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PREFACE 

This work investigates the performance characteristics of vertical 

ground-couplings that are used as a scurce and sink for water-to-air 

heat pumps. Two methods of predicting heat transfer capabilities of 

various coupling designs are compared with the results of an 

experimental system. Recommendations are made based upon the degree of 

accuracy that is desired. Procedures are provided for system design and 

simulation. Heat pump capacity and power requirements can be determined 

with computer algorithms or by hand calculations. 
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CHAPTER I 

INTRODUCTION 

1.1 Basics of Closed Loop Ground-Coupled 

Heat Pumps 

Rising energy costs have led to a consumer interest in water source 

heat pumps for residential use. By utilizing a heat pump, both heating 

and cooling can be provided by a single piece of equipment. Electric 

utilities have a particular interest in heat pumps si nee they show 

promise of leveling their load throughout the year. Water source heat 

pumps offer an advantage over the more common air-to-air types, in that 

heat is rejected or absorbed through water, a generally more desirable 

heat transfer medium. Installation of these units is greatly simplified 

if an open source of water is available, such as a well water. These 

types of water sources are often not present in the proper location and 

quantity required. In many instances savings are nullified because of 

-the energy consumed by we 11 pumps. 

An alternative is closed loop ground-coupled heat pumps (CLGCHP). 

In these systems, water is circulated between a heat pump and a piping 

system buried in the ground. The water rejects or absorbs heat from the 

ground. Ground temperatures vary less than local air temperatures. A 

recently completed study at Oklahoma State University has shown that by 

using the ground for the heat pump source or sink, both high COP•s and 

EER•s can be realized (1). A significant finding was the fact that 
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resistance heat was unnecessary even on the coldest days of the 1982-

1983 winter. 

Closed loop ground-couplings are typically divided into two types, 

horizontal and vertical. Horizontal types are installed with a 

trenching machine and in some cases with a backhoe. Burial depths are 

typically four feet below the surface. Better performance is possible 

with greater depths and with multiple pipes installed at different 

locations in the same trench. 

This thesis will be limited to study of vertical ground-coupled 

heat pump systems. In many applications horizontal systems may be a 

better alternative when economics, local climate and geological 

conditions are considered. However, in many other cases vertical 

systems are a better option. 

Figure 1 is a schematic of a typ i ca 1 water source/sink heat pump 

and two verti ca 1 ground-coup 1 i ngs used in previous installations. The 

heat pump unit, which includes the compressor, reversing valve, fan, and 

two heat exchangers, is located indoors. Water pumps and any additional 

flow meters and valves are also normally indoors. Indoor noise levels 

are comparable to those air source heat pumps or furnace type heating 

and coo 1 i ng equipment. Water or a water and anti freeze mixture is 

pumped through the refrigerant-to-water heat exchanger and then into the 

ground-coupling where it absorbs or rejects heat before returning to the 

heat pump. 

Vertical ground-couplings offer two primary advantages over 

horizontal types. First, the amount of ground area required is much 

less, and this is a significant factor in areas of increasing population 

density. Secondly, the properties of ground in contact with a vertical 
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ground-coupling are usually more advantageous to good heat transfe·r. 

Ground temperatures at depths of greater than 20 feet have neg 1 i gi b 1 e 

annual variation, while these temperatures may vary 10° to 20°F above 

and below the average yearly air temperature at depth of four feet 

(2). The effective ground thermal conductivity is usually higher 

because of the generally greater moisture content of soils surrounding 

vertical ground-couplings. Therefore, the potential exists in vertical 

installations of warmer water temperatures in the winter and cooler 

temperatures in the summer than those possible in horizontal systems. 

1.2 Heat Pump Fundamentals 

The Coefficient of Performance (COP) of a heat pump is primarily a 

function of the temperature difference between the source and sink. The 

smaller this difference the higher the COP. Properly installed CLGCHP•s 

have a much greater potential for minimizing this difference than air 

coup 1 ed systems. The effects of this can be seen when examining basic 

thermodynamics and heat pump manufacturer•s performance data. 

The heat pump process can be idealized in a Carnot cycle. The 

coefficient of performance (COP) for a Carnot ·heat pump is 

COP = 
TH 

(Heating), COP = 
Tc 

(Cooling), (1.1) 
TH - TC TH - TC 

where T must be absolute temperature (Kelvin or Rankine). From these 

equations it can be seen that by reducing the difference between the 

high temperature TH (condenser in cooling, evaporator in heating) and 

the low temperature Tc (evaporator in cooling, condenser in heating) the 

COP is increased. 
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Figure 2 also illustrates this point on a pressure-enthalpy 

chart. This chart represents the cooling cycle of a heat pump using two 

different condenser pressures. Path 1-2 represents condensation (heat 

rejection), 2-3 expansion, 3-4 evaporation (desired cooling), and 4-1 

compression (work input). A lower condenser temperature results in a 

lower condenser pressure (represented by line 1A-2A) and a lower 

compressor discharge pressure and therefore the work input from 4-1A is 

less than 4-1B, yet the desired cooling effect (3-4) remains the same. 

In the heating mode path 1-2 is unchanged but the 3-4 isobar would have 

a higher va 1 ue for warmer water and the va 1 ue of work required wou 1 d 

again be less. 

These thermodynamic principles point to the value of minimizing the 

difference in temperature between the evaporator and condenser. Figure 

3 is a diagram further illustrating this point by comparing the 

efficiencies of three different heat pumps to the temperature of the 

incoming water. The figure shows that heating performance (COP) 

increases with warmer water and cooling performance (EER) increases with 

cooler water temperature. 

1.3 Economics of Installations 

The variation of installed cost of CLGCHP systems is quite large 

compared to other types of resident i a 1 and commercia 1 heating 

ventilation and air-conditioning (HVAC) systems. Total equipment cost 

of a CLGCHP is comparable to or less than an air-coupled system of 

standard efficiency or a refrigeration cooling/fossil fuel heating 

system. However, installation cost vary significantly with local ground 

conditions, type of installation equipment used, availability of 

5 
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coupling materials and qualified personnel. An installer in the Waco, 

Texas, area charges $3.00/ft. of vertical bore using a small trailer 

mounted drilling rig and 3/4 11 U-tube ground-coup 1 i ngs. However, this 

type of drilling is neither available or adequate in many locations. In 

many areas much larger equipment is needed and costs may exceed 

$10.00/ft. In central Oklahoma, installed ground-coupling costs are 

typically $5.00/ft. (including pipe). This would therefore increase the 

installation cost $750.00 per nominal ton. Air-coupled systems of 

course do not have this additional cost. 

The calculation of economic payback is therefore critical to 

successful marketing of CLGCHP systems. However, this calculation is 

complicated due to the variation in performance of different types of 

vertical ground-couplings in different locations. As is the case in 

almost all equipment installations, long term energy savings can be 

increased by increased quality and cost of equipment. 

The cost of plastic pipe is a relatively small portion of the 

overall cost of a ground-coupling. In order to significantly improve 

payback, research must be directed at i nsta 11 i ng ground-couplings that 

reduce the cost of required bore. In addition to design optimization, 

some type of seasonal energy consumption prediction procedure must be 

used in order to properly calculate economic payback of CLGCHP 

systems. Actual installations have proven to be a viable option in many 

heating and cooling applications in Oklahoma. Initial costs have 

limited the market acceptability of these high efficiency systems. In 

order to further reduce the costs of these systems, additional 

information is needed concerning the nature of heat transfer to and from 

water circulating through buried plastic pipes. 



1.4 Present Status of Design Procedures 

In the 1983 Transactions of the American Society of Heating 

Refrigeration and Air Conditioning Engineers (ASHRAE), the results of a 

comprehensive study by Ball, R. Fischer and Hodgett (3) are summarized. 

"Experience with vertical coils systems is much less than for 

horizontal systems. The only well known well-instrumented 

systems are in Sweden ••• the vertical ground coil system 

in a clay soil has a SPF similar to those of optimal 

horizontal systems but require half the surface area." 

Although the report was heavily weighted toward hori zonta 1 CLGCHP 

systems, the authors concluded: 

"· •• no publicly available design guidelines exist at the 

present time • . • major uncertainties exist . • . for 

systems with substantial cooling operation, because of 

inability ..• to deal with moisture migration and soil 

recession." 

The authors do not indicate if these shortcomings effect vertical 

ground-couplings significantly. 

ASHRAE has recognized both the potential of CLGCHP systems and the 

necessity of comprehensive design guidelines. Therefore the society has 

commissioned a project to assemble and publish design methodologies. 

This report, Data Design Manual for Closed-Loop Ground-Coupled Heat Pump 

Systems ( 4) , wi 11 cover the many comp 1 exit i es of design and 

installation. It recognizes the continuing need for additional 

experimentation and development of design methods in this relatively new 

field in HVAC. 
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As indicated in the above quote, vert i ca 1 installations are 1 ess 

common than horizontal ones. Many questions remain unanswered 

concerning optimum arrangements of vertical CLCSHP systems. A variety 

of ground-coupling designs are used and general trends concerning 

efficient installation are known. However, direct comparisons cannot be 

accurately made between systems because of the large number of variables 

that cannot easily be controlled or measured. These variables include 

ground thermal properties, ground moisture content, local ground water 

movement, heat pump operational characteristics and system design and 

installation procedures. The literature survey of Chapter II discusses 

specifically the present status of research and installation method of 

vertical CLGCHP systems. 

1.5 Plan of Attack 

The optimization of vertical CLGCHP systems requires the 

development of a valid model that predicts operation during peak heating 

and cooling loads and estimates seasonal energy consumption. A 

literature search of material related to this topic indicates there are 

two primary areas that need further investigation. These are: 

1. Relative performance of various vertical ground-coupling 

designs. 

2. Inside heat transfer coefficients in ground-couplings for 

forced, free and mixed convection. 

Therefore, two experimental systems were designed and installed to 

investigate these areas. 

Chapter II deals with the relative performance of six various 

ground-coup 1 i ng designs. This chapter inc 1 udes a 1 i terature survey, a 



description of the experimental system and the results of a one year 

experimental test. Chapter III reports on the test concerned with heat 

transfer coefficients in a vertical ground-coupling. It also includes a 

literature survey, system description and experimental results. These 

two installations provide necessary information for model development 

and validation. 

Model development will be in several stages ranging from complex to 

simplified. Computer simulation utilizing finite difference equations 

(FDE•s) are developed and explained in Chapter IV. The first simulation 

utilizes an explicit formulation (forward time step) and applies only to 

the 2-dimensional (vertical and radial) heat flow patterns of concentric 

ground-couplings~ This formulation requires considerable computer time 

since time steps for smaller pipes are less than 5 seconds, and the 

simulation must be performed over several months before peak conditions 

are reached. Conversion to the 3-dimensional heat flow variation 

(vertical, radial and circumferential) encountered in U-tube ground

couplings would require much more computation time. Therefore a series 

of simplifications are made to reduce computer time. These 

simplifications permit the use of a one-dimensional implicit formulation 

(backward time step) that allows the use of-much larger time steps and 

models both concentric and U-tube arrangements. 

Although considerable simplification of the FDE•s are possible with 

sma 11 1 asses in accuracy, the scheme is st i 11 somewhat camp 1 ex and 

requires considerable computer time. Chapter V outlines a simulation 

model utilizing the Kelvin Line Source Theory proposed by Ingersoll (5), 

and developed by others (2) (6) (7). Although this scheme does not have 

the flexibility and instantaneous accuracy of FoE•s it reduces the 

10 
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computation time significantly. This method has been primarily used as 

a design tool for predicting water temperatures and heat pump 

performance at peak conditions. It can be modified and used to predict 

heat pump performance at less than peak conditions. Therefore it can be 

used as a tool for calculating energy consumption. 

The performance of standard air-coupled heat pump systems are 

primarily dependent upon outdoor air conditions. Capacity and 

efficiency can be calculated by knowing the outdoor temperature. 

Similar performance calculations of ground-coupled heat pump system are 

dependent on a great many more variables. These include soil 

temperature, soil moisture, groundw{lter movement, soil density, pipe 

thermal characteristics, pipe size, pipe lengt~, w~ter f1ow rate a.nd 

amount of time the system has operated before the performance 

calculation is made. This last variable requires that some type of 

building load simulation be performed in conjunction with a simulation 

of the ground-coupling in order to calculate the water temperature 

entering the heat pump. 

The building load simulation used in this paper utilizes the 

monthly degree-day method for heating and cooling. Current procedures 

of utilizing this method do not yield a· high degree of accuracy, 

especially in the cooling mode. However, efforts are being undertaken 

to reduce error with this method due to improper accounting for internal 

loads, daily range, thermal mass, infiltration and insulating methods. 

Although bin and transfer function methods yield higher accuracy, the 

varible base degree-day method is sufficient for general applications. 
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1.6 Limitations 

The simplifications utilized to reduce computation in this model 

require that limitations be placed on its range of application. These 

are: 

1) Ground couplings are of small bore (less than six inches). 

2) Freezing of soil is not considered, but can be implemented 

using methods of references (2) and (4). 

3) Less than 80% of the total ground-coupling is located in soils 

whose undisturbed temperature varies + 3°F or is located in an 

aquifer with water movement greater than 20 ft/year. 

4) Limited interference from adjacent ground-couplings (separation 

distance greater than 20 feet). 

5) System is us'ed for both heating and cooling. 

6) If moisture migration is significant, performance must be 

adjusted utilizing methods of reference (4). 

7) No separation between ground-coupling and soil. 

8) Maximum of two U-tubes per bore. 



CHAPTER II 

EXPERIMENTAL GROUND-COUPLING SYSTEM 

Experimental testing of vertical CLGCHP systems has been more 

1 imi ted than testing of hori zonta 1 systems. The work of Ba 11, Fischer 

and Hodgett (3) which was published in 1983, indicated there were no 

well instrumented systems operating in the U.S. While this may be 

somewhat of an overstatement, there indeed remains several aspects of 

vertical systems that need experimental verification. Many analytical 

and numerical design methodologies exist and several have been validated 

by experiment for local conditions. The following literature survey 

summarizes experiments directly related to vertical CLGCHP systems. It 

provides necessary background to the experimental system used in this 

project. 

2.1 Literature Survey 

There was considerable research concerning the use of the ground as 

a source or sink for heat pumps in the period of 1948-1953. At this 

time the popularity of gas and oil as a heating source, resulted in 

declining interest in the use of heat pumps. The price increases of 

fossils fuels experienced in the mid-1970's rekindled interest in CLGCHP 

systems. Experimental and analytical investigations resumed in 1977 and 

1978.) This literature survey is limited to experimental investigations 
J' 

with sufficient instrumentation to validate models. 

13 
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Dr. James Bose and coworkers (2) in the School of Technology at 

Oklahoma State University have studied actual installations of ground

couplings beginning in 1978. One of the several ground-coupling devices 

observed was a 5 inch diameter PVC vertical pipe similar to the system 

shown in Figure 1. The system included a heat pump that typically 

rejected 34,000 Btu/hr (cooling mode), 232 feet of 5 in. sch. 40 PVC 

sealed outer casing and a dip tube of 1 1/4 inch PVC pipe. Thermo

couples were located in the soil around the pipe, in the inlet and 

outlet water and inside the outer pipe at various depths. Test were 

conducted with water injected in the top of the we 11 and a 1 so with 

injection at the bottom. Results were plotted in the form of water 

temperature vs. continuous run time. The ground temperatures below 20 

feet at the site were 62°F. Significant results were: 

1. After one hour of continuous running, water returned to 

the heat pump at 77°F. The temperatures were 97°F after 

four hours and 103°F after 7 hours. 

2. After one hour continuous running, the well had a 11 U

value11 of 9.0 Btu/hr°F-ft per linear foot of pipe, 4.1 

Btu/hr-°F -ft after four hours, 3. 0 Btu/hr-°F -ft after 7 

hours and a minimum value of 1.7 -Btu/hr-°F-ft at peak 

periods in August. 

3. When the water return temperature reached 105°F and the 

system was shut down, it took 12 hours for the water 

temperature to return to 76°F, and four days to reach 

69°F. 

For the s&me system in the heating mode (earth acting as a heat 

source) and coupled with a 210 ft 2 solar assist (using the coupling and 



ground around it as heat storage) results were: 

1. A minimum recorded return water temperature of 38°F. 

Thus, the possibility of freezing exists in the ground

coupling. 

2. A long term steady state U-value of 1.7 Btu/hr-F0-ft and 

a value of 3.4 for 50 per cent cycle. 

3. An increase of 20% in U-values when an insulated dip tube 

was used (2). 

Test results of a similar system in Beaumont, Texas, agree well 

with the OSU data (8). A water source heat pump (41,000 Btu/hr cooling, 

59,000 Btu/hr heating) was coupled with a 360 foot 5 in. sch. 40 PVC 

well. The system worked extremely well in the heating mode, because of 

the lighter load and higher earth temperature (69°F). However, in 

peri ads of cant i nuous operation ( 6 or more hours) in the coo 1 i ng mode 

the return water temperature reached 105°F. At this temperature the 

heat pump yielded a relatively poor EER of 7.23. However, the value 

increased to 9.0 during periods of 50% cycle time. 

Another test on this type of system was conducted at Louisiana 

State University ( 9). A 504 ft. 2 1/2 in. stee 1 pipe ground-coup 1 i ng 

and a 265 ft. 1 1/4 in. U-tube polyethylen~ pipe coupling were tested. 

Researchers made tests on these systems for 48 hours using cant i nuous 

operation,30 minutes on- 30 minutes off, and 15 minutes on - 45 minutes 

off. Results are shown in Table I for the heating mode. Ground 

temperature is 21°C (69.8°). 

A study conducted by Ok 1 ahoma State University to determine the 

performance of these systems in more realistic cyclic operation, 

collected data in Perkins, Oklahoma, on three homes of identical 

15 



Run Time 2 
Percent 

100 

50 

25 

TABLE I 

RESULTS OF GROUND COUPLING STUDY AT 
LOUISIANA STATE UNIVERSITY (9) 

1/2" Concentric 1 1/4" Poly Eth. 
Steel Pipe U-tube 

2.81 2.0 

4.34 2.72 

6.87 6.7 

11 U-values" in Btu/hr-°F-ft 

16 

2 1/2'' Concentric 
PVC 

(Calculated) 

2.07 

2.8 

3.68 

construction (1). One home had an air-to-air heat pump, the other two 

CLGCHP systems. One was solar assisted. Sixty-three data points were 

co 11 ected every fifteen minutes. The ground-coup 1 i ngs for the water 

source heat pumps were ori gina lly 250 ft. 5 in. PVC casings, but in 

March of 1982 these were replaced with 250 foot, 1 1/2 in. sch. 40 high 

density polyethylene U-tube couplings. 

The west house (water source heat pump without a solar assist) is 

of particular interest when examining the performance of vertical 

ground-couplings because of the absence of other variables present in 

the solar assisted system. Actual heat pump efficiencies are difficult 

to calculate because the experiment was designed primarily to determine 
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how effective a heat pump can be in reducing overall demand as well as 

consumption. Data were taken in "lumps". A hot water heat recovery unit 

( desuperheater) was insta 11 ed on the compressor discharge 1 i ne. This 

reduces overall home consumption especially in the cooling mode, but 

complicates efficiency calculations. Therefore, the temperature of the 

water entering the heat pump can be considered the primary variable that 

determines well and heat pump performance. 

Figure 4 is a plot of temperature over a 24-hour period for four 

days of extremely high cooling load. Figure 4 a) and c) reflect 

temperatures for the 5 inch PVC well on August 3, 1981, and August 5, 

1981. These days were selected to determine the performance of the well 

over a relatively long period (3 days) of high loads. Figure 4 b) and 

d) are similar days for the 1 1/2 inch polyethlene U-tube. Indoor and 

outdoor temperatures are plotted continuously. However, the well inlet 

and outlet temperatures are plotted only when the heat pump is on (other 

values do not reflect the temperature of the circulating water). 

Examination of these figures indicate the following: 

1. The po lyeth 1 ene U-tube returns coo 1 er water to the heat 

pump even though the load on it is larger than ~n the PVC 

coupling. (Notice the increased load is due to the lower 

thermostat setting in the summer of 1982). 

2. The return water temperature ·does not increase noticeably 

if the on time is 30 minutes or less. In many cases it 

actually decreases over a 30 to 45 minute on time. 

3. The return water temperature begins increasing 

noticeably if the on time is longer than 45 to 75 

minutes. 
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4. Return water temperatures sometimes exceeds outdoor 

temperature in the late afternoon. 

5. Return water temperatures are below 85°F with the 

polyethylene U-tube arrangement, therefore, performance 

at least equal to ARI ratings can be expected even during 

periods of highest loads. 

properly sized and installed. 

This assumes systems are 
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Figure 5 is a plot of water temperature in and out of the ground-

coupling for January 11, 1982, the coldest day of the 1981-1982 winter 

in Perkins. The minimum coup 1 i ng in 1 et temperature was 4. 8°C ( 40. 6°F) 

for the PVC system. The polyethlene U-tube has an even higher minimum 

temperature under similar conditions. It can also be concluded that the 

addition of antifreeze to the water is unnecessary in this climate for 

similarly designed systems. The heat pump provided all the heat needed 

for this extreme ·case and no auxiliary heat was used. 
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Figure 5. Temperatures on Coldest Day of 1981-2 Winter 
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Mei and Fischer (10) conducted test on a concentric PVC ground-

coupling in order to develop and validate a FOE simulation of a vertical 

CLGCHP. The apparatus consisted of a 155 ft. coupling with a 5 inch 

schedule 40 casing and a 1 inch PVC inner pipe, similar to the one shown 

in Figure 1. The coupling was set in an 8-in. well casing and backfilled 

to establish good thermal contact. 

Tests were conducted primarily to validate the computer model and 

do not reflect the gradual injection water temperature change associated 

with CLGCHP systems. Water at(t0,7°F ~as injected at a rate of 5. 0 gpm 
"' ..... ~'~""'-'" c ' 

continuously and cyclically. No outlet temperatures were reported, 

however, water and outside shell temperatures were recorded after water 

had passed through 100 ft. of the coupling (55 ft.). Outside pipe wall 

temperatures were also recorded at this location. 

A six-hour test was performed. After one hour the water temper-
,,<·~;~.,,; .,_ 

ature was(99°F'and the outside wall temperature was 75°F. At six hours 
\. ........ ~· 

the water temperature was 102°F and the wall temperature 78°F. The hot 

water injection was halted at this point for six hours. The water 

temperatures dropped to 77°F and the wall temperature to 72°F. 

Another test was performed by injecting(~~-~~ water at the same flow 

rate continuously for 12 hours. The 100 ft. water temperatures were 

G~ at 1 hour and(~-~~/ at 12 hours. Pipe temperatures were fg6~)at 1 
'-.. _ ___.-""'/ 

hour and (54°~--~t 12 hours. 

Hot and cold water tests were also performed for 30 min. on - 30 min. 

off cyclic test. Hourly water temperature fluctuations were about 7°F 

for hot water and 5°F for the cold water at the 100 ft. point. Average 

temperatures were 101°F after 12 hours of on-off hot water injection 

and 41°F for cold water injection. All test reported in this reference 
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were relatively short term. 

G. Rosenblad (11) utilized shallow vertical couplings in a heat 

pump test in Utby, Sweden. The couplings were round PVC pipes 10-meters 

in length and divided by a partition for the up and down flowing brine 

solution. Thirty seven couplings were arranged in a triangle pattern 2 

meters apart and flow was split into 3 parallel paths. The location has 

1 itt 1 e coo 1 i ng requirement, so heat from co 11 ectors (wind convectors) 

was injected into the coupling during the summer. The focus of this 

experiment was to determine the usefulness of the ground for long term 

(seasonal) heat storage. A air-to-air heat pump was used when 

temperatures were above 1°C to conserve the heat in storage. 

The average ground temperature was dropped 3 to 5°C be 1 ow the 

average undisturbed ground temperature at a distance of 1 meter from the 

couplings during winter use. The heat addition during the summer months 

raised this temperature 1.3 to 2.0°C above the normal undisturbed 

temperature. The resulting COP values of this complex systems was about 

3.0. 

These studies indicate the vertical ground-coupling is indeed an 

attractive option for water source heat pumps. Many actual 

installations have proved successful. However, continued study is 

warranted in order to further increase performance by designing coupling 

installations and heat pumps specifically for this application in 

different environments. 

2.2 Experimental System 

The literature available lacks a comprehensive study of factors 

that effect heat transfer in and near vertical ground-couplings over an 
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extended period of time. The large temperature difference encountered 

across the pipe wall of PVC couplings indicates this design can be 

improved. Insignificant temperature change would occur with metal 

coup 1 i ngs, but increased cost and corrosion prob 1 ems may exc 1 ude them 

from consideration. Additionally, the use of U-tube designs seem to 

perform better than concentric. However direct comparison of concentric 

and U-tube couplings using the same pipe material has not been 

attempted. There has been little experimental treatment of thermal 

short circuiting between the upward and downward flow streams in non

concentric coupling designs. 

The experimental systems shown in Figures 6, 7, and 8 is the result 

of a design procedure that investigates the areas mentioned above and 

adds to the existing body of experimental data concerning vertical 

CLGCHP systems. A 1 though the experiment does not exhaust the 

possibilities of ground-coupling designs, most small bore (less than 6 

inch diameter) coupling performance can be estimated from results. 

Larger bore couplings are not considered primarily because of current 

pipe and installation costs. The experimental system is designed to 

study the effects of varying geometric arrangement (concentric, U-tube, 

multiple U-tube), pipe diameter, pipe walr thermal resistance, water 

flow rate, and heat pump on/off cycle duration. Figure 6 shows the 

design of the six 100 foot vertical ground-couplings. Thermocouple 

locations are shown along with normal flow arrangement. Figure 7 shows 

the plan of the coupling layout along with the water supply and return 

piping. Figure 8 is a schematic of the test room equipment. 

The designs shown in Figure 6 are variations of couplings that have 

worked well in actual installations and ones that appear to be 
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Figure 6. Parallel Ground-Coupling Designs 
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effective based on preliminary computer simulation. The predominate 

material is high density polyethylene (ASTM 3408) which has a relatively 

high thermal conductivity for plastic (0.226 Btu/hr-ft-F). Polybutylene 

(k = 0.13 Btu/hr-ft-F) is used. in one coupling to examine the trade-off 

between a material of lower thermal conductivity, higher strength and 

therefore thinner pipe wall. Schedule 80 PVC is used as the annular 

injection tube in the concentric designs because its thick wall and low 

thermal conductivity increase resistance to thermal short circuiting. 

In addition to giving a comparison in terms of pipe material, the 1 

1/2 inch-polyethylene coupling provides a means of determining the 

effects of increased diameter when its performance is compared with that 

of the 3/4 inch polyethylene U-tube. A double 3/4 inch U-tube shows the 

effects of increasing pipe wa 11 therma 1 contact area with the ground 

when compared to a single coupling of the same size. 

Water exits the heat pump into a common header and branches off 

into the six 100 foot ground-couplings, as shown in Figure 7. Water 

returns to the heat pump through individual pipes. Figure 8 shows the 

test room layout, and the location of valves and visual flowmeters. The 

water from each loop passes through a valve and flowmeter before mixing 

into a common header at the pump suction. ·Two small circulating pumps 

operating in series discharge into the heat pump. Pump power input 

ranges from 300 watts at 7.5 GPM to 375 watts at 12.0 GPM. 

The heat pump used in the experiment is an FHP model LT50, with a 

nominal capacity of 48,000 Btuh. Manufacturer's data state that this 

unit is capable of operating with entering water temperatures as low as 

40°F. Performance data are included in the Appendix. Actual unit 

output and power consumption agree well with published data. 
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Temperatures were measured with type T thermocouples and recorded 

on a Campbell Scientific CR5 Data Logger. In addition to the positions 

shown in Figure 6, thermocouples were located to measure the temper

atures of the water entering and leaving the heat pump, the air entering 

and leaving the heat pump and the outdoor temperature. Wet bulb 

temperatures were periodically measured with a sling psychrometer. 

Air flow rates were originally measured with the chamber and nozzle 

arrangement shown in Figure 8 in accordance with ASHRAE Standard 37-

78. However, the heat pump was normally operated without the chamber 

because of the excessive pressure drop across the nozzle and correspond

ing reduction in flow rate. Only ninety percent of rated flow could be 

obtained with a 1-1/2 horsepower fan in the heating mode. 

The chamber was replaced with a circular duct at the beginning of 

the summer test. Flow was measured with a pitot tube and the fan 

differential pressure was simultaneously recorded. The resulting curve 

of flow vs. pressure served as the basis of flow measurement for the 

remainder of the test. The operation of the heat pump was controlled by 

a timer rather than a thermostat. This timer was capable of cycling the 

unit in 15 minute increments and was programmed on a 24-hour basis. 

Typical cycles tested during the winter were continuous (100%), 45 

minutes on - 15 minutes off (75%), 30 on - 15 off (67%), 30 on - 30 off 

(50%), 15 on - 15 off (50%), and 15 on - 45 off (25%). The unit was 

normally operated 75% at night and 50% during the day when testing is 

not being performed. This level of operation was maintained for 2 1/2 

months for an equivalent run fraction of approximately 60% from mid

January until April 4. The coo 1 i ng mode test began June 3 with an 

equivalent run fraction of 25% for three weeks. This run fraction was 
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accomplished by a 50% fraction in the afternoon, 25% during the morning 

and evenings and off at night. The daily run fraction was increased to 

50% for eight weeks, and 62% for the following two weeks. At this point 

tests varying flow rates and the number of loops in operation were 

performed. 

The water pumps were wired to the compressor contacts on the heat 

pump and therefore operate when the unit was running. However, they 

could be operated independently of the heat pump for testing and 

calibration purposes. 

The data logger is capable of being operated synchronously with the 

heat pump in order to give temperature samplings at known times during 

on-off cycles. It can also operate independently and is activated by a 

timer, to limit the collection of unnecessary data. 

In order to control temperature in the test room during winter 

tests, an exhaust fan with a 1500 CFM capacity was controlled by a room 

thermostat. Outside air was induced into the building when room 

temperature exceeded typical operating levels. This scheme allowed full 

load testing to be done when outdoor conditions were only moderately 

cool. Therefore, peak heating loads could be simulated into April. 

However, when the outdoor temperature rose above 55°F, full load 

operation could not be maintained with test room temperature below 80°F. 

This scheme did not work as we 11 in the coo 1 i ng mode bee au se 

induction of warm air was accompanied by large amounts of water vapor. 

This often resulted in latent loads approaching the magnitude of 

sensible loads. This situation was partially remedied by a controlled 

dumping of heat pump outlet air in addition to a thermostatically 

contra 11 ed addition of resistive heat to the test room. However, the 
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problem remained during rainy periods. Since the months of July and 

August were extremely dry, the overall effects upon the test were 

minimal. 

2.3 Winter Test Results 

Peak heat transfer rates ofground-coupled heat pumps are lower in 

the heating mode than in the cooling mode of operation. The amount of 

heat absorbed by the coupling device is the unit capacity less the input 

to the compressor and pumps. However, it cannot be assumed that ground

couplings sized to the cooling load are sufficiently sized for heating 

operation 

often 

in Oklahoma, a region in which the annual cooling load 

exceeds the heating 1 oad. The heating mode of operation is 

critical because of the possibility of freezing in the evaporator and 

because of the sharp drop in capacity of heat pumps not specifically 

designed for operation with entering water temperatures below 50°F. The 

FHP Model LT50 is designed for low water temperatures. No antifreeze 

solution was used in this experiment. The unit shut down when the water 

leaving the heat exchanger dropped below 36°F. 

The necessity of antifreeze solutions in vertical ground-couplings 

in Oklahoma is debatable. It is necessary to examine actual heat 

absorption rates and local ground conditions before making a decision. 

