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CHAPTER I 

INTRODUCTION 

A random variable of interest in many situations is the time from an 

event defining the start of observation to the occurrence of another well-

defined event which terminates the natural observation period. In clini-

cal medicine, one may wish to investigate the survival experience after 

different treatments. The waiting time between arrest and initiation of 

the trial proceedings is another example. In demography, one may wish to 

describe and compare the risks of death, divorce or migration. 

Examples of random variables in most applications (time variables) 

Starting Time (Primary Event) 

Medicine: 

Heart transplant 

Cancer treatment 

Treatment of a chronic 
disease 

Application of carcinogen on 
a mouse 

Health Administration: 

Admission to institution 

Enrollment in health mainte­
nance organization 

Appointment to job class 

Purchase of insurance 

Report of child abuse 

Concluding Time (Secondary Event) 

Death 

Death 

Remission of symptoms 

Appearance of tumor 

Discharge 

Withdrawal 

Promotion out of job class 

C 1 aim fi 1 ed 

Investigation of report 



Demography: 

Birth 

Marriage 

Establishment of residence 
in a community 

Birth of the first child 

Death 

Divorce 

Move out of a community 

Birth of the second child 

Industry (Reliability of Tested Materials): 

Starting time of exposure to 
stress 

Time of breaking up 

The observed data are frequently incomplete because the occurrence 

of the secondary event may be interrupted by some other events. If the 

secondary event, when an interrupting event takes place, is a random 

variable, then the random censorship model is said to hold. Such an ob-

2 

servation measuring from starting event to interrupting event is referred 

to as a censored observation. 

When the random censoring occurs, an incomplete observation of 

occurrence times due to random censorship creates difficulties in drawing 

statistical inferences about the nandom variable of interest (time of 

occurrence). Such a phenomenon can occur, for instance, in a clinical 

trial, during which patients may be treated with one of several possible 

therapies each time they enter the study. Instead of observing their 

life-times, experimenters get randomly censored observations which can 

occur due to the removal of patients from the study for an unrelated rea-

son. Examples of this are: lost to follow-up, dropping out, or having 

observation time terminated by the study after random entry into the 

study. 

The time of occurrence in medical study is usually called life-time 

data or survival time. An example of survival data is reported by 



Freireich (taken from Gehan (1965)). The survival times of 21 leukemia 

patients were as follows: 

Survival Times (in Weeks) 

l, l, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, ll, ll, 12, 12, 15, 17, 22, 23 

3 

If all survival data were as complete as the above leukemia data, 

then survival analysis would not require its own statistical techniques. 

The special feature of most survival studies is that exact survival times 

cannot always be ascertained. One major concern in a medical study is 

the need of doing a statistical analysis before all the patients have 

died. For a patient who has not died at the termination of the experi­

ment, one can only record a censoring time, given by the time elapsed be­

tween entry into the study and termination of the study. Patients may 

also be removed from the study for an unrelated reason such as being lost 

to follow-up or dropping out. 

Freireich was concerned with survival under treatment with the drug 

6-mercapotopurine (6-MP). The survival data given above was for the 

group administered a placebo while the survival times for the 21 patients 

treated with 6-MP were: 

Survival Times (in Weeks) . 

6' 6 ' 6' 7' l 0' l 3' 16' 22' 23 

6+, 9+, 10+, ll+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+ 

By convention, the censored survival times are indicated by a plus sign. 

For the treatment group, the longer survival times appear among the cen­

sored observations. The true survival times for these individuals are 

even greater. Any technique that does not capitalize on the special na­

ture of the censored observations may be misleading. 
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Censored data appears in other settings. A standard industrial exam­

ple is the study of lifetimes of light bulbs or tubes. For such studies, 

one can easily start all the light bulbs at the same time and let the ex­

periment continue for a fixed duration. If there are bulbs still burning 

at the end of the experiment, then all of these have a censored survival 

time equal to the length of the experiment. For studies of survival times 

of laboratory animals, the experiments will usually initiate observation 

of all animals at the same time and then observe them for a fixed dura­

tion. Animals alive at the end of the study have the same censored sur­

vival time; there are no other censored observations. The medical experi­

ments will seldom have as much control. Patients enter the hospital at 

different times and not in large groups. Also patients are lost or with­

drawn during the experiment. Thus survival analysis must allow for varia­

ble censoring. In the statistical literature, there are papers restric­

ting the censoring to a fixed time. These are not general enough for 

medical applications. 

One can consider the regression problem of survival time regressed 

against covariates. The Stanford Heart Transplantation Program provides 

the application of the regression problem to survival data. Miller 

(1976) reports the survival times for 69 patients given heart transplants 

at Stanford between October 1, 1967 and April 1, 1974. The covariates 

reported are age at transplant and mismatch score. Miller describes the 

mismatch score as a measure of dissimilarity between the donor and the 

recipient tissue; higher scores represent worse matches. He also records 

whether or not the cause of death was due to rejection of the donor's 

heart. For the analysis of survival times with mismatch score, Miller 

treats nonrejection death as censored observations since those patients 

would hypothetically have died later from rejection. Thus his analysis 
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was performed separately for the regression of s~rvival time with each of 

the two covariates. 

Another example of a regression model for censored data is given by 

Prentice (1973). He reports survival data from the Veterans Administra-

tive Lung Cancer Study Group. There are 4 covariates; a general measure 

of medical status, time from diagnosis to entry into the study, age, and 

being or not being in any previous therapy. 

Finally, Dyer (1973) discusses the study of the Chicago People Gas 

Company. The study followed 1,233 white males between the age of 40-59 

who are free of coronary heart disease at entry. At the end of 14 years, 

there were 246 observed deaths. For each patient, 3 covariates were 

chosen: systolic blood pressure, serum cholestrol, and cigarette smoking. 

Dyer (1973) considers regression models of survival time against the above 

3 covariates. These covariates are considered risk factors for coronary 

heart disease (CHD) and cardiovascular renal disease (CVR). The models 

considered survival times for CVR deaths, CHD deaths, and deaths from 

other causes as well as censored observations. Those observations can be 

measured as the following diagram. 

Patient . Tl 

Patient 2 T+ • 2 or c2 

Patient 3 ·T+ 
3 

or c3 

Time Period End of Study 

Censored Sample 
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When covariates affect the time of occurrence, the models which in-

corporate the effect of the covariates must be developed. For example, 

age of a patient and severity of disease wi 11 affect length of stay in an 

institution. In ·such a case, one may be interested in studying the admin-

istrative implications of a policy change involving the covariate struc-

ture of a patient population. 

Covariates are commonly incorporated into censored models in either 

of the following ways. First, the proportional hazard model described by 

Cox (1972) assumes the covariates act multiplicatively on the hazard func-

tion, which is the instantaneous rate of occurrence at a given time, con-

ditional upon no occurrence up to that time. Kalbfleisch and Prentice 

(1980) have discussed this model in their book. The other way is to 

assume that the expected occurrence time (or a transform) is a linear com-

bination of the covariates. This dissertation will study only linear re-

gress ion mode 1. 

Model 

The random variables and observations will be denoted as follows: 

Let the random Y. be the time of occurrence, or a transform of the 
I 

. f h . th b. ' h d. . b . F t1me, or t ~ 1 su Ject, w1t 1str1 ut1on 
yi 

L h d · b 1 C b h · · of the '1 th b et t e ran om var1a e . e t e t1me to censoring su -
I 

ject with distribution GC .. 
I 

Assume Y. and C. are independent. 
I I 

Let X. be a (p+l)xl vector for the ith subject, the first term of 
-I 

which is a constant 1, the remaining terms of which are p covariates. 

Assume C. and X. are independent. 
I -I 

Define the random variable T. = Min(Y., C.) and the indicator random 
I I I 
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variable for the .th subject by I 

'; = { 

if Y. ::; c. 
I I 

( 1. I) 
0 if Y. > c. 

I I 

Hence, an observation on the ith subject from a sample of size n 

w i 1 1 cons i s t of ( t . , cS • , x. ) , i = I , 2 , ... , n 
I I -1 

The general least squares model is 

y = = ( 1. 2) 

where x is a covariate matrix and V is a known positive definite matrix 

or 

E(~) Q, v ( ~) 
2 y = X§ + ~· = o vd. 

1 ag 
( 1 • 3) 

where Vd. is a known diagonal matrix 
rag 

or 

y = xs + ~' E(~) = Q, v (~) = o2I ( 1 • 4) 

where I is the identity matrix. 

In a 11 cases, 

-
j y I 1 xll X2 I ... X ( p) I 

y2 2 x12 x22· · .x(p)2 
y = X = 

y 
xln x2n X n (p)n -

and 



i so E] 
I 

I 
131 E2 ! ! 

s = E = 
~ 

_sP_ E n 

If all error variances are assumed equal, the last of these models is 

sui tab 1 e for a 1 most a 11 of the cases. It wi 11 henceforth be referred to 

as the uncensored model. 

This model states that E.'s are uncorrelated with common mean and 
I 

variance. Suppose that F is the common distribution, then the relation 

between F and Fi (or FY.) under linear regression Yi 
I 

F.(t) = P(Y. ::; t) 
I I 

= P(Y. - x.s $ t - X. S) 
I I~ I~ 

= p (E. $ t - X. S) 
I I-

= x:s +E. is 
~I~ I 

8 

= F(t - X. S) for a 11 ( 1. 5) 
1-

The random variables 6. of (1. 1) are independent but not identically 
I 

distributed unless 

{~ 
if Y. - x.s $ c. - x.s 

I 1- I 1-

6. = for a 11 
I if Y. x.s > c. x.s ( 1. 6) - -

I 1- I 1-

that is' if G.(t) = G(t- X.S). If § = 0' there is no regression effect. 
I 1-

Then both F. ( t) = F ( t) and G. ( t) = G ( t) . 
I I 

The 1 east squares objective of fitting uncensored model is to obtain 



the estimate of S which minimizes the sum of squared residuals 

(y- X§)T(y- XS). Hence, the least squares solution is 

= 

which has the properties of 

v ( s) = 

2 
and an unbiased estimate of cr is given by 

With censoring, the objective of estimating S is complicated by the 

fact that Y. is sometimes unobservable. When this happens, many methods 
I 

will substitute Y~ for the unobservable random variable Y .. 
I I 

Hence, we will have the model 

y* = X~ + 
·k 

f ' 
~·~2 ~·~ 

= 0 v . 

This will be called the censored model. Under the model, the least 

squares solution to minimizing 

is 

s = 

'jl~ ;':: 
of 

,·~2 
given and if y and v were known, an unbiased estimate cr would be -

by 

'~2 (y 
·}, xs''~) T v~·~-l (v'~ xf') I (n-k) cr = - -

9 
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*2 2 Note that a of the censored model is not the same as a of the un-

censored model except in the special case of no cens~ring. If there is 

* ~* no censoring, y = y, S = S, and the censored model reduces to uncensored 

* model. The hope is that in the presence of censoring, y is a good sub-

stitute for Y. 
~ 

If y" were known, then the least squares estimate for @ under the 

* censored model could be defined in terms of Y * However, y in general 

is not fully known but has to be estimated by a quantity which can be 

A* called Y . The corresponding least squares estimates of Swill therefore 
~ 

be defined in terms of 9". 



CHAPTER I I 

REVIEW OF LITERATURE 

A model of the survival time which incorporates the effects of the 

covariates has been developed by Cox (1972). He assumes that the covari-

ates act multiplicatively on the hazard function, which is the instanta-

neous rate of surviving at a given time, by conditioning upon no occur-

renee up to that time. 

If F(y;x) is the underlying distribution functJon for the survival 

tima Y when the covariates are X, and f(y;x) is the corresponding density 

function, the proportional hazards model -assumes that the hazard rate 

;\(y;~) = f(y;x)/(1- F(y;~)) where o::; r::; 

is given by 

A (y; ~) = 

where S is the vector of regression coefficients and ;\0 (y) is the hazard 

rate when x =b. He proposed a partial likelihood approach to estimate 

S since the function ;\0 (y) being unknown prevents a full likelihood 

analysis. The patients in the risk set R(y) are those sti 11 alive and in 

the study at time y-. If it is known that a patient dies at time y, then 

the conditional probability that it is patient i among those at risk is 

1 1 
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If t ( 1) :S t (2) :$ ••• :$ t (n) are _the ordered observations of the sur­

vival time; censored or uncensored, then the partial likelihood is 

T 
- 0 ( i) 

L 
n exp(~(i)§) 

( 2. I) = i ~I e E T 
'--jt:{t(i)) exp(x.S) 

_j -J-

where ~(i) and ~(i) are associated with t(i). The value of S maximizing 

(2. I) is obtained by-solving for the root of 

log . (Et ) exp(x:s)} = 0 . 
JE: (i) -J-

(2.2) 

Other methods developed by Miller (1976), Buckley and James (1979), 

and Koul, Susarla, and Van Ryzin (1981) are based on the standard linear 

mode I with 

= (2. 3) 

where S is the vector of regression coefficients for the covariates X. If 

Y is measured on a log scale so that Y = Jog U where U is the actual sur-

vival time, then (2.3) corresponds to an accelerated time model. 

The first least squares type estimator for censored data was pub­

lished by Miller (1976). It assumes that F(y;~) = F(y- ~T§) where F has 

zero expectation. This gives the expectation (2.3) and homogeneous vari-

ance along the regression line. 

Miller proposed using an iterative sequence to calculate the estimate 

of the regression coefficient vector @: 

= (2. 4) 



where 

t = 

X = 

W(S ) 
-p 

matrix (x .. ) , and 
I J 

= diagonal matrix (w. (S )) . 
I -p 

13 

(2. 5) 

The limit of the sequenceS, p = 0, 1, 2, 
-p ... ' is the estimate of §· 

The weight w.(S) in 
I -p 

(2. 4) (2.5) is the size of the jump assigned 

A (A ) TA tO E. =E. S = t. - X.S 
I I -p I -1 -p 

... ' A 

E • 
n' i.e., 

w. ( i3 ) 
I -p 

by the Kaplan-Meier estimator applied to 

= F(~. ·s) - F(~. - ·§) 
I '-p I '-p 

(2.6) 

Only the uncensored t. actually appear in (2.4) since the weight 
I 

assigned to any censored observation is zero. For this reason, it makes 

sense to use as a starting value §0 the ordinary (unweighted) least 

squares estimator applied to only the uncensored data. It becomes 

where 

s -p+l = 

t = vector of uncensored survival observations 
-un 

X matrix (x .. ) of associated uncensored covariates 
un IJ 

= diagonal matrix (w. (S )) excluding 0 diagonal terms. 
I -p 

( 2. 7) 

Buckley and James (1979) do not assume random censorship. They con­

sider the censoring variables as fixed and given values. They define 



the random variable 

-'-v:· 
I 

= T. o. + E (Y. I Y. > C.) ( l - o.) , for 
I I I I I I 

= 1, 2, .... , n 

where 

o. = the indicator variable 
I 

{~ 0. = 
I 

if Y. :$ c. 
I I 

if Y. > c. 
I I 

They obtain the least squares solution 

where 

The idea is to replace each censored observation by E(Y. jv. >C.). 
I I I 

Since E(Y. jv. > C.) is unknown, Buckley and James estimate it from the 
I I I 

Kaplan-Meier estimator for the residuals. Specifically, if o. = l, let 
I 

t. ( S ) = t. , but if o. = 0, 1 et 
I -p I I 

AL w.(s)€. 
E·>E. J -p -J 
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t. ( s ) = T J I 
X. f3 + --:;..--,---A--
- 1 -p l - F ( s. · S ) 

(2. 8) 
I -p 

I' -p 

where s. = t. - x: S , F is defined as: 
J J -J -p 

In the case of no tied uncensored observations 
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I - r(€. ·s) = . '. [ I r(j) (2.9) I '-p E:(j)~Ei I n-j+l ' 

where s (I) ~ €(2) ::;; . . . ::; 
A 

and o(j) is associated with 
A 

s(n) € (j) . With 

tied uncensored observations 

1 - F(e. ·s) 
I ' p 

(2. 10) 

where e(J) < e(2) < ••• are the ordered distinct values of sj, n(j) is 

the number at risk at E{j) -, d(j) is the number dying at €(j)' and 

6(j) = 1 if d(j) > 0, = 0 otherwise. wj(§p) is defined by (2.6). The 

summation in (2.8) is overall €. = t.- x!§ greater than €. = t. - x!s 
J J -rp I I -1 p 

The regression estimator S at the (p+l) 5 t step is the usual least -p+l 

squares estimator 

= (2. I l) 

where 

= ... ' 

X = matrix (x .. ). 
IJ 

The iteration is continued until S converges to a limiting valueS or -p 

becomes trapped in a loop like the Miller estimator. 

Since the estimator (2. 11) uses a value for the dependent variable 

at every x., it seems sensible to take for the starting §0 the least 
-I 

squares estimator (XTX)-l XT! which treats all the observations as un-

censored whether they are uncensored or not. 
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The Buckley-James estimator exploits the following linear relation-

ship: 

E(o.T. + (1-o.) E(Y.jY. > T.) jx.) 
I I I I I I -1 

I foo I . u dF(u,x.) ! 
= f oo y(l-G(y;~i))dF(y;~.) + f oo ~ ~ - F(y;~~~ ' 

-co I -ooL 
(1-F(y;x.))dG(y;x) 

-I 

= Joo y dF(y;x.), 
-I 

-oo 

T (2. 12) = X. S 
-I-

An estimate of the conditional expectation based on the Kaplan-Meier esti-

mator is substituted in the variable t. = o.t. + (1-o.) E(Y.jY. > t.) and 
I I I I I I I 

then the usual least squares normal equations are solved. 

For the Koul-Susarla-Van Ryzin (1981) estimator, a different linear 

relationship forms a basis. Assume that the censoring distributions are 

independent of x., i.e., G(y;x.) = G(y). Then, 
-I -I 

-1 
E(o.T.(l-G(T.)) jx.) 

