ON QUASI-VARIETIES OF LATTICE ORDERED GROUPS

GENERATED BY CYCLIC EXTENSIONS

By
MONA YOUSSEF CHERRI ll
Licence D'enseignement
Lebanese University Beirut, Lebanon
1979
Master of Science
Oklahoma State University
Stillwater, Oklahoma
May, 1982

```
Submitted to the Faculty of the Graduate College
    of Oklahoma State University
    in partial fulfillment of the requirements
        for the Degree of
    DOCTOR OF PHILOSOPHY
        December, 1985
```

Thesis
1985 D
C5 220
cop. 2

ON QUASI-VARIETIES OF LATTICE ORDERED GROUPS GENERATED BY CYCLIC EXTENSIONS

Thesis Approved:

$\frac{\text { DAman A. Nluhan }}{\text { Dean of the Graduate College }}$

PREFACE

A variety of ℓ-groups is an equational class consisting precisely of those ℓ-groups which satisfy a given set of equations. Alternatively, varieties are those classes of ℓ-groups closed with respect to ℓ-subgroups, cardinal products, and ℓ-homomorphic images. A quasi-variety of ℓ-groups is a class of ℓ-groups closed with respect to ℓ-subgroups, cardinal products, and ultraproducts. These can also be described as the classes which are determined by given sets of implications. Thus, a quasi-variety of ℓ-groups is a weaker algebraic structure than a variety of ℓ-groups.

In Chapter I we give a brief review of the theory of partially ordered groups, wreath products, and notations that are necessary for the discussion that follows. Chapter II is devoted primarily to considering special types of ℓ-groups called cyclic extensions. In this chapter we also give several examples which are the most general types of cyclic extensions. Several theorems are proved which describe when two cyclic extensions can be compared.

In the third chapter we study representable ℓ-groups. An ℓ-group is representable iff it satisfies the equation

$$
(x \wedge y)^{2}=x^{2} \wedge y^{2}
$$

Let A be the variety of abelian ℓ-groups, M^{+}and M^{-}be the Medvedev varieties, and R be the variety of representable ℓ-groups. In this chapter we first construct two infinite chains of distinct quasi-varieties
between A and $R \cap A^{2}$ using properties of M^{-}. Similarly, infinite chains of distinct quasi-varieties of representable ℓ-groups can be constructed using properties of M^{+}.

Chapter IV contains a study of nonrepresentable, normal valued ℓ-groups. An ℓ-group G is normal valued iff for every $a, b \in G a^{-1} b^{-1} a b$ $\ll|a| v|b|$. Let G_{n}, S_{n}, H_{o}, and L_{n} be the Scrimger ℓ-group, the variety generated by it, the quasi-variety generated by it, and the variety of ℓ-groups defined by $\left[x^{n}, y^{n}\right]=1$, respectively. We know that if n is prime S_{n} covers A and is contained in L_{n} in the lattice of varieties. First, we find a set of implications satisfied by H_{0} and then construct an ℓ-group that fails those implications but contains G_{n}. Next, we generalize this construction to get an infinite chain of distinct nonrepresentable ℓ-groups between A and $L_{n} \cap A^{2}$, and hence an infinite chain of distinct quasi-varieties of nonrepresentable ℓ-groups between A and $L_{n} \cap A^{2}$.

Chapter V contains a study of three important properties of classes of ℓ-groups: the subalgebra property, the divisibility property, and the amalgamation property. It is devoted to proving that every quasi-variety of ℓ-groups which is an element of one of the chains constructed in either Chapters III or IV fails the amalgamation property. Also, relations between these properties are given and used to establish whehter or not a quasi-variety of ℓ-groups satisfies or fails the amalgamation property.

table of contents

Chapter Page
I. INTRODUCTORY CONCEPTS AND NOTATIONS 1
II. CYCLIC EXTENSION 6
III. REPRESENTABLE ℓ-GROUPS 17
IV. NONREPRESENTABLE ℓ-GROUPS 48
v. THE AMALGAMATION PROPERTY. 67
BI BLIOGRAPHY 78

CHAPTER I

INTRODUCTORY CONCEPTS AND NOTATION

In this chapter we review many of the basic definitions and notations necessary for our study of quasi-varieties of ℓ-groups. A more complete discussion can be found in Bigard [2].

By Z and R we will mean the sets of integers and real numbers, respectively. Unless otherwise specified, these sets will have their usual operations and order.

A partially ordered set (poset) is a pair (A, \leq) where A is a set and s is a relation on A which is reflexive, antisymmetric, and transitive. The set (A, \leq) is called a chain if \leq defines a total order on A (i.e., if $a, b \in A$ either $a \leq b$ or $b \leq a)$. If A, B are partially ordered sets, then we will use the following notation. By $A-B$ we mean the set $\{a \varepsilon A \mid a \nmid B\}$. Let A be a poset and H a subset of A. The set H has an upper bound (lower bound) if and only if there exists an element $x \in A$ such that $a \leq x(x \leq a)$ for every element a $\varepsilon \mathrm{H}$. Now, (A, \leq) is a lattice if (A, s) is a poset such that for every two elements a and b in P the least upper bound and the greatest lower bound of the set $\{a, b\}$ exist. As for notations the least upper bound of $\{a, b\}$ is denoted by $a v b$ (a join b), and the greatest lower bound of $\{a, b\}$ by $a \wedge b$ (a meet b).

The lexicographic product of A and B is the usual direct product $\overrightarrow{A \times} B$ ordered by the relation $\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right)$ if and only if $a_{1}<a_{2}$ or $a_{1}=a_{2}$ and $b_{1}<b_{2} . \overrightarrow{A x} B$ is ordered analogously. Now, if ($A, ., \leq$ is a
group, then A^{-1} will be $\left\{a^{-1} \mid a \varepsilon A\right\}$. Also, $a_{1} \ll a_{2}$ for $a_{1}, a_{2} \varepsilon A$ means $a_{1}^{n} \leq a_{2}$ for all $n \varepsilon Z$.

A partially ordered group is a group (G, .) together with a partial order \leq such that $\mathrm{a} \leq \mathrm{b}$ implies $\mathrm{ac} \leq \mathrm{bc}$ and $\mathrm{ca} \leq \mathrm{cb}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}, \mathrm{c} \varepsilon \mathrm{G}$. If the order is a lattice order, then G is called an l-group, and if the order is total, then G is called a totally ordered group.

If X is any ordered group, where 0 is the identity element, then X^{+} will denote $\{x \in x \mid x \geq 0\} . X^{+}$is called the positive cone of X. This set completely determines the partial order of the set structure. For X^{+}to be the positive cone of a partially ordered group, it is necessary and sufficient that $X^{+} \wedge\left(X^{+}\right)^{-1}=\{0\}, X^{+} \cdot X^{+} \leq X^{+}$and $x X^{+} x^{-1} \leq X^{+}$for all $x \in X$.

Let X be an ordered set and $\gamma: X \rightarrow X, \gamma$ is an o-permutation of X if and only if γ is a bijective map where if $x \leq y$ then $\gamma(x) \leq \gamma(y)$. An o-homomorphism is a homomorphism $\phi: X \rightarrow Y$ between partially ordered groups such that $x_{1} \leq x_{2}$ implies $\phi\left(x_{1}\right) \leq \phi\left(x_{2}\right)$. An o-monomorphism is an injective o-homomorphism while an o-epimorphism $\phi: X \rightarrow Y$ is a surjective o-homomorphism such that $\phi\left(X^{+}\right)=Y^{+}$. An o-isomorphism is a bijection ϕ such that both ϕ and ϕ^{-1} are o-epimorphisms.

An ℓ-homomorphism is a homomorphism $\phi: X \rightarrow Y$ such that $\phi\left(x_{1} \wedge x_{2}\right)=$ $\phi\left(x_{1}\right) \wedge \phi\left(x_{2}\right)$ and $\phi\left(x_{1} \vee x_{2}\right)=\phi\left(x_{1}\right) v \phi\left(x_{2}\right)$ for all $x_{1}, x_{2} \varepsilon X$. As in the preceding paragraph, we define l-monomorphism, l-epimorphism, and l-isomorphism.

A subset S of a partially ordered group X is called convex if $0 \leq x \leq s$ and $s \varepsilon S$ imply $x \varepsilon S$. An o-ideal \mid of X is a kernel of some o-epimorphism, and if X is lattice ordered, the kernel of an ℓ-epimorphism is called an ℓ-ideal. For ℓ-groups, the ℓ-ideals are the convex normal ℓ-subgroups (i.e., subgroups that are also sublattices).

If G is an ℓ-group and C a normal convex ℓ-subgroup of G, then $G(C)=$ $\{x C \mid x \in G\}$ is the set of left cosets. If C is a maximal convex ℓ-subgroup with respect to not containing a where a a, then C is a value of a in G. Now C is prime if whenever $C=A \cap B$ where A and B are convex ℓ-subgroups of G then $A=C$ or $B=C$. In this case let u be the canonical map from G into Aut $G(C)$ (i.e., automorphisms of the set $G(C)$) defined by: for every g, $h \& G,(u(g))(h c)=g h C$. For $u(G)$ to operate transitively in $G(C)$, means for every x and $y \varepsilon G(C)$, there exists $\phi \varepsilon u(G)$ such that $\phi(x)=y$. An ℓ-group G is transitive if there exists a totally ordered set T and an ℓ-monomorphism $u: G \rightarrow$ Aut T, such that $u(G)$ operates transitively in T. Holland has proved that every ℓ-group can be embedded in Aut (Λ) for some totally ordered set Λ where the cardinal of Λ is smaller than or equal to the cardinal of G. Hence, every ℓ-group is isomorphic to a subdirect product of transitive groups (see later in the chapter for the definition of subdirect product).

If X is lattice ordered and $X \varepsilon X$, then $X^{+}=x v o$ is called the positive part of $x, x^{-}=\left(x^{-1}\right)$ vo is called the negative part of x, and $|x|=x v x^{-1}$ is called the absolute value of x. Note that $x=x^{+}\left(x^{-}\right)^{-1}$ and $|x|=x^{+} \cdot x^{-}$. Also, if x and y are elements of $x, y^{x}=x^{-1} y x$ is called the conjugate of y by x.

If x and y are ordered, algebraic structures, then $X+Y$ will denote the usual direct sum without regard to order. If we write $X+Y$, we mean the cardinal sum which is the usual direct sum but with order determined by $(X+Y)^{+}=\left\{(x, y) \varepsilon X+Y \mid x \varepsilon X^{+}, y \in Y^{+}\right\}$. If X and Y are two posets, then $X \times Y=\{(a, b)$ such that $a \varepsilon X$ and $b \varepsilon Y\}$ with the ordering \leq defined by $(a, b) \leq(c, d)$ if and only if $a \leq b$ and $c \leq d . ~(X \times Y, \leq)$ is called the direct product of X and Y. Also, if X and Y are ℓ-groups,
then the direct product is the cardinal product of X and Y.
Note that all types of products and sums can be defined for any collection $\left(X_{\alpha}\right)_{\alpha \in A}$ of ordered sets.

A subset S of a direct product $\alpha_{\alpha}^{\pi} A S_{\alpha}$ is called a subdirect product of the S_{α} if the projection on each S_{α} is a surjection. An object S is said to be subdirectly irreducible if whenever it is a subdirect product of a collection $\left(S_{\alpha} \mid \alpha \varepsilon A\right)$, then at least one of the projections is an isomorphism. Let C be a class of objects, then every object in C is a subdirect product of subdirectly irreducible objects in C if and only if C is an equational class. This is also equivalent to the condition that C is closed under the formation of products, substructures, and quotients. An equational class C is called a variety of objects. In particular, we denote by \mathbb{A}, the variety of abelian ℓ-groups, \underline{R} the variety of representable ℓ-groups where every ℓ-group G satisfies the equation $x^{+}\left(y^{-1} . x^{-1}\right.$. $y)=I_{G}$ for any x, y in the ℓ-group G and where I_{G} is the identity element in G, N the variety of normal valued ℓ-groups and L the variety of all l-groups. We know that $A<R<N<L$.

Let I be an index set with a minimal element z, F a subset of I such that F is stable with respect to finite intersection, z does not belong to F, and $x \varepsilon F$ and $t \geq x$ implies $t \varepsilon F$. Then F is a filter of I. It is an ultrafilter if it is a maximal filter. If C is a class of ℓ-groups, ($G_{\alpha} \mid \alpha \varepsilon I$) a collection of elements of C, and U an ultrafilter over I, then an ultraproduct is $\alpha \underset{\varepsilon}{\pi}{ }^{G_{\alpha}} / U$. Now, if C is closed under the formation of products, substructures, and ultraproducts, then C is called a quasivariety of objects. And every object in C is a direct product of ultraproducts (i.e., $j{ }_{\varepsilon}^{\pi} I i^{\pi} I_{\alpha} G_{i} / U_{\alpha}$ where I, I_{α} are index sets, U_{α} an ultrafilter over I_{α} and G_{i} an object in C for every $\left.i\right)$.

Let A and B be groups, we denote by $A^{[B]}$, the group of all functions from B into A with the usual multiplication and by $A^{(B)}$ the subgroup of $A^{[B]}$ consisting of all such functions with finite support. For each $f \varepsilon A^{[B]}$ and $b \varepsilon B$ we define a function $f(b)$ by $f(b)\left(b^{\prime}\right)=f\left(b b^{\prime}\right)$. Consider the set product $B \times A^{[B]}$ with multiplication given by $(b, f)\left(b^{\prime}, f^{\prime}\right)=$ (bb', $\left.f\left(b b^{\prime}\right) \cdot f(b)\right)$, then $B \times A^{[B]}$ is called the big wreath product of the group A by the group B and is denoted by $A W r B$, while the subgroup $B \times A^{(B)}$ of $B \times A^{[B]}$ is their small wreath product and is denoted by A wr B.

CYCLIC EXTENSIONS

In this chapter special types of ℓ-groups are studied along with methods of constructing them. In later chapters their importance will be seen in generating quasi-varieties and in determining whether or not a class of ℓ-groups fails the amalgamation property.

Definition 2.1 Let ($G,$.) be an ℓ-group, α an ℓ-automorphism of G, and

$$
\mathrm{G}(\alpha)=\mathrm{G} x\langle\alpha\rangle=\left\{\left(\mathrm{g}, \alpha^{\mathrm{n}}\right) \mid \mathrm{g} \varepsilon \mathrm{G}, \mathrm{n} \in Z\right\}
$$

$G(\alpha)$ is called the cyclic extension of G by α.
$G(\alpha)$ carries a natural group structure if we define multiplication as follows:

$$
\left(g, \alpha^{n}\right) \cdot\left(h, \alpha^{m}\right)=\left(g \cdot \alpha^{n}(h), \alpha^{n+m}\right)
$$

Note that $\left(g, \alpha^{n}\right)^{-1}=\left(\alpha^{-n}\left(g^{-1}\right), \alpha^{-n}\right)$, and the identity in $G(\alpha)$ is $\left(1_{G}, \alpha^{0}\right)$. Also, define an order \leq on $G(\alpha)$ by $\left(g, \alpha^{n}\right) \leq\left(h, \alpha^{m}\right)$ iff $n<m$ or $n=m$ and $g \leq h$. This defines a lattice order on $G(\alpha)$. In fact,

$$
\left(g, \alpha^{n}\right) \wedge\left(h, \alpha^{m}\right)= \begin{cases}\left(g, \alpha^{n}\right) & \text { if } n<m \\ \left(h, \alpha^{m}\right) & \text { if } n>m \\ \left(g \wedge h, \alpha^{n}\right) & \text { if } n=m\end{cases}
$$

and

$$
\left(g, \alpha^{n}\right) \vee\left(h, \alpha^{m}\right)=\left\{\begin{array}{ll}
\left(g, \alpha^{n}\right) & \text { if } n>m \\
\left(h, \alpha^{m}\right) & \text { if } n<m \\
\left(g \vee h, \alpha^{n}\right) & \text { if } n=m
\end{array} .\right.
$$

Further, $G(\alpha)$ is an ℓ-group. We need to verify only that if a, b, c $\varepsilon G(\alpha)$ where $a \leq b$, then $a c \leq b c$ and $c a \leq c b$. Since a, b, c are in $G(\alpha)$ write $a=\left(g, \alpha^{n}\right), b=\left(h, \alpha^{m}\right)$, and $c=\left(f, \alpha^{k}\right)$. Now $a \leq b$ implies that $n<m$ or $n=m$ and $g \leq h$. If $n<m$, then $n+k<m+k$ and $a c=\left(g, \alpha^{n}\right)\left(f, \alpha^{k}\right)=$ $\left(g \cdot \alpha^{n}(f), \alpha^{n+m}\right) \leq\left(h \cdot \alpha^{m}(f), \alpha^{m+k}\right)=\left(h, \alpha^{m}\right) \cdot\left(f, \alpha^{k}\right)=$ bc. Otherwise, if $n=m$, then $g \leq h$ implies $g \cdot \alpha^{n}(f)=g \cdot \alpha^{m}(f) \leq h \cdot \alpha^{m}(f)$ and $a c \leq b c$. We can verify in a similar way that $\mathrm{ca} \leq \mathrm{cb}$.

One remark is that G can be embedded in $G(\alpha)$, and is isomorphic to $G(\alpha)$ whenever α is the identity automorphism. To see this just identify each element g of G with the element (g, α) of $G(\alpha)$.

It is also important to observe that $G(\alpha)$ is abelian iff G is abelian and α is the identity map. Clearly, if $G(\alpha)$ is abelian, then G is abelian since $G \leq G(\alpha)$. Suppose α is not the identity automorphism. Then there exists an element g of G such that $\alpha(g) \neq \mathrm{g}$. Let $\mathrm{x}=\left(\mathrm{g}, \alpha^{0}\right)$, and $y=\left(l_{G}, \alpha\right)$. The two elements x, y of $G(\alpha)$ do not commute, since $x \cdot y=$ $\left(\mathrm{g}, \alpha^{0}\right)\left(1_{\mathrm{G}}, \alpha\right)=\left(\mathrm{g} \cdot \alpha^{0}\left(1_{\mathrm{G}}\right), \alpha\right)=\left(\mathrm{g} \cdot 1_{\mathrm{G}}, \alpha\right)=(\mathrm{g}, \alpha)$, and $\mathrm{y} \cdot \mathrm{x}=\left(\mathrm{l}_{\mathrm{G}}, \alpha\right)\left(\mathrm{g}, \alpha^{0}\right)=$ $\left(1_{G} \cdot \alpha(g), \alpha\right)=(\alpha(g), \alpha)$.

Cyclic extensions of ℓ-groups have been used in the literature to generate varieties and to study the amalgamation and divisible embedding properties. The following example was used by Feil [4] to create uncountably many different varieties.

Example 2.2. Let $G=(R,+)$, t any number inside the interval $[0,1]$, and α_{t} an automorphism of G defined by the following: For every r in G, $\alpha_{t}(r)=\left(\frac{t}{t+l}\right) r$. Consider $G\left(\alpha_{t}\right)$ to be the cyclic extension of the real numbers. Let U_{t} be the variety generated by $G\left(\alpha_{t}\right)$. The variety U_{t} strictly contains A (variety of abelian ℓ-groups) and is contained in R (variety of representable ℓ-groups) since U_{t} is totally ordered.

In [4] Feil established the following result.
Theorem 2.3. The varieties $U_{t}(0<t<1)$ constructed in the above example are distinct and form ancountable chain between A and R.

In order to prove this theorem, first he proved that if $0 \leq t \leq$ $\frac{p}{q} \leq 1$ where p, q are in Z_{+}then $G\left(\alpha_{t}\right)$ satisfies the equation

$$
|[x,|[x, y]|]|^{p} \geq|[x, y]|^{q} .
$$

Further, if $0 \leq \frac{p}{q} \leq t \leq 1$, then $G\left(\alpha_{t}\right)$ fails the equation for p and q.
More generally, cyclic extensions can also be constructed by using not just permutations over the totally ordered group itself, but also permutations over any totally ordered set. Therefore, the following examples arise.

Example 2.4. (i) Let G be an ℓ-group, I a totally ordered set, and $\bar{\alpha}$ an o-permutation of I. Let $\bar{G}=\oplus_{i \in I} G_{i}$, where $G_{i} \simeq G$. Define an automorphism $\alpha: \bar{G} \rightarrow \bar{G}$ by $\alpha(\bar{g})=\bar{h}$ where $\bar{h}_{i}=\bar{g}_{\bar{\alpha}(i)}$. Consider $\bar{G}(\alpha)$ the cyclic extension of \bar{G} by α. If G is any group, then $\bar{G}(\alpha)$ is generated by the set of elements $\left\{e, e_{i} \mid i \varepsilon I\right\}$ where

$$
\mathrm{e}=(\overline{0}, \alpha)
$$

$$
e_{i}=\left(\bar{a}, \alpha^{0}\right) \text { where } \bar{a}_{j}=\left\{\begin{array}{lll}
l_{G} & \text { if } j=i \\
0 & \text { if } j \neq i
\end{array}\right. \text { and }
$$

I_{G} is the identity element of G.
Multiplication in $\bar{G}(\alpha)$ is given by

$$
\left(\bar{g}, \alpha^{\mathrm{n}}\right)\left(\overline{\mathrm{h}}, \alpha^{\mathrm{m}}\right)=\left(\overline{\mathrm{g}}+\alpha^{\mathrm{n}}(\overline{\mathrm{~h}}), \alpha^{\mathrm{n}+\mathrm{m}}\right)=\left(\overline{\mathrm{k}}, \alpha^{\mathrm{n}+\mathrm{m}}\right)
$$

where $\bar{k}_{i}=\bar{g}_{i}+\bar{h}_{\bar{\alpha}^{n}(i)}$.
(ii) Let $G={ }_{Z}^{\oplus} Z$ and $\alpha: G \rightarrow G$ be defined as follows: for an element $\overline{\bar{a}}$ of G, write $\bar{a}=\left(a_{i}\right){ }_{i \varepsilon Z}$ where $a_{i} \varepsilon Z$ and $a_{i} \neq 0$ for only finitely many indexes in $Z, \alpha(\bar{a})=\bar{b}$ where $\bar{b}=\left(b_{i}\right)_{i \varepsilon Z}, \quad b_{i} \varepsilon Z$ and $b_{i}=a_{i+1}$. Consider the cyclic extension, $G(\alpha)$, of G by α. Note that $\alpha^{n}(\bar{a})=\bar{c}=\left(c_{i}\right)_{i \varepsilon Z}$ where $c_{i}=a_{i+n}$. Multiplication is defined by

$$
\left(\bar{g}, \alpha^{n}\right)\left(\bar{h}, \alpha^{m}\right)=\left(\bar{g}+\alpha^{n}(\bar{h}), \alpha^{n+m}\right)=\left(\bar{k}, \alpha^{n+m}\right)
$$

where $k_{i}=g_{i}+h_{i+n}$.
Now, let $Z w r Z$ (i.e. the small wreath product of Z and Z), be the set $\left\{(\bar{g}, n)\right.$ where $\bar{g}=\left(g_{i}\right)_{i \varepsilon Z}$ where $g_{i} \neq 0$ for finitely many $i^{\prime} s, g_{i} \varepsilon Z$, and neZ\}. Multiplication in $Z w r Z$ is defined by

$$
(\bar{g}, n)(\bar{h}, m)=(\bar{k}, n+m) \text { where } \bar{k}_{i}=\bar{g}_{i}+\bar{h}_{i+n} \text {. }
$$

Note that $G(\alpha)$ is isomorphic to $Z w r Z$. If ϕ is the map from $G(\alpha)$ into ZwrZ defined by $\phi\left(\left(\bar{g}, \alpha^{n}\right)\right)=(\bar{g}, n)$, then ϕ is a well-defined isomorphism. First, let us show that ϕ is a homomorphism. Let (\bar{g}, α^{n}) and (\bar{h}, α^{m}) be two arbitrary elements of $G(\alpha)$. Then, $\phi\left(\left(\bar{g}, \alpha^{n}\right) \cdot\left(\bar{h}, \alpha^{m}\right)\right)=\phi\left(\left(\bar{g}+\alpha^{n}(\bar{h})\right.\right.$,
$\left.\left.\alpha^{n+m}\right)\right)=\left(\bar{g}+\alpha^{n}(\bar{h}), n+m\right)=(\bar{k}, n+m)$ where $k_{i}=g_{i}+h_{i+n}$. But $(\bar{g}, n)(\bar{h}, m)=$ $(\bar{k}, n+m)$. Therefore, $\phi\left(\left(\bar{g}, \alpha^{n}\right) \cdot\left(\bar{h}, \alpha^{m}\right)\right)=\phi\left(\left(\bar{g}, \alpha^{n}\right)\right) \phi\left(\left(\bar{h}, \alpha^{m}\right)\right)$. The map ϕ is clearly a bijection.
(iii) Let G in (ii) be furnished with the following order: $\left(\bar{a}, \alpha^{n}\right) \geq 0$ if and only if $n>0$ or $n=0$ and $a_{i} \geq 0$ where is is the maximum index with respect to $a_{i} \neq 0$. Then G is an ℓ-group and is isomorphic to $W^{-}=Z \vec{W} r Z$, where W^{-}is $Z w r Z$ with a similar order as G, (i.e. $(\bar{g}, n) \geq 0$, if and only $n>0$ or $n=0$ and $g_{i} \geq 0$ where $i s$ is the maximum index with respect to $g_{i} \neq 0$). Thus, ϕ defined in (ii) is an ℓ-isomorphism. Hence, W^{-}is a cyclic extension.

Now, if we change the order on G, and define it as follows: $\left(\bar{a}, \alpha^{n}\right) \geq 0$ if and only if $n \geq 0$ or $n=0$ and $a_{i} \geq 0$ where is is the minimum index with respect to $a_{i} \neq 0$, then $W^{+}=Z_{W}^{\leftarrow} r Z$, which is $Z w r Z$ with similar order as G, (i.e., $(\bar{g}, n) \geq 0$ if and only if $n \geq 0$ or $n=0$ and $g_{i} \geq 0$ where i is the minimum index with respect to $g_{i} \neq 0$). Again, ϕ in (ii) is an ℓ-homomorphism, and W^{+}is a cyclic extension.

Let M^{+}and M^{-}be the varieties generated by W^{+}and W^{-}respectively, Medvedev [13] has established that. M^{+}and M^{-}are both covers of A.
(iv) Let $G={ }_{n}^{n}-1, \bar{\alpha}$ a permutation of the set $\{0,1,2, \ldots, n-1\}$ defined by $\bar{\alpha}(i)=(i+1) \operatorname{modulo}(n)$. Define an automorphism $\alpha: G \rightarrow G$ by, $\alpha(\mathrm{g})=\mathrm{h}$ where $\mathrm{h}_{\mathrm{i}}=\mathrm{g}_{\bar{\alpha}(\mathrm{i})} \mathbf{i}=0, \ldots, \mathrm{n}-1 . \quad$ Consider $G(\alpha)$ the cyclic extension of G by α. Multiplication in $G(\alpha)$ is defined by $\left(g_{0}, \ldots, g_{n-1} ; \alpha^{m}\right)$ $\left(h_{0}, \ldots, h_{n-1} ; \alpha^{p}\right)=\left(g_{0}+h_{\alpha}^{m}(0), \ldots, g_{i}+h_{\alpha}^{m}(i), \ldots, g_{n-1}+h_{\alpha}^{m\left({ }_{n-1}\right)} ; \alpha^{m+p}\right)=$ $\left(g_{0}+h_{0+m}, \ldots, g_{i}+h_{i+m}, \ldots, g_{n-1}+h_{n-1+m} ; \alpha^{m+p}\right)$ where all subscripts are read modulo n.