However, it appears that in installations with a climate and ground 

properties similar to test site, antifreeze is unnecessary provided that 

ground coup 1 i ngs simi 1 ar to those used in this test (not inc 1 ud i ng the 

single 3/4 U-tube or 2 inch concentric) are installed with 150 feet of 

hole per nominal ton capacity and water flow rates of at least 3 GPM per 

ton. This assumes that the system will be sized to the load and the 



monthly run fraction will not exceed 75%. Additional lengths are needed 

if a single 3/4 inch U-tube or a 2 inch concentric coupling are used. 

Determining the lengths will be discussed in Chapter V. 

Caution must be used in applying the temperatures recorded in these 

tests directly to installations. Figure 9 appears to indicate the 

performance of 5 of these loops is almost identical. However, since the 

loops are returned to a common pipe, the ones having a 1 arger heat 

transfer capacity compensate for the ones of lower capacity. This means 

that if six single 3/4 inch loops were installed on a FHP LT50 the 

resulting water temperature curve would be lower than the one shown in 

Figure 9. This would result in lower unit capacity and efficiency. 

Conversely, if six double 3/4 inch tubes were installed, the resulting 

curve would be higher than the one shown in Figure 9 for the double U

tube. The temperatures shown in Figures 9, 11, 13, 14, 15 and 16 are 

adjusted. This is necessary since the water entering the single 3/4 

inch U-tube is normally 0.4 to 0.2°F colder than the water entering the 

1 1/2 inch U-tubes and the 2 inch concentric (see Figure 7). Therefore, 

all inlet temperatues are adjusted to agree with the inlet temperature 

of the 3 inch concentric and the double 3/4 inch U-tube. The outlet 

temperatures were accordingly adjusted so the temperature difference on 

each loop remained unchanged. Additionally, the temperatures shown in 

Figures 10, 11 and 14 are average temperatures over the period in which 

the heat pump was on. Off time temperatures were not normally taken 

during these tests. 

Examination of Figure 9 shows the results of a continuous run 

performed March 17-18, after the system had been operated at over 60% 
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run time for two months. This test would be equivalent to the load 

experienced by a properly sized unit operating in Stillwater with an 

13°F outdoor temperature for 16 hours. The test was preceded by an 

eight hour 75% run, which included a 15 minute off period immediately 

before the unit was turned on. The performance results are typical. 

The double 3/4 inch polyethylene U-tube normally returns water 0.4 to 

0.6°F warmer than the 3 inch concentric coupling, except for periods 

when the 1 arger thermal mass of the concentric reduces fluctuations 

(notice hours 9 to 13). The polybutylene and polyethylene 1 1/2 inch U-

tubes also typically return water 0.4 to 0.6°F cooler than the double 3/4 

inch U-tube. The 2-inch concentric arrangement matches the performance 

of the 1 1/2 inch U-tubes for continuous runs of 4 hours or less, but 

temperatures are 0.2 to 0.4°F lower for most other runs. The single 3/4 

inch polyethylene coupling typically returns water 1.0 to 1.2°F cooler 

than the double 3/4 inch. This translates into approximately a 25% 

reduction in heat transfer capacity. 

Figure 10 is a comparison of the return water temperatures in the 

3/4 inch double U-tube for various run fractions. In all four tests, 

the flow rate is 1.75 GPM and all are preceded by at least two days of 

run fractions of 60 to 65%. Notice that the run fractions less than 60% 

seek an average thermal equi 1 ibrium temperature above 46°F and those 

greater than 60% seek a lower temperature. 

Figure 11 is a simulation of a typical run fraction that would be 

encountered on a cold night in Oklahoma (6 hours 50%, 6 hours 75%, 4 

hours 50%). The re 1 at i ve performances of the ground coup 1 i ngs are 

similar to the continuous run. The 3/4 inch double U-tube returns the 

warmest water, next are the 1-1/2 inch U-tubes and the 3 inch 
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concentric, the 2 inch concentric and the 3/4 inch U-tube returns the 

coldest water. This test indicates that it takes 6 hours of 75% run 

fraction to drop the average temperature 1 °F in the 4 1 oops of 1 arger 

heat transfer capacity. It takes 3 hours of 50% run fraction to regain 

this 1°F. The tendency for decreasing temperatures associated with 

periodic large run fractions is damped out by the large thermal mass of 

the earth. 

Figure 12 shows the cons i derab 1 e effects of a 11 th erma 1 hi story 11 • 

The upper curve is the return water temperature of the 1-1/2 inch 

polyethylene U-tube after 4 weeks of 60% run fraction. The lower curve 

is an identical test performed after 4 more weeks of 60% run fraction. 

A test conducted two weeks later showed little difference from this 

second test. Performance of ground coupled heat pump systems are strong 

functions of run fractions and the number of weeks or months the system 

has been in operation. 

Figure 13 is a comparison of the return water temperatures for 

operation using only 4 loops. The 1-1/2 inch polybutylene and the 2 

inch concentric loops were closed. The flow rate in each loop was 

increased to 2.5 GPM. The flow rate for the six-loop test was 1.75 

GPM. The drop in temperature is not dramatic; however, note that the 

run fraction is 75%. A continuous run was attempted on the four loop 

system. During this test the water temperature dropped to the point at 

which the heat pump shut down. This indicates that in periods of high 

run fractions earth coupling systems similar to those tested installed 

at 100 ft. per nominal ton should have antifreeze protection in 

Oklahoma. 
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Figure 14 shows the effects of varying flow rate. Identical tests 

of a 75% run fraction were performed on the system on two different days 

for flow rates of 1.25 GPM/Loop (1.875 GPM/ton) and 1.75 GPM/Loop (2.625 

GPM/Ton). Figure 14 is a comparison of the resulting return water 

temperatures of the 1-1/2 inch polyethylene U-tube. Again the 

difference is apparently insignificant for the 75% run fraction. A 100% 

run fraction was not used because the heat pump would not operate 

continuously at 1.25 GPM/Loop because of low water temperature. The 

difference in performance would be greater if the system had been 

operated 1 anger at 1. 25 GPM/Loop before the test was taken. Only one 

day of 1.25 GPM/Loop operation occurred before the test was made. It is 

apparent that at a 75% run fracti6n, this was not enough time for the 

system to stabilize for a good comparison. Notice that from 0-8 hours 

the temperatures are almost equa 1. From 8-16 hours the water return 

temperatures 

Additionally, 

during the 1.75 GPM test are significantly warmer. 

unit capacity and heat pump outlet temperatures are 

reduced at lower flow rates. 

Figure 15 is included to show instantaneous return water 

temperatures over a short period immediately after startup. It was 

initially theorized that the large thermal mass of water in the 3 inch 

concentric ground coupling would significantly improve return water 

temperatures for a 15 to 30 minute period following start-up. This 

effect appears to be minimal (0.5°F from 18 to 26 minutes) and is almost 

negated by the 1 ower temperatures during the first five minutes of 

operation. The therma 1 mass appears to have primarily only a damping 

effect on the temperature. Notice the large swing of the single 3/4 

inch U-tube. The improved performance of the 3 inch concentric after 

start-up is much more significant when the system is off for longer 
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periods. The unit was off for only 15 minutes before this test. The 

lower temperatures during the first 30 seconds of the test are the 

result of thermocouples being located in the couplings only a few feet 

below the surface, where the ground temperature is lower than average 

loop temperature. 

Figure 16 shows the water temperature at different depths in the 

three inch concentric and 1 1/2 inch polyethylene U-tube loops when the 

unit was off for an eight hour period. Although the water temperature 

recovery for the first 25 minutes is good (due to natura 1 convection 

heat transfer), ground temperature recovery is much slower (conduction 

is the basic mode of heat transfer). It is primarily the ground 

temperature that dictates the return water temperature after the unit is 

started up. This can be verified by returning to Figure 15 and 

observing that after eight minutes of operation a 11 temperatures are 

significantly reduced compared to start-up values. 

These tests serve as a tool in determining design precautions that 

must be considering when installing systems in Oklahoma, particularly in 

sizing backup heat and the necessity of antifreeze precautions. They 

also serve as a verification of models intended for use in this and 

other climates. However, the cooling mode test is a more valuable tool 

in determining the relative heat transfer capabilities of the different 

ground-coupling because of the 50 to 80 per cent increase in the heat 

transfer rate. 

2.4 Summer Test Results 

The amount of time the ground-coupling system was operated in the 

summer test exceeds the run fractions that would be experienced by a 



properly sized system during normal summers. However, run fractions 

greater than those simulated during this test could be experienced if 

the system is not properly designed for both heating and cooling 

seasons. Details of proper sizinq procedures will be discussed in 

Chapter V and in the Appendix. 

The cooling mode test began June 8, 1984. Two days of 50% run 

fraction were followed by three weeks of 25%, eight weeks of SO% and two 

weeks of 62%. The run fractions at night were approximately 25% less 

than the daily va 1 ues, the afternoon va 1 ues were 25% greater and the 

morning and evening run fractions were approximately equal to the daily 

run fraction. Table II shows a typical scheme for attaining a SO% run 

fraction. 

At the end of the 62% run fraction test the system was returned to 

50% for several days. Tests performed at this time were a four-loop 

test at SO%, several recovery tests and a return to 25% run fraction in 

October. The precautions and adjustments mentioned before the winter 

test description also apply to the summer test. 

Figure 17 compares the performance of the six ground-couplings 

during the peak cooling load at the end of the fifth week of the SO% run 

fraction test. The top curve is the normalized temperature entering the 

coup 1 i ngs. A 11 six return water· temperatures are a 1 so norma 1 i zed as 

described in the winter test. The double 3/4 inch and 1 1/2 inch 

polyethylene return approximately the same temperature water. The 1-1/2 

inch po lybutyl ene and 3 inch concentric return water 1. 0 to 1. 5°F 

warmer, the 2 inch concentric 1.5 to 2.0°F and the single 3/4 inch is 

2.0 to 2.5°F warmer. The 3 inch concentric and the double 3/4 inch U

tube have greater damping capacity than the other couplings. 
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TABLE II 

TYPICAL 50% DAILY RUN FRACTION 

Cycle in Minutes % Run 
Time ON OFF Fraction 

MN-6:00 AM 15 45 25 

6:00 AM - Noon 30 30 50 

Noon - 6:00 PM 45 15 75 

6:00 PM - MN 30 30 50 

Figure 18 is a 24-hour p 1 at of the return water temperatures 

after 4 weeks of 50% run fraction. Over this period the temperatures of 

the two 1-1/2 inch couplings, the double 3/4-inch and the 3 inch 

concentric are approximately the same. However, the average temperature 

of the double 3/4 and concentric are about 1.0°F less during the 

critical afternoon period, while the recovery of the larger U-tubes is 

more rapid during times of decreasing run fraction. Again the 2 inch 

concentric water is about 1.0°F warmer while the single 3/4 inch U-tube 

is 1.5 to 2.5°F warmer than the couplings of larger capacity. 

Figure 19 shows a similar test performed after 4 more weeks of 50% 

and 2 weeks of 62% run fraction. The most obvious result is about an 

8°F increase in average return temperatures. The temperatures of the 

water for the five couplings of larger capacity are much closer during 

the peak load period. The single 3/4 inch coupling is about 1.0°F 

warmer. The 1-1/2 inch polyethlene coupling has the best 24-hour 
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performance and a slightly lower temperature during peak periods. The 

polybutylene coupling returns water about 1.0°F warmer during off peaks 

times. The double 3/4 inch returns water about 0.5°F warmer than the 1-

1/2 inch polyethylene during the peak and 1.5 to 2.0°F warmer during off 

peak. On peak temperatures of the 3 inch and 2 inch concentric are 

about l.0°F warmer than the 1-1/2 inch polyethylene and 1.5 to 3.0°F 

warmer during off peak. The single 3/4 inch polyethylene is almost 

always 3.0 to 4.0°F warmer than the 1-1/2 inch. 

Figure 20 ' shows the .increase in daily temperature values of the 

1-1/2 polyethylene U-tube during the 50% run fraction test. The lower 

curve is the daily profile on the first day of the test while the upper 

curve is is after seven weeks of 50% run fraction. Fifty percent 

corresponds to a run fraction experienced during a day slightly below 

design load. 
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Figures 21 and 22 show the temperatures in two of the couplings 

at various depths during a 45 minute run that was preceded by a 15 

minute off period. Notice that in the 1-1/2 inch polyethylene 

approximately two-thirds of the temperature drop occurs from the 

entrance to the bottom (lOO•), another 18 to 20% from the bottom to the 

mid-point in the riser and only about 12 t6 15% from the mid-point to 

the outlet. This phenomenon is caused by some short circuiting but 

primarily is a result of the water in the downcoming tube being at a 

high temperature. 

In the concentric tube the water entering the coupling is normally 

about 1.0°F warmer than the water at the bottom. This is the amount of 

11 Short circuiting .. that occurs in the loop and it may be calculated 

directly. About two-thirds of the heat transfer occurs in the lower 
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half of the coupling because of the higher temperature and reduced 

"short circuiting". The temperature of the inlet and outlet water at 

the start of these tests can be ignored since they reflect primarily the 

sha 11 ow earth temperature near the top of each coup 1 i ng. Notice a 1 so 

the slight jump in temperature in each temperature plot. This results 

from the relatively warm water in the return and supply headers, which 

is surrounded by the warm shallow soil at startup, being further 

warmed by the heat pumps before entering the coupling. It takes water 

approximately 15 minutes to pass through the heat pump, the header and 

up and down the 1-1/2 inch U-tube. This cycle requires 24 minutes for 

the 3 inch concentric. 

Figure 23 shows the results of two-day test using only four loops 

during a 50% daily run fraction. The 3 inch concentric and the 

polybutylene loops were closed. Temperatures increased approximately 

7°F in the first day and about 0.5 to 1.0°F during the second day. 

Figure 24 shows the increase in the inlet and outlet temperatures of 

the 1-1/2 inch polyethylene coupling. The temperatures were taken from 

5:00 to 5:40 p.m. on consecutive days before and after the two loops 

were closed. The flow rate was increased from 1.75 GPM/coupling to 2.5 

GPM/coupling. Notice the reduced temperature difference between the 

inlet and outlet streams that results from the reduced heat pump 

capacity at the higher inlet temperatures. 

Figure 25 shows temperatures taken during an extended off period 

at the 100 and 50 ft depths in the 1-1/2 inch polyethylene U-tube and 3 

inch concentric couplings. The temperature falls faster in the U-tube 
' 

for the first 15 minutes because of its smaller thermal mass of water. 

The higher temperature of the concentric represent the higher operating 
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temperature of this coupling. Table III shows the results of another 

test performed at a later date when the heat pump was turned off for one 

week. 

TABLE III 

TEMPERATURE FOR ONE WEEK RECOVERY 

Depth September 26 October 3 
Coupling in Feet Temperatures (°F) Temperatures (°F) 

U-Tube 100 82.2 66.2 

U-Tube 50 78.7 66.1 

311 Cone. 100 86.1 67.6 

311 Cone. 50 81.7 67.4 

Table III indicates that long term heat storage using vertical 

tubes in the ground is not feasible in this type of soil. Table IV 

shows the rise in temperature in bore holes located seven feet from the 

1-1/2 inch polyethlene U-tube and one at a distance approximately 100 

feet from the test site. The test was performed after the 62% run 

fraction test. 

This table shows the limited amount of significant heat diffusion 

outside a seven foot radius of earth from ground-couplings buried in 

c 1 ayey soil s. 
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Depth 
(Feet) 

20 

30 

TABLE IV 

INCREASE IN EARTH TEMPERATURE NEAR 1-1/2 INCH 
POLYETHYLENE COUPLING 

Temperature ·in Temperatures in 
Undisturbed Bore Hole Located 

Hole (°F) 7 Ft. From Coupling (°F) 

63.7 64.8 

61.6 63.1 

2.5 Conclusions and Recommendations 

Many recommendations can be drawn from the results of the tests 

performed on the parallel ground-couplings system. The results shown 

indicate primarily the relative heat transfer capabilities of the six 

designs in a prolonged test. These characteristics are very important 

in designing a system but others must also be considered. These include 

cost, ease of installation, availability of material, reliability 9nd 

press~u~~ or head loss. Some designs can be eliminated (such as the 5 

inch PVC concentric arrangement shown in Figure 1) because they are 

costly, difficult to install, unreliable and perform poorly. Many 

others however have cost-performance or performance-pressure loss trade-

offs. Therefore comments based on this test will be made concerning the 

above mentioned characteristics of each of the six ground couplings. A 

caution must be made concerning the cost of materials. They are highly 

dependent upon shipping cost and the number of price mark-ups occurring 
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between the manufacturer and customer. These factors coupled with the 

relative infancy of the systems in the marketplace result in a large 

variation in cost. Installations cost also vary widely as alluded to in 

Section 1. 3. 

The 1-1/2 inch polyethylene and the 3/4 inch double U-tubes have 

about the same performance during peak loads. The 1-1/2 coupling has 

only slightly lower heat transfer capability at most other times. In 

terms of pressure loss it and the polybutylene coupling have the 

smallest values. It can be installed in much deeper loops with a much 

larger flow rate without significant increases in pressure loss and the 

accompanying increase in pumping requirements. 

The couplings are relatively easy to install with the proper 

equipment. The polyethylene used in this test is high density ASTM 3408 

and 3406. This pipe should be fused thermally and this requires an 

additional equipment investment. Butt fusion equipment was used in this 

installation, but the less expensive and less bulky socket fusion 

equipment can also be used. However, the 1-1/2 polyethylene U-tube that 

is butt fused requires a minimum 5 inch bore hole if couplings greater 

than 100 feet are to be installed (a 4.5 inch bore hole was used for 

this test). Therefore, a 1-1/2 inch socket fused coupling would require 

an even larger bore hole because of the larger width of the socket U

bend. The Schedule 40 polyethylene pipe used in this test is very stiff 

and resistant to crimping. It can be stuffed to great depths (a 375 

foot loop was recently installed near the test site) if bore hole size 

is sufficient. Caution should be taken against using ASTM 2306 

polyethylene which is also classified as high density. This pipe can 

either be clamped or thermally fused. It does not have the strength and 
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crimping resistance necessary in some installations. Cost savings are 

minima 1. 

The daub 1 e 3/4 inch polyethylene coup 1 i ng had the best therma 1 

performance except during periods of highest loading, which included the 

afternoons of the 62% run fraction and the eighth week of the 50% run 

fraction. This pipe is much easier to handle during installation, it is 

also fused easily and is very easy to stuff and does not require a very 

large bore hole. The problems of "coiling" down the bore did not occur 

in the 100 ft. installation. This problem may limit the depth to which 

this couplings can be installed. If a parallel flow arrangement is 

used, the pressure drop is 3 to 4 times as large as the 1-1/2 inch loop 

and if a series flow is used the drop will be roughly 30 times as 

large. At the time of installation pipe cost of the double 3/4 inch 

loop was 25% lower than the 1-1/2 inch. 

The 1-1/2 inch polybutylene U-tube performance was almost equal to 

the 1-1/2 inch polyethylene U-tube during periods of moderate loads 

(winter test and early period of 50% summer run fraction). However, its 

recovery is slower, which results in poorer performance during light 

loads, and performance dropped off slightly during heavy loads. This 

pipe is either clamped or socket fused. Clamping with all stainless 

stee 1 clamps eliminates the necessity of fushion equipment but reduces 

reliability. At the time of installation the socket U-tube fittings 

available were subject to cracking during installation. However, 

tougher, more flexible socket fittings are now available. The thinner 

wall polybutylene does not have the crimping resistance of 3408 or 3406 

polyethylene. More care must be taken during installation. A five inch 

bore hole was required for the 100 foot loop. The two legs were 
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installed so that the curvature or "memory" of the coiled pipes opposed 

each other at the U-tube fitting. The resulting coupling was much 

straighter than a U-tube not installed in this manner. Pressure drop is 

equal to the polyethylene and larger bore holes are required for loops 

of equal depths. Cost could not be compared at the time of installation 

because of differences in methods of distribution to local pipe dealers. 

The 3 inch concentric pipe had performance roughly equal to the 

polybutylene U-tube. The difference was primarily due to the damping of 

temperature variations of the 3 inch coupling. The large amount of 

water in this coupling and resulting weight made installation by hand 

difficult. A larger fusion machine is necessary. Although 3 inch coils 

are available, straight joints of 10, 20 or 38 feet length are 

recommended. The straight pipe is much easier to stuff and the butt 

fusion joints provide an approximately 1/4 inch ridge inside the pipe 

which increases the relatively low internal heat transfer coefficient in 

larger pipes. In some areas U-tubes are difficult to stuff through 

boggy or sandy layers of soil because of the collapse or near collapse 

of bore hole walls. The straight pipe of concentric couplings may offer 

an advantage over U-tubes in these situations. The pressure drop in a 

concentric pipe with a 3/4 inch schedule 80 U-tube is 6 to 8 times as 

large as the 1-1/2 inch U-tubes. Cost is 15% higher than the 1-1/2 inch 

polyethylene U-tube. The performance of this coupling was enhanced by 

the ridges in this pipe at 10 foot intervals which improved the 

relatively low heat transfer coefficient. 

The 2 inch concentric has thermal capabilities about 10% lower than 

the 3 inch, and reduced camping capacity. Installation of this loop is 



the simplest of the six couplings because of its stiffness and small 

diameter. Pressure loss is 8 to 10 times as large as the 1-1/2 inch U

tubes and cost was equal to the polyethylene at the time of 

installation. However, thin wall (SDR 19) 2 inch ASTM 3408 polyethylene 

pipe is not widely available. 

The single 3/4 inch polyethylene U-tube is the least expensive, it 

is easily installed at depths up to 175 feet, requires a small bore (3 

inch or even less in some soils) and is widely available. Its reduced 

heat transfer capabilities are apparent in the results of these tests. 

Pressure drop is approximately 16 times as large as in the 1-1/2 inch U

tubes. Therefore series flow arrangements are virtually excluded. 

The results of these tests cannot be universally applied, because 

of the wide variation of local variables. It is therefore necessary to 

develop procedures that in some way account for these variations. The 

next step is to design a computer program that simulates the performance 

of all six couplings for the variables characteristic of the tests 

performed locally. This simulation can then be used to predict 

performance for ground-coupling variables not reproducable at the test 

site. The simulation can also be used to check simplified design 

procedures. 

53 



CHAPTER III 

HEAT TRANSFER COEFFICIENTS IN VERTICAL 

GROUND-COUPLINGS 

3.1 Significance of Heat Transfer Coefficients 

The primary resistance to heat flow in properly installed ground

couplings is caused by the low thermal conductivity of the pipe wall and 

earth. However, in some cases the thermal resistance of the boundary 

layer (film) becomes significant. This occurs when water or brine flow 

is laminar or in the early transition stage. In this regime water flows 

smoothly and does not mix. Significant temperature change is 

experienced between the bulk water temperature and the inside pipe 

wall. Temperature differences across the layer may be several degrees 

at heat flow rates characteristic of verti ca 1 ground-couplings. 

Additionally, the resistance to heat flow at the boundary layer is 

always significant while heat is being transferred when forced flow is 

stopped (natural or free convection). For calculation purposes the heat 

transfer capability or boundary layers are often expressed as heat 

transfer coefficients. 

Boundary layer heat transfer coefficients characteristic of 

verti ca 1 ground-coup 1 i ngs are not easily ca 1 cul a ted si nee flow regimes 

are often transition, mixed ( 1 ami nar and natura 1) or natura 1. Genera 1 

equations for coefficients in the transition regime are not easily 

developed and often heat transfer text avoid listing equations. 
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Additionally, the general equations for natural or mixed convection do 

not fall within the range of application for ground-coupling because of 

the very large L/D ratios encountered. 

Fortunately, the low thermal conductance of the plastic pipe 

normally predominates in the calculation of the overall conductance from 

the bulk water to the outside pipe wall. Therefore 1 arge errors in 

calculating boundary layer heat transfer coefficients result in small 

errors in overall conductance. This is particularly true in transition 

flows. For example, the equivalent heat transfer coefficient from the 

water to the outside pipe wall is 

ro ro ro )-1 = (--+-tn-r. h. kp r. (3.1) 
1 1 1 

If transition flow occurs in a 1-1/2 inch schedule 40 PE pipe and 

an error of 50% is made in determining the film coefficient of 100 

Btu/hr-ft-F. The actual coefficient is 

0.0792 .0792 0.0792 J-1 
heq = [ (0.0671)(100) + 0.226 tn 0.0671 = 14.31 Btu/hr-ft 2-F 

If the value is erroneously determined to be 150, using Equation 3.1 

yields 

heq =15.15 Btu/hr-ft 2-F 

Therefore a 50% error in hi resulted in a 5.9% error in calculation of 

the overall heat transfer coefficient. Therefore small errors in film 

heat transfer coefficient determination do not have a significant effect 



56 

on overall results. However, significant error can result if these 

values are neglected especially in laminar, free or mixed convection 

regimes. 

3.2 Literature Survey 

The vertical ground-coupling provides an interesting combination of 

problems when solving for heat transfer coefficients. Classical methods 

of solution use either uniform wall temperature or uniform heat flux as 

boundary conditions. However, the vertical ground-coupling has neither 

of the above and is highly transient. Metais and Eckert (12) have 

summarized the work done concerning heat transfer regimes in flow 

through vertical tubes. They have devised a graphical presentation of 

flow regimes with Reynolds number (Re) being ordinate and the abscissa 

is the product of the diameter/length ratio, Grashof (Gr0) and Prandtl 

(Pr) numbers. However, the diagram is valid for 

10-2 2 PrD/L ~ 1.0. 

Many ground-couplings fall outside this range in the cooling mode. (For 

water at 90°F in a 100ft. 1-1/2 inch U-tube, PrD/L = 0.81 x 10-2). 

Most couplings are close enough to the lower limit to warrant 

consideration of this work. 

Two flow inducing forces determine the magnitude of the fluid 

velocity. The first is pressure gradient or forced flow and the second 

is body or natura 1 forces that are a result of density gradients in 

fluids. The authors state that although work has been done to determine 

which regimes predominate, other parameters complicate the calculation 
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of heat transfer coefficients. Body forces may either oppose or support 

pressure gradient forces. 

An earlier work by Colburn and Hougen (13) develops an equation for 

the heat transfer coefficient as 

h = 0.082 k ( Sgp~~T )113 
j.J 

where ~T is measured across the boundary layer. 

They report that experimental results for air yields 

ag_,2AT 1/3 
h = 0.115k ( ~-~2u 

j.J 

(3.2) 

(3.3) 

The authors also give a transitional velocity. If the mean fluid 

velocity is above this value forced convection predominates. Below this 

value natural convection predominates. This velocity is given by 

2 1/3 Vt = 19.8 (Sgp J.J~T) (3.4) 

Hartnett and Welsh (14) conducted an experiment for natural 

convection in a vertical tube. The heat rates studied were much higher 

than those encountered in ground-couplings. Results are presented on a 

Log-Log plot of Nusselt numbers (Nu) versus GrPr. This generalized plot 

is for circular tubes with Prandtl number greater than 0.1. 

Martin and Cohen (15) conducted an experiment and presented results 

in a plot similar to that of Hartnett and Welsh. They also presented 

the following equations. 
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Gr rPr r 3 5 2 
Nu = 892 L when 10 < GrrPr < 10 • (3.5) 

Grr Pr r 
Nu = 0.426 ( )0•28 105•2 < Gr Pr < 106•15 (3.6) L r 

Note that the length dimension (L3 or o3) in determining Gr is replaced 

by r3 to determine Grr. 

Brown and Gaurvin (16) summarized much of the previous work 

concerning combined free and forced convection in vertical tubes. They 

also conducted several experiments to verify results. They dealt with 

both laminar and turbulent mixed convection. Because of the modest 

temperature differences occuring in ground-couplings, this discussion 

can be restricted to laminar flow. The authors approach the solution in 

two parts. The first is when bouyancy forces and forced flow aid each 

other (i.e. hot water at bottom of tube and forced flow from bottom to 

top) and the second is when they oppose each other. Results for laminar 

aiding flow are plotted graphically in terms of Nu vs. Gr0/Re0 • They 

also suggest the equation 

(3. 7) 

The authors also suggest that the boundary of equal free and forced 

convection can be represented by 

Re = 9.2 Gro0.417 Pr-0.108 (3.8) 
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Values + 100% of this line are considered to be mixed convection. The 

equation suggested for pure free laminar convection is 

(3.9) 

In the discussion of combined convection in which buoyancy forces 

oppose forced flow, the authors state that flow is unstable and 

transition from laminar to turbulent occurs at very low values of 

(GrPr). This region is similar to the transition region of forced flow 

in that coefficients are difficult to predict. 

11 If buoyancy forces are 1 arger then the heat transfer rate 

will be higher than predicted from forced flow but there is 

no satisfactory equation at present for predicing their 

actual values ... 

If forced flow is in the fully turbulent regime heat transfer 

coefficients can be assumed to be infinitely large when calculating the 

equivalent heat transfer coefficients in plastic pipe for Equation 

3.1. The first term of the right side of the equation can be 

neglected. This can not be done if the thermal conductivity of the pipe 

is large as is the case with metal pipe. The coefficient can then be 

predicted by the Dittus-Boelter Equation (17). 

(3.10) 

when n is 0.4 for heating and 0.3 for cooling. 

The figure produced by Metais and Eckert indicates that in 

transition forced flow regimes the effects of natural convective forces 
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are negl i gi b 1 e. The focus in these cases is to determine the forced 

convection heat transfer coefficient. Equations in the laminar region 

(Re < 2300) and turbulent region (Re > 10,000) are readily available. 

In the transition region (2300 < Re < 10,000), equations are not 

consistent. Text often include something similar to the following (18). 

11A word of caution is appropriate cocerning the transition 

from laminar to turbulent flow. The region is defined by 

approximately 2000 < Re0 < 10,000. Prediction of heat 

transfer and friction coefficients is uncertain during 

transition ... 

There appears to be no classical equation for heat transfer 

coefficient in this region of forced flow. Sieder and Tate (19) 

conducted an early extensive test of heat transfer characteristics in 

the laminar and transition regions. The summary of their testing in the 

transition region was a set of curves with which they were able to 

predict coefficients with a + 20% accuracy for a wide variety of 

fluids. Kreith (20) has presented this graph in a clarified form of j 

vs. Re0• 

In the experiment described above Sieder and Tate (18) also 

developed the classical equation for coefficients in the laminar forced 

flow regime. 

(3.11) 

Extensive work is reported by Kays and Crawford (21) concerning heat 

transfer in laminar flow for a variety of conditions. Methodologies for 

calculation of coefficients for many situations are suggested, including 
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flow in concentric tubes. However, neither Equation 3.11 or the methods 

of Kays and Crawford have provisions for calculating coefficients when 

buoyancy forces are of the magnitude of those encountered in vert i ca 1 

ground-couplings. Therefore, considerable underprediction will result 

if these forces are not considered. 

In laminar flow entrance effects are often significant in 

calculating average overall heat transfer coefficients. Heaton, 

Reynolds and Kays (22) present a method of calculating Nussult numbers 

in the entrance region of tubes where the values are higher than those 

in fully developed flow region down the pipe. Results are in tabular 

form and Nusselt number can be interpolated by entering the value of 

Prandtl number and a nondimensional distance from the entrance defined 

as 

(3.12) 

These effects can be significant especially in concentric ground

couplings in which laminar flow is often encountered. 

