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PREFACE 

A variety of £-groups is an equational class consisting precisely of 

those £-groups which satisfy a given set of equations. Alternatively, 

varieties are those classes of £-groups closed with respect to £-sub-

groups, cardinal products, and £-homomorphic images. A quasi-variety of 

£-groups is a class of £-groups closed with respect to £-subgroups, car-

dinal products, and ultraproducts. These can also be described as the 

classes which are determined by given sets of implications. Thus, a 

quasi-variety of £-groups is a weaker algebraic structure than a variety 

of £-groups. 

In Chapter I we give a brief review of the theory of partially 

ordered groups, wreath products, and notations that are necessary for the 

discussion that follows. Chapter II is devoted primarily to considering 

special types of £-groups called cyclic extensions. In this chapter we 

also give several examples which are the most general types of cyclic 

extensions. Several theorems are proved which describe when two cyclic 

extensions can be compared. 

In the third chapter we study representable £-groups. An £-group is 

representable iff it satisfies the equation 

2 2 2 
(x A y) = X A y 

+ Let A be the variety of abelian £-groups, M and M be the Medvedev 

varieties, and R be the variety of representable £-groups. In this 

chapter we first construct two infinite chains of distinct quasi-varieties 

i i i 



2 -between A and RnA using properties of M. Similarly, infinite chains of 

distinct quasi-varieties of representable ~-groups can be constructed 

. . f M+ us1ng properties o . 

Chapter IV contains a study of nonrepresentable, normal valued 

~-groups. 
-1 -1 

An ~-group G is normal valued iff for every a,b s G a b ab 

Let G , S , H , and L be the Scrimger ~-group, the variety 
n n o n 

generated by it, the quasi-variety generated by it, and the variety of 

~-groups defined by [xn,yn] = 1, respectively. We know that if n is 

primeS covers A and is contained in L in the lattice of varieties. 
n n 

First, we find a set of implications satisfied by H and then construct 
0 

an ~-group that fails those implications but contains G . Next, we gen­
n 

eralize this construction to get an infinite chain of distinct nonrepre­

sentable ~-groups between A and L nA2 , and hence an infinite chain of 
n 

distinct quasi-varieties of nonrepresentable ~-groups between A and 

L n A2 • 
n 

Chapter V contains a study of three important properties of classes 

of ~-groups: the subalgebra property, the divisibility property, and the 

amalgamation property. It is devoted to proving that every quasi-variety 

of ~-groups which is an element of one of the chains constructed in 

either Chapters III or IV fails the amalgamation property. Also, rela-

tions between these properties are given and used to establish whehter or 

not a quasi-variety of ~-groups satisfies or fails the amalgamation 

property. 

iv 
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CHAPTER 

INTRODUCTORY CONCEPTS AND NOTATION 

In this chapter we review many of the basic definitions and notations 

necessary for our study of quasi-varieties of £-groups. A more complete 

discussion can be found in Bigard [2]. 

By Z and R we will mean the sets of integers and real numbers, respec-

tively. Unless otherwise specified, these sets will have their usual oper-

ations and order. 

A partially ordered set (poset) is a pair (A,~) where A is a set and 

$ is a relation on A which is reflexive, antisymmetric, and transitive. 

The set (A,:::;) is called a chain if$ defines a total order on A (i.e., if 

a,bEA either a::: b orb$ a). If A, Bare partially ordered sets, then we 

will use the following notation. By A-B we mean the set {aE:Aja~B}. Let A 

be a poset and H a subset of A. The set H has an upper bound (lower bound) 

if and only if there exists an element x E A such that a ~ x (x $ a) for 

every element a E H. Now, (A, $) is a lattice if (A, :::;) is a poset such 

that for every two elements a and b in P the least upper bound and the 

greatest lower bound of the set {a,b} exist. As for notations the least 

upper bound of {a,b} is denoted by avb (a join b), and the greatest lower 

bound of {a,b} by aAb (a meet b). 
+ 

The lexicographic product of A and B is the usual direct product AxB 

+ . AxB 1s ordered analogously. Now, i f (A, . , $ i s a 



group, then A-l will be {a- 11aEA}. Also, a 1 << a2 for a1, a2 E A means 

n a 1 s a2 for all n E Z. 

A partially ordered group is a group (G, ·) together with a partial 

orders such that as b implies ac s be and cas cb for all a, b, c E G. 

If the order is a lattice order, then G is called an t-group, and if the 

order is total, then G is called a totally ordered group. 

+ If X is any ordered group, where 0 is the identity element, then X 

will denote {xEXIx~O}. X+ is called the positive cone of X. This set 

completely determines the partial order of the set structure. + For X to 

be the positive cone of a partially ordered group, it is necessary and 

sufficient that X+A(X+)-l = {0}, X+•X+ s X+ and x X+ x-l s X+ for all 

X E X. 

Let X be an ordered set and Y:X +X, Y is an a-permutation of X if 

and only if Y is a bijective map where if x ~ y then Y(x) s Y(y). An 

a-homomorphism is a homomorphism~: X+ Y between partially ordered 

groups such that x1 s x2 implies ~(x 1 ) $ ~(x2 ). An a-monomorphism is an 

injective a-homomorphism while an a-epimorphism~: X+ Y is a surjective 

a-homomorphism such that ~(X+) = Y+. An a-isomorphism is a bijection ~ 
-1 

such that both ~and ~ are o-epimorphisms. 

Ani-homomorphism is a homomorphism~: X+ Y such that ~(x 1 A x2) = 

~(x 1 ) A ~(x2 ) and ~(x 1 v x2) = ~(x 1 ) v~(x2 ) for all x1, x2 E X. As in the 

preceding paragraph, we define i-monomorphism, t-epimorphism, and 

i- isomorphism. 

A subsetS of a partially ordered group X is called convex if 

0 s x s s and s E S imply x E S. An o-ideal of X is a kernel of some 

a-epimorphism, and if X is lattice ordered, the kernel of an t-epimor-

phism is called ani-ideal. Fori-groups, the i-ideals are the convex 

normal t-subgroups (i.e., subgroups that are also sublattices). 

2 



3 

If G is an £-group and C a normal convex £-subgroup of G, then G(C) = 

{xCjxEG} is the set of left cosets. If C is a maximal convex £-subgroup 

with respect to not containing a where aEG, then C is a value of a in G. 

Now C is prime if whenever C = AnB where A and B are convex £-subgroups 

of G then A=C or B=C. In this case let u be the canon i ca 1 map from G in-

to Aut G(C) (i.e., automorphisms of the set G(C)) defined by: for every g, 

h & G, (u(g)) (he) = ghC. For u(G) to operate transitively in G(C), means 

for every x andy E G(C), there exists ~ E u(G) such that ~(x) = y. An 

£-group G is transitive if there exists a totally ordered set T and an 

£-monomorphism u:G +Aut T, such that u(G) operates transitively in T. 

Holland has proved that every £-group can be embedded in Aut(A) for some 

totally ordered set A where the cardinal of A is smaller than or equal to 

the cardinal of G. Hence, every £-group is isomorphic to a subdirect 

product of transitive groups (see later in the chapter for the definition 

of subdirect product). 

+ If X is lattice ordered and x EX, then x = xvo is called the posi-

tive part of x, x 
-1 

= (x )vo is called the negative part of x, and 

= xvx-l is called the absolute value of x. 
+ - -1 Note that x = x (x ) 

X Also, if x andy are elements of x, y 

called the conjugate of y by x. 

-1 . 
= X yx IS 

If x andy are ordered, algebraic structures, then X+ Y will denote 

the usual direct sum without regard to order. If we write X+ Y, we 

mean the cardinal sum which is the usual direct sum but with order 

+ + + 
determined by (X+ Y) = {(x,y) EX+ Y I XE X , yE Y }. If X andY are 

two posets, then XxY = {(a,b) such that aEX and bEY} with the ordering 

:;; defined by (a,b) :$ (c,d) if and only if a:$ band c :$d. (XxY, $) is 

called the direct product of X andY .. Also, if X andY are £-groups, 
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then the direct product is the cardinal product of X andY. 

Note that all types of products and sums can be defined for any col-

lection (X ) of ordered sets. 
a at.A 

A subsetS of a direct product nA S is called a subdirect product as a 

of the S if the projection on each S is a surjection. An object S is 
a a 

said to be subdirectly irreducible if whenever it is a subdirect product 

of a collection (S I as A), then at least one of the projections is an 
a 

isomorphism. Let C be a class of objects, then every object inC is a 

subdirect product of subdirectly irreducible objects inC if and only if 

C is an equational class. This is also equivalent to the condition that 

C is closed under the formation of products, substructures, and quotients. 

An equational class Cis called a variety of objects. In particular, we 

denote by~. the variety of abelian ~-groups,~ the variety of represen­

+ -1 -1 table ~-groups where every ~-group G satisfies the equation XA(y .x . 

y) = lG for any x,y in the ~-group G and where lG is the identity ele­

ment in G, N the variety of normal valued ~-groups and L the variety of 

all ~-groups. We know that A < R < N < L. 
t t t 

Let I be an index set with a minimal element z, Fa subset of I such 

that F is stable with respect to finite intersection, z does not belong 

to F, and x E F and t ~ x implies t E F. Then F is a filter of I. It is 

an ultrafilter if it is a maximal filter. If C is a class of ~-groups, 

(G jasi) a collection of elements of C, and U an ultrafilter over I, then 
a 

an ultraproduct is n1 G /U. Now, if C is closed under the formation of 
at. a 

products, substructures, and ultraproducts, then C is called a quasi-

variety of objects. And every object inC is a direct product of ultra-

products (i.e., .n1 .1 ~ 1 G./U where I, I are index sets, U an ultra-
JE "-a 1 a a a 

filter over I and G. an object inC for every i). 
a 1 
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Let A and B be groups, we denote by A(BJ, the group of all functions 

from B into A with the usual multiplication and by A(B) the subgroup of 

A[B] consisting of all such functions with finite support. For each 

f E A[B] and bE B we define a function f(b) by f(b) (b') = f(bb'). Con­

sider the set product BxA[B] with multiplication given by (b,f) (b' ,f') = 

(bb 1 , f(bb')·f(b)), then BxA(B] is called the big wreath product of the 

group A by the group Band is denoted by A Wr B, while the subgroup 

BxA(B) of BxA[B] is their small wreath product and is denoted by A wr B. 



CHAPTER II 

CYCLIC EXTENSIONS 

In this chapter special types of ~-groups are studied along with 

methods of constructing them. In later chapters their importance will be 

seen in generating quasi-varieties and in determining whether or not a 

class of ~-groups fails the amalgamation property. 

Definition 2.1 Let (G,.) be an ~-group, a an ~-automorphism of G, 

and 

G(a) = Gx<a> = {(g,an) lgEG, nEZ} . 

G(a) is called the cyclic extension of G by a. 

G(a) carries a natural group structure if we define multiplication 

as follows: 

n -1 -n -1 -n identity G(a) 0 Note ·that (g,a ) = (a (g ),a), and the in is ( 1 G, a ) . 

Also, define an order :s on G(a) by (g,an) :s (h' am) iff n < m or 

n = m and g ;;; h. This defines a 1 at t i ce order on G(a). In fact, 

(g ,an) if n<m 

(g,an) A (h,am) = (h,am) if n>m 

(gAh ,an) if n=m 

6 



and 

if n>m 

= if n<m 

(9vh ,an) if n=m 

Further, G(a) is an £-group. We need to verify only that if a,b,c 

E G(a) where a$b, then ac $ be and ca $ cb. Since a,b,c are in G(a) 

write a= (9,an), b = (h,am), and c = (f,ak). Now a~b implies that n<m 

( n k or n=m and 9$h. If n<m, then n+k < m+k and ac = 9 ,a ) (f ,a ) = 

(9·an(f), an+m) $ (h·am(f), am+k) = (h,am)·(f,ak) =be. Otherwise, if 

n=m, then 9 ~ h implies 9·an(f) = 9·am(f) $ h·am(f) and ac $be. We can 

verify in a similar way that ca ~ cb. 

One remark is that G can be embedded in G(a), and is isomorphic to 

G(a) whenever a is the identity automorphism. To see this just identify 

each element 9 of G with the element (g,a 0) of G(a). 

7 

It is also important to observe that G(a) is abelian iff G is abelian 

and a is the identity map. Clearly, if G(a) is abelian, then G is abelian 

since G ~ G(a). Suppose a is not the identity automorphism. Then there 

exists an element g of G such that a(9) ~ g. Let x = (9,a0), and 

y = (lG,a). The two elements x,y of G(a) do not commute, since x·y = 

(g,a0)(1G,a) = (g·a 0(1G),a) = (g·lG,a) = (g,a), and y·x = (1G,a)(g,a0) = 

(lG·a(g) ,a) = (a(g) ,a). 

Cyclic extensions of £-groups have been used in the literature to 

generate varieties and to study the amalgamation and divisible embedding 

properties. The following example was used by Feil [4] to create uncoun-

tably many different varieties. 
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Example 2.2. Let G = (R,+), t any number inside the interval [0,1], 

and a an automorphism of G defined by the following: For every r in G, 
t 

a ( r) = ( t ) r 
t t+ 1 • Consider G(at) to be the cyclic extension of the real 

numbers. Let Ut be the variety generated by G(at). The variety Ut 

strictly contains A (variety of abelian £-groups) and is contained in R 

(variety of representable £-groups) since Ut is totally ordered. 

In [4] Feil established the following result. 

Theorem 2.3. The varieties Ut (O < t < 1) constructed in the above 

example are distinct and form an uncountable chain between A and R. 

In order to prove this theorem, first he proved that if 0 ~ t ~ 

! ~ 1 where p,q are in Z+ then G(at) satisfies the equation 

[ [x, [ [x, y] I ] [ p ~ [ [ x, Y J I q . 

Further, if 0 ~! s t s 1, then G(at) fails the equation for p and q. 

More generally, cyclic extensions can also be constructed by using 

not just permutations over the totally ordered group itself, but also 

permutations over any totally ordered set. Therefore, the following 

examples arise. 

Example 2.4. (i) Let G be an £-group, I a totally ordered set, and 

- Q a an a-permutation of I. Let G = G. ' where G. iE:I I I 
"' G. Define an 

-
a (g) - -automorphism a: G -+ G by = h where h. =g&(i)" I 

Consider G(a) the 

cyclic extension of G by a. If G is any group,then G(a) is generated by 

the set of elements {e,e. [isi} where 
I 

e = (o,a) 



e. = 
- 0 (a,a ) where a. 

I 

lG is the identity element of G. 

Multiplication in ~(a) is given by 

where k. = 
I 

g., + h 
an ( i) 

J 

= { 
0
1G 

if j=i 

and 

if j~i 

= 

( i i ) Let G =G;)Z and a:G + G be defined as follows: for an element z 
a of G, write a= (a.) where a,EZ and a.~O for only finitely many in-

1 iEZ I I 

dexes in Z, a(a) = b where b =(b.) , biEZ and bi = ai+l. Consider 
1 isZ 

the cyclic extension, G(a), of G by a. 
n - -Note that a (a) = c = (c.) 

1 isZ 

where c. = 
I 

Multiplication is defined by 

= 

where k. = g. + h. . 
I I 1+n 

Now, let ZwrZ (i.e. the small wreath product of Z and Z), be the 

set {(g,n) where g = (g.). Z where g. ~ 0 for finitely many i 's, g.sZ, 
I I E: I I 

and nsZ}. Multiplication in ZwrZ is defined by 

(g,n) (h,m) (k,n+m) where k. = g. + h. 
I I 1+n 

Note that G(a) is isomorphic to ZwrZ. If¢ is the map from G(a) into 

ZwrZ defined by ¢((g,an)) = (g,n), then¢ is a well-defined isomorphism. 

First, let us show that¢ is a homomorphism. - n - m Let ( g, a ) and ( h , a ) be 

two arbitrary ~lements of G(a). Then, cp((g,an)·(h,am)) = cp((g + an(h), 

9 
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an+m)) = (g + an(h) ,n+m) = (k,n+m) where k. =g. +h. . But (g,n) (h,m) = 
I I 1+n 

(k,n+m). Therefore, <jJ((g,an)·(h,am)) = <jJ((g,an)) <jJ((h,am)). The map <P 

is clearly a bijection. 

( i i i ) - n Let Gin (ii) be furnished with the following order: (a,a )~0 

if and only if n>O or n=O and ai~O where is is the maximum index with 

respect to a.~O. Then G is an ~-group and is isomorphic toW­
I 

-+ 
ZwrZ, 

where W is ZwrZ with a similar order as G, (i.e. (g,n) ~ 0, if and only 

n>O or n=O and gi ~ 0 where is is the maximum index with respect to gi~O). 

Thus, <P defined in (ii) is an ~-isomorphism. Hence, W is a cyclic 

extension. 

Now, if we change the order on G, and define it as follows: 

- n (a,a) ~ 0 if and only if n ~ 0 or n 0 and a. ~ 0 where is is the mini­
' 

mum index with respect to a.~O, then W+ = Z~rZ, which is ZwrZ with simi­
' 

lar order as G, (i.e., (g,n) ~ 0 if and only if n ~ 0 or n=O and g. ~ 0 
I 

where i is the minimum index with respect to g.~ 0). Again, <Pin (ii) 
I 

is an ~-homomorphism, and W+ is a cyclic extension. 

