ON QUASI-VARIETIES OF LATTICE ORDERED GROUPS

GENERATED BY CYCLIC EXTENSIONS

By
MONA YOUSSEF CHERRI

"
Licence D'enseignement
Lebanese University
Beirut, Lebanon

1979

Master of Science
Oklahoma State University
.Stillwater, Oklahoma
May, 1982

Submitted to the Faculty of the Graduate College
of Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
December, 1985



Thesis
(195D

05 220
QQF.Q—J



ON QUASI-VARIETIES OF LATTICE ORDERED

GENERATED BY CYCLIC EXTENSIONS

Thesis Approved:

Zd/caayvaa/ ZB ?Zﬁoﬂf%éié7

GROUPS

Thesis Adviser

OM// K. Heapck.

b L057

V)Z@Mmy} C%ihd%é&4///

QG’%JZW

ZKZLRMWHLV~ /C2 4)ZQV/&4A~,

Dean of the Graduate College

238613



PREFACE

A variety of %-groups is an equational class consisting precisely of
those 2-groups which satisfy a given set of equations. Alternatively,
varieties are those classes of f-groups closed with respect to £-sub-
groups, cardinal products, and %&-homomorphic images. A quasi-variety of
f-groups is a class of f&-groups closed with respect to %-subgroups, car-
dinal products, and ultraproducts. These can also be described as the
classes which are determined by given sets of implications. Thus, a
quasi-variety of 2-groups is a weaker algebraic structure than a variety
of 2-groups.

In Chapter I we give a brief review of the theory of partially
ordered groups, wreath products, and notations that are necessary for the
discussion that follows. Chapter II is devoted primarily to considering
special types of f&-groups called cyclic extensions. |In this chapter we
also give several examples which are the most general types of cyclic
extensions. Several theorems are proved which describe when two cyclic
extensions can be compared.

In the third chapter we study representable f%-groups. An %-group is

representable iff it satisfies the equation

2
(x A y) X A Y

Let A be the variety of abelian %-groups, Mt and M~ be the Medvedev
varieties, and R be the variety of representable 2-groups. In this

chapter we first construct two infinite chains of distinct quasi-varieties



between A and RﬂA2 using properties of M. Similarly, infinite chains of
distinct quasi-varieties of representable %-groups can be constructed
using properties of M+.

Chapter IV contains a study of nonrepresentable, normal valued
f-groups. An 2-group G is normal valued iff for every a,b € G a-]b_] ab
<< [a]vlbl. Let Gn, Sn’ Ho’ and Ln be the Scrimger f2-group, the variety
generated by it, the quasi-variety generated by it, and the variety of
g-groups defined by [x",y"] = 1, respectively. We know that if n is
prime Sn covers A and is contained in Ln in the lattice of varieties.
First, we find a set of implications satisfied by Ho and then construct
an 2-group that fails those implications but contains Gn. Next, we gen-
eralize this construction to get an infinite chain of distinct nonrepre-
sentable %-groups between A and Lnf)Az, and hence an infinite chain of
distinct quasi-varieties of nonrepresentable &-groups between A and
L n A%

Chapter V contains a study of three important properties of classes
of &-groups: the subalgebra property, the divisibility property, and the
amalgamation property. |t is devoted to proving that every quasi-variety
of f2-groups which is an element of one of the chains constructed in
either Chapters III or IV fails the amalgamation property. Also, rela-
tions between these properties are given and used to establish whehter or

not a quasi-variety of %-groups satisfies or fails the amalgamation

property.
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CHAPTER |
INTRODUCTORY CONCEPTS AND NOTATION

In this chapter we review many of the basic definitions and notations
necessary for our study of quasi-varieties of &-groups. A more complete
discussion can be found in Bigard [2].

By Z and R we will mean the sets of integers and real numbers, respec-
tive]y. Unless otherwise specified, these sets will have their usual oper-
ations and order.

A partially ordered set (poset) is a pair (A, <) where A is a set and

< is a relation on A which is reflexive, antisymmetric, and transitive.
The set (A, <) is called a chain if < defines a total order on A (i.e., if
a,beA either a < b or b ¢ a).‘ If A, B are partially ordered sets, then we
will use the following notation. By A-B we mean the set {acA|a¢B}. Let A
be a poset and H a subset of A. The set H has an upper bound (lcwer bound)
if and only if there exists an element x € A such that a < x (x < a) for
every element a ¢ H. Now, (A, <) is a lattice if (A, ) is a poset such
that for every two elements a and b in P the least upper bound and the
greatest lower bound of the set {a,b} exist. As for notations the least
upper bound of {a,b} is denoted by avb (a_join b), and the greatest lower
bound of {a,b} by aab (a meet b).

The lexicographic product of A and B is the usual direct product AXB

ordered by the relation (a],b]) < (az,bz) if and only if a, < a, or

a] =a, and b1 < b2. A;B is ordered analogously. Now, if (A, ., < is a



group, then A-] will be {a_llasA}. Also, a; << a, for a;, a, e A means
a? < a, for all n e Z.

A partially ordered group is a group (G, -) together with a partial

order < such that a < b implies ac < bc and ca ¢ cb for all a, b, c ¢ G.
If the order is a lattice order, then G is called an %-group, and if the
order is total, then G is called a totally ordered group.

If X is any ordered group, where 0 is the identity element, then X

will denote {xeX|xz0}. X" is called the positive cone of X. This set

completely determines the partial order of the set structure. For X+ to
be the positive cone of a partially ordered group, it is necessary and
sufficient that X+A(X+)-] = {0}, xtoxt < x* and x xF x-] < X" for all

x e X.

Let X be an ordered set and Y:X -~ X, Y is an o-permutation of X if

and only if Y is a bijective map where if x < y then Y(x) < Y(y). An

o-homomorphism is a homomorphism ¢: X - Y between partially ordered

groups such that Xy 5 % implies ¢(x]) < ¢(x2). An o-monomorphism is an

injective o-homomorphism while an o-epimorphism ¢: X >~ Y is a surjective

o-homomorphism such that ¢(X+) = Y+. An o-isomorphism is a bijection ¢

such that both ¢ and ¢_] are o-epimorphisms.

An g-homomorphism is a homomorphism ¢: X - Y such that ¢(x1A x2) =
¢(x])A ¢(x2) and ¢(x]v xz) = ¢(x]) v¢(x2) for all Xps Xy € X. As in the

preceding paragraph, we define ¢-monomorphism, %2-epimorphism, and

L-isomorphism.

A subset S of a partially ordered group X is called convex if
0 < xs<sands eSS imply x € S. An o-ideal | of X is a kernel of some
o-epimorphism, and if X is lattice ordered, the kernel of an f&-epimor-

phism is called an &-ideal. For &-groups, the %-ideals are the convex

normal %-subgroups (i.e., subgroups that are also sublattices).



If G is an 2-group and C a normal convex %-subgroup of G, then G(C) =
{xC|xeG} is the set of left cosets. |If C is a maximal convex 2-subgroup
with respect to not containing a where aeG, then C is a value of a in G.
Now C is prime if whenever C = ANB where A and B are convex 2-subgroups

of G then A=C or B=C. In this case let u be the canonical map from G in-

to Aut G(C) (i.e., automorphisms of the set G(C)) defined by: for every g,

h & G, (u(g))(hc) = ghC. For u(G) to operate transitively in G(C), means

for every x and y € G(C), there exists ¢ € u(G) such that ¢(x) = y. An
2-group G is transitive if there exists a totally ordered set T and an
2-monomorphism u:G -~ Aut T, such that u(G) operates transitively in T.
Holland has proved that every %-group can be embedded in Aut(A) for some
totally ordered set A where the cardinal of A is smaller than or equal to
the cardinal of G. Hence, every &-group is isomorphic to a subdirect
product of transitive groups (see later in the chapter for the definition
of subdirect product).

+
If X is lattice ordered and x € X, then x = xvo is called the posi-

tive part of x, x = (x-])vo is called the negative part of x, and
|x| = xvx-] is called the absolute value of x. Note that x = x+(x_)—]
and |x| = x+-x-. Also, if x and y are elements of x, yx = x_]yx is

called the conjugate of y by x.

If x and y are ordered, algebraic structures, then X + Y will denote
the usual direct sum without regard to order. If we write X + Y, we

mean the cardinal sum which is the usual direct sum but with order

determined by (X + Y)+ = {(x,y) e X+ Y | xe X+, ye Y'}. 1f X and Y are
two posets, then XxY = {(a,b) such that aeX and beY} with the ordering
< defined by (a,b) < (c,d) if and only if a < b and ¢ < d. (XxY, <) is

called the direct product of X and Y. .Also, if X and Y are 2-groups,




then the direct product is the cardinal product of X and Y.

Note that all types of products and sums can be defined for any col-
lection (Xu) of ordered sets.
oeA

A subset S of a direct product oA Sa is called a subdirect product

of the Sa if the projection on each Sa is a surjection. An object S is

said to be subdirectly irreducible if whenever it is a subdirect product

of a collection (Sa | @ € A), then at least one of the projections is an
isomorphism. Let C be a class of objects, then every object in C is a
subdirect product of subdirectly irreducible objects in C if and only if
C is an equational class. This is also equivalent to the condition that

C is closed under the formation of products, substructures, and quotients.
An equational class C is called a variety of objects. In particular, we

denote by A, the variety of abelian %-groups, R the variety of represen-
-1

table f2-groups where every f-group G satisfies the equation xk(y-].x

y) = ]G for any x,y in the f2-group G and where ]G is the identity ele-

ment in G, N the variety of normal valued 2-groups and L the variety of

all f-groups. We know that A < R < N < L.
oot ot

Let I be an index set with a minimal element z, F a subset of I such
that F is stable with respect to finite intersection, z does not belong
to F, and x ¢ F and t > x implies t ¢ F. Then F is a filter of I. It is
an ultrafilter if it is a maximal filter. |If C is a class of %&-groups,
(Gdlael) a collection of elements of C, and U an ultrafilter over I, then
an ultraproduct is o1 GQ/U. Now, if C is closed under the formation of
products, substructures, and ultraproducts, then C is called a quasi-
variety of objects. And every object in C is a direct product of ultra-

products (i.e., .m_ .m G./U where I, I are index sets, U an ultra-
Jel 'EIa i’ a o} a

filter over I, and Gi an object in C for every i).



(8]

Let A and B be groups, we denote by A , the group of all functions

(B)

from B into A with the usual multiplication and by A

J[8]

the subgroup of
consisting of all such functions with finite support. For each

f e A[B] and b ¢ B we define a function f(b) by f(b)(b') = f(bb'). Con-
[8]

sider the set product BxA with multiplication given by (b,f) (b',f') =

(bb', f(bb')-f(b)), then BxA[B] is called the big wreath product of the

group A by the group B and is denoted by A Wr B, while the subgroup

(8)

BxA of BxA[B:I is their small wreath product and is denoted by A wr B.




CHAPTER 11
CYCLIC EXTENSIONS

In this chapter special types of &-groups are studied along with
methods of constructing them. |In Jater chapters their importance will be
seen in generating quasi-varieties and in determining whether or not a
class of f-groups fails the amalgamation property.

Definition 2.1 Let (G,.) be an %-group, a an %-automorphism of G,

and

G(a) = Gx<a> = {(g,an)lgeG, neZ} .

G(a) is called the cyclic extension of G by a.

G(a) carries a natural group structure if we define multiplication

as follows:

(g,a™)(h,d™ = (g-a"(h), ™™

Note -that (g,an)-] = (q_n(g-]),a—n), and the identity in G(a) is (IG, ao).

Also, define an order < on G(a) by (g,a") < (h, ™) iff n <mor

n=mand g < h. This defines a lattice order on G(a). In fact,
(g,a") if n<m
(g,a") A (h,a™ = 4 (h,o™) if nom

(gah,a™)  if  n=m




and
( n !
(g,o0 ) if n>m

(g, 0™ v (h,o™ = { (h,a™ if n<m

(gvh,an) if n=m
\

Further, G(a) is an 2-group. We need to verify only that if a,b,c

e G(a) where asb, then ac < bc and ca < cb. Since a,b,c are in G(a)

write a = (g,a"), b = (h,a™), and c (f,ak). Now a<b implies that n<m

or n=m and g<h. |If n<m, then n+k < m+tk and ac = (g,an)(f,ak) =

(g-a" (), an+m) < (h-a"(f), am+k) = (h,am)°(f,ak) = bc. Otherwise, if
n=m, then g < h implies g-an(f) = g-a"(f) < h-o"(f) and ac < bc. We can
verify in a similar way that ca < cb.

One remark is that G can be embedded in G(a), and is isomorphic to
G(a) whenever o is the identity automorphism. To see this just identify
each element g of G with the element (g,ao) of G(a).

It is also important to observe that G(a) is abelian iff G is abelian
and a is the identity map. Clearly, if G(a) is abelian, then G is abelian
since G < G(a). Suppose a is not the identity automorphism. Then there
exists an element g of G such that a(g) # g. Let x = (g,ao), and
y = (]G,a). The two elements x,y of G(a) do not commute, since x-y =
(g,0%) (15,0) = (g:a°(1),0) = (g°1,0) = (g,0), and y-x = (1 ,a) (g,0") =
(15-2(g),0) = (a(g),a).

Cyclic extensions of &-groups have been used in the literature to

generate varieties and to study the amalgamation and divisible embedding

properties. The following example was used by Feil [4] to create uncoun-

tably many different varieties.



Example 2.2. Let G = (R,+), t any number inside the interval [0,1],

and @, an automorphism of G defined by the following: For every r in G,

at(r) = (EETJr. Consider G(at) to be the cyclic extension of the real

numbers. Let Ut be the variety generated by G(at). The variety Ut
strictly contains A (variety of abelian 2-groups) and is contained in R
(variety of representable %-groups) since Ut is totally ordered.

In [4] Feil established the following result.

Theorem 2.3. The varieties Ut (0 < t < 1) constructed in the above

example are distinct and form an uncountable chain between A and R.
In order to prove this theorem, first he proved that if 0 < t <

g-s | where p,q are in Z_ then G(at) satisfies the equation

|[x, [ Dx,yJ1T1P = |Dx,y1]9 .

Further, if 0 < g-s t < 1, then G(at) fails the equation for p and q.

Mo}e generally, cyclic extensions can also be constructed by using
not just permutations over the totally ordered group itself, but also
permutations over any totally ordered set. Therefore, the following
examples arise.

Example 2.4. (i) Let G be an %-group, I a totally ordered set, and

a an o-permutation of I. Let G = i%% Gi’ where Gi = G. Define an

h where h. = 95 (i) Consider G(a) the

automorphism a: GG by u(é)
cyclic extension of G by a. If G is any group, then é(a) is generated by

the set of elements {e,ei[isI} where

e = (0,0)



e, = (a,a”) where a; = and
0 if j#i
]G is the identity element of G.
Multiplication in G(a) is given by
(@,a™ (R,e™ = (g +a"(A),a™™ = (k,a™™
where k. = §. +h .
i i -n,.
a (i)
(ii) Let G =?Z and a:G ~ G be defined as follows: for an element
a of G, write a = (a,) where aisZ and ai#O for only finitely many in-
'iez
dexes in Z, a(3a) = b where b = (b,) , b.eZ and b, = a. ,. Consider
ez i i i+1
the cyclic extension, G(a), of G by a. Note that a'(a) = ¢ = (ci)
ieZ
where ST I Multiplication is defined by
- - - - + - n+
(g,a") (h,a™ = (g+a"(R),a™™ = (k,o™™
where ki =9; + hi+n'

Now, let ZwrZ (i.e. the small wreath product of Z and Z), be the
set {(g,n) where g = (gi)ieZ where g. # 0 for finitely many i's, g;¢Z,

and neZ}. Multiplication in ZwrZ is defined by

(g,n)(h,m) = (k,n+m) where ki = gi + hi+n .