3.3 Heat Transfer Coefficient Experimental System 

The experiments discussed in the previous section did not include 

tests of conditions similar to those present in vertical ground

couplings. The combination of low heat transfer rate per unit surface 

area, large L/D ratios and relatively small vertical density gradients 

are not considered. Most equations and graphs include the above 

combination within their range of applicability. However, the results 

present a discrepancy. In the case of free convection of a 100 foot 1-



1/2 inch P.E. U-tube at 90°F rejecting heat at a rate of 2000 Btuh (a 

typical value for one tube), the free convection coefficient is 

calculated to be 13.4 Btu/hr-ft2-F using Equation 3.9, 17.5 using 

Equation 3.2 and 23.2 using 3.3. 

The use of finite difference equations over a longer period of time 

makes reasonably accurate prediction of coefficients in the laminar, 

mixed and free convection regimes necessary. Coefficients in the 

transition and turbulent regime can be inaccurate + 25% without 

effecting overall FOE accuracy. Although it is possible to design 

ground-couplings so that laminar flow does not occur, free convection 

coefficients must always be predicted (unless the water pump runs 

continuously) regardless of forced convection regimes. Mei (23) has 

reported that using values of heat transfer coefficients calculated by 

using laminar forced convection equations substantially underpredicts 

heat transfer in his FOE formulation in both vertical and horizontal 

ground-couplings (14). 

In order to more accurately predict heat transfer coefficients for 

the FOE formulation described in Chapter IV and the simplified method of 

Chapter V, it was necessary to design and construct the experimental 

system shown in Figure 26. This system allows the experimental 

determination of equivalent heat transfer coefficients in transition, 

laminar-mixed and free convection regimes. Since the coupling casing is 

steel, temperature differences across the wall are small compared to 

boundary 1 ayer differences and can be easily accounted for in order to 

arrive at boundary layer coefficients. 

The ground-coupling is a 2 inch schedule 40 galvanized steel pipe 

with a 1/2 inch schedule 40 PVC inner tube. Total coupling length is 41 
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feet. Water is normally injected down the dip tube and up the annular 

region. Calibrated thermocouples are located in the annular region and 

on the outer pipe wall at 0.5, 10.5, 20.5, 30.5, and 40.5 feet above the 

bottom of the inner tube. Heat for the test was supplied by a 1500 watt 

resistance element. The system is capable of being cycled by a timer 

identical to the one used for the heat pump system. A data logger is 

likewise turned on and off by the timer so that the time of cycle can be 

determined. A 90 watt pump is used to provide water flow rates up to 

2.4 GPM. The water supply line to the coupling is placed inside a 

larger tube so that the buried line does not reject significant amounts 

of heat before entering the test section. 

3.4 Results 

The experimental system was operated at a 75% run fraction for two 

weeks so that typical heat transfer rates could be simulated. Tests 

were conducted for flow rates of 2.0, 1.5, 1.0 and 0 (free convection) 

for water temperatures between 85 and 100°F. All flowing tests were for 

buoyancy forces aiding forced flow. Tests for buoyancy forces opposing 

forced flow with dip tube injection require cooling the water and a 

properly sized system was not available. Table V gives a summary of 

three of the tests conducted on the system for three different flow 

regimes. 

The first test was conducted at a flow rate of 2. 0 GPM and at an 

average water temperature of 90°F. Temperature differences, shown in 

Figure 27, are measured from the bu 1 k water to the outside pipe wa 11. 

Average heat flow was ca 1 cu 1 a ted by measuring_ the water temperature 

difference from one vertical location to the next and applying the 
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equation. 

(3.13) 

This average heat loss was used in the equation 

{3.14) 

to find the inside wall temperature. The value of h was then calculated 

from 

{3.15) 

TABLE V 

HEAT TRANSFER COEFFICIENTS IN STEEL GROUND-COUPLING 

Distance from Experimental Heat Theoretical 
Reynolds No. Entrance Transfer Coef~icient Value 

Feet Btu/hr-ft -F Btu/hr-ft2-F 

3100 0.5 202 
II 10 104 
II 30 55 
II Average 102 90 (19) 

1230 0.5 109 
II 10 56 
II 30 35 26.5 {16) 
II Average 56 24.6 (21), 14.0 {19) 

Natural Average 24.2 19.1 {13), 
26.8 {13), 29.6 {15) 
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The heat transfer coefficients near the entrance are substantially 

higher as expected. The average values shown are a graphical average of 

the 1 oca 1 va 1 ues. The theoret i ca 1 va 1 ue shown is ca 1 cul a ted by the 

computer program HCAL, which uses an exponential curve fit equation of 

the chart published by Krieth, for the transition regime. The equations 

are for 2200 < Re < 7000, 

2200 - Re 
j = (0.0044 - 0.0012 e 1300 )-(1.4 _ ...BiL)( L/D -50 )1/3 (3•16 ) 

5000 8•7 X 1010 

and for 7000 < Re < 10,000, 

j = -6.67 X 10-8 Re + 0.00486 (3.17) 

The average heat transfer coefficient h is derived from the non-

dimensionial value j by the equation 

The experimental value 

jcppV h = __ __._ ____ _ 

Pr2/3( llw )0.14 
)Jb 

of 102 Btu/hr-ft2-F 

(3.18) 

agrees well with the 

calculated value of 90, for transition flow regimes. Although this 

error of about 12% seems large, the resulting error of equivalent heat 

transfer coefficient is small for plastic pipe. 

A similar test was conducted in water at 95°F with the flow rate 

reduced to 1.0 GPM. Temperatures are shown in Figure 28 and values for 

the heat transfer coefficient were calculated in the same manner. 

However, the experiment a 1 results shown for average coefficients differ 

radically from the value calculated using the methods described by Kays 
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and Crawford {24.6 Btu/hr-ft2-F) and Equation 3.11 {14.0). These two 

values do not consider the flow to be mixed convection. A more 

reasonable agreement is shown for the value calculated 30 feet from the 

entrance. The experimental value is 35 Btu/hr-ft2-F and at this 

distance entrance effects are assumed to be negligible. A value of 26.5 

Btu/hr-ft2-F is calculated using Equation 3.7, which is an equation for 

local value during mixed convection. 

A third test determined free convection coefficients for a five-

minute period immediately after forced water flow was stopped. Although 

temperatures were taken at all levels only the values for the 40 and 20 

f~. levels are shown in Figure 29. Only an average coefficient for the 

entire coupling can be calculated since the temperature at a particular 

level is influenced by not only loss through the pipe wall, but also by 

temperature changes due to buoyancy effects. Notice how quickly the 

temperature at the 40 ft. level {bottom) decreases compared to the 20 

ft. level. This higher rate is due in large part to the water of lower 

density rising and being replaced by cooler denser water. Therefore 

only the total coupling heat transfer rate could be calculated using 

{3.19) 

The heat transfer coefficients were then calculated using Equations 3.14 

and 3.15. The experimental value of 24.2 Btu/hr-ft2-F is in fairly good 

agreement with the experimentally determined Equation 3.3 (26.8) and 

somewhat higher than the value calculated using Equation 3.2 (19.1). 
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3.6 Conclusions 

The results of this test are far from universally conclusive and 

additional work is warranted. However, the values obtained here can be 

applied to vertical ground-couplings with acceptable accuracy. The 

major uncertainity is the method for calculating heat transfer 

coefficients in the laminar mixed flow regime. This is especially true 

near the entrance of the tube and downstream from flow disturbances such 

as the ridges caused by butt fusion joints in polyethylene pipe. This 

would tend to increase coefficients. The tests result in the following 

recommendations concerning the calculation of boundary layer heat 

transfer coefficients. 

1. Equations 3.16 and 3.17 yield sufficient accuracy for transition 

forced flow in vertical platic ground-couplings. 

2. Equation 3.2 underpredicts and Equation 3.3 overpredicts the value 

of free convection coefficients dur}ng the off periods occurring in 

ground-couplings. 

3. Heat transfer coefficients in ground-couplings can best be 

calculated using mixed convection equations when the Reynolds 

number due to forced convection is below 2500. 

4. Entrance effects on average coefficients for both mixed (laminar 

and natural) and forced transition regimes are substantial. 



CHAPTER IV 

GROUND-COUPLING SIMULATION USING FINITE 

DIFFERENCE EQUATIONS 

4.1 Basics of Finite Difference Equations 

The two dimensional equation for temperature variation in 

cylindrical coordinates (24) is the basis for simulation of vertical 

ground-couplings. 

{4.1) 

Several simplifications can be made to this partial differential 

equation (POE), but the variation of the boundary conditions encountered 

in ground-couplings makes exact analytical. solutions impractical. __ ., _____ ·-~ --~-- ------------·---... 

Finite difference equations are a powerful tool for the solution of 
- ~~-~------. ~ - - - -·· . -~ ~~~-

PDEs. Solutions are obtained by placing a finite number of points in 

some sort of grid pattern within the conducting medium. The equations 

for the temperatures at these points or nodes are described by FOEs that 

are arrived at by direct replacement of the POE or by an energy balance 

performed on the solid bodies surrounding each finite point. For 

example, if points 1, 2, and 3 in the r-direction are separated by a 

distance 6r then, 

aT T 3 - T 1 ( ar )2 = 6r (4.2) 
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and if the derivatives are also estimated at r = 1.5 and 2.5, 

aT aT T 1 - T 2 
a ClT ( ar )1.5 - ( ar )2.5 tJ.r tJ.r ( ) - _.::...;._._..::...:....;;_ __ ..;...;____::~ = _--=.;:__ __ ___;;::..;.___ 

ar ar 2 - tJ.r tJ.r 

T1 - 2T2 + T3 
!J.r2 

This form of PDE replacement is known as central difference. 
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(4.3) 

In ground-couplings heat is transferred by convection from the 

water in plastic pipes to the conducting medium of the pipe and 

ground. In such cases boundary conditions must be, placed on the 

equations for the nodes at the interface of the form 

(4.4) 

This also can be accompli shed by direct POE replacement or by energy 

balance methods to obtain a FOE. 

Simplifications of Equation 4.1 are possible and will be presented 

later in this chapter. However, the righf hand term of this equation 

can not be eliminated primarily because of the relatively small value of 

the thermal diffusivity of the ground. The rapidly changing boundary 

conditions also contribute to the unlikely occurrence of ground-

couplings approaching steady state heat transfer during normal operating 

conditions. The result is FDE solutions are always transient. 

Two basic schemes and combinations of these schemes are possible 

when solving transient FDEs. Explicit formulations utilize forward time 
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difference in that the temperature of a node at a future time increment 

is expressed in terms of the surrounding node temperature at the 

beginning of the time step. The temperature of all the nodes are 

calculated before going to the next time increment. If Equation 4.1 is 

reduced by assuming there is no internal heat source (q = 0) and no 

a2T with respect to angle (--- = 0) or axial direction 
ae2 

variation 

lT ( --- = O) we have 
az 2 

(4.5) 

The POE for Equation 4.5 becomes the FOE for node N (25) 

, (4.6) 

where N is increasing radially outward. Solving for the unknown 

temperature we have 

T' = a8t [ l_ + LJ T + [1 _ 2at.t]T + a8t [ .L _ .L ] T • 
N t.r t.r 2r N+1 t.r2 N t.r t.r 2r N-1 

( 4. 7) 

The primary limitation on explicit formulations of this type is 

that the coefficient of the temperature at node N must be greater than 

or equal to zero for stability of solution. Therefore the Fourier 

number (Fo) has the restriction 

a8t Fo = - 2 ~ 0.5 • 
u 

(4.8) 
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The result is that time step size must be limited in Equation 4.7 once a 

value of ~r is selected in order to insure a valid solution. 

Restrictions on Fo also result if two or three dimensional FOEs are 

used. An adrlitional restriction occurs when the FOE is applied at a 

node at which a convective boundary condition applies. When equations 

such as (4.4) are applied to FOEs, the coefficient for the boundary node 

FOE takes the form, 

where A, B, and C are constants depending on the physical arrangement 

and number of dimensions of heat flow at the boundary. Again this 

quantity must be positive for FOE stability. The result is that when 

values of h are large, such as those encountered in water flow, the time 

step size is again restricted. 

This restriction on time step can be avoided by the use of implicit 

formulations that incorporate backward time steps in the FDE•s. 

Applying this method Equation 4.5 becomes (25) 

T I - T N N 
at:.t (4.9) 

This yields 

The coefficient of the temperature in the last term of the above 

equation can therefore never become negative and stability is maintained 
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regardless of time step size. Similar reasoning can be applied to the 

restriction concerning the boundary condition. 

The use of implicit formulation is restricted in other ways. Since 

none of the updated temperature are known, simultaneous calculations 

must be performed for all temperatures of the grid. The FOEs for each 

node in a one dimensional equation like 4.8 can be arranged in a 

tridiagonal matrix and solved by methods described in (25). Accuracy is 

lost when rounding errors are made in the simultaneous calculations. 

This can occur if the grid size or time increments are excessive. A 

second restriction on the implicit method is that the above scheme can 

only be directly applied to one dimensional problems. If transient heat 

flow is two dimensional, explicit methods must be alternated with 

implicit formulations to avoid the time increment restriction. 

As previously mentioned the use of FOEs for ground-coupling 

simulations would require vast amounts of computer time if 

simplifications are not made. Time steps would be restricted by high 

values of heat transfer coefficients in turbulent flow and radial node 

distances would be restricted by thin pipe walls. The fo 11 owing 

progression of simplifications are applied. The domain of a vertical 

(radial, axial), transient problem in an infinite medium, no int.~cnaL .. 
"'-...... ......... -•-''''""''""'''''"''' "·•• '''•"• ,,,. "' "" • • ... • .. "' "'" .. • ....... • . . "• .. ,. ... "~ ••'"· '"·'''""o"''-"' " --·-•" _.,, • 

heat generation, a cgnvective .boundary condition at the inside pipe 
£_______ - --~ - - '< ~ ~~ - > -.. ~ 

radius and a matertaJ interface at the outer pipe wall. The initial 
~------ ·-·· " --·- ---- ~---· ~ •• "'- .. ' - '~-,-, •• 0 

1. Perfect thermal contact at the outer pipe wall. 

2. FOEs are not applied to the inside tube and heat transfer 

from the inner tube to the water in the annulus is 



accounted for by energy balance methods. 

3. The coupling can be divided up into vertical increments 

(a xi a 1 ) and ground conduction in this direction can be 

neglected since gradients are small compared to those in 

the radial direction. 

4. Annulus water temperature variation in the vertical 

direction can be calculated by energy balances on each 

vertical increment. That is, the energy (temperature) 

contained in increment N is the energy of increment N-1 

plus the heat transferred through the inner and outer 

pipe walls. 

5. Heat transfer does not vary circumferencially and radial 

nodes are placed at the inner and outer pipe wall and at 

equal 0.25 inch increments in the ground. 

6. Heat does not diffuse outside a 12 foot radius of ground, 

therefore the node at r = 12 feet is he 1 d at a constant 

temperature. 
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A computer program utilizing explicit FOEs and the above assumptions was 

formulated and results were obtained, however energy balances were not 

initially used. Water in these simulations was held at a constant 

temperature and results are presented in terms of heat transfer for a 

vertical increment one foot in length. 

Additional simplifications were made and results were compared with 

the previous simulation. The simplifications are as follows: 

1. The heat storage effects of the pipe wa 11 are neglected 

and the FOE at the inner pipe wall node is eliminated by 

the use of an equivalent heat transfer coefficient 



2. The uniform radial grid is replaced by a grid with an 

expansion factor (Se) of 1.1 that is 

-;,..,........ ... ·-~··· ~-~~-- •. ·' '"j 

3. T~~_Jexpansion factor\ was increased to 1.25 and 1.5. 

(4.11) 

~~, .... ------ __ <>_...><...,_,. _ _.....__, _____ ~·-·"'-''--"'"''-""'""'--"~ .... 

/// At this point the difference between the results of the initial 
( 
~rmulation and the program with the above simplifications were small 
"~ ... ~-
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and calculation time was significantly reduced. Therefore energy 
---.~--... -~----·----·-,,.,.,_,~,~~ ~ ~'""~ '• ,,_.~?"'"''~"~'"" .. -""~~·~,._,. .... ~"""'""'""P.~e.o-.~-·-'"'-'"''P'•'"-, •·V"O 

balances were incorporated into a simulation with 20 vertical increments 

five feet in height. In order to arrive at the final forms of 

simulation the following steps were taken. 

vl. An implicit formulation replaced the explicit 

formulation. 

J2. Vertical nodes were reduced to 10 and then to 5. 

'-./. 3. The time step, which formally had been dictated by the 

average water velocity divided by the time increment for 

energy ba 1 ance purposes, was increased to a va 1 ue of 5 

minutes. 

v 4. Vertical increments were reduced to one and the FDEs were 

performed using average loop water temperatures. 

5. Heat transfer of vertical U-tubes were implemented using 

equivalent diameters, heat transfer coefficients and 

equations for "short circuit" heat transfer. 

4.2. Literature Survey 

The procedures for formulating FDEs utilized by Croft and Lilley 

{25) are the primary reference for this work. The authors have 
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developed FOEs for the general heat conduction POE in cylindrical polar 

coordinates. Also presented are methods for implementing convective 

boundary conditions. They have presented a computer program to solve 

the tridiagonal matrix algorithm (TDMA) that results from one

dimensional implicit FOEs. 

Kanchanalai (26) applied the techniques -outlined in (25) directly 

to a vertical ground-coupling similar to the PVC design of Figure 1. 

The mode 1 is well deve 1 oped and begins with ana lyt i ca 1 so 1 uti ons and 

proceeds into one dimension a 1 FDE deve 1 opment. The author uses both a 

uniform and non-uniform grid as well as an explicit and fully implicit 

formulations. Results are presented for both constant heat input as 

well as step input. The boundary condition at the pipe soil interface 

was considered to be a constant heat input. The temperature difference 

from the bulk water to the outside pipe wall is assumed to be zero. 

The results of this method are presented for a soil thermal 

~tiYi~1....?,! ..... 9.·.~~,~~-~.L~E:!.!=..:~' various run fraction, various run times 

and various coupling depths for a heat input of 72 Btu/hr-ft. Although 
~-_.... ......... ._.,, ............................ .._~_... ..... ~-~""· 

calculated temperatures do not agree well with those recorded in actual 

installations (1) because of the low value of thermal conductivity used, 

the formulation yields good results even over long periods of time (125 

days). The error due to the low value of _90J)9J,J_ctivity is partially 
~...... - '- ·~J'-r"" 

offset by assuming no temperature difference across the pipe wa 11 and 

boundary 1 ayer. 

Mei and Fischer (10) have developed a more elaborate set of FOEs to 

simulate a ground-coupling identical to the one used by Kanchanalai. 

The authors wrote FOEs for the POEs describing the heat flow at the 
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following locations; the water to the dip tube, within the dip tube, the 

dip tube to the water in the annulus, the annulus water to the outer 

tube, within the outer tube, and from the outer tube to the ground. The 

time step utilized was 0.15 seconds due to the exactness of the explicit 

formulation. Mei and Fischer utilized convective boundary conditions at 

all fluid to pipe interfaces and calculated water temperatures by energy 

ba 1 ances on vert i ca 1 nodes. Water to the coup 1 i ng is injected at a 

constant temperature for both heating and cooling. This is done 

continuously and in 3.9 minute on-off eye 1 es. When the water flow is ........... -- --..._,_,.....,~ .. --w ...... ., ......_,., .,..,..._""'~"'~ ..... ..,-~ 
stopped, heat transfer from the water is ill..4~_Q. ___ to be by conduction. 

--~ ............... ""'_..,........., ... ~ ,.........,...~ ....... ,~~~r......,..., ___ .., •• ~ • ..,.,......-' ._,__~•..- ~--- --, •. ' ~~ ~ • 

Results of the simulation are compared with an actua 1 experiment of 

relatively short duration. The simulation matches the experiment with 

the exception of temperatures i..rnmediately after _start-up and during off 
tJ.;;-.,..,_~tlooJI""-~.,r,•"~ ,.,.. ~.><'<'-- ....................... ....,.,_ , ... -~•_,_.- - ~-

periods. 
~-..1'''"'-

Hopkins (27) used the formulation of Kanchanalai as the basis for a 

one dimensional simulation of a vertical 1-1/2 polyethylene U-tube. 

This model includes elaborate energy balances to calculate exit fluid 

temperatures. Included are provisions for "short circuit" heat transfer 

between the tubes and the simulation is linked to the performance of a 

heat pum~ that is cycled. However, the resulting water temperatures for 
~-L· ... ~- < o < -~ <<•< < v <" ... .,,, ~~ .... ..r,,...,~,)..••o•->'"'~"t."'•"l<l'<h"""-~"''--...._..,,_, < •' 

t_~~--~Q.Cili __ ~~~-~~.~-~--- o~erat ion,.~?·~·~· ~n~~J~.atc~)~~~~-~.l_j_~~tg_ll~Lqns ( 1). 

A survey of FDE formulations related to ground-couplings is listed 

by Ball, Fischer and Hodgett (3). Of the nine works listed, only the 

work of Mei and Fischer ( 10) and a d i scant i nued European mode 1 are 

applicable to vertical isolated coils. 



4.3 Preliminary Considerations to Model Development 

Finite difference equations coupled with a digital computer are a 

powerful way to solve the PDEs characteristic of conduction heat 

transfer problems. The formulations are however useless if input 

parameters are not eva 1 uated by sound engineering procedures. In the 

case of ground-couplings it is essential to properly model the heat 

transfer rate of the heat pump and make the necessary corrections to 

this rate as conditions change. It is also necessary to input 

representative values for the thermal properties of the ground. A good 

model is also capable of making adjustment to actual physical phenomena 

that may cause the system to vary from the ideal case. Examples of this 

include water movement due to thermal or hydraulic effects. Although 

all variations from ideal can not be accounted for, the principle ones 

will be discussed before model development continues. 

4.3.1 Heat Pump Performance 

Actual water to air heat pump performance is a function of among 

other things; water inlet temperature and flow rate, air inlet 
._.r.: .... ~--~""'~""-:1 .... ••~''""''--- ,M, ... ,..,,,.~-~~•"· '\~ •'""••'•'•"•,' •...:r-~.._,,,~--..,. ..... ~_..,,~• ,._,• ____ ,,...;..-....,., .• ,..-,_•>v 

te~~:.~-~_!:~~-r:~., (~~~~~ i_[! .. Jl~~-~-~~,~- w~t_--~~~--J .t! •. ..£~?.}~~-~-~1 -~~ d~ __ .!, ~ ~~- U-~-~t-~, 
input voltages and manufacturer's quality control, which is outside the 

scope of this work. Manufacturers typically supply da~a concerning 

thermal performance and unit power consumpti~n over a wide range of 

operating conditions. Al-Juwayhel (28) utilized a polynomial curve fit 
J ... ----~·"'"-"'.:-•..-.r-""" ,.,..,,._,. '--.- ,...__ 
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to adjust performance va 1 ues for varying water flow rate, ~rt~~!:'J!1.9~~ater 
..__.------~-..........--..---"""'. ~~--- -.....-~-~· .......... .,.......~..-- .... -.-·- -~ .... ~ ,, ........ 

temperature and entering air temperature. The result is one equation 
"-.... - ...... ~· .. -. --~·-~-'· ., ........ ·- ' .... " . ~ -- ··- - ... - . ...~ . .,.. ... 

with a constant and first and degree terms for each variable. 

Application of this equation yields inconsistent results, especially for 
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varying water flow. Ravindran (29) improved this equation by providing 

polynomial curve fits for the air and water temperatures and an 

exponential term for water flow rate. 

Manufacturers present performance by the use of either tables (30) 

or curves (31). In using curves the corrections must be made for each 

variable independently. The methods of (28) and (29) correct all 

variables simultaneously. This procedure is more accurate if the 

performance curve for one variable changes radically when a second 

variable is changed. Heat pumps do not exhibit this characteristic 

within norma 1 operating ranges as suggested by the independent 

correction used by some manufacturers. 

Heat pump performance can be accurately predicted by independent 

correction. The method employed here will be to correct capacity and 

power consumption with a polynomial curve fit for inlet water 

temperature. The three remaining primary variables are considered in 

the form of correction factors. Curve fits are made for these 

correction factors by dividing the dependent variable by its rated value 

over the range of independent variables possible. The following values 

were arrived at for the cooling performance of a FHP LT50 by using a 

computer program entitled LSCF. 

q = 61921.0.- 223.9 Tw- 0.253 Tw2 (Btuh) (4.12) 

P = 2247.3 + 12.29 Tw + 0.05 Tw2 (Watts) (4.13) 

Dimensionless correction factors to capacity for water flow rate, 

entering air wet bulb temperature and air flow rate are as follows: 



CFC = 0.971 + 0.00366 GPM (4.14) 

CWBC = -0.513 + .0314 TWB - 0.00013 TWB2 (4.15) 

CAC = 0.98 (4.16) 

These factors for the power consumption are as follows: 

CFP = 1.211 - 0.0393 GPM + 0.0016GPM2 (4.17) 

CWBP = 0.410 + 0.012 TWB - 0.000048 TWB2 (4.18} 

CAP = 0. 99 (4.19) 

The corrections for low input voltage are made by reducing capacity and 

performance by a fixed amount according to va 1 ues pub 1 i shed by the 

American Refrigeration Institute (32}. The voltage often dropped below 

recommended va 1 ues and addition a 1 corrections were made according to 

actual experimental results. 

Equations 4.12 through 4.19 consider the effects of all energy 

inputs to the unit (fan power, compressor heat losses) except for the 

pumping power. The heat added by the pump is advantageous in the winter 

but must be rejected by the ground-coupling in the summer. Winter 

variation of pump input power was greatest (refer to Section 2.2). 

Summer input was fairly constant at 375 watts. 

82 
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4.3.2 Heat Transfer Coefficients 

The results of Chapter III are applied to the FDE development. The 

forced convection heat transfer coefficients are calculated in a 

separate computer program named HCAL and are input to the ground-

coupling simulation. All flows encountered in this project were either 

in the transition or mixed convection regimes. For flows in the 

transition regime, Equation 3.16 was applied directly as an average 

coefficient. Values in the laminar forced flow regime are considered to 

be in the mixed convection regime. Since no equations are available for 

the entrance region of concentric tubes, experimental results were 

applied directly to the simulation. In the 3 inch ground-coupling, the 

butt fusion ridges on the inside of the outer coupling at 10 foot 

spacing, prevent fully developed flow. This increases average heat 

transfer coefficients to values near those encountered in the entrance 

region of the heat transfer coefficient experiment. A value of 40 

Btu/hr-ft2-F was used for a 1.75 GPM flow rate at 90°F. 

During off periods, the calculation of natural convection 

coefficients were made by a rounded average of Equations 3.2 and 3.3. 

(4.20) 

This equation is particularly convenient to use because all the 

properties of water can be easily input. The only remaining input is 

the value for ~T which is measured across the boundary layer. The value 

used in this program is the film temperature differential of the 

previous time step. 
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4.3.3 Ground Thermal Properties 

The most uncertain variable in almost all ground-coupling 

simulations is the thermal conductivity of the ground (kg). The values 

of density (pg) and specific heat 

thermal diffusivity (ag), also 

diffusivity is defined by 

(cpg), which combined with kg give the 

effect thermal performance. The 

(4.21) 

The value of kg and ag for dry soil is relatively low and vertical 

ground-coupling should not be installed in dry soil. However, moisture 

in soils improves effective thermal conductivities significantly by 

providing a heat transfer, and in some cases mass transfer, medium that 

is a substantial improvement over dry voids in the grain structures 
----~--- ---

(~~). Soi 1 s need not be saturated in order for this improvement to 

occur. Therefore, the thermal conductivity of soils above the water 

table are increased significantly. Two zones occur above the water 

table that have high moisture contents (34). _The capillary zone is 

immediately above the water table and typical moisture content ranges 

from 100 to 50% saturation. Above this zone is the pellicular and 

gravitational water zone which consist of water that is held in place by 

hygroscopic forces and water which is moving downward. Percent 

saturation in this zone for fine grained soils typically varies from 50% 

to 30%. This zone may extend up to the ground level in some cases. 

In addition to moisture content, dry density and a general 

classification of soil type must be known in order to estimate thermal 

conductivity. _ _K_~rsten (35) developed a set of equations that predict -- '·-----.-·--- --- -·- - -

soil conductivity from dry density and moisture content. The equations 
-· ·-·--~- ------
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for clay is 

0.01p 
kg = (0.9 log $ - 0.2)10 g (4.22) 

If the soil is sandy use 

0.01p 
kg= (0.7 log $ + 0.4)10 g. (4.23) 

where $ is percent moisture of total weight and Pg is the dry density. 

Bose (2) has presented these equations in graphical form. 

A detailed description of the determination of thermal properties 

of soils is given by Salmone, Kovacs and Wechsler (33). The difficulty 

in determining these properties arises primarily in sampling. Best 

estimate of the soil type at the test site is a granular cohesive soil 

with a dry density of 105 lb/ft 3• The soil can be considered saturated 

since 90 to 95% of the ground-couplings are below the water table. 

Applying Equation 4.22 and 4.23 the range for kg is between 1.04 to 1.4 

Btu/hr-ft-F. A graphical plot appearing in Salmone (33) suggests a 

thermal resistivity of between 40 and 50 W/cm-°C for a saturated soil at 

this weight. This converts to a thermal conductivity between 1.15 to 

1.44 Btu/hr-ft-F. Measurements at the test site indicate slightly 

higher values (2). Several values within the range of 1.0 to 1.4 will 

be implemented into the program for verification. The problem of 

moisture migration is not significant due to the high water table at the 

site. A more detailed method of determining thermal properties of soils 

is contained in (4). 
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4.3.4 Ground Water Movement 

Significant groundwater movement can transfer heat to and from the 

ground-coupling at a much faster rate than possible with pure 

conduction. This would generally assist the performance of the system 

but could cause considerable underpredictions of pure conduction 

mode 1 s. A 1 though there appears to be no significant movement at the 

test site, this possibility must be considered. 

Typical groundwater flow velocities range up to 5 ft/year in clays 

and 5 ft/day in course sands and gravels. These velocities can be 

determined from the equation (34) 

K 
v = 7~48 ~~ . (4.24) 

Velocity in the equation is in ft/day, ~r is the dimensionless slope of 

the water table, and Ks is defined as the laboratory coefficient of 

permeability. Typical values are given in Table VI (36). 

The materials described in Table VI usually occur in layers through 

which the ground-coupling is placed. Therefore water velocities around 

coupling vary with height. A coupling could be placed in 90 feet of 

impervious clay, with a 10 foot layer of fine sand. The simulation must 

then be corrected for the improved heat transfer at this 10 foot 

section, while the remaining 90 feet is considered to be pure 

conduction. 

The test site is located near the top of a hill. The maximum 

height that could be obtained is approximately 30 feet to the top which 

is at a distance of 300 feet. The soil has been described as a silty or 

sandy clay. This would indicate a permeability of 10-3 gal/day-ft2, 
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therefore application of Equation 4.24 yields 

Material 

Clay 

Sandy Clay 

Sandy c 1 ay 1 oam 

Very fine sand 

Medium sand 

Course sand 

Gravel 

10-3 30 V = 7_48 300 365 = 0.05 ft/yr . 

TABLE VI 

SOIL PERMEABILITIES (34) 

Permeability (Gal/day-ft2) 

10-5 - 10-3 

10-4 - 10-2 

10-2 - 1 

. 1 - 102 

102 - 103 

102- 104 

102 - 104 

Although there may be more permeable layers at the test site, drillers 

have not found any significant strata other than clay and soft rock 

above 100 feet. The results of the test shown in Table IV indicate that 

water movement near the coupling is small. The values shown agree well 

with the values resulting from simulations that assume pure conduction. 
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4.4 Development of Finite Difference Equations 

As outlined in Section 4.1 the initial set of FOEs to describe the 

ground-coupling is an explicit formulation for a single vertical node. 