+ - + Let M and M be the varieties generated by W and W respectively, 

Medvedev [13] has established that. M+ and M-are both covers of A. 

(iv) Let G = ng 1z, ;;, a permutation of the set {0, 1 ,2, ... ,n-1} 

defined by ;;,(i) = (i+l) modulo(n). Define an automorphism a:G-+ G by, 

a(g) = h where hi= ga(i) i = O, ... ,n-1. Consider G(a) the cyclic exten­

sion of G by a. Multiplication in G(a) is defined by (g0 , ... ,gn_ 1;am) 

( p) ( ( m+p) hO, .. · ,hn-1 ;a gO+ham(O) ,. · · ,gi+ham(i) ,. ·· ,gn-l+ham n-1) ;a = 

(g0+h0 , ... ,g.+h. , ... ,g 1 + h 1 ;am+p) where all subscripts are +m 1 1+m n- n- +m 

read modulo n. 
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Now, the Scrimger t-group G of order n is defined by Scrimger [21] 
n 

as fo 11ows: 

G = {(a0 , .. ,a 1;n) where nEZ, and a.EZ for every i = O, .. ,n-1}, 
n n- 1 

furnished with the following order and multiplication. An element 

(a0 , .• ,an_ 1;m) ~ 0 if and only if m>O or m=O and ai~O for every i=O, .• , 

n-1, and (a 0, .. ,an_ 1;m)(b0, .. ,bn_ 1;p) = (a 0+bO+m•··•an-l + bn-l+p;m+p) 

where all subscripts are read modulo n. 

Next, define an order over G(a) as follows: (g 0 , .. ,gn_ 1:am) ~ (0,0) 

if and only if m>O or m=O and g.:::;o for every i=·O, .. ,n-1. Then G(a) is an 
I 

t-group and is isomorphic to G . Let ~:G(a) + G be a map defined by n n 

~((g 0 , •. ,gn_ 1;am)) = (g 0, .. ,gn_ 1;m). Easily, we can prove as in (ii) 

that ~ is an t-isomorphism. 

Note that if n is a prime number the variety S generated by G n n 

covers A (Scrimger [21]). 

These types of cyclic extensions will play an important role in con-

structing countably infinite different quasi-varieties in Chapters II I 

and IV. Therefore~ it is necessary to learn how to compare cyclic 

extensions. 

0 
Theorem 2.5: Let A1, A2 be two totally ordered sets, G =A Z, 

1 

G1 = ~ Z,and a1• a2 be a-permutations of A1 and A2 , respectively. Con-
2 

sider G(a 1) andG 1 (a2). If there exists an injective map Y0 from A1 into 

A2 such that a2oY0 = Y0 o;1 then G(a 1) ~ G1 (a2). 

Proof: Suppose there exists such a Y so that the diagram on the 
0 

next page commutes. Let~ be the map from G(a 1) into G1 (a2) defined by 

k k 
~((g,a 1 )) = (h,a2) where hYo(i) = gi .and hj = 0 otherwise. The map~ is 

well defined since Y is injective. Also~ is ant-homomorphism. Let 
0 
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h1,h2 be elements of G(a 1). We need to show that ¢(h 1·h2) = ¢(h 1) •¢(h2). 

First, h1 = (g,a~), h2 = (h,a7),and h1·h2 = (g,a~)(h,a7) = (k,a~+m) where 

ki = gi + ha~(i) Now ¢(h 1·h2) = (t,a~+m) where tYo(i) = gi + ha~(i) and 

p (•) =h. and 2. = p. = o otherwise. 
y 0 I I j j 

( n+m 
q,a2 ) where qy (i) = 

0 

since a oY = Y oa . 
2 o o I 

ty ( i) . 
0 

Then qy ( i) = 
0 

¢(h2 ) = (p,a;) where\ (i) = gi, 
0 

Now ¢(h 1) ·¢(h2) = (2,a~) · (p,a;) = 

N h _n Y ate t at a2o 0 

\!/ 

--------------------~ A2 

= The map¢ is clearly 

injective. Since G(a 1) and G1 (a2) are totally ordered, then¢ is an 

£-monomorphism. 

The above theorem remains true if Y0 is found so that a2oY0 = Y0o&~ 
for some k in z+. 

However, the converse is not true. The following example is an illus-

tration of this fact. 



1 3 

Example 2.6: Let A1 = A2 = Z in the theorem. Then G =G' = ~Z. Let 

a2 be the a-permutation of z that maps n to n+l, and ~1 the identity on z. 

There is no Y from Z to Z that makes the diagram commute in the theorem. 
0 

- y -Suppose there exists Y0 such that a2oY0 = 0 oa 1, and let n be any element 

of Z. Now a2oY (n) = a2 (Y (n)) = Y (n)+l, andY o~ 1 (n) = Y (~ 1 (n)) = Y (n) 
0 0 0 0 0 0 

Y (n). 
0 

= y oal' then y (n) = y (n)+l andy is the constant 
0 0 0 0 

zero function and, therefore, not injective. 

Note that G(a 1) ~ G ~ G(a2), but there exists no injective mapping 

between J\ 1 and J\2 • 

Note that Theorem 2.7 remains valid if the cyclic extension over the 

totally ordered group is taken by adjoining an order-preserving auto-

morphism of the group itself. 

Corollary 2.7: Let G1 ,G2 be two totally ordered groups and a 1 and a2 

two o-automorphisms of G1 and G2 , respectively. Suppose there exists an 

A. 
a-monomorphism Y0 between G1 and G2 such that Y0 oa 1 = a2oY0 for some Y 

in Z. Then G1(a 1) is £-isomorphic to an £-subgroup of G2 (a2). 

Proof: Suppose there exists such Y0 Define the map¢ from G1(a 1) 

into G2(a2) by 

= 

Clearly¢ is a well-defined injective map (since Y is injective we need 
0 

to prove that ¢ is an ~-homomorphism. Consider two elements (g,a~) and 

(h, a~) of G1(a 1). Now 



14 

= 

= (Y (g) y (an1 (h)), An+Am) 
o o a2 

But Y O,n, = An Y b Y 
0 ul a2 0 0 ecause coal = A 

a 2oY . 
. 0 

Then 

= 

Hence,~ is a homomorphism. Finally, since G1 (a 1) and G2 (a2) are both 

totally ordered,~ is an ~-monomorphism. 

To conclude this chapter, we prove a theorem that clarifies for 

which special cyclic extensions of totally-ordered groups the converse 

of theorem 2.7 is true. 

Theorem 2.8: Let G be a totally ordered group and a 1 and a2 two 

ordered preserving automorphisms of G. Consider G(a 1) and G(a2). There 

exists an ~-monomorphism between G(a 1) and G(a2) that fixes G iff there 

A exists an a-monomorphism Y0 of G such that Y0 oa 1 = a2oY0 for some A in Z. 

Proof: (1) Suppose there exists a monomorphism Y of G such that 
0 

Define the map~ from G(a 1) into G(a2) by 

Clearly~ is a well-defined injection since Y is. It remains to prove 
0 



that~ is an £-homomorphism. First, let us prove that~ is a homomor­

phism. Consider two elements (g,a~) and (h,a7) of G(a 1). We have 

~ ( ( g , a~) · ( h , a 7) ) 

= 

= (Y (g) ·Y (an1 (h)), An+Am) 
o o a2 · 

So 

~ ( ( g , a~) ( h , a 7) ) = 

15 

Hence~ is a homomorphism and since G(a 1) and G(a2) are totally ordered, 

clearly ~ is an £-homomorphism. 

(2) Suppose there exists an £-monomorphism~ between G(a 1) and 

G(a2) that fixes G (i.e. ~(g,a~) = (g' ,a~)). The map~ is an automor­

phism since G(a 1) and G(a2) have the same cardinality. In fact 

IG(a 1) I = IGIIZI = IG(a2) 1. 
where ~ ( (g ,a~)) = (g 1 , a~). 

Define Y from G into itself by Y (g) = g' 
0 0 

The rna~ Y is an a-automorphism of G. Since 
0 

¢ is an a-automorphism Y is an a-automorphism of G. 
0 

It remains to prove 

that Y0 oa 1 = a~oY0 for some A in z. 
A (J,a2). Now Y0 oa 1(g) = Y0 (a 1(g)) = 

Let A be such that ~((I ,a 1)) = 

h where ~((a 1 (g) ,a~)) = (h,a~). But 
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CHAPTER Ill 

REPRESENTABLE .Q.-GROUPS 

A variety of .Q.-groups is a class of .Q.-groups which is equationally 

defined. A quasi-variety is a class of .Q.-groups defined by a set of one 

or more implication. An equation or an implication may involve not only 

the group operations but also the lattice operation v and A. The exis-

tence of an uncountable number of .Q.-group varieties was first shown by 

Kopytov and Medvedev. However, they use the fact that there exists an 

uncountable number of group varieties to show their result. The approach 

used in this chapter is constructive and does not rely on previous results 

in varieties or quasi-varieties. It will establish the existence of an 

infinite countable chain of q~asi varieties, each of which contains the 

abelian variety and is contained in RnA2. The ,Q,-groups used to generate 

these quasi-varieties are totally ordered. 

De f i n i t i on 3 . l : Let (G. jisi) be a family of .Q.-groups. Then His a 
I 

subdirect product of the G.'s iff H is an .Q.-subgroup of ITG. such that 
I I I 

every projection of H on a G. is surjective. It is clear that an .Q.-group 
I 

G is isomorphic to a subdirect product of the G.'s iff for every i in I, 
I 

there exists an .Q.-epimorphism u. :G +G. such that .ni Ker u. is reduced 
I I IE I 

to the identity element. 

Example 3.2: Let G be an arbitrary .Q.-group, (M.j isi) the family of 
I 

minimal prime .Q.-subgroups, and G(M.) the left cosets of M .. For every 
I I 

i E I, let u. be the canonical surjection from G onto G(M.) (i.e. 
I I 

u. (g) = gM.), and let G. 
I I I 

u. (G). Then, the intersection of the 
I 

17 
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u.-kernels is equal to the intersection of all theM. 1 s, and is therefore 
I I 

reduced to the identity element. Hence, G is a subdirect product of the 

G. 1 s. Note that the G.'s are transitive groups. Therefore, every ~-group 
I I 

is isomorphic to a subdirect product of transitive groups, and if the 

~-group is commutative the G. 1 s can be chosen to be totally ordered 
I 

(Bigard [2]). 

The latter property is of course not valid for an arbitrary ~-group. 

However, the case where the G. 1 s are totally ordered is of special sig-
1 

nificance. 

Definition 3.3: Let G be an ~-group. G is representable if G is 

isomorphic to a subdirect product of totally ordered groups. Equiva-

lently, G is representable iff there exist a family of totally ordered 

groups (G. I iEI) together with ~-epimorphisms (u. :G-+ G. I iEI). Such that 
I I I 

every G. is totally ordered and nKer u. is reduced to the identity ele-
1 I 

ment. 

Example 3.4: The following are examples of representable £-groups. 

Other examples can be constructed from these by taking the product of 

such £-groups, and quotients by ~-ideals. 

(i) Any totally ordered group G is representable. 

(ii) Let A, B be two totally ordered groups and AwrB be the small 

wreath product of A and B. AwrB can be totally ordered in two distinct 

ways: First, (a,b):;; (a 1 ,b 1 ) iff b < b 1 orb= b 1 and a. <a! where i 
I I 

is the smallest index such that a.# a!. Secondly, (a,b):;; (a 1 ,b 1 ) iff 
I I 

b < b 1 or b = b 1 and a. < a! where 
I I 

is the largest index such that 

a. # a!. 
I I 

(iii) In (ii) let A and B be both equal to Z. Since Z is totally 

ordered by the usual order ZwrZ is representable. + Note that, W and W 

defined in 2.4(iii), are obtained by defining two distinct total orders 

on ZwrZ. 
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The big wreath product AWrB of totally ordered groups does not admit 

any total order compatible with the group operation (see Neumann [14]. 

There are numerous characterizations of representable £-groups. The 

two most useful ones are the following: An £-group is representable iff 

G satisfies one of the following relations: 

( i ) -1 -1 
xAy ·x •y :;;; e, 

( i i ) 2 2 2 (xAy) = X Ay 

These two identities characterizing the representable £-groups will per-

mit us to prove whether an £-group is representable or not. As we will 

notice in these examples. 

Example 3.5: i) Let G = {fjf:[O,l] + m is a continuous function}. 

Define an order on Gas follows: f $ g iff f(x) :$ g(x) for every 

x s[O,l]. The operation in G is the usual componentwise addition of 

functions. Consider two elements f, g of G we need to prove that 

-1 -1 
fA(g +f +g):$0. 

-1 
Note that f = -f and g-l = -g' so g - 1 + f-1 

+ g = - g- f + g =- f and f A(g-l + f-l + ~ = f A- f $ Q. Note also 

2 2 2 
that G satisfies (ii) (i.e. (xAy) = x AY ). In another way G is iso-

morphic to [o~UR where R is the set of real numbers and the [O~l]R is 

totally ordered, hence G is representable. 

(ii) Let K = Z and G = Zxl and • a homomorphism between K and the 

group of automorphisms of G such that •(1) (m,n) = (n,m). Let H = KxG 

furnished with an internal multiplication defined by (a,x) (b,y) = 

(a+b, x+ya) where ya = •(a) (y). It can be easily verified that H is a 

group. Let (a,x) ~ e if a> e or a= e and x ~ e. Then, H is an 

£-gr~up in which: 
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l 
(a, x) if a>e 

(a, x) ve = (e ,xve) if a=e 

e if a<e 

where e is the identity. Let x = (1,(0,0)) andy= (1,(1,-1)). Then 

XAY = (1,(0,-1)) and (XAy) 2 = (2,(-1,-l)), but x2Ay 2 = x2 l = (2,(0,0)). 

Hence H is not representable. 

Another property oft-groups which is close to the representable con-

ditions deals only with the group structure. 

Definition 3.6: A group G is said to be an R-group if whenever 

n n + x =y for ns Z -{O} we have x=y. Hence, any totally ordered group is an 

R-group. But representable t-groups are always isomorphic to a subdirect 

product of totally ordered groups. Therefore, any representable ~-group 

is an R-group. However, an R-group is not always representable. 

Example 3.7: i) An R-group which may not be representable is ZwrZ. 

Since Z'wrZ can be totally ordered it must be an R-group. However, 

there are lattice orders on ZwrZ which are not representable. For example 

+ the Scrimger £-groups G for n s Z -{0,1}, are not representable (see 
n 

2.4(iv)). 

(iii) Neumann 1 s [14] proof that AWrB is not orderable actually 

showed first that it is not an R-group. 

The small wreath product of Z and Z with its two orders, W+ and W 

is of special significance in generating varieties and quasi-varieties of 

+ 
~-groups. We first concentrate on W. 

Let a= (~,0) where 

if i=O 
a. 

I 
and S (0,1). 

if i#O 



Note that a and S are positive and they generate W+. Also, for o s W+ 

of the form o -1 
= (c, k) we have o = (c 1 , -k) where c! = - c. k" 

I I-

sider now o = (c,k), Y = (a,n) in W+. Then 

0 
y = = (c 1 ,-k) (a,n) (c,k) 

= (d, -k+n)(c,k) where d. 
I 

= c! + a 
I i -k 

= (e, -k+n+k) 

= (e,n) with e. 
I 

= d. + c. k 
1 1- +n 

Con-

Hence, e. = c! + a. k + c. k , but c! = -c. k and e. = -c. k + a. k + 
I I I - I - +n I I - I I - I -

0 
ci-k+n" If n=O then Y = (e,o) where ei = ai-k; i.e., conjugation by 
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o = (c,k) when Y = (a,O) shifts a k places to the right making Y0 smaller 

than Y. Since a is equal to (a,O) and Sis equal to (0,1) then aS will 

be a with the 1 shifted to the ]-component in a. + Thus, W is charac-

terized by the property that it has two generators a and S with S >> 

s a >> a • 

Similarly, we can define W 
+­

or ZwrZ. The multiplication is exactly 

as in w+, but the order is changed. Here, a and S defined above generate 

w- with s >> a 6 >>a. 

+ + Let M and M be the varieties generated by W and W , respectively. 

It is a known fact that if G is a totally ordered group generated by 
n 

x andy and either x >> y X >> y or y >> yx >> x and the set {yX lnsZ} is 

an independent .set then G is isomorphic toW+ or W-, respectively (Medve­

dev [ 13 ]). The varieties M+ and M- strictly contain A and are contained 

in R. 

The following theorem of Medvedev [ 13] demonstrates the significance 

of the wreath product in generating varieties of £-groups. 
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Theorem 3.8: M+ and M are covers of A in the lattice of varieties 

of £-groups. 

In order to prove the theorem, Medvedev used the following lemma: 

Lemma 3.9: Let G be an £-group. If G contains two elements u and v 

such that either uv << u << v or u << uv << v and the set {uvn I n s Z} 

+ is independent, then G contains either a copy of W or W . 

