CONSIDERATIONS FOR GROUP TECHNOLOGY
MANUFACTURING IN PRODUCTION
PLANNING

By
GERALD ROBERT GRAVES
Bachelor of Science
in Industrial Engineering University of Arkansas Fayetteville, Arkansas 1973

Master of Science
in Industrial Engineering University of Arkansas Fayetteville, Arkansas 1980

```
Submitted to the Faculty of the
    Graduate College of the
    Oklahoma State University
    in partial fulfillment of
    the requirements for
        the Degree of
    DOCTOR OF PHILOSOPHY
        July, 1985
```

Thesis

$$
\begin{aligned}
& 19850 \\
& 6776 c \\
& c 0 p .2
\end{aligned}
$$

CONSIDERATIONS FOR GROUP TECHNOLOGY
MANUFACTURING IN PRODUCTION
PLANNING

Thesis Approved:

PREFACE

This study is concerned with production planning for group technology manufacturing. The primary objective is to extend the existing methodology associated with production planning and control systems to enhance the benefits of group technology. A planning cost model is developed and solved using aggregated planning techniques. Potential applications and benefits of using the model are presented.

The author wishes to express his gratitued to his major professor, Dr. Philip Wolfe, for his assistance and encouragement. Appreciation is expressed to the other committee member, Dr. Kenneth Case, Dr. John Chandler, Dr. Carl Estes, and Dr. Palmer Terrell, for their invaluable assistance in the preparation of the final manuscript. Thanks is also given to Dr. Joe Mize and Dr. Donald Grace for their guidance while serving as committee members.

Gratitude is also expressed to the faculty of the Department of Industrial Engineering and Computer Science at the University of Arkansas for their encouragement during this study.

Finally, special gratitude is expressed to my wife, Sarah Herring Graves, for her unwavering support, encouragement, and understanding throughout the duration of this work.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Goal of the Research 1
Scope and Assumptions of the Research 1
Methods and Conclusions 3
Content of the Report 5
II. HISTORY AND RELATED CONCEPTS 7
Introduction 7
Definitions 7
Historical Background and Current Trends 8
Concept of GT 10
Classification and Coding Systems 10
GT Manufacturing 11
Economics of GT Manufacturing 15
Production Planning 16
Period Batch Control 16
Material Requirements Planning 20
Aggregate Planning 24
Remarks 25
III. COST MODEL DEVELOPMENT 28
Introduction 28
Description of the Facility 28
Management of the Facility 32
Production Costs 35
Direct Material Costs 39
Direct Labor Costs 40
Burden Cost 42
Inventory Holding Costs 43
Cost Model Representation and Constraints 43
Summary 45
IV. SOLVING THE MODEL 47
Introduction 47
Approach to the Problem 48
Solving the Sample Data Problem 51
Aggregating the Data 59
Comparison of Execution Statistics 64
Chapter Page
Comparison of Solutions 64
Summary and Conclusions 70
V. APPLICATIONS OF THE MODEL 73
Introduction 73
Analysis to Examine Underlying Relationships 74
Analysis of the Impact of a Changing
External Environment 80
Analysis of GT System Modifications 84
Part Family Modifications 85
Machine Group Modifications 88
Analysis of Alternatives 89
The Solution as a Scheduling Aid 90
Summary 91
VI. SUMMARY AND PROSPECTS 94
SELECTED BIBLIOGRAPHY 97
APPENDIX A - AGGREGATION COMPUTER PROGRAM LISTING 102
APPENDIX B - PART DATA PRODUCTION PLAN 105

LIST OF TABLES

Table Page
I. Sample Part and Family Data 50
II. Sample Problem Execution Statistics 57
III. Aggregated Part Data for the Sample Problem 63
IV. Aggregated Family Data for the Sample Problem 63
V. Problem and Execution Statistics 65
VI. Optimum Solution Production Plans 67
VII. Optimum Solution Production Costs 68
VIII. Aggregate Production Plan from Cell Model Solution 75
IX. Inventory Parameter Variations Studied 77
X. Summary of Varying Demand Streams Usedin Analysis81
XI. Candidate Part Data 87

LIST OF FIGURES

Figure
Page

1. Three Methods of Applying Group Technology to Machine Layout • 13
2. Unicycle Period Batch Control 19
3. Linear Programming Formulation of the Aggregate Planning Subproblem 26
4. Typical Layout of a Facility with GT Cells 29
5. Relationship of GT Part Families and Machines to the Manufacturing Facility 31
6. MRP Breakdown and Cellular Production 33
7. Basic Elements of Manufacturing Cost 36
8. Mathematical Formulation of Production Planning with GT Manufacturing 44
9. Illustration of Hierarchical Procedure for Cell Production Planning 49
10. Equations for Calculating Problem Statistics 54
11. Graphical Representation of Problem statistics 55
12. Equations for Aggregating Data 60
13. Calculations for Modifying the Aggregate Data 87

CHAFIEF I

INTRODOCTION

Goal of the Research

The goal of this research is tc extend the existing rethodology associated with production glanning and control systers to enhance tle benefits of using group technology concejts in batct manufacturing. The rapid growth of ranufacturing using group technolcgy (GT) concefts and the extensive use of production plarning ard control systems (PFCS) designed for traditional manufacturing systems have lead to the selection of this toic for further research.

Scofe and Assumpticns of the Research

This work concentrates on the flanning cf production of a grcup of garts by a group of machines. It is assumed that the farts and machines have beer previously identıfied and selected following the principles of GT manufacturing. The derand for these farts is generated by a raterial reguirements flanning (MRP) system and is, therefore, derendent upon and constrained by the reguirements for
sukassemblies at a higher level in bills of materials. of course, it is assumed that management is concerned with ainimizing the costs associated with froduction while satisfying the demand for parts.

In order to turther define and delimit the research the following assumptions will also be made:

1. Adequate sufpiies of raw materials and tranned fersonnel are available.
2. Tife and cost standards exist and are constant.

ミ. The farts to be froduced by the group of machines, termed the cell, are divided into families based upen frocessiny similarities.
4. The operation of the cell is not affected by machine breakdowns or activities elsewhere in the manufacturinc facility.
5. The processirg tire for a part exclusive of machine setup and tooling changes is nct affected by the processing cf any other fart within the group. Thus, the machine cell will be treated as if it were a single entity.
6. Scrap is accounted for with the MBP system and will be ignored in this work.
7. Part family composition may be modified thrcugh additions or deletions, but individual jobs of nonfamily farts are not allcued.

In addition to the stated assumptions, the sequencing of jors through the cell is nct considered in this report, nor
is the process of identifying the parts or machines to be included.

Methods and Conclusions

The specific objective of the research was to develop and evaluate a hierarchical frocedure for flanning production using a GT cell. In striving for this objective, an extensive literature review has been conducted, in addition to telephone conversations with knouledgeable individuals and a plant tour. The data and descripticns employed in the research derive from a combination cf these scurces. Using accepted cost estimating and accounting frocedures a cost model has teen develofed which refresents production glanning for the $G T$ cell. The model is a mixed integerlinear programming one. Equations for calculating tbe froblem statistics are developed and, coupled with execution statistics from a sample problem. indicate the need for simflifying the protlem. A hierarchical frocedure to accomplish this bas teen develofed in this research.

The hierarchical procedure involves aggregating the data, thereby simplitying the model to a linear frogramming froblem. The validity of the solution which results is determined by comparison with the original model's solution using sample data. potential scurces of error are tound to derive from rcundoff and from the aggregation procedure itself. Guidelines to minimize the etfects of these errors
are suggested. It may be said, then, that the development fortion of the research objective has been achieved.

The aggregate froduction Elanning model has been evaluated in several ways. First, computer processing reguirements are found to decrease substartially, due to the elimination of integer variables and the reducticn of frcblem statistics. The MPSX scftware fackage and the IEM ミOE1 computer vere used to deteraine these requirements.

Afplication of the model to the long-term cafacity management frcklem of GT manufacturing is evaluated. This is a sutoljective cf the research. This evaluation concludes that the model is found to serve guite vell in Ercduction planning associated with GT manofacturinge specifically, through sensitivity analysis insight into the relationshigs between the cost farameters and their effects on the optimal aggregate producticn flan are provided, thus guiding management in their cost reduction efforts. The Ectential impact of changes in cost parameters or in demand is easily forseen with the model, as are nodifications to the GI manufacturing system. The manner in which the model may be used to examine potential system modifications is develcped and fresented in detail.

Another sutorjective of the research involved evaluating the application of the procedure for planniny fanily and fart production in conjunction with an MRP system. Initially, the application of a disaggregation technigue to the agyregate planning solution was planned as
a fart of this research. However, during the performance of the work the importance of the aggregation technigue was discovered. A decision was made to concentrate more on this facet of the problem and on the applicaticn ct the aggregate Flanning model, leaviny the guestion of disaggregation for future research. The use of the model as an aid to Ercduction scheduling is, however, discussed.

Although not a stated objective, an additional benefit cf GI manufacturing is indicated by this research. In contrast to functional machine laycuts, ith GT cells one can identify exactly wich machines will be involved in the frcduction of an order. Further, at any point in time one can access the order control system and determine exactly which orders will reguire processing on a garticular machine cr piece of equifment. Manayement is nc longer forced tu rely on estimated gueue time or machime loading. This knculedge ofens the door to the ose of cferations research techniques inways heretofore deemed iafractical. This research is an example of this fotential, with linear Ercgramming being applied to the crcducticn planning groblem for the manufacturing cf farts.
content of the Report

The rody of this refort consists of four sections. In Chapter II a review of literature fertinent to this work is frcvided and includes discussion of relevant concepts.

Chapter IlI is concerned with the develcpment of the cost sodel and presents a detailed description of the manufactuing environment which is being addressed. Chaster IV corcentrates on the froblem-solving affrcach and presents the aggregatior frocedure. The manner in which the modei ray be applied and some examples are showr in Chafter ∇. Following the bcdy of the refort is a section which surmarizes the report and reccimends forther areas for study. The report is then terminated with a bibliography and affendicies which are referenced within the Lody.

CHAPTER II

HISTORY AND RELATED CONCEPTS

Introduction

The concept of GT is relatively new in the United States. Thus, this chapter begins with a brief overview of the history and concepts of G I. Background material concerning the concepts applied in this research is then presented.

Definitions

GT is a system given many names and definitions. It is also known as part family manufacturing, group machining, and family grouping. V. B. Solaja ${ }^{(52)}$ provides the welldefined concept:

Group technology is the realization that many problems are similar, and that, by grouping similar problems, a single solution can be found to a set of problems, thus saving tire and effort. (p.33)

A refinement to this definition of GT-related to man ufacturinc is given by Kiubler and Agee (30):

- . the organizational philosophy of collecting
components into groufs based on ccmponent similarities to facilitate compcnent production and effective use of manufacturing resources. (p.53)

Other definiticns of GT which may be fcund are very similar to these, cr are variaticns intended to encompass the specific afflication being discussed.

Histcrical Background and Current Trends

The use of $G I$ concepts in manufacturing activities apfeared as early as forld war II in Europe. In the early 1950's the Russians tcok renewed interest in GT, and are generally credited with its development. In 1959 the concept of $G T$ was first fcrmalized by the Russian S. E. Mitrofanov in his
 success of $G I$ afplications in manufacturing were such that the Russian Gcvernment fromulgated a planfor increased implementaticn throughout Russian industry (47).

Ey early 1960 in Rest Germany and Great Eritian, serious studies into GT technigues had begun. Other European contries quickly followed, becoming active in GT research and afplications. By mid 197C. GT applications in Japan had begun under the sponsorshif of the Jafanese Government.

In the J.S., GT concepts have teen practiced under different nanes in various farms to increase manufacturing efficiency. However, it has received little formal
recognition, and is only now gaining momertum as a desirable manufacturing technigue. As late as 1976 there were still cnly a handful cf cafanies even interested in GT. current trends in manufacturing, however, have set the stage for acceptance of GI. These trends, as cited ty Ham (22), include:

1. A rafid groliferaticn cf numbers and varieties of products, resulting in smaller lct sizes.
2. A growing demand for closer dimersional tolerances, resulting in a need for more economical means of working to higher accuracies.
3. A growing $n \in \in d$ for vorking increased varieties of materials, heightening the need for more econcmical means of mantacturing.
4. An increasing proporticr cf cost of materials to total product cost due to increasing labor efficiency, thereby lcwering acceptable scrap rates.
5. Pressure frox the abcve factors to increase comnunication across all manutacturing functions with a goal of winisizing frcduction costs and maximizing production rates.

Estimates of parts to be produced on a small-lot basis run as high as 75\% of all industrial farts by 1990. Ihis wili certainly increase the viability of GT manufacturing. In fact, researchers have predicted that between 30 and 70% of AEerican manufacturing industries will be using some form of

GT by 1990 (2s). It would appear that $G T$ is no longer a fad, but a management strategy for the future (29,31,33,51).