Now, the Scrimger ℓ-group G_{n} of order n is defined by Scrimger [21] as follows:

$$
G_{n}=\left\{\left(a_{0}, \ldots, a_{n-1} ; n\right) \text { where } n \varepsilon Z \text {, and } a_{i} \varepsilon Z \text { for every } i=0, \ldots, n-1\right\}
$$ furnished with the following order and multiplication. An element $\left(a_{0}, \ldots, a_{n-1} ; m\right) \geq 0$ if and only if $m>0$ or $m=0$ and $a_{i} \geq 0$ for every $i=0, \ldots$, $n-1$, and $\left(a_{0}, \ldots, a_{n-1} ; m\right)\left(b_{0}, \ldots, b_{n-1} ; p\right)=\left(a_{0}+b_{0+m}, \ldots, a_{n-1}+b_{n-1+p} ; m+p\right)$ where all subscripts are read modulo n.

Next, define an order over $G(\alpha)$ as follows: $\left(g_{0}, \ldots, g_{n-1}: \alpha^{m}\right) \geq(0,0)$ if and only if $m>0$ or $m=0$ and $g_{i} \geq 0$ for every $i=0, \ldots, n-1$. Then $G(\alpha)$ is an l-group and is isomorphic to G_{n}. Let $\phi: G(\alpha) \rightarrow G_{n}$ be a map defined by $\phi\left(\left(g_{0}, \ldots, g_{n-1} ; \alpha^{m}\right)\right)=\left(g_{0}, \ldots, g_{n-1} ; m\right)$. Easily, we can prove as in (ii) that ϕ is an ℓ-isomorphism.

Note that if n is a prime number the variety S_{n} generated by G_{n} covers A (Scrimger [21]).

These types of cyclic extensions will play an important role in constructing countably infinite different quasi-varieties in Chapters 111 and IV. Therefore, it is necessary to learn how to compare cyclic extensions.

Theorem 2.5: Let Λ_{1}, Λ_{2} be two totally ordered sets, $G={ }_{\Lambda_{1}} Z$, $G^{\prime}=\oplus_{\Lambda_{2}} Z$ and $\bar{\alpha}_{1}, \bar{\alpha}_{2}$ be o-permutations of Λ_{1} and Λ_{2}, respectively. Consider $G\left(\alpha_{1}\right)$ and $G^{\prime}\left(\alpha_{2}\right)$. If there exists an injective map γ_{o} from Λ_{1} into Λ_{2} such that $\bar{\alpha}_{2}{ }^{\circ} \gamma_{0}=\gamma_{0} 0 \bar{\alpha}_{1}$ then $G\left(\alpha_{1}\right) \leq G^{\prime}\left(\alpha_{2}\right)$.

Proof: Suppose there exists such a γ_{0} so that the diagram on the next page commutes. Let ϕ be the map from $G\left(\alpha_{1}\right)$ into $G^{\prime}\left(\alpha_{2}\right)$ defined by $\phi\left(\left(g, \alpha_{1}^{k}\right)\right)=\left(h, \alpha_{2}^{k}\right)$ where $h_{\gamma_{0}(i)}=g_{i}$ and $h_{j}=0$ otherwise. The map ϕ is well defined since γ_{0} is injective. Also ϕ is an ℓ-homomorphism. Let
h_{1}, h_{2} be elements of $G\left(\alpha_{1}\right)$. We need to show that $\phi\left(h_{1} \cdot h_{2}\right)=\phi\left(h_{1}\right) \cdot \phi\left(h_{2}\right)$. First, $h_{1}=\left(g, \alpha_{1}^{n}\right), h_{2}=\left(h, \alpha_{1}^{m}\right)$, and $h_{1} \cdot h_{2}=\left(g, \alpha_{1}^{n}\right)\left(h, \alpha_{1}^{m}\right)=\left(k, \alpha_{1}^{n+m}\right)$ where $k_{i}=g_{i}+h_{\alpha_{1}^{n}(i)}$. Now $\phi\left(h_{1} \cdot h_{2}\right)=\left(t, \alpha_{2}^{n+m}\right)$ where $t_{\gamma_{0}(i)}=g_{i}+h_{\alpha_{1}^{n}(i)}$ and $t_{j}=0$ otherwise. But $\phi\left(h_{1}\right)=\left(l, \alpha_{2}^{n}\right), \phi\left(h_{2}\right)=\left(p, \alpha_{2}^{m}\right)$ where $\ell_{\gamma_{0}}(i)=g_{i}$, $p_{\gamma_{0}}(i)=h_{i}$ and $\ell_{j}=p_{j}=0$ otherwise. Now $\phi\left(h_{1}\right) \cdot \phi\left(h_{2}\right)=\left(\ell, \alpha_{2}^{n}\right) \cdot\left(p, \alpha_{2}^{m}\right)=$ $\left(q, \alpha_{2}^{n+m}\right)$ where $q_{\gamma_{0}(i)}=\ell_{\gamma_{0}(i)}+p_{\bar{\alpha}_{2}^{n}\left(\gamma_{0}(i)\right)}$. Note that $\bar{\alpha}_{2}^{n} o \gamma_{0}=\gamma_{0} o \bar{\alpha}_{1}^{n}$ since $\bar{\alpha}_{2} o^{\gamma}=\gamma_{0} o \bar{\alpha}_{1}$. Then $q_{\gamma_{0}}(i)=\ell_{\gamma_{0}(i)}+p_{\gamma_{0}}\left(\bar{\alpha}_{1}^{n}(i)\right)=g_{i}+h_{\bar{\alpha}_{1}^{n}(i)}=$ $t_{\gamma_{0}(i)}$.

So, $\phi\left(h_{1}\right) \phi\left(h_{2}\right)=\phi\left(h_{1} \cdot h_{2}\right)$ and ϕ is a homomorphism. The map ϕ is clearly injective. Since $G\left(\alpha_{1}\right)$ and $G^{\prime}\left(\alpha_{2}\right)$ are totally ordered, then ϕ is an ℓ-monomorphism.

The above theorem remains true if γ_{0} is found so that $\bar{\alpha}_{2} 0 \gamma_{0}=\gamma_{0} o \bar{\alpha}_{1}^{k}$ for some k in Z^{+}.

However, the converse is not true. The following example is an illustration of this fact.

Example 2.6: Let $\Lambda_{1}=\Lambda_{2}=Z$ in the theorem. Then $G=G^{\prime}={\underset{Z}{\oplus}}_{Z}$. Let $\bar{\alpha}_{2}$ be the o-permutation of Z that maps n to $n+1$, and $\bar{\alpha}_{1}$ the identity on Z. There is no γ_{0} from Z to Z that makes the diagram commute in the theorem. Suppose there exists γ_{0} such that $\bar{\alpha}_{2} 0 \gamma_{0}=\gamma_{0} o \bar{\alpha}_{1}$, and let n be any element of Z. Now $\bar{\alpha}_{2} \circ \gamma_{0}(n)=\bar{\alpha}_{2}\left(\gamma_{0}(n)\right)=\gamma_{0}(n)+1$, and $\gamma_{0} o \bar{\alpha}_{1}(n)=\gamma_{0}\left(\bar{\alpha}_{1}(n)\right)=\gamma_{0}(n)$ $\gamma_{0}(n)$. If $\bar{\alpha}_{2} 0 \gamma_{0}=\gamma_{0} 0 \bar{\alpha}_{1}$, then $\gamma_{0}(n)=\gamma_{0}(n)+1$ and γ_{0} is the constant zero function and, therefore, not injective.

Note that $G\left(\alpha_{1}\right) \simeq G \leq G\left(\alpha_{2}\right)$, but there exists no injective mapping between Λ_{1} and Λ_{2}.

Note that Theorem 2.7 remains valid if the cyclic extension over the totally ordered group is taken by adjoining an order-preserving automorphism of the group itself.

Corollary 2.7: Let G_{1}, G_{2} be two totally ordered groups and α_{1} and α_{2} two o-automorphisms of G_{1} and G_{2}, respectively. Suppose there exists an o-monomorphism γ_{0} between G_{1} and G_{2} such that $\gamma_{0} o \alpha_{1}=\alpha_{2}^{\lambda} \gamma_{0}$ for some γ in Z. Then $G_{1}\left(\alpha_{1}\right)$ is ℓ-isomorphic to an ℓ-subgroup of $G_{2}\left(\alpha_{2}\right)$.

Proof: Suppose there exists such γ_{0}. Define the map ϕ from $G_{1}\left(\alpha_{1}\right)$ into $G_{2}\left(\alpha_{2}\right)$ by

$$
\phi\left(\left(g, \alpha_{1}^{k}\right)\right)=\left(\gamma_{0}(g), \alpha_{2}^{\lambda k}\right) .
$$

Clearly ϕ is a well-defined injective map (since γ_{o} is injective we need to prove that ϕ is an ℓ-homomorphism. Consider two elements (g, α_{1}^{n}) and $\left(h, \alpha_{1}^{m}\right)$ of $G_{1}\left(\alpha_{1}\right)$. Now

$$
\begin{aligned}
\phi\left(\left(g, \alpha_{1}^{n}\right)\left(h, \alpha_{1}^{m}\right)\right. & =\phi\left(g \alpha_{1}^{n}(h), \alpha_{1}^{n+m}\right) \\
& =\left(\gamma_{0}\left(g \alpha_{1}^{n}(h)\right), \alpha_{2}^{\lambda(n+m)}\right) \\
& =\left(\gamma_{0}(g) \gamma_{0}\left(\alpha_{1}^{n}(h)\right), \alpha_{2}^{\lambda n+\lambda m}\right) .
\end{aligned}
$$

But $\gamma_{0} o \alpha_{1}^{n_{1}}=\alpha_{2}^{\lambda n} o \gamma_{0}$ because $\gamma_{0} o \alpha_{1}=\alpha_{2}^{\lambda}{ }^{\lambda} \gamma_{0}$. Then

$$
\begin{aligned}
\phi\left(\left(g, \alpha_{1}^{n}\right)\left(h, \alpha_{1}^{m}\right)\right) & =\left(\gamma_{0}(g) \alpha_{2}^{\lambda n}\left(\gamma_{0}(h)\right), \alpha_{2}^{\lambda n+\lambda m}\right) \\
& =\left(\gamma_{0}(g), \alpha_{2}^{\lambda n}\right)\left(\gamma_{0}(h), \alpha_{2}^{\lambda m}\right) \\
& =\phi\left(\left(g, \alpha_{1}^{n}\right)\right) \cdot \phi\left(\left(h, \alpha_{1}^{m}\right)\right) .
\end{aligned}
$$

Hence, ϕ is a homomorphism. Finally, since $G_{1}\left(\alpha_{1}\right)$ and $G_{2}\left(\alpha_{2}\right)$ are both totally ordered, ϕ is an ℓ-monomorphism.

To conclude this chapter, we prove a theorem that clarifies for which special cyclic extensions of totally-ordered groups the converse of theorem 2.7 is true.

Theorem 2.8: Let G be a totally ordered group and α_{1} and α_{2} two ordered preserving automorphisms of G. Consider $G\left(\alpha_{1}\right)$ and $G\left(\alpha_{2}\right)$. There exists an ℓ-monomorphism between $G\left(\alpha_{1}\right)$ and $G\left(\alpha_{2}\right)$ that fixes G iff there exists an o-monomorphism γ_{0} of G such that $\gamma_{0} \alpha_{1}=\alpha_{2}{ }^{\circ} \gamma_{0}$ for some λ in Z.

Proof: (1) Suppose there exists a monomorphism γ_{0} of G such that $\gamma_{0} \Delta \alpha_{1}=\alpha_{2}^{\lambda} \gamma_{0}$. Define the map ϕ from $G\left(\alpha_{1}\right)$ into $G\left(\alpha_{2}\right)$ by

$$
\phi\left(\left(g, \alpha_{1}^{k}\right)\right)=\left(\gamma_{0}(g), \alpha_{2}^{\lambda k}\right) .
$$

Clearly ϕ is a well-defined injection since γ_{0} is. It remains to prove
that ϕ is an ℓ-homomorphism. First, let us prove that ϕ is a homomorphism. Consider two elements $\left(g, \alpha_{1}^{n}\right)$ and $\left(h, \alpha_{1}^{m}\right)$ of $G\left(\alpha_{1}\right)$. We have

$$
\begin{aligned}
\phi\left(\left(g, \alpha_{1}^{n}\right) \cdot\left(h, \alpha_{1}^{m}\right)\right) & =\phi\left(\left(g \alpha_{1}^{n}(h), \alpha_{1}^{n+m}\right)\right) \\
& =\left(\gamma_{0}\left(g \alpha_{1}^{n}(h)\right), \alpha_{2}^{\lambda(n+m)}\right) \\
& =\left(\gamma_{0}(g) \cdot \gamma_{0}\left(\alpha_{1}^{n}(h)\right), \alpha_{2}^{\lambda n+\lambda m}\right) .
\end{aligned}
$$

But $\gamma_{0} o \alpha_{1}^{n}=\alpha_{2}^{\lambda n} o \gamma_{0}$ because $\gamma_{0} o \alpha_{1}=\alpha_{2}^{\lambda}{ }_{0} \gamma_{0}$. So

$$
\begin{aligned}
\phi\left(\left(g, \alpha_{1}^{n}\right)\left(h, \alpha_{1}^{m}\right)\right) & =\left(\gamma_{0}(g) \alpha_{2}^{\lambda n}\left(\gamma_{0}(h)\right), \alpha_{2}^{\lambda n+\lambda m}\right) \\
& =\left(\gamma_{o}(g), \alpha_{2}^{\lambda n}\right)\left(\gamma_{o}(h), \alpha_{2}^{\lambda m}\right) \\
& =\phi\left(\left(g, \alpha_{1}^{n}\right)\right) \cdot \phi\left(\left(h, \alpha_{1}^{m}\right)\right) .
\end{aligned}
$$

Hence ϕ is a homomorphism and since $G\left(\alpha_{1}\right)$ and $G\left(\alpha_{2}\right)$ are totally ordered, clearly ϕ is an ℓ-homomorphism.
(2) Suppose there exists an ℓ-monomorphism ϕ between $G\left(\alpha_{1}\right)$ and $G\left(\alpha_{2}\right)$ that fixes G (i.e. $\left.\phi\left(g, \alpha_{1}^{0}\right)=\left(g^{\prime}, \alpha_{2}^{0}\right)\right)$. The map ϕ is an automorphism since $G\left(\alpha_{1}\right)$ and $G\left(\alpha_{2}\right)$ have the same cardinality. In fact $\left|G\left(\alpha_{1}\right)\right|=|G||Z|=\left|G\left(\alpha_{2}\right)\right|$. Define γ_{0} from G into itself by $\gamma_{0}(g)=g^{\prime}$ where $\phi\left(\left(g, \alpha_{1}^{0}\right)\right)=\left(g^{\prime}, \alpha_{2}^{0}\right)$. The map. γ_{0} is an o-automorphism of G. Since ϕ is an o-automorphism γ_{0} is an o-automorphism of G. It remains to prove that $\gamma_{0} o \alpha_{1}=\alpha_{2}^{\lambda} \gamma_{0}$ for some λ in Z. Let λ be such that $\phi\left(\left(1, \alpha_{1}\right)\right)=$ $\left(1, \alpha_{2}^{\lambda}\right)$. Now $\gamma_{0} \alpha_{1}(g)=\gamma_{0}\left(\alpha_{1}(g)\right)=h$ where $\phi\left(\left(\alpha_{1}(g), \alpha_{1}^{0}\right)\right)=\left(h, \alpha_{2}^{0}\right)$. But

$$
\begin{aligned}
\phi\left(\left(\alpha_{1}(g), \alpha_{1}^{0}\right)\right) & =\phi\left(\left(1, \alpha_{1}\right)\left(g, \alpha_{1}^{0}\right)\left(1, \alpha_{1}^{-1}\right)\right) \\
& =\phi\left(\left(1, \alpha_{1}\right)\right) \phi\left(\left(g, \alpha_{1}^{0}\right)\right) \phi\left(\left(1, \alpha_{1}^{-1}\right)\right) \\
& =\left(1, \alpha_{2}^{\lambda}\right)\left(g^{\prime}, \alpha_{2}^{0}\right)\left(1, \alpha_{2}^{-\lambda}\right) \\
& =\left(1 \cdot \alpha_{2}^{\lambda}\left(g^{\prime}\right), \alpha_{2}^{\lambda}\right)\left(1, \alpha_{2}^{-\lambda}\right) \\
& =\left(\alpha_{2}^{\lambda}\left(g^{\prime}\right), \alpha_{2}^{0}\right)
\end{aligned}
$$

Hence $h=\alpha_{2}^{\lambda}\left(g^{\prime}\right)=\alpha_{2}^{\lambda}\left(\gamma_{0}(g)\right)$ and $\gamma_{0} o \alpha_{1}(g)=\alpha_{2}^{\lambda} \gamma_{0}(g)$. Since g was chosen arbitrarily, $\gamma_{0} \alpha_{1}=\alpha_{2}{ }^{\lambda} \gamma_{0}$.

CHAPTER III

REPRESENTABLE $\ell-G R O U P S$

A variety of ℓ-groups is a class of ℓ-groups which is equationally defined. A quasi-variety is a class of ℓ-groups defined by a set of one or more implication. An equation or an implication may involve not only the group operations but also the lattice operation v and \wedge. The existence of an uncountable number of ℓ-group varieties was first shown by Kopytov and Medvedev. However, they use the fact that there exists an uncountable number of group varieties to show their result. The approach used in this chapter is constructive and does not rely on previous results in varieties or quasi-varieties. It will establish the existence of an infinite countable chain of quasi varieties, each of which contains the abelian variety and is contained in $R \cap A^{2}$. The ℓ-groups used to generate these quasi-varieties are totally ordered.

Definition 3.1: Let $\left(G_{\mathbf{i}} \mid \mathbf{i} \varepsilon I\right)$ be a family of l-groups. Then H is a subdirect product of the $G_{i}{ }^{\prime} s$ iff H is an ℓ-subgroup of $\prod_{I} G_{i}$ such that every projection of H on $a G_{i}$ is surjective. It is clear that an l-group G is isomorphic to a subdirect product of the $G_{i}{ }^{\prime}$ s iff for every in in there exists an l-epimorphism $u_{i}: G \rightarrow G_{i}$ such that $\cap_{i \in I} \operatorname{Ker} u_{i}$ is reduced to the identity element.

Example 3.2: Let G be an arbitrary ℓ-group, ($\left.M_{i} \mid i \varepsilon I\right)$ the family of minimal prime ℓ-subgroups, and $G\left(M_{i}\right)$ the left cosets of M_{i}. For every $i \varepsilon I$, let u_{i} be the canonical surjection from G onto $G\left(M_{i}\right)$ (i.e. $\left.u_{i}(g)=g M_{i}\right)$, and let $G_{i}=u_{i}(G)$. Then, the intersection of the
u_{i}-kernels is equal to the intersection of all the $M_{i}{ }^{\prime} s$, and is therefore reduced to the identity element. Hence, G is a subdirect product of the $G_{i}{ }^{\prime} s$. Note that the $G_{i}{ }^{\prime} s$ are transitive groups. Therefore, every ℓ-group is isomorphic to a subdirect product of transitive groups, and if the ℓ-group is commutative the G_{i} 's can be chosen to be totally ordered (Bigard [2]).

The latter property is of course not valid for an arbitrary ℓ-group. However, the case where the G_{i} 's are totally ordered is of special significance.

Definition 3.3: Let G be an l-group. G is representable if G is isomorphic to a subdirect product of totally ordered groups. Equivalently, G is representable iff there exist a family of totally ordered groups ($\left.G_{i} \mid i \varepsilon I\right)$ together with ℓ-epimorphisms $\left(U_{i}: G \rightarrow G_{i} \mid i \varepsilon I\right)$. Such that every G_{i} is totally ordered and $n \operatorname{Ker} u_{i}$ is reduced to the identity element.

Example 3.4: The following are examples of representable ℓ-groups. Other examples can be constructed from these by taking the product of such ℓ-groups, and quotients by ℓ-ideals.
(i) Any totally ordered group G is representable.
(ii) Let A, B be two totally ordered groups and AwrB be the small wreath product of A and B. AwrB can be totally ordered in two distinct ways: First, $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ iff $b<b^{\prime}$ or $b=b^{\prime}$ and $a_{i}<a!$ where i is the smallest index such that $a_{i} \neq a_{i}^{\prime}$. Secondly, $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ iff $b<b^{\prime}$ or $b=b^{\prime}$ and $a_{i}<a!$ where i is the largest index such that $a_{i} \neq a_{i}^{\prime}$.
(iii) In (ii) let A and B be both equal to Z. Since Z is totally ordered by the usual order $Z w r Z$ is representable. Note that, W^{+}and W^{-} defined in $2.4(i i i)$, are obtained by defining two distinct total orders on ZwrZ.

The big wreath product AWrB of totally ordered groups does not admit any total order compatible with the group operation (see Neumann [14].

There are numerous characterizations of representable ℓ-groups. The two most useful ones are the following: An ℓ-group is representable iff G satisfies one of the following relations:
(i) $x \wedge y^{-1} \cdot x^{-1} \cdot y \leq e$,
(ii) $(x \wedge y)^{2}=x^{2} \wedge y^{2}$.

These two identities characterizing the representable ℓ-groups will permit us to prove whether an ℓ-group is representable or not. As we will notice in these examples.

Example 3.5: i) Let $G=\{f \mid f:[0,1] \rightarrow \mathbb{R}$ is a continuous function $\}$. Define an order on G as follows: $f \leq g$ iff $f(x) \leq g(x)$ for every $x \varepsilon[0,1]$. The operation in G is the usual componentwise addition of functions. Consider two elements f, g of G we need to prove that $f \wedge\left(g^{-1}+f^{-1}+g\right) \leq 0$. Note that $f^{-1}=-f$ and $g^{-1}=-g$, so $g^{-1}+f^{-1}$ $+g=-g-f+g=-f$ and $f \wedge\left(g^{-1}+f^{-1}+g\right)=f \wedge-f \leq 0$. Note also that G satisfies (ii) (i.e. $(x \wedge y)^{2}=x^{2} \wedge y^{2}$). In another way G is isomorphic to $[0, \pi]^{R}$ where R is the set of real numbers and the $[0,1]^{R}$ is totally ordered, hence G is representable.
(ii) Let $K=Z$ and $G=Z \times Z$ and τ a homomorphism between K and the group of automorphisms of G such that $\tau(1)(m, n)=(n, m)$. Let $H=K \times G$ furnished with an internal multiplication defined by $(a, x)(b, y)=$ ($a+b, x+y^{a}$) where $y^{a}=\tau(a)(y)$. It can be easily verified that H is a group. Let $(a, x) \geq e$ if $a>e$ or $a=e$ and $x \geq e$. Then, H is an l-group in which:

$$
(a, x) \text { ve }=\left\{\begin{array}{lll}
(a, x) & \text { if } & a>e \\
(e, x v e) & \text { if } & a=e \\
e & \text { if } & a<e
\end{array}\right.
$$

where e is the identity. Let $x=(1,(0,0))$ and $y=(1,(1,-1))$. Then $x_{\wedge} y=(1,(0,-1))$ and $(x \wedge y)^{2}=(2,(-1,-1))$, but $x^{2} \wedge y^{2}=x^{2}=y^{2}=(2,(0,0))$. Hence H is not representable.

Another property of ℓ-groups which is close to the representable conditions deals only with the group structure.

Definition 3.6: A group G is said to be an R-group if whenever $x^{n}=y^{n}$ for $n \varepsilon Z^{+}-\{0\}$ we have $x=y$. Hence, any totally ordered group is an R-group. But representable ℓ-groups are always isomorphic to a subdirect product of totally ordered groups. Therefore, any representable ℓ-group is an R-group. However, an R-group is not always representable.

Example 3.7: i) An R-group which may not be representable is ZwrZ. Since ZwrZ can be totally ordered it must be an R-group. However, there are lattice orders on $Z w r Z$ which are not representable. For example the Scrimger ℓ-groups G_{n} for $n \varepsilon Z^{+}-\{0,1\}$, are not representable (see 2.4(iv)).
(iii) Neumann's [14] proof that AWrB is not orderable actually showed first that it is not an R-group.

The small wreath product of Z and Z with its two orders, W^{+}and W^{-}, is of special significance in generating varieties and quasi-varieties of ℓ-groups. We first concentrate on W^{+}.

Let $\alpha=(\bar{a}, 0)$ where

$$
a_{i}=\left\{\begin{array}{lll}
1 & i f & i=0 \\
0 & i f & i \neq 0
\end{array} \text { and } \beta=(0,1)\right. \text {. }
$$

Note that α and β are positive and they generate W^{+}. Also, for $\delta \varepsilon W^{+}$ of the form $\delta=(c, k)$ we have $\delta^{-1}=\left(c^{\prime},-k\right)$ where $c_{i}^{\prime}=-c_{i-k}$. Consider now $\delta=(c, k), \bar{\gamma}=(a, n)$ in W^{+}. Then

$$
\begin{aligned}
\gamma^{\delta}=\delta^{-1} \gamma \delta & =\left(c^{\prime},-k\right)(a, n)(c, k) \\
& =(d,-k+n)(c, k) \text { where } d_{i}=c_{i}^{\prime}+a_{i-k} \\
& =(e,-k+n+k) \\
& =(e, n) \text { with } e_{i}=d_{i}+c_{i-k+n}
\end{aligned}
$$

Hence, $e_{i}=c_{i}^{\prime}+a_{i-k}+c_{i-k+n}$, but $c_{i}^{\prime}=-c_{i-k}$ and $e_{i}=-c_{i-k}+a_{i-k}+$ c_{i-k+n}. If $n=0$ then $\gamma^{\delta}=(e, 0)$ where $e_{i}=a_{i-k}$; i.e., conjugation by $\delta=(c, k)$ when $\gamma=(a, 0)$ shifts a k places to the right making γ^{δ} smaller than γ. Since α is equal to $(a, 0)$ and β is equal to $(0,1)$ then α^{β} will be α with the 1 shifted to the 1 -component in a. Thus, W^{+}is characterized by the property that it has two generators α and β with $\beta \gg$ $\alpha \gg \alpha^{\beta}$.

Similarly, we can define W^{-}or $Z \underset{\sim}{\leftarrow}$ ZZ. The multiplication is exactly as in W^{+}, but the order is changed. Here, α and β defined above generate W^{-}with $\beta>\alpha^{\beta} \gg \alpha$.