Figure 30 can be used to describe the development of the equations. 
" - . - .. ~-

However'~. the value for Se is 1.0 in this developnie~.f>(uniform grid 
..,___....,...... ____ ---~ .... - --· -· ... ·-· ,,M...._,_ .............. -..~ ................ ___, __ d_# ___ .............. ~.---... ~o 

size). An energy b;:!lance on node 1 is performed as follows. 

(4.25} 

(4.26) 

( 4.27) 

When Equations 4.25, 4.26 and 4.27 are combined the FDE for node 1 is 
j;· 

/. ·"" b' 
/ 

--,/ ·, h T2- T1 T2- T1 k~at \Lv [ k ar (T w - T 1) + + J + T 
ar2 riar P ppcppA 1 p p p 

(4.28} 

where A = ( r. ~~ 
1 + 4 ) 2 • 

If similar energy balances are performed on node 2 the resulting FOE is: 

ar n T 1 - T 2 I:J.r T 3 - T 2 at 
T' = [k (r. + ____.r.2 ) + k (r + ..:.:...Jl)( )] - + T (4 29} 

2 p 1 ar P g o 2 arg B N • 

where B 



The FOEs for nodes 3 to the far field are: 

(4.30) 

These FOE formulations are the basis to the computer program CXl. 

This program is for a single vertical node. The water temperature is 

held constant and no energy balance is performed on the water. 

The next simplification involves replacing Equations 4.28 and 

(4.29) to reduce computation time and allow a larger time step in the 

explicit formulation. This is accomplished by the use of Equation 3.1 

which neglects the thermal storage capacity of the pipe wall. An 

intermediate program was developed with a uniform grid size. This 

program required numerous applications of Equation 4.30 in order to 

calculate node temperatures to the experimentally determined far field 

radius, where ground temperatures are not effected by the coupling. 

A reduction in computations can be made if grid size is allowed to 

expand with each successive calculation of Equation 4.30. Since there 

are no abrupt changes in grid size, accuracy can be maintained. The 

arrangement of the resulting grid is also shown in Figure 30. Notice 

that node 1 is no longer necessary. 

An energy balance on node 2 of Figure 30 is as follows. 

(4.31) 

(4.32) 

(4.33) 
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The resulting FOE for node 2 is: 

(4.34) 

Utilizing me~h.Qf:t~""-gescribed in (25) the FOE describing the equation for 
( __ ...---~----~-~~·~-_..,,,,_,,.,>.'>< - ~~ ·~ ->--~· ..... --"<O~M '''' ''' '' ,b ••"' ·~ '< <o -0 ' ' ••< ~ .-.... ~---~· 

the ~fJ'JJ.rtcLr.~odes can be rep 1 aced by: 

(1-Se)TN 
Se 

SeTN_1 
Se+l ] = 

(4.35) 

This leads to the equation: 

a ~t 2 
T' _ g [( 2 + 1 ) T _ (2(Se+1) + 1 - Se )T + 
N- Se(Se+l)~rg ~rg r; N+l ~rg rN N 

(4.36) 
2 

(2Se _ ~)T ] + T 
~rg rN N-1 N 

The program utilizing the equivalent heat transfer coefficient with a 

uniform grid is CX2. The program utilizing the equivalent heat transfer 

coefficient and the FOEs (Equations 4.34 and 4.36) for the non-uniform 

grid is CONEX. This program allows variable value for Se. 

The simplifications employed to this point permitted time steps in 

excess of one minute when the values for a 3 inch schedule 40 PE pipe 
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are input. The expansion factor was increased to a value of 1.5. With 

this ratio and a· 0.25 inch grid width nearest the pipe, a 16 foot 

cylinder of ground can be covered with 15 radial nodes. Computation 

time was reduced enough to permit the simulation of the ground-couplings 

using energy balances to determine temperature variations in the 

vertical water nodes. 

Figure 31 describes the energy balance procedure utilized. Water 

enters the first vertical node at the bottom (M=1) through the dip 

tube. The set of FOEs used in. CONEX are applied to this node 

(radially). In the cooling mode, heat is transferred to the ground 

according to the equation 

(4.37) 

The heat is transferred through the annular tube by the equation 

(4.38) 

Note that the heat transfer coefficient inside the annular tube is 

neglected because of its large value. 

The water temperature in the next node is calculated by adding 

Equations 4.37 and 4.38 to obtain the net heat loss and applying the 

equation 

(4.39) 
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This procedure is repeated for all vertical nodes. When there is no 

flow the update equation becomes 

(4.40) 

Equation 4.37 is used to calculate qNET in this case and the value of 

heq must be determined using the natural convection value of hi. In the 

heating mode the formulation is identical but qNET is a heat gain. 

In order for energy balances performed in this manner to be valid, 

a 11 lump 11 of water must move exactly one vertical node during each time 

step. The~efore time steps for a particular concentric ground-coupling 

are dictated by the choice of average water velocity and node length 

according to the equation 

t.t = (4.41) 

After the energy balance has been performed on all of the vertical nodes 

the water temperature is used as an input va 1 ue to the heat pump 

performance. Heat transfer to the water by the heat pump is adjusted 

according to the methods of Section 4.3.l. The water entering the 

ground-coupling for the next time step is calculated by the equation 

(4.42) 

The value of qhp is of course not calculated when flow is stopped (Q=O). 

These formulations are combined into the most basic simulation of 

ground-couplings used in this project. Additional details are included 

in the Appendix in the computer program CVHE. 



The program CVHE has time step 1 imitations imposed by stability 

characteristics of explicit formulations. Computation time can not be 

decreased by reducing the number of vertical nodes, because Equation 

4.41 indicates that if ~L is increased for given velocity, the value of 

~t must also increase. It is necessary to convert to an implicit 

formulation in order to increase the time step or decrease the number of 

vertical nodes. 

The formulation of FOEs using forward time step is similar to the 

explicit formulation. Equation 4.34 is now 

roheg {T' - T') - !l {T' - T') + T' 
X1 w 2 X2 3 2 2 • {4.43) 

Equation 4.36 is 

a9~t 2(Se+1) 1 - se2 

TN= Se(Se+1)~rg [-(~~g + ~N)TN+1 + ( ~rg + rN )TN 

(4.44) 
2 

(2Se - k_ )TN' -1] + TN' 
Mg rN 

These equations remove time step limitations due to stability. However, 

considerable rounding error may result because Equation 4.43 must be 

solved simultaneously with Equation 4.44 being applied to every ground 

node that needs to be updated. 

A TDMA is used to solve this equation forT'. The resulting matrix 
w 

is diagonally arranged with the TN term being on the diagonal, the TN_1 

term before the di agona 1 , the TN+ 1 term after the di agona 1 and the 

constant coefficient is TN, except on the first and 1 ast rows. The 

constant coefficient on the first row is T 2 1 ess the T ~ term. The 
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constant coefficient for the last row is TN less the TN+l term, which is 

constant. A computer algorithm to solve this matrix is provided by 

(25). A sample matrix is shown in the Appendix. 

The computer program CVHI is identical to CVHE with the exception 

of the implicit formulation and the TDMA. With CVHI it is possible to 

reduce the number of vertical nodes and correspondingly increase the 

time step. The time step is still dictated by Equation 4.41. This 

proves to be inconvenient since the time step is the dependent variable 

and is therefore usually an odd value. 

To overcome this problem and to further reduce computation time, 

another simplification is made by reducing the number of vertical nodes 

to one. This will result in some inaccuracy since the temperature 

profile of the earth is non-uniform near the surface. The heat transfer 

rate in concentric coupling also varies with depth. It is possible to 

adjust the program to compensate for these non-uniformities. 

An additional compensation must be made to the water temperature 

entering the heat pump immediately after start-up. Water temperatures 

are significantly reduced during off periods due to natural convection 

in the cooling mode. CHVE and CHVI store these reduced values in the 

vertical nodes and the account for additional heat transfer as these 

11 lumps 11 of water proceed through the coupling. A single node program 

utilizes an average temperature, and a gradual change in water 

temperature is not possible unless provisions are made. 

The program CHI is a single vertical node implicit formulation. 

However, a vertical water temperature profile is calculated and 

maintained after each start up so that water temperatures entering the 

heat pump gradually increase. Once the water has made one complete loop 
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through the coupling, a single average water temperature is used in the 
" 

FOE formulation. A slight adjustment can be made so that the far field 

temperature reflects the average value of the entire depth not just the 

average far field value below 20 feet. 

The final program developed is the conversion of CHI to account for 

U-tube ground-couplings. The transient three-dimensional heat flow of 

vertical U-tubes is complex. Numerical solutions will not be attempted 

here because of this complexity and in the interest of computer time. 

An alternative is to derive values equivalent to those encountered in 

concentric couplings. These values include an equivalent diameter, heat 

transfer coefficient, thermal mass and short circuit heat transfer. The 

approach will be to use basic steady state heat transfer principles 

between the pipes and experimental results. Figure 32 shows the 

physical arrangement of the development. 

Bose (2) suggest that the equivalent diameter is 

(4.45) 

He also suggests an equivalent resistance per unit length can be 

calculated by 

= 1 ro _ ~ 
2nkp(Nt) !n r. - 6T • 

1 p 
(4.46) 

I~ terms of equivalent heat transfer coefficient this becomes: 

r r r 
= Nt ( _Q_ !l.n __Q_ + - 0- ) - 1 

k r. r.h. 
p 1 1 1 

(4.47) 
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Figure 32. Equivalent Dimensions of U-tube Ground-Couplings 
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Short circuit heat transfer is neglected and thermal mass is unnecessary 

when using the line source equation. 

A small adjustment is made to Equation 4.45 to account for U-tubes 

separated by a distance x. 

(4.48) 

Equation 4.47 overpredicts the heat transfer coefficient. This equation 

assumes uniform parallel heat flow from the pipes. However, the areas 

of the pipes facing each other are largely ineffective conductors of 

heat. Experimental results and simulations indicate that a conversion 

factor should be applied to Equation 4.47. 

where = 0.85 

0.6 < c < 0.7 - eq-

For this case A = 2~r0 • 

(4.49) 

when Nt = 2 (Single U-tube) 

when Nt = 4 (Double U-tube) 

Thermal short circuiting in plastic U-tubes is not as great as in 

concentric couplings without insulated dip tubes. It is much more 

difficult to calculate because of three dimensional heat flow pattern. 

Hopkins (27) suggests the use of an average thickness of soil between 

the tube. She assumes short circuiting occurs only between the inside 

tube quandrants facing each other. She also neglects the thermal 

resistance of the tube wall, which leads to an overprediction of short 

circuiting. 
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An alternative is to calculate the resistance of the five terms 

between the up and down water streams. These include two film 

resistances, two pipe wa 11 resistances and the soil resistance. The 

film and wall resistances will be calculated for only three-eighths of 

the tube walls facing each other in order to agree with experimental 

results. 

RF = 4/3'Jrr.h.L 
1 1 

(4.50) 

Rpw 
4 R.nr /r i J = 3 'Jrkpl 

(4.51) 

The heat transfer between cylinders of equal size buried in an infinite 

medium is (37) 

1rkgl8T 
q = ___ ...._x+":"":2::-r--

cosh-1[ 0 ] 
2r0 

(4.52) 

The soil resistance is therefore 

_1 (x+2r 0 ) 

cosh [ 2r ] 
0 

Rs = ---1r.,-kg--:L--=--- (4.53) 

This equation agrees with the values of resistance calculated by the 

methods of Hopkins (27). The total thermal resistance to short 

circuiting can be estimated by 
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(4.54) 

For concentric couplings this value is 

r 
r R.n .....E.£ 

[ 2 L ( 1 _ __,a 0,..---_r_::;a~i + r a o , 1 ] 1 
= 1Trao -ha-o + kap ~i QiJ (4.55) 

Another value that is necessary to calculate is an equivalent 

thermal mass. This value must be input in order to simulate water 

temperature recovery during off periods. If the thermal mass for small 

U-tubes (3/4 inch) is assumed to be the thermal mass of the water, 

temperatures recover too rapidly since there is very little water in 

these couplings. Therefore, necessary accuracy is achieved if the 

thermal mass is assumed to be the thermal mass of water in a circular 

tube of diameter Deq• 

Equations 4.48, 4.49 and 4.54 are applied to the vertical node 

implicit formulation used in CHI to form the simulation UTI for U-tube 

ground-couplings. The thermal mass assumption described in the previous 

paragraph is also applied. The formulations can be used for single or 

double U-tubes. 

4.5 Results of Finite Difference Equations Simulation 

The results of primary concern are the simulation of the entire 

ground-coupling system. Care has been taken in the development of the 

set of FOEs describing the radial temperature distribution for a single 

vertical node. CX1, CX2 and CONEX all simulate a single vertical node 

with a constant water temperature. Values are in close agreement for 
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CXl, CX2 and CONEX (with values of Se up to 1.5). They all give an 

average heat transfer rate of 1.35 ~ 0.05 Btu/min-ft for a 3 inch SDR 21 

pipe during the first hour of operation for a water temperature of 85°F 

in soil with a thermal conductivity of 1.2 Btu/hr-ft-F. This rate 

increases to 1.78 with 95°F water. These values are good for comparison 

purposes, but are somewhat meaningless unless a complete simulation is 

developed. 

The initial simulation is CVHE as described in the previous 

section. It uses CONEX with Se = 1.5 as the basic radial FOE 

equations. The heat pump used in the experiment was normally operated 

at 10.2 GPM or 1.70 PM per coupling. If Equation 4.41 is applied, the 

largest increment that could be used is five feet because of the time 

step limitation. The time step used is 1.07045 minutes. For each time 

step Equation 4.34 is applied once and Equation 4.36 is applied 14 times 

for each vertical node. The result is that for a simulation of one day, 

these two equations must be recalculated over 400,000 times. 

The program CVHI was developed into order to increase the time step 

and therefore reduce the number of verti ca 1 nodes. When the time step 

is doubled the vertical number of nodes is halved and the number of 

computations is reduced by a factor of four. The limitation on time 

step is simulation accuracy. Figure 33 is a plot of average coupling 

water temperature during at two-week simulation of the 3 inch concentric 

coupling for two weeks of 50% run fraction. Shown on the figure are the 

results using CVHE, CVHI with 10 vertical nodes and a constant 62°F far 

field temperature and CVHI with 10 nodes and 70°F and 64°F far field 

temperatures for the upper two vertical nodes. Figure 34 is a plot of 

the hourly variation at the end of the simulation. 
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The results show that accuracy does not suffer when the time step 

is increased to a va 1 ue as 1 arge as 5 minutes · ( 4 vert i ca 1 nodes). 

Increments larger than this are not necessary because they exceed the 

time of on-off cycles in periods of very light or very heavy loads. 

These results also indicate that accuracy in a 100 foot ground-coupling 

is not appreciably effected by assuming a constant far field temperature 

instead of one that is dependent on distance below the ground surface. 

These results indicate the possibility of simulation with a single 

vertical node and a five minute time step using average water and far 

field temperatures. The simulation CHI is for concentric couplings and 

UTI is for U-tube designs. At this point it is possible to compare 

simulation result with the experimental results. Comparison for the 

best couplings (double 3/4 inch and 1-1/2 inch PE U-tube) and the worst 

(2 inch concentric and 3/4 inch U-tube) are excluded. This is necessary 

si nee their performance is either reduced or increased because of the 

common water supply. Therefore the simulation is performed on the 1-1/2 

inch PB U-tube and the 3 inch concentric since their performance is more 

indicative of actual performance if all six couplings were of their 

identical design. 

Figure 35 is the average daily coupling temperature for the 

simulation and the experiment for the 1-1/2 PB U-tube during the 13 week 

operation. Figure 36 is the same plot for the 3 inch concentric 

coup 1 i ng. Results show good agreement except for the 62% run fraction 

period. At this time a low voltage problem occurred at the test site 

and heat pump performance could not be accurately predicted. Figure 37 

is a comparison of the daily simulated and experimental variation of 

temperature. 
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Simulations were performed as if independent systems were installed 

using six loops of identical design to each of these tested in the 

experiment. Figure 38 is the results of these six simulations. Figure 

39 is included to show the effect of decreases in thermal conductivity 

or water flow rate. 
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CHAPTER V 

VERTICAL GROUND-COUPLING SIMULATION WITH 

LINE SOURCE EQUATION 

5.1 Overview of Numerical and Analytical Methods 

Simulation of ground-coupled heat pump systems using numerical 

methods, such as finite difference or finite element solutions, offer a 

high degree of accuracy and flexibility when properly implemented. A 

wide variety of physical variables and operating conditions can be 

accounted for using these powerful techniques. The accuracy and 

flexibility of these methods necessitate that ~ariables also be input 

with accuracy. Many of these variables can be determined. However, 

many can not be properly calculated or controlled. For example, the 

performance of the double 3/4 inch U-tube used in this experiment is 

dependent not only on tube separation distance, but also on location of 

tubes in relation to each other. One of the down flowing tubes could be 

surrounded by the two up flowing tubes. This would reduce the capacity 

of the up flowing tube and increase short circuiting. Unless elaborate 

measures are taken during installation the arrangement can not be 

determined. 

There are a great many other variables that are difficult to find 
'-.._. ---~- --

including forced and free convecttQ!lheat transfer coefficients, thermal - -~--- - ,___ -~ .. --~-·- - . -

properties of the soil and local groundwater movement. If the numerical 
- ---- ---~-- _ __.. .... - ---

method is to be used as part of a simulation it must be linked to a 

107 
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simulation of the building thermal load to determine heat pump operation 

patterns. This can add to a greater error since the accuracy of 

cooling/heating simulations are also dependent on input variables that 

are difficult to predict. These variables include among other things 

the weather, thermal integrity of the structure and internal loads. 

These factors may lead to an overconfidence in the results of a 

numerical simulation based on its power, not its accuracy, which is 

highly dependent on the quality of input assumptions. A primary example 

may be the prediction that air source heat pumps have a greater annual 

power savings than vertical ground-coupled heat pumps in Houston, Texas 

(37). This is based on the assumption of a relatively poor soil thermal 

conductivity. A more realistic result of the annual power consumption 

will be arrived at if the locations significant groundwater movement is 

considered in the ground-coupling simulation. 

It is apparent that most firms installing vertical ground-coupled 

heat pumps do not have sufficient facilities and resources to properly 

test local conditions and apply numerical method simulations. Current 

procedure is to install a system based on "rules of thumb" and make 

adjustments to subsequent installations based on the performance of the 

initial one. 

An intermediate desi_gn_ __ J~r_Q~e_c:JurE! _b~tw~en_ "rules of thumb·~ and 
~ - -·-~ -·· . --- - -- --·-- -- ------- -

numerical methods __ is __ !Q ___ t{~ili?e the _Kelvtn Ljne Squr-_ce Theory as __ a~p-lied 

to heat pumps by L. R. I nge~_so 11 , _ Zob-el _and A •- C_. Ingersoll ( 39). This 
. _,_ --' - - """~ ... -.. -

method has been deve 1 oped by I<_ a lll)~ll J7) and a 1 so by Bose ( 3) to account 
- - --~-- ---- .... ~ 

for current instaJJation methods. Although this method does not have 

the flexibility and accuracy possible with numerical methods, it 

requires much 1 ess computation time and adjustments can be made to 
'-·-
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account for many complications so that accuracy approaches that of 

numerical methods. 

5.2 Literature Review of Analytical Methods 

Ingersoll, Zobel and Ingersoll (39) applied the line source 

equation to the solution of temperatures near pipes buried in the 

ground. When the equation presented in their text is converted into 

symbols consistent with this work, we have 

00 

J r/2/a.gt I(X) (5.1) 

where ~~~---~~-=--~a~-~---Q.f"~~~-C:S)rejected or absorbed b!__ ~~-e _ ~-~o~n-~-~ 
couplj_rg, s is in this case a variable of integration and X = r/2/a. t 

"--------- -~-- - - -- . - g 

The results of the integration for I(X) are given for a range of X 

characteristic of many ground-couplings in Figure 40. Additional values 

can be obtained from a table utilized by Ingersoll, Zobel and Ingersoll. 

The authors apply the equation primarily to evaluate the 

temperature at the outer pipe wall. This is accomplished by setting r 

in the term for X equal to the outside pipe radius. Temperatures at any 

point in the ground can be evaluated with Equation 5.1. Error does 

resul~ for large pipe and for small values of time. The authors suggest 
~---~ ---···- "', ., " - --- -- < -, -- -······ 

(5.2) 

i' 
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-~--- ~-~--- -

F6,i~~~]J!~----V.~l-~-~$) the work of Jaeger ( 40) is suggested as a better 

method. Jaeger proposes the use of the equation for cylindrical sources 

~ ~Tg = k G(z,p) 
g 

(5.3) 

where 

G(z,p) 

and p =.r_ (z is al~':) F) r 0 - o 

The values of G(z,p) of most interest are when p = 1 (outside pipe 

wall). Values of G(z,1) can be obtained from Figure 41. Additional 

values can be found in References (39) and (40). 

Equations 5.1 and 5.3 are derived for constant heat transfer rates 

However, an average value for ~T at any location can be ----------------- - --- - - g 

determined by inputting an average value of heat transfer over a 'limjted 

time period. For soils this time period is well within the hourly and ------ ," ____ - ----

daily fluctuations of heat pumps. Methods will be described later to 

calculate values other than average ones. 

The_(llltbor$ _Qf j~~) _ p~ov_i __ ~e many methods of ___ CiPP lying EquCiti on 5.1 

-~o __ gr_Qu_~q-coupJ-ed-- heat ___ .JJ.Umps, inc 1 udi ng the complexities i nvo 1 ved when 

horizontal or multiple pipe couplings are used. Isolated vertical pipes 

generally have fewer complexities but several methods of application of 

the line source equation are necessary for it to be a useful design 

tool. 
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The primary adjustment is for the variable heat absorption rate 

characteristic of heat pump operation. The variation m~~--~e_ i~- te_r:m___s of 

month, day or hours in actual cases. The authors apply the equation to 

monthlj variations, but shorter variations are possible if_the relation 

The line source equation is broken up for variable of 5.2 is not true. -------- --·---·-~ 

rates from t = 0 to tf by 

~Tg = _1_ { ggcl [I(X) - I(X)t -t] + qCc2 [I(X)t -t 
2'11'kg L tf-to f 1 f 1 

I(X)t -t 
f 2 

] + ••• 

and q - q at t·= t • gcn - gc n 

-t + - i) 1 ,, ' -f-;::- ,, t\ ~- i'tfXA.f1 ~., 1:; 

Equation 5.3 can also be arranged in a similar manner. 

(5.4} 

In a later publication, Ingersoll, Adler, Platt and Ingersoll (41) 
------~- -- -·- ·--- ~-·--·· --·-··.... . ......... _ .......... - .. .-.~---- ',_,._, 

suggest_ met~?ds of accounting for_,. ic_e formation and moisture migration 

near a ground-couplings, which are outside the scope of this work. _Jh~_ 

authors also consider the effect of groundwater movement. They suggest 
---- -------- . -~--- .... ----·~···· ,,_ -~- - --

that with a groundwater velocity of 0.01 ft/hr, qgciL improves by 20% 
------------~ - -· ---~ ~ - ~ - . - ' 

and by 79% for 0.1 ft/hr _when compared to qgc/L for zero veloctty. 

Penrod ( 42) uti 1 i zes the work of Ingersoll and Plass ( 43} as a 

basis for sizing horizontal ground pipes. This was applied to 

installations in three different locations. Resulting heating energy 

ratios for the systems were 3.1 to 3.3. The degree day method was used 

to estimate the heating demand. Various installations (44), (45) used 

the methods of Ingersoll, Plass, Zobel and Ingersoll before interest 

reawakened in the late 1970s. 
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The interest in energy efficiency, the common use of plastic pipe 

and the availability of low cost micro-computers lead to the next stage 

of development of the line source equation for heat pump applications. 

Ka 1 man ( 7) uti 1 i zes the methods of ( 39) and deve 1 ops procedures to 

account for the effects of the thermal resistance of plastic pipe and 

the boundary layer. In addition to these values Kalman corrects for 

heat pump performance variations due to water temperature. Also 

included in thi~ thesis is an economic analysis. 

An important development in a revised version of Kalman•s thesis is 

the provision to calculate the outlet water temperature based on the 

log-mean temperature difference (LMTD). The original calculation 

utilized the line source equation to find an average water temperature. 

(5.5) 

Equation 3.13 was applied to the entire pipe length to obtain the total 

temperature difference of the inlet and outlet water. 
~,;~', ~Jl"-

il ' .. -!'· 

Two Twit·= qg/mcp 

The outlet water temperature was then evaluated by 

q 
T + -.:..9£ 
w 2mcp • 

(5.6) 

(5. 7) 

This was revised according to the definition of log-mean temperature 

difference 



LMTD = 
(Twi - Tff) - (Two - Tff) 

T - T 
t n wi ff 

Two - Tff 

The resulting equations for water outlet temperatures were 

~T w 

~T w 
Two = Tw + ~T 

1 - e(Tw - ~ff) 

(Cooling) 

(Heating) . 
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(5.8) 

(5.9) 

(5.10) 

Bose (2) also utilizes the line source equation as the basis for ground-

coupling design. Required lengths are calculated from the equations 

R 
12 OOO(COP + 1)(_Q + R Rf) 

Lc(ft/ton) = ' COP Nt g 
Tw - Tff 

LH(ft/ton) 
= 12,000 (co~OP 1) (RP/Nt + R9Rf) 

Tff - Tw 

Rg is found from a variation of Equation 5.1. 

R = I(X) 
g 2Tik 

g 

(Cooling) (5.11) 

(Heating) • (5.12) 

(5.13) 

Notice that the temperature difference term for the pipe (qhpRp/Nt) is 

not reduced by the run fraction term. This work also utilizes several 

of the adjustments to the line source equation as suggested by 

Ingersoll. Several graphs and other methods to simplify calculation 

procedure are included. 



5.3 The Line Source Equation Applied to Vertical 

Ground Couplings 

116 

The work of Ingersoll, Bose, Kalman and others are primarily 

concerned with the application of the line source equation to horizontal 

ground-couplings. Vertical ground-couplings are less effected by 

complexities encountered in horizontal systems such as thermal 

conductivity and far-field temperature variations. One complication not 

considered in depth is short circuit heat transfer within a single line 

source. As an alternative to calculating the interference of two line 

sources in a single bore hole, a single source with short circuit losses 

will be considered. 

Significant deterioration in performance of concentric couplings 

will be experienced if ~~~dip tube has a large surface area and/or high 

~hermal_ fO_n_ductivity. The problem is more significant- in parallel flow 
~ - .. - ~ . - ' 

systems because of the_,] arg~r _ te.mp_erature-: d} fJ~r_enc_e~ -~-~1~een _t~e_ up_ ~nd 

dow~ __ fl ~wing stre~ms. Series arrangement. are less effected. The 

correction for this can be performed in two ways. The __ fir~t ___ is ~() find 

the aver~ge- loop water temperatur·~- .(Tw), apply Equation 5. 7 and correct 

for short circuiting by 

(5.14) 

Combining Equations 4.55 and 5.6, 

· . T . - T 
,' q , _ Wl~ WO = 
' sc - (._, sc 

'1 

(5.15) 

I 

with 5.14 yields 
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~T sc = {5.16) 

Equation 5.7 is then corrected for short circuiting by 

q 
T = T + gc 

wo 2 c w m p 
{5.17) 

which simplifies to 

q 
Two = T + --.::.9.£.2 c ( 1 w mcp 

{5.18) 

Recall that qgc is positive for heating mode and negative for cooling. 

A second method of calculating outlet water temperature is to 

correct for short circuiting in a general equation for heat transfer 

from an element of differential length and integrate this equation over 

the entire length of the coupling. Kalman {7) has suggested this method 

in the derivation of Equations 5.9 and 5.10. In heat exchanges it has 

been shown that when 

~Tmax 
T < 2.0 

~ min 
(5.19) 

LMTD can be replaced by mean temperature difference (MTD) with less than 

1% error (46). For ground-couplings this translates to 

(5.20) 
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However, it was noticed that when compared to experimental results 

and to the simulations CVHE and CVHI, in certain cases Equation 5.18 

resulted in error. When flow rates were changed, Two remained fairly 

constant (see Figure 14) while the value of Twi changed much more 

significantly. This discrepancy can be accounted for by referring to 

Figure 42. The short circuit heat 1 oss represented by the temperature 

line from i(inlet) to b{bottom) causes small change in the slope of the 

temperature profile from b to mp (mid point). Since over 75% of the 

short circuiting occurs from mp to o (outlet), the slope in this portion 

of the profile is significantly decreased. The result of this is that 
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the value of Tw - Tff tends to approach Two - Tff' when short circuiting 

increases. Decreasing flow rates increase the value of Twi - Tff and 

the error due to replacing LMTD with MTD is also compounded. Also shown 

in Figure 42, is the temperature profile for no short circuiting and for 

a U-tube. 

An equivalent value for MTD is complicated by the fact that three 

temperatures (dip tube, annulus and far-field) and two U-values (dip 

tube and outer tube) must be included in the energy balance. This would 

result in equation much more complex than 5.9 and 5.10 for outlet water 

temperature. 

An alternative is to utilize experimental results of mean 

temperatures to arrive at an equation for outlet water temperature. 

Figures 21 and 22 indicate that two-thirds of the heat transfer occurs 

in the downward flowing leg of the U-tube and lower half of the 

concentric. These values were consistent throughout the test except 

during start-up periods. An estimation of the mean temperature 

difference for the concentric coupling is 
~ 

MTD = Tw- Tff 
Twb + T Twmp +Two 

= ( 2 wmp - T ff + 2 - T ff) /2 ' ( 5. 21 ) 

where Twb is the water at the base of the coupling. When simplified and 

written in terms of heat rejection we have 

q 
T = Twb + 0.583 ~ • w mcp 

(5.22) 

When Equation 5.22 is combined with 5.6, 5.14, and 5.17 the result is 
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Two 
0.42 q~c 

(1 1 ) + T (5.23) = 
mcp mcpRsc w 

--·----\ 

Since this equation is empirical its range of application is limited. 

It is suggested as yi e 1 ding b~~-~-~r -" results when the coup 1 i ng _jnJ~t.::. 
---~---- ~ - ~ -~-,~~·~-"·--·'""''"'"~ 

outlet water temperature difference (jT - T .j) exceeds 10°F and short 
<-----"- -------- '···-- ,, -· ... _ .............. -----~--"·----·-"-- ··" ' __ .•. ,,, . '~9-:· ·:~~h--'~'1"''•"'""'· .::.·.· - ... - ' :>"':..>-"•,:: ::·.:. '_·-- "" ···-... . 

circyJttng is less than 10%. !R""all other cases .. Equ&tion 5.18_i_s 
____ ,.,........--- . " •. r'/ .,_ ~ JJ- ",,_ -~ ,.,..-. < J 

(~ppropriate.. ·- ,_ ·-·-·------" - ,~ 
·--~- - _,. ___ , 

The temperature difference between the water and the ground can be 

found by rearranging Equation 4.49 to find an equivalent thermal 

resistance, thus 

_ qgc 1 
ATP + ATbl = qgcReq- 2~C ~h( ~ + 

eq ! 1 1 
"'< 

(5.24) 

\\ 
It is sometimes necessary to calc~late the minimum or maximum 

) 
coupling temperat~re. This involves calculating ~aiJy_swi_n_g utjlizing_ .... -----~~------ .,. ,._ .. _,_./~-'"~--"'''•-, ... 

