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CHAPTER I 

INTRODUCTION 

The term 11 laser 11 is an acronym for light amplification by 

stimulated emission of radiation. The advent of lasers was the starting 

point of a new era in the technology of mankind. 

their applications into vast areas of science 

Lasers have spread 

ranging from simple 

experiments in the laboratory to 11 high technology", medical surgery, and 

semiconductor manufacturing, to name a few. One of the applications of 

lasers is in the area of precision measurements because of their very 

stable frequency. Knowledge of the frequency stability of lasers can be 

advantageous in a given domain of applications. 

A laser system, 1 ike any other system, is subjected to unwanted 

disturbances, so-called noises (either deterministic or 

nondeterministic). Fundamental noises (or fluctuations) are inherent to 

the laser system and it is impossible to reduce them unless the 

parameters of the system are altered. There are some extraneous noises 

by which the laser frequency stability is affected. These can be 

reduced by controlling environmental variations. Study of fundamental 

fluctuations becomes therefore very important to determine the ultimate 

sensitivity of laser systems. 

After the advent of masers (microwave amplification by stimulated 

emission of radiation), Gordon et al. (1955) noted that these devices 

can be used for precision measurements (e.g. clocks) becau e of their 
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very stable frequency. Gordon (1964) used an oscillator model to 

calculate the frequency linewidth of a maser. This linewidth was 

surprisingly small compared to the frequency at which the maser 
I 

oscillates. 

Schawlow and Townes (1958) had predicted the possibility of making 

masers in optical frequencies by using a Fabry-Perot resonatpr. They 

also calculated the frequency linewidth of such devices. 

Javan (1959) published a paper showing a possibility of making 

masers in optical frequencies using gas discharges. In 1961, Javan and 

his coworkers were able to build the first optical maser (laser) which 

gives a continuous beam. They used He-Ne gas, and the laser was called 

He-Ne 1 aser. The first measurement of frequency stabi 1 i ty of He-Ne 

laser was achieved by Javan et al. (1962). They found a frequency 

stability of one part in 1014• One year later, Jaseja et al. (1963) 

measured the frequency fluctuations with respect to time. They found 

the frequency linewidth due to spontaneous emission to be about 0.02 Hz 

for a power output of 1 mW. 

One of the early measurements of the spectrum of frequency 

fluctuations was done by Siegman et al. (1967). Two linear lasers were 

heterodyned to measure the frequency fluctuations. They found white 

noise due to spontaneous emission and the llf2 noise due to e;xtraneous 

disturbances. Manes et al. (1971) measured the frequency lineshape of a 

1 aser. They found that the 1 i neshape is a mixture of Gaussian and 

Lorentzian lineshapes. 

In heterodyning two independent linear laser scheme, the white 

noise is masked by 1/f2 noise which limits the observation of other 
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types of noise. It is very difficult to stabilize linear; lasers for 

reduction of 1/f2 noise. 

Here we suggest that ring lasers can be used to study frequency 

fluctuations in lasers. Two counterpropagating beams share the same 

cavity in ring lasers. This produces very highly correlated noise which 

is due to extraneous disturbances. By combining the output of a ring 

laser, one can reduce the technical noises (common modes) to a 

substantial degree. We can therefore investigate noise phenomena in 

lasers. 

One of the interesting types of noise is 1/f noise. 1/f noise was 

first noticed as a low-frequency noise in vacuum tubes by Johnson 

(1925). Since the mid fifties, 1/f noise has been observed as 

fluctuations in the parameters of many physical systems. In spite of 

its appearance in so many systems, its origins and its mechanism still 

remain a mystery. 

Bilger (1981) speculated that there should exist 1/f noise in ring 

lasers. Since 1/f noise was reported in masers and in almost all 

physical systems, one is led to believe that 1/f noise exists in 

lasers. In this work, we analyze some data showing 1/f noise in 

frequency fluctuations, in four-frequency differential ring lasers, and 

two-frequency ring lasers. It is also shown that the 1/f noise level is 

proportion a 1 to o-4, where Q is the qua 1 i ty factor of the passive 

cavity. 

A review of fluctuation phenomena and mathematical tdols used to 

characterize the frequency fluctuations are given in Chapter II. Linear 

lasers and ring lasers are discussed in Chapter III. Fundamental 

frequency fluctuations in lasers are considered in Chapter IV. The 
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experimental evidences showing 1/f noise in lasers are deslcribed in 
I 

Section 4.2. Theoretical models for white noise and 1/f noiseiare given 

in Chapter V. We compare the experimental results and the theoretical 

models in Chapter VI. A summary and concluding remarks are given in 

Chapter VII. 



CHAPTER II 

FLUCTUATION PHENOMENA 

Understanding of nature leads us to classify observed phenomena 

into various groups according to their common behavior. It was and is 

always desirable to comprehend nature so well that all phenomena can be 

explained by a single law (e.g. the quest for a unified theory of 

forces). But this is an endless journey. 

Sir Isaac Newton, in the 18th century, applied mathematics to 

understand observed phenomena~ Today, the broad field of science 

investigates the facts about nature by utilizing mathematics. Some 

complex natural phenomena cannot be explained in terms of an explicit 

mathematical relationship. These may be classified as nondeterministic 

(or random). Statistical methods, in this case, can be used to 

investigate fluctuating phenomena. 

2.1 Classification of Random Processes 

A random signal cannot b~ explained by an explicit mathematical 

equation because each observation of the signal will be unique. In 

other words, any given observation of the signal represents only one of 

many possible results which may have occurred. 

A random process {y(t)} is a collection of random vectors 

(functions) varying with a parameter t (e.g. t = time)(Melsa and Sage, 

5 
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1973). A random process may be viewed as a station~ry or a 
I 

nonstationary random process. 

If a random process y(t) has the same statistics for y(t) and y(t 

+ T) (for all T), it is called a stationary random process. It is often 

difficult to realize a random process as a strictly· stationary random 

process in practice. A weaker form of stationarity called wide-sense 

stationary random process is therefore defined. If the mean value and 

the correlation function of a random process stay unchanged in t(time), 

namely 

E{y(t)} = Constant in time 

E{y(t)y(T)} = Function of (t- T) 

(2.1) 

(2.2) 

where E{·} is an ensemble average then it is called a wide-sense 

stationary random process. For many practical stationary processes, the 

ensemble (statistical) averages are equal to the time averages. In this 

case, the process is an ergodic process, namely 

E{y(t)} = < y(t) > (2.3) 

where <y(t)> is given by 

< y(t) > = lim i J:T y(t)dt. (2.4) 
T-oo o 

In this work, ergodicity is assumed for random processes. A 

nonstationary random process is defined as a random process whose 

statistical properties vary with t(time). 



2.2 Mathematical Tools for Frequency 

Fluctuation Measurements 

7 

The concepts of power spectra 1 density in the Fourier frequency 

domain and the Allan variance in the time domain are used to measure the 

frequency fluctuation of an oscillator (Barnes et al., 1971). However, 

it is customary to evaluate also the variance or autocorrelation 

function as a measure of frequency fluctuations. 

2.2.1 Autocorrelation Function 

The autocorrelation function of a random process describes the 

general dependence of the values of the observation at one time on the 

values at another time. If the autocorrelation function of a random 

process y ( t) is represented by Ry ( T), the autocorre 1 at ion function is 

then defined as 

R (T) = < y(t) y (t + T) > y (2.5) 

where <.> is the time average. The autocorrelation function can be used 

to find the power spectral density (Wiener-Khintchine relation) and the 

variance of a stationary process. This is shown in Sections 2.2.2, 

2.2.3, and 2.2.4. 

2.2.2 Variance 

If we view the mean (or average) value as a measure of the static 

component of a random process, the variance can then be considered as a 

measure of the dynamic component of the random process. If the mean 

value is zero, the variance of a random process y(t) is given by 



The variance in terms of r is given by 

o-2(T) = < y2 > 
k 

- 1 tk+T 
yk = T f y(t)dt. 

tk 

2.2.3 Allan Variance 

8 

(2.6) 

For a random process with 1/f-type noises, the classical variance 

does not converge in the infinite time average (Allan, 1966). A more 

meaningful time-domain measure of frequency fluctuations which converges 

for most 1/f-type noises has been recommended by Barnes et al. (1971). 

This measure is called Allan variance, two-sample variance, pair 

variance or cluster variance. However, we refer to this as All an 

variance in this work. 
• 2. 

Allan var1ance u(T) of a random process y(t) is defined as a time 
A 

average of two-sample variance of y(t), namely 

(2.7) 

where Yk is given by 

- 1 tk+T 
yk =-f y(t)dt. 

T tk 
(2.8) 

2.2.4 Power Spectral density function 

The power spectral density function of a random process describes 

the general Fourier frequency composition of the observation in terms of 

the mean square variation in a unit bandwidth. For simplicity the power 
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spectral density function is sometimes called the power spectrum or 

simply the spectrum. 

We can define the one-sided spectral density function Sy(f) of a 

random process y(t) as (Wiener-Khintchine relation) 

s (f) = 4 J; (T)cos(21f'fT)dT y y 
(2.9) 

0 

where f is the Fourier frequency. 

It can be shown that the Allan variance is related to the power 

spectral density function as (Barnes et al., 1971) 

(2.10) 

Using Eq. (2.10) we can find the Allan variance of white noise, 1/f 

noise, and 1/f2 noise. These relations are summarized in Table I. It 

is advantageous to note that 1/f noise gives rise to a constant Allan 

variance. 

In order to compute the power spectral density of a given data 

points, we can use the finite Fourier transform (Bendat and Piersol, 

1971). 

Consider the power spectral density Sy(f) of an ergodic Gaussian 

random process {y(t)}. For a sample function y(t) of length T, the one-

sided power spectral density is given by (Bendat and Piersol, 1971) 

s (f)= lim t E{IY(f,T)1 2} 
Y T-oo 

(2.11) 

where Y(f,T) is the finite Fourier transform of y(t), namely 

Y(f,T} = f~ y(t)e-j21f'ftdt. (2.12) 
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TABLE I 

CONVERSION TABLE FOR SPECTRUM AND ALLAN VARIANCE 

POWER SPECTRAL ALLAN VARIANCiE 
NOISE DENSITY S(f) al (T) 

White Noise ho hoi<2T> 

1/f Noise h_1t-1 21n(2)h-1 

1/f2 Noise h_at-2 (21T)2h-2 T/6 



ll 

Now an estimate of Sy(f) can be obtained by simply omitting the limiting 

and expectation operators. This gives 

"' 2 2 
Sy(f) = T IY(f,T) I • (2.13) 

Using the discrete Fourier transform (OFT) for equispaced data, we have 

N-1 
Y(f,T) = ~t ~ Yn exp(-j2rrnf~t) 

n=O 
(2.14) 

where Yn = y(n~t), N is number of data points, and ~t is the sampling 

interval. There exists a fast method to compute the OFT of the data, 

the FFT algorithm (Fast Fourier Transform) (Cooley and Tukey, 1965). 