Note that G(a) is isomorphic to ZwrZ. |If ¢ is the map from G(a) into
ZwrZ defined by ¢((g,a™)) = (g,n), then ¢ is a well-defined isomorphism.
First, let us show that ¢ is a homomorphism. Let (g,a") and (h,a™ be

two arbitrary elements of G(a). Then, ¢((g,a")«(h,a™)) = 6 ((g + a"(h),
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an+m)) = (g + o"(h),n+m) = (k,n+m) where ki =g, + hi+n' But (g,n) (h,m) =
(k,n+m). Therefore, ¢((g,a")-(h,a™) = ¢((g,a™)) ¢((h,a™). The map ¢
is clearly a bijection.

(iii) Let G in (ii) be furnished with the following order: (a,a")>0
if and only if n>0 or n=0 and aizo where is is the maximum index with
respect to ai¢0. Then G is an %-group and is isomorphic to W = ZWrZ,
where W is ZwrZ with a similar order as G, (i.e. (g,n) > 0, if and only
n>0 or n=0 and 9; 2 0 where is is the maximum index with respect to gi#O).
Thus, ¢ defined in (ii) is an &-isomorphism. Hence, W is a cyclfc
extension.

Now, if we change the order on G, and define it as follows:

(3,0") 2 0 if and only if n2 0 or n=0 and a, 2 0 where is is the mini-
mum index with respect to ai#O, then wh o= zﬁrz, which is ZwrZ with simi-
lar order as G, (i.e., (g,n) >0 if and only if n > 0 or n=0 and g, 20
where i is the minimum index with respect to 9; # 0). Again, ¢ in (ii)
is an 2-homomorphism, and w+ is a cyclic extension.

Let M+ and M be the varieties generated by w+ and W respectively,

Medvedev [13] has established that/M+ and M are both covers of A.
(iv) Let G = ng]Z, o a permutation of the set {0,1,2,...,n-1}

defined by a(i) = (i+1) modulo(n). Define an automorphism a:G - G by,
a(g). = h where hi = 95(i) i =0,...,n-1. Consider G(a) the cyclic exten-

sion of G by a. Multiplication in G(a) is defined by (go,...,gn_];am)

(h .,hn_];@p) m+p) =

- - (go+hum(0),_,,,gi+ham(i),-..,gn_]+ham(n_]);a

(90+h0+m""’gi+hi+m""’gn-] + hn-]+m;am+p) where all subscripts are

read modulo n.
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Now, the Scrimger f%-group Gn of order n is defined by Scrimger [21]
.as follows:

Gn = {(aO,..,an_];n) where neZ, and aisZ for every i = 0,..,n-1},
furnished with the following order and multiplication. An element

(ao,..,an_];m) 2 0 if and only if m>0 or m=0 and aizo for every i=0,..,

n-1, and (ao,..,an_];m)(bo,..,bn_];p) = (a0+b0+m""an—] + bn_]+p;m+p)
where all subscripts are read modulo n.
Next, define an order over G(a) as follows: (go,..,gn_]:am) > (0,0)

if and only if m>0 or m=0 and 9,20 for every i=0,..,n-1. Then G(a) is an
2-group and is isomorphic to G . Let ¢:G(a) »> G be a map defined by
¢((go,..,gn_];am)) = (go,..,gn_];m). Easily, we can prove as in (ii)
that ¢ is an 2-isomorphism.

Note that if n is a prime number‘the variety Sn generated by Gn
covers A (Scrimger [21]).

These types of cyclié extensions will play an important role in con-
structing countably infinite different quasi-varieties in Chapters ||
and |V. Therefore, it is necessary to learn how to compare cyclic
extensions.

be two totally ordered sets, G = A Z,
1

and AZ’ respectively. Con-

Theorem 2.5: Let A], A2

G' = E:)Z,and a
2

sider G(a

r &2 be o-permutations of A]

) andyG'(a ). If there exists an injective map Yo from A, into

).

2

oY =Y oa
o o

1

A, such that a

1
2 > then G(a]) < G' (o

1 2

Proof: Suppose there exists such a Yo so that the diagram on the

next page commutes. Let ¢ be the map from G(a]) into G'(a.,) defined by

2
k k . .
¢((g,u])) = (h,uz) where hYo(i) = gi‘and hj = 0 otherwise. The map ¢ is

well defined since Yo is injective. Also ¢ is an 2-homomorphism. Let
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h],h2 be elements of G(a]). We need to show that ¢(h]-h2) = ¢(h])'¢(h2).

. n m -+
First, h] = (g,a]), h2 = (h,a]),and h]'h2 = (g,u?)(h,a?) = (k,a? ™ where

) where tYo(i) =g, +h and
OL.I(I)
= i = n = m =
tj—o otherwise. But ¢(h]) (2, az), ¢(h2) (p,uz) where Qyo(i) 9>

n-+m

k, =g. +h . Now ¢(h]-h2) = (t,a2

' ! ar]‘ i)

_ _ _ . . - ny . my _
pYo(i) = h. and lj p; =o© otherwise. Now ¢(h]) ¢(h2) (2,@2) (p,az)

+m n n
(q,cxn ) where g .y =% ,.\ +p . Note that &,oY = Y od
2 Yo(l) Yo(l)_ &Z(Y (i) 2" o o 1
o
i o Y =Y o = - = =
since OLZQ o OOOL]. Then q'Y (i) SL'Y (i) + p_Y (OLn(i)) gi + han(i)
o o o 1
t ey .
v, (1)
Y
o
A —> 1
* )
\/
A, > A,
Yo
So, ¢(h])¢(h2) = ¢(h]-h2) and ¢ is a homomorphism. The map ¢ is clearly

injective. Since G(a]) and G'(az) are totally ordered, then ¢ is an

g¢-monomorphism.

The above theorem remains true if Yo is found so that &ZOYO = Yooaﬁ

for some k in Z+.

However, the converse is not true. The following example is an illus-

tration of this fact.
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Example 2.6: Let A] = A2 = Z in the theorem. Then G =G' =?Z. Let

be the o-permutation of Z that maps n to n+l, and a, the identity on Z.

*2 1
There is no Yo from Z to Z that makes the diagram commute in the theorem.

Suppose there exists Y such that a oYo = Yoo& , and let n be any element

o 2 1
3. oY = g = a = o =
of Z. Now 2,0 0(n) az(Yo(n)) Yo(n)+l, and Yooa](n) Yo(al(n)) Yo(n)
Yo(n). If uono = Yoou], then Yo(n) = Yo(n)+l and Yo is the constant

zero function and, therefore, not injective.

Note that G(a]) = G < G(az), but there exists no injective mapping

between A] and AZ'

Note that Theorem 2.7 remains valid if the cyclic extension over the
totally ordered group is taken by adjoining an order-preserving auto-
morphism of the group itself.

Corollary 2.7: Let G],G2 be two totally ordered groups and o and a,

two o-automorphisms of G] and GZ’ respectively. Suppose there exists an

XoY for some Y
2 0
2(ozz).

in Z. Then G](a]) is 4-isomorphic to an f-subgroup of G
Proof: Suppose there exists such YO. Define the map ¢ from Gl(a])

o-monomorphism Yo between G] and G2 such that Yooa] = o

into Gz(az) by

6((g, o)) = (7 (a), o))

Clearly ¢ is a well-defined injective map (since Yo is injective we need
to prove that ¢ is an 2-homomorphism. Consider two elements (g,a?) and

(h, am

]) of G](a]). Now
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n+m
;)

¢((g,a7) (h,a]) = o(g al(h), a

n A (n+m)
= Y
(v (g o7 (h), a)'™™)
n An+Am
= Y
(Y (9) ¥ (a](h), ox™M
But ¥ oa" = axnoY because Y oo, = axoY . Then
o |1 2 o o 1 27 o

(v.(a) 3" (¥_(h), a)™™

¢((g,a?)(h,aT))

(v (a), o, (7_(h), o5

¢((g, o) ¢ ((h,a])) .

Hence, ¢ is a homomorphism. Fiqally, since G](u]) and Gz(az) are both
totally ordered, ¢ is an %-monomorphism.

To conclude this chapter, we prove a theorem that clarifies for
which special cyclic extensions of totally-ordered groups the converse
of theorem 2.7 is true.

Theorem 2.8: Let G be a totally ordered group and o and o, two
ordered preserving automorphisms of G. Consider G(al) and G(az). There
exists an %-monomorphism between G(al) and G(az) that fixes G iff there
;OYO for some X in Z.

Proof: (1) Suppose there exists a monomorphism Y, of G such that

A . .
Yooa] = a,0Y_. Define the map ¢ from G(al) into G(az) by

exists an o-monomorphism Yo of G such that Y 00y = @

6((g,a%)) = (1_(g), o))

Clearly ¢ is a well-defined injection since Yo is. It remains to prove
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that ¢ is an %-homomorphism. First, let us prove that ¢ is a homomor-

phism. Consider two elements (g,a?) and (h,a?) of G(a]). We have

#((g o (h), oT™™)

¢((g,07) - (h,a1))

_ n A(n+m)
- (YO(Q Q](h)), az )
n An+im
= Y
(v, (g) o(on](h)), o ).
But Y oo = axnoY because Y oo, = aAoY . So
o 1 2 o o 1 2 o

Xn+Am)
2

6((g,0M) (h,aD) = (v (9) )" (v (M), a

(v (9), a)™ (¥ (h), )™

6((g, @) -4 ((h, o).

Hence ¢ is a homomorphism and since G(a]) and G(az) are totally ordered,
clearly ¢ is an f2-homomorphism.

(2) Suppose there exists an %-monomorphism ¢ between G(u]) and
G(az) that fixes G (i.e. ¢(g,a?) = (g',ag)). The map ¢ is an automor-
phism since G(a]) and G(az) have the same cardinality. In fact
IG(a])| = |6]|z| = |G(a2)|. Define ¥_ from G into itself by Yo(g) =g'
where ¢((g,a?)) = (qg', ug). The map\Yo is an o-automorphism of G. Since
¢ is an o-automorphism Yo is an o-automorphism of G. It remains to prove
that Yooa = akoYo for some )X in Z. Let A be such that ¢((l,a])) =

1 2
(I,a;). Now Yooal(g) = Yo(u](g)) = h where ¢((u](g),a?)) = (h,ag). But



6((a(g),00))

o((1,00) (2,09 (1,071))
6 ((1,0)) 4((g,a)) ¢((1,071))

(l,a;)(g',ag)(l,agl)
(1-0y(g") 5 ap) (1,a,")

A, 0
(a5(g'), a,).

X, A A .
= = = Y
Hence h az(g ) uz(Yo(g)) and Yooa](g) 2,0 O(g). Since g was

chosen arbitrarily, Yooa

1

= aKoY .
o

2

16



CHAPTER 111
REPRESENTABLE 2-GROUPS

A variety of %-groups is a class of &-groups which is equationally
defined. A quasi-variety is a class of %-groups defined by a set of one
or more implication. An equation or an implication may involve not only
the group operations but also the lattice operation v and A. The exis-
tence of an uncountable number of f-group varieties was first shown by
Kopytov and Medvedev. However, they use the fact that there exists an
uncountable number of group varieties to show their result. The approach
used in this chapter is constructive and does not rely on previous results
in varieties or quasi-varieties. It will establish the existence of an
infinite countable chain of quasi varieties, each of which contains the
abelian variety and is contained in R ﬂAZ. The f-groups used to generate

these quasi-varieties are totally ordered.

Definition 3.1: Let (Gi|ieI) be a family of %-groups. Then H is a
subdirect product of the Gi's iff H is an &-subgroup of %Gi such that
every projection of H on a Gi is surjective. It is clear that an %2-group
G is isomorphic to a subdirect product of the Gi's iff for every i in I,
there exists an %-epimorphism ui:G -> Gi such that igl Ker u; is reduced
to the identity element.

Example 3.2: Let G be an arbitrary %2-group, (Mi|ieI) the family of
minimal prime %-subgroups, and G(Mi) the left cosets of M.. For every

i eI, let u, be the canonical surjection from G onto G(Mi) (i.e.

ui(g) = gMi), and let G, = ui(G). Then, the intersection of the

17
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ui-kernels is equal to the intersection of all the Mi's, and is therefore
reduced to the identity element. Hence, G is a subdirect product of the
Gi's. Note that the Gi's are transitive groups. Therefore, every %-group
is isomorphic to a subdirect product of transitive groups, and if the
f2~group is commutative the Gi's can be chosen to be totally ordered
(Bigard [2]).

The latter property is of course not valid for an arbitrary 2-group.
However, the case where the Gi's are totally ordered is of special sig-

nificance.

Definition 3.3: Let G be an &-group. G is representable if G is

isomorphic to a subdirect product of totally ordered groups. Equiva-
lently, G is representable iff there exist a family of totally ordered
groups (GiliEI) together with %-epimorphisms (ui:G > Gi|ieI). Such that
every Gi is totally ordered and fiKer u. is reduced to the identity ele-
ment.

Example 3.4: The following are examples of representable %-groups.
Other examples can be constructed from these by taking the product of
such f%-groups, and quotients by f-ideals.

(i) Any totally ordered group G is representable.

(ii) Let A, B be two totally ordered groups and AwrB be the small
wreath product of A and B. AwrB can be totally ordered in two distinct
ways: Fifst, (a,b) < (a',b') iff b < b' or b =b' and a, < a; where i
is the smallest index such that a, # a;. Secondly, (a,b) < (a',b') iff
b <b'orb=>b'and a; < a; where i is the largest index such that
a, # a;.

(iii) In (ii) let A and B be both equal to Z. Since Z is totally
ordered by the usual order ZwrZ is representable. Note that, W and W

defined in 2.4(iii), are obtained by defining two distinct total orders

on ZwrZ.
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The big wreath product AWrB of totally ordered groups does not admit
any total order compatible with the group operation (see Neumann [14].

There are numerous characterizations of representable f2-groups. The
two most useful ones are the following: An 2-group is representable iff

G satisfies one of the following relations:

(1) (xan)? = xPay? .
These two identities characterizing the representable 2-groups will per-
mit us to prove whether an f-group is representable or not. As we will
notice in these examples.

Example 3.5: i) Let G = {f|f:[0,1] > Ris a continuous function}.
Define an order on G as follows: f < g iff f(x) < g(x) for every
x €[0,1]. The operation in G is the usual componentwise addition of
functions. Consider two elements f, g of G we need to prove that

fA(g—] + f-l + gl < 0. Note that f-] = -f and g—] = -g, sO g ] + f

+g = -g-f+g=-fFfandf A(g-] + f_] +g=FfAa-f<0. Note also
that G satisfies (ii) (i.e. (XAy)2 = szyZ). In another way G is iso-

morphic to [o?ﬂR where R is the set of real numbers and the [Oq]]R is

totally ordered, hence G is representable.

(ii) Let K=12Z and G = ZxZ and T a homomorphism between K and the
group of automorphisms of G such that t(1)(m,n) = (n,m). Let H = KxG
furnished with an internal multiplication defined by (a,x) (b,y) =
(a+b, x+y?) where y® = 1(a)(y). It can be easily verified that H is a
group. Let (a,x) > e if a>eora=ceand x 2 e. Then, H is an

2=group in which:
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(a,x) if ave
(a,k) ve = (e,xve) if a=e
e if a<e

where e is the identity. Let x = (1,(0,0)) andy = (1,(1,-1)). Then
xay = (1,(0,-1)) and (xay)? = (2,(-1,-1)), but x’ay” = x* = y* = (2,(0,0)).
Hence H is not representable.

Another property of 2-groups which is close to the representable con-

ditions deals only with the group structure.

Definition 3.6: A group G is said to be an R-group if whenever

xn=yn for ne Z+-{O} we have x=y. Hence, any totally ordered group is an
R-group. But representable &-groups are always isomorphic to a subdirect
product of totally ordered groups. Therefore, any representable &-group
is an R-group. However, an R-group is not always representable.

Example 3.7: i) An R-group which may not be representable is ZwrZ.
Since ZwrZ can be totally ordered it must be an R-group. However,
there are lattice orders on ZwrZ which are not representable. For example
the Scrimger %£-groups Gn for n ¢ Z+-{0,I}, are not representable (see
2.4(iv)).