Concept of GT

Group technology is a manafacturing philcscfhy which identifies and exfloits the underlying sameness of items and the processes used for their manufacture. I. Hafl $12 \mathrm{C}, \mathrm{F}$. 21)

The use of $G T$ ir the $U . S$. typically employs a systematic methodology which forms part families based on certain similar characteristics. Dsing these families, product design may te rationalized, process flans optimized, and groups of machines designated for processing one cr more families. These aims comprise almest all current GT applications, though potential contributions exist in other areas.

Classification and Coding Systems

Identifying the "underlying sameness" cf parts is commonly accomplished with a classification and coding (CEC) system. A number of cormercial systems exist, each having its merits and drawbacks. Most applications involve a custcmized system to staisfy the peculiar needs of the client.

Modern C\& systems identify parts by their fundamental design and manufacturing attributes. Tyfically, these
attributes are geometric shape, dimensions, processing requirements and sequence, tolerances, etc. These attributes are then related to a code for retrieval purposes. codes vary both in length ftypically 6 to 36 digits) and structure. Also, the scftware available for retrieval and analysis varies among vendcrs.

Once a CEC system has been introduced, part families may be estaklished based upon attribute similarities. This is a critical and time-consuming task, and forms the basis for GT applicaticns. The composition cf each family is a function of the application (desigr or processing). Although scife sofhisticated techniques have been developed for this task, it is normally an iterative process and highly comfany-dependent.

Though exfensive and time-consuming, the introduction of a CEC syster is vital to GT applications. In addition, duplicate and outdated designs and process plans are revealed anc \quad ay be eliminated. Further, an excellent survey of the farts and processes is provided.

GT Manufacturing

Manufacturinc using GT principles frovides a way of realizing the economies normally associated with large-scale production. Ihese econories include reduced tooling costs, reduced setup time, increased throughput, and higher labor prodectivity $\mathbf{f}^{\text {(}}$).

Currently, three general methods of applying GT to manufacturinc systems are suggested (1):

1. Sincle machine system;
2. Group layout system;
3. Group flowline systef.

These are deficted in Figure 1.
In the sirgle machine system, a machine is tailored to the processing cf similarly shaped compcnents. Cne or more part families may be seguenced through the machine in their operations rcutes. A reduction in setup time is achieved.

The grap layout system, or manufacturing cell, consists of a set of machines devoted to the frccessing required by cne or more families of parts. A manufacturing facility may include a number of these cells operating independently. In addition to reducing the setup changes required, the oferator's productivity is improved ty the reduction in the variety of parts frccessed. raterial handing requirefents are reduced and quality has been found to increase. These reductions result in the throughput time for a part being reduced.

The grcup flowline is a special case of the group layout. With this type cf $G T$ ranufacturing system all jobs processed by a group of machines adhere to the same sequence of processing, resulting in a flow shof. Automated material handing wittir the cell is more easily incorporated, and the schedulirg and controlling of jobs is simplified.

A number cf techniques for the assignment of machines

a.) The Single Machine System

b.) The Group Layout System

Source: Abou-Zeid (1,33).
Figure 1. Three Methods of Apolying Froup Technology to Machine Layout
and part fanilies to cells have been froposed and applied (10,16,36,41,44,47,58). Most involve some type of mathematical frogramming technique, such as linear programming, goal programming, cluster analysis or combinatorial frcgramming. In general, these methods are applied with consideration for machinery investment, system flexibility, and workload distribution. Oliva-Iopez and Purcheck $\{39$ fropose analyzing alterrative systens using both static ard dynamic stages. In the static stage the analysis is in terms of:

1. Investment in machinery;
2. Flexitility cf cells to \quad anafacture various comporents;

ミ. Balance of worklcad between cells;
4. Otilization of equipment due tc static factcrs;
5. Scofe of control through the number of cells and the number of machines in each cell.

In the dynamic stage simulation is emplcyed to analyze the systems in teras of:

1. Cafability to satisfy external requirements;
2. Efficiert utilization of resources.

Regardless of the method used, proper development of part families and atachine groups tc process them is vital to a
successful GI imflementation.

Economics of GT Manufacturing

A number of tenefits from GT manufacturing have been reported. Frimary among these are:

1. Reduced setup time (up to 60%);
2. Reduced tooling expense (10 to 40%)
3. Reduced work-in-frocess (up to 50\%) ;
4. Redrced throughput time (up to 60%);
5. Reduced scrap (up to 40%) ;
6. Reduced order lateness;
7. Increased worker satisfication.

Methods for eccromically analyzing propcsed implementations, however, usually rely on a comparitive cost analysis with the current manufacturing method $(14,18,20,36,50,51)$. Further, they fail to include potential savings which may result from the further application $C f$ GT in other areas (e.g.. desiçn cr process planning). Edwards (14) states that:
. . . ccmanies bave generally realized the futility of attempting to calculate cost savings simply because they kncy that the information available to them from costing sections is neither accurate nor apfrofriate for the changing circumstances of group technolcg1. (p. 18)

Although the implementation costs may be accurately
estimated, the resulting savings are difficult to guantify beforehand. yet, the benefits others have experienced continues to erccurage the adcption of GI.

production Elanning

Most of the literature conceraing $G T$ manufacturing pertains to the creation of part families and production cells. Few have dealt ith the attendant issues of the associated production flanning and contrcl syster. Of these, the pericd batch control system is usually suggested as the proper syster tcemploy with GI manufacturing. However, in the U.S. material reguirements planning systems are used extensively for froduction planning. Ecth of these systems, therefore, wist be addressed. alsc, as an aggregate planning technigue is employed in this research this concept will also be discussed.

Pericd Batch Control

Although this system was developed in Great Eritian, scme of the Russian literature addressed the need for special consideratiors for $G T$ ranufacturirg in production planning and control.

In his text Scientific Erinciples of Group Technology (36). Mitrofarov concentrates cn the technological aspects of group machiring. He does, however, recongize that GT
manufacturing frinciples provide a mettcd for realizing in small batch wanufacturing the economies associated with mass production. In crder to achieve these economies of scale the following general conditions are presented for a cell or flowline:

1. It must be highly productive, and based on the maximoll utilization of equipmert and technology.
2. The ptysical parameters, labcr requirements, and oferations duration should be stable.
3. Bott the individual operations and the entire process should have a cyclic refeatability.
4. The oferations should be synchronized.

His suggesticns laid the groundwork for further research by V. A. Petrov.

In 1966 Eetrov published his text Floning Group Production Elarnigg (44). This work was accomplished after an extensive survey of $G T$ manufacturing applicaticns in the OSSR. In the text fetrov states that the production planning aspect is the least developed ϵ lement of GT. He proposes estaklishing a standard batch size for each component within given limits. The limits are set to maximize machine utilization and minimize work in frccess. Also, the katch should be a multiple of assembly batch sizes and be withir any space or handing liaitaions. Cnce these standard batch sizes are established, a batch rhythif ray be calculated for each part from the forecasted demand, and a production cjcle calculated for the part family. further,
he proposes that the number of batch sizes and batch riythms be kept to a dinimum in order to maintain proportionality throughout the production process. This should lead to a smoothing cut cf the disturbing effects cf a wide variety of factors. Erifary among these factors is continued high utilization $C f$ GT manufacturing equipmert.

In planrirg and control of a GT $\begin{aligned} & \text { anufacturing process }\end{aligned}$ British industry relies primarily on the period batch control (PEC) approach (15,29,38). EEC was develofed by Burbidge (10) and focuses on the use cf short-term cycles. In using PBC the flanning horizon is divided into cycles of egual length, and a production schedule of end items for a given cycle cererated. This schedule is then exploded into requirements for parts to be produced in the preceding cycle.

In applying PBC to a GT manufacturing cell, New (38) suggests the use cf a special form of $E E C$, termed unicycle PBC fUPBC). Ihis syst $\in \mathbb{M}$, illustrated in Figure 2, uses a single cycle across all products. The entire production process, then, is operating on the same cycle length. This should allow for a carefully planned loading sequence, thereby permitting jobs to be grouped fcr GT manufacturing.

Hyer anc hemmerlov (29) recognized several frcblems associated witt a UPBC system. First, no clear guidelines exist for estatlishing cycle length. Further, capacity imbalances way exist as the time required tc produce component parts for a cycle way be quite different from the

PERIOD OF EQUAL PRODUCTION CAPACITY

SOURCE: NEW (38, p. 58).
Figure 2. Unicycle Period Batch Control
time requirec tc asserble those farts into end products. Another proflei area noted is the use of a fixed loading sequence wich assumes that a stable demand pattern exists. Considering the previcusly discussed trends, this is not a valid assumfticn for a large number of manufacturing enterfrises.

Material Reguirements Elanning

In the $U . S$. the use of computer systems tc perform the tasks of PFC is widesfread. For the purposes of this study those systems whict erfloy MRP are of interest. MRP is a process for converting froduct reguirements into requirements for items on all levels of the product structure (till of material) kelon the end product. The result of this process is a schedule cf planned production and furchase orders, and recommended modifications of released crders far parts. Extensive literature exists addressing MRP in significant detail. Orlicky's text Material Reguirements Elanning is perhaps the kest known and most widely guoted.

Initially, many perceived that the grouping of farts in GT applicaticns and the individual treatment of parts in MRE systems made the two inccmpatible (27,29,34,38,54). However, fithcut exception the literature relating tc the subject contracicts this percefticn. Mahany and Iompkins (34) state:

GT and MEf are fully compatible, and in fact, the
benefits cf the two technigues are synergetic. (F. 48) They attribute this synergistic effect to the balance of efficient mantfacturing, a result of $G T$, and effective manufacturinc, a result of MEF.

The procecure recoumended by most for combining GT and MRP is basically the same as that fcrmalized by Sato, Ignizio, anc ball :49). Their frofesed procedure is to simply group flanned orders for the immediate period and apply a group scheduling algorithm (tc le discussed later in this section). A lct-for-lot lotsizing rule is generally recommended $\{2 \mathrm{C}, \mathrm{E} 4,38,4 \mathrm{G}, 56$). This is desirable in that it avoids havinc unbalanced sets of parts in inventory, and it is possible due to the rapid throughfut time of GI cells. Mahany and Tcmekins (34) suggest that the planned orders for at least twc periods should be combined, and then a decision made by the froduction flanner as to whether sufficient item volume exists to warrant a family release. Ryer and Wemmerlov (29) argue that since major setup times stem from changes in the froduction of faxilies, lotsizing should be by families. No guidelines for accomplishing this are suggested, bcwever. Spencer (53) details the use of an $E Q Q$ model which includes opportunity costs to determine the run guantityfor a family of diesel engires. However, the engines were erd items for the facility, and a very stable demand pattern existed.

An imfcrtant aspect of MGP systems is the inherent assumption thet adequate capacity exists to meet the
schedule of planned orders. As a conseguence, the work load flaced on a machine or work center may vary drastically from geriod tc period. Capacity requiremerts flanning (CRP) technigues are usually applied to alleviate this prcblem. CEP involves exploding frojected demands on capacity from the u pp planned orders. There are two affroaches to Ferforming CRP: intinite loading and finite lcading.

Infinite cafacity loading is affropriately named since this approach does not explicitly consider actual capacity lifitations or processing sequence restrictions (9). The basic input to this procedure is a unit load profile for each fart to be produced. The unit load frofile indicates the time reguired to froduce a part at each major processing step, and the number of periods after order issue that the requirement will occur. By suraing the frojected load from MRF planned crders and the load frcm previously released crders, the total projected load for a work center may be calculated. The resulting machine load reforts indicate the need for subcontracting, rescheduling, or cvertime.

Finite capacity loading is scmewhat more detailed. In this approach actual queve times and lcads are simulated based on available capacity. Conseguently, the scheduling rule employed at work centers is taken into account. More sorhisticated systems will shift jobs forwara or backward to relieve simulated overloads. Finite loacing systems etneng are primarily useful tor short-term scheduling with a fixed cafacity. Although finite loading techniques yield more
precise and detailed informaticn concerning shof schedules and capacity, they are generally complicated and difficult to inplement. Moreover, long-teril simulations of capacity utilization usually contain substantial error (9). No literature has keen found uhich discusses the use of either infinite or firite loading technigues ir conjunction with GT manufacturinc.

Once the flanned orders from MRP are finalized they are released tc shof floor control. This function includes order release, scheduling, and monitoring through work
 on this functicn, as cnly the flow of jcbs into and out of a cell need be If nitored (29). Scheduling jobs shculd be greatly siøflified since the scope of the problem is reduced from that of a large fortion of the shof to a small group of machines. Eitcmi and Ham (21) have termed the scheduling associated with GT "group scheduling." They profose applying brarct and bound techniques tc solve the problem. The scope cf the froblem is further reduced in that all jobs for farts belorging to a family must be scheduled tcgether. Petrov (45) frcposes a scheduling technigue for GT flowlines based on Jotnscn's solution to the twc machine flow shop problem. A further refinement to Fetrov's technigue is presented ty Sutiaranian (55). What is apparent from these apprcaches is that existing scheduling techniques and objectives are appropriate with GT, as long as jors are sequenced alcog fart family lines. The benefits resulting
from adhering to this restricticn are significant and have Leєn fresented.