Let M^{+}and M^{-}be the varieties generated by W^{+}and W^{-}, respectively. It is a known fact that if G is a totally ordered group generated by
 an independent set then G is isomorphic to W^{+}or W^{-}, respectively (Medve$\operatorname{dev}[13])$. The varieties M^{+}and M^{-}strictly contain A and are contained in R.

The following theorem of Medvedev [13] demonstrates the significance of the wreath product in generating varieties of ℓ-groups.

Theorem 3.8: M^{+}and M^{-}are covers of A in the lattice of varieties of ℓ-groups.

In order to prove the theorem, Medvedev used the following lemma:
Lemma 3.9: Let G be an ℓ-group. If G contains two elements u and v such that either $u^{v} \ll u \ll v$ or $u \ll u^{V} \ll v$ and the set $\left\{u v^{n} \mid n \varepsilon Z\right\}$ is independent, then G contains either a copy of W^{+}or W^{-}.

We know that quasi-varieties are weaker algebraic structures than varieties. We know that $A \leq M^{+} \leq R \cap A^{2}$. We will construct an infinite number of different quasi-varieties between A and $R \cap A^{2}$.

First, we establish the analog of Medvedev's theorem for quasi-varieties. For notational purposes let Q_{0}^{+}be the quasi-variety generated by W^{+}and Q_{0}^{-}the quasi-variety generated by W^{-}.

Theorem 3.10: The quasi-varieties Q_{o}^{+}and Q_{o}^{-}cover A in the lattice of quasi-varieties of ℓ-groups.

Proof: Let Q be a quasi-variety properly containing A and contained in Q_{0}^{+}. Then, there exists G a non-abelian ℓ-group G in Q. Since G belongs to Q_{0}^{+}, G is isomorphic to a subgroup of H where $H={ }_{\alpha} \Pi_{I}\left(\frac{\pi}{I}, W^{+} / U_{\alpha}\right)$ for which I, I^{\prime} are index sets and each U_{α} is an ultrafilter over I^{\prime}. There exist x and y elements of G such that $[x, y] \neq 1$. We consider G as a subgroup of H so x and y can be viewed as elements of H. So $x=\left(t_{\alpha}\right)_{\alpha \in I}$ and $y=\left(s_{\alpha}\right)_{\alpha \varepsilon I}$, for which $t_{\alpha}=\left(t_{i}^{\alpha} \mid U\right)_{i \varepsilon I}$, and $s_{\alpha}=\left(s_{i}^{\alpha} \mid U\right)_{i \varepsilon I}$, with $t_{i}^{\alpha}, s_{i}^{\alpha}$ in W^{+}. Let $u=|[x, y]|$ and $v=|x||y|$. Now, for some $\alpha \varepsilon I\left[t_{\alpha}, s_{\alpha}\right] \neq 1$ since $[x, y] \neq 1$. Fix such an α, then for every i in $I^{\prime}\left|\left[t_{i}^{\alpha}, s_{i}^{\alpha}\right]\right| \ll$ $\left|t_{i}^{\alpha}\right|\left|s_{i}^{\alpha}\right|$, since t_{i}^{α} and s_{i}^{α} are elements of W^{+}. Thus $\left|\left[t_{\alpha}, s_{\alpha}\right]\right| \ll\left|t_{\alpha}\right|\left|s_{\alpha}\right|$. Also, there exists $J \leq I^{\prime}$ such that $\left|\left[t_{i}^{\alpha}, s_{i}^{\alpha}\right]\right| \neq 1$ for every $i \varepsilon J$. Therefore, we may assume that $u^{v} \ll u \ll v$ and the set $\left\{u^{v^{n}} \mid n \varepsilon Z\right\}$ is an independent set. Let K be the ℓ-subgroup of G generated by u and v then
by lemma 3.9 K is isomorphic to W^{+}. Thus G contains a copy of W^{+}and $\mathrm{Q}_{\mathrm{O}}^{+}$ $\leq Q$. But $Q \leq Q_{0}^{+}$so $Q=Q_{o}^{+}$. Similarly, we can prove that Q_{o}^{-}covers A.

The preceding theorem does not indicate whether or not Q_{0}^{-}is identical to M^{-}and whether or not Q_{0}^{+}is identical to M^{+}. We concentrate on comparing Q_{0}^{-}and M^{-}since the case for Q_{O}^{+}and M^{-}is similar. Before doing so we need to learn more about the quasi-variety Q_{0}^{-}. In general quasi-varieties can be defined by a set of one more implications. It is not always easy to find the implications that define a given quasivariety. But, it is possible, however, to find a set of implications that are satisfied by all elements of the quasi-variety. Note that if two quasi-varieties are equal, then all of the implications that are true for one of them will have to be true for the other. Since our goal in this chapter is to construct a chain of quasi-varieties, it is important to determine some implications satisfied by each quasi-variety constructed. We consider first some properties of W^{-}.

Proposition 3.11: If a, b, c are positive elements of W^{-}with $b \ll a$ $\ll c$ and $a \ll a^{c}$, then $b \ll b^{c}$.

Proof: Clearly, the proposition is true if $a=b=c=(0,0)$. Assume that a, b, c are positive elements of \mathcal{W}^{-}. Then, there exist n, m, $k \in Z^{+}$and $x, y, z \varepsilon{\underset{Z}{\oplus}}_{\oplus}^{z}$ such that $a=(x, n), b=(y, m)$ and $c=(z, k)$. Two possibilities arise.

First, if $k=0$ then $n=m=0$ since $b \ll a \ll c$. Now, $c^{-1}=\left(z^{\prime}, 0\right)$ with $z_{i}^{\prime}=-z_{i}$ and so
$a^{c}=c^{-1} a c=\left(z^{\prime}, 0\right)(x, 0)(z, 0)$
$=(h, 0)(z, 0)$ where $h_{i}=z_{i}^{\prime}+x_{i}=-z_{i}+x_{i}$,
$=(t, 0)$ where $t_{i}=h_{i}+z_{i}=-z_{i}+x_{i}+z_{i}=x_{i}$.

Hence, $a^{c}=a$ and for a to be infinitely smaller than a^{c}, a must be $(0,0)$. But if $a=(0,0)$ then $b=(0,0)$ since $(0,0) \leq b^{n} \leq$ for every n in Z. Thus, $b \ll b^{c}$ since $b=b^{c}=(0,0)$.

Secondly, if $k>0$ then $n=m=0$. Otherwise, if $n>0$ then there exists $\lambda>0$ such that $n \lambda>k$ contrary to $a \ll c$. Consider $a^{\lambda}=\left(x^{\prime}, n \lambda\right)$ where $x_{i}^{\prime}=x_{i}+(\lambda-1) x_{i+n}$. Therefore, $a^{\lambda}>c$ since $n \lambda>k$. This is a contradiction to $a \ll c$. So $n=0$. But if $n=0$ and $b \ll a$ then $m=0$. Now, $b=(y, 0), b^{n}=\left(y^{n}, 0\right)$ where $y_{i}^{n}=n y_{i}$, and

$$
\begin{aligned}
b^{c}=c^{-1} b c= & \left(z^{\prime},-k\right)(y, 0)(z, k) \text { where } z_{i}^{\prime}=-z_{i-k} . \text { So, } \\
= & (h,-k)(z, k) \text { where } h_{i}=z_{i}^{\prime}+y_{i-k}=-z_{i-k}+y_{i-k} \\
= & (t, 0) \text { where } t_{i}=h_{i}+z_{i-k}=-z_{i-k}+y_{i-k} \\
& +z_{i-k}=y_{i-k}
\end{aligned}
$$

Note that $b^{c}-b^{n}=(t, 0)-\left(y^{n}, 0\right)=(s, 0)$ where $s_{i}=b_{i}-y_{i}^{n}$. Hence, $s_{i}=y_{i-k}-n y_{i}$. Let λ be such that $y_{\lambda}>0$ and λ is maximum with respect to $y_{i} \neq 0$. Then $s_{\lambda+k}=y_{\lambda+k-k}-n y_{\lambda+k}=y_{\lambda}-n y_{\lambda+k}$. But $y_{\lambda+k}=0$ by the maximality of λ, and $s_{\lambda+k}=y_{\lambda}-0=y_{\lambda}>0$. Now, $s_{i}=0$ if $i>\lambda+k$. Since $s_{i}=s_{\lambda+k+j}=y_{\lambda+j}-n y_{\lambda+k+j}=0-0=0$. Hence, $b^{c}-b^{n} \geq 0$ and $b^{n} \leq b^{c}$. Since n was chosen arbitrarily in $Z^{+}, b \ll b^{c}$.

The condition in this proposition can be stated in an equivalent way by using an infinite set of implications.

Proposition 3.12: The ℓ-group W^{-}satisfies the property "If a, b, c are positive elements of W^{-}with $b \ll a \ll c$ and $a \ll a^{c}$ then $b \ll b^{c}, "$ iff it satisfies the following implications:
(II) $b \leq a \leq c$ and $a \leq a^{c}$ implies $b \leq b^{c}$
(I2) $b^{2} \leq a \leq a^{2} \leq c$ and $a^{2} \leq a^{c}$ implies $b^{2} \leq b^{c}$
(In) $b^{n} \leq a \leq a^{n} \leq c$ and $a^{n} \leq a^{c}$ implies $b^{n} \leq b^{c}$

Proof: Clearly (II), (I2),..., and (In),..., imply that the condition holds. Conversely, choose a, b, c three positive elements of W^{-}such that a, b, c satisfy the property, and write $a=(x, n), b=(y, m)$, and $c=(z, k)$ as before. If $k=0$, then $n=m=0$, and for $a \ll a^{c}$ a must be $(0,0)$ (see Proof 3.11). Hence, $b=a=(0,0)$ since $b \leq a$ and (II), (I2), \ldots, (In) are satisfied. Now if $k>0$ and $b \ll a \ll c$, then $a=(x, 0)$ and $b=(y, 0)$ (see Proof of 3.11). Thus, $b^{n} \leq b^{c}$ for every $n \geq 1$. Hence, (II),...,(In) are satisfied.

Note that for every $\lambda \geq 2$, (I λ) is satisfied by W^{-}. Fix $\lambda \varepsilon Z^{+}-$ $\{0,1\}$, and let a, b, c be positive elements of W^{-}. Write $a=(x, n)$, $b=(y, m)$, and $c=(z, k)$ as above. If $k=0$, then $n=m=0$ since $b^{\lambda} \leq a \leq$ $a^{\lambda} \leq c$. So $a=a^{c}$ and $a^{\lambda} \leq a^{c}=a$ giving $a^{\lambda}=a$. Thus $a=(0,0)$ and $b=(0,0)$ since $b^{\lambda} \leq a$. Hence, $b^{\lambda}=b^{c}=(0,0)$ and $b^{\lambda} \leq b^{c}$. Otherwise, if $k>0$ then $a^{\lambda} \leq a^{c}$ forces n to be zero. Suppose $n>0$. Then $a^{c}=$ (p, n) where $p_{i}=-z_{i-k}+x_{i-k}+z_{i-k+n}$ and $a^{\lambda}=\left(p^{\prime}, \lambda n\right)$ where $p_{i}^{\prime}=\lambda x_{i}$. Thus, $a^{c}<a^{\lambda}$ and we have a contradiction.

Then $n=0$ and $m=0$ since $b^{\lambda} \leq a$. Thus $b^{\lambda} \leq b^{c}$. Therefore (In) is true in W^{-}hence true in Q_{o}^{-}for every $n \geq 2$. The implication (Il) is true only if the condition holds.

Note that the implication $b \leq a \leq c$ and $a \leq a^{c}$ implies $b \leq b^{c}$ is not always true in W^{-}. For this we will give the following example:

Example 3.13: Let a, b, c be elements of W^{-}such that $a=(x, n)=c$ and $b=(y, n)$ where $x_{i}=0$ for every $i, y_{i}=0$ for every $i \neq k$, and $y_{k}=-1$ for a fixed positive element k of Z. Now, $b \leq a=c$ and $a=a^{c}$. But $b^{c}=c^{-1} b c=(x,-n)(y, n)(x, n)=(h, n)$ where $h_{i}=x_{i}+y_{i-n}+x_{i}=y_{i-n}$.

Thus, $h_{i}=0$ for every $i \neq k+n$ and $h_{k+n}=y_{k+n-n}=-1$. So $b^{c}<b$ since $b^{c}-b=(h, n)-(y, n)=(h, n)+\left(y^{\prime},-n\right)$ where $y_{i}^{\prime}=-y_{i-n}$. Thus, $y_{i}^{\prime}=0$ for every $i \neq k+n$ and $y_{k-n}^{\prime}=-y_{k+n-n}=-y_{k}=1$. Now $b^{c}-b=(t, 0)$ where $t_{i}=h_{i}+y_{i+n}^{\prime}$. Hence, $t_{i}=0$ for every $\mathbf{i} \neq k$ or $n+k, t_{k}=h_{k}+y_{k+n}^{\prime}=$ $0+1=1$ and $t_{k+n}=h_{k+n}+y_{k+n+n}^{\prime}=h_{k+n}+y_{k+2 n}^{\prime}=-1+0=-1$. Therefore, $b^{c}-b<(0,0)$ since $h_{k+n}=-1<0$ and $k+n$ is the maximum index for which $h_{k+n} \neq 0$. Hence, $b^{c}<b$ and (Il) fails in W^{-}. Therefore it fails in Q_{0}^{-}.

In the above set of implications the idea was to force b to be in the form $(y, 0)$. But in W^{-}the commutator of two arbitrary elements is always in the form $(\ell, 0)$. Based on this we can form a new infinite sequence of implications, such that whenever they are all satisfied they lead to the following result:

Proposition 3.14: If a, b, c are positive elements of W^{-}with $b^{c^{-1}} \leq b \leq a$ and $a \ll a^{c}$ then $[b, c] \ll[b, c]^{c}$.

Proof: First, $b^{c^{-1}} \leq b$ is equivalent to $[b, c] \geq(0,0)$. Choose a, b, c three positive elements of W^{-}and write $a=(x, n), b=(y, m)$, and $c=(z, k)$ as before. If $k=0$, then $n=0=m$ since $a \ll a^{c}$ and $b \leq a$. Hence, $[b, c]=(0,0)=[b, c]^{c}$ and $[b, c] \ll[b, c]^{c}$. Now, if $k>0$, then $n=m=0$ (see proof 3.10) and $[b, c]=(\ell, 0)$. Hence, $[b, c] \ll[b, c]^{c}$ (see proof 3.10).

The condition in this proposition can be stated in an equivalent way by using an infinite set of implications.

Proposition 3.15: The ℓ-group W^{-}satisfies the property ${ }^{\prime} \mathrm{b}^{\mathrm{c}} \mathrm{c}^{-1} \leq \mathrm{b}$ $\leq a$ and $a \ll a^{c}$ imply $[b, c] \ll[b, c]^{c}$ for positive elements", iff it satisfies the following implications:

$$
\begin{aligned}
& \text { (I'1) } b^{c^{-1}} \leq b \leq a \leq a^{c} \text { then }[b, c] \leq[b, c]^{c} \\
& \left(I^{\prime} 2\right) \quad b^{c^{-1}} \leq b \leq a \leq a^{2} \leq a^{c} \text { then }[b, c]^{2} \leq[b, c]^{c} \\
& \vdots \\
& \left(I^{\prime} n\right) \quad b^{c^{-1}} \leq b \leq a \leq a^{n} \leq a^{c} \text { then }[b, c]^{n} \leq[b, c]^{c} .
\end{aligned}
$$

Proof: Clearly, ($\left.I^{\prime} 1\right),\left(I^{\prime} 2\right), \ldots\left(I^{\prime} n\right)$ imply that the condition holds. It suffices to prove that for every j, ($I^{\prime} j$) is satisfied by W^{-}. Therefore ($I^{\prime} j$) is true in Q_{0}^{-}. Let λ be an arbitrary index in $Z^{+}-\{0\}$ and a, b, c be positive elements of W^{-}. Then $b^{c^{-1}} \leq b$ implies that $[b, c] \geq(0,0)$, and $a^{\lambda} \leq a^{c}$ will imply that $c=(y, n)$ with $n>0$ and $a=(x, 0)$ if $\lambda \geq 2$. Now, $[b, c]=(h, 0)$ and since $c=(y, n)$ with $n>0$ then $[b, c]^{C}=(t, 0)$ with $t_{i}=h_{i-n}$ and thus $[b, c]^{\lambda} \leq[b, c]^{c}$. If $\lambda=1$ and $b^{c^{-1}} \leq b$ then $[b, c] \geq(0,0)$. Now, if $c=(y, 0)$ then $[b, c]^{c}=[b, c]$. Otherwise, $c=(y, n)$ with $n>0$ and $[b, c]<[b, c]^{c}$. In all cases ($I^{\prime} \lambda$) is true.

Propositions 3.11 and 3.14 give a characterization of W^{-}and provide a way of determining whether an ℓ-group is different than W^{-}. Generally, to show an l-group is not in Q_{O}^{-}it suffices to find elements in the ℓ-group that do not satisfy one of (Il), (I2),...(In), or one of (I'l), ($\left.I^{\prime} 2\right), \ldots,\left(I^{\prime} n\right)$ as we will see in the following example:

Example 3.16: Let Λ_{1} be the set $Z_{1} \cup\left\{t_{1}\right\} U Z_{2}$ where $Z_{1}=Z_{2}=Z$ totally ordered in the following way: For every $n, m \varepsilon \Lambda_{1}$ let $n \leq t_{p} \leq m$ whenever $n \varepsilon Z_{1}$ and $m \varepsilon Z_{2}$. Let $\bar{\alpha}$ be an order preserving permutation of Λ defined by:

$$
\bar{\alpha}(n)=\left\{\begin{array}{ccc}
n+1 & \text { if } & n \in Z_{1} U Z_{2} \\
n & \text { if } & n=t_{1}
\end{array}\right.
$$

Let $G=\oplus_{\Lambda_{1}}$ and α be an automorphism of G defined by $\alpha(g)=g^{\prime}$ where
$g_{i}^{\prime}=g_{\bar{\alpha}(i)}$. Consider $G(\alpha)$, the cyclic extension of G by α. Define an order over $G(\alpha)$ by $\left(g, \alpha^{n}\right) \geq(0,0)$ iff $n>0$ or $n=0$ and $g_{i} \geq 0$ where i is the maximum index with $g_{i} \neq 0 . G(\alpha)$ is totally ordered and fails (I1), (I2),...,(In)... . To see this let a, b, c be elements of G such that $a=(x, \alpha)$ with $x_{i}=0$ for $i \leq t_{1}, b=(y, \alpha)$ with $y_{i}=0$ for $i \neq t_{1}$ and $y_{t_{1}}>0 \quad c=\left(z, \alpha^{1}\right)$ where $z_{i}=0$ for every i. Clearly $b \ll a \ll c$ and $a \ll a^{c}$. But $b^{c}=b$ since $b^{c}=\left(h, \alpha^{0}\right)$ where $h_{i}=z_{i}+y{ }_{\alpha}{ }^{-1}(i)+$ $z_{\alpha(i)}=b_{\alpha}^{-1}(i)$. Hence, $h_{i}=0$ for every $i \neq t_{1}$ and $h_{t_{1}}=y_{\alpha-1\left(t_{1}\right)}=$ $y_{t_{1}}$. Thus, $b^{n}>b^{c}$ for every $n \geq 2$. Hence, (I2), (I3)..., (In) fail to be true in $G(\alpha)$.

We later apply the same technique of Example 3.16 to construct the countable infinite chain of different quasi-varieties containing Q_{o}^{-}and contained in $L_{n} \cap A^{2}$. But, first we need to prove that Q_{0}^{-}is different than M^{-}.

Theorem 3.17: The quasi-variety Q_{0}^{-}generated by W^{-}is strictly contained in the variety M^{-}generated by W^{-}.

Proof: Clearly $Q_{0}^{-} \leq M^{-}$.
In order to prove that $Q_{0}^{-}<M^{-}$, it suffices to find an ℓ-group in M^{-} that does not belong to Q_{0}^{-}. Fix $\lambda \varepsilon Z^{+}-\{0\}$ and let H be the ℓ-subgroup generated by all elements in W^{-}of the form $(g, 0)$ where $g_{i}=0$ if $i>\lambda$. Let $G=W^{-} / H$. Then G belongs to M^{-}since M^{-}is closed under the formation of quotients. Choose $n \in Z^{+}-\{0\}$ where $-n+\lambda \leq-3, c=(z, n)$ where $z_{i}=0$ for $i \neq \lambda$ and $z_{\lambda}=1, b=(y, 0)$ where $y_{i}=0$ for every $i \neq-n+\lambda$ and $y_{-n+\lambda}=1$, and $a=(x, 0)$ where $x_{i}=0$ for every $i \neq-n+\lambda+1$ and $x_{-} n+\lambda+1=1$. Now $b^{-1}=\left(y^{\prime}, 0\right)$ where $y_{i}^{\prime}=0$ for every $i \neq-n+\lambda$
and $y_{-n+\lambda}^{\prime}=-1, c^{-1}=\left(z^{\prime},-n\right)$ where $z_{i}^{\prime}=0$ for every $i \neq \lambda+n$ and $z_{\lambda+n}^{\prime}=-1$. Notice, $b \leq a \leq c$ and $a \leq a^{c}$. Now

$$
\begin{aligned}
{[b, c]=b^{-1} c^{-1} b c } & =\left(y^{\prime}, 0\right)\left(z^{\prime},-n\right)(y, 0)(z, n) \\
& =\left(h^{\prime},-n\right)(y, 0)(z, n)
\end{aligned}
$$

where $h_{i}^{\prime}=y_{i}^{\prime}+z_{i}^{\prime}$.

Thus, $h_{i}^{\prime}=0$ for every $i \neq-n+\lambda$ and $i \neq \lambda+n, h_{-n+\lambda}^{\prime}=y_{-n+\lambda}^{1}=-1$, and $h_{n+\lambda}^{\prime}=z_{\lambda+n}^{\prime}=-1$. Then

$$
[b, c]=\left(h^{\prime},-n\right)(y, 0)(z, n)=\left(h^{\prime \prime},-n\right)(z, n)
$$

where $h_{i}^{\prime \prime}=h_{i}^{\prime}+y_{i-n}$.
Hence $h_{i}^{\prime \prime}=0$ for every $i \neq-n+\lambda, \lambda, \lambda+n$ and we have:

$$
\begin{aligned}
& h_{-n+\lambda}^{\prime \prime}=h_{-n+\lambda}^{\prime}+y_{-2 n+\lambda}=h_{-n+\lambda}^{\prime}=-1, \\
& h_{\lambda}^{\prime \prime}=h_{\lambda}^{\prime}+y_{-n+\lambda}=0+1=1
\end{aligned}
$$

and

$$
h_{n+\lambda}^{\prime \prime}=h_{n+\lambda}^{\prime}+y_{n+\lambda-n}=h_{n+\lambda}^{\prime}+y_{\lambda}=h_{n+\lambda}^{\prime}=-1 .
$$

So

$$
[b, c]=\left(h^{\prime \prime},-n\right)(z, n)=(h, 0) \text { where } h_{i}=h_{i}^{\prime \prime}+z_{i-n} .
$$

Thus, $h_{i}=0$ for every $i \neq-n+\lambda$ or λ and we have:

$$
\begin{gathered}
h_{-n+\lambda}=h_{-n+\lambda}^{\prime \prime}+z_{-n+\lambda-n}=h_{-n+\lambda}^{\prime \prime}+z_{-2 n+\lambda}=h_{-n+\lambda}^{\prime \prime}+0=-1, \\
h_{\lambda}=h_{\lambda}^{\prime \prime}+z_{\lambda-n}=h_{\lambda}^{\prime \prime}+0=1,
\end{gathered}
$$

and $h_{\lambda+n}=h_{\lambda+n}^{\prime \prime \prime}+z_{\lambda+n-n}=h_{\lambda+n}^{\prime \prime \prime}+z_{\lambda}=(-1)+(1)=0$. Hence, $[b, c] \geq$ $(0,0)$. Now,

$$
\begin{aligned}
{[b, c]^{c} } & =\left(z^{\prime},-n\right)(h, 0)(z, n) \\
& =\left(t^{\prime},-n\right)(z, n) \text { where } t_{i}^{\prime}=z_{i}^{\prime}+h_{i-n} .
\end{aligned}
$$

Hence, $t_{i}^{\prime}=0$ for every $i \neq \lambda$ and we have:

$$
\begin{gathered}
t_{\lambda}^{\prime}=z_{\lambda}^{\prime}+h_{\lambda-n}=0+(-1)=-1 \\
t_{\lambda+n}^{\prime}=z_{\lambda+n}^{\prime}+h_{\lambda+n-n}=z_{\lambda+n}^{\prime}+h_{\lambda}=(-1)+(1)=0 .
\end{gathered}
$$

Thus, $[b, c]^{c}=\left(t^{\prime},-n\right)(z, n)=(t, 0)$ where $t_{i}=t_{i}^{\prime}+z_{i-n}$.

Hence, $b_{i}=0$ for every $i \neq \lambda$ or $\lambda+n$ and we have:

$$
t_{\lambda}=t_{\lambda}^{\prime}+z_{\lambda-n}=(-1)+0=-1
$$

and

$$
t_{\lambda+n}=t_{\lambda+n}^{1}+z_{\lambda+n-n}=t_{\lambda+n}^{\prime}+z_{\lambda}=0+1=1 .
$$

Notice that $[b, c] \leq[b, c]^{c}$ in W^{-}. But in $G, \overline{[b, c]^{c}}=\overline{(p, 0)}$ where $p_{i}=0$ for every $i \neq \lambda$ and $p_{\lambda}=-1$. Thus $\overline{[b, c]^{c}} \leq \overline{(0,0)}$. Also, $\overline{[b, c]}>\overline{(0,0)}$ since $[b, c]=(h, 0)$ with $h_{\lambda}=1>0$ therefore $\overline{[b, c]^{c}}<\overline{[b, c]}$ and (I'l) fails in G. Notice, for every $n \varepsilon Z^{+}-\{0\}$ we have $b^{n} \leq a \leq a^{n} \leq c$ and $a^{n} \leq a^{c}$ but $\overline{[b, c]^{c}}{ }^{n}<\overline{[b, c]}$ in G. Thus, (I'l), ...and (I'n)... are not satisfied in G. Hence, G cannot be in Q_{0}^{-}and $Q_{0}^{-}<M^{-}$.

The above theorem provides an example where the implications (I'l), (I'2) and (I'n) fail to be true.

By introducing Example 3.16, we know of the existence of ℓ-groups different than W^{-}and therefore the existence of quasi-varieties different than Q_{0}^{-}. It is important to first construct the ℓ-groups and then take the quasi-varieties generated by them. In order to establish a nested sequence of ℓ-groups, first we need the following definitions and notations.