I I I -1 

f 00 l 
= -oo y(l-G(y))- (1-G(y)) dF(y;~i), 

T 
= x. s (2. 13) 

-I -

In the Koul-Susarla-Van Ryzin estimator, an estimate for G(y) is substi-

A -1 
tuted in the variable t. -= o.t. (1-G(t.)) and then the usual least 

I I ! I 

squares normal equations are solved. One could have allowed G(y) to 



depend on x. in (2. 13), but there would be no way of estimating each 
-I 

1 7 

G(y;~i) from the data without imposing assumption on G(y;~) as a function 

of x. 

The Kaplan-Meier estimator with the roles of y. and e. reversed could 
I I 

be used to estimate the common censoring distribution G(y). The great ad-

vantage of the Koui-Susarla-Van Ryzin estimator is that no iteration is 

required in the computation of the estimate. Specifically, 

= 

where X is defined in (2.5) and~= (t 1, t2 , ... ' tA ) T A where t. for 
n 1 

i = l, 2, ... , n are computed as mentioned. 

Schmee and Hahn (1979) define a random variable 

= o.T. + (1-o.) E(Y.jY. > C.), for 
I I I I I I 

=1,2, ... ,n 

where o. is the indicator variable. E(Y. jY. > C.) is computed by using 
I I I I 

the additional assumption of normal errors for survival time distribu-

tion. Their estimates are 

where i* = (;7, ;;, ... , 9~)T and;~, for = 1, 2, ... , n can be esti­

mated assuming y has a normal distribution. The method is also iterative. 

Following the idea of Buckley and James (1979), Koul, Susarla, and 

Van Ryzin (1981) define a random variable. 

= o.T. + (1-o.) E(Y.jY. > C.), for 
I I I I I I 

=1,2, ... ,n. 

That is, when the survival time is censored, the mean lifetime given 



18 

censoring of Y. at C. should be used. This idea is the same as that of 
I I 

Buckley and James but has a different approach, depending on the mathe-

matical form of this quantity under the assumptions. 

Friedman and Stuetzle (1981) define a random variable 

-~ 

Y~ = 6.T. + (I-6.)T~, for 
I I I I I 

=1,2, ... ,n 

where T~ is given by the censoring time C. if 
I I 

it exceeds the predicted 

I f . I . . 'f C T3 d va ue o surv1va t1me, 1 .e., 1 . > x. ~-' an 
I -~-

by zero if the predicted 

value exceeds the censoring time. Their least squares solution to mini-

mizing 

is 

A* T -1 T ~ 
S = (X X) X y_" 

where 

= 

Instead of getting §*, they have 

where 

= 

The method is iterative by using an initial value from the least squares 
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estimate based only on uncensored observations. They say that their 

algorithm always produces a unique solution. 

Chatterjee and Meleisk (1981) define a random variable 

Y~ = 8.T. + (l-8.)T~ , I I I I I 

where T~ is E(Y. !v. > C.), again assuming normal errors. The estimate of I I I I 

E (Y. I y. > c. ) is 
I I I 

E(Y.!Y. > C.) 
I I I 

= 

where 

T::: 0 p-l, i <P(cp-1, i) A T A 

x.S + ( ) - (S- S 1) H(§ 1)c . -1- 1 - qJ C 1 , -p- -p- pI 
p- 'I 

T~ 
c.= (t.-x.S)/cr. p1 I -1-p pi 

H(a) = d [ ___jjx) J 
dx 1 - '"¢T5(f X=a 

th 
at the p iteration. Their estimate of S is 

where 

y = 

..... ,": 
An initial estimate of S is needed to evaluate y , and consequently the 

method is iterative. 

Durongwatana (1983) performed some simulations for estimating re-

gression coefficients by using only uncensored observations. The 
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comparisons between his estimators and those of Miller, Buckley and James, 

and Koui-Susarla-Van Ryzin were made. The results show that his estimates 

have lower mean square error than the others do. 

In this dissertation an attempt is made to avoid iterative procedures 

which have a disadvantage in case of divergence. It adjusts for bias when 

using only uncensored observations. Furthermore, the quality of those 

estimators will be shown. 



CHAPTER II I 

REGRESSION METHODS FOR CENSORED OBSERVATIONS 

Adjusted Method 

3.1 Introduction 

We consider the usual linear regression situation with the following 

model 

Y. = a+ SX. + E., 
I I I 

1,2, ... ,n ( 3. 1) 

where X. are known constant covariates, a and S are unknown regression 
I 

coefficients to be estimated and E. are the independent random errors 
I 

with common distribution F such that 

and 

E(E.) 
I 

= 0, 

V( E.) 
I 

= 
2 

(J ' 

Cov ( E • , E • ) = 0 , i f:. j , i , j = 1 , 2 , ... , n 
I J 

Let c1, c2 , ... , Cn be independent censoring random variables with 

distribution G; C. is censoring time associated withY .. Assume that C. 
I I I 

is independent of Y. and X. fori= 1, 2, ... , n. 
I I 

F and G are unknown. 

We observe, 

21 



and 

0. 
I 

T. = Min(Y.,C.), 
I I I 

= { 1 when yi ~ ci 

0 when Y. > C. 
I I 
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(3.2) 

Suppose f and g are the survival-time density function and the cen-

soring-time density function respectively, then 

P(Y :::: y ' y :::: 
0 

c) = J:: I: f(y) g(c) de dy 

= r: f(y) (1-G(y))dy, 

and 

P (Y :;; C) = I oo Joo f(y) g(c) de dy 
-oo Y 

= L: f (y) (1-G(y))dy 

= Ey ( 1-G ( y)) 

Hence, 

yo 
f ( y) (1- G (y) ) dy 

P(Y Y jv c) -oo :$ :$ = 
0 

and 



f(YIY s: c) 

then 

f(y) (1-G(y)) 
Ey(l-G(y)) 

E(Y.IY.::: c., X.= x.) = 
I I I I I 

f oo y . f ( y . ) ( 1 - G ( y . ) ) dy . 
I I I I 

-oo 

E(l-G(y.)) 
I 

(I 00 Y.f(y.)dy.) - (f 00 y.G(y.)f(y.)dy.) 
I I I I I I I 

-oo -oo = 
E(l-G(Y.)) 

I 

E(Y.) - E(Y.G(Y.)) 
I I I 

= 
E(l-G(Y.)) 

I 

E(Y.) - E((a + Sx.)G(Y.)) - E(s.G(Y.)) 
I I I I I 

= 
E(l-G(Y.)) 

I 

(a+ Sx.)E(l-G(Y.)) - E(s.G(Y.)) 
I I I I 

= 
E(l-G(Y.)) 

I 

then, 

E(Y.IY. :;; c., X. = x.) 
I I I I I 

E (s . G (_y. ) ) 
E (Y. ) - I I 

I E(l-G(Y.)) 
I 
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(3. 2) 

The idea is that if we estimate the a and S from the model only from 

the uncensored observations, ignoring the censored observations, the 
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estimators would be biased estimators for a and s. This method proposes 

the way to adjust for the biases. The difficulties are the results of 

lack of knowledge about the specific forms of both F and G. With a non-

parametric method, the Kaplan-Meier product limit estimator of distribu-

tion function involving censored observations, the biases can be esti-

mated. 

3.2 Kaplan-Meier Estimation 

An important part of the adjusted method is the product limit esti-

mater introduced by Kaplan and Meier (1958). Consider the case in which 

all individuals or animals are observed to die so that the survival 

times can be exact and known (no censoring). 

Let y 1, y2 , ••• , yn be the exact survival times (occurrence times) 

of the n individuals. An estimator of the survival function S(y) is the 

estimated proportion of individuals in the sample who survive longer than 

y, that 

S(y) 

is' 

number of individuals in the sample who survive longer than y 
total number of individuals in the sample 

If relabeling of n survival times y 1, y2 , ••• , yn in ascending order is 

done, they become 

::; Y (n) . 

Therefore, the survival function at y(i) can be estimated as 

s(y) (i) = 
n-i 

n 

where (n-i) is the number of individuals in the sample surviving longer 
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than y(i)" If two or more y(i) are equal (tied observations), the largest 

(i) value is used. For example, if y( 2) = y( 3) = y( 4), then S(y( 2)) 

n-4 = ---n 

This method can only be applied if all the individuals are followed 

unti 1 death (uncensored). If some are still alive at the end of the 

study, a modified method of estimating 5(y) is required. Kaplan and Meier 

developed a method based on a censored sample to estimate the distribution 

function. For example, suppose 10 patients joined a clinical study at the 

beginning of 1983. During that year 6 patients died and 4 survived. At 

the end of the year, 20 additional patients joined the study. In 1984, 

three patients who entered in the beginning of 1983 and 15 patients who 

entered later died, leaving 1 and 5 survivors respectively. The study 

terminated at the end of 1984. We want to estimate the proportion of pa-

tients in the population surviving for 2 years or more, i.e. 5(2). 

The first group of patients in this example is followed for 2 years 

while the second group is followed only for one year. Patients who sur-

vived two years may be considered as surviving the first year and then 

surviving one more year. Thus, the probability of surviving for 2 years 

or more is equal to the probability of surviving the first year and then 

surviving one more year. That is 

5(2) = P(surviving the first year and then surviving one more 
year) 

which can be written as 

5(2) = P(surviving two years given that patient has survived 
the first year) x P(surviving the first year). 

The Kaplan-Meier estimate of 5(2) is 



5(2) (Proportion of patients surv1v1ng two years given that 
they survive for I year) X (Proportion of patients 
surviving I year). 
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This simple rule may be generalized as follows: The probability of sur-

viving k(22) or more years from the beginning of the study is product of 

k observed survival rates; 

where 

s(k) = 

P1 denotes the proportion of patients surviving at least one year 
after the beginning of the study, 

P2 denotes the proportion of patients surv1v1ng the second year 
after they have survived one year from the beginning of the 
study, etc., and, 

Pk denotes the proportion of patients surviving the kth year after 
they have survived (k-1) year from the beginning of the study. 

Therefore, the product-limit estimate of the probability of surviving any 

particular number of years from the beginning of the study is the product 

of the same estimate up to the previous year and the observed conditional 

survival rate for the particular year. 

Kaplan-Meier Estimation of Distribution Function 

Censored Observations 

I. Order all the survival times, both censored and uncensored, from 

smallest to largest, t(l):::: t( 2):::: :::; t(n)" There are 6(l), 

6( 2), ..... , <'\n) corresponding to t(l), t( 2), ..... , t(n). If a censored 

observation has the same value as an uncensored, the former should appear 

first. 

2. Label each ordered observation in I) with the rank i, i =I, 2, 

..... , n. In case, for example, there are ties among rank p, p+l, p+2, 
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use rank p for all three observations. The next rank will be p+3. 

3. Compute (n-i)/(n-i+l) for every observation t(i) where i is the 

rank for t(i) assigned in step 2. This will give the proportion of 

patients or animals surviving up to and then through t(i). 

l- 0 . 
4. Compute ((n-i)/(n-i+l)) (I) for every t(i). 

5. S(t) is the product of all values of (n-i)/(n-i+l) up to and in-

c l ud i ng t. 

6. If some censored observations are ties, the smallest S(t) would 

be used. 

Hence, we have 

s(t) 
. 1-o(i) 

II ( n- 1 J = 
t(i)<t n-i+l 

G ( t) s ( t) ' 
Using this method, the estimation = l - can be made. For 

example, consider 12 observations 

t. 0. Step Step 2 Step 3 Step 4 Step 5 Step 6 G(t) 
I I 

ll I 12 0 

ll/12 0 

2.5 0 2 3 9/10 0 

3 2 3 9/10 0 

2 2.5+ 5 7/fi 7/8 7/8 (7/8) 4 l-(7/8) 4 

2 2.5+ 5 7/8 7/8 (7/8) 2 (7/8) 4 l-(7/8) 4 

2.5 0 2.5+ 5 7/8 7/8 (7/8) 3 (7/8) 4 l-(7/8) 4 

3.5 0 2.5+ 5 7/8 7/8 (7/8) 4 (7/8) 4 l-(7/8) 4 
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tl 01 Step Step 2 Step 3 Step 4 Step 5 Step 6 G(t) 

2.5 0 3 9 3/4 (7/8) 4 (7/8) 4 l-(7/8) 4 

3 3 9 3/4 (7/8) 4 (7/8) 4 l-(7/8) 4 

2.5 0 3.5+ l l l/2 l/2 (7/8) 4 (1/2) 0 

4.0 4.0 12 0 0 0 0 

NOTE: +means censored observation. 

3.3 Adjustment of Regression Model With 

Censored Observations 

After G has been estimated by the empirical distribution G, the 

algorithm for estimating a and Scan be done as follows: 

Step l. Take all uncensored observations together with their covar-

iates and use the least squares method to get initial esti-

mates of a and s. Hence, we will have 

S (XT X )-1 XT y 
-un un un un-un 

where 

A [~:] s = 
' -un 

n the number of uncensored observations, 
un 

X = the covariates for associated uncensored observations, 
un 

and y = the uncensored observations. 
-un 



Step 2. 

where 

and 

E. 
I 

Step 3. 

for xl = xl 

Calculate prediction value Y. and residuals E. from sLep 
I I 

1 fori= 1, 2, ... , n where n is the number of un-un un 

censored observations. 

= 

yl 
~ 

y2 

~ 

El 

E2 

E: 
n 

un 

y. = & + 8 x. 
I 0 0 I 

I 

i 

I 

1,2, ... ,n 
un 

For each X. = x. from uncensored observations, 
I I there will 
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be n residuals from step 2 and corresponding y .. Calcu-un I 

late y. corresponding to X. = X. as follows: I I I 

i,h -1 ~ l ~ 1 I El yl + El y 11 
~ ~ 

yl I E2 yl + E2 = yl2 i I 
I 

I ' I 
I . 

A A ~ ~ 

yl J E I yl + E = yln n J n un un un '--



~ 

Y2 
~ 

Y2 

Y2 

for X = x 
n n un un 

~ 

yn 
un 

A 

yn 
un 

El 
~ 

£:2 

~ 

E n un 

~ 

El 
~ 

£:2 

E 
n un 

~ 

Y2 + E 1 = Y21 

'12 + 
~ 

£:2 = Y22 

~ 

+ Y2 E = Y2n n un un 

~ l yn + El = yn 
un unl 

yn + £:2 = Yn 
un un2 

I 

~ 

+ E yn = 
Yn n J n un un un un 

Step 4. For each Xi =xi, the corresponding yil' yi 2 ' ... ,Yin 
un 

are calculated. Figure out G(yi 1), G(yi 2), ... , and 

30 

G(y. ) by evaluating from the empirical censoring distri-
ln un 

bution function calculated in Section 3.2. 

Step 5. Compute the estimates of bias for given Xi 

formula below: 

= x. by the 
I 
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For given X. x. 
I I 

Bias (Y.IY. :;; C., X. = x.) 
I I I I I 

E(E:.G(Y .. ) IX. = x.) 
J I J I I 

E(l-G(Y .. ) lx. = x.) 
I J I I 

E(~.G(y .. ) lx. x.) 
J IJ I I 

= 
E(I-G(y .. ) IX. = x.) 

I J I I 

n un ~ 

.2: 1 E.G(y .. )/n 
J= J 1 J un 

nun ~ 
.2: 1 (1-G(y .. ))/n 
J= 1 J un 

thus, 

nun 
E.G(y .. ) .I: I 

(Y. I y. x.) 
j= J IJ 

Bias :;; c. ' X. = = 
I I I I I nun 

n - .I: I G (y .. ) 
un J= IJ 

for = I ' 2' ... ' n and j = I ' 2' ... ' n un un 

Step 6. Perform the calculation as follows, for simplicity, 

a~suming that the original uncensored observations are 

XI l ~~I 
x2 I Y2 

x3 
and 

y3 . 

X yn n un un 



11 
I 

Let 

then, 

xl 

x2 

x3 

X 
n un 

l 

the adjusted uncensorep observations with their associ-

ated estimates of the biases are as follows: 

.c 

Yj' 

-'· y" 2 
.c y" 
3 

y ;'< 

n un 

yl +Bias 

Yz + Bias 

y3 + Bias 

+Bias 

(v 11v 1 ::; c l ' xl = 

(v21v2 => c2' xz 

(Y31Y3 ::; c3, x3 = 

(Y I y ::;; c 
n n un un n un 

xl) 

x2) 

x3) 

X 
n un 

= X 
n un 

32 

Step 7. Calculate the estimates of a and S by least squares method 

from the observations in step 6. 

X un 

= 

xl 

x2 

x3 

X 
n un 

"'.,f. 

Y" = 

y ';' l _,_ 

Y2 
-'-

Yj 



v(§> ~2 (XT X )-1 used as an approximation of = d un un and 

(Y - X S)T(Y - X S) ::::2 -un un -un un- 2 (J = n > 
n - 2 un where 

un 

and y = -un 

3.4 Diagram of the Adjusted Method for 

Censored Observations 

Co 11 ected data 

Estimate a., 13 by ordinary leas-t squares method 
from only uncensored observations 

= y. 
I 

A A 

a. + 13 x., ' 
0 0 

i=l,2, ... ,n un 

V( @) 

Calculate the residuals for all uncensored observations 

. 
A 

E: 
n un 

= 

= 
(a + s xl) 

0 0 

- (a + s x2) 
0 0 

- (& + s x 
o o n un 

+ 
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Compute empirical censoring distributfon function by 
I Kaplan-Meier Estimation Procedure. 

For X. xi' I 

E. • E. ' j 1 ' 2' ... ' n 
lj J un 

y .. = y i ' j I ' 2, n 
I J ... ' un 

and y .. y .. + E •. (or ~.) ' j = l ' 2' ... ' n 
I J I J lj J un 

j = 1 ' 2' ... ' n un 

j 
Figure out the distribution function of 

G (y .. + ~.) for a given X. = xi' j l ' 2' n IJ J I ... ' un 
j I ' 2' ... ' n 

un 

l 
I Compute the estimates of bias and variance for each X. 