(iii) Neumann's [14 ] proof that AWrB is not orderable actually
showed first that it is not an R-group.

The small wreath product of Z and Z with its two orders, W+ and W-,
is of special significance in generating varieties and quasi-varieties of
¢-groups. We first concentrate on W+.

Let o = (a,0) where

a. = and B = (O’I) .
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Note that o and B are positive and they generate w+. Also, for 8§ ¢ W+

of the form § = (c, k) we have 6_] = (c', -k) where c; =-ci Con-

sider now § = (c,k), Y = (a,n) in W', Then

o= sTWs = (e',k) (a,n) (c,K)
= (d, -k+n)(c,k) where d, = ci +a,
= (e, -k+n+k)
= (e,n) with e. = di + ¢ pan
Hence, e, = c; A S but c; =-c. and e, = “C Tt
Ciyan- |f n=0 then v® = (e,0) where e, =a;_; i.e., conjugation by

§ = (c,k) when ¥ = (a,0) shifts a k places to the right making vO smaller
than Y. Since o is equal to (a,0) and B is equal to (0,1) then o8 Wil
be o with the 1 shifted to the l-component in a. Thus, w+ is charac-
terized by the property that it has two generators o and B with B >>

a >> aB.

Similarly, we can define W or Zwrz. The multiplication is exactly
as in W+, but the order is changed. Here, a and B defined above generate
W owith 8 >> of >> a.

Let M+ and M be the varieties generated by w* and W-, respectively.

It is a known fact that if G is a totally ordered group generated by
x and y and either x >> y >> y* or y >> y* >> x and the set {yxn|neZ} is
an independent set then G is isomorphic to w+ or w', respectively (Medve-
dev [ 13]). The varieties M and M strictly contain A and are contained
in R.

The following theorem of Medvedev [ 13 ] demonstrates the significance

of the wreath product in generating varieties of %-groups.
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+ - . . . L.
Theorem 3.8: M and M are covers of A in the lattice of varieties

of &-groups.

In order to prove the theorem, Medvedev used the following lemma:

Lemma 3.9: Let G be an f-group. |If G contains two elements u and v
such that either u’ << u << v or u << u’ << v and the set {uV" | n ¢ 2}
is independent, then G contains either a copy of w+ or W .

We know that quasi-varieties are weaker algebraic structures than
varieties. We know that A < M < Rn Az. We will construct an infinite
number of different quasi-varieties between A and RN AZ.

First, we establish the analog of Medvedev's theorem for quasi-varie-
ties. For notational purposes let QZ be the quasi-variety generated by
wh and Q; the quasi-variety generated by W

Theorem 3.10: The quasi-varieties QZ and Q; cover A in the lattice

of quasi-varieties of %-groups.
Proof: Let Q be a quasi-variety properly containing A and contained
in Q;. Then, there exists G a non-abelian %2-group G in Q. Since G be-
+ +
. . - I
longs to Qo’ G is isomorphic to asubgroup of H where H ugI(I'w /Ua) for
which I, I' are index sets and each Ua is an ultrafilter over I'. There

exist x and y elements of G such that [x,y] # 1. We consider G as a sub-

group of H so x and y can be viewed as elements of H. So x = (ta)ael and
. T = (O . o a

y = (sa)aeI’ for which t, = (tilu)iel' and s, (Silu)ieI' with t, s,

inW. Let us= |[[x,y]l| and v = |x|]|y|. Now, for some a € I [ta’ Sa] # 1

since [x,y] # 1. Fix such an o, then for every i in I' l[t?, s?]l <<

[t%]]s%], since t¥ and s? are elements of W', Thus [Tt , s 1] << |t ||s |-
il i i a’ o o' a

Also, there exists J < I' such that [[t?, s?]l # 1 for every i ¢ J.

Therefore, we may assume that u’ << u << v and the set {an[neZ} is an

independent set. Let K be the &-subgroup of G generated by u and v then
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by lemma 3.9 K is isomorphic to W+. Thus G contains a copy of wh and Q:
< Q. ButQ s Q: so Q = Q:. Similarly, we can prove that Q; covers A.

The preceding theorem does not indicate whether or not Q; is identi-
cal to M and whether or not QZ is identical to M+. We concentrate on
comparing Q; and M since the case for Q: and M is similar. Before do-
ing so we need to learn more about the quasi-variety Q;. in general
quasi-varieties can be defined by a set of one or more implications. It
is not always easy to find the implications that define a given quasi-
variety. But, it is possible, however, to find a set of implications
that are satisfied by all elements of the quasi-variety. Note that if
two quasi-varieties are equal, then all of the implications that are true
for one of them will have to be true for the other. Since our goal in
this chapter is to construct a chain of quasi-varieties, it is important
to determine some implications satisfied by each quasi-variety constructed.
We consider first some properties of "

Proposition 3.11: If a,b,c are positive elements of W with b << a

N

<< ¢ and a << ac, then b << b°.

Proof: Clearly, the proposition is true if a=b =c = (0,0). As-
sume that a,b,c are positive elements of W . Then, there exist n, m,
ke Z and X,Y,Z E?Z such that a = (x,n), b = (y,m) and ¢ = (z,k). Two

possibilities arise.

First, if k = 0 then n=m=0 since b << a << ¢c. Now, ¢ = (z',0) with
z; = -z and so

c -1 ,

a =c¢c ac = (z',0)(x,0)(z,0)

(h,0) (z,0) where hi =z! +x, =- 2, + X+ s

(t,0) where t, = hi tzo=-zo 4+ xo +zo= X
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Hence, a* = a and for a to be infinitely smaller than ac,a must be (0,0).

But if a = (0,0) then b = (0,0) since (0,0) < b" < a for every n in Z.

Thus, b << b® since b = b = (0,0).

Secondly, if k >0 then n=m=0. Otherwise, if n >0 then there
exists A > 0 such that nA > k contrary to a << c. Consider at = (x', ni)

where x; =x, + (A-l)xi Therefore, ak > ¢ since nA > k. This is a

+n’

contradiction to a << ¢. So n=0. But if n=0 and b << a then m=0. Now,

b= (y,0), b" = (yn,O) where y? = ny,

i and

c -1

b- = ¢ bec = (z',-k)(y,0)(z,k) where z; =-z,_,. So,
= (h,-k)(z,k) where he =20+ vy, =2 Y Yo
= (t,0) where t, = hi oz =tz vy
T Zk T Y-k
Note that b - b” = (t,0) - (y",0) = (s,0) where s. = b, - y?. Hence,

s, = Yiog T M- Let A be such that Yy > 0 and A is maximum with respect

to yi#O. Then s But Yaak = 0 by the

Ak T Yatk-k T Mok T YA T Mk
maximality of A, and Syak T yA-O =Y, > 0. Now, si =0 if i > Ak. Since

Cc

s, = = 0-0 = 0. Hence, b-b" > 0 and b" < b°.

i k) T Yok T Motk
+
Since n was chosen arbitrarily in Z , b << bE.
The condition in this proposition can be stated in an equivalent way

by using an infinite set of implications.

Proposition 3.12: The f-group W satisfies the property ''"If a,b,c

. - . c c
are positive elements of W with b << a << ¢ and a << a then b << b ,"

iff it satisfies the following implications:

(I1) b<ac<candac a© implies b < b©
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(12) b2 <as a2 < ¢ and a2 < a% implies b2 < b©
(tn) b" cas<a <canda" <a“ implies b" < b©

Proof: Clearly (I1), (I2),..., and (In),...,imply that the condition
holds. Conversely, choose a,b,c three positive elements of W such that a,b,c

satisfy the property, andwrite a= (x,n), b= (y,m),and c= (z,k) as before. If

k = 0, then n=m=0, and for a << a® a must be (0,0) (see Proof 3.11). Hence,

b=a= (0,0) since b < a and (11), (12),...,(In) are satisfied. Now if

k >0 and b << a << ¢, then a = (x,0) and b = (y,0) (see Proof of 3.11).

" < b® for every n > 1. Hence, (I1),...,(In) are satisfied.

Thus, b
Note that for every A > 2, (IA) is satisfied by W . Fix A e z'-
{0,1}, and let a,b,c be positive elements of W~ . Write a = (x,n),
b= (y,m), and ¢ = (z,k) as above. |If k=0, then n=m=0 since bk <ac
c. So a = a‘ and ax <a®=a giving ax = a. Thus a = (0,0) and

(0,0) since b < a. Hence, b = bC = (0,0) and b < bS.

a

IA

b

1]

Otherwise,
if k>0 then ax < a© forces n to be zero. Suppose n > 0. Then a® =
(p,n) where Py = "Zi X vz and a’ = (p',An) where p; = Ax; .
Thus, a® < aA and we have a contradiction.

Then n=0 and m=0 sincé bx < a. Thus bA < b. Therefore (In) is
true in W hence true in Q; for every n 2 2. The implication (I1) is
true only if the condition holds.

Note that the implication b < a < ¢c and a < a© implies b < b¢ is not

always true in W . For this we will give the following example:

Example 3.13: Let a,b,c be elements of W such that a = (x,n) = c

and b = (y,n) where X, =0 for every i, y; =0 for every i#k, and Yy = -1

for a fixed positive element k of Z. Now, b < a=c¢ and a = ac. But

b¢ = c-] bc = (x,-n) (y,n) (x,n) = (h,n) where ho = x. +y. +x =y,
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Thus, hi = 0 for every i # k+n and h = -1. So b® < b since

k+n = yk+n-n

bS-b = (h,n) - (y,n) = <(h,n) + (y',-n) where y; =Y, Thus, y; =0

for every i # k+n and y&_n = = 1. Now b%b = (t,0) where

" Yikan-n T Yk
= 1 = 1 = 1 =
t; hi +Yi,,- Hence, t. =0 for every i # k or n+k, t hk * Yisn

- | = bl = - -
hk+n + Yk+2n 1 +0 1. There

= = 1
0+ 1 1 and ttn hk+n + Y ktn+n

fore, bC-b < (0,0) since hk+n = -] < 0 and k+n is the maximum index for
which hk+n # 0. Hence, b < b and (I1) fails in W . Therefore it fails
in Q;.

In the above set of implications the idea was to force b to be in
the form (y,0). But in W the commutator of two afbitrary elements is
always in the form (2,0). Based on this we can form a new infinite se-
quence of implications, such that whenever they are all satisfied they

lead to the following result:

Proposition 3.14: If a,b,c are positive elements of W with

-1
c

b <b<aanda << a then [b,c] << [b,c]".

-1
Proof: First, b < b is equivalent to [b,c] = (0,0). Choose

a,b,c three positive elements of W and write a = (x,n), b = (y,m), and
¢ = (z,k) as before. If k=0, thenn =0 =m since a << a_ and b < a.
Hence, [b,c] = (0,0) = [b,c]® and [b,c] << [b,c]®. Now, if k > 0, then
n=m=0 (see proof 3.10) and [b,c] = (2,0). Hence, [b,c] << [b,c]1¢
(see proof 3.10).

The condition in this proposition can be stated in an equivalent way
by using an infinite set of implications.

- -1
Proposition 3.15: The f-group W satisfies the property 'b® < b

< aand a << a© imply [b,c] << [b,c]C for positive elements'", iff it sat-

isfies the following implications:
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(I'1) bS ' <b a® then [b,c] < [b,c]C

A
[«J]
IA

-1
a’ < a% then [b,c]2 < [b,cI¢

IN
o
IA
[+]]
I

(1'2) bC

(I'n) bS <bgaca <a then [b,c]" < [b,c]".

Ezégiz Clearly, (1'1), (1'2),...(x'n) imply that the condition
holds. It suffices to prove that for every j, (I'j) is satisfied by W,
Therefore (I'j) is true in Q;. Let X be aTlarbitrary index in Z+-{0} and
a,b,c be positive elements of W . Then b < b implies that [b,c] > (0,0),
and a* < a% will imply that ¢ = (y,n) with n > 0 and a = (x,0) if A 2 2.

Now, [b,c] = (h,0) and since ¢ = (y,n) with n > 0 then [b,c] = (t,0) with

A

-1
t.=h _and thus [b,c]" < [b,c]. 1f A=1 and b€ < b then [b,c] 2 (0,0).

Now, if ¢ = (y,0) then [b,c]® = [b,c]. Otherwise, c = (y,n)lwith n>0 and
[b,c] < [b,c]®. In all cases (I'A) is true.

Propositions 3.11 and 3.1k give a characterization of W and provide
a way of determining whether an %-group is different than W . Generally,
to show an f&-group is not in Q; it suffices to find elements in the
2-group that do not satisfy one of (I1), (12),...(In), or one of (I'l),
(1'2),...,(I'n) as we will see in the following example:

Example 3.16: Let A]be the set Z]U{t]}UZ2 where Z, = Z, = Z totally

1 2

ordered in the following way: For every n, m ¢ A]let ngt

1 < m whenever

n e Z] and m ¢ 22' Let @ be an order preserving permutation of A defined

by:

a(n) =

Let G =CA-DZ and o be an automorphism of G defined by a(g) = g' where
1
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g; = 95(i) Consider G(a), the cyclic extension of G by a. Define

an order over G(a) by (g,a") 2 (0,0) iff n> 0or n =0 and g; 2 0 where
i is the maximum index with 9; # 0. G(a) is totally ordered and fails
(r1), (12),...,(In)... . To see this let a,b,c be elements of G such

that a = (x,ao) with x, = 0 for i < t b = (y,uo) with y, =0 for i#t]

and yt >0 ¢ = (z,u]) where zi 0 for every i. Clearly b << a << ¢

1
and a << a% But b® = b since b® = (h,ao) where hi =z +y +
zZ .y =b _ . Hence, h, = 0 for every i # t, and h, =y _ =
ali) ](i) i 1 t . l(t])

y Thus, b" > b° for every n » 2. Hence, (12), (13)...,(In) fail to

t]'
be true in G(a).

We later apply the same technique of Example 3.16 to construct the
countable infinite chain of different quasi-varieties containing Q; and
contained in Lnn,AZ. But, first we need to prove that Q; is different

than M.

Theorem 3.17: The quasi-variety Q; generated by W ois strictly con-

tained in the variety M generated by W

Proof: Clearly Q; S M.

In order to prove that Q; N M, it suffices to find an %-group in M
that does not belong to Q;. Fix Ae Z+—{0} and let H be the f&-subgroup
generated by all elements in W of the form (g,0) where g, = 0 if i > .
Let G = W /H. Then G belongs to M since M is closed under the formation
of quotients. Choose n ¢ Z+-{0} where -n +A < -3, ¢ = (z,n) where z. =0

for i # X and z, = 1, b = (y,0) where Y, = 0 for every i # -n +X and

1, and a

y (x,0) where x; =0 for every i # - n + A +1 and

-n+A =

= -].... | | I— H -
X n+ e+l 1. Now b ° = (y',0) where y; =0 for every i # - n + A
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and Yo

Notice, b

where h;

Thus, h; =

l 3
n+\

7!
A+n

where h?

Hence h?

and
il
hn+

So [b,

Thus, hi

h-n+)\
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1

-1, ¢ = (z',-n) where z; = 0 for every i # X\+n and Zi+n=-]’
a<candacg a®.  Now
[b,e]l = b 'cbe = (y',0)(z',mn) (y,0) (z,n)
= (h',-n)(y,0)(z,n)
y; + z;.