Let $\Lambda_{n}=Z_{1} U\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} U Z_{2}$ where $Z_{1}=Z_{2}=z$. The index set Λ_{n} can be totally ordered by $\leq i f \leq i s$ defined by: If n, mare elements of Z_{1}, Z_{2} respectively, then $n<t_{i}$ and $t_{i}<m$ for every $i=1, \ldots, n$. Also, $t_{i}<t_{j}$ iff $i<j$. Let $\bar{\alpha}_{n}$ be an o-permutation of Λ_{n} such that

$$
\left\{\begin{array}{l}
\bar{\alpha}_{n}(z)=z+1 \text { if } z \varepsilon z_{1} \cup z_{2} \\
\bar{\alpha}_{n}\left(t_{i}\right)=t_{i} \text { for } i=1, \ldots, n
\end{array}\right.
$$

Let $G=\Lambda_{n}^{\oplus} Z$ and α_{n} an o-automorphism of G defined by $\alpha_{n}(g)=g^{\prime}$ where $g_{i}^{\prime}=g_{\bar{\alpha}_{n}}(i)$. Consider $W_{n}^{-}=G\left(\bar{\alpha}_{n}\right)$ the cyclic extension of G by α_{n} with the same order as W^{-}, and let Q_{n}^{-}be the quasi-variety generated by W_{n}^{-}. For every $n \varepsilon Z^{+}-\{0\} W_{n}^{-}$is an ℓ-group [Example 2.4(i), Chapter I]. The family of ℓ-groups $\left(W_{i}^{-}\right)_{i \varepsilon Z^{+}-\{0\}}$ form a nested sequence of ℓ-groups. And if they are pairwise different then we have an infinite chain of quasi-varieties each of which contains Q_{0}^{-}and is contained in $L_{n} \cap A^{2}$. Hence, it is necessary to prove that the Q_{n}^{-}'s are pairwise different. Therefore, we need to find one or more implications satisfied by each Q_{n}^{-}and make sure that the implications will fail in Q_{k}^{-}if $k>n$.

Lemma 3.18: If $a, b, c, d_{1}, d_{2}, \ldots, d_{n}$ are positive elements of W_{n}^{-}with
$b \ll d_{1} \ll d_{2} \ll \ldots \ll d_{n} \ll a \ll c, a \ll a^{c}$ and $d_{i}=d_{i}^{c}$ for every $i=1, \ldots, n$, then $b \ll b^{c}$.

Proof: Clearly, the Lemma is true if $a=b=c=d_{1}=d_{n}=\left(0, \alpha_{n}^{0}\right)$. Let $a, b, c, d_{1}, \ldots, d_{n}$ be positive elements of W_{n}^{-}. Write $a=\left(x, \alpha_{n}^{t}\right)$, $b=\left(y, \alpha_{n}^{m}\right), c=\left(z, \alpha_{n}^{k}\right), d_{1}=\left(x^{1}, \alpha_{n}^{k}\right), d_{2}=\left(x^{2}, \alpha_{n}^{k_{2}}\right), \ldots$, and $d_{n}=\left(x^{n}, \alpha_{n}^{k_{n}}\right)$. First, if $k=0$ then $n=m=k_{1}=\ldots=k_{n}=\ldots=0$.
Then, $a=a^{c}$ and for $a \ll a^{c}$, a must be $\left(0, \alpha_{n}^{0}\right)$. Hence, $d_{1}=d_{2}=\ldots=$ $d_{n}=b=\left(0, a_{n}^{0}\right)$ since $b \ll d_{1} \ll \ldots<d_{n} \ll a$. Next, if $k>0$, then $t=0$. Suppose $t>0$ then there exists λ such that $\lambda t>k$. So, $a^{\lambda}=\left(x^{\prime}, \alpha_{n}^{\lambda t}\right)>c=\left(z, \alpha_{n}^{k}\right)$ since $\lambda t>k>0$. This is a contradiction with $a \ll c$. Thus we must have $t=0$ and $m=k_{1}=k_{2}=\ldots=k_{n}=0$ since $b \ll d_{1} \ll d_{2} \ll \ldots<d_{n} \ll a$. There exists $n \varepsilon Z_{1} \cup Z_{2}$ for which $x_{n}>0$. We know that $a=\left(x, \alpha^{0}\right)>\left(0, \alpha^{0}\right)$. Then there exists $x_{i}>0$ where i is the maximum index with $x_{i} \neq 0$. If $i \varepsilon Z_{1} \cup Z_{2}$, then choose $n=\mathrm{i}$. Suppose there exists $\mathrm{j}=1, \ldots, \mathrm{n}$ such that $\mathrm{i}=\mathrm{t}_{\mathrm{j}}$. Then $a^{c}=c^{-1} a c=\left(z^{1}, \alpha^{-k}\right)\left(x, \alpha^{0}\right)\left(z, \alpha^{k}\right)=\left(h, \alpha^{0}\right)$ where $h_{i}=z_{i}^{1}+x_{\alpha}^{-k}(i)$ $+z_{\alpha}^{-k}{ }_{(i)}$. But $z_{i}^{\prime}=-z_{\alpha}^{-k_{(i)}}$, hence $h_{i}=x_{\alpha}^{-k_{(i)}}$. So $h_{t_{j}}=x_{t_{j}}>0$, $h_{t_{j}}<2 x_{t_{j}}$, and $a^{c}<a^{2}$. We have a contradiction to $a \ll a^{c}$. Therefore, $i \neq t_{j}$ for every $j=1, \ldots, n$. In addition, n is the maximal index for which $x_{\eta} \neq 0$ and $x_{\eta}>0$. Now, for every $\mathbf{i}=1, \ldots, n, d_{i}=\left(x^{i}, \alpha^{0}\right)$ where $x_{j}^{i}=0$ for $j \varepsilon Z_{1} \cup Z_{2}$. Suppose there exists $j \varepsilon Z_{1} \cup Z_{2}$ such that $x_{j}^{i} \neq 0$. Now, $d_{j}^{c}=\left(z^{\prime}, \alpha_{n}^{-k}\right)\left(x^{i}, \alpha_{n}^{0}\right)\left(z, \alpha_{n}^{k}\right)=\left(p, \alpha_{n}^{0}\right)$ where
$p_{\ell}=z_{\ell}^{\prime}+x_{\alpha_{n}^{i}}^{-k_{(\ell)}}+\underset{\alpha_{n}^{-k}(\ell)}{ }=p_{\ell}=-z_{\alpha_{n}^{-k}(\ell)}+z_{\alpha_{n}^{-k}(\ell)}+x_{\alpha_{n}^{i}}^{-k}(\ell)$. Hence,
$p_{j+k}=x_{\alpha_{n}^{i}-k}^{(j+k)}=x_{j}^{i}$ and $p_{t_{i}}=x_{\alpha_{n}}^{-k}\left(t_{i}\right)=x_{t_{i}}$. Thus, $d_{j}^{c} \neq d_{j}$
since $d_{j}^{c}=\left(p, a_{n}^{0}\right)$ where $p_{j} \neq x_{j}^{i}$ and $p_{j+k} \neq x_{j+k}^{i}$. Also, $x_{j}^{i}=0$ for every $j \varepsilon Z_{1} \cup Z_{2}$. Let γ_{i} be the maximal index for which $x_{\gamma_{i}}^{i}>0$. There exists such γ_{i} since $d_{i}>\left(0, \alpha_{n}^{0}\right)$. Now, if η belongs to Z_{1} and $d_{1} \ll$ $d_{2} \ll \ldots \ll d_{n} \ll a$, then $d_{1}=d_{2}=\ldots=d_{n}=\left(0, \alpha_{n}^{0}\right)$. Hence, $b=\left(0, \alpha_{n}^{0}\right)$ and the lemma is proved. Otherwise, if $\eta \varepsilon Z_{2}$, then $\gamma_{1}<$ $\gamma_{2}<\ldots<\gamma_{n}$. Suppose that $d_{i}>\left(0, \alpha_{n}^{0}\right)$ for every $i=1, \ldots, n$. Then, $\gamma_{i}=t_{i}$ and $b=\left(y, \alpha_{n}^{0}\right)$ where $y_{i} \neq 0$ if i belongs to z_{i} and $y_{i}=0$, otherwise. So

$$
b^{c}=c^{-1} b c=\left(z^{\prime}, \alpha_{n}^{-k}\right)\left(y, \alpha_{n}^{0}\right)\left(z, \alpha_{n}^{k}\right)=\left(s, \alpha_{n}^{0}\right)
$$

where

$$
s_{i}=z_{i}^{\prime}+y_{\alpha_{n}^{-k}(i)}+z_{\alpha_{n}^{-k}(i)}=-z_{\alpha_{n}^{-k}(i)}+y_{\alpha_{n}^{-k}(i)}+z_{\alpha_{n}^{-k}(i)} .
$$

Then $s_{i}=y_{\alpha_{n}^{-k}(i)}=y_{i-k}$, and $b^{n}=\left(s^{1}, \alpha_{n}^{0}\right)$ where $s_{i}^{\prime}=n y_{i}$. Note that $b^{n} \leq b^{c}$ for every $n \geq 1$. Otherwise, if there exists $j \geq 1$ such that $d_{j}=\left(0, \alpha_{n}^{0}\right)$. Then $d_{i}=\left(0, \alpha_{n}^{0}\right)$ for every $i<j$. Since $b \ll d_{j}$, we have $b=\left(0, \alpha_{n}^{0}\right)$ and $b^{n}=\left(0, \alpha_{n}^{0}\right)=b^{c}$.

The condition in the above Lemma determines a set of implications that are simultaneously satisfied by Q_{n}^{-}. Let $a, b, c, d_{1}, d_{2}, \ldots, d_{n}$ be positive elements of Q_{n}^{-}, and consider the implications:

$$
\begin{aligned}
& \left(T_{1}^{n}\right) \quad \text { If } b \leq d_{1} \leq d_{2} \leq \ldots \leq d_{n} \leq a \leq c, a \leq a^{c} \text { and } d_{i}=d_{i}^{c} \text { for } \\
& i=1, \ldots, n \text { then } b \leq b^{c} . \\
& \left(T_{2}^{n}\right) \quad \text { if } b^{2} \leq d_{1} \leq d_{1}^{2} \leq d_{2} \leq d_{2}^{2} \leq d_{3} \ldots \leq d_{n-1} \leq d_{n-1}^{2} \leq d_{n} \leq \\
& \vdots \\
& \vdots \\
& d_{n}^{2} \leq a \leq a^{2} \leq c, a^{2} \leq a^{c} \text { and } d_{i}=d_{i}^{c} \text { for } i=1, \ldots, n \text { then } \\
& b^{2} \leq b^{c} \\
& \left(T_{k}^{n}\right) \quad \text { If } b^{k} \leq d_{1} \leq d_{1}^{k} \leq d_{2} \leq d_{2}^{k} \leq \ldots \leq d_{n} \leq d_{n}^{k} \leq a \leq a^{k} \leq c, \\
& \quad \\
& a^{k} \leq a^{c} \text { and } d_{i}=d_{i}^{c} \text { for } i=1, \ldots, n \text { then } b^{k} \leq b^{c} .
\end{aligned}
$$

Proposition 3.19: The condition ' $b \ll d_{1} \ll \ldots \ll d_{n} \ll a \ll c$, $a \ll a^{c}$ and $d_{i}=d_{i}^{c}$ for every $i=1, \ldots, n$ then $b \ll b^{c}$ for positive elements of the ℓ-group W_{n}^{-1}, is satisfied iff the implications $\left(T_{1}^{n}\right), \ldots$, $\left(T_{k}^{n}\right), \ldots$, are satisfied.

Proof: Clearly, $\left(T_{1}^{n}\right),\left(T_{2}^{n}\right), \ldots,\left(T_{k}^{n}\right)$ imply that the condition holds. It suffices to prove $\left(T_{\lambda}^{n}\right)$ for $\lambda \geq 1$. Choose $a, b, c, d_{1} \ldots, d_{n}$ positive elements of W_{n}^{-}that satisfy the condition. Write $a=\left(x, \alpha_{n}^{t}\right), b=\left(y, \alpha_{n}^{m}\right)$, $c=\left(z, \alpha_{n}^{k}\right), d_{1}=\left(x^{1}, \alpha_{n}^{k}\right), d_{2}=\left(x^{2}, \alpha_{n}^{k}\right), \ldots$, and $d_{n}=\left(x^{n}, \alpha_{n}^{k}\right)$. First, if $k=0$, the $n=m=k_{1}=k_{2}=\ldots=k_{n}=0$. Then, $a=a^{c}$ and for $a \ll a^{c}$, a must be $\left(0, \alpha_{n}^{0}\right)$. Hence, $d_{1}=d_{2}=\ldots=d_{n}=b=\left(0, \alpha_{n}^{0}\right)$ since $b \ll d_{1} \ll$ $\ldots \ll d_{n} \ll a$ and $b^{n}=\left(0, \alpha_{n}^{0}\right)=b^{c}$. Therefore, $\left(T_{\lambda}^{n}\right)$ is satisfied for all $\lambda \geq 1$. Next, if $k>0$ then $t=0$ (see Proof 3.18) and $m=k_{1}=k_{2}=$ $\ldots=k_{n}=0$. Also, for every $i=1, \ldots, n, d_{i}=\left(x^{i}, \alpha_{n}^{0}\right)$ with $x_{j}^{i}=0$ if $j \neq t_{i}$ (see Proof 3.18), and $b=\left(y, \alpha_{n}^{0}\right)$ where $y_{i}=0$ if $i \notin Z_{1}$. Hence, $b^{\lambda} \leq b^{c}$ for every $\lambda \geq 1$, and $\left(T_{1}^{n}\right),\left(T_{2}^{n}\right), \ldots,\left(T_{\lambda}^{n}\right), \ldots$, are satisfied. Note that, for every $\lambda \geq 2\left(T_{\lambda}^{n}\right)$ is satisfied by Q_{n}^{-}. In this case $a^{\lambda} \leq a^{c}$ implies $a=\left(x, \alpha_{n}^{0}\right), c=\left(z, \alpha_{n}^{k}\right)$ with $k>0$ (see 3.18) and $b=\left(y, \alpha_{n}^{0}\right)$ where $y_{i}=0$ if $i \notin z_{1}$. Hence, $b^{\lambda} \leq b^{c}$.

It is important that every Q_{n}^{-}contains Q_{0}^{-}and that any pair W_{n}^{-}, W_{k}^{-} will generate two different quasi-varieties. Therefore, the following lemmas:

Lemma 3.20: For every n, Q_{n}^{-}strictly contains Q_{0}^{-}.
Proof: Recall that W^{-}can be regarded as a cyclic extension of a totally ordered ℓ-group $G_{0}=\bigoplus_{Z}^{\oplus} Z$ by an automorphism α of G_{0} (see 2.3(iii)). If we let $\Lambda_{0}=Z, \bar{\alpha}$ the o-permutation of Z mapping i to $i+1$, and $\bar{\alpha}_{n}$ the o-permutation of Λ_{n} as defined above. Then there exists $\gamma_{0}: \Lambda_{0} \rightarrow \Lambda_{n}$ such that the diagram below commutes. That is, $\bar{\alpha}_{n} 0 \gamma_{0}=\gamma_{0} o \bar{\alpha}_{0}$. Define γ_{0} as follows: $\gamma_{0}(i)=i$ where i is in Z_{1}.

Then, $\bar{\alpha}_{n}\left(\gamma_{0}(i)\right)=\bar{\alpha}_{n}(i)=i+1$ where $i+1$ belongs to Z_{1}. Now, $\gamma_{0}\left(\bar{\alpha}_{0}(i)\right)=$ $\gamma_{0}(i+1)=i+1$ where $i+1$ belongs to Z_{1}. Hence, $\bar{\alpha}_{n} 0 \gamma_{0}=\gamma_{0} 0 \bar{\alpha}_{0}$ and by Theorem 2.7 $G\left(\alpha_{0}\right) \leq G\left(\alpha_{n}\right)$. Thus, $Q_{o}^{-} \leq Q_{n}^{-}$.

In order to prove the strict inclusion, it suffices to find positive elements a, b, c of W_{n}^{-}that do not satisfy the condition in Proposition 3.11 .

Let $a=(x, 0), b=(y, 0), c=(z, n)$ where $x_{i}=0$ for $i \leq t_{n}$ and $x_{i}>0$ otherwise, $y_{i}=0$ for $i \neq t_{n}$ and $y_{i}=1$ if $i=t_{n}, z_{i}=0$ for every i, and $n>0$. Notice $b \ll a \ll c$ and $a \ll a^{c}$ but $b=b^{c}$. Hence, $b^{n}>b^{c}$ for every $n>1$. Thus, the condition in Proposition 3.11 fails to be true in W_{n}^{-}. By Proposition 3.11 we have $Q_{0}^{-}<Q_{n}^{-}$.

Lemma 3.21: For every $n Q_{n}^{-} \leq R n A^{2}$.

Proof: Clearly W_{n}^{-}is a totally ordered ℓ-group. Thus $Q_{n}^{-} \leq R$. Next, we need to prove that $W_{n}^{-} \varepsilon A^{2}$. For this it suffices to find an ℓ-ideal $H \leq W_{n}^{-}$such that H and W_{n}^{-} / H are in A. Let $H=\left\{(g, 0) \mid(g, 0) \varepsilon W_{n}^{-}\right\}$. Clearly, H is an abelian ℓ-ideal of W_{n}^{-}. Also, $W_{n}^{-} / H \simeq Z$. Then, W_{n}^{-} / H and $H \in A^{2}$. Hence, $Q_{n}^{-} \leq R \cap A^{2}$.

The above lemma indicates that every Q_{n}^{-}is contained in $R \cap A^{2}$. If we can prove that the Q_{n}^{-}'s are pairwise different and form a nested chain, then infinitely many of them are strictly included in $R \cap A^{2}$.

Lemma 3.22: For every $n \geq 1$, Q_{n}^{-}strictly contains Q_{n-1}^{-}.
Proof: Let $\Lambda_{n}, \Lambda_{n-1}$ be the two index sets used in defining W_{n}^{-}and W_{n-1}^{-}, respectively, and let $\bar{\alpha}_{n}, \bar{\alpha}_{n-1}$ be the o-permutations of Λ_{n} and Λ_{n-1}, respectively, as before. There exists γ_{0}, an injective map between Λ_{n-1} and Λ_{n}, such that $\bar{\alpha}_{n} 0 \gamma_{0}=\gamma_{0} o \bar{\alpha}_{n-1}$. Define γ_{0} by $\gamma_{0}(i)=i$. It can be easily verified that $\bar{\alpha}_{n}$ or ${ }_{0}=\gamma_{0} o \bar{\alpha}_{n-1}$. Thus $W_{n-1}^{-} \leq W_{n}^{-}$and $Q_{n-1}^{-} \leq Q_{n}^{-}$by 2.5. In order to prove the strict inclusion it suffices to find positive elements $b, d_{1}, \ldots, d_{n-1}$, a and c of W_{n}^{-}such that the hypothesis in Lemma 3.18 is true for $n-1$ but the conclusion of the lemma fails. Let b, $d_{1}, \ldots, d_{n-1}, a, c$ be such that $b=(y, 0), d_{1}=\left(t^{1}, 0\right), \ldots, d_{n-1}=\left(t^{n-1}, 0\right)$, $a=(x, 0), c=(z, n)$ where the following are true:
$y_{i}=0$ for $i \neq t$, and $y_{i}=1$ otherwise,
$t_{i}^{j}=0$ for $i \neq t_{j+1}$ and $t_{i}^{j}=1$ otherwise,
$x_{i}=0$ for $i \leq t_{n}$ and $x_{i}>0$ otherwise, and
$z_{i}=0$ for every i and $n>0$.
Note that $b \ll d_{1} \ll d_{2} \ll \cdots \ll d_{n-1} \ll a \ll c$ and $a \ll a^{c}$ but $b=b^{c}$. Hence, $b^{n}>b^{c}$ for every $n>1$ and Lemma 3.15 fails to be true.

Finally, combining Lemmas 3.21 and 3.22 we have the following important result.

Theorem 3.23: There is an infinite chain of distinct quasi-varieties between A and $R \cap A^{2}$.

Proof: Clearly the $\left(Q_{n}^{-} \mid n \varepsilon Z^{+}\right)$forms a countably infinite chain of different quasi-varieties between A and $R \cap A^{2}$.

By using techniques similar to those in constructing the W_{n}^{-}'s and a different set of implications for W^{-}we are able to construct another infinite chain of quasi-varieties between A and $R \cap A^{2}$.

Proposition 3.24: Let a, b, c be positive elements of W^{-}. If $b \ll a$ $\ll c, b=b^{c}$ and $a \ll a^{c}$, then $b=(0,0)$.

Proof: Clearly, the proposition is true if $a=b=c=d=(0,0)$. Let a, b, c, d be elements of W^{-}such that $a=(x, n), b=(y, m), c=(z, k)$. First, if $k=0$ then $n=m=0$ since $b \ll a \ll c$. Now, since $n=0, a^{c}=a$ and for a to be infinitely smaller than a^{c}, a must be equal to $(0,0)$. But, if $a=(0,0)$, then $b=(0,0)$. Second, if $k>0$, then $n=0=m$ since $b \ll a \ll c$. Now, $b=(0,0)$ since $b=b^{c}$. Suppose $b>(0,0)$ then there exists an index λ maximal with respect to $y_{\lambda}>0$. Now, $b^{c}=\left(y^{\prime}, 0\right)$ where $y_{i}^{\prime}=-z_{i-k}+y_{i-k}+z_{i-k}=y_{i-k}$. Thus $y_{\lambda+k}^{\prime}=y_{\lambda}>(0,0)$ and $y_{j}^{\prime}=0$ for $\mathrm{j}>\lambda+\mathrm{k}$. Hence, $\mathrm{b}^{\mathrm{c}}>\mathrm{b}$. Thus b cannot be bigger than $(0,0)$. But by the choice of b, b must be equal to $(0,0)$ and the proposition is proved.

We next construct an example of an ℓ-group where the condition of Proposition 3.24 is not true.

Example 3.25: Let $N_{1}=\left\{t_{1}\right\} U Z$ and $G=\stackrel{\oplus}{N_{1}} Z$. The index set N_{1} is totally ordered as follows: If i, j are elements of N_{1} and if $i, j \varepsilon Z$, then let $i \leq j$ in $N_{1} i f f i \leq j$ in the natural order of Z. Otherwise, if $i=t_{1}$, then $i \leq j$. Let $\bar{\gamma}_{1}$ be an o-permutation of Λ_{1} defined by $\bar{\gamma}_{1}(i)=i+1$ if $i \neq t_{1}$ and $\bar{\gamma}_{1}\left(t_{1}\right)=t_{1}$. Now define an automorphism γ_{1}
of G by $\gamma_{1}(g)=g^{\prime}$ where $g_{i}^{\prime}=g_{\bar{\gamma}_{1}}(i)$. Let M_{1}^{-}be the cyclic extension of G by γ_{1}, and P_{1}^{-}the quasi-variety generated by M_{1}^{-}. Consider a, b, c to be three special positive elements of M_{1}^{-}. Fix $n>0$ let $c=(0, n), a=(x, 0)$, and $b=(y, 0)$ where $x_{i}=0$ if $i=t$, and $x_{i}>0$ otherwise, $y_{i}=0$ if $i \neq t_{1}$ and $y_{i}>0$ otherwise. Notice that $b \ll a \ll c, b=b^{c}$, and $a \ll a^{c}$, but $b \neq(0,0)$.

The ideas of Example 3.25 can be generalized to find other ℓ-groups which fail the condition of Proposition 3.24.

Let $N_{n}=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} U Z$ be totally ordered by: $t_{i} \leq t_{j} \leq k i f f$ $i \leq j$ and $k \varepsilon Z$, and $i \leq j i f f i, j \varepsilon Z$ and $i \leq j$ in the order of Z. Let $G=\stackrel{\oplus}{N_{n}} Z$ and let $\bar{\gamma}_{n}$ be an o-permutation of Λ_{n} such that $\bar{\gamma}_{n}(i)=i+1$ iff $i \neq t_{j}$ for $j=1, \ldots, n$ and $\bar{\gamma}_{n}(i)=i$ otherwise. Let γ_{n} be the o-automorphism of G defined by $\gamma_{n}(g)=g^{\prime}$ where $g_{i}^{\prime}=g_{\gamma_{n}}(i)$. Let M_{n}^{-}be the cyclic extension of G by γ_{n} and P_{n}^{-}the quasi-variety generated by M_{n}^{-}.

As for the Q_{n}^{-}'s we will prove that the $\left(P_{n}^{-} \mid n \varepsilon Z^{+}-\{0\}\right)$ forms a countably infinite family of different quasi-varieties between A and $R \cap A^{2}$. We will first give a characterization of M_{n}^{-}.

Lemma 3.26: Let $a, b, c, d_{1}, \ldots, d_{n}$ be positive elements of M_{n}^{-}such that $b \ll d_{1} \ll d_{2} \ll \ldots \ll d_{n} \ll a \ll c, d_{i}=d_{i}^{c}$ for every $i=1, \ldots, n$ and $a \ll a^{c}$. Then $b=\left(0, \gamma_{n}^{0}\right)$.

Proof: Clearly the lemma is true if $c=\left(0, r_{n}^{0}\right)$. Suppose that $c=\left(z, \gamma_{n}^{k}\right), b=\left(y, r_{n}^{m}\right), a=\left(x, \gamma_{n}^{p}\right)$ and $d_{i}=\left(t^{i}, \gamma_{n}^{p_{i}}\right)$. First, if $k=0$, then $k=m=p=p_{i}=0$ for every $i=1, \ldots, n$. Thus, $a=a^{c}$ and for a to be infinitely smaller than a^{c}, it must be equal to $\left(0, \gamma_{n}^{0}\right)$. Hence, $d_{i}=b=\left(0, r_{n}^{0}\right)$ for every i. Secondly, if $k>0$, then $p=m=p_{i}=0$ since $b \ll d_{i} \ll a \ll c$ for every i. Clearly if $a=\left(0, \gamma_{n}^{0}\right)$ or
$d_{i}=\left(0, r_{n}^{0}\right)$ for some i then $b=\left(0, r_{n}^{0}\right)$. Suppose $a>\left(0, \gamma_{n}^{0}\right)$ and $d_{i}>$ $\left(0, \gamma_{n}^{0}\right)$ for every i. Then $a=\left(x, \gamma_{n}^{0}\right)$ where $x_{\lambda}>0$ for λ the maximum index where $x_{i} \neq 0$ and λ belongs to z, and $d_{i}=\left(t^{i}, \gamma_{n}^{0}\right)$ where $t_{\lambda_{i}}^{i}>0$ for λ_{i} the maximum index where $t_{j}^{i} \neq 0$ and λ_{i} does not belong to Z (see 3.15). We have $\lambda_{i} \leq t_{i}$ for every i since $d_{1} \ll d_{2} \ll \ldots \ll d_{n}$ and $d_{i}>\left(0, r_{n}^{0}\right)$ for every i. If $\lambda_{i}=t_{i}$, then $b=\left(0, \gamma_{n}^{0}\right)$ otherwise if $\lambda_{i}<k_{i}$ then $d_{1}=$ $\left(0, r_{n}^{0}\right)$ and $b=\left(0, \gamma_{n}^{0}\right)$ since $b \ll d_{1}$.