We know that quasi-varieties are weaker algebraic structures than 

varieties. + 2 
We know that A:;; M :;; RnA. We will construct an infinite 

2 number of different quasi-varieties between A and RnA . 

First, we establish the analog of Medvedev's theorem for quasi-varie­

ties. For notational purposes let Q+ be the quasi-variety generated by 
0 

w+ and Q the quasi-variety generated by w 
0 

Theorem 3. 1 0 : Th · · · Q+ and Q e quas1-var1et1es 
0 0 

of quasi-varieties of £-groups. 

cover A in the lattice 

Proof: Let Q be a quasi-variety properly containing A and contained 

in Q+. Then, there exists G a non-abelian £-group G in Q. Since G be-
o 

longs to Q+, G is isomorphic to a subgroup of H where H = rr1 (III,W+/U) for 
o aE a 

which I, I' are index sets and each U is an ultrafilter over I'. There 
a 

exist x andy elements of G such that [x,y] ~ 1. We consider Gas a sub-

group of H so x and y can be viewed as elements of H. So x = (t ) I and 
a as 

y = (s) I' for which t (t~ju). I' and s = (s~IU). I' with t~, s~ 
a a€ a I IE a I I € I I 

. w+ 
1 n . Let u = l[x,y]l and v = lxiiYI· Now, for some a s I [t , s ] ~ 

a a 

since [x,y] ~ 1. Fix such an a, then for every i in I' l[t~, s~JI « 
I I 

lt~lls~l, since t~ and s~ are elements of W+. Thus l[t , s Jl « It lis I· 
1 1 1 1 a a a a 

Also, there exists J ~I' such that l[t~, s~JI ~ 1 for every i s J. 
I I 

Therefore, we may assume that uv << u << v and the set {uvnlnsZ} is an 

independent set. Let K be the £-subgroup of G generated by u and v then 
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+ h G · of W+ and Q+ by lemma 3.9 K is isomorphic toW . T us contains a copy 0 

:;; Q. But Q ~ Q+ so Q = Q+. Similarly, we can prove that Q covers A. 
0 0 0 

The preceding theorem does not indicate whether or not Q- is identi­
o 

- + + cal toM and whether or not Q is identical toM . We concentrate on 
0 

comparing Q0 and M + -since the case for Q and M is similar. 
0. 

Before do-

ing so we need to learn more about the quasi-variety Q . In general 
0 

quasi-varieties can be defined by a set of one or more implications. It 

is not always easy to find the implications that define a given quasi-

variety. But, it is possible, however, to find a set of implications 

that are satisfied by all elements of the quasi-variety. Note that if 

two quasi-varieties are equal, then all of the implications that are true 

for one of them will have to be true for the other. Since our goal in 

this chapter is to construct a chain of quasi-varieties, it is important 

to determine some implications satisfied by each quasi-variety constructed. 

-
We consider first some properties of W. 

Proposition 3.11: If a,b,c are positive elements of W- with b «a 

c c << c and a << a , then b << b . 

Proof: Clearly, the proposition is true if a= b = c = (0,0). As-

sume that a,b,c are positive elements of W. Then, there exist n, m, 

k s Z+ and x,y,z s~Z such that a= (x,n), b = (y,m) and c = (z,k). Two 

possibilities arise. 

First, if k = 0 then n=m=O since b <<a<< c. -1 Now, c = (z 1 ,0) with 

z! = - z. and so 
I I 

ac = c- 1ac = (z 1 ,0) (x,O) (z,O) 

= (h,O) (z,O) where h. = z~ + x. = - z. + x., 
I I I I I 

= ( t , 0) where t. 
I 

h. + z. 
I I 

- Z + X. + z. = X. 
i I I I 
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Hence, ac =a and for a to be infinitely smaller than ac,a must be (0,0.). 

But if a= (0,0) then b = (0,0) since (0,0) $ bn ~a for every n in Z. 

Thus, b <<be since b =be= (0,0). 

Secondly, if k >0 then n=m=O. Otherwise, if n >0 then there 

exists A > 0 such that nA > k contrary to a << c. A Consider a = (x 1 , nA) 

where x! = x. + (A-l)x.+ . 
I I I n 

A. Therefore, a > c since nA > k. This is a 

contradiction to a << c. So n=O. But if n=O and b <<a then m=O. Now, 

n n n 
b = (y,O), b = (y ,0) where yi = nyi, and 

be -1 
(z 1 ,-k) (y ,0) (z ,k) where z! So, = c be = = -zi-k" I 

= (h,-k)(z,k) where h. = z! + y. k = -z. k + y. k' 
I I 1- 1- 1-

= (t,O) where t. = h. + z. k = -z. k + y. k 
I I 1- 1- 1-

+ z. k = y. k I- I-

be - bn ( t ,0) n 
(s,O) 

n Note that = - (y ,0) = where s. = b. - y .. Hence, 

s. = yi-k - ny i. Let A be such that YA > 0 
I 

to y.::f.O. Then s A+k = YA.+k-k - nyA+k = YA. -I 

maximality of A., and sA.+k = yA.-0 = YA > 0. 

I I I 

and A is maximum with respect 

nyA+k" But YA+k = 0 by the 

Now, s. = 0 if i > A+k. Since 
I 

0 0 0 Hence' bc-bn >_ 0 and bn <_ be. si = sA.+k+j = yA+j - nyA.+k+j = - = . 

Since n was chosen arbitrarily in Z+, b <<be. 

The condition in this proposition can be stated in an equivalent way 

by using an infinite set of implications. 

Proposition 3.12: The £-group W satisfies the property 11 1f a,b,c 

are positive elements of W c c with b << a << c and a << a then b << b , 11 

iff it satisfies the following implications: 

(Il) b $a~ c and a~ ac implies b $be 



. 
(In) bn n ::; a ::; a ::; be 

:::: 
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Proof: Clearly (11), (!2), •.. , and (In) , ... ,imply that the condition 

holds. Conversely, choose a,b,c three positive elements of W such that a,b,c 

satisfy the property, and write a= (x,n), b = (y,m),and c= (z,k) as before. If 

k = 0, then n=m=O, and for a « ac a must be (0,0) (see Proof 3.11). Hence, 

b =a= (0,0) since b::; a and (11), (I2), ... ,(In) are satisfied. Now if 

k > 0 and b « a « c, then a = (x,O) and b = (y,O) (see Proof of 3.11). 

n c Thus, b s b for every n ~ 1. Hence, (11) , ... ,(In) are satisfied. 

Note that for every A~ 2, (!A) is satisfied by w-. Fix A E z+-

{0, 1}, and let a,b,c be positive elements of w-. Write a= (x,n), 

b = (y,m), and c = (z,k) as above. If k=O, then n=m=O since bA:::: a::; 

aA :::: c. So a = ac and aA ~ ac = a giving aA = a. Thus a= (0,0) and 

b = (0,0) since bA ~ a. Hence, bA = be= (0,0) and bA :::: be. Otherwise, 

if k > 0 then aA ::; ac forces n to be zero. Suppose n > 0. Then ac = 

A 
(p,n) where p. = -z. k + x. k + z. k and a = (p 1 ,An) where p~ =Ax .. 

I I - I - I - +n I I 

Thus, ac < aA and we have a contradiction. 

Th 0 d 0 · bA Thus bA <_ be. en n= an m= s1nce ~ a. Therefore (In) is 

true in W hence true in Q for every n ~ 2. The implication (Il) is 
0 

true only if the condition holds. 

Note that the implication b sa s c and a:::: ac implies b::; be is not 

-always true in W. For this we will give the following example: 

Example 3.13: Let a,b,c be elements of W such that a = (x,n) = c 

and b = (y,n) where x. = 0 for every i, y. = 0 for every i~k, and yk = -1 
I I 

for a fixed positive element k of Z. Now, b s a = c and a 
c 

= a . But 

c -1 
b = c be= (x,-n) (y,n) (x,n) = (h,n) where h. = x. + y. + x. = y. ; 

I I 1-n I 1-n 
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Thus, hi = 0 for every i # k+n and hk+n = yk+n-n = -1. So be< b since 

bc-b = (h,n) - (y,n) = (h,n) + (y 1 ,-n) where y! = -y Thus, y! = 0 
I i-n • I 

for every i # k+n and yk-n =- yk+n-n = -yk = l. Now bc-b = (t,O) where 

ti = hi + yl+n' Hence, ti = 0 for every i # k or n+k, tk = hk + yk+n = 

0 + 1 = and t = h + y 1 = h + y 1 = -1 + 0 =- l. There-k+n k+n k+n+n k+n k+2n 

fore, bc-b < (0,0) since h = -1 < 0 and k+n is the maximum index for k+n 

which hk+n # 0. Hence, be< band (II) fails in W-. Therefore it fails 

in Q • 
0 

In the above set of implications the idea was to force b to be in 

the form (y,O). But in W the commutator of two arbitrary elements is 

always in the form (£,0). Based on this we can form a new infinite se-

quence of implications, such that whenever they are all satisfied they 

lead to the following result: 

Proposition 3.14: If a,b,c are positive elements of W with 

-1 
be ~ b ~ a and a << ac then [b,c] << [b,c]c. 

-1 
Proof: First, be ~ b is equivalent to [b,c] ~ (0,0). Choose 

a,b,c three positive elements of W and write a= (x,n), b = (y,m), and 

c = (z,k) as before. If k = 0, then n = 0 = m since a<< ac and b::;; a. 

Hence, [b,c] = (0,0) = [b,c]c and [b,c] << [b,c]c. Now, if k > 0, then 

n = m = 0 (see proof 3.10) and [b,c] = (£,0). Hence, [b,c] << [b,c]c 

(see proof 3. 10). 

The condition in this proposition can be stated in an equivalent way 

by using an infinite set of implications. 
-1 

Proposition 3.15: The £-group W satisfies the property "be ~ b 

::;; a and a << ac imply [b,c] << [b,c]c for positive elements", iff it sat-

isfies the following implications: 
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(I I 1) bC-1 b c then [b,c] ::; [b,ct ::; ::; a ::; a 

-1 2 c 2 [b,c]c (I I 2) bC :$ b $ a ::; a ::; a then [b,c] ::; 

-1 n c then [b,c]n ::; [b,c]c. (I 1n) be ::; b ::; a ::; a ::; a 

Proof: Clearly, (I 1 1), (I 1 2), ... (I 1 n) imply that the condition 

holds. It suffices to prove that for every j, (I 1 j) is satisfied by w-. 

Therefore (I 1 j) is true in Q . 
0 

a,b,c be positive elements of W-

Let A be an arbitrary index in Z+-{0} and 
-1 

Then be ~ b implies that [b,c] ~ (0,0), 

and aA::; ac will imply that c = (y,n) with n > 0 and a= (x,o) if A~ 2. 

Now, [b,c] = (h,O) and since c = (y,n) with n > 0 then [b,c]c = (t,O) with 
A -1 

t. =h. and thus [b,c] ::; [b,ct. If A=l and be ::; b then [b,c] ~ (0,0). 
1 •-n 

Now, if c = (y,O) then [b,c]c = [b,c]. Otherwise, c = (y,n) with n>O and 

[b,c] < [b,c]c. In all cases (I 1 A) is true. 

Propositions 3.11 and 3.14 give a characterization of W and provide 

a way of determining whether an 2-group is different than W. Generally, 

to show an 2-group is not in Q0 it suffices to find elements in the 

2-group that do not satisfy one of (Il), (I2) , ... (In), or one of (I 1 1), 

(I 1 2), ... ,(I 1 n) as we will see in the following example: 

Example 3.16: Let 1\.l be the set z1U{t 1 }UZ2 where z1 = z2 = Z totally 

ordered in the following way: For every n, mE: fl. 1 1et n::; t 1 ::; m whenever 

n E: z1 and m E: z2 . Let a be an order preserving permutation of fl. defined 

by: 

= 
{ 

n+nl 
~(n) 

if n = t 1 

Let G =(!')Z and a be an automorphism of G defined by a(g) = g• where 
1\.1 
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gl = ga(i)" Consider G(a), the cyclic extension of G by a. Define 

an order over G(a) by (g,an) ~ (0,0) iff n > 0 or n = 0 and gi ~ 0 where 

i is the maximum index with gi # 0. G(a) is totally ordered and fails 

(Il), (I2) , ... ,(In) .•.. To see this let a,b,c be elements of G such 

that a = (x,a 0) with x. = 
I 

0 for 

1 and yt > 0 c = (z,a ) where z. 
I 

= 0 for every i. Clearly b << a << c 
1 

and a << ac. But be = b since be = (h,a0) where h. = 
I 

z a ( i) = b 
a -l ( i) 

Hence, h. = 0 for every i # tl and 
I 

z. + y -1 + 
1 a ( i) 

ht 
1 

= y -1 
a ( t 1) 

Thus, bn c 2. Hence, (I2) ' (I3) ... , (In) fai 1 yt . > b for every n ~ 
1 

be true in G(a), 

= 

to 

We later apply the same technique of Example 3.16 to construct the 

countable infinite chain of different quasi-varieties containing Q- and 
0 

contained in L nA 2 . But, first we need to prove that Q- is different 
n o 

than M . 

Theorem 3.17: The quasi-variety Q0 generated by W is strictly con­

tained in the variety M- generated by W • 

Proof: Clearly Q $ M 
0 

-In order tq prove that Qo < M it suffices to find an £-group in M + ' 
+ 

let H be that does not belong to Q . Fix Ae: Z -{0} and the £-subgroup 
0 

generated by all elements in W of the form (g,O) where g. = 0 if i > A. 
I 

Let G = W-/H. Then G belongs toM since M is closed under the formation 

of quotients. + Choose n e: Z -{0} where -n +A. $ -3, c = (z,n) where z. = 0 
I 

for i # A and zA = 1 ' b = (y,O) where y. = 0 for every i # -n +A. and 
I 

Y = 1, and a = (x,O) where x. = 0 for every i # - n + A +1 and -n+A. 1 

x = 1. Now b-l = (y 1 ,0) where y! = 0 for every i #- n +A. -n+A+l 1 
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and y~n+A. = -1 ' c 
-1 = (z•,-n) where z~ = 0 for every 

I 
# A.+n and z 1 =-1. A.+n 

c Notice, b ~ a ~ c and a ~ a . Now 

[b J b- 1c- 1bc = ,c = (y 1 ,0) (z 1 ,-n) (y ,0) (z ,n) 

= (h 1 ,-n) (y ,0) (z ,n) 

where h~ = y~ + z~. 
I I I 

Thus, h! = 0 for every i # -n+A. and 
I 

= y~n+A. = -1, and 

h 1 = z• = -1. Then n+A. A.+n 

[b,c] = (h 1 ,-n) (y ,0) (z,n) = (h 11 ,-n) (z,n) 

where h1! = h~ + y .. 
I I 1-n 

Hence h~ = 0 for every 
I 

# -n+A., A., A.+n and we have: 

h11 = hI + Y = hI = -1 , 
-n+A. -n+A. -2n+A. -n+A. 

and 

hll 
n+A. 

h11 = hI + Y = 0 + 1 = 
A. A. -n+A. 

= hi + 
n+A. yn+A.-n = = = - 1 • 

So [b,c] = (h 11 ,-n) (z,n) = (h,O) where h. = h1! + z. 

Thus, h. = 0 for every 
I 

I 

# -n+A. or A. and we have: 

1 1-n 

h - h11 + z = h11 + z = h11 + 0 -n+A. - -n+A. -n+A.-n -n+A. -2n+A. -n+A. 

h11 + z 
A. A.-n h11 + 0 

A. 1 ' 

- 1 ' 
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and h = h11 + z = h11 + z = (-1) + (1) = 0. Hence, [b,c]::: A+n A+n A+n-n A+n A 

(0 ,0) . Now, 

[b,ct = (z• ,-n) (h,O) (z,n) 

= (t• ,-n) (z,n) where t! = z! +h. 
I I I-n 

Hence, t! = 0 for every # A and we have: 
I 

t 1 = z• + h = 0+(-1) = - 1 A A A-n 

= z• + h A+n A+n-n = = (-1) + (1) = 0. 

Thus, [b,ct = (t•,-n)(z,n) = ( t , 0) whe re t. 
I 

Hence, b. = 0 for every 
I 

# A or A+n and we have: 

= = (-1) + 0 = 

and = t 1 + z A+n A+n-n = = 

-

= t! + z. 
1 1-n 

- 1 

0 + 1 = 1 • 

Notice that [b,c] ::;; [b,c]c in in G,[b,c]c ( P 'o) where p. w . But = = 0 
I 

---
for every i # A and PA = - 1. Thus [b,c]c ::; (0 ,0). A 1 so, [b,c] > (0 ,0) 

s i nee [b,c] = (h,O) with h = > 0 therefore [b,c]c < [b,c] and (I I 1) 
A 

+ n n c and fa i 1 s in G. Notice, for every n s Z -{0} we have b ::;; a ::;; a ::;; 

---n 
< [b,c] in G. Thus, (I 1 l), ... and (r•n) ... are not 

satisfied in G. Hence, G cannot be in Q and Q < M 
0 0 + 

The above theorem provides an example where the implications (1 1 1), 

(1 1 2) and (r•n) fail to be true. 
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By introducing Example 3. 16, we know of the existence of ~-groups 

different than W and therefore the existence of quasi-varieties differ-

-ent than Q. It is important to first construct the ~-groups and then 
0 

take the quasi-varieties generated by them. In order to establish a 

nested sequence of ~-groups, first we need the following definitions and 

notations. 