. _ . : _ . - -
0 for every i # ~n+X and i # A+n, h—n+A Y 1, and
= ~]1. Then

[b,e] = (h',-n)(y,0)(z,n) = (h",-n)(z,n)

1
hi + Yion:

0 for every i # -n+i, A,‘A+n and we have:

- hl hl

A T Y onea

-n+A -n+ -n+A
o= 1 = =
hA hA + y-n+l 0+ 1 1
- ] = ' = | = -
A hoer T Ynea-n hper ¥ V2 Ly ]
c] = (h",-n)(z,n) = (h,0) where h = hi'+ 2z

0 for every i # -n+X or X and we have:
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= 11 = N} = - =
and h, h>\+n Z poen hA+n +z, (-1) + (1) = 0. Hence, [b,c] >

(0,0). Now,

[b,c]¢ (z',-n) (h,0) (z,n)

(t',-n)(z,n) where t; = z; + hi-

0
Hence, t; = 0 for every i # X and we have:
ty = 2z *th = 0+(-1) = - 1

M T Ban M T Zap thy = D+ (=0
Thus, [b,c]® = (t',-n)(z,n) = (t,0) where t. = t; tz, -
Hence, bi = 0 for every i # A or Mn and we have:

t, =t tz o= (;I) +0 = -1

and t)\+n = t>I\+n * Zx+n-n - t)|\+n * S 0+ 1 =1

Notice that [b,c] < [b,c]® in W™. But in G,[b,c]®

A

(p,0) where Py = 0

for every i # A and p, = - 1. Thus [b,c]® < (0,0). Also, [b,c] > (0,0)

since [b,c] = (h,0) with hy = 1> 0 therefore [b,c1¢ < [b,c] and (1'1)

fails in G. Notice, for every n ¢ Z+-{0} we have b" < acg a" < ¢ and

n
a" < a“ but [b,c]C < [b,c] in G. Thus, (1'1),...and (I'n)... are not

. 3 . . - = < -
satisfied in G. Hence, G cannot be in Qo and Qo $ M.

The above theorem provides an example where the implications (r'1),

(£'2) and (I'n) fail to be true.
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By introducing Example 3.16, we know of the existence of %-groups
different than W and therefore the existence of quasi-varieties differ-
ent than Q;. It is important to first construct the 2-groups and then
take the quasi-varieties generated by them. |In order to establish a
nested sequence of &-groups, first we need the following definitions and

notations.

Let A =2Z, U {t,,t,,...,t } UZ, where Z, = Z, = Z. The index set
n 1 1’72 n 2 ] 2
An can be totally ordered by < if < is defined by: |If n, m are elements
of Z], Z2 respectively, then n < ti and ti < m for every i = T,...,n.

Also, ti < tj iff i <j. Let &n be an o-permutation of An such that

ocn(z) = z+1 {f z ¢ Z] UZ2
an(ti) = t. for i=1,..,n
Let G = A:)Z and @ an o-automorphism of G defined by an(g) = g' where
n

|= - - = - . . .
9;=95 (i) Consider Wn G(an) the cyclic extension of G by a with the

n
same order as W-, and let Q; be the quasi-variety generated by w;. For
every nez -{0} W; is an g-group [Example 2.4(i), Chapter I]. The family of

g-groups (W) . form a nested sequence of 2-groups. And if they are
ieZ”-{0}

pairwise different then we have an infinite chain of quasi-varieties each of
which contains Q;and is contained inLnn Az. Hence, it is necessary to

prove that the Q;'s are pairwise different. Therefore, we need to find

one or more implications satisfied by each Q; and make sure that the
implications will fail in le if k >n.

Lemma 3.18: |If a,b,c,d "dn are positive elements of w; with

12955
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b << d] << d2 << ... << dn << a %< ¢, a << aC and di = di for every
i =1,...,n,then b << b°.
Proof: Clearly, the Lemma is true if a=b = ¢ = d] = dn = (0, ag).
Let a,b,c, dl""’dn be positive elements of w;. Write a = (x,a:),
k k
_ m _ k _ 1 1 .2 2
b = (y,an), c = (z,an), dl = (x', o ), d2 = (x", o ),...,and
k
d = (x", a™. First, ifk=0thenn=m=k, =... =k =...=0.
n n 1 n
c c 0
Then, a = a_ and for a << a , a must be (O, an). Hence, d] = d2 = =

dn =b = (0, ag) since b << d] << .. << dn << a. Next, if k > 0, then

t = 0. Suppose t > 0 then there exists A such that it > k. So,

A . .. . L.
a” = (x', aﬁt) >c¢c= (z, a:) since At > k > 0. This is a contradiction

with a << ¢. Thus we must have t = 0 and m = k] = k2 = ... = kn = 0 since

b << d, << d, << ... << dn << a. There exists ne Z

i 2 U 22 for which

]

xn > 0. We know that a = (x,ao) > (0,a0). Then there exists x. > 0

where i is the maximum index with x. #0. Ifice Z] U ZZ’ then choose

n = i. Suppose there exists j = 1,...,n such that i = tj' Then

at = c_]ac = (z', a_k)(x, uo)(z, ak) = (h, uo) where h. = zs + X

a_k(i)

But z{ = -z , hence hi =X _p . Soh =x_ >0,

(i) a (i) oY

c 2 . c
ht < 2xt ,and a < a~. We have a contradiction to a << a . Therefore,

J J

a-k(i) a_k

i # tj for every j = 1,...,n. In addition, n is the maximal index for

which xn # 0 and xn > 0. Now, for every i = 1,...,n, di = (x',ao) where

x} =0 for j e Z, U Z,. Suppose there exists j € Z

1 2 8] Z2 such that

1

i c _ . -k i 0 ky _ 0
X # 0. Now, dj (z', o ) (x, un)(z, an) = (p, an) where
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i i
p, = z! + x _ +z _ = p, = -z _ +z _ +x . Hence,
. % a k(l) a k(R) % a k(Q) a k(JZ,) o k(SL)
n n n n n
p = xi = xi and p = = x. . Thus, d5 # d.
j+k t. ’ ] ]

x—
ank(j+k) J i ank(ti) t

since d? = (p,ag) where pj # x} and p # x. Also, x} =0 for every

j+k j+k*

j e Z] U 22. Let Y, be the maximal index for which x; > 0. There
i

0
exists such Y. since d, > (0, an). Now, if n belongs to Z, and d <<

d, << ... << d << a, thend, =d, = ... =d = (o, a). Hence,
2 n 1 2 n n
b = (0, ag) and the lemma is proved. Otherwise, if n ¢ ZZ’ then Y] <

Y2 < .. < Yn' Suppose that di > (0, “3) for every i = 1,...,n. Then,

Y.o= ot and b = (y, ag) where . # 0 if i belongs to Z] and y; = o,
otherwise. So
- - 0 0
b® = ¢ Tbe = (24,07 (v,0.) (2,65) = (s,0)
where
s, =z! +y _, + z = -z +y + z
i i -k,. -k,. -k, . -k, . k.
o (i) o (i) o (i) o (i) o (i)
T - - n v 0 I
hen S =Y = Vi and b = (s ,an) where s; = ny;. Note
a (i) :
n

that b" < b for every n > 1. Otherwise, if there exists j 2 1 such that

B 0
d. = (0, an).

j Then di = (o, ag) for every i < j. Since b << dj’ we

have b = (0, ag) and b" = (0, ag) = b°.

The condition in the above Lemma determines a set of implications
that are simultaneously satisfied by Q;. Let a,b,c,d],dz,...,dn be

positive elements of Q;, and consider the implications:
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(T?) Ifbsd sd,s...sd sasc,as a® and d. = d? for
i=1,...,n then b < be.
n 2 2 2 2
(1)) 1F b sd sdjsdysdysdy.o.sd sd | <d s
@ <asalcc,a’<aandd = df for i = 1,...,n then
. n
. bzsbC
n k k k k k
(Tk) If b < d] < d] < d2 < d2 < ... < dn < dn <ac<a <c,
ak < a© and di = d? for i = 1,...,n then bk < b°.

Proposition 3.19: The condition 'b << d, << ...

C,

<< d << a <<
n

]

.,n then b << b for positive ele-

a << a% and di = d? for every i 1,..

ments of the f2-group w;”, is satisfied iff the implications (T?),...,

(M,

K , are satisfied.

n
(0

Choose a,b,c,d

Clearly, (T?), (Tg),...

It suffices to prove (T;) for X > 1.

Proof: ) imply that the condition holds.

l""dn positive ele-

(x,a7), b = (

n Kn
(x a ).

ments of W; that satisfy the condition. Write a

k k
] 2
(x',0 ), d o ?)

m
y,an),

k .
c = (z,an), d, = (x ,...,and dn First,

2

1=k

must be (O,QS). Hence, d]

k
n

if k=0, the n=m=k = 0. Then, a = a® and for a << ac, a

d2
0, _ ,c
S o=b

d =b-= (O,ao) since b << d, <<
n n 1

(T;) is satisfied for

0 (see Proof 3.18) and m = k] = k

. << dn << a and b" = (0,0 Therefore,

all A

> 1.

if k> 0 then t

2=
0if

Next,

kn = 0. Also, for every i 1,...,n, d,

Jj#

bk

that, for every A

0
implies a = (x,an),

i

t.
i

< b© for every A

0 1f i ¢ 2. Hence, b < bS.

(see Proof 3.18), and b = (y,a:) where Y.

n
()

2>

n n
1, and (T]),(Tz),.--,

(™

2 A

2 is satisfied by Q;.

(o

Cc

9.

= (z,at) with k >0 (see 3.

(xl,ao) with x.
n J

o if i é Z]. Hence,
..,are satisfied. Note

. A c
In this case a < a

18) and b = (y,u:) where



35

It is important that every Q; contains Q; and that any pair W;, Wk

will generate two different quasi-varieties. Therefore, the following
lemmas :

Lemma 3.20: For every n, Q; strictly contains Q;.

Proof: Recall that W can be regarded as a cyclic extension of a
totally ordered %-group G =?Z by an automorphism a of G, (see 2.3(iii)).
If we let Ao =Z, o the o-permutation of Z mapping i to i+l, and &n the
o-permutation of An as defined above. Then there exists Yo: AO > An such
that the diagram below commutes. That is, &noYo = Yoo&o. Define Yo as

follows: Yo(i) = i where i is in Z].

¥
o
Ay >0y
a a
o i n
. 7
Ao 7 An
Yo
Then, an(Yo(l)) = an(l) = i+] where i+1 belongs to Z]. Now, Yo(ao(u)) =
Y (i+1) = i+1 where i+l belongs to Z,. Hence, o oY =Y oo_ and by
o) 1 n o o o

Theorem 2.7 G(ao) < G(an). Thus, Q0 < Q-
In order to prove the strict inclusion, it suffices to find positive

elements a,b,c of w; that do not satisfy the condition in Proposition

3.11.

Let a = (x,0), b = (y,0), ¢ = (z,n) where X, = 0 for i ¢t and
X, > 0 otherwise, y; = 0 for i # tn and y, = 1ifi = tn’ z, = 0 for every
i, and n > 0. Notice b << a << ¢ and a << a® but b = b°. Hence, b" > b©

for every n > 1. Thus, the condition in Proposition 3.11 fails to be
. = . . = < -
true in Wn. By Proposition 3.11 we have Qo N Qn.

Lemma 3.21: For every n Q; s Rn AZ.
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Proof: Clearly W; is a totally ordered 2-group. Thus Q; < R. Next,
we need to prove that W; € Az. For this it suffices to find an %-ideal
H < w; such that H and w;/H are in A. Let H = {(g,0)](g,0) ¢ w;}.
Clearly, H is an abelian %-ideal of w;. Also, w;/H = Z. Then, w;/H and
H e AZ. Hence, Q; < RﬂAz.

The above lemma indicates that every Q; is contained in RnAz. If we
can prove that the Q;'s are pairwise different and form a nested chain,
then infinitely many of them are strictly included in RﬂAZ.

Lemma 3.22: For every n > 1, Q; strictly contains Q;_].
Proof: Let An’ An-] be the two index sets used in defining W; and
respectively, and let &n’ o

W be the o-permutations of A, and A

n-1

respectively, as before. There exists YO, an injective map between An-

n-1’ 1?

1

and A , such that o oY = Y oa Define Y by Y (i) = i. It can be
n n o o 0 o

n-1°

easily verified that anoYO = Yooa Thus wn_ < wn and Qn-l < Qn by

n-1° 1 -
2.5. In order to prove the strict inclusion it suffices to find positive

elements b, d . dn-l’ a and c of W; such that the hypothesis in

]’
Lemma 3.18 is true for n-1 but the conclusion of the lemma fails. Let b,

n-1

1 -
é]""’dn-l’ a, ¢ be such that b = (y,0), d] = (t ’0)""’dn-l = (¢t ',0),
a = (x,0), c = (z,n) where the following are true:

y; = 0 for i # t, and Y, = 1 otherwise,
td =0 for i # t, and td =1 otherwise,
i j+1 i
X, = 0 for i s'tn and x. > 0 otherwise, and
z, = 0 for every i and n > 0.
Note that b << d] << d2 << see << d 1 << a << c and a << a© but b = b°,
n-

Hence, " > b for every n > 1 and Lemma 3.15 fails to be true.
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Finally, combining Lemmas 3.21 and 3.22 we have the following im-
portant result.

Theorem 3.23: There is an infinite chain of distinct quasi-varieties

between A and RN AZ.

Proof: Clearly the (Q;In € Z+) forms a countably infinite chain of
different quasi-varieties between A and RN A2.

By using techniques similar to those in constructing the W;'s and a
different set of implications for W we are able to construct another in-
finite chain of quasi-varieties between A and Rr]Az,

Proposition 3.24: Let a,b,c be positive elements of W. Ifb<<a

<< ¢, b=0b"and a << a°, then b = (0,0).

Proof: Clearly, the proposition is true if a=b=c=4d = (0,0).
Let a,b,c,d be elements of W such that a = (x,n), b = (y,m), c = (z,k).
First, if k = Othenn =m =0 since b << a << c. Now, sincen =0, a“=a
and for a to be infinitely smaller than ac, a must be equal to (0,0).
But, if a = (0,0), then b = (0,0). Second, if k >0, then n =0 =m
since b << a << c. Now, b = (0,0) since b = bE. Suppose b > (0,0) then
there exists an index A maximal with respect toy, > 0. Now, b = (y',0)
where y; =z vy Pz =Y Thus yi+k =y, > (0,0) and yj =0
for j > A+k. Hence, b® > b. Thus b cannot be bigger than (0,0). But by
the choice of b, b must be equal to (0,0) and the proposition is proved.

We next construct an example of an f-group where the condition of

Proposition 3.24 is not true.

: {t]}UZ and G = ﬁD Z. The index set N] is
1

totally ordered as follows: If i,j are elements of N] and if i,j e Z,

Example 3.25: Let N

then let i < j in N] iff i < j in the natural order of Z. Otherwise, if

i = t], then i < j. Let ?] be an o-permutation of A] defined by

Y](i) = i+l if i # £ and Y.(t.) = t,. Now define an automorphism Y

1 1 1

1
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1 be the cyclic extension of

Y = ! | =
of G by ](g) g' where g! QVI(i)' Let M

1 the quasi-variety generated by M]

three special positive elements of M;. Fixn>0 let c = (0,n), a = (x,0),

G by Y], and P Consider a,b,c to be
and b = (y,0) where x. =0 if i =t, and x. > 0 otherwise, y; =0 if
i #t, and y, > O otherwise. Notice that b << a << c, b = b, and
a << a%, but b # (0,0).

The ideas of Example 3.25 can be generalized fo find other g2-groups
which fail the condition of Proposition 3.24.

Let Nn = {t], t2,...,tn} UZ be totally ordered by: ti < tj < k iff

IN

jand k € Z, and i < j iff i,j eZ and i < j in the order of Z. Let

G = éj Z and let ?n be an o-permutation of A such that ?n(i) = i+] iff
n
i # tj for j = 1,...,n and Vn(i) = i otherwise. Let Y be the o-automor-

phism of G defined by Yn(g) = g' where g = % (i) Let M; be the cyclic
n

extension of G by Yn and P; the quasi-variety generated by M;.

As for the Q;'s we will prove that the (P;[neZ+—{0}) forms a counta-
bly infinite family of different quasi-varieties between A and RN Az. We
will first give a characterization of M;.

Lemma 3.26: Let a,b,c,d ..,dn'be positive elements of M; such

17"

that b << d] << d2 << ... << dn << a << ¢, di = d? for every i = 1,...,n
and a << a%. Then b = (O,Yg).