Aggregate planging
aggregate planning is the starting point for most manufacturing control systems (9) and is concerned with the aggregate production rate and work force size in a facility. Although agyregate planning is concerned with end froducts, ong approach to sclvirg the aggregate froduction planning frcblem deserves attention in this study. Use of a bierarchical decision frocess, as suggested ty Hax and Meal (2引). avoids the computational complexity inherent in other models by decomposing the producticn plarning problew into an aggregate planning subjrorlem and a disaggregation sutprcblem. What rakes this apprach relevant to this study is the manner in which the model is formulated. For flanning purposes, froduction items are aggregated into families, and families aggregated into tyfes. The basis for the formation of product families is that, among other criteria, the items share a common setuf. This is also an attrifute of $G T$ part families. product types are composed of families with similar seascal derand patterns and greduction rates. This is analcyous tc grouping gT fart farilies which are processed on a single cell cr flowline. Eitrar, Haas, and Hax (8) use a linear programminy formulation to represent the aggregate planning subproblem.

The model is refroduced in Figure 3. This problem is solved with a rollirg horizon of length T, updating the parameters after each feriod. Fluctuations in demand are met by modifying the cicision variables in a manner which minimizes the cost functicn.

The production guantities of each product type are disaggregated into family production guantities, which are then disaçregated into item production quantities. Disaggregaticn is generally accomplished by formulating the problem as a continuous knapsack problef (8). No literature has teen founc which profosed the use cf this approach to production planning at the part level in conjuntion with GT manufacturinc.

Remarks

As Fetrov (44) noted, although there is no cbligatory coordination tetween production flanning and GT manufacturinc, coordination is necesary to experience the full economic advantages of GT. The modifications proposed for MRF-bast $s y s t e m s$ have been relatively simple. No attempt was fourd, in the literature search, to provide for maximum utilizaticn of machine groups, or to establish a stable flow of work through them. These conditicns were estarlished $\in a r l y$ in $G T$ development by Mitrofanov and Petrcv. Furtter, long-term management of $G T$ manufacturing systems has kén totally ignored in literature. Considering
 Subject TO Tht-1 $+X_{1 t}-I_{i t}=d_{1 t} \quad i=1,2, \ldots . I$;

$$
\begin{aligned}
& i \stackrel{I}{=} m_{i} X_{1 t} \leq k_{t}+O_{t} \quad ; t=1,2, \ldots . T . \\
& R_{t} \leq(r m)_{t} \quad t=1,2, . . . T \text {. } \\
& O_{t} \leq(o m)_{t} \quad t=1,2, . . . T \text {. } \\
& X_{i t}, I_{i t}, R_{t}, O_{t} \geq 0 \quad t=1,2 \text {; . . } T \text {. }
\end{aligned}
$$

The decision variables of the model are:
$X_{\text {It }}$, the number of units to be produced of type iduring period t,
$I_{i t} \quad$ the number of units of inventory of type i at the end of period t,
R_{t}, regular hours used in period t, and
O_{t}, overtime hours used in period t.

The parameters are:

T,	
$c_{\text {It }}$ 。	the unit production cost (excluding labor),
r_{t}, O_{t},	the regular and overtime labor cost/man hour,
(rm) t^{\prime}	
(om) t	the availability of regular and overtime hours,
m_{i},	the hours required to produce a unit of produc type i, and
$\mathrm{d}_{\text {it }}$,	the effective demand for product type i in the period t.

Source: Bitran Et Al. (8, p. 720)

Figure 3. Linear Programming Formulation of Aggregate Planning Subproblem
the manufacturing trends of today, it is important that these frotlems are addressed.

CHAPTER III

CCST MODEL DEVELOPMENT

Introduction

AS 15 evident trom the preceding chapters, grouf technology applications assume a variety cf forms in a diversity of industries. To narrow the scope cf this research a specific manufacturing environment has been chosen which is the target of mang applications of GT. Pricr to develofing the cost model this environment will te descriked.

```
Descriftion of the Facility
```

The manufacturing facility with which this research is concerned is depicted in Figure 4. The facility is involved in the production cf a product which requires the fatrication of a large number of parts. Hithin the total garts population, families of parts have teen identified for manufacture within a cell containing machines. Typical Erccesses which might be perfcrmed within the cell are rillirg, drilling, grinding, finishing, etc. Raw material in sore basic shafe is introduced into the cell and art

Figure 4. Typical Layout of a Facility with GT Cells
is froduced for turther processing or assembly elsewhere withir the flant.

A family of parts may be defined as parts requirin. similar processing within the cell. Further, the machine setup and tooling reyumrements for a part are significantly reduced when it is processed subsequent to any other part belonging to the same family. ben parts from different fanilies are manufactured in seguence within the cell, a major machine adjustrent and tocling change is reiuired. These major changes may be termed family setups. The cperation performed within the cell are such that, for clanning purposes, the cell way be treated as a single machine performing a single operation. This is analagous to having an identitied rottleneck, or to froduction using a machining center or transfer machine.

As indicated in Figure 5 the farts assigned to families are a subset of the total populaticn of farts manufactured yithir the flant. Thus, other parts exist which could be frccessed within the cell. Also, those parts currently frcessed within the cell could be frocessed elseubere. The sare \quad ay be stated for the frocesses performed urthin the cell. That is, they are alsc currently being performed elsewhere in the plant.

This type of environgent occurs freguently in manufacturing with GT, esfecially in the early inflementation stages. Even the ost extensive applications raintain some portion of the manutacturirg equifment in the

GT CELL

PART FAMILIES

Figure 5. Relationship of GT Part Families and Machines to the Manufacturing Facility
wore traditional functional layout for frocessing those farts which cannot be combined with families.

Management of the Facility

In evaluating the performance of a group of oferations a variety of measures are typically used. These include the average production rate, the efficiency of operations, demand satisfaction, the total cost of production, and the aggregate load on the cell. The first tyc of these measures are influenced primarily by the initial $G T$ setup and the shce floor control system. The remaining measures, however, are significantly affected by the producticn planning syster. Ccnseyuently, it is these measures with which this research is concerned.

The demand for parts produced in the cell is generated through the $M R P$ system, and is dependent on the net reguirements for higher level assemblies. This relationshif is typified in Figure 6. Since numerous different farts may Le required to froduce a subasserbly, a shortage or stockout cf any single part can be very costly. Therefore, the assumftion will be adopted that demand satisfaction is the cverriding objective of cell ranagement.

A number of teasible producticn flansmay exist which satisfy the demand for parts. Selectior from among these flans will be based on the total cost of froduction. These costs will be discussed in detail in the next section.

Figure 6. MRP Breakdown and Cellular Production

The aggregate lcad on the cell refresents the direct lator hours required by a froduction plan in each period. Naturally, the profcrion of availalle regular bours consured by the aggregate load is a measure of capacity utilization. It is imperative that the aggregate lad on the cell is comiarable to the load flaced on otber areas ot the facility. Otherwise, the fotential for violating the "sanctity" of the cell is significantly ircreased. That is, jots for non-family fartsmay te introduced intc the cell. This violates a principle cf GT manufacturing, the dedication of a groug of machines to the processing of a specific group of farts. A consequence cf the violation is the reduction in the advantages GI manufacturing achieves ia reduced throughput time, setup time, NC frogramming costs, and the simplification of shop flcor control. Further, once this situation is allowed tc develop it is highly likely that it will continue to expand until the GT implementation, in effect, no longer exists.

In light of the above, managenent must strive to ensure an adequate load is flanned for the cell from the families of parts. Tc accomplish this task, upper and lower bounds will be placed on the allowable deviation cf the cell load.

Fhen a production plan will result in the load limits teing exceeded, wanagement must take corrective action. Two ccurses of action are available. First, the load may be adjusted by modifying the part family composition. This entails the addition cr deletion of parts from the families.
 suitable parts exist which may be added to the families, and
 elsewhere in the facility. The second course of corrective action is tcredify the capacity of the cell. This could be accomplished tricugh the additicn or deletion of equipment, or replacement with more efficient equifrent. The feasible methods availatle tc modify capacity for a cell will be dependent on the type of equifment employed in the cell and the nature cf the processes being performed. Thus, fcr the purposes of this research, the capability to modify cafacity is of more imfcrtance than the method by which this may be accomplished.

Production Costs

Planning fer froduction in a facility is rormally accomplished L y converting the factors to be considered into a common meastre, the associated cost. This nct only permits the use of operations research-type models, lut also provides essertial data to the financial planning and accounting defartments. These costs, termed the manufacturing costs, will be examined in order tc construct a cost model fer froduction planning purfoses. Manufacturing costs can be divided intcthree basic cost elements (57): direct material cost, direct labor cost, and cuerbead cost. The derivation of these basic

Figure 7. Basic Elements of Manufacturing Cost
the accounting department once a part or product has been corpleted. Standard costs, cn the other hand, are fredetermined and reflect what the manufacturing costs shculd be. These standard costs may be rsed for developing and evaluating production plans.

The elements of manutacturing cost may also be categorized as either a fired cost or a variable cost. Fixed costs remain the same regardless of the volume of freduction, assuming certain upper and lower limits on froduction quantities exist. Sfecific examples of fixed costs are executive and administrative salaries, durable fixtures and tooling, and maintenance ard custcdian wages. Generally, if the prcduction volume does not exceed certain lirits, fixed costs will be constant regardless of the vclume. Conseyuently, fixed costs will have no Learinj on the evaluation of alternative production flans, and may be ignored in the selection of a flan.

Variable costs, conversely, rise as the production volume increases. The relaticnshif between volume and a variarle cost may assume any nuber of forms, such as a lisear, quadratic, or a stef function. Feagardless of the form, variable costs must be included in any analysis of alternative production flans. The three tasic cost elements will now be analyzed to determine those cost factors which
must be included in planning manufacturing using a $G I$ cell.

Direct Material Cost

Since the assurftion has been made that the cell is invalved with the farication of farts, only the cost of raw materials nefd te considered in determining direct waterial costs. This cost will vary directly with the production volume. Ibrs, the direct material cost for a part will be treated as a linear function of producticn volume. The cost may $k \in$ calculated by multiplying the flanned number cf units to be produced in a period times the standard cost. This standard cost for direct material for a fart is based cn the amount of ras material used in froducing the part. Since the farts comprising a family are usually fabricated from the same raw material, any variation between standard costs within the family is directly attributatle to differences in the amount of raterial reguired per unit.

Price treaks frequently are available for large guantity purchases of raw materials. However, assuring the raw material is used in the fabrication cf a large number of different farts, price rreaks need nct be considered for planning purfcses. Most companies prefer to include price break considerations in planning production of end-frcducts :57).

The previcusly stated assumption of an unlimited supply of raw materials eliminates the need for an upfer kound
constraint on raw material availability. Inccrporation of a constraint of this type would be straightformard if the situaticn reyuired it.
lith the restriction that demand must be satisfied, the total direct material cost over the flarning horizon will nct change with changes in the froduction flan. However, it is easily included in the model. This will leave fixed cost as the only cost element which rust be added after adoption of a froduction plan in order to forcast the associated cash flows.

Ifrect Lakor Costs

rirect labor costs are derived by afElying lator cost rates to the tame required for raafacturing operations. Manufacturing operations time can be separated intc two components, productive and non-frcductive time. These times must be determined for each pericd in order to calculate the direct labor cost associated with a production plan.

The productive time component represents the time a latorer spends frocessing farts. Most companies have developed standard data for this time on a unit basis. These data contain allowances for such factors as part loading/unloading, operator fatigue, machine dountime, and maintenance. The productive time for a part groduced in the cell is the sum of standard data fer the operations ferformed within the the cell on the part, and will
bereafter be referred to as the standard processing time. The total productive time reguirements far ariod is the summation of productive times over all parts.

The non-froductive time compcnent derives from machane setup and represerts the time reguired for an operator to frepare a machine for frocessing a part. These prefarations normally include setting the jig or fixture, loading the tocl, and adjusting. the machine. Using NC, INC, or CNC rachining would include computer tafe cr frogram preparation with tocl loading and machine adjustment in the setup time. Through time studies standard setop times may be established for a part and will include these and any other ancilliary tasks which are necessary.

Sith group technology, however, the nature of machine setup is changed. Tcoling for the oferations within a part family should be arranged so that all farts may be frocessed with a single group jig or fixture and setup. These group jigs and fixtures are designed tc accept every member of the faxily, using adapters to accomodate minor variations in fart gecmetry cr frocessing (10). This accounts for one of the major savings exferienced with the introduction of GT, the reduction in tooling costs.

