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CHAPTER I 

INTRODUCTION 

Data arising from research in a wide variety of fields occur in 

the form of time series. Frequently, theoccurrence of one or more 

events produces changes in the model that generated the series in 

various ways. 

The analysis of changing time series has been the subject of 

many recent publications. In this paper, a Bayesian procedure will 

be proposed to analyze the case in which a change of the level of the 

series has been produced at a known point in time. This problem is 

known in the literature as Intervention Analysis. 

Most of the work done in the area relies on the use of difference 

equation models and maximum likelihood procedures. Due to the non­

linearities involved, the implementation of those procedures requires 

the use of approximations which are based on the large sample prop­

erties of the estimators obtained, or on the behavior of the likeli­

hood function when the number of observations is large. 

The method proposed in this paper relies on the use of a large 

sample approximation of the likelihood function. This approximation 

eliminates some of the nonlinearities and produces posterior dis­

tributions which, at least conditionally correspond to multivariate 

t-distributions, if a suitable family of priors is used. These con-
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ditional posterior distributions will be used to model the effect of an 

intervention, following the stages used in the classical approach of 

time series analysis. 

A review of the literature in the general topic of the analysis 

of changing time series, and in particular in the area of intervention 

analysis is presented in Chapter II. 

The description of the problem and the models to be used, together 

with the derivation of the approximate posterior and predictive distri­

butions is the subject of Chapter III, while Chapter IV contains the 

methodology proposed to model the intervention effect by means of con­

ditional posterior distributions, assuming that the noise model has 

previously identified and its parameters estimated through the observa­

tions prior to the time in which the intervention takes place. 

In Chapter V, the modeling procedures will be applied to two 

examples and the results obtained will be analyzed. A summary of the 

research done will be given in Chapter VI. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Extensive work has been done to analyze and model time series. 

Perhaps the most cited reference in the area is the book by Box and 

Jenkins (1970) in which a methodology was proposed to model the time 

series through the so called autoregressive-moving average (ARMA) 

models. This approach has been, so far, the most widely used by sci­

entists in many different fields. 

From the Bayesian point of view, an approach that constitutes a 

very natural one to use in this problem, we can mention the book by 

Zellner (1971) in which a chapter is devoted to present the analysis 

of the first and second order autoregressive processes. Further work 

was presented by Newbold (1973), Smith (1979), Broemeling and Land 

(1984), and Cook (1983). An extensive work to develop a complete 

Bayesian time series analysis procedure has been done by Broemeling 

and Shaarawy (1984a, 1984b), Shaarawy (1984), and Shaarawy and 

Broemeling (1984a, 1984b, 1985). Their work includes the analysis 

of multiple time series and is based on an approximation to the like­

lihood function which eliminates the nonlinearities through the 

maximum likelihood estimation of the residuals. This procedure has 

advantage of eliminating the need of the second order derivatives to 

approximate the likelihood function. Also, conjugate priors can 

easily be used to incorporate the prior information available and pro-
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duce posterior distributions which correspond to multivariate t-dis­

tributions and are easy to work with. 

A problem that has interested several people recently, is related 

to the analysis of the case in which the model that generated a time 

series could have changed during the recording of the data. In this 

regard, the papers by Salazar (1982) and Cook (1983) study the case 

in which the point in time in which the change occurred is unknown. 

In the area of intervention analysis, the point in time at which 

the change could have taken place is known and, if in fact there was 

a change it affected the level of the series but not the noise struc­

ture. Probably the first paper related to this topic is the one by 

Box and Tiao (1965) in which they study the problem of analyzing the 

change in level of an integrated moving average process. A Bayesian 

analysis of the problem was included there. 

An extensive coverage of the topic appears in the book by Glass, 

Willson and Gottman (1975) as part of the area of analysis of time 

series experiments. Box and Tiao (1975) proposed the use of differ­

ence equation models to represent the dynamic intervention effect and 

the noise. The proposed models are applied there to a series of 

monthly averages of the level of 03 in the atmosphere of Downtown Los 

Angeles to determine the effects of three different interventions, 

4 

and also to a series of the monthly rate of change of the consumer 

price index where two interventions are considered. The analysis is 

done in this paper using maximum likelihood procedures and, although 

the authors mention that the Bayesian analysis can be done after 

approximating the posterior density, they do not report any detailed 

results. The publications mentioned before deal with univariate series. 
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In the multivariate case, Abraham (1980) obtained approximate maximum 

likelihood estimators for the parameters of the model. The approxima­

tion is needed due to the difficulties that arise from the non­

linearities. 

The intervention analysis approach has been widely used in differ­

ent fields, and as examples we can mention the papers by Stoline and 

Huitema (1978) in the social sciences, Shahabudin (1980) in the area 

of finance, and Lasarre and Tau (1982) in the area of public safety, 

among others. 

In this report, the model suggested by Box and Tiao will be 

analyzed from the Bayesian point of view, using an approximation to the 

likelihood function which is essentially an extension to the one 

proposed first by Shaarawy (1984) for the case of the moving average 

models. A complete conditional modeling procedure for the intervention 

effect will be presented. 



CHAPTER III 

POSTERIOR AND PREDICTIVE ANALYSIS 

The model proposed by Box and Tiao (1975) to analyze time series 

with interventions corresponds to 

y 
t 

K 
I: 

j=l 
{w (B)/o.(B)}~ . + N 

j J t] t 
t 1, 2, ••• , N (3 .1) 

where w.(B) and o.(B) are polynomials in the backshift operator B, of 
J J 

degrees r. and s. respectively, for j = 1, 2, ... , K. The roots of 
J J 

w.(B), j = 1, 2, ... , K, are normally required to be outside the unit 
J 

circle and, the roots of o.(B), j = 1, 2, •.• , K, are required to be, 
J 

outside or on the unit circle. 

The noise N, t = 1, 2, •.. , N is assumed to be generated by the 
t 

autoregressive moving average (ARMA) process 

8(B) 
<jl(B) at t = 1, 2, ••• , N 

where 8(B) and <jl(B) are polynomials in B of degrees q and p respec-

tively, with roots outside the unit circle. 

(3. 2) 

The posterior and predictive analysis of this model can be very 

complicated mainly because the form of the posterior distributions 

does not correspond to any standard one, and the number of parameters 

makes the numerical analysis very difficult to handle, unless it is 

restricted to some particular cases. This chapter presents the analysis 

6 
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of two models that are known to be useful in practice. The first 

corresponds to the case of a single intervention with no restrictions 

on the polynomials in the transfer function, and will be the topic of 

section 3.1. Section 3.2 will be devoted to the analysis of what we 

call the linear intervention model, which includes several interven-

tions but the polynomials in the denominators of the corresponding 

transfer functions are all equal to one. 

For the analysis, an approximation to the likelihood function 

will be used, where estimators of the residuals are calculated recur-

sively using the maximum likelihood estimators of the parameters. This 

procedure was proposed by Shaarawy (1984) for the analysis of moving 

average models. Some comments on the validity of this approach will 

be given inthe appendix of this paper. To model the prior information, 

normal-inverted gamma and "noninformative" priors will be used. 

