict" and "stuck at 

value" then the input marked as flconflict" (there is only one such input 

because loops are simple) must be treated as if it were a fanout origin 

for the loop on which it lies if the output of the gate is not marked as 

stuck as a value, and preprocessing of fanout origins must be done for 

that input and all blocked points due to this situation must be identi­

fied. Notice that the forced values which are already found do not need 

to be found again. Since the preprocessing of all fanout origins 

requires time proportional to N2 and the rest of the process does not 
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TAKE ONE FANOUT ORIGIN fROM THE LIST 
AND DO THE PREPROCESSING FOR THAT. 
FIND All CONFLICTS AND POINTS WHICH 
ARE STUCK AT SOME VALUE. 

FIND All THE OTHER 
STUCK AT SOME VALUE 
POINTS BECAUSE OF 
THIS VALUE ASSIGN­
MENT. 

Figure 19. Algorithm for Theorem 4 
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PROPAGATE THE CONFLICTING VALUE 
FORWARD AND HARK ALL AFFECTED 
LINES AS CONFLI~. FIND GATES 
WITH ALL INPUTS HARKED AS CONF­
LICT AND STUCK AT SOHE VALUE. 

Figure 19. (Continued) 
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need marking more than N points as "conflict", "stuck at value", or 

"blocked" then this process is proportional to N2 in time. An algorithm 

is given for Theorem 4 in Figure 19. 

THEOREM 5: The process of test generation for redundant circits with 

reconvergent fanouts restricted to simple loops is proportional to N2 in 

time. 

PROOF: Using "blocking process" presented in Theorem 4,~ all paths which 

are blocked for certain faults can be found in time proportional to N. 

In the justification process there will be no conflict because all the 

choices for justifying a value on output of a gate which cause conflicts 

are already marked and will not be chosen. Since to detect each fault 

no more than N value assignments are required and at most for 2N faults 

(factor of 2 is for stuck-at-1 and stuck-at-0 faults) tests must be 

generated seperately, then the time for the whole process is propor­

tional to N2. 

EXAMPLE: Figure 20 shows a redundant circuit with reconvergent fanouts 

restricted to simple loops. Applying the preprocessing of fanout 

origins and the blocking pr.ocess on the circuit in this figure give the 

results shown in Table I. As can be seen in this figure, all the points 

which are not testable or must not be chosen in the justification 

process are marked. 

Identifying Reconvergent Gates in Circuits Consisting of Simple Loops: 

One of the requirements for making the table in the previous 

example is to identify reconvergent gates. The following procedure 

presents a method by which reconvergent gates can be identified in time 

proportional to N2: 
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TABLE I 

THE INFORMATION FOUND USING THE ALGORITHM 
IN FIGURE 19 

LINE # STUCK BLOCKED CONFLICT CONFLICT NOT TESTABLE 
AT FOR FOR VALUE ON RECON. FOR STUCK 

GATE AT 

1 
2 
3 1,0 1,0 
4 
5 1 1 8 0 
6 0 0 8 1 
7 1 1 8 0 
8 0 0 
9 0 0 8 1 

10 1 1 27 0 
11 1 1 27 0 
12 1,0 1,0 
13 0 0 27 1 
14 1 1 27 0 
15 1,0 1,0 
16 1 1 27 0 
17 1,0 0 23 1,0 
18 1,0 1,0 
19 1,0 1,0 
20 1,0 1,0 
21 1,0 0 23 1,0 
22 1,0 1,0 
23 1,0 1,0 
24 1,0 1,0 
25 1,0 1,0 
26 0 0 27 1 
27 1 0 1 
28 
29 
30 
31 
32 
33 
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For all fanout origins do the following: 

Travel on all branches of a fanout origin until a primary output, a 

fanout origin, or a reconvergent gate is faced. Mark all gates in 

between by the number assigned to the branch which has been traveled. 

If a gate which is already marked by another branch is faced, mark that 

as a reconvergent gate of those branches on which this gate lies. Stop 

the process on that branch and process a new branch. 

As can be seen from the abov~ procedure, at most marking N gates is 

necessary to identify the reconvergent gate and the corresponding fanout 

branches of a simp 1 e fanout origin, and a reconvergent gate will be 

marked at most N times. Then this process is proportional to 2N for one 

fanout origin. Since there are no more than N fanout origins then the 

whole process can be done in time proportional to N2• 

DEFINITION: A simple nested loop is a simple loop with the excep­

tion that it can share gates with loops with different reconvergent 

gates. 

An example of circuits consisting of simple nested loops is given 

in Figure 21. An example of the topology of the loops in such circuits 

is given in Figure 22. 

THEOREM 6: The process of test generation for irredundant circuits with 

reconvergent fanouts restricted to simple nested loops is proportional 

to N2 in time. 

PROOF: Consider Figure 23 in which the fault on line A is supposed to be 

propagated through the path (G2, ••• , G3, ••• , GR, ••• , OUT). If the value 

assignment on A forces E to some value Ev then as it was shown in the 

proof of Theorem 2, A and E must be on a loop with GR as reconvergent 
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gate. If Ev is not a propagation value then the fault on A will be 

undetectable because there is no fanout origin between G2 and GR which 

introduces a different path from A to a primary output. It is true 

because reconvergent fanouts are restricted to simple nested loops. If 

value assignment on B forces E to a nonpropagation value then at least 

one fault on B cannot be detected for the same reason stated for A. The 

same reasoning can be used to show that if value assignment on C or D 

forces E to a nonpropagation value then there are undetectable faults on 

C or D. Now suppose that value assignment on E (Ev) is inconsistent 

with the values on C or D. Then E is on a loop with C or 0 (or both). 

The values Cv and Dv on C and 0 force E to Ev which is a nonpropagation 

value, then at least one fault on C or D cannot be detected because it 

cannot be propagated through GR. The rest of the proof for path 

sensitization is the same as stated in Theorem 2. Since no value 

assignment can create a conflict during the path sensitization then 

th~re will be no need for backtracking. 

For the proof during the justification process, consider Figure 

15. Since there are simple nested loops in the circuit, it is possible 

because of a value assignment on B that both lines C and D be forced to 

propagation values which are inconsistent with the value on the output 

of G2. But if that happens then there is at least one fault on B which 

cannot be propagated through GR (notice that the only way that a value 

assingment on B and the other lines from B to the primary inputs can 

force C and 0 to some value is through F) and since due to the topology 

of the simple nested loops there is no other path for the fault on B to 

be detected through, this fault is undetectable which means the circuit 

is redundant, which is in contradiction with the assumptions made in 
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this theorem. Then there is no need for backtracking in the line just­

ification. 

Since there is no need for backtracking in path sensitization and 

line justification then at most N value assignments in the circuit are 

necessary to detect a fault. At most there are 2N such faults, then 

there is no need for more than 2N value assignment in the circuit which 

means the required time for test generation is proportional to· N2• 

NOTE: Since the faults on a fanout origin can be propagated and 

detected through any branch of that fanout origin then circuits of this 

kind are path independent fault detecting. 

The next topology of loops which will be considered is "simple 

totally nested loops." 

DEFINITION: Simple totally nested loops are loops with the following 

characteristics: 

1. They can have fanout origins on their branches providing that the 

branches of these fanout origins must reconverge on the gates which have 

paths to the reconvergent gate of the loop from which they are origi­

nated. 

2. No two loops may share gates if in forward traveling of paths in 

the circuit there is no path between their fanout origins. 

3. No two branches of a fanout origin may reconverge on more than one 

gate. 

An example of the above topology is given in Figure 24 and an 

example of the circuit consisting of simple totallynested loops is given 

in Figure 25. 

The conditions in the definition of simple totally nested loops 

eliminate the possibility that if a point on a loop cannot be tested 



53 

through the reconvergent gate of that loop then it may be tested through 

another path. Figure 26 shows an example of what may happen if con­

dition 1 is eliminated. In this figure the fault a-s-0 cannot be propa­

gated through "c" but it can be detected through "b" while the circuit 

is irredundant. Elimination of condition 2 makes it possible for a gate 

which is on different loops to be affected by value assignments on 

fanout origins of those loops. Although all the loops are irredundant, 

those value assignments may cause a conflict to occur on a reconvergent 

gate and the test generation process may not be conflict free. An 

example of such a situation is given in Figure 27. Suppose "a".must be 

justified for value "1" and arbitrary choices have assigned a "1" on 

"b", "g", and "c". Then "d" and "e" wi 11 be forced to "0" and "1" 

respectively for a "1" on "h" and "i". These value assignments put a 

"0" on "f" which is a conflict. Note that no value assignment on a 

single fanout origin causes a conflict on a reconvergent gate, but to 

justify "g 11 for a "1" a certain combination of value assignments on 

fanout origins are required although the whole circuit is totally irre­

dundant. Condition three guarantees that no two branches of a fanout 

origin can reconverge on more than one gate·because if two branches of a 

fanout origin reconverge on more than one gate then it is possible that 

not all paths in a circuit can be sensitized even in totally irredundant 

circuits as will be discussed later where the definition of simple 

totally nested loops will be modified for totally irredundant circuits 

with more complex topology. 

THEOREM 7: The process of test generation for irredundant circuits 

consisting of simple totally nested loops is proportional to N2 in time. 

PROOF: Consider Figure 28 and assume that a test is to be generated for 
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Figure 25. An Example of Circuits Consisting of Simple 
Totally nested Loops 
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Figure 27. Conflict in Test Generation for the Loops 
with Unconnected Fanout Origins 
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the fault on line A. Suppose that the fault signal is to be propagated 

through GR. If va 1 ue assignment on A forces C to a nonpropagat ion 

value, then A and C are on a loop as was stated in the proof of Theorem 

2. Although there can be fanout origins between A and GR, according to 

the definition of simple totally nested loops the fault on A must be 

propagated through GR. Then the fault on A will be undetectable which 

is in contradiction with the assumptions made in this theorem. If value 

assignment on B forces C to a nonpropagation value then B and C are on a 

loop and at least one fault on B is undetectable because the fault has 

to be propagated through GR. If value assignment on a line between G1 

and GR forces C to nonpropagation value, such as D or E, since it has to 

be on a loop with C then at least one fault on that line remains unde­

tectable. This effect is independent of other value assignments during 

the path sensitization. For example, if value assignment on B forces 

one input to G2 to a propagation value and value assignment on D forces 

the other input of G2 to a propagation value which forces the output of 

G2 to a value which in turn forces C to a nonpropagation value, then it 

means that there are two loop.s, (B, G2, GR) and (D, G2, GR), with uncon­

nected fanout origins which share gates which is in contradiction with 

the assumptions made in this theorem. Then there is no conflict during 

the path sensitization. The proof for line justification is similar to 

the one for Theorem 6. Since there is no backtracking in path sensiti­

zation and line justification then only N value assignment is necessary 

to generate a test for a given fault which makes the time complexity of 

the test generation proportional to N2. 

NOTE: Irredundant circuits consisting of any combination of topologies 

discussed so far can be tested in time proportional to N2 because they 
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all share the property that if a value assignment on one branch of a 

loop causes a conflict on the reconvergent gate of that loop then that 

point is not testable for the complement of the value it has. 

If the circuits with the topologies discussed so far are irre­

dundant then it means that each loop in the circuit is trredundant. But 

a circuit can be irredundant with some redundant loops as was shown in 

Figure 26. Now one of the conditions can be omitted from the definition 

of simple totallynested loops and still circuit with the topology in the 

modified definition can be testable in time proportio11al to N2 if all 

loop are irredundant. The condition which can be omitted is condition 1 

which expands the topology under consideration to circuits of which one 

example is given in Figure 29. An example of the topology of circuits 

with the above definition is given in Figure 30. Notice that condition 

three in the modified definition is necessary because there are circuits 

which are totally irredundant but not path-independent fault-detecting 

s i nee two branches of a fanout origin reconverge on more than one 

gate. An example of this kind of circuits is given in Figure 31. In 

this figure the fault a-s-0 cannot be detected through the path (G1, G3, 

G5) although the circuit is totally irredundant. The class of circuits 

recognized by the modified definition of simple totally nested loops is 

called "SIMPLE CONNECTED LOOPS". 

THEOREM 8: The process of test generation for the circuits consisting 

of simple connected loops in which all loops are irredundant is propor­

tional to N2 in time. 

PROOF: Consider Figure 32. Suppose that the fault on A is to be propa-

Suppose that G is forced to a 

nonpropagation value at some point during the path sensitization because 
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of value assignment on some lines such as A,B, ••• , and E. Then either 

value assignment on one of these lines, for example C, has forced G to 

the nonpropagation value independent of the other value assignments in 

the circuit or value assignments on several or all of lines (A,B,.,F) 

have forced G to that value. In the first case if G and C are on a 

loop, then at least one fault is not detectable through GR which is in 

contradiction with the assumption that all loops are irredundant. If C 

and G are not on a loop then C has to force a fanout origin to some 

value which in turn the value assignment on this fanout origin forces G 

to a nonpropagation value. In this case at least one of the faults on 

one of the branches of this fanout origin cannot be detected through GR 

which means that there is a redundant loop in the circuit. If value 

assignments on several points forces G to a nonpropagation value and 

those points are on some loops with G, then as it can be seen from 

Figure 32, two branches of a fanout origin reconverge on more than one 

gate, G4 and GR, and loops which their fanout origins have no path to 

each other are sharing gates, which is in contradiction with the assump­

tions made in this theorem. If all of those value assignments forces 

only one fanout origin to some value which in turn forces G to a non­

propagation value, then at least one fault on one of the branches of the 

fanout origin cannot be detected through GR which means there is at 

least one redundant loop in the circuit. If A, B, •• , and F are not on a 

loop with G, then either they have to force one fanout origin to some 

value which in turn creates a conflict on G or they force several fanout 

origins to some value which in turn force the line G to a nonpropagation 

value. In the first case there is a redundant loop in the circuit and 

in the second case one of the rules for simple connected loops has been 
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violated. Then there is no need for backtracking in path sensitization. 

Now it will be shown that the line justification process is also 

conflict free. Consider Figure 33 and suppose that the lines A and B 

are to be justified for the values that they have. Also assume that the 

lines A and B are outputs of the gates GA and G8• Then only assigning 

nonpropagation values on one of the inputs of GA and G8 is enough to 

justify the values on A and B. Suppose that because of the value 

assignment on a point C, for justifying the value on A, all the inputs 

to G8 which have don't cares be changed to propagation values. If that 

happens then it means that A and B are on a 1 oop because both can be 

merged to the sensitized path through some paths. If the value on C 

forces the inputs of G8 to some value then it must first forces a fanout 

origin(s) to a value which in turn forces the inputs of G8 to some value 

(or other fanout origin(s) which forces the inputs of G8 to some 

value). If more than one fanout origins, F1 and F2, are forced to some 

values then as it can be seen from the Figure 33 the two loops 

(A,F1,B,GR) and (A,F2,B,GR) which have no path between their fanout 

origins are sharing gates which is in contradiction with the assumptions 

made in this theorem. Suppose that value assignment on F1 and F3 have 

forced all the inputs of G8 which have don't cares to propagation 

values. If that happens then consider the other input of G8, D, which 

has been assigned a value during the path sensitization or line just­

ification to justify a value on a line E. Then D and E must be on a 

loop, as it is shown in Figure 33, and the loops (B,D,E,GQ) and 

(A,F1,B,GR) which have no path between their fanout origins are sharing 

gates which is in contradiction with the assumptions made in this 

theorem. Now suppose that during the line justification for point A, a 
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value assignment on C forces all the inputs to Gc to propagation values 

but because of the value assignment on H, the input I to Gc be forced to 

a nonpropagation value. If that happens then at least one fault on the 

branch of F6 which has a path to H is undetectable through Gc which 

means a loop in the circuit is redundant which is in contradiction with 

the assumptions made in this theorem. Then there is no conflict during 

the line justification. Since only N value assignments are necessary to 

generate a test for a given fault and there are no more ·than 2N such 

faults in the circuit, then the required time for test generation is 

proportional to N2• 



CHAPTER IV 

DESIGN FOR TESTABILITY 

Now attention will be focused on circuits such that two branches of 

a fanout origin may reconverge on more than one reconvergent gate, and 

loops whose fanout origins have no path to each other may share gates. 

Different comments can be made, as design aids, on the topology of these 

kinds of circuits such that all paths can be sensitized and no conflict 

be faced in the justification process. For example "loops \'lith uncon­

nected fanout origins must not reconverge on gates which have paths to 

each other". But none of these comments seems to be easy to apply when 

designing a circuit and will put restrictions on the topology of a 

circuit and may not be always applicable. Instead a design method will 

be introduced which makes any circuit testable in time proportional to 

N2. 

It is obvious that there cannot be any inconsistency in value 

assignments in the path sensitization and justification process for the 

circuits with no reconvergent fanouts providing that any value assign­

ment in the circuit is for the prupose of sensitizing a path or justify­

ing a line. By adding reconvergent fanouts to the circuit, there could 

be inconsistency in value assignments when generating tests for the 

circuit. Since this inconsistency in value assignments is only because 

of the existence of the reconvergent fanouts in the circuit, then any 

conflict in value assignments can be transfered to a conflict on a 

69 
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reconvergent gate. And that reconvergent gate is either part of a 

sensitized path or is to be justified for some value on its output. 

Then if the value assignments on the inputs of the reconvergent gates in 

the circuit can be controlled, any inconsistency in value assignments 

can be avoided. If a reconvergent gate is part of a sensitized path 

then a value which is not a propagation value for that gate must not 

reach the gate. If this gate is to be justified for some value on its 

output which forces all its inputs to propagation values then, like the 

previous case, no nonpropagation values must reach the gate. If the 

inputs of a reconvergent gate must be justified for values which are not 

propagation values then not all the inputs of the reconvergent gate must 

be forced to propagation values. 

To see how the situations mentioned above can be avoided consider 

the loop in Figure 34 and add two gates after GNl and GM2 according to 

the following rules: 

1. If GR is an OR or NOR gate then the two gates must be AND gates. 

If GR is an AND or NAND gate then the two gates must be OR gates. Call 

these gates "BLOCKING GATES". 

2. Each blocking gate has two inputs. One is the output of GNl or 

GM2 and the other input is called the "CONTROL" or "TEST" input. This 

input can be treated as a primary input. 

By adding the blocking gates to the circuit, no inconsistency in 

value assignments can occur during sensitizing a path because the 

control inputs can be set to the values needed on the inputs of the 

reconvergent gates. The same thing is true for the case that the output 

of a reconvergent gate must be justified for a value which needs assign­

ments of propagation values on all the inputs of that gate. Now 
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consider a reconvergent gate which has a value on its output that needs 

at least a nonpropagation value assignment on one of its inputs. Also 

assume that all the inputs to this gate are set to propagation values 

because of a value assignment on a point "P" (the last value assignment 

which set all the inputs of the reconvergent gate with don't care values 

to propagation values is important, otherwise there are still choices 

available on the inputs of the reconvergent gate). Since. the value on 

the output of this gate has been determined independent of values on its 

inputs, then it means that the reconvergent gate itself is on another 

loop with "P" (if it is not true then either the value assignment on the 

output of the reconvergent gate or the value assignment on "P" is arbi­

trary and not forced by the requirments for the path sensitization or 

justification process). Then this inconsistency or conflict could be 

transfered to the reconvergent gate of this new loop where it could have 

been avoided by controlling a test input. This suggests that inproper 

use of test inputs could cause problems. Notice that adding the block­

ing gates and the test inputs to a circuit guarantee that no conflict 

may arise in path sensitization for a certain fault because nonpropa­

gation values can not reach reconvergent gates. But propagation values 

may reach reconvergent gates and cause conflicts if test inputs are not 

used properly. An example of such a situation is given in Figure 35. 