The setup time fcr a cell, then, may be divided into a farily setuf time and a part setuf time, both of which are indefendent of production quantity. For froduction planainy furfoses the total time associated with each type of setur for a period is a step function cf the planned number of
setups for the period.
The sum of the productive and ncr-froductive times associated with a froduction flan will result in one of three situations occurring. The time reguired will either be less than (undertime), equal to, or greater than (overtime) the regular hours scheduled. In the first two cases the lator rate may be applied to the total manufacturing time to determine the direct lator cost. When overtime occurs a bigher labor rate, the cuertime rate, must ke applied tc those hours in excess cf that regularly sched uled.

Since no additional cost is included for undertıme, the assumftion is being made that labcrers may be used elsewhere in the facility. This labor cost will be included witn the actual costs for cther work centers. The labor rate will be treated as two constant values, cie for regular time and one for overtime. This assumes that the skill level reguired for production of any of the parts produced within the celi does not vary, and should be a valid assumption fcr most GT celis.

Eurden Cost

In planning production for the cell only those variable cost elements of burden need be considered, as the fixed elements continue regardless of production volume. Variarle burden costs include such items as indirect labor, indirect
materials, electricity for operating equifment, and tooling. As mentioned previously, the tethod of assigning turden varies among industries and among companies. Fcr the furposes of this research the direct lator cost will be selected for estirating variable burden, as it is easily incorforated into the model. Cnce a froduction flan is selected the fixed burden estimate may te calculated and included to more accurately estimate total costs.

Inventory Helding Costs

Sore costs vary directly vith the size of inventories. There are handing costs associated with the storage and retrieval of farts, and costs asscciated with stcring farts, such as insurance, taxes, and cafital costs. Although these cost aly k ircluded in the burden for a fart, they will be treated separately in this study in order to examine the fffect varicus flans may have on them. Io measure this, a bclding cost will be applied to the ending inventory for each feriod in the production plan.

Cost rodel fepresentation
 and Constraints

Figure 8 presents the matheratical formulation of a \&rcduction planning cost model for GT marufacturing. Also in the figure are the constraints flacec on the model and
$\left.Z=\sum_{t} \operatorname{LLR}\left(\sum_{i} V_{1 t} P_{1}+h_{2 t} S_{1}\right)+\sum_{j} F_{j t} G_{j}+\infty O_{+}\right)$(labor)

$$
+\sum_{1} V_{1 t}\left(N_{1}+B_{1}\right)
$$

(material and buraen)

$$
+\begin{array}{ll}
\sum_{i} & \left.h_{1} I_{1 t}\right]
\end{array}
$$

(anventory holárng)
subject to:

$$
\begin{align*}
& V_{i t}+I_{1 t-1}-I_{1 \tau}=a_{1 t} \quad \forall 1, t \\
& \sum_{i}^{\Sigma} \quad V_{1 t} P_{i}+\sum_{i} \quad W_{1 t} S_{i}+\sum_{j} \quad F_{j t} G_{j}-O_{t}+U_{t}=R_{t} \quad \forall t \\
& \sum_{i=1} V_{i} \leq C F_{j t} \quad V t, j \\
& V_{1 t} \leq C W_{1 t} \quad \forall i, t \\
& F_{\text {Jt, }} h_{2 t} \geq 0 \quad \forall 1, j, t \\
& F_{j t} h_{i t} \leq 1 \quad \forall i, j, t \\
& F_{j t}, W_{\iota t}=0 \text { or } 1 \quad \forall i, j, t \\
& O_{t} \leq E \quad \forall t \tag{8}\\
& U_{t} \leq A \quad \forall t \tag{9}\\
& v_{2 t}, U_{t}, O_{t}, I_{2 t} \geq 0 \quad \forall 1, t
\end{align*}
$$

where:

```
VIt = the production quantity of part i in perioa t,
Ilt = the inventory of part 1 at the end of perica t,
U
Ot = the overtime asscciated with the pian in period t,
V}\mp@subsup{|}{1t}{}=\mathrm{ the number of setups for part 1 in period t,
Fit = the number of setups for family j in perioa t,
t 
LR = the labor rate,
P
S1}= the standard setup time for part 1,
G = the standard setup tame for part famıly j,
O = the percent increase in the labor rate for overtime,
f}\mp@subsup{|}{1}{\prime}=\mathrm{ the standara material cost per unit for part 1,
B1}=\mathrm{ the burden cost per unit of part 1.,
h_ = the holding cost per unit for part 1,
R
alt = the aemana for part i in period t,
c}=\mp@code{an arbitrarily large constant,
E = maximum overtime permitted,
A = maximum uncertime permittea.
```

Figure 8. Mathematical Formulation of Production Planning with GT Manufacturing
the variable definitions.
Constraint (1) is a demand constraint, and will ensure that the plan satisfies the derard for all parts in every geriod, either from inventory or by production. Constrant (2) relates to the manufacturing tume reguired ky a flan。 and establishes the amount cf cvertime cr undertime which will result. Constraint (3) ensures that a fart setuif is included in every feriod in which a part is to be manufactured, and corstraint (4) accomplishes the same for farily setups when any member farts are to be made. Constraints (5), (6), and (7) limit the number of fart and farily setups in a period to eitter or 1. Constraints (8) and (S) limit the amount of overtime and undertime which may cocur in a perıod, and constraint (10) ensures that the decision and measured variables will be non-negative.

Summary

Ihis chapter has presented a description of the manufacturing facility and the typical GT cell which is being addressed by this research. The ferformance measures cf concern to management are discussed. The measures addressed in this research include derand satisfaction, total froduction cost, and aggregate cell load. The basic cost elements of manufacturing are examined, and then analyzed to determine which factors tc include in flanniny manufacturing for a $G T$ cell. From this analysis, and in
light of the performance measures a cost model is formulated which represents production planning for the GT cell.

SCLVING THE MODEL

Introduction

The cost model developed in the previous chafter was fcrmulated with a two-fold objective. First, it is antended that the model serve the producticn glanning function of determining resource requirements to satisfy demand cver a specified planning hcrizon. Second, the model should serve as a tool for evaluating alternative production schedules. These are typical of producticn planning and scheduling model objectives.

The model is a mixed-integer linear programming fcrmulation, and is similar tc previous models used for aggregate producticn Ilanning at the end-rioduct level. Two distirct areroaches for solving odels of this nature have afyeared in the literature (17). The first of these, termed a ronclithic approach, attempts to solve the problem with some tyfe of frocedure which will froduce a good feasible sclution. The second approach. termed hierarchical, fartitions the problem into a bierarcty of sutfrctlems. This apfroach is discussed in Chafter II, and 15 taken
frimarily to avoid the ccmputaticnal difficulties encountered with monolitnic afprcaches. Although neither of these afproacres bas keen taken with froduction planning for a $\in T$ cell, the similarıties in model formulaticns encourage the use of previous aggregate planning research as a guide fcr the froblem solviug approach taken in this work.

Af proach to the Problem

The procedure develofed for solving this froblem is shown in Figure 9. The part data is aggregated into data refresenting the average for all farts frcduced in the cell. It is hierarchical in nature in that at the highest level of aggregation decisions concerning capacity will be made. As indicated in the previous chafter, these decisions will be concerned with part tamily and machining cafacıty \#odifications. Mith disaggregation, decısions concerning the froduction time available for each part fallily and 1ndividual parts could be made. In order to derinstrate and evaluate this approach, sample data were develofed. These data are presented in Table I. A pcrtion of these data were taken from sample froblem data fresented 5 y Ham (21).

As shown in the tavle there are 20 parts to be froduced in the cell, with these belonging tc 3 distinct part fanilies. Although there are no figures available on the average or recommended number of farts in a family, a range of 10 to 100 parts is frequently guoted in literature

DATA

CELL

	CELL
A	
G	
G	
R	
E	
G	FAMILY
A	
T	
I	
O	
N	
	PART

PART

CAPACITY, CELL	
PRODUCTION SCHEDULE	D
	I
	S
	A
	G
	G
	R
	E
	G
	A
	T
	I
	PART SCHEDULE

Figure 9. Illustration of Hierarchical Procedure for Cell Production Planning

TABLE I
SAMPLE PART AND FAMILY DATA

	Family No.	Process Time	Setup Time	Holding Cost	Material Cost	Burden Cost	Average 3 Period Demand
1	1	9	20	$\$.75$	$\$.019$	$\$.02$	115
2	1	12	15	2.20	.016	.02	30
3	1	10	15	8.00	.022	.02	10
4	1	9	15	16.00	.020	.02	5
5	1	14	23	12.25	.009	.02	10
6	1	8	15	1.05	.016	.02	61
7	1	12	23	5.75	.021	.02	18
8	1	10	23	3.90	.019	.02	25
9	2	5	13	1.00	.041	.02	55
10	2	8	15	6.00	.031	.02	10
11	2	6	13	1.75	.026	.02	35
12	2	10	12	4.80	.032	.02	10
13	2	6	10	10.50	.036	.02	5
14	3	14	33	1.40	.028	.02	105
15	3	15	15	5.50	.023	.02	12
16	3	8	30	16.00	.035	.02	10
17	3	17	15	25.00	.033	.02	4
18	3	10	23	7.50	.032	.02	24
19	3	11	30	3.00	.030	.02	46
20	3	9	20	1.40	.029	.02	61

(32,55,60). Consequently, this sampleproblem, though realistic, is frotably at the sall end of the spectrum in terms of the number of parts to produced in the cell. The farts are assumed to be similar in design and in processing oferations requirerents, such that they conform to the manufacturing environment presented in chapter 3. The variety among frocessing times, demand quantities, and costs ray not be represertative of actual GT implementations. The GT manufacturing imfementation is such that a 3 week cycle exists. That is, each part is expected tc be froduced once every three weeks in guantities which will satisfy demand over the three week feriod. Althcugh the frocessing time reguirements to meet this demand vary among farts and families, the total of these tines is 7230 minutes for the 3 seek feriod, or 30 minutes of cvertime reguired with a 40 hour work week. With these data, then, the cell should operate at 100.42% capacity with 88.8% of the time reguired reing productive time. The iritial and final inventory guantities approximate the 3 feriod demand quantities. Again, it should be stressed that the initial GT irglerentation is assumed tc be the result of a classification and coding prograx.

Solving the Sample Lata Prctlem

Although a hierarchical procedure will be used, it was necessary to employ a monolitnic apyroach also. This serves
twc purposes. First, by taking this affroach with a sample frcblem of relatively small dimersions ore can demonstrate the rathematical difficulties which will be encountered. Seconc, ty corparing the optimua sclution from a monolithic aprroach with the sclution frci a hierarchical procedure, cne hofefully can evaluate the frocedure.

To achieve an oftimum froduction flan from the samile frcblem, the IBM computer scftware package mathematical Ercyramming System Extended (MPSX/370) was used. Althoujh Erimarily used for solving linear programing froblems, this fackage contains a feature fcr sciving mixed-integer linear frogramaing froblems. This feature, called MiP/370, searches for a solution in two stages. First, the froblem is sclved as if it were a linear grogram to derive an optimal continuous sclution. Next, the branch and bound technique is employed in the search for an optimal integer sclution. This search starts from the optimal continuous solution and forces the designated integer variables to assume integral values. Thus, a series of integer solutions way be found which tend toward the optimal soluticn. When an integer solution is found, it is not known whether it is cftimal. The search must continue urtilit is froven through bounding technigues that nc better solution exists. When a variable is forced to an integral value, a subproblem is created and a solution to this subproblem calculated. In refresenting tranch and bound searches, these subproblems are symbolized as nodes in a tree. The number of nodes in a
tree, then, may be used as a measure of the size of a froblem, since each refresents a sclution.

Since the inclusion of integrality constraints has a significant impact on the rumerical difficulties of cftimization problems, it is best to limit these as much as fossirle. Hence the producticn guatities are not constrained tc be integer in the model formulation. Bather, if non-integer quantities are included in the oftimal solution it is assumed that these values may be rounded to the nearest integer. This rounding would reguire a verif slight relaxing of either the overtime cr undertime restrictions for a period. This leaves the number of part and family setups for each period as the only integer variables. Further, these quantities are restricted to be either 0 cr 1. This speeds MIf executicn and shortens the infut data reguirements. This action is logical, as the derand for and production of parts are modeled as occurring at discrete intervals of time.