3.1 Single Intervention Model 

The Approximate Likelihood Function 

The model described by (3.1), for the case of a single interven-

tion corresponds to 

Yt = (w(B)/o(B))~ + N (t = 1, 2, ... , N) 
t t 

(3. 3) 

where w(B) and o(B) are polynomials in the backshift operator B of 

degrees r and s respectively, ~t is the intervention variable that 

corresponds to an indicator function of certain subset of the time 

domain where the intervention is taking place, and N is the random 
t 

noise assumed to be generated by the ARMA(p,q) model (3.2). 
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If the polynomials in (3. 2) and (3. 3) are given by 

w(B) wo + wl B + + w Br 
r (3 .4) 

6(B) 1 + 61 B + ... + 6 Bs 
s (3.5) 

<P(B) = 1 + ¢1 B + ... + ¢ p Bp (3. 6) 

6(B) = 1 + e1 B + . •. + e Bq (3. 7) q 

the residuals at time t can be given in terms of the observations 

Yl, Y2, ... ' y 
t 

and the residuals al, a2, ... , a 
t-1 

by the equation 

at= <j>(B)Yt- (6(B)-1)at + 61 (¢(B)Yt_1 - 6(B)at_1) 

+ .•. + 6s(¢(B)Yt-s- 6(B)at-s)- w0¢(B)~t- wl <j>(B)~t-1-

- w <P(B)~ r t-r (3. 8) 

or 

a = (6(B)Y - w(B)~ - (6(B)-1)a ) - (¢ 1 (w(B)~ 1-6(B)Y 1) 
t t t t t- t-

+ ··• + <P (w(B)~ -6(B)Y )) + e16(B)a 1 + •·· + e 6(B)a p t-p t-p t- q t-q 

(3.9) 

Since the Jacobian of the transformation is equal to one, the 

likelihood function of the parameters given Y1 , Y2, ... , Y and 
p+s 

assuming that a1 , a2 , ... , a are all equal to zero, corresponds to 
p+s 

2 1 
.e,(~,..§_,_t,Q_,cr ) CL __ ....;.;;... __ 

2 N-(p+s) 
( cr ) 2 

exp 
N 

1 {-- ( 
2 

2cr t=p+s+1 
(3.10) 

where !!2..' = (w
0

,w1 , ... , w2), ..§..' = (61 , ... , 6s)' i' = (¢1 , ... , <Pp), 

~' = (6 1 , ... ,e ) and, a , t=p+s+1, ... , N are given by (3.8) or (3. 9). 
q t 



Although the exponent in (3.10) can be written in terms of the 

observations, the nonlinearities involved produce a likelihood func-

tion which is very difficult to work with. We propose here the approx-

imation of the likelihood by using the observable variables a ' t 
t=p+s, 

••. , N which correspond to the values of the variables a, t=p+s, •.. , 
t 

N obtained recursively from equations (3.8) or (3.9), using the maxi-

mum likelihood estimators of the parameters as the parameter values. 

The approximate likelihood corresponds to 

9 

1 
a. ----==-:---:-

2 N-(s+p) exp{-~ (!- ~)' (!- Xy)} 
2cr 

(3.11) 

(cr ) 2 

where the components of ~ are 

g = ~(B)Y - (8(B) -1)a 
t t t 

the elements of X are 

for t 

X . 
t ,J 

X . 
t ,J 

1,2, ..• ,r+l 

(B(B)at-j+r+1 - ¢(B)Yt-j+r+1) j 

(3. 12) 

(3.13) 

r+2, .•• , r+s+1 (3.14) 

at= 0, t = 1, 2, •.. , p+s. Equation (3.11) can be obtained from (3.8) 

and (3.10) and will be used to obtain the conditional posterior distri-

bution of X given~·=(!',!'). Notice that~ and X are functions of 

~· 

Using (3.9) and (3.10), it can be shown that (3.11) is equivalent 

to 
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a 
1 exp {- ___!____ (U-Qn) '(U-Qn)} 2 - - - - (3.15) 

2 N-(s+p) 
(0 ) 2 

20 

where the components of U are given by 

u = o(B)Y - w(B)s - (o(B) -1)~t 
t t t 

and, the elements of the matrix Q are 

qt . = w(B)st . 
'J -J 

8 (B)~ .+ 
t-] p 

o(B)Y . j 
t-] 

1,2, •.. ,p 

j = p + 1, ... , p + q 

(3 .16) 

(3. 17) 

for t = p + s + 1, •.. , N. Equation (3 .15) will be useful in deriving 

the conditional posterior distribution of ~ given y. Notice that, in 

this case, Q and Q are functions of the parameter vector y. 

From now on, by likelihood function we mean the approximate like-

lihood given by (3.11) or (3.15). It is important to mention here 

that, even though some of the nonlinearities have been removed through 

the approximation procedure, some of them remain because of the cross 

products between some of the intervention and noise parameters. This 

problem cannot be eliminated but, the conditional posterior distribu-

tions, which correspond to multivariate t-distributions, will enable 

us to develop some inferential procedures for estimation and testing. 

The Prior Distribution 

It will be assumed in this chapter that the prior distribution of 

h f ' ( ' 1 ) • 2 . 1 . h t e vector o parameters ~ = y ,~ g1ven 0 1s norma W1t mean 

2 
~· = (y' n') and variance-covariance matrix 0 ~. and that the prior 
- 0 -o' -o 
d . 'b . f 2 1str1 ut1on o 0 is 

-a exp { 2 } . 
20 

(3.18) 
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Under these assumptions, the joint prior distribution can be written 

as 

2 1 
IT(y,~,cr ) a --------~-------

2 p+q+r+s+2k+l 1 
(cr ) 2 + . 

exp {- [ 
-1 -1 

(y-~(_n))' L (y-y (n)) + (n- n )' L22 
v 11. 2 - -o - - --o (.!J.-.!la)+ a]} 

(3.19) 

where lu(~) and cr2 Lll. 2 are the parameters of the conditional distri­

bution of y given nand cr2 , and cr 2L 2 is the variance-covariance matrix 
- - 2 

2 
of the marginal distribution of ~ given cr • 

Formula (3.19) is equivalent to 

2 
IT (y,~, cr ) a 1 

2 p+q+r+s+2k+l + 1 
(cr ) 2 

exp {- _!__ 
zi 

2 
where ~(y) and cr L22 . 1 are the parameters of the conditional distri-

2 
bution of .!l given y, and cr Lll is the variance-covariance matrix of 

the marginal distribution of y given cr2 . 

Equations (3.11) and (3.19) will be used to obtain the conditional 

posterior distribution of y given ~ and the marginal distribution of ~· 

Equations (3.12) and (3.20) will be used later on to obtain the condi-

tional posterior distribution of ~ given y and the marginal distribu-

tion of y. 

The prior distributions given by (3.19) or (3.20) constitute a 

reasonably general family and will be shown to produce conditional 

posterior distributions that correspond to members of standard families 

and are easy to work with. 
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The posterior and predictive distributions will also be given for 

the "noninformative" prior 

2 1 
II(.!J., :r._, a )a. a2 (3. 21) 

Posterior Distributions 

In this section we will first obtain the conditional posterior 

distribution of :r._ given .!J., and the marginal distribution of 21· The 

formulas for the conditional distribution of 21 given :r._, and the mar-

ginal of :r._ are analogous and their derivation will not be given in 

detail. 