Suppose "a" is to be tested for s-a-0, then a series of value assign­

ments on b, c, and d (all of them have value "1") forces "a" to "0" 

which is a conflict. This situation can be taken care of and tests can 

be generated in one of the three following ways: 

1. Whenever there is a choice between a test input and the other 

input of a blocking gate, take the test input. This gives freedom to 
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the other input of a blocking gate to be set to any logic value 

(prevents the inproper use of the test inputs). 

2. Completely justify a given point for a value until primary inputs 

are faced before continuing path sensitization or justifying any other 

line. Since no value assignment on fanout origins is able to force the 

inputs of the reconvergent gates in the sensitized path to nonpropa­

gation values, then no conflict occurs and test inputs can be set to 

appropriate values for the path sensitization or justification 

process. This solution has the advantage that there will be no need to 

make special use of test inputs whert choices occur. 

3. Start test generation for the circuit by sensitizing paths begin­

ning at primary inputs and cover all paths in the circuit. The just­

ification process must be finished entirely for a line before just­

ification of another line is started. This solution has the advantage 

that longer paths will be covered, the number of tests will be reduced, 

and there will be no need to make special use of (to keep track of) test 

inputs when choices occur. 

Since there is no conflict in the path sensitization and line 

justification process, then no more than N value assignments are nec~s­

sary to generate a test for a given fault. Since there are no more than 

2N stuck at 0/1 faults in the circuit then the time complexity of the 

test generation in the worst case will be proportional to N2. 

In general test icnputs can be treated as primary inputs to the 

circuit, but for chips with built-in test facilities they do not have to 

appear on the external input pins. This issue will be discussed 

later. The value of a test input is a propagation value for the normal 

operation of a circuit. 
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Note that the number of test inputs and blocking gates cannot be 

more than N, and consequently, the number of lines in the circuit can 

not exceed 2N. The only thing needed to identify places where blocking 

gates and test inputs must be placed is identifying reconvergent gates 

and inputs to that gate which are part of a loop. 

The process of identifying reconvergent gates is proportional to N2 

in time according to the following procedure: 

Take one fanout origin and travel on all paths from that fanout 
origin to primary outputs and mark all the gates and gates • 
inputs which are traveled. If in this process a gate which has 
already been marked is found, mark it as a reconvergent gate. 
Also mark the inputs to this gate which are on a loop. Repeat 
this for all fanout origins. 

Since there are no more than N fanout origins and the above process 

for each of them does not need marking more than N gates, then the whole 

process can be done in time proportional to N2• The example in Figure 

31 is redrawn in Figure 36 ~~th the exception that the blocking gates 

and the test inputs are added. When it is worthwhile to have built-in 

test facilities a shift register can be used to load desired values for 

test inputs when the circuit is under test. In normal operation test 

inputs have propagation values. Figure 37 demonstrates this scheme. 

For faster testing, the scheme shown in Figure 38 can be used. The ROM 

in this figure can be used to save the whole test pattern or only the 

values of the test inputs for each test. Notice that the latter scheme 

is faster because all the test inputs can be set to desired values at 

the same time. In Figure 37 and 38, only one input is added to the pins 

of the chip. 

It is obvious that a designer of a circuit prefers not to add 

blocking gates and test inputs as much as possible. One way to decrease 
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the number of blocking gates is to identify the type of the gate placed 

in a loop immediately before the reconvergent gate. If this gate has 

the type which matches the required gate type for the blocking gate, 

then only one extra input need be added to that gate as a test input and 

there is no need to add an extra blocking gate. An example of this 

situation is given in Figure 39. In this figure no blocking gates need 

to be added after gates 1,2,3, and 4. Only on extra input to each gate 

is enough. There are other alternatives for blocking gates that some of 

them are shown in Figure 40. 

There can be even a more drastic improvement to the design if one 

of the gates identified in the previous phragraph has an input which is 

not a part of any loop. Then this input can be considered as a test 

input and there will be no need to add any extra input to the circuit. 

An example of such situation is given in Figure 41. In this figure 

1 ines "A", "B", "C", and "D" can be considered as test inputs because 

none of them are on any loop and they can be set to appropriate values 

to control the values on the inputs of reconvergent gates. These inputs 

are called "FREE INPUTS". 

One thing which can be done to ha 1 ve the number of attempts to 

generate tests, and eventually the time required for the test genera­

tion, is to set all the control inputs which are not on the sensitized 

path to their nonpropagation values whenever a blocking gate is faced 

during the path sensitization process. The reason for this is that 

control inputs can be either set to nonpropagation values or don't cares 

and the value assignment on the sensitized path has no effect neither on 

the set of gates which should be considered for justification process 

nor on the va 1 ues on the output of these gates. Then if the program 
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chooses the same paths to propagate both s-a-0 and s-a-1 faults on a 

primary input to the outputs of the circuit ( 1 ike the one written for 

this research study), a test for primary input s-a-0/1 is the same for 

the fault s-a-110 on the same primary input except that the value on 

that primary input is complemented. 

A program has been written in PASCAL programming language which 

generates tests for the circuits with the added blocking gates and test 

inputs, or having the same property. This program starts test genera­

tion from the primary inputs and covers all the distinct paths in the 

circuit. If a conflict is found during the path sensitization, it will 

be flagged out and another choice will be tried. A choice is either a 

primary input or a branch of a fanout origin. Since this program gen­

erates tests only for the complete paths from the primary inputs to the 

primary outputs, then if a conflict is found in the path sensitization 

process, it may be that no tests will be generated for some of the lines 

on that path. In the other words there is no guarantee that test will 

be generated for all the testable lines in the circuit. In the just­

ification process, all the choices will be considered until either a 

test is generated or no test exist for the path. However, any conflict 

will be reported. The following information should be provided for each 

gate in the circuit for the use of program by a user: 

1. Gate number (an integer) 

2. Gate type (ANDE, ORE, NAND, NOR, !NV, INPUTE OUTPUTE) 

3. # of inputs to the gate 

4. Fanin numbers (to what gates the inputs are connected) 

5. Number of fanout branches 

6. To what gate each fanout branch is connected 
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It should be kept in mind that the input to an INPUTE gate is itself and 

the output of an OUTPUTE gate is also itself. A listing of this program 

is given in appendix A which includes a sample input data in the second 

page. The general performance of the program can be described as fol­

lows. A primary input will be considered as the starting point. It 

will be tried to find a sensitized path from that input to a primary 

output. ·Whenever a value is assigned in this process, the effect will 

be propagated forward and backward. It means that if a value is assign­

ed to the output of a gate, then it will be determined if any of the 

inputs to that gate has to be set to a certain value because of the 

value assignment on the output of that gate. This is called the back­

ward propagation. If any of the inputs of that gate is fanout origin 

and that input is forced to some va 1 ue because of the backward propa­

gation of the value on the output of that gate, then effect of that 

value assignment on that origin must be found on all the other branches 

of that fanout origin. This is called the forward propagation. If 

there is no inconsistency in value assignments then the program proceeds 

to camp 1 ete the sensitized path, otherwise a flag wi 11 be set and an­

other choice will be considered and all the value assignments due to the 

last choice will be erased. After successful completion of the path 

sensitization, the gates which have been found during the path sensiti­

zation for the justification process will be processed. If a conflict 

is found in this process then the program reports ·that conflict and 

tries other choices unt i 1 either a test is found or • no choice is re­

mained. 

Figure 42 shows a redundant circuit and Figure 43 shows the same 

circuit in Figure 42 with the exception that blocking gates and test 
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inputs are added. The results from the test generation program after 

running on these two circuits are given in the appendix C. From those 

results it can be seen that how the testability of the circuit has been 

improved. 

In Figure 44 the normalized measured times for the circuits, which 

are designed according to the proposed design method, with different 

numbers of gates are shown. Figure 45 shows a plot of the data shown in 

Figure 44. From this figure it can be seen that the required time for 

test generation is growing proportional to N2• In Figure 45, the data 

points marked by circles correspond to the different combinations of TI 

arithmetic logic unit/function generator, type SN54181, and look-ahead 

carry generator, type SN54182. Each circuit was changed to a pifd 

circuit using the program on appendix B. The data points marked by 

crosses correspond to an arbitrary pifd circuit which was dup 1 i cated 

each time and the outputs of one circuit were used as inputs to some of 

the gates of the other circuit to make a larger circuiit. Each circuit 

was made a pifd circuit using the program in appendix B. One of the 

advantages of this method is that a designer can freely design the 

desired circuit without considering this design method and after the 

design is complete then necessary blocking gates and test inputs can be 

added to the circuit. The disadvantage of this design method is the 

addition of gates and inputs which sometimes can be very large. One way 

to cope with this problem is to identify the reconvergent gates that 

most of the conflicts occurs on them and add the blocking gates and test 

inputs only to those reconvergent gates. 
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Figure 44. Timing Results from the Test Generation Program 
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Figure 45. The Plot of the Time for Test Generation 
Versus Number of Gates (In Ln-Ln Scale). 
Circles Represent the Data from ALU 
Funcation Generator. Crosses Represent 
the Date from Arbitrary Circuits. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATION 

In the last two chapters, several circuit topologies have been 

identified for which tests can be generated in N2 time. The concept of 

preprocessing of fanout origins has been introduced which for a certain 

type of circuit make the behavior of a circuit completely conflict free 

regarding the test generation process. The path-independent fault-

detecting (pifd) circuits have been introduced for which tests can be 

generated in N2 time. Also an upper bound has been found for the number 

of tests for such circuits. A simple design method has been proposed 

which can change any arbitrary combinational circuit to a pifd 

circuit. Also it has been shown that the required time for the test 

generation will be halved if a circuit is designed according to the 

proposed design method. It has been shown that by using some of the 

properties of a circuit, it is possible to reduce the number of gates 

and inputs which must be added to the circuit. Also it has been shown 

that it is possible to have only one extra input to a chip for all the 

added gates and inputs to the circuit. 

Experimental results show that the number of gates and inputs added 

to a circuit using the the proposed design method can be excessive. 

Further research is needed to extract the properties of pifd circuits 

which may be used to improve the proposed design method. Also there may 

be other circuit topologies which are testable in N2 time for which 
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further research is needed to identify such topologies. The preproces­

sing of fanout origins seems to be a powerful tool for predicting the 

behavior of the circuits regarding the test generation process. In this 

research, this process was used only for a simple topology for the loops 

but actually for many of the other circuit topologies this process is 

app 1 i cab 1 e. Further 'research is needed to identify the further app 1 i­

cation of this process. 
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APPENDIX A 

LISTING OF THE TEST GENERATION PROGRAM 
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TEST.PAS:2 4-JUN-1985 14:17 !?age 1 

PROGRAM TESTLOGICCIRCUIT(INPIJT.OUTPUT.INFILE.OUTFILEl; 

<"'THE PURPOSE OF THIS PROGRAM IS TO GENERATE TESTS FOR LOGIC 
CIRCUITS IN WHICH r-IO BACK-TRACKING IS NEEDED r-lEITHER IN PATH 
SENSITIZATION NOR IN JUSTIFICATION PROCESSES.THIS PROGRAM 
GENERATES TESTS ONL'l FOR COMBINATIONAL CIRCUITS. THIS PROGRAM 
STARTS GENERATING TESTS FROM PRIMARY INPUTS • BUT IT WILL COVER ALL 
THE DISTINCT I?ATHS IN THE CIRCUIT.IF A CONFLICT IS FOUND DURING 
THE PATH SENSITIZATION IT FLAGS OUT THAT CONFLICT AND TRIES 
~OTHER CHOICE.IN THE JUSTIFICATION I?ROCESS ALL THE CHOICES WILL 
BE CONSIDERED UNTIL A TEST IS GENERATED.HOWEVER.ANY CONFLICT WILL 
BE REPORTED.THIS I?ROGRAM DOES NOT GENERATE TESTS FOR THE REMAINIG 
NETS WHICH HAVE NOT BEEN TESTED EVEN THERE EXIST TESTS FOR 
THEM.THE WAY THAT CHOICES ARE MADE IN PATH SENSITIZATION IS AS 
F0LLOWING. THE FIRST CHOICES ARE I?RIMARY INPUTS. WHENEVER A FANOUT 
r:.RIC;IN IS FACED.DEPENDING ON THE NUMBER OF INPUTS TO THE GATE 
WHICH HAS THAT fANOUT ORIGIN ON ITS OUTPUT OR NUMBER OF FANOUT 
BRANCHES WHICH HAVE NOT BEEN TESTED YET.ONE OR MORE BRACHES OF THE 
FANOUT ORIGIN WILL BE ADDED TO THE CHOICES.FOR EXAMPLE CONSIDER 
THE FOLLOWING GATE WITH 2 INPUTS AND THE FANOUT ORIGIN WIITH 3 
BRANCHES. IF LINE l IS UNDER TEST AND LINE 2 HAS NOT BEENTED TESTED 
BEFORE.I'HEN THE TWO OF BRANCHES WILL BE CONSIDERED AS CHOICES FOR 
LINE l. AND THE THIRD BRANCH WILL BE CONSIDERED WHEN LINE 2 IS 
GOING TO BE TESTED. 

--------- 3 
------- I 

I I--------- 4 
l --------1 I I 

I G 1----------------- 5 
2 --------1 I 

I I 

THEN FOR THE FIRST TIME IF THE NUMBER OF FANOUT BRANCHES ARE MORE 
THAN THE NIMBER OF INPIJTS TO THE GATE.~OF FANOUT BRANCHES-#OF 
mFrJTS+l OF FANOUT BRANCHES WILL BE CONSIDERED FOR ONE OFl THE 
INPTJTS AND EACH 'iF THE REMAINING INPUTS WILL Tlu<E ONE OF THE 
REMAINIG FANOUT BRANCHES WHICH HAS NOT BEEN TESTED BEFORE. 
"'HE!~EVER AN INPUT TO M. .;ATE IS CONSIDERED FOR PATH 
~ENSITIZATION .FIRST THE 1JTHER INPUTS WILL BE SET TO PROPJI!GATION 
;lALUES ONE AT A TIME AND THE EFFECT OF THIS VALUE ASSIGN~'IJT WILL 
BE f•jUND FORWARD AND BACKWARD IN THE CIRCUIT. IF NO CONFLICT IS 
rACED THEN THE E.qROR 3IGNAL WILL BE PROPAGATED TO THE t)UTFTJTOF THE 
·~ATE MID ThE I?ROCE.S:::; (ONTINUES. OTHERWISE ALL THE VALUE ASSIGNMENTS 
3 Il'-ICE THE LAST •:HO ICE WILL BE ERASED AND ANOTHER CHOICE ~ILL BE 
~""ONS IDERED. AT THE END USER WILL BE PROVIDED WITH THE FOLDOWING 
INFORMATION. 

1 . TESTS GENERATED. 
:. CRITICAL vALUES AND NON-O:~'RITICALVALUES 1)F ALL INTENAL LINES OF 

THE CIRCUIT t="OR EACH TEST. 
3 .ALL THE •:ONFLICTS FACED DURING THE I?ATH SENSITIZATION AND THE 

.JUSTIFICATION PROCESS. 
4. LIST Of THE INCOMLETE TESTS. 
5. LIST •)F LiifES THAT N'O TESTS HAVE BEE!f r;ENERATED FOR THEM. 

##################~###################~############################### 

INPUT FORMAT: 
fOR EACH GATE IN THE CIRCUIT THE FOLLOWING INFORMATION MUST BE 

FRO;;IDED BY THE USER TO THE i?ROGRAM: 
l . L I liE: :IUMBEF: 
: .•. :;,;TE T'iFE• rJJ[Z. JRE ,;r;..;m. :JOR. Iif'v'. IIIPJTE, ·}UTPTJTE; 
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"3.t0F INPUTS 
4 . TO WHAT GATE EACH INPUT IS CONNECTED 
5. tOF FANOUT BRANCHES 
.; • TO WHAT GATE EACH FANOUT BRACH FANS IN 

EXAMPLE: 
3 ANDE 2 8 9 4 10 15 25 30 
6 INPUTE 1 8 2 7 27 
14 OUTPUTE 1 12 1 14 

Page 2 

W THE INPUT FILE THO OTHER ITEMS MUST ALSO APPEAR BEFORE ANYTHING 
ELSE.THE FIF:ST ONE IS NAME OF THE CIRCUIT AND THE SECOND ONE THE 
NIMBER OF GATES IN THE CIRCUIT.WHICH MUST BE AN INTEGER. THE 
PROGRAM WILL PROMPT A MESSAGE ASKING FOR THE NAME OF THE INPUT 
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FILE. 
########################################################################### 

OUTPUT: 
THE OUTPUT INCLUDES ALL THE INFORMATION MENTIONED ABOVE,AND THE 

NAME OF OUTPUT FILE IS 'OUTFILE'. 
########################################################################### 

DATA STRUCTI.IRE: 
TEST' ARFA Y : 

FOR EACH GATE IN THE INPUT FILE A RECORD IS DEFINED WHICH KEEPS 
.U.L THE INFORMATION PROVIDED BY ·THE USER AND OTHER INFORMATION 
PROVIDED BY THE PROGRAM WHEN EXECUTED. THESE INFORMATION CONSIST OF 
THE VALUE ON THE OUTPTJI' OF EACH GATE,THE VALUE<Sl THAT THAT OUTPUT 
HAS BEEN TESTED FOR .AND THE STATUS OF THE VALUE ON THE OUTPUT OF THE 
~ATECWHETHER OR NOT THAT VALUE IS A CRITICAL VALUEl FOR A 

PARTICULAR TEST.AN ARRAY OF THIS RECORD TYPE KEEPS SUCH INFORMATION 
('oN ALL THE GATES Il'l THE CIRCUIT.THIS ARRAY IS CALLED 'TEST'. 