2.2.5 Frequency Linewidth 

In early investigations of frequency fluctuations, (for example, 

Javan et al., 1962) the concept of frequency linewidth (or spectral 

purity) was used. It is advantageous to derive a relation in which the 

frequency linewidth~v is related to the frequency stability S(f). 
v 

Consider a sinusoidal oscillation x(t) with averaged frequency 

and fluctuating phase ~(t) as 

x(t) = x0 cos[2rr%t + ~(t)] (2.15) 

where x0 is a constant amplitude. Before speaking of an instantaneous 

frequency we need to realize that the following constraint exists 

2 rr » d~(t) 
vo dt • (2.16) 



The instantaneous frequency fluctuation is then given as follows 

ov(t) = d<.&(t} 
27Tdt 

12 

(2.17} 

where the nominal frequency ~ is taken out. The autocorrelation 

function of ov(t} (stationary) is related to the power spectral density 

of 6v{t) as follows {Wiener-Khintchine relation) 
00 

R (T) = f s {f) cos (27rfT)df 
ov 0 ov 

(2.18) 

The phase fluctuation for a time interval T is given by 

t+T 
f>(t,T) = 211' f t 0 V (y)dy (2.19) 

The mean square value of <,&(t,r) can then be calculated as 

2 2 JT < f>(T) > = 871" T (1 - y!T) R (y}dy ov 
0 

(2.20) 

or, by using Eq. (5.4) we have 

(2.21) 

The power spectral density of x(t} can then be calculated as 

00 

S (f) = x 2[ exp(-12 < <.& (r) 2 >)cos[27r(f- f )r]dT. 
X 0 0 

0 

(2.22} 

For example, the power spectral density of ov (t} for white noise in 

frequency is 

S (f) = h0 • ov 

Let us calculate the power spectral density of x(t) as follows 

(2.23) 

(2.24) 
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The power spectral density of x(t) is then given by [using Eq. (2.22)] 

(2.25) 

Equation (2.25) shows a power spectral density of x(t) whi:ch has a 

Lorentz ian 1 i neshape. The frequency 1 i newi dth ~vis therefore defined 
x2 

as the full width of the lineshape at Sx(f) =-¥- , namely 

~v =11'h • 
0 

(2.26) 

Investigation of frequency fluctuations is more fundamental than that of 

spectral purity. In other words, Sx(f) can be calculated, given 

S0v (f). It is easy to show that the Markov noise [S0v (f) = 1/(f0 2 + 

f2)] has a Lorentzian lineshape. This means that it is impossible to 

distinguish the difference of a Markov noise from white noise based on 

spectral purity. 



CHAPTER III 

REVIEW OF LASERS 

Many electronic devices, for example transistors, use moving 

electrons to obtain electronic amplification and oscillation. However, 

a new class of electronic devices use the internal resonances of atoms, 

or the transitions between quantum energy levels in atoms to gain 

amplification and oscillation. These devices are called ,masers and 

lasers. They usually operate at high frequencies (109 - 1015 Hz). The 

term maser is an acronym for microwave (or molecular) amplification by 

stimulated emission of radiation. The name laser is an acronym for 

light amplification by stimulated emission of radiation. 

The ingredients to construct masers were known 1 ong before the 

invention of these devices. In the words of Townes (1984), 

••• there is no single component idea involved in the 
construction of masers or lasers which had not been known for 
at least 20 years before the advent of these devices ••• 
whatever unnecessary delay occurred was in part because 
quantum electronics lies between two fields, physics and 
electrical engineering. In spite of the closeness of these 
two fields, the necessary quantum mechanical ideas were 
generally not known or appreciated by electrical engineers, 
while physicists who understood well the needed aspects of 
quantum mechanics were often not acquainted with pertinent 
ideas of electrical engineering. 

3.1 linear Lasers 

Figure 1 shows a basic structure of a linear laser. This consists 

of two reflectors (mirrors) and a gain medium. A laser system is 

similar to an RLC resonator with a feedback gain loop. 

14 
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The beam amplification requires that the atomic population of the 

upper energy level is greater than that of the lower energy level. To 

achieve this the atoms are 11 pumped 11 to the upper energy level by some 

techniques. For example, in the He-Ne laser, the He atoms pump the Ne 

atoms to the upper energy level. The first He-Ne laser, which was the 

first continuous laser, was operated by Javan in 1961 (Javan et al., 

1961). 

The Laser beam can resonate in different modes. The most commonly 

occuring modes are Hermite-Gaussian modes. These modes may resonate 

also at different frequencies called transversal frequencies or 

longitudinal (or axial) frequencies. 

Lasers are capable of producing very coherent beams. The spatial 

coherence is due to the geometry of the resonator (mirrors, etc.). The 

degree of frequency coherence is due to the atomic transitions 

(stimulated emission). The frequency coherence of lasers is used in 

precision measurements. Naturally, the knowledge of frequency 

fluctuations becomes important. 

3.2 Ring Lasers 

A ring laser gyroscope (RLG) consists of a ring interferometer 

formed by three or more mirrors and a gain medium inside the cavity as 

shown in Fig. 2 (Aronowitz, 1971). In a RLG configuration the two 

oppositely directed running waves may have different phases and 

frequencies. In particular, a clockwise rotation of the laser about an 

axis perpendicular to the plane of the beam causes a frequency 

difference between the two counterpropagating waves due to Sagnac 

effect. Heterodyning the two waves and measuring the beat frequency as 



GAIN MEDIUM 

'----~-~----..JI ~ 
MIRROR. MIRROR 

Figure 1. Structure of a Laser with Gain Medium and Two 
Mirrors. Laser Beam is Amplified, when passing 
through the gain medium due to the atomic. 
population inversion. 

16 



INTERFERI;:NCE 
PATTERN 

' 
Figure 2. Structure of a Ring Laser with (at least) Three 

Mirrors and a Gain Medium. The two ouitput 
beams at the right are combined to produce an 
interference pattern. 

17 
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shown in Fig. 2, therefore, provides information about the rotation of 

the system with respect to an inertial frame. This leads to the use of 

RLG's as rotation sensors. We now give a simple explanation of the 

Sagnac effect. 

For simplicity, we consider a circular ring interferometer of 

radius R rotating with a rate n around an axis perpendicular to its 

plane. Such an interferometer may be constructed using a glass fiber 

(see Fig. 3). Consider two counterpropagating beams starting from point 

A at time t=O. Since the interferometer rotates, the two beams have to 

traverse different path lengths Lew' Lccw in order to reach point A 

again. The beam which is co-directional with the direction of rotation 

has to catch up with A and has thus to travel a distance slightly larger 

than 2rrR, namely 

L = vt = 2rrR + ROt cw cw cw (3.1) 

where v is speed of light in the fiber and tcw is the round-trip time 

for the beam travelling in the clockwise direction. Similarly~ we note 

from Fig. 3 that the beam propagating against the direction of rotation 

obviously has to traverse a distance Lccw slightly smaller than 21r R, 

namely 

(3.2) 

Since the laser medium is inside the resonator, only oscillations with 

wavelength X satisfying the resonance condition, where 

xn = L (3.3) 

can be sustained in the cavity; here n is an integer and L denotes the 



Figure 

A· 

3. Sagnac Effect in a 
Interferometer ·with 
Circular Beam Path. 
are entered into the 
.at point A. 

Passive Ring 
an Idealized 
The two beams 

interferometer 
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effective optical length of the resonator. Eq. (3.3) can be rewritten 

in terms of resonant frequencies v as 

V _ nc 
- L . (3. 4) 

Thus the different path lengths Lew' and Lccw' as seen by the two 

counterpropagating beams, cause a frequency difference 

6-V =V -II (3.5) cw ccw 

between two modes. From Eqs. (3.1), (3.2), (3.3), (3.4), and (3.5) we 

find 

~v = nv(L - L )/(L L ) !!: 2nvRotlp2 
cw ccw cw ccw (3.6) 

where we have approximated the sum of the traveling times tcw' tccw by 

twice the travel time t = 27TR/v in the absence of rotation; p is the 

perimeter of the interferometer. 

The final expression for the frequency difference between the two 

counterpropagating waves is thus given by 

6. v = 4A 0 /(AP) (3.7) 

where A is the area enclosed by the light beam (i.e. A= 1rR2). In fact, 

it can be shown that Eq. (3.7) can be generalized to (Post, 1967) 

--A v = 4A • 0 I (A p) (3.8) 

- -where A denotes Aa (the area A enclosed by the light times a unit vector 
.... a perpendicular to the plane of the beams) and n is the rotation rate 

vector. 
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From Eq. (3.8) we note that the frequency difference~v induced by 

the rotation of the interferometer is proportional to the rotation 

rate n . Therefore, measuring the frequency difference between the two 

counterpropagating beams in a RLG by heterodyning the two beams provides 

information about the rotation of the system with respect to an ·inertial 

frame. The obvious advantage of such an optical gyroscope lies in the 

fact that no moving mechanical parts, in particular no spinning masses, 

are involved. A comprehensive review of ring lasers is given by Chow et 

al. (1985). 



CHAPTER IV 

FUNDAMENTAL FREQUENCY FLUCTUATIONS IN LASERS 

Why are we interested in frequency fluctuations of a laser? One of 

the applications of lasers and masers is in the area of precision 

measurements and defining standards. For example, timekeeping is one of 

the applications of masers (H maser, Cesium maser, etc.): definition of 

the second as of 1967 is the elapsed time of 9,192,631,770 oscillations 

of the "undisturbed'' cesium atom (Jespersen and Fitz-Randolph, 1982). 