I 
x. using 

I 

n 

B ic3s 

I 

(Y.IY.::; c., X.= x.) 
I I I I I 

un 
€.G(y .. ) • E 1 j= J I J for j l ' 2, ... , n n un 

un 
G ( y .. ) l ' 2, ... , n 

.l: 1 
= n un un j= I J 

l 
Having x., y. Bias~ 

I I I 
=I, 2, ... ,nun' 

calculate 9f = yi + Bias 1 

l 
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Estimate the regression coefficients by least 
squares e~tlmation procedure 

where X 

and 

,2 
where (J = 

= 

r-

I xl 

x2 

= 

xnj 
' un . 

l; 
v ( ~) :::2 (XT (J 

un 

(Y -un 
X S)T(Y 

un- -un 

y = 
-un 

n un 
- 2 

r>-: Yj' 
' ·'· i Y2 

A.,f,. j : V" 

=l;~unj 
X )-1 

un 

- X S) un-
> 2 n un 

Bootstrapping Method 

3.5 Bootstrapping for Censored Data 

Suppose we have a real-valued statistic S(X 1, x2 , ... , Xn) where Xi 

are independent and identically distributed with some unknown probability 

distribution 
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i i d F • ,. ....... 

Having observed 

X 
n 

we wish to estimate a given functional 8(F), perhaps the mean, median, 

correlation, etc., and we agree to use the estimate 8 = e(F) where F is 

1 the empirical distribution function obtained by putting mass- at each 
n 

observed value x.. We wish to assign some measure of accuracy to e. 
I 

Let cr(F) be some measure of accuracy that we would use if F were 

known, for example cr(F) = SDF(8), the standard deviation of 8 when 

x1, x2 , ... , XniJj F. The bootstrap estimate of accuracy is 

36 

crBOOT = cr(F). In other words, crBOOT is the measure of accuracy we would 

obtain if the true F equaled the nonparametric F. This has been shown by 

Efron, (1979). 

In order to calculate crBOOT' it is usually necessary to employ com­

puter simulation methods. 

( i ) A 11 bootstrap sample 11 X~', X~, ... ' 
;'{ 

X is drawn from F, in 
n 

which each X~ independently takes value x. with probability 
I J *· j = 1 , 2, ... , n. In other words, x';, x;, ... , < is 

an independent sample of size n drawn with replacement from 

the set of observations {x1, x2 , ... , xn}. 

(ii) Step (i) gives a bootstrap empirical distribution function F*, 

the empirical distribution of then values X~, x;, ... 
and a corresponding bootstrap value§*= e(F*). 

x''' 
n' 
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(iii) Steps (i) and (ii) are independently repeated a large number 

of times, say N, giving bootstrap values 

~;'<1 Al'<2 Al'<N 
e , e , ... , e 

(iv) The value of aBOOT is approximated, in the case when a(F) is 

the standard deviation, by the sample standard deviation of 

the e values, 

N eA'''j)2/N - (.I 1 
j= 

(3.3) 0 BOOT N-1 

Right censored data is of the form {(x1 ,6 1), (x2 ,6 2), ... , (xn,6n)} 

h ·, s the J. th ordered b · d d were x. o servat1on, censore or not, an 
J 

if x. is uncensored 
J 

if x. is censored 
J 

(3. 4) 

We have some estimated functional e = e(data) based on {(x1 ,6 1), 

(x2 ,6 2), ... , (xn,6n)}. ~BOOT in the censored case is the same as in the 

uncensored case. This has been evaluated by Efron (1967) and Gilbert 

(1962). They showed that the simple method of bootstrap sampling for 

censored data described later is the same as the one given at the 

beginning of this paragraph, except that the individual data points are 

now the pairs (x.,6.). 
J J 

(i) We draw a bootstrap sample (x;',6;'), (x;,6;), ... , (<,6~) 

by independent sampling n times with replacement from the 

(x ,6 )}. 
n n 
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( i i) -~ 
Letting data" represent this artificial data set, we calcu-

.J. 

late§"= 6(data). 

(iii) We independently repeat step (i) and (ii) N times, obtaining 

>~1 >~2 *3 *N 
6 '6 '6 ' ... , 6 . 

(iv) Calculate crBOOT by 

~ 

0 BOOT = 

3.6 The Bootstrap Estimate of Bias 

The idea originally was introduced by Quenoui lle (1949) as a means 

of reducing the bias in an estimator (see Miller (1974)). We wish toes­

timate the bias of a statistic 8 = e(F )· then the bias is defined. 
n ' 

bias = E{e(F)- e(F)}. 
n 

The bootstrap estimate of bias is defined as 

biasBOOT = 

* "'* where E and F denote expectation in terms of bootstrap sampling and the 

bootstrap empirical probability distribution respectively. In practice, 

the bootstrap estimate of bias is approximated by computer simulation 

methods. The steps (i), (ii), and (iii) are the same as those in Section 

1. At step (iv), we calculate 

BiasBOOT 
1 N ~>~j 

= -N .Ll 6 - 8 
J= 

We would use this result to correct the estimator for bias in the 

fo 1 1 ow i ng way : 



J 

h 

8CORRECTED = 8 - BiasBOOT 

3.7 Bootstrapping Regression Model With 

Censored Observations 

This section is concerned with the presentation of the bootstrap-

ping for linear regression model with censored data. 

Consider the usual linear regression model 

Y. 
I 

= =1,2, ... ,n, 

where X. are known constant covariates, a and S are unknown regression 
I 

coefficients to be estimated, and E. are the independent random errors 
I 

with unknown common distribution F such that 

and Cov ( E. , E • ) = 0 , 
I J 

E(E.) 
I 

= 0 ' 

V (E.) 
I 

= 2 
(J ' 

':1 j, i ,j = 1, 2, ... , n • 

Let C., i = 1, 2, ... , n be independent censoring random variable 
I 

39 

with unknown distribution G. Assume that C. is independent of Y. and X., 
I I I 

fori = 1, 2, ... , n. 

We observe 

T. = Min(Y. ,C.) , 
I I I 

and 

when Y. ::; C. 
I I 

0. = 
I when Y. > C. 

I I 
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The bootstrapping used in this method is done by resampling the re-

siduals calculated from least-square estimator of a and S using all nob-

servations, censored or uncensored. Then, we calculate the estimates of 

biases of those estimators as mentioned in the previous section. Finally, 

we correct the estimators using the estimates of biases. 

Now, consider the following observed data 

6. ) ' 
I 

where 

t. observed survival time, censored or uncensored, 
I 

x. = observed covariate 
I 

6. observed indicator, 1 or 0. 
I 

The regression coefficients are estimated as a and S usually by the 

least squares estimation procedure. After a and S are estimated residu-

als are calculated as 

s. 
I 

t. (a,S) - t. (&,@), 
I I 

1,2, ... ,n 

i.e., the difference between the actual observations and the predicted 

observations. Let F be the empirical distribution function of the 
n 

1 
residuals, putting mass non each of E:i' i = 1' 2, ... ' n, 

F: mass at s. = t. - t. (a,S) 
n I I I 

Draw a bootstrap data set 

;'~ ;'c 
t. a + Sx. + E: i ' = 1 ' 2, ... ' n 

' I I 

·'· " where E: :· are independent bootstrap samples from F. 
I 
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Then use the least squares estimation procedure and compute the boot-

"'* .}. 
strap estimates a and §" from bootstrap data. Independently repeat N 

A''~J A*2 A*N times, obtaining bootstrap replications a , a , ... ,a and 

A"~l A*2 A''N s ' s ' ... , 13 • 

A 

Finally, the estimate of bias for a is calculated by 

I N A''j 
= N jgl a - a, and 

the estimate of bias for S is 

The bootstrapping estimators of a and S for censored observations 

are computed by 

"i" 

a CORRECTED = a - Bi~sBOOT(<i); 
"* 
13 cORRECTED 

A 

Bi~sBOOT(S)' = 13 - and use 

.... 
ci(XTllX)- 1 V(§~ORRECTED) = as an approximation of V(@CORRECTED)' 

h A { J:: } h d. I • Th . th d. I 1 J:: • h were Ll = u. t e 1agona matnx. e 1 1agona e ement u. IS t e 
I I 

indicator observation defined in the previous sections. The estimate of 

2 
a is computed as 

where 

(!- X@~ORRECTED)Tll(!- X~~ORRECTED) 
trace (ll) - 2 

t = 

trace (ll) > 2 

and 



X = 

X 
n 

3.8 Diagram of Bootstrapping Simple Linear 

Regression for Censored Observations 

Co 11 ect data 

l 
Estimate a and S by ordinary least squares estimation 
procedure, and predicted values are 

= 

= 

t a + Sx 
n n 

1 
Calculate the residuals 

E 
n 

= 

= 

= 

t 1 - (~ + sx 1) 

t 2 - (~ + Sx2) 

t - (~ + Sx ) 
n n 
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Resample €1, €2 , ... ,En by computer random number generator (copying 

~l' ~ 2 • .. :,En in memory, selecting £1, €2 , ... , £n randomly with 

replacement by matching from uniform random generator). 

Bootstrap Sample Bootstrap Sample 2 

*1 ,,. 1 
a+sx 1+E:;• E:l 

0
7 l tl = 

,,. 1 *1 -~ 

E:2 E:20 t2 = &+sx2+E; = 

'l'<2 '"2 A A '"2 
E:l E: t 1 = a+Sx 1+E 1 n 

'"2 .J. '"2 A A ''<2 A<> 

E:2 E:20 t2 = a+Sx 1+E2 = 

*1 ~J *1' 
&+sx +E: * E: t = n n n n 

*2 7<2 
a+Sx '"2 I E: E: t = +E: 

n n n n n _j 

Bootstrap ~ample N 

*N *N ,.. .... *N 
E:l ElO tl = a+Sx 1+E 1 

*N *N "' .... *N 
E:2 E:l7 t2 = a+Sx2+E2 = 

*N A *N '"N E: E:3 J t = a+Sx +E: 
n n n n 

1 
Calculate estimates ~*j and s*j using least squares estimation proce­
dure for bootstrap regression observation j, j = 1, 2, ... , N. We 
wi 11 have 

l 
Find the estimates of biases using the calculation as follows: 

= 
N 

N • E 1 j= 

1 N A*j A 
= -N .J.:l S - S 

j= 
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Correcting the biases using corrected estimators calculated by 

a CORRECTED = & - Bias 800T(a), and 

l 
The estimates of variances of parameters estimated are calculated 

I by 

i 

i 
I 

i where 

I 
I 
I 
I 
I 
I 

I 
i 

I 

I:J. = 

t = 

= 

..... #" 
§cORRECTED 

= [~~ORRECTED] 
SCORRECTED 

the diagonal matrix where the ith diagonal element o. 
is the indicator observation, and 1 
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3.9 Generalization of Multiple Linear Regression 

Methods for Censored Observations Under the Same 

Assumptions as the Previous Sections 

Algorithm for the Adjusted Method 

Co 11 ected data 

((xll' x12' ... , xlp' tl' 81), (x21' x22' ···' x2p' tl' 62)' 

... , (x l , X 2 , .•• , X , t , 8 ) ) T • n n np n n 

Estimate SO' sl' ... , sp by least squares estimation procedure us- I 
ing only uncensored observations; 

A 

(XTI'lX)-1 XTI'lt s = 

A A 

where s = (so, s 1 ' s2, ... ' A ) T 
sP 

xll x12 xlpl 
X 

x21 x22 x2p 
= 

xnl xn2 ... X np_ 

(tl' t2' 
T 

t ... ' t ) , and 
n 

t_ 

45 



46 

lo 1 0 0 0 l 
I o 82 0 0 I 

/::,. = 0 0 

u 
where trace (t:,.) > p + 1 

0 ....... 

1 
Calculate the residuals; some are censored and some are not, 

l 
Compute empirical censoring distribution function by Kaplan-

·Meier Estimation Procedure. I 
I 

I· For each X. = ( 1 xl i x2 i ' . .. ' X . ) 
I pi 

"';'\. 

( ~ 1 
A ) T 

E • = E2 E3' we calculate 
-I 

... ' En ' 

t. x.S, and 
I 1-

A 

x.S +E. for 
I- I 

1,2, ... ,n. t. 
I 



J 

I 
I 

Calculate the empirical censoring distribution function for each 
xi, i = 1, 2, ... , n as mentioned in Section 3.2. 

For given x. = (1 x1. x2., ... , x .) -I I I pI 

E(t::.G(Y .. ) lx. ( 1 xl i x2i' ... ' X . ) ) 
Bias. 

J I J -I pi 
I E(l-G(Y .. ) lx. = ( 1 xl i x21' X •)) 

I J -I ... ' pi 

A~·,r r 
= E b.G./J b.(J-G.)' 

- -1 - - -1 

G. = the jumps for each element of t. for 
-I -I where l, 2, 

... ' n, 

J = ( 1 ' 1, ... ' l) T, lxn vector. 

1 
Then, we have the original observations 

... ' 

... ' 

... ' X np, 

8 l 
1 

the adjusted observations with their associated estimates of biases 

xll x12 xl l 1'1 l 
p I l 062 

0 I 
I 

IX 

x2l x22 x2p 
f,. 03 and 

ll i 
. ·onj xnl xn2 X I 

npj 

47 



,. 
+ Bias 1 l i t 1 

I 

I t2 + Bias2 
I 
I 
I 

' 
t d" 

I 
t3 + Bias 3 

I 
-a J I 

I 
I I t + Bias 

Ln nJ 

1 
Calculate the estimates of S by the following method. 

s = and approximation 

~2 
a = ( t - X S) T 6 (! - X S) /Trace ( 6) - ( p + l) , trace ( 6) > p + 1 

Algorithm for the Bootstrapping Method 

Collected data 

((xll' xl2' ... , xlp' tl' 61), (x21' x22' ... , x2p' t2' 62), 

.... , (xnl' xn2' ···' xnp' tn' 6n))T. 

A 

Estimate s0 , s1, ... ' 

1 
A 

S by least squares estimation procedure 
p 
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where 

= ... ' 

I 

xll xl2 xl p I 
I 

I 
x2l x22 ··· x2p I 

X = I , and I 

I 
I 

xnl xn2 ... x npJ 

t = ( tl' t2' ... ' tn) T 

l 
Calculate the residuals; some are censored and some are not. 

= 

1 
Resample E1, E2 , ... , En by copying El, E2 , ... , En in memory; select 

them randomly with replacement by matching from uniform random gener­
ator. We wi 11 have 
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Bootstrap Sample 1 

r I ! *1 ;~ 1 ~ ~ >': 1 
e:l e:3 tl = (30 + (31 X 11 + S2x12 + + S x1 + e:l p p 

;', 1 *1 ~ ~ ~ ~ *1 
e:2 e:27 t2 = so + sl x2.1 + s2x22 + + S x2 + e:2 p p 

>': 1 = *1 ;~ 1 ~ ~ 

+ S2x32 
~ 

e:3 e: t3 = (30 + Slx31 + ... + (3 x3 + e:3 n p p 

L<l 
;~ 1 ~ ~ >': 1 

Le:3 t = (30 + Slxnl + S2xn2 + ... + S X + e: 
n p np n 

Bootstrap Sample 2 

-"~2l *2 ~ ~ ~ >~2 l 
e:lOO t 1 = so + slxll + S2xl2 + + S x1 + e:l I p p 

I >~2 ~ *2 ~ ~ *2 
e:2 e:16 t2 = so + Slx21 + S2x22 + + s x2 + e:2 

= 
p p 

*2 *2 ~ ~ ~ ~ >~2 

e:3 e:13 t3 = so + slx31 + s2x32 + ... + S x3 + e:3 p p 

I 

>~2 ~ J *2 ~ ~ *2 I 
e: e:8 t = so + slxnl + s2xn2 + ... + (3 X + e: I n n p np n ..J 

Bootstrap Sample N 

r ,~N *N ~ ~ ~ ,~N 

e:l t 1 = so + 81 xll + 132x12 + + s X + e:l e:l p lp 

*N *N ~ ~ A ~ *N 
e:2 e:l t2 = SO.+ slx21 + s2x22 + + 13 x2 + e:2 

= 
p p 

,~N >':N ~ ~ ~ A *N 
e:3 e: 116 t3 = s' + 13 1x31 + 132x32 + ... + S x3 + e:3 0 p p 

I 
I *N i *N ~ ~ ~ ~ *N 
I E: J ..:_a7 I t = so + slxnl + s2xn2 + ... + (3 X + e: 
L._n Ln p np n 



Calculate estimates §*J using least squares estimation procedure. 
We wi II have 

A ,.,j 
s = 

where 

l 

for j = I , 2, ... , N, 

... ' §''']) T, and 
p 

The estimates of biases are calculated as follows: 

= 

.... ' 

Then the corrected estimators of § are 

l 
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I 
'The estimates of variances are approximated by 

where 

0(3* ) = 22(XT~X)-1' 
f.JCORRECTED 

~ = 
0 

L 
0 

n 

, and 

A T A 

(! - X§ CORRECTED) ~ (! - X§CORRECTED) , trace (~) > p + 
trace (~) - (p + 1) 

52 



CHAPTER IV 

COMPUTER RESULTS 

4.1 Design of the Simulation Study 

In this section, we examine how censoring mechanism, amount of cen-

soring, and sample size affect the performance of the estimators from all 

four methods. 