WI.IST' ARRAY: 
i\N IMPORTANT ARRAY USED BY THIS PROGRAM IS 

WLISTCWAITWGLIST!' .AT THE BEGINNING IT CONTAINS INPUTE-GATES IN A 
C'ODED FORM<. INPTJTE#*MAX3+INPUT# 1 • THE. REASON FOR ENCODING THE INPUTE 
GATES IS COMFATIBILITY WITH THE OTHER INFORMATION WHICH WILL BE 
ADDED TO THE WLIST' ENCODED IN THE SAME FORM.AS THE PROGAAM FACES 
DIFFERENT CHOICES IN THE PATH SENSITIZATION,IT WILL ADD TiiEM TO THE 
·wr.IST' .IF A PATH HAS BEEN SENSITIZED SUCCESSFULLY THEN THE 
.JUSTIFICATION PROCESS START. THE SAME 'WLIST' ARRAY WILL BE USED TO 
KEEP TRACK OF THE CHOICES ENCOUNTERED IN THIS PROCESS,AND THE 
PROGRAM REMEMBER WHERE IT LEFT THE PATH SENSITIZATION PROCESS.THE 
POINTER TO THE 'WLIST' ARRAY WILL BE RESTORED WHEN THE 
.JUSTIFICATION PROCESS IS FINISHED. THE POINTER TO THIS ARRAY IS 
CALLED 'FWLIST' • 

CONST MAX1=10; 
MAX~=100; 
MAiO= 1000; 

TYPE GTYPE=<ANDE.ORE,NAND,NOR,INPUTE,OUTPUTE,INVl; 

t:IRCUITDES= 
RECORD 

GATETYPE 
GATENTJM 

:GTYPE; 
:1 •• MAX2; 
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:1 •• MAX1; 
:ARRAYCl. .MAX1J OF INTEGER; 
:ARRAYCl. .MAX1J OF INTEGER; 
:1. .MAX1; 
: ARRA YC 1 •• MAXl J OF INTEGER; 
:INTEGER; 

F'age 3 

NO INPUTS 
INPUTS 
IN"JALUE 
FANOUTNUM 
FAN OUTS 
OUTVALUE 
CRITICAL :ARRAYC1 •• MAX1l OF INTEGER;<~0&1 

FOR CRITICAL 0&1.2 FOR BOTH~\ 
TEMPCV : ARRA YC 1. . MAXlJ OF INTEGER; 

END; 

ilAR TEST :ARRAYCl. .MAX2J OF CIRCUITDES; 
WLIST :ARRAYCl. .MAX2J OF INTEGER;< ~KEEPS TRACK OF LINES 

WAITING TO BE USED IN PATH SENSITIZATION OR 
.JUSTIFICATION PROCESS.~ l 

FWLIST :INTEGER; <~POUlTER TO WLIST~ • 
_:•.DAR :AERAYCl •• MAX2l OF INTEGER;<~THIS ARP.AY KEEPS THE 

STARTING ADDP.ESS OF THE SET OF LINES 
ON 'i\SAR' FOR EACH ENTRY OF 'WLIST' ."'l 

A.DJADAR :ARRAYCl. .MAX2J OF INTEGER; 
ASAR : AF.RA YC 1 .• MAX2 J OF INTEGER; < "'KEEPS TRACK OF THE 

LiliES THAT SOME VALUES ARE ASSIGNED TO THEM.~ l 
FASAR : INTEGER; <*PO INTER TO ASAR"' l 
MCRITJAL :INTEGER; 
CRITVAL :INTEGER; 
Il , Jl , .1\l : INTEGER ; 
FLAGP :INTEGER;<"'THIS FLAG IS SET TO '1' IF THERE IS A 

CONFLICT."'\ 
l~OOFNODES : INTEGER; 
FARRAY :ARRAYCl. .MAX2JOF INTEGER;< "'KEEPS THE LIST OF 

FANOUTS TO BE IMPLEMENTED FOR FORWARD 
PP.OCEDURE."'l 

FPOINTER :INTEGER;<"'POINTER TO FARRAY~l 
ADJUST :ARRAYCl. .MAX2JOF INTEGER;< "'KEEPS TRACK OF THE 

!-lODES WITH THE VALUE OF THE OUTPUTS SPECIFIED 
BUT THE-INPUTS ARE NOT JUSTIFIED FOR THAT 
VALUE.~l 

FADJUST :INTEGER;<"'POINTER TO ADJUST ARRAY.~l 
INPUTLIST :ARRAYCl. .MAX2J OF INTEGER; 
INPUTCOUNT : INTEGER; 
GUT : INTEGER ; 
IUT : INTEGER; 
FLAGC :INTEGER; 
1~.r..DAF: :ARRAHl..MAX2J OF INTEGER;<"'FOR EACHENTRY OF THE 

WLIST KEEPS POINTER TO 'CGATES' ARRAY WHERE THE 
CRITICAL GATES ADDED TO 'CGATES' ARRAY AFTER THAT 
ENTRY MUST BE ERASED WHEN THAT ENTRY OF THE · WLIST' 
IS GOING TO BE PROCESSED."'\ 

CGATES :ARRAYC1 •• MAX2J OF INTEGER;<~KEEPS TRACK OF 
CRITICAL GATES.~\ 

ri!ALUES :ARRAYCl. .MAX2J OF INTEGER;< ~KEEPS THE OUTPUT 
ilALUE OF CGATES.~\ 

FCGATES : INTEGER; < ~PO INTER TO ' CGATES ' ARRAY. * \ 
TEMPCRITVAL:INTEGER; 
!'lAME :PACKED ARRAY[l.. 40] OF CHAR; 
PCOUNT :INTEGER;< *KEEPS TRACK OF TEST-NUMBER IN 

INFILE 
OUTFILE 

PRINTTEST PROCEDURE.*\ 
:TEXT; 
:TEXT; 
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PROCEDURE STATUS ; 

'liiR PS, FS : INTEGER; 
BEGIN 

4-JUN-1985 14:17 Fage 4 

FOR PS:=l TO NOOFNODES DO 
BEGIN 

FOR 
END; 

~ITELN< 'TEST[' ,PS:2,'J.OUTVALUE' ,TESTCPSJ.GUTVALUE:2l; 
FOR FS:=l TO TESTCPSJ.NOINPUTS DO 

BEGIN 

END; 

HRITELN< 'TEST[' ,PS:2,'J.INVALUEC' ,FS:2,'J=', 
TEST[PSJ.INVALUECFSJ:2,'----·, 
'TESTC' .PS:2,'J.TEMPCV[' ,FS:2,'J=', 
TESTCPSJ.TEMPCV[FSJ:2,'----·, 
'TEST[' ,PS:2,'J.CRITICAL[' ,FS:2,'J=', 
TESTCPSJ.CRITICALCFSJ:2l; 

PS:=l TO FWLIST DO 
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WRITELN< 'WLIST[' ,PS:2,'J=' ,WLIST[PSJ:6,'----' ,'ADARC' .PS:2,'J=' 
,ADARCPSJ: 2 l ; . 

FOR FS:=l TO FASAR DO 
WRITELN<FS:2,'-----· ,'ASAR[' ,FS:2,'J=' ,ASARCFSJ:6l; 

END; 

PROCEDURE INITIALIZE; 

ilAR .CIRCTJITNAME:PACKED ARRAY[!. .40J OF CHAR; 
I,J,K :INTEGER; 

BEGIN 
FWLIST:=O; 
FhSAR:=O; 
FADJUST: =0; 
E'GATES: =0; 
PC'OUNT: =0; 
READIINFILE,CIRCUITNAMEl; 
WRITELN<OUTFILE,CIRCUITNAMEl; 
READ<INFILE,NOOFNODESl; 
FOR K:=l TO NOOFNODES DO 

BEGIN 
READ< INFILE,Il; 
TESTCIJ.GATENUM:=I; 
READ<INFILE,TESTCIJ.GATETYPE,TESTCIJ.NOINPUTSl; 
IF<TESTCIJ.GATETYPE=INPUTElTHEN 

BEGIN 

END; 

FWLIST:=FWLIST+l; 
WLISTCFWLISTJ:=I~MAX3+I; 
HJPUTLISTCFWLISTJ: =I>'•MAX3+I; 
HRITELN < 'WL=' , WLISTCF'WLISTJ l ; 

FOR ,J: = 1 TO TEST[ IJ . NO INPUTS DO 
READ<INFILE,TEST[IJ.INPUTS[JJl; 
READ<INFILE,TEST[IJ.FANOUTNUMl; 
FOR J:=l TO TEST[IJ.FANOUTNUM DO 

READ<INFILE,TESTCIJ.FANOUTS[JJl; 
END; 

INPTJTCOUNT:=FWLIST; 
FOR .J: = 1 TO NOOFNODES DO 
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BEGIN 
FOR K:=l TO MAXI DO 

BEGIN 
TESTCJJ.CRITICALCKJ:=-1; 
TESTCJJ.TEMPCV[KJ:=-1; 
TESTCJJ.INVALUECKJ:=-1 

END; 
TEST[JJ.OUTVALUE:=-1 

END; 
FOR J:=l TO FWLIST DO 

BEGIN 

END; 

ADARCJJ:=l; 
ADJADAR[JJ:=O; 
CADAR[JJ:=O; 

Page 5 

t *THE FOLLOWING PROCEDURE ADDS ONE ELEMENT TO 'ASAR' ARRAY AND 
~SSIGNS THE DESIRED VALUE TO THAT LINE. GATENUMBER=X,GATEINPUT=Y*l 

PF.OC.EDURE ADDONETOASAR < VAR 
GATENUMBER ,GATEINPUT ,FLAGCORRECT: INTEGER l; 

ii AR J AA : INTEGER ; 

BEGIN 
.JAA: =l; 

~ITELNI 'GATENUMBER=' ,GATENUMBER: 3, 

END; 

' . , 'GATEINPUT=' ,GATEINPUT:3l; 
WHILE<TEST[GATENUMBERJ.INPUTS[JAAJ<>GATEINPUTlOO 

.JAA: =JAA+l; 
TEST[GATENUMBERJ.I~vALUE[JAAJ:=TEST[GATEINPUTJ.OU?vALUE; 
FASAR: =FASAR+l; 
ASARCFASARJ:=FLAGCORRECT~<GATENUMBER~MAX3+GATEINPUTl; 

PROCEDURE MAINFORWARD<VAR GATENO,INPUTNUM:INTEGERl ;FORWARD; 
PROCEDURE BACKWARD<VAR BGUT,BVALUE:INTEGERl;FORWARD; 

~~THE FOLLOWING PROCEDURE CHECKS THE VALUE ASSIGNMENT ON THE INPUT 
OF A GATE < FCGATE=X> TO SEE IF IT IS COMPATIBLE WITH THE OUTPUT 
'TM.UE OF THAT GATE WHICH IS NOT A PROPAGATION VALUE. THIS 
PROCEDURE IS CALLED FROM THE 'FIRSTFORWARD' PROCEDURE. 
FCGATE=X,FCINPUT=Y,FCI~vAL=O FOR AND & NAND,1 FOR OR & NOR.~<> 

PPOCEDURE FORWARDCORF.ECTION<VAR FCGATE,FCINPUT,FCINVAL:INTEGERl; 
VAR JFC,COUNTF,KFC:INTEGER; 

BEGIN 
FLAGF: =0; 
.JfC: =1; 
WHILE< ITEST(fCGATEJ.INVALUE[JfCJ<>FCINVALlAND 

tJFC<TEST[FCGATEJ.NOINPUTSl lDO 
,JfC: =JFC+ l; 
IFITESTCFCGATEJ.INVALTJE[JFCJ<>FCINVALlTHEN 

BEGIN 
COUNTF:=O; 
FOR JFC:=l TO TEST[FCGATEJ.NOINPUTS DO 

IF<TESTCFCGATEJ.INVALUE[JFCJ=-l>THEN 
COUNTF:=COUNTF+l; 
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IF<COUNTF=llTHEN<*THIS CASE MAY 
NEVER OCCURES.JUST FOR INSURANCE*l 

BEGIN 

END 

IF<TEST[FCINPUTJ.OUTVALUE 
=FCINVALlTHEN 

BEGIN 

END 

KFC:=-1; 
ADDONETOASAR<FCGATE, 

FCINPUT,KFCl; 

ELSE 
FLAGP:=1; 

ELSE<* IF COUNTF> = V ·, 
BEGIN 

IF(CQUNTF=2lTHEN 
BEGIN 

IF<TEST[FCINPUTJ.OUTVALUE= 
FC INVAL l THEN 

BEGIN 

END 
ELSE 

KFC:=-1; 
ADDONETOASAR<FCGATE, 

FCINPUT,KFCl; 

BEGIN 
KFC:=-1; 
ADDONETOASAR<FCGATE, 

FCINPUT,KFCl; 
,JFC: =1; 
HHILE<TEST[FCGATEJ 

.INVALUE[JFCJ<>-1lDO 
.JFC: =JFC+ 1; 

TEST[TEST[FCGATEJ.INPUTS 
[JFCJJ.OUTVALUE:=FCINVAL; 
KFC:=-1; 
ADDONETOASAR<FCGATE, 

TEST[FCGATEJ. 
INPUTS[JFCJ,KFCl; 

FOR KFC:=1 TO TEST[TEST 
[FCGATEJ.INPUTS[JFCJJ 
. FANOUTNUM DO 

IF<TEST[TEST[FCGATEJ 
.INPUTS[JFCJJ. 
FANOUTS[KFCJ<> 
FCGATElTHEN 

MAINFORWARD<TEST[FCGATEJ.INPTJTS[JFCJ.TEST[TEST[FCGATEJ. 
HIPUTS[JFCJJ.FANOUTS[KFCJl; 

BACKWARD<TEST[FCGATEJ.INPUTS[JFCJ,FCINVAL>; 

END 
ELSE 

BEGIN 

END; < *OF ELSE* l 
END<*OF COUNTF=2"'l 

ELSE<*COUNTF>2*1 
BEGIN 

KFC:=-1; 
ADDONETOASAR<FCGATE, 

FCINPUT,KFCl; 
END; 

END;<*OF IF COUTF>1*l 
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KFC:=-1; 
ADDONETOASAR!FCGATE,FCINPUT,KFCl; 

Fa.ge 7 

END; l "'END OF FOF:WARDCORRECTION"' l 

r"'THE FOLLOWING PROCEDURE CHECKS THE VALUE ASSIGNMENT ON ONE INPUT 
OF A GATE · TO SEE IF IT IS COMPATIBLE WITH THE OUTPUT VALUE OF THAT 
GATE WICH HAS BEEN ALREADY ASSIGNED AND IT IS A PROPAGATION 
VALUE."'> 

PROCEDURE FIRSTFORWARDCORRECTION!VAR 
FFCGATE,FFCINPUT,FFCINVAL:INTEGER>; 

VAR KFFC: INTEGER; 

BEGIN 
IFr rTESTCFFCGATEJ.GATETYPE=ANDEl 

0RrTEST[FFCGATEJ.GATETYPE=OREl lTHEN 
BEGIN 

END 

IFrTEST[FFCGATEJ.OUTVALOE=1-FFCINVALlTHEN 
BEGIN 

IF(TESTCFFCINPUTJ.OOT"vALUE=FFCINVALlTHEN 
FLAGP:=1 

ELSE 
BEGIN 

KFFC: =-1; 
ADDONETOASAR! FFCGATE, FFC INPUT, KFFC l ; 

END; 
END 

ELSE 
FORWARDCORRECTION<FFCGATE,FFCINPUT,FFCINVALl; 

ELSEr"'NAND&NOR"'\ 
BEGIN 

IF(TEST[FFCGATEJ.OUTVALUE=FFCINVALlTHEN 
BEGIN 

IF<TEST[FFCINPUTJ.OOT"vALUE=FFCINVALlTHEN 
FLAGP:=1 

ELSE 
BEGIN 
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KFFC:=-1; 
ADDONETOASAR<FFCGATE,FFCINPUT,KFFCl; 

END; 

END; 
END 

ELSE 
FORWARDCORRECTION<FFCGATE,FFCINPUT,FFCINVALl; 

END;!"'ENL OF FIRSTFORWARDCORRECTION"'l 

I"'THE FUNCTION OF THE FOLLOWING PROCEDURE IS AS FOLLOWS: 
IF OUTPUT OF GATE Y IS INPUT TO GATE X; THEN ACCORDING TO VALUES 

•)N Y AND OTHER INPUTS TO X; THE VALUE ON THE OUTPUT OF THE GATE X 
WILL BE DETERMINED AND THE LINE CONNECTING Y TO X WILL BE KEPT ON 
!\RRAY 'ASAR' . v-.-rlEN THIS ENTRY OF 'ASAR' IS TO BE REMOVED; THEN IF 
THE OUTPUT OF X WAS FORCED TO SOME VALUE BECAUSE OF THE VALUE 
ASSIGNMENT ON THE LINE CONNECTING X TO Y; THE VALUE ON THE OUTPUT OF 
THE X SHOULD BE ERASED AS WELL AS THE VALUE ON THE LINE CONNECTING 
X AND Y. ONLY THE VALUE ON THE LINE CONNECTING X TO Y MUST BE 
ERASED OTHERWISE. VARIABLE FLAGR IS SET TO 1 AND -1 TO INDICATE 
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WHETHER THE OUTPUT OF X IS FORCED TO SOME VALUE BY THE VALUE 
ASSIGNMENT ON THE LINE CONNECTING Y TO X<THE OUTPUT OF Yl. ENTRIES 
OF THE 'ASAR' ARRAY HAVE THE FOLLOWING FORM: <X*MAX3+Yl. FGATENO=X, 
FGATEINPUT=Y*l 

PROCEDURE FORWARDCVAR FGATENO,FGATEINPUT:INTEGERl; 

VAR J , IN"' vAL, FLAGR :INTEGER; 

BEGIN 
IFI<TEST[FGATENOJ.OUTVALUE<>-1lAND 

ITEST[FGATENOJ.GATETYPE<>OUTPUTEll THEN 
BEGIN 

END 

IFI ITEST[FGATENOJ;GATETYPE=ANDElOR 
. ITEST[FGATENOJ.GATETYPE=NANDl lTHEN 
INVAL:=O 

ELSE 
INVAL: =1; 
FIRSTFORWARDCORRECTIONC 

FGATENO, FGATEINPUT, INVAL l.; 

ELSE<*TEST[FGATENOJ.OUTVALUE=-1*l 
BEGIN 

IF<TEST[FGATENOJ.GATETYPE=OUTPUTElTHEN 
BEGIN 

END; 

TEST[FGATENOJ.OUTVALUE:= 
TEST[FGATEINPUTJ.OUTVALUE; 

TEST[FGATENOJ.INVALUE[1J:= 
TEST[FGATEINPUTJ.OUTVALUE; 

FASAR:=FASAR+1; 
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT; 

IF<TEST[FGATEINPUTJ.OUTVALUE=OlTHEN 
BEGIN 

IF<TEST[FGATENOJ.GATETYPE=ANDElTHEN 
BEGIN 

TEST[FGATENOJ.OUT"vALUE:=O; 
.J:=1; 
WHILECTEST[FGATENOJ.INPUTS[JJ<> 

FGATEINPUTlDO 
.J: =J+l; 

TEST[FGATENOJ.INVALUE[JJ:=O; 
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FASAR: =FASAR+1; 
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT; 

END; 
IF<<TEST[FGATENOJ.GATETYPE=NANDlOR 

ITEST[FGATENOJ.GATETYPE=INVl >THEN 
BEGIN 

TEST[FGATENOJ.OUTVALUE:=1; 
J:=1; 
WHILECTEST[FGATENOJ.INPUTS[JJ<> 

FGATEINPUTlDO 
J:=J+1; 

TEST[FGATENOJ.INVALUE[JJ:=O; 
FASAR: =FASAR+1; 
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT; 

END; 
IF<<TEST[FGATENOJ.GATETYPE=ORElOR 

ITEST[FGATENOJ.GATETYPE=NORllTHEN 
BEGIN 
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FLAGR: =1; 
J:=1; 
HHILE<TEST[FGATENOJ.INPUTS[JJ<> 

FGATEINPUTlDO 
.r:=J+1; 

TESTCFGATENOJ.I~vALUE[JJ:=O; 
FOR J:=1 TO TESTCFGATENOJ.NOINPUTS DO 

BEGIN 

END; 

IFCTESTCFGATENOJ.INVALUE[J] 
OOlTHEN 

FLAGR: =-1; 

IF<FLAGR=llTHEN 
IF<TESTCFGATENOJ.GATETYPE=NOR>~~ 

TEST[FGATENOJ.OUTVALUE:=l 
ELSE 

TESTCFGATENOJ.OUTVALUE:=O; 
FASAR:=FASAR+1; 
ASAR[FASARJ: = 

FLAGR*<FGATENO*MAX3+FGATEINPUTl; 
END; 

END; 
IFITEST[FGATEINPUTJ.O~vALUE=1lTHEN 

BEGIN 
IFtTEST[FGATENOJ.GATETYPE=ORElTHEN 

BEGIN 

END; 

TEST[FGATENOJ.OUTVALUE:=1; 
J:=1; 
WHILE<TEST[FGATENOJ.INPUTS(JJ 

< ) FGATEINPUT l DO 
J:=J+1; 