This links time directly to the knowledge of the frequency stability of 

a maser system. How would someone measure this frequency stability? We 

need to build several maser systems and take the relative frequency 

stability of each of them. It is, however, important to realize that 

the measurement of the absolute frequency stability of a given maser, or 

in fact any oscillators, is impossible. This idea is very close to the 

idea of measuring a speed of an object. A 11 we can measure is the 

relative speed of an object with respect to another object. 

The performance limit of a ring laser gyroscope is indeed defined 

by the frequency stabi 1 ity of its radiations. Two independent laser 

beam countercirculating in a closed path with a finite area are combined 

at the output of the ring laser gyroscope to detect a rotation of the 

ring laser with respect to an inertial frame. Frequency fluctuations of 

the counterpropagating beams give rise to the false detection of the 

rotation which sets the performance limits of the ring laser gyroscope. 
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A definition of stability of an oscillator is given by the one

sided power spectral density of frequency fluctuations in the Fourier 

frequency domain and by the Allan variance of the frequency fluctuations 

in the time domain, as was proposed by Barnes et a 1. (1971 )(ergodic 

random processes are assumed). The Fourier frequency analysis is 

preferred for stability measurements. It is relatively simple to find 

the time domain stability u2(T) after that of Fourier frequency domain 
A 

S(f) is obtained. This relation is given in Eq. (2.10). However, there 

is no simple relation which gives the power spectral density from the 

A 11 an variance. 

Frequency fluctuations of an oscillator generally can be defined as 

a mixture of different noises. Among them, white noise, 1/f noise, and 

llf2 noise are most commonly occurring. For illustration purposes we 

simulate these three noises before we introduce any experimental 

evidences. The algorithms to generate these simulated noises are given 

in the appendix. The white noise and its power spectral density is 

depicted in Figs. 4a, 4b. This noise has very uncorrelated 

fluctuations. Besides the randomness apparent in Fig. 4b, the power 

spectral density appears to be frequency-independent. The 1/f noise and 

its power spectral density is shown in Figs. 5a, 5b. This noise is 

smoother than the white noise. The 1/f2 noise and its power spectral 

density is shown in Figs. 6a, 6b respectively. This noise is much 

smoother and slow-varying compared to the other two noises. 1/f2 noise 

seems to "wander" around its average. 
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4.1 Heterodyning Two Linear Lasers 

The first attempt to measure the frequency fluctuations of a laser 

was made by Javan et al. (1962). They set up two He-Ne lasers with no 

frequency stabilizing feedback. By combining the output of these two 

separate and independent oscillating lasers, they were able to measure· 

the frequency 1 inewidth which was better than one part in 1014• The 

laser was from the 1.15 ~m transition of the Ne atom. The observations 

were made by mixing the output of the detector with a crystal-controlled 

local oscillator to bring the beat signal into a suitable frequency 

range. A spectrum ana ly'zer was used to measure the frequency spectrum 

of the signal. The result is shown in Fig. 7. The beat signal is about 

5 MHz. They noted frequency jumps (this is not shown in Figure 7) for 

each laser of about 100 KHz around a central frequency. They speculated 

that the beat frequency jumps are due to microphonics. The temperature 

fluctuations resulted in a slow drift of the oscillation frequency by 

affecting the length of the cavity. The frequency shift due to this 

effect was 1 MHz per 100 s interval. 

One year later, Jaseja et al. (1963) attempted to measure the 

frequency stability of a He-Ne laser again. The procedure was similar 

to that of Javan et al. (1962). The long-term frequency fluctuations 

are shown in Fig. 8. They were able to measure the frequency linewidth 

due to spontaneous emission to be about 0.02 Hz for a power output of 1 

mW. 

The first direct measurement of the power spectral density of 

frequency fluctuations was made by Siegman et al. (1967). Heterodyning 

the outputs from two stable He-Ne lasers (wavelength,:\= 0.633 ~m), they 

measured the power spectral density of the frequency fluctuations. Both 
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lasers were free-running with no frequency stabi 1 izing feedback except 

for a slow automatic frequency control loop which kept one laser 
I 

frequency at 30 MHz difference from the other one. The random :frequency 

fluctuations of the beat frequency between two lasers wlere then 

measured. They found the power spectral density of the beat frequency 
i 

to be a Gaussian lineshape with a standard deviation of 8.1 KHz. They 

measured the mean square value of the instantaneous phase fluctuations 

versus the sample time T • It was found that the mean square value was 

proportional to T2 for T < 100 ns. They speculated that the T 2 

dependence of the mean square value is due to the mechanical 

instabilities. The beat frequency signal was fed into a frequency 

discriminator with the center frequency of 30 MHz in order to measure 

the instantaneous frequency fluctuations. The output of the 

discriminator was connected to a spectrum analyzer for power spectral 

density measurement of the frequency fluctuation. The measured power 

spectral density of instantaneous frequency fluctuation is shown in Fig. 

9. The white quantum noise due to spontaneous emission is shown in the 

frequency range of 1 KHz to 10 KHz. Below 1 KHz, 1/f2 noise 

predominates, down to 50 Hz. In these preliminary measurements of laser 

short-term frequency fluctuations, they showed the feasibility of white 

quantum noise measurement by operating one laser at low power {P < 10-9 

W) • 

In 1971, Manes et al. observed the power spectral density of 

frequency fluctuations by combining the output of two stable He-Ne 

lasers at A= 3.39 J.Lm. They successfully measured the frequency 

fluctuations due to spontaneous emission by increasing the losses in the 

cavity and lowering the power of the laser field. This increases the 
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white quantum frequency noise contribution to the laser linewidth (see 

Chapter V). The laser field power spectral density was then found to be 

nearly Lorentzian with a linewidth inversely proportional to the output 

power. They showed that white noise and 1/f2 noise in frequency 

fluctuations would result in Lorentzian and Gaussian lineshaprs in the 

laser field, respectively. 

Direct observation of frequency fluctuations of the laser field was 

also achieved by heterodyning laser outputs. Essentially, the 

experimental set-up was similar to that of Siegman et al. (1967). The 

measured discriminator output power spectral density showed 1/f2 noise 

up to 500 Hz which indicates that the laser field has been disturbed by 

"technical" fluctuations. Above 500 Hz, the discriminator output power 

spectral density was constant (white) up to 50 KHz where the apparatus 

limits were reached. 

4.2 Combining The Outputs Of A Ring 

Laser: Observation Of 1/f Noise 

In all experimental cases we have discussed so far, there is not 

any observation of 1/f noise in frequency fluctuations of laser field. 

Heterodyning two independent linear lasers in the case of large 

"technical" noise, it is almost impossible to observe 1/f noise because 

of the presence of the dominant 1/f2 noise. Ring lasers can play a very 

important role in reducing the latter. Two counterpropagati'ng beams 

essentially share the same cavity. This produces very high correlated 

"technical" noises in the laser field. By combining the output of a 

ring laser, one can reduce the technical noises (common modes) to a 

substantial degree. 
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Flicker (1/f) noise was first noticed as a low-frequency' noise in 

vacuum tubes (Johnson, 1925) and much later in semiconductors. Since 

the midfifties, 1/f noise has been observed as fluctuations in the 

parameters of many systems. Many are completely unrelated to either 

vacuum tubes or semiconductors. The presence of 1/f noise in so many 

systems has led researchers to speculate that there exist some law of 

nature that applies to all systems which results in llf noise (the 

"aether•• may fluctuate in 1/f noise). However, it is generally agreed 

that its origins and its mechanism are still remain not well understood. 

1/f noise has been used to characterize, in part, the voltage 

across nerve membranes (Verveen and Derksen, 1965), fluctuations in 

temperature variation (Brophy, 1970), the rate of insulin intake by 

diabetics (Campbell and Jones, 1972), the amplitude and frequency of 

music (Voss and Clarke, 1975), traffic flow (Musha and Higuchi, 1976), 

economic data and the rate of computer errors (Mandelbrot, 1977), the 

frequency fluctuations of quartz crystal oscillators (Gagnepain et al., 

1981), and so on. 

One of the unusual properties of 1/f noise is the so-called 

"infrared catastrophe". If the power spectral density of a random 

process continues down to zero Fourier frequency while it remains 
-0! 

proportional to f fora> 1 then the integral of this diverges and the 

variance is infinite. Infinite variance indeed represents infinite 

power which cannot be a property of a finite stationary physical system 

that exhibits 1/f noise. 

One attempt to avoid this difficulty is to assume that at some low

frequency limit the power spectral density becomes flat like white 

noise, and a high-frequency limit is also assumed, above which the power 
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spectral density decreases at least as rapidly as llf2 (as is assumed 

for white noise) to assume integrability of the power spectraJ density 

at high frequencies. With low and high frequency limits, the. integral 

of the power spectral density would be finite, which results in a finite 

variance. 

Even after intensive experimental efforts, low-frequency limits 

have not been detected. For example, Brophy (1970) has observed 1/f 

noise in seasonal temperature fluctuations down to Fourier frequency 10-

10 Hz, or about one cycle in 300 years. In this case and almost all 

others, no change in slope of the spectrum was observed at low 

frequencies. In only two cases, as far as the author knows, a low 

frequency flattening has been observed: in nerve membranes (Verveen and 

Derksen, 1965) and in thin films of tin at the temperature of the 

superconducting transition (Clarke and Hsiang, 1975, 1976). 

Let us return to the measurement of frequency fluctuations by means 

of ring lasers. Two counterpropagating beams are essentialy in the same 

cavity. If the ring laser does not rotate with respect to an inertial 

frame, the countercirculating beams will have the same frequency. In 

the presence of rotation the beam has, in principle, different 

frequencies proportional to the rotation rate. However, in practice, 

there exist some effects that cause the counterpropagating beams to be 

locked at the same frequency (for example, via back scattering of the 

beam off mirrors). The minimum rotation rate required to stay out of 

this "dead-band" is called lock-in rotation rate. There are: ways to 
I 
I 

prevent this lock-in phenomenon. One way is biasing the ring laser by 

mechanical rocking (dithering)(Killpatric, 1967). One may also use four 

mirrors which are not in the same plane (Sanders and Anderson, 1981) and 
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non-reciprocal bias elements in the cavity (for example, a Faraday cell, 

Zeeman bias, or magnetic mirrors) to prevent lock-in phenomenon. In the 

cases where one gets four different frequencies, the ring laser is 

called a four-frequency differential ring laser. 