Figure 10 fresents the mancer in bhich some of the Ircblem statistics may be calculated fricr to attempting to solve this model with MIP. Osing the equations for calculating the total constraints, structeral variables, and integer variables, one can determine what these statistics will be for any set of problem parameters. This is deronstrated in Figure 11. In this figure, each parameter cf the problem is varied independently, and the resulting statistics frinted. These grafhs demonstrate the rapidity

VARIABLE DEFINITIONS

```
    PH - NUMBER OF PERIODS IN THE PLANNING HORIZON
    NP - NUMBER OF DIFFERENT PARTS PROCESSED IN THE CELL
    NF - NUMBER OF DISTINCT PART FAMILIES PROCESSED IN
        THE CELL
```

CONSTRAINTS
DEMAND $=$ NP * NH
LABOR: REGULAR $=\mathrm{PH}$
UNDERTIME $=\mathrm{PH}$
OVERTIME $=\mathrm{PH}$
INVENTORY: INITIAL $=$ NP
FINAL $=\mathrm{NP}$
SETUPS: PART $=\mathrm{NP}$ *PH
FAMILY $=$ NF*PH
TOTAL CONSTRAINTS $=\mathrm{PH}(2 \mathrm{NP}+\mathrm{NF}+3)+2 \mathrm{NP}$
STRUCTURAL VARIABLES
PRODUCTION QUANTITIES $=$ NP*PH
INVENTORY LEVELS $=(\mathrm{PH}+1) * N P$
SETUPS: PART $=$ NP*PH
FAMILY $=$ NF*PH
LABOR HOURS: UNDERTIME $=\mathrm{PH}$
OVERTIME $=\mathrm{PH}$
TOTAL STRUCTURAL VARIABLES $=\mathrm{PH}(3 \mathrm{NP}+\mathrm{NF}+2)+\mathrm{NP}$
INTEGER VARIABLES
SETUPS $=(N P+N F) * P H$
Figure 10. Equations for Calculating Problem Statistics

Figure ll. Graphical Repretation of Statistic Equations
with which the eroblem statistics grow with even small changes in the parameters. For instance, in Figure $11(\mathrm{~b})$ cne can see that increasing the number of parts to be considered frof 10 to 20, and with 3 families and a 6 period flanning horizon the froblem statistics almost double. To draw conclusions frcm graphs such as these, either equations for estimating computer time and sface reguirements must be available, or one must experiment. The latter afproach was taken in this research.

Table II fresents the execution statistics which resulted from solving the sample froblem using MIP on an IBM 3081 computer. Merely encoding the data is guite a timeconsuring task. Use cf a matrix-ge neratirg computer program bould certainly be justified if the rodel were to be exercised with a variety of data. The iterations performed in searching for the continuous crimum irvolve changing the basic solution by the revised simplex method. Each subseguent iteration indicates that a solutionhas been calculated for a node in the branch and bound tree. The iterations shown include those performed in searching for the continuous optimum.

As can been seen in the table, 3,C19 iterations were reguired to arrive at the first integer solution. Considering the relative size of the prorlem $(20$ farts. 3 farilits, 3 feriods) extensive calculations vere reguired. Although the cftirum integer sclution was produced after 8,895 iterations the ofimality of this soluticn was not

TABLE II

SAMPLE PROBLEII EXECUTION STATISTICS

Statistic	Value
Constraints	178
Structural Variables	215
Integer Variables	69
Input Data Records	770
Iterations to:	333
Continuous Optimum	3019
First Integer Solution	8895
Optimum Integer Solution	42480
Optimality Proven	8 min. 43.79 sec.
Execution:	
Time	
Space	569,344 bytes
Total Processor Cost	$\$ 236.21$

(IBM 3081 COMPUTER REQUIREMENTS)
kncwn until 42,480 iterations had been corpleted.
The computer time and sface reguirements and the resulting processor cost discourage the ronolithic approach taken with the sample problem. Returning to Figure 11 (a) cne can see that the problem statistics inse sutstantially with an expanded planning horizon of 6 months. The frcessor costs could be expected to rise at an even faster rate. Further, changes in problem variatles may significantly affect frocessor costs. as an example, the initial and final inventcry levels of the sample problen were reduced to values approximating single-period demands. Ihis change necessitated a program modificaticn increasing the arount cf space alloted for nodes amaiting processing. with this in mind one would exgect the frocessing costs to rise, which did in fact occur. Althoughexact frocessing costs for sclving the cost redel with MIP cannot be fredicted, the results from the sample problem strongly discourage this approach. The corputer processing costs for using this apfroach with multifle GT cells and a longer Elanning horizon would be prohibitive.

It should se noted that the computer processing reçuirements are degendent ugon the linear frogramming algorithr emploged. The MPSX corfuter softuare used in this research, an IBM frcduct, relies on the simplex algorithm and is generally considered to be the fastest frogram available. However, as new algorithmic and computer irocessors are developed it might become rractical to use
the part data with the cost model.

Aggregating the Lata

Buffa and miller (9) provide a definition ci aggregate Elanning attrifuted to Holt, Modigliani, and Simon:

- - a measure of production per unit of time (per week or per month, for example.) Host factories froduce many products rather than just one: hence, a common unit must be fcund by adding quantities of different froducts. For example, a unit of weight, volume, work required, or value might serve as a suitatle comon denorirator. (E.219)

Although considerable research has been conducted on the subject of aggregate glanning, rarely are the aggregation frocedures fresented or discussed. Most of these efforts, rather, are directed at solving the aggregate problem.

The aggregation procedure selected for this problem deterrines a weighteo-average based frirarily on forecast demand. The calculations are presented in Figure 12, and the computer program developed tc ferforithem in Apfendix A. These calculations are ferformed in order to represent all of the parts in a family as a single entity, thereby reducing the mathematical difficulties cf finding a solution.

As shown in figure 12 the aggregate raterial, holding, and burden costs are strictly weighted averages. The

VARIABLE DEFINITIONS

Figure 12. Equations for Aggregating Data

Figure 12. (Continued)
aggregate processing time differs sliyhtly in that the part setup time must be included. This is accomplished by estimating the freyuency of setups for farts. for this frctlem a freguency of once every three periods was selected for all parts. The tctal frocessing time required to meet demand is calculated and divided by the total demand to determine the aggregate processirg time fer part. Finally, the aggregate initial and final inventories and demand per fericd are simple summations over the rarts ir a family. The aggregated fart data for the sample froblem is shown in Tatle III. The only modification tc the cost model structure is the elimination cf the integer variables recresenting fart seturs.

Through aggregation the criginal froblem is now refresented as if 3 farts belonging to a single family are to be froduced within the cell. Viewing the aggregated data in this manner, it is quite natural to further reduce the Ercblem by again applying aggregaticn. This was done to the data in Table III and the results are shown in Table IV. The problem is now refresented as a single aggregate part to be froduced in the cell. The rocessing time fer unit now includes both part and family setup times. Thus, the cost rodel representation of this data is nc longer a mixedinteger protler, but sirply a linear one. Hereafter, the 3 sets ct data will be referred to as the part data, the

TABLE III
AGGREGATED PART DATA FOR THE SAMPLE PROBLEM

Family Number	1	2	3
Setup Time	160	45	225
Processing Time/Unit	10.19	6.64	12.42
Demand/Period	92	39	88
Holding Cost/Unit	2.72	2.49	3.63
Material Cost/Unit	0.018	0.034	0.029
Burden Cost/Unit	0.20	0.20	0.20
Initial Inventory	274	115	262
Final Inventory	274	115	262

TABLE IV
AGGREGATED FAMILY DATA FOR
THE SAMPLE PROBLEM

PARAMETER	DATA
Processing Time/Unit	11.11
Demand/Period	219
Holding Cost/Unit	3.04
Material Cost/Unit	.025
Burden Cost/Unit	.020
Initial Inventory	651
Final Inventory	651

farily data, and the cell data.

Comparison of Execution Statistics

The froblef and execution statistics cf the part data Ercblem are displayed again in Table V alcny with those from the family data and cell data froblems. The difference in the statistics letween part data and family data is cbviously signıficant. Although the difference between farily data and cell data statistics is nct nearly as great, it would increase rapidly if the planning horizon is expanded to a more reasonable length or with the addition of ancther part family. Further, by reducing the problem to a linear programming one, the fctential for model use is enhanced.

Comparison of Sclutions

Frcm the preceding discussion one can sef that production flanning with the fanily or cell data wold be desireable frcm a computational standpoint. The questicn remains, however, as to the validity cf a plan froduced using açregated data. Ihis questicn will be approached by comparing the solutions which result frof the three sets of data.

The production plans and associated inventcry levels which represent the oftimum solutions for the data are shown

TABLE V
PROBLEM AND EXECUTION STATISTICS

	Part Data	Family Data	Cell Data
Model	178	33	14
Constraints	215	36	13
Structural Variables	69	9	0
Integer Variables	770	154	48
Input Data Records	42,480	118	18
Iterations	523.79	1.70	0.74
Execution Time (sec.)	569,344	114,688	276
Execution Space (bytes)	236.21	1.25	1.25
Total Processor Cost			

in Table VI. In the table the froduction and inventory guantities for the fart data and the family data are fresented by families in addition to the total for each feriod in the flanning horizcn.

To compare the plans the sclutions ust be examined on the basis of costs also. These are stown in Table vil. This table presents the overall cost as deriving from three sources: production, inventcry, and overtime. This reflects the orjective function of the cost model in which the material, burden, and regular labcr cost ccetficients are combined. This is fossible as all cf these costs are functions of the production volumes. The part data and fafily data production costs include costs for regular labor due to setups. The coefficient used in the model for calculating overtime reflects the increase in labor costs for overtime and is identical for the trree sets of data. The sources of difference in the costs will now be discussed.

In aggregating data a certain amount of rcundcff error will cccur. The effects of this can be seen in the third feriod inventory costs. The rodel constrains the ending inventory values which should result in identical third feriod inventory costs. The differences are an indication cf the rcundcff error which results frmaggregating the inventory holding costs per unit. It may be concluded that a small portion or the differences found are due to roundoff error.

TABLE VI
PRODUCTION PLANS

MODEL	Production			Inventory			
	Period			Period			
	1	2	3	0	1	2	3
Cell Data	194	225	238	651	626	632	651
Family Data							
Family 1	113	0	163	274	295	203	274
2	0	0	117	262	244	350	115
3	70	194	0	262	244	350	262
Total	183	194	280	651	615	590	651
Part Data							
Family 1	0	204	72	274	182	294	274
2	0	90	27	115	76	127	115
3	181	0	83	262	355	267	262
Total	181	294	182	651	613	688	651

TABLE VII
OPTIMUM SOLUTION PRODUCTION COSTS

$\begin{aligned} & \text { COST } \\ & \text { SOURCE } \end{aligned}$	Part Data	Family Data	Cell Data
Production			
	372.74	361.48	330.96
2	416.67	395.69	383.85
3	393.40	415.30	406.03
Total	1182.81	1172.47	1120.84
Inventory			
Period 1	1469.75	1752.81	1784.10
2	1134.25	1779.32	1801.20
3	1852.95	1853.55	1855.35
Total	4456.95	5385.68	5440.65
Overtime			
Period 1	17.40	0.64	0.00
2	46.60	48.00	19.85
3	48.00	48.00	48.00
Total	112.00	96.64	67.85
TOTAL	5751.76	6654.79	6629.34

Both production and overtime total costs decrease with the aggregated data, indicating a decrease in the time reguired to meet the flan. Ihis casts suspicion on the aggregation procedure. The rost cbvicus source of the difference would be the incorforaticn of setup times in the aggregated frocessing time per unit. The optimum plan from the part data calls for a single setup for all parts over the flanning horizon with only a single exception fart number 19). This would account for only a small portion of the difference between the producticn costs of the part data flan and the family data plan, as only 30 minutes are reguired for this extra setug. The differences in family setup tife reguiremerts are more significant. from the Ercduction plans in Table VI one can see that a total of 6 farily setups were included in the part data plan and 5 in the farily data plan. Only 3 were ancluded in calculating the aggregate prccessing time fer unit for the cell data flan. Examining this facet of the frcblem reveals a shcrtcoming of the mixed-integer fcrmulation of the model. Considering the fart data froduction plan it is apparent that the setur for either fauily 1 or 2 would not be necessary in feriod 3, as bcth cf these are tc ke froduced in period 2. The same would be true of family 3 in period 2 cf the family data plan if it were also scheduled last in feriod 1. If one removes the cost of these setup times the totals of the froaucticn and cuertime costs become:
$\begin{array}{ll}\text { family data---- } & 1194.11 \\ \text { cell data------ } & 1188.69\end{array}$
These figures indicate that the cell data provides a close apgroximation of the production costs associated with the optimum part data flan for the sarfle data.

The greatest difference in tctal costs derive from inventory holding costs. Mith the part data the model is able to select for frcduction early in the planning horizon thcse parts with smaller per unit holding cost. This defletes the inventcries of farts vitt higher fer unit tolding cost as much as possible. fith aggregation this distinction is lost. The reascn for the magnitude of the differences is the variety of bclding costs in the sample data. Since the formation of fart faxilies is normally based on similarities in raw material, design, and frccessing the inventory holding cost per unit will likely bave ruch less variety than that cf the sample data.

Summary and Conclusions

Solving the cost model for the GI cell is the topic of this chapter. Eyuations are develofed which calculate problem statistics for any set of data to be used in the model. It is concluded from grafhs of these eyuations and from the execution statistics using sample data that computer reguirements using current MIF technigues discourage a世onolithic apfrcach.

An aggregation procedure is develofed which allows the farts in a part family to be refresented as a single part. additional aggregation reduces the prorlem to a single refresentative part for the cell. Ihis allows the model to be sclved with linear programming. Tbe changes in the exfcution statistics hich result are draषatic.