TEST[FGATENOJ.INVALUE[JJ:=l; 
FASAR: =FASAR+l; 
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT; 

IF( <TEST[FGATENOJ.GATETYPE=NORlOR 
ITEST[FGATENOJ.GATETYPE=INVl lTHEN 

BEGIN 

END; 

TEST[FGATENOJ.OUTVALUE:=O; 
J:=1; 
WHILE<TEST[FGATENOJ.INPUTS[JJ<> 

FGATEINPUTlDO 
J:=J+1; 

TESTCFGATENOJ.I~vALUE(JJ:=l; 
FASAR: =FASAR+ 1; 
ASAR[FASARJ:=FGATENO*MAX3+FGATEINPUT 

IF( (TEST[FGATENOJ.GATETYPE=ANDElOR 
CTEST[FGATENOJ.GATETYPE=NANDllTHEN 

BEGIN 
FLAGR: =1; 
.r: = 1; 
WHILE<TEST[FGATENOJ.INPUTS[JJ<> 

FGATEINPUTlDO 
J:=J+l; 

TEST[FGATENOJ.INVALUE[JJ:=1; 
FOR J:=1 TO TEST[FGATENOJ.NOINPUTS DO 

BEGIN 
IFCTEST[FGATENOJ.INVALUE[J] 

<)1lTHEN 
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FLAGR:=-1 
END; 
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IF<FLAGR=l>THEN 
IF<TEST(FGATENOJ.GATETYPE=ANDElTHEN 

TESTCFGATENOJ.OUTVALUE:=1 
ELSE 

TEST(FGATENOJ.OUTVALUE:=O; 
FASAR: =FASAR+1; 
ASARCFASARJ : = 
tFGATENO~MAX3+FGATEINPUT!~FLAGR; 

END; 
END; 

END; 

END: <~END OF FORWARD~\ 

r ~THE FTJCTION OF THE FOLOOWING PROCEDURE IS TO TAKE THE VALUE ON ONE 
BRANCH OF A FANOUT ORIGIN AND PROPAGATE IT FORWARD AS FAR AS 
POSSIBLE. ENTRIES OF THE 'FARRAY HAVE THE FOLLOWING 
FORMAT: t INFTJTNUM*MAX3+GATENO l ~ l 

PROCEDURE MAINFORWARD;<~INPUTNUM=X,GATENO=Y~l 

VAR X,Y,FLAG,J :INTEGER; 

BEGIN 
FPOINTER:=O; 
FPOINTER:=FPOINTER+1; 
FARRAY(FPOINTERJ:=INPUTNUM*MAX3+GATENO; 
WHILE<FPOINTER>O!DO 

BEGIN 
X:=TRUNC<FARRAY[FPOINTERJ/MAX3!; 
Y:=FARRAY[FPOINTERJ-X~MAX3: 

r ~ WR ITELN < ' X : = ' , X : 2 • ' Y : = ' , Y : 2 l ; "' > 

END; 

FPOINTER:=FPOINTER-1: 
FLAG: =0; 
IF<TEST[XJ.OUTVALUE=-1lTHEN 

FLAG: =1; 
FORWARD<X, Yl; 
IF<<FLAG=l>AND<TEST[XJ.OUTVALUE<>-1>>THEN 

BEGIN 

END; 

IFrX<>TEST[XJ.FANOUTS[lJlTHEN 
r "'IF X IS NOT AN OUTPIJT* l 

FOR J:=l TO TEST[XJ.FANOUTNUM DO 
BEGIN 

END; 

FPOINTER:=FPOINTER+l: 
FARRAYCFPOINTERJ:= 
TEST[XJ.FANOUTS[JJ*MAX3+X; 

END;< *END OF MAINFORWARD"' l 

r "'THE FOLLOWING PROCEDURE "BACKWARD" IS A RECURSIVE PROCEDURE WHICH 
TAKES A GATE AND FINDS THE EFFECT OF THE VALUE ASSIGNMENT ON THE 
OUTPUT OF THAT GATE BACKWARD AS FAR AS POSSIBLE. WHEN A FANOUT 
ORIGIN IS FACED THE EFFECT WILL BE FOUND FORWARD ON THE BRANCHES 
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OF THAT FANOUT ORIGIN. IF A VALUE ASSIGNMENT ON THE OUTPUT OF A 
GATE CANNOT BE PROPAGATED BACKWARD ANYMORE.THEN THAT GATE WILL BE 
ADDED TO ADJUSTMENT ARRAY FOR JUSTIFICATION PROCESS.*l 

PROCEDURE BACKWARD • < * BGU'l': A GATE NUMBER , BVALUE: VALUE OF OUTPUT OF 
BGU'l'* l 

VAR JB,JJB,AVAL,BCOUNT :INTEGER; 

BEGIN 
IF<TEST[BGUTJ.GATETYPE=INPUTEITHEN 

BEGIN 
TEST[BGUTJ.INVALUE[lJ:=BVALUE; 
FASAR: =FASAR+l; 
ASAR[FASARJ:=BGUT~MAX3+BGUT; 

END 
ELSE<*TEST[BGUTJ.GATETYPE<>INPUTE*l 

BEGIN 
IF<BVALUE=OlTHEN 

BEGIN 
IF<<TEST[BGUTJ.GATETYPE=ORElOR 

ITEST[BGUTJ.GATETYPE=NANDlOR 
ITEST[BGUTJ.GATETYPE=INVllTHEN 
BEGIN 

FOR JB:=1 TO 
TEST[BGUTJ.NOINPUTS DO 
BEGIN 

IF<TEST[BGUTJ. 
INVALUE[JBJ=-llTHEN 

BEGIN 
IF<TESTCBGUTJ. 

GATETYPE=ORElTHEN 
BEGIN 

END< 

TEST[BGUTJ. 
INVALUE(JBJ:=O; 

AVAL:=O; 
TEST[TEST[BGUTJ. 

INPUTS[JBJJ. 
OUTVALUE:=O; 

FASAR : = FASAR+ 1 ; 
hSAR[FASARJ:= 
BGUT~<MAX3+ 
TEST[BGUTJ. 
INPUTS[JBJ; 

IF< <TEST[ BGUTJ . 
GATETYPE=NANDlOR 

ITEST[BGUTJ. 
GATETYPE=INVllTHEN 

BEGIN 
TEST[BGUTJ. 
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INVALUE[JBJ:=1; 
TEST[TEST[BGUTJ. 

INPUTS[JBJJ. 
OUTVALUE:=1; 

AVAL:=l; 
FASAR: = FASAR+ 1 ; 
ASAR[FASARJ:= 
BGUT~<MAX3+ 
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BEGIN 

END; 

END; 

TEST[BGUTJ. 
INPUTS[JBJ; 

FOR JJB:=l TO TEST[TEST[BGUTJ.INPUTS[JBJJ.FANOUTNUM DO 
IF FLAGP=(} THEN 
IF<TEST[TEST[BGUTJ.INPUTSCJBJJ.FANOUTS[JJBJ<>BGUTlTHEN 

HAINFORWARD<TESTCBGUTJ.INPUTS[JBJ,TEST[TEST[BGUTJ. 
INPUTSCJBJJ.FANOUTS[JJBJl; 

IF FLAGP=O THEN 
BACKWARD<TESTCBGUTJ.INPUTSCJBJ,AVALl; 

END; 
END; 

END 

ELSE<*BVALUE=O AND TEST[BGUTJ.GATETYPE=NOR,ANDE*l 
BEGIN 

BCOUNT:=O; 
FOR JB:=l TO TEST[BGUTJ.NOINPUTS DO 

BEGIN 
IF<TEST[BGUTJ.INVALUE[JBJ<>-llTHEN 

BCOUNT:=BCOUNT+l; 
END; 

IF( (TESTCBGUTJ.NOINPUTS-BCOUNTl<>1lTHEN 
'*NOT ALL INPUTS OF 'BGUT' CAN BE 

SPECIFIED NOW.THEN ADD IT TO THE 
ADJUSTMENT ARRY FOR JUSTIFICATION 
PROCESS.*> 

BEGIN 

END 
ELSE 

FADJUST:=FADJUST+l; 
ADJUSTCFADJUSTJ:=BGUT;<*ADD ONE 

GATE TO ADJUSTMENT ARRAY* l 
FASAR: =FASAR+ 1; 
ASARCFASARJ:=BGUT; <*PUT ONLY 

THE GATE NUMBER OF BGUT 
IN 'ASAR' ARRAY TO INDICATE 
THAT ONLY THE VALUE ASSIGNMS~ 
ON THE' OUTPUT 'BGUT' MUST BE 
ERASED WHEN 'ERASE' PROCEDURE 
IS CALLED.*> 

BEGIN 
JB:=l; 

WP.ITELN( 'BGUT=' ,BGUT:3l; 
WHILE<TEST[BGUTJ.INVALUE[JBJ 

0 -l>DO 

WRITELN( 'BACKWARDJB=' ,JB:2l; 
JB: =JB+l; 

IF(TEST[BGUTJ.GATETYPE=ANDElTHEN 
BEGIN 

TEST[BGUTJ.INVALUE[JBJ:=O; 
AVAL: =0; 
TESTCTESTCBGUTJ.INPUTS[JBJJ. 

OUTVALUE: = 0 ; 

FASAR: =FASAR+ l; 
ASAR[FASARJ:=BGUT* 

MAX3+TESTCBGUTJ.INPUTS[JBJ; 
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END 
ELSE 
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BEGIN 
TESTCBGUTJ.INVALUECJBJ:=1: 
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AVAL:=l; 
TESTCTESTCBGUTJ.INPUTSCJBJJ. 

END; 

OUTVALUE: = 1 ; 
FASAR: =FASAR+ 1; 
ASARCFASARJ:=BGUTkMAX3+ 

TESTCBGUTJ.INPUTSCJBJ; 

FOR JJB:=1 TO TESTCTESTCBGUTJ. 
INPUTSCJBJJ.FANOUTNUM DO 

IF FLAGP=O THEN 
IF<TESTCTESTCBGUTJ.INPUTSCJBJJ. 

FANOUTSCJJBJ<>BGUTJTHEN 
MAINFORWARD<TESTCBGUTJ.INFUTSCJBJ, 

TESTCTESTCBGUTJ.INPUTSCJBJJ.FANOUTSCJJBJJ; 
IF FLAGP=O THEN 

BACKWARD<TESTCBGUTJ.INPUTSCJBJ,AVALl; 
END; 

END 
END; 

ELSE 
BEGIN 

IF I BVALUE= 1 l THEN 
BEGIN 

IF<<TESTCBGUTJ.GATETYPE=ANDEJOR 
ITESTCBGUTJ.GATETYPE=NORJOR 
ITESTCBGUTJ.GATETYPE=INVl lTHEN 
BEGIN 

FOR JB:=1 TO TESTCBGUTJ. 
NOINPUTS DO 

BEGIN 
IF<TESTCBGUTJ. 

INVALUECJBJ=-1 lTHEN 
BEGIN 

IF<TESTCBGUTJ. 
GATETYPE=ANDElTHEN 

BEGIN 
TESTCBGUTJ. 
INVALUECJBJ:=1; 
AVAL:=l; 
TESTCTESTCBGUTJ. 

INPUTSCJBJJ. 
OUTVALUE:=l; 

FASAR: =FASAR+1; 
ASARCFASARJ:= 

BGUTkMAX3+ 
TESTCBGUTJ. 
INPUTSCJBJ; 

END; 
IF<<TESTCBGUTJ.GATETYPE 

=NORJOR<TESTCBGUTJ. 
GATETYPE=INVllTHEN 

BEGIN 
TESTCBGUTJ. 

INVALUECJBJ:=O; 
TESTCTESTCBGUTJ. 
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._ 

END; 

INPUTS(JBJJ. 
OUTVALUE:=O; 

AVAL:=O; 
FASAR: =FASAR+l; 
ASAR(FASARJ: = 

BGUT"'MAX3+ 
TEST(BGUTJ. 
INPUTSCJBJ; 

FOR JJB:=1 TO TEST(TEST(BGUTJ.INPUTS[JBJJ.FANOUTNUM DO 
IF F:':..AGP=O THEN 
IF<TESTCTESTCBGUTJ.INPUTSCJBJJ.FANOUTS[JJBJ<>BGUTlTHEN 

MAINFORWARD<TEST[BGUTJ.INPUTS(JBJ,TEST(TESTCBGUTJ. 
INPUTS[JBJJ.FANOUTS(JJBJJ; 

IF FLAGP=O THEN 
BACKWARD<TESTCBGUTJ.INPUTS[JBJ,AVALl; 

END; 
END; 

END 

ELSE l"'BGUT IS 'OR' GATE OR 'NAND' GATE"'l 
BEGIN 

BCOUNT:=O; 
FOR JB:=l TO TESTCBGUTJ.NOINPUTS DO 

BEGIN 
IFrTEST(BGUTJ.INVALUE[JBJ<>-1lTHEN 

BCOUNT:=BCOUNT+l; 
END; 

IF<TEST[BGUTJ.NOINPIJTS-BCOUNT<>llTHEN 
BEGIN 

END 
ELSE 

FADJUST:=FADJUST+l; 
ADJUST[FADJUSTJ:=BGUT; 
FASAR: =FASAR+ 1; 
ASAR[FASARJ:=BGUT; 

BEGIN 
JB:=1; 
WHILE<TEST(BGUTJ.INVALUE[JBJ<>-llDO 

JB;=JB+1; 
IF(TEST[BGUTJ.GATETYPE=ORElTHEN 

BEGIN 

END 
ELSE 

TEST[BGUTJ.INVALUE[JBJ:=l; 
AVAL: =1; 
TESTCTEST[BGUTJ.INPUTS[JBJJ. 

OUTVALUE: = 1 ; 

FASAR: =FASAR+l; 
ASARCFASARJ:=BGUT*MAX3+ 
TESTCBGUTJ.INPTJTS(JBJ; 

BEGIN 
TEST[BGUTJ.INVALUE[JBJ:=O; 
AVAL:=O; 

END; 

TEST(TESTCBGUTJ. 
INPUTS[JBJJ.OUTVALUE:=O; 

FASAR: =FASAR+l; 
ASARCFASARJ:=BGUT*MAX3+ 

TESTCBGUTJ.INPUTS[JBJ; 
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FOR JJB:=l TO TEST[TEST[BGUTJ. 
INPUTS[JBJJ.FANOUTNUM DO 

IF FLAGP=O THEN 
IF<TEST[TEST[BGUTJ.INPUTS[JBJJ. 

FANOUTS[JJBJ<>BGUTlTHEN 
MAINFORWARD<TEST[BGUTJ.INPUTS[JBJ, 

TEST[TEST[BGUTJ:INPUTS[JBJJ.FANOUTSCJJBJl; 
IF FLAGP=O THEN 

BACKWARD<TEST[BGUTJ.INPUTS(JBJ,AVAL>; 
END; 

END; 
END; 

END; 

END; 
END;!*END OF BACKWARD*! 

·r*THE FUNCTION OF THE FOLLOWINGPROCEDURE IS AS FOLLOWS: SUPPOSE THAT 
THE OUTPUT OF THE GATE Y=GUTC IS CONNECTED TO THE INPUT OF THE GATE 
X=IUTC. THIS PROCEDURE PUTS PROPAGATION VALUES ON THE INPUTS OF X 
OTHER THAN THE ONE CONNECTED TOY. AND FINDS THE EFFECT OF THESE 
"vALUE ASSIGNMENTS FORWARD AND BACKWARD. IF NO CONFLICT IS FOUND THEN 
VALUE ON THE OUTPUT OF X WILL BE DETERMINED AND GATE X WILL BE ADDED 
TO THE CRITICAL GATE ARRAY<CGATES>. THE CORRESPONDING CRITICAL 
VALUE WILL BE KEPT ON 'CVALUES' ARRAY; THE INPUT OF THE X CONNECTED 
TO Y WILL BE MARKED AS CRITICAL FOR THE VALUE ON THE OUTPUT OF 
Y<CRITICAL VALUE> IN THE CORRESPONDING FIELD IN THE RECORD OF EACH 
GATE."' l 

PROCEDURE CRITICALPATH< VAR GUTC, IUTC ,CVALC: INTEGER l; 

VAR JCP, KCP : INTEGER; 

BEGIN 
WKITELN< 'CRITICALPATH ENTERY' l; 

FLAGP:=O; 
IF!TEST[IUTCJ.OUTVALUE<>-llTHEN 

BEGIN 
FLAGP:=l;<*THIS PATH CANNOT BE SESITIZED.*l 

WRITELN< 'FLAGF=' ,FLAGP: l,' ' , 'TEST[' , IUTC: l, 'J. OUTVALUE=' , 

END 
ELSE 

TEST[IUTCJ.OUTVALUE:ll; 

BEGIN 
IF<TEST[IUTCJ.GATETYPE=INV>THEN 

BEGIN 

END 
ELSE 

TEST[IUTCJ.INVALUE(lJ:=CVALC; 
TEST[IUTCJ.OUTVALUE:=l-CVALC; 
TEST[IUTCJ.TEMPCV(lJ:=CVALC; 
FCGATES:=FCGATES+1; 
CGATESCFCGATESJ:=IUTC; 
CVALUES[FCGATESJ:=l-CVALC; 
FASAR: =FASAR+l; 
ASAR[FASARJ:=IUTC~MAX3+TEST[IUTCJ.INPUTS[lJ; 
CRITVAL:=l-CVALC; 

BEGIN 
JCP:=l; 
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WHILE< <JCP<=TESTCIUTCJ.NOINPUTSlAND<FLAGP=Ol >DO 
BEGIN 

IF<TESTCIUTCJ.INPUTSCJCPJ<>GUTC>THEN 
BEGIN 

WRITELN< 'El' l; 
IF<<TESTCIUTCJ.GATETYPE= 

ANDElOR<TESTCIUTCJ. 
GATETYPE=NANDl >THEN 

BEGIN 
WRITELN< 'E2' l; 
IF<TESTCTESTCIUTCJ. 