Fig. 10 shows the experimental set-up to obtain the beat frequency 

between two counterpropagat i ng beams. Mounting a sma 11 detector on a 

stationary place relative to the prism converts the intensity of the 

fringes into an electrical signal. This signal may be translated to 

digital numbers by making use of AID converters. These numbers may be 

stored in the memory of a digital computer for later analysis. 

The long-term beat frequency fluctuations can be measured by 

evaluating the "average instantaneous" frequency of the signal. This is 

done by counting the zero crossings of the signal in a given time 

interval (i.e. a sample time). To minimize count errors, one may use 

the powerful method of a two-threshold crossing technique (Bilger and 

Sayeh, 1983). 

4.2.1 Data Analysis Techniques 

Figure 11 depicts the beat frequency fluctuations of a four

frequency differential ring laser. The analysis of beat frequency 

fluctuations can be summarized as follows: (a) detecting and replacing 

the outliers in the data set, (b) removing the linear trend (note that 

an average is a linear trend with zero slope), (c) applying a proper 

time window to the data, (d) computing the power spectral density 

estimate using DFT methods, (e) averaging the power spectral density 

estimate to reduce the uncertainty involved in the estimate due to DFT, 

and to define a confidence interval for the estimate, (f) fitting power 
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laws, if applicable, to the spectrum by means of non-linear least

squares fit methods, and (g) removing the induced quantization error due 

to the fact that the instantaneous frequency is represented always by an 

integral number of counts (zero crossings). 

a. Outliers are data points whose values are very large compared 

to the local data point values. The value of outliers are several 

orders of magnitude larger than the sandard deviation of the data 

points. These points may enter into the set by faulty signals 

occurring during the data acquisition. In order to detect these 

outliers, we compare every point with its local average within a 

prescribed time window. A threshold is then set to decide whether a 

given data point is an outlier. The detected outlier is replaced by the 

average of the points in the window. This technique is applied to the 

data set starting at the begining of the data and proceeding by shifting 

the window by one point until all data are examined. It is assumed that 

there are no outliers within the first window. 

b. The deterministic part of the data, namely a systematic trend, 

can be removed without loss of significant knowledge about the power 

spectral density of the frequency fluctuations. In general, a 

systematic trend is perfectly deterministic while the noise is 

nondeterministic. Consider a function x(t), which may be written in the 

form 

(4.1) 

where xd(t) is some deterministic function of time and xn(t) is a 

nondeterministic function of time. For the special case of a systematic 

trend to be a linear trend, xd(t) is given by 
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(4.2) 

A linear least square fit program (Habib, 1984) is used to estimate x0 

and x1. The deterministic part of the data, xd(t), is then removed from 

the set. Xn(t) therefore remains for further analysis. 

c. It is usually advantageous to window the data points to enhance 

certain characteristics of the power spectral density estimates. 

Windowing is simply multiplying the data by a prescribed function, a so 

called "window function". The purpose of windowing is to suppress large 

side lobes due to discontinuities at each end of the finite segment of 

the data being analyzed. 

There are several window functions which can be used depending on 

nature of the problem. In this work the Hamming window is used. This 

window can be written as (Otnes and Enochson, 1972). 

Wh(t) = 0.54 + 0.46 cos 2rrt/T for t < T/2, 0 otherwise (4.3) 

d. We can use the discrete Fourier transform concept to evaluate 

the power spectral density of a given set of data points. This was 

discussed in Chapter II. 

e. Each Fourier frequency component of the estimate S(f) has a 

sampling distribution given by (Bendat and Piersol, 1971) 
,... 

ill)_= 'Y.....2/2 (4.4) S(f) --~ 

2 
where Xe is the chi-square distribution with 2 degrees of freedom. The 

result in Eq. (4.4) is independent of the record length T. The 

normalized standard error is 

€ = u cs Jill = -' ~ 
S(f) 1 n 

(4.5) 
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In our case, n = 2, thus E = 1. This implies that the standard 

deviation of the estimate is as large as the quantity being estimated. 

This is an unacceptable error for most practical applications. One way 

to reduce this error is to average the power spectral density 

components. This can be done by averaging the power spectra 1 density 

components for m adjacent components. The norma 1 i zed standard error 

is then 

(4.6) 

The sampling distribution of an averaged estimate is approximately chi-

square with 2m degrees of freedom. We can then define a (1 - a ) 

confidence interval for a power spectral density S(f) based on an 
~ 

averaged estimate S(f) as 

2 ~ 2 
2m/~m;a/2 ~ S(f)/S(f) < 2m/~m;( 1 -a/2 ) (4.7) 

This confidence interval is applied to each power spectral density 

component. The error bars on each data can a 1 so be defined by Eq. 

(4.6). 

f. A noise mode 1 that has been found advantageous in osc i 11 a tors 

(Barnes et al., 1971) consists of a set of five independent noises, with 

power spectral density 

(4.8) 

A laser system can be considered as an oscillator, the power 

spectra 1 density in Eq. ( 4. 8) can therefore be u sefu 1 to characterize 

the laser system noises. These power laws are presented by sections of 

straight lines in a log-log plot of S~-)f) versus f. A nonlinear least 
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square fit program (Habib, 1984) is used to estimate the coefficients 

predominate the others. 

Some of these five independent noises may 
! 

This can easily be seen by the relative errors 
! 

from the least square fit. 

e. If a zero crossing technique is used to record the average 

instantaneous phases, the quantization noise would be added ·to the data 

due to the integral nature of the counts. 

Consider a pure sinusoidal signal shown in Fig. 12a. Without loss 

of generality, we assume the signal is free of noise, but the sampling 

intervals have fluctuations. Using a zero crossing technique, we 
.... 

count the number of zero-crossing (~n) where the signal is g0ing from 

negative value to positive value in a given time interval (n). In 

interval (1), we have 2 counts ( ~1 = 2) whereas the true phase value 

(~1 ) is 2.7 (~1 = 2.7). The difference between the number of counts and 
.... 

the true phase value (i.e. ~n- ~n) is added to the next interval. In 

interval {2), we then have 2 counts {~2 = 2) whereas the true phase is 

1.3 (~2 = 1.3). This quantization of ~n is shown by a block diagram in 

Fig. 12b. Calculating the power spectral density of ~n given the power 
.... 

spectral density of ~n is complicated due to the nonlinearity of the 

truncating function. We therefore simulate the model on the computer. 

The quantization noise is then identified and is suppressed from the 

signal. It is shown by several simulation runs that the power spectral 

density of the counts is near-f noise, {i.e. Soc f .) given a white 

spectrum for the true.phase values. 
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4.2.2 Experimental Evidence 

At the 11th Winter Colloquium on Quantum Electronics, 1981, Bilger 

speculated that there should exist 1/f noise in ring lasers; (Bilger, 

1981). This speculation has had its own strong point since 1/f noise 

was reported in atomic clocks and in almost all physical systems. At 

the time, there was not any published work that would show 1/f noise in 

lasers. In 1983, we published a paper in which the measured power 

spectral density of a four-frequency differential ring laser clearly 

showed this 1/f noise. We shall discuss these results in upcoming 

sections. 

Investigation of frequency fluctuations in lasers can be done by 

making use of ring lasers. We will discuss the experimental results 

which were achieved in Four-frequency differential ring lasers and 

conventional (two-frequency) ring lasers in the following sections. 

4.2.2.1 Four-Frequency Differential 

Ring Laser 

A four-frequency differential ring laser, as it was discussed in 

previous chapters, has, as its name revea 1 s, four different resonance 

frequencies in the same cavity. The resonance modes (frequencies) of a 

ring laser are four-fold degenerate in the absence of polarization

dependent elements. Each longitudinal cavity mode can oscillate as any 

of four distinct modes, clockwise and counterclockwise traveling, having 

either of two arbitrary orthogonal polarizations (i.e. left-circularly 

polarized and right-circularly polarized). In four-frequency 

differential ring laser, this mode degeneracy is removed by introducing, 

for example, out-of-plane geometry and polarization-dependent 
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elements. Four distinct modes, for each longitudinal mode, can 

therefore oscillate in the cavity. For convenience, let us n1umber the 

modes as follows: 

v1 = clockwise, left-circularly polarized 

v2 = clockwise, right-circularly polarized 

v3 = counterclockwise, left-circularly polarized 

v4 = counterclockwise, right-circularly polarized 

Such a ring laser can be considered as two two-frequency ring 

lasers sharing the same cavity; one oscillates with a left-circularly 

polarized beam; another oscillates with the right-circularly polarized 

beam. The final beat frequency of the four-frequency differential ring 

laser is achieved by combining v1 and v3 then v2 and v4, namely 

(4.9} 

(4.10} 

The beat frequencies ~ v L and ~ v R are detected by sma 11 1 i ght 

detectors. The final beat frequency is obtained by combining these two 

beat frequencies (i.e. output of the detectors}, namely 

(4.11} 

The beat frequency fluctuations~ v of a four-frequency differentia 1 

ring laser is shown in Fig. 11 (after removing the average}. This was 

sampled at the rate of one sample per 100 s for 2.5 days duration. The 

zero-crossing technique was used to count the number of crossings from 

negative to positive value. 

78 outliers were detected and replaced by their local averages in 

the original data. The value of the outliers were at least 100 times 
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larger than the standard deviation of the data points. The number of 

data points in the analysis was 2048 which is suitable for the Fast 

Fourier Transform (FFT) algorithm (N = 211 1. The standard deviation of 

this run is 0.13 Hz. It is advantageous to note that the peak-to-peak 

frequency excursion is 0.74 Hz over 2.5 days which gives the frequency 

stability of 2 parts in 1013 • This is a relatively stable oscillator 

compared to the H-masers used for timekeeping purposes (the frequency 

stability of a H-maser is one part in 109). However, one can a~gue that 

major frequency fluctuations due to mechanical or other correlated 

noises are suppressed to some degree which could otherwise give rise to 

a worse frequency stability. 

The ring laser was placed in a thermostat with 3x10-7 short-term 

temperature stabi 1 ity over minutes, and with 10-6 long-term stabi 1 ity 

over one week. The laser cavity had 4 mirrors with an out-of-plane 

geometry to produce left-circularly polarized and a right-circularly 

polarized waves. 1he cavity itself was made of Cervit with a thermal 

expansion coefficient ~10-7 K- 1• The passive cavity quality factor Q 

was 3x108, the power loss per mode P was 80 ~Wand the wavelength A was 

633 nm. The cavity was filled with He-Ne gas with very low pressure. 