Again, the condition in Lemma 3.26 can be broken into an equivalent set of implications.

Let $a, b, c, d_{1}, d_{2}, \ldots, d_{n}$ be positive elements of M_{n}^{-}and consider the implications:
(LI) $b \leq d_{1} \leq d_{2} \leq \cdots \leq d_{n} \leq a \leq c, d_{i}=d_{i}^{c}$ for every i and $a \leq a^{c}$ implies $b=\left(0, \gamma_{n}^{0}\right)$.
(L2) $b^{2} \leq d_{1} \leq d_{1}^{2} \leq d_{2} \leq \ldots \leq d_{n} \leq d_{n}^{2} \leq a \leq a^{2} \leq c, b=b^{c}$, $\vdots \quad d_{i}=d_{i}^{c}$ for every i and $a^{2} \leq a^{c}$ implies $b=\left(0, \gamma_{n}^{0}\right)$.
(Li) $b^{i} \leq d_{1} \leq d_{1}^{i} \leq d_{2} \leq \ldots \leq d_{n} \leq d_{n}^{i} \leq a \leq a^{i} \leq c, b=b^{c}$, $\vdots \quad d_{i}=d_{i}^{c}$ for every i and $a^{i} \leq a^{c}$ implies $b=\left(0, y_{n}^{0}\right)$.

$$
\text { (LP) } b^{p} \leq d_{1} \leq d_{1}^{p} \leq d_{2} \leq \cdots \leq d_{n} \leq d_{n}^{p} \leq a \leq a^{p} \leq c, d_{i}=d_{i}^{c}
$$

$$
\vdots \text { for every } i \text { and } a \ll a^{c} \text { then } b=\left(0, \gamma_{n}^{0}\right)
$$

Proposition 3.27: An ℓ-group G satisfies the condition "if b, d_{1}, $d_{2}, \ldots, d_{n}, a, c$ are positive elements of G with $b \ll d_{1} \ll d_{2} \ll \ldots$ $\ll d_{n} \ll a \ll c, d_{i}=d_{i}^{c}$ for every i and $a \ll a^{c}$ implies $b=I_{G}^{\prime \prime}$ iff it satisfies the implications (L1), (L2),...,(Ln),... .

Next, we will prove that the $P_{n}^{-1} s$ are pairwise different and form an infinite chain between A and $R \cap A^{2}$.

Lemma 3.28: For every $n \geq 1$, M_{n}^{-}strictly contains W^{-}and M_{n-1}^{-}. Hence, P_{n}^{-}strictly contains P_{o} and P_{n-1}^{-}.

Proof: Initially, let us prove that W^{-}is strictly contained in M_{n}^{-}. Let $\phi: W^{-} \rightarrow M_{n}^{-}$defined by $\phi(x, m)=\left(y, \gamma_{o}^{m}\right)$ where $y_{i}=x_{i}$ if i belongs to Z and $y_{i}=0$ otherwise. Clearly, ϕ is a well defined injective map. It suffices to prove that ϕ is a homomorphism (i.e., we need to prove that $\phi((x, m)(h, p))=\phi((x, m)) \phi((h, p)))$.

First, note that $(x, m)(h, p)=(t, m+p)$ where $t_{i}=x_{i}+h_{i+m}$. So $\phi((x, m)(h, p))=\left(t^{\prime}, \underset{o}{\gamma^{m+p}}\right)$ where $t_{i}^{\prime}=t_{i}$ if i belongs to Z and $t_{i}^{\prime}=0$ otherwise. Secondly, $\phi((x, m))=\left(y, \gamma_{o}^{m}\right)$ and $\phi((h, p))=\left(\ell, \gamma_{0}^{p}\right)$ where $y_{i}=x_{i}$ and $\ell_{i}=h_{i}$ if i belongs to z and $y_{i}=l_{i}=0$ otherwise. Thus, $\phi((x, m)) \cdot \phi((h, p))=\left(y, \gamma_{o}^{m}\right)\left(\ell, \gamma_{o}^{p}\right)=\left(s, \gamma_{o}^{m+p}\right)$ where $s_{i}=y_{i}+\ell \gamma_{o}^{m}(i)$. Note that if $i \varepsilon N_{n}$ belongs to z, then $s_{i}=y_{i}+\ell_{\gamma_{0}^{m}(i)}=y_{i}+\ell_{i+m}=$ $x_{i}+h_{i+m}=t_{i} . \quad$ Otherwise $s_{i}=t_{i}=0$. Hence, $\phi((x, m)(h, p))=$ $\phi((x, m)) \phi((h, p))$. Thus, $W^{-} \leq M_{n}$ and $Q_{o}^{-} \leq P_{n}^{-}$. Next, we need to prove the $M_{n-1}^{-} \lesseqgtr M_{n}^{-}$. Let $\bar{\gamma}_{n-1}$ and $\bar{\gamma}_{n}$ be the o-permutation of N_{n-1} and N_{n} respectively as defined above. Let γ_{0} be the map from N_{n-1} into N_{n}

defined by:

$$
\begin{aligned}
& \gamma_{0}(i)=i \text { if } i \text { belongs to } Z \\
& \gamma_{0}(i)=i+1 \text { otherwise }
\end{aligned}
$$

It can be easily verified that $\gamma_{n} o^{\gamma} \gamma_{0}=\gamma_{o} o^{\gamma}{ }_{n-1}$. Therefore $M_{n-1}^{-} \leq M_{n}^{-}$and $P_{n-1}^{-} \leq P_{n}^{-}$. In order to prove the strict inclusion between P_{n-1}^{-}and P_{n}^{-}, let $a, b, c, d_{1}, d_{2}, \ldots, d_{n-1}$ be positive elements of M_{n}^{-}such that for $k>0$, $c=\left(0, \gamma_{n}^{k}\right), b=\left(y, \gamma_{n}^{0}\right), a=\left(x, \gamma_{n}^{0}\right), d_{i}=\left(t^{i}, \gamma_{n}^{0}\right)$ where $y_{i}=0$ if ift t_{1} and $y_{i}=1$ otherwise, $x_{i}>0$ if i belongs to Z and $x_{i}=0$ otherwise, $t_{j}^{i}=0$ for every $j \neq t_{i+1}$ and $t_{j}^{i}=1$ otherwise. Note that $b \ll d_{1} \ll d_{2}$ $\ll \ldots \ll d_{n-1} \ll a \ll c, d_{i}=d_{i}^{c}$, and $a \ll a^{c}$ but $b=b^{c}$ and $b \neq\left(0, \gamma_{n}^{0}\right)$. Hence, $M_{n-1}^{-} \lesseqgtr M_{n}^{-}$and $P_{n-1}^{-} \& P_{n}^{-}$. From Example 3.25 we get that $M_{1}^{-}>W^{-}$so now we have $W^{-}<M_{1}^{-}<M_{2}^{-}<\cdots+M_{n}^{-}<\cdots$ and $Q_{0}^{-}<P_{1}^{-}<P_{2}^{-} \lesseqgtr \cdots<P_{n}^{-}$ + \quad.

It is interesting to compare the two families $\left(P_{n}^{-}\right)$and $\left(Q_{n}^{-}\right)$.
Theorem 3.28: For every $n \geq 0$ we have $P_{n}^{-}+Q_{n}^{-}$and $P_{n}^{-} \neq Q_{i}^{-}$for all $0<i \leq n-1$.

Proof: We start by proving that $M_{n}^{-}<W_{n}^{-}$. Let $\Lambda_{n}, N_{n}, \bar{\alpha}_{n}, \bar{\gamma}_{n}$ be as defined before. Let γ_{0} be the map from N_{n} into Λ_{n} defined by

$$
\begin{aligned}
& \gamma_{0}(i)=i \quad i f \quad i=t j \\
& \gamma_{0}(i)=i \quad i f \quad i \quad i n z
\end{aligned}
$$

where $\gamma_{0}(i)$ belongs to $Z_{2} \leq \Lambda_{n}$. It can be easily verified that $\bar{\alpha}_{n}{ }^{\gamma} \gamma_{0}=$ $\gamma_{0} o \bar{\gamma}_{n}$. Hence $M_{n}^{-} \leq W_{n}^{-}$. In order to prove the strict inclusion, let $a, b, c, d_{1}, d_{2}, \ldots, d_{n}$ be such that for $k>0, c=(0, k), a=\left(x, a_{n}^{0}\right)$, $b=\left(y, \alpha_{n}^{0}\right)$, and $d_{i}=\left(t^{i}, \alpha_{n}^{0}\right)$ where $x_{i}>0$ if i belongs to Z_{2} and $x_{i}=0$ otherwise, $y_{i}>0$ if i belongs to Z_{1} and $y_{i}=0$ otherwise, $t_{j}^{i}=0$ for
$j \neq t_{i}$ and $t_{j}^{i}=1$ if $j=t_{i}$. Thus $b \ll d_{1} \ll d_{2} \ll \ldots<d_{n} \ll a \ll c$, $d_{i}=d_{i}^{c}$ for every $i=1, \ldots, n$ and $a \ll a^{c}$ but $b \neq\left(0, \alpha_{n}^{0}\right)$ and $b \ll b^{c}$. Hence, $P_{n}^{-} \lesseqgtr Q_{n}^{-}$.

It remains to prove that P_{n}^{-}is different than Q_{n-1}^{-}. Let a, b, c, $d_{1}, d_{2}, \ldots, d_{n-1}$, be positive elements in M_{n}^{-}chosen as follows: Fixk>0, and $c=\left(0, r_{n}^{k}\right), b=\left(y, \gamma_{n}^{0}\right), a=\left(x, \gamma_{n}^{0}\right), d_{i}=\left(t_{i}, \gamma_{n}^{0}\right)$ where $y_{i}=0$ if $i \neq t_{1}$, and $y_{i}=1$ otherwise, $x_{i}>0$ if $i \varepsilon Z$ and $x_{i}=0$ otherwise, $t_{j}^{i}=0$ for every $j \neq t_{i+1}$ and $t_{j}^{i}=1$ otherwise. Then we have $b \ll d_{1} \ll \ldots$ $\ll d_{n-1} \ll a \ll c, d_{i}=d_{i}^{c}$ for every $i=1, \ldots, n-1$ and $a \ll a^{c}$, but $b=b^{c}$. Then b cannot be infinitely smaller than b^{c}. Therefore M_{n}^{-}does not satisfy the implications that W_{n-1}^{-}satisfies so $P_{n}^{-}+Q_{n-1}^{-}$. Now P_{n}^{-} cannot be equal to Q_{i} for $i<n-1$ since $Q_{i}^{-} \lesseqgtr Q_{n-1}^{-}$.

Remark: For every n, P_{n}^{-}belongs to $R \cap A^{2}$ since P_{n}^{-}is contained in Q_{n}^{-} and Q_{n}^{-}belongs to $R \cap A^{2}$. Then $\left(P_{n}^{-}\right)_{n \varepsilon Z \pm\{0\}}$, is another countable infinite chain of different quasi-varieties containing A and contained in $R \cap A^{2}$.

Using similar techniques we can construct an infinite chain of quasivarieties between A and $R \cap A^{2}$. Let Q_{0}^{+}be the quasi-variety generated by M^{+}. We know Q_{o}^{+}covers A. First, we consider some properties of W^{+}. The most important one is the following: If a, b, c are positive elements of W^{+}with $b \ll a \ll c$ and $a^{c} \ll a$, then $b^{c} \ll b$. Again, this condition
can be stated in an equivalent way by using an infinite set of implications. They are:
(TI) $b \leq a \leq c$ and $a^{c} \leq a$ implies $b^{c} \leq b$.
(T2) $\quad b^{2} \leq a \leq a^{2} \leq c$ and $\left(a^{c}\right)^{2} \leq a$ implies $\left(b^{c}\right)^{2} \leq b$ $\dot{(T \lambda)} \quad b^{\lambda} \leq a \leq a^{\lambda} \leq c$ and $\left(a^{c}\right)^{\lambda} \leq a$ implies $\left(b^{c}\right)^{\lambda} \leq b$

These implications give a characterization of W^{+}and provide a way of determining whether an ℓ-group is different than W^{+}.

There are ℓ-groups that fail the condition above. Now, consider $G\left(\gamma_{1}\right)$ (see Example 3.25) with the following order: $\left(0, \gamma_{1}^{0}\right) \leq\left(g, \gamma_{1}^{n}\right)$ iff $n>0$ or $n=0$ and $g_{i} \geq 0$ where $i \varepsilon Z$ is the minimum index with respect to $g_{i} \neq 0$, or $n=0, g_{i}=0$ for every $i \varepsilon Z$ and $g_{t_{1}} \geq 0$. Let M_{1}^{+}be $G\left(\gamma_{1}\right)$ with this order, and P_{1}^{+}the quasi-variety generated by M_{1}^{+}.

Now, M_{1}^{+}fails the implications. In fact, consider a, b, c to be three special positive elements of M_{1}^{+}. Fix $n>0$ and let $c=(0, n)$, $a=(x, 0)$, and $b=(y, 0)$ where $x_{i}=0$ if $i=t_{1}$ and $x_{i}>0$ otherwise, $y_{i}=0$ if $i \neq t$, and $y_{i}>0$ otherwise. Notice that $b \ll a \ll c$ and $a^{c} \ll a$ but $b=b^{c}$. Hence, b^{c} is not infinitely smaller than b.

The ideas of this example can be generalized as in 3.25 to find other l-groups which fail the condition above. Hence, as for the $P_{n}^{-1} s$ we have a family ($P_{n}^{+} \mid n \varepsilon Z^{+}-\{0\}$) of countably infinite distinct quasivarieties between A and $R \cap A^{2}$. Therefore, the theorem follows.

Theorem 3.29: There is an infinite chain of distinct quasi-varieties between A and $R \cap A^{2}$.

To complete this chapter we look at a general way of constructing ℓ-groups using the techniques that have been developed. This is done
similar to the construction of W_{n}^{-}but with a different index set. Let $\Lambda_{n_{1}, n_{2}}, \ldots, n_{k}=Z_{1} \cup\left\{t_{1}^{1}, \ldots, t_{n_{1}}^{1}\right\} \cup z_{2} \cup\left\{t_{1}^{2}, \ldots, t_{n_{2}}^{2}\right\} \cup \ldots u$
$Z_{k} \cup\left\{t_{1}^{k}, \ldots, t_{n_{2}}^{k}\right\} \cup Z_{k+1}$ where $Z_{i}=z$ for every $i=1, \ldots, k+1$. Let
$\bar{\alpha}_{n_{1}}, n_{2}, \ldots, n_{k}$ be the o-permutation of $\Lambda_{n_{1}}, \ldots, n_{k}$ defined by
$\bar{\alpha}_{n_{1}, n_{2}}, \ldots, n_{k}(i)=i+1$ if i belongs to $Z_{1} U Z_{2} U \ldots U Z_{k+1}$ and
$\bar{\alpha}_{n_{1}, n_{2}}, \ldots, n_{k}(i)=i$ otherwise. Note that the index set $\Lambda_{n_{1}}, \ldots, n_{k}$ is totally ordered as follows: The Z_{i} 's carry the natural order of Z, and if i_{j} is an element of z_{j} then $i_{j} \leq t_{1}^{j} \leq t_{2}^{j} \leq \ldots \leq t_{n_{j}}^{j} \leq i_{j+1}$. Let
$G=\Lambda_{n_{1}}, \ldots, n_{k} Z$ and $a_{n_{1}}, \ldots, n_{k}$ be the o-automorphism of G such that $\phi(g)=g^{\prime}$ where $g_{i}^{\prime}=g_{\bar{\alpha}_{n_{1}}, \ldots n_{k}(i)}$. Consider $W_{n_{1}}^{-}, \ldots, n_{k}$ to be the cyclic extension of G by $\alpha_{n_{1}}, \ldots, n_{k}$, and $Q_{n_{1}}^{-}, \ldots, n_{k}$ the quasi-variety generated by $W_{n_{1}}^{-}, \ldots, n_{k}$.

We first see how to compare $W_{n_{1}}^{-}, n_{2} \ldots, n_{k}$ with the Q_{n}^{-}'s constructed before.

Theorem 3.30: If $n_{1}+n_{2}+\ldots+n_{k}=n$, then $W_{n_{1}}^{-} \ldots, n_{k}$ belongs to Q_{n}^{-}and in fact $Q_{n_{1}}^{-}, \ldots, n_{k} \geq Q_{n}^{-}$.

$$
\text { Let } \phi^{\prime}: W_{n}^{-} \rightarrow W_{n_{1}}^{-}, \ldots, n_{k} \text { be defined by }
$$

$$
\begin{aligned}
& \phi^{\prime}\left(\left(g, \alpha_{n}^{m}\right)\right)=\left(g^{\prime}, \alpha_{n_{1}}^{m}, \ldots, n_{k}\right) \text { where } g_{i}^{\prime}=0 \text { if } i \varepsilon Z_{2} U \ldots U Z_{k}, \\
& g_{i}^{\prime}=g_{j} \text { where } j \varepsilon Z_{1} \leq \Lambda_{n}, i=j \text { and } i \varepsilon Z_{1} \leq \Lambda_{n_{1}}, \ldots, n_{k} \cdot \\
& g_{i}^{\prime}=g_{j} \text { where } j \varepsilon Z_{2} \leq \Lambda_{n}, i=j \text { and } i \varepsilon Z_{k+1} \leq \Lambda_{n_{1}}, \ldots, n_{k} \text {, }
\end{aligned}
$$

and $g_{t_{1}}^{\prime}=g_{t_{1}}, g_{t_{n_{1}}^{\prime}}^{\prime}=g_{t_{n_{1}}}, g_{t_{1}^{\prime}}^{\prime}=g_{t_{n_{1}+1}}, \ldots, \ldots, g_{t_{n_{2}}^{\prime}}=g_{t_{n_{1}}+n_{2}}$. Thus, $g_{t_{j}^{i}}^{\prime}=g_{t_{n_{1}+\ldots+n_{i-1}+j}}$ for $1 \leq i \leq k$ and $1 \leq j \leq n_{i}$. It appears easier if we draw the following picture:

The map ϕ^{\prime} is clearly well-defined. We need to prove that ϕ ' is a homomorphism; i.e., that $\phi^{\prime}\left(\left(g, \alpha_{n}^{m}\right)\left(h, \alpha_{n}^{p}\right)\right)=\phi^{\prime}\left(\left(g, \alpha_{n}^{m}\right)\right) \cdot \phi^{\prime}\left(\left(h, \alpha_{n}^{p}\right)\right)$. First, $\phi^{\prime}\left(\left(g, \alpha_{n}^{m}\right)\right)=\left(g^{\prime}, \alpha_{n_{1}}^{m}, \ldots, n_{k}\right)$ and $\phi^{\prime}\left(\left(h, \alpha_{n}^{p}\right)\right)=\left(h^{\prime}, \alpha_{n_{1}}^{p}, \ldots, n_{k}\right)$. Now, $\phi^{\prime}\left(\left(g, \alpha_{n}^{m}\right)\left(h, \alpha_{n}^{p}\right)\right)=\phi^{\prime}\left(\left(r, \alpha_{n}^{m+p}\right)\right)$ where $r_{i}=g_{i}+h_{\alpha_{n}^{m}(i)}$. Then $\phi^{\prime}\left(\left(r, \alpha_{n}^{m+p}\right)\right)=\left(r^{\prime}, \alpha_{n_{1}}^{m+p}, \ldots, n_{k}\right)$. But $\phi^{\prime}\left(\left(g, \alpha_{n}^{m}\right)\right) \cdot \phi^{\prime}\left(\left(h, \alpha_{n}^{p}\right)\right)=$ $\left(g^{\prime}, \alpha_{n_{1}}^{m}, \ldots, n_{k}\right)\left(h^{\prime}, \alpha_{n_{1}}^{p}, \ldots, n_{k}\right)=\left(s_{n_{1}}^{m+p}, \ldots, n_{k}\right)$ where $s_{i}=g_{i}^{\prime}+$ $h_{\alpha_{n_{1}}^{\prime}, \ldots, n_{k}}(i)$. It suffices to prove that $s_{i}=r_{i}^{\prime}$ for every $i \varepsilon \Lambda_{n_{1}}, \ldots, n_{k}$.

First, if $i \varepsilon Z_{2} \cup \ldots U Z_{k}, r_{i}^{\prime}=s_{i}=0$. Secondly, if $i \varepsilon Z_{1} \leq$
$\Lambda_{n_{1}}, \ldots, n_{k}$ then $r_{i}^{\prime}=r_{j}$ where $i=j$ and $j \varepsilon z_{1} \leq \Lambda_{n}$. Thus, $r_{i}^{\prime}=r_{i}=g_{i}+$
$h_{\alpha_{n}^{m}(i)}=g_{i}^{\prime}+h_{\alpha_{n}^{\prime}(i)}^{\prime}=g_{i}^{\prime}+h_{\alpha_{n_{1}}^{\prime}, \ldots, n_{k}}(i)=s_{i}$. Similarly, if i εZ_{k+1},
$r_{i}^{\prime}=s_{i}$. Finally, if $\lambda=t_{j}^{i}$ with $l \leq i \leq k$ and $l \leq j \leq n_{i}$ then
$\left.r_{\lambda}^{\prime}=r_{t_{n_{1}+n_{2}}+\ldots+n_{i-1}+j}=g_{t_{n_{1}}+n_{2}+\ldots+n_{i-1}+j}+h_{\alpha_{n}^{m}\left(t_{n_{1}+n_{2}+\ldots+\ldots+n_{i-1}}\right)}\right)=$
$g_{t_{n_{1}+n_{2}}+\ldots+n_{i-1}+j}+h_{t_{n_{1}+n_{2}}+\ldots+n_{i_{-1}}^{+j}}=g_{\lambda}^{\prime}+h_{\lambda}^{\prime}=g_{\lambda}^{\prime}+h_{\alpha_{n_{1}}^{\prime}, \ldots, n_{k}}(\lambda)=$
s_{λ}. Thus, ϕ^{\prime} is a homomorphism and clearly a monomorphism.
Last, we need to prove that ϕ^{\prime} is an ℓ-homomorphism. It suffices to show that $\phi^{\prime}(x v y)=\phi^{\prime}(x) v \phi^{\prime}(y)$ for every $x, y \in W_{n}^{-}$. Let $x=\left(g, \alpha_{n}^{m}\right)$ and
$y=\left(h, \alpha_{n}^{P}\right)$. We know that W_{n}^{-}is totally ordered. Hence, we can assume that $x \leq y$. So $x v y=y$ and $\phi^{\prime}(x v y)=\phi^{\prime}(y)$. Two possibilities arise. First, if $m<p$, then $\phi^{\prime}(x)<\phi^{\prime}(y)$ and $\phi^{\prime}(x) \vee \phi^{\prime}(y)=\phi^{\prime}(y)=\phi^{\prime}(x v y)$. Secondly, if $m=p$, then let η_{1}, η_{2} be the indexes of Λ_{n} maximal with respect to $g_{\eta_{1}} \neq 0$ and $h_{\eta_{2}} \neq 0$, respectively. Now $x \leq y$ implies that one of the following is true.
(i) $n_{1} \leq n_{2}$ and $n_{1}, n_{2} \in Z_{2} \leq \Lambda_{n}$
(ii) $n_{1}<n_{2}$ with $n_{1} \varepsilon\left\{t_{1}, \ldots, t_{n}\right\} \leq \Lambda_{n}$ and $n_{2} \varepsilon Z_{2} \leq \Lambda_{n}$

$$
\begin{equation*}
\eta_{1} \leq n_{2} \text { with } n_{1}, \eta_{2} \varepsilon\left\{t_{1}, \ldots, t_{n}\right\} \leq \Lambda_{n} \tag{iii}
\end{equation*}
$$

(iv) $n_{1}<n_{2}$ with $n_{1} \varepsilon Z_{1} \leq \Lambda_{n}$ and $n_{2} \varepsilon\left\{t_{1}, \ldots, t_{n}\right\} \leq \Lambda_{n}$
(v) $\eta_{1}<\eta_{2}$ with $\eta_{1}, \eta_{2} \varepsilon Z_{1} \leq \Lambda_{n}$

Easily, we can verify that in all cases we have $\phi^{\prime}(x) \leq \phi^{\prime}(y)$, and hence $\phi^{\prime}(x) \vee \phi^{\prime}(y)=\phi^{\prime}(y)$. Thus, ϕ^{\prime} is an ℓ-monomorphism. Hence, $W_{n}^{-} \leq W_{n_{1}}^{-}, \ldots, n_{k}$ and $Q_{n}^{-} \leq Q_{n_{1}}^{-}, \ldots, n_{k}$.

Using the same proof techniques, it can be shown that if $n_{1}+n_{2}+\cdots+n_{k}>n$, then $Q_{n}^{-} \leq Q_{n_{1}}^{-}+n_{2}+\cdots+n_{k}$.

CHAPTER IV

NON-REPRESENTABLE $\ell-G R O U P S$

The goal of this chapter is to construct an infinite chain of different quasi-varieties each of which contains A and is contained in the variety $L_{n} \cap A^{2}$, where L_{n} is defined by $\left[x^{n}, y^{n}\right]=1$ for any fixed integer $n \geq 2$.

Recall some of the better studied ℓ-group varieties are $E=$ the trivial variety, $A=$ the variety of abelian ℓ-groups, $R=$ the variety of representable ℓ-groups, $N=$ the variety of normal-valued and ℓ-groups, and $L=$ the variety of all l-groups. It has been shown that all nontrivial varieties contain A (E. C. Weinberg [23] and that all proper varieties are contained in N (W. C. Holland [8]).

Since N plays an important role in this chapter, we first define normal-valued ℓ-groups and give some characterizations of such ℓ-groups.

Definition 4.1: Let G be an ℓ-group and C a subgroup of G. C is solid iff C is a convex ℓ-subgroup of $G(i . e .$, if $x, y \in C$ are such that $|y| \leq|x|$ then $y \varepsilon C)$.

Let $C(G)$ be the set of all solid subgroups of G ordered by inclusion.
Definition 4.2: Let M be a subgroup of G. M is regular iff $M \in C(G)$ and if $M={ }_{i \varepsilon I} C_{i}$ for $C_{i} \varepsilon C(G)$ then there exists $i \varepsilon I$ such that $M=C_{i}$.

Let $R(G)$ be the set of all regular subgroups of an ℓ-group G, and for every $R \in R(G)$, let R^{*} be the element of $C(G)$ that covers R.

Definition 4.3: Let G be an l-group, R an element of $R(G) . ~ R$ is a normal value if R is normal in R^{*}. If for every $R \in R(G), R$ is a
normal value then G is a normal-valued ℓ-group.
Any representable ℓ-group is normal-valued but the converse is not true. In fact, the ℓ-group in Example 3.5 (ii) is normal valued but not representable.