From (3.11) and (3.19), the joint posterior distribution of y, 

21 and a2 given the vector of observations and the prior hyperparameters 

is given by 

1 
2 (N+q+r+2k+3)/2 

(a ) 

exp {- 2> [<!- X_y_)'(73-X:r._) + (y-y0 (2J.))' E 1 ~~ 2 (:r._-Io(!J)) 

+(n-.!l.a)' E;~ (n-.!l.a) + a.]} 
which can be written as 

where 

1. 

(3. 22) 

(3.23) 

(3.24) 



13 

After some transformations in the exponent, the posterior distribution 

corresponds to 

n (l•.!l• a 2\.X) a ____ 1 ___ --:_ 
2 (N+q+r+2k+3)/2 

(a ) 

where 

and 

Integrating (3.25) with respect to a2 we obtain 

(y-y*) I (X'X + 
TI(J:._,.!l\!)a [ 1 + -- R 

where v = (N+q+2k-s). 

v+ r+s+l 
2 

(3.25) 

(3.26) 

(3. 27) 

(3. 28) 

Since the conditional distribution of l given n is proportional 

to the joint, then 

(3.29) 

Notice that, for fixed _!l, (3.29) corresponds to a multivariate t-dis-

tribution with v degrees of freedom (See Zellner (1971), for a detailed 

discussion on this distribution). 

2 
Now, from (3.25), integrating outland a we obtain the marginal 

posterior distribution of 21. as 



-~ 
R 

with R given by (3.27). 

N+q+2k-s 
2 

14 

(3. 30) 

In general, (3.30) does not correspond to any standard distribu-

tion and its analysis has to be done using numerical procedures. 

where 

If the prior (3.21) is used, equation (3.29) becomes 

-( __ Y-_i_) ___ X_'_X_(r._-_i_) ] - (v o + r+s+l) 
IT C.r.I.!J.,_I) a [ 1 + R 

0 

R 
0 

'( (X'X)-1X'E_ 

and v = N-2s-p-r-1. Also, equation (3.30) corresponds to 
0 

with R as in (3.32). 
0 

N-2s-p-r-1 
2 

(3.31) 

(3. 32) 

(3.33) 

Following a similar procedure but starting from (3.15) and (3.20), 

the conditional posterior distribution of .!l given .r. is 

(3.34) 

where v = (N-p+r+sk+1) 

-1 -1 A -1 
~* = (Q'Q + ~22.1) (Q'Q~ + ~22.1 ~(y)) (3.35) 

- ( )' -1 () Af f '( -1 f) 
R* -.!lo l. ~22.1 .!la :t + .!l. Q Q.!l.-.!1.* ~22.1 + Q Q .!l* 

(3. 36) 
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and, the marginal posterior density of r will be 

-~ 
nCxl~)a IQ 1 Q + E 22~il R* 

N+r+2k+1-p 
2 

(3.37) 

Notice that, again, except probably for some particular cases 

(3.37) does not correspond to any standard distribution and its 

analysis has to be done using numerical methods. It is worth mention-

ing here that (3.34) does correspond to a multivariate t-distribution. 

Here again, if the prior (3.21) is used, equation (3.34) becomes 

* \) + p+q 
0 

<2.1-.S.) I Q I Q <21-ii) J 
rr<2llx.~)a [ 1 + R * 

2 

0 

where 

2l (QIQ)-1 Q'_!! 

* and v . - N-s-2p-q. Also, equation (3.37) corresponds to 
0 

-~ 
II (y_l ~) a I Q ' Q I * (R ) 

0 

N-2p-q-s 
2 

(3.38) 

(3.39) 

(3.40) 

It is important to mention that equations (3.31), (3.33), (3.38) 

and (3.40) can be obtained from the corresponding distributions through 

a limiting process. 

The remaining part of this section will be devoted to construct the 

one step ahead predictive distribution, conditional on the noise param-

eters. To do this, equation (3.29) will be used and, the density of 

YN+1 given the previous observations and of course the parameters of 

the distribution will be considered. 
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Predictive Distribution 

Perhaps the main reason for the analysis of time series is to draw 

inferences on the behavior of future observations, this is done from 

the Bayesian point of view through the predictive distribution. We 

will consider here the derivation of the one step ahead predictive 

distribution, conditional to the values of the noise parameters. Since 

this distribution corresponds to a standard one, we will be able to 

use it to obtain conditional estimators and to construct regions for 

the values of the future observation of a given probability value. 

Conditional to l•~,cr2 , the vector of observations !• and given 

at at' t = 1, •.. , N, the density function of YN+l is given by 

1 
(3.41) 

where 

~N+l ¢(B)YN+l - (8(B) -1)aN+l 

YN+l + (¢(B) - 1)YN+l - (8(B) - 1)iN+l 

X 1 . N+ ,J = ¢(B)t;N+l-j+1 j 1, 2, ... , r + 1 

XN+l,j = S(B)aN+l-j+r+l - ¢(B)YN+l-j+r+l j r+2, ••• , r+s+1 

and l I = (.!£.I 'i I ) • 

For simplicity, since ~N+l depends on the observed values of Y and on 

the vector of noise parameters, we will derive its predictive distri-

bution from which that of YN+l can be easily obtained. 
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Multiplying (3.26) and (3.41) after some algebraic transformations, 

1 
a 

2 (N+q+r+2k+4)/2 
(cr ) 

(3.42) exp I ~> [<.r.-:tl' (X'X + L 1~~ 2 + ~+1 ~+1') <.r.-.tl + R +] l 
2 

From (3.42), after integrating out, first land then cr , the predic-

tive distribution of ~N+l given ~ and ! has the form 

rr(gN+lill•!)ajXIX +Ill~~ + ~+1 !N+ll ~-~ 
N+q-s-2k+1 

2 

where, 

(3. 43) 

R+ I( -1 I) I(XIX -1 )(I "' -1 X __ 1)-1 =R+y* I11.2 +X X l*-~ + L11.2 X X+ ~11.2 + ~+1 ~N+l 

( 1 -1 2[ 1( 1 -1 X 1)-1 ] 
X X+ I11.2) l* - ~g l - ~+1 X X+ L11.2 + ~+1 -N+l ~+1 

+ - ~+1 X X+ L11.2 + ~+1 !N+l ~+1 gN+l - ~g [1 1 ( 1 -1 1 ) -1 ] [ 2] 
(3. 44) 

and 

-1 -1 -1 
~B = (l- !N+l 1 (X1X + I11.2 + ~+1 !N+l 1) ~+1) 

( v 1 ( 1 I -1 1 ) -1 ( 1 -1 ) 
~~+1 X X+ 11.2 + ~+1 ~+1 X X+ I11.2 l* 

(3. 45) 

Therefore, N+q-s+2k +1 
2 

(3.46) 

with 
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[1- x+1 1 (X 1 X + r 1-1
1. 2 + ~- x 1 )-

1x ] 
~ ~~+ 1 -N+ 1 ~""N+ 1 (3.47) 

Notice that (3.46) corresponds to the density of a t-distribution with 

+ parameters ~~· R0 /(N+q-s+2k) and N+q-s+2k degrees of freedom. From 

(3.46), the predictive distribution of YN+l can be easily obtained. 