The power spectral density of these data (see Fig. 11) is 

illustrated in Fig. 13. The 1/f noise is clearly shown over one decade 

of the spectrum. This 1/f noise cannot be due to technical fluctuations 

(temperature variation, etc.) because the same gyro, when operated 

without any temperature stabilization, gave the same 1/f noise level as 

shown in Fig. 13. White noise has not been achieved in this run because 

of predomination of 1/f noise down to the Nyquist frequency (with the 

given sampling interval .O.t = 100 s the Nyquist frequency 5 mHz). 1/f 
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Figure 13. Power Spectral Density of Record A (Bilger and Sayeh, 

1983). This sho~s 1/f noise at very low fourier 
. frequencies (<10- Hz); compare this to that of 

Siegman et al. (1967). 
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noise in frequency fluctuations is shown from 5x1o-4 Hz down to 5x1o-3 

Hz. Only 100 averaged points are depicted in Fig. 13. 

The series of measurement runs presented in this work are listed in 
I 

Table II. Record A has already been discussed. Record B was! achieved 

with the same four-frequency differential ring laser. However, this 

record lasted for 9 days. The sampling rate is again one sample per 100 

s. The number of detected outliers in this record was only 12. The 

standard deviation of Record B is 1.36 Hz which is higher than that of 

Record A. This implies the presence of low-frequency noises with larger 

magnitude in Record B compared to Record A. This record is shown in 

Fig. 14. 

The computed power spectral density of Record B is depicted in Fig. 

15. This clearly shows the presence of two dominate noises, namely, 1/f 

noise and 1/f2 noise. 1/f2 noise predominates over five decades of the 

spectrum from 5x1o-4 Hz down to the lower Fourier frequency 1.2x106Hz. 

1/f noise prevails over one decade of the spectrum from the Nyquist 

5x1o-3 Hz down to 5x1o-4 Hz here llf2 ·noise predominates. The estimated 

white noise is drawn from the analysis on Record C (this run has a 

higher Nyquist frequency compared to Record A and Record B). The 1/f2 

noise prevails at Fourier frequency 5x1o-4 Hz. The noise magnitudes are 

several orders smaller compared to that of Siegman et al. (1967, 

1971). Here the standard deviation of the beat frequency is 1.36 Hz 

over 9 days whereas that of Siegman et al. (1967) is of the order of 

Kilohertzes. This evidence show the reduction of technical noises by 

many orders of magnitude in this series of measurements. This shows the 

feasibility of frequency fluctuations investigation by means of ring 

lasers. 
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TABLE II 

RECORDS OF FREQUENCY FLUCTUATIONS IN RING LASERS 

NOISES 
RECORD SAMPLING TIME TOTAL DURATION IN RECORD 

Record A 100 s 22.5 d 1/f 

Record B 100 s 9d 1/f2 and 1/f 

Record C 10 s 11.5 h 1/f, white, and f 

Record D 100 s 5d 1/f2, 1/f, white, 
and f 

Record E 500.5 s 54 d 1/f, white, and f 



10s- RUN 
cr- = 0.13Hz 

2 4 6 
t(h) 

8 10 

Figure 14. Record B, Beat Frequency. The signal was 
heavily quantized, which gives rise to high 
frequency quantization noise. However, the 
low frequency fluctuations are not affected 
significantly. 
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Figure 15. Power Spectral Density of Record 
B :fBilger and Sayeh, 1983). 
1/f noise predominates over 5 
decades of the spectrum and 1/f 
noise prevails in the hiyher 
fourier frequencies over 1 
decade of the spectrum. 
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Record C was achieved on the same ring laser with the same 

specifications as were Record A and Record B. However, the sampling 

time was shortened to reach the white noise level. The samp;ling rate 

was then one sample per 10 s for a duration of 11.5 hours. Th~ standard 

deviation is 0.13 Hz which is somewhat smaller than that of the other 

two records. Fig. 16 shows ·the corresponding power spectral density of 

Record C. This represents 1/f noise and f noise. The 1/f noise 

predominates at low frequencies from 5x1o-3 Hz to higher frequencies. 

As was mentioned, f-noise is due to quantization of the phase to 

interger numbers. This is shown by open circles on Fig. 16. The 

quantization noise may rise from the fact that 0.1 Hz resolution of 

Record C was larger than the white noise level. By simulation runs on a 

computer, we decided that the white noise level is 0.063 Hz2/Hz which is 

plotted by a solid line in Fig. 16. 

In all these three Records (A, B, and C), we observe that the 1/f 

noise levels are the same (i.e. h_1 = 3.3x1o-4 Hz). Another four

frequency differential ring laser was investigated with a higher passive 

cavity qua 1 ity factor over a 1 ong period of time to observe the 1/f 

noise phenomenon. 

Record D was achieved in a four-frequency differential ring laser 

with four out-of-plane mirrors. The passive cavity quality factor Q was 

5x108 , the power loss per mode was 80 ~W. This ring laser was not in a 

temperature-controlled thermostant. 

The sampling rate was one sample per 100 s for a duration of 5 

days. The power spectral density of this record is depicted in Fig. 

17. The three dominant noises in this experiment are 1/f2 at low 

frequencies, 1/f noise at intermediate frequencies, and f noise at high 
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f(Hz) 

0 
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oo 

Figure 16. Power Spectral Density of Record C (Bilger, 1984). 
1/f noise is shown over 1 decade of the spectrum. 
The open circles are due to quantization noise in 
the zero-~rossing techniques. 
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Figure 17. 

1 o-4 f(Hz) 1 o-3 

Power Spectral Density of Record D (Sayeh and 
Bilger, 1985). The white noise level is shown 
by open circles. The transition frequency for 
1/f .noise and white nEJse is at ·very low 
four1er frequency (<6x10 Hz). 
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frequencies. The f noise is not shown, however, the corrected white 

noise is presented by open circles. The white noise 1 evel is 

substantially lower than that of Records A, B, or c (i.e. ho = 10-2 

Hz2/Hz for Run D) • The 1/f noise 1 evel is also lower than that of 

Records A, B, or c ( i • e. ' h_i = 5x1o-6 Hz2 for Record D) • The 1 /f2 

noise level predominates from the Fourier frequency 4x1o-5 Hz down to 

3x1o-6 Hz over two decades of the spectrum. Let us take a close look at 

the transition frequencies of the white noise to the 1/f noise in these 

records. We note that the transition frequency (for Record D) is at a 

lower Fourier frequency (i.e. 6x1o-4 Hz) than that of Records A, B, or C 

(i.e. 5x10-3 Hz). This implies that the 1/f noise contribution 

decreases with a faster rate than the white noise contribution when the 

quality factor is increased. 

Let us consider the transition frequencies of 1/f noise into 1/f2 

noise in Record D compared to Records A, B, or c. The transition 

frequency for Record D is at a lower frequency (i.e. 4x1o-5 Hz) than 

that of Records A, B, and c (i.e. 5x1o-4 Hz). This implies that the 

1/f2 noise contribution decreases with a faster rate than that of 1/f 

noise. 

In a review of the pertinent literature, we encounter Dorschner et 

al. (1980) on beat frequency fluctuation measurements of a four

frequency differential ring laser. They obtained the standard deviation 

of the beat frequency fluctuations as a stability measurement of their 

ring 1 aser. They ex ami ned the beat frequency fluctuations for three 

different laser power levels, namely, 2.7 p.W, 13 p.W, and 52 p.W. These 

were achieved in He-Ne ring laser with the passive quality factor Q = 

4.6x108 and the wavelength ;\ = 633 nm. 
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The variance of the beat frequency fluctuations is shown in Fig. 

18. The white noise showsljTdependence in the variance plot. 1/f noise 

level, in general, diverges as the number of points in the cluster 

increases. The white noise predominates up to the sample time 7 = 10 

s. The slopes level off, however after the sample time T = 10 s which 

may suggest the presence of 1/f noise. With this assumption at hand, we 

would like to estimate the 1/f noise level in this plot (Fig. 18). The 

variance u 2relates to the 1/f noise level, h-1 as 

u 2 = (2h_1 Nln)/(N - 1) (4.12) 

where N is the number of points in the cluster. We estimated the number 

of points in each cluster, in Fig. 18, to be 

where A depends on the nature of clustering, in this caseA= 2, No is 

the number of points in the first cluster, and n is the cluster number 

(i.e. n = 0, 1,· 2, ... ). In Fig. 18, we have No= B~~S = 800, thus 

a 2~ 2h_1[ln800 - (ln10) logr] (4.14) 

where N ~ 1 =1 In order to estimate the 1/f noise level h_1, we use 

the nonlinear least-square fit program to fit the following function 

through the data points shown in Fig. 18. 

h 
,., = log [r 10-t + 2h_1 {lnsoo - {ln10)t)J (4.15) 

where T1 = log a-2 and t = logr. 

The estimated noise levels are shown by solid lines in Fig. 18. 

The error of estimating 1/f noise level was large for the 2.7 ~W data. 
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Figure 18. Variance of Beat Frequency for 
Different Power Loss Levels 
(Dorschner et al., 1980). The 
solid lines are least square fit 
through the data. 
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We decided that the 1/f noise is masked by white noise for this power 

level. The 1/f noise levels, in Fig. 18, show very small dependence on 

power. The transition corner of white noise into 1/f noise is moved 

toward higher sampling time for lower powers. This implies again (see 

above) that the power dependence of 1/f noise is weaker than that of the 

white noise. 

4.2.2.2 Two-FreguencJ Ring Lasers 

Let us examine the frequency fluctuations in two-frequency ring 

lasers. A two-frequency ring laser is similar to a four-frequency 

differential ring laser, except that there are no polarization-dependent 

elements inside the cavity. This reduces losses in the cavity, 

therefore the higher quality can be reached. 

The clockwise beam is combined with the counterclockwise one to 

produce moving fringes at the detector. The output of the detector then 

gives the beat frequency signal. The zero-crossing technique is used to 

count the number of crossings from a negative to a positive value. The 

ring laser temperature was not controlled by any means of control 

loops. The passive quality factor was about 1010 , the power loss per 

mode was 100 ~J.W, and the beam wavelength was 633 nm of He-Ne laser. 