There are numerous characterizations of normal valued ℓ-groups. The most useful ones are the following: An ℓ-group G is normal-valued iff G satisfies one of the relations:
(i) For every $a, b \varepsilon G, a^{-1} b^{-1} a b \ll|a| v|b|$.
(ii) If $a, b \in G^{+}$then $a b \leq b^{2} a^{2}$.

It is known that the varieties $A^{2}=A A, \ldots, A^{n}=A^{n-1} A$ form a proper chain from A to N with $N=V\left\{A^{n} ; n \varepsilon N\right\}$ (see A. M. W. Glass [5]). Since A plays such an important role, it is natural to attempt to generalize it. Therefore, for $n \geq 2$ let L_{n} be the variety defined by the equation $\left[x^{n}, y^{n}\right]=1$. These L_{n} 's form a family with several properties of interest:
(1) $L_{m}<L_{n}$ iff m is a proper divisor of n (J. Martinez [11]),
(2) $L_{m} \wedge L_{n}=A \operatorname{iff}(m, n)=1$ (E. B. Scrimger [21]), and
(3) $L_{n} \wedge R=A$ for all $n \geq 2$ (J. Martinez [11]).

Also, within each L_{n} lies a subdirectly irreducible ℓ-group of particular interest: $G_{n}={ }_{0}^{n-1} z \overleftarrow{x} \quad Z$ where for

$$
\begin{gathered}
\left(a_{0}, \ldots, a_{n-1} ; b\right),\left(c_{0}, \ldots, c_{n-1} ; d\right) \text { in } G_{n}, \\
\left(a_{0}, \ldots, a_{n-1} ; b\right) \leq\left(c_{0}, \ldots, c_{n-1} ; d\right) \text { iff } b<d \text { or } b=d \text {, and } \\
a_{i} \leq c_{i} \text { for } 0 \leq i \leq n-1, \text { and } \\
\left(a_{0}, \ldots, a_{n-1} ; b\right)\left(c_{0}, \ldots, c_{n-1} ; d\right)=\left(a_{0}+c_{0+b}, \ldots, a_{n-1}+c_{n-1+b} ; b+d\right)
\end{gathered}
$$

with all subscripts read modulo n. This ℓ-group may also be viewed as an ℓ-subgroup of ZWrZ and is called the Scrimger ℓ-group (see Smith [22] for more details on G_{n}).

Let S_{n} be the variety of ℓ-groups generated by G_{n} (i.e. the smallest variety of ℓ-groups containing G_{n}). We know that $S_{n} \leq N-R$ and that for every prime number $n S_{n}$ covers $A(E . B$. Scrimger [21]). It is also readily seen by considering the generating ℓ-groups that for p, q distinct primes,

$$
S_{p}, S_{q}<S_{p} \vee S_{q}<S_{p q}
$$

Thus, $\left\{S_{p} \mid p\right.$ is prime $\}$ generates a sublattice of L isomorphic to the lattice of finite sets of primes. The work done thus far with S_{n} varieties has relied primarily on knowledge of their generating ℓ-groups. Some equations that are satisfied in G_{n} for $n \geq 2$ have been brought to light. They include:
(i) $\left[a^{n}, b^{n}\right]=1$.
(ii) $[[a, b],[c, d]]=1$.
(iii) $\left[a, b, c^{n}\right]=1$.
(iv) $[a, b, c]^{l+c+c^{2}+\cdots+c^{n-1}}=1$.
(v) $\left[a^{l+b+\cdots+b^{n-1}}, c^{1+d+\cdots+d^{n-1}}\right]=1$.
(vi) $[a, k b]^{l+b+\cdots+b^{n-1}}=1$ for any $k \geq 2$.
(vii) $\left[a^{1+b_{1}+b_{2}+\cdots+b_{n-1}}, c^{1+d_{1}+\cdots+d_{n-1}}\right]=1$.

Little has been said of the quasi varieties generated by the G_{n} 's. We know that quasi-varieties are weaker algebraic structures than varieties. Although, if n is a prime number, then there are not any
varieties between A and S_{n}, and $A<S_{n} \leq L_{n} \cap A^{2}$. We will construct an infinite number of different quasi-varieties between A and $L_{n} \cap A^{2}$.

First, we establish the analog of Scrimger's theorem for quasivarieties. But, before doing so we need the following definitions, results, and notations. First, let H_{o} be the quasi-variety generated by G_{n}.

Definition 4.4: Let G be an ℓ-group and N a solid subgroup of G. N is prime iff for any arbitrary elements $a, b \in N$ with $a v b=e$, where e is the identity of G, we have either $a \varepsilon N$ or $b \varepsilon N$. Also, N is a minimal prime subgroup iff there exists no nontrivial ℓ-subgroup of G strictly contained in N, and is called in Scrimger [21] a representing subgroup.

Definition 4.5: Let G be an ℓ-group and F an nonempty subset of G such that
(i) The meet of finitely many elements of F belongs to F .

$$
\begin{equation*}
\text { If } X \in F \text {, and } t \geq x \text {, then } t \varepsilon F \text {. } \tag{ii}
\end{equation*}
$$

($\mathrm{i} i \mathrm{i}$) The smallest element e of G^{+}does not belong to F .
Then F is called a filter over G. If F is maximal, then F is called an ultrafilter.

Definition 4.6: Let G be an ℓ-group, e the identity of G and x an arbitrary element of G, and $A \leq G$. Then,

$$
\begin{gathered}
x^{\perp}=\{g \mid g \varepsilon G \text { and }|g| \wedge|x|=e\} \text {, and } \\
A^{\perp}=\{g \mid g \varepsilon G \text { and }|g| \wedge|a|=e \text { for every } a \varepsilon A\} .
\end{gathered}
$$

x^{\perp} and A^{\perp} are called the polars of x and A, respectively.
The following theorems (see Bigard [2]) demonstrate the significance of ultrafilters and polars in generating minimal prime subgroups.

Theorem 4.7: Let G be an ℓ-group, M an arbitrary minimal prime
subgroup of G. The map ϕ defined by $\phi(M)=G^{+}-M$ is a bijection between the set of all minimal prime subgroups of G and the set of all ultrafilters over G^{+}.

Theorem 4.8: Let G be an ℓ-group, C a solid subgroup of G, and U an ultrafilter over C^{+}. The set $M=U\left\{x^{\perp} \mid x \in U\right\}$ is a minimal prime subgroup of G, and any minimal prime subgroup M of G that does not contain C is of this form (i.e. $M=U\left\{X^{\perp} \mid x \in U\right\}$ for some ultrafilter U over G^{+})

Proof: Let V be the set of all upper bounds in G of elements of U (i.e. $V=\{x \in G$ such that there exists $y \varepsilon U$ with $y \leq x\}$).

Clearly $U \leq V$. To see that V is a filter over G^{+}we show that V satisfies the conditions in 4.6. First, if x, y are elements of V, then there exists $x^{\prime}, y^{\prime} \varepsilon U$ such that $x \geq y^{\prime}$ and $y \geq y^{\prime}$. So, $x \wedge y \geq x^{\prime} \wedge y^{\prime} \varepsilon U$, and then $x_{\wedge} y \in V$. Now, if $x \varepsilon V$ and $t \geq x$, then there exists $g \varepsilon U$ such that $x \geq g$. Thus, $t \geq x \geq g \varepsilon U$ so $t \varepsilon V$.

Now suppose e εV. Then there exists $u \varepsilon U$ such that $u \leq e$. Thus, $\mathrm{e} \varepsilon \mathrm{U}$ contrary to the definition of a filter since e is also the smallest element of C^{+}. Hence, e $\ddagger V$. Note that $G^{+}-V \leq G^{+}-U$. Next, we will prove that V is an ultrafilter over G^{+}. It suffices to prove that for every $g \varepsilon G^{+}-V$ there exists $\vee \varepsilon \vee$ such that $g \wedge v=e \quad$ Considering $g \varepsilon G^{+}-V$ and $x \in U$.

If $g \wedge x \varepsilon U$, then $g \varepsilon U$ since $g \geq g \wedge x$. But $G^{+}-V \leq G^{+}-U$, so $g \varepsilon G^{+}-U$, and we have a contradiction. Hence, $g \wedge x \notin U$. Since U is an ultrafilter there exists $y \varepsilon U$ such that $(g \wedge x) \wedge y=e$. But $x \wedge y \varepsilon U$ since U is closed under taking the meet of a finite number of elements of U. Let $v=x \wedge y$. Then $g \varepsilon V^{\perp}$ and $v \varepsilon V$. Now, every filter T over G^{+}strictly containing V contains the smallest element e. Suppose T is such a filter and $t \varepsilon T-V$. Then there exists $s \varepsilon V$ such that $t \wedge s=e$. But $s \varepsilon T$ since $V \leq T$. Hence, $s \wedge t=e \varepsilon T$. Therefore, V is an ultrafilter over G^{+}
and $U\left\{x^{\perp} \mid x \varepsilon V\right\}=U\left\{x^{\perp} \mid x \varepsilon U\right\}=G^{+}-V$ is a minimal prime subgroup of G.
Conversely, let M be a minimal prime subgroup of G that does not contain $C, V=G^{+}-M$, and $U=V \cap C$. Clearly, U is an ultrafilter over C^{+}. Now, the set of all upper bounds in G of elements of U is an ultrafilter so it must be equal to V.

A similar reasoning leads to the following proposition.
Proposition 4.9: Let G be an ℓ-group, g an element of G, X the set of all elements of G^{+}smaller than or equal to $|\mathrm{g}|$, and U an ultrafilter over X. The set $U\left\{X^{\perp} \mid x \varepsilon U\right\}$ is a minimal prime subgroup of G, and every minimal prime subgroup M of G that does not contain g is of this form (i.e. $M=U\left\{X^{\perp} \mid x \in U\right\}$ where U is an ultrafilter over X).

By Scrimger [21], if n is a prime number S_{n} covers A. Hence, it is very important to determine when a given ℓ-group G contains an ℓ-subgroup isomorphic to G_{n}. Therefore, the following lemma is useful.

Lemma 4.10: If G is an ℓ-group of L_{n}, and C a representing subgroup of G, which has n distinct conjuguates of the form $x^{-i} C x^{i}$ for some $x \in G$ and $x>e$ where e is the identity of G, then G contains an ℓ-subgroup isomorphic to G_{n}.

Proof: See Scrimger [21].
Using this Lemma we can prove the analog of Scrimger's theorem for quasi-varieties.

Theorem 4.11: The quasi-variety H_{o} covers A in the lattice of quasivarieties of ℓ-groups.

Proof: Suppose there exists a quasi-variety Q such that $A \lesseqgtr Q \lesseqgtr H_{0}$. Then there exists an ℓ-group $G \varepsilon Q$ such that G is nonabelian. Hence, there are two positive elements $x, y \in G$ such that $x y \neq y x$ and $x \wedge y \neq e$.

Note that G contains always a nontrivial minimal prime subgroup C.

In fact, let X be the set of all elements in G^{+}smaller than or equal to $x, X \neq\{e\}$ since x and $x \wedge y \in X$, and U an ultrafilter over X that contains x and $x \wedge y$. Then, by $4.9 C=U\left\{a^{\perp} \mid a \varepsilon U\right\}$ is a minimal prime subgroup of G. C is nontrivial since x^{-1}, y^{-1} and $x^{-1} \wedge y^{-1}$ are in C.

Now, let C be a nontrivial minimal prime subgroup of G. It suffices to prove that C has n distinct conjuguates of the form $x^{-i} C x^{i}$ for some $x>e$, since then by Lemma 4.10 G contains an ℓ-subgroup isomorphic to G_{n} and $Q=H_{0}$. First, since $G \varepsilon S_{n} \leq L_{n}$ we have $x^{-n} C x^{n}=C$ for all $x \varepsilon G$. In fact, suppose $e<c \varepsilon C$. Then $e<c<c^{2}<\ldots<c^{n}=x^{-n} c^{n} x^{n} \varepsilon x^{-n} c x^{n}$, so $c \varepsilon x^{-n} C x^{n}$, and hence $C \leq x^{-n} C x^{n}$. Similarly, $C \leq x^{n} C x^{-n}$, so $C=x^{-n} C x^{n}$. Next, the number t of distinct conjuguates of C of the form $x^{-i} C x^{i}$ is a divisor of n. In fact, let i be the smallest positive integer such that $x^{-i} C x^{i}=C$. If i is not a divisor of n, then there are integers r and s such that $r n+s i=k$, where $1 \leq k<i$, and k is the greatest common divisor of n and i. Then, $x^{-k} c x^{k}=x^{-r n-s i} c x^{r n+s i}$ $=C$, contradicting the minimality of i. Hence, if n is prime, then t is l or n. Now, we will show that there exist at least two distinct conjuguates of C of the form $x^{-i} C x^{i}$. There exists $c<x \in G$ such that $x^{-1} C x \neq C$. Suppose $x^{-1} C x=C$ for all $c<x \in G$. Then, C is an ℓ-ideal of G, so since it is also a representing subgroup, $C=\{e\}$, and G is totally ordered and therefore representable. But $R \cap L_{n}=A$, so G must be abelian since $G \in R \cap L_{n}$. This is a contradiction. Therefore there is a positive x such that $x^{-1} C x \neq C$. Thus, $x^{-1} C x$ and $x^{-0} C x^{0}=C$ are two distinct conjuguates of C . Hence, $\mathrm{t}=\mathrm{n}$ and the theorem is proved. Since by 4.10 G contains an l-subgroup isomorphic to G_{n} and $Q \leq H_{0}$. Therefore, $Q=H_{0}$ and H_{o} covers A in the lattice of quasi-varieties.

It is not always easy to find the implications that define a given quasi-variety. But it is possible to find a set of implications that are
satisfied by all elements of the quasi-variety. We consider first some properties of G_{n}.

Proposition 4.12: If a, b, c are positive elements of G_{n} with $b \ll a \ll c$, then $b=(0, \ldots, 0 ; 0)$.

Proof: Clearly the property is true if $a=b=c=(0, \ldots, 0 ; 0)$. Let $a=\left(a_{0}, \ldots, a_{n-1} ; q\right), b=\left(b_{0}, \ldots, b_{n-1} ; p\right)$ and $c=\left(c_{0}, \ldots, c_{n-1}, k\right)$. First, if $k=0$ then $p=q=0$ since $b \ll a \ll c$. Now, $a \ll c i m p l i e s$ $a_{i}=0$ for every $i=0, \ldots, n-1$.

Suppose there exists $i, 0 \leq i \leq n-1$, such that $a_{i}>0$. We have either $c_{i}=0$ or $c_{i}>0$. But, $i f c_{i}=0$ then $a_{i}>c_{i}$ and this is contradiction with a $\leq c$. Otherwise, there exists $m \varepsilon Z^{+}-\{0\}$ such that $m a_{i}>c_{i}$ contrary to $a \ll c$. Hence, $a_{i}=0$ for every $i=0, \ldots, n-1$, and $b_{i}=0$ for every $i=0, \ldots, n-1$ since $b \ll a$. Hence, $b=(0, \ldots, 0 ; 0)$. Next, if $k>0$ then $q=p=0$. Otherwise, if $q>0$, then there exists $\lambda \varepsilon Z^{+}-\{0\}$ such that $\lambda q>k$ and $a^{\lambda}>c$ contrary to $a \ll c$. So, $p=q=0$, and $b_{i}=0$ for every $i=0, \ldots, n-1$ since $b \ll a$. Hence, $b=(0, \ldots, 0 ; 0)$.

The condition in this proposition can be stated in an equivalent way by using an infinite set of implications.

Proposition 4.13: An l-group G satisfies the property "If a, b, c are positive elemnts of G with $b \ll a \ll c$ then $b=l_{G}{ }^{\prime \prime}$, iff G satisfies the implication.
(I) $b^{n} \leq a \leq a^{n} \leq c$ for all $n \varepsilon Z, n \geq 1$ implies $b=1_{G}$.

Proof: Clearly if (I) is true for every $n \geq 1$ then the condition holds.

Conversely assume the property is satisfied. If $b^{n} \leq a \leq a^{n} \leq c$ for all positive integers n, then $b \ll a \ll c$ so $b=l_{G}$.

Note that, for every $\lambda \geq 1$ the implication $b^{\lambda} \leq a \leq a^{\lambda} \leq c$ implies b is the identity of G_{n} is not always true in G_{n}. For this we will give the following example:

Example 4.14: Fix $\lambda \geq 1$, and let $a, b, c \varepsilon G_{n}$ such that $c=(0,0, \ldots$; k) where $k>0, a=(n \lambda, \ldots, n \lambda ; 0)$ where $\lambda, n \varepsilon Z^{+}-\{0\}$, and $b=(1, \ldots, 1$; 0). Now, $b^{\lambda}=(\lambda, \ldots, \lambda ; 0) \leq(n \lambda, \ldots, n ; 0)=a \leq\left(n \lambda^{2}, \ldots, n \lambda^{2} ; 0\right)=a^{\lambda} \leq$ $(0, \ldots, 0 ; k)=c$. But $b \neq(0 \ldots, 0 ; 0)$ and (I) fails in G_{n} for every $\lambda \geq 1$.

Propositions 4.12 and 4.13 give a characterization of G_{n} and provide a way of determining whether an ℓ-group is different than G_{n}.

Generally, to show that an ℓ-group is not in H_{0} it suffices to find elements in the ℓ-group that do not satisfy (I) as we will see in the following example:

Example 4.15: Let $H_{n}^{1}={\underset{0}{n}}_{\pi}^{Z} \underset{\star}{\star} Z$ where for $\left(a_{0}, a_{1}, \ldots, a_{n} ; b\right)$; and $\left(c_{0}, c_{1}, \ldots, c_{n} ; d\right)$ in $H_{n}^{1},\left(a_{0}, \ldots, a_{n-1}, a_{n} ; b\right) \leq\left(c_{0}, \ldots, c_{n-1}, c_{n} ; d\right)$ iff $b<d$ or $b=d$ and $a_{n}<c_{n}$ or $b=d, a_{n}=c_{n}$ and $a_{i} \leq c_{i}$ for $i=0, \ldots, n-1$, and $\left(a_{0}, a_{1}, \ldots, a_{n} ; b\right)\left(c_{0}, \ldots, c_{n} ; d\right)=\left(a_{0}+c_{a+b}, \ldots, a_{n-1}+c_{n-1-b}, a_{n}+c_{n} ;\right.$ $b+d$) with all subscripts smaller than or equal to $n-1$ read modulo n. Let H_{1} be the quasi-variety generated by H_{n}^{1}. H_{n}^{l} carries a natural group structure. Note that $\left(a_{0}, \ldots, a_{n-1}, a_{n} ; b\right)^{-1}=\left(-a_{0-b}, \ldots,-a_{n-1-b},-a_{n} ;-b\right)$ where all subscripts smaller than or equal to $n-1$ are read modulo n, and the identity in H_{n}^{1} is ($0, \ldots, 0,0 ; 0$).

Also, the order \leq defines a lattice order on H_{n}^{l}. In fact,

$$
\left(a_{0}, \ldots, a_{n} ; b\right)_{\wedge}\left(b_{0}, \ldots, b_{n} ; d\right)=\left\{\begin{array}{l}
\left(a_{0}, \ldots, a_{n} ; b\right) \text { if } b<d \\
\left(b_{0}, \ldots, b_{n} ; d\right) \text { if } d<b \\
\left(a_{0}, \ldots, a_{n} ; b\right) \text { if } b=d \text { and } a_{n}<b_{n} \\
\left(b_{0}, \ldots, b_{n} ; d\right) \text { if } b=d \text { and } b_{n}<a_{n} \\
\left(a_{0} \wedge b_{0}, \ldots, a_{n-1}^{\left.\wedge b_{n-1}, a_{n} ; b\right) \text { if } b=d \text { and } b_{n}=a_{n}}\right.
\end{array}\right.
$$

where $a_{i} \wedge b_{i}=\operatorname{minimum}\left(a_{i}, b_{i}\right)$, and

$$
\left(a_{0}, \ldots, a_{n} ; b\right) v\left(b_{0}, \ldots, b_{n} ; d\right)=\left\{\begin{array}{l}
\left(a_{0}, \ldots, a_{n} ; b\right) \text { if } b>d \\
\left(b_{0}, \ldots, b_{n} ; d\right) \text { if } b<d \\
\left(a_{0}, \ldots, a_{n} ; b\right) \text { if } b=d \text { and } a_{n}>b_{n} \\
\left(b_{0}, \ldots, b_{n} ; d\right) \text { if } b=d \text { and } a_{n}<b_{n} \\
\left(a_{0} v b_{0}, \ldots, a_{n-1} v b_{n-1}, a_{n} ; b\right) \text { if } b=d \text { and } \\
a_{n}=b_{n}
\end{array}\right.
$$

where $a_{i} v b_{i}=\operatorname{maximum}\left(a_{i}, b_{i}\right)$.
To show H_{n}^{l} is an ℓ-group it only remains to verify that if $a, b, c \in H_{n}^{1}$ where $a \leq b$ then $a c \leq b c$ and $c a \leq c b$. Since a, b, c are in H_{n}^{l} write $a=\left(a_{0}, \ldots, a_{n} ; k\right), b=\left(b_{0}, \ldots, b_{n} ; p\right)$, and $c=\left(c_{0}, \ldots, c_{n} ; d\right)$. Now $a \leq b$ implies that $k<p$ or $k=p$ and $a_{n}<b_{n}$, or $k=p, a_{n}=b_{n}$ and $a_{i}<b_{i}$ for $i=0, \ldots, n-1$. If $k<p$ then $k+d<p+d$ and $a c=\left(a_{0}, \ldots, a_{n} ; k\right)$ $\left(c_{0}, \ldots, c_{n} ; d\right)=\left(a_{0}+c_{0+k}, \ldots, a_{n}+c_{n} ; k+d\right) \leq\left(b_{0}+c_{0+k}, \ldots, b_{n}+c_{n} ; p+d\right)=$ $\left(b_{0}, \ldots, b_{n} ; p\right)\left(c_{0}, \ldots, c_{n} ; d\right)=b c$. Otherwise, if $k=p$ and $a_{n}<b_{n}$ then
$a_{n}+c_{n}<b_{n}+c_{n}$ and $a c \leq b c$. At last, if $k=p, a_{n}=b_{n}$ and $a_{i} \leq b_{i}$ for $\mathbf{i}=0, \ldots n-1$ then $a_{i}+c_{i+k} \leq b_{i}+c_{i+k}$ and $a c \leq b c$. We can verify in a similar way that $c a \leq c b$. Note that H_{n}^{l} is an ℓ-group that fails (I). To see this let a, b, c be 3 elements of G such that $a=(0,0, \ldots, 0,1 ; 0)$, $b=(1,0,0, \ldots, 0,0 ; 0)$, and $c=(0,0, \ldots 0,0 ; m)$ with $m>0$. Clearly $b \ll a \ll c$. But $b \neq(0, \ldots, 0,0 ; 0)$. Hence, (I) fails to be true in H_{n}^{1}.

By introducing the above example, we know of the existence of ℓ-groups different than G_{n} and therefore the existence of quasi-varieties different than H_{0}. It is important to first construct the ℓ-groups and then take the quasi-varieties generated by them. In order to establish a nested sequence of ℓ-groups, first we need the following definitions and notations:
 $\left(a_{0}, a_{1}, \ldots, a_{n}, \ldots, a_{n+k-1} ; b\right),\left(c_{0}, \ldots, c_{n+k-1} ; d\right)$ in $H_{n}^{k},\left(a_{0}, \ldots, a_{n+k-1} ; b\right)$ $\leq\left(c_{0}, \ldots, c_{n+k-1} ; d\right)$ iff $b<d$ or $b=d$ and $a_{n+k-1}<c_{n+k-1}$ or $b=d$, $a_{n+k-1}=c_{n+k-1}$ and $a_{n+k-2}<c_{n+k-2}$ or $\ldots \ldots$ or $b=d, a_{n+i}=c_{n+i}$ for every $i=0, \ldots, k-1$ and $a_{i} \leq c_{i}$ for $i=0, \ldots, n-1$, and ($a_{0}, a_{1}, \ldots, a_{n-1}$, $\left.a_{n}, \ldots, a_{n+k-1} ; b\right) . \quad\left(c_{0}, \ldots, c_{n-1}, c_{n}, \ldots, c_{n+k-1} ; d\right)=\left(a_{0}+c_{0+b}, \ldots\right.$, $\left.a_{n-1}+c_{n-1+b}, a_{n}+c_{n}, \ldots, a_{n+k-1}+c_{n+k-1} ; b+d\right)$ with all subscripts less than or equal to $n-1$ read modulo n. Let H_{k} be the quasi-variety generated by H_{n}^{k}.