Proof: Clearly the lemma is true if c = (O,Y:). Suppose that

c = (z,Y:), b = (y,Y:), a= (x,YE) and di = (¢',vy"). First, ifk =0,

then k =m=p = P, = 0 for every i = 1,...,n. Thus, a = a® and for a
0
to be infinitely smaller than aC, it must be equal to (O,Yn). Hence,

di =b = (O,YS) for every i. Secondly, if k > 0, then p=m = p; = 0

since b << d, << a<<c for every i. Clearly if a = (O,Y:) or
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d. = (O,Yg) for some i then b = (O,Y:). Suppose a > (O,Yg) and di >

0 . 0
(O,Yn) for every i. Then a = (x,Yn) where Xy > 0 for A the maximum index

where X, # 0 and A belongs to Z, and di = (t',Yg) where t; > 0 for A
i

the maximum index where t} # 0 and Ai does not belong to Z (see 3.15). We

have A st for every i since d] << d2 << ... << dn and di > (O,Yg) for

every i. |If Ai = t., then b = (O,Yg) otherwise if Ai < ki then d] =

(O,YO) and b = (O,YO) since b << d,.
n n 1
Again, the condition in Lemma 3.26 can be broken into an equivalent

set of implications.

Let a,b,c, d], d2""’dn be positive elements of M; and consider the
implications:

(L) b <

A
Q.
1A
Q.
A
A
o
IA
o]]
IA
(q]
[N
[
[a ¥

c .
i for every i and

(L2) b2 <d sd7 <d, < sd < d2 < acg a2 <c, b=b",
1 1 2 n n
di = d? for every i and a2 < a€ implies b = (O,Yg)
(Li) b! s d) s d; sd, < ... 5d < d; <ca<a <c, b=0b"
. . o
. di = d? for every i and a' < a© implies b = (O,Yn).

(LP) bpsd]sd‘;sdzs...gdnsdgsasapsc,d.=d

for every i and a << a then b = (O,Yg)-

Proposition 3.27: An %-group G satisfies the condition "if b, dl’

dz, cees dn’ a,c are positive elements of G with b << d] << d2 << ...

<< dn << a << c, di = d? for every i and a << a® implies b = !G”

iff it satisfies the implications (L1), (L2),...,(Ln),...
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Next, we will prove that the P;'s are pairwise different and form an
infinite chain between A and Rf1A2.
Lemma 3.28: For every n 2 1, M; strictly contains W and M;_].

Hence, P_ strictly contains P_ and P ..
n o n-1

Proof : Initially, let us prove that W ois strictly contained in M;.
Let ¢ : W ~ M; defined by ¢(x,m) = (y,YZ) where Y, =X if i belongs to
Z and Y, = 0 otherwise. Clearly, ¢ is a well defined injective map. |t

suffices to prove that ¢ is a homomorphism (i.e., we need to prove that

9((x,m) (h,p)) = ¢((x,m)) ¢((h,p))).

First, note that (x,m)(h,p) = (t, mtp) where t, = x, +h, . So

o ((x,m) (h,p)) = (t', Y2+p) where t; =t if i belongs to Z and t; =0
otherwise. Secondly, ¢((x,m)) = (y, Yz) and ¢((h,p)) = (Q,Yg) where

Y = X and zi = hi if i belongs to Z and Yy = zi = 0 otherwise. Thus,

o(Gam) = o((np)) = (7,7 (1,30) = (5,7"P) where sy =y + 2, -
o

. . = = + =
Note that if i € Nn belongs to Z, then S y; * Rym(i) Y £i+m
o

x. + h, = t,. Otherwises. =t, =0. Hence, ¢((x,m)(h,p)) =
1 1+m i 1 1

o((x,m)) ¢((h,p)). Thus, W < M and Q; < P;. Next, we need to prove

the M~ . < M. Let Y
n-= n n

and Y_ be the o-permutation of N
1+ n n

and N
n

-1 -1

respectively as defined above. Let Yo be the map from Nn-l into Nn

N YO >N
n-1 “"n
- §.
Yn-1 n
\4
Q/ >Nn
n-1 Yo

defined by:
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<2
(e}
—~—
z
[}

i if i belongs to Z

<

L)

=
il

i+1 otherwise

It can be easily verified that YnoYo = Yoan Therefore M;_ < M and

-1 1 = 'n

P < P;. In order to prove the strict inclusion between P;

and P~
n-1 n’

-1

let a,b,c, d], 2,...,dn_] be positive elements of M; such that for k > 0,

k 0 0 i .0 ce .
= Y = Y = Y = =
c = (o, n)’ b= (y, n)’ a= (x, n)’ di (t ,Yn) where Y 0 if i # £

and y; = I otherwise, X, > 0 if i belongs to Z and x, = 0 otherwise,

and t' = 1 otherwise. Note that b << d, << d

i \
tj = o for every j # t., . 2

1

J
<< ... << d << a << ¢, di = d?, and a << a% but b = b% and b # (O,Ya).

n-1
- - - - -
Hence, Mn—] ;3 Mn and Pn-] < Pn' From Example 3.25 we get that M] e W so
now we have W : M] i M2 ; ey Mn : ... and Qo i P] < P2 $ -0 5 Pn

< 3
+
It is interesting to compare the two families (Pn) and (Q;).

Theorem 3.28: For every n 2= o we have P; i Q; and P; # Q; for atl

o< 1i g n-1.

Proof: We start by proving that M < W. Let A , N, a , Y be as
—_ n+ n n’ n’” n’ n

defined before. Let Yo be the map from Nn into An defined by

Yo(i)=i if i=t

i if 1 in Z

Yo(i)

where Y (i) belongs to Z, < A . It can be easily verified that a oY =
o 2 n n o

Yoan. Hence M; < W;. ‘In order to prove the strict inclusion, let

0
a,b,c, d],dz,...,dn be such that for k > 0, ¢ = (0,k), a = (x,an),

b = (y,a&),and di = (t',Ja) where x. > 0 if i belongs to Z, and x, = 0

2

otherwise, vy > 0 if i belongs to Z, and Yy = 0 otherwise, t} = 0 for

1
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j#¢t, andt. =1 if j=+t. Thus b <<d, <<d, << ... <<d << a<<c,
i J i 1 2 n

0
d, = d? for every i = 1,...,n and a << a° but b # (0,an) and b << b°.

Hence, Pn i Q .

n
N Yo A
n > %
Yn %
\Y} N/
N » A
n n
Yo

It remains to prove that P; is different than Q;_]. Let a,b,c,

d],dz,...,d be positive elements in M; chosen as follows: Fix k > O,

n-1’

k 0 0 0
= (0 = Y = Y = Y = i
and ¢ ( ,Yn), b (y, n), a (x, n), di (ti’ n) where yi 0 if

i # ty and y, = 1 otherwise, x. > 0 if i €Z and X, 0 otherwise, }=0

for every j # ti and t} = 1 otherwise. Then we have b << d << ...

<< dn-l << a << ¢, di = d? for every i = 1,...,n-1 and a << ac, but

b = bS. Then b cannot be infinitely smaller than bS. Therefore M; does

3 . . - - . . - < - ] -
not satisfy the implications that Wn_] satisfies so Pn N Qn-l' Now Pn

cannot be equal to Qi for i < n-1 since Q; $ Q;_].
Remark: Foreveryn, P; belongstoRnA2 since P; iscontained in Q;

- 2
and Q_ belongs to RNA™.  Then (Pn)naZi{O}’

chain of different quasi-varieties containing A and contained in RﬂAZ.

is another countable infinite

Using similar techniques we canconstructan infinite chain of quasi-
varieties between AandFZﬂAZ. Let Q: be the quasi-variety generated
by M+. We know Q: covers A. First, we consider some properties of WT
The most important one is the following: |If a,b,c are positive elements

+ .
of W with b << a << ¢ and a° << a, then b® << b. Again, this condition
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can be stated in an equivalent way by using an infinite set of implica~
tions. They are:

(T1) bsasc and a%<a implies b" < b.

2 2 e\ 2 ¢\ 2
(T2) b" <ca<a" <cand (a) < a implies (b)) < b
E A A c A c A
(TA) b" cac<a <cand (a) < a implies (b)) < b

These implications give a characterization of W+ and provide a way of de-
termining whether an %-group is different than W+.

There are f-groups that fail the condition above. Now, consider
G(Y]) (see Example 3.25) with the following order: (O,Y?) < (g,Y?) iff

n>0orn=20 and 9; 2 0 where i ¢ Z is the minimum index with respect

to g, # 0, or n =0, g, =0 for every i ¢ Z and 9, z 0. Let MT be G(Y])

]

+
the quasi-variety generated by M

1

Now, MT fails the implications. In fact, consider a,b,c to be three

with this order, and P T.

special positive elements of MT. Fix n > 0 and let‘c = (0,n), a = (x,0),

and b = (y,0) where X: = 0ifi-= tl and X, > 0 otherwise, y; = 0 if i%t]
and Y; > 0 otherwise. Notice that b << a << ¢ and a© << a but b = bC.
Hence, b is not infinitely smaller than b.

The ideas of this example can be generalized as in 3.25 to find
other f~groups which fail the condition above. Hence, as for the P;'s
we have a family (P:|neZ+-{0D of countably infinite distinct quasi-
varieties between A and RﬂAZ. Therefore, the theorem follows.

Theorem 3.29: There is an infinite chain of distinct quasi-varie-

ties between A and RﬂAz.

To complete this chapter we look at a general way of constructing

4-groups using the techniques that have been developed. This is done
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similar to the construction of W; but with a different index set.

Let A 0 n = Z] U{t:,...,t] }UZ2 U{t?,...,tz Iu...u
Myefgoesofy " )

VA U{tk cen tk uz where Z, = Z for every i = 1,...,k+1. Let

k 'l’ b n2 k+] i b b
a N n be the o-permutation of An n defined by

n]s 2"'°) k ]9'°-’ Kk

a Bayeenyn (i) = i+1 if i belongs to Z]UZZU...UZk+] and

1’72 k :

a (i) = i otherwise. Note that the index set A is
Nysfgseeesn Nyseeesny

totally ordered as follows: The Zi's carry the natural order of Z, and

if i, is an element of Z, then i, g td < td << t) < i.. .. Let

J J J 1 2 n, j+1
G = A @ Z and o n be the o-automorphism of G such that

Nyseee,yn 1’°°" 7k
1 k
¢(g) = g' where g! = g. . Consider W_ to be the cyclic
i o . [ PR
Nyy...n (i) 1 k
1 k
extension of G by o , and Q- the quasi-variety generated
Ny,.e.,n Ny yee.,
1 k 1 k

by "l .

Nyseeesy

We first see how to compare W_ with the Q_'s constructed

n,,N ...,N n
1’772 k

before.

Theorem 3.30: |If n1+n2+...+nk = n, then wn]...,nk belongs to Qn and
in fact Qn],...,nk 3 Qn.

Let ¢': w; - w; be defined by

EREETL
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¢'((g,a:)) = (g',a" N ) where g; =90 if ie ZZU ... vz

My oMy k
[ s - .
9; gj where JEZ] < An, i j and IEZ] < An], ’nk.
Lo . - .
9. gj where JEZZ < An, i j and |€Zk+] < Anl" ’nk’
and g' =dg » 9' =g ’ gl =g ’ "-"’gl = g
t] Y t] t t2 to o+ t2 th +n
1 n 1 1 1 n 12
1 2
Thus, g' = gt for 1t s i <kandl < j<n
t. A +...+n, o +] '
] i-1
It appears easier if we draw the following picture:
( m
a
n
gi L] . L] L] L] L] L] - LI N 3 L] ® ¢ e o0 gi
Z=1 t, t t t
112 + z
Ny 1 n]+n2 n]+n2+...+nk 2
;
v |
. v v \4
i A L S |
z t!t) otz 2 2
1 ! 2 ty t Z2 zk tk t: Zk+l
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The map ¢' is clearly well-defined. We need to prove that ¢' is a homo-
morphism; i.e., that o' ((g,a) (h,aP)) = ¢ ((g,o)) 6" ((h,al)). First,

¢'((g,a:)) = (9',a': 0 ) and ¢'((h,ocz)) = (h',ai ). Now,

ERERELN ERERFLY

o' ((g,al) (h,of)) = o' ((r,a]"P)) where r, =g, +h myyt T
a (i
n

¢ ((r,a7"P)) = (r"“::?---’"k)' But ¢' ((g,a")) +0" ((h,aP)) =

- P = m+p ) = q!
(g ’O‘n],...,nk)(h ’un],...,nk) (s’an],...,nk) where 55 9; *

h'm . It suffices to prove that s, = r; for every i ¢ An
o n (i)
EUN

1"k

. s . v oo - ce .
First, if ie ZZU ees UZk, ri S, 0. Secondly, if ie Z] <

A n then r; = rj wherei = j and je Z, < A . Thus, r! =r, =g. +

EEREFLY 1 n i i i

= q! l = Al 1 = A -
h '+ h 9: + h s.. Similarly, if i ¢ Zk+l’

a:(i) % u:(i) a:]’... (i) :

ri =s.. Finally, if 2 tJ'. withl< i <k andls j <n, then

n.+n_+...+n. ]+j n.+n +...+ni ]+j
- : -

Thus, ¢' is a homomorphism and clearly a monomorphism.

Last, we need to prove that ¢'is an 2-homomorphism. It suffices to

show that ¢'(xvy) = ¢'(x)ve'(y) for every x,y € W;. Let x = (g,a:) and
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y = (h,ai). We know that w; is totally ordered. Hence, we can assume
that x < y. So xvy =y and ¢'(xvy) = ¢'(y). Two possibilities arise.
First, if m<p, then ¢'(x) < ¢'(y) and ¢'(x) vo'(y) = ¢'(y) = ¢'(xvy).
Secondly, if m=p, then let nysNy be the indexes of An maximal with re-

spect to gn # 0 and hn # 0, respectively. Now x s y implies that one
1 2

of the following is true.

(1) ny S ny,and n,n, e 2, < A

(ii) ny < with n, ¢ {t]""’tn} < An and n., € Z., < A

1 2 2 n

(iii) np s, wi th nysny € {t],...,tn} < An

IA
o

(iv) Ny <N, wi th n, € Z] < An and n, € {t],...,tn}

(v) Ny <Ny Wlth NN, € 2 S A

Easily, we can verify that in all cases we have ¢'(x) < ¢'(y), and
hence ¢'(x)vo'(y) = ¢'(y). Thus, ¢' is an L-monomorphism. Hence,

W s W and Q < Q_ .
n Nyseeesny n Npsecesn

k
Using the same proof techniques, it can be shown that if

n] + n2 +--o+nk > n, then Qn < Qn]+n2+ooo+nk.



CHAPTER 1V
NON-REPRESENTABLE 2-GROUPS

The goal of this chapter is to construct an infinite chain of dif-
ferent quasi-varieties each of which contains A and is contained in the
variety LnnAz, where L is defined by [x",y"] = 1 for any fixed integer
n> 2.

Recall some of the better studied %2-group varieties are E = the
trivial variety, A = the variety of abelian %-groups, R = the variety of
representable f-groups, N = the variety of normal-valued and %-groups,
and L = the variety of all &-groups. It has been shown that all non-
trivial varieties contain A (E. C. Weinberg [23] and that all proper
varieties are contained in N (W. C. Holland [8]).

Since N plays an important role in this chapter, we first define
normal-valued 2-groups and give some characterizations of such %-groups.

Definition 4.1: Let G be an 2-group and C a subgroup of G. C is

solid iff C is a convex %-subgroup of G (i.e., if x,y € C are such that
ly| s |x| theny € C).
Let C(G) be the set of all solid subgroups of G ordered by inclusion.

Definition 4.2: Let M be a subgroup of G. M is regular iff

M e C(G) and if M = o7 & for C. e C(G) then there exists i ¢ I such
that M = Ci'

Let R(G) be the set of all regular subgroups of an %-group G, and
for every R € R(G), let R* be the element of C(G) that covers R.

Definition 4.3: Let G be an %2-group, R an element of R(G). R is

a normal value if R is normal in R, |f for every R € R(G), R is a

48
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normal value then G is a normal-valued %-group.

Any representable f-group is normal-valued but the converse is not
true. |In fact, the %-group in Example 3.5 (ii) is normal valued but not
representable.