Equation 5.4 and inputting a value of t = 6 hours for the last term. In 
-----------~--~-~ _.. · ....... - ...._ __ ,.-~_,____ . ...,\ ..... - . 

most larger ground-couplings this would violate the condition of 5.2 and 
t ' I 

Equation 5.3 should be used. However, for values of a.2 = 10 the error 
r 

between the daily average value of Tw and the maximum value is less than 

1.0°F using Equation 5.4. 
I 

Another simp 1 if! ~at]_()_~ __ thc3t "fllCI.Y be he 1 pfu 1t in reducing computation 
,,· . 

involves an approximation so that Equation 5.1 can be_ utilized when 
----, - ··-----~---~""'·-......_- -· ----·-- . --- -- .... ------- . -

Equation 5.4 is normally war_ranJ:ed. 
-~-- ---~-- .. ~---...._,_..,.---.~- -- --~-----------~-----·-----.- ~----.. _____ ,.,.-~--·-~ --~--~-, .. .--· .,___ "'"··-~· 

Typically heat pump operation 

patterns vary frequently. Line source theory of varying heat rates 

requires that Equation 5.4 have terms for each different rate. Tw is 

primarily dependent upon the heat rate during the hours and days 

immediately preceding evaluation and secondarily to the total amount of 

heat transferred to the ground over the season. 
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The single termed Equation 5.1 can be substituted for 5.4 if the 

·heat rate used in 5 .I is the rate averaged over several days before T w 

is evaluated and the total seasonal heat transfer is constant. This can 

be accomplished by finding qsc/L for the week before evaluation. The 

total heat transfer is found by integrating the heat rate over the 

entire season (heating or cooling). An equivalent time for Equation 5.1 

is then found by dividing this total heat transfer by the average heat 

rate. 
- .... - . ~' --~----~·-.. ··-~ . -:: 

For example suppose~ three in~j22coupling rejects 20 Btu/h-ft for 
~ .. -. ...__,.._~~~~~ 

three weeks, then 30 Btu/h-ft for the next three weeks followed by three 

weeks of 40 Btu/h-ft. Application of Equation 5.4 results in a pipe 

wall to far field temperatures difference of 17.8°F in soil of k = 1.4 

Btu/h-ft-F and a= 0.027 ft 2/hr. The average heat rate during the final 

week is of course 40 Btu/h-ft. The equivalent run time can be found 

from 
'"-------~-"'------

} ,_, 
r v, 

t 
f Btu • h 

~qgcdt = (20 + 30 + 40) hr-ft x (21 days x ~~-cl~y) = 

-----·---

The equivalent run time is 

= 45,360 = 
40 1134 hr. = 47.25 days 

(5.25) 

Btu 
45,~60 ft _. 



40 

30 

20 

10 

0 

Rf r- eq 

~ 

r-

0 

teq=47.3 Days 
I-- ----
I 

I 
I I I 
I 
I 
I 
I 

I 
I I 

21 42 
Days 

Figure 43. Determination of Equivalent Run 
Fraction and Time 

122 

63 

Figure 43 shows this process graphically. Substituting qgc/L = 40 

8tu/hr-ft and t = 1134 hr into Equation 5.1 yeilds a temperature 

difference of 18.05°F. The resulting error is 1.4%. 
~~-.--.--,.,.-~y,,....!<'<t""""'"'""""'•-"•,d~._.1 _.,.,....~- Y"""'"'""'"N<,"-. _,d n·- _.,_.. __ ~ • •.• ,,-r.•,;:..'?or.,..-., •· .r• ''' 

The 1 iterature search did not reveal a method of accounting for 

variations in the thermal conductivity of the soil in the axial 

direction. Ingersoll, Zobel and Ingersoll provide methods of accounting 

for variation at a given cross section. Hand computation would be 

difficult but an iterative procedure could be utilized with a 

microcomputer. The situation of variable thermal conductivity (and far

field temperature) in the axial direction is common to vertical 
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couplings. In some situations the effects can not be neglected. 

Solution in concentric couplings with the line source equation 

involves calculating inlet and outlet water temperatues of each section 

of ground-coupling that can be considered having constant thermal 

conductivity and far-field temperature. The outlet water temperature of 

each section is compared with the inlet temperature of the downstream 

sectin. If they do not match the values for q/L of each section are 

accordingly adjusted, water inlet and outlet temperatures are 

recalculated and the process is repeated until temperatures match • 

. ,,..As_._an""_exctmple, a 150 ft 3 inch steel ground-coupling with a 1.25 
~~-~ --.~-,~ .... ~," ,. '.,._._,... ... - '"'"<'-"., ..... , 

inch insulated dip tube has a 50% run fraction at a 12,000 Btuh heat 

rejection rate for one month. Water flow rate is 1500 lb/hr (3 GPM) and 

soil properties are kg= 1.2, ag = 0.026 and Tff = 60°F for the lower 

100 feet and k = 0.9, a= 0.02 and Tff = 63°F for the upper 50 feet. If 

a constant heat rejection rate is app 1 i ed across the 1 ength of the 

coupling and Equations (5.1), (5.5), and (5.23) are applied to both 

sections, the water outlet temperature of the lower section is 77.7°F 

and the in 1 et temperature to the upper section is 90. 2°F. The heat 

rejection rate of the upper section must be decreased and the lower 

increased until the two temperatures are equal. These two temperatures 

converge at a value of 80.7°F when the lower section of the coupling 

rejects heat at a rate of 47.0 Btu/hr-ft and the upper section at 26.0 

Btu/hr-ft. Coupling outlet temperature is 80.6°F. The outlet 

temperature wou 1 d be 77.1 °F if the entire coup 1 i ng was in the soil of 

higher thermal conductivity and lower far field temperature. 

This method does not apply directly to the U-tube designs since 

there are two flow streams in each section. In U-tubes the heat 
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transfer rate varies much less with axial direction since the average 

temperature of the tubes is almost constant. Therefore the heat 

rejection rates for sections in soils of different thermal properties 

can be adjusted until the value for the average water temperature (Tw) 

is equal. The inlet and outlet temperatures for each section need not 

be calculated. This is only an estimate of the relative heat transfer 

capability of each section. Actual determination of inlet and outlet 

temperatures require finding the heat transfer rate of both tubes and 

transfer between them. This can not be accomp 1 i shed with the 1 i ne 

source equation alone. 

The effect of water movement can also be accounted for in this 

w_~----~-~!~~-==--~L-~-~~~--:~-~ .. ~~" ... ~ s.c!~ ... ~0~.1 -~,.-,.~ ~~-~:~-~.~ ... . ~.?~-·- -~·i,~-~- .. ?. -- ~~.~~:.~ 
movement of 0.01 ft/hr, which is in agreement with (40). When increases 
,..._.---~-- -~ ....... ~-"''"'"'"'"'" _._.....,., ..,..,....,..._.,.,, ...,._,,...,.._,.,._• •N.>.""'-"< ,.,.,~-

in qgcll are applied to sections of ground-coupling that are located in 

strata were water movement occurs, the effects are the same as 

increasing thermal conductivity. Therefore the methods for adjusting 

the line source for varying thermal properties is applicable. The 

solution would be somewhat more complex since the water temperature at 

two locations must be balanced instead of at one point as in the 

previous example. 

An additional adjustment to the line source equation must be made 

for calculation of average water temperature while the unit is 

running. The values obtained for Tw using Equation 5.5 is the average 

when the unit is both off and on. The true average temperature must be 

adjusted. Figure 18 suggest the unweighted average water temperature is 

79°F and the instantaneous value can be approximated by 
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T = 79 - 4.0 sin ;~ (5.26) 

where t is in hours. 

The run fraction at this time was 50% and can be estimated by 

Rf = 0.5 - 0.25 sin r~ (5.27) 

If the time lag between Rf and T is neglected then 

TAVG = 1 ~o4 TRfdt 
/ 4R dt 

0 f 

(5.28) 

Integraton and evaluaton leads to 

A similar procedure was performed using the temperatures of Figure 19. 

The average daily temperatures (Tw) was 86.0°F and the running weighted 

average (Twa) was 87 .2°F. In both cases the weighted average was 

increased by about 12% of the daily water temperature swing. This 

suggests the equations 

= Tw + 0.06 (Tw - Tw) (Cooling) 
max 

(5.29) 

= T + 0.06 (T - T ). (Heating) 
w wmi n w 

(5.30) 



126 

The application of the line source equation to vertical ground

couplings is highly flexible in terms of the degree of accuracy. In 

many cases this may be determined by the method of computation (hand 

calculator or microcomputer). However, the primary limitation on 

accuracy of the 1 i ne source, as we 11 as one numeri ca 1 methods, is the 

degree of accuracy that the thermal properties of the ground can be 

determined. 

5.4 Heat Pump Air Side Load Calculation 

As previously mentioned the performance of CLGCHP systems is not a 

direct function of outdoor air conditions. In addition to knowing the 

thermal properties of the soil and ground-coupling, the water temp

erature into the heat pump is a function of operating history during the 

preceding days and months. It is therefore necessary to estimate the 

building load to determine unit performance. 

The most accurate way of determining building load is by utilizing 

a transfer function method such as DOE-2 or the OSU program BLSIM. 

These methods involve a significant amount of computer capability. 

Input, which includes weather tapes, usually requires considerable 

detail. A second alternative is the bin method, utilizing the standard 

fixed base temperature or a variable base. A third method is the use of 

degree-days or hours which can also be fixed base temperature with 

correction factors or variable base. 

The accuracy of these methods increases with the degree of detail 

of the input. Fixed base degree-day methods for energy consumption do 

not yield good results even with regression analysis correction factors 

(47). The accuracy of the methods increases significantly with the use 
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of a varible-base temperature (48). This method accounts for variations 

in solar gain, infiltration, internal heat generation, latent loads and 

window placement. The degree-day base temperature is accordingly 

adjusted. The method is particularly useful in determining monthly run 

fractions, since degree-days are often listed by month. Final selection 

of a method of energy calculation requirement must recognize that house

to-house variation in internal loads can not be accounted for even the 

most elaborate methods. These are often a result of occupant living 

habits. 

Improvements in the vari ab 1 e-base degree-day method are currently 

being verified ( 49). A fi na 1 report is scheduled to be pub 1 i shed in 

June 1985. The present procedure is to follow the recommendations of 

(48) to determine the correct base temperature. The basic equation for 

the variable based degree day method is 

24 qdl 00 (TVB) 

(Td1 - Ti) 
(5.31) 

and this can be used on a monthly or annual basis. Notice that the term 

DO(VB) replaces the terms 

cf 00(65)/nV 

in the standard degree-day formula with various correction factors. The 

design heat gain/loss load (dl) is 110rmally found at the 97 1/2% value 

recommended by ASHRAE (40). 

The primary difficulty in using this method is the evaluation of 

Tva· Kusuda (47) defines this temperature in relation to the indoor 
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design temperature 

(5.32) 

Eqi is the summation of internal heat generation and solar gains. The 

EKi term includes the heat transmission-area terms (UA) for all 

envelope components and the infiltration term (1.08 x CFM). Heat gains 

are primarily from these components 

Eqi = qi people+ qi appliances + qi solar (5.33) 

Reference (50) Chapter 26 lists values of adjusted total heat gain due 

to people for various activities. The total values should be multiplied 

by the average occupancy time, not 24 hrs/day, for energy 

calculations. An average value of 1200 Btuh is suggested by (50) for 

appliances. Any major appliance not typically located in homes should 

be accounted for by Tables 20 and 21 of (50). The solar gain is the 

most complex value to evaluate because it is considered at the design 

point for cooling and usually not considered at the heating load design 

point (night), unless significant thermal storage and passive design are 

present. 

Tables 18A to 26A Chapter 27 of Reference (50) list values for half 

day totals of Solar Heat Gain Factors (Btu/ft2) for various latitudes. 

In the heating season, the adjustment for heat gain through glass is 

made by summing the half day totals, accounting for shading coefficients 

and clearness index (KT). 

qi solar = SC * SHGF * KT * Awindows (5.34) 
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Values for the clearness index indicate the relative amount of 

insolation for a given location and month to the total extraerrestrial 

value and are included in weather data appearing in Reference (51), or 

in similar publications dealing with solar energy utilization. 

In the cooling mode solar ~ain is accounted for in the calculation 

of design load. If design load calculations are arrived at as a result 

of a short term peak solar gain (i.e •• one or two hours of gain through 

an unshaded west window), not considered in Equation 5.33, Equation 5.31 

will overpredict energy consumption. More elaborate means of evaluating 

qi solar are needed in this case. This is also true with passive design 

or if buildings other than light weight are analyzed. 

In evaluating Ki the average transmission coefficients for the 

roof, walls, floors, windows and doors are multiplied by their 

respective areas (except for slabs where perimeter is used). Details of 

evaluation are found in Chapters 23 and 25 of (50). These values are 

summed and added to the infiltration multiplied by 1.08, the conversion 

from CFM to Btu/h-°F for air. 

LK 1. = UA f + UA ll + UAfl + UAd + UA . d + 1.08 Q.f (5.35) roo wa s oor oors w1 n ows 1 

The rate of infiltration can be estimated according to McQuiston (52). 

Qif = ACH * Building Volume/60 (5.36) 

The air changes per hour (ACH) can be evaluated from 

(5.37) 
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V is the average wind velocity in mph and a trial and error calculation w 
is performed to match T0 with TVB" Table VII gives the values of the 

constants in Equation 5.37 for houses that are tight (close fitting 

doors and windows, weather stripped, vapor barriers), medium (frame 

houses 10 years or older, average fitting doors and windows), and loose 

(poorly fitting doors and windows, more than 20 years old, average 

maintenance). 

TABLE VII 

CONSTANTS USED TO EVALUATE INFILTRATION RATE (52) 

House Type 

Tight 0.25 0.002 0.0085 

Medium 0.25 0.004 0.0245 

Loose 0.25 0.006 0.0525 

The methods for eva 1 uat i ng T VB wi 11 undoubtedly be improved upon by 

Reference (49) and should be implemented upon publication. 

The heating and cooling load may be evaluated by a variety of 

means. If computer programs are not available the simplified method for 

residences appearing in Chapter 26 of (50) should be used for cooling. 

Other building types should use the longer methods of (50) or (52). 
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Heating loads can be calculated by the methods of Chapter 25 of (50). 

Values for degree-days for temperature bases other than 65°F can be 

determined from References (53), (54), (55) and (56). Monthly variable 

base degree-day tab 1 es can a 1 so be generated by using bin data to 

determine the number of degree-days between 65°F and Tvs and subtracting 

this amount from DO (65). An empirical equation is suggested by {58) of 

the form 

B DD(VB) = (Ty8!A) (5.38) 

Reference (56) 1 i st the va 1 ues of the constants A and B for over 200 

cities in the United States. Guntermann {57) presents a simplified 

vari ab 1 e method for annua 1 ca 1 cul at ions when degree-days referenced to 

bases other than 65°F are not available. His method can be adopted to 

monthly calculations. Degree-days to different bases are also published 

by the National Climatic Center. 

Before monthly run fractions can be determined, a heat pump that 

can meet the design heating and cooling load must be selected. Caution 

must be taken to determine both heating and cooling loads, since homes 

in identical locations may have peak loads during different seasons. 

Figure 44 shows the results of transfer funtion load calculations (53) 

applied to two 1500 ft 2 homes in Stillwater. One house is classified as 

tight according to (52). It has a R-35 ceiling, R-20 walls, simple 

passive orientation (windows on south wall, garage on west wall), storm 

doors and windows. The second house has medium infiltration, R-22 

ceilings, R-13 walls, random window arrangement and storm doors. The 

results are obvious. If the heat pump in the medium house is sized for 
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coo 1 i ng, substantia 1 back-up heat is required for the design heating 

day. 

Once the heat pump has been selected the monthly run fraction can 

be determined from 

(Erg)mon 
( R f) mon = -q--.*'""""='"DA~v=s~*"""'2~4,_.r

hp 
(5.39) 

This results in an iterative process since heat pump capacity is a 

function of coupling water temperature which is a function of monthly 

run fraction. Experience with the application of Equations 5.1, 5.4, 

5.5, 5.14, and 5.7 or 5.23 leads to the ability to make 11 educated 11 first 

quesses for water temperature so that the number of iterations necessary 

is small. 

5.5 Results 

Figure 45 is a comparison of the results of using the 1 i ne source 

Equation 5.4 for the experimental cooling mode test on the 1-1/2 inch 

polybutylene U-tube. Figure 46 compares similar results for the 3 inch 

concentric coupling. The figure also shows the values obtained using 

Equation 5.23 to calculate water outlet temperature. Figure 47 compares 

the maximum and minimum daily average water temperatues using the 

expanded form of Equation 5.3 with experimntal and FOE simulation 

values. 

The line source equation slightly overpredicts the actual and 

simulated temperature distribution. The equation shows the greatest 

error during the off or light run fraction times, the least critical 

periods. Notice that as run fraction increases, error decreases. Table 
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VI II shows the results of a comparison between a simulation of the PB 

coupling using UTI and results calculated using Equation 5.4 Three 

conditions were simulated, a 92% run fraction a 50% run fraction and a 

50% run fraction in which natural convection effects were suppressed 

during off periods. Notice that the value of the line source agrees 

more closely with the results of the simulation using the reduced 

natural convection. However all error with the line source is small 

when compared to those resulting from uncertainity in soil properly 

measurement. The appendix contains an example procedure for the design 

and simulation of a vertical CLGCHP system. 

TABLE VIII 

FOUR WEEK SIMULATION OF 1.5 INCH POLYBUTYLENE U-TUBE 
USING FINITE DIFFERENCE AND LINE SOURCE EQUATION 

Test Average Water Outlet Temperature (oF) 
Simulated 

FOE Line Source 

92% Run 95.9 96.7 
Fraction 

50% Run 82.4 83.6 
Fraction 

50% Run 
Fraction 

hnat = 83.8 

1.0 Btu 
2 h-ft -F 



CHAPTER VI 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

Vertical closed loop ground-coupled heat pump systems are a viable 

means of heating and cooling. Manufacturers are beginning to devote 

more effort to water-to-air heat pump design and therefore unit 

efficiencies are rapidly increasing. The development of relatively low 

cost drilling equipment presently being marketed will continue to drive 

down the cost of installations. Plastic pipe, fittings and fusion 

equipment are being manufactured especially for ground-couplings. 

This experiment has compared the performance of several vertical 

ground-coupling designs. The primary results are in the form of thermal 

performance. The decision as to which type coupling is optimum for a 

particular location must be based on many other variables mentioned in 

the conclusions of Chapter II. Generally, the large diameter and 

multiple U-tubes perform the best. This is a result of the smaller 

thermal resistances (large surface area, parallel heat transfer and 

large boundary layer coefficients), reduced 11 Short circuit .. heat 

transfer and smaller pressure losses (greater flow rates with less 

required pumping power). 

Small diameter U-tubes have the poorest thermal performance and 

greatest pressure 1 osses. However, they can be easily i nsta 11 ed and 

could be the most economical in areas where drilling cost is small. 

137 
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Concentric tube designs have medium thermal performance. Larger designs 

(greater than 2 inch) require that the inside heat transfer coefficient 

be enhanced for good performance. Small diameter designs have greater 

thermal resistance but are more easily installed. Care must be taken to 

minimize thermal "short circuiting" in concentric couplings. 

Finite difference equations are a powerful tool in evaluating 

ground-coupling performance. They offer a high degree of flexibility 

and ac~yracy. They require significant computer time and input in order 

to achieve this accuracy. The line source equation is likewise a useful 
' ·- -·- . - ·-

tool for design and simulation of ground-coupling performance. Accuracy 
--.,. _____ ~--·-------·•-n·-., __________ ~"'•••- • •-• •··~-"-•-···•~ ••••-o- ·-~-.,,.-.•n•~•'"""'"•-v•-• • ---~-........ ~ 

is slightly reduced with this method but computation time is much 

less. Adjustments can be made to the calculation procedure to deal with 

added complexities or it can be simplified to the extent that results 

can be attained with a pocket calculator. The error appears to be 

primarily a result of improved heat transfer at the start of each on 

cycle. The heat transfer is improved at this time because of natural 

convection effects during off periods that are not accounted for with 

the line source equation. The thermal lag at the beginning of the cycle 

improves average water temperature. Therefore for longer cycles error 

is smaller. 

System performance is linked to the amount of time that the unit 

has been previously operated. This amount can be determined by 

calculating the building heating or cooling requirement throughout the 

season and expressing this amount as a fraction of the total possible. 

The degree-day method is a simple but satisfactory way to estimate this 

fraction. Fixed based methods yeild significant error but estimates 

made with a variable base have proven to be much more reliable. A 
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project is currently underway to validate and improve this method. Bin 

methods, either fixed or variable-base, offer the next step up in terms 

of accuracy. They require additional calculation. The most accurate 

way of predicting building energy requirements is by use of the transfer 

function method. 

time. 

It requires significant computer capabilities and 

6.2 Recommendations 

Section 2.5 offers specific recommendations concerning the six 

ground-coupling utilized in this project. Variations or novel coupling 

designs should be evaluated in terms of the following. 

1. Cost of installation 

2. Cost of material 

3. Equivalent thermal resistance, the inverse of equivalent 

heat transfer coefficient multiplied by surface area, 

should be minimized. Increasing the surface area may 

decrease water velocity and therefore the inside film 

coefficient. The resistance of the pipe wa 11 usually 

predominates in plastic couplings and should be the 

primary point of consideration. 

4. "Short circuit" heat transfer resistance should be 

maximized without significantly increasing thermal 

resistance. 

5. Pressure drop in coupling systems should be minimized. 

Pumping power for water only systems should not exceed 30 

watts/GPM. Water contra 1 valves significantly degrade 

total system performance. 
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Additional precautions are outlined in References {2) and {4) for actual 

installations. 

The use of the 1 i ne source equation is the recommended method of 

designing and simulating vertical ground-couplings. The error resulting 

in the use of this method is small compared to typical errors in ground 

property determination. Although calculations are possible with a 

pocket calculator, the development of micro-computer software is 

recommended for design and simulation. Several iterative steps are 

necessary for proper results, especially if any of the complexities 

described to in the previous chapter are encountered. The recommended 

procedure is as follows. 

1. Ca 1 cu 1 ate heating and coo 1 i ng 1 oad at ASHRAE 99% design 

conditions. 

2. Select unit to meet conditions. 

3. Calculate monthly run fractions from variable-base 

degree-day or bin method. 

4. Size 1 ength of ground-coup 1 i ng based on recommendations 

of previous chapters. 

a. Select minimum (heating) and maximum (cooling) 

acceptable water temperature based on unit 

capacity. 

b. As a first guess increase (heating) or decrease 

(cooling) this amount by one-half the expected 

daily water temperature range. First guess 

would be 3 to 4°F for heating and 4 to 5°F for 

cooling. 



c. Rearrange Equations 5.6 and 5.7 to solve for Tw 

from Twi and use the value found in b for Twi· 

d. Calculate values of heq and Rsc· 

e. Rearrange Equations 5.5 and 5.4 or 5.1 with 5.25 

to solve for length. The resulting equations 

will be similar in form to Equations 5.11 and 

5.12. The value for qgc should be for the 

maximum daily run fraction. Calculate teq based 

on run fractions of previous months if Equation· 

5.1 fs used. 

f. Check assumption b, using Equation 5.3. 

g. Reiterate, replacing Equations 5.6 in c with 

Equation 5.18 or 5.23 until temperatures for Two 

agree with these for the assumed value of qgc· 

5. At this point the unit and coupling are properly sized. 

Energy requirements can be found by calculating power 

consumption from manufacturers performance data for 

monthly average water outlet temperature, Two (Equations 

5.29 and 5.30} and multiplying by monthly operating hours 

(run fraction X total hours in month). The monthly 

values for Two must be found byiteration in order to find 

the proper va 1 ue of qgc. Pumping and other aux il ary 

power is included. 
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The 

1. 

2. 

3. 

6.3 Recommendations for Further Study 

primary areas in need of additional treatment are as fallows. 

Develop new or modify existing software to include 

results of this work using line source equation. 

Develop simplified methods of ground property 

determination. 

Conduct a controlled experiment and develop numerical 

methods to derive equations for equivalent heat transfer 

coefficients and thermal short circuit resistance in non

concentric ground-coupling designs. 
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Size a vertical CLGSHP for a 1500ft2 home in Tulsa, Oklahoma with 

the following dimensions. 

R-30 roof - Vented attic in summer 

R-15 Frame walls 

Slab on grade with 3/4" polystyrene perimeter insulation 

Windows single-pane (W = 20ft2, E = 20ft2, S = 50ft2), Blinds 

Doors - solid with storm door - 20ft2 

Tight house, 5 occupants, Indoor temps. 68°/75° 

Ground conditions kg = 1.4 Btu/hr-ft-F, ag = 0.026 ft 2/hr, T ff = 

62°F 

Use ASHRAE simplified cooling load calcaultion with infiltration 

calculated from Equation 5.35 

97 1/2% Condition = 18,800 Btuh 

99 Condition = 20,500 Btuh 

Heating load 

97 1/2% = 27,200 Btuh 

99% = 29,600 Btuh 

Calculate Tvs 

For cooling do not include solar gain, use average hours for occupants 

Eq; = qpeople + qappliances = 1070 + 1200 = 2270 Btuh 

EK; = UAroof + UAwalls + UAwin• + UAdoors + 1•08 O;f 
1 1 EK; = 30 X 1500 + 15 2430- 1.04 X 90 + .38 X 20 + 1.08 (65) = 384 



Note: Qif must be solved by trial and error. 

Tvs = 75° - ~~~0 = 69°F 

Using DO (65) and bin data to find DO (69) and applying equation 5.31 to 

find the monthly heating requirement. 

DO (65) DO (69) 

May 167 84 1.69 

June 381 270 5.30 

July 564 442 8.67 

August 518 397 7.79 

September 282 190 3.73 

October 72 24 0.47 

For heating - include solar gain using Table 22A, Chapter 27, ASHRAE 

Fundamentals (50) 

Use an SC of 0.7 (half drawn blinds) and a clearness index for January 

of 0.51. Values will vary with month by use January as average. 

qsolar = 2650, qapp = 1200, qpeople = 1450 

Ki = 414 (Increase in Qif) 

Tvs = 68 - 5300 = 55oF 414 
Repeating the method for cooling. 
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DO (65) DO (55) Erg (106 Btuh) 

November 474 264 3.13 

December 781 475 5.64 

January 924 617 7.32 

February 680 408 4.84 

March 500 224 2.66 

April 168 89 1.06 

Select equipment - Use 1 1/2" P.E. U-tube 

From Appendix B - We can use LT40 to meet design heating load without 

auxiliary or use LT30 with auxiliary heat and/or night set back. 

Using the LT30 for these calculations, which is a nominal capacity of 

about 2-1/4 tons. As a first approximation use 150' bore/ton = 340' 

Select coupling - 2 parallel 1-1/2 inch PE U-tubes 

Pressure drop @ 3.5 GPM through an equivalent length of pipe (340' + 

fittings) = 450 = 0.7 ft-H20 

Add - 3' for flowmeter and valves 

Add - 18.7 for heat pump 

£\P = 22.4 ft 

Use Grundfos UP26-96 (205 watts) 

Select lowest temperature desired = 38°F 

Add one half daily range, guess 4°F = 42°F 

Add one-half £\Tw = (guess 3°F) = 45°F 

This is daily average value of Two 

From manufacturer's data we can calculate ground coupling heat transfer 



55 

50 

47.5 

45 

29,200 

26,800 

25,600 

24,400 

20,600 

18,500 

17,450 

16,400 

152 

Using the simplified method of teq and guessing Two = 55°F for 

November, 50°F for December and 47.5 for January the run fractions are 

RfN = 15%, Rf0 = 31%, RfJ = 38% ov. ec. an. 

@ 45°F qgc = 16,400, teq = 70.7 (Equation 5.25) 

Calculate heq 

For 1 1/2" PE and 3.50 GPM, V = 1985 ft/hr 

Re = 4800, j = .0037, he = 96 Btu/hr-ft-ft 

For 1 1/2" PE - D0 = 1.9", Di = 1.61, kp = .226, heq = 24.2 

For 1/4" separation distance, Deq = 2.94", + req = 0.123 ft 

The simplest way to account for short circuiting is to calculate the 

temperature penalty and subtract this from the total. Using Eq. 5.16 

for one loop assuming L = 170 ft. 

-qgc -16,400/2 
aT sc = --~2- = -2-( 1"""7-s~o )-;:2:-'-o .-8-7 

2(mc) Rsc 

This gives a total 

0 = -0.3 F 



6TT = 6T + 6T + 6T g p sc 

For our case 6T + 6T = 62 - 45 = 17°F g p 

0 6TT = 16.7 F 
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To size coupling assume seven days with a low temperature at the 97 1/2% 

ASHRAE condition {13°F) and an average temperature of 18°F. 

HDH = (55 - 18){24) = 888 

E = 24 ,400 (888 ) = 394,000 Btu (Auxiliary heat required). rq 68 - 13 

Total possible 

ET = {24,400){24) = 585,600 

Rfmax = 0.67 

Combining equation 5.1 and the equation for ~T and rearranging, 
p 

L = qgc [ 1 + _1 (Rf (I(X) I(X)t -t ) + 
req 21r6T T r eqheq kg Jan. tf- 0 - f eq 

Rf I(X)t -t )] 
max f eq 

Lreq = 350 ft or 2 - 175 ft couplings 



Monthly Average Temperatures 

November: Guess Two= 50°F, qgc = 18,500 Btuh or 9,250/Loop 

Apply Eqn. 5.1 

_ Rfqgc (0.15)(9,250) I 
&Tg- 2~kgl I(X) = 2~(1.4) 175 

.123 
21.026 (30) 24 
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_ 9,250 ( 1 + ~n(.0792/.0671)) 
&Tp = &Tpw + &Tb1 = qgc&Req- 2~(.85)(2)(175) .0671 (96) .226 

0 
Tw = Tff- &Tp- &Tg = 54.0 F 

Using Eqn. 5.23 Two = 0.1~5~9250) (1 - 1750 lo.00732)) ~ 56.0oF 

Wrong guess! Try Two= 55°F, qgc = 10,300/Loop 

Using same method Two = 55.5°F Okay 

December: Guess Two = 52°F, qgc = 19,400 Btuh, 9,700/Loop 

Apply Eqn. 5.4 

T 1 {0.15(10.300)[I( •123 ) - I( •123 )] + wo = 2~(1.4)175 . 21.026 (61) 24 21.026 (24) (61-30) 

0.3 (9700) I ( •123 )} 
21.026 (24) (61-30) 

Two= 7.9°F 

&T -46°F p - • 

Two = 51.7°F Guess Okay 

January: Guess Two = 50°F 
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Apply Eqn. 5.4 ~T g = 10.1°F 

~T p = 4.4°F Tw = 47.5°F 

Two = 49.7° Guess okay 

Repeat for February and March. 