1. The different levels of the survival time distribution factor 

T corresponding to covariate x., E:., and (a,S). In this study, x. and E:. 
I I I I 

have two possible conditions: x. = 2i and x. - U(O,lOO) where U refers 
I I 

to the uniform distribution whereas E:. - N(O,l) and E:. - N(O,lOO) where N 
I I 

refers to the normal distribution. (a,S) Tare fixed as (1 ,0.2), (10,0.2), 

and (1 ,-0.4). The errors (E.) were generated by drawing pseudo-random 
I 

variates from the normal distribution. The covariates (x.) when x. -
I I 

U(O, 100) were generated by drawing pseudo-random variates from the uniform 

distribution. Then we have y. =a+ Sx. + E: •• 
I I I 

2. The three levels of the censoring factor correspond to random, 

fixed, and fractional censoring mechanisms. For the random censorship 

model, the censoring times (c.) were obtained by different pseudo-random 
I 

variates independent from pseudo-random variates in 1. For the fixed 

censoring mechanism, the c. •s were assigned a prespecified fixed value. 
I 

For the fractional censoring mechanism, they. 1 s were first generated 
I 

from step 1 and at the same time the pseudo-random variates from uniform 

distribution (0,1) were generated. A cutoff value (e.g., .25) 
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corresponding to the desired censoring level (in this case, 25 percent) 

was used to determine which inaividuals were to be censored (< cutoff) or 

uncensored (~cutoff). If an individual were to be censored, another 

random U(O,l) number would be generated and they. multiplied by the ran­
I 

dom number. The observed data were then obtained by 

t. = min(y., c.) 
I I I 

a. = 
I 

if y. ::; c. 
I I 

= 0 if y. > c. 
I I 

3. The three levels of amount of censoring correspond to 25%, 50%, 

and 75% censoring. 

4. The different levels of sample size are n = 10, 20, 25, 30, 50 

and 75. 

Assessing Performance 

The performance of the four methods is to be assessed on the basis 

of MSE, the mean square error, computed by MSE = (bias) 2 +variance of 

an estimate. A bias is calculated by using the value of a parameter 

estimated subtracted from the 

i.e., bias of~ is calculated 

average of 
1 100 

by 100 sgl 

all estimates over 100 trials, 

a -a and bias of S is calculated s 

1 100 
by 100 sgl Ss-s. The variance is then calculated by the formula 

Therefore, we have 
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MSE(~) 
1 100 A 2 100 

(~ -
100 A 

= ( 100 s~ 1 a - a) + l: s~l as/100)/100, and s s=l s 

MSE ( S) 1 100 A 2 100 (s - 100 
i3 /100)100 = (100 s~l ~s ~) + s~l l: s s=l s 

Since both Buckley and James' method and Miller's method are iter-

ative methods, they require starting values of the estimates. Only the 

uncensored observation y i· receives nonzero weight. For this reason, it 

• (A A )T makes sense to use as starting values a ,~ the 
0 0 

ordinary unweighted 

least squares estimator applied to only the uncensored observations 

(Miller and Halpern, 1982) for Miller's method. For Buckley and James' 

method, since the estimators use values for dependent variable at every 

(
A A )T x., it seems sensible to take for the starting values a ,~ the least 

I - 0 0 

squares estimators treating all the observations as uncensored whether 

they are uncensored or not (Miller and Halpern, 1982). All computations 

were performed using SAS packages and FORTRAN programs. 

4.2 Results of the Simulation Study 

In this section, we discus's the performance of the estimators from 

all four methods. We do not intend to argue that the estimators from the 

adjusted method and those from the bootstrapping method will be able to 

replace Buckley and James' method and Miller's method in all experiments. 

Rather, we wish to evaluate both proposed methods in light of the perfor-

mance of Buckley and James' method and Miller's method at different 

settings. A reasonable overall performance would suggest that the pro-

posed methods may be of use when one is not prepared to adopt Buckley and 

James' method and Miller's method. 
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In Tab.le I ~Table Ill, under the uniform random censoring variable 

(c.) from 10 +a to 50+ a where a= 1, E. ~ N(O,l), S = 0.2, and x. = 2i 
I I I 

we compute the estimates of a and S, their biases, and their variances 

for all four methods. The sample size is increased from 10 to 30. MSE 

performance is shown in Figure 1. The results show that increasing the 

sample size under the conditions mentioned would reduce the MSE of the 

estimates. The estimates from both proposed methods which provide indis-

tinguishable MSE give nearly the same MSE as the MSE from the Buckley and 

James' method in both estimators. The MSE of the estimates from Miller's 

method are much higher than the others. Miller's method are remarkably 

biased. 

Table IV - Table VI show that if the censoring variable (c.) has the 
I 

form c. 1.5x. 
2 and are the = - 0.015x. + a where a, s, E. same as case 

I I I I 

with the sample size increases from 10 to 30, the resu 1 t becomes almost 

the same as in case 1. The MSE from both of the proposed methods and 

from Buckley and James' method are remarkably indistinguishable. However, 

using both proposed methods provide better results than using any of the 

other methods. Miller's method provides the worst MSE in this case. 

Moreover, it shows strong bias for a. The MSE for all methods are de-

creased as the sample size is increased as shown in Figure 2. 

If C. is changed to be fixed value, C. = 31 keeping a, S, E. the 
I I I 

same as in case 1 and case 2. There are some differences between the MSE 

from the proposed methods and the USE from Buckley and James' method. 

Miller's method gives the worst MSE. Even between the adjusted method 

and the bootstrapping method there are different MSE. The adjusted 

method will be reasonably used in this case. However, tbe bootstrapping 

method could be a good substitute for Buckley and James' method and 



57 

Miller's. There are no biases shown up except the bi·as of & from 

Miller's method. The results are shown in Table VI I -Table IX and 

Figure 3. 

In Table X - Table XI I, c. - U(a + Sx., a + Sx. + 20) where a = 1, 
I I I 

S = 0.2, x. = 2i. Both adjusted method and bootstrapping method provide 
I 

little better results than Buckley and James' method. Miller's method 

again provides the worst result. It shows the bias of~ as well. Figure 

4 has shown the comparison of MSE among these four methods as the sample 

size is increased from 10 to 30. 

In Table XI I I - Table XV and Figure 5, c. is generated as U(O ,50). 
I 

The other parameters are the same as in the previous cases. In Table 

XVI- Table XVI II and Figure 6, c. is generated as N(40 +a, 16) and 
I 

S = -0.4, a= 1. The other random generatings are the same as the pre-

vious cases. The biases are remarkably shown up among all four methods. 

However, the adjusted method and the bootstrapping method are still the 

best candidates. 

In Table XIX- Table XXI and Figure 7, x. = 2i, a= 10, S = 0.2, C. 
I I 

is generated as U(a + Sx., a+ Sx. + 40), and E. - N(O,lOO). The sample 
I I I 

sizes considered are 25, 50, and 75. In Table XXI I -Table XXIV and 

Figure 8, x. = 
I 

2i,a=l0,S = 0.2, c. = 30 (fixed), and E. - N(O, 100). 
I I 

In Table XXV - Table XXVI I and Figure 9, x. = 2i, a= 10, S = 0.2, 
I 

c. = 1.5x. - 0.015x7, and E. - N(O,lOO). In Table XXVI I I -Table XXX and 
I I I I 

Figure 10, x. - U(O, 100), a= 10, S = 0.2, c. - U(0,50), and E. -N(O, 100). 
I I I 

From most of the cases the results show that the adjusted method and the 

bootstrapping method provide the MSE of the estimates better than Buckley 

and James' method. Miller's method always provides the worst results. 

However, most of the cases· shows biases. The MSE of all methods decreased 



TABLE I 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a = 1 , S = 0. 2, C i - U ( 10 + a, 50 + a) , Xi = 2 i , E: i - N ( 0, 1) 

AND SAMPLE SIZE= 10) 

a 
Estimator " Var(a) Bias MSE Method a 

( 1 ) (2) ( 3) ( 4) 

Adjusted Method 0.999447 0.439986 -0.000553 0.4399863 
Bootstrapping 1 . 0 1129 0.443872 0.01129 0.443994 
Buckley and James 0.999447 0.439986 -0.000553 0.4399863 
Miller 0.678699 0.708981 -0.321301 0.8122153 

Estimator s 
" 

Method s Var ( S) Bias MSE 
(6) (7) (8) ( 9) 

Adjusted Method 0.200219 0.00336882 0.000219 0.00336884 
Bootstrapping o. 199681 0.00342705 -0.000319 0. 00342715 
Buckley and James 0.200219 0.00336882 0.000219 0.00336844 
Mi 1ler 0. 19071 0.00584167 -0.00929 0.0059279 

Z-Va1ue 
(5) 

-0.0083369 
0. 1694589 

-0.0083369 
-3.815881 

Z-Value 
( 1 0) 

0.0377316 
-0.0054491 
0.0377316 

-1.2154786 

\.n 
00 



TABLE II 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= l, s = 0.2, ci- U(lO +a, 50+ a), Xj = 2i, Ei- N(O,l) 

AND SAMPLE SIZE = 20) 

a 
Estimator A 

Var(&) Bias MSE Method a 
( l) (2) ( 3) ( 4) 

Adjusted Method 0.957667 0.240447 -0.042333 0.242239 
Bootstrapping 0.993426 0.241537 -0.006574 0.2415802 
Buckley and James 0.957667 0.240447 -0.042333 0.242239 
Miller 0.400642 0.366883 -0.599358 0. 726113 

s 
Estimator A 

Var(§) Bias Method s MSE 
(6) (7) ( 8) (9) 

Adjusted Method 0.201577 0.00040056 0.001577 0.00040085 
Bootstrapping 0. 199835 0.00040582 -0.000165 0.00040583 
Buckley and James 0. 201577 0.00040056 0.001577 0.00040085 
Miller 0.199335 0. 000772238 -0.000665 0.000972642 

Z-Value 
(5) 

-0.863315 
-0.1337635 
-0.863315 
-9.8951477 

Z-Value 
( l 0) 

0.787523 
-0.0819083 
0.7879523 

-0.2393016 

\.11 
U) 



TABLE I I I 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= l' s = 0.2, ci - U(lO +a, 50+ a)' xi = 2i' Ei - N(O, l) 

AND SAMPLE SIZE= 30) 

a 
Estimator A 

Var (a) Bias MSE Method a 
( l) (2) (3) ( 4) 

Adjusted Method 0.970852 0.104528 -0.029148 0. l 053776 
Bootstrapping 0.988504 0.117337 -0.11496 0.1174691 
Buckley and James 0. 971011 0.140484 -0.028989 0.1413243 
Miller 0.705478 0. 181211 -0.294522 0.2679542 

s 
Estimator s Var(S) Bias MSE Method (6) ( 7) ( 8) ( 9) 

Adjusted Method 0.200583 0.0001334 0.000583 0.000133739 
Bootstrapping 0.201337 0.0001856 0.001337 0.000187387 
Buckley and James 0.202154 0.0002103 0.002154 0.000214939 
Miller 0. 211448 0.0004247 0.011448 0.000555756 

Z-Value 
(5) 

-0.9015554 
-0.3356056 
-0.7734278 
-6.9187153 

Z-Value 
( l 0) 

0.5047666 
0.9813917 
l .4853406 
5.5550566 

<l' 
0 



= the adjusted method ------ = the bootstrapping method 

-- •• -- = Buckley and James• method = Miller's method 

8.886 

\ 

8.8-r-----------

\ 
\ 

-----.... 

8.885 
\ 

' 8. 7-1 

' 
\ ' 

" \ 
' i 8.61 ' s 

\ ' E 8.88 
\ ' 

\ 
' ' 0 

\ ' F 
\ 

~ 8.Sj 

' 
\ ' ' B 

\ ' E 
\ 

A 8.4 

' T 

\ 
' 

l 

.. A 8.882 

\ 

p 

H 

\ 

H 8.3 

A 

\ 

A 

~---- T 

\.. ________ :_ ____ .. 
" 

11.881 

A B.2 

~ 

T 

8.1-1 

8. 8 'I II II I II II I II II Iii I I I I I II I I I "I II II I II II I II II I II II I II II I II II I II II Iii II I II II I II "I II II I I I II I II II II ... , 