To validate the aggregaticn frocedrre the production flan total costs before and after aggergation are compared, using the sample data. A small portion cf the cost differences are the result of rcundoff error. Another source of difference in costs derives frcm the aggregation frccedure. The manner in which setup time is included during aggregation is concluded to be important. The wajority of the differences in total costs are traced to the variety present in inventory holding costs for farts. It is concluded, hcuever, that this variety sill usually not be fresent in $G T$ cells, and that the aggregated data provides a clcse approximation of the producticn costs.

In using the aggregate planning afproach develofed in this research, the fcllowing guidelines are recmmended:

1. A weighted-average based upon planned crders from MRP should be used for aggregating the data.
2. The accuracy of the aggregate flanning solution is improved when the ranges of values for the parameters are relatively small.
3. Reasonably accurate estirates of the number of part and family setups which will be reguired over the
planning bcrizon are necessary for calculating the aggregate frccessing tines.
4. If the aggregate planning model does nct accurately retlect the unaggregated data, then the aggregation technique should be examined for possible modification.

Adkering to these guidelines and requirements should not fose a difficult protlem. Uses of the aggregate planning rodel will be discussed in the next chapter.

CHAPTEF ∇

APPLICATIONS OF THE MODEL

Introduction

In the preceding cbapter it was demonstrated that the aģregate model, terfed the cell data model, provides a clcse approximation to the cost cf production with a GT cell. In this chapter the manner in whict this model may be used will be presented.

Four ways in wich the rodel may be of value to manajement will be discussed and dermstrated in this chapter. First, the solution will be analyzed to examine the relationshifs of the variables and constraints in hopes of gaining insight into the costs of the manufacturing system. Second, the solution will be analyzed to examine the impact of a changing external envirorment. The models use in possible system modifications to adapt to these changes will then be discussed. Lastly, the use of the solution in the scheduling function of froduction planing and scheduling will be examined. pricr tc ferforming these analyses the model was expanded to 12 feriods which is
considered to $上 \in$ a more realistic flanning borizon.

> Analysis to Examine Onderlying Belaticnshifs

The oftimum sclution from the cell model with a 12 period horizon is contained in Appendix E. Ibe froduction plan associated with this sclution is shown ir Tatle קIII. One can see that the flan calls for minimum froduction in the first five periods, an increase in groduction in feriod 6, and maximum froducticn in fericds 7 through 12. The undertime in fericds 1 through 5 is at a saximum, as is the cvertime in periods 7 through 12. Furthermore, through use cf the range feature ot MPSX it was found that an increase in derand in any cf the first fur pericds of the horizon would actually decrease the overall cost associated vith the Elan. For instance, the computer cutput indicates that the current orjective function value wald decrease $\$ 10.32$ for each unit increase in demand in period 1 trom the current value of 219 uf to 226 units. at this geint the limit on overtime in feriod 6 would beccee an active constraint as the inventory level at the beginning of feriod 6 would be lower. This would reyuire more froduction in geriod 6 to meet demand and the final inventoryconstraint. In fact. modification of any of the active constraints (all periods derand, regular bours available, undertime in periods 1-5, overtime in periods 7-12, and initial ard final inventory

TABLE VIII
AGGREGATE PRODUCTION PLAN FROM
CELL MODEL SOLUTION

PERIOD	PRODUCTION QUANTITY	ENDING INVENTORY	LABOR HOURS
0		651	
1	194	626	2160
2	194	601	2160
3	194	576	2160
4	194	551	2160
5	194	526	2160
6	230	537	2557
7	238	238	575
9	238	613	2640
10	238	632	2640
11	238		2640
12			2640

values) will result in the overtime constraint for period o becoming active. Thus, the ccst structure of the sample frcblem is such that the optimua sclution delays production as long as fossible, thereby defleting the initial inventory.

All of the atove aspects of the solotion to the model may be attributed to the relatively high inventory bolding cost. Altbough this insight cculd have been attained by cther methods, it is a by-frcduct of this production Elanning frocedure wich is available at litte cost.

Io further investigate the etfects of the inventory farameters a sensitivity analysis of these parameters was conducted. The parameter variaticns studied are shown in Tatle IX. The following discussion relates to this table.

In case 1 the initial inventcry value was varied froll 0 to $29 b$ while the final inventcry value and holding cost remained corstant. The optimur solution obtained vith zero initial and final inventory values maintains a level frcduction rate which atches the demand. Thus, the overtime is a constant 33.09 minutes fer pericd and the undertime 0 minutes fer pericd. As the initial inventory level is increased the objective functicn value decreases initially. This is a result cf the elimination of the overtime in feriod 1 which was reguired to meet demand. This decreasing trend ceases once the urdertime constraint forces inventcry to be carried from period one to two. Afterwards, the objective functicn value strictly increases

TABLE IX
INVENTORY PARAMETER VARIATIONS STUDIED

CASE NUMBER	INITIAL INVENTORY	FINAL INVENTORY	INVENTORY HOLDING COST
1.	0 to 295	0	2.85
2.	0	0 to 223	2.85
3.	0 to 651	0 to 651	2.85
4.	651	651	285 to 0.00

with increasing initial inventory. The effect of increasing initial inventcry on the production plar is a decrease iu frcduction volume in the earliest pericd until the undertime constraint is encountered, at wich time the decrease will continue into the next earlier period. This pattern continues until the initial inventcry reaches a value of 295, at which foint a feasible sclution nc longer exists.

Case numter 2 from Table VIII involves varying the final inventory. As one would suspect, the objective function value strictly increases as the final value is increased from 0. The oftizum froduction plan accounts for increasing final inventory values by increasing the amount cf frcduction in the latest pericd pcssible, sukject to the cvertime constraint. With an initial inventcry of 0 the maximum possirle final inventcry is 223.

Cases 1 and 2 demonstrate that, given the cost model farameters, initial and final inventory values other than 0 will result in a froduction plan uhich delays frcduction as long as possitle. By varying these values simultaneously (case number 3) this conclusion was reinforced. With this frcblem data, then, minimum inventory levels are desireable. However, this would $t \in$ true for any manufacturing situation if the demand were stable, accurate forecasts available, and the groduction facilities bighly reliable. Mangement Folicy will ncrmally exist for establishing these minimum values.

Case number 4 involves the sensitivity analysis of a
cost coefficient, the inventory hclding cost. Beginning with a cost of 2.85 dcllars fer unit this parameter is gradually decreased, resulting in a corresponding decrease in the objective function value. The oftimum solution frcduction flan does nct change urtil a hclding cost of 2.22 is reached. After this point the overtime cost incurred jer unit cf production is greater. Conseguently, subseguent solutions have reduced overtime in the later periods, offset ty reduced undertire in earlier feriods. When the holding cost fer unit is eventually reduced to 0.0 the resulting froduction plan requires exactly 2400 minutes of production tine fer period for the first 10 periods. The initial inventory is used to atsorb the excess demand. In periods 11 and 12 overtime is used to meet the final inventory requirement. From this one can conclude that the inventory hclding cost per unit has a significant effect on the optimum production plan, especially if it exceeds the cost cf overtime to froduce a unit.

The results of these analyses indicate the importance of the inventcry farameters, guantity on hand and holding cost, to production planning for the cell. Management will be able to satisfy the planned crders frcm MRP, and should examine the inventcry policies and concentrate cost reduction efforts on the holding costs, given the current rrcblem parameters.

Analysis cf the Iqfact of a Cbanging
External Eavironment

An iøportant yet frequently overlooked feature of many linear frograming sottware fackages is that tbrough sensitivity analysis one can determine the effects of variations in the data without completely rerunning the entire prograw. Tre rost obvious source of potential external variation with this ccst model is the forecasted derand. To examine the impact of a nor-constant demand a series of computer runs were made. Thest are sumarized in Tatle X. Each of the six demand streams employed is drawn frcm a uniform distribution. The farameters of the distributions were artitrarily selected, rut constitute both increasing and decreasing mean values, and an increase in the range about a mean. The use of these varying demand streams with the model is intended to examine the impact of fluctuating derand on the resulting froduction plan, as well as demonstrate the value of the rodel in evaluating the impact of changing external demand. Conseguently, with each stream the initial and tinal inventory levels were varied from 650 to 0.

The first two demand streams shown in the table are distributed about a mean value approximately egual to 219, the constant demand used with the original model. With derand stream number 1 the demand lies in a range which extends 10\% either side of the wean. The demand is allowed

TABLE X

SUMMARY OF VARYING DEMAND STREAMS
 USED IN ANALYSIS

			Bounds	
DEMAND			MEAN	
STREAM	UPPER	LOWER		
1	DISTRIBUTION	MEA	Uniform	219
2	Uniform	219	197	241
3	Uniform	241	217	263
4	Uniform	263	237	289
5	Uniform	197	177	217
6	Uniform	175	158	193

tc vary up to 20% of the mean in demand stream number 2. The groduction plans wich resulted from these demand strears and varying initial and final inventory values frcduced no surprises. The optimum cost flans with zero initial and final inventory values cost less than those froduced with higher inventcry values. As with previous analyses the inventcry level is minimized by matching the demand stream as much as posisible. Dsing demand stream 1 the production flan dees not vary as the inventory values are increased above 100 . The same is true above 150 with demand stream number 2. Above these values, the production flan calls for maximum undertime early in the flanning hcrizon and maximum overtime in the later periods. One may conclude, then, that moderate fluctuations in the demand will have minimal impact on the cptimum froduction plan for this froblef. One point of interest dces occur with demand stream 2. Below a final inventcry value of 16 no feasible solution exists, as the undertime constraint forces frcduction in pericd 12 to exceed the sum of the demand in that feriod and the final inventcry value. Thos, either this cvertime constraint would have to be relaxed, or the final inventory value increased.

To examine the impact of increasing demand, streams 3 and 4 were employed. These are based on increases in the demand mean of 10% and 20\%. With the 10\% increase the cell is cafable of meeting demand within the constraints, as long as the initial inventory value is greater 18. The
resulting production plans use maximum overtime in periods 2-12, regardess of the initial and final inventory values. As the inventcry values are reduced from 650 to 50 , in steps cf 100 , the production plans charge cnly in inventory levels and objective function values, bcth of wich decrease. At and kelow an initial inventory value ct 18 no teasible solution exists, as the demand ix feriod 9 can no longer be met within the overtime constraint.

Vith demand stream 4 the results are more dramatic, as no feasible sclution exists with inventcry values of 650. Although the demand in each period is satisfied, only 367 aggregate units remain at the end of the planning horizon. This is not suprising, however, as the lower value of the derand range equals the maximum cafacity cf the cell within the overtime constraint. The total demand over the flanning horizon is such that the initial inventory will te depleted unless the cvertime constraint is relaxed or a modification is made to the manutacturing system or part families.

Sith an increase in the mean demand one can see the value of maintaining a certain amount of inventory as safety stcck. This enables the cell tc meet high fluctuations in derand without viclating constraints. The model's detection of pctential problegs with increased demand is clearly evident. As a tool in the examination of possitle remedies to this problem, the model vill be demonstrated later in this chapter.

Lemand streams and 6 are drawn from distributions
with mean values 10% and 20% belcw the initial constant value of 219. In the former case, the model is able to handle the reduced cemand within the constraints. With initial and final inventory values otter than 0 , the undertme in feriods 1-11 is at a maximum with overtıme being used in period 12 to meet the final inventory value. Using demand stream 6 no feasible soluticn exists, as the total demand over the flanning hcrizon is less than the frcduction volume using maximum undertime. Conseguently, sorfe increase in the inventory level must occur in order to rexain within the undertime constraints. The decision must te made either to relax the undertime constraint or accept an excess of inventory at the end of the planning period. These choices assume that modification of the manufacturing system or part families is not possible, an alternative which will be considered in the next section of this chapter.

Analysis of GT System Mcdifications

The establishment of fart families and selection of machines tc prccess these families are tasks normally accomplished by a froject teau for GT irplementation. Once fanilies and machine cells are ϵ stablished, however, it generally becomes the responsibility of the production planning and controd defartment to monitor the performance of these cells. Yet,
no literature has been found which suggests methods for accomplishing this task.

Modification of the GT system may cccur in two ways. The composition of the part families may be modified or the frccessing capability of the cell may be changed. These modıfications may be accomplished in different ways and in response tc different external factors. Houever the modifications are accomplished, the cell model way be used tc analyze the impact.

Fart Family Modifications

In the previcus section it was demonstrated bow the cell model detects potential problems in over- or underloading the cell with work over the flanring horizon. The problems were fresented as deriving from changes in the aggregate derand. These demand changes cculd come from a number of sources, including demand. changes for end-products, introduction of new froducts, cr froduct design changes. Fegardless of the source of the change, scme action must be taken to ensure the contınued viability of the GI system.

Several actions were suggested to combat underor cverloading of the cell, primarily through relaxation of a constraint. Another option which exists and should be considered is modification $c f$ the fart families being Ercduced in the cell. In the case of an cverloaded cell the number of parts might be reduced. This would be
accomplished either trough subccrtracting or by routing the jots to other wachines in the facility. To rectify an underloadiny condition, additional farts may be included in the families. This fossibility is realistic, as no actual implerentation has ever processed the entire parts forulation. Furthermore, new fart designs are freguently being introduced for roduction.