Since the values of Two do not agree with those values assumed on p. 152 

the process should be repeated. Once these va 1 ues are found, the 

monthly energy use can be found by multiplying Rf by hours by (Php + 

Ppump). 
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actual performance data: 
I UM Water Flow Cooling (1) Heat1ng (2) 

Enter. 
Model Water GP.M P.O. Total Sens1ble

1
j Watts EER Total Watts 

CO.P Temp •F (4) BTU/HR Csp %(3)1 Input BTU/HR In out 

3 

I 
4.a 31200 66 1940 1a 1 

45° ~ 10.4 31aOO 66 17SO 18 1 23700 I 2110 

I 
3.3 

I 7 18.7 31900 as 1680 190 24400 I 2140 3.3 
i 

3 4.a 30400 a7 2015 15.1 I 

I so· 5 10.4 30800 66 1835 1a.8 2a100 2200 3.5 
7 18.7 31200 66 1790 17.4 26800 2230 3.5 

3 4.a 29600 a7 2090 14.2 
55• 5 10.4 30200 a7 1930 15.a 28500 2290 3.a 

I 7 18 7 30500 a7 1870 1a.3 29200 2320 3.7 
LT30 3 4a 28800 68 2170 13.3 

so• 5 10.4 29500 68 2020 14.a 30800 2380 3.8 I 7 18.7 29800 a7 1960 15.2 31600 2415 3.8 

3 4.a 28000 a9 

I 
2240 12.5 

i as• 5 104 28800 68 2100 13.7 33200 2470 3.9 
7 18.7 29000 68 2060 14.1 34000 2510 40 

3 4.a 27200 a9 2325 11.7 

I I I 
1o• 5 10.4 28000 a9 2190 12.8 35500 2560 4 1 

7 18.7 28300 68 2155 13 1 36400 2600 4 1 

4 4.a 39400 a9 2460 1a.o 

i 45° a.s 11.0 40500 68 2340 17.3 30500 I 27a5 3.2 I 9 18.5 41300 68 2285 18.1 31800 I 2790 3.3 

4 4.a 38600 70 2560 15.1 
so• a.5 11.0 39500 a9 2410 1a.4 33300 2870 I 3.4 

9 18.5 40500 68 2370 17.1 34800 ! 2900 3.5 

4 4.a 37800 71 2655 14.2 33800 I 2895 34 
ss• a.s 11.0 39000 a9 2515 15.5 36100 2965 3a 

9 18.5 39700 a9 24SO 1a.1 37700 I 3005 37 
LT40 4 4a 36900 72 27SO 13 4 36200 

I 
2990 35 

so• a.s 11.0 38100 70 2600 14.a 38900 3065 37 I 
9 18.5 38800 a9 2540 15.3 40600 3110 3.8 I 

4 4.a 36100 73 2840 12 7 38500 
i 

3080 3.7 ! as• a.s 11.0 37300 70 2680 13.9 41700 31a5 3.9 I 
9 18 5 38000 70 2625 14.5 43500 3215 4.0 I 

4 4a 35300 74 2940 12.0 40900 I 3175 : 3.8 
' 1o• a.5 11.0 36400 71 2765 13.2 44600 ! 3270 I 4.0 I 

9 18.5 37200 70 2715 13.7 4a500 I 3325 ! 41 I 
5 2.0 50000 69 3050 1a.4 

45° 8 11.3 50800 a9 2870 17.7 35600 I 3240 I 3.2 ' 
11 2a.8 51900 68 2780 18 7 37300 32SO 34 i 

5 20 48800 70 3170 15.4 
I so· 8 11.3 49500 a9 2980 16a 38600 

I 
33SO 34 I 

11 268 50500 69 2895 17 4 40500 3385 35 ! 
5 2.0 47600 71 3280 14 5 39000 

I 
3420 3.3 

I 
I 

55• 8 11.3 48200 70 3090 15.a 41700 3460 3.5 
11 2a 8 49100 70 3010 1a3 43700 3510 3a 

LTSO 5 2.0 46400 72 3400 13.a 42000 3520 3.5 
I so· 8 11.3 47000 71 3210 14.a 44900 3570 3.7 

11 2a.8 47700 70 3120 !~}- 47000 3630 3.8 I 
5 2.0 45200 73 3510 12.9 45000 3620 3.a 

ss• 8 11.3 45700 72 3320 13 8 48000 3680 38 
11 2a 8 46400 71 3230 14 4 50200 3760 .~!1.-

I 
5 2.0 ~ 74 3630 12 1 48000 3720 3.8 

1o• 8 11.3 44500 73 3440 129 51100 3790 3.9 
11 26.8 45000 72 33SO 13 4 53500 3890 40 

CF'> .970!.17+-,.DO~~ CJ= I.Zfl/2.- .o39Z &':"1"':·~1/,llbf.'l-1._ 
(3) Sens1ole capacnoes percentages stat~ 80 /67 entenng a~r and unn 
rated atr flOw 

. . (I) Cooling capac111es stated. 80 D 8, 67 w 8 entenng a~r and at rated 
unJt a~r flow 
(2) Heat1ng performance based on 70 "F entenng a~r and unrt rated a1r 
flow 

(4) Water pressure drop (P.D) Slated 1n "Feet of Head" 
Tmted areas s~gnlly operahon at condlhons not recommended 



Ff.P 
"L r'&"HL T" Heating Performance 

for Water & Glycol/Water entering temperatures below 45°F 

LT & HLT ENTERING FLOW HEATING PERFORMANCE {2) 

MODEL WATER (1) RATE, 
TEMP, •F GPM BTUH WATTS COP SCFM 

35 19300 1950 2.9 -
30 

38 
7 ~~QO 2000 3.0 

950 
41 22400 2060 3.2 
44 23500 2110 3.3 
35 25500 2580 2.9 

40 38 
9 

-moo 2640 3.0 
1200 

41 28900 2700 3.1 
44 30600 2770 3.2 
35 30000 3020 2.9 

50 38 11 32000 3100 3.0 
1500 

41 33900 3170 3.1 
44 35800 3230 3.2 
35 39900 3830 3.1 

80 
38 13 42000 3930 3.1 

1700 
41 44300 4010 3.2 
44 46500 4100 3.3 
35 46500 4850 2.8 

70 38 16 48000 4940 2.8 
2000 

41 51000 5030 3.0 

44 53600 5140 3.1 

NOTES: 
(1) Minimum entermg temperature w1tll p/am fresh water IS 40"F Below 40•F, rat1ngs are based on the 
use of an Ethylene Glycol In water solution havmg a lreezmg pomt 20•F lower than the mm1mum expected 
entering temperature (see chart below). 
(2) Ratings are based on heat source fluid flow rate and Indoor arr SCFM as shown, with air entering the 
unn at 70"F. 
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GLYCOL PERCENT BY WEIGHT 

50 

ETHYENE GLYCOL-----
PROPYLENE GLYCOL---------
CALCIUM CHLORIDE ---------------------

FHP Manufacturing Division 
Leigh Products Inc. 
601 N.W 65th Court, 
Ft Lauderdale, FL 33309 

Sept 12.1H3 
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[~tJP n_n r 
IlL T" Cooling Performance Ratings 

E.W.T. 70°F thru 100°F 

COOLING l1t (31 

FLOW 
MODEL EWT, RATE. BTU/HR. WATTS EER SCFM 

Of (2) GPM 

~ 23,300 2560 9.1 

LT30 ~ 7 25,000 2430 10.3 950 
~ 26,700 2300 11.6 

70 28,300 2155 13.1 

~ 30,600 3220 9.5 

LT40 ~ 9 32,800 3040 10.8 1200 80 35,000 2870 12.2 

~ 37,200 2715 13.7 

~ 37,000 3980 9.3 

LTSO ~ 11 39,700 3750 10.6 1500 : 42,400 3560 - 11.9 

45,000 3350 13.4 

~ 45,300 4820 9.4 

LT60 ~ 13 48,500 4580 10.6 1700 
~ 51,800 4320 12.0 

70 55,000 4070 13.5 

~ 54,300 6240 8.7 

LT70 ~ 16 58,200 5880 9.9 2000 
~ 62,200 5600 11.1 

70 66,000 5280 12.5 

l1t Based on 80/67 entenng a1r @ rated SCFM as shown. 

(21 For eanh coupled ground loops these ratings apply to the use of ethylene glycol, 
propylene glycol and calc1um chlonde bnne solutions of a percentage 1n water so as 
to prov1de a freez1ng temperature of~ 

(31 For heating performance at entenng water (anti-freezel temperatures below 45°F, 
see COiliji8nion ~ ~ ~ 

(41 All above models are ~ listed. :. 

=•r '-.,.... !;!> ; , G/~21 -U."3 . .;.3 7;, -o.zsu- Tw 

OS LT3070-1 
June 13, 1984 
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FHP Manufacturing Co. 
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Performance: 
91 

:1 25 

6i 20 

51 15 

: X 
X • 0 

.....;),. 
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t'S" - ~& l) I =-==f\.- =- -. . . "4 -~~~~~,oD -·.l'!J~- " . .._ -= :-_:~ >----:·~ -~ -- r.r" -. C>.•,_ -- , , , . --l 
I ~ '- -' - - -- ll_ ~ - to..:- :· -:~!'-.- - "'-... f.,- . , ; I' " -'!< x_ - ,_- . ·' · i ..... . - . r-""'i 4- • • • ~ ......: -r-:J. 

:110 
oglj: 5 

E :f. GPM 5 1C 15 20 25 30 35 40 "5 
r--r--,r--,r--r---r---r------,---~--w---~-,r--,r--w---r--,---~--r--,---~-~ -. 
m';h 1 ;;: :; A ~ 6 1 f 9 10 

Applications: 
Grundfos Domestic Circulators 

are single-stage, direct-drive. 
centrifugal pumps, designed 
primarily for closed system water 
appltcations. These pumps can 
be operated up to system 
pressures of 142 psi, ,, .. ith flutd 
temperatures of 23o•F and 
correspondmg ambient 
temperatures of 68 •F (104 •F for 
UP 40-75 UJ. 50ctc b~- volume 
mixtures of water and ethylene or 
propylene glycol solut1ons may 
be pumped. Check with Grundfos 
for informat1on regarding 
suitability of other fluids. 

...... 
0') 

0 
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TRIDIAGONAL MATRIX ARRANGEMENT 

let XI = 
p (r +~)Me 
g 4 a totP 

X3 - g - Se(Se + I)t.r 

CI = TI + X1 T~, DI = (XI + X2 + r) 

For N = 1 to I4 

B = -X3 Se( £_ _ Se) , DN = [I + 2 X3 (Se + I) + X3 (I - se2)] 
N tor r tor r 

For N = I to 13 

2 I 
AN = -X3 ( tor + r ) ' CN = TN 

For N = I4 
2 1 

C14 = T14 + X3 ( ~ + r) Tff 

I62 
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:o(> 
3~0 

40') 
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7~0 

77~ 

800 
':'00 

IOUII 
1100 
t::ou 
1 ~(t(1 
14'):1 
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lio<l(l 
1 ~(l(t 
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: j' } ~ 

.:::)~{1 
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::~-:1 

~,C~(J 

~ :):) 
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::coo 
~700 

~coo 

3!0() 
=~cc 
J300 
3400 
~~0(1 
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~700 
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~:'011 

4,()(1 
4!00 
4200 
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4400 
450(1 
4~00 

470(1 
4800 

I; 
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1: 

(' 

c 

r: 

r: 
1: 
:: 
c: 

1: 

r 

c 

r 

(, 

r 

r: 

r. 

UTI.FOR 
II[ AT TR4N!lfi:R MID 'H Krl':l<foiiJRI: lll!lrRJI\111 1111~ W 11--TUIJC 
t11<1111l((t !:lllll'1 XllllH .. Itll'l.ICJ I r lllttlll1 1\1' JON 
IIJHI.N'llfm 1:1 t :; I olll1 :, I • IU C 1 ~~I, ~oC 1:11 o I)( 1:11 o DC l :II 

1 nl;: :~IHIJIU 1'1!111 XU' •H 1\C.IiJNIIXIIIl Ill' Hll111l.ATION 
l U•tt:.•, 0 
Tllll •to.'. 0 
Dt..TA C:/l~it/,~!.0/ 

TY~~ITIIIIITWII2,0 

4S'OO 
511110 
5 I 011 
521)<) 
:i300 
5400 
550(1 
5611<1 

w~rlr:<?.r> 570<• 
'I r OPHA 1 C ~X, ' r 1111: <tl IrU ' 1 ~·x, ' X N H:rtr' o :11: • 'II VB 'fl'ltl" o :.01: • '11111 S(J<l<l 

tm~t~ ss-on 

tlf<Hl ~ tm 1 ~'''' 
rJrr: l<IHA IJ,IJ, II J.l), CIIII:IIf.!Doll:t:.:l1, I:IJI:Il.,!;PI;I:,Hr:ATo610CI 
nr11!:rr·r Mill 1'111M. 1rtlllnr en.> 62110 
I:ATA I lllol'fll1ol'l;llol:l'l'olllll'ol'lltofo1ololl24ol1ol~o(l,4o(,(I,Cio1(1(16300 

Cllll'/: c: 1 r 'II 111 .H l!i,\:mr rn 1:111 f ~ u: u t11 C:lllllflli · !iU. n·.- r 1 6 4 oo 
1111•:10. 0 6500 

VAIIIr u~rn rn t:AU.IILAn: I'I!I"L ;:nNvr:c:rtlll4 1:urr. 114 luirr.R - 66011 
•'~-::.:'~:'-:-: or ~:.:f~ t:: ru: :H~A::1c::r ::a. nr'JX:lfJl }lY rHHJt:llr,~Y 6700 
rn;r·u·t. r::1:1. l):rrr.m:NI:r. tll':tm:r: lW u:1m 111 1:11m:o .. u~;r; ;'11t:/o60oc1 
r;,::a :t::; ~0:1: (:; .... F > A::n ~~~~, J n:~ 11[,\ro:n <~i~i r> 6?0o 

nATA ~~~/70,L'I 7000 
t rt:: :: 11 P x rr :a r:rmo::; 71 O<l 
[IT~3oo.o 

::t:.r:r r:·r~ en :::1r:r u:n r :::tl rtu~nco 
[r~ru 4, !'i 

NtJrH:rn n: 11 rt:r:t:!J c :aru;t.: Ill< 1, 0, lliiiiDU: · liT•·~·, (I I 
U1 - t , 0 

('AI C III.A-111111 Ill' AVI:IlAill: Hf.Pr;IU\lliiN IJJ::TAIU:t:, XI:C:IIr:O 
:;11 ~ ., • :,:11:1 > rc:: 

I lliiT'Jf.U IH ltffllli:TI:r:UJ II flll<r 
:o: IJ : .f;:n C ;• ,tall I I t:'IJIII l:D 

l;llll/'lAI [NI llAnJll!;, I"T, 
f.(~) lr:fJ/~'1,0 

c• 11111111 ltATA 
r·ATA f.Jt.n, r.r-r, • JtNri, J)R ~ ::t:/1 , -1, (', 4 ~~, 11 :~, <•, (1, (J:!Orf.~JJ, 1 , !~/ 
:=:.:~ ::(:'111' r1n>/~'1.o 
r.o•r((;oJ Pr<r 
NUtH•C R Ill I.IIOPf, I fill< I'AIMLU:L !1\'!HEII!ll 
C:t !· •( .. 0 \ 

I.AI r.III.ArHII4 Ill !llllll<'l I:IRI:IIl r flr:lol r!IAIWITI! 1:nr.rr 11:1 INT 
M C:· t.:illlll'llll/1;>,cll:t'I"L 
Ar.rr •t.:i7lll'lrlll/t2,0lC:I'L 
1111· 'J ,<)/ OllliA!!I:I I 
Pll• C rclfl/12, 0 I tAUIU ll'ltnlr Ill II I I'KHC:A!H; I 
l!!l• I ol,l) I 'ltiii*I'IIIH 111111 ;>,c)) I I IIKII:aAI1C) 
fiT•I!Itll!ll II!!: 
H!H: .. lntr-<T 

720(1 
7300 
7~0(1 

7500 
760(1 
7700 
7COO 
7?00 
000(1 
8100 
0:!0(1 
OJOO 
04(1(1 
0500 
06011 
0:'1)1) 
nooc1 
090(1 
9000 
9100 
92(t(t 

9300 
94011 
9500 
9(.0(1 

(: l:lri:RI I:TliiN I' AI: Till! I rm HIIIIVAU.In HI. AT 'ri<AN!H· r:t< 1:11rrr·, llllr Til 
f: HIIN IINH 111!11 IIC 1\1 1"1 IIW 'hll!lo\1 Jlltl 111n1 I:IRc:UHITRI'III 1111. AIHllC 

CriiR0,71tUTI1o0 . 
1: AIJI'III\Il( Hllllllll! 1\11! Tlllf'CRA fiiRES 

TWtl~l•l•, 0 
Tlllh !.ZoO 

C RUN IRACTJONH · UNLLTIJIA1 t1rRATJON!I ri:R f:YI:I.Eo KN·IIH ITERAIIIIU' 
1: tiWIIIo IOI,IItl JTt:lloHJIIN!l lN tiiiiW,, Kt\•1111 ll'r:I!AriiiH!i IH ArTI.IINOIINo 
C Kl•PN ITIRATIPND IN E~.NlNB- ALL HIIH»Lil!l All[ KW lli'Ll[ll ny 01 
1: 111 or 1 Mllllllll 111 1 r Hr. 111111 w mr Ill! orF' 

DATA IINL•KNoKI1oKAoKI.It2o<'>•<'>•<'>•6/ 
1: tltiHic[ I! Ill' 1111 1 OIIP tTI'I!oHJIIN!l rtlll Ttllt' !liEP 

N[)LJ•f10fo4 
c !Ill ur rur. rNNT nu1 ur LAHT nu-nrr c:rc:tc 

Nl'tl:· tllll l llNE . 
(: I'RJNT I RI:IIIILNI:'I' Hll< HI, ri!AN!l.I!ATF!i ltl4n IHIOIINIJ lf:HI',DJ!lTI<IRtl1 IIIH 

trr1-n.s~ 
(; f'I:INT I I~Ulllr:Nr:\' Ill' IIATrrc TI':HP!l, IHUI.HI'I \' Hrl' DY Rl rnR f'l!tH1 Tl 

tll'l -•1164 
r; .IATfR !lATA JILN!ll'f\'o!H·'• lli:'IITo lO'fAL IIA1t:R l'l.llllo TllrRH, CIIHn, 

llA1 A llNII, 1:1'Wo Ill' NT ,11101/t.;•, 4, i ,C), ic>, :0 ,I) .J~I 
orH·I:rt1T 1r.u: 

C t:IIN')rlll IIAI /tiUI lNl'll, rru:UilEC 
V()OT•r-rH/"141J,f1 
I'K ·1'1\11/:lfo<l<l, 0 
Gl\~r.l\11/~600.0 

I~K •WI\:11:1(.00, 0 
DTI\•IIlKII/:?:600,0 
AII'•I'K/CONf'•Crf'l 
AL ~· C:K/ ( I<NI:tl.l'll > 
lll'·I~WK/1 IINiol*t:rll > 
AR•3,J416*riD/12oO 
ARl•l,J4thlnTII~/tl.O 
ARO~ .~, H l (,('1'0011 ~!, 0 
nlll U• 'lol4lb*ll'llll/t;•,<))lll1t:!,O 
VOL•Oo/~~4t<rlll/t2.0itt2,(1ti:I'LC:2oOC:IIT 

I.UVL-11,711~4:aCilfU/I~I#:a~.<l*rL 
VEL•VDOT I ( 0, 711!o4t!IT$ Cl' llll t 2, (1) tC::.!, (o) 

1: 11tl! I! I U 'll f <In IIA 11'1! 111 1: OU:IILATr TIIIW 1 OIIP ON~E 
CT•2,0$rL/VF'L 

C I lR!lT Ari'RCJXHIA1ICJN I !Ill FreEr: I:IINV, DIJUN!lllln· Lfti'U! TU1f', liiF'fi.Rr:m 
11 rr•L ~11•1. "' c ""*ARro 1 
ll R1 
IIRITfl(oo20ll'llloP~Il.I'Kilol'l. 
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9900 

10000 
10100 
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c 

c 
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Jr£.flJN £1111: !111:1• )Ill 1.11111' XH:J(Il1JIIN 

011 100 11-loN»LI 
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·xr I Tll.l.l , .s o<ll llN=KA 
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c 
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l! 
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X;tn'l,l)~ll~t(Jlllfl),~tlll!l'lli<01/(DNil:l<fRIIt,;t5allRl*CPIO*DR*a2.0) 

JH l >~XI I X:.O tl ,o 
AI 1 I• --t o<U<X2 
C(J ) .. f:!\HXUTIJA 
rrrw •l'lR 
110 1:.!0 L••~rNfo:lil 

X-Allllflf/(!lf:t!!l[lt,OI.aDRGI 
(tfll=· 1o(rtxtf.l:*< (2.!>/[IRill--!ii:/R<I.)) · 
ll C l I •·1 ,<)I~·, <l:I;X$ ( B!'-H ,<)) /IJRfltX* f 1--sru2 ,O)IR! L) 
A<LI•-l.o'x•c:.-,otDRG~l.O/RII.ll 
lllW··fiiW"¥SE 

120 l'ONT\IWF 
I:<NRHl>~<:<NRHll·AfNRN11aC!NRI 
DO 1 I~;t,Nf.tll 

I' 'll (l 1/fi<I II 
[I(J)•~(J)·I'tl\(l--11 

I:Cli-I:!II--P*I:IX·11 
DACI( !Hiflf;TllUTTIJN 
<:<NRN11~:<NRH1l/DfNRHll 
DO ;~ lc.~!tNRI1l 

.l"NRHl· Hl 
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19300 
19400 
19:-;oo 
19600 
19700 
19ROII 
19900 
20000 
2010(1 
20200 
20~~()() 

20400 
.20:)<•'• 
20600 
20700 
20800 
209(>(1 
21000 
211(1(1 
2t::oo 
~1~(1(l 

21400 
21:i(l(l 
21600 
21700 
21800 
21 S'(t(l 
2:!000 
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22200 
22~11(1 

~24(l0 

2<!SOO 
22io0(1 
22700 
22ROO 
2':?900 
2301•0 
23100 
23200 
233(1(• 
23400 
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23600 
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24000 

CTH•CT/60.0 24100 
WRI1fi~•IQ6l~TH 24200 

106 fO~HA111Xt'LUOr ClkGo riHL•'tF7o2t' HJNUTFS'I 24300 
. llltl o~IIF:O-I:J61l<l, 0 24400 

WRJTI:C6t11:!111J:Ihlfiii:O 2450!1 
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l'rl ., •,1) 24/(1(1 
WRJTF:C6tl\~l 24800 

115 FORMAl C lX, 'lllf,l ANI!!; t• ROH I:I:NTJ:J( IIF Pll'f: IN IHI!IfJ:II') 24900 
llRlTI C6oi\<IICRJHII•H"J•NRH11 25000 

110 ~ORKA1C3Xt'llAII:R't~X•'rOII'•2Xt1JF7o2) 23\00 
WkJTI <6•\lii1WAoCCCJ21tJ2•1•NRHII 2~200 
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osc~I:M:tcl.~;'cTW·-lWUI*I nc 25511!1 
U-ONIUSC 25600 
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liT Ill •AlJHCU!liCil*AllfU:III't.l I 25300 
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JJc.n.tr.mnrmHI 01 26ooo 

C WATF~ I f.tir liP foAl f:.F; .llf[N lii~H 1!1 UfF 26100 
llflll:' < 0!>*11 f 1/C IIHW:U!I'W:III:UVL I 
TWA-· rwn 1 11111r 
rwu 'rwu~ rJTNC 
TW~lll till HC 
lill 111 75 

C WATFR fl.lif• llf"IIA n: Wllf.N UNIT Ill ON 
111 11 cm .• nJ,Illllll 111 ?:i 

JFCJT,FO,Jl~O TO 114 
JJ"C,fl,lil.HUilll HI '15 
GO TO 97 

C; UriiAlf WHFN ON Titll: < 1.11111' I!WI!IJI.ATIUN 'UHE 
Y4 •mr-~ 1 ern- ;so ,ell/Ill I*UHP 

TARLfWA 
Y/ TWII•TAR 

TW•fWII~IIH~/CilNW$VhUT*CPWI 

riM'·< I l AHtCHl · .ITH <TW*.H I 1/Hl. H CUII/CilNW:IIVniiTaCPWI) 
GO 111 7:> 

C ur DATF WlilN liN llHI. > l oor (;llc(:lii.A'rii'N TIHI: 
Y:> fll, TWIIIOIII"/CJJNW:tiJIIIIH:I:rWI 

TWO•lWIII~/CIIHWCVIIIIf$CPWI 
Jf IJl,fU,NIPIITWU•TAR 

91. fi.IA• CTW 11 Wll l /2, 0 
i':i Jr CIPlol U.tiPTIIlll TO 51 

JFCll.~T.HrLCibO Til~~ 
no rn soo 

~I COP•FC:R/3,412 
65 rtiRHATUX• 'TIHf•'•l'1ft,2t' HIN, 11"'•1'10t2t' BTIJII 11111!'"'•1'1Clo2t 

P. 111111' 1IH(:v•,r7.2•' Hll'lo'•/1111"7.21 
T .ITtt~T.JT /Mt, 0 
WRIT I: C 6• M•ll t t Ch ll!ICtl.ll tit 1 W/u CI!C II )o Jlwlt 101 
Wlc I I (' (It • !m l I>W • Ol!t\1' 1 UTC:C! • C:(:JI • COP 

:;5 FOI:HATC1Xt' I>IJWI:IC •·'tf'llolo' II QHP,.'of10.1t 1 DTIJH CITC:C~ · 
P.' llTlltl ITII"'' ,r7,~,' 1~01>.,• ,r7o2t/l 

29r THcO,O 
30<1 ,JrM,JT H 

r.rT• r.IHDT 
trurn.rri.Nrnoo Til 98 
If'< JT oGT .NrU.)IIIJ Til '10 
1111 111 100 

98 WRITF:C9t99111tTWtTWAt1WO 
'I? FIIRtiATC1Xt4FIOo21 

1 n•~o 
100 COHriNUE 

WRITI:C8t1011TWtTWOtTWAtiGCNifltHif•l•HRl 
101 f'llRHA r ClX, :!F'7 ,2 II II X• 1 ··1'7• 21 

STOP 
CND 

TIHF:CHJNI IN lrHP AVII lloHP OUT H.l1r 
414::0.00 11?.07 114.59 110.11 
eu.5. oo ro •. ~o fl5.114 GJ,38 

1:1'/115 .oo '/1),'/9 116.55 11:!.10 
17305.00 . 91.47 r.7.o., f12o/o0 
2tfo;;>:i,QO 111.83 lf7.40 117.97 
2594t..oo 92.12 r.7. 7(1 113.28 
30~6~.00 11:•.:17 117.?5 11.1.53 
34:-.F:5.oo 92.57 fl0.16 83.75 
30'/0:i,OO y~·. 76 1111.:!5 n;s.94 
40U.5o00 90.26 .,2. 46 r.1 • :a 
40~/1),00 111.08 tllo.J5 111.27 
40275.00 91.011 Ell .. til FJI .:t7 
40~111),00 Y\,08 117.09 113.09 
402fl5, 00 9:0. flt flfl, 41(1 83.99 
40:1Yo.oo 'l.lo &5 1111.72 II.J.79 
402~·s.oo \"1 • t,·:-. fl7o02 r.,.o9 
40;11)1),00 '11),29 tl:i.J5 11<).42 
40~1(15 .oo 8Bo99 El4o(l6 19.13 
40411),00 117.90 11:.>.97 711.04 
40~HS.OO 86.99 112.<•6 77.13 
40.t~l)o00 111 .. 20 111.27 76.34 

,_. 
0"1 
0"1 



PIPE DATAl JJiu l .1110 IN, Ill)• 1,1124 IN K" Oo130 ~111/Hk-~T-~ L• 1QQ,QQO 

TIHI 3T[P • JQQ,QOO 9CC 
LO(II' c:IRC, llHF.r 1:.'o44 HlNIIH.S 
EO,JllA,, J,<)Oft IN, (IJ,fll,TIIol:llrr •" 1:!.Mi BIII/II·· flU fT-F 

D If; r 1\NCE FROH U"NTF.Il Ill" I' XI' I: IN 1 NI:IJI:. S 
lolA 11:r: r·on 1. fill ;.o. 44 :J. 211 4 .:;:; 11. 4:; 9, :-.o 1 ;~. :;7 H'. •n :?9. :;11 4~ .c•o 6:5.6:\ 911.06 
62,00 112,00 6?,00 6~o00 62.00 6?o00 62o00 l\2o00 11:1,00 112,00 ll?oOO ll2o00 62o00 62,00 6~.00 

TIHF:• 
84 .5'1 
POioii'::R 8 

TIHI• 
85.»4 
POW[JI • 

4345.00 HIN, II" ··762Q,U;~ IHllll ll!iC:• 4!.4,ft4 IHIJB l.lllll' T~l£:" :-!:>,(>(> HIN, 
7(,,(111 /~,;!9 7;1,117 7:,>,;1'1 70o9.1 6'1o44 ft7.Cl7 lofoo:IO 411.112 ft3o52 

Jt-97, 8 W flflf'r 379:~9, ;~ llTllfl Ill r:r." :1<•:m11, 1. IHIIII l:l[ll·• 1(1, :Ut C:UI'"' 

IU.Mi, <)Q t!Hio u.. · 7511\1, U llTIIII U!H:~ 4:J2, 91 BTU II l IIIII' Tli1f • ;!S • o>O HJN, 
77,85 76,60 ~5.1H 7!..71 72o2~ 70.76 69.1V 67.~11 61\,02 64.~7 

.1722.H W lliiP" 37!i79.11 I!TIIfl UT£:1:" 502111,\1 lefllll CI::R·' tO,<)'J COl'" 

TJtiF.~ 12985.01> HJN, 11~ -7567,91 llfiJil ll!lC" 431.70 IHIJII 1.1101' flHr::.- :.>:i,(>(l HlNo 
86.55 711.~\1 17.JJ 7~.92 74.45 72.911 71.50 llllo'JJ 1\II.J:! 1111.74 ~~~.24 

:~,(II 

2.96 

POW I:. I< • J736, 9 W OIJP8 :1735~', 7 Ill 1111 II fl.f;n :;o 1\11,2 ll'fiiH lor:f<" 1(1, (>(I 1:111·• ;.> ,\13 

TIHF• 
87.03 
POWIR 

t 1:1o:;, <)0 tU H, 0" .. 7'i(ol , 'J(o llTIIII UBI:" 4.10 , 77 llTUII l.OIJI' Tl tit·: • 25, o)O HI N, 
79,0~ 77.~4 /6o44 /4,9/ 73,51 72,0J 70o45 60,04 117.20 ~~~.72 

J74f,,H II UHf>" .J7191/,'J llTIIll OTI:I:•• 49'/UJ,'./ llTUII rfll" \1,\1~ t;OPE 2o91 

TIII£:a 2162:S,I•O HlN, n• .. 7:S39o12 llfUH 11!11:.. 4:~11.(12 IHIIII I.UIIP HI1F:•• :.O:Id>(l HlNo 
87,4~ 79,411 70.2J 711,11J 7~oJ6 7J,'J1 72o4~ 70.11~ 61/,24 117.115 116,10 
POWER • :C754.3 lol lliJPo. :~1074,1 »TIIII urr::1:or 41/0U3o'l lllllll F.J:I<,. '1.111 I:IJI'u :.0.119 

Till! •• ;>(i'14:i,o)<) HHI. U" --75;>11,;1:; f)'rllll ll!lC:~ 4:.09,:1'/ llTIIH l IIUP rlHt." ~!:o,<)O HlN, 
87.10 79.19 78.~5 77o14 7S,6R 14.~& 7?,75 71.17 119,~11 67,,7 1111.41 
POW I'll ,. :17t.ol, J !ol 0111'·· Ht 1170, :r 1111111 IJH:I::. f'JO<lO, (, IHUH F.[k" lloUJ COl''" 2, 88 

TIIIt= 30265,0(1 Hlll. II· ··/519.10 llrllll IIlli:= 420oH4 11'11111 Ulllf' rxtiEu 2:1ol>(l 11XN. 
8/,'};; llo),O:o 7Uoll1 77,41 /!o.'J<I 7•t.:oc) 7:1,1)1 71 d4 (,\1,114 t.:J,;•;i fo6.6B 
POWLI< • 3765.4 W ~liP• 31100\,H ~TIIH Ufi:C• 4'729.3 1111111 EC::R• './,/9 C:OP• :,>,07 

Tll11 = J4(HI(i,ol<) HHJ, U·• ·7511),'}(j IITJIII U!ll:" <I:.'Uo:rft llTIII-1 l.UIIP 'f.(l1(·.v 2:1,o10 HlNo 
80.111 80.27 79.03 ,~.63 /11,\7 74.7~ 73.24 71.6~ 70.07 llfl.47 611.90 
I'Oiolfll " :llftllol W IJIIJ>, :if,(l04, II 811111 UH:I:•• 49/1(,7, I) llTIIII F.I7R" 1/o 711 COP• 2, 86 

TIIIF.~ 3890:'1.00 HJN, (lu .. 7f.O;i,70 ll'fllll !lSI:• 427,1/4 IHIIII I.IIUI' fXHF:=- 2:i,(o(t t1JN, 
83.J5 110.~7 71/,:!J 77,0J 711,J7 7~.92 7Jo44 /1.00 70,27 118,117 117,10 
POWI:R •• J77:1.S W 0111'• .'.117:M.:i IHIIIIUrr.r;o. 49611o7 IHIIII l<rm~ 'lc7J I;Uf•• 2.CI5 

TIHI·· 402Mi.<)c) IHH, 0• .. 2Al:>o0<l llTIIH unc;u :123,11 llTIIII l.lliiP 'fli1C·:• :;,<)c) HlNo 
82.411 78.~0 77,95 77,23 76,27 7~.02 73,53 71.94 7Q,JJ 1111,73 /17,16 

....... 
0'1 
""-! 