INPUTSCJCPJJ. 
OUTVALUE=OlTHEN 

FLAGP:=1 
ELSE 

BEGIN 
WRITELN< 'E3' l; 

IF<TESTCTESTCIUTCJ.INPUTS[JCPJJ.OUTVALUE=-1lTHEN 
BEGIN 

WRITELN< 'E4' l; 
FASAR: =FASAR+l; 
ASARCFASARJ:=-<IUTC*MAX3+TESTCIUTCJ.INPUTSCJCPJl; 
TESTCIUTCJ.INVALUECJCPJ:=l; 
TESTCTESTCit~CJ.INPt~SCJCPJJ.OUTvALUE:=l; 

FOR KCP:=l TO TESTCTESTCIUTCJ.INPTJTSCJCPJJ.FANOUTNUM DO 
IFtTESTCTESTCIUTCJ.INPUTSCJCPJJ.FANOUTSCKCPJ<>IUTC>THEN 

MAINFCtRWARD< TESTCIUTCJ. INPUTSCJCPJ, 
TESTCTESTCIUTCJ.INPUTSCJCPJJ.FANOUTSCKCP]l; 

KCP:=l; 
IF FLAGP=O THEN 

BACKWARD<TESTCIUTCJ.INPUTSCJCPJ.KCPl; 

END~ 

END; 
JCP:=JCP+l; 

END 
ELSE<~IF<TESTCIUTCJ.GATETYPE=ORE 

OR NORlTHEN*l 
BEGIN I 

IF<TESTCTESTCIUTCJ 
.INPUTSCJCPJJ. 
OU'lVALUE=l lTHEN 

FLA(;P:=1 
ELSE I 

BEGIN 
IF<TESTCTESTCit~CJ.INPUTSCJCPJJ.OUTVALUE=-llTHEN 

BEGIN 
FASAR: = FASAR+ 1 ; 
ASARCFASARJ:=-<IUTC~MAX3+TESTCIUTCJ.INPUTSCJCPJl; 

TESTCIUTCJ.IWvALUECJCPJ:=O; 
TESTCTESTCIUTCJ.INPUTSCJCPJJ.OUTVALUE:=O; 
FOR KCP:=1 TO TESTCTESTCIUTCJ.INPUTSCJCPJJ.FANOUTNUH DO 

IF<TESTCTESTCIUTCJ.INPUTSCJCPJJ.FANOUTSCKCPJ<>IUTCJTHEN 
MAINFORWARD<TESTCIUTCJ.INPUTSCJCPJ, 

TESTCTESTC IUTCJ. INFUTSCJCPJJ. FANOUTSCKCP'J l ; 
KCP:=O; 
IF FLAGP=O THEN 

BACKWARD<TESTCIUTCJ.INPUTSCJCPJ,KCPJ; 

END; 

END; 
JCP:=JCP+l; 

END; 



TEST.PAS;2 4-JUN-1985 14:17 Page 17 

END 
ELSE 

JCP:=JCP+1; 
END; 

IFlFLAGP=OJ THEN 
BEGIN 

IFCCTESTCIUTCJ.GATETYPE=ANDE>ORlTESTCIUTCJ.GATETYPE=OREJ >THEN 
BEGIN 

END; 

CR IT\TAL: =CVALC: . 
TESTCIUTCJ.OUTVALUE:=CVALC; 
FCGATES:=FCGATES+l; 
CGATESCFCGATESJ:=IUTC; 
CVALUESCFCGATESJ:=CVALC; 

IF I r TEST( IUTCJ. GATETYPE=NAND lOR< TEST( IUTCJ·. GATETYPE=NOR > >THEN 

END; 
END; 

END; 

BEGIN 
TESTCIUTCJ.OUTVALUE:=l-CVALC; 
CRITVAL:=l-CVALC; 
FCGATES:=FCGATES+l; 
CGATESCFCGATESJ:=IUTC; 
CVALUESCFCGATESJ:=1-CVALC; 

END; 
FASAR: =FASAR+l; 
ASARCFASARJ:=IUTC~MAX3+GUTC; 

JCP:=l; 
WHILElTESTCIUTCJ.INPUTSCJCPJ<>GUTCJDO 

JCP:=JCP+l; 
TESTCIUTCJ.INVALUECJCPJ:=CVALC; 
TESTCIUTCJ.TEMPCVCJCPJ:=CVALC; 

END;C*END OF CRITICALPATH*> 

PP.OCEJ)URE EEASE; 

iiAR CHECKFLAG, JE,M ,N, Q ,WLISTEMPTY: INTEGER; 

BEGIN 
'* STATTJS;*l 

IFIFWLIST=OlTHENl~THIS OCCURES WHEN NO TEST EXIST FOR LAST 
ENTRY OF WLIST.*l 

BEGIN 

END; 

WL ISTEMPTY: = l; 
FWLIST:=l; 
ADARCFWLISTJ:=l; 
ADJADARCFWLISTJ:=O; 
CADARCFWLISTJ:=O; 

FOR JE:=ADARCFWLISTJ TO FASAR DO 
BEGIN 

IFllASARCJEJ<MAXJJANDlASAR(JEJ>O> >THEN 
BEGIN 
TESTCASARCJEJJ.OTJT\TALUE:=-1 
END 

ELSE 
BEGIN 

CHECKFLAG:=l; 
IFlASAREJEJ<OJTHEN 
CHECKFLAG:=-1; 
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M:=TRUNCt!CHECKFLAG~ASARCJEJltMAX3l; 
N:=CHECKFLAG~ASARCJEJ-M~MAX3; 

Page 18 

END; 

Q:=l; 
HHILE<TESTCMJ.INPUTSCQJ<>NlDO 

Q:=Q+l; 
TESTCMJ.INVALUECQJ:=-1; 
IF<CHECKFLAG=1lTHEN 

BEGIN 
TESTCMJ.TEMPCVCQJ:=-1; 
TESTCMJ.OUTVALUE:=-1; 

END; 

END; 
FASAR:=ADARCFWLISTJ-1; 
FADJUST:=ADJADARCFWLISTJ; 
FCGATES:=CADARCFWLISTJ; 
IF WLISTEMPTY=l THEN 

FWLIST:=O; 
WLISTEMPTY: =0; 

END; <~END OF 'ERASE'*> 

PROCEDURE PRINTTEST;FORWARD; 

PROCEDURE ADJUSMENT; <*CALLED FROM PROCEDURE TESTGENERATION* l 

LABEL 100; 
iiAP. ADJFASAR ,ADJFWLIST ,ADJUSTVALUE,TEMPGATE,TEMPINPUT 

,MAINADJVALUE,ADJGATE,JADJ:INTEGER; 

REG IN 

100: 

I* ADJFASAR:=FASAR;*l 
ADJFWLIST:=FWLIST; 
FLAGP:=O; 
WHILE< (FADJUST>OlAND<FLAGP=OllDO !*WHILE NOT ALL GATES 

WAITING FOR JUSTIFICATION ARE PROCESSED DO*l 
BEGIN 

l\DJGATE: =ADJUSTCFADJUSTJ ;. 
FADJUST:=FADJUST-1; 
IF!!TESTCADJGATEJ.GATETYPE=ANDElOR 

tTESTCADJGATEJ.GATETYPE=NANDllTHEN 
ADJUSTVALUE:=O 

ELSE 
l\DJUSTVALUE:=1; 

MAINADJVALUE:=ADJUSTVALUE; 
JADJ:=1; 

HHILE!<TESTCADJGATEJ.INVALUECJADJJ<>ADJUSTVALUElAND 
IJADJ<TESTCADJGATEJ.NOINPIJTSllDO 

.JADJ: =JADJ+1; 
IF!TESTCADJGATEJ.INVALUECJADJJ<>ADJUSTVALUElTHEN 

FOR JADJ:=l TO TESTCADJGATEJ.NOINPUTS DO 
IF<TESTCADJGATEJ.INVALUECJADJJ=-llTHEN 

BEGIN 
FWLIST:=FWLIST+l; 
WLISTCFWLISTJ:=ADJGATE*MAX3+ 

T.ESTCADJGATEJ.INPUTSCJADJJ; 
ADARCFWLISTJ:=FASAR+l; 
ADJADARCFWLISTJ:=FADJUST;!*FOR USE 

OF 'ERASE' ONLY*> 
END; 

IF<FWLIST>ADJFWLISTlTHEN 
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BEGIN 
FLAGP: =0; 
TEMPGATE: ,;TRUNC<WLIST[f'WL!STJ/MAX3); 
TEMPINPUT:=WLIST[f'WLISTJ-TEMPGATE*MAX3; 
FWLIST:=FWLIST-1; 
IF<<TEST[TEMPGATEJ.GATETYPE=ANDE>OR 

<TEST[TEMPGATEJ.GATETYPE=NAND) lTHEN 
ADJUST"vALUE: =0 

ELSE 
ADJUSTVALUE: =1; 

rage 19 

IF<TEST[TEMPINPUTJ.OUTVALUE=1-ADJUSTVALUEiTHEN 
'*THIS CHECK IS NECESSARY BECAUSE MAY BE IN ADJUSTMENT PROCESS SOME 
OF THE VALUES ON INPUTS OF GATES FOR ADJUSTMENT ARE CHANGED TO 
>TALUES OTHER THAN DON'T CARES.*- l 

GOTO 100 
ELSE 

IF! TEST[TEMPINPUTJ .OUTVALUE=-1 1THEN 
BEGIN 

JADJ:=l; 
WHILE<TEST[TEMPGATEJ.INPUTS[JADJJ 

( >TEMP INPUT l DO 
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JADJ:=JADJ+l; 
TEST[TEMPGATEJ.INVALUE[JADJJ:=ADJUSTVALUE; 
TEST[TEMPINPUTJ.OUT"vALUE:=ADJUSTVALUE; 
FASAR: =FASAR+l; 
~SAR[FASARJ:=TEMPGATE*-MAX3+TEMPINPUT; 
JADJ:=l; 
WHILE<JADJ<=TEST[TEMPINPUTJ. 

FANOUTNUMlAND<FLAGP=Ol DO 
BEGIN 

MAINFORWARD<TEMPINPUT,TEST[TEMPINPUTJ.FANOUTS[JADJJl; 
JADJ: =JADJ+l; 

END; 
IF<FLAGP=OlTHEN 

BACKWARD!TEMPINPTJT,ADJUSTV~LUEl; 
IF<FLAGP=liTHEN 

IF!FWLIST>ADJFWLISTlTHEN 
BEGIN 

WRITELN<OUTFILE,'CONFLICT FOUND INJUSTIFICATION PROCESS BETWEEN GATES', 
TEMPINPUT:2,' ',TEMPGATE:2,' FOR VALUE ', ADJUSTVALUE:l,' 
IN ,JTJSTIFYING ',ADJGATE:2,' FOR VALUE ',MAINADJVALUE:ll; 

END 
ELSE 

WRITELN<OUTFILE,'GATE ',ADJGATE:2, 

ERASE; 
GOTO 100; 

HAS NOT JUSTIFIED FOR ',MAINADJVALUE:l,' .· ); 

END; 
END; 

PRINTI'EST; 
FWLIST:=AOJFWLIST; 

END;<*-END OF AOJUSTMENT*-l 

END; 

PROCEDURE ADDONEFANOUTTOWLIST<VAR GUTAW,JAF:INTEGERl; 

BEGIN 
FWLIST:=FWLIST+l; 
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END; 
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WLISTCFWLISTJ:=ITEST[GUTAWJ.FANOUTS(JAFJl~MAX3+GUTAW; 
ADAR[FWLISTJ: =FASAR+1; 
ADJADAR[FWLISTJ:=FADJUST; 
CADARrFWLISTJ:=fCGATES; 

FUNCTION FINDFANOUTFORWLIST < VAR GATE: INTEGER l :INTEGER; 

VAR JA,KA :INTEGER; 

BEGIN 
JA:=1; 
WHILE<JA<=TESTCGATEJ.FANOUTNUMlDO 

BEGIN 
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KA:=l; 
HHILE<TEST[TESTCGATEJ.FANOUTSCJAJJ.INPUTSC!~J<>GATEiDO 

KA:=KA+l; 
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IF<<TESTCTEST[GATEJ.FANOUTSCJAJJ.CRITICAL[KAJ=CRITVALl 
OR<TESTCTESTCGATEJ.FANOUTSCJAJJ.CRITICAtCKAJ=2l >THEN 

BEGIN 

END; 
END; 

If(JA=TESTCGATEJ.FANOUTNUM>THEN 
FTNDFANOUTFORWLIST:=JA; 

JA:=JA+1; 
END 

ELSE 
BEGIN 

END; 

FINDFANOUTFORWLIST:=JA; 
JA:=TESTCGATEJ.FANOUTNUM+l; 

I?P.OCEDIJRE PUTFANOUTSINWLIST<VAR GUTP: INTEGER>; 

VAR JP,KP:INTEGER; 

BEGIN 
WRITELN< 'ENTERED PUTFANOUTSINWLIST' l; 

JP:=1; 
IF< <TESTCGUTPJ.GATETYPE=ANDE>OR<TEST[GUTPJ.GATETYPE=ORE> 

OR< TESTCGUTPJ .GATETYPE= INPUTE l l THEN 
BEGIN 

WHILE<<<TESTCGUTPJ.CRITICAL[JPJ<>CRITVAL>AND 
1. TESTCGUTPJ. CRITICALCJPJ < > 2 l l 
AND<JP<TESTCGUTPJ.NOINPUTSllDO 

JP: =JP+l; 
IF<<TESTCGUTPJ.CRITICALCJPJ=CRITVALlOR 

ITESTCGUTPJ.CRITICAL[JPJ=2l 
OR<<TESTCGUTPJ.FANOUTNUM-TESTCGUTPJ.NOINPUTS><=OllTHEN 

BEGIN 
KP:=FINDFANOUTFORWLIST<GUTPl; 

WRITELN< 'GUTP=' ,GUTP: 3,' ' , 'KP=' ,KP: 3 l; 

END 
ELSE 

ADDONEFANOUTTOWLIST< GUTP ,KP l; 

FOR JP:=l TO <TESTCGUTPJ.FANOUTNUM­
TESTCGUTPJ.NOINPUTS+1lDO 

•. 
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BEGIN 
KP: =JP: 
ADDONEFANOUTTOWLI ST C GUTP, KP l : 

END; 
END 

ELSE(*TESTCGUTPJ.GATETYPE=NAND,NOR,INVERTER*> 
BEGIN 
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<* WRITELN< 'CRITVAL=' ,CRITVAL:2,' ','TESTC' ,GUTP:2,'J.GATETYPE=', 
TESTCGUTPJ.GATETYPEl;*l 

WHILE<<TESTCGUTPJ.CRITICALCJPJ<> 
1-CRITVAL>AND<TESTCGUTPJ.CRITICALCJPJ<>2l 
AND<JP<TESTCGUTPJ.NOINPUTSl >DO 

JP:=JP+1; 
I* WRITELN< 'JP=' ,JP:2l;*l 

IF!<TESTCGUTPJ.CRITICALCJPJ= 
l-CRITVALlOR<TESTCGUTPJ.CRITICALCJPJ=2l 
OR< <TESTCGUTPJ.FANOUTNUM-

TESTCGUTPJ.NOINPUTSl<=Ol >THEN 
BEG HI 

KP:=FINDFANOUTFORWLIST<GUTPl; 
I *WRITELN< 'KP= .• KP:2) ;"') 

ADDONEFANOUTTOWLIST<GUTP,KPl; 
END 

ELSE 
FOR JP:=1 TO (TESTCGUTPJ.FANOUTNUM+1-

TESTCGUTPJ.NOINPUTS>DO 
BEGIN 

KP:=JP; 
'"'WRITELN< 'KPALL=' ,KP:2l;"'l 

ADDONEFANOUTTOWLIST<GUTP,KPl; 
END; 

END; 
END; 

PROCEDURE MAKECRITICAL; 

VAR JM,KM:INTEGER; 

BEGIN 

END; 

FOR JM:=1 TO NOOFNODES DO 
FOR KM:=l TO TESTCJMJ.NOINPUTS DO 

IF< (TESTCJMJ.TEMPCVCKMJ<>-1> 
AND<TESTCJHJ.CRITICALCKMJ<>2llTHEN 

IF<<TESTCJMJ.CRITICALCKMJ<>-llAND 
cTESTCJMJ.TEMPCVCKMJ<>TESTCJMJ.CRITICALCKMJllTHEN 

TESTCJMJ.CRITICALCKMJ:=2 
ELSE 

TESTCJMJ.CRITICALCKMJ:=TESTCJHJ.TEMPCVCKMJ; 

PROCEDURE PRINTTEST; 
VAR JPR: INTEGER; 

BEGIN 
WRITELN<OUTFILE,'************"'"'*"'*"'******"""'"'""***"'"'"'***"'*' l; 
IF<FLAGP=llTHEN 
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WRITELN<OTJTFILE,'CRITICAL PATH NOT COMPLETED FOR THE FOLLOWING GATES:' l; 
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IF<FLAGP=OlTHEN 
BEGIN 

PCOUNT:=PCOUNT+1; 

4-JUN-1985 14:17 

WRITELN<OUTFILE,'TEST NUMBER ',!?COUNT,':' l; 
END; 
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WRITELN<OUTFILE,'CRITICAL-GATE NUMBER',' ','CRITICAL-GATE OUTPUT-VALUE' l 
FOR JPR:=l TO FCGATES DO 

WKITELN<OUTFILE.· ',CGATESCJPRJ:3,' ',CVALUE~ 

WF<ITELIHOUTFILE, 'GATE NUM',' ','OUTPUT VALUE' l; 
FOR JPR:=l TO NOOFNODES DO 

WRITELN<OUTFILE,JPR:3,' ',TESTCJFRJ.OUTVALUE:1l; 
IF FLAGI?=O THEN 

BEGIN 

END; 

WRITELN<OUTFILE,'TEST VECTOR:' l; 
WRITELN<OUTFILE,'INPUT NUMBER-----------------VALUE' l; 
FOR JPR:=l TO INPUTCOUNT DO 

BEGIN 

END; 

Il:=TRUNC<INPUTLISTCJPRJ/MAX3l; 
WRITELN<OUTFILE,Il:2,'-----------------)' ,TESTCilJ.INVALUE[ 

END;<~END OF PRINTTEST*l 

PROCEDURE TESTGENERATION; 
VAR JT , J'IT : INTEGER ; 

BEGIN 
FOR MCRITVAL:=O TO 1 DO 
BEGIN 

IF<MCRITVAL=1lTHEN 
BEGIN 

END; 

FOR JT:=l TO INPUTCOUNT DO 
BEGIN' 

END; 

FWLIST:=fWLIST+l; 
WLISTCr~ISTJ:=INPu~LISTCJT]; 

ADARCFWLISTJ:=l; 
CADARCFWLISTJ:=O; 
~ADARCFWLISTJ:=O; 

WHILE<FWLIST>OJDO 
BEGIN 

GUT:=WLISTCFWLISTJ-TRUNC<WLISTCFWLISTJ/MAX3l*MAX3; 
IUT: =TRUNC(WLISTCFWLISTJ/MAX3 l; 
IF<TESTCIUTJ.GATETYPE<)INPUTElTHEN 

CRITVAL:=TESTCGUTJ.OUTVALUE; 
IF<TESTCIUTJ.GATETYPE=INPUTEJTHEN 

BEGIN 
CRITVAL:=MCRITVAL; 
FWLIST:=FWLIST+1; 
TESTCGUTJ.IWvALUEClJ:=CRITVAL; 
TESTCGUTJ.OUTVALUE:=CRITVAL; 
TESTCGUTJ.TEMPCVC1J:=CRITVAL; 
FCGATES:=FCGATES+l; 
CGATESCFCGATESJ:=GUT; 
CVALUESCFCGATESJ:=CRITVAL; 
FASAR: =FASAR+ 1; 
ASARCFASARJ:=IUT*MAX3+IUT; 
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PUTFANOUTSINm.ISTl IUTl; <"'ADD FANOUTS OF THIS INFU' 
END 

ELSE 
BEGIN 

IF<TESTCIUTJ.GATETYPE=OUTPUTElTHEN 
BEGIN 

TESTCIUTJ.INVALUECll:=CRITVAL; 
TESTCIUTl.OUTVALUE:=CRITVAL; 
TESTCIUTl.TEMPCVClJ:=CRITVAL; 
FCGATES:=FCGATES+l; 
CGATESCFCGATESJ:=IUT;<~ADD 

END 

THE GATE MADE CRITICAL TO 
'CGATES' ARRAY.*l 

CVALUESCFCGATESJ:=CRITVAL;l~KEEF 
THE CRITICAL VALUE OF THIS GATE 
IN 'CVALUES' ARRAY.*> 

FASAR: =FASAR+l; 
ASARCFASARJ:=IUT~MAXJ+GUT;C"'ADD 

THIS OUTPUT TO 'ASAR' ARRAY."' l 
ADJUSMBiT;(~DO THE JUSTIFICATION~> 
IF FLAGP=O THEN 
MAKECRITICAL;l~MARK ALL THE LINES 

WHICH HAVE BEEN MADE CRITICAL 
AND SEE IF THEY TESTED 
COMPLETELY."' l 

FWLIST:=FWLIST-1; 
ERASE; 
FLAGP :=0; 

ELSE<*IT MEANS THAT ONE BRANCH OF A FANOUT 
ORIGIN IS GOING TO BE TAKEN.*l 

BEGIN 
FWLIST:=FWLIST-1; 
FOR JT:=l TO TESTCGUTJ.FANOUTNUM DO 

r*FIND THE INPUT TO THE 'IUT' WHICH IS CONNECTED TO THE FANOUT ORIGIN AND 
FOF. THE OTrtER BRANCH ot THAT FANOUT ORIGIN PROPAGATE THE VALUE FORWARD.*l 

IF<TESTEGUTJ.FANOUTSEJTJ 
<) IUTlTHEN 

MAINFORWARD<GUT,TESTEGUTJ. 
FANOUTS[JTJ l; 

IF FLAGP=O THEN 
BEGIN 

TEMPCRITVAL:=CRITVAL; 
CRITICALPATHCGUT,IUT,TEMPCRITVALl; 

END; 
IF!FLAGP=1lTHEN <*A CONFLICT WAS FOUND IN THE PATH SENSITIZATION PROCESS.*l 

END;. 
END; 

END; 
END; 

<* PROCEDURE CPTJTIMER;EXTERN;*l 

BEGIN 
PRINTTEST; 
EP.ASE; 
FLAGP:=O; 

END 
ELSEl*IF<FLAGP=OlTHEN*l 

PUTFANOUTSINWLISTCIUTl; 
END; 



118 

TEST.FAS;2 4-JUN-1985 14:17 Page 24 

I"'MAIN PROGRAM"'> 

BEGIN 

ttt CPUTIMER;tt) 
WRITELNC 'TYPE NAME OF THE INPUT FILE:'>; 
READ C NAME l ; 
OPEN<FILE VARIABLE:=INFILE,FILE NAME:=NAME,HISTORY:=OLDl; 
RESEI<INFILEl; -
REWRITECOUTFILEl; 
INITIALIZE; 
TESTGENERATION; 

I"' CPUTIMER;ttl 
Itt FOR !1:=1 TO NOOFNODES DO 

END. 