Let An= z1 U {t 1,t2 , ... ,tn} uz2 where z 1 = z2 = Z. The index set 

A can be totally ordered by~ if~ is defined by: If n, mare elements 
n 

of zl' z2 respectively, then n < ti and ti < m for every i = l, ... ,n. 

Also, t. < t. iff i < j. Let a be an a-permutation of A such that 
1 J n n 

l 
~ (z) = z+l if z s z1 u z2 n 

~ ( t.) = t. for = 1 , •. , n n 1 I 

Let G = A~Z and an an a-automorphism of G defined by an(g) = g 1 where 
n 

g!=g_ (')' Consider W = G(a) the cyclic extension of G by a with the 
1 an 1 n n n 

same order as W , and let Qn be the quasi-variety generated by Wn. For 

+ -every nsZ -{0} W is an ~-group [Example 2.4(i), Chapter I]. The family of 
n 

~-groups (w:) form a nested sequence of ~-groups. And if they are 
I i E:l+ -{0} 

pairwise different then we have an infinite chain of quasi-varieties each of 

which contains Q- and is contained in L n A2• Hence, it is necessary to 
o n 

prove that the Q •s are pairwise different. Therefore, we need to find 
n 

one or more implications satisfied by each Q and make sure that the 
n 

i mp 1 i cat i on s w i 1 1 fa i 1 i n Q~ i f k > n . 

Lemma 3.18: If a,b,c,d 1,d2 , ... ,dn are positive elements of Wn with 



b << d1 << d2 << ... << dn <<a<< c, a<< ac and di = 

= l, ... ,n,then b <<be. 

de. f 
I 
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or every 

Proof: Clearly, the Lemma is true if a= b = c = dl d = (0, a0). n n 

Let a,b,c, dl, ... ,dn be positive elements of 

(y ,a~)' k 
(x 1 ' 

kl 
b = c = (z, a ) , dl = a ) ' d = n n 2 

k 
d (x n a n). F i rs t, if k then 

' = 0 n = m n n 

c c 
( 0' Then, a = a and for a << a a must be 

d = b = (0, ao) since b << dl << . . . << d n n n 

-w n 

(x 2 
' 

= kl = 

0 
a ) . 

n 

<< a . 

t Write a= (x,a), 
n 

k2 
a ) , ... , and 

n 

= k = n 

Hence, dl 

Next, if k 

= 

d2 = 

> 0, 

t = 0. Suppose t > 0 then there exists A such that At > k. So, 

0. 

then 

A At k a = (x•, a ) > c = (z, a ) since At > k > 0. This is a contradiction n n 

= 

with a << c. Thus we must have t = 0 and m = k1 = k2 = . .. = k = 0 since 
n 

. . . << d << a. 
n 

There exists n E zl u z2 for which 

X > 0. 
n 

0 0 We know that a= (x,a) > (O,a ). Then there exists x. > 0 
I 

where is the maximum index with xi ~ o. If i E zl u z2' then choose 

n = i. Suppose there exists j = l, ... ,n such that i = t .. 
J 

c -1 -k 0 k a = c ac = (z•, a ) (x, a) (z, a) (h, a 0) where h. = 
I 

+ z -k . 
a ( i) 

But z! 
I 

= 

-z k , hence h. = x k 
- I -

a (i) a (i) 
So h 

t. 
J 

Then 

= X > 0, 
t. 

J 

c 2 c h < 2x ,and a < a . We have a contradiction to a << a . Therefore, 
t. t. 

J J 

i ~ t. for every j = l, ... ,n. In addition, n is the maximal index for 
J 

. 0 
which x ~ 0 and X > 0. Now, for every i = l, ... ,n, d. = (x 1 ,a ) where 

n n I 

i 
0 for j s z 1 u z2. Suppose there exists j s z 1 U z2 such that x. = 

J 

i 
~ d<:·= (z • ' 

-k i 0 ak) ( p' a 0) X. o. Now, a ) (x , a ) ( z, = where 
J J n n n n 
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z• i + X 
i 

Hence, P,q, = + X + z 
a-k(,q,) 

= P,q, -z + z . 
Q, a-k(,q,) a-k(,q,) a-k(,q,) a-k(,q,) 

n n n n n 

i i 
and Thus, d~ :/: d. pj+k = X = x. pt. X = X -k -k t. J J J a (j+k) I a ( t.) I 

n n 1 

s i nee d: = 
0 :/: 

i 
and :/: 

i Also, 
i 

=0 for every (p,an) where p. X. pj+k xj+k" X. 
J J J J 

j s z 1 u z2 . Let Y. be the maximal 
I 

(o, 
0 

exists such Y. since d. > a ) . 
I I n 

d << • • • << d 
2 n 

index for 

Now, if n 

••• = d 
n 

which 
i 

X 
yi 

belongs to 

0 
= (o, a ) . 

n 

> 0. There 

zl and d1 << 

Hence, 

b = (O, a0) and 
n 

<< a, then d1 = d2 

the lemma is proved. Otherwise, if n E z2, then yl < 

y ( "'0) Y < ••• < • Suppose that d. > 0, u for every 
2 n 1 n 

= 1 , ... ,n. Then, 

Yi = ti and b = (y, a~) where yi :/: 0 if i belongs to z 1 and yi = 0, 

otherwise. So 

where 

s. = z ~ 
I I + y -k 

a ( i) 
n 

= 

0 
(s ,a ) 

n 

Then s. = 
I y -k = n 

y. k' and b 
1-

= 0 ( s 1 , a ) where s ~ 
n 1 

Note 
a ( i) 

n 

h bn be f 1 t at ~ or every n ~ . Otherwise, if there exists j ~ 1 such that 

0 d.= (0, a). Then d. 
J n 1 

0 (O, a ) for every 
n 

< j. Since b << d., we 
J 

The condition in the above Lemma determines a set of implications 

that are simultaneously satisfied by Q~. Let a,b,c,d 1,d2 , ... ,dn be 

positive elements of Q , and consider the implications: 
n 
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(Tn) d 
c 

and d. de for If b :s dl :s d2 :s :$ :s a :s c, a :s a 
1 n I I 

= 1 , ..• , n then b :s b c. 

(Tn) If b2 s dl :s i :s d2 :s i :$ d3 ... :s d 
n-1 :s i :s d :s 

2 1 2 n-1 n 

i 2 2 c 
and d. d~ for i l , ... , n then :$ a ~ a ~ c, a ~ a = = 

n I I 

b2 :::; be 

dl 
k 

d2 i d dk k 
~ dl ~ ::; ~ ... ::; ::; ~ a ::; a :::;; c, 

2 n n 

and d. = de for i = l , ... , n then bk ::; be. 
I I 

Proposition 3.19: The condition 11 b << d << ... << d <<a<< c, 
l n 

a<< ac and d. = d~ for every i = 1, ... ,n then b <<be for positive ele-
1 I 

ments of the 9.-group W~ 11 , is satisfied iff the implications (T~) , ... , 

(T~), ... , are satisfied. 

Proof: Clearly, (T~), (T~) , ... ,(T~) imply that the condition holds. 

It suffices to prove (T~) for A~ l. Choose a,b,c,d 1 ... ,dn positive ele­

ments of W- that satisfy the condition. Write a= (x,at), b = (y,am), 

k n l k l 2 k2 n k n 
c = (z,an)' d 1 = (x ,an), d2 = (x ,an ), ..• ,and dn = (xn,ann). First, 

if k=O, the n=m=k 1 = k2 = = k n 
= 0. 

c c 
Then, a= a and for a << a , a 

0 
( 0, a ) . Hence, 

n 
must be 

<< d 
n 

<< a and bn = 

dl = d2 = 

(o,a 0) =be. 
n 

= d 
n 

= b = ( 0 , a 0) s i n ce b « 
n 

Therefore, ( T~ ) i s sa t i s f i e d 

all A~ 1. Next, if k > 0 then t = 0 (see Proof 3. 18) and m = k 1 = k2 = 

k 
n 

= 0. Also, for every 

j f. t. (see Proof 3. 18), and b 
I 

= l, ... ,n, d.= 
I 

0 
( y , a ) where y . 

n 1 

( i 0) . h i X ,a Wit X. 
n J 

= 0 if 

=OififZ1. Hence, 

bA:::; be for every A~ l, and (T~) ,(T~) , ... ,(T~) , ... ,are satisfied. Note 

that, for A 2 (Tn) is satisfied by Q • In this 
A c 

every ~ case a ::; a A n 
0 k 

(see 3. 18) 
0 

implies a = (x,a ) , c = (z,a ) with k >0 and b = (y ,an) where 
n n 

y. = 0 if f zl. Hence, bA ::; be. 
I 



It is important that every Qn contains Q0 and that any pair Wn, Wk 

will generate two different quasi-varieties. Therefore, the following 

lemmas: 

Lemma 3.20: For every n, Q strictly contains Q . 
n o 
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Proof: Recall that W can be regarded as a cyclic extension of a 

totally ordered £-group G =(:!)z Z by an automorphism a of G (see 2.3(iii)). 
0 0 

If we let A = Z, a the a-permutation of Z mapping i to i+l, and a the 
o n 

a-permutation of A as defined above. Then there exists Y : A + A such 
n o o n 

that the diagram below commutes. 

follows: y ( i ) = i where is in 
0 

A 
Yo 

0 

a 
0 

\/ 
A 

0 Yo 

That is. 

zl. 

-A 
" n 

l·n 
A n 

a oY = Y oa . n o o o 
Define Y as 

0 

Then,~ (Y (i)) = ~ (i) = i+l where i+l belongs to z 1. Now, Y (~ (i)) = n o n o o 

Y0 (i+l) = i+l where i+l belongs to z 1. Hence, ~ oY = Y o~ and by n o o o 

Theorem 2.7 G(a) ~ G(a ). Thus, Q ~ Q-. 
o n o n 

In order to prove the strict inclusion, it suffices to find positive 

elements a,b,c of W- that do not satisfy the condition in Proposition 
n 

3. 11 . 

Let a= (x,O), b = (y,O), c = (z,n) where x. = 0 fori < t and 
1 - n 

x. > 0 otherwise, y. = 0 for 
I I 

::F t 
n 

and = 1 if yi = t , z. = 0 for every 
n 1 

i, and n > 0. Notice b << a << c and a << ac but b = be. Hence, bn > be 

for every n > 1. Thus, the condition in Proposition 3.11 fails to be 

true in W. By Proposition 3.11 we have Q < Q. 
n o + n 

Lemma 3.21: For every n Q- ::; Rn A2. 
n 
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Proof: Clearly Wn is a totally ordered ~-group. Thus Qn ~ R. Next, 

we need to prove that W E A2 • For this it suffices to find an ~-ideal 
n 

H < W such that Hand W-/H are in A. Let H = {(g,O)! (g,O) E W-}. - n n n 

Clearly, H is an abelian ~-ideal of W. Also, W-/H ~ Z. Then, W-/H and n n n 

H E A2. Hence, Q $ RnA2. 
n 

The above lemma indicates that every Qn is contained in RnA2 . If we 

can prove that the Q •s are pairwise different and form a nested chain, 
n 

then infinitely many of them are strictly included in ROA2. 

Lemma 3.22: For every n ~ 1, Q strictly contains Q 1• n n-

Proof: Let A , A 1 be the two index sets used in defining W and n n- n 

W~-l, respectively, and let an, an-l be the o-pe.rmutat ions of An and An-l, 

respectively, as before. There exists Y , an injective map between A 
o n-1 

and A, such that~ oY = Y oa 1. Define Y by Y (i) = i. It can be n n o o n- o o 

easily verified that a oY = Y oa 1. 
n o o n-

- - -Thus W 1 ~ W and Q 1 ~ Q by n- n n- n 

2.5. In order to prove the strict inclusion it suffices to find positive 

elements b, d1, ... , dn-l' a and c of W~ such that the hypothesis in 

Lemma 3.18 is true for n-1 but the conclusion of the lemma fails. Let b, 

1 n-1 
d1, ... ,dn_ 1, a, c be such that b = (y,O), d1 = (t ,O), ... ,dn-l = (t ,0), 

a= (x,O), c = (z,n) where the following are true: 

Y = 0 for 
i .::P t, and y. = 

I 
otherwise, 

t1 = 0 for .::P tj+l and t1 = 1 otherwise, 

x. = 0 for i ~ t and x. > 0 otherwise, and 
I n I 

z. = 0 for every i and n > 0. 
I 

Note that b << d 1 << d2 << << d 1 << a << c and a << ac but b = be. 
n-

bn be f Hence, > or every n > 1 and Lemma 3.15 fails to be true. 
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Finally, combining Lemmas 3.21 and 3.22 we have the following im-

portant resu 1 t. 

Theorem 3.23: There is an infinite chain of distinct quasi-varieties 

be tween A and R n A 2 . 

Proof: Clearly the (Q-In E Z+) forms a countably infinite chain of 
n 

different quasi-varieties between A and Rn A2. 

By using techniques similar to those in constructing the W- 1 s and a 
n 

different set of implications for W we are able to construct another in­

finite chain of quasi-varieties between A and RnA2 . 

-Proposition 3.24: Let a,b,c be positive elements of W . If b <<a 

c c << c, b = b and a<< a , then b = (0,0). 

Proof: Clearly, the proposition is true if a= b = c = d = (0,0). 

Let a,b,c,d be elements of W such that a= (x,n), b = (y,m), c = (z,k). 

F i r s t , i f k = 0 then n = m = 0 s i n ce b < < a < < c. c Now, since n = 0, a = a 

and for a to be infinitely smaller than ac, a must be equal to (0,0). 

But, if a= (0,0), then b = (0,0). Second, if k > 0, then n = 0 = m 

since b << a<< c. Now, b = (0,0) since b = be. Suppose b > (0,0) then 

there exists an index A maximal with respect to yA > 0. Now, be= (y• ,O) 

where Yi = -zi-k + yi-k + zi-k = yi-k" Thus Y\+k = yA > (0,0) and YJ = 0 

for j > A+k. Hence, be > b. Thus b cannot be bigger than (0,0). But by 

the choice of b, b must be equal to (0,0) and the proposition is proved. 

We next construct an example of an ~-group where the condition of 

Proposition 3.24 is not true. 

Example 3.25: Let N1 = {t 1}UZ and G = ~ Z. The index set N1 is 

totally ordered as follows: If i ,j are elements of N1 and if i ,j E Z, 

then let i ::: j in N1 iff i ::: j in the natural order of z. Otherwise, 

-i = t 1 , then ::: j . Let yl be an a-permutation of 1\1 defined by 

y 1 ( i) = i + 1 if =F t 1 and '? 1 (t 1) = t 1 . Now define an automorphism Y 1 

if 
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of G by Y1(g) = g• where gl = gyl(i)" Let M1 be the cyclic extension of 

G by Y1, and P1 the quasi-variety generated by M1. Consider a,b,c to be 

three special positive elements of M1. Fix n > 0 let c = (O,n), a= (x,O), 

and b = 

.; tl 
c a << a 

(y ,0) where x. = 0 if 
I 

and y. > 0 otherwise. 
I 

' 
but b .; (0,0) . 

= t, and x. > 0 otherwise, y. = 0 if 
I I 

c Notice that b << a << c, b = b , and 

The ideas of Example 3.25 can be generalized to find other ~-groups 

which fail the condition of Proposition 3.24. 

Let Nn = {t 1, t 2 , ... ,tn} UZ be totally ordered by: ti ~ tj ~ k iff 

5 j and k E Z, and i 5 j iff I ,j EZ and i ~ j in the order of Z. Let 

G = ~ Z and let Yn .be an a-permutation of An such that Yn(i) = i+l iff 
n 

.Pt. for j = 1, ... ,nand Y (i) = i otherwise. Let Y be the o-automor-
J n n 

phism of G defined by Y (g)= g 1 where g! = 9- (•)• 
n 1 y n 1 

Let M be the cyclic 
n 

extension of G by Y and P the quasi-variety generated by M n n n. 