The cell model may be used to analyze the impact of frefosed part tamily modifications. one way to accomplish this is to simply aggregate the data again, including data for the new part crexcluding data for a fart to be removed. If a fart is to be added one could include it in the model by introducing new variables and constraint rows to the wodel. However, this wald entail the inclusion of 12 new row vectors and 26 new column vectors. Conseguently, reaggregating the data is recommended.

Consider demand stream number 6 cf Table IX which resulted in an infeasible sclution, as the undertime constraints could not be satisfied. If a part exists which technclogically could te added to cne of the fart tamilies, cne may wish to consider the imact of this addition on the froduction flan. As an example, consider the data for fart number 21 presented in Table $X I$. The revised aggregate cost coefficient and processing time fer unit may be calculated as shown in figure 13, rather than reagcregating the data. The initial and final inventory values and demand fer feriod for the new part ray be included by simple addition.

TABLE XI
CANDIDATE PART DATA

Previous Aggregate Data
Processing Time Per Unit $=11.11$
Total Demand $=2628$
Total Processing Time $=2628$ * 11.11 $=29197.08$
Cost Coefficient $=1.706$
New Part Data
Cost Coefficient $=1.687$
Total Processing time $=4020$
Demand $=36 \emptyset$
Revised Aggregate Data
Processing Time Per Unit $=(29197.08+4020) /(2628+360)$
$=11.12$
Cost Coefficient $=(1.706 * 2628+1.687 * 360) /(2628+360)$
$=1.704$
Figure 13. Calculations for Modifying the Aggregate Data

Further, reconstructing the data for the linear frogramminy model is easily accomplished with ar editing program.

The model has been solved successfully using the revised aggregate data, and the results reveal that, with the modified GI part families, the cell will operate within the constraints for the forcasted demand. If additional cardidate parts exist they might also be considered, as the optimum production plan willuse raximur undertime in the first 8 periods.

To consider the effects of the deletion of a fart from a family one would fcllow the same frocedure, subtracting tifes, costs, and demand as opposed to adding. This action might be reguired due to part ctsolescence or to relieve an overloaded cell. In the latter case, another alternative would be the modification of the GI syster machines.

Machine Grour Modifications

A number of external factors say affect the processing cafabilities of the GI system. Eachines may be modified to increase their production rate, such as ty adding autcmated tocl changers or by switching from NC to CNC. Newer wachines may te purchased as reflacements or as an addition to existing machines, or identical machines may be added to the cell. Regardless of the wanrer of change, the effect on the groduction plan may be sigrificart and should be examined.

A change of this nature will affect farameters of every fart frocessed in the cell. The burden ccst may be affected through new requirements for indirect labor, indarect Eaterials, cr other burden component cost. Direct material costs may te oecreased if the anount of scrap is reduced. The setur and processing time frr a part and setup time for a family may te changed. This would directly affect the frocessing cafabilitifs of the cell. In example will be used to demonstrate use of the rodel to examine the impacts cf frccessing capability modificaticns.

In Section 5.3 demand stream number 4 from Table X was used to demonstrate the reacticn of the model when the demand mean was increased by 20\%. The result was an infeasible solution. Since the demand for farts must be satisfied some action wust be taken. One option available tc management might be to add an additional machine. Assuming that the only parameter wich would change is the aggregate processing time, reaggregation of the data is not necessary. Rather, the new aggregate processing time, 9.95, may be substituted easily with an editing frogram. This change has been made in the data with the result being a feasitle sclution.

Analysis of Alternatives

The acgregate cost model, then, serves grite well as a tool in examining the ispact of G I syster modifications, whether
the change isfor improvement or to avoid a potential Ircblem. Furthermore, since the model is based on frcduction costs, alternative prcfosals may be analysed. If the proposed change is the addition or deletion of a part, cr a change which will affect the parameters cf all farts equally, then the existing data for the model may be edited guite easily. Even if the aggregation frocedure must be ferformed again, a matrix-generating program for the LP coqputer package would make this task a minor effort.

Iwo topics not mentioned in the preceding discussion shculd be noted. First, the effect on the balance of work within the cell wust $f \in$ considered frior to implementing any GT syster change. This could be a major consideration defending on the composition of the cell. Balancing techniques are an entire study in themselves and will not be addressed here. Second, it was assumed that a candidate fart existed which could technologically te frocessed alony with cne of the existing fart fasilies. This implies that the inclusion of this part would nct affect the processing cf any existing parts.

The Solution as a Schedulinc Aid

The result of the cell data model is a solution to the aggregate protlem which enables sanagers to make decisions related to workforce requirements, machining cafacity, and fart family composition. The next step normally taken in
aggregate planning is the disaggregation cf this solution to a froćuction plan, allocating fart and family production to distinct periods in time. However, since the demand for the model was generated through MbP, the timing and guantity of the requirements for farts is already kncun. Furthermore, these are constrained by the demand for subassemblies at a higher level in the bill of material. Thus, the only changes which could be made wold invclve moving orders forward in hopes of eliminating a family cr part stup. The solution to the aggregate model indicates froduction activity in terms of labor hours per pericd. This may be used as a goal in the analysis of possitle changes to the froposed order release from MRP. However, as discussed earlier in this chapter, if low initial and final inventory values exist the optimum plan matches derand as closely as is possible. With higher inventcry values production is delayed. Thus, with this sample data few changes would be anticipated. Rather, a "cut-and-fit" afproach might be afflied to avoid excessive deviaticns frcm the labor hours associated with the aggregate sclution. The potential for future work related to this tofic will be addressed in the next chapter.

Summary

This chapter has been directed to the exarination of ways in uhich the aggregate flanning model can be utilized.

Sensitivity analysis is the frimary tcol used in this examination.

The solution was closely examined using the range feature of MPSX. Ihis indicated that the inventory farameters had the strongest impact on the solution witbin the given constraints. A sensitivity analysis of the inventory levels and holding cost farameters was performed and indicated that production will be delayed as long as possitle within the constraints in order to deplete the inventory. This results in maximum overtime in the later geriods and undertime in the earlier periods. Varying the initial and final inventory values cnly affects the magnitude of this unbalanced glan. Sensitivity analysis of the bolding cost reveals that the froduction plan will not be affected by changes in this value until it is reduced to a point at which the overtire cost parameter becomes dominant. Through these analyses the value of the model as a tool in understanding the cost structure of the GT cell is deronstrated.

Sensitivity analysis of the aggregate demand has been ferformed to examine fluctuations, increases and decreases in demand. Through this aralysis the cell's capability to hande high fluctuations in demand is shovn. Also, the need for maintaining some inventory to arsorb these fluctuations recomes apparent. The ability cf the model to detect fotential problems which might arise frof changes in demaud is desonstrated.

The model is found to serve quite well in evaluating $G T$ system modifications in response to increased or decreased demand. Modifications of the fart family and the machine group are examined, and examples presented. Methods for incorforating these changes were developed and are presented. Finally, the maner in mich the model's sclution may be used in production scheduling are discussed. It is concluded that the soluticn may $t \in$ used as a guide when considering possible changes tc the $k f P$ planned orders.

The gal of the research has been achieved. An aggrejate flanning technique is used to solve a cost model which refresents the production of parts by a GT cell. The cost model and the aggregate planaing technique were developed in this research. The manner in which the model may be used for flanning furposes has been thoroughly examined. By afflying the technique in a hierarchical planning procedure as recommended in this thesis onemay enhance the benefits cf using group technclogy concepts in manufacturing. The frcposed procedure is practical, flexible, and easily incorgorated into existing production planning and control systers.

The costs associated with a groduction glan for a GT cell have been identified and categorized as direct labor and materials, burden, and inventcry costs. These costs are translated into a cost model. The management and oferational aspects of the cell have teen examined and relevant modeling constraints develcped fcr the model. The resulting model and constraints comrise a mixed-integer linear programming problem.

The probleg has keen solved using MPsX. Equations were develcped for calculating the frcbler statistics with changes in the planning horizon, the number of farts, or the number of part families. An examinatior of the grafts of these equations and the execution statistics which resulted when a small problem was solved led to the development of ancther froblem-solving apfrcach. Aggregate planning technigues are applied and a linear programming problem results. The validity and advantages of using an aggreyate apfroach are analyzed using sarple data. Guidelines for afylying the aggregation approach are presented. These are intended to be general and to ensure a reasonatly accurate soluticn will result ben aggregate data is used.

Nays in which the sodel may be of benefit are demonstrated. The solution is analyzed to provide insight into the ccsts associated yith a GT manufacturing system. The impact of changes external tc the system yere examined, and petential modifications evaluated. Ihese modifications refresent changes in bcth machining cafacity and fart family composition. The manner in which the model may be modified tc represent these changes has befn developed and demonstrated. The use of the solution as an aid to the scheduling function cf froducticn flanniny and control is discussed.

Several potential areas exist for future research related to this tofic. In reviening the literature the lack cf definitive methods for econorically analyzing the initial

GT implementation was revealed. Cther aspects of establishing a GT manufacturing system afpear tc be wellresearched. However, another atsence in the literature is the lack of dccumented studies of the performance of GT manufacturing systems over a long period cf time, especially in the presence of major eccnomic fluctuations or technclogical change.

The procedure developed in this research wight be extended to include the scheduling function. This would entail disaggregation of the sclution into a schedule of fart family and part production. Althcugh a cut-and-fit method has been suggested, cther methods might prove worth while.

Lastly, it is felt that additional study into data aggregation procedures is needed. The impact of thas calculation uyon the results of an aggregation procedure was found significant ir this research. Since aggregate flanning is typically applied at the manufacturing facility and the product levels, the fotential worth of such a study is deemed significant.

1．Abou－Zeid，Mohamad Faafat．＂Group Technology．＂ Industrial Enginetring，May，1975，pF．3z－j9．

2．Allison，Jasper H．，J．C．Vapor．＂GI Affroach proves Out．＂A트를an Machinist，February，1979，pp．86－89．

3．Aminne，H．T．，J．A．Ritchey，C．S．Hulley．Eanufacturing CIganization and Management．Englencod Cliffs，N．J．： Frentice－Ball，Inc．，1982．

4．Anderson，J．C．，B．G．Schroeder，S．E．TuFy，E．M． Shite，＂Material Reguirements Planring Systems：The State of the Art，＂Producticn InyEntory Management， Vol．2ミ， 4 （Fourth quarter 1982）．pp．51－66．

5．Anderson，H．，S．Axsater，H．Jchnson，＂Hierarchical Material Requirements Planning Systess：The State of the Art．＂Production Research．Vol．19， 1 （1981）．pp． 45－57．

6．Beduorth，David D．＇J．E．Bailey．Johntegrated sons，Inc． 1982 ．
 Technology．＂Computers and Industrial Enginetring． Vol．3． 4 （1979），pp． $28 y-312$ ．

8．Eitran，G．R．f E．A．Haas，A．C．Hax．＂Hierarcbical Production Planning：A Single Stage System，n Operations Research．Vol．29． 4 （July－August 1981），pp． 717－74こ。

9．Ruffa，Elwood S．，J．G．Miller．production＝Inventory Systems：\quad llanging and Ccotrcle TFird Ed．，Homewood． Ill．：Richard L．Irwin，Inces 1979．

10．Eirbidge，J．I．Production Elanning．London： Eeinemann Press， 1981.