If the prior (3.21) is used, equation (3.46) becomes 

N-2s-r-p-1 +1 
2 

(3.48) 

where 

.!_- !N+l I (XIX+~+l~+l I) -1~+1 

-1 

(l+~+l(X 1 X+~+l!N+l 1 )XN+l) 

In the next section, we will derive the posterior distribution 

for the linear intervention model. Although the mathematics involved 

is very similar to that used here, it presents situations which are 

interesting to mention. Due to the similarities, the presentation 

in section 3.2 will not be so detailed, and the predictive distribu-

tion will not be derived. 
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3.3 Multiple Linear Interventions Model 

The Approximate Likelihood Function 

The model to be analyzed in this section corresponds to 

t=l,2, ••. ,N (3.49) 

where 

w. (B) 
1. w. + w. l B + · · · + w. 1.,0 1., 1.,ri 

8(B) 1 + e1 B + ··· + eq Bq 

¢(B)= 1 + ¢1 B + ··· + ¢p Bp 

r. 
B 1. 

and can be rewritten as 

m 

l: 
i=l 

w. (B) ¢(B)~ . + 8(B)a . 
1. t,l. t 

i 1, 2, ... , m 

(3. 50) 

It is important to mention here that the model described by (3.49) 

or (3.50), is linear in the intervention parameters. It will be evident 

later that, if the noise was generated by a pure moving average model, 

the posterior analysis can be done without the need of conditional dis-

tributions. Also, we should mention here that, if one has a single 

linear intervention (m=1) this model is a particular case of the one 

described by (3.2) and (3.3). 

From (3.50), we can express the residuals a in terms of the ob­
t 

servations and parameters as 

a = ¢(B)Y -
t t 

m 
l: 

i=l 

r. 1. 
l: 

j=l 

- .•. - e 
q 

w •• 
1.' J 

Bj ¢(B) ~t . ,1. 

(3.51) 
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and again, since the Jacobian of the transformation, assuming the first 

p observations as fixed and the first p residuals with a value of zero 

is equal to one, the likelihood function can be written as 

2 Q.(y,n,cr IY)a -- -
1 

exp {- - 1-
2cr2 

N 2 
2: a } 

i=p t 
(3.52) 

where 1.. = (~~· 
I 

~2' ••. ' Wk I ' 81) , 8 I = ( 8 1 , • • • , 8 ) , 
- - - q 

W I 

-i (w. ' J..,O 

... ' w. )i=l,2, 
J..,ri 

••• ' m, .1 I a , t 
t 

p' ... N' 

are given by (3.51). 

Needless to say, here again, due to the nonlinearities in the model, 

the analysis becomes very complicated unless we use an approximation 

of the likelihood as in the previous section. We will again substitute 

the unobservable variables a , in the right hand side or (3.51), by the 
t 

observable variable a calculated recursively from (3.51) using the 
t 

maximum likelihood estimators of the parameters as the parameter values. 

The approximate likelihood function corresponds in this case to 

exp {- 2> (~-Xy) I (~-Xy) } (3. 53) * 2 Q, (y, f, 0 I I) a 
1 

where 
(3.54) 

and the rows of the matrix X are given by 

r 1 r 
B ¢(B)!; t , ..• , ¢(B)!; , ••• , ¢(B) B mi; ' , 

1 t,m t,m ... ' 
A 

a 1' t- ... ' a ) . 
t-q 

(3. 55) 

Equation (3.53) will be used to obtain the conditional posterior 

distribution of 1.. given 1_. Notice that ~ and X are both functions of 

f· Formula (3.53) is also equivalent to 
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* 2 1 
Q_ (J::_, 2]_, a I!) exp { - ~ (Q.-QD_) 1 (Q.-QD_)} (3.56) 

where 

y 
t 

m 

L: 
i=1 

q 
w.(B)t; . + L: e. 

1 t,1 i=l 1 

2a 

a . 
t-1 

and the rows of Q are 

Q I 

-"1: 

m m 
(B( L: w,(B)t; . - Y ), ... , Bp( L: w.(B)t; . - Y )) 

i=l 1 t' 1 t i=l 1 t' 1 t 

fori= p, ••• , N. 

(3.57) 

(3.58) 

This last version of the likelihood will be used to derive the condi-

tional posterior distribution of the autoregressive parameters given 

the intervention and moving average parameters. 

The Prior Distribution 

Using (as in section 3.1) a multivariate normal for the conditional 

distribution of the model parameters given a 2 , and an inverted-gamma 

2 
for the marginal of a we have that 

2 II(y,cp,a )a 
1 

(3. 59) 

where a 2 z11 . 2 and y 0 (cp) are the parameters of the conditional distri­

bution of y given i and a 2 , and o2z22 is the variance-covariance matrix 

2 
of the marginal distribution of cp given a • 

Formula (3.59) is equivalent to 

_ Eri+m+p+q+2k +l 

IT(y cp a )a (o2) 2 
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(3. 60) 

2 
where ~(y) and a I 22 . 1 are the parameters of the conditional distri-

2 2 
bution of ! given X and a , and a I 11 is the variance-covariance 

2 matrix of the marginal distribution of y given a . 

As in the previous section, (3.59) and (3.60) will be used to 

obtain the posterior distribution as needed. 

The Posterior Distribution 

Trying to avoid the details of a derivation which is analogous 

to the one presented in the previous section, the conditional posterior 

distribution of X given 1, obtained from (3.53) and (3.59) corresponds 

to 

where 

y* (X'X + 

y = (X'X)-l 

and 

-1 -1 ~ -1 
I11.2) (X'Xx+Ill.2 

X'~ 

y (¢) 
0 

m 
N+2k + .I1r.+m+q 

].= l. 

2 

The marginal posterior distribution of ! is given by 

m 
-( I r.+m+N+q+2k)/2 

i=l l. 

(3.61) 

(3.62) 

(3.63) 

(3. 64) 

(3.65) 



Also, using now (3.56) and (3.60), the conditional posterior 

distribution of ~ given ~ corresponds to 

* -1 * -
N+Er.+m+q+2k-p +p 

1 

2 
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[ 
(.:£_-.:£_)' (Q'Q + E22.1) (.:£_-.:£. ) ] 

II <!I r.,I_)a. 1 + ------:-*--=:.=..:...=---­
R 

(3.66) 

where 

and 

* -1 -1 A 

i = (Q'Q + E22.1) (Q'Q.:E_+ E22.1 1u(r.)) 

-1 ' ! = (Q'Q) Q u 

+(U-Q_~)'(U-Q_~) +a.+ (Y-Y )' E-l (Y-Y) 
- -o 11 - 0 

The marginal posterior distribution of Y is then 

-1 ,-~ * 
II(r.JI.)a. jQ'Q + E22.1 (R ) 

m 
N+i~lri+m+q+2k 

2 

(3.67) 

(3.68) 

(3.69) 

(3. 70) 

Notice that (3.61) and (3.66) correspond to multivariate t-distri-

butions and their properties are well known (see Zellner (1971)). In 

general the marginal posterior densities (3.65) and (3.70) do not cor-

respond to standard distributions and have to be analyzed numerically. 

In (3.65) one usually does not have more than two variables but (3.70) 

may have more in which case the analysis becomes complicated if not 

impossible. 