As for the Q- 1 s we will prove that the (P-jnEZ+-{0}) forms a counta-
n n 

2 bly infinite family of different quasi-varieties between A and RnA . We 

will first give a characterization of M. 
n 

Lemma 3.26: Let a,b,c,d 1, ... ,dn be positive elements of M such n 

that b << dl << d2 << ... << d << a << c, d. = d~ for every i = 1, ... ,n 
n I I 

and c Then b (o,Y0). a << a . = n 

Proof: Clearly the lemma is true if c = ( 0, yO) . Suppose that 
n 

k 
( y 'Y~) ' (x,YP) 

. p. 
c = (z,Y ), b = a = and d. = (tl ,Y 1). First, if k = 0, 

n n I n 

then k = m = p = p. = 0 for every i = 1 , ... ,n. Thus, a= ac and for a 
I 

to be infinitely smaller than 

d. = b = {O,Y0) for every i. 
1 n 

c 
a ' 

0 
it must be equal to (O,Y ). 

n 
Hence, 

Secondly, if k > 0, then p = m = p. = 0 
I 

since b <<d. << a<< c for every i. Clearly if a= (o,Y0) or 
1 n 
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0 0 d.= (O,Y) for some i then b = (O,Y ). 
1 n n 

0 
Suppose a > (O,Y ) and d. > 

n 1 

0 (O,Y ) for every i. 
n 

Then a 
0 

= (x,Yn) where xA > 0 for A the maximum index 

i 0 . 
where x. # 0 and A belongs to Z, and d. = (t ,Y ) where t 1 > 0 for A. 

1 1 n A. 1 
I 

the maximum index where t~ # 0 and A. does not belong to Z (see 3.15). We 
J I 

have A. !> t. for every i since dl << d2 << << d and d. > (O,Y0 ) for 
I I n I n 

every i. If A. = t.' then b = (O,y0 ) otherwise if A. < k. then dl = 
I I n I I 

(o,Y0) and b = (o,Y0) since b << d1. 
n n 

Again, the condition in Lemma 3.26 can be broken into an equivalent 

set of implications. 

Let a,b,c, d1, d2 , ... ,dn be positive elements of Mn and consider the 

implications: 

( L 1) 

( L2) 

( Li) 

(LP) 

b :S dl :S d2 :S ... :S 

c a $ a imp 1 ies b = 

b2 :::; dl $ d2 
1 $ d2 :;; 

d. d~ for every = 
I I 

bi :S dl !> di 
1 $ d2 :S 

d~ d. = for every 
I I 

d :S a :S c, d. = d~ for every n I I 

0 
(O,Y ). 

n 

and 

and 

d d2 2 b :;; :;; $ a :::; a $ c, = n n 
2 c imp 1 i es b = (o,Y0). a $ a n 

d di i 
b = :::; :S :S a :S a :S c, n n 

i c 0 
a :S a implies b = (0 'y ) . 

n 

< d :S dp < a < ap !> c, d. 
- n n - 1 

for every and a<< ac then b = (O,Y0). 
n 

and 

be, 

be 
' 

d~ 
I 

Proposition 3.27: An .Q,-group G satisfies the condition "if b, d1 , 

d2 , ... , dn' a,c are positive elements of G with b << d1 << d2 << 

<< d <<a<< c, d.= d~ for every i and a<< ac implies b = 1 11 

n 1 1 G 

iff it satisfies the implications (Ll), (L2), ... ,(Ln), .... 
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Next, we will prove that the P-'s are pairwise different and form an 
n 

infinite chain between A and RnA2• 

-Lemma 3.28: For every n ~ 1, M strictly contains W and M 1. n n-

Hence, P strictly contains P and P 1• 
n o n-

Proof: Initially, let us prove that W is strictly contained in M . 
n 

Let ~ : W + M defined by ~(x,m) = (y,Ym) where y. = x. if i belongs to 
n 0 I I 

Z andy. = 0 otherwise. Clearly,~ is a well defined injective map. It 
I 

suffices to prove that~ is a homomorphism (i.e., we need to prove that 

~((x,m)(h,p)) = ~((x,m)) ~((h,p))). 

First, note that (x,m)(h,p) = (t, m+p) where t. = x. +h.+. So 
I I I m 

~((x,m)(h,p)) = (t', ym+p) where t! = t. if i belongs to Z and t! = 0 
0 I I I 

otherwise. Secondly, ~((x,m)) = (y, Y:) and ~((h,p)) = (~,Y~) where 

y. = x. and~. =h. if i belongs to Z andy. = ~ = 0 otherwise. Thus, 
I I I I I i 

~((x,m)) • ~((h,p)) = (y,Ym) (~,YP) = (s,Ym+p) where s. = y. + ~ . 
0 0 0 I I ym( i) 

0 

Note that if i E N belongs to Z, then s. = y. + ~ = y. + ~. = 
n I I y m ( i ) I I +m 

0 

x. +h.+ = t .. Otherwise s. = t. = 0. Hence, ~((x,m) (h,p)) = 
I I m I I I 

~((x,m)) ~((h,p)). Thus, W <_ M and Q <_ P-. 
n o n 

Next, we need to prove 

the M- 1 < M- Let Y 1 and Y be the a-permutation of N 1 and N 
n- + n n- n n- n 

respectively as defined above. Let Y be the map from N 1 into N 
o n- n 

N --------------~'N n- 1 "/ n 

Y n-1 

1 ----------~-:N Nn-1 Yo n 

defined by: 



y ( i) = 
0 

if i belongs to Z 

Y (i) = i+l otherwise 
0 
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It can be easily verified that Y oY = Y oY 1. Therefore M ~ M and 
n o o n- n-1 n 

-
P I ~ P • n- n 

In order to prove the strict inclusion between P and P 
n-1 n' 

let a,b,c, d1,d2 , ... ,dn-l be positive elements of M~ such that fork> 0, 

c = (O,Yk), b = (y,Y0), a = (x,Y0), d. = (ti ,Y0) where y. = o if i # t 1 n n n 1 n 1 

and y. = 1 otherwise, x. > 0 if i belongs to Z and x. = 0 otherwise, 
I I I 

i for every j # ti+ 1 
i 1 otherwise. that b << dl d2 t. = 0 and t. = Note << 

J J 
c c be b # 

0 << << d 
n-1 

<< a << c, d. = d.' and a << a but b = and (o, Y ) . 
I I n 

-
Hence, Mn-l ~ Mn and Pn-l ~ Pn. From Example 3.25 we get that M~ ~ W so 

- -
now we have W ~ M1 ~ M2 ~ M < 

+ n + 
< p 
+ n 

< 
+ 

-
It is interesting to compare the two families (P) and (Q-). 

n n 

Theorem 3.28: For every n ~owe have P- <+ Q- and P- # Q~ for all n n n 1 

o < i ~ n-1. 

Proof: We start by proving that M < W . n + n 

defined before. Let Y be the map from N into A defined by 
o n n 

y (i) = 
0 

y (i) = 
0 

if = t. 
J 

if in Z 

It can be easily verified that a oY = 
n o 

Y oY . Hence M S W . In order to prove the strict inclusion, let o n n n 

a,b,c, d 1,d2 , ... ,dn 

0 b = (y,a ), and d. = 
n 1 

0 
be such that for k > 0, c = (O,k), a = (x,a ) , 

n 
. 0 

(t 1 ,a) where x. > 0 if 
n 1 

otherwise, yi > 0 if i belongs to zl and yi 

belongs to z2 and xi = 0 

0 otherwise, t~ = 0 for 
J 
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i 
j '# t. and t. = 

I J 
if j = t .. Thus b << d1 << d << ... << d <<a<< c, 

1 2 n 

c d. = d. for every 
I I 

Hence, P < Q . 
n + n 

= l, ... ,n and a<< ac but b -:J. (o,a0 ) and b <<be. 
n 

N !!>A n n 

Yn a 
n 

"'' XI 

N A n Yo n 

It remains to prove that P is different than Q 1. Let a,b,c, n n-

dl,d2, ... ,dn-l' be positive elements in M chosen as follows: Fix k > 
n 

k 0 0 0 
and c = (O,Y ) , b = (y,Yn)' a = (x,Y ) , d. = (t. ,Y ) where y. = 0 if n n I 1 n I 

0 

-:;. and otherwise, 0 if otherwise, 
i 

i t l ' y. = l X. > i s z and X. = 0 t.=O 
I I I J 

for every j -:;. t i + l and t~ = l otherwise. Then we have b << dl << ... 
J 

<< d 
n-1 

<< a << c, c d. = d. for every 
I I 

c = l, ... ,n-1 and a<< a, but 

b = be. c Then b cannot be infinitely smaller than b . Therefore M does 
n 

not satisfy the implications that W satisfies soP < Q No~ P n-1 n + n-1 · n 

- -
cannot be equal to Q. fori < n-1 since Q. +< Q 1. 

I I n-
- 2 -

Remark: Foreveryn, Pn belongstoRnA sincePn iscontained in Qn 

- 2 -
and Qn belongs to RnA. Then (Pn)neZ±{O}' is another countable infinite 

chain of different quasi-varieties containing A and contained in RnA2 . 

Using similar techniqueswecanconstructan infinite chain of quasi­

varieties between AandRnA2 . Let Q+ be the quasi-variety generated 
0 

+ by M . + We know Q covers A. 
0 

First, we consider some properties of w: 
The most important one is the following: If a,b,c are positive elements 

of W+ with b << a << c and ac << a, then be << b. Again, this condition 

' 
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can be stated in an equivalent way by using an infinite set of imp 1 i ca-

tions. They are: 

(Tl) b and 
c 

imp 1 i es be b. $ a :;;; c a :;;; a $ 

b2 2 2 2 
(T2) :$ a :$ a :$ c and (a c) :$ a imp 1 i es (b c) :s b 

. 
bA A A A 

(n) $ a :$ a :$ c and (a c) :$ a implies (be) < b 

These implications give a characterization of W+ and provide a way of de­

termining whether an ~-group is different than w+. 

There are ~-groups that fail the condition above. Now, consider 

G(Y 1) (see Example 3.25) with the following order: (O,Y~) :$ (g,Y~) iff 

n > 0 or n = Cl and g. ;:: 0 where E: z is the minimum index with respect 
I 

+ 
to g. :# 0, or n = 0, g. = 0 for every i E: Z and g ;:: 0. Let Ml be G (Y l) 

I I t 1 

with this order, and p+ 
1 

the quasi-variety generated by 
+ 

Ml. 

Now, M7 fails the implications. In fact, consider a,b,c to be three 

special positive elements of M+1. ( ) Fix n > 0 and let c = O,n , a = (x,O), 

and b = (y,O) where xi = 0 if i = t 1 and xi > 0 otherwise, yi = 0 if i:#t 1 

andy. > 0 otherwise. Notice that b <<a<< c and ac <<a but b =be. 
I 

Hence, be is not infinitely smaller than b. 

The ideas of this example can be generalized as in 3.25 to find 

other ~-groups which fail the condition above. Hence, as for the P 's 
n 

we have a family (P+inE:Z+-{0}) of countably infinite distinct quasi­
n 

varieties between A and RnA2 . Therefore, the theorem follows. 

Theorem 3.29: There is an infinite chain of distinct quasi-varie-

ties between A and RnA2 . 

To complete this chapter we look at a general way of constructing 

~-groups using the techniques that have been developed. This is done 



similar to the construction of W but with a different index set. 
n 

1 1 2 2 Let A = z1 U{t 1, ... ,tn 1}uz2 U{t 1, ... ,tn2}U ... u 
nl,n2, ... ,nk 

l, ... ,k+l. Let 

a (i) = i+l if 
nl ,n2' ... ,nk 

a ( i) = otherwise. Note that the index set A is 
nl,n2, ... ,nk n 1 ' ... ,nk 

totally ordered as fo 11 ows: The Z. IS carry the natural order of z' and 
I 

if i. is an element of z. then i. :::; tj :> tj :> ••• :> tj :;; i j+l. Let 
J J J 1 2 n. 

J 

A 
nl ' ... ,nk 

Z and a be the a-automorphism of G such that 
n 1 ' ••• ,nk 

G = 
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<P(g) = g 1 where g! = 
I 

Consider W to be the cyclic 
nl ' ... ,nk 

extension of G by a ' nl ' ... ,nk 
and Q the quasi-variety generated 

nl ' ... ,nk 

by w 
nl ' ... ,nk 

We first see how to compare W with the Q 1 S constructed 
n1 ,n 2 ... ,nk n 

before. 

Theorem 3.30: = n, then W belongs to Qn and 
n 1 ... ,nk 

-
in fact Q ~ Q . 

nl, ... ,nk n 

Let <P 1 : W ~ W be defined by 
n n 1 , •.• , nk 



<PI ((g,a~)) = (g I 'am 
nl, ... ,nk 

g~ = g. 
I J 

g! = g. 
I J 

and 

Thus, g 1 • 
I 

t. 
J 

where j r::Z l < A - n' 

where j r::Z2 < A n' 

= 

= 

) where g! 
I 

0 if i r:: z2u ... uzk, 

= j and ir::Z 1 < A - nl, ... ,nk 

= j and ir::Zk+l < A ' nl, ... ,nk 

I gt , .•. , .•. ,g 2 
n 1+ l t 

n2 

= = 

for 1 ::: -::> k and 1 ::;; j ::: n .. 
I 

It appears easier if we draw the following picture: 

m 
a n 

g. 
I . . .... 

z = zl tl t2 t t 
nl nl+n2+ ... +nk 

g: 
I 0 0 . . .. . 

zl t' t' t I z2 2 2 z2 zk k tk l 2 nl t l t t l n2 nk 
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9· I 

z2 

I 
i 
I 

l 
I 

I 

I 
'J/ 

g! 
I 

2k+l 
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The map~~ is clearly well-defined. We need to prove that~~ is a homo­

morphism; i.e., that ~ 1 ((g,am)(h,cl)) = ~ 1 ((g,am))·~ 1 ((b,aP)). First, 
n n n n 

~~ ((g,am)) = (g 1 ,am ) and~~ ((h,ap)) = (h 1 ,aP ) . Now, 
n n 1, ••• ,nk n n 1, ••• ,nk 

= ~ 1 ((r,am+p)) where r. = 
n 1 

Then 

( I m+p ) r ,a • 
n 1 ' ••• 'nk 

But ~ 1 ((g am))·~ 1 ((h cl)) 
' n ' n = 

(g I ,am ) (hI ,aP n ) 
n 1 ' • • • 'nk n 1 ' • • • ' k 

= (s,am+p ) where s. = 
n 1, ••• ,nk 1 

g! + 
I 

It suffices to prove that s. = r! for every 
I I 

First, if ie: z2u •.. UZk' rl = si = 0. Secondly, if ie: z1 s 

A 
n 1 ' ••• 'nk 

r! = s .. 
I I 

rl = 
A 

then rl = rj wherei = j and je: z1 ~ A . 
n 

Thus, r! = r. = 
I I 

= s .. 
I 

Similarly, if 

F i na 11 y , i f A = 
i 

t. with 1 s i ::; k and 1 s j :s n. then 
J I 

sA. Thus, ~~ is a homomorphism and clearly a monomorphism. 

g. + 
I 

= 

Last, we need to prove that~· is an £-homomorphism. It suffices to 

show that ~~ (xvy) = ~~ (x)v~ 1 (y) for every x,y e: W . Let x = (g,am) and 
n n 



y = (h,aP). We know that W is totally ordered. Hence, we can assume 
n n 

that x S y. So xvy = y and~· (xvy) = ~· {y}. Two possibilities arise. 

First, if m<p, then ~·(x) < ~ 1 {y) and ~·(x)v~•(y} = ~·{y} = ~·(xvy}. 

Secondly, if m=p, then let n1,n 2 be the indexes of An maximal with re­

spect tog ~ 0 and h ~ 0, respectively. Now x ~ y implies that one 
nl n2 

of the following is true. 

( i i ) nl < n2 with n1 E {tl, •.• ,tn } ~ A and n2 E z2 s A 
n n 

( i i i ) nl ::; n 2 w i th n 1 , n 2 E {tl, •.• ,tn } ::; A 
n 

( i v) nl < n2 with n 1 E z1 ::; A and n2 E {tl , ••• ,tn } ::; A 
n n 

(v) nl < n2 with n1,n2 E zl ::: A n 

Easily, we can verify that in all cases we have~· (x) ::; ~·(y), and 

hence ~· (x) v ~· {y) = ~· {y). Thus, ~· is an R.-monomorphism. Hence, 

- -W ::; W and Q :.> Q 
n n1, ••. ,nk n n1, •.• ,nk 

Using the same proof techniques, it can be shown that if 
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CHAPTER IV 

NON-REPRESENTABLE £-GROUPS 

The goal of this chapter is to construct an infinite chain of dif-

ferent quasi-varieties each of which contains A and is contained in the 

variety L nA2 where L is defined by [xn,yn] = l for any fixed integer 
n ' n 

n ? 2. 

Recall some of the better studied £-group varieties are E =the 

trivial variety, A= the variety of abelian £-groups, R =the variety of 

representable £-groups, N = the variety of normal-valued and £-groups, 

and L = the variety of a 11 t-g roups. It has been shown that a 11 non­

trivial varieties contain A (E. C. Weinberg [23] and that all proper 

varieties are contained inN (W. C. Holland [8]). 

Since N plays an important role in this chapter, we first define 

normal-valued £-groups and give some characterizations of such £-groups. 

Definition 4.1: Let G be an £-group and C a subgroup of G. C is 

solid iff C is a convex £-subgroup of G (i.e., if x,y E Care such that 

IYI ~ lxl then y E C). 

Let C(G) be the set of all solid subgroups of G ordered by inclusion. 