18 12 14 16 18 28 22 24 26 28 38 

8.888 1 

~~~~n.l~lnn~aanl~l'"l~h~lnil~l~ii~""ITianl~iinl~f'~'"""""ITii~j~linlnil~lnn~•i"ITiiniTiinlnii~j"""""ITilni~'I"I~IITinnTinn~l'"l~linlniini~IIT""ITitnl~iinara 

18 12 14 16 18 2B 22 24 26 28 38 

SAtfl..f SIZE 
SAff'l.E SIZE 

Figure 1. MSE of the Estimates of a and S Based on 100 Replications (a= 1, S = 0.2, c. -
U(lO +a, 50+ a), X. = 2i, E. - N(O,l) and Sample Size= 10) 1 

I I 

a-



TABLE IV 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 

(a = 1, S = 0.2, Ci 

Estimator ,., 

Method a 
(l) 

Adjusted Method 0.991633 
Bootstrapping 1.01056 
Buckley and James 0.991683 
Miller 0.677735 

Estimator s Method (6) 

Adjusted Method 0.200752 
Bootstrapping 0.19973 
Buckley and James 0.200452 
Miller 0. 19077'4 

= l.5Xi - 0.015 X~+ a, xi = 2i' E:i - N(O,l) 
AND SAMPLE SIZE = 10) 

a 

Var(a) Bias MSE 
(2) ( 3) ( 4) 

0.419551 -0.008367 0.419621 
0.441765 0.01056 0.4418765 
0.419651 -0.008367- 0.419621 
0.708401 -0.322265 0.8122557 

s 
Var <in Bias MSE 

(7) (8) (9) 

0.00329412 0.000752 0.00324466 
0.00341924 -0.00027 0.00341927 
0.00329412 0.000752 0.00329466 
0.00584298 -0.009226 0.00592801 

Z-Value 
(5) 

-0.1291747 
0. 1588796 

-0.1291747 
-3.8288941 

Z-Value 
( 1 0) 

0.1310232 
-0.0461741 
0.1310232 

-1 .2069692 

<7' 
N 



TABLE V 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= l, s = 0.2, ci = l.5Xi - O.Ol5Xf +a, xi= 2i' Ei ~ N(O,l) 

AND SAMPLE SIZE = 20) 

a 
Estimator Var(&) Bias MSE Method a 

( l ) (2) ( 3) ( 4) 

Adjusted Method 0.953523 0.232007 -0.046477 0.2341671 
Bootstrapping 0.9846213 0.240059 -0.0153787 0.2402955 
Buckley and James 0.95323 0.232007 -0.046977 0.2341671 
Miller 0.400547 0. 366831 -0.599453 0.7261749 

s 
Estimator s Var(S) Bias MSE Method (6) (7) ( 8) (9) 

Adjusted Method 0.201725 0.000388848 0.001725 0.000391775 
Bootstrapping 0. 198544 0.00038141 0.001456 0.000383519 
Buckley and James 0.201725 0.000388848 0.001725 0.000391775 
Miller 0. 199339 0.000772252 -0.000661 0.000772736 

Z-Value 
(5) 

-0.9649117 
-0.3138778 
-0.9649117 
-9.8974187 

Z-Value 
( l 0) 

0.8747819 
0.7455401 
0.8747519 

-0.2378604 

""' w 



TABLE VI 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND 8 BASED ON 100 REPLICATIONS 
(a= 1' 8 = 0.2, ci = 1.5Xi - 0.015XT +a, xi = 2i' E:i - N(O, 1) 

AND SAMPLE SIZE = 30) 

a 
Estimator A 

Var(&) . Bias MSE Method a 
( 1) (2) (3) (4) 

Adjusted Method 0. 983471 0.121452 -0.016529 0. 1217252 
Bootstrapping 0.990632 0. 124427 -0.009378 0.1245149 
Buckley and James 0.979423 0.124863 -0.020577 0.1252864 
Miller 0.789327 0. 188424 -0.210673 0.2328071 

8 
Estimator 

8 Var(S) Bias MSE Method (6) ( 7) (8) (9) 

Adjusted Method 0.201013 0.00014273 0.001013 0.000143726 
Bootstrapping 0.212008 0.00018854 0.012008 0.000332692 
Buckley and James 0.205598 0.00018881 0.005598 0.00022014 
Miller 0.200101 0.00040231 0.000101 0.00040231 

Z-Value 
(5) 

-0.4742903 
-0.2658599 
-0.5823246 
-4.8533406 

Z-Value 
( 10) 

0.8480031 
0. 7461113 
4.074102 
0.0503554 

C1' 
..j::-
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TABLE VII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 1, S = 0.2, C. = 31, X. = 2i, E. - N(O,l) AND SAMPLE SIZE= 10) 

I I I 

Estimator A 

Method a 
( 1) 

Adjusted Method 0.999447 
Bootstrapping 1.01129 
Buckley and James 0.999447 
Miller 0.678066 

Estimator A 

Method s 
(6) 

Adjusted Method 0.200219 
Bootstrapping 0.199681 
Buckley and James 0.200219 
Miller 0. 190767 

Var(&) 
. (2) 

0.439986 
0. 443872 
0.439986 
0.707619 

Var( S) 
(7) 

0.00336882 
0.00342705 
0.00336882 
0.0058302 

a 

Bias 
(3) 

-0.000553 
0.01129 

-0.000553 
-0.321934 

s 
Bias 
(8) 

0.000219 
-0.000319 
0.000219 
0.009233 

MSE 
(4) 

0.4399863 
0.443994 
0.4399863 
0.8112605 

MSE 
(9) 

0.00336884 
0.00342715 
0.00336884 
0.00591544 

Z-Value 
(5) 

-0.0083369 
0.1694589 

-0.0083369 
-3.8270758 

Z-Value 
( 1 0) 

0.0377316 
-0.0054491 
0.0377316 

-1.209209 

0" 
0" 



TABLE VIII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 1, S = 0.2, C.= 31, X.= 2i, E. - N(O,l) AND SAMPLE SIZE= 20) 

I I I 

Estimator A 

Method a 
( 1 ) 

Adjusted Method 0.974762 
Bootstrapping 1 . 002549 
Buckley and James 0.957667 
Miller 0.400642 

Estimator § 
Method (6) 

Adjusted Method 0.203285 
Bootstrapping 0.2011137 
Buckley and James 0.201577 
Miller 0.199335 

Var (~) 
(2) 

0.2148561 
0.203784 
0.240447 
0.366883 

Var(i3) 
(7) 

0.000311547 
0.00032973 
0.000400557 
0. 000778238 

a 
Bias 
(3) 

-0.025238 
0.002549 

-0.042333 
-0.599358 

s 
Bias 
(8) 

0.003285 
0. 001113 7 
0.001577 
0.000665 

MSE 
(4) 

0.215493 
0.2037905 
0.242239 
0. 726113 

MSE 
(9) 

0.00032229 
0.00033044 
0.00003086 
0. 00077264 

Z-Value 
( 5) 

-0.544478 
0.0504657 

-0.863315 
-9.8951477 

Z-Value 
( 19) 

1 . 861257 
0.6133505 
0.7879523 

-0.2393016 

0" ......., 



TABLE IX 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND B BASED ON 100 REPLICATIONS 
(a= I, B = 0.2, C.= 31, X. = 2i, s. - N(O,I) AND SAMPLE SIZE= 30) 

I I I 

Estimator 
Method 

Adjusted Method 
Bootstrapping 
Buckley and James 
Miller 

Estimator 
Method 

Adjusted Method 
Bootstrapping 
Buckley and James 
Miller 

A 

a 
( I ) 

0.983644 
1.010311 
0.988640 
0.707826 

s 
(6) 

0.201036 
0. 206076 
0. 20 II 91 
0.200764 

Var(&) 
(2) 

0. 123743 
0.126647 
0.175303 
0.203514 

Var( S) 
(7) 

0.00014201 
0.0001832 
0.0002101 
0.0004412 

a 

Bias 
(3) 

-0.016356 
0.010311 

-0.01136 
-0.292174 

B 
Bias 
(8) 

0.0001036 
0.006076 
0.001191 
0.000764 

MAE 
( 4) 

0.1240105 
0.1372786 
0.1754320 
0.2888796 

MAE 
( 9) 

0.000143073 
0.000220117 
0.000211518 
0.000441783 

Z-Va1ue 
( 5) 

-0.4649612 
0.2897365 

-0.2713211 
-6.4765604 

Z-Value 
(I 0) 

0.8693918 
4.4890561 

. 0.8216724 
0.363727 

~ 
(X) 
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TABLE X 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 1, S = 0.2, Ci- U(a + SXi, a+ SXi + 20), Xi= 2i, Ei- N(o',l) 

AND SAMPLE SIZE= 10) 

a 
Estimator A 

Va r(~) Bias MSE Method a 
( 1) (2) (3) (4) 

Adjusted Method 1 .06369 0.422522 0. 006369 0.426578 
Bootstrapping 1.00321 0.439734 0.00321 0.439744 
Buckley and James 1 .00586 0.442809 0.00586 0.4428433 
Miller 0.628391 0.70174 -0.371609 0.8398332 

s 
Estimator 

i3 var(s) Bias MSE Method (6) (7) (8) ( 9) 

Adjusted Method 0.200405 0.0033168 0.000405 0.00331696 
Bootstrapping 0.199255 0.0033849 -0.000745 0.0033855 
Buckley and James 0.19985 0.00359402 -0.00015 0.0035941 
Miller 0. 194254 0.00539906 -0.005746 0.0053201 

Z-Value 
(5) 

0.979821 
0.0484071 
0.0880621 

-0.4360683 

Z-Value 
( 10) 

0.0703223 
-0. 1280511 
-0.0250808 
-0.7819995 

'-J 
0 



TABLE XI 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 1, S = 0.2, Ci- U(a + SXi, a+ SXi + 20), Xi= 2i, ci- N(O,l) 

AND SAMPLE SIZE = 20) 

a 
Estimator ~ 

Var(&) Bias MSE 
Method a 

( 1 ) (2) (3) ( 4) 

Adjusted Method 1. 08646 0. 268572 0. 08646 0.2760473 
Bootstrapping 0.9476311 0.2511732 -0.0523689 0.2539157 
Buckley and James 0.966401 0.247792 -0.033599 0.2489208 
Mi 11 er 0. 373579 0.401944 -0.626421 0.7943472 

s 
Estimator s Va r ( S) Bias MSE Method (6) (7) (8) ( 9) 

Adjusted Method 0.201.312 0.00037903 0.001312 0.00038072 
Bootstrapping 0.200846 0.00032572 0.000846 0.00032645 
Buckley and James 0.201395 0.000408781 0.001395 0.00041095 
Miller 0.200227 0.000836164 0.000227 0.000836171 

Z-Value 
(5) 

1 . 668339 
-1.094929 
-0.6749674 
-9.8805977 

Z-Value 
( 1 0) 

0.6739022 
0.4687718 
0.6899689 
0.0785018 

""-.1 



TABLE XII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 1, S = 0.2, Ci- U(a + SXi, a+ SXi + 20), Xi= 2i, E:i- N(O,l) 

AND SAMPLE SIZE = 30) 

a 
Estimator A Var(&) Bias MSE Method a 

( 1 ) (2) ( 3) ( 4) 

Adjusted Method 1.001563 0.102247 0.001563 0. 1022494 
Bootstrapping 0.963944 0. 101785 -0.03656 0.1030850 
Buckley and James 0. 964113 0.121174 -0.035887 0.1224618 
Miller 0.728201 0. 184003 -0.271799 0. 2578777 

s 
Estimator s Var(§) Bias MSE Method (6) (7) (8) (9) 

Adjusted Method 0.200473 0.0001254 0.000473 0.000125623 
Bootstrapping 0.201132 0.0001247 0.001132 0.000125981 
Buckley and James 0.201882 0.0001993 0.001882 0.000202841 
Miller 0.200570 0.0004228 0.000570 0.000423124 

Z-Value 
(5) 

0.0488802 
-1 . 1301489 
-1.0309377 
-6.3362952 

Z-Value 
( 10) 

0.4223887 
1.0137088 
1.3331099 
0. 277209 
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TABLE XIII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND B BASED ON 100 REPLICATIONS 
(a= 1, 13 = 0.2, C. - U(0,50), X. = 2i, E. - N(O, 1) AND SAMPLE SIZE= 10) 

I I I 

Estimator 
Method 

Adjusted Method 
Bootstrapping 
Buckley and James 
Miller 

Estimator 
Method 

Adjusted Method 
Bootstrapping 
Buckley and James 
Miller 

A 

a 
( 1 ) 

1.31853 
1 .03839 
0. 987708 
0.47353 

s 
(6) 

0.199891 
0. 183269 
0.207916 
0. 197988 

Var (&) 
(2) 

0.746214 
0.516911 
0.51912 
0.801317 

varU3) 
(7) 

0.00353426 
0.00444387 
0.00400861 
0.00584785 

a 

Bias 
(3) 

0.31853 
0.03839 

-0.012292 
-0.526457 

B 
Bias 
( 8) 

-0.000109 
-0.016731 
0.007916 

-0.002012 

MSE 
(4) 

0.8476753 
0.533962 
0.519271 
1. 078474 

MSE 
(9) 

0.00353428 
0.00472372 
0.00407126 
0.00585194 

Z-Value 
(5) 

3.6873855 
0.533962 

-0.1706037 
-5.85113 

Z-Value 
( 1 0) 

-0.0183348 
-2.5098106 

1.2502843 
-0.2631055 

-.....J 
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TABLE XIV 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 1, S = 0.2, C. - U(0,50), X.= 2i, E. - N(0,1) AND SAMPLE SIZE= 20) 

I I I 

Estimator 
Method 

Adjusted Method 
Bootstrapping 
Buckley and James 
Mi 11er 

Estimator 
Method 

Adjusted Method 
Bootstrapping 
Buckley and James 
Miller 

& 
( 1 ) 

0.99598 
1. 035246 
0.99598 
0.336194 

s 
(6) 

-0.399174 
-0.3954611 
-0.399174 
-0.396483 

Var(&) 
(2) 

0. 199526 
0.1754321 
0.199526 
0.439232 

var(s) 
( 7) 

0.0035598 
0.00033423 
0.00035398 
0.000947709 

a 

Bias 
(3) 

-0.00402 
0.035246 

-0.00402 
-0.663806 

s 
Bias 
( 8) 

0.000826 
0.0045389 
0.000826 
0.003517 

MSE 
( 4) 

0.1995421 
0.1766743 
0.1995421 
0.6333942 

MSE 
(9) 

0.00035668 
0.000354801 
0.00035668 
0.00096007 

Z-Va1ue 
(5) 

0.0899967 
0.8415023 

- 0.0899967 
-10.015994 

Z-Va1ue 
( 1 0) 

-0.4377944 
2.4828323 

-0.7377944 
-1.1424432 

'-1 
V1 



TABLE XV 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= l, S = 0.2, C. - U(0,50), X. = 2i, E. - N(O, l) AND SAMPLE SIZE= 30) 

I I I 

Estimator A 

Method a 
( l) 

Adjusted Method l. 13857 
Bootstrapping 1.094714 
Buckley and James 0.971187 
Miller 0.797424 

Estimator A 

Method s 
(6) 

Adjusted Method 0.200372 
Bootstrapping 0.201528 
Buckley and James 0.210338 
Miller 0. 211459 

Var(&) 
(2) 

0. 143662 
0.173511 
0.179336 
0.223641 

Var( §) 
( 7) 

0.0001217 
0.0001959 
0.0002473 
0.0006137 

a 

Bias 
( 3) 

0.13857 
0.094714 

-0.028813 
-0.202576 

s 
Bias 
(8) 

0.000372 
0.001528 
0.010338 
0.011459 

MSE 
( 4) 

0. 1628636 
0.1824817 
0. 1801661 
0.264678 

MSE 
( 9) 

0.000121838 
0.000198234 
0.000354174 
0.000745008 

Z-Value 
(5) 

3.6559333 
2.2737917 

-0.680385 
-4.2836332 

Z-Value 
( l 0) 

0.3372078 
1.0917071 
6.5739208 
4.6256062 

-....! 
0'\ 
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TABLE XVI 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a = l , S = 0 . 4 , C i - N (a + 40 , l 6) , X i = 2 i , s i - N ( 0 , l ) 

AND SAMPLE SIZE = 10) 

a 
Estimator A 

Var (&) Bias MSE Method a 
( l ) (2) ( 3) (4) 

Adjusted Method 0.912284 0.487624 -0.087716 0.4947181 
Bootstrapping 0.921749 0.487849 -0.078251 0.4939722 
Buckley and James 0.912284 0.487024 -0.087716 0.4947181 
Miller 0.466033 0.686484 -0.533967 0.9716047 

s 
Est i mater § Var ( §) Bias MSE Method (6) (7) (8) (9) 

Adjusted Method -0.387856 0.00291047 0.012144 0.0030579 
Bootstrapping -0.388176 0.00292271 0.011824 0.0030625 
Buckley and James -0.387856 0.00291047 0.012144 0.0030579 
Miller -0.386718 0.00435181 0.013282 0.00452821 

Z-Value 
(5) 

-1.2569085 
-1.120333 
-1.2569085 
-6.4446504 

Z-Value 
( l 0) 

2.2510232 
2.1871144 
2.2610232 
2.0133913 

-....J 
0) 



TABLE XVII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 1, s = 0.4, ci - N(a + 40, 16)' xi= 2i' Ei - N(0,1) 

AND SAMPLE SIZE = 20) 

a 
Estimator ~ var(a) Bias MSE Method a 

( 1 ) (2) (3) ( 4) 

Adjusted Method 1.25493 0.263415 0.25493 0.3284043 
Bootstrapping 0.891136 0.264445 -0. 108864 0.2762963 
Buckley and James 0.89818 0.279295 -0.10182 0.2896623 
Miller 0.288365 0.569783 -0.711635 1.0762074 

s 
Estimator s Var( B) Bias MSE Method (6) (7) (8) (9) 

Adjusted Method 0.201296 0.000457581 0.001296 0.0004502 
Bootstrapping 0.2011317 0.00046842 0.0011317 0.00046968 
Buckley and James 0.211972 0.0006016 0.011972 0.000745 
Mi 11er 0. 194833 0.00134695 -0.005167 0.00137359 

Z-Va1ue 
(5) 

2.9177005 
-2.1169793 
-1.926643 
-9.427627 

Z-Value 
( 1 0) 

0.6058594 
0.522905 
4.8810718 

-1.4078712 

"'-.1 
1.0 



TABLE XVIII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a = l , S = 0 . 4 , C i - N (a + 40 , l 6) , X i = 2 i , E i - N ( 0 , l ) 

AND SAMPLE SIZE= 30) 

a 
Estimator A 

Var(a) Bias MSE Method a 
( l ) (2) ( 3) ( 4) 

Adjusted Method 0.994892 0.048621 -0.005108 0.048647 
Bootstrapping 1.014475 0.048884 0.014475 0.0490935 
Buckley and James 0.985532 0.062375 -0.014468 0.0625843 