3.3 Comments 

The formulas derived in the previous sections of this chapter will 

be used in Chapter IV to implement a time series analysis and also in 
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Chapter V where we will illustrate their use with several examples. 

Notice that nothing was done to obtain the posterior distribution 

of the parameter cr2 and this was because we are mainly interested in 

the modeling process and also because there is no way in which we can 

obtain a general closed form for the marginal posterior distribution. 

Of course, the conditional posterior distribution of cr2 given all the 

other parameters can be easily obtained and is proportional to the joint 

posterior distribution. 



CHAPTER IV 

TIME SERIES ANALYSIS 

The purpose of this chapter is to present procedures to model the 

intervention effect through the three stages used by Box and Jenkins 

(1970) to analyze a time series, namely, identification, estimation, 

and diagnostic checking. The predictive distribution derived in the 

previous chapter will be used to draw inferences about a future obser­

vation. 

Throughout this chapter we will assume that the noise model has 

been identified using the observations prior to the intervention, and 

that reliable estimators are available for the corresponding parameters. 

Only in the estimation part we will propose a procedure to jointly esti­

mate all the parameters of the intervention model using the joint 

posterior mode~ 

4.1 Identification 

For a time series that was generated by an ARMA(p,q) process, 

Broemeling and Shaarawy (1984b) proposed an identification procedure in 

which, after obtaining the posterior distribution of the parameters 

using p=q=2, a series of tests are performed in an attempt to reduce 

the order of the model. The procedure proposed here to identify the 

intervention transfer function is analogous. Since the noise model 
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does not change with the intervention, the observations obtained prior 

to it, will enable us to use the Bayesian identification procedure 

mentioned above and to estimate the noise parameters through their 

posterior distribution. The point estimators will be used as the 

parameter values for the conditional distribution of the intervention 

parameters give the noise ones. We will use equation (3.29) to start 

our identification process. 

The discussion here will be centered on the single intervention 

model (3.3) but, the procedure can be easily extended to the other 

model analyzed in the previous chapter. 

As in the procedure proposed by Broemeling and Shaarawy (1984b), 

we will start our identification process assuming r=s=2. Although 

this seems to be restrictive, we believe that this model is flexible 

enough to handle a wide variety of situations. See, for example, Box 

and Jenkins (1970) for a detailed description of the different effects 

that can be modeled using this transfer function when the intervention 

variable corresponds to a pulse or step function. The calculation of 

the conditional posterior distribution (3.29) with r=s=2 will be the 

st&rting point of a series of tests that will lead us to find a model 

that reasonably fits the observed data. To do this we propose the 

following steps: 

Step 1 
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Test the null hypothesis H0 : w2 = 0. This can be done by construc­

ting aHighest Posterior Density (HPD) interval, for a given probability 

level, for w2 using its marginal distribution (univariate t). If the 

value of zero is an element of the interval we should accept the null 

hypothesis and proceed with the second step. Otherwise, we can assume 



that the degree of the polynomial w(B) is equal to two and proceed to 

step 4 to identify the degree of o(B). 

Step 2 

Test the null hypothesis H0 : w1 = 0 given that w2 = 0. Here we 

proceed as in step one except that we should use the conditional dis-

tribution of w1 given that w2 = 0. If the null hypothesis is accepted 

one should proceed with step 3. If this is not the case, the degree of 

w(B) can be assumed to be equal to one and start with step 4. 

Step 3 
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Test the null hypothesis H0 : w0 = 0 given that w1 = 0 and w2 = 0. , 

Now, if the null hypothesis is accepted we can conclude that the inter-

vention does not produce any effect, and use an ARMA(p,q) model for the 

inferential process. On the contrary, if the hypothesis is rejected, 

w(B) has only a constant term and we should proceed with step 4 to 

determine the value of s. 

Step 4 

Test the null hypothesis H0 : o2 = 0 given that some of the param­

eters in the numerator are equal to zero. This depends upon the step 

from which we came. If we reject H , the degree of the polynomial o(B) 
0 

is equal to two and the identification is finished. Otherwise we should 

proceed with step 5. 

Step 5 

Test the hypothesis H0 : o1 = 0 given that o2 = 0 and also that 

the corresponding parameters of w(B) are equal to zero as in step 4. 

Here, if H is rejected the degree of o(B) is one and the identifica­
o 

tion procedure is terminated. Otherwise, o(B) is to be taken as 1. 



At this point we are ready to start the estimation process which 

will be described in section 4.2. Notice that in the above testing 

sequence we tested first the parameters in the numerator one at a time. 

The idea behind this is that if the intervention does not have any 

effect the identification will end earlier. Another possibility is to 

test the hypothesis that all the numerator parameter are jointly equal 

to zero before starting with step 1. To do this we should determine 

an HPD region for the vector (w0 , w1, w2) and check if it contains 

the null vector. If this is the case we should conclude that there 

is no intervention effect and terminate the identification process. 

This is analogous to what is usually done in regression analysis with 

the overall test of the model. 

4.2 Estimation 
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Under the assumption that the noise model was identified using 

the observations prior to the intervention and that, as a result of 

the identification procedure described in the previous section, we now 

have the values of p,q, r, and s that will be used to obtain estimators 

of the parameters of the model. We will discuss here three methods 

that can be used to obtain those estimators, depending on the type of 

inferences that we want to make and, perhaps on the complexity of the 

model to be used. 

Method 1: Conditional Estimation 

If the number of observations prior to the intervention is large 

and, if the posterior distribution obtained through these observations 

guarantees the reliability of the noise estimators, we can proceed to 
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estimate the intervention parameters using the conditional posterior 

distribution (3.29). 

If a quadratic loss funtion is used, the point estimators corre-

spbnd to the conditional posterior mean vector which can be easily 

obtained from the parameters of the distribution. 

Also, if HPD regions are desired, they can be obtained using the 

fact (see Box and Tiao (1973)) that the quadratic form 

(4.1) 

has an F distribution with (r+s+l) and v degrees of freedom in the 

numerator and denominator respectively and, that the multivariate 

t-distribution is monotone decreasing functionof it. Therefore, a 

region described by 

(4.2) 

where F +s+2 is the p-th quantile of the F distribution with the 
r ,v,p 

corresponding degrees of freedom is the mentioned HPD region. Notice 

that the region described by (4.2) corresponds to an r+s+l-dimensional 

elipsoid. 

It is important to mention that the point estimators and HPD 

regions described before depend upon the conditioning values of the 

noise parameters and that in some cases it would be very important to 

study their sensitivity. 

Method 2: Joint Posterior Mode 

If only point estimators are needed, the joint mode of the pas-

terior distribution can be obtained through the conditional posterior 
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distributions (3.29) and (3.31). An iterative procedure has to be 

used since the modes of the conditional distributions ~ and ~· see 

(326) and (3.35), depend upon the values used for the respective con-

ditioning parameters. 

To start the procedure, we can use the estimators of the noise 

parameters obtained prior to the intervention. This will produce an 

initial value for~· say ~1 , which can be used to calculate n*1• Now, 

n*1 can be used to obtain y*2 ' and so on. This iterative procedure 

should be continued until certain stability is reached in the values 

obtained. Notice that a regression problem has to be solved in each 

of the iteration steps to obtain the values of y ( or n) and that the 

calculation of the inverse of a matrix is also required. 