BEGIN 
WP.ITElTESTI:IlJ.GATENUM:2,TEST[IlJ.GATETYPE:8,TEST[IlJ.NOINPUTS:2l: 
FOR Jl:=l TO TEST[IlJ.NOINPUTS DO 
WRITE< TESTI:IlJ. INPUTS[JlJ: 2,' ' , TEST[IlJ .CRITICAL[JlJ: 3, · 

TEST[IlJ. TEMPCV(JlJ: 3,' ',' INVALUE[' ,Jl: 2, 'J=' 
,TESTI:IlJ.INVALUEI:JlJ:2>; 

WRITEC' ';TEST[I1J.FANOUTNUM:2l; 
FOR Jl:=l TO TEST[IlJ.FANOUTNUM DO 
WRITE<' ',TEST[IlJ.FANOUTS[JlJ:2l; 
WRITE<' ',TEST[IlJ.OUTVALUE:3l; 
WRITELN; 
END;*> 
WRITELN<OUTFILE,'LIST OF NODES WHICH ARE NOT COMPLETELY TESTED:' l; 
WRITELN< OUTFILE,' FROM GATE 

TO GATE VALUE TESTED FOR' l ; 
Kl:=O; 
FOR Il:=l TO NOOFNODES DO 

FOR Jl:=l TO TESTI:IlJ.NOINPUTS DO 
BEGIN 

IFITEST[IlJ.CRITICAL(JlJ<>2lTHEN 
BEGIN 

WRITELNIOUTFILE,' '.TEST[IlJ.INFUTS(JlJ:2, 

END; 
IF<Kl=OlTHEN 

END; 

·-------------- ',!1:2. 
' . ------------------ . 
TEST[IlJ.CRITICAL(JlJ:2l; 

Kl::Kl+l; 

WRITELN<OUTFILE,'CIRCUIT WAS COMPLETELY TESTED.' l; 
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LISTING OF THE PROGRAN WHICH CHANGES 

A COMBINATIONAL LOGIC CIRCUIT 

TO A PIFD LOGIC CIRCUIT 
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FROGRAM FINDLOGFS(INPUT,OUTPUTl; 

I""THE FUEFOSE GF THIS PROGRAM IS TO IDENTIFY THE RECONVERGENT GATES 
AND ADD THE BLOCKING GATES AND TEST INPUTS WHERE THEY ARE NEEDED. THE 
INPUT FILE MUST HAVE THE FORMAT AS THOSE NEEDED FOR THE TEST GENERATION 
PROGRAM.THE OUTPUT FILE WILL BE IN A FORMAT USABLE BY THE TEST GENERATION 
PROGRAM.AT THE END OF THE OUTPUT FILE THERE WILL BE SOME INFORMATION ABOUT 
THE ADDED BLOCKING GATES AND TEST INPUTS.THIS PROGRAM ALWAYS PROCESSES 
FIRST THE BRANCHES OF FANOUT ORIGINS WHICH ARE FACED FIRST IN THE FORWARD 
TRAVELING OF THE CIRCUIT.THIS GUARANTEES THAT THE RECONVERGENT GATES WILL 
BE FOUND IN TIME PROPORTIONAL TO N2.ALSO IT GUARANTEES THAT THE GATES OR 
LINES WHICH ARE PART OF LOOP CAN BE FOUND IN TIME PROPORTIONAL TO N2.""l 
C"ONST MAX1=20; 

MAX2=4000; 

TYPE GTYPE= I ANDE, ORE, NAND, NOR, INPTJTE, OUTPUTE, INV l ; 

'"THE RECORD WHICH KEEPS NECESSARY 
C"IRCUITDES= 

RECORD 
GATETYPE 
GATENUM 

INFORMATION FOR EACH GATE.""l 

:GTYPE; 
:1 .. MAX2; 
:1 .. MAX1; 
:INTEGER; 
:ARRAY[ l. . MAXlJ OF INTEGER ; 
:ARRAYC1 .. MAX1J OF INTEGER; 
:ARRAYCl. .MAXlJ OF INTEGER; 
:.1. .MAXl; 
:ARRAYCl •. MAXlJ OF INTEGER; 
:INTEGER; 
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NO INPUTS 
FACED 
INPUTS 
FACED INPUT 
LOOP 
FANOUTNUM 
FAN OUTS 
PROCESSED 
LOOPS 
RECON 

:INTEGER;!""'1' IF THE GATE IS ON A LOOP""l 
:INTEGER;!""'l' IF THE GATE IS A 

PERRECON 

PERLOOPS 

PERLOOP 
MAKELOOP 

END; 

RECONGATES= 

FANBRANCH= 

RECORD 
RG 
BG 
FG 

END; 

RECORD 

:INTEGER 
:INTEGER 
:INTEGER 

RECONVERGENT GATE""l 
:INTEGER;< "KEEP THE NUMBER OF TIMES THAT 

A GATE HAS BEEN MARKED AS 
RECONVERGENT GATE""l 

:INTEGER; < "KEEP THE NUMBER OF TIMES THAT 
A GATE HAS BEEN MARKED AS BEING 
ON A LOOP""l 

:ARRAYCl. .MAXlJ OF INTEGER; 
:ARRAYCl. .MAXlJ OF INTEGER; 
1""'1' IF IT IS ONE OF THE BRANCHES OF 
A FANOUT ORIGIN WHICH CREATES A 
RECONVERGENT PATH""l 

FAN 
BRANCH 

:INTEGER; 
:INTEGER; 

END; 



ilAF. TEST 
RGATE 
fO'J'!'LIST 
FANOUT 
NAME 
INF!LE 
•:•UTFILE 
I,J,K,L,M,N 
FANGUTF 
FC•IJTLISTP 
FR0NTIEP.GATE 
BLOCKGATE 
l~OOFN'ODES 
OLDNOOFNODES 

FOGATE 
BACKTF.ACE 
RGATEP 
R.B 
LFO 
FOF.MJ:.""RBT 
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:ARRAYCl .. MAX2J OF CihCUITDES: 
:ARPAY(l .• MAX2J OF RECONGATES; 
:ARRAY(l .. M/o.iG!J. OF INTEGER; 
:AF.RAY(l .. MAX2J OF FANBRANCH; 
:?ACKE!) ARRAY[l. .40] OF CHAF.; 
:TEXT; 
:TEh"T; 
:INTEGER; 
:INTEGER; <*POINTER TO F.n.NOIJT ARRAY"'l­
:INTEGER; !*POINTER TO FOIJTLIST ARFAY*l 
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:INTEGER: <*THE HEAD GATE UNDER PROCESS ONA PATH*l 
:INTEGER; <*THE GATE BEFORE FRONTIERGATE ON A PATH*l 
:INTEGER; <*NUMBER OF GATES IN THE CIRCUIT*! 
:INTEGER; <*# OF NODES BEFORE ADDING MlY TEST INPUT 

OR BLOCKING GATE*l 
: I~"TEGER; c *A FANOUT GATE* l 
:INTEGER; <*KEEPS THE GATE IN BACKTRACING"'l 
:INTEGER; c "'POINTER TO RGATE ARRAY* l 
:INTEGER; 
:INTEGER; C*LAST FANOUT ORIGIN UNDER PROCESS*! 
:INTEGER; <*FORMER BACKTRACE GATE"'• 

PROCEDURE INITIALIZE; 

t*INITIALIZE THE NECESSARY RECORDS,FILES,AND VARIABLES.*! 
BEGIN 

FOIJTLISTP:=O; 
I=:EAD< INFILE,Nht'.El; 
~ITELNc OUTFILE,NAMEl; 
READCINFILE,NOOFNODESl; 
E•R K: = l TO NOOFNODE.S DO 

BEG It~ 

END; 

REAr/( INFILE, I l; 
TEST( IJ. GATEN'uM: =I; 
TEST[IJ.FACED:=O; 
TESTCIJ.PROCESSED:=O; 
TESTCIJ.LOOPS:=O; 
TESTCIJ.PERLOOPS:=O; 
TEST[IJ.RECON:=O; 
TESTCIJ.PERRECON:=O; 
REAr•<INFILE,TESTCIJ.GATETYPE,TEST[IJ.NOINPUTSl; 
FOR J:=l TO TESTCIJ.NOINPUTS DO 

BEGIN 
READ!INFILE,TEST[IJ.INPUTS[J]l; 
TEST[IJ.LOOP(JJ:=O; 
TEST[IJ.PEP.LOOP[JJ:=O; · 
TEST[IJ.FACEDINPIJT[JJ:=O; 

END; 
P.EAD c INFILE, TEST( I J . FANOUTNUM l ; 
FOR J:=l TO TEST[IJ.FANOUTNUM DO 

BEGIN 
READCINFILE.TESTCIJ.FANOUTSCJJl; 
TESTCIJ.MAKELOOP[JJ:=O; 

END; 

FOR K:=l TO NOOFNODES DO 
IF TEST[KJ.GATETYPE=INPUTE THEN 
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BEGIN 
B:=K: 

END; 

WrliLE <TEST[BJ.FANOUTNUM=ll AND 
tTESTCBJ.GATETYPE<>OUTPUTEl DO 

'B: =TEST[BJ. FANOUTS[lJ; 
IF TEST[BJ.FANOUTNUM>l THEN 

BEGIN 
FOUTLISTF:=FOUTLISTP+l; 
FOUTLISTCFOUTLISTPJ:=E: 

END; 

END; <*INITIALIZE*l 

PROCE:•;JF.E EACKTAAC ING; 
'*IF A RECO~v~GENT GATE IS FOUND. THEN TFAVEL BACKWARD AND MARK 
;;:.;:, THE .:;;..7E l-JJ:. LINES V-l'HICH HA\i'E BEEN FACED IN THE LAST A'ITEMPT 
AS BE:N·,:; ON A LOOP UNTIL A. FANOUT ORIGIN. A RECON'v"ERGENT GATE. OR 
A FR H·L;;::z INFTJ1' IS FACED. * 1 

BEGIN 

("' 

fO~ L: ,;;_ TO TEST[FF:ONTIEP.GATEJ . NG :NPUTS DO 
I:F 1 TEST(fF.C,NTIERGATEJ. FACEDINPUTCLJ=l l 

AN.U ITESTCFRONTIERGATEJ.LOOPCLJ=Ol THEN 
BEGIN 

END; 

.J:=O: 
TESTCFF.ONTIERGATEJ.LOOPCLJ:=l; 
BACKTRACE:=TESTCFF.ONTIERGATEJ.INFUTSCLJ; 
WrliLE (TESTCBACKTRACEJ.RECON=Ol AND 

tBACKTRACE<>LFOl AND <BACKTRACE<>FOGATEl DO 
BEGIN 

J:=l; 
M:=l; 

END; 

WrliLE NOTtTESTCBACKTRACEJ.FACEDINPUTCMJ=ll DO 
M:=M+l; 

TEST(BACKTRACEJ.LOOP[MJ:=l; 
TESTCBACKTRACEJ.LOOPS:=l; 
fOF.MEF.BT:=BACKTRACE; 
BACKTRACE:=TESTCBACKTRACEJ.INPUTSCMJ; 

IF BACKTRACE=LFO THEN 
BEGIN 

IF J=O THEN 
FORMERBT:=FF.ONTIERGATE: 

M:=l; 
WHILE NOT(TESTCBACKTRACEJ.FANOUTSCMJ=FORMERBTl DO 

M: =M+l; 
TESTCBACKTRACEJ.MAKELOOPCMJ:=l; 

END;* I 

END; '*BACKTRACING*l 
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,,..THE FOLLOWING PROCEDURE IS SUPPOSED TO IDENTIFY THE INPUTS TO THE BLOCKING 
GATES <THE GATES RIGHT BEFORE A RECONVERGENT GATE WHICH ARE ON A LOOP WITH 
THAT RECONVERGENT GATE! WHICH ARE ON A LOOP. ALSO IT IDENTIFIES ALL THE OTHER 
GATES AND GATES' INPUTS WHICH ARE ON A LOOP." l 

PROCEDURE LOOP; 



BEG I!~ 

1 000: 
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.: -.1i_iN ··1 ~t-~·· J .:. : tJ4 

F•)F I:" l Tlj FOUTLISTF [1(1 

E.t::,_;IN 
F•:<GATE: =FOf.TTLISH I J; 
F A.Nt) lTTP : =I) ; 
!="t,F: M: = l TO NOOFNt:1DES [1(' 

BEGIN 
FOR L:"l T0 TEST[MJ.NOINFUTS DO 

BEGIN 
TEST[MJ. PERLOOP[LJ: =TEST[MJ. PERLC10P[LJ+ 

TEST[MJ.LOOP[LJ: 
TEST[MJ.LOOP[LJ:=O; 
TEST[MJ.FACEDINPUT[LJ:=O; 

END; 
TEST[MJ.PERLOOPS:=TEST[MJ.PERLOOPS+TEST[MJ.LOOPS; 
TEST[MJ.LOOPS:=O; 
TEST[MJ.FACED:=O; 
TEST[MJ.PERRECON:=TEST[MJ.PERRECON+TEST[MJ.RECON; 
TEST[MJ.RECON:=O; 

END; . 
IF TEST[FOUTLIST[IJJ.PROCESSED=O THEN 

BEGIN 
TEST[FOUTLIST(IJJ.PROCESSED:=l; 
FOR J:=l TO TEST[fOGATEJ.FANOUTNUM DO 

BEGIN 

END; 
N:=O; 

FANOUTP:=FANOUTP+l; 
FANOUTCFANOUTPJ.BRANCH:=TESTCFOGATEJ.FANOUTSCJJ; 
FANOUT[FANOUTPJ.FAN:=FOGATE; 

WHILE NOT<N=FANOUTP\ DO 
BEGIN 

N:=N+l; 
BLOCKGATE:=FANOUT[NJ.FAN; 
LFO:=FANOUT[NJ.FAN; 
TESTCFANOUT[NJ.FANJ.PROCESSED:=l; 
FRONTIEF:GATE:=FANOUT[NJ.BRANCH; 
IF TEST[FRONTIERGATEJ.FACED>l THEN 

·"'THIS GATE HAS BEEN FACED AT LEAST TWO MORE TIMES WHEN PROCESSING 
THE SAME FOGATE. THEN IT HAS BEEN ALREADY MARKED AS RECON. GATE!< i 

BEGIN 
/"KEEP TRACK OF RECONVERGENT GATES AND THEIR CORRESPONDING BLOCKING 

GATES. IF THE BLOCKING GATE HAS MOR THAN ONE FANOUT, THEN MAY BE 
IT CANOT BE CONSIDERED AS A BLOCKING GATE ALTHOUGH IT MAY HAVE 
THE GATE TYPE. THEN KEEP ITS GATE NUMBER NEGATED IN ORDER TO 
REMEMBER THIS CASE."\ 

RGATEP:=RGATEP+l; 
RGATECRGATEPJ.RG:=FRONTIERGATE; 
M:=l; 
WHILE <TEST[FRONTIERGATEJ.INPUTS[MJ,> 

BLOCKGATE\ OR 
ITEST[FF:ONTIERGATEJ.FACEDINFUT[MJ=li 
DO 

M:=M+l; 
TEST[fRONTIERGATEJ.FACEDINPUT[MJ:=l; 
IF TEST[BLOCKGATEJ.FANOTJTNUM=l THEN 

RGATECRGATEPJ. BG: =ELOCKG!-.TE 
ELSE 
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END; 

RGATECRGATEPJ.BG:=-BLOCKGATE: 
TESTCFRONTIERGATEJ.RECON:= 

TESTCFRONTIERGATEJ.RECON+l; 
BACKTRACING: 

IF TESTCFRONTIERGATEJ.FACEO=l THEN 
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t *RG HAS BEEN FACED JUST ONE TIME BUT IT WAS NOT MARKED AS RG&BLOCKGATE-" l 
BEGIN 

BEGIN 

ENJ:•; 

M:=l; 
WHILE tTESTCFRONTIERGATEJ.INPUTS[MJ<> 

BLOCKGATEl OR 
ITESTCFRONTIERGATEJ.FACEDINPUTCMJ=ll 

DO 
M:=M+l; 

TESTCFRONTIERGATEJ.FACEDINPUTCMJ:=l; 

END; 

FOR K:=l TO TESTCFRONTIEP.GATEJ.NOINPTJTS DO 
IF l TESTCTESTCFRONTIEF:G;..TEJ. INPUTSCKJ J 

.FACED>O> OR 
tTESTCFRONTIERGATEJ.INPUTSCKJ=FOGATEl 

OR 
•TESTCFRONTIERGhTEJ.INPUTSCKJ=LFOl 

THEN 
BEGIN 

RGATEP: =RGATEP+l; -
RGATECRGATEPJ.RG:=FRONTIERGATE; 
RGATECRGhTEPJ.FG:=FOGATE; 
IF TESTCTESTCFRONTIERGATEJ. 