There are numerous characterizafions of normal valued f%-groups. The
most useful ones are the following: An f&-group G is normal-valued iff G
satisfies one of the relations:

(i) For every a,beG, a b7 lab << |a]v|b].

(i1) If a,beC then ab < baZ.

It is known that the varieties A2 = AA,...,An = An_]A form a proper
chain from A to N with N = V{An;neN} (see A. M. W. Glass [5]). Since A
plays such an important role, it is natural to attempt to generalize it.
Therefore, for n 2 2 let Ln be the variety defined by the equation
[xn,yn] = 1. These Ln's form a family with several properties of inter-

est:

(1) Lo< L iff m is a proper divisor of n (J. Martinez [11]),

(2) L AL = A iff (myn) =1 (E. B. Scrimger [21]), and

(3) LA R=A for all n > 2 (J. Martinez [11]).

Also, within each Ln lies a subdirectly irreducible 2-group of particular

interest: Gn = n;] VA § Z where for

0

(ao,...,an_];b), (co,...,cn_];d) in G,

(ao,...,an_];b) < (CO”"’Cn-l;d) iff b<d or b=d, and
a, s ¢ for 0 < i < n-1, and
(a0, ,a _];b)(co, ’Cn-l’d) (a0 + Copp + Cn-1+b;b+d)
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with all subscripts read modulo n. This %-group may also be viewed as an
2-subgroup of ZWrZ and is called the Scrimger 2-group (see Smith [ 22 ]
for more details on Gn).

Let Sn be the variety of f%-groups generated by Gn (i.e. the smallest
variety of %-groups containing“Gn). We know that Sn < N-R and that for
every prime number n Sn covers A (E. B. Scrimger [21 ]). It is also

readily seen by considering the generating %-groups that for p, gq dis-

tinct primes,

Thus, {Sp[p is prime} generates a sublattice of L isomorphic to the lat-
tice of finite sets of primes. The work done thus far with Sn varieties
has relied primarily on knowledge of their generating %-groups. Some

equations that are satisfied in Gn for n > 2 have been brought to light.

They include:

(i) [a",p"] = 1.
(ii) [[a,b],[c,d]] = 1.

Gii) [a,b,c"] =1.

2
(iv) [a,b,c]l+c+c 4ot - 1.

(0 [alteree

(vi) [a,kb]1+b+"'+b B

l+b1+b2+---+b _ -1
(vii) [a e L

's.

Little has been said of the quasi varieties generated by the Gn
We know that quasi-varieties are weaker algebraic structures than

varieties. Although, if n is a prime number, then there are not any
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varieties between A and Sn, and A ; S, < Ln n A%, We will construct an
infinite number of different quasi-varieties between A and Lnn A2.

First, we establish the analog of Scrimger's theorem for quasi-
varieties. But, before doing so we need the following definitions, re-
sults, and notations. First, let Ho be the quasi;variety generated by
Gn.

Definition 4.4: Let G be an %-group and N a solid subgroup of G. N

is prime iff for any arbitrary elements a,beN with avb = e, where e is

the identity of G, we have either aeN or beN. Also, N is a minimal prime
subgroup iff there exists no nontrivial 2-subgroup of G strictly contained
in N, and is called in Scrimger [21] a representing subgroup.

Definition 4.5: Let G be an %-group and F an nonempty subset of G

such that
(i) The meet of finitely many elements of F belongs to F.
(ii) If X e F, and t 2 x, then t € F.
(iii) The smallest element e of G+ does not belong to F.
Then F is called a filter over G. If F is maximal, then F is called
an ultrafilter.

Definition 4.6: Let G be an &-group, e the identity of G and x an

arbitrary element of G, and A < G. Then,

L
x = {g|geG and |g|a|x| = e}, and

>
It

{g|geG and |g|ala] = e for every aeA}.

1
x and A are called the polars of x and A, respectively.
The following theorems (see Bigard [2]) demonstrate the signifi-
cance of ultrafilters and polars in generating minimal prime subgroups.

Theorem 4.7: Let G be an %-group, M an arbitrary minimal prime
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subgroup of G. The map ¢ defined by ¢(M) = G+'M is a bijection between
the set of all minimal prime subgrouﬁs of G and the set of all ultrafil-
ters over G'.

Theorem 4.8: Let G be an %-group, C a solid subgroup of G, and U an
ultrafilter over C+. The set M = U{kle e U} is a minimal prime subgroup
of G, and any minimal prime subgroup M of G that does not contain C is of
this form (i.e. M = U{XL]x e U} for some ultrafilter U over G')

Proof: Let V be the set of all upper bounds in G of elements of U
(i.e. V= {x € G such that there exists y € U with y < x}).

Clearly U < V. To see that V is a filter over G we show that V
satisfies the conditions in 4.6. First, if x,y are elements of V, then
there exists x',y' € U such that x 2 y' andy > y'. So, xay 2 x'ay' € U,
and then xay € V. Now, if x € V and t > x, then there exists g € U such
that x 2 g. Thus, t 2 x>2geUsotelV.

Now suppose e € V. Then there exists u € U such that u < e. Thus,
e € U contrary to the definition of a filter since e is also the smallest
element of C+. Hence, e # V. Note that G+-V < G+ - U. Next, we will
prove that V is an ultrafilter over G+. It suffices to prove that for
every g € G+ - V there exists v € V such that g A v = e Considering
g e G+-V and x £ U.

If gAa xeU, then g € U since g > g A x. But G+ -V < G+ - U, so
g e G+ - U, and we have a contradiction. Hence, g A X & U. Since U is
an ultrafilter there exists y € U such that (gAx)Ay = e. But xAy € U
since U is closed under taking the meet of a finite number of elements of
U. Let v = xAy. Then gsvl'and veV. Now, every filter T over G+ strictly
containing V contains the smallest element e. Suppose T is such a filter
and teT-V. Then there exists s € V such that tAs = e. But s € T since

+
V< T. Hence, sAht =e € T. Therefore, V is an ultrafilter over G
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and U{kllst} = U{XLIXEU} = G+-V is a minimal prime subgroup of G.
Conversely, let M be a minimal prime subgroup of G that does not
contain C, V = G+-M, and U= VNC. Clearly, U is an ultrafilter over C+.
Now, the set of all upper bounds in G of elements of U is an ultrafilter

so it must be equal to V.

A similar reasoning leads to the following proposition.

Proposition 4.9: Let G be an %-group, g an element of G, X the set
of all elements of G smaller than or equal to |g|, and U an ultrafilter
over X. The set U{kller} is a@a minimal prime subgroup of G, and every
minimal prime subgroup M of G that does not contain g is of this form
(i.e. M= U{XLIXEU} where U is an ultrafilter over X).

By Scrimger [21], if n is a prime number S, covers A. Hence, it is
very important to determine when a given f-group G contains an %-subgroup
isomorphic to Gn. Therefore, the following lemma is useful.

Lemma 4.10: If G is an %-group of Ln’ and C a representing subgroup
of G, which has n distinct conjuguates of the form x-i c xi for some xeG
and x > e where e is the identity of G, then G contains an 2-subgroup iso-
morphic to Gn'

EEEEi‘ See Scrimger [21].

Using this Lemma we can prove the analog of Scrimger's theorem for

quasi-varieties.

Theorem 4.11: The quasi-variety HO covers A in the lattice of quasi-
varieties of 2-groups.

Proof: Suppose there exists a quasi-variety Q such that A $ Q $ Ho.
Then there exists an %2-group G € Q such that G is nonabelian. Hence,

there are two positive elements x,y € G such that xy # yx and xAy # e.

Mote that G contains always a nontrivial minimal prime subgroup C.
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' +
In fact, let X be the set of all elements in G smaller than or equal to
x, X # {e} since x and xAay € X, and U an ultrafilter over X that con-

4
tains x and xay. Then, by 4.9 C = U{a |a€U} is a minimal prime subgroup

of G. C is nontrivial since x—], y and x—] A y-] are in C.

Now, let C be a nontrivial minimal prime subgroup of G. It suffices
to prove that C has n distinct conjuguates of the form x-i c xi for some
X > e, since then by Lemma 4.10 G contains an %-subgroup isomorphic to Gn
and Q = Ho' First, since G ¢ Sn < Ln we have x " C x" = C for all x ¢ G.

2 n “n nn -n n
In fact, suppose e <ce C. Then e <c<c <...<c =x ¢cx e€x Cx,

socex"C xn, and hence C < x "¢ x". Similarly, C 2 x" € x -n, so

c=x"¢x". Next, the number t of distinct conjuguates of C of the form

x C xi is a divisor of n. In fact, let i be the smallest positive inte-
ger such that x-i C xi =C. If i is not a divisor of n, then there are
integers r and s such that rn+si = k, where 1 < k < i, and k is the
greatest common divisor of n and i. Then, x-k C xk = x-rn-si C xrn+si

= C, contradicting the minimality of i. Hence, if n is prime, then t is
]l or n. Now, we will show that there exist at least two distinct con-
juguates of C of the form x-i c xi. There exists ¢ < x € G such that
x-]Cx # C. Suppose x-]Cx = C for all c< x eG. Then, C is an &-ideal of
G, so since it is also a representing subgroup, C = {e}, and G is totally
ordered and therefore representable. But RfWLn = A, so G must be abelian
since G € Rn Ln' This is a contradiction. Therefore there is a positive
x such that x-] Cx # C. Thus, x-] Cx and x-OCxO = C are two distinct
conjuguates of C. Hence, t = n and the theorem is proved. Since by 4.10
G contains an f-subgroup isomorphic to Gn and Q < HO. Therefore, Q = Ho
and Ho covers A in the lattice of quasi-varieties.

it is not always easy to find the implications that define a given

quasi-variety. But it is possible to find a set of implications that are
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satisfied by all elements of the quasi-variety. We consider first some

properties of Gn.

Proposition 4.12: |If a,b,c are positive elements of Gn with

b << a << ¢, then b = (0,...,0;0).

1]

Proof: Clearly the property is true if a=b=c¢c= (0,...,0;0).

Let a = (ao,...,an_];q), b = (bO,...,bn_];P) and ¢

(co,...,cn_],k).
First, if k=0 then p = q = 0 since b << a << c. Now, a << c implies
a, = 0 for every i = 0,...,n-1.

Suppose there exists i, 0= i < n-1, such that a; > 0. We have
either c, = 0 or ci > 0. But, if ¢, = 0 then a; > Ci and this is con-
tradiction with a < c. Otherwise, there exists m ¢ Zt-{0} such that
ma, > <, contrary to a << c. Hence, a& = o for every i = 0,...,n-1, and
bi = 0 for every i = 0,...,n-1 since b << a. Hence, b = (0,...,0;0).
Next, if k >0 then q = p = 0. Otherwise, if q > 0, then there exists
Ae Z+-{O} such that Aq > k and aA > c contrary to a << c. So, p=gq=20,
and bi = 0 for every i = 0,...,n-1 since b << a. Hence, b = (0,...,0;0).

The condition in this proposition can be stated in an equivalent way
by using an infinite set of implications.

Proposition 4.13: An f-group G satisfies the property 'If a,b,c are

positive elemnts of G with b << a <<cthen b =1.", iff G satisfies the

implication.

(1) b" < acg a" s c forallneZ,nz1 implies b = ]G'

Proof: Clearly if (I) is true for every n » 1 then the condition

holds.

Conversely assume the property is satisfied. |If b" < a < a” < c for

all positive integers n, then b << a << c so b = lr.

3
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Note that, for every X > 1 the implication bx < a g ax < c implies
b is the identity of Gn is not always true in Gn. For this we will give
the following example:

Example 4.14: Fix X 2 1, and let a,b,c ¢ G such that ¢ = (0,0,...;

k) where k > 0, a = (n\,...,nx;0) where A, n ¢ Z"-{0}, and b = (1,...,1;

0). Now, b = (A\,...,2;0) < (nA,...,n;0) = a < (nAZ,...,nAZ;O) R

(0,...,0;k) c. But b # (0....,0;0) and (1) fails in Gn for every
Az,

Propositions 4.12 and 4.13 give a characterization of Gn and provide
a way of determining whether an %-group is different than Gn'

Generally, to show that an f2-group is not in HO it suffices to find

elements in the f-group that do not satisfy (I) as we will see in the

following example:

. 1_n.¥ .b) -
Example 4.15: Let H g Z x- Z where for (ao, al,...,an,b), and
. 1 .
(co, c],...,cn;d) in H_, (ao,...,an_],a ;b) < (co,...,cn_],cn,d) iff b<d
or b=d anda <c¢c orb=d,a =c¢c and a, s c, for i =0,...,n-1, and
n n n i i
(ao, a],...,an;b) (co,...,cn;d) = (aO *Copprerdy Sy 3tC)

b+d) with all subscripts smaller than or equal to n-1 read modulo n. Let

H. be the quasi-variety generated by H;. H; carries a natural group

1
-1
structure. Note that (aof...,an_],an,b) = ( S A R IITLL N b)

where all subscripts smaller than or equal to n-1 are read modulo n, and

the identity in HL is (0,...0,0;0).

Also, the order < defines a lattice order on H;. In fact,
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((a_,...,a ;b) if b<d
n
(b y-vnsb_5d) if d<b

(ao,...,an;b)A(bo,...,bn;d)

]
i
—_
o
o

.,a _3;b) if b=d and a <b
n n o n

.,b ;d) if b=d and b _<a
n n n

L(aorl\bo,-.,an_]/\bn_] ,an;b) ]f b:d and bn=an

where a, A bi = minimum (ai’bi)’ and

(ao,...,an;b) if b>d
O,...,bn;d) if b<d
(ao,...,an;b)v(bo,...,bn;d) = 4(ao,...,an;b) if b=d and an>brI

(b.,...,b ;d) if b=d and a_<b
n non

vb ,a ;b) if b=d and
n-1 n-1""n

where aiVbi = maximum (ai’bi)'

To show H; is an &-group it only remains to verify that if a,b,c ¢ Hl
where a < b then ac < bc and ca < cb. Since a,b,c are in Hl write

a = (ao,...,a ;k), b= (b ,...,bn;p), and c = (co,...,cn;d). Now a < b

implies that k < p or k = p and a < bn’ or k = p, a = bn and a; < bi

for i =0,...,n-1. If k < p then k+d < p+d and ac = (ao,...,an;k)

.,an+cn;k+d) < (b +c ...,bn+cn;p+d) =

(cgs-resc 3d) = (3 ot So4k’

n oV ok

(bo,...,bn;p) (co,...,cn;d) = bc. Otherwise, if k=p and a_ < bn then
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a +¢ < b +c_ and ac g bc. At last, if k=p, a=b and a, < b, for

n n n n n n i i
i =0,...n-1 then a, + Copi S bi+ci+k and ac < bc. We can verify in a
similar way that ca < cb. Note that H; is an 2-group that fails (1).
To see this let a,b,c be 3 elements of G such that a = (0,0,...,0,1;0),
b =(1,0,0,...,0,0;0), and ¢ = (0,0,...0,0;m) with m>0. Clearly

b << a<<c¢, Butb# (0,...0,0;0). Hence, (I) fails to be true in

H].

n

By introducing the above example, we know of the existence of

2-groups different than Gn and therefore the existence of quasi-varieties
different than Ho' It is important to first construct the 2-groups and
then take the quasi-varieties generated by them. In order to establish

a nested sequence of f-groups, first we need the following definitions

and notations:

Let k be a positive integer, and H: = n+%-l z ;e Z where for
0
(a_,a a a ;b), (c c ;d) in Hk (a ,...,a ;b)
0, 1°° 2% Shtk-1" ’ o"“’ n+k-1° n’ O, c9nk-12
< (Co""’cn+k—l;d) iff b<dorb=d and 8 kel < Cpaket OF b=d,
8 tk=1 = Snek-1 and 3 +k-2 < Cpik-2 OF - . or b=d, a i = i for
every i = 0,...,k-1and a, s ¢, for i =0,...,n-1, and (a_,a,,...,a__,,
i i 0’1 n-1
an""’an+k-l;b)' (co,...,cn_], Cn""’cn+k-];d) = (a0 * Coppr
a1t Cooteb’ ¥ T Sttt o fnaker t Cn+k-l;b+d) with all subscripts less

than or equal to n-1 read modulo n. Let Hk be the quasi-variety gener-

ated by H:.