Definition 4.2: Let M be a subgroup of G. M is regular iff 

M E C(G) and if M = . I C. for C. E C(G) then there exists i E I such 
IE I I 

that M = C .. 
I 

Let R(G) be the set of all regular subgroups of an £-group G, and 

for every R E R(G), let R~·, be the element of C(G) that covers R. 

Definition 4.3: Let G be an £-group, Ran element of R(G). R is 

a normal value if R is normal in R~". If for every R E R(G), R is a 
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normal value then G is a normal-valued £-group. 

Any representable £-group is normal-valued but the converse is not 

true. In fact, the £-group in Example 3.5 (ii) is normal valued but not 

representable. 

There are numerous characterizations of normal valued £-groups. The 

most useful ones are the fo 11 owing: An £-group G is normal-valued iff G 

satisfies one of the relations: 

( i ) For a,bsG, 
-1 -1 I a I vI b 1. every a b ab << 

( i i ) If a,bsG + 2 2 
then ab :s b a . 

n-1 It is known that the varieties A2 n = AA, •.. ,A = A A form a proper 

chain from A toN with N = V{An;nsN} (se~ A. M. W. Glass [5]). Since A 

plays such an important role, it is natural to attempt to generalize it. 

Therefore, for n ~ 2 let L be the variety defined by the equation 
n 

est: 

( 1 ) L m 

( 2) L m 

(3) L n 

Also, within 

interest: G 
n 

< 

These L •s form a family with several properties of inter­
n 

L iff m is a proper divisor of n (J. Martinez [ 11 ] ) , 
n 

" L A iff (m,n) = l (E. B. Scrimger [21 ]) , and n 

A R =A for a 11 n ;::: 2 (J. Martinez [ll]). 

each L lies a subdirectly irreducible £-group of particular 
n 

n-1 + = n Z x Z where for 
0 

( ao ' ... 'an- l ; b) ' (co ' ... 'c n- l ; d) in G , 
n 

(a0 , ... ,an-l;b):;; (c0 , ... ,cn_ 1;d) iff b<d or b=d, and 

a. :s c. for 0 ::; 
I I 

::; n-1 , and 

(ao, .•. ,an-1 ;b) (co, •.. ,cn-1 ;d) 
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with all subscripts read modulo n. This £-group may also be viewed as an 

£:..subgroup of ZWrZ and is called the Scrimger £-group (see Smith [22] 

for more details on G ). 
n 

LetS be the variety of £-groups generated by G (i.e. the smallest 
n n 

variety of £-groups containing G). We know that S < N-R and that for 
n n -

every prime number n S covers A (E. B. Scrimger [ 21 ]) . It is also 
n 

readily seen by considering the generating £-groups that for p, q dis-

tinct primes, 

s , ~ < s v s < s 
p q t p q t pq 

Thus, {S jp is prime} generates a sublattice of L isomorphic to the lat­
p 

tice of finite sets of primes. The work done thus far with S varieties 
n 

has relied primarily on knowledge of their generating £-groups. Some 

equations that are satisfied in G for n ~ 2 have been brought to light. 
n 

They include: 

( i ) [an,bn] = 1. 

( i i ) [[a,b],[c,d]] 1. 

( i i i ) [a,b,cn] = 1. 

2 n-1 
( i v) [ Jl+c+c +···+c 1. a,b,c 

n-1 n-1 
(v) [ 1 +b+· •. +b 1 +d+· •. +d J a , c = 1 • 

n-1 
(vi) [a,kb]l+b+···+b 

(vi i) 

l for any k ~ 2. 

Little has been said of the quasi varieties generated by the G 1 S. 
n 

We know that quasi-varieties are weaker algebraic structures than 

varieties. Although, if n is a prime number, then there are not any 



varieties between A and S , and A <t S ~ L n A2. We will construct an 
n n n 

infinite number of different quasi-varieties between A and Lnn A2 

First, we establish the analog of Scrimger 1 s theorem for quasi-

varieties. But, before doing so we need the following definitions, re-

sult~ and notations. 

G . 
n 

First, let H be the quasi-variety generated by 
0 
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Definition 4.4: Let G be an ~-group and N a solid subgroup of G. N 

is prime iff for any arbitrary elements a,bsN with avb = e, where e is 

the identity of G, we have either asN or bsN. Also, N is a minimal prime 

subgroup iff there exists no nontrivial ~-subgroup of G strictly contained 

in N, and is called in Scrimger [21] a representin~ subgroup. 

Definition 4.5: Let G be an ~-group and Fan nonempty subset of G 

such that 

( i ) The meet of finitely many elements of F belongs to F. 

( i i ) If ;x E F, and t ~ x, then t E F. 

( i i i ) The smallest element e of G 
"+ 

does not belong to F. 

Then F is called a filter over G. IfF is maximal, then F is called 

an ultrafilter. 

Definition 4.6: Let G be an ~-group, e the identity of G and x an 

arbitrary element of G, and A$ G. Then, 

l. l. 

j_ 
A 

l. 
X e}, and 

e for every asA}. 

x and A are called the polars of x and A, respectively. 

The following theorems (see Bigard [2]) demonstrate the signifi-

cance of ultrafilters and polars in generating minimal prime subgroups. 

Theorem 4.7: Let G be an ~-group, Man arbitrary minimal prime 
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subgroup of G. The map ~ defined by ~(M) = + 
G -M is a bijection between 

the set of all minimal prime subgroups of G and the set of all ultrafil-

te rs over G +. 

Theorem 4.8: Let G be an £-group, C a solid subgroup of G, and U an 

ultrafilter over C+. The set M = U{xLJx E U} is a minimal prime subgroup 

of G, and any minimal prime subgroup M of G that does not contain C is of 

~ + 
this form (i.e. M = U{x Jx E U} for some ultrafilter U over G) 

Proof: Let V be the set of all upper bounds in G of elements of U 

(i.e. V = {x E G such that there exists y E U withy::; x}). 

Clearly U ~ V. To see that Vis a filter over G+ we show that V 

satisfies the conditions in 4.6. First, if x,y are elements of V, then 

there exists xl , y I E U such that X 2:: yl and y ~ y I • So, X 1\ y ~ X I 1\ y I E U, 

and then XAY E V. Now, if X E V and t ;:: x, then there exists g E U such 

that X :;:: g. Thus, t ;:: X ;:: g E U so t E V. 

Now suppose e E V. Then there exists u E U such that u $ e. Thus, 

e E u contrary to the definition of a fi 1 te r s i nee e is also the smallest 

element of C+. Hence, e f V. 
+ + 

Note that G - V ::; G - U. Next, we wi 11 

+ prove that Vis an ultrafilter over G. It suffices to prove that for 

+ every g E G - V there exists v E V such that g A v = e Considering 

+ g E G -V and X E U. 

If g AxE U, then g E U since g;:: g Ax. But G+- V ~ G+- U, so 

g E G+- U, and we have a contradiction. Hence, g A x ~ U. Since U is 

an ultrafilter there exists y E U such that (gAx)Ay =e. But XAy E U 

since U is closed under taking the meet of a finite number of elements of 

U. Let v = XAy. Then 9EV.L and VEV. Now, every filter T over G+ strictly 

containing V contains the smallest element e. Suppose Tis such a filter 

and tET-V. Then there exists s E V such that t As= e. But s E T since 

v $ T. Hence, s A t = e E T. + Therefore, Vis an ultrafilter over G 
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l. .L + 
and U{x jxsV} = U{x JxsU} = G -V is a minimal prime subgroup of G. 

Conversely, let M be a minimal prime subgroup of G that does not 

contain C, V = G+-M, and U = V n C. Clearly, U is an ultrafi Iter over C+. 

Now, the set of all upper bounds in G of elements of U is an ultrafilter 

so it must be equal to V. 

A similar reasoning leads to the following proposition. 

Proposition 4.9: Let G be an £-group, g an element of G, X the set 

of all elements of G+ smaller than or equal to Jgj, and U an ultrafilter 
.l. 

over X. The set U{x jxsU} is a minimal prime subgroup of G, and every 

minimal prime subgroup M of G that does not contain g is of this form 
.L 

(i.e. M = U{x jxsU} where U is an ultrafilter over X). 

By Scrimger [21], if n is a prime numberS covers A. Hence, it is 
n 

very important to determine when a given £-group G contains an £-subgroup 

isomorphic toG . Therefore, the following lemma is useful. 
n 

Lemma 4.10: If G is an £-group of L , and C a representing subgroup 
n 

of G, which has n distinct conjuguates of the form x-i C xi for some xsG 

and x > e where e is the identity of G, then G contains an £-subgroup iso­

morphic toG . 
n 

Proof: See Scrimger [21]. 

Using this Lemma we can prove the analog of Scrimger 1 s theorem for 

quasi-varieties. 

The0rem 4.11: The quasi-variety H covers A in the lattice of quasi­
a 

varieties of £-groups. 

Proof: Suppose there exists a quasi-variety Q such that A< Q < H . 
+ + 0 

Then there exists an £-group G s Q such that G is nonabelian. Hence, 

there are two positive elements x,y s G such that xy # yx and XA y #e. 

Note that G contains always a nontrivial minimal prime subgroup C. 
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+ In fact, let X be the set of all elements in G smaller than or equal to 

x, X =F {e} since x and XAY EX, and U an ultrafilter over X that con­
.L 

tains x and XA y. Then, by 4.9 C = U{a lasU} is a minimal prime subgroup 

f G C . . . 1 . -1 -1 d -1 -1 . c o . IS nontr1v1a s1nce x , y an x A y are 1n . 

Now, .let C be a nontrivial minimal prime subgroup of G. It suffices 

- i i to prove that C has n distinct conjuguates of the form x C x for some 

x > e, since then by Lemma 4.10 G contains an ~-subgroup isomorphic to G 
n 

and Q = H First, since G s L have -n c n c for a 11 G. E ::; we X X = X E 
0 n n 

In fact, c. Then 
2 n -n n n -n n suppose e < C E e < c <c < ... <c = X c X E X c X 

' 
-n c n and hence c -n c n 

Similarly, c < n c -n so C E X X 
' ~ X X . - X X so 

-n n 
C = x C x . Next, the number t of distinct conjuguates of C of the form 

- i i 
x C x is a divisor of n. In fact, let i be the smallest positive inte-

- i i 
ger such that x C x =C. If i is not a divisor of n, then there are 

integers r and s such that rn+si = k, where 1 ~ k < i, and k is the 

greatest common divisor of n and i. -k k -rn-si rn+si 
Then, x C x = x C x 

= C, contradicting the minimality of i. Hence, if n is prime, then t is 

or n. Now, we will show that there exist at least two distinct con-

-i i 
juguates of C of the form x C x There exists c < x E G such that 

-1 -1 
x Cx =F C. Suppose x Cx = C for all c< x sG. Then, C is an ~-ideal of 

G, so since it is also a representing subgroup, C = {e}, and G is totally 

ordered and therefore representable. But R n L 
n 

A, so G must be abelian 

since G ERn L . This is a contradiction. Therefore there is a positive 
n 

- 1 -1 -0 0 
x such that x Cx =F C. Thus, x Cx and x Cx = C are two distinct 

conjuguates of C. Hence, t = n and the theorem is proved. Since by 4.10 

G contains an ~-subgroup isomorphic toG and Q ~ H . Therefore, Q = H 
n o o 

and H covers A in the lattice of quasi-varieties. 
0 

It is not always easy to find the implications that define a given 

quasi-variety. But it is possible to find a set of implications that are 



satisfied by all elements of the quasi-variety. We consider first some 

properties of G . 
n 

Proposition 4.12: If a,b,c are positive elements of G with 
n 

b <<a« c, then b = (0, ... ,0;0). 

Proof: Clearly the property is true if a= b = c = (0, ... ,0;0). 

First, if k=O then p = q = 0 since b <<a<< c. Now, a<< c implies 

a.= 0 for every i = 0, ... ,n-1. 
I 

Suppose there exists i, 0 ~ ~ n-1, such that a. > 0. We have 
I 

either c. = 0 or c. > 0. But, if c. = 0 then a. > c. and this is con-
I I I I I 

tradiction with a s c. Otherwise, there exists m E z+-{0} such that 
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rna. >c. contrary to a<< c. Hence, a.= o for every i = O, ... ,n-1, and 
I I I 

b. = 0 for every i = 0, ... , n- I since b << a. Hence, b = (0, ... ,0;0). 
I 

Next, if k >0 then q = p = 0. Otherwise, if q > 0, then there exists 

A z+-{o} such that Aq k and A 
E > a > c contrary to a << c. So, p = q = 0 ' 

and b. = 0 for every i = 0, ... ,n-1 since b <<a. Hence, b = (0, ... ,0;0). 
I 

The condition in this proposition can be stated in an equivalent way 

by using an infinite set of implications. 

Proposition 4.13: An £-group G satisfies the property 11 1f a,b,c are 

positive elemnts of G with b <<a « c then b = 1G 11 ' iff G satisfies the 

implication. 

(I) b n ~ a ~ an ~ c for a 11 n E Z, n :::: 1 imp 1 i es b = 1 G · 

Proof: Clearly if (I) is true for every n ~ 1 then the condition 

holds. 

Conversely assume the property is satisfied. 

all positive integers n, then b <<a<< c sob= lG. 

n 
~ a s a s c for 
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Note that, for every A ;:: 1 the . 1 . . b A 1mp 1cat1on A imp 1 i es :;; a ::; a $ c 

b is the identity of G is not always true in G For this we w i 11 give 
n n 

the following example: 

Example 4. 14: Fix A ~ 1 ' and let a,b,c E G such that c = {0,0, ... ; n 

k) where k > 0, a= (nA, ... ,nA;O) where A, n E Z+-{0}, and b = (1, ... ,1; 

A 2 2 A 0). Now, b = (A, ... ,A;O)::; (nA, ... ,n;O) =a::; (nA , ... ,nA ;0) =a ~ 

(O, ... , O;k) = c. But b f:. (o .... , 0; O) and (I) fails in G for every 
n 

A 2: 1. 

Propositions 4.12 and 4.13 give a characterization of G and provide 
n 

a way of determining whether an t-group is different than G . 
n 

Generally, to show that ant-group is not in H it suffices to find 
0 

elements in the t-group that do not satisfy (I) as we will see In the 

following example: 

Example 4.15: Let H~ = ~ Z; Z where for (a0 , a 1, •.. ,an;b); and 

1 
(c0 , c 1, ... ,c ;d) in H, (a , ... ,a 1,a ;b)::; (c , ... ,c 1,c ;d) iff b<d 

n n 0 n- n 0 n- n 

or b=d and a < c orb= d, a = c and a. ::; c. fori= O, ... ,n-1, and 
n n n n 1 1 

(aO, al, ... ,an;b) (cO, ... ,cn;d) (ao + ca+b, ... ,an-1 + cn-1-b' an+cn; 

b+d) with all subscripts smaller than or equal to n-1 read modulo n. Let 

H1 be the quasi-variety generated by H~ 
-1 

structure. Note that (a0 , ... ,a 1,a ;b) 
n- n 

H1 carries a natural group 
n 

= (-ao b, ... ,-a 1 b'-a ;-b) - n- - n 

where all subscripts smaller than or equal to n-1 are read modulo n, and 

the identity in H1 is (0, •.• 0,0;0). 
n 

Also, the order::; defines a lattice order on H1. In fact, 
n 
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(b , ... ,b ;d) if d<b 
0 n 

(b0 , ... ,bn;d) if b=d and bn<an 

(a0 Ab0 , .. ,a 1Ab 1 ,a ;b) if b=d and b =a . n- n- n n n 

where a. A b. =minimum (a. ,b.), and 
I I I I 

where a.vb. =maximum (a.,b.). 
I I I I 

(b0 , ... ,bn;d) if b<d 

(b0 , ... ,bn;d) if b=d and an<bn 

( a0 vb , .. , a 1 vb 1 , a ; b) if b=d and 
0 n- n- n 

a =b 
n n 

To show H1 is ant-group it only remains to verify that if a,b,c E H1 
n n 

where a$ b then ac ~be and ca ~ cb. Since a,b,c are in H1 write n 

a= (a0 , ... ,an;k), b = (b0 , ... ,bn;p), and c 

implies that k <pork= panda < b , or k 
n n 

( c , ... , c ; d ) . Now a ;;; b 
0 n 

p, an = bn and ai < bi 

fori= 0, ... ,n-1. If k < p then k+d < p+d and ac = (a , ... ,a ;k) 
0 n 

Otherwise, if k=p and a < b then 
n n 



a +c < b +c and ac ~ be. At last, if k=p, a =b and a. ~ b. for nn nn nn 1 1 

i = O, ... n-1 then a. +c. k ~ b.+c. k and ac ~be. We can verify in a 
I 1+ I 1+ 

similar way that ca ~ cb. Note that H1 is ant-group that fails (I). 
n 

To see this let a,b,c be 3 elements of G such that a= (0,0, ..• ,0,1 ;0), 

b = (I , 0, 0, ••• , 0, 0; 0) , and c = ( 0, 0, .•. 0, 0; m) w i th m > 0. C 1 ear I y 

b «a« c. But b f. (0, •.• 0,0;0). Hence, (I) fails to be true in 

HI • 
n 

By introducing the above example, we know of the existence of 
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t-groups different than G and therefore the existence of quasi-varieties 
n 

different than H . It is important to first construct the t-groups and 
0 

then take the quasi-varieties generated by them. In order to establish 

a nested sequence oft-groups, first we need the following definitions 

and notations: 