11．Collier，David A．＂planned Work Center Load in a Material Reyuirements Planning System，＂AIDS National Keeting Eroceedings．11th，Vol．1（1979），EF．377－379．
12. Dutkosky, R. J., K. Hitomi, I. Ham. Production Schedulinc in Grour Jechnclogy Apelication: yesterdeyis Concert in Tomorrowis World. Tcchnical Paper rSit-275. Dearborn, Michigan: Scciety of Manufacturing Engineers, 1976.
13. Eckert, Foger L. "Codes and Classification Systems," Americar Eachinist, Lecember, 1975, pp. 88-92.
14. Edwards, G. A. B. "The Family Grouping Philcschy." Internaticnal Journal cf Producticn Research, Vcl. 9, 3 (1971). FE. 337-352.
15. Gallagher, C. C., T. J. Grayson, A. Phillips. "A Review of the Development and Application of Group Technolcgy at the University of Birmingham." Internaticnal Journal of Producticn Eescarch. Vcl. 9. 2 (1971). EF. 229-237.
16. Gongaware, T. A., I. Ham. "Cluster Analysis Applicaticns for Group Technclogy Manufacturing Systems." Unpublished Paper, The Pennsylvania State Oniversity, 1981.
17. Graves, Steven C. "Using Iagrangean Techniques to Solve Eierarchical Froduction Elanning Prcblems." Managerfnt Science, Vol. 28, ヨ (March 1982), pp. 260-275.
18. Grayscn, I. J. "Some Research Findings on Evaluating the Effectiveness of Group Technolcgy." International Journal of Eroduction Eesearch, Vol. 16, 2 (1978), FF. 89-102.
19. Groover, Vikell F. Automation, Ercduction Systems, and Computer=idged Manufacturing. Englemood Cliffs, N.J.: Erentice-Eall, Inc., 1980.
20. Ham, Inycng. "Grcuf Technology- The Natural Extension of Autorated Elanning." Procetdings of CAM-I's Executive SEminar= Coding, Classification and Group Technclogy for Automated Elanning, San Diego, Ca., 1976, FF. 192-218.
21. Ham, I., K. Hitomi..N. Nakamura, I. Yoshida. "Optimal Group Scheduling and Machining-Sfeed Decisicn Under Iue-Date Ccnstraints." Transacticns of the ASME, Vol. 101 (May 1979). FP. 515-518.
22. Ham, I., K. Hitomi. "Group Technclogy Applications for Machine Ioading Under Multi-Rescurce Constraints." North Agerican Nanufacturing Fesearch Conference Erocefdincs, 9th, 1981, FP. 515-51を.
23. Hax, A.. H. Deal. MHierarchical Integration of froduction Planning and Scteduling." Studies in the
 North Holland Eurlishing Co.. Inc., 1975.
24. Eitomi, K., I. Ham. "tachine Loading for Group Technology Applications." Angals of the CIRP. Vol. 2b, 1 (1977). pp. 27s-280.
25. Houtzeel, Alexander. "Ihe Many Faces of Grcur Technology." amexican Machinist, January, 1979, pp. 115-120.
26. Houtzeel, Alexander. mGrcup Technclogy, The MultiEillion Dollar Fevolution." Proceedings: AIIE 1979 Fall Annual Conterence. 1979. FE. 197-201.
27. Loutzeel, Alexander. Telefhone conservation. \#arch, 1983.
28. Hsu, J. P. nImplementaticn Considerations for Group Technology and Material Rejuirements Planning." Proceedings of the The Angual Meeting and Technical Conterence of the Numerical Ccntrcl Scciety, 15th (AFril 1978), pp. 177-187.
29. Eyer, Nancy lo, O. Demerlcy. MmefgT: A Framework for Production Planning and Control ct Cellular Manufacturing." Decisicn Sciences, Vol. 13 (1982), pp. 681-701.
30. Kimbler, D. I., H. H. Agee. MImflications of Group Technology in Automated Standard Data Systems." Computers ang Industrial Ergineering, Vol. 6, 1 (1982), FF. 19-24.

ミ1. Knayer, Manfred. "GrouF Technology." Industrial Fngineering. September. 1970. Ep. 23-27.
32. Kruse, G. D., G. J. Suinfield, R. H. Thornley. "Design cf a Group Technology Elant and Its Associated Production Contrcl System." Ihe Production Engineer, July-August, 197E. PE. 417-421.
 Technical Paper ns78-972, Dearborn, Eich: Society $\overline{\text { Of }}$ ranufacturing Engineers, 1978.
34. Mahany, Hugh M. J. A. TCIEkins. NGT and MRP: An Unbeatable Combination.n froceedings AIIE 1977 Systems Engineeriny Conference, (1977). EP. 150-153.
35. Middle, G. He, B. Ccnrolly, F. H. Thornley. "Organizational Eroblems and the Relevent Manutacturinij

System." International Jourbal of producticn Restarch, vol. 9, 2 (1971), PP. 297-30c.
36. Mitrofanov, S. Pging Siertific Erinciples of Group National Lending Library for Science and Technology. 1966.
37. Nakamura, N.. I. Yoshida, K. Hitomi. "Group Production Scheduling for Minimum Tctal Tardiness- Part I." ALIE Iransactions, 10, 2 (1978), Ep. 157-162.
38. New, Colin. MM.R.P E G.T. A New Strategy for Component Froduction." Productior and Ingentory Banagerent, Third Quarter, 1977, FF. 50-6ї.
39. Oliva-loyez, F., G. P. Purcheck. mload Balancing for Group Technology Planning and Contrcl." International Journal ci Machine Tool Design and Research, Vol. 19, 4 (1979). 1F. 259-274.
40. Oliver, Bill. ${ }^{\text {GG }}$ Gup Technology Application for a Small Lot Size, N. C. Machine ShcF:" Proceedin. of the Annual Meeting and IEchnical ccnference of the Numerical Control Society, 15th, 1978.
41. Opitz, H.e H. P. Wiendahl. Group Technology and Manutacturing Systems for Small ard Medium Quantity Production." International Journal of Productiou Research. Vol. 9. 1 (1971). EP. 181-203.
42. Orlicky, Joseph. Haterial Reguiremerts Elanning. New York: McGraw-Hill Book Co., Inc., 1975.
43. Farkinson, Gerald. "Master proyrams Speed NC Taping."
 33-35.
 English Translation. Iondon: Business Eutilications Iimited, 1968.
45. Petrove V. A. The Analcgic Calculations of Cyclic Plans for Groups and floulines in Grcup froduction with the Help of Electronic Computers." Group Technology. Eroceedings of the International Seginar. 1969, iF. 177-18与.
46. Forazynski, R.J. "Using Group Tectnology Concepts in Manufactufing." Proceedings- AIIE 1971 Systems Engineering Conference, 1977, FF. 80-84.
47. Furcheck, G. F. K. "A Mathematical Classification as a Easis fcr the Design of Grouf Technology production

Cells." The Production Engineer, January, 1975. pp. 36-4と.
48. Fome, Charles F. Mroup Technology." proceedings of CAM=I's ExECutive SEminaL= Coding, Classifications \underline{E} Group Technology for Automated plagning, 1976, FF . 66-129.
49. Sato, N., J. P. Ignizio, I. Ham. ${ }^{\text {G G Ioup Technology and }}$ Haterial Reguirements planning: An Integrated Methodology for production control." Aunals of the CIRP, Vol 27, 1 (1979), FF. 471-473.
50. Schultz, Cennis, F. F. Cstwald. A Ccst Persfectiye for Grour Technology, Techrical Pafer Mऽj3-5í, Dearborn, Vich.: Scciety of Manufacturing Engineers, 1973.
51. Singh, C. K., P. Kumar. "An Economic Analysis of Group Technology." Journal of the Institution cf Engineers (India). Vol. 5y, Part MF-2 (September 1978). FE. 64-69.
52. Soloja, V. B., S. M. Orosevic. "Optimizaticn of Group Technology Lines by Methods Developed in the Insittute for Machine Tools and Tooling (IAMA) in Belgrad.n Grour TEchnclogy= froceedicys of the International Seminar, Seftember, 1969, FF. 157-17t.
53. Spencer, Michael S. "Scheduling Ccrponents tor Group Technology Lines (A New Application for MRP). Eroduction and Inventory Banagement, Fourth Quarter 1980, FP. 43-4G.
54. Stoker, Richard. Telephone Conversation, February, 1983.
55. Subramanian, K., E. M. Veakitadri. "Design and control cf Grour Iectinology Based Production Systems." Proceedings: International Confertnce on production Research. 5 th , August 12-16, 1979. PE.45-58.
56. Suresh, Nallan C. Noptimizing Intermittent Production systems Through Group Technclogy ard an MRP System." Eroduction and Inventory Manacement. Fourth Quarter, 1979, FP. 76-84.
57. Vernon, Ivan B. Realistic Cost Estimating for Manutacturing. Dearbor̄n, Mich.: Smp, 1968.
58. Wiley, P. C. T., B. G. Dale. "Grotp Technology- Some Factors Which Influence Its Success." Tbe Chartered Hechanical Engincer, Vol. 26, 8 (Seftember 1979), 2F• 79-80.

APPENDIX A

AGGREGATION COMPUTER PROGRAM LISTING

```
    DIMENSION JSET(3)
C
C
C THIS PROGRAM AGGREGATES PART FAMILY DATA
C
    AND STORES THE RESULTS IN A PART FAMILY FILE.
    FOR ADDITIONAL DETAILS SEE THE DISSERTATION
    ENTITLED "CONSIDERATIONS FOR GROUP TECHNOLOGY
    MANUFACTURING IN PRODUCTION PLANNING" BY
    GERALD R. GRAVES.
    JSET(1)=160
    JSET (2)=45
    JSET (3)=225
    WRITE (6,100)
I\emptyset\emptyset FORMAT(' ',////' ','ENTER THE NUMBER OF',
        1 'PERIODS IN THE PLAN',/' ')
    READ(9,*) IPERS
C
C
    IPSETS=IPERS/3
    IFSETS=2*IPSETS
    DO 1\emptyset I=1,3
        TL=\emptyset.
        DT=\emptyset.
        AP=\emptyset.
        AH=\emptyset.
        AM=\emptyset.
        AB=\emptyset.
        DO 2\emptyset J=1,5\emptyset
            READ(11,101,END=21) IPN,IGN,LOT,
                    ISET,IPT,HC,IDEM,BURD,DMC
    +
    101
2\emptyset CONTINUE
    WRITE (6,103)
103 FORMAT('','****** ERROR, > 50 PARTS IN FILE
    STOP 9
    21 AP=AP/DT
        AH=AH/DT
        AD=DT/FLOAT (IPERS)
        AM=AM/DT
        AB=AB/DT
        WRITE(12,104) I,JSET(I),AP,IAD,AH,AM,AB
    104
    l\emptyset7 FORMAT(' ',//' ',T3,'GRPI[',Tl\emptyset,'SETUP'
    + Tl7,'PROC.',T25,'DEMAND',T32,'HOLD',
```

$+\quad$ Tll,I3,T17,F5.2,T26,I4,T32,F5.2,T40,
$+\quad$ F5.3,T48,F5.3)
REWIND 11
Iの CONTINUE
WRITE $(6,120)$
$12 \emptyset$ FORMAT(' ','AGGREGATE PROCESSING ENDED',///' ') STOP 1
END

APPENDIX B

PART DATA PRODUCTION PLAN

PART NO.	PERIOD 1	PERIOD 2	PERIOD 3
1	0	114	0
2	0	30	0
3	0	0	12
4	0	0	6
5	0	0	12
6	0	60	0
7	0	0	18
8	0	0	24
9	0	54	0
10	0	0	9
11	0	36	0
12	0	0	12
13	0	0	6
14	102	0	0
15	0	0	12
16	0	0	12
17	0	0	6
18	0	0	24
19	19	0	29
20	60	0	0
TOTAL	181	294	182

VITA 2
Gerald Robert Graves
Candidate for the Degree of
Doctor of Philosophy

Thesis: CONSIDERATIONS FOR GROUP TECHNOLOGY MANUFACTURING IN PRODUCTION PLANNING

Major Field: Industrial Engineering
Biographical:
Personal Data: Born in Nashville, Arkansas, August 6, 1950, the son of Louis F. and Wilton C. Graves, Jr.

Education: Graduated from Nashville High School, Nashville, Arkansas, in May, 1968; received Bachelor of Science degree in Industrial Engineering from The University of Arkansas in 1973; received Master of Science in Industrial Engineering from The University of Arkansas in August, 1980; enrolled in doctoral program at Oklahoma State University, 1980-1983; completed requirements for the Doctor of Philosophy degree in July, 1985.

Professional Experience: Lieutenant, Naval Flight Officer, United States Navy, 1973-1978; graduate teaching assistant, Department of Industrial Engineering, University of Arkansas, 1978-1979; graduate research associate, School of Industrial Engineering and Management, Oklahoma State University, 1980-1983; Visiting Assistant Professor, Department of Industrial Engineering and Computer Science, University of Arkansas, 1983-1984; Assistant Professor, Industrial Engineering Department, Louisiana State University, 1984.

Professional Affiliations: Institute of Industrial Engineers; Computer and Automated Systems Association of the Society of Manufacturing Engineers; Society for Computer Simulation.
manufacturing cost elements is deficted in Figure 7.
Direct material cost is relatively easily identified, and represents the value of the raw material required to frcduce a unit of product. Usually incluoed in this cost is an allowance for wasted or scrafped material.
rirect lator cost consists cf wages and other laborrelated costs for roduction workers who are engaged directly in specific manufacturing oferations to convert raw materials into finished froducts. The direct lator workers are those whc operate froduction machines or processing efuifment, assemble parts into a finished froduct, or work cn the product with tools.

Overhead, or burden, cost casists cf those costs that cannot be specifically attributed to a product. typical of the costs included in overhead are rent, taxes, utilities, depreciation, and insurance. Alsc, indirect material costs, such as tools and cleaning gear, and indirect labor, such as material handlers and maintenance personnel, are added into cuerhead cost.

Overhead costs are allocated to individual products on a fercentage basis. A common base is used to determine this percentage, such as the number of employets involved, direct lakor hours cr ccst, direct aterial hcurs or cost, or machine hours. The overbead cost is ther determined for a freduct on a per unit basis.

Manufacturing costs are alsc classified as being either actual or standard costs. Actual costs are determined by