For every $k \in Z^{+}-\{0\}, H_{n}^{k}$ is an ℓ-group. To prove this we will use induction over k. If $k=1$ we know that H_{n}^{l} is an ℓ-group so the claimis true for $k=1$. Suppose that H_{n}^{k} is an l-group and let us prove that H_{n}^{k+1} is also an ौ-group. Clearly H_{n}^{k+1} is a group. Now, the order \leq defined on H_{n}^{k+1} is a
lattice order. For this let a, b, c be elements of H_{n}^{k+1}. Write $a=\left(a_{0}, \ldots, a_{n+k} ; p\right)$, $b=\left(b_{0}, \ldots, b_{n+k} ; q\right)$, and $c=\left(c_{0}, \ldots, c_{n+k} ; d\right)$. Consider the elements $a^{\prime}, b^{\prime}, c^{\prime}$ of H_{n}^{k} such that $a^{\prime}=\left(a_{0}, \ldots, a_{n+k-1} ; p\right), b^{\prime}=\left(b_{0}, \ldots, b_{n+k-1} ; q\right)$ and $c^{\prime}=\left(c_{0}, \ldots, c_{n+k-1} ; d\right)$. Since H_{n}^{k} is an ℓ-group then $a^{\prime} \wedge b^{\prime}$ and $a^{\prime} v b^{\prime}$ exist. Let $x=\left(x_{0}, \ldots, x_{n+k-1} ; t\right)=a^{\prime} v b^{\prime}$ and $y=\left(y_{0}, \ldots, y_{n+k-1} ; s\right)$ $=a^{\prime} \wedge b^{\prime}$. Now, the meet and the join of a and b exist in H_{n}^{k}. In fact

$$
\left(a_{0}, a_{1}, \ldots, a_{n+k} ; p\right)_{\wedge}\left(b_{0}, \ldots, b_{n+k} ; q\right)=\left\{\begin{array}{l}
\left(a_{0}, \ldots, a_{n+k} ; p\right) \text { if } p<q \\
\left(b_{0}, \ldots, b_{n+k}, q\right) \text { if } p>q \\
\left(a_{0}, \ldots, a_{n+k} ; p\right) \text { if } p=q \text { and } a_{n+k}< \\
b_{n+k} \\
\left(b_{0}, \ldots, b_{n+k} ; q\right) \text { if } p=q \text { and } a_{n+k} \\
b_{n+k} \\
\left(y_{0}, \ldots, y_{n+k-1}, a_{n+k} ; p\right) \text { if } p=q \text { and } \\
a_{n+k}=b_{n+k} .
\end{array}\right.
$$

and

$$
\left(a_{0}, \ldots, a_{n+k} ; p\right) v\left(b_{0}, \ldots, b_{n+k} ; q\right)=\left\{\begin{array}{l}
\left(a_{0}, \ldots, a_{n+k} ; p\right) \text { if } p>q \\
\left(b_{0}, \ldots, b_{n+k} ; q\right) \text { if } p<q \\
\left(a_{0}, \ldots, a_{n+k} ; p\right) \text { if } p=q \text { and } a_{n+k}> \\
b_{n+k} \\
\left(b_{0}, \ldots, b_{n+k} ; q\right) \text { if } p=q \text { and } a_{n+k}< \\
b_{n+k} \\
\left(x_{0}, \ldots, x_{n+k-1}, a_{n+k} ; p\right) \text { if } p=q \text { and } \\
a_{n+k}=b_{n+k} .
\end{array}\right.
$$

Next, we need to verify only that if $a \leq b$ then $a c \leq b c$. Now, $a \leq b$ implies that $p<q$ or $p=q$ and $a_{n+k}<b_{n+k}$ or $p=q, a_{n+k}=b_{n+k}$ and $a_{n+k-1}<$ b_{n+k-1} or $, \ldots, p=q, a_{n+i}=b_{n+i}$ for $i=0, \ldots, k$ and $a_{i} \leq b_{i}$ for $i=0, \ldots, n-1$. If $p<q$ then $p+d<q+d$ and $a c=\left(a_{0}, \ldots, a_{n+k} ; p\right) . \quad\left(c_{0}, \ldots, c_{n+k} ; d\right)=$ $\left(a_{0}+c_{0+d}, \ldots, a_{n-1}+c_{n-1+d}, a_{n}+c_{n}, \ldots, a_{n+k}+c_{n+k} ; p+d\right) \leq\left(b_{0}+c+d\right.$, $\left.\ldots, b_{n-1}+c_{n-1+d}, b_{n}+c_{n}, \ldots, b_{n+k}+c_{n+k} ; q+d\right)=\left(b_{0}, \ldots, b_{n+k} ; q\right)$ $\left(c_{0}, \ldots, c_{n+k} ; d\right)=b c$. Otherwise, if $p=q$ and $a_{n+k}<b_{n+k}$ then $a_{n+k}+$ $c_{n+k}<b_{n+k}+c_{n+k}$ and $a c \leq b c$. At last, if $p=q$ and $a_{n+k}=b_{n+k}$, then $a c \leq b c$ since $a^{\prime} \leq b^{\prime}$ implies $a^{\prime} c^{\prime} \leq b^{\prime} c^{\prime}$ in H_{n}^{k}. We can verify in a similar way that $\mathrm{ca} \leq \mathrm{cb}$.

The family of ℓ-groups $\left(H_{n}^{k} \mid k \varepsilon Z^{+}-\{0\}\right)$ forms a nested sequence of ℓ-groups. And if they are pairwise different then we have an infinite chain of quasi-varieties each of which contains H_{0} and is contained in $L_{n} \cap A^{2}$. Hence, it is necessary to prove that the H_{n} 's are pairwise different. Therefore, we need to find one or more implications satisfied by each H_{n} and make sure that the implications will fail in H_{k} if $k>n$.

Lemma 4.16: If $a, b, c, d_{1}, \ldots, d_{k}$ are positive elements of H_{n}^{k} with $b \ll d_{1} \ll d_{2} \ll \ldots \ll d_{k} \ll a \ll c$ then $b=(0, \ldots, 0,0 ; 0)$.

Proof: Clearly, the lemma is true if $a=b=c=d_{1}=\ldots=d_{n}=$ ($0, \ldots, 0 ; 0$).

Let $a, b, c, d_{1}, \ldots, d_{k}$ be positive elements of H_{n}^{k}. Write $a=\left(a_{0}, \ldots, a_{n+k-1} ; p\right), b=\left(b_{0}, \ldots, b_{n+k-1} ; q\right), c=\left(c_{0}, \ldots, c_{n+k-1} ; m\right)$ and $d_{i}=\left(x_{0}^{i}, \ldots, x_{n+k-1}^{i} ; n_{i}\right)$. Let $s, r, t, \lambda_{1}, \ldots, \lambda_{k}$ be the maximum indices for which $a_{s} \neq 0, b_{r}=0, c_{t} \neq 0, x_{\lambda_{i}}^{i} \neq 0$, respectively. First, if $m \geq 0$ then $p=q=n_{i}=0$ for $i=0, \ldots, k$ and $r<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots<\lambda_{k}<s<t$
since $b \ll d_{1} \ll d_{2} \ll \cdots \ll d_{k}$, $\ll a \ll c$. Now, if $b_{r}=0$ then $b=(0,0, \cdots 0 ; 0)$ since b is positive and r is maximal with respect to $b_{r} \neq 0$. Two cases arise. First if $m=$ other we have $t \leq n+k-1$, $s \leq n+k-2$ and $\lambda_{i} \leq n+i-3$. Hence, $\lambda_{1} \leq n-2$, and therefore $d_{1}=\left(x_{0}^{1}, \ldots\right.$, $\left.x_{n-2}^{1}, 0,0, \ldots, 0 ; 0\right)$. Since $b \ll d_{1}$ then $b_{i}=0$ for every $i=0, \ldots, n-1$ (see Proof of 4.12) and $b_{r}=0$. So $b=(0,0, \ldots, 0 ; 0)$. Now, if $m>0$ then we have $s \leq n+k-1$, and $\lambda_{i} \leq n+i-2$. So $\lambda_{1} \leq n-1$ and $d_{1}=\left(x_{0}^{\prime}, \ldots\right.$, $\left.x_{n-1}^{\prime}, 0,000,0 ; 0\right)$. Now, $b \ll d_{1}$ implies $b=(0, \ldots 0 ; 0)$ (see Proof of 4.12), and the lemma is proved.

The condition in the above lemma determines a set of implications that are simultaneously satisfied by H_{k}. Let $a, b, c, d_{1}, d_{2}, \ldots, d_{k}$ be positive elements of H_{k} and consider the implication.

$$
\begin{gathered}
\left(I^{k}\right) \quad \text { If } b^{n}<d_{1} \leq d_{1}^{n} \leq \ldots \leq d_{k} \leq d_{k}^{n} \leq a \leq a^{n} \leq c \text { for all } \\
\text { positive integers } n \text { then } b=(0,0, \ldots, 0 ; 0) .
\end{gathered}
$$

Proposition 4.17: The condition "if $a, b, c, d_{1}, \ldots, d_{k}$ are positive elements of an ℓ-group G such that $b \ll d_{1} \ll \cdots \ll d_{k} \ll a \ll c$ then b is the identity of $G^{\prime \prime}$ is satisfied iff the implication (I^{k}) is satisfied.

Proof: Clearly, (I^{k}) implies that the condition holds. Conversely, assume the condition is satisfied. If $b^{\lambda} \leq d_{1} \leq d_{1}^{\lambda} \leq \cdots \leq d_{k} \leq d_{k}^{\lambda} \leq$ $a \leq a^{\lambda} \leq c$ for all positive integers λ, then $b \ll d_{1} \ll \cdots \ll d_{k} \ll$
$a \ll c$ so b is the identity of G. Hence, the implication (I^{k}) is satisfied.

It is important that every H_{k} contains H_{o} and that any pair H_{n}^{k} and $H_{n}^{k^{\prime}}$ will generate two different quasi-varieties.

Lemma 4.19: For every $K \varepsilon Z^{+}$- \{0\}. H_{k+1} strictly contains H_{k}.
Proof: Let ϕ be the map from H_{n}^{k} into H_{n}^{k+1} defined by:
$\phi\left(\left(a_{0}, \ldots, a_{n+k-1} ; p\right)\right)=\left(a_{0}, \ldots, a_{n+k-1}, 0 ; p\right)$. Clearly, ϕ is a well-defined injective map. We need to show that ϕ is a homomorphism. Let a, b be elements of H_{n}^{k}. Then $a=\left(a_{0}, \ldots, a_{n+k-1} ; p\right)$ and $b=\left(b_{0}, \ldots, b_{n+k-1} ; q\right)$. We have $\phi(a)=\left(a_{0}, \ldots, a_{n+k-1}, 0 ; p\right), \phi(b)=\left(b_{0}, \ldots, b_{n+k-1}, 0 ; q\right)$, and $a b=\left(a_{0}+b_{+p}, \ldots, a_{n-1}+b_{n-1+p}, a_{n}+b_{n}, \ldots, a_{n+k-1}+b_{n+k-1} ; p+q\right)$. Thus, $\phi(a b)=\left(a_{0}+b_{+p}, \ldots, a_{n-1}+b_{n-1+p}, a_{n}+b_{n}, \ldots, a_{n+k-1}+b_{n+k-1}, 0 ; p+q\right)$.
$=\left(a_{0}, \ldots, a_{n+k-1}, 0 ; p\right)\left(b_{0}, \ldots, b_{n+k-1}, 0 ; q\right)=\phi(a) . \phi(b)$.

Hence, ϕ is a homomorphism. ϕ clearly preserves lattice operations so we get $H_{n}^{k} \leq H_{n}^{k+1}$ and $H_{k} \leq H_{k+1}$.

In order to prove the strict inclusion it suffices to find positive elements b, d_{1}, \ldots, d_{k}, a and c of H_{n}^{k+1} such that the hypothesis in Lemma 4.16 is true for k but the conclusion of the lemma fails. Let b, d_{1}, \ldots, d_{k}, a, c be such that $b=\left(b_{0}, b_{1}, \ldots, b_{n+k} ; 0\right), d_{i}=\left(x_{0}^{i}, \ldots, x_{n+k}^{i} ; 0\right)$ for $i=1, \ldots, k, a=\left(x_{0}, \ldots, x_{n+k} ; 0\right), c=(0,0,0, \ldots, 0 ; m)$ where the following are true:

$$
\begin{aligned}
& b_{i}=0 \text { for } i \neq 0 \text { and } b_{i}=1 \text { otherwise, } \\
& x_{j}^{i}=0 \text { for } j \neq n-1+i \text { and } x_{j}^{i}=1 \text { otherwise, }
\end{aligned}
$$

$x_{i}=0$ for $i \neq n+k$ and $x_{i}=1$ otherwise, and $m>0$.
Note that $b \ll d_{1} \ll d_{2} \ll \ldots<d_{k} \ll a \ll c$ but $b \neq(0, \ldots, 0 ; 0)$.
Therefore, we have the following:

$$
\begin{aligned}
G_{n}= & H_{n}^{0} \lesseqgtr H_{n}^{1} \lesseqgtr \cdots \lesseqgtr H_{n}^{k-1} \lesseqgtr \cdots \lesseqgtr H_{n}^{k} \lesseqgtr H_{n}^{k+1} \leq \cdots, \text { and } \\
& H_{0} \lesseqgtr \cdots \lesseqgtr H_{k-1} \lesseqgtr H_{k} \lesseqgtr H_{k+1} \leq \cdots .
\end{aligned}
$$

Lemma 4.20: For every $k, H_{k} \leq L_{n} \cap A^{2}$.
Proof: For every $x, y \in H_{n}^{k}$ we have $x^{n} y^{n}=y^{n} x^{n}$.
Let $x=\left(x_{0}, \ldots, x_{n-1}, \ldots, x_{n+k-1} ; p\right)$ and $y=\left(y_{0}, \ldots, y_{n-1}, \ldots\right.$,
$\left.y_{n+k-1} ; q\right)$. We have $x^{n}=\left(x_{0}+x_{0+p}+\ldots+x_{0+(n-1) p}, x_{1}+x_{1+p}+\ldots+\right.$ $\left.x_{1+(n-1) p}, \ldots, x_{n-1}+x_{n-1+p}+\ldots+x_{n-1+(n-1) p}, n x_{n}, \ldots, n x_{n+k-1} ; n p\right)$ and $y^{n}=\left(y_{0}+y_{0+p}+\ldots+y_{0+(n-1) p}, y_{1}+y_{1+p}+\ldots+y_{1+(n-1) p}, \ldots\right.$, $\left.y_{n-1}+y_{n-1+p}+\ldots+y_{n+1+(n-1) p}, n y_{n}, \ldots, n y_{n+k-1} ; n q\right)$, where indices less than or equal to $n-1$ are read modulo n.

$$
\begin{aligned}
& \text { Now, } x^{n} y^{n}=\left(x_{0}+x_{0+p}+\ldots+x_{0+(n-1) p}+y_{0}+y_{0+p}+\ldots+\right. \\
& y_{0+(n-1) p}, \ldots, x_{n-1}+x_{n-1+p}+\ldots+x_{n-1+(n-1) p}+y_{n-1}+y_{n-1+p}+\ldots+ \\
& \left.y_{n-1+(n-1) p}, n x_{n}+n y_{n}, \ldots, n x_{n+k-1}+n y_{n+k-1} ; n p+n q\right) \text {, and } y^{n} x^{n}=\left(y_{0}+\right. \\
& y_{0+p}+\ldots+y_{0+(n-1) p}+x_{0}+x_{0+p}+\ldots+x_{0+(n-1) p}, \ldots, y_{n-1}+y_{n-1+p} \\
& +\ldots+y_{n-1+(n-1) p}+x_{n-1}+x_{n-1+p}+\ldots+x_{n-1+(n-1) p}, n y_{n}+n x_{n}, \ldots, \\
& \left.n x_{n+k-1}+n y_{n+k-1} ; n q+n p\right) \text {. Thus, } x^{n} y^{n}=y^{n} x^{n} \text { and } H_{n}^{k} \varepsilon L_{n} \text {. Hence, } \\
& H_{k} \leq L_{n} . \\
& \quad \text { It remains to show that } H_{n}^{k} \varepsilon A^{2} \text {. For this, let } H=\left\{\left(a_{0}, \ldots,\right.\right. \\
& \left.\left.a_{n+k-1} ; 0\right) \mid a_{i} \varepsilon z \text { for } i=0, \ldots, n+k-1\right\} \text {. Clearly, H is an abelian l-ideal }
\end{aligned}
$$

of H_{n}^{k}, and $H_{n}^{k} / H \simeq Z$. Thus, $H, H_{n}^{k} / H \varepsilon A$. Therefore, $H_{n}^{k} \varepsilon A^{2}$ and $H_{k} \leq A^{2}$. Hence, $H_{k} \varepsilon L_{n} \cap A^{2}$.

Combining Theorem 4.11 Lemmas 4.18 and 4.19 we have the following important result:

Theorem 4.20: Let n be a prime number. Then there is an infinite chain of distinct quasi-varieties between A and $L_{n} \cap A^{2}$.

Proof: Clearly $\left(H_{k} \mid k \varepsilon Z^{+}\right)$forms a countably infinite chain of different quasi-varieties of non-representable ℓ-groups between A and $L_{n} \cap A^{2}$.

Note that if for every $k \varepsilon Z^{+}, H_{n}^{k} \varepsilon S_{n}$, then $\left(H_{k} \mid k \varepsilon Z^{+}\right)$forms a countably infinite chain of distinct quasi-varieties between A and S_{n}.

To complete this chapter we look at a special type of cyclic extensions that can be embedded in S_{n} for some $n \geq 2$.

Example 4.22: Let $\Lambda=R$ (the set of real numbers), $G=\pi Z$ and $\alpha: R \rightarrow R$ defined as follows: If k is a fixed irrational number inside the interval $(0,1), \alpha(n+x)=n+(x+k) \bmod$ 1. Consider $G(\alpha)$ the cyclicextension of G by α. Then any finitely generated subgroup of $G(\alpha)$ can be embedded in S_{n} for some n. In fact, if H is a finitely generated subgroup of $G(\alpha)$ then it is generated by elements of the form: $\left(\ldots 0, x_{i_{1}}, 0, \ldots ; \alpha^{k}\right)^{1}$ where $x_{i}=1$, $\ldots\left(\ldots, 0, \ldots, 0, x_{i_{s}}, 0, \ldots, \alpha^{k}\right)$ where $x_{i_{s}}=1, i_{1}<i_{2}<\ldots<i_{s}$, and $k_{i} \geq 0$ for $i=1, \ldots, s$. Note that s is the number of generators. Now, two possibilities arise. First, if $i_{j}, \ldots, i_{s} \varepsilon[n, n+1]$ we may assume that $n=0$ and $i_{0}, \ldots, i_{s} \varepsilon[0,1]$. Next, let $\phi: G(\alpha) \rightarrow G_{s n}$ where $G_{\text {sn }}$ is the Scrimger ℓ-group of order $s n$, defined by $\phi\left(\ldots, 0, \ldots, 0,1_{i_{\lambda}}, 0\right.$, $\left.\ldots ; \alpha^{k}\right)=\left(0, \ldots, l_{\lambda}, 0, \ldots, 0 ; k_{\lambda} s\right)$ for $i_{\lambda} \leq i_{s}$. Note that if
$\phi\left(\ldots, 0, \ldots, 0,1_{\left(i_{\lambda}+t k\right) \operatorname{modl}}, 0, \ldots ; \alpha^{k}\right)=\left(0, \ldots, 0, l_{\lambda-t s}, 0, \ldots, 0, \ldots, 0 ;\right.$
$k_{\lambda} s$, where subscripts are read modulo $s n$, then ϕ is an ℓ-homomorphism. It suffices to prove that $\phi\left(h_{1} h_{2}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right)$, where $h_{1}=(\ldots, 0, \ldots, 0$,
$\left.i_{i_{r}}, 0 \ldots ; \alpha^{k}\right)$ and $h_{2}=\left(\ldots, 0, \ldots, 0, i_{i_{t}}, 0 \ldots ; \alpha^{k}\right)$ with $i_{1} \leq i_{r}<i_{t} \leq$
i_{s}. We have $\phi\left(h_{1}\right)=\phi\left(\ldots, 0, \ldots, 0,1_{i_{r}}, 0 \ldots ; \alpha^{k_{r}}\right)=\left(0, \ldots, 0,1_{r}, 0 \ldots, 0\right.$;
$\left.k_{r} s\right)$, and $\phi\left(h_{2}\right)=\left(0, \ldots, 0,1_{t}, 0, \ldots, 0 ; k_{t} s\right)$. Hence, $\phi\left(h_{1}\right) \cdot \phi\left(h_{2}\right)=$ $\left(0, \ldots, 0,1_{r}, \ldots, l_{t-k_{r} s}, 0, \ldots, 0 ; k_{r} s+k_{t} s\right)$. Now, $t-k_{r} s \neq r+\lambda s n$.

Suppose $t-k_{r} s=r+\lambda s n$ then $t-r=\lambda s n+k_{r} s=\left(\lambda n+k_{r}\right) s . \quad$ But $0<\lambda n+k_{r}<1$ since $0<t-r<s$. Hence, $-\lambda n<k_{r}<-\lambda n+1$ and this is a contradiction since k_{r} is an integer. Hence, $t-k_{r} s \neq r \bmod (s n)$. Next, $h_{1} h_{2}=\left(\ldots, 0,1_{i_{r}}, \ldots, 0,1_{\alpha}^{k_{r}}{ }_{\left(i_{t}\right)}, 0, \ldots ; \alpha^{k_{r}+k_{t}}\right)=\left(\ldots 0,1_{i_{r}}, \ldots\right.$, $\left.1\left(i_{t}+k_{r} k\right) \bmod 1,0, \ldots ; \alpha^{k_{r}+k_{t}}\right)$, and $\phi\left(h_{1} h_{2}\right)=\left(0, \ldots, l_{r}, \ldots, 0,1_{t-k_{r} s}, 0 \ldots\right.$, $\left.0 ;\left(k_{r}+k_{t}\right) s\right)$. Thus, $\phi\left(h_{1} h_{2}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right)$. Hence, ϕ is a homomorphism and clearly ϕ is an ℓ-monomorphism.

Secondly, if i_{1}, \ldots, i_{s} belong to different intervals such that $i_{\lambda} \varepsilon$ $\left[n_{\lambda}, n_{\lambda}+1\right]$. Let c_{λ} be the number of generators inside the interval $\left[n_{\lambda}, n_{\lambda}+1\right]$, i and let $i_{\lambda_{1}}, i_{\lambda_{c_{\lambda}}}, \ldots i_{\lambda_{\lambda}} \varepsilon\left[n_{\lambda}, n_{\lambda}+1\right]$ with $i_{\lambda_{1}}<i_{\lambda_{2}}<\ldots<$
${ }^{i_{\lambda}} c_{\lambda}$ be all the generators inside $\left[n_{\lambda}, n_{\lambda}+1\right]$. Suppose $c_{1}+c_{2}+\ldots+$ $c_{p}=s$. Define $\phi: G(\alpha) \rightarrow G_{c_{1} n} \times G_{c_{2} n} \times \ldots \times G_{c_{p} n}$ by:
$\phi\left(\ldots 0, \ldots, 0,{1_{i}}_{\lambda}, 0, \ldots ;{ }^{k_{\lambda}}\right)=\left(\left(0 ; k_{\lambda} c_{1}\right), \ldots\left(\ldots 0 \ldots, 0{I_{k}}_{k}, \ldots ; k_{\lambda} c_{\lambda}\right)\right.$, $\ldots,\left(0 ; k_{\lambda} c_{p}\right)$) where $i_{\lambda}=i_{\lambda_{k}} \varepsilon\left[n_{\lambda}, n_{\lambda}+1\right]$. Again, $\phi\left(h_{1} h_{2}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right)$. First, if $i_{r}, i_{t} \varepsilon\left[n_{r}, n_{r}+1\right]$ then $\phi\left(h_{1} h_{2}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right)$. Now, suppose that $i_{r} \varepsilon\left[n_{r}, n_{r}+1\right]$ and $i_{t} \varepsilon\left[n_{t}, n_{t}+1\right]$ with $i_{r}<i_{t}$. We have $\phi\left(h_{1}\right)=\left(\left(0 ; k_{r} c_{1}\right), \ldots,\left(\ldots, 0,1,0, \ldots, 0 ; k_{r} c_{r}\right), \ldots,\left(0 ; k_{r} c_{t}\right), \ldots\left(0 ; k_{r} c_{p}\right)\right.$ where $1_{i_{r}}=1_{r_{i}} \varepsilon\left[n_{r}, n_{r}+1\right]$, and $\phi\left(h_{2}\right)=\left(\left(0 ; k_{t} c_{1}\right) \ldots\left(0 ; k_{t} c_{r}\right) \ldots\right.$, $\left.\left(\ldots, 0, l_{j}, \ldots, \ldots, 0 ; k_{t} c_{t}\right) \ldots\left(0 ; k_{t} c_{p}\right)\right)$ where $r_{i_{t}}=r_{t_{j}} \varepsilon\left[n_{t}, n_{t}+1\right]$. Thus, $\phi\left(h_{1}\right) \cdot \phi\left(h_{2}\right)=\left(\left(0 ; k_{r} c_{1}+k_{t} c_{1}\right), \ldots,\left(\ldots, 0, l_{i}, 0, \ldots, 0 ; k_{r} c_{r}+k_{t} c_{r}\right), \ldots\right.$ $\left.\left(0, \ldots, l_{j-k_{r} c_{t}}, 0, \ldots, 0 ; k_{r} c_{t}+k_{t} c_{t}\right), \ldots,\left(0 ; k_{r} c_{p}+k_{t} c_{p}\right)\right)$. Now, $\phi\left(h, h_{2}\right)=\phi\left(\left(\ldots, 0,1_{i_{r}}, \ldots, 0,1\left(i_{t}+k_{r} k\right) \operatorname{modl}, 0, \ldots ;{ }^{k_{r}+k_{t}}\right)=\left(\left(0 ;\left(k_{r}+k_{t}\right) c_{1}\right)\right.\right.$, $\ldots,\left(0, \ldots, 0, l_{i}, 0, \ldots, ;\left(k_{r}+k_{t}\right) c_{r}\right), \ldots, \ldots, \ldots,\left(0, \ldots, l_{j-k_{r} c_{t}}, 0, \ldots, 0 ;\right.$ $\left.\left.\left(k_{r}+k_{t}\right) c_{t}\right), \ldots,\left(0 ;\left(k_{r}+k_{t}\right) c_{p}\right)\right)$ since $\left(i_{t}+k_{r} k\right) \bmod$ belongs to $\left[n_{t}, n_{t}+1\right]$. Hence, $\phi\left(h_{1} h_{2}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right)$ and ϕ is a homomorphism. Clearly ϕ is an ℓ-monomorphism.

Finally, let m be the least common multiple of c_{1}, \ldots, c_{p} then H is embedded in $G_{m n} \times G_{m n} \times \ldots \times G_{m n}$ and $H \varepsilon S_{m n}$.

CHAPTER V

THE AMALGAMATION PROPERTY

In this chapter we consider the problem of determining whether or not certain classes of ℓ-groups satisfy the amalgamation property. It is known that the class of groups and the class of lattices satisfy the amalgamation property, so it is natural to ask whether various classes of ℓ-groups have this property. For the class A of abelian ℓ-groups there are several proofs showing that the amalgamation property holds. We will discuss the relationship between this property and other important constructions of ℓ-groups and then show it fails for all the quasi-varieties of ℓ-groups constructed in the preceeding two chapters.

Definition 5.1: Let U be a class of ℓ-groups arrd. ($\left.G_{\mathbf{i}} \mid \mathbf{i} \varepsilon I\right)$ a family of ℓ-groups in U, then G is called the U-free product of $\left(G_{i} \mid i \varepsilon I\right)$ if the following three conditions are satisfied:

1) G belongs to U
2) $U_{i} \in I G_{i}$ generates G
3) Whenever α_{i} is a given arbitrary ℓ-homomorphism from G_{i} into H where H is an ℓ-group of U, then the entire collection of ℓ-homomorphisms α_{i} can be extended to a suitable ℓ-homomorphism from G into $H: i . e .$, there exists a homomorphism γ from G into H such that $\gamma_{0 j_{i}}=\alpha_{i}$ for every
i, where j_{i} is the natural embedding of G_{i} into G. The U-free product G of $\left(G_{i} \mid i \varepsilon I\right)$ is denoted by $\bigcup_{i \in I} G_{i}$.

Definition 5.2: Let U be a variety of ℓ-groups and X a nonempty set. The ℓ-group F is called the $\underline{U-f r e e ~ \ell-g r o u p ~ o n ~} X$ if the following are true.
(1) There exists an injection $\alpha: X \rightarrow F$ such that $\alpha(X)$ generates F.
(2) If $G \in U$ and $\beta: X \rightarrow G$ is any map, then there is an ℓ-homomorphism $\gamma: F \rightarrow G$ such that $\gamma_{o \alpha}=\beta$. A diagram of the situation is given below:

Since $\alpha(X)$ generates F, we can show that γ is unique. The U-free ℓ-group always exists inside a variety of ℓ-groups.

Note: If x has only one element, the free abelian group on x is Z, but Z cannot be the free-abelian ℓ-group on X since Z is totally ordered.