Let k be a positive integer, and Hk = 
n 

(a ,a 1, ... ,a , ... ,a k 1;b), (c , ... ,c k 1;d) 0 n ·n+ - 0 n+ -

Z where for 

(a 0 ' ... 'an+ k- 1 ; b) 

~ (c0 , ... ,cn+k-l ;d) iff b < d orb= d and an+k-l < cn+k-l or b = d, 

an+k-l = cn+k-l and an+k- 2 < cn+k- 2 or ....... or b=d, an+i = cn+i for 

every i = 0, ... ,k-1 and a. ~ c. for i = 0, ... ,n-1, and (a ,a 1 , ... ,a 1, 
I I 0 n-

an, ... ,an+k-l;b). (co, ... ,cn-1' cn, ... ,cn+k-l;d) = (aO + cO+b' ... ' 

an-I+ c 1 b' a + c , ... ,a k 1 + c k 1;b+d) with all subscripts less n- + n n n+ - n+ -

than or equal to n-1 read modulo n. Let Hk be the quasi-variety gener­

ated by H~ 

For every k E Z+- {0~ Hk is an 1-group. To prove this we wi II use 
n 

inductionoverk. If k=lweknowthatH 1 is an 1-groupsotheclaimistrue 
n 

for k=l. Suppose that Hk is an 1-group and let us prove that Hk+l is also an 
n n 

1-group. Clearly Hk+l is a group. 
n 

Now, theorder::; defined on Hk+l is a 
n 
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latticeorder. Forthis leta,b,cbeelementsof H~+l. Write a= (a0 , •• ,an+k;p), 

b = (b , ... ,b k;q), and c = (c , ... ,c k;d). Consider the elements 
0 n+ 0 n+ . 

a 1 ,b 1 ,c 1 of H~ such that a• = (a0 , ... ,an+k-l;p), b 1 = (b0 , ..• ,bn+k-l;q) 

and c• = (c0 , ... ,cn+k-l;d). Since Hk is an £-group then a 1 Ab 1 and a•vb 1 

n 

exist. Let x = (x0 , ... ,xn+k-l;t) = a 1 Vb 1 andy= (y0 , ... ,yn+k-l;s) 

= a 1A b 1 • Now, the meet and the join of a and b exist in Hk. 
n 

(b0 , ... ,bn+k'q) if p>q 

In fact 

'(a0 , ... ,an+k;p) if p=q and an+k < 

(aO,al, ..• ,an+k;p)A(bO, ... ,bn+k;q) = bn+k 

and 

(b0 , ... ,bn+k;q) if p=q and an+k > 

bn+k 

(y0 , ... ,yn+k-l'an+k;p) if p=q and 

an+k = bn+k" 

(a0 , ... ,an+k ;p) if p=q and an+k > 

bn+k 

(b0 , ... ,bn+k;q) if p=q and an+k < 

bn+k 

(xo, ... ,xn+k-l'an+k;p) if p=q and 

a = b . 
n+k n+k 
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Next, we need to verify only that if a$ b then ac $ be. Now, a s b 

implies that p<q or p=q and an+k < bn+k or p=q, an+k = bn+k and an+k-l < 

bn+k-1 or, ... ,p=q, qn+i = b . for i=O, ... ,k and a.~ b. for i=O, ... ,n-1. 
n+1 I I 

If p<q then p+d < q+d and ac = (a , .•. ,a k;p). 
0 n+ 

(c , ... ,c k;d) = 
0 n+ 

... ,bn-1 + cn-1 + d' 

(c0 , ... ,cn+k;d) = be. Otherwise, if p=q and a k < b k then a k + n+ n+ n+ 

cn+k < bn+k + cn+k and ac ~ be. At last, if p=q and a k = b k' then , n+ n+ 

ac $be since a• $ b 1 implies a•c• $ b 1 c 1 We can verify in a 

similar way that ca ~ cb. 

The family of ~-groups (Hkjk s Z+ -{0}) forms a nested sequence of 
n 

~-groups. And if they are pairwise different then we have an infinite 

chain of quasi-varieties each of which contains H and is contained in 
0 

L n A2 . Hence, it is necessary to prove that the H •s are pairwise dif-n n 

ferent. Therefore, we need to find one or more implications satisfied 

by each Hn and make sure that the implications will fail in Hk if 

k > n. 

Lemma 4.16: If a,b,c, d1 , ... ,dk are positive elements of H~ with 

b << d 1 << d2 << << dk <<a<< c then b = (0, ... ,0,0;0). 

Proof: Clearly, the lemma is true if a= b = c = d1 = ... = dn 

(0,.' .. ,0;0). 

Let a,b,c, d 1, ••• ,dk be positive elements of H~. Write 

a= (a0 , ... ,an+k-l;p), b = (b0 , ... ,bn+k-l;q), c = (c0 , ... ,cn+k-l;m) and 

i i ) d. = (x0 , ... ,x k 1 ;n .. 
I n+ - I 

Let s,r,t, AI, ... ,Ak be the maximum indices 

for which ~ o, b o, ~ 0, i 
~ 0 respectively. F i rs t , if m;::O a = c xA. s r t ' 

I 

then p = q = n. = 0 for i 0' ... ,k and r < AI < A2 < A3 < ... <Ak < s < 
I 

t 



since b << d1 << d2 << ••• << dk' << a << c. Now, if b = 0 then 
r 

b = (0,0,···0;0) since b is positive and r is maximal with respect to 

b ~ 0. Two cases arise. First if m =other we have t ~ n+k-1, 
r 

s ~ n+k-2 and A. ~ n+i-3. 
1 

Hence, ~ 1 ~ n-2, and therefore d1 = (x0 , .•• , 
I 

1 
xn_ 2 ,o,o, ... ,O;O). Since b << d1 then bi = 0 for every = 0, ... ,n-1 

(see Proof of 4. 12) and b = 0. Sob= (0,0, ... ,0;0). Now, if m > 0 
r 

then we haves~ n+k-1, and Ai ~ n+i-2. So Al ~ n-1 and d1 = (x~, ... , 

x~_ 1 ,o,ooo,O;O). Now, b « d1 implies b = (0, ... 0;0) (see Proof of 

4. 12), and the lemma is proved. 

The condition in the above lemma determines a set of implications 

that are simultaneously satisfied by Hk. Let a,b,c, d1, d2 , ... ,dk be 

positive elements of Hk and consider the implication. 

( k) n n n n I If b < d1 ~ d1 s .... ~ dk sdk~ a~ a ~ c for all 

positive integers n then b = (0,0, ... ,0;0). 

Proposition 4.17: The condition 11 if a,b,c, d1, ... ,dk are positive 

elements of an t-group G such that b << d << ·•• << d <<a<< c then 
1 k 

b is the identity of G11 is satisfied iff the implication (Ik) is satis-

fied. 
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Proof: Clearly, (Ik) implies that the condition holds. Conversely, 

the condition is satisfied. If bA dl i dk 
A assume :5 s ~ ... ~ ~ dk s 1 

A for all positive integers A' then b dl dk << a ~ a ~ c << << ... << 



a<< c sob is the identity of G. Hence, the implication (Ik) is 

satisfied. 

It is important that every Hk contains H0 and that any pair H~ and 

k' 
H will generate two different quasi-varieties. 

n 

Lemma 4.19: For every K E Z+- {0}. Hk+l strictly contains Hk. 

Proof: Let ¢ be the map from Hk into Hk+l defined by: 
n n 

¢((a , ... ,a k l;p)) o n+ - = ( ao ' · · · ' an+ k- 1 ' 0 ; P ) • Clearly,¢ is a well-de-
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fined injective map. We need to show that¢ is a homomorphism. Let a,b 

be elements of H~. Then a= (a0 , ... ,an+k-l;p) and b = (b0 , ... ,bn+k-l;q). 

We have ¢(a) = (a0 , ... ,an+k-l ,0 ;p), ¢(b) = (b0 , ... ,bn+k-l ,0 ;q), and 

ab = (a0 + b + , ... ,a 1 + b l+, a +b , ... ,a +k 1 + b +k 1;p+q). Thus, . p n- n- p n n n - n -

¢ (a b ) = ( a0 + b , . . . , a 1 + b 1 , a + b , .. . , a k 1 + b k 1 , 0 ; p+q ) . +p n- n- +p n n n+ - n+ -

Hence, ¢ is a homomorphism. ¢ clearly preserves lattice operations 

k k+l 
so we get Hn $ Hn and Hk ~ Hk+l. 

In order to prove the strict inclusion it suffices to find positive 

1 b d d d f Hk+ l .h h h h h . . L e ements , 1, ••• , k' a an co n sue tat t e ypot es1s 1n emma 

4.16 is true fork but the conclusion of the lemma fails. Let b, d1 , ..• , 

dk' a,c be such that b = (b0 ,b 1, ... ,bn+k;O), di = (x~, ... ,x~+k;O) for 

i = 1 , ... ,k, a= (x0 , ... ,xn+k;O), c = (0,0,0, ... ,O;m) where the following 

are true: 

b. 0 for =f 0 and b. = 1 otherwise, 
I I 

i 0 for j =f n-l+i and i 
1 otherwise, X. x. 

J J 



x. = 0 for i ~ n+k and x. = 1 otherwise, and m > 0. 
I I 

Note that b << d1 << d2 << ... << dk <<a<< c but b ~ (0, ... ,0;0). 

Therefore, we have the following: 

G = H0 < H' < n n t n t 

H < 
0 t ... 

< Hk-1 < 
t n t 

t Hk-1 
< Hk t t Hk+l 

Lemma 4.20: For every k, Hk :::: L n A2 . 
n 

Proof: For k n n every x,y E H we have ~ y n 

< Hk < Hk+l $ ···,and 
t n t n 

:::: 

n n 
= y X . 

Let x = (x0 , ... ,x 1, ... ,x k 1;p) andy= (y0 , ... ,y 1, ... , n- n+ - · n-
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Y n+k-1 ;q) · 
n 

We have x = (x0 + xO+-p + ... + xO+(n-l)p' x1 + xl+p + ... + 

xl+(n-l)p''"' xn-1 + xn-l+p + ... + xn-l+(n-l)p' nxn, ... ' nx k 1;np) n+ -

and Yn = (yo+ Yo+p + ··· + Yo+(n-l)p' Y1 + Yl+p + ··· + Yl+(n-l)p' ···' 

Yn-1 + Yn-l+p + ··· + Yn+l+(n-l)p' nyn•··· ,nyn+k-l;nq), where indices 

less than or equal to n-1 are r.ead modulo n. 

n n ( Now, x y = x0 + x + O+p 

Y X +X + O+(n-l)p'' .. ' n-1 n-l+p 

+ xO+(n-l)p +Yo + YO+p + ... + 

+x ( ) +y +y + n-1+ n-1 p n-1 n-l+p 

) n n 
yn-l+(n-l)p' nxn + nyn, ... ,nxn+k-1+ nyn+k-1; np+nq 'andy x = 

+ 

Yo+p + ··· + Yo+(n-l)p + ~ + xO+p + ··· + xO+(n-l)p' ···• Yn-1 + Yn-l+p 

+ ··· + yn-l+(n-l)p + xn-1 + xn-l+p + ··· + xn-l+(n-l)p' nyn + nxn' ... , 

) n n n n k 
nxn+k-l + nyn+k-l; nq + np. Thus, x y = y x and Hn E Ln. Hence, 

k 2 It remains to show that Hn EA. For this, let H = {(a 0, ... , 

an+k-l;O) iai E Z fori= O, ... ,n+k-1}. Clear]~ His an abelian 1-ideal 



k k of H , and H /H ~ Z. 
n n 

Thus, H, Hk/H EA. 
n 

Combining Theorem 4.11 Lemmas 4.18 and 4.19 we have the following 

important result: 

Theorem 4.20: Let n be a prime number. Then there is an infinite 

chain of distinct quasi-varieties between A and L nA2. 
n 
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Proof: Clearly (Hkjk E Z+) forms a countably infinite chain of dif-

ferent quasi-varieties of non-representable ~-groups between A and L n A2 . 
n 

+ k + Note that if for every k E Z ,H E S , then (Hkjk E Z ) forms a 
n n 

countably infinite chain of distinct quasi-varieties between A and S 
n 

To complete this chapter we look at a special type of cyclic exten-

sions that can be embedded in S for some n ~ 2. 
n 

Example 4.22: Let A = R (the set of real numbers), G = n Z and 
A 

a: R-+ R defined as follows: If k is a fixed irrational number inside the inter-

val (O,l),a(n+x) =n+ (x+k) mod 1. Consider G(a) thecyclicextensionof G by a. 

Then any finitely generated subgroup of G(a) can be embedded in S for 
n 

some n. In fact, if H is a finitely 

generated by elements of the form: 

generated subgroup of G(a) then it is 
kl 

( ... o,x. ,o, ... ;a ) where x. = l, 

k 
. . . ( ... ,0, ... ,0, X. 

I 
,0, ... ,a s) where x. 

I 
s s 

I 1 1 1 

l' i l < i 2 < ... < i ' s 

k. ~ 0 fori= 1, ... ,s. Note that s is the number of generators. 
I 

Now, two possibilities arise. First, if i 1 , ••• ,is E [n,n+l] we 

and 

may assume that n=O and i , ... ,i E [0,1]. Next, let ¢:G(a)-+ G where 
0 s sn 

G is the Scrimger ~-group of order sn, defined by ¢( ... ,o, ... ,O,l. ,0, 
sn lA 

kA 
... ;a ) = (O, ... ,lA,o, ... ,O;kAs) for iA:; is Note that if 
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kA 
<P ( . . . , 0 , . . . , 0 , 1 ( i A +t k) mod 1 , 0 , . . . ; a ) = ( 0 , . . . , 0 , 1 A- t s , 0 , . . . , 0 , . . . , 0 ; 

kAs), where subscripts are read modulo sn, then <P is an £-homomorphism. It 

suffices to prove that ¢(h 1h2) = ¢(h 1)¢(h2), where h1 = ( ... ,o, ... ,o, 
k k 

1 i , 0 ••• ; a r) and h 2 
r 

= ( .•. ,o, ... ,o, 1. ,o ... ;a t) with i 1 ::> i < i :::; 
1 t r t 

i 
s 

k 
We have <P ( h 1 ) = <P ( ••• , 0 , ... , 0 , 1 i , 0 ... ; a r) = ( 0 , ... , 0 , 1 r , 0 ... , 0 ; 

r 

(0, ... ,0, 1 , ••• ' r 
Now, t - k s ~ r + Asn. 

r 

Suppose t - k s = r + Asn then t-r = Asn + k s = (An+ k )s. But r r r 

0 < An + k < 1 since 0 < t - r < s. Hence, -An < k < -An+l and this is 
r r 

a contradiction since k is an integer. Hence, t- k s ~ r mod(sn). 
r r 

= ( ... ,0,1. , ... ,0, 
I 
r 

clearly <P is an £-monomorphism. 

1 k 
a r ( i ) 

t 

k +k 
,0, ... ;a r t) = ( ... 0, 1. , ... , 

I 
r 

Secondly, if i 1, ••• ,is belong to different intervals such that iA E 

[nA, nA+l]. Let cA be the number of generators inside the interval 

i A < ••. < 
2 

iA be all the generators inside [nA,nA + 1]. Suppose c 1 + c2 + ... + 
CA 

c 
p 

s. Define X ••• X G 
c n 

p 
by: 



First, if i ' r 
Now, suppose 

that i € [n , n +1] and i E [n , n +1] with i < it. We have 
r r r t t t r 

= ((O;k c 1), ..• ,( ..• ,0,1.,0, ••• ,0;k c ), ... ,(O;k c ), ... (O;k c) 
r 1 rr rt rp 

where li = lr. E [nr' nr+l], and <j>(h 2 ) = ((O;ktc 1) ... (0;ktcr) ... , 
r 1 

Thus, 

= ((O;k c 1+k c 1), ... ,( ... ,0,1.,0, ... ,0;k c + k c), ... 
r t 1 rr tr 

(0, ... ,1. k ,o, ... ,O;k c + k c ), ... ,(O;k c + k c)). Now, r ret r t t t r p t p 

k +k 
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<j>(hlh2) = <j>(( ... ,O,li , ... ,O,l(i +k k)modl'o, ... ;a r t) = ((O;(kr+kt)cl)' 
r t r 

.•. ' ( 0 ' •.• '0 ' 1 • '0 ' ... ' ; ( k +k ) c ) ' ..• ' ... ' .•. ' ( 0 ' ... ' 1 . k '0 ' ... '0 ; 
1 r t r J- ret 

(k +k )c), •.• ,(O;(k +k )c)) since (i +k k)modl belongs to [n ,n +1]. 
rtt rtp tr tt 

Hence, <j>(h 1h2) = <j>(h 1) <j>(h 2 ) and <1> is a homomorphism. Clearly <1> is an 

R.-monomorphism. 