Method 3: Joint Posterior Means 

If we are only interested on the point estimators for ~·and B• 

the joint posterior mean can be used. Depending on the particular 

case this can be calculated in different ways. 

For example, if the number of parameters of the intervention and 

noise models is small, their expectation can be obtained numerically 

using the marginal posterior densities (3.30) and (3.37). Now, if only 

the number of parameters in the noise model is small, one can obtain 

first the conditional expectation of~ given n from (3.29) and obtain 

its expectation numerically using the marginal distribution of n given 

by (3.30), from which the posterior expectation should be obtained. 

Each of the methods described above has advantages and disadvan-

tages over the others, and the selection of the one to be used depends 

on the particular problem that has to be analyzed. 
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Notice that methods 1 and 3 produce new estimators for the noise 

parameters that could be useful to check the validity of the identified 

model. This topic will b'e the subject of the next section. 

4.3 Diagnostic Checking 

After the identification of the model for the intervention effect, 

one would like to check its validity before using it for inferential 

purposes. We will propose here a procedure to be used when the assump-

tions about the noise model are believed to be correct. We will use 

therefore the conditional posterior distribution of the intervention 

parameters given the noise ones. Whether we should check the validity 

of the noise model or not, with all the information available depends 

on the particular situation but, to do this we can develop a procedure 

analogous to the one to be described below. 

Let us assume that in the identified model, r = r and s = s • 
0 0 

To check the validity of the intervention model we propose the fol-

lowing steps: 

Step 1 

With r = r 0 + 1 and s = s0 , test the null hypothesis H0 : wr +1= 0 
0 

using an HPD interval constructed with the marginal posterior distribu-

tion of wr +1 given the noise parameters as in section 4.1. Depending 
0 

on whether the null hypothesis is accepted or not, use r = r or r = r 
0 0 

+1 to proceed with step 2. 

Step 2 

With the value of r determinated in the previous step, assume that 

s = s + 1 and test the null hypothesis H0 : os +1 = 0 using the margi-
o 0 



nal posterior distribution of os +1 given the noise parameters. Take 
0 

s = s or s = s + 1 depending on whether H is rejected or not, and 
0 0 0 

use the resultant model in future inference processes. 
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Notice that what we propose is to increase the degree of the poly-

nomials, first in the numerator and then in the denominator by one, and 

check if the observed data support the augmented model. Although one 

can think on other ways of checking the model, this seems to be a 

feasible one. A similar procedure can be used to check the noise model 

using all the observations, but in this case we should use the condi-

tional distribution of the noise parameters given the intervention ones. 

Whether we should do this or not depends upon the particular applica-

tion and as in any modeling procedure the experimenter has to make the 

final decision. 

4.4 Forecasting 

Although the study of the nature of the intervention effect is 

an important problem by itself, in many situations we would like to 

draw inferences about the behavior of future observations. This can 

be accomplished through the predictive distribution given by (3.46). 

If a quadratic loss function seems to be reasonable, the estimator 

of the future observation is the mean of the predictive distribution. 

From (3.46) we can easily obtain the conditional mean and, if nece-

ssary, one can obtain its expectation using (3.30). Conditional HPD 

intervals can also be obtained from (3.46) for a given probability 

level. 
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4.5 Comments 

Due to the complexity of the problem analyzed, we were forced to 

propose procedures that are based on conditional distributions. We 

cannot claim that these are optimal and we should stress the fact that 

at least, an analysis of the sensitivity of the conditional results 

should be made before jumping to conclusions in any given situation. 

To avoid repetitions in the presentation, we did not present the 

case in Which one possibly has more than one intervention. The proce­

dures described before can be easily adapted to analyze cases in which 

a multiple linear intervention model should be used. 



CHAPTER V 

NUMERICAL STUDY 

This chapter will be devoted to present the results obtained from 

the application of the formulas derived in Chapter III and the pro-

cedures proposed in Chapter IV to two examples. 

The estimation procedure will be illustrated in section lt through 

the analysis of a data set of the monthly averages of the oxidant 

(03) level in Downtown Los Angeles. In section 2t artificially gener­

ated data will be used to illustrate the whole time series analysis 

procedure presented in Chapter IV. Some comments on the results will 

be given in section 3. 

5.1 Bayesian Estimation 

In this section we will obtain the Bayesian estimators for the 

parameters of the model proposed by Box and Tiao (1975)t to analyze 

the series of monthly averages of oxidant (03) level in Downtown 

Los Angeles from January 1955 to December 1972. The reader should 

refer to that paper for a detailed justification of the model used 

and a description of the nature of the interventions involved. We 

will assume here that no prior information is available and we will 

use the improper prior 
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(5 .1) 
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The model proposed by Box and Tiao corresponds to 

yt WOl ~tl + 
w02~t2 

+ 
WQ3~t3 

l-B12 l-B12 

+ 
(l-81B)(l-82B12) 

l-B12 
a 

t 
(5.2) 

where 0, t < January, 1960 

~tl = 

1, t ~January, 1960 

1, "sunnner" months June-October 

~t2 = beginning 1966 

o, otherwise 

1, "winter" months November-May 

~t3 = beginning 1966 

0, otherwise 

and a, t = 1, ••• , 216 are assumed to be independent identically 
t 

distributed random variables with mean zero and variance cr 2• 

Obviously, the model (5.1) corresponds to what we called a multiple 

linear intervention model, except that the noise does not correspond to 

the one described by (3.49) since a seasonal effect is considered here. 

Nevertheless, we were able to work out the posterior analysis using 

the conditional distribution of the intervention parameters (w01 , w02 

and w03 ) given 81 and 82 , and the marginal distribution of the noise 

parameters. 

For the prior (5.1), the conditional distribution of the inter-

vention parameters given 81 and 82 , corresponds in this case to 



- v-1-3 
2 
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<.r-i) X I X <.r.-.i) ] 
(s2)y 

(5. 3) 

where 

~13,1 - ~1,1 ~13,2 ~13 2 , 
X = 

~14,1 - ~2,1 ~14,2 ~14,2 

. . 0 . . . 
~N 1 -, ~N-12,1 ~N,2 ~N,3 

(X'X)-l X'! 

and v = N - 15. 

Notice that the matrix X is independent of the noise parameters 

and, therefore the correlation structure of 1. is independent of the 

conditioning values used. 
2 

Also notice that 1. and s depend upon 81 

and 82 through ~· 

Now, the marginal posterior distribution of the noise parameters 

is given by 

2 
with s andv as in (5.3). 

v-2 
2 

(5 .4) 

The values of the conditional maximum likelihood estimators for 

the data taken from the SAS/ETS User's Guide (page 107) correspond to 
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8l = .2998, 82 = .5923, WOl = -1.2624, w02 = -.2615 and w03 = -.08196, 

These values were used to calculate the residuals estimators and to 

obtain the parameters for (5.3) and (5.4), which correspond to 

X'X 
(5.5) 

y' = (-1,1297, -.2320, -.06456) (5. 6) 

2 
v = 211, and s = 0.69015 if the values for e1 and 82 are -.2998 and 

.5923 respectively. 