Theorem 5. 3: If U is a variety of ℓ-groups then the U-free ℓ-group on $\{x\}$ is $Z \Phi z$.

Proof: Let $X=\{x\}$ and definc $\alpha: X \rightarrow Z[\pm z$ by $\alpha(x)=(1,-1)$. We first note show that $\alpha(x)$ generates $Z+Z$. If (n, m) is an element of $Z+Z$, we may write it as $(n, m)=n((1,-1) \vee(0,0))-m((1,-1) \wedge(0,0))$. Next, let G be an element of U and $\beta: X \rightarrow G$ be a map. Define $\gamma: Z[+Z \rightarrow G$ by $\gamma(n, m)=n(\beta(x) \vee 0)-m(\beta(x) \wedge 0)$. Note that $\gamma_{\circ \alpha}(x)=\gamma(\alpha(x)=\gamma((1,-1))$ $=(\beta(x) \vee 0)-(-1)(\beta(x) \wedge 0)=\beta(x)^{+}-(-\beta(x) \vee 0)=\beta(x)^{+}-\beta(x)^{-}=\beta(x)$. Thus, $\gamma_{0 \alpha}=\beta$. It remains to prove that γ is an ℓ-homomorphism. Let $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right)$ be elements of $z \square z$. Then

$$
\begin{aligned}
\gamma\left(\left(n_{1}, m_{1}\right)\left(n_{2}, m_{2}\right)\right) & =\gamma\left(\left(n_{1}+n_{2}, m_{1}+m_{2}\right)\right) \\
& =\left(n_{1}+n_{2}\right)(\beta(x) \vee 0)-\left(m_{1}+m_{2}\right)(\beta(x) \wedge 0) \\
& =n_{1}(\beta(x) \vee 0)+n_{2}(\beta(x) \vee 0)-m_{1}(\beta(x) \wedge 0)-m_{2}(\beta(x) \wedge 0) \\
& =n_{1}(\beta(x) \vee 0)-m_{1}(\beta(x) \wedge 0)+n_{2}(\beta(x) \vee 0)-m_{2}(\beta(x) \wedge 0) \\
& =\gamma\left(n_{1}, m_{1}\right)+\gamma\left(n_{2}, m_{2}\right),
\end{aligned}
$$

hence, γ is a homomorphism.
Now, let $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ be elements of $Z \square Z$. We have $\gamma\left(\left(n_{1}, m_{1}\right) v\left(n_{2}, m_{2}\right)\right)=\gamma\left(\left(n_{1} v n_{2}, m_{1} v m_{2}\right)\right)$
$=\left(n_{1}, n_{2}\right)(\beta(x) \vee 0)-\left(m_{1} \mathrm{vm}_{2}\right)(\beta(x) \wedge 0)$
$=\left(n_{1}(\beta(x) \vee 0) \vee n_{2}(\beta(x) \vee 0)\right)-\left(m_{1}(\beta(x) \wedge 0) \vee m_{2}(\beta(x) \wedge 0)\right)$
$=\left[n_{1}(\beta(x) \vee 0)-\left(m_{1}(\beta(x) \wedge 0) \vee m_{2}(\beta(x) \wedge 0)\right)\right] \vee\left[n_{2}(\beta(x) \vee 0)\right.$

- $\left.\left(m_{1}(\beta(x) \wedge 0) \vee m_{2}(\beta(x) \wedge 0)\right)\right]$
$=\left[n_{1}(\beta(x) \vee 0)-m_{1}(\beta(x) \wedge 0)\right] \vee\left[n_{1}(\beta(x) \vee 0)-m_{2}(\beta(x) \wedge 0)\right]$
$\vee\left[n_{2}(\beta(x) v 0)-m_{1}(\beta(x) \wedge 0)\right] \vee\left[n_{2}(\beta(x) v 0)\right.$
$\left.-m_{2}(\beta(x) \wedge 0)\right]=\gamma\left(n_{1}, m_{1}\right) \vee \gamma\left(n_{1}, m_{2}\right) \vee \gamma\left(n_{2}, m_{1}\right)$
$\vee \gamma\left(n_{2}, m_{2}\right)=\gamma\left(n_{1}, m_{1}\right) \vee \gamma\left(n_{2}, m_{2}\right)$ since $\gamma\left(n_{1}, m_{2}\right)$,
$\gamma\left(n_{2}, m_{1}\right) \leq \gamma\left(n_{1}, m_{1}\right) \vee \gamma\left(n_{2}, m_{2}\right)$.

Similarly, $\gamma\left(\left(n_{1}, m_{1}\right) \wedge\left(n_{2}, m_{2}\right)\right)=\gamma\left(\left(n_{1}, m_{1}\right)\right) \wedge \gamma\left(\left(n_{2}, m_{2}\right)\right)$. Thus, γ is an ℓ-homomorphism. Hence $Z \square Z$ is the $u-f$ ree ℓ-group on $\{x\}$.

Definition 5.4: Let P be a partially ordered group and U a variety of ℓ-groups. If F is an element of U such that
i) there exists an o-homomorphism α from P into F such that $\alpha(P)$ generates F and,
ii) for each G in U and $\beta: P \rightarrow G$ such that β is an o-homomorphism. there exists an ℓ-homomorphism γ from F into G such that $\gamma_{o \alpha}=\beta$,

then F is called the u-free extension of P and is denoted by $F_{U}(P)$.
Note that free extensions do not always exist, but free abelian ℓ-groups always exist. The following establishes a relation between free extensions and free abelian ℓ-groups.

Theorem 5.5: Let X be a nonempty set and $P=\oplus \neq|X| \quad$ with the trivial order. Then the free abelian ℓ-group on X is isomorphic to the abelian free extension over P.

Definition 5.6: A group G is divisible if given any $n \varepsilon Z$ and $x \in G$ there exists a $y \varepsilon G$ such that $x=y^{n}$. If the group is written additively, then there exists $y \in G$ such that $x=n y$.

Note that every abelian group G can be embedded in a divisible abelian group. In fact, G is isomorphic to F / K for some free abelian group F with subgroup K. But F is isomorphic to $\oplus Z$, so F can be embedded in $H \cong \oplus($. We can consider K as a subgroup of H so that G can be embedded in H / K. Since homomorphic images of divisible groups are divisible, factor groups of divisible groups are divisible. Therefore, H/k is divisible.

Next, we consider three properties for ℓ-group varieties because of their importance.

The subalgebra property for free products: If $\left(G_{i} \mid i \varepsilon I\right)$ and ($\left.H_{i} \mid i \varepsilon I\right)$ are families in U with each H_{i} an ℓ-subgroup of G_{i}, then ${ }_{i}{ }_{i \varepsilon I} H_{i}$ is the ℓ-subgroup of $\underset{i \in I}{U} G_{i}$ generated by $i \underset{i \in I}{U} H_{i}$.

The amalgamation property: Let U be a class of ℓ-groups, then U satisfies the amalgamation property if whenever $A, B_{1}, B_{2} \varepsilon U$ and $\alpha_{1}: A \rightarrow B_{1}, \alpha_{2}: A \rightarrow B_{2}$ are ℓ-monomorphisms, then there exists $C \varepsilon U$ and ℓ-monomorphisms $\beta_{1}: B_{1} \rightarrow C$ and $\beta_{2}: B_{2} \rightarrow C$ such that $\beta_{1} o \alpha_{1}=\beta_{2} o \alpha_{2}$. The diagram below illustrates this situation.

The divisible embedding property: Every ℓ-group in U can be embedded in a divisible ℓ-group of U.

The subalgebra property is of importance for free products of ℓ-groups because of the rich embedding theory available (see for example Conrad et al. [3] and Bernau [1]). The amalgamation property is a very powerful device in establishing specific embeddings. In fact the amalgamation property implies the divisible embedding property (K. R. Pierce [15]). The amalgamation and the subalgebra properties are closely related.

It is known that the amalgamation property implies the subalgebra property (Jonsson [9, Theorem 1.3]). Further, in the presence of the following condition, it can be shown that the two are equivalent (Grätzer and Lakser [6, Theorem 4]).

The congruence extension property: If $G \varepsilon U$, where U is a class of l-groups and H is a subalgebra of G , then every congruence on H can be extended to a congruence on G. The congruences on ℓ-groups correspond to normal, solid subgroups. Since normal subgroups of normal subgroups need not be normal the above property does not hold in general for classes of l-groups. However, in the abelian case, congruence extension is easily established.

Now using the representation theorem 3.3 in W. B. Powell and C. Tsinakis [18], it can be shown directly that the subalgebra property holds for A.

Thus, in view of the preceeding discussion we get the next result which has also been proved outside the context of free-products in K. R. Pierce [15, Theorem 2.3] and [17, Theorem 1] (see also K. R. Pierce [16]).

Theorem 5.7: The variety A satisfies the amalgamation property and the subalgebra property.

Consider next the varieties M^{+}, M^{-}, and $L_{n}=$ the variety of all ℓ-groups satisfying the law $\left[x^{n}, y^{n}\right]=1$ where $n \varepsilon Z^{+}$. It has been proved that M^{+}, M^{-}, and L_{n} for every $n>1$ fail the amalgamation property. We will give an argument proving that L_{n} fails the amalgamation property that can be found in W. B. Powell and C. Tsinakis [19, Section 3 and 4.2].

Proposition 5.8: The varieties L_{n} do not satisfy the subalgebra property or the amalgamation property.

Proof: For each $n>1$ we have $A \lesseqgtr L_{n}$ and so $F_{L_{n}}\left(\left\{x_{1}, x_{2}\right\}\right)=$ $(z \square Z)^{L_{n_{L}}}(z \square \pm z)$ is not abelian. Let H_{1} and H_{2} be the ℓ-subgroups of $F_{L_{n}}\left(\left\{x_{1}, x_{2}\right\}\right)$ generated by $\left\{x_{1}\right\}$ and $\left\{x_{2}\right\}$, respectively. Then $H_{1} \cong H_{2} \cong$
$z \square Z$ so ${ }^{L_{n}} \underset{i=1,2}{\amalg} H_{i}$ is isomorphic to $F_{L_{n}}\left(\left\{x_{1}, x_{2}\right\}\right)$. But the ℓ-subgroup of $F_{L_{n}}\left(\left\{x_{1}, x_{2}\right\}\right)$ generated by $H_{1} \cup H_{2}$ is abelian and hence not isomorphic to L_{n} $\bigcup_{i=1,2} H_{i}$. Hence L_{n} fails the subalgebra property and so also the amalgamation property.

A proof of the following theorem can be found in K. L. Pierce [15, Theorem 3.1].

Theorem 5.9: The variety L fails the amalgamation property.
Up to this time A was the only known ℓ-group variety satisfying the amalgamation property. The subsequent considerations will lead to the main result of this chapter which asserts that all of the quasi-varieties $\left(Q_{n}^{-} \mid n \geq 0\right),\left(P_{n}^{-} \mid n \geq 0\right)$, and $\left(H_{n} \mid n \geq 0\right)$ constructed in the third and fourth chapters fail the amalgamation property.

We start by introducing some additional terminology. Let U be a class of ℓ-groups. By the amalgamation base, AMAL(U), we mean those ℓ-groups A of U such that, for all B_{1}, B_{2} of U and all embeddings $\theta_{1}: A \rightarrow B_{1}, \theta_{2}: A \rightarrow B_{2}$, there exists C in U and embeddings $\mu_{1}: B_{1} \rightarrow C$, $\mu_{2}: B_{2} \rightarrow C$ such that $\mu_{1} \theta_{1}=\mu_{2} \theta_{2}$. It is clear that U has the amalgamation property if and only if $\operatorname{AMAL}(U)=U$. The next result is implicit in K. R. Pierce [15], (see Theorem 5.1).

Proposition 5.10: If U is an ℓ-group quasi-variety and $Z \varepsilon \operatorname{AMAL}(U)$, then U has the divisible embedding property. In particular, if U satisfies the amalgamation property, then it also satisfies the divisible embedding property.

Let us remark that proposition 5.10 yields an alternative proof of the fact that the varieties $L_{n}, n>1$, do not satisfy the amalgamation property. Indeed, $A \leq L_{n}$ if $n>1$ (Weinberg [23]), and clearly a divisible
l-group in L_{n} is abelian. It follows that L_{n} does not satisfy the divisible embedding property and hence the amalgamation property.

Let us describe briefly Reilly's construction of quasi-representable varieties. Consider a countable infinite set $X^{\prime}=X U\{z\}, z \notin X$, and let F be the free group on X. For each $w \in F, \ell(w)$ will denote the ℓ-group law $Z^{+} \wedge\left(w^{-1} z^{-} w\right)$. For any non-empty subclass U of L define $F(U)=\{w \in F \mid$ $G \vDash \ell(W)$ for every $G \varepsilon U\}$. Also for any non-empty subset W of F define $Q(w)=\{G \varepsilon L \mid G \vDash \ell(w)$ for every $w \in W\}$. It is immediate that if W is a non-empty subset of F, then $2(W)$ is an ℓ-group variety, and less trivially that if U is a non-empty subclass of L, then $F(U)$ is a fully invariant subgroup of F (Reilly [20, Theorem 2.1]). Following, Reilly we shall call these varieties quasi-representable.

In regard to the position of these varieties in the lattice of ℓ-group varieties, we note that $2(F)=R$ is the least quasi-representable variety, and hence each of these varieties contains R.

For each positive integer n, let B_{n} denote the fully invariant subgroup of F defining the Burnside variety of exponent n. The quasi-representable varieties $2\left(B_{n}\right)$ will play a key role in our considerations. Note that G belongs to $2\left(B_{n}\right)$ if and only if for all elements a, b of G, $a^{+}\left(b^{-n} a^{-} b^{n}\right)=0$.

Theorem 5.11: Let U be an ℓ-group quasi-variety such that $U \neq R$, and $U \leq 2\left(B_{n}\right)$ for some positive integer n. Then U does not have the divisible embedding property and hence in particular, the amalgamation property.

Proof: Suppose, G is a divisible ℓ-group in $U \leq 2\left(B_{n}\right)$, and let a, b be elements of G. There exists $c \varepsilon G$ such that $b=c^{n}$. Hence, $a^{+} \wedge\left(b^{-1} a^{-} b\right)=a^{+} \wedge\left(c^{-n} a^{-} c^{n}\right)=0$. But this means that G belongs to R
(see for example Conrad [3, Theorem 1.8]). Thus since $U \not \ddagger R, U$ cannot have the divisible embedding property. That U fails the amalgamation property follows from proposition 5.10.

Note that each H_{k} contains H_{o} and $H_{o} \notin R$, but $H_{o} \leq L_{n} \leq 2\left(B_{n}\right)$. Hence, according to the above H_{o} fails the divisible embedding property, and so also the amalgamation. Thus, every H_{k} fails the amalgamation property, since $H_{0} \leq H_{k} \leq L_{n}$ for every k.

Therefore the following theorem holds.
Theorem 5.12: For every k, the quasi-variety H_{k} constructed in Chapter IV fails the amalgamation property.

Proof: Clearly, $H_{k} \neq R$ and $H_{k} \leq L_{n} \leq Q\left(B_{n}\right)$. So by $5.11 H_{k}$ fails the amalgamation property.

Next, we need to show that the two chains of distinct quasi-varieties constructed in the third chapter fail the amalgamation property. But, first we need the following lemmas:

Lemma 5.13: There exists a totally ordered set I with distinct o-permutations α, β, γ such that $\alpha=\beta^{n}=\gamma^{n}$.

Proof: Let G be any ℓ-group which is not an R-group (see 3.6). Then there exist $x, y, z \varepsilon G$ and $n>1$ such that $x=y^{n}=z^{n}$ and $x \neq y \neq z$. By Holland's theorem G can be embedded in the ℓ-group $A(I)$ of o-permutations of some totally ordered set I. Let α, β, γ in $A(I)$ be the elements corresponding to x, y, z. Then $\alpha=\beta^{n}=\gamma^{n}$ and α, β, γ are distinct.

Lemma 5.14: There exists a totally ordered set I with α, β, γ as in 5.13 where $\alpha(i)>i$ and $\beta(i)>i$ for each $i \varepsilon I$.

Suppose $\alpha(i) \leq i$ for all $i \varepsilon I$ then replace α with α^{-1} so that $\alpha(i)>i$ for every $i \in I$. We know that $\alpha(i) \neq i$ for all i, for if not α would be the identity and thus so would β and γ. Now let $I^{\prime}=\left\{\left.\begin{array}{ll}i & \varepsilon\end{array} \right\rvert\,\right.$ $\alpha(i)>i\}$. So $I^{\prime} \neq \phi$. If $\beta(i) \leq i$, for some $i \varepsilon I^{\prime}$, then $\beta^{2}(i) \leq$
$\beta(i)<i$. Thus, $\beta^{n}(i) \leq i$. But $\alpha(i)=\beta^{n}(i)$, so $\beta^{n}(i)>i$. Thus $\beta(i)>i$ for all $i \varepsilon I^{\prime}$.

To complete this chapter a final important result will prove the existence of algebraic structures closer to A than the Medvedev varieties M^{+}, M^{-}which fail the amalgamation property.

Theorem 5.15: For every $n \geq 0, Q_{n}^{-}$and P_{n}^{-}constructed in the third chapter fail the amalgamation property.

Proof: The techniques used prove that Q_{0}^{-}(see Chapter III) fails the amalgamation property will also establish the same result for Q_{n}^{-} since $Q_{0}^{-} \leq Q_{n}^{-} \leq R$. The proof is similar for P_{n}^{-}.

Let Λ be a totally ordered set such that it admits three distinct o-automorphisms $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ such that $\bar{\alpha}=\bar{\beta}^{n}=\bar{\gamma}^{n}$ for some $n>0$, such that $\bar{\alpha}(i)>i$ for every $\mathbf{i} \varepsilon \Lambda$. By lemmas 5.12 and 5.13 we know of the existence of such $\Lambda, \bar{\alpha}, \bar{\beta}$, and $\bar{\gamma}$.

Now, let $G=\biguplus_{\Lambda} Z$ ordered by: $a \geq 0$ iff $a_{i} \geq 0$ where i is the maximum index with respect to $a_{\mathbf{i}} \neq 0$. Also, let α, β, γ be o-automorphisms of G defined by: $\alpha(a)=b$ where $b_{i}=a_{\bar{\alpha}(i)}, \beta(a)=c$ where $c_{i}=a_{\bar{\beta}(i)}$ and, $\gamma(a)=d$ where $d_{i}=a_{\bar{\gamma}(i)}$. Note that $\alpha=\beta^{n}=\gamma^{n}$ since $\bar{\alpha}=\bar{\beta}^{n}=\bar{\gamma}^{n}$. Consider $G(\alpha), G(\beta)$ and $G(\gamma)$ that are generated respectively by:

$$
\begin{aligned}
& m=(\overline{0}, \alpha) \text { and } n_{i}=\left(\bar{a}, \alpha^{0}\right) \text { where } \bar{a}_{j}=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array},\right. \\
& r=(\overline{0}, \beta) \text { and } s_{i}=\left(\bar{b}, \beta^{0}\right) \text { where } \bar{b}_{j}=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array},\right.
\end{aligned}
$$

and

$$
t=(\bar{o}, \gamma) \text { and } u_{i}=\left(\bar{c}, \gamma^{0}\right) \text { where } \bar{c}_{j}=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array} .\right.
$$

Now, let G_{1}, G_{2}, G_{3} be the l-subgroups of $G(\alpha), G(\beta)$ and $G(\gamma)$, generated respectively by: m and n_{i}, s and t_{i}, t and u_{i} for a fixed $i \varepsilon \Lambda$. Note that $G_{1}, G_{2}, G_{3} \varepsilon Q_{0}^{-}$since each of these is generated by two elements x and y, such that $y \ll y^{x} \ll x$ and the set $\left\{y^{x^{n}} \mid n\right.$ in $\left.Z\right\}$ is independent. Next, we will prove that if $J_{1}: G_{1} \rightarrow G_{2}$ and $J_{2}: G_{1} \rightarrow G_{3}$ are the natural embeddings, then there is no $H \in Q_{0}^{-}$, such that there exists $\sigma_{1}: G_{2} \rightarrow H$ and $\sigma_{2}: G_{2} \rightarrow H$ with $\sigma_{1} J_{1}=\sigma_{2} J_{2}$. Note that $Q_{0}^{-} \leq R$ and every ℓ-group in Q_{0}^{-}is an R-group (i.e. if $x^{n}=y^{n}$ then $x=y$). Assume there exists such an H and that the amalgamation property holds. Then, there exists $\sigma_{1}: G_{2} \rightarrow H$ and $\sigma_{2}: G_{3} \rightarrow H$ such that $\sigma_{1} J_{1}=\sigma_{2} J_{2}$. So $\left(\sigma_{1}(0, \beta)\right)^{n}=\sigma_{1}\left((0, \beta)^{n}=\right.$ $\sigma_{1}\left(\left(0, \beta^{n}\right)\right)=\sigma_{1} J_{1}(0, \alpha)=\sigma_{2} J_{2}(0, \alpha)=\sigma_{2}\left(\left(0, \gamma^{n}\right)\right)=\left(\sigma_{2}(0, \gamma)\right)^{n}$. Thus, $\sigma_{1}(0, \beta)=\sigma_{2}(0, \gamma)$ since H is an R-group. Note that for every $g \varepsilon G$ we have $(0, \beta)\left(g, \beta^{0}\right)\left(0, \beta^{-1}\right)=(\beta(g), \beta)\left(0, \beta^{-1}\right)=\left(\beta(g), \beta^{0}\right)$. Similarly, $(0, \gamma)\left(\mathrm{g}, \gamma^{0}\right)\left(0, \gamma^{-1}\right)=(\gamma(\mathrm{g}), \gamma 0)$. Thus $\alpha_{1} \mathrm{~J}_{1}(\beta(\mathrm{~g}), \alpha 0)=\alpha_{1}\left(\beta(\mathrm{~g}), \beta^{0}\right)=$ $\sigma_{1}\left((0, \beta)\left(\mathrm{g}, \beta^{0}\right)\left(0, \beta^{-1}\right)\right)=\sigma_{2}\left((0, \gamma)\left(\mathrm{g}, \gamma^{0}\right)\left(0, \gamma^{-1}\right)\right)=\sigma_{2}\left(\gamma(\mathrm{~g}), \gamma^{0}\right)=$ $\sigma_{2} J_{2}\left(\gamma(g), \gamma^{0}\right)=\sigma_{1} J_{1}\left(\beta(g), \alpha^{0}\right)$. So $\sigma_{1} J_{1}\left(\gamma(g), \gamma^{0}\right)=\sigma_{1} J_{1}\left(\beta(g), \beta^{0}\right)$. Then $\beta(\mathrm{g})=\gamma(\mathrm{g})=$ since $\sigma_{1} \mathrm{~J}$, is a monomorphism. So $\beta=\gamma$ since g was chosen arbitrarily and we have a contradiction to β and γ being distinct. So the amalgamation property fails in Q_{0}^{-}. Hence, it fails in P_{n}^{-}and Q_{n}^{-}since all ℓ-groups in P_{n}^{-}or Q_{n}^{-}are R-groups.

BIBLIOGRAPHY

1. Bernau, S. J. 'Unique Representation of Archimedean and Normal Archimedian Lattice Rings." Proc. London Math. Soc., 15 (1965), 599-631.
2. Bigard, A., K. Keimel, and S. Wolfenstein. Groups et Anneaux Reticules, Springer-Verlag, Berlin, 1977.
3. Conrad, P. Lattice-Ordered Groups. Tulane University, New Orleans, 1970.
4. Feil, T. "An Uncountable Tower of ℓ-group Varieties." Algebra Universalis, 14 (1982), 129-131.
5. Glass, A. M. W. Ordered Permutation Groups. Cambridge University Press, Cambridge, 1981.
6. Grätzer, G. and H. Lakser, "The Structure of Pseudocomplemented Distributive Lattices. II. Congruence Extension and Amalgamation." Trans. Amer. Math. Soc., 156 (1971). 343-358.
7. Holland, C. "The Lattice-Ordered Group of Automorphisms of an Ordered Set." Michigan Math. J., 10 (1963), 399-408.
8. Holland, W. C. "The Largest Proper Variety of Lattice-Ordered Groups." Proc. Amer. Math. Soc., 57 (1976), 25-28.
9. Jonsson, B. Sublattices of a Free Lattice, Can. J. Math., 13 (1961), 256-264.
10. Kopytov, V. M. and N. Y. Medvedev. ''Varieties of Lattice Ordered Groups." Math. Z., 137 (1974), 264-284.
11. Martinez, J. "Free Products in Varieties of Lattice-Ordered Groups." Czech. Math. J., 22 (97) (1972), 535-553.
12. Martinez, J. "Varieties of Lattice-Ordered Groups." Math. Z., 137 (4) (1974), 265-284.
13. Medvedev, N. Y. "The Lattice of Varieties of Lattice-Ordered Groups and Lie Algebras." Algebra i Logika, 16(1) (1977), 40-45.
14. Neumann, B. H. "On Ordered Groups." Journal London Math. Soc., 35(1960), 503-512.
15. Pierce, K. R. "Amalgamations of Lattice Ordered Groups." Trans. Amer. Math. Soc., 172 (1972), 249-260.
16. Pierce, K. R. "Amalgamating Abelian Ordered Groups." Pac. J. Math., 43(1972), 711-723.
17. Pierce, K. R. "Amalgamated Sums of Abelian ℓ-Groups." Prac. J. Math., 65(1976), 167-173.
18. Powell, W. B. and C. Tsinakis. "Free Products in the Class of Abelian ℓ-Groups." Pacific J. Math., 104(2) (1983), 424-442.
19. Powell, W. B. and C. Tsinakis. "Free Products of Lattice-Ordered Groups." Algebra Universalis, 18(1984), 178-198.
20. Reilly, N. R. "A Subsemilattice of the Lattice of Varieties of Lattice Ordered Groups." Duke Math. J., 36(1969), 825-834.
21. Scrimger, E. B. "A Large Class of Small Varieties of Lattice Ordered Groups." Proc.Amer. Math. Soc., 51 (1975), 301-306.
22. Smith, J. E. H. "The Lattice of ℓ-Group Varieties." Trans. Amer. Math. Soc., 257 (1980), 347-357.
23. Weinberg, E. C. "Free Lattice-Ordered Abelian Groups II." Math. Annalen, 159 (1965), 217-222.

2
 VITA
 Mona Youssef Cherri
 Candidate for the Degree of
 Doctor of Philosophy

Thesis: ON QUASI-VARIETIES OF LATTICE ORDERED GROUPS GENERATED BY CYCLIC EXTENSIONS

Major Field: Mathematics

Biographical:
Personal Data: Born in Abadieh, Lebanon, November 5, 1956, the daughter of Mitri and Yvonne Abou Chedid.

Education: Graduated from the Lebanese University with a license d'Enseignement in 1979, with a major in Mathematics and a minor in Physics; received a Master of Science in the field of Mathematics from Oklahoma State University in May, 1982; completed requirements for the Degree of Doctor of Philosophy at Oklahoma State University in December, 1985.