PIJWCI~ " :11>4.1, 4 W 11111'-' :111~1Y t. '' llTUH orn~·· ti!II:.!:.O.tl llfUII F.fll, \t),ti'l t~lll'" 3.10 

TIHF.~ 40:<'70.00 HlN, flm ·400'4.22 IHUII II!H:~ 411\,H(I 11'11111 1.11111' 'flHI:•• 10.(1(1 llYN, 
86.:1ti 711,7.1 711.•>:• 17.1? 1{,.;!() /4,'111 7:1,:'1:.! /!,'14 70,lJ loHo7:1 lo7.16 
POWFk • ~1'38, 7 W IIHP•· ;>,7;131. (I IHIIII II rr:l:•• :ii•C•II7 oil IHUH t:r::ll" Y, Yll 1:111'" :/, Y:t 

TtHI ·- 4tl7/ti,t)t) 11HI, fA,. .. 7;1{,2,'17 ~lU:I U!lf:7 :'i?tioti:! 01'1111 l.tlfll' HHI ~ l:lot)l) HTN, 
86.tfl 79.~;> 1~·65 77,4~ 76.24 1'4.911 /3.~1 7\,'14 /(1,33 1111.73 1\/,16 
PIJWfll •- :17:111.7 II 0111'"' J7:Ut,tl IHIIIl Ul't:f::o :Jt)l)fl7.lo llTIIII FTII~ 9.'111 Clll'.. :;!,9J 

TIHF• 402CO,OO HIN, II• -679:1,/7 »IIIII IIHC• 525,52 "rllll Lllllf' rtMF.• 2(1,(1(1 NIH, 
67.0'1 Htl,1:.! 7H.Y.~ 77.Mo i'lo .. I:.O 74 ,9{J 7.1o!i1 71.'14 7•1o.l:i loH_,7;i 67.16 
POIII:R • :":738.7 ., 1.1111•• ;•,:n:;',l,(l )lTIIII tlrr.r; .. :HICIII7o6 IHUH t:ql"' YoYII f:fWL 2,YJ 

TIHF.= 40285.00 HJN, II• ·-7~o(lt,:H ~ftJH 11!-lt:u 42'1.11\ IITIIH 1.11111' .. TIHE• 75,(1(1 111No 
61:1,411 llc),ti:.! 7'1,:.011 77.11'1 76,..,.1 7•1,')11 7:1.:111 71.'14 /1),3:1 6(-1,7;1 {J7.16 
POIIF.I< • :i'l74, 6 II OHP• :'.11716, .! Ill I Ill Ill F. I':• 4'15~·:, .I IHilll J:fl~" 'I, 7.'. l:lll>n 2 • H5 

TIll! " 
aa.n 
POW! II 

4<1:.0'/t),OI) tiUI, 0' ··IIJIIIIoll'l 1111111 llfil:" 47:,0,;>4 IHIIH 111111' Tli1['" ;sl),l)l) lltN, 
H1.07 7r,69 7R,15 /6.~6 7~.(12 73,51 71o'l4 70,33 611,73 67o16 

37'n.4 ~~ - Ulll'• .Jt.:lll:l.:! llTII:J IHH:= 4?:1:!:•.11 llTIIH t:f.ll" ?.WI COl'~ 2.81 

TIHF~ 402S':;,(o(l 111N, fiL ··62flO,:i1 •HUH 11m:~ 
fll).~ll 7'1.1:.0 7(-1.111 7{,.1\4 /~,1)6 7J.~1 87 ,c);> 

f'OIJI:I: ~ 0, 0 II II liP• 0, 0 IJ'I 1111 llfl:l:,. 

4•13<)1) ,<)c) Hltl, U., ··,H{Jc), :1'/ JITIIII Q!1C• 
80.4J '/9,4~ 70,16 76.6H 7~.09 73o52 

TIH~~ 

u:;.:l!i 
f'Oioltk • Q,t) !.1 UHf>• c),cl IHIJII Ul'F.C• 

40305,00 HJN, ll• ··4770.1E< JlliiH ll!lt:" Tilll• 
84.1)6 
POWFR • 

7'1,'1.1 7'1.1~ 7U,d:.! 71>.66 7~.11 7J,S3 
O,O W llHP• 0.0 DTUH Ufl.tL 

T I 11£ ·' 4c);Uc), t)c) t1 I 11, 0" - 4<)t)t), 7:; ll rtHI ll!lC• 
92.111 7r.47 78.78 '!7.H4 /6.6<t 75.1:.! 1'3.5~ 
P011rll • I) ,I) w UfiP• I) .. , llTIIIl u I CC• 

40315,00 HI N, II" ··:'.377, lt. llfllll 11!11;• 
7Y.IIJ 78.44 71.6:.0 16.~0 Jj,td 7J,54 

T Illf.•· 
82.<)(o 
POIII:R u OoO II fJHP• (1,(1 Dlllll 011 C:• 

4tlJ:!O ,c) c) Hill, U., ··:1'/<ld, :1<1 IHIIIl Q!JC• TIIIf:" 
81.27 
P1JWI!R • 

78.6:<' 78.12 17o39 /6.311 /5,(17 73,54 
0 I C) " I.IHP• c), I) DTIIII un:c• 

o,oo fllllll 1.11111' 'IIHF.•• 3:1.Ct(l 11XN. 
7loY4 711.JJ t.H,7J (J/,16 

'' ,,, wruu lcr.r.-- c1. <•<• r:m·~ 11, CJO 

t),c)t) 1111111 1.11111' Tim:., 4t),I)O 11IN. 
71.'14 /(I,JJ 60.73 67.16 

11,1) "TIIIl LEk• 1),1)1) 1:01'• OoOO 

(l,(o(l IHIIIl l.lllll' 'fli1E., 4!1,(1(1 HIN, 
7! ,114 70, B loH.IJ 67,16 

Q,(l Nlllll £ER• (1,(1(1 t:llr~ (1,(1(1 

t),c)c) IITIJH 1.11111' 'fii1£ = :Jt),I)O HIN. 
'/1,114 7!1o33 611o/3 1\7,16 

l),c) IJlllll l:t-'11~ c),tlcl CCJP" 0,00 

(o,(llo IHIJH J_UIJI' II11l" :1!1,(1(1 HXN. 
lloY4 JO,JJ {,~,73 6/,16 

o. c• 1n llll "'-~~·· c1, 11C1 r:m·· 11, CICI 

c),c)c) DTIIH I.IIIIP T1111:,. {JI),c)Q HINo 
71.114 7(1.33 bllo73 67.16 

l),c) llTIIII l:[;R~ dotld COP• OoOO 

1-' 
m 
(X) 



100 
20•) 
300 
40•1 
500 
600 
700 
900 

1 0()(1 
1100 
120(• 
1300 
14•)t) 
1:;ou 
Jl,tH) 

170(• 
IC?O 
I ?O•l 
~000 

2100 
2200 
~300 
2401) 
.::'~00 

~GOO 

27(10 
2COO 
2900 
30'1(1 
3100 
3200 
330(1 
3-4•)•) 
JS('O 
36:'10 
J7()0 
J£;0(1 
3700 
4000 
4100 
420<• 
4300 
441)<) 
4500 
4~01) 

470(1 
430<1 
4900 

c 
c 

t: 

c 
c 

c 

f: 
(; 

c 

r. 

(: 

(. 

t: 

c 

c 

c 

c 

c 
t: 
c 
t: 

c 

CHI. FOR 

IILAl l RANHI"I:f( AND TrHPr.HATURr lll!HRllllll llll4 IN I:IJI~I:IONTIHC 
lli<IIIJIIII Clllll'llllli!l · H1I'Lll:ll 1"111!111lll\fl0N 
~THfN~10N Cll~loR(J~loRXI1~loA(l~lo»l15lo»lt5loTSI20) 

Tf/~l'l'l<ilflll<l' 1'11111 H.r >\1 Ill lliNNINil Ill' HH11lLA'flON 
Clr'C:N!5oriLE='!lW111TI,I.II\'f' o!lfAfiiH~'IIUl') 
nr AIJC :., 1.11 I Ill, 'fl.lll' fWA, u: ( N,l), N.l"l, HI l 

131 I"IINHA111Xo~r7.~o/olXot6f7,2l 
wrn r1 ,.,,,, 

9 ro~HATI2Xo'TIHLIHlNI'o2Xo'lN TLHr'o3Xo'AVIl fEHP'o2Xo'OilT 
til<= I:; 
tlri111=Nk·1 
rirC: I•AfA • 11.11, ' J ,Jl, !lNC:Htlll ollfl·f<tlo 1:111411, tlii'E'r.,llfcATo 
llni:>I TY A Nil I fll AL 1 nrn n1 I rl' .> 

50(10 
5100 
5200 
5300 
:540(1 
5500 
5600 

'(15700 
5800 
5<;'00 
~000 

'6100 
IIATA 1'1 rJ • POll oi'KII, Cf'f'r IJNI'oi'L/:~, llo6, .l,l\o (1, ~!:0:6, (1, 4 t 6(1, (lo1(1(1, (1, .!.200 

CIIN'III:Il'/1 IIIAI lllMIHIII< f:IICri'II:H~Il' !llrU/tlll··llO,I"I'o··rl 63011 
Hll=4o. o ~4oo 

cocrriCICNrT ll!lltll fll f:AI.I:UI.Itfl: BllAHHUI' Nflo IHII'D XII lli:'IIUU1lf4t6500 
flf f'r<l I r:mflll l:llfltl r:m I r II:XC:tllll •· IHII. 7<> ,Cf, l:lllll.lNIIr 1:51:(• tu4600 
IJNIT!l ANE 1/ltEC: flf:U,I To 6700 

IIA f'\ rlill//1) .!IL6/ 4300 
1111r !lTCP IN S[l OtHJS 6S'OO 

Ill - Jt)O, 0 70(10 
PIP lU~C: DAlA • JN, ~ IIU'f,DXA IN INrHEHt THo I:IIWD 114 DIU/H 7100 

DAtA JlllOrOrflllrlofi(IJ/o),74Url ,O':ir0 1 08/ 7200 
lOUIVRILNl blAHI:TlROr U·liiP[ 7300 

ulO •f'O[o 
fUUIVALlNI HADIII9o FT, 

I< I 'l I •l<l Ul;''l, 0 
CI";OUIW DATA 
JrATA (,fe:H • rr·n t JJtHh l•r-, tU~/l , 4 t (I •. 4~\ t J 1 !" • 0 t (1. 0~0033:1 • 1 • !)/ 
ltlll'•lf'IIJ)· r·tto)/~4.0 
nO=RI21 IPhD·Pinl/24,0 
ttiiMlc[ll Ill 11101'!1 ( f 1111 PARAI.U l '3YIITJ:HS) 
l"l !;;::a-/). 0 

LALrUI ATlCt~ nr lillORT CIRCIJJ 1 lllA'f TIU•NHo t:fll:r F'Xt:XJ;NT 
l<f<l' 1,0/IHH (lllllll/:'4.<11~AI flfHiliOll/OlliJ)/IlTI\H 
ASC•3.141A~fO'fllb/l2oOI~J>L 

740(1 
7:500 
760(1 
7701) 
700(1 
7900 
8000 
0100 
820(1 

( D'fll/11 3300 
040(1 
8500 

II!>I>A!if:/R(IT 860(1 
AVEI!A£,1. I NfJfJfJI< AXR H Mf'(f(ATUI([.!l 8700 

Tl~ll '"6. 0 \ 8000 
1 [If:• 77.0 0900 

I<IIN H<AL f JfJNf. · ONE•TOTAI. X'fi;RA flfiiW I'UI t:\'t:l.b KN,.IIN X 'fEll!\ 9000 
HWIII, Ki1•CIN XTI'IMHIIII'J HI HilliN,, KA•UN ITr.RAHIINII XN At"'f[fl 9100 
KF•ON 11 1:1<11 fliiNH XN f'VI.NlNh ·• 111.1. Nlli1DI,II!I Allf Hlll.'fli'I.IIi,ll IIY 9200 
rn Ill r AI11JUN1 Of' Httr: IINXl' X!l UN 1111 Orr 7300 

DATA IINLoKNoKIIoKAoKE/12o4oUol2oA/ 9400 
tllliiUCII Ill 1111 LOfll' IT&:RAHIIN!I r 1111 TIHE 11TEP 9500 

NPL I •40~2 9600 
9700 

c 

(; 

1: 

c 

(: 

c 

1: 

(: 

(;fT ur I tm J>llNT llUT or LA!IT IIN··III'f 1:\'I:U:: 
Nl'l C·•Nill l· ONE 
r·r:INT rRt:OULNI:Y 1'1111 JIT, H<ANS,I!Al[!l ANI! llJWIINIJ TI"U',DI!HkXIlliT 
111'1 •064 
f'RINT I·RI:OIIf'NCY ltf' WA'fi':R 'ff::Hf'1:, CHIII.TXI'I.Y HrP II\' ll'f I'IJR PlUff 
NJ'I zU~4 
WATUl ltl\lA 
DATA DNWoLrWolli'HToWKH/62o4o1.0o10o2o~.36/ 
lll'i1·'1l1'111/CLS 
CONVrRT GAL/HIN XNTO FT~~3/H~C 
v1•n1 "lll'~l/4 10. a 
f"ll=l'llll/3600. 0 
OK'-'IlKII/J61)0, 0 
WI\=WIIII/3600. 0 
ll Til"' OTI\11/ JI,OO, 0 
Alf"=I'K/ I DNf'tf:l'l' > 
ALtJ~IlK/ ( IINO.-<:I'G) 
ALW=WII/ ( ltNW*I'f'W I 
AR~J,t~16*rlO/l~.O 

A~I=J,1416*1lTIIIl/!~.O 
AIW=:S.l416*1'1lll/t;!,O 
A~ro~3.t416*1ttO/!~.o 

I HW r AI'I'RUX 1 AHATI UN r 01~ lliiUNU, I.AYI~I~ TEHP, llH F DIIE Til F Rt:E 
ll fill. ~tiel ,o)/ 0111.-AilrO l 
VOL=(I,/IJ54~11'lll/!2,0>**2•0*PL 
VCl=Uilfii/10.7U~4~1J>IIl*~~.O·Ol'Ol1~*2•0)/1~4.0) 
VI:LO=VDOT/(0,7fl54tiU1ID/l?oOI**:O:•O> 

l'IIII. Ill OUIRI ll I fiR WATC:tl I'll t:WCLAT[ HIIW 1.0111' IlNCE 
LT•PI /Vf::Lti'L/VLLD 
IL=l 
WR I 11 ( 6, 20 >I' lilt t>llllt I'Kih r•L 

20 IIIW1A11lX•'I'XI'f: llAI'I\1 Ill~'lf'OoJ•' XN, fll),.;•,f'II,:.Jr' XN K='rrO, 
e• PlU/HR-rT-F l•'oVB,Jo/) 
'Will n ((.,;•t >DT 

21 FORHAl OX• 'llHE STEP •·'of"8,Jo' SEf:• > 
ll"'II.O 
TII=O,O 
,JI =1 
TJTn!,:;*DT 
Hl,·1o0 
I Tit• ·8 
Il'l =· B 

VALUE!! USED TIJ 1:111 Clll.llH, WATI!II TEHP!Io AT !111111'1 Ill· liN t:vr:LE!l 
m . • r;r /DT 
RtH•(I.T-NL*Pl')/f)T 
xr <Rl'H.t.l,ti,!SHJII ro 4:1 
NL•NL H 

4~ 00 OU LX•lrNL 

....... 
0"1 
\.0 



9COO 
9?00 

10000 
I 0 I 0(1 
10200 
10::100 
10400 
10500 
10600 
10700 
10800 
10900 
11000 
11100 
J 1200 
11300 
11400 
llSOO 
11~00 
111(1(1 
11300 
117(10 
12000 
J .21 ~(J 
12200 
123(1(1 

12<100 
1:;: :\(1(1 
12.!.00 
12700 
12300 
12?00 
I :1000 
1 31 (I(J 

IJ?OO 
t 3~(1(1 
13400 
13!>00 
I ::600 
13700 
13('(1(1 
13?00 
14(1(1(1 
14100 
14200 
14300 
14400 
14500 

TllCLXI=fiiA 
IIIJ t:UN f I HUE 

Tll!NlHlaliiA 
C flOW CI•IH<I:f;T IfiN I'AI:lllll!l l'lllt IIIiA'( l'lltlf' t:lli'Ar:J"f\' ~ PmmR 

cr I'·· 1 • :111- •> .oJ'/:!II*Ill'tll"i o. o•> 1l•J1 $111"'111 "'*2. o 
Cri>Co, ')(,;!:, t(l, (l(IMII~tfH'HT 

1:1\1:~•1,?8 

t'Ar"=C>, 99 
CIIPr•·(l,5125~0.0~141tTWU-0.00013~1*TIIDtt2.0 
t:lllll'··•l, 41 <lt i <l, tlt~*TIII)··O, <l<IO<HIIi':J<TIIII**2, 0 
DRC=IIIl 
II I ().I •I! f,/) .112, 0 
DO IM f.l<":;>oNRHI 
IIIW~lliW"JSE 

R<li<H 1~1111.111 HH<G 
kl!lHill•RCLRi1)*12o0 

161 t:ONTJNllr 
C J<f.CIN r 1111: Hl 1:1' IJIJ 1.11111• HU<AlliiN 

1111 100 Jl •1 ,NJlli 
ITI••IH1H 
JPI•li'Tf1 
rrclH,ln.o.o>trl•t 
1 I • I H Ill /lo<l, 0 
TII=Til HIT /3600.0 
ll CTII.Hl .:•4.<))'(11=0,0 
fHaTHHII/60.0 
H CTII.Ll.6.0111N"KA 
Jr<TH,Gl,6.0oAND,flf,L~.1~,(1liJN•KE 

H <Tfi,IJ1.12.0,I\Nt1, fllol[oiU,"\l)ON•KN 
II f111,f;J,1Co0HIN•KH 
ur r ~nNI'· 011 
Jr<Jl,Gf.ONrlRO TO ~5 

H C.ll .Ill' .UN lflll 1'11 70 
GO TO 57 

:JS .Jr=l 
TJT=IJl/2,0 

:;y ll=ltii/Jl><IO.O 
rcc-1.0 

C r•c•Wrr< INf'lll (f) ~lA fEf< f'UHP lN IIAHS 
I'I'~J/5,0 \ 

1: CAPACITY< DTllll l ~ I'IJIJEIH IIAHII) I!IIRV£:ll l'lllt Ill:. A'£ 1'11111"' 
I'C•21IIO.Ol1?.~9?*1Wflio0500~~TIIII*~2.0 
r·II~N·If·f,*l.l t·tt:IWtf!~lllP 

IJIU .1~:1 I u:~l), I :ifll, *TWill I, 911:1*1'Wil**:l• ··I) oll:ill:!lll J'Wil**l, 
QTEC=UklJ'C~C*CW~C 

IJI!/\I'~UTI"I!· PI.U:J, 412 
Ollr~urr,t:/(t:lt<t::t.oo.OJ 

ECI!•·ArJII C Uf!AI'lf!r'C!/1'11 l 

14l.OO 
14700 
14300 
l49(J(t 
15000 
15111(1 
15:;>00 
15:HI(I 
15400 
15:..(1(1 
15&00 
15?00 
~50(1(1 
15700 
.l&OOO 
16100 
1l.200 
16300 
ll.400 
16500 
1l.600 
1.!.700 
1l.UOO 
16?00 
170(10 
17100 
17;"'(1(J 

17300 
17400 
17500 
1760(1 
17700 
17(1(1(1 
17900 
lf)(l(l(l 
10100 
1C200 
10300 
104(1(1 
10500 
1 0(.(1(1 
10700 
1COOO 
1C?OO 
1?000 
H'1!1(1 
19200 
19300 

LO 111 60 
C rRrE CONVLC1JON COEFFICIENT IDTU/II·HQ,FT,-rl 

i'<l llrii·•JO, 0 
H=llrH/3600,0 
flHI·-·o,o 
[[fl=Q,O 
an:r:~o. o 
fiCAF'=O,O 
r·w •O.o 
FGC:(I,O 

60 RSl=POD/IPllltllltl!(2ltALIIIIIPOII/PIDI/PK 
IIC O-·J,tl/Rll1 
X 1•:•, !lltiiEnC OW Hll~l' I Ul r /( DNI;It C reo t, 2:.t.ltiU CDI~lf!l'lll 
X:!";~, tl.I:IJK .~ < IIIII I), :i:UIIW I ~01 / ( llNO:II C l!flf, 2:'i:llllR l :U:I'fll Oll$l2, 0 I 
ll!1l,X1tX;•H,O 
•H t> =· 1 ,I)*X2 
CC11•t:lti~X1CTIIA 

IHW•llF< 
110 J;~o L:;!,Nr.l11 
X·•ALO*tll'/CBr::~ClJli J,OULlRGI 
~Ill• 1.0*X*Lft((~,o/DI!IIl-11~/Rill) 

Jl <1. I~ l, Oi 2, O*X$ I liC:H ,t)) /lli!CiiXlf 1· t1l:U:.I. 0)/IHL I 
A<L>•· 1·0*X*C~.O/Dklltl.O/RCLII 
nr~n~=•tr~';*oE ' 

120 CONTlNIJ[ 
I! C Nl(tl1) "t: ( N1mt )··A CNI~Hl Ill!< NR) 
JlO 1 t~:1 oNI<H1 

l'"llC I 1/IIC I· 1 I 
(l(llc[o(£1· f'*AII ·l I 
r:cr>~c<I>-r:u:cr-11 

C ~ACK UU~STITUTliJN 

CCNRH1lwC(NRHII/OfNRH11 
roo 2 l=;!,NI<tl1 
.J~N1011· l11 

2 C!JI=CL(J) ·ACJilCI.IH I )/II(J) 
u < ·q .• r u. u rw 111 1 o:~ 
c;o rn oo 

10:1 Il,.lll1 
CTH=t:l/60.0 
WRITU6, 1061CTH 

lOt. J'llfit!Af<lXo'l.fllll' l!liH:o 1'1tlf:"''•l'7,:l•' HINIIl'~!i'l 
lllllli=HCli*J61)1l,O 
II~Jlt<6•11211l~Q,IIJI[Q 

112 I lll<tiAl (lXo 'HiollJA,•'tF7,:h' IH, 1,!4.1H,Tf<,f:ur,r,••'•f'7•2•' 
l'fl··f. ,,, 

IIIU T£:: < 6 tl1 to I 
11~ FO~HATOX,'IJJf;lANI:r, I'Riltl t:rNtr.rc or: J>lJ>IO IN INI:Hf:!l'l 

III!ITC:I6•110)CI!IIHl•ti•J•NRHll 

1-' 
---.1 
0 



H'4(1(1 
19500 
1N•(I(I 
1?700 
19000 
19900 
200(1(1 
20100 
~o:ao<• 
203<)<) 
204(10 
20500 
20600 
20700 
2000(1 
20?00 
21000 
21100 
21200 
21300 
:'1400 
21500 
21600 
21700 
21000 
21900 
nooo 
2;!100 
22200 
22300 
22400 
2250(1 
22600 
2270(t 
22000 
221J(1(1 

. 2::!000 
23100 
23200 
2'3300 
23400 
2J!,,(I(t 

23600 
23700 
23[1(1(1 
23900 
24000 
24100 

110 rO~KATIJXt'WAILR't2Xo'rOD't2Xt13F7,2) 
WklfL(b,ll11TWA,CCII~),I2•t•NRKl) 

111 fOkKA111Xtl5f7o2t/l 
0~ Uk•HIU~AkiU~ICili-TWAI*J600oO*PL 

O&I•HUL~O.~liiW·lWUitfUC 
U-UkiOSC 
0!:=0/3600.0 
liT Ill •AI<HIUU/IH$AIU:U~PLI I 
DTPW•AD~ICiti-TWAI-~lOL 

c 11' m:n I rlll11' Ill IWNNINil 1111 1'0 81 
c .IATr.R l I.Hr UrDATF: •IHrN liN I I XU lll'r 

ll 1.11 .u: oliN Hill Ill 81 
c WATLR ll:hr lii'DA"rEU WHEN IJNll XD CIFr 

ll nu: • I U!l.J<IlT) I I lltiW$I:I'W*VOL) 
TWA•TWAI[ITNC 
TWII • IWIH IITNC 
IW=1WtD1NC 
l!ilti"'IWD 
T!liNUli=TW 
lliJ U7 l1=~•Nl 
l!l<lll• fBI I I Hl'!IINUI I ·1!1(111*<1.1··U*DT/I:T 

117 r:rnn INUE 
[,0 111 Jr. 

C WATCR 1111r Uri.IAII WHEN UNIT JB UN 
Ill II 0:1 , li1 , I.Jr I 1111 Ill 05 

1 WO=TW HH\/ 1 uN•r•vrolll 11:r:r•w 1 
lW~TWUiUW•/IDNW.J<VI.IUl~CPWI 

TWAa I l W HWIIII~', 0 
un 111 75 

05 DTO•U!l/IONWtVOIII*CrWI 
TWIILI(r51JT)i151Jri111/2o0liDTQ 
llO 7\ NII~JTtNL 

71 rn I Nil) •l'll NOH llTG 
TW=TWO Ill liP /I OIHU VOU lll<l:f•W I 
TWA·<TWITWII)/?oO 

75 Jriii'Tolll.Nr11611 Ill~~ 

lflll,IJT,NI'LCIIJU 10 51 
lHl 111 :...1•0 

ru o:oP•rr:ru J, 412 1 
'5 FO~HATilXo'11Ht•'•I'I0.2t' HXNo ll•'tfiCI.~~· lllUH IIUC•'tf1CI,2t' DTliH 

II LIIOI' I"JHI ''tl'7o:!t/tlll'7o21 
TJTK=T.JT/b(o,O 

WR I Tl I 6 t 65 IT J t U tll!il: t ·r .ITH t l"WA • I r I Il I t XX~ 1 t l(l I 
Wl<l rL 16• Ml I IITIIl.•ll lr'W 

68 FORKATIIX• 'Ill I ILH"'•I'7o:!t' [I[G, r: D"f J>XI'""'•I'7,~!o' Dllllo I" I 
WI< 1 Tl' I 6 • !i:J I PW, UI:AI' 1 OTl:c: 1 r1:11, COP 

55 fOkHAliiXo' POW[R •'tfOolt' W IIHP•'oFlCiolt' DTWi IITEC"'oFICio!t 
H' DTUH ErR•'•f7,:!o' CIIP•'•flo2•/) 

24:l0(1 
24300 
2440(1 
24500 
24bCIO 
24700 
24000 
24?00 
25000 
25100 
252011 
25300 
2541111 
25500 
256(10 

29'1 TK=OoO 
JOO JI~JTI1 

lJT,.1JTtPT 
rFc nn.ru.Nrnun 1·o ?8 
IriiToGI.NPlC)GII 111 90 
1111 Til 100 

90 WRJTI CYtYYITJtTWtlWAtTWO 
99 IIIRMA111Xt41'10,2) 

lTII•O 
tOO CONTINUE 

W~ITI:ClltlCIIITWtl'WIItTWAtiCCNHltNHLltNU) 

tot r·mtth\l'C u, 2F7 .2" .u, tbr 1.21 
STOP 
END 

...... 

....... 

...... 



100 
20t) 
JOO 
400 
:500 
601) 
700 
900 
90(1 

1000 
1100 
1200 
13()0 
1400 
150'• 
1517 
15J~ 

1551 
1:';611 
1585 
160(1 
171)1) 
19011 
1?0<1 
200(J 
2\l)d 
2200 
2301) 
2400 
2:;•>•> 
26110 
270(1 
2800 
29110 
3000 
31•)•) 
3200 
3300 
3400 
3500 
360(1 
3700 
38(1(1 
3900 
40(1(1 
4100 
42(\0 
4300 

c 
c 

c 
c 

r. 
c 

c 

c 

c 

c 
[: 

c 
1: 
I; 

c. 

r. 

(; 

1: 

c 

CVHI. FOR 
II CAT Tr.AN!:I"f.l< ANIJ Tf HPf.NAlUnr:: lJX !lTIU Dill XllN II~ I:IJI~I:ENTIHC 4 4.00 

fH{tlllllll C:Uill'l X NUll - I NPl H: X 1' f'UIHJIJl.AT IIJN •· HlJl. T lf'll: IJl'I!T H:At NOll:~~~ 
DIHEIISION tllOol51tfWI10ltTXWI1DioRI151tRlll~ltll1101oRTI101o 4 ;~~ 

PU9CC1<llo~ltdol5!•»<10~151•»<10ot51 , •• ~ , 4800 
NUHFII.R Ill Vf.RTll.lll. XI~~.Rr,HENT!l·tiiJ!lT f<hl~l'l' WXTH llXHEN.,JON l <II tNI< 49 () 0 
(1.1( Jf') 
~ATA TW/IOtA2,(1/ 5000 
lrAJI\ rJW/1tl~1>2,0/ ;!~~ 
[rATA C:/l50*h2, (t/ L 

1 
WIOTI 1'1191 5300 

9 rOJ<HATI:'Xo'Titlf.<HlNI't:.!Xt'IN Tf,Hr'o:'.Xt'NII) ·ml11"o21:o'lllll' rr:HF">5!0(I :; .. oo 

llo'l 

Hf<.al5 
NRHJ=NIC"l 
If'=~ 
11P•lrt~H 

!1'1~11' ·I 
flO 169 IIH•loiiR 
1:1 ll' • Nl1 l ~t.7, 0 
CC JrloNHI•lo~oO 
c:IIN r 1 NUf 

5600 
5700 
5800 
5900 
600(1 
6100 
6200 
6300 
640(1 
6500 

J• I PF. J'tA I A .. 11. », ~ I oil, <X Ill: HI.!::> ollll:l<l1o I: liND, tlll'l::l:, liE'-T t 
JrfN!lflY 1\Nil 'filiAl ll'Nfll'Jf (J'f',) 
(rATA f'l lJ ol'llllt I'KIIti:PPoltNPol'l./3 olhht ;, o \h (1, 22h, (1, 4 t (>(1, (ltHI(I,(I/ 
llll' Till<! llATA 

6600 
670t) 
680(1 

DATA OTIPtDTilJ'to~lKH/Oo748t1o05tOollll/ 
I F'II!:TII Uf' I'll'(; HIJ!I~D1l'NTS 
f•!L=I'I.Ilf' 
IH<OIIIIft DATA 

6?00 
7000 
71(1(1 
7200 
73(1(1 D~TA (;Kiitl:~·6eUN6tURt!ll~/1,~t(l,4~tJ1:S,(It0,~2011333a1•5/ 

tlmll>l'l< ttl I 11111'11 <I 1111 PARAll C:l. !l'fllTJ:HS I 
fLS=loo 0 
A~F~AGE JNPIION lllk f[Hr[UATiffiES 

fWll ''•·~, 0 
T[l(l=/?..0 

7400 
7:'i0(t 
7600 
7700 

J<UN f RAC'l HlN!I .. ONF•l OTAI. ll'f:.RATXON!I l'f.l~ 1:n:u t I\!~• ON 
Nft;!Ho KM~IlN lTI'Ihll'XUtHI IN MilliN,, KA··IIN JrCJ~AfliiN!I IN 
KE=ON ITfRAIIIINS IN FVENING 

Xl J::J:A·r 1 'lN!I 7 BOO 
ArlTRtiOtlN, 790(t 

8000 
8100 
8200 
8300 
8400 
(1500 

)lArA IIIII oKHoKifoKI\oKl:/\4 o7o/,7o7/ 
NIIHf't.k OJ' lrU LOOP 1 Tt RATliiN!I rill! 11111: trrr:r 

tlfll X •4704 \ 
SET lll' fUR J'I:NT CJIIT OJ LA!iT 1114-IIJ'r I:YI:J.£. 