The conditional point estimator for X is given by X if a quad-

ratic loss function is considered. Also from (5.3), HPD regions can 

be obtained and used to test some hypotheses of interest. For example, 

to test the null hypothesis that w03 = 0, i.e. to test whether there 

is any effect of the winter intervention, we can use the fact that, 

given 81 = -.2998 and 82 = .5923, 

w03 + .0646 

.11867 

has a t-distribution with 211 degrees of freedom and that the 95% HPD 

region for w03 corresponds to 

-,29721 ·< w03 < .16801 , 

Since the value of zero is included in the region, we can conclude 

that there was no effect of the winter intervention. Of course, this 

is a conditional test and the conclusion depends upon the selected 

values of the noise parameters. To check the sensitivity of the test 

we calculated the limits of the interval for various values of the 

noise parameters in the rectangle 



outside of which the volume of their posterior distribution is negli­

gible, and in all the cases the value of zero was included. 
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So far, in terms of point estimation what we have done is to apply 

what we called method I in the previous chapter. In this example, 

since the posterior distribution of the noise parameters is not a stan­

dard one, we did not use method II, but we will. present the results 

obtained through the application of method III. 

Using the numerical integration subroutine DBLIN from the IMSL 

library, we calculated the first and second moments of the joint pos­

terior distribution. The means, which are the point estimators of the 

parameters of the model if a quadratic loss function is adequate, are 

E[w01 ] - -1.1343 

E[w02 ] = -0.2309 

E[w03] = -0.0667 

E[e 1 ] = -0.2725 

E[e 2] = 0.5824 

The variance-covariance matrix is 

.058495 

.000027 

.000063 

-.000302 

.001149 

.000027 

.020138 

-.000004 

.000338 

.000439 

.000063 

-.000004 

.015646 

-.000198 

.000178 

-.000302 

.000338 

-.000198 

.003879 

.000545 

and the correlation matrix corresponds to 

.001149 

.000439 

.000178 

.000545 

.004882 

(5. 7) 

(5.8) 
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1.0000 .0008 .0021 0.0201 .0679 

.0008 1.0000 -.0002 .0382 .0443 

.0021 -.0002 1.0000 -.0255 .0203 

-.0201 .0382 -.0255 1.0000 .1252 

.0679 .0443 .0203 .1252 1.0000 
(5. 9) 

The values obtained for the point estimators through the approx-

imate Bayesian procedure do not differ much from the conditional maxi-

mum likelihood estimators and, from (5.6) and (5.7) we can observe 

that the conditional and marginal estimators of the intervention 

parameters are almost the same. The variances shown in (5.8) have 

the same magnitude as the ones reported by Box and Tiao (1975). 

Notice that the correlations in (5.9) are all very small, most of 

them negligible. 

5.2 Time Series Analysis 

In this section we will present the results obtained from the 

application of the time series analysis procedures proposed in the 

previous chapter, to an artificially generated data set. 

For this example, 200 observations were generated using the RANNOR 

subroutine described in the SAS User's Guide: Basics (1982), and the 

model 

where 

y = 
t 

s = t 

.3 
st + (l-.25B) at t 

l-.9B 

1, t < 100 

o, otherwise 

1, ••. , 200 (5.10) 

(5 .11) 

and at, t = 1, ... ,.ZOO, are independent, normally distributed with 

mean zero and variance ~. 
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Throughout this section, we will use the Bayesian estimator of 

the parameter of the noise model, obtained from the first 100 obser-

vations, using the procedure proposed by Shaarawy (1984) after follow-

ing the identification procedure of Shaarawy and Broemeling (1984b) 

for the conditioning value of e1 . The value obtained was e1 = -.355723. 

Identification 

We started the identification stage assuming that r = s = 2 as 

proposed in section 4.1, i.e. we used an initial model 

2 w0+w1B+w2B 
y 

t 1+6 B+6 B2 
1 2 

~t 

with a as in (5.11). The conditional posterior distribution of 
t 

Y' = (w 0 , 61 , 62 , w1 , w2) given e1 = -.355723 is given by equation 

(3.31). The parameters calculated for this particular series are 

100.000 -276.930 -272.975 99.000 98.000 

-276.930 797.948 792.458 -276.026 -275.270 

(X'X)= -272.975 792.458 789.033 -272.978 -272.992 

99.000 -276.026 -272.978 99.000 98.000 

98.000 -275.270 -272.992 98.000 98.000 

.92892 

-.53442 
Y....= 

-.32034 

-.66333 

.17305 

and 
2 

R /v .248359. s = 
0 0 

The different steps of the identification procedure produced 

the following results: 

(5.12) 



Step 1 

Test: H : w = 0 
0 2 

95% HPD intervals: -1.0219 < w2 < 1.3590 

Result: w = 0 
2 

Step 2 

Step 

Step 

Test: H : w = 0 given w = 0 
0 1 2 

95% HPD interval: -1.6430 < w1 < 0.6265 

Result: w = 0 1 

3 

Test: H : w = 0 given wl = w = 0 
0 0 2 

95% HPD interval: 0.05828 < wo < 1.04635 

Result: wo :f: 0 

4 

Test: H0 : o2 = 0 given w1 = w2 = 0 

95% HPD interval: -1.1505 < o2 < 0.24675 

Result: 8 = 0 
2 

Step 5 

w = 0 
2 

95% HPD interval: -1.01469 < o1 < -.69021 

Result: o1 :f: 0 

The resulting model is therefore 

which corresponds to the one used to generate the series. 
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(5. 13) 



Estimation 

For the model (5.13), the conditional posterior distribution of 

w0 and o1 given e1 = -.355723 corresponds to (3.31) with the following 

parameters: 

X'X ( 
100.000 

-275.493 

1._ ( .52717) 

-.82294 

2 
and s = R !v = /.239026. 

0 0 

-275.493) 

797.743 

Figures 1 and 2 show the behavior of the series and the values 

taken by the identified intervention function using the conditional 
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mean y to estimate w0 and w1 , and the maximum likelihood estimates of y. 

Diagnostic Checking 

Following the procedure described in section 4.3, the number of 

parameters was increased by one, first in the numerator and then in the 

denominator, and the hypothesis that the added parameter is equal to 

zero tested. The results obtained are shown below. 

Case 1: r = 1 and s = 2 

Test: 02 = 0 

95% HPD interval: -1.7244 < o2 < 1.1984 

Result: 8 = 0 
2 



v I 
II + 

.. + 

PlOT OF V•T 
PLOT OF INT•T 

SYMBOL USED IS • 
SYMBOL USED IS + 

. . 
• . . . 

3 f---------------~-----------------------------------------·~----··-··-···-··-···-··-···-··-···-··-···-··-···-··-···-··-··--------+++ •• + • • • • 
+ ++ • 

++ 
+ .. • 

+ 

2 ·---------------~---------------------------·----··---·------------------------------·-------------·-----------------------------

+ 

•• 
+ 

·-------------~-------·----------------·--·--------------------------------------------------------------------------------------.. 
• . . 

• 
0 +-------··-··-···-··-···-··-···-··-··--------------------------------------------------------------------------------------------• . . 