Record E, in Table II, is achieved in this two-frequency ring laser. 

The power spectral density of the beat frequency fluctuations is 

depected in Fig. 19. 1/f noise predominates from the Fourier frequency 

10-5 Hz down to the lowest Fourier frequency over one decade of the 

spectrum. White noise prevails from Fourier frequency 10-5 Hz to the 

highest frequency. 
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Figure 19. Power Spectral Density of Record E 
(Bilger and Sayeh, 1985). These 
points are fitted by white noise 
and 1/f noise. The 1/f noise 
and white noise are not very 
we 11 documented. However, This 
shows an upper limit for 1/f 
noise. 
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Let us compare the transition corner frequencies of 1/f noise to 

white noise in Record E to Record D. The transition corner frequency 

for Record E is at substantially lower Fourier frequency (i.e. 10-5 Hz) 

than that of Record D (i.e., 6x1o-4 Hz). This incredibly low 1/f noise 

level (h_1 = 2.5x1o·-g Hz2) is a very strong support of the idea that the 

1/f noise level is Q-dependent. 

4.2.3 Summary 

In Sections 4.2.2.1 and 4.2.2.2 we presented various experimental 

evidences showing 1/f noise in frequency fluctuation of ring lasers. 

Records A, B, and C were in a thermostat with 3X10-7 short-term 

temperature stability. Record D was not placed in a temperature-

controlled thermostat. However, Record D shows a lower 1/f noise level 

which means the 1/f noise level cannot be affected by the environmental 

temperature variations. 

1/f noise predominates (in presence of white noise and 1/f2 noise) 

over one decade of the power spectral density in most experimental 

evidences. Presence of white noise and 1/f2 noise in the spectrum makes 

us to think about the idea that the 1/f noise in the spectrum is 

actually the transition of white noise to 1/f2 noise. 

In order to decline that, the spectrum is fitted by two different 

sets of noises. One set contains 1/f2 noise and white noise only. The 

other set contains llf2 noise, 1/f noise and white noise. The RMS 

residual error in latter is found to be smaller in all cases. This 

therefore shows the presence of 1/f noise in the spectrum. 

The 1/f noise levels are summarized in Fig. 20. This shows the 

measured values of h_1 per mode, in Eq. (4.12), versus the passive 
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Figure 20. 1/f Noise Level vs. Passive Quality 
Factor (Sayeh and Bilger, 1985}. 
The 1/f noise level (in Dorschner 
et al., 1980} is well within the 
fitted line. 
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quality factor Q for different types of ring lasers, namely, four

frequency differential ring lasers and two-frequency ring lasers. The 

1/f noise level which was estimated from the variance of frequency 

fluctuations given by Dorschner et al. (1980}, is shown in Fig. 20. 

These measured values of h_1, excluding that of Dorschner, are fitted by 

a line in log-log plot. This shows a Q-4 dependence of the 1/f noise 

level with h_1 = 9x1o29 Q-4 Hi. The point which was estimated from 

the variance is well within the fitted line. 

Generally we can summarize the power spectral density of freqnecy 

fluctuations in lasers as follows 

s (f) = h f- 2 + h f- 1 + h ov -2 -1 0 
(4.20} 

which includes 1/f2 noise, 1/f noise, and white noise. The magnitude of 

these coefficients will be examined in Chapter:-V and VI. 1/f2 noise is 

not discussed in this work. 



CHAPTER V 

THEORETICAL CONSIDERATIONS 

In this chapter we consider theoretical models to explain the 

fundamental frequency fluctuations (white noise and 1/f noise in 

frequency) in lasers. 

with well-stabilized 

fluctuations. 

Here a laser system is regarded as an oscillator 

amplitude, but with frequency (or phase) 

The frequency fluctuations in the beat frequency represent the 

difference between the instantaneous frequency fluctuations of the two 

(or more) laser beams. Hence, if the fluctuations of the two (or more) 

beams are statistically independent, the mean-square fluctuations (in 

time or in Fourier frequency domain) of the beat frequency are 

essentially twice (or more times) as large as the mean-square 

fluctuations in each beam independently. We therefore divide the power 

spectra 1 density of the beat frequency by the number of beams i nvo 1 ved 

to estimate the spectrum per mode of the laser frequency fluctuations. 

The concept of frequency linewidth was introduced in Section 

2.2.5. In early investigations of frequency fluctuations, the frequency 

linewidth was used (for example, Javan et al., 1962). We will use the 

relations between the frequency linewidth and the power spectral density 

of frequency fluctuation, which were derived in Section 2.2.5, later in 

this chapter. 
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Generally it has been observed that the power spectral density of 

frequency fluctuations of lasers obeys the following relation 

where h_2, h_1, and h0 are constants corresponding to 1/f2 noise, 

flicker noise, and white noise levels, respectively. The collected 

data, as have seen in Chapter IV, from different types of ring laser 

show that 1/f noise is occuring in most cases. Now, in this chapter, we 

review 'the existing theories for white noise level h0 and discuss models 

of 1/f noise level h-1· 

5.1 Quantum White Noise: Spontaneous 

Emission 

Most electro-optic phenomena associated with laser theory such as 

stimulated emission, reaction of the emitted field on atoms, and so on, 

do not require the quantization of the field for their explaination 

(Sargent et al., 1974). These processes can all be quantitatively 

explained and physically understood in terms of the semiclassical theory 

of the matter-field interaction in which the field is treated 

classically while the atoms obey the laws of quantum mechanics. 

However, the quantized field is fundamentally required for accurate 

descriptions of certain processes involving fluctuations in the 

electromagnetic field, e.g. spontaneous emission. 

In 1927 Dirac (1958) quantized the radiation field. This is one of 

the most fundamenta 1 consequences of quantum theory s i nee it a 11 ows a 

unification of the particle and wave properties of light. 
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Consider a one-dimensional cavity of length L that has perfectly 

reflecting mirrors. We take the electric field E and magnetic field H 

to be polarized in the x and y directions, respectively, namely 

E = O!q(t) sin(kz)x (5.2) 

H = ~p(t) cos(kz)y (5.3) 

where q(t) and p(t) are time-varying quantities, a and ~ are constants, 

and k is the wavenumber. We see that the electric and magnetic field 

act as position and momentum coordinates. The corresponding energy in 

the cavity is given by the integral over volume of the electric and 

magnetic field densities as follows 

(5.4) 

which is just the energy of a simple harmonic oscillator for a particle 

oscillating with frequency w0 • To quantize the field we treat the 

electric field as position operator q and the magnetic field as momentum 

operator p according to the laws of quantum mechanics. We request the 

commutation relation 

[p,q] = ifi (5.5) 

where n = h/2 (h is Planck's constant). Our single-mode field is then 

described by the quantum-mechanical wave function 

oc 

~(q,t) = ~ cn(t)~n(q) (5.6) 

where 1cn1 2 is the probability that the radiation oscillator is excited 

to the nth energy state characterized by the eigenfunction ~ (q) and n 

having energy nw (n + 1/2). This nth quantum state is called n-photon 
0 
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state. The first thing to note about the quantized field is that it has 

fluctuation even in the absence of photons.. In fact, denoting the 

vacuum state (zero photon) by 10>, we find the Hamiltonian in eq. (5.4) 

has (1/2) nw0 expectation value, namely 

< o 1 w 1 o > = ~ nw. (5.7) 

and the electric field has zero expectation, namely 

< OIEIO > = 0 (5.8) 

However, the vacuum average of the field squared is 

Thus the field has fluctuations about a zero mean in the vacuum. These 

vacuum fluctuations stimulate the atom to emit photons spontaneously, 

i.e. we have spontaneous emission. Therefore, the frequency of the 

laser is affected by these fluctuations. 

5.1.1 Linear Oscillator 

A laser oscillator can be represented by an RLC circuit (Yariv, 

1975) as shown in Fig. 21. The presence of a laser medium with negative 

loss (i.e., gain) is explained by including a negative conductance -Gs 

while ordinary loss mechanisms are represented by the positive 

conductance, Gt· The noise associated with the loss Gt is 

(5.10) 

where h is Planck•s constant, k is Boltzmann constant, and T is the 
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c -Gs 

Figure 21. RLC Circuit of Laser Oscillator. The two noise 
sources are due to thermal noise and spontaneous 
emission noise. L and C define the nominal 
laser frequency. 

66 



67 

temperature in Kelvin. Spontaneous emission is represented by a noise 

source as 

where N2 is the population of atoms in upper energy level. This shows 

that the spontaneous emission noise relates directly to the population 

of atoms in upper energy level. 

It is easy. to show that the frequency linewidth of this linear 

oscillator model is given by 

3 2 
~v= 2rrhv0 /(Q P). (5.12) 

where Q is the passive quality factor and P is the power loss. Using 

Eq. (2.26) we can find the white noise level as 

(5.13) 

This was originally obtained by Schawlow and Townes (1958). 

5.1.2 Driven Van der Pol Oscillator 

It was originally proposed by Lamb (1964) that the laser 

oscillation can be modelled by using a Van der Pol oscillator. 

Let us consider a noise-driven Van der Pol oscillator as a model 

for a laser oscillator (Yariv, 1975): 

(5.14) 

where x is the mode amplitude, r is the energy decay rate, g is the 

unsaturated gain, Y is the saturation parameter, and N(t) is the noise 
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source due to the spontaneous emission processes. The mode amplitude x 

is chosen so that x2 is the mode energy. We write x(t) as 

(5.15) 

where x0 denotes the magnitude of the coherent term (x02 -~ (g-r)), and 

C(t) and S(t) are slow varying fluctuation amplitudes. The random force 

N(t) can be written as 

where Nc(t) and Ns(t) are slow varying fluctuation amplitudes. If the 

laser is sufficiently above threshold, we can make the assumption that 

(r, g, and 'Yx2) «w0 and also x02 » (C2 and s2). Using Eqs. (5.15) and 

(5.16) and the mentioned assumptions, we find 

(5.17) 

We then use Eq. (5.17) to obtain the one-sided power spectral density of 

the instantaneous frequency fluctuations of the laser radiation. Under 

conditions x02 >> (C2 and s2), Eq. (5.15) can be written as 

x(t) ~ [x0 + C(t)] cos [w0 t + ~(t)] (5.18) 

where ~(t) ~- ~. Therefore, the instantaneous frequency v(t) is 
Xo 

1 [ ds 1 
v (t) = zn: w0 - err x-J. 