Hl'l l:·•llfll J .. ONE 
PRIHl t kFOIIJ.NI:Y I'JIR liT, Tf:ANf;, RA'I 1:!1 IINJl IIIWIINJJ 
11Pl••1 0()8 
I'IUNT FkF.OllrNr.Y Ill WAIJ:I< 'fEIWt:, ltllll.'fii'I.Y Hfr 
tll'l ·'336 
WATf.l\ DAl'A 
IJAll\ llNW,t:PWoiiPH1/h2o41lo~•l0,2/ 

'fi:HI', IJI!I IRXIHil Xll~B60(1 
8700 

llY IJT J'llR'rRIHT 10900 
8900 
9000 
9100 

Gf·H=GPHT /C:l 5 
W~H=Oo~OJ6tO,(I007007tTWI11-0o000001767*1WCII*t2. 

C l:fltiiJflll' ll•KIMHI XNl'll F'l':II*JIIlEC 
vrror •C;rH/4411. e 

r. l:llNIJI 1~1 (I)[' HUH mAN!lF'C:I~ l:llt:r-TCCIENT 
Hll=40o0 

C F.OUIVAI FNT liT, rlloi:OEF, I'IJR ntr nJIJE O.l'IIJIH .. SI~ FT-n 

c 
c 

R•W"l, 0/lllli I lll'CILll < ~4 ,C).DTKtl l ):J!Al.IIGC Dl'llD/IlT lDI 
HAP= 1, II/RAP 

1!> Rll=f>XJl/;!4,0 
DRr=Crllll· f'\JJI/24o0 
I"K··~'KIIt:ll>tl•l, 0 
GK=GI\Ii/7-foOO,O 
1~1\ ~WKJJ/:Jt.I)O, 0 
[rTKc[rTKIII3l·OO o 0 
ALI'=I'K/ I IlNf':U:f'P) 
ALO•GI\/1 IlNG*C'I'OI 
Al W=WK/ I ONW'*I:f'W) 
AR=3o14\6*Plll/t~o0 

ARX•J,141fo*llTOP/lloO 
AR0=3 .1411\*l'[tll/..t 2, 0 
Vlll ... ,I), 711S4.J II' I lllt '1. ,,) l .J.J2, O*f' IL 
VEL•VJ'tOl/(0,7G5~*<rJ~t*2oii"DfllD*C2oOI/144o0) 
c:,\l O:IILA rr: 1'li1C !ITCJ> 1'11 EUIIAl. riifl RI:OIIWC:'D J'OR IIATC:R TO 
TRAVEL lHRU OMl VlRl'XI:AI. PXJ>[ JNC:REH£NT 
Ill =I' X I./VEL 
IL=l 
WR nr It,. :tO)I>JJhl'llllt rKihf'l.o I r 

20 iiiii11ATC1:C•'I'li"C: lll\l•\1 Jl)u•,rn,;l,' HI, llll••'•I"U,;!,• IN K·•' 
I' £rTU/IIR .. FT-r l.•'tFiloJt' FT INI:REH~NT!I•'tX:It/1 

WRl II (h,:ll)DT 
21 FORI1ATI1Xo'TIHE HTEP •'oFIIoJt' !lEI:') 

1'1 =tl.O 
JT=O 
TH-•1,0 
IH••· 5 · 
Il'l'= 5 

C Fl fiW f;l~~t~r::rTIIlN f Al:l fJIW !'lilt Hl:AT I'll tiP J:ArAI:ITY a f'fJWI.'R 
1:1 P··t , ;.o ll··l), O.IY:'II*Ili'H t'i t) ,I)<) 1hl \ *llJ>H1'**2, 0 , 
crc=o.~625to.oOJhhtGPHT 
l!At;uf) ~ 98 
CAF'=O, ~·r 
CWDC•·Oo512~t(l,(lJ141CTW~·0,0001321*TWil*t2oO 

I:WRI'mQ,410liO.tll:.!*rWB-Q,QQQ0~07:JifiiD**2•0 
ltRG•J'tR 
II ( 2) •IWi JlRPi DR 
RJ(2)•RI2)U2o0 
Jlll 161 l.Ru2•NRI11 

........ 
-....! 
N 



9~0(t 

9300 
9400 
9SOO 
9600 
9700 
980!1 
9100 

10000 
10100 
10~'(1(1 

10300 
104(1(1 
10SOO 
106(1(1 
10700 
101J00 
10900 
110(1(1 
11100 
ll;t(l(l 

11~50 
113(1(1 
11400 
11SOO 
11600 
11/00 
1180(1 
11900 
120(J(J 

12100 
12;>(1(1 
12250 
12300 
1::'~00 
126<•(1 
12700 
12800 
12'i'OO 
13000 
132 (J(J 

13~00 
133(1(1 
13400 
135(1(1 
13600 
13700 
13800 

~RG•U~RtSE 1390(1 
kiLRitl•RfLRiiDRO 14000 
RifL~Ili•RILRilltl2oO 14100 

Jill 1:11111 JNUE 14200 
DO 100 IT•loNlll I 14~(1(1 
Ir~-CfUIJ 14400 
IPT•IPTi1 14500 
JIITH,(U,(I,~IIPT•l 14600 
TI•TIIDT/60o0 14/00 
TH•Il/60,0 14800 
TH•THiDT/60.0 14'i'OO 
lfiTHoLLo6oOIIIN•KN 15000 
IriTHoUf,6oOoANDofH,LEo12oOION•KH l~iOO 
H ( flloUlol:loCioi\NJJ,nlol.f",JH,I))oJN•KA l52(1(1 
IFilllol:l,lltoOIUN•KE _15300 
llfi=UHI·ON 15400 
IFIJT,Gr,ON[I60 10 3~ 15500 
H IJT,UloiiNIIIIJ ro 70 15600 
GO TO 59 15/CII) 

J:i .J1 =0 15000 
59 H•HH/3600,0 15700 

HAP•1,CI/RAP 1600(1 
I. l'lltll' I"II~IF.R 16100 

I' I •J/5. 0 16200 
C CAI'Af.JTY • I"UWf.R CUicVUl 1·01~ r:C:.AT I'IIHP 16300 

1•1: '/lflt) ,clft;> o:I'I;>.Uioll JI'H oCI:'.iOO:iUWOPIU2oO 1& 4 00 
PW•f'f• H·t:•r.r l"lf<t:Af'if;Uif)P 16!>(1(1 
RREJ•~1ll20ol~f11,if;IWIIPI11,'111Jif;TWIJP1t*2•-0•0~0201f<TWIXP 1 &~00 
UTI"I>IIIII .. ,r:rc:tt:WIIC 167110 
OCAP•OT~C·I'UCj,412 • 16000 
uur~on c:tu:Lia"J4oO.OI 169(1(• 
[~R•AB&<IILAI'tCfC/I'W) 17000 
TWl •TWI II'HUIII'I(ftNW*VDOf~CPW) 17100 
0[1 T•O • StiiAI'tAIU tl'l., I fW( II') ··I WI. 1/3lo0(1, 0 172110 
TWill•fWtiOilf/CilNW~VDIII~CPWI 17300 
GO 111 60 17400 

C rrcr.r t:IINVJ:CHIIN l:lmf"r:J(:Jf;N1 (Dfll/II··SIIol"l', ··J"l 17500 
70 H•~.012 17600 

o~r="· o 1noo 
I:Lic=o. o 17901• 
orcr=o.o 1nooo 
ur;AI' •O, o 1 c H•l• 
HAP•OoO 1021)0 
PW•OoO 10~00 

60 lit II~ 1 oii/C II'IIIJ/ I Hti'IIJ I It IICfltr•K I ltAI.IIIIII'IID/rJIJI) 10400 
Xl":.!oO~II( U,.CRII+bltl'l$1)1"/( ltNIJUillli ,:l:i.UlR >&OR$Cf'GI 1C5110 
X2•2 oOC:IIKtU:O to, 5tiJICI' I till/ ( DNilil: IIW t, 2:ilf!llR >&t:POtDI<Ct2 (I 10600 
DO lhO I.V•l•IP ' 107110 

c 

(: 

c 
c 

c 

lliLVoli=XJtX21toO 
Alt.'l•l ,.,. 1oii'IIX2 

160 Cl'lNTJNllf 
1111 "Jell) N~t, If' 
CINo11•CINolltXtCTWINI 
lliW,.DR 
DO 1211 l•2oNI'<H1 
x~Al ll:ull/1 !IE •1 UU loOISOitOI 
DINoLl=·loO*X*SEtiC2oii/DkGI-U~/RCLll 
llHI•l )·•lo<H 2 ,o.-x~WflloiiiiOIWi Xl( l-!l[a&2oOI/RCLI 
AINol.I•-1,0*X*I2oO/IlRIII1o0/RCI.)) 
DIW•Ili<UaGE 

120 Cl'lNTJNUC 
CINoNRH11•GINoNRH11-AINoN«H11ii:CCNoNRI 
Dll 1 I•:!oNI1H1 

2 

105 

112 

115 

110 

Ill 
IICI 

r=DINoii/DINtl-11 
ll(N,II•IliN•II-r*A(N,J·ll 
CCNoli=L<Ntli-I'C:GCNti-JI 
DACK llllll~ftTUTION 
CINtNRHti•CINtNRH1)/IJINoNRH11 
loll 2 l··~'•NtlHl 
J=N~Hl ·I II 
CCNoJI•ICINoJl·AINoJIC:CINoJ~III/DCNtJI 
ll llloi.U,l) 1111 TO 105'. 
GO 111 flO 
Il.••lL 11 
HIICO=IIE'R*3600o0 
Will Tr ( 6 I 112) rllllo IIIIEO 
I IJIUIAl ltXo 'lm.llJA,~',F7.:h' XNo J:IJ.JH,TR.I:nr:t~.='•l"l•,;•,• DTII/If·!ll 

flrl·l .,,, 
WRITt:lho1151 
rORHATI!Xo'flTf•liiNI:r; I"RIIH I:Eifll:lt Ill" I'JPf; IN INI:III:!I'I 
WRinl6•tll))(kiiHloHL2•NI1Hll 
f0RHATI2Xo 'WAI r.n•, JXo 'l'lll' o 4Xo 'I"Oil' o~!Xo! 31'"7, 21 
Wkllli6•1111TW(l),flWill•ICCl•X21•12•1•NRH11 
fORHATI1Xot6F7oJI 
Q•JI:INI~IIANAR Ul'li ... Cl W< t )··TWIN I I 
II( N I •r:I.U*A~O* I C I No J) • fWI N I u;~6(1(t, (tif;I'JI.··II!II! CN) 
Q!J=UI N IIJ600, 0 
UPPATC lQUATION I Ilk INNER PIPE WALl 
1 IWUII··U!I/(11:111\Il~l'll I trW< HI 
QT(N)•"fiNIIIIUtnT 
II" II~ AT rmll' l!l tiiiNNHIII lliJ TO Gl', 91 
WATCR TI:Hrr;RA1 URL llf"J\All. llliF:N UNJT 1 fl Ill" I'" 
II 1.11.1 foUNIIlll Til 01 
TWINI•TWINIICUfi*UTI/(DNWitCPWII:VOL) 
1111 ru 75 . 
WA Tlil< 1 r:HPI:rcA 1 UICI:: IJI'IJA Tl' Wltr.N UN IT X II liN 

..... ......, 
w 



10300 111 xrcH.I li.II'I lliJ 10 75 
1E700 T~cHt11•1WIHIIUU/IIlH~tVUOT*U'W) 

1?000 i'!i Jr lli'1,(U,tiPTliHJ 10 :50 
H'l<tCt GO ro ~oo 
17ZOO ~0 Jf IN.rll.tlGU 111 52 
lS'~OO lfCN,rO.Hrl~O 10 ~2 
1?400 HcN,["U,[t>)IJO 11152 
1 t;-:)(J(f GO TO ~00 
1?600 :'>1 I!III':J:[II/J,412 
1~70() ~RJTCC6o551r~oUCAPoU1[Lo[[florOP 

1':'300 :os r UIW/11 < 1x, • I'IIWI:II ,:f" ,rn.l,' ... llllf'•'•fl<l.1•' ll'rlllf QTf.l:••' , I' 10, 1 , 
1 S'?(>(l II' I"IIIIH rrn•' .. r7,,,' I:Uf•r ' ol'7 •:! o/ I 
20000 llU 1tl "J..?9 
~01<•<• 52 Wf:JTI:I 6• lo:llHo ri oii<NI, r!tlCC Nl o1 WIN I o ct:Woll I ol X"1• 1(1) 
20200 Mt ICJI<11Ar!lXo'II•'.IJ•Il0,2,' IUtl, U••' ,flO,:/.,' DTU/tiR··IHI: llnt:·~•I'IO. 
20!-(J(I IHo' [lJU/IlR ·INC:' ol o11F7, ,U 
20400 H <tl , I II , I r HlU 111 51 
ZO!=.i(J(I 2?'1 1H=O.O 
20600 :100 CON r I NUE 
207(t(l JT~JTil 

20300 II ( l Ill, I II, Nrr IIlii 1"0 90 
20'J(•() JfCJT,LI,NI'LCJGII TO 90 
21000 1111 Til 100 
21100 9C WNJTLC~o9?lTio1WClloTWIHPloTWCIP) 
21200 YY n11m111 < u, 4r 1<1,2> 
213(1(1 1 :SO CONTr NUl: 
21400 l TI<=O 
21 ~(l(o 100 t:ONTINUI: 
21600 llU IOl NV,.l.IP 
21 ?11(1 WRITI:CEo101JTWCNVItTIWCNVIoCCCNVoNHioNH•loNR) 
21000 11)1 fiiRHATCIX,1/f7o21 
21'"/(J() I 07 CONTI NUl: 
22000 llTOF' 
22100 tHD 
22?00 

TIHFIHIHI IN TEHF' 
146<1. 09 Y<l ,94 
28?0. 7(, !/2.Uit 
4:!.17.45 V~i • '14 
577(,. ~!ft ?4.68 
7.~t:l.11 9:1.23 
8.!.5~.!)~ 9s.t.o 

IO<IY;!,J3 YI .. O!'i 
11530,If!. 96. ,!,(, 

1,4),,1). JJ \11 .. ~4 
1440i'.n?. o;-&.r.o 
151141 .. 33 \11.09 
172U4off3 r7.'29 
1117;!],33 \1/,47 
200(;;?,{.3 ?;?: .fl\ 
200114.77 y~.,. ~9 

200116, 'II 96.43 
201)11\1.05 91..30 
200\'t .19 97.04 
20<)YJ.33 \17.21 
200?5.47 97.?.-1 
20<JY7 .~t 97.45 
2009~·. I ':I <;'7,54 
2011)1.39 \ 97.62 
20104.03 77.67 
201c)t •• t7 Y/,76 
.20108.31 97.£<1 
201\1),46 \17.87 
20tl:l, ~() <;'7.03 
20!\4,74 ')~.21 

2011~.(!(1 75.47 
21) ll\1,02 '14.7'1 
20121.16 '14. J ~ 
201 ~·.s. JO •J:1,S7 
2012:..44 ~3.02 
201 ~.'7. 58 \1;!.51 
20129.72 <;'2.03 
20 t :11.86 \lt.58 
2013~.00 91.1:, 
201.1/•. 14 11<1. 75 
2013U.~R 90.37 
20140.42 110.01 

Hill "fEtlr 
11'>.72 
87. 7<1 
BII.G7 
(1<;',~4 

90.23 
~0.:1(1 

Yl.O? 
Ylo47 
\11.71 
rt.97 
C);•.20 
t;·2. 40 
9,'.5'1 
119.<;'7 
\11,\4 
'11.611 
Y1.73 
~·2.t'l 

Y:.>,J5 
\12.48 
~~~.'53 

92.60 
\1:0.76 
~·2. (:.~ 

Y.-!.0? 
n. 95 
YJ,dl 
9'2. 1 ., 
\11,43 
70.(14 
90.2& 
117.71 
0'/,Zl 
80.74 
00.27 
ll7.(lll 
111.49 
ll7ol:' 
116.78 
86.o4!i 
111>.14 

OUT TUIF' 
lll.OO 
f;4.0? 
11~.17 

u~~tJ!i 

11~.55 
C7.0J 
11/.42 
1)7, 71. 
IHI,06 
f;O, ;':1 
1111.55 
ac.n 
111!,?6 
8&.9.!. 
117.75 
110. J 6 
llfJ,42 
6().60 
II:J, 74 
CC.()6 
1111.96 
ll?.05 
II? .13 
0~,.20 

u~.26 

OS',Jl 
11?.37 
1)(),/7 

IIH,JJ 
87.9J 
117.56 
r.7.21 
11( .. 89 
1;6.60 
116.32 
8&.06 
11'5.31 
05.SC 
115.36 
ll~o1!'i 

114.96 

....... 
-....J 
.p. 



100 
200 
300 
401) 
500 
600 
700 
800 
050 
900 

10•1•1 
110(1 
1140 
1180 
120f) 
1300 
140•1 
1 51)(t 

1·~tlt) 

1700 
18(1(1 
1900 
2000 
2100 
220(1 
2300 
2-40(~ 

2500 
26(1(1 
2700 
280•) 
290'J 
3000 
310(1 
3200 
3300 
3400 
3500 
3~~1) 

3600 
3700 
380(1 
3900 
39~0 

4000 
4100 
4200 
4lOCI 

c: 
c 

c 
c: 

c: 
c 

c 

c 

c 

c 
(; 

c 

c: 

c 

c 

9 

15 

CVHE.FOR 
HrAT Tf<IIN'iFrr. IINJJ TI;IIPF:I<111UIU. DX!HJ;lllllriiiN XH 1:11141:101HilH; <!<!I)() 
ll~IIIINil CIIUPI lNilS <!500 
DJMDI~liJN r c ~o.tltl. rwc 201 oRe IS 1 .rn c 1 !il, IH:/11 1 .en c2111 .mu:c 20 > 4600 

·NIIOIJ:fll II~ Vr.tii"II:tU. HICilEm:::tll!l··tlll!rf Aliiii:E WI rH llii1r:tl!lHltl "(( IPo t-4700 
rwciP> 4BOO 
~~IT[I9o91 490(1 
FORIIAIC2Xo'TlHLIHINI'o2Xo'lN TrrHr'oAXo'HID 1EHP't2Xo'IIIIT TIOHP':;ooO 
1P•20 5100 
HP•rF'/2 fl 5"'00 
PH·E: DAlA - Iloilo I loDo lli4Cilr.U>.HirrRtl. C:IINDo~!ll'"l:oHI:II"fo 5 ; 00 
IJrtt:;Jl'( ANI) llll"lll. l f"NUTfl If 1 .I 5400 
PATA PlhoPIIDoPKIIoCPPollNPoPL/~o16~o3o510o2~6oCio4o60o0o100oCI/ 5600 
OXP IUh[ llATA 5625 
~ATA IITJDo~TOIIolllKH/0,741lo1o05tCI,(IIl/ 5650 
l CliO I H llf I' 11'1 Xllf:llr:Ht:NTB 5 6 75 
PIL~~·I.IJ P 5700 
U~OIIN~ UATA 5800 
Dll TA C:KIIo I"I'Clolll41: • J)llo 111:/1 o 4 • 0 • 45 oHIO o (o • Clo I•:WIJ:{;{3 • 1 • tV 504(l 
Nlltlllt:ll Ill t IJIII'H I I llll PIIRAI Lfl. SYilTEHS) 5880 
CLS•~oO 5 900 
GROUND 1 Ulrr.RII111f<E!; ll"f !HIII!l LIP 6000 
n~1~ 1W/~O.I:6~oO/ 6100 
IIATA f/3?P*62o0/ 6200 
t:YI:l l 1111! 'i IN MINUIES 630 (1 
DATA I~NoTOfF/30oPo3CioO/ 6400 
ICY liJNITOFF 6SOP 
WATER PATA 6600 
lrAlo\ I1NWoi:PI-Iolli'Hl"/6:0o4o1 ,l)o10o2/ 67(10 
GPM=I:I·Ml/f-1 5 6 eoo 
WKH•O,JPJ610,00071107~TW!li-OoOOP001767*TWC11**2o 684(1 
I:IIIIVI:I<I llr\L/11IN IN I 0 Fl **:1/UEC 6880 
V£rOT•·IWH/44floll 6900 
lill >1<).0 6940 
f<~=f•l P/24 o 0 6980 
IJI<I" '(f"IJ(I-f'Jll)/2'1o0 70!10 
rk•PKH/~6(1(1,0 7050 
IIK~W<HI:if><IO,O 

WKcWI\H/36!10 o 0 
OTKmlr rt:lf/ J/,00, 0 
ALP=I'K/ I llNF'tf.l"l' I 
r\III•OK/IONilJI:I'GI 
ALW~WK/ I llNIJtt"l'~f) 
AN-Jo(116*P!0/12o0 
AI'! I~.~ o 1 ~ ll·*IITIIIl/12 o 0 
ARII · .1, J -41 t..I:PIIll/12 o 0 
VOL•Oo7D~4*<PID/l?o01**2,otrlL 
VI"I.•IJIJCH/ (<), 7U:OH0' IIU<*:! ,I)··I)J"llll* .. :!oO 1/1-14 ,0) 
CALLULA ff. Htlf. STF.P TO EQUAl. IIHF. I!EIIIIXIU:Il Filii WfirltR ·ru 

7101• 
7150 
72C•Ct 
7300 
74011 
7500 
760(1 
7650 
7700 
701)1) 
7900 
8000 

C TRAIJFI TlllliJ lltiF IJI'IHll:r\1. Pti'I·: INI~RfHENT 
D T =l'li./VEL 
XI •1 
WRITI:C6o2o>Pl»oPillloPKHoPLoiP 

20 FllllHnrclx,•riPE DAJ~: I»••,raoJ,• IN. ou-·,raoJ,• IN K•' 
@' VIU/HR-FT-F l•'oFHo3t' FT JNCRrNENlfl•'oiJo/) 

WRCTfl6o2111lT / 
21 FD~HATI1X•'TIHh STlP •'oF9o3t' SEC'> 

ll•l) 0 0 
TJ•OoO 
"111 >l)oO 
JT[I•· 10 

t: PRINT FREil, FOR HTo RII1F.!I CHINo) IINIJ WAT[J; TF.tW~:o OTEIMTIIIN 
f'TII·•'I:I?I) o 

IPT=\:i-44 
CFP•Io2li-,03Y2R*6PNlfoOOI&ll*GPMT**2oCI 
CfC•CI,?/tl/.,()I)J66*0P"T 
CWf<C•O, ~·as 
CWilP'·I), 99 
DO 100 I~1olBB16 
I fii~I Ill H • 
1 JcTHIIT/60.0 
Til·' IIi flll/60 o 0 
THF'•TM lilT 160,0 
tFcr.Jolll"o rc:Y>uo w l5 
trc1Jouro1nN>uo rn 70 
IHI 10 59 

;s~ T.I•OoO 
S'l fi•IJH/.IM>O o 0 

RAP•t,O/HH~IP10h/124oO.IlTKH)I$ALII6<UTIJD/DTlD) 

H~P~t.tl/IRAP*J~CII)oOI 

PC•?P47.J4tl2o,9tfl*1WIIr>toCI5e1W!Irlll:*2o0 
r···~.l7'5oO 

PW=f·p I f'C 
GCAP•59Y21o0-22~o9J*TWIIPI~Oo2~336*TWIIP>**2•0 

Ill' I~·' :lo 4 t ;• ~f'W:I:I:WilP 
OREJ•21U20ol~fltotfWCir)i1o98J*1W<XP)**2o-Po05H&$TWilP)IeJ 

111 r 1: ~en: ~c:l~f<r: •1mE J 
UHP•UlF.C/CCI.S*~~OOoO) 

'fWit>•fWitPliUW'/IONW*VOill*CPW> 
GO TO 60 

71) B~l). 1)12 
OHP•OoO 
HAP~o,o 

60 1111 ;t(IO N•lolP 
C IIPOAH" I"IWAHIIN FIIR IIUTI'R Plf'F. WALL 

H£0•1 o <•I I CI'IID/ 1/l$1'111 >) t1 RO/rK) II:AI.IHHf'IID/PlD)) 
X 1 mlf~:U* ( RIIHlRP) 

~ 
........ 
<.11 



8100 
8200 
83011 
84<)1) 
850(1 
8600 
870(1 
aeoo 
8900 
90(1(1 
9100 
9200 
9300 
94(>(1 
9500 
9600 
9700 
980(1 
9900 

10000 
10100 
10~(10 

10300 
104(1(1 
10450 
l 0~~1(1 
10600 
107(>0 
10800 
10'~00 

11 Oil<) 
111(10 
11200 
113(1(1 
11400 
11~0(1 

11600 
11/00 
11800 
115'(>(1 
12000 
121 (1(1 

121:10 
12:<(•(1 
12300 
12400 
12450 
125(1() 

X2•r•Kfl 1((1 fllllf' f JJI<I~, (I) /llR 
:c;s,J<IW*!:PilH IW fll:lP H<R/4 ,I)) *llR/12 ,O:I:DT l 
TINo2l•IXI/X31*<1WINI-ICNo21lf<X2/X3l*llCNo3l-TCNo2llfTINo2l 

C UPfii\Tf tUUAfinN f"<IR IIRIIllNil NIIDFS 
I<< 31' I<IH l<kl"tloR 
li:<O ~[IR 
DO 200 l.z:<rt5 
A•TINol.ill/(~[tCH~f1,~ll-TCNtl.l/SEtf(Nol.-l)/(6~t1,~l 
fl~1 ( H 1 Li l )/(Sf.;( :it:i 1otlll··(J ocl•·fi~: )*I' (N •Ll/fi(·:··SI:ll ( N,l.•·l )/(loOtS£) 
f•DN~$Lf'D/C~K*DTI 

T<N•Ll-2.d*AIIC*PRil:1:*2•tlli8/CC~RCI.l*llRillii<Noll 
PRGR )lf<(!,SE 
IU I L1 ~a Ill U 2, 0 
R!Llii•RilltDf<O 

2<l<l <;!Ill I I NUE 
IFIIL,£0,11 Gil TO 105 
llll 1(1 80 

105 IL=Iltl 
WRIT! (.Soli:Sl 

115 FOI<IIAliiXo'OISTANI.E fROI1 I:"NlLil Ul' f'JPF. IN JNI:fJI:!I'I 
WlllTI ({.,IIO><:H<tllol1":$,t51 

110 f~kHATI2Xo'WAfER'o&Xo'riP'o4Xo'rOil'o2Xt13f7o2l 
WRIT! (6,llllf~lll•ITI1•l21•l~•1•15J 

111 FOP.HAT II X .t M /,.II 
II<) ll!ii:OII,HI\1'~1\RUt'll *< J'Wct I ·HJ<Nl 1*.1600o0 

ll1Nl•HFO*AI<Ot(l(No~I-TW<Nil$36PP.OtPJL-USCCNl 

u:J=UINJ/.1/rOO.O 
1: urroAff UlUATJIJN Hm XNN[J( l'll'l' WALL 

Tlll•l J--U!>IIH*f>li~l'll.H J'WINl 
llTINl•IIIINifUHfllT 

c 
c 

c 
Ill 

/~) 

~j() 

:.1 
55 

II 11:;1\1 PtiiW I:l IWNNINII 1111. 1'0 rrr, 81 
IIATI r1 fUIF'tRA fiiRr. llf'llAlf. WIIF:N IIIHT I!;, orr 
lf'<r.J.tl.l'IIIIIIHI Ill (II 
TWINl•TWINlflllHtJJfl/lllHW*I:rWtVUI.l 
fill 111 7::; 
WATU: l[HF'Ef;ATliRf:: lll'llAlJ; .llli:N liiHT XU liN 
H IN.[ IJ, lJ•) fill 111 75 
TIIINfJJ:fWINiillS/I~NW*VUUltCPWl 

If ClMJ',IlT,PTIIJIIII TU 50 
Go ·ro ~oo 

XI IN.rU.I Hlll 111 51 
IF IN .Ht .Hr· Hill fll !il 
Jr<H.LUolPJUU IU 51 
GO TIJ :wo 
WNJTI 16,55)11,PWoUCAPollTEC 
f0kHA1(1X• 1 ~•'tll•' POW(k ~'tlrfftlt' W U~'rfl~elt' 811Jif Rf£CM 

... ,J-10,1•' llTIIII' l 
WRIT~C6t65lfltiiCNltUl<NioTIICNltCTCNtXIl1XX•1t1~l 

12600 
1 27(1(1 
12800 
1311(1(1 
13100 
13/(1(1 
13250 
133(1(1 
13400 
13500 
13MO 
137(1(1 
13800 
13900 
14000 
1'11(10 

t.:; rcmttAl c tx.no.;!, • HXtl. o•' .no.2.' nrutml·XNt: 
I!' olt IIF7.31 

'fN:.f).O 
JOO c:ONl \ NUE 

1.1 -1 .J I 01/60, 0 
lflllll.EQ,lPTl611 TU 9C 
xrcx.ol.tU760>on ru 78 
GO TO 100 

YB NRII[CY,YYlTiofW<lloTWCHPl•TWCtPI 
9r r·u~HA1<1Xo'lrl~.2l 

JTJlaQ 

150 I:ONllNUI: 
li)C) t:ONTINUE 

STOP 
~:ND 

Q 

1-' 
-....J 
Ol 



lOCI 
121S 
135 
150 
17::i 
200 
2 .,~ 

~J 

:!SO 
275 
300 
J2~; 

350 
375 
401) 
42:..-
450 
47~ 

500 
5~~ 

550 
57!> 
600 
625 
650 
67:5 
701) 
/2~ 

750 
775 
BOO 
82~ 
oso 
07:.0 
9()0 

92~ 
950 
975 

1000 
1050 
107:5 
1100 
1125 
115(1 
117:5 
t20(J 
1225 
12~<· 
127:5 

LSCF.FOR 
C li:AST SOUA~I5 rUkV[ FIT 

[tltii"IIHHIN A< 1:111:0, Ill l:t• 151 ,xc 1:il, YC 1:!• t:il, WC 1:'il •I~( 1:-t• t5l 
or·CN <flo F ll.lc '' 1:1" IT ,llA'r' • !HA1'1Hlw '01.11') 
1111=0 
RCA (I C 0, 100 II.L 

:l H 0111.Ht.ll.l 00 TO 11100 
10 ~CA(IIOo~OOlNoHol 

11'(1111.NI ,<)) IJO 111 25 
1:1 WRITrC6o4001 

Jl(J ~'I) 1•·1oN 
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