-1 + 

-2 i 
-------~·------·------·------·------·------·------·------·------·------·------+------·------+------·------·------+------·--------10 811 80 85 100 105 110 111 120 125 130 135 140 145 150 1115 160 

T 

Figure 1. Bayesian Estimators 

.p.. 
w 



v I 
5 + 

4 + 

PLOT OF V•T 
PLOT OF INT•T 

SYMBOL USED IS • 
SYMBOL USED IS + 

3 ·---------------------------------------------------------·------·-----··----···-··-···-··-···-··-···-··-···-··-···-··-··--------

+ + 

• ++ •• 
++ 

+ ++ +++ ++ 

+ + •• • • 

2 ·--G·--------------------------------------------··---·------------------------------·-------------·-----------------------------
•+ 
+ 

+ 

• 
+ 

·---------------------·-------------------·--------------------------------------------------------------------------------------+ •• . . •• • • + . . 
0 ·-------··-··-···-··-···-··-···-··-··--------------------------------------------------------------------------------------------

-1 + 

-2 i 
-------~·---~--·------+------+------·------·------+------·------·------·------+------·------·------·------·------·------+--------80 81 90 95 100 105 110 115 120 125 130 135 140 145 150 115 160 

T 

Figure 2. ML Estimators 

~ 
~ 



Case 2: r = 2 and s 1 

rest: w1 = 0 

95% HPD interval: -2,1467 < w1 < .77284 

Result: w = 0 
1 

Therefore, the identified model seems to be the appropriate one, 

Forecasting 

Using equation (3,48), for this example, the predictive distri-

bution, conditional to e1, is such that 

YN+1 -2.9624 

.48896 

has a t-distribution with 196 degrees of freedom. If a quadratic loss 

function is used, the point estimator of the future observation is 

equal to 

YN+1 = 2.9624 

and the 95% HPD interval corresponds to 

2.004 < YN+1 <3.921, 

The actual value of this observation in the generated series was 

equal to 2.4623. 
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In this example, as in the previous one, we checked the sensitivity 

of the results to changes in the value of the conditioning parameter 

and we did not observe appreciable changes. We also generated series 

using a larger variance for the error~, and we observed that as the 

variance increases, the intervention transfer function becomes closer 

to a constant of value 3, To check the sensitivity to changes in the 

number of observations, we used the first m elements, for m = 110, 120, 
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150, and 175, of the generated series. The identification procedure 

produced the correct model in all the cases, while poor estimations and 

forecastings were obtained fror m = 110 and m = 120. It seems that, at 

least in this example, for the estimation and forecasting procedures to 

be reasonably effective, one should keep observing the series until it 

reaches the steady state. Further work has to be done to test the 

performance of these procedures in cases where the transient stage of 

the intervention effect takes much longer, so that the number of 

observation before reaching the steady state is large. Notice that 

in the example presented, the series reaches its final level about 20 

time units after the starting point of the intervention. 

5.3 Comments 

The examples presented before illustrate the use of the procedures 

proposed in this report and show that they produce reasonable results. 

Other examples were analized and the results obtained support the 

adequacy of the method. 

Due to the complexity of the model, we had to use ad-hoc computer 

programs for each case but we hope to build in the future a package 

which could be used by the experimenter to analyze a wide variety of 

situations. One of the advantages is the fact that it is possible to 

include prior information when available, and also the fact that the 

procedure becomes very similar to the modeling process used in linear 

regression. 



CHAPTER VI 

SUMMARY 

In this paper, a Bayesian procedure was proposed to analyze time 

series with interventions. The procedure relies on the-use of an approx­

imation to the likelihood function which eliminates some of the non­

linearities involved. 

Chapter III included the derivation of the posterior and predic­

tive distributions for the case of a single intervention model, and the 

posterior distribution for a model with multiple linear interventions. 

In both cases, the noise was assumed to be generated by an ARMA(p,q) 

process. Normal-inverted gamma and "non-informative" prior distribu­

tions were considered. 

Chapter IV described a new Bayesian approach to analyze these 

series through the conditional posterior distributions. Procedures 

were proposed to implement the different stages of the time series 

analysis, namely; identification, estimation, diagnostic checking, and 

forecasting. The discussion was restricted to the case in which there 

is only one intervention and the noise model does not include seasonal 

factors, but the procedure can be easily extended to include them. 

The estimation procedure was applied in Chapter V, with some modi­

fications, to a problem which includes several interventions and the 
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noise contains a seasonal factor. The results obtained were very sat­

isfactory. The complete time series analysis procedure was also used 

in this chapter to analyze an artificially generated data set with 

successful results. 

Although further work has to be done from the theoretical point of 

view, the author believes from the results obtained that the procedures 

can be successfully applied in a wide variety of situations. An 

interesting case would be that of a regression model where the errors 

are generated by an ARMA process. A more detailed study has to be done 

on the adequacy of the approximation to the likelihood and this is more 

important in cases when the transient part of the intervention occurs 

in a short period of time. Also, since the procedure relies on the use 

of conditional posterior distributions, an analysis of the sensitivity 

of the results to changes in the conditioning values has to be done to 

assure the validity of the conclusions. When possible, the marginal 

posterior distributions should be used. 
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ftPPENDIX 

CONSIDERATIONS ON THE APPROXIMATE 

LIKELIHOOD 

The purpose of this appendix is to present a preliminary analysis 

on the theoretical justification of the approximation to the likelihood 

function described by (3,11) and (3.15), for the case in which no inter-

action is present. This approximation was first proposed by Shaarawy 

(1984) to analyze a time series generated by a moving average process, 

but no mathematical proof has been given to guarantee its adequacy. In 

this regard, much more work is yet to be done. 

The behavior of the estimated residuals, calculated through the 

maximum likelihood estimators of the parameters of the model, depends 

entirely on the large sample properties of those estimators. Even 

though, the author did not find in the literature a rigorous proof 

specially for the case of mixed (ARMA) models, if the estimators are 

assumed to be consistent and asymptotically normal, which is what most 

authors do, it is not difficult to show that the estimated residuals 

are asymptotically independent and normally distributed with mean zero 

and variance 2 a • From this it seems reasonable to use them in the con-

struction of the approximate likelihood function. Nevertheless, it is 

not clear how to prove that the function obtained converges somehow, 

to the exact likelihood as the sample size goes to infinity. The numer-

ical results obtained from the application of this approach to a large 
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variety of examples show that this must be the case, 

It is important to mention that, the approximate and exact like­

lihoods coincide when the values of the parameters are equal to the 

maximum likelihood estimators and that, as the sample size increases 

both function become more concentrated, Due to the consistency prop­

erties, the exact likelihood will be concentrated around the real 

values of the parameters and the approximate one appears to behave in 

the same way. From those considerations it is possible to conjucture 

that at least in a neighborhood of the maximum likelihood estimators, 

the values of the two functions become closer as the number of obser-

vations increases, 

Also, it is important to notice that the approximate likelihood 

function corresponds to that of a linear regression model where some 
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of the independent variables are lagged series of the estimated resi­

duals, and the noise terms are assumed to be independent and normally 

distributed with mean zero and variance a2 • The points at which the 

maximum of the approximated likelihood is attained, which coincides 

with the mean of the posterior distribution for non-informative priors, 

is therefore a "good" estimator of the point at which the exact like­

lihood attains its maximum. 

Certainly, the previous analysis does not constitute a mathematical 

proof, but those statements are supported by the extensive numerical 

study done by Shaarawy to produce the papers mentioned in Chapter II 

of this work and also by this author before the procedure was applied 

to the intervention models, 
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