Miller 0.689999 0. ll6584l -0.310001 0.2126847 

s 
Estimator § Var( S) Bias MSE Method (6) (7) ( 8) (9) 

Adjusted Method -0.396433 0.0001253 0.003567 0.000138023 
Bootstrapping -0.392615 0.0001647 0.007385 0.000219238 
Buckley and James -0.394662 0.0002841 0.005338 0.000312594 
Miller -0.394472 0.0004833 0.005528 0. 000513858 

Z-Value 
(5) 

-0.2316535 
0.6546892 

-0.5792995 
-9.0791132 

Z-Value 
( l 0) 

3. 1866002 
5.7544484 
3. 1669627 
2.5145463 

(X) 

0 
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TABLE XIX 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Ci - U(a + SXi, a+ SXi + 40), Xi= 2i, Ei - N(O,lOO) 

AND SAMPLE SIZE= 25) 

a 
Estimator A 

Var(&) Bias MSE Method a 
( 1) (2) (3) ( 4) 

Adjusted Method 7.5142 18.0890 -2.4858 24.268202 
Bootstrapping 7.2517 20.7735 -2.7483 28.326653 
Buckley and James 6.9941 21.2146 -3.0059 30.250035 
Miller 6.4454 24.1363 -3.5546 36.771481 

s 
Estimator 8 Var(S) Bias MSE Method (6) ( 7) (8) (9) 

Adjusted Method 0.1950 0.0221 -0.005 0.022125 
Bootstrapping 0.2141 0.0383 0.0141 0.0384988 
Buckley and James 0.2104 0.0388 0.0104 0.0389081 
Miller 0. 1753 0.0642 -0.0247 0.06481 

Z-Value 
(5) 

-5.8446553 
-6.0298888 
-6.5261508 
-7.2352808 

Z-Value 
( 1 0) 
--

-0.3363364 
0. 7204763 
0.52798 

-0.9748312 

00 
N 



TABLE XX 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a = 1 0 , S = 0. 2 , C i - U (a + S Xi , a + S Xi + 40) , Xi = 2 i , E i - N ( 0 , 1 00) 

AND SAMPLE SIZE = 50) 

a 
Estimator A 

Var(&) Bias MSE Method a 
( 1 ) (2) ( 3) ( 4) 

Adjusted Method 7.3476 8.2451 -2.6524 15.280326 
Bootstrapping 7. 2714 8.7149 -2.7286 16.160158 
Buckley and James 7.9348 10.5727 -2.0652 14.837751 
Miller 6.5531 12.1117 -3.4469 23.99282 

s 
Estimator § Var(S) Bias MSE Method (6) (7) ( 8) (9) 

Adjusted Method 0. 1981 0.0024 -0.0019 0.00240361 
Bootstrapping 0. 1702 0.0041 -0.0298 0.00498804 
Buckley and James 0. 1893 0.0046 -0.0107 0.00471449 
Mi 11 er 0. 1692 0.0153 -0.0308 0.0162436 

Z-Value 
( 5) 

-9.2372151 
-9.2429089 
-6.3513456 
-9.9043535 

Z-Value 
( 10) 

-0.3878358 
-4.6539781 
-1 . 5776289 
-2.4900324 

co 
w 



TABLE XXI 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Ci- U(a + SXi, a+ SXi + 40), Xi= 2i, e::i- N(O,lOO) 

AND SAMPLE SIZE = 75) 

a 
Estimator A 

Va r(&) Bias MSE Method a 
( l ) (2) (3) (4) 

Adjusted Method 7.5686 5.8707 -2.4364 11.806745 
Bootstrapping 7.6222 6.4546 -2.3778 12.108533 
Buckley and James 7.4529 6.9434 -2.5471 13.431118 
Miller 6.9347 7.2749 -3.0653 16.670964 

s 
Estimator s Var(S) Bias MSE Method (6) (7) (8) (9) 

Adjusted Method 0. 1987 0.0006 -0.0013 0.00060169 
Bootstrapping 0. 1894 0.0009 -0.0106 0.00101236 
Buckley and James 0. 1921 0.0012 -0.0079 0.00126241 
Miller 0. 1821 0.0124 -0.0179 0.0127204 

Z-Value 
( 5) 

-10.055499 
- 9.3592415 
-: 9.6662918 
-11.364739 

Z-Value 
( 10) 

-0.5307227 
-3.5333333 
-2.2805331 
-1.6074675 

00 
4:'-
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TABLE XXII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Ci = 30, Xi = 2i, Ei - N(O,lOO) AND SAMPLE SIZE= 25) 

a 
Estimator A 

var(a) Bias MSE Method a 
( 1 ) . ( 2) ( 3) (4) 

Adjusted Method 9.9335 13.4649 -0.0605 13.469322 
Bootstrapping 9.8843 14.3227 -0. 1157 14.336086. 
Buckley and James 9.3762 14.9916 -0.6238 15.380726 
Mi 11 er 8.6330 17.1118 -1.36 70 18.980489 

Estimator s 
Method s Var(S) Bias MSE 

Adjusted Method 0.1734 0.0140 -0.0266 0.0147075 
Bootstrapping 0.1714 0.0167 -0.0286 0.0175179 
Buckley and James 0. 1632 0. 0211 -0.0368 0.0224542 
Miller 0. 1602 0.0453 -0.0398 0.046884 

Z-Value 
(5) 

-0.1812258 
-0.3057179 
-1.6110958 
-3.3046135 

Z-Value 

-2.2481103 
-2.2131344 
-2.5334165 
-1.86996 71 

00 
0'\ 



TABLE XXIII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Ci = 30, Xi = 2i, Ei - N(O,lOO) AND SAMPLE SIZE= 50) 

a 
Estimator A 

Var(&) Bias MSE Method a 
(1) (2) (3) ( 4) 

Adjusted Method 10.4330 7.3768 0.4330 7. 564289 
Bootstrapping 10.2527 8.1014 0.2527 8.1652573 
Buckley and James 9. 4269 7.9918 -0.5704 8.3171562 
Mi lle.r 9.3688 8.7391 -0.6312 9.1375134 

s 
Estimator s Var( S) Bias MSE Method (6) ( 7) ( 8) (9) 

Adjusted Method 0.1245 0.0023 -0.0755 0.0080025 
Bootstrapping 0.1093 0.0019 -0.0907 0.0101264 
Buckley and James 0.1055 0.0035 -0.0945 0.0124302 
Miller 0. 1022 0.0186 -0.0978 0.0281648 

Z-Value 
(5) 

-1.5942407 
0.8878205 

-2.0177029 
-2.1351758 

Z-Value 
( 10) . 

-15.742838 
-20.808007 
-15.973415 
-7.1710439 

00 
-....! 



TABLE XXIV 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Ci = 30, Xi = 2i, Ei - N(O,lOO) AND SAMPLE SIZE= 75) 

a 
Estimator A Va r (a) Bias MSE Method a 

( 1) (2) ( 3) ( 4) 

Adjusted Method 11.0108 4.9272 1.0108 5.9489166 
Bootstrapping 10.9399 4.1216 0.9399 5.005012 
Buckley and James 9.3226 5.5447 -0.6774 6.003508 
Miller 8.9339 7.5129 -1 .0661 8.6494692 

s 
Estimator s Var ( S) Bias MSE Method (6) ( 7) (8) (9) 

Adjusted Method 0.1086 0.0009 -0.0914 0.00925396 
Bootstrapping 0.1133 0.0009 -0.0867 0.00841689 
Buckley and James 0.1053 0.0012 -0.0947 0.010168 
Mi 11 er 0. 1266 0.0107 -0.0734 0.0160875 

Z-Value 
(5) 

4. 5537076 
4.6296561 

-2.8767768 
-3.8895033 

Z-Value 
( 10) 

-30.466667 
-28.90000 
-27.337535 
- 7.0958458 

00 
00 
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TABLE XXV 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a = 10, s = 0.2, ci = 1.5Xi - 0.015X~ + a, xi = 2i' Ei - N(O, 100) 

AND SAMPLE SIZE = 25) 

a 
Estimator A 

Var(a) Bias MSE Method a 
( 1) (2) (3) (4) 

Adjusted Method 11.7817 20.7231 1. 7817 23.897555 
Bootstrapping 12.3117 22.1573 2. 3117 27.501257 
Buckley and James 8.9462 23.7333 -1.0538 24.843794 
Miller 7.8540 27.4868 -2.146 32.092116 

s 
Estimator A 

Var( §) Method s Bias MSE 
(6) ( 7) (8) (9) 

Adjusted Method 0.2588 0.0195 0.0588 0.0229574 
Bootstrapping 0.2479 0.2479 0.0479 0.0199944 
Buckley and James 0.2759 0.0361 0.0759 0.0418608 
Miller 0.1256 0.0583 -0.0744 0.0638353 

Z-Value 
(5) 

3.9138774 
4.9110353 

-2. 1631126 
-4.0932439 

Z-Value 
( 1 0) 

4.2107555 
3.6003845 
3.9947368 

-3.0813322 

1.0 
0 



TABLE XXVI 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Ci = 1.5Xi - 0.015X~ +a, Xi= 2i, Ei - N(O,lOO) 

AND SAMPLE SIZE = 50) 

a 
Estimator A 

Var(&) Bias MSE Method a 
( 1 ) (2) (3) ( 4) 

Adjusted Method 7.5489 12.3848 -2.4511 18.392691 
Bootstrapping 7.2441 12.1121 -2.7559 19.707085 
Buckley and James 6.9537 14.7563 -3.0463 24.036244 
Miller 6.7491 17.1417 -3.2509 27.710051 

s 
Estimator 

Method s Var( S) Bias MSE 
(6) (7) (8) ( 9) 

Adjusted Method 0. 1861 0.0054 -0.0139 0.00559321 
Bootstrapping 0.1797 0.0067 -0.0203 0.00711209 
Buckley and James 0.1791 0.0114 -0.0209 0.0118368 
Miller 0.1863 0.0172 -0.0137 0.0173876 

Z-Value 
(5) 

-6.949264 
-7.9186971 
-7.9301962 
-7.8519345 

Z-Value 
( 1 0) 

-1.8915504 
-2.4800397 
-1 . 9574643 
-1.0446152 

\.!) 



TABLE XXV II 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND 6 BASED ON 100 REPLICATIONS 
(a= 10, 6 = 0.2, ci = 1.5Xi - 0.015XT +a, xi= 2i' Ei - N(O,lOO) 

AND SAMPLE SIZE = 75) 

a 
Estimator A 

Var(&) Bias MSE Method a 
( 1 ) (2) (3) (4) 

Adjusted Method 7.5689 12.3360 -2.4311 18.246247 
Bootstrapping 7.8144 13.8621 -2.1856 18.638947 
Buckley and James 7.0048 13.9441 -2.9952 22.915323 
Mi 11 er 7.5497 16.7726 -2.4503 22.77657 

6 
Estimator 

13 Var(S) Bias MSE Method (6) (7) ( 8) (9) 

Adjusted Method 0.1858 0.0054 -0.0142 0.00560164 
Bootstrapping 0. 1872 0.0063 -0.0128 0.00646384 
Buckley and James 0.2212 0.0068 0.0212 0.00724944 
Miller 0.1813 0.0113 -0.0187 0.0116496 

Z-Value 
(5) 

-6.9217458 
-5.58702442 
-8.0210382 
-5.983009 

Z-Value 
( 10) 

-1.9323752 
-1 .6126484 

2. 5708776 
-1.759148 

I..D 
N 
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TABLE XXV I I I 
_," 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND f3 BASED OJ:J. Xoo REPLICATIONS 
(a= 10, f3 = 0.2, X.- U(O,lOO), E.- N(O,lOO) AND SAMPLE SIZE= 25) 

I I 

Estimator A 

Method a 
(1) 

Adjl:lsted Method 7.8771 
Bootstrapping 7.2461 
Buckley and James 7.2488 
Miller 7. 2511 

Estimator A 

Method f3 
(6) 

Adjusted Method 0.1786 
Bootstrapping 0.1780 
Buckley and James 0.1696 
Miller 0.1751 

var(&) 
(2) 

34.1472 
33.6246 
36.5339 
39.3568 

Var(S) 
(7) 

0.0119 
0.0191 
0.0203 
0.0553 

a 
Bias 
(3) 

-2.1229 
-2.7539 
-2.7512 
-2.7489 

f3 

Bias 
(8) 

-0.0214 
-0.022 
-0.0304 
-0.0249 

MSE 
( 4) 

38.653904 
41.208565 
44. 103001 
46.913251 

MSE 
(9) 

0.0123579 
0.019584 
0.0212241 
0.05592 

Z-Value 
(5) 

-3.6328878 
-4.7491906 
-4.5517054 
-4.3817647 

Z-Value 
( 10) 

-1.9617348 
-1 . 5918641 
-2.1336617 
-1.0588557 

\.0 
-1::-



TABLE XXIX 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, B = 0.2, X. - U(O,lOO), E. - N(O,lOO) AND SAMPLE SIZE= 50) 

I I 

Estimator 
Method 

Adjusted Method 
Bootstrapping 
Buckley and James 
Mi 11 er 

Estimator 
Method 

Adjusted Method 
Bootstrapping 
Buckley and James 
Miller 

A 

a 
( 1 ) 

8.0041 
7.6352 
8.0558 
7.9142 

s 
(6) 

0. 1744 
0. 1751 
0. 1 724 
0. 1684 

Var(a) 
(2) 

15.6963 
16.6511 
18.9444 
22.6639 

Var(S) 
(7) 

0.0052 
0.0058 
0.0063 
0.0101 

a 

Bias 
(3) 

-1.9959 
-2.3648 
-1.9442 
-2.0858 

-
s 

Bias 
( 8) 
-

-0.0256 
-0.0249 
-0.0276 
-0.0316 

MSE 
(4) 

19. 1 7991 7 
22.243379 
22.724314 
27.014462 

MSE 
( 9) 

0.00585536 
0.00642001 
0.00706176 
0.0110985 

Z-Value 
( 5) 

-5.0377908 
-5.7952604 
-4.4668412 
-4.3813237 

Z-Value 
( 10) 

-3.5500813 
-3.2695302 
-3.4772731 
-3.1443175 

1..0 
\.n 



TABLE XXX 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, X. - U(O,IOO), E.- N(O,IOO) AND SAMPLE SIZE= 75) 

I I 

a 
Estimator A 

Var (&) Bias MSE Method a 
( I ) (2) (3) ( 4) 

Adjusted Method 8.4788 7.7041 -I. 5212 10.018149 
Bootstrapping 7. 9116 8.5226 -2.0884 12.844015 
Buckley and James 7.3629 8.9430 -2.6371 15.897296 
Miller 7.2549 12.5214 -2.7451 20.056974 

s 
Estimator s var( S) Bias MSE Method (6) ( 7) ( 8) ( 9) 

Adjusted Method 0. 1844 0.0026 -0.0156 0.00284336 
Bootstrapping 0.1793 0.0039 -0.0207 0.00432849 
Buckley and James 0.1826 0.0052 -0.0174 0.0055027 
Miller 0.1800 0.0102 -0.0200 0.0106 

Z-Va ·1 ue 
(5) 

-5.4805654 
-7.1536491 
-8.8783023 
-7.756776 

Z-Value 
(I 0) 

-3.0594117 
-3.3146528 
-2.4129459 
-1.9802951 

1..0 
0"\ 
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TABLE XXXI 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Xi - U(O, 100), Ei - N(O, 100), SAMPLE SIZE= 25 

AND 25% CENSORING) 

a 
Estimator A 

Var(&) Bias MSE Method a 
( 1 ) (2) ( 3) (4) 

Adjusted Method 9.7142 31.6553 -0.2858 31 . 736982 
Bootstrapping 9.7033 31.7128 -0.2967 31.800831 
Buckley and James 9.6924 31.8846 -0.3076 31.979218 
Miller 9.7348 32.0627 -0.2652 32.133031 

s 
Estimator 

s var(s) Bias MSE Method (6) (7) (8) (9) 

Adjusted Method 0.2084 0.0101 0.0084 0.0101705 
Bootstrapping 0.2046 0.0153 0.0046 0.0153211 
Buckley and James 0.2102 0.0207 0.0102 0.020804 
Mi 11 er 0.2110 0.0271 0.0110 0.027221 

Z-Value 
( 5) 

-0.5079711 
-0.5268661 
-0.5447482 
-0.4683531 

Z-Value 
( 10) 

0.8358312 
0.3718879 
0.708949 
0.6682024 

\.0 
co 



TABLE XXXII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = Oo2, Xi - U(O,lOO), Ei - N(O,lOO), SAMPLE SIZE= 25 

AND 50% CENSORING) 

a 
Est i rna tor A 

var(&~ Bias MSE Method a 
( 1 ) (2) ( 3) ( 4) 

Adjusted Method l0o0625 52o4497 Oo0625 520453606 
Bootstrapping 9o9571 53o0047 -Oo0429 53o00654 
Buckley and James 9o8946 53o1053 -0 0 1054 53oll6409 
Miller 9o8774 53o6226 -0 0 1226 53 o637631 

s 
Estimator 

i3 var(s) Bias MSE Method (6) (7) (8) (9) 

Adjusted Method Oo 1951 Oo0153 -Oo0049 Oo0l5324 
Bootstrapping Oo2046 Oo0l58 Oo0046 Oo0158211 
Buckley and James Oo 2077 Oo0213 Oo0077 Oo0213592 
Miller Oo2052 Oo0279 Oo0052 Oo0279270 

Z-Value 
(5) 

Oo0862995 
-Oo058925 
-0 0 1446344 
-Oo 1674235 

Z-Value 
( 10) 

-Oo3961413 
00365963 
Oo5275953 
Oo3ll3158 

\..0 
\..0 



TABLE XXXIII 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Xi - U(l, 100), E:i - N(O, 100), SAMPLE SIZE= 25 

AND 75% CENSORING) 

a 
Estimator A 

Var(&) Bias Method a MSE 
( 1 ) (2) ( 3) (4) 

Adjusted Method 9.8527 76.5433 -0.1473 76.569997 
Bootstrapping 9. 7113 78.2145 -0.2887 78.297848 
Buckley and James 9. 8116 81 .2462 -0. 1884 81.281695 
Miller 9. 7762 83.7666 -0.2238 83.816746 

s 
Estimator i3 Var(i3) Bias MSE Method (6) (7) ( 8) ( 9) 

Adjusted Method 0. 1894 0.1091 -0.0106 0.1092123 
Bootstrapping 0.2230 o. 1102 0.0230 0.110729 
Buckley and James 0.2197 0. 1463 0.0197 0. 196688 
Mi 11 er 0.2283 0.1644 0.0283 0. 1652008 

Z-Value 
(5) 

-0.1683639 
-0.3264398 
-0.2090159 
-0.2445257 

Z-Value 
( 1 0) 

-0.3209175 
0.6928465 
0.5150436 
0.697968 

0 
0 
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TABLE XXXIV 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Xi - U(O,lOO), £i - N(O,lOO), SAMPLE SIZE= 50 

AND 25% CENSORING) 

a 
Estimator A 

Var(&) Method a Bias MSE 
( 1 ) (2) (3) (4) 

Adjusted Method 9.9161 14.1548 -0.0839 14.161639 
Bootstrapping 9.8936 14.3774 -0.1064 14.388721 
Buckley and James 9.8116 14.3920 -0.1884 14.427495 
Miller 9.6531 15.7103 -0.3469 15.83064 

s 
Estimator s var(s) Bias MSE Method (6) (7) (8) (9) 

Adjusted Method 0. 1990 0.0029 -0.0010 0.002901 
Bootstrapping 0.1982 0.0032 -0.0018 0.00320324 
Buckley and James 0.1969 0.0032 -0.0031 0.00320961 