0 

(5.19) 

Using Eq. (5.17) the frequency fluctuation ov is 

(5.20) 

where Wo 
v =-' 0 271" • It is easy to show that PSD of Nc(t) is 
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4 r w0 
3 h [ N 2 g ( v + v 0 ) J 

SN(f) = 7r TN2- N1g27g1f +nth 
c 

(5.21) 

where f is the Fourier frequency, N1 and N2 are the populations of the 

1 ower and upper 1 aser 1 eve 1 s respectively, g1 and g2 are the 1 eve 1 

degeneracies, g(.) is the transition lineshape and nth is the number of 

thermally emitted photons. The PSD of the frequency fluctuations ov , 
s6v (f) is obtained by using Eqs. (5.20) and (5.21) as 

i'rh f 0 [ N2g ( v + v ) l 
So)f) = 87r2(g- r) {N2- N1g;/g1) + nthj 

(5.22) 

Some of the parameters in Eq. (5.22) are almost impossible to measure 

accurately, for example quantity (g-r). However, we can avoid this 

difficulty by introducing the passive quality factor Q and the power 

loss per mode. Under 1 imiting conditions (N 2 » N1 , f «~;0, hv0 /kT » 

1) ' Eq. (5.22) converges 

h v yr 
s (f) = 0 

ov 81r2(g _ r) 

The power loss per mode P 

P = rx 212 
0 

to 

(5.23) 

is given by 

where x0 is derived by using Poincare's method (Andronov et al., 1966) 

as 

thus, 

x 2 = 4(g - r)/i' 
0 

P = 2r(g - r)/i'. 

The passive quality factor is 



Equation (5.23) can be written (by using above equations) as 

h v0 2 
s (f) =-
ov Q2P 
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Here the frequency fluctuations ov (t) due to quantum noise gives an 

approximate white-noise level h0 which has been verified by experiment 

(Manes et al., 1971). The quantum noise level is also verified in this 

work. This is discussed in Chapter VI. 

5.2 Quantum 1/f Noise: Loss Fluctuations 

In Chapter IV, we discussed the experimental aspects of the 

frequency fluctuations in lasers. The q-4 dependence of the 1/f noise 

level was summarized in Fig. 20. Here we will give a model which 

describes this dependence. To this end, the Van der Pol model, which 

was used in Sec. 5.1.2, will be examined with a different noise source, 

namely loss fluctuations. Then we will consider a driven (forced) 

linear oscillator as a mode of laser oscillation. In this model, we 

assume that the loss fluctuations manifest themselves in a fluctuation 

of the damping coefficient (energy decay rater). These models are then 

compared with the experimental results (in Chapter VI). 

5.2.1 Van der Pol' Oscillator 

Let us assume that there exist fluctuations in the loss r, in Eq. 

(5.14), independent of the existence of white noise, i.e. for the 

purpose of this derivation N(t) in Eq. (5.14) is set to zero. Now we 

like to find the power spectral density of the frequency fluctuations 

due to loss fluctuations. 
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We first establish an approximate solution to Eq. (5.14) (N(t) = 0) 

for small (g-r)/w0 using Poincare's method (Andronov et al., 1966): 

(5.24) 

where ~ = 1 - (g-r) 2116 w 2• The resonance frequency w = ~ W0 therefore 

depends on the 1 ass r. g is assumed to be a constant with respect to 

time. The loss fluctuation or can be related to the frequency 

fluctuation ov as follows 

(5.25) 

The power spectral density of frequency fluctuations can be related 

to that of fractional loss fluctuations by 

s (f) ov (5.26) 

This model will give the Q-4 dependency of the frequency fluctuation 

spectrum if we assume g = 2r, namely 

( 5. 27) 

This means that the gain of the system has to be twice of the loss, In 

Van der Pol oscillator, the gain g is always larger than the loss r. 

The assumption g = 2r can therefore be viable in laser systems. 

The power spectral density of fractional loss fluctuations is 

discussed in Section 5.3. 

5.2.2 Driven Linear Oscillator 

A driven linear oscillator can be used to model the laser 
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oscillator. The passive cavity, consisting of mirrors, can be viewed as 

a damped linear oscillator given by the following differential equation 

x(t) + rx(t) + w 2x(t) = 0 
0 

(5.28) 

where r represents losses. The driving force Fs(t) originates from 

stimulated atoms giving rise to a sinusoidal signal given by 

where A is the driving amplitude and w is the angular frequency of the s 

driven oscillator. Consider x(t) as the amplitude of the laser 

oscillator with 

x(t) + rx(t) + ~2x(t) = A cos wst (5.30) 

It is easy to show that x(t), in steady state, is given by 

where x0 depends on Ws· In order to maximize the value for x0 , the 

angular frequency of the driving oscillator wm is given as 

w 2 = w 2 - r 2 /2 
m o (5.32) 

Now Eq. (5.32) can be used to derive the power spectral density 

ofov given the power spectral density ofor. 

The loss fluctuation 6r can be related to the frequency 

fluctuation &v as follows 

ov /v = -.!.. o- 2 or/r 
0 2 

(5.33) 

Equation (5.33) gives rise to the following power spectral density 
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(5.34) 

Equation (5.34) gives the power spectral density level which is larger 

than that of Eq. (5.27) by a factor of 4. The numerical factor can be 

identical assuming larger gain g in the Van der Pol oscillator. 

Equation (5.27) and (5.34) can be written as 

(5.35) 

where f..L is 2 if the Van der Pol oscillator is used, and is 1 if the 

driven linear oscillator is used. In the following section we will 

discuss the spectrum of fractional loss fluctuations. 

5.2.3 Spectrum of F~actional Loss Fluctuations 

In Section 5.2.2 we showed that the loss fluctuation &r would give 

a Q- 4 dependence of the power spectral density S {f) in Eq. (5.35). It 
bV 

is advantageous to note that the proportionality to Q-4 is independent 

of the specific assumptions on the types of loss fluctuations. Loss 

fluctuations may originate from losses through the mirrors, coupling 

between modes, or scattering at mirrors or at atoms. 

Here we examine a new theory of 1/f noise given by Handel (1980). 

Using this theory, one would expect loss fluctuations to originate from 

loss processes inside the cavity whose elementary cross sections of 

interaction with the field fluctuate with a 1/f spectrum. 

Briefly, Handel's quantum theory of 1/f noise states that the 

interference between the part of the particle's wave function which 

suffers losses due to bremsstrahlung scattering under the emission of 

infraquanta and the part of the wave function which does not suffer 

losses produce the quantum 1/f noise. 
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In 1 i ght of the theory of Han de 1, the power spectra 1 density of 

fractional scattering cross sections is given by 

s ./ (f) = .!! 
OCY/(J" f (5.36) 

where B is given by (Handel, 1980) 

(5.37) 

for particles whose bremsstrahlung scattering is electromagnetic 

radiations. For those particles whose bremsstrahlung scattering is 

graviton, B is given by (Handel, 1985) 

The definition of above quantities is as follows: 

a ·= fine-structure constant 

AV= velocity change of particles in scattering process 

c = speed of ligh in vacuum 

G = gravitational constant 

m = reduced mass of two particles 

v = relative velocity of two particles in scattering process 

(5.38) 

In the scattering processes, losses r are directly proportional to the 

scattering cross sections, namely 

ocr/cr= or/r (5.39) 

The power spectral density of fractional loss fluctuations therefore can 

be written as 

(5.40) 
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Using Eq's. (5.40) and (5.35), the power spectral density of the 

frequency fluctuations can be written as 

(5.41) 

This gives the 1/f noise level h_1 as follows 

(5.42) 

Equation (5.42) is closely examined in the light of the experimental 

evidences in Chapter VI. 



CHAPTER VI 

COMPARISON WITH THE EXPERIMENT 

The quantum white noise in a laser field was originally predicted 

by Schawlow and Townes (1958). The frequency linewidth of this noise 

discussed in Section 5.1.1. This linewidth shows very small frequency 

fluctuations compared to the frequency of the laser field (e.g., 

frequency stabi 1 ity of one part in 1014). The frequency stabi 1 ity of 

lasers were then considered the lowest among the known oscillators. 

This led the researchers to pursue experimental results revealing this 

small frequency linewidth. We discussed some of the aspects of these 

experimental results in Chapter IV. 

Here we will only compare the experimental results from ring lasers 

(in Section 4.2.1) with the theories given in Chapter V. 

6.1 White Noise Level, h0 

The quantum white noise level h0 was derived in Equation (5.13) 

using a linear oscillator and in Equation (5.23) using a Van der Pol 

oscillator. Equation (5.13) is refered to as Schawlow and Townes 

prediction which is a factor of 2 larger than that of Equation (5.23). 

Dorschner et al., (1980) derived an equation for the frequency 

1 inewidth by using the uncertainty relation. Their relation for the 

frequency 1 inewidth was equivalent to Equation (5.23). This suggests 

that Equation (5.23) is a better relation compared to Equation (5.13). 
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We therefore base our comparison between the experimenta 1 resu 1 ts and 

the Vander Pol model on Equation (5.23). 

The measured white noise levels are given as 

h0 = masked, see Figure 13, 

h0 = masked, see Figure 15, 

h0 ~ 0.06 H2z/Hz, see Figure 16, 

h0 ~ 0.009 Hz2/Hz see Figure 17, and 

h0 ~ 0.0004 Hz2/Hz see Figure 19. 

In Figures 13 and 15, the white noise is masked by 1/f noise up to 

the Nyquist frequency. It is therefore impossible to extract the white 

noise level in these records. However, in Figure 16, the sampling time 

is shorter which pushes the Nyquist frequency to higher frequensies to 

reveal the white noise. In this measurement the white noise level is h0 

= 0.063 Hz2/Hz. The theoretical white noise level, in Equation (5.23), 

gives the value of 0.04 Hz2/Hz. Here, the difference is explained by 

the fact that the atomic population of the upper level N2 was not very 

much greater than that of the lower level N1• This means the ratio 

N2/(N2 = N1g2/g1) is not close to unity. This usually happens when the 

laser operates in low power. 

In Figure 17, the white noise level is h0 = 0.009 Hi 1Hz. The 

theoretical value is 0.01 Hz2/Hz which is slightly larger than that of 

measured value. This may be due to the quantization error correction. 