INPUTSCKJJ.FANOUTNUM=l THEN 
RGATECRGATEPJ.BG:= 

TESTCFRONTIERGATEJ.INPUTSCKJ 
ELSE 

RGATECRGATEPJ.BG:= 
-TESTCFP.ONTIERGATEJ.INPUTSCKJ: 

TESTCFRONTIERGATEJ.RECON:=l; 
TESTCFRONTIERGATEJ.LOOPS:= 

TESTCFRONTIERGATEJ.LOOFS+l; 
BACKTP.ACING; 

END; 
TESTCFRONTIERGATEJ.FACEO:= 

TESTCFRONTIERGATEJ.FACED+l; 

IF TESTCFRONTIERGATEJ.FACED=O THEN 
BEGIN 

WHILE tTESTCFRONTIERGATEJ.FACED=Ol DO 
BEGIN 

TESTCFRONTIERGATEJ.FACED:=l; 
M:=l; 

WHILE tTESTCFRONTIERGATEJ.INPUTSCMJ<)BLOCKGATEl OR 
ITEST[FRON'IIERGATEJ.FACEDINPUT[MJ<>Ol DO 

1-:lF:ITELNt ·FE=' .fr .. :•NTIEF:GATE:4,' M=' ,M: 2, 'BLOCKGATE= .• BLOCKGATE:4 l; 
WF:ITEL!{I · TFIM=' , TESTCFRONTIERGATEJ. INPUTS[MJ l; 

M: =M+l; 

TESTCFRONTIERGATEJ.FACEDINPUTCMJ:=l; 
IF TESTCFRONTIERGATEJ.GATETYPE 

<>OUTPUTE THEN 
BEGIN 

BLOCKGATE:=FRONTIERGATE: 
IF TESTCFRONTIERGATEJ. 

FANOUTNUM> 1 THEN 



END; 
END: 

4-JGN-i~B~ :6:04 
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FOR L: =2 TO TEST 
CFRONTIERGATEJ.FANOUTNUM DO 
BEGIN 

FANOUT?: =FANOUT?+ l; 
FANOUT[FANOUT?J.BRANCH:=TESTCFRONTIERGATEJ.FANOUTSCLJ; 
FANOUTCFANOUTPJ. FAN: =FRONTIERGATE; 

END; 

END; 
FFONTIEF:GATE:=TESTCFRONTIERGATEJ.FANOUTS[lJ; 

END; 
END; 

IF TE2·TCFR•:,NTIERGATEJ. GATETYPE< > OUTPIJTE THEN 
GOTO 1000; 

END; 

f?H,CEDTJRE ADDTESTINFUT; 
~~IF iriE GATES BEFORE RECO~VERGENT GATES HAVE THE RIGHT TYPE FOR 
BLOCKING GATES , THEN ONLY ADD TEST INPUTS TO THEM.~> 

BEGIN 
TESTCBJ.NOINFUTS:=TESTCBJ.NOINPUTS+l; 
NOOFNODES:=NOOFNODES+l; 
TEST[BJ.INPUTSCTESTCBJ.NOINPUTSJ:=NOOFNODES; 
TESTCNOOFNODESJ.GATENUM:=NOOFNODES; 
TEST[NOOFNODESJ.GATETYPE:=INFUTE; 
TEST[NOOFNODESJ.NOINPUTS:=l; 
TEST[NOOFNODES J. INPUTS[ lJ: =NOOFNODES; 
TEST[NOOFNODESJ.FANOUTNUM:=l; 
TEST[NOOFNODESJ.FANOUTS[lJ:=B; 

8IT;; 

FF.•)CEI:.URE ADD BLOCK INGGATE; 
; "ADD ELuO:ING GATES BEFORE RECON"'v'"ERGENT GATES.~> 

13EGIN 
FOR J:=l TO TEST[BJ.FANOUTNUM DO 

IF TESTCBJ.F&~OUTSCJJ=R THEN 
BEGIN 

NOOFNODES:=NOOFNODES+l; 
IF rTEST[RJ.GATETYPE=ORE> OR 

ITEST[RJ.GATETYPE=NOR> THEN 
TEST[NOOFNODESJ.GATETYPE:=ANDE 

ELSE 
TEST[NOOFNODESJ.GATETYFE:=ORE; 

TEST[BJ.FANOUTS[JJ:=NOOFNODES; 
TESTCNOOFNODESJ.GATENTJM:=NOOFNODES; 
TEST[NOOFNODESJ.NOINPIJTS:=2; 
TEST[NQOFNODESJ.INPIJTS(lJ:=B; 
TESTCNOOFNODESJ.INFUTSC2J:=NOOFNODES+l; 
TEST[NOOFNODESJ.FANOUTNUM:=l; 
TEST[NOOFNODESJ.FANOUTS[lJ:=R; 
M:=l; 
WHILE TEST[RJ.INPTJTS[MJ<>B DO 

M: =M+l; 



END; 
END; 

~-JUN-1985 16:04 

TESTCP.J.INPUTS(MJ:=NOOFNODES; 
NOOFNODES: =NOOFNODES+1; 
TESTCNOOFNODESJ.GATETYPE:=INPUTE; 
TESTCNOOFNODESJ.GATENUM:=NOOFNODES; 
TESTCNOOFNODESJ.NOINPUTS:=1; 
TE5T(NOOFNODESJ.INPUTSC1J:=NOOFNODES: 
TESTCNOOFNODESJ.FANOUTNUM:=l; 
TESTCNOOFNODESJ.FANOUTSC1J:=NOOFNODES-1; 

PROCEDURE INSERTGATES; 
r *INSERT BLOCKING GATES AND TEST INPUTS WHERE THEY ARE NEEDED.* l 
BEGIN 

I)LDNOOFNODES: =NOOFNODES; 
FOR I:=l TO NOOFNODES DO 

TESTCIJ.PROCESSED:=O; 
WHILE RGATEF)O DO 

IFrTESTCRGATECRGATEFJ.P.GJ.FROCESSED=ll AND 
•TESTCABS<RGATECRGATEFJ.BGlJ.PP.OCESSED=1l THEN 
RGATEP:=RGATEF-1 

F::LSE 
BEGIN 

~:=RGATECP.GATEFJ.RG; 
R:=AESIRGATECRGATEPJ.BGl; 
TESTCF.J.PF.OCESSED:=l; 
TESTCBJ.PF.OCESSED:=1; 
K:=O; 
FOR J:=l TO TESTCBJ.FANOUTNtTM DO 

IF TESTCBJ.FANOUTS(JJ=R TH~~ 
K:=K+1; 

N:=O; 
IF (<rTESTCRJ.GATETYFE=OREl OR <TESTCRJ.GATETYPE=NORl l 

~ ITESTCBJ.GATETYPE=ANDEl l OR 
I r ITESTCRJ.GATETYPE=ANDEl OR <TEST(RJ.GATETYPE=NhNDl l 

Aim ; TEST[ BJ. GATETYPE=ORE l l THEN 
IF K=l THEN 

BEGIN 
FOR M:=l TO TESTCBJ.FANOUTNUM DO 

IF <TESTCTESTCBJ.FANOUTSCMJJ.PERLOOPS>Ol AND 
rTESTCBJ.FANOUTSCMJ<>Rl THEN 

FOR J:=l TO TESTCTESTCBJ.FANOUTSCMJJ.NOINPUTS DO 
IF tTESTCTESTCBJ.FANOUTSCMJJ.INPUTSCJJ=Bl AND 

rTESTCTESTCBJ.FANOUTSCMJJ.PERLOOPCJJ>Ol THEN 
N:=l; 
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IF N=O THEN l*NO ADDITIONAL BLOCKING GATE IS NECESSARY.*! 
BEGIN 

L:=l: 
WrliLE rTESTCBJ.PERLOOPCLJ>Ol AND 

IL<=TESTCBJ.NOINPUTSl DO 
L:=L+l; 

IF L'>TESTCBJ .NO INPUTS Tl·iEN 
I*~D AN EX~RA INPTJT TO THE BLOCKING GATE.*l 

WDTESTINPUT: 

END 

END; 
IF N> 0 THEN l *ADD BLOCKING GATE AND TEST INPUT* l 

ADDBLOCKINGGATE; 

ELSE 
ADDBLOCKINGGATE 



MODGATE.?A:=;l4 4-JUN-lS65 16:04 !?age 8 

ELSE 
ADDELOCKINGGATE; 

RGATEP:=RGATEP-1; 
END; 

END; 

BEGIN 
WF: ITELN < 'TYPE NAME OF THE INFUTFILE' l ; 
READLN t NAME i ; 
OPEN! FILE_ VARIABLE: =IN'FILE,FILE_NAME: =NAME,HISTORY: =OLDl; 
EESETt INFILEi; 
WF:ITELNi 'TYPE NAHE OF THE OUTPUTFILE' l; 
READLN < NAHE i ; 
C·?E!J, FILE ·v·AF:IABLE: =()tlTFILE ,FILE N.Z.J1E: =Nh..'1E ,HISTChY: =NEWi ; 
REWRITE!OUTFILEi; -
INITIALIZE; 
L;)OP; 

l*fOR I:=l TO RGATEF DO 
WhiTELN!OUTFILE,'RGATE.RG=' ,RGATECIJ.RG:3,' RGATE.BG=' ,RGATECIJ.BG:3l ;*i 

INSERTGATES; 

END. 

WRITELN!OUTFILE,NOOFNODESi; 
FOR I : = 1 TO NC•OFNODES DO 

BEGIN 
~~ITE!OUTFILE,TESTCIJ.GATENUM:S,TESTCIJ.GATETYPE, 

TEST[IJ.NOINPUTS:2l; 
FOR J:=1 TO TESTCIJ.NOINPUTS DO 
WRITE<OUTFILE,TESTCIJ.INPUTS[JJ:S,' 'l; 
WRITE<OUTFILE,TESTCIJ.FANOUTNUM:3l; 
FOR J:=l TO TESTCIJ.FANOUTNUM DO 
WRITE<OUTFILE,TESTCIJ.FANOUTS[JJ:5,' 'l; 
WRITELN<OUTFILEJ; 

END; 
WhiTELN< OUTFILE, 

J>.LL THE ,;,;TES WITri Th"E GATE NUMBER GREATER Ti:-I.AN' , OLDNOOFNODES l ; 
WF.ITE=.:J! OUTFILE, 

A.HE THE GATES ADDED TO THE ORIGINAL CIRCUIT. THEN THE INPUTS' l; 
WRITELN<OUTFILE, 
' WITH THE GATE WJMBERS GR~~TER THAN TriiS VALUE ARE TEST_INFUTS.' l; 
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HS. LtAI; 3 lf.-JAN-1985 16:51 P~s• 1 
SAI'If'LE 
14 
1 INPUT£ 1 1 1 8 
2 lNf'Ul£ 1 2 2 7 13 
3 IHf'UTE 1 3 1 1 
4 INf'UTE 1 4 2 8 9 
5 INf'LIT£ 1 5 1 9 
6 lNf'UTE 1 G 1 ll 
7 AN_DE ;;! 2. 3 1 8 
8 AN[t£ 

"' 1 ' "' 13 1 10 
C) NAN[t 2 4 5 2 10 11 
10 OH 3 e 13 9 1 12 
11 NOR 2 <) 6 1 12 
12 AN[tE 2 10 11 1 14 
13 lNV 2 l 10 
14 OUUUT£ 1: 1 14 



n.JH lLE •. t•ATi3 16-JAH-l98S 18:17 

SAI1F'LF. 
'************************************** 
tESt NU..,BE~ 1: 
(ilTlCAL-GATE NUM~E~ CRITICAL-GATE OUTPUt-VALUE 

' ~ 11 l 
1~ J 
11 1 

GATE NUH OUTPUT VALUE 
1 -1 
2 (l 

3 -\ 
4 J 
~ 1 
.:. (i 

7 n 
8 0 
q Q 

10 ) 
11 l 
1.:: ) 
\3 1 
14 1 

TEST VECTOR: 
INPUT NUM~ER-----------------VALUE 
1-----------------~-l 
2-----------------~ 0 
3------------~----~-l 
4-----------------~ 1 
5-----------------~ ] 
6--------~--------~ 0 

*************************************** 
f.RITlCAL PATH NOT COMPLETED fOR THE fOLLOWING GATES: 
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

~ 0 
9 ) 

10 l 
GATE NU.., OUTPUT VALUE 

1 -1 

2 ] 
1 -1 
4 ] 

".i Q 
.:. -) 
7 -1 
B 0 
q 1 

10 ) 
11 Q 
l:;! 0 
13 0 
14 0 

*************************************** 
CRITICAL PATH NOT COMPLETED FOR THE FOLLOWING GATES: 
CRITICAL-GAIE NUMBER CRITICAL-GATE OUTPUT-VALUE 

4 0 
~ 1 

10 ) 
~ATE NUH OUTPUT VALUE 

1 -] 
., 
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3 -1 
• 0 
~ J 
G -1 
7 -) 
9 0 
9 I 

10 l 
ll 0 
l~ 0 
13 0 
\4 0 

'************************************** CRITICAL PATH NOT COMPLETED FOR THE FOLLOWING GATES: 
CRIIIC~L-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

4 0 
GATE NUM OUTPUT VALUE 

I 1 
a 1 

.. -· 
7 

9 
10 
11 

] 

0 
-] 

-1 
] 

-l 
) 

1 
0 

12 0 
11 0 
14 0 
'*********~**************************** 
CRITIC~L PATH NOT COMPLETED FOR THE FOLLOWING GATES: 
CRITlC~L-GATE NUMBER CRITIC~L-GATE OUTPUT-VALUE 

3 0 
7 0 

GATE NUM OUTPUT VALUE 
l 1 
2 ] 
3 0 
4 ] 
5 -1 
D -1 
7 0 
B -l 
CJ -l 

10 -] 
11 -1 
12 -1 
13 0 
14 -1 

*************************************** TEST NUMBER 2: 
CRITICAL-GATE NUMBER CR II ICAL-GAIE 

0 

GATE 
1 

.. .. 
13 
10 
12 
14 

NUM OUTPUT VALUE 
-J 

1 
] 

1 
J 

OUTPUT-VALUE 
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2 0 
3 -1 
4 l 
5 1 
(. 0 
7 0 
& 0 
~ 0 

10 ] 
11 1 
12 ] 
\3 1 
14 ] 

TEST VECTOT<: 
INPUT NliHEcER-----------------VALUE 
1-----------------~-l 
2-----------------·~ 0 
3-----------------~-l 
4-----------------~ 1 
~-----------------~ l 
6-----------------~ 0 

**************************************~ CRITICAL PATH NOT COMPLETED FOf< THE FOLLOWING GATES: 
CRITICAL-GATE NUHBEi CRITICAL-GATE OUTPUT-VALUE 

GATE 
1 
2 
3 
4 

7 

2 0 
? 0 
8 0 

NUK OUTPUT VALUE 
1 
0 
l 
l 
-1 
·-] 

0 
B 0 
q -l 

1 () l 
11 -1 
12 -l 
13 1 
14 -l 

*************************************** CRITICAL PATH NOT COMPLETED FOi THE FOLLOWING GATES: 
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

l 0 
GATE NUH OUTPUT VALUE 

] 0 
J 1 
3 ] 
4 1 
~ -1 
G -1 
7 l 
8 -1 
9 -l 

\0 -1 
11 -] 
12 -1 
13 0 
14 -1 
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*************************************** TEST NUM~Ei 3: 
r.RlTlCAL-GATE NUM~Ei 

GATE 
1 
2 
3 
4 
5 
~ 
7 
8 
C) 

10 
11 
12 
13 
14 

t-
11 
12 
14 

NUM 

TEST VECTOR: 

OUTPUT 
-1 
0 
-1 
1 
1 
1 
0 
() 

0 
1 
0 
0 
1 
0 

VALUE 

CiiTICAL-GATE OUTPUT-VALUE 
1 
0 
0 
0 

INPUT NUMBER-----------------VALUE 
1----------------->-1 
2-----------------~ 0 3----------------->-1 
"'-----------------~ 1 
~-----------------~ ] 
6----------~------~ 1 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
TEST NUMBER 4: 
CRITICAL-GATE NUMBE~ CRITICAL-GATE OUTPUT-VALUE 

r -· 1 
9 0 

10 0 
12 0 
14 () 

liA!E NUM OUTF'UT VA I.U E 
1 -1 
2 1 
3 -] 

4 1 
r- ] ., 
6 0 
7 -1 
8 0 
9 (• 

10 0 
11 1 
12 0 
13 0 
14 0 

TEST VEC!Oll: 
INPUT NUMBER-----------------VALUE 
1----------------->-J 2-----------------> 1 3----------------->-J 4-----------------> 1 
s--~--------------> l 
6-----------------~ 0 

133 



Li \..; ... c .1. L. t •. .,. r. J. ; I 

1& 
8 

10 
12 
14 

GATE NUH 
J 
2 
3 
4 
s 
6 
'i 
8 
9 

10 
1 1 
1.2 
13 
l4 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2~ 

TEST VECTOI\: 

OUTf'UT 
] 

l 
-l 
1 
-l 
-1 
-J 
0 
-l 
0 
-l 
0 
0 
0 
0 
0 
-l 
0 
0 
0 
0 
1 
J 
1 
] 

VALUE 

•. 

0 
0 
0 
0 
0 

tNPUT NUMBER-----------------VALUE 
1-----------~-----~ ] l-----------------· 1 
3-----------------~-J 
4-----------------~ 1 5-----------------)-] G----------------->-1 
1~-----------------~ 0 
17-----------------;-1 
19-----------------~ 0 
21-----------------~ 0 
22-----------------~ 1 
24-----------------~ 1 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
TEST NUMBER 7: 
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

b 0 
11 1 
23 1 
12 l 
14 ] 

GATE NUH OUTPUT VALUE 
1 -1 
2 -1 
3 -1 
4 1 
5 1 
6 0 
7 -J 
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9 
~ 

10 
11 
12 
13 
14 
15 
1t. 
17 
18 
19 
~0 

21 ..,.., ..... 
23 
24 
25 

TEST VECTO~: 

-l 
0 
] 

1 
l 
-1 
] 

-1 
-J 
-1 
-] 

-1 
0 
1 
0 
1 
-1 
-1 

INPUT NUM~ER-----------------VA~UE 
1-------------~--->-l 
2-----------------~-1 3----------------->-J 
4-----------------~ 1 
5------~----------~ l 6-----------------; 0 15----------------->-l 17----------------->-1 19----------------->-l 21-----------------> 1 22-----------------> 0 
~4-----------------•-l 
************}*************************~ TEST NUMBE~ 8: 
t~ITICAL-GAIE NUhBER CRITIC~L-GATE OUTPUT-VALUE 

5 0 
<) 1 ::o J 

10 1 
1: ] 
14 1 

GAIE NUM OUTPUT VALUE 
1 -1 
~ l . 
3 -1 
4 1 
5 0 
b -J 
7 - 1 
8 0 
q l 

10 l 
11 0 
12 l 
13 0 
14 ] 

15 0 
16 0 
17 0 
18 0 
19 1 
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20 
~l 
2:;: 
23 
24 
25 

TEST VECTO~-: 

l 
0 
l 
1 -1 
-1 

tH~UT NUM~ER-----------------VALUE 

1-----------------~-1 
2--~--------------~ 1 3----------------->-1 
~--------~--------~ l 5-----------------) 0 
6-----------------~-1 15-----------------) 0 17-----------------· 0 

19-----------------) l 
21-----------------> 0 
22-----------------~ 1 
~4-----------------~-1 
~**~*********************************** TEST NUMBER 9: 
C&IliCAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

4 0 
9 1 

11 0 
23 
1: 
14 

GATE NU11 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
ll 
12 
13 
1 .. 
15 
1t. 
17 
18 
19 
:: (, 

:1 
22 
23 
24 
~~ 

lEST VECTOJi: 

OUTF'UT VALUE 
-1 
-1 
-1 
0 
1 
0 
-1 
0 
1 
1 
0 
0 
-1 
(i 

-l 
-1 
-l 
- I 
-l 
-] 