Miller 0. 1924 0.0046 -0.0076 0.00465776 

Z-Value 
(5) 

-0.2230026 
-0.2806089 
-0.4966155 
-0.8752095 

Z-Value 
( 1 0) 
-

-0.1856953 
-0.318198 
-0.5480077 
-1.1205589 

0 
N 



TABLE XXXV 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Xi - U(O,lOO), Ei - N(O,lOO), SAMPLE SIZE= 50 

AND 50% CENSORING) 

a 
Estimator A Var(&) Bias MSE Method a 

(1) (2) (3) (4) 

Adjusted Method 9.8633 21. 1661 -0. 1367 21.184787 
Bootstrapping 9.9963 21.3277 -0.0837 21.334706 
Buckley and James 9.7624 22.0853 -0.2376 22.141754 
Miller 9.7101 22. 1538 -0.2899 22.237842 

s 
Estimator 

a var(a) Bias MSE Method (6) (7) (8) (9) 

Adjusted Method 0.2023 0.0049 0.0023 0.00490529 
Bootstrapping 0.2011 0.0048 0. 0011 0.00480121 
Buckley and James 0.2157 0.0049 0.0157 0.00514649 
Miller 0.2171 0.0057 0.0171 0.00599241 

Z-Value 
(5) 

-0.297131 
-0.1812397 
-0.5055857 
-0.6159197 

Z-Value 
( 1 0) 

0.3285714 
0.1587713 
2.2428571 
2. 2649503 

0 
w 



TABLE XXXVI 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Xi - U(O,lOO), Ei - N(O,lOO), SAMPLE SIZE= 50 

AND 75% CENSORING) 

a 
Estimator A 

Var(~) Method a Bias MSE 
( 1 ) (2) ( 3) (4) 

Adjusted Method 8.9610 40.3906 -1.039 41.470121 
Bootstrapping 8.9510 40.8262 -1.049 41.926601 
Buckley and James 8.9555 40.9967 -1.0445 42.08768 
Miller 8.9731 41 .0542 -1.0269 42.108724 

s 
Estimator s Var(S) Bias MSE Method (6) (7) ( 8) ( 9) 

Adjusted Method 0:2114 0.0112 0.0114 0.0113299 
Bootstrapping 0.2103 0.0116 0.0103 0.0117060 
Buckley and James 0.2227 0.0127 0.0227 0.0132152 
Miller 0.2150 0.0129 0.0150 0.013125 

Z-Value 
(5) 

-1.6348405 
-1.6417462 
-1. 1313006 
-1 .6026894 

Z-Value 
( 1 0) 

1.0771987 
0.9563309 
2.0142993 
1. 3206764 

0 
.::-



the adj'us ted method 

-- ··-- = Buckley and James• method 

.H 
5 

~ / E 

--

II 
s 
E 

8.8158 

8.8125 

the bootstrapplng method 

t4iller 1 s method 

~~ / 8.81 
0 

~ ~ ~ ~ ~ sa ~ ~ ~ n ~ 

CENSORING PERCENTAGE 

F 

8 
E 8.8875 
T 
A 
H 
A 
T 8Jl8S8 

8·8825l, ...... m1 ......... , ......... , ......... , ......... , ......... , .... m .. 1m ...... , ...... iii1 ......... , ...... iii, 

~ 2S ~ ~ ~ ~ S8 ~ ~ ~ ~ ~ 

CENSaUNG PERCENTAGE 
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TABLE XXXV II 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, X;- U(O,lOO) E; - N(O,lOO), SAMPLE SIZE= 75 

AND 25% CENSORING) 

a 
Estimator A 

Va r ( &) Bias Method d MSE 
( 1 ) (2) (3) ( 4) 

Adjusted Method 10.2116 9.3562 0. 2116 9.4009746 
Bootstrapping 10.1753 10.2012 0. 1753 10.231930 
Buckley and James 11.0994 9.9962 1 .0994 11.20488 
Miller 9.7524 10. 36 11 -0.2476 10.622406 

s 
Estimator i3 Var(S) Bias MSE Method (6) ( 7) (8) (9) 

Adjusted Method 0. 1973 0.0027 -0.0027 0. 00270729 
Bootstrapping 0. 1986 0.0028 -0.0014 0.00280196 
Buckley and James 0. 1951 0.0028 -0.0049 0.00282401 
Mi 11 er 0. 1902 0.0041 -0.0098 0.00419604 

Z-Value 
(5) 

0.6917766 
0.5488533 
3. 4772688 

-0.7618966 

Z-Value 
( 10) 

-0.5196152 
-0.2645751 
-0.9260129 
-1.5305029 

0 

"' 



TABLE XXXV I I I 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Xi - U(O, 100) Ei - N(O, 100), SAMPLE SIZE= 75 

AND 50% CENSORING) 

a 
Estimator A 

var(a) Bias MSE Method a 
( 1 ) (2) (3) ( 4) 

Adjusted Method 10.5980 12.8917 0.5980 13.249304 
Bootstrapping 10.3961 13.1572 0.3961 13.314095 
Buckley and James 10.4114 13.2627 0.4114 13.431950 
Miller 10.2919 15.0021 0.2919 15.087306 

s 
Estimator A 

Var(S) Method s Bias MSE 
(6) (7) (8) (9) 

Adjusted Method 0. 1947 0.0040 -0.0053 0.00402809 
Bootstrapping 0. 1926 0.0041 -0.0074 0.00415476 
Buckley and James 0. 1943 0.0049 -0.0057 0.00493244 
Mi 11 er 0. 1928 0.0057 -0.0072 0.00575184 

Z-Values 
( 5) 

1.6655056 
1.0920012 
1 . 1296615 
0.7536298 

Z-Values 
( 10) 

-0.8380035 
-1 . 1556858 
-0.8142857 
-0.9536133 

0 
'-.J 



TABLE XXXIX 

SIMULATIONS CALCULATING THE ESTIMATES OF a AND S BASED ON 100 REPLICATIONS 
(a= 10, S = 0.2, Xi - U(O,lOO) Ei - N(O,lOO), SAMPLE SIZE= 75 

AND 75% CENSORING) 

a 
Estimator A 

Var(&) Bias MSE Method a 
( 1 ) (2) ( 3) ( 4) 

Adjusted Method 10.6324 28.2364 0.6324 1. 1901103 
Bootstrapping 10.4519 29.0556 0.4519 0.8383539 
Buckley and James 10.2977 32.4192 0. 2977 0.5228506 
Miller 10.2913 32.9909 0.2913 0.5071581 

s 
Estimator s var(s) Bias MSE Method (6) ( 7) (8) (9) 

Adjusted Method 0.1888 0. 0077 -0.0112 0.00782544 
Bootstrapping 0. !863 0.0081 -0.0137 0.00828769 
Buckley and James 0.1891 0.0083 -0.0109 0.00841881 
Miller 0.1936 0.0102 -0.0064 0.0102409 

Z-Value 
(5) 

1.1901103 
0.8383539 
0.5228506 
0.5071581 

Z-Value 
( 1 0) 

-1.2713585 
-1.5222222 
-1.1964304 
-0.6336944 

0 
00 
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as the sample size is increased regardless of the fraction of censoring 

in each trial. 

Table XXXI -Table XXXIX and Figure ll -Figure 13 show that if we 

fix the sample size and change the amount of censoring level 25, 50, 75%, 

the MSE for all methods would increase as the amount of censoring level 

increases. At the same time, if the sample size is increased, the MSE 

are decreased. 

The results from these tables show that the adjusted method and the 

bootstrapping method are good choices to estimate regression coefficients 

even though these are some violations of independence between Y. and C .. 
I I 

4.3 Heart Transplant Data 

· The Stanford Heart Transplantation program was begun in October 

1967. By February 1980, 184 patients had received heart transplants. A 

few of these had multiple transplants. Their survival times (uncensored 

or censored at 2/1980) are displayed in Appendix B along with their ages 

at the time of the first transplant. Also included are their T5 mismatch 

scores which measure the degree of tis§ue incompatibility between the 

donor and recipient hearts with respect to HLA antigens. 

Other variables such as waiting time to transplant, time since pro-

gram inception, and previous open-heart surgery which were analyzed in 

some of the previous studies have not been included in this study. Also, 

those patients who entered the program but never received a transplant 

are excluded. 

In analyzing the T5 mismatch scores, Miller (1976) and Crowley and 

Hu (1977) made a distinction between deaths primarily due to rejection 

of the donors 1 hearts by the recipients 1 immune system and non-rejection 
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related deaths. The latter were treated as censored observations. This 

distinction is maintained in this study. 

Table XXXXX- Table XXXXI gives the regression coefficient 1 estima-

tors for age along and T5 mismatch scqres alone and their estimated stan-

dard deviations. Figures 14 and 15 show how the estimated regression 

Jines fit the data in both age and T5 mismatch scores for all methods. 

TABLE XXXX 

REGRESSION ESTIMATES AND STANDARD DEVIATIONS FOR LOGJO OF TIME TO 
DEATH VERSUS AGE AT TRANSPLANT WITH n = 157 STANFORD 

HEART TRANSPLANT PATIENTS 

Intercept Age 
Estimator 

A 

SD (~) SD (S) a f3 

Adjusted Method 3.9761 0.6256 -0.0454 0.0140 

Bootstrapping 3.7993 0.6175 -0.0412 0.0138 

Buckley and James 4.2421 0.6314 -0.0513 0.0141 

Mi I ler 3.6486 0.6315 -0.0389 0.0141 

NOTE: 30 iterations are repeated for both Buckley and James 1 method and 
Mi ller 1 s method. 100 bootstrap samples are calculated for the 
bootstrapping method. 



112 

TABLE XXXXI 

REGRESSION ESTIMATES AND STANDARD DEVIATIONS FOR LOG 10 OF TIME TO 
DEATH VERSUS TS MISMATCH SCORES WITH m = 157 STANFORD 

Estimator 

Adjusted Method 

Bootstrapping 

Buckley and James 

Miller 

HEART TRANSPLANT PATIENTS 

Intercept 

3.2186 

3.2144 

3.2289 

3.2401 

0.2810 

0.2800 

0.2826 

0.2863 

NOTE: 30 iterations are repeated for both Buckley 
Mi ller•s method. 100 bootstrap samples are 
bootstrapping method. 

TS 
s SD( §) 

-0.0124 0.0120 

-0.0136 0.0118 

-0.0130 0.0124 

-0.0041 0.0133 

and James• method and 
calculated for the 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

This chapter outlines an application for the randomly censored linear 

regression model, summariz.es some implications of the results of there-

gression parameter estimates, lists areas for future work. 

5.1 Application 

The statistical use is for making individual inference which includes 

statement about the estimation. For a person with a given covariate, the 

regression parameters in a linear model when the data is randomly censored 

are estimated. Often in medical studies when patients are entering a 

study randomly for a fixed time period, the observation on the survival 

time of a patient is incomplete in the sense that it is right censored. 

This censoring can be due to a number of causes; the patient was alive at 

the termination of the study, the patient withdrew alive during the study 

or the patient died of causes other than those under study. The problem 

arising is how to estimate parameters for such model, T. =a+ ex.+ E, 
I I I 

where the variable T. has been observed and subjected to a censoring 
I I 

variable. The objective of this thesis is to provide other reasonable 

choices of selecting the methods of analyzing such data since a few 

methods have been invented in the past years. Most of those methods 

require iterative routines which require much computer time. This has 

been intuitive disadvantage for those methods. In this thesis, we 

115 
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develop two methods: the adjusted method and the bootstrapping method, 

which do not need iterative schemes. However, the computer is still the 

main tool for these methods. We show that these methods provide the bet­

ter choices in case one does not prepare using the other methods. For 

numerical comparisons, we present simulation results under various exper­

iments. 

5.2 Result Conclusions 

The objective of this section is to summarize the numerical results 

of the proposed estimation methods. The more the amount of censoring 

level changes, the more the biases from all methods increase. Neverthe­

less, the adjusted method and the bootstrapping method are reasonable 

choices in terms of MSE of the estimates (in almost all the simulations). 

The adjusted method and the bootstrapping method can be good alternatives 

for one another in some simulations. However, the bootstrapping method 

needs a lot more computer memory than the adjusted method does. The 

biases of the estimates from both methods are very significant in some 

simulation experiments. This has been affected by increasing the sample 

size. Therefore, the performances of the estimates from both proposed 

methods are shown so that one is not reluctant to use both methods as 

the better candidates than Miller's method and as the reasonable methods 

comparing to Buckley and James' method. An estimate of the variance (o2) 

proposed in both methods has not been evaluated in the simulation study. 

However, it is estimated in Heart Transplant Data for both methods. One 

last conclusion from the simulation is that the bootstrapping method and 

the adju?ted method cannot beat one another in terms of MSE basis. It 

sometimes provides higher MSE than the other does. 
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5.3 Further Work 

Further works suggested are as follows: 

1. The effect of various weighted matrices Z instead of I in the 

model could be studied. 

2. Simulation studies with general covariates with greater dimen-

sian (more than 1) should be evaluated. 

3. 2 
In theoretical point of view, the estimates of a, Sand a from 

both proposed methods have not been considered. This matter should be 

studied and more simulation should be done. 

4. Numerous applications are possible in health administration as 

indicated by the examples mentioned throughout this thesis. This is an 

area that has been much explored. 

5. Finally, the sample size needed for each problem should be 

evaluated. 
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I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
I 3 
14 
15 
16 
I 7 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

DATA SIMULATE; 
INPUT SEED; 
Ll ST; 
CARDS; 

1671983 

' PROC MATRIX; 
SEEDI=I671983; 
SEED2=2354076; 
N=20; 
BETA=l/0.2; 
NU=IOO; 
CENRATE=O; 

DO NTRLS=1 TO NU; 
SEED1=SEEDl+l0; 
SEED2=SEED2+20; 

E=J ( N, I , 0) ; 
C=J ( N , 1 , 0) ; 
DO K=1 TO N; 

E(K,I)=RANNOR(SEED1); 
C(K,1)=1+1.5*2*K-O.Ol5*(2*K)**2; 

END; 
I 1 =J ( N , 1 , 1) ; 
12=1 :N; 

II= 12#2; 
X= lljjl I I ; 

Y=X,'•BETA; 
Y=Y+E; 

Z=Y><C; 
DELTA=J(N, 1, 1); 
P=J ( N , 1 , 0) ; 
D I S T =J ( N, 1 , 0) ; 
YNEW=J (N, 1 ,0); 
I D= I ( N) ; 

NUN=O; 
DO 1=1 TO N; 

IF Y(l,l)>C(I,l) THEN DELTA(I,l)=O; 
END; 

A=DIAG(DELTA); 
NUN=TRACE(A); 

CENRATE=CENRATE+(N-NUN); 
BETAK l=INV(X'*A*X)*X'*A*Z; 

- R=Z- X"•BETAK 1 ; 
YHAT=X,'•BETAK_l ; 

DO KK=l TO N; 
YNEW=J(N, 1 ,YHAT(KK, 1)); 
YNEW=YNEW+R; 
YDEL=YNEWj jRj jDELTA; 
ERROR=YDEL; 
YDEL(RANK(YDEL(, 1)) ,)=ERROR; 

ANEVJ=D I AG (YDEL (, 3)) ; 
RESD=YDEL( ,2); 

DO 1=1 TO N; 
P ( I , 1 ) = S Q RT ( ( N+ 1 - I ) #I ( N+ 2- I ) ) ; 

END; 
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56 DO I= 1 TO N ; 
57 IND=ID; 
58 KP=1; 
59 DO K=1 TO I; 
60 IND(K,K)=O; 
6 1 END; 
62 IND(I, 1)=1; 