In Figure 19, the white noise level is h0 = 0.004 Hz2/Hz whereas 

the theoretical value predicts a lower value of 0.00002 Hz2/Hz. Since a 

two-frequency ring laser gyro was used, this relatively large value for 

the measured noise is due to the "dither" noise. The mechanical dither 

introduces white noise which depends upon the scale factor, lock-in 
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rotation rate, and the peak amplitude of the dither. We can therefore 

argue that the quantum white noise limit was not reached by this two

frequency ring laser. 

6.2 1/f Noise Level, h-1 

The 1/f noise level h_1 is given in Equation (5.42). Verifying 

Equation (5.42) can become very difficult taks. In order to change 

parameter in Equation (5.42), the ring laser, sometime, has to be 

redesigned. This may change the other parameters. For example, 

changing the frequency of a gas laser may demand using a totally 

different laser system (e.g. solid state laser). Changing the Q-

parameter is less difficult compared to others. In experimental 

results, we examine different set of data using ring lasers with 

different quality factors (Q). 

The measured 1/f noise level are given as 

-4 h_1 ~ 4x10 Hz, see Figure 13, 

h_1 ~ 3x1o-4 Hz, see Figure 15, 

h_1 ~ 3x1o-4 Hz, see Figure 16, 

h_1 ~ 5x10-6 Hz, see Figure 17, and 

h_1 ~ 2x1o-9 Hz, see Figure 19. 

The first four measured values were achieved in four-frequency 

differential ring lasers. The 1/f noise level per mode is therefore 

given by dividing those values by 4. The last measured value of the 1/f 

noise level was achieved in a two-frequency ring laser. In the case, 

h_1 per mode is given by dividing the value of h-1 by 2. Now we can 

plot the summary of those h_1 per mode versus the passive quality 

factor. This is shown in Figure 20. These points suggest Q-4 
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dependence of the 1/f noise level. The experimental results shown in 

Figure 20 give the following relation for h_1, namely 

4 v 2 
0 

h_1 == -4-
Q 

(6.1) 

Comparing Equation (6.1) to Equation (5.42), we have 

(6.2) 

The parameter B is related to loss fluctuations in Equations (5.37) and 

(5.38}. If the losses produce electromagnetic radiations in the 

scattering process, B is given by Equation (5.37). The maximum value of 

B in vacuum is 

4a 
Bm = 311'==0.003 (6.3) 

when the velocity change is equal to the velocity of light in vacuum. 

This value of B is very small compared to what we expect from the 

experimental results. The value of B can be larger than ·am if we 

consider the scattering process in a medium. In this case, B is given 

by 

B = 4a(AV) 2 

311'i 
where v is the speed of light in medium. 

(6.4} 

Here, the velocity change 

can indeed be larger than v which results in larger B. The velocity of 

light in medium, in which laser field is travelling, is very close to 

the speed of 1 i ght in vacuum. B may therefore be very c 1 ose to the 

value of Bm• 

Now let us consider losses which produce gravitons in the 

scattering process. In this case, B is given by Equation (5.38}. The 
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value of B is examined with respect to the experimental results. The 

laser beam is considered as a beam of photons having the equivalent mass 

as 

2 
m = hv lc 

0 

for each photon. Equation (5.28) is therefore written as 

B = 16 Gh ~2 /(5c5 ) 
The calculted value of B is 13x1o-57 for v = 474x1o12 Hz. 

Q 

extremely small value for B. 

(6.5) 

(6.6) 

This is an 

These small values of B in both cases suggest that the observed 1/f 

noise is given by a superposition of many independent processes with 1/f 

noise spectrum. 



Chapter VII 

DISCUSSION AND CONCLUSION 

All measurements in physical systems are ultimately limited by 

fluctuations in either the system being measured or the measuring 

device. Noise mechanisms limit the accuracy of precision 

measurements. Although many sources of noise are we 11 understood, the 

origin of the 1/f noises remains, in general, not well known. There are 

some models for 1/f noise which describe the experimental results to 

some extend, however, in some cases these models give incorrect 

predictions of the 1/f noise level (Hooge, 1977), (Putterman, 1977), 

(Weissman, 1979), (Gruneis, 1984), (Larraza et al., 1985). Handel 1 s 

theory of 1/f noise, which is used in this work, was originally 

developed to explain 1/f noise in the current fluctuation of 

conductors. The prediction of Handel (1980) generally gives smaller 

value of the 1/f noise level than what the experiments show. 

In this end, we summarize the experimental results and the 

theoretical considerations which were discussed in Chapter IV, V, and 

VI. The long-term measurement of frequency fluctuations in ring lasers 

showed 1/f-type noises in the power spectral density. The spectrum 

contains three types of noise, namely, 1/f2 noise, 1/f noiseJand white 

noise in most cases. Each noise has its range of Fourier frequency at 

which it dominates other noises. The white noise prevails at higher 

Fourier frequencies, the 1/f noise dominates at intermediate Fourier 
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frequencies, and the 1/f2 noise shows up at lower Fourier frequencies. 

These noises define certain limits on frequency stability depending on 

whether short-term or long-term stability is considered. For example, 

in a ring laser which is designed to detect a rotation rate about 10-9 

of earth rotation, we pay more attention to reducing the long-term 

noises (i.e., 1/f-type noises). According to the experimental results 

and the theoretical developements in the previous chapters, the quality 

factor Q is a very important factor for reducing the 1/f noise level of 

the frequency fluctuations. This noise level is indeed reduced 

quatricly in terms of the quality facotr. The Q-4 dependence of the 1/f 

noise level can be used to design some aspects of a ring laser (e.g. the 

necessary light reflection on mirrors, diffraction losses, etc.). 

The 1/f noise level h-1 was formulated by Equation (5.42). The 

only parameter was verified, in some extent, was the quality factor Q. 

Figure 20 shows this Q-4 dependence of the 1/f noise level. This 

quality factor dependency is explained by loss fluctuations regardless 

of its type. The parameter B was evaluated in two different cases. The 

results are very small when the scattered beam is electromagnetic 

fields. The value of B is extremely small when the scattered beam is 

graviton. The experimental results, however, give a value of B which is 

orders of magnitude larger than that of the theories. This may be 

answered by assuming that there are several 1/f noise processes which 

are added to produce this large 1/f noise level. 

The quantum white noise is considered as a fundamenta 1 frequency 

flucuations in lasers. The spontaneous emission is the origion of the 

white noise, therefore it cannot be due to extraneous fluctuations. The 

1/f noise is also considered as a fundamental frequency fluctuation in 
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lasers. The observed 1/f noise in series of experiments shows that the 

ambiant temperature is not cause of 1/f noise. According to Handel's 

theory of 1/f noise which based on electrodynamics and quantum 

mechanics, the flow of particles (changed or not changed) should present 

1/f noise if this flow interacts with outside world (by loss 

mechanisms). The 1/f noise in laser beam is thus considered as a 

fundamental process which affects the output frequency of a laser. 

The 1/f noise is of great practical importance, since averaging of 

data containing 1/f noise does not significantly reduce the noise level 

whereas averaging of data containing white noise over a time period 

reduces the noise level. The 1/f noise is thus a measure of the ulimate 

stability of a laser system. 

In order to study frequency fluctuations in lasers, we considered 

ring lasers. Ring lasers are actually two lasers in the same cavity. 

This therefore reduces the correlated frequency fluctuations due to 

extaneous variations (e.g. mirror vibrations, temperature varations, 

etc.). 

In this work, two types of ring lasers were under consideration, 

namely, the four-frequency differential ring lasers and the two

frequency ring lasers. The diversity of type of ring lasers lies in the 

problem of lock-in phenomenon. This lock-in threshold can be reduced by 

increasing the enclosed area where the two beams circulate and reducing 

the backscattering on mirrors. The formulation of the lock-in threshold 

is given by Chow et al. (1985). From this we can design a ring laser in 

which the lock-in threshold is smaller than the earth rotation rate. 

This ring laser would not therefore have frequency locking. In this 

case, the ring laser can operate without using any dither mechanisms or 
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any polarization-dependent elements. The earth rotation rate is about 

2xlo-6 Hz. If the mirrors have backscattering coefficient of 0.1 Hz, a 

square ring laser with the perimeter of 40 m would give a lock-in 

threshold less than the earth rotation rate. This means that the ring 

laser would operate outside of the locking band. Now this ring laser 

may be used to study noise phenomena in lasers. 

For further investigation toward modeling 1/f noise, chaos in 

nonlinear oscillators seems promising. Gwinn and Westervelt (1985) 

showed that the driven damped pendulum would give rise to chaos with the 

1/f noise spectrum. They formulated the problem by a differential 

equation. This equation was simulated using a digital computer. For 

certain value of the paraters in the equations, they found the spectrum 

which exhibit 1/f noise. 
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APPENDIX 

White noise is relatively simple to simulate using an uncorrelated 

uniform distributed random generator. The resulting random numbers are 

converted to produce a Gaussian distributed random data. 

1/f2 noise can be generated by integrating simulated white noise. 

If X(k) is the white noise then simulate 1/f2 noise Z{k) is given as 

Z(k) = Z(k- 1) +Ak x(x- 1) (A.1) 

where k is the time interval. HereAk = 1 was used. 

1/f noise may be simulated by taking the OFT of 1/f2 noise, then 

take the square root of the OFT components. Finally, the inverse OFT is 

applied. If Y(k) represents the simulated 1/f noise, then 

Y(k) = Inv. OFT [OFT Z(k)]l/2 • (A.2) 

In this process we have to make sure that the inverse transform 

will give real numbers. Z(k) are real numbers for all k. The magnitude 

of DFT[Z(k)] is then an even function and the phase is an odd 

function. It can be shown that Y(k) are real numbers as what follows: 

Let us show OFT [Z(k)] by 

DFT[Z(k)] = mag DFT[Z(k)]eje (A.3) 

where 9 is the phase of the OFT [Z(k)]. Taking the square root of Eq. 

(A.3) gives 
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DFT[Z(k)] 112 = mag DFT[Z(k)] 112 ej912 (A.4) 

The magnitude of Eq. (A.4) is an even function because the magnitude of 

OFT [Z(k)] is an even function. The phase in Eq. (A.4) is an odd 

function because 8 is an odd function. Y(k) are therefore real numbers 

for all k. 
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