For every k € 7 - {0}, H: is an f-group. To prove this we will use
inductionover k. [f k=1 we know that H:l is an f-group so theclaimis true
for k=1. SupposethatH:isanﬂrgroupandletusprovethat H:+] isalsoan

. k+1 .
2-group. Clearly H:+]is agroup. Now, the order < defined on Hn ] is a
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latticeorder, For this leta,b,c be elements of H:+]. Write a= &%,..,an+k;p),
b = (bo,...,bn+k;q), and ¢ = (co,...,cn+k;d?. Consider the elements
k
1Rt ! [ . - .
a',b',c' of H such that a' = (ao,...,an+k_],p), b (bo""’bn+k-l’q)

and ¢' = (c_, d). Since Hi is an %-group then a'Ab' and a'vb'

0 e Chtk-1?
7 = . = alvh! = .
exist. Let x = (xo,...,xn+k_],t) a'vb' and y (yo,...,yn+k_l,s)

= a'ab'. Now, the meet and the join of a and b exist in H:. In fact
( N
(ao,--.,an+k,p) if p<q

(bo,...,bn+k,q) if p>q

'(ao,...,an+k;p) if p=q and a__, <

(ao,a]""9an+k;p)/\(b ’...’bn'*'k;q) =9 bn+k

(b ,...,bn+k;q) if p=q and a i >

0
bn+k
(yo,...,yn+k_],an+k;p) if p=q and
| an+k = bn+k.
and
[(ag,---s2, ,,5P) if p>q
(bys-+-sb . 3a) if p<q
(ao,...,an+k;p) if p=q and a k>
(ao,...,an+k;p)v(b0,...,bn+k;q) = A btk

(b if p=q and a_,, <

0,---,bn+k;q) +K

bn+k
(XO""’xn+k-l’an+k;p) if p=q and

Ak = Prake
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Next, we need to verify only that if a < b then ac < bc. Now, a < b

implies that p<q or p=q and an+k < bn+k or p=q, Atk bn+k and an+k-—] <

b or,...,p=q, q_,: = bn+'

ntk-1 | for i=0,...,k and a, s bi for i=0,...,n-1.

If p<q then p+d < q+d and ac = (ao,...,an+k;p). (c , d) =

) e eC

g2 3 ¥C 5,2 +

nik ¥ Chais p+d) < (b0 + c

+d’

)

(ao + C0+d""’an-] + cn_]+

.,b +

n-1" Sp-1+d’ qtd) = (by,.-.,b

bn + cn,...,b 0

n+k M Cn+k; n+k;q

;d) = bc. Otherwise, if p=q and a sk < bn+k then at

< b + C

C Kk ntk and ac < bc. At last, if p=q and a =b then

n+k n+k n+k’

ac < bc since a' < b' implies a'c' < b'c' in H:. We can verify in a
similar way that ca < cb.

The family of 2-groups (H:]k € Z+-{O})forms a nested sequence of
2-groups. And if they are pairwise different then we have an infinite
chain of quasi-varieties each of which contains Ho and is contained in
Lnﬂ AZ. Hence, it is necessary to prove that the Hn's are pairwise dif-
ferent. Therefore, we need to find one or more implications satisfied

by each Hn and make sure that the implications will fail in Hk if

k > n.

Lemma 4.16: If a,b,c, dl""’dk are positive elements of H: with
b << d] << d2 << ... << dk << a << ¢ then b = (0,...,0,0;0).

Proof: Clearly, the lemma is true if a=b=1c = d] = ... = dn =
(0,...,0;0).

Let a,b,c, dl""’dk be positive elements of H:. Write
a= (ao, "an+k—l;p)’ b = (bO""’bn+k-l;q)’ c = (Co""’cn+k-l;m) and

i i ..
= een ; . i indices
d. (xO, X k-1 , ,A, be the maximum

ni). Let s,r,t, A «

1
for which a, # 0, b_ = 0, <, # 0, x; # 0, respectively. First, if m20
i

then p = q = n, = 0 for i =0,...,k and r < A] < AZ < A3 <...<>\k < s <t
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since b << d] << d, << eee << d

) K << ac<<c Now, if br = 0 then

b= (0,0,---0;0) since b is positive and r is maximal with respect to

br # 0. Two cases arise. First if m = other we have t < n+k-1,

1
s < n+k-2 and Ai < n+i-3. Hence, k] < n-2, and therefore d] = (xo,...,
x;_Z,O,O,...,O;O). Since b << d] then bi = 0 for every i = 0,...,n-1

(see Proof of 4.12) and br =0. Sob-=(0,0,...,0;0). Now, ifm>0

then we have s < n+k-1, and Ai.s n+i-2. So A] < n-1 and d] = (xé,...,
x;_],o,ooo,o;o). Now, b << d, implies b = (0,...0;0) (see Proof of

4.12), and the lemma is proved.

The condition in the above lemma determines a set of implications

that are simultaneously satisfied by Hk' Let a,b,c, d], d2""’dk be
positive elements of Hk and consider the implication.
(Ik) Ifb" < d] < d? S e . < dk <d"<ac<a<c for all

n
k
positive integers n then b = (0,0,...,0;0).

Proposition 4.17: The condition "if a,b,c, d .,d, are positive

1777777k

elements of an f-group G such that b << d] << e << dk << a << ¢ then

b is the identity of G" is satisfied iff the implication (Ik) is satis-

fied.
Proof: Clearly, (Ik) implies that the condition holds. Conversely,

assume the condition is satisfied. |If bA < d] < d? < v g dk < dﬁ <

a g al s ¢ for all positive integers A, then b << d] << el << dk <<
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a << c so b is the identity of G. Hence, the implication (Ik) is
satisfied.

It is important that every Hk contains Ho and that any pair H: and

k' . X A
Hn will generate two different quasi-varieties.

Lemma 4.19: For every K ¢ 5 - {0}. H | strictly contains H

k+ k*

Proof: Let ¢ be the map from H: into H:+] defined by:

¢((ao,...,a ];p)) = (ao,...,an+k_],0;p). Clearly, ¢ is a well-de-

n+k=-

fined injective map. We need to show that ¢ is a homomorphism. Let a,b

k
be elements of H- Then a = (aO,...,an+k_],p) and b = (bo""’bn+k-l’q)'

We have ¢(a) = (ao,...,an+k_],0;p), ¢(b) = (bo""’bn+k-l’0;q)’ and

ab = (a0 + b‘+p,...,an_] + bn-l+p’ an+bn""’an+k-l + bn+k_];p+q). Thus,

¢ (ab) (ao + b +p,...,an_I + bn-l+p’ a + bn""’an+k-l + bn+k-l’o;p+q)'

(ao,---,an+k_],0;p) (b ,...,b

0 nik-12039) = 9¢(a). ¢(b).

Hence, ¢ is a homomorphism. ¢ clearly preserves lattice operations

k k+1
so we get Hn < Hn and Hk < Hk+1'

In order to prove the strict inclusion it suffices to find positive

elements b, d .,dk, a and c of H:+] such that the hypothesis in Lemma

10

L. 16 is true for k but the conclusion of the lemma fails. Let b, d],...,

0), d. = ( : i 0) for

dk’ a,c be such that b = (bo’b]""’bn+k; ; Xo et X

i=1,...,k, a= (x ,...,xn+k;0), ¢ = (0,0,0,...,0;m) where the following

0
are true:
bi =0 for i # 0 and bi = | otherwise,
x: =0 for j # n-1+i and x} = | otherwise,
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X, = 0 for i # n+k and X, = 1 otherwise, and m > 0.

Note that b << d; << d, << ... << d <<a<<cbutb# (0,...,0;0).

Therefore, we have the following:

= nO ' <kl oL« Hk < Hk+] < ., and
Gn Hn 5 Hn Pt Hn + + n+ n 7
< < < <
Ro %o 3 Meer 3 M ir 8
Lemma 4.20: For every k, Hk < Lnﬂ AZ.
Proof: For every X,y ¢ H: we have~xnyn = ynxn.

Let x = (x_,...,x

) n-l""’xn+k-l;p) and y = (yo,...,yn_],...,

n
yn+k_|,q). We have x = (x0 + X +

+ ...
O+p ce. + XO+(n_])p, X] + X +

1+p

X nx

x1+(n-])p""’ -t xn-]+p + ...+ xn-l+(n-l)p’ IR nxn+k_];np)

n
and y = (yo + Yop + ...+ Yo+(n-1)p’ Y1 * Yi4p + ...+ Vie(n-1)p® “°

o1t Yn-1+p + ...+ Y ntl4(n-1) p” nyn,...,nyn+k_];nq), where indices

less than or equal to n-1 are read modulo n.

nn
= .o + ..
Now, Xy (xo + x0+p + + x0+(n-l)p + Yo * yO+p

, X + X

n-1 n-1+p e ¥ “n-1+(n-1)p TVt

+
Yo+ (n=1)p> " Yn-14p

nn
e e H -+ , = +
Yn-t4(n=1)p> ™0 ¥ WpoooooMX g0t W3 P nq), and y x (yo

Youp Tt T Yor(n-1)p T 0 T Xoep F o T X0k(n-1)p? 7 Vel T Vn-t4p

+ . + x + X + +

... + e,
* Yn-1+(n-1)p n-1 n-1+p -1+ (n-1)p> n T ™h

n n n.n k
X k=1 7 Wogp-p? M9 ¥ np). Thus, xy =y x and Hn € Ln. Hence,

2

It remains to show that Hi e A°. For this, let H = {(ao,...,

an+k_];0)|ai e Z for i = 0,...,ntk-1}. Clearly,H is an abelian %-ideal
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2

of H:, and Hi/H = Z. Thus, H, H:/H e A. Therefore, H: € A2 and H A”.

kS

' 2
Hence, H e L_ nA®.

Combining Theorem 4.11 Lemmas 4.18 and 4.19 we have the following
important result:

Theorem 4.20: Let n be a prime number. Then there is an infinite
chain of distinct quasi-varieties between A and Lnf]Az.

Proof: Clearly (H |k ¢ Z') forms a countably infinite chain of dif-
ferent quasi-varieties of non-representable &-groups between A and Lnﬂ AZ.
Note that if for every k ¢ Z+,H: € Sn, then (Hklk € Z+) forms a

countably infinite chain of distinct quasi-varieties between A and Sn.
To complete this chapfer we look at a special type of cyclic exten-

sions that can be embedded in Sn for some n 2 2.

Example 4.22: Let A = R (the set of real numbers), G = R Z and

a:R>Rdefined as follows: Ifk isa fixed irrational number inside the inter-
val (0,1),a(n+x) =n+ (x+k) mod 1. Consider G(a) the cyclicextensionof G by a.
Then any finitely generated subgroup of G(a) can be embedded in s for

some n. In fact, if H is a finitely generated subgroup of G(a) then it is

k
generated by elements of the form: (...o,xi ,0,0..30 ]) where X, = 1,
1 1
ks
(...,0,...,0, X, ,0,...,0 ) where x. = 1, iy < <, and
s s
ki 20 for i =1,...,s. Note that s is the number of generators.

Now, two possibilities arise. First, if i],...,is e [n,n+1] we

b

may assume that n=0 and i ,...,is e [0,1]. Next, let ¢:G6(a) ~ GSn where

0

GSn is the Scrimger %-group of order sn, defined by ¢(...,0,...,0,1. ,0,
A

= (O,...,IA,O,...,O;kxs) for N Note that if
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k

A
q)(""O)""O, ](ix_i_tk)mod]’ O,---;a ) - (0,"'10) ])\_ts’O""90""a0’

kxs), where subscripts are read modulo sn, then ¢ is an %-homomorphism. It

suffices to prove that ¢(h]h2) = ¢(h])¢(h2), where h, = (covy05---,50,
kr k
1. ,0...50 ") and h, = (...,0,...,0, 1. ,0...30 ) with i, s i_ <i. <
P 2 " 1 r t

i,- We have ¢(h) = ¢(...,0,..-,0, 1. ,0...50 Y = (0,...,0, 150503
r

krs), and ¢(h2) = (O,...,O,lt,O,...,O;kts). Hence, ¢(h]). ¢(h2) =

(o,...,0, lr,..., lt_krS,O,...,O;krs + kts). Now, t - krs £ r + Asn.

Suppose t - ks = r + Asn then t-r = Asn + ks = (An + kr)s' But
0 < An + kr < 1 since 0 < t-r <s. Hence, -An < kr < =An+1 and this is

a contradiction since kr is an integer. Hence, t - krs # r mod(sn).

_ ey
Next, h]h2 = (...,O,]i yeea,0, 1 K ,0,...50 ) (...0,1., ,...,

r Ctr(i) r
k +k

. . r t _
l(ut+krk)mod 1,0,...5a ), and ¢(hih2) = (o,...,1r,...,o,1t_krs,o...,

O;(kr+kt)s). Thus, ¢(h]h2) = ¢(h])¢(h2). Hence, ¢ is a homomorphism and

clearly ¢ is an f-monomorphism.

Secondly, if i],...,is belong to different intervals such that ix €

[nk, nx+l]. Let c, be the number of generators inside the interval

A

[nx,nx+l], i and let e By seedy € [nx,nk+1] with Y < by < ... <
1 s N 1 2

i be all the generators inside [nx,nx + 1]. Suppose < + <, + ... +

c, =s- Define ¢:G(a) ~ GC]n X GCzn X ... xG_by:
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Y
¢(eeee0y...,0, 1. 5 0y---3a ")

,0...3k
A

= ((oskyep),enn(hvvon 01 2%

...,(O;kxcp)) where i, = ikk € [nx,nx+l]. Again, ¢(h]h2) - ¢(h])¢(h2).

First, if i £ [nr, nr+l] then ¢(h]h2) = ¢(hl)¢(h2). Now, suppose

re 't
i + and i + i i <i.. Weh
that i e [nr, n_ 1] an Py e [nt, n, 1] with i<y e have

= ; R yeees0 . ; ... (0
¢(h]) ((O,krcl)a a( 90,]ia0’ ’O:krcr), ’(O’krct)’ ( ’krcp)

=1 = ; ; ..
where lir ‘. € [nr, nr+l], and ¢(h2) ((O,ktc )"'(O’ktcr)' ,
(...,o,lj,.,...,o;ktct)...(O;ktcP)) where ]it = ]tj € [nt,nt+l]. Thus,

¢(h])'¢(h2) = ((O;krc]+ktc]),...,(...,O,li,O,...,O;krcr + ktcr)""

: + : + .
(o, 1. ,0, ,O,krct ktc ), ,(O,krcp ktcp)) Now,

t
k +k

— o oty .
¢(h]h2) =¢((...,0,1. ""’0"(it+krk)mod1’°""’“ ) ((0.(kr+kt)c]),

0,...,0;
c A
rt

(kr+kt)ct)""’(O;(kr+kt)cp)) since (|t+krk)modl belongs to [nt,nt+l].

.,(0,...,0,1.,0,..., ;(kr+kt)cr)"""""""(o""’]j-k

Hence, ¢(h]h2) = ¢(hl) ¢(h2) and ¢ is a homomorphism. Clearly ¢ is an
2-monomorphism.

Finally, let m be the least common multiple of c ,..,cp then H is

1

embedded in G X G X ... X G and H e S .
mn mn mn mn



CHAPTER V
THE AMALGAMATION PROPERTY

In this chapter we consider the problem of determining whether or
not certain classes of f2-groups satisfy the amalgamation property. It is
known that the class of groups and the class of lattices satisfy the
amalgamation property, so it is natural to ask whether various classes of
%-groups have this property. For the class A of abelian %-groups there
are several proofs showing that the amalgamation property holds. We will
discuss the relationship between this property and other important con-
structions of 2-groups and then show it fails for all the quasi-varieties
of f-groups constructed in the preceeding two chapters.