6 3 CHECK=VECD I AG ( I ND* (I D-ANEW)) ; 
64 C1=CHECK; 
65 DO M=1 TO N; 
66 IF C1(M,1)=1 THEN KP=KPi~P(M,1)i~P(M,1); 
67 END; 
68 DIST(1,1)=KP; 
69 END; 
70 BIAS= (RESD 1 *ANEW*D I ST) #/(TRACE (ANEW) -SUM (ANEW~D I ST)) ; 
71 Z(KK, 1)=Z(KK, 1)+BIAS; 
72 END; 
73 BET AHAT= 1 NV (xI *A*X) *X I *A~~z; 
74 BETAH=BETAHAT 1 ; 

75 ALLTRLS=ALLTRLS//BETAH; 
76 END; 
77 CENRATE=CENRATE#/NU; 
78 RESULT=ALLTRLS; 
79 OUTPUT RESULT OUT=TEMP1; 
80 OUTPUT CENRATE OUT=TEMP2; 
81 DATA TEMP3;SET TEMP1; 
82 DROP ROW: 
83 RENAME COL1=ALPHAHAT 
84 COL2=BETAHAT: 
85 DATA TEMP4;SET TEMP2; 
86 DROP ROW; 
87 RENAME COL1=CENSOR; 
88 PROC UNIVARIATE DATA=TEMP3; 
89 VAR ALPHAHAT BETAHAT; 
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I DATA SIMULATE; 
2 INPUT NUM TRLS ALPHA BETA N; 
3 SEED1=167T983; 
4 SEED2=2354076; 
5 SEED3=632704; 
6 LIST; 
7 CARDS; 
8 I 00 l 0. 2 I 0 
9 

10 DATA TEMPl;SET SIMULATE; 
II DO 1=1 TO NUM TRLS; 
12 SEEDl=SEEDl+lO; 
13 SEED2=SEED2+20; 
14 DO BS=l TO N; 
15 ERROR=RANNOR(SEEDl)*lO; 
16 X=2*BS; 
17 C=20*RANUNI (SEED2)+(ALPHA+BETA*X); 
18 Y=ALPHA+BETA~'<X+ERROR; 
19 T=MIN(Y,C); 
20 OUTPUT; 
21 END; 
22 END; 
23 PROC SYSREG DATA=TEMPI NOPRINT OUT=B OUTEST=BI;BY l; 
24 MODEL T=X; 
25 OUTPUT P=THAT 
26 R=TRESID; 
27 PROC DELETE DATA=TEMPI; 
28 DATA TEMP2;SET SIMULATE; 
29 DO 1=1 TO NUM TRLS; 
30 DO TRIAL=l-TO 100; 
31 DO SAMPLE=! TO N; 
32 BS=INT(RANUNl (SEED3) ~·~N)+l; 
33 OUTPUT; 
34 END; 
35 END; 
36 END; 
37 PROC SORT DATA=TEMP2;BY I BS; 
38 PROC SORT DATA=B;BY I BS; 
39 DATA BNEW;SET B; 
40 DROP ERROR X C Y T THAT; 
41 OUTPUT; 
42 DATA SIMUL;MERGE TEMP2 BNEW;BY BS; 
43 RENAME TRESID=RESD; 
44 IF SAMPLE=. THEN DELETE; 
45 DATA SIMULl;MERGE SIMUL Bl;BY I; 
46 DROP TYPE MODEL DEPVAR T; 
47 RENAME INTERCEP=ALPHAHAT X=BETAHAT _SIGMA_=SIGMAl; 
48 PROC DELETE DATA=TEMP2 SIMUL B Bl BNEW; 
49 PROC SORT DATA=SIMULl;BY I TRIAL BS; 
50 DATA TEMP3;SET SIMULATE; 
51 DO 1=1 TO NUM TRLS; 
52 DO TRIAL=l-TO 100; 
53 DO KK= l TO N; 
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54 I NDV=2*KK; 
55 OUTPUT; 
56 END; 
57 END; 
58 END; 
59 DATA TEMP4;MERGE SIMUL1 TEMP3; 
60 YBOOT=ALPHAHAT +BETAHAT~~ I NDV+RES D; 
61 PROC DELETE DATA=SIMUL1 TEMP3; 
62 PROC SYSREG DATA=TEMP4 NOPRINT OUTEST=EST1 
63 OUT=A;BY I TRIAL; 
64 MODEL YBOOT=INDV; 
65 OUTPUT P=YBHAT 
66 R=YBRES I D; 
67 DATA TEMP5;SET EST1; 
68 DROP TYPE MODEL DEPVAR ; 
69 RENAME INTERCEP=ALPBOOT INDV=BETABOOT _SIGMA_=SIGMAB; 
70 OUTPUT; 
71 DATA TEMP6;MERGE TEMP4 TEMP5;BY I TRIAL; 
72 PROC DELETE DATA=TEMP4 TEMPS; 
73 PROC MEANS DATA=TEMP6 NOPRINT;BY I; 
74 VAR ALPBOOT ALPHAHAT BETABOOT BETAHAT; 
75 OUTPUT OUT=MNBOOT 
76 N=NBOOT 
77 MEAN=MBOOT1 M1 MBOOT2 M2; 
78 DATA FINAL;SET MNBOOT; 
79 ABOOT=M1-(MBOOT1-M1); 
80 BBOOT=M2-(MBOOT2-M2); 
81 quTPUT; 
82 PROC UNIVARIATE DATA=FINAL; 
83 VAR ABOOT B"BOOT; 
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1 DATA SIMULATE; 
2 INPUT SEED; 
3 LIST; 
4 CARDS; 
5 1672983 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

' PROC MATRIX; 
SEED1=1671983; 
SEED2=2354076; 
N=10; 

BETA=1/0.2; 
NU=100; 
CENRATE=O; 

DO NTRLS=l TO NU; 
SEED1=SEED1+10; 
SEED2=SEED2+20; 

E=J ( N, 1 , 0) ; 
C=J ( n , 1 , 0) ; 
DO K=l TO N; 

E(K,l)=RANNOR(SEED1)*10; 
C(K,1)=20*RANUNI(SEED2)+1+0.2*2*K; 

END; 
I 1 =J ( N , 1 , 1 ) ; 
r 2=1 : N; 
11=12#2; 

X= 11 Ill I I ; 

Y=X'''BETA; 
Y=Y+E; 

Z=Y><C; 
DELTA=J(N, 1, 1); 
P=J ( N, 1 , 0) ; 
DIST=J(N, 1 ,0); 
JUMP=J (N, 1 ,0); 
Q=J ( N , 1 , 0) ; 
ID=I(N); 

NUN=O; 
DO 1=1 TO N; 

I F Y ( I , 1 ) > C ( I , 1 ) THEN DELTA ( I , 1 ) =0 ; 
END; 

A=DIAG(DELTA); 
NUN=TRACE(A); 

CENRATE=CENRATE+(N-NUN); 
BETAK 1=1NV(X 1 *A*X)*X 1 *A*Z; 
ITER=O; 
D I F F =J ( 2 , 1 , 1 ) ; 

DO WHILE(MAX(ABS(DIFF))>0.0001 
ITER=ITER+1; 
R=Z-X,'<BETAK 1; 
RDEL=RIIDELfAIIxllz; 
ERROR=RDEL; 
RDEL(RANK(RDEL(, 1)) ,)=ERROR; 

ANEW+DIAG(RDEL( ,2)); 
XO,.;RDEL (, 3) ; 
Xl=RDEL(,4); 

XNEW=XO II Xl; 
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56 ZNEW=RDEL(,5); 
57 DO 1=1 TO N; 
58 P( I, 1 )=SQRT( (N+1-I) #/(N+2-I)); 
59 END; 
60 DO 1=1 TO N; 
61 IND=ID; 
62 KP=1 ; 
6 3 DO K= 1 TO I ; 
64 IND(K,K)=O; 
65 END; 
66 CHECK=VECD I AG (I ND>'<ANEW) ; 
67 C1=CHECK; 
68 DO M=1 TO N; 
69 IF C 1 (M, 1) =1 THEN KP=KP>'<P (M, 1) ;,p (M, 1) ; 
70 END; 
71 DIST(I,l)=KP; 
72 END; 
73 JUMP(1,1)=DIST(1,1); 
74 DO 1=2 TO N; 
75 JUMP(1,1)=DIST(I,1)-DIST(I-1,1); 
76 END; 
77 HD=SQRT(JUMP); 
78 I ND=I D; 
79 DO 1=1 TO N; 
80 DO K= 1 TO I ; 
81 IND(K,K)=O; 
82 END; 
83 Q(1,1)=XNEW(I,)*BETAK 1+((JUMP 1 *1ND*RDEL(,1))#/(HD 1 *1ND*HD)); 
84 END; -
85 YSTAR=ANEW>'<ZNEW+( I D-ANEW) >'<Q; 
86 BETAK= I NV ( XNEW I >'<XNEW) >'<XNEW I >'<YSTAR; 
87 DIFF=BETAK-BETAK 1; 
88 BETAK 1=BETAK; -
89 END;-
90 SIGMA2=((YSTAR-XNEW>'<BETAK) 1 >'<(YSTAR-XNEW>'<BETAK))#/(N-2); 
91 COVMTR=S I GMA2>'' I NV (XNEW 1 >'<XNEW) ; 
92 ESTVAR=VECDIAG(COVMTR); 
93 BETAHAT=BETAK 1 I ISIGMA21 IESTVAR 1 ; 

94 ALLTRLS=ALLTRLS//BETAHAT; 
95 END; 
96 CENRATE=CENRATE#/NU; 
97 RESULT=ALLTRLS; 
98 OUTPUT RESULT OUT=TEMP1; 
99 OUTPUT CENRATE OUT=TEMP2; 

100 DATA TEMP3;SET TEMP1; 
101 DROP ROW; 
102 RENAME COL1=ALPHAHAT 
103 COL2=BETAHAT; 
104 DATA TEMP4;SET TEMP2; 
105 DROP ROW; 
106 RENAME COL1=CENSOR; 
107 PROC PRINT DATA=TEMP3; 
108 PROC PRINT DATA=TEMP4; 
109 PROC CHART DATA=TEMP3; 
110 VBAR ALPHAHAT BETAHAT; 
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111 PROC UNIVARIATE DATA=TEMP3; 
112 VAR ALPHAHAT BETAHAT; 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

DATA SIMULATE; 
INPUT NNN; 
Ll ST; 

CARDS; 
3 

' PROC MATRIX; 
SEED1=1671983; 

SEED2=.2354076; 
N=10; 
BETA=l/-0.4; 
NU=lOO; 
CENRATE=O; 

DO NTRLS=l TO NU; 
SEED1=SEED1+10; 
SEED2=SEED2+20; 
E=J(N,1,0); 
C=J ( N , 1 , 0) ; 
DO K=l TO N; 

E(K,l)=RANNOR(SEED1)*10; 
C(K, 1)=14,~RANNOR(SEED2)+41; 

END; 
I 1 =J ( N , 1 , 1 ) ; 
12=1:N; 
11=12#2; 

X= 11111 I I ; 

Y=X"'BETA; 
Y=Y+E; 

Z=Y><C; 
DELTA=J(N, 1, 1); 
P=J ( N , 1 , 0) ; 
DIST=J(N,l,O); 
JUMP=J (N, 1 ,0); 
Q=J ( N , 1 , 0) ; 
ID=I(N); 

NUN=O; 
DO 1=1 TO N; 

IF Y (I , 1) >C (I , 1) THEN DELTA (I , 1) =0; 
END; 

A=DIAG(DELTA); 
NUN=TRACE(A); 

CENRATE=CENRATE+(N-NUN); 
BETAK l=INV(X 1 *A*X)*X 1 *A*Z; 
ITER=O; 
D I FF=J ( 2, 1 , 1) ; 

DO WHILE(MAX(ABS(DIFF))>.0001 and ITER<20); 
ITER=ITER+l; 
R=Z-X'''BETAK 1; 
RDEL=RII DELTA II xll z; 
ERROR=RDEL; 
RDEL(RANK(RDEL(,l)),)=ERROR; 

ANEW=DIAG(RDEL(,2)); 
XO=RDEL (, 3) ; 
Xl=RDEL( ,4); 

XNEW=XOjj X1; 
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56 ZNEW=RDEL (, 5) ; 
57 DO 1=1 TO N; 
58 P(l, 1)=SQRT((N+1-J)#/(N+2-I)); 
59 END; 
60 DO 1=1 TO N; 
61 IND=ID; 
62 KP=1; 
63 DO K=1 TO I; 
64 IND(K,K)=O; 
65 END; 
66 CHECK=VECDIAG(IND*ANEW); 
67 C1=CHECK; 
68 DO M=1 TO N; 
69 IF C1(M,1)=1 THEN KP=KP>':P(M,l)>':P(M,1); 
70 END; 
71 DIST(I,1)=KP; 
72 END; 
73 JUMP(1, 1)=DIST(1, 1); 
74 DO 1=2 TO N; 
75 JUMP( I, 1)=DIST(I, 1)-DIST(I-1, 1); 
76 END; 
77 WSTAR=GINV(DIAG(JUMP)); 
78 BETAK=G I NV (XNEW I >'<WSTAR>':XNEW) ;':XNEW I >'<WSTAR>':ZNEW; 
79 D I FF=BETAK-BETAK 1; 
80 BETAK 1=BETAK; -
81 END; -

-82 SIGMA2=((ZNEW-XNEW>':BETAK) I;':WSTAR>':(ZNEW-XNEW>':BETAK))#/(N-2); 
83 COVMTR=SIGMA2>':1NV(XNEW 1 >':WSTAR>'<XNEW); 
84 ESTVAR=VECDIAG(COVMTR); 
85 BETAHAT=BETAK 1 I ISIGMA21 IESTVAR 1 ; 

86 ALLTRLS=ALLTRLS//BETAHAT; 
87 END; 
88 CENRATE=CENRATE#/NU; 
89 RESULT=ALLTRLS; 
90 OUTPUT RESULT OUT=TEMP1; 
91 OUTPUT CENRATE OUT=TEMP2; 
92 DATA TEMP3;SET TEMP1; 
93 DROP ROW; 
94 RENAME COL1=ALPHAHAT 
95 COL2=BETAHAT; 
96 DATA TEMP4;SET TEMP2; 
97 DROP ROW; 
98 RENAME COL1=CENSOR; 
99 PROC PRINT DATA=TEMP3; 

100 PROC PRINT DATA=TEMP4; 
101 PROC CHART DATA=TEMP3; 
102 VBAR ALPHAHAT BETAHAT; 
103 PROC UNIVARIATE DATA=TEMP3; 
104 VAR ALPHAHAT BETAHAT; 
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T5 
Log10 Observation Patient Survival Dead=1 Mismatch 

No. No. Time A 1 i ve=O Age Score (Survi va 1 Time) 
-

1 1 15 1 54 1. 11 1 . 17609 
2 2 3 1 40 1.66 0.47712 
3 3 46 1 42 0.61 1 .66276 
4 4 623 1 51 1. 32 2.79449 
5 5 126 1 48 0.36 2. 10037 
6 6 64 1 54 1.89 1 . 80618 
7 7 1350 1 54 0.87 3.13033 
8 8 23 1 56 2.05 1 . 36 1 73 
9 9 279 1 49 1. 12 2.44560 

10 10 1024 1 43 1. 13 3.01030 
1 1 1 1 10 1 56 2. 76 1 .00000 
12 12 39 1 42 1. 38 1.59106 
13 13 730 1 58 '0.96 2.86332 
14 14 1961 1 33 1.06 3.29248 
15 15 136 1 52 1.62 2. 13354 
16 16 1 1 54 0.47 0.00000 
17 17 836 1 44 1. 58 2.92221 
18 18 60 1 64 0.69 1 . 77815 
19 19 3695 0 40 0.38 3. 56 761 
20 20 1996 1 49 0.91 3.30016 
21 21 1 1 41 0.87 0.00000 
22 22 47 1 62 0.87 1.67210 
23 23 54 1 49 2.09 1 . 73239 
24 25 2878 1 49 0.75 3.45909 
25 26 3410 0 45 0.98 3.53275 
26 27 44 1 36 0.00 1.64345 
27 28 994 1 48 0.81 2.99739 
28 29 51 1 47 1. 38 1. 70757 
29 30 1478 1 36 1.35 3.16967 
30 31 254 1 48 1 .08 2.40483 w 

"' 



T5 
LoglO Observation Patient Survival Dead= I Mismatch 

No. No. Time Ali ve=O Age Score (Survival Time) 

31 34 51 l 52 l. 51 l. 70757 
32 35 323 l 48 l. 82 2.50920 
33 36 3021 0 38 0.98 3.48015 
34 37 66 l 49 0.66 l . 81954 
35 38 2984 0 32 0. 19 3.47480 
36 39 2723 l 32 l. 93 3.43505 
37 40 550 l 48 0. 12 2.74036 
38 41 66 l 51 l. 12 l . 81954 
39 42 65 l 45 1.68 l . 81291 
40 43 227 1 19 1.02 2.35603 
41 44 2805 0 48 1. 20 3.44793 
42 45 25 1 53 1.68 1 . 39794 
43 46 631 1 26 1. 46 2.80003 
44 47 2734 0 47 0.97 3.43680 
45 48 12 1 29 0.61 1.07918 
46 49 63 I 56 2. 16 1 '79934 
47 50 2474 l 52 1. 70 3.39340 
48 51 1384 1 46 1 . 41 3.14114 
49 52 544 1 52 1.94 2.73560 
50 53 29 1 53 1.08 1. 46240 
51 54 48 1 53 3.05 1.68124 
52 55 297 1 42 0.60 2.47276 
53 56 1318 1 48 1.44 3. 11992 
54 57 1352 1 54 0.68 3. 13098 
55 58 50 1 46 2.25 l .69897 
56 59 547 l 49 0.81 2.73799 
57 60 431 l 47 0.33 2.63448 
58 61 68 l 51 l. 33 I . 83251 
59 62 26 1 52 0.82 1.41497 
60 63 16 l l 43 l. 20 2.20683 -w 
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T5 
LoglO Observation Patient Survival Dead= I Mismatch 

No. No. Time Ali ve=O Age Score (Survival Time) 

6 1 65 2313 0 26 0.46 3.36418 
62 66 1634 1 23 1. 78 3.21325 
63 67 146 1 45 0. 16 2.16435 
64 68 48 1 28 0. 77 1.68124 
65 69 2127 1 35 0.6 7 3. 32777 
66 70 263 1 49 0.48 2.41996 
67 71 2106 0 40 0.86 3.32346 
68 72 293 1 43 0.70 2.46687 
69 73 2025 0 30 1. 44 3.30643 
70 74 2006 0 15 1.26 3.30233 
71 75 2000 0 45 1.46 3.30103 
72 76 1995 0 47 1.65 3.29994 
73 77 1945 0 38 1. 28 3.28892 
74 78 65 1 55 0.69 1.81291 
75 79 731 1 38 0.42 2.86392 
76 80 1866 0 49 0.51 3.27091 
77 81 538 1 49 2.76 2.73078 
78 82 1846 0 44 0.83 3.26623 
79 83 68 1 35 0.85 1 .83251 
80 84 1773 0 27 0.70 3.24871 
81 85 1722 0 40 0.95 3.23603 
82 86 928 1 50 1. 12 2. 96755 
83 87 1718 0 39 1.77 3.23502 
84 88 22 1 27 1.64 1. 34242 
85 89 40 1 42 1. 59 1 .60206 
86 90 7 1 28 1.00 0.84510 
87 91 1638 0 48 0.43 3.21431 
88 92 1612 0 51 1. 25 3.20737 
89 93 25 1 52 0.53 1. 39794 
90 94 1534 1 44 1. 71 3.18583 
91 95 1547 0 50 0. 18 3. 18949 -w 
92 96 1271 1 32 1.05 3.10415 00 



T5 
LoglO Observation Patient Survival Dead=l Mismatch 

No. No. Time Al ive=O Age Score (Survival Time) 

93 97 44 1 46 1.71 1.64345 
94 98 1247 1 41 0.43 3.09587 
95 99 1232 1 18 0.70 3.09061 
96 100 191 1 42 l. 74 2.28103 
97 101 1393 0 46 0.95 3.14395 
98 103 1378 0 41 1 . 65 . 3.13925 
99 104 1373 0 41 1.38 3. 1376 7 

100 105 274 1 31 0.58 2.43775 
1 0 1 106 31 1 33 0.36 1 . 49136 
102 107 1341 0 50 l. 13 3.12743 
103 108 42 1 19 0.63 1 .62325 
104 109 381 1 45 0.98 2.58092 
105 110 1264 0 52 0.64 3.10175 
106 1 1 1 1262 0 34 1 .68 3. 10106 
107 112 1261 0 47 0.82 3. 10072 
108 11 3 47 1 36 0. 16 1.67210 

~ 109 114 1193 0 24 l. 15 3.07664 
110 115 626 1 53 l. 74 2.79657 
1 1 1 116 48 1 51 0.99 1.68124 
112 11 7 1150 1 32 2.25 3.06070 
113 118 45 1 48 0.65 1.65321 
1 14 119 1 116 0 14 0.54 3.04766 
1 15 120 1107 0 18 0.25 3.04415 
116 121 1102 0 39 1 . 35 3.04218 
117 122 195 1 39 0.73 2.29003 
118 123 30 1 34 0.84 1.47712 
119 124 1040 0 43 0.50 3.01703 
120 125 993 0 30 0.95 2. 99695 
12 1 127 729 1 49 l. 10 2. 86273 
122 129 202 1 48 1. 24 2.30535 -

841 48 0.86 2.92480 
w 

123 130 0 \.!) 



T5 Log 10 Observation Patient Survival Dead= I Mismatch 
No. No. Time AI i ve=O Age Score (Survival Time) 

124 I 32 265 I 49 I. 22 2.42325 
125 133 I I 21 0.47 0.00000 
126 134 793 0 19 1.98 2.89927 
127 135 328 I 34 1.02 2.51587 
128 I 36 781 0 20 I . I 2 2.89265 
129 137 752 0 43 I. 50 2. 87622 
I 30 138 738 -0 41 0.53 2.86806 
I 3 I 139 86 I 12 1.26 I. 93450 
132 I 40 132 I 46 1.09 2.12057 
133 I 4 I 663 0 36 0.47 2.82151 
134 I 42 660 0 42 0.75 2.81954 
I 35 143 221 I 35 1.04 2.34439 
136 144 90 I 38 1.00 I. 95424 
137 145 619 0 47 0.90 2.79169 
138 I 46 6!8 0 50 0.82 2.79099 
I 39 147 576 0 53 2.25 2.76042 
I 40 149 36 I 45 0.20 I . 55630 
I 4 I 150 549 0 40 2.53 2.73957 
142 I 5 I 548 0 30 0.47 2. 73878 
143 152 541 0 47 0.43 2.73320 
144 !54 169 I 51 I. 89 2.22789 
145 155 122 I 51 I. 33 2.08636 
I 46 157 468 0 24 I. 39 2.67025 
147 !58 464 0 38 2.07 2.66652 
148 159 10 I 13 I. 49 I. 00000 
149 162 406 0 39 I. I 8 2.60853 
I 50 163 391 0 27 I . I 7 2.59218 
I 5 I 165 50 I 50 0.50 I .69897 
152 166 139 I 51 0.96 2.14301 
153 167 322 0 36 1.73 2.50786 -
154 168 292 0 43 1.40 2.46538 
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T5 Log 10 Observation Patient Survival Dead= I Mismatch 
No. No. Time A I i ve=O Age Score ( S u rv i v a I T i me ) 

155 169 278 0 41 0.98 2.44404 
!56 172 145 I 50 0.96 2.16137 
157 174 176 0 29 I. 72 2.24551 
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