Finally, let m be the least common multiple of c 1 , •. ,cp then H is 

embedded in G x G x ... x G and HE S 
mn mn mn mn 



CHAPTER V 

THE AMALGAMATION PROPERTY 

In this chapter we consider the problem of determining whether or 

not certain classes of 2-groups satisfy the amalgamation property. It is 

known that the class of groups and the class of lattices satisfy the 

amalgamation property, so it is natural to ask whether various classes of 

2-groups have this property. For the class A of abelian 2-groups there 

are several proofs showing that the amalgamation property holds. We will 

discuss the relationship between this property and other important con-

structions of 2-groups and then show it fails for all the quasi-varieties 

of ~-groups constructed in the preceeding two chapters. 

Definition 5.1: Let U be a class of ~-groups and.(G. jiEI) a family 
I 

of 2-groups in U, then G is called the U-free product of (G. jiEI) if the 
I 

following three conditions are satisfied: 

1 ) 

2) 

3) 

G belongs to U 

Whenever a. is a given arbitrary ~-homomorphism from G. into H 
I I 

where H is an ~-group of U, then the entire collection of ~-homomorphisms 

a. can be extended to a suitable 2-homomorphism from G into H: i.e., 
I 

there exists a homomorphism Y from G into H such that Yoj. =a. for every 
I I 

67 
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i, where j. is the natural embedding of G. into G. The U-free product G 
I I 

of (G.j i E:I) is denoted by ~U1Gi. I I E: 

Definition 5.2: Let U be a variety of ~-groups and X a nonempty 

set. The ~-group F is called the U-free ~-group on X if the following 

are true. 

(I) There exists an injection a:X + F such that a(X) generates F. 

(2) If G E: U and B:X + G IS any map, then there is an ~-homomor-

phism Y:F + G such that Yoa = B. A diagram of the situation is given 

below: 

X __ ..:;;a_--...:) F 

, I 
~ /Y 
B~ G ~ 

Since a(X) generates F, we can show that Y is unique. The U-free ~-group 

always exists inside a variety of ~-groups. 

Note: If x has only one element, the free abelian group on X isZ, 

but Z cannot be the free-abelian ~-group on X since Z is totally ordered. 

Theorem 5.3: If U is a variety of ~-groups then the U-free ~-group 

on {x} is z[±]z. 

Proof: Let X= {x} and define a:X + z[±]z by a(x) = (I ,-I). We 

first note show that a(x) generates Z + Z. If (n,m) is an element of 

Z + Z, we may write it as (n,m) = n((l,-l)v(O,O))- m((I,-I)A(O,O)). Next, 

let G be an element of U and B: X+ G be a map. Define Y:Z [±Jz + G 

by Y(n,m) = n(B(x)vO) - m(B(x)AO). Note that Yoa(x) = Y(a(x) = Y((l ,-I)) 

= (S(x)vo) - (-I) (B(x)AO) = B(x)+- (-B(x)vo) = B(x)+- B(x)- B(x). 

Thus, Yoa = s. It remains to prove that Y is an ~-homomorphism. Let 

(n 1 ,m 1), (n 2 ,m2) be elements of zGJz. Then 
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hence, Y is a homomorphism. 

Now, let (n 1,m 1) and (n2 ,m2) be elements of z@z. We have 
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Similarly, Y((n 1,m 1)A(n2 ,m2)) = Y((n 1,m1))A Y((n 2 ,m2)). Thus, Y is an 

£-homomorphism. Hence z[±]z is the u-free £-group on {x}. 

Definition 5.4: Let P be a partially ordered group and U a variety 

of £-groups. If F is an element of U such that 

i) there exists an a-homomorphism a from P into F such that a(P) 

generates F and, 

ii) for each G in U and S:P + G such that S is an a-homomorphism. 

there exists an £-homomorphism Y from F into G such that Yoa = S, 

p ---~G 

then F is called the u-free extension of P and is denoted by FU(P). 

Note that free extensions do not always exist, but free abelian 

£-groups always exist. The following establishes a relation between free 

extensions and free abelian £-groups. 

Theorem 5.5: Let X be a nonempty set and P =G)Z with the trivial 
I X I 

ord~r. Then the fre~ abelian ~-group on X is isomorphic to the abelian 

free extension over P. 

Definition 5.6: A group G is divisible if given any n s Z and x s G 

n there exists a y s G such that x = y . If the group is written additive-

ly, then there exists y s G such that x = ny. 

Note that every abelian group G can be embedded in a divisible 

abelian group. In fact, G is isomorphic to F/K for some free abelian 

group F with subgroup K. But F is isomorphic to@z, so F can be em-

bedded in H =@Q. We can consider K as a subgroup of H so that G can be 

embedded in H/K. Since homomorphic images of divisible groups are divis-

ible, factor groups of divisible groups are divisible. Therefore, H/k 

is divisible. 
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Next, we consider three properties for ~-group varieties because of 

their importance. 

The subalgebra property for free products: If (G.jiE:I) and (H. I iE:I) 
I I 

fami I ies in U with each H. ~-subgroup of u H. is are an G.' then .UI 
I I IE: I 

u 
~-subgroup of .u G· generated by .UrHi. 

I E:l I IE: 

The amalgamation property: Let U be a class of ~-groups, then U 

satisfies the amalgamation property if whenever A, B1 , B2 E U and 

a 1:A + B1, a2 :A + B2 are ~-monomorphisms, then there exists C E: U and 

~-monomorphisms s1:B 1 + C and s2 :B2 + C such that s1oa 1 = s2oa2 . The 

diagram below illustrates this situation. 

A 

-~B2 / 
The divisible embedding property: Every ~-group in U can be em-

bedded in a divisible ~-group of U. 

the 

The subalgebra property is of importance for free products of ~-groups 

because of the rich embedding theory available (see for example Conrad et 

al. [3] and Bernau [I]). The amalgamation property is a very powerful 

device in establishing specific embeddings. In fact the amalgamation 

property implies the divisible embedding property (K. R. Pierce [15]). The 

amalgamation and the subalgebra properties are closely related. 

It is known that the amalgamation property implies the subalgebra 

property (Jonsson [9, Theorem 1.3]). Further, in the presence of the 

following condition, it can be shown that the two are equivalent (Gratzer 

and Lakser [ 6 , Theorem 4]). 
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The congruence extension property: If Gr;:U, where U is a class of 

£-groups and H is a subalgebra of G, then every congruence on H can be ex-

tended to a congruence on G. The congruences on £-groups correspond to 

normal, solid subgroups. Since normal subgroups of normal subgroups need 

not be normal the above property does not hold in general for classes of 

£-groups. However, in the abelian case, congruence extension is easily 

established. 

Now using the representation theorem 3.3 in W. B. Powell and C. Tsin-

akis [ 18 ], it can be shown directly that the subalgebra property holds 

for A. 

Thus, in view of the preceeding discussion we get the next result 

which has also been proved outside the context of free-products in K. R. 

Pierce [15, Theorem Z.3] and [17, Theorem 1] (see also K. R. Pierce 

[ 16 ]) . 

Theorem 5.7: The variety A satisfies the amalgamation property and 

the subalgebra property. 

+ Consider next the varieties M , M, and L =the variety of all 
n 

£-groups satisfying the law [xn,yn] = 1 where nEZ+. It has been proved 

that M+, M-, and L for every n > 1 fail the amalgamation property. We 
n 

will give an argument proving that L fails the amalgamation property that 
n 

can be found in W. B. Powell and C. Tsinakis [ 19, Section 3 and 4.Z]. 

Propos i t ion 5 . 8: The varieties L do not satisfy the subalgebra 
n 

property or the amalgamation property. 

Proof: For each n > 1 we have A i L 
, n and so FL ({x 1,xz}) = 

n 

(Z[±JZ) Lnu(z[±Jz) is not abe 1 ian. Let H 1 and HZ be the £-subgroups of 

FL ({x 1,xz}) generated by {x1} and {xz}, respectively. Then H1 =HZ= 
n 
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L 
z[±Jz so n U H. is isomorphic to FL ({x 1 ,x2}). But the £-subgroup of 

i=l 2 1 n 
' 

FL ({x 1,x2}) generated by H1 UH 2 is abelian and hence not isomorphic to 
n 

L 
n U Hi. 

i=1.2 
Hence L fails the subalgebra property and so also the 

n 

amalgamation property. 

A proof of the following theorem can be found inK. L. Pierce 

[15, Theorem 3. 1]. 

Theorem 5.9: The variety L fails the amalgamation property. 

Up to this time A was the only known £-group variety satisfying the 

amalgamation property. The subsequent considerations will lead to the 

main result of this chapter which asserts that all of the quasi-varieties 

(Q~In~o), (P~In~o), and (Hnln~o) constructed in the third and fourth chap­

ters fail the amalgamation property. 

We start by introducing some additional terminology. Let U be a 

class of £-groups. By the amalgamation base, AMAL(U), we mean those 

£-groups A of U such that, for all B1, B2 of U and all embeddings 

81:A + B1, 82 :A + B2 , there exists C in U and embeddings ~ 1 :B 1 + C, 

~2 :B 2 + C such that ~ 1 8 1 = ~2 8 2 . It is clear that U has the amalgamation 

property if and only if AMAL(U) = U. The next result is implicit in 

K. R. Pierce [ 15 ], (see Theorem 5.1). 

Proposition 5.10: If U is an £-group quasi-variety and Z E AMAL(U), 

then U has the divisible embedding property. In particular, if U satis-

fies the amalgamation property, then it also satisfies the divisible 

embedding property. 

Let us remark that proposition 5.10 yields an alternative proof of 

the fact that the varieties L , n>l, do not satisfy the amalgamation 
n 

property. Indeed, A:SL if n>l (Weinberg [23]), and clearly a divisible 
n 
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' £-group in L is abelian. It follows that L does not satisfy the divisi-
n n 

ble embedding property and hence the amalgamation property. 

Let us describe briefly Reilly's construction of quasi-representable 

varieties. Consider a countable infinite set X' = XU{z}, z f X, and let 

F be the free group on X. For each wE F, i(w) will denote the £-group 

law Z+ A (w-l z-w) . F b l f d f · F ( ) { I or any non-empty su c ass U o L e 1 ne U = w E F 

G F 1(w) for every G E U}. Also for any non-empty subset W of F define 

Q(w) = {G E LIG I= 1(w) for every wE W}. It is immediate that if W is a 

non-empty subset of F, then Q(W) is an £-group variety, and less trivially 

that if U is a non-empty subclass of L, then F(U) is a fully invariant 

subgroup ofF (Reilly [20, Theorem 2.1]). Following, Reilly we shall 

call these varieties quasi-representable. 

In regard to the position of these varieties in the lattice of 

1-group varieties, we note that Q(F) = R is the least quasi-representable 

variety, and hence each of these varieties contains R. 

For each positive integer n, let B denote the fully invariant sub­
n 

group of F defining the Burnside variety of exponent n. The quasi-repre-

sentable varieties Q(B) will play a key role in our considerations. Note 
n 

that G belongs to Q(Bn) if and only if for all elements a,b of G, 

a+ (b-na-bn) 0. 

Theorem 5.11: Let U be an 1-group quasi-variety such that U $ R, 

and U ~ Q(B ) for some positive integer n. Then U does not have the 
n 

divisible embedding property and hence in particular, the amalgamation 

property. 

Proof: Suppose, G is a divisible £-group in U ~ Q(B ) , and let a,b 
n 

be elements of G. 
n 

There exists c E G such that b = c . Hence, 
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(see for example Conrad [ 3 , Theorem 1.8]). Thus since U $ R, U cannot 

have the divisible embedding property. That U fails the amalgamation 

property follows from proposition 5. 10. 

Note that each Hk contains H0 and H $ R, but H ~ L ~ Q(B ). 
o o n n 

Hence, according to the above H fails the divisible embedding property, 
0 

and so also the amalgamation. Thus, every Hk fails the amalgamation 

property, since H0 ~ Hk ~ Ln for every k. 

Therefore the following theorem holds. 

Theorem 5.12: For every k, the quasi-variety Hk constructed in 

Chapter IV fails the amalgamation property. 

Proof: Clearly, Hk f R and Hk :; Ln :; 

the amalgamation property. 

Q(B ) . 
n 

So by 5. 11 Hk fa i Is 

Next, we need to show that the two chains of distinct quasi-varieties 

constructed in the third chapter fail the amalgamation property. But, 

first we need the following lemmas: 

Lemma 5.13: There exists a totally ordered set I with distinct 

. Y h h n Yn. o-permutatlons a,S, sue t at a= S = 

Proof: Let G be any £-group which is not an R-group (see 3.6). Then 

n n there exist x, y, z E G and n > I such that x = y = z and x ~ y ~ z. 

By Holland 1 s theorem G can be embedded in the £-group A(I) of o-permuta-

tions of some totally ordered set I. Let a,S,Y in A(I) be the elements 

corresponding to x,y,z. Then a= Sn = Yn and a,S,Y are distinct. 

Lemma 5.14: There exists a totally ordered set I with a,S,Y as in 

5 . 1 3 where a ( i ) > and S(i) > for each i £I. 

Suppose a(i) s i for all i E I then replace a ~ith a-l so that 

a(i) > i for every i E I. \~e know that a(i) ~ i for all i, for if not a 

would be the identity and thus so would SandY. Now let I 1 = {i E II 

a ( i) > i}. So I I ~ cp. If s ( j) s i' for some i E I I' then s2 ( i) s 



S(i) < i. Thus, Sn(i) ::;; i. But a(i) = Sn(i), so Sn(i) > i. Thus 

13 ( i ) > i for a 11 i s I 1 • 

To complete this chapter a final important result will prove 

the existence of algebraic structures closer to A than the Medvedev 

varieties M+, M which fai 1 the amalgamation property. 

Theorem 5.15: For every n ~ O, Q and P constructed in the third 
n n 

chapter fail the amalgamation property. 

Proof: The techniques,~sed prove that Q0 (see Chapter I I I) fails 

the amalgamation property will also establish the same result for Qn 

The proof is similar for P . 
n 

Let A be a totally ordered set such that it admits three distinct 

o-automorphisms a, S, Y such that a= Bn = Yn for some n > 0, such that 

;(i) > i for every i s A. By lemmas 5.12 and 5.13 we know of the exis-

- -tence of such A, a, 13, and Y. 

Now, 1 e t G = E) Z ordered by : 
A 

maximum index with respect to a. i 0. 
I 

a ~ 0 iff a. ~ 0 where i is the 
I 

Also, let a, 13, Y be o-automor-

phisms of G defined by: a(a) = b where bi = aa(i), 13(a) = c where 

ci = aS(i) and, Y(a) = d where di = aY(i). Note that a= 13n = Yn since 
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-n -n 
a= 13 = Y . Consider G(a), G(l3) and G(Y) that are generated respectively 

by: 

m = (O,a) and n. 
I 

r = (O, 13) and s. 
I 

and 

- 0 - t(l 
(a,a ) where a. = 

J 0 

(b,l3°) where b. = 
J 

{0
1 

if j=i 

if ji i 

if j=i 

if ji i 
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t (O,Y) and - 0 -u. = (c,Y ) where c. 
I J 

if j=i 

if j#i 

Now, let G1, G2 , G3 be the t-subgroups of G(a), G(B) and G(Y), gen-

era ted respective 1 y by: m and n., s and t. ' t and u. for a fixed i E: fl.. 
I I I 

Note that Gl' G2, G3 E: Q since each of these is generated by two elements 
0 

x and such that y X and the {yXn I in Z} is independent. y, << y << X set n 

Next, we wi 11 prove that if J 1:G 1 + G2 and J 2 :G 1 + G3 are the natural em-

beddings, then there is no H E: Q ' such that there exists cr 1 :G2 +Hand 
0 

-cr2 :G 2 + H with () l J l = 0 2J2. Note that Q $ R and every t-group in Qo is 
0 

R-group (i.e. if n n then X = y) • Assume there exists such H an X = y an 

and that the amalgamation property holds. Then, there exists cr 1:G2 + H 

and cr 2 :G 3 + H such that cr 1J 1 = cr 2J 2 . So (cr 1 (O,B))n = cr 1 ((O,s)n = 

= 

Thus, cr 1(0,B) = cr2 (0,Y) since H is an R-group. 

we have (O,S) (g,S 0) (O,s- 1) = (S(g) ,B) (O,S-l) = 

Note that for every g E: G 

(O,Y)(g,y 0)(0,Y- 1) = (Y(g),YO). 

0 (B(g) ,S ) . Similarly, 

0 
Thus a 1J 1 (S(g) ,aO) = a 1 (S(g) ,S ) = 

0 -1 cr 1 ((o,s) (g,S) (o,s )) 
0 -1 0 cr2 ((0,Y) (g,Y )(O,Y )) cr2 (Y(g) ,Y ) = = 

S(g) = Y(g.) =since cr 1J 1 is a monomorphism. So S = Y since g was chosen 

arbitrarily and we have a contradiction to SandY being distinct. So the 

amalgamation property fails in Q. 
0 

- -t-groups in P or Q are R-groups. 
n n 

- -Hence, it fails in P and Q since all 
n n 
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