1 
0 
0 
-1 
-1 

0 
0 
0 

INPUT NUMBER-------------~---VALUE 
1----------------->-l 2----------------->-1 3----------------->-l 
4~----------------) 0 
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~-----------------> ] 
6-----------------~ 0 
1~----------------->-J 
l7-----------------•-l 
19-----------------~-] 21-----------------> 1 22-----------------·. 0 
~~-----------------·-i 
******************************''******* TEST NUMBER 10: 
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

4 
8 

10 
12 
1 4 

GATE NUM 
1 
:::! 
3 
4 .. -· 
G 
7 
8 
9 

10 
11 
12 
13 
14 
1~ 
l6 
17 
18 
19 
~0 
21 
2:! 
23 
24 
2~ 

TEST VECTOR: 

OU!f'UT VALUE 
] 

-1 
-1 
0 
-] 

-1 
-1 
0 
l 
0 
0 
0 
-1 
0 
l 
1 
(• 

0 
0 
v 
0 
1 
l 
1 
l 

0 
0 
0 
0 
0 

INPUT NUM~ER-----------------VALUE 
1----------------~> l 
2-----------------i-l 
3----------------->-1 
4-----------------~ 0 s----------------->-1 G-----------------)-1 
15-----------------~ l 
17-----------------j 0 
19-----------------> 0 
21-----------------j 0 
22-----------------~ ] 
~4-----------------> 1 
********''**********''*****'*********** TEST HUMBER 11: 
CRITICAL-GATE NUMBER 

3 
7 

CRITICAL-GATE OUTPUt-VALUE 
0 
0 . 
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2S 
8 

10 
12 
14 

GATE HUH 
1 ., .. 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 
13 
14 
15 
lG 
17 
18 
19 
20 
21 
22 
23 
24 
2S 

tESt VEC!Of<: 

OU!J'UT 
l 
1 
0 
1 
-l 
-1 
0 
0 
-) 
0 
-l 
0 
0 
0 
] 

1 
0 
0 
0 
0 
0 
1 
] 

0 
0 

VALUE 

I (,'\ ""i 1'! .L ~· C•..J .L C • I "i 

0 
0 
0 
t) 

(• 

INPUt NUMBER-----------------VALUE 1-----------------) l 2-----------------> 1 3-----------------) 0 
~-----------------> 1 
~-----------------~·-] G-----------------j-1 
15-----------------~ ] 
17------------~----j 0 
19-----------------~ 0 
21-----------------~ 0 22-----------------) ] 
24---------~-------· 0 
~*~~***~~**~*~~~~********************** TEST NUMBER 1~· 
CRITICAL-GATE NUMBER 

2 
13 
lG 

8 
10 
12 
14 

GATE NUH 
1 
2 
3 
4 
s 

OUTf'UT VALUE 
] 

0 
-l 
1 
-1 

CRITICAL-GATE OUTPUT-VALUE 
0 
1 
J 
1 
l 
l 
1 
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6 
7 
8 
C) 

10 
\1 
1 -. .. 
13 
14 
15 
lb 
17 
18 
19 
~(J 

21 ... .., .... 
;!3 
24 
25 

TEST VECTOR: 

-1 
0 
) 

-1 

. 1 

l 
1 
l 
0 
l 
0 
0 
0 
0 
0 
l 
1 
l 
1 

INPUT NUMBER-----------------VALUE 1-----------------> l 2-----------------j 0 3----------------->-l 
~-----------------> 1 
~----------------->-1 G-----------------j-1 
15-----------------~ 0 
17-----------------~ 0 
19-----------------~ 0 21-----------------> 0 
22-----------------~ l :4-----------------· 1 
A~~AAAAAAA~AA~~AAAAAAAAAAAAAAAAAAAAAAA~ 
TEST NUMBER 13: 
CRITIC~L-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

0 -. .. 
7 0 ... -•" 0 
9 0 

10 0 
12 0 
1 4 0 

GATE NUH OUTPUT VALUE 
1 l 
2 0 
3 1 
4 1 
r -] ..J 

G -1 
7 0 
8 0 
9 -l 

10 0 
1 1 -] 

12 0 
13 1 
1.; 0 
15 -l 
1G 1 
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17 (I 

18 0 
19 0 
20 0 
21 0 
~2 1 
23 1 
24 0 
2~ 0 

TEST VECTOR: 
IN~UT NUMBER-----------------VALUE 
1----------~------> l 2-----------------j 0 3-----------------, l 4-----------------j 1 
~----------------->-1 6-----------------·-1 

15----------------->-l 
17-----------------~ 0 
19-----------------~ 0 
21-----------------~ 0 
22-----------------~ ] 
~4-----------------> 0 
~**********~*************************** TEST NUMBER 14: 
CRITICAL-GATE NUMBER 

1 
8 

10 
12 

CR I! ICAL-GA!E 
0 
0 
0 
0 
0 14 

GATE NUH OU!F'UT 
0 

VALUE 
1 

3 
4 

G 
7 
8 
9 

10 
11 
1:: 
13 
14 
l:i 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2~ 

TEST VECTOR: 

- l 
-1 
1 
-] 

-1 
-1 
0 
-1 
0 
-1 
0 
-] 

0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
1 
1 

INPUT NUMBER-----------------VALUE 
1-----------------> 0 
2----------------->-1 
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3----------------->-l 
·-----------------~ 1 s----------------->-1 
6-----------------~-1 15-----------------> ] 
17-----------------~ 0 19-----------------) 0 
21--------~--------~ 0 
22-----------------> l 
24--------~--------~ 1 
~************************************** TESI NUMBER 15: 
CRITICAL-GATE NUMBER ·CRITICAL-GATE OUTPUT-VALUE 

24 l 
25 
e 

10 
12 
14 

GATE NUH 
1 
2 
3 
4 
s 
0 
? 
B 
9 

10 
11 
12 
13 
14 
15 
lG 
li 
18 
19 
20 
21 
~~ ·-23 
24 
25 

TEST VECTO~: 

OUTPUT VALUE 
1 
-1 
0 
) 
-1 
-1 
0 
] 
-1 
] 
-1 
] 
-1 
1 

0 
0. 
0 
0 
0 
) 
1 
1 
1 

1 
l 
1 
) 
1 

INPUT NUMBER-----------------VALUE 
1-----------------> 1 
~-------------~---~-1 
3-----------------~ 0 
4-----------------> 1 
5-----------------~-1 
6-----------------~-1 15-----------------> J 
17-----------------~ 0 
19-----------------> 0 
21-----------------~ 0 22-----------------> ) 
24-----------------~ 1 
*************************************** TEST NUMBER 1G: 
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CRITICAL-GATE NUM~ER 
~::! 
23 
12 
14 

GATE NUI"' 
) 

~ 
3 

"' s 
6 
7 
a 
9 

10 
11 
12 
13 
14 
1~ 
16 
17 
18 
1~ 
20 
:;:] 
22 
23 
:!4 ..., ... ........ 

TEST VECTOR: 

OUTPUT VALUE 
-1 
- 1 
-l 
-1 
-1 
1 
-1 
-1 
-] 

1 
0 
1 
-1 
1 
-1 
- 1 
-] 

-1 
-1 
-1 

l 
1 
l 
-1 
-l 

CRITICAL-GATE OUTPUT-VALUE 
1 
l 
1 
] 

[NPUT NUMBER-----------------VALUE 
]-----------------~-] 2-----------------•-l 3-----------------;-J 4-----------------•-l 
~-----------------~-1 
G-----------------~ 1 

lS-----------------}-1 
17-----------------j-l 
19-----------------)-1 
21-----------------> l 
22-----------------~ 1 
24-----------------~-l 
*************************************** tEST NUMBER 17: 
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

GATE 
1 
.;: 
3 .. 
5 
b 
7 
8 

21 1 
10 
12 
H 

NUH OUTPUT 
-1 
l 
-1 
-l 
-1 
-1 
-1 
0 

VALUE 

1 
1 
1 
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-------~---- ----------

' 10 
11 
1.3 
13 
1-l 
lS 
16 
17 
18 
19 
20 
21 ..... ..... 
23 
Z4 

TEST VECTOl<: 

-1 
1 
-1 
1 
0 
1 
0 
0 
0 
0 
0 
0 
] 

1 
] 

-l 
-1 

[NPUT NUMBER-----------------VALUE 1-----------------/-l 
~-----------------~ 1 
3-----------------~-l 
~-----------------~-1 
~-----------------~-) 
6-----------------~-1 15-----------------> 0 
17-----------------~ 0 
19-----------------) 0 
21-----------------~ 1 22-----------------> ] 24----------------->-1 
AAA~A~AAAAAA~AAAAAAAAAAAAAAAAAAAAAAAAA* 
TEST NUMBER 18: 
CRITICAL-GATE NUMBER Cl<ITICAL-GAtE OUTPUT-VALUE 

fiA!E 
1 
2 
3 
4 
5 
,; 
7 

~ 
9 

10 
1 1 
12 
13 
1-4 
15 
16 
17 
lS 
19 
20 
21 

19 ) 
20 
10 
12 
14 

NUM OllTPUT 
-l 
1 
-1 
-l 
() 

- 1 
-) 

0 
] 

1 
0 
1 
0 
1 
0 
0 
() 

0 
1 
1 
0 

VALUE 

1 
) 

l 
l 
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22 l 
23 1 
24 -1 
25 -1 

TEST VECTOr.-: 
tNPUT NUM&Ei-----------------VALUE 
1----------------->-J 
2-----------------> 1 
3----------------->-l 
~-----------------)-1 5-----------------> 0 G-----------------)-1 

15-----------------) 0 
17-----------------) 0 
19-----------------> ) 
21-----------------~ 0 
22-----------------~ ) 
24-----------------)-1 
ftftAAAAAAAAAAAAAAAAftAAAAAAAAAAAAAAAAAAA• 
TEST NUMBER 19: 
CRITICAL-GATE NUM~ER CRITICAL-GATE OUTPUT-VALUE 

17 l 
18 1 
10 1 

GATE 
l 
2 
3 

"' 5 
G 
7 
8 
CJ 

10 
11 
12 
13 
14 
1~ 
1G 
17 
18 
lCJ 
20 
21 
22 
23 
24 

12 
14 

NUM OUTPUT VALUE 
-l 
-1 
-1 
0 
-1 
-1 
-l 
0 
l 
1 
0 
1 
-] 

1 
1 
1 
l 
1 
0 
0 
0 
1 
1 
-1 

2:i -1 
tEST VECTOR: 

1 
1 

INPUT NUMBER-----------------VALU~ 
1----------------->-l 
2-----------------)-1 
3-----------------/-1 
4-----------------) 0 
~----------------->-1 6----------------->-1 
15~----------------> 1 
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1?-----------------> l 
19-----------------~ 0 
21-----------------) 0 
22-----------------~ 1 24-----------------/-) 
'************************************** TEST NUH~ER 20: 
CRIIICAL-GAIE NUH~Ei CRITICAL-GATE OUTPUT-VALUE 

15 l 
1& 1 
18 ] 

10 l 
12 ) 

14 1 
GATE NUH OUT?UI VALUE 

1 -1 
2 ) 

J -1 
4 <'• 
'5 -1 
b -) 
7 -1 
B () 

C) 1 
10 ] 

ll 0 
12 ) 

13 0 
14 l 
l::i i 
16 l 
17 1 
18 ) 

19 0 
20 0 
:!1 0 
... ~ ) ...... 
23 1 
24 -) 
25 -1 

TEST VECTO~: 

tNPU! NUMBER-----------------VALUE 
1-----------------/-) 
2-----------------· l 3----------------->-l 
4-----------------~ 0 
s-----------------~-1 
G-----------------i-1 

15-----------------) ] 
17-----------------» 1 
19-----------------> 0 
21-----------------> 0 
22-----------------) ) 
24----------------->-1 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
TEST NUMBER 21: 
CRITICAL-GATE NUH~ER CRITICAL-GATE OUTPUT-VALUE 

& ) 
11 0 
23 0 
12 0 
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•JU.~.c..,_t..~o.;n.t.;l 

14 
GATE NU11 

1 
2 
3 
.a 
s 
G 
i 
8 
9 

10 
1 1 
12 
13 
14 
15 
16 
17 
18 
19 
::o 
21 
22 
23 
24 
2~ 

TEST VECTOR: 

ounur 
-l 
-1 
-] 

l 
] 

1 
-] 

-1 
0 
1 
0 
0 
-1 
0 
-l 
-1 
-] 

-1 
-] 

0 
] 

0 
0 
-1 
-] 

0 
VALUE 

[NPUT NUMBER-----------------VALUE 
)-----------------~-] 
~-----------------i-1 
3-----------------~-l 4-----------------· 1 
~-----------------~ l 
G-----------------~ 1 

i~-----------------~-1 17-----------------·-1 19-----------------)-] ::1-----------------, 1 
22-----------------) 0 ::4----------------->-l 
~~***~****~~~~********~**************** tEST NUMBER 22: 
CRITICAL-GATE NUMBER CRITICAL-GATE OUTPUT-VALUE 

5 l 
9 0 

20 0 
10 0 
12 0 
14 0 

GATE NUH OUTPUT VALUE 
1 -1 
2 ] 
3 -1 
4 ] 
5 1 ' -] 7 -1 
8 0 
q 0 

10 (I 
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•.: 1.1 ... .t L L .1.. • .,. H J. ; i 

ll -] 

\2 0 
1:'1 0 
14 0 
lS 0 
1~ 0 
17 0 
18 0 
19 l 
20 0 
21 0 
~2 1 
23 ] 

24 -1 ..,-... ~· -] 

TEST VECTOR: 
tNPUI NUM~ER-----------------VALUE 

)-----------------~-] 
2-----------------~ i 
3-----------------~-] 
4-----------------~ 1 
5-----------------~ l 
G-----------------~-1 

15-----------------> 0 
17----------------- 0 19-----------------/ ) 
~~-----------------~ 0 22-----------------/ ] 
24-----------------~-1 

•. 

************~*******************~*****~ TEST NUMBER 23: 
CRITICAL-GATE NUMBE~ CRITICAL-GATE OUTPUT-VALUE 

GATE 
1 
2 
3 
4 .,. 
-~ 

G 
7 
8 
C) 

10 
tl 
12 
13 
14 
15 
1t. 
17 
18 
19 
20 
21 
22 

4 1 
C) 0 

11 1 
23 
12 
14 

NUI't OUIPUT 
-1 
-1 
-1 
] 

1 
0 
-l 
-1 
0 
] 

l 
) 

-1 
. ] 

- l 
-1 
-1 
-1 
-1 
0 
1 
0 

VALUE 

1 
1 
1 
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23 J 
24 -1 
2S -1 

TEST VECTOR: 
tN~UT NUMBEi-----------------VALUE 
1----------------->-l 
~-----------------)-1 3----------------->-1 4-----------------) 1 
~-----------------> l G-----------------> 0 15----------------->-1 
17-----------------~-1 19----------------->-1 
21-----------------~ 1 
2~-----------------> 0 
~4----------------->-1 

**************************************' TEST NUMBER 24: 
C~ITICAL-GATE NUMBER CRITI~AL-GATE OUTPUT-VAL~E 

4 ] 
8 1 

10 1 

GATE 
1 
2 
3 
4 
5 
G 
i 
13 
9 

10 
11 
12 
1.3 
H 
l:i 
1G 
17 
18 
19 
~0 

21 
22 
23 

12 
14 

NUH OUTPUT VALUE 
1 
-1 
-1 
1 
-1 
-1 
- 1 
1 
- ) 

l 
- ) 

1 
-1 
l 
l 
1 
0 
0 
0 
0 
0 
1 
l 

~4 1 
2~ l 

TEST VECTOR: 

1 
] 

tNPUI NUMBER-----------------VALUE 
1-----------------> ) 2-----------------)-1 3----------------->-J 4-----------------> 1 s----------------->-1 6----------------->-1 15-----------------> 1 

17-----------------> 0 
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19-----------------> ~ 
~~-----------------) 0 
22-----------------~ 1 
~4-----------------> 1 
~~··~********************************** 
tEST HUM~ER 25: 
CRITICAL-GATE NUMBER CRITICAL-GATE OUT~UT-VALUE 

3 1 
7 

2S 
8 

10 
1:.1 
14 

GATE HUM 
1 
:! 
3 .. 
s 
6 
-; 
a 
9 

10 
11 
12 
13 
lot 
1Z 
16 
17 
16 
19 
:!0 
21 
~2 
23 
;!4 

25 
tEST VECTOT<: 

OUTPUT 
1 
1 
1 
1 
-1 
-1 
l 
l 
-] 

1 
-J 
1 
0 
1 
l 
l 
0 
0 
0 
0 
0 
1 
l 
0 
] 

VALUE 

1 
1 
1 
1 
1 
1 

INPUT NUHBET<-----------------VALUE 
1-----------------> ) 
2-----------------~ 1 
3-----------------~ 1 
4-----------------~ 1 
5----------------->-l 
6----------------->-l 
1~-----------------> ) 
17-----------------~ 0 
19-----------------> 0 
21-----------------~ 0 
22-----------------~ l 
2~-----------------> 0 
*************************************** 
TEST NUMBER 26: 
CRITICAL-GATE NUMBER CRITICAL-GATE OUT~UT-VALUE 

2 ) 
13 0 
16 0 
18 0 
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Uu.I.L.:.:..t..~.~~i/ 

10 
12 
14 

GAIE NUM 
1 
~ 
3 
4 
~ 
G 
7 
a 
9 

10 
1 1 
1: 
13 
14 
15 
1G 
17 
18 
19 
20 
;:) 
22 
23 
24 

OUTPUT VALUE 
-l 
1 
-l 
- l 
-l 
-1 
-] 

0 
- 1 
0 
- l 
0 

·(\ 

0 
(l 

0 
l 
0 
0 
0 
0 
1 
] 

-1 
25 -1 

TEST VECTOR: 

0 
0 
0 

tNPUT NUMBER-----------------VALUE 
1-----------------~-] 2-----------------j 1 3----------------->-l 4-----------------.-1 
5-----------------~-1 G----------------->-1 

15-----------------) 0 
17-----------------~ 1 
19-----------------) 0 
21-----------------> 0 
22-----------------> ] 
24----------------->-1 
**~*******************~**************** tESt NUMBER :7: 
CRITICAL-GATE NU~BER 

GATE 
1 
2 
3 
4 
~ 
6 .. 
' 

7 
25 

8 
10 
12 
14 

NUM OUTPUT 
l 
1 
l 
1 
-J 
-1 
) 

Cl< IT ICAL-GATE 
l 
1 
1 
1 
1 
1 
1 

VALUE 
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8 
9 

lC 
11 
};;: 

13 
14 
15 
16 
17 
19 
19 
20 
21 
2~ 
23 
24 
25 

TEST VECTOR: 

] 

- 1 
l 
- 1 
] 

0 
l 
l 
1 
0 
0 
0 
0 
0 
] 

1 
0 
1 

INPUT NUH~E~-----------------VALUE 1-----------------) 1 
2-----------------~ 1 
3-----------------~ 1 
~-----------------~ l 
5-----------------~-] 
G-----------------~-1 15-----------------) l 17-----------------j 0 
19-----------------~ 0 
21-----------------> 0 
22-----------------~ 1 
24-----------------~ 0 
****~~~~*~*~*********~***~********~**** TEST NUHBE~ 28: 
CRITICAL-GATE NUMBE~ C~ITICAL-GATE OUTPUT-VALUE 

GATE 
1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 
13 
14 
1~ 
16 
17 
18 
19 
20 

l 1 a 1 
10 1 
12 
14 

NUH OUTPUT VALUE 
] 

-1 
-1 
1 
-1 
-1 
-1 
1 
-1 
1 
-1 
1 
-·] 

1 
] 

1 
0 
0 
0 
0 

1 
1 
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