Definition 5.1: Let U be a class of %-groups and"(Gi|ieI) a family

of %-groups in U, then G is called the U-free product of (Giliel) if the

following three conditions are satisfied:
1) G belongs to U

2) ;U G; generates G

3) Whenever a. is a given arbitrary &-homomorphism from Gi into H
where H is an %-group of U, then the entire collection of 2-homomorphisms

a, can be extended to a suitable f2-homomorphism from G into H: i.e

there exists a homomorphism ¥ from G into H such that Yoji = o, for every

67
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i, where _ji is the natural embedding of Gi into G. The U-free product G

. . u
of (Gi|'€I) is denoted by .LLGj.

Definition 5.2: Let U be a variety of 2-groups and X a nonempty

set. The f-group F is called the U-free %-group on X if the following

are true.
(1) There exists an injection a:X >~ F such that a(X) generates F.
(2) 1f G eUandB:X~>G 1s any map, then there is an %-homomor-
phism Y:F > G such that Yoa = 8. A diagram of the situation is given

below:

Since a(X) generates F, we can show that Y is unique. The U-free %-group
always exists inside a variety of f-groups.

Note: If x has only one element, the free abelian group on X isz,
but Z cannot be the free-abelian %2-group on X since Z is totally ordered.

Theorem 5.3: If U is a variety of &-groups then the U-free 2-group
on {x} is z[¥]z.

Proof: Let X = {x} and definc a:X + Z[+]Z by a(x) = (1,-1). We
first note show that o(x) generates Z + Z. |If (n,m) is an element of
Z+2Z, we may write it as (n,m) = n((1,-1)v(0,0))- m((1,-1)A(0,0)) . Next,
let G be an element of U and B: X~ G be a map. Define v:z2[xlz »~ ¢
by Y(n,m) = n(B(x)v0) - m(B(x)A0). Note that You(x) = Y(a(x) = Y((1,-1))

)" )

- 8(x) B(x) .

= (B(x)v0) - (-1) (B(x)A0) = B(x)" - (-8(x)v0) = B(x
Thus, Yoo = B. It remains to prove that Y is an f-homomorphism. Let

(n],m]), (n2,m2) be elements of Z[+lZ. Then
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Y((nl,,m ,m,+m,))

) (”2’mz)) = Y((n]+n2 pm,

1

(n]+n2)(6(x)v0) - (m]+m2)(B(X)A0)

n](B(x)vo) + nZ(B(x)vo) - m](B(x)AO) - mZ(B(X)AO)

n,(e(x)vo) - m](B(X)AO) + nz(s(x)vo) - mz(s(x)/\o)

= Y(n;,m) + Y(n,,m),
hence, Y is a homomorphism.

Now, let (n],m]) and (nz,mz) be elements of Z[H Z. We have

vm,))

v ((n V™

Y((n],m])v(nz,mz)) Vnz,m

1

(n]vnz)(B(X)vO) - (m]vmz)(B(X)Ao)

]

(n](B(X)vo) v n, (B(x)v0)) - (m](B(x)AO)v mz(B(x)AO))

2

[n, (B(x)v0) - (m, (B(x)n0) v m,(8(x)a0))] v[n,(8(x)vo)
- (m](B(x)AO) v mZ(B(X)AO))]
= [n, (8(x)v0) - m (8(x)a0)]v [n, (B(x)v0) - m,(B(x)A0)]

v [n,(8(x)v0) - m (8(x)a0)] v [n,(8(x)v0)

1

- mZ(B(x)AO)] = Y(n],m]) v Y(n],mz) v Y(nz,m])

v Y(n ) = Y(nl,ml) v Y(nz,mz) since Y(n],mz),

2°™

Y(nz,m]) < Y(n],m]) v Y(nz,mz).
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Similarly, Y((n],m])A(nz,mz)) = Y((n],m]))A Y((nz,mz)). Thus, Y is an
g-homomorphism. Hence Z[+]Z is the u-free %-group on {x}.

Definition 5.4: Let P be a partially ordered group and U a variety

of 2-groups. |If F is an element of U such that

i) there exists an o-homomorphism o from P into F such that a(P)
generates F and,

ii) for each G in U and B:P - G such that B is an o-homomorphism.

there exists an f-homomorphism Y from F into G such that Yoo = B,

P ——=>4G
\?;\\BG B/éf

then F is called the u-free extension of P and is denoted by FU(P).

Note that free extensions do not always exist, but free abelian
2-groups always exist. The following establishes a relation between free
extensions and free abelian %2-groups.

Theorem 5.5: Let X be a nonempty set and P =(:)Z with the trivial
| x|
order. Then the free abelian f-group on X is isomorphic to the abelian

free extension over P.

Definition 5.6: A group G is divisible if given any n € Z and x € G

there exists a y € G such that x = yn. If the group is written additive-
ly, then there exists y € G such that x = ny.

Note that every abelian group G can be embedded in a divisible
abelian group. In fact, G is isomorphic to F/K for some free abelian
group F with subgroup K. But F is isomorphic to(:)Z, so F can be em-
bedded in H é(E}Q. We can consider K as a subgroup of H so that G can be
embedded in H/K. Since homomorphic images of divisible groups are divis-
ible, factor groups of divisible groups are divisible. Therefore, H/k

is divisible.
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Next, we consider three properties for %-group varieties because of
their importance.

The subalgebra property for free products: |If (GilieI) and (Hiliel)

are families in U with each Hi an 2-subgroup of Gi’ then UigI H; is the
U

- G ;.

2-subgroup of i G; generated by igIH'

The amalgamation property: Let U be a class of f2-groups, then U

satisfies the amalgamation property if whenever A, Bl’ B2 e U and

a]:A - B], aZ:A -> 82 are f-monomorphisms, then there exists C € U and

2-monomorphisms B]:B] - C and BZ:B2 -+ C such that B]oa] = Bzoaz. The

diagram below illustrates this situation.

=7 Bl ~~ 2!
o ~
- C
A Ve
’/%2

The divisible embedding property: Every %-group in U can be em-

bedded in a divisible &-group of U,

The subalgebra property is of importance for free products of 2-groups
because of the rich embedding theory available (see for example Conrad et
al. [3] and Bernau [ 1]). The amalgamation property is a very powerful
device in establishing specific embeddings. In fact the amalgamation
property implies the divisible embedding property (K. R. Pierce [15]). The
amalgamation and the subalgebra properties are closely related.

It is known that the amalgamation property implies the subalgebra
property (Jonsson [9 , Theorem 1.3]). Further, in the presence of the

following condition, it can be shown that the two are equivalent (Gratzer

and Lakser [ 6, Theorem 4]).
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The congruence extension property: If GeU, where U is a class of

2-groups and H is a subalgebra of G, then every congruence on H can be ex-
tended to a congruence on G. The congruences on f-groups correspond to
normal, solid subgroups. Since normal subgroups of normal subgroups need
not be normal the above property does not hold in general for classes of
2-groups. However, in the abelian case, congruence extension is easily
established.

Now using the representation theorem 3.3 in W. B. Powell and C. Tsin-
akis [ 18 ], it can be shown directly that the subalgebra property holds
for A.

Thus, in view of the preceeding discussion we get the next result
which has also been proved outside the context of free-products in K. R.
Pierce [15, Theorem 2.3] and [17, Theorem 1] (see also K. R. Pierce
[16]).

Theorem 5.7: The variety A satisfies the amalgamation property and
the subalgebra property.

Consider next the varieties M+, M, and Ln = the variety of all
g-groups satisfying the law [x",y"] = 1 where nez'. It has been proved
that M+, M-,and Ln for every n > 1 fail the amalgamation property. We
will give an argument proving that Ln fails the amalgamation property that

can be found in W. B. Powell and C. Tsinakis [ 19, Section 3 and 4.2].

Proposition 5.8: The varieties Ln do not satisfy the subalgebra
property or the amalgamation property.

Proof: For each n > 1 we have A < Ln and so FL ({x],xz}) =
i
n

(ZZ)L”u(Z[EZ) is not abelian. Let H, and H, be the f-subgroups of

FLn({x],xz}) generated by {x]} and {xz}, respectively. Then H] = H2 =
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L
Z2[¥]z so " oA, is isomorphic to F'—n({x]’xz})' But the 2-subgroup of
=1,2

i
FL ({x],xz}) generated by H]UH2 is abelian and hence not isomorphic to

" {J H,. Hence Ln fails the subalgebra property and so also the

amalgamation property.

A proof of the following theorem can be found in K. L. Pierce
[15, Theorem 3.1].

Theorem 5.9: The variety L fails the amalgamation property.

Up to this time A was the only known %-group variety satisfying the
amalgamation property. The subsequent considerations will lead to the
main result of this chapter which asserts that all of the quasi-varieties
(Q;[nzo), (P;InzoL and (thnzo) constructed in the third and fourth chap-
ters fail the amalgamation property.

We start by introducing some additional terminology. Let U be a

class of #-groups. By the amalgamation base, AMAL(U), we mean those

2-groups A of U such that, for all B], B2 of U and all embeddings

8,:A~>B,, 6,:A~> B there exists C in U and embeddings u]:B

1 17 72 2’

> C,

1

uZ:B2 - C such that u]e] = uzez. It is clear that U has the amalgamation
property if and only if AMAL(U) = U. The next result is implicit in
K. R. Pierce [15], (see Theorem 5.1).

Proposition 5.10: If U is an %-group quasi-variety and Z ¢ AMAL(U),

then U has the divisible embedding property. In particular, if U satis-
fies the amalgamation property, then it also satisfies the divisible
embedding property.

Let us remark that proposition 5.10 yields an alternative proof of

the fact that the varieties Ln’ n>1, do not satisfy the amalgamation

property. Indeed, A sLPf n>l (Weinberg [231]), and clearly a divisible



74

f=-group in Ln is abelian. It follows that Ln does not satisfy the divisi-
bie embedding property'and hence the amalgamation property.

Let us describe briefly Reilly's construction of quasi-representable
varieties. Consider a countable infinite set X' = XU{z}, z ¢ X, and let
F be the free group on X. For each w € F, 2(w) will denote the 2-group

-]z-w). For any non-empty subclass U of L define F(U) = {weF]|

law Z+ A (w
GF 2(w) for every G € U}. Also for any non-empty subset W of F define
Q(w) = {G e L|GF 2(w) for every w ¢ W}. It is immediate that if W is a
non-empty subset of F, then Q(W) is an &-group variety, and less trivially
that if U is a non-empty subclass of L, then F(U) is a fully invariant
subgroup of F (Reilly [20, Theorem 2.1]). Following, Reilly we shall

call these varieties quasi-representable.

In regard to the position of these varieties in the lattice of
%-group varieties, we note that Q(F) = R is the least quasi-representable
variety, and hence each of these varieties contains R.

For each positive integer n, let Bn denote the fully invariant sub-
group of F defining the Burnside variety of exponent n. The quasi-repre-
sentable varieties Q(Bn) will play a key role in our considerations. Note
that G belongs to QﬁBn) if and only if for all elements a,b of G,
a® (b""ab") = 0.

Theorem 5.11: Let U be an f#-group quasi-variety such that U $ R,

and U < Q(Bn) for some positive integer n. Then U does not have the
divisible embedding property and hence in particular, the amalgamation
property.

Proof: Suppose, G is a divisible ¢-group in U < Q(Bn), and let a,b
be elements of G. There exists ¢ € G such that b = <. Hence,

ab) =a alc"ac") = 0. But this means that G belongs to R
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(see for example Conrad [ 3, Theorem 1.8]). Thus since U £ R, U cannot
have the divisible embedding property. That U fails the amalgamation
property follows from proposition 5.10.

Note that each H contains H_ and H_ £ R, but Hy S L < Q(Bn).

Hence, according to the above H0 fails the divisible embedding property,

and so also the amalgamation. Thus, every H, fails the amalgamation

k
K S

Therefore the following theorem holds.

property, since HO S H < Ln for every k.

Theorem 5.12: For every k, the quasi-variety Hk constructed in

Chapter |V fails the amalgamation property.

Proof: Clearly, Hk$ Rand H <L < Q(Bn). So by 5.11 H, fails

k k

the amalgamation property.

Next, we need to show that the two chains of distinct quasi-varieties
constructed in the third chapter fail the amalgamation property. But,
first we need the following lemmas:

Lemma 5.13: There exists a totally ordered set I with distinct
o-permutations a,B,Y such that a = Bn = Yn.

Proof: Let G be any f-group which is not an R-group (see 3.6). Then
there exist x, y, z € G and n > 1 such that x = yn = 2" and x # y # z.

By Holland's theorem G can be embedded in the f-group A(I) of o-permuta-
tions of some totally ordered set I. Let a,B8,Y in A(I) be the elements
corresponding to x,y,z. Then o = Bn = " and a,B,Y are distinct.

Lemma 5.14: There exists a totally ordered set I with a,B8,Y as in
5.13 where a(i) > i and B(i) > i for each iel.

Suppose a(i) < i for all i € I then replace a with u—] so that
a(i) > i for every i € I. We know that a(i) # i for all i, for if not a
would be the identity and thus so would B8 and Y. Now let I' = {i ¢ II

ali}) > i}. SoI' # ¢. If g(i) < i, for some i € I', then Bz(i) <
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8(i) < i. Thus, 8"(i) s i. But a(i) = g"(i), so 8"(i) > i. Thus
B(i) > i for all i e I'.

To complete this chapter a final important result will prove
the existence of algebraic structures closer to A than the Medvedev

. s + - . . .
varieties M , M which fail the amalgamation property.

Theorem 5.15: For every n 2 0, Q; and P; constructed in the third
chapter fail the amalgamation property.

Proof: The techniques-used prove that Q; (see Chapter 111) fails
the amalgamation property will also establish the same result for Q;
since Q; < Q; < R. The proof is similar for P;.

Let A be a totally ordered set such that it admits three distinct
o-automorphisms &, B, Y such that o = én = ¥" for some n > 0, such that
a(i) > i for every i ¢ A. By lemmas 5.12 and 5.13 we know of the exis-
tence of such A, &, B, and Y.

Now, let G = GD Z ordered by: a >0 iff a; 2 0 where i is the
maximum index with ﬁespect to a; #0. Also, let a, B, ¥ be o-automor-
phisms of G defined by: af(a) = b where b, = (1) B(a) = c where
5T %)

a=38"=7%". Consider G(a), G(8) and G(Y) that are generated respectively

and, Y(a) = d where di = a?(.). Note that o = 8" = Y" since
i

-
—
Il

3
Il

(0,0) and n, (a,ao) where éj

1]
]

r = (0,8) and F (B,BO) where Bj

and
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i o i 1 if =i
t = (0,Y) and u, = (c,Y") where c., =
J 0 if j#i

Now, let G G, be the 2-subgroups of G(a), G(B) and G(Y), gen-

1’ GZ’ 3
erated respectively by: m and n., s and ti’ t and u. for a fixed i € A.
Note that G], G2, G3 € Q; since each of these is generated by two elements

n
x and y, such that y << y~ << x and the set {y*" | n in Z} is independent.

Next, we will prove that if JI:G] > G2 and JZ:GI - G3 are the natural em-

beddings, then there is no H ¢ Q;, such that there exists o]:G2 - H and

. i = —< - i T
02.G2 -+ H with o]J] 02J2. Note that QO < R and every f2-group in Qo is

an R-group (i.e. if x" =y" then x = y). Assume there exists such an H

and that the amalgamation property holds. Then, there exists c‘:G2 -+ H

) n n
. = = O =
and 02.G3‘+ H such that 0.9, 02J2. So (0](0,8)) 01(( ,B)

5,((0,6") = o,9,(0a) = 0J,(0,0) =

n
171 2’2 ((0,YM) = (o,(0,1))".

92

Thus, 01(0,8) = 0,(0,Y) since H is an R-group. Note that for every g e G

2

we have (0,8)(g,8") (0,8") = (8(q),8) (0,87) = (8(g),8%. Ssimilarly,
(0,1(e,7) (0,1 = (v(g),¥0). Thus o}J,(8(g),a0) = o, (8(e),6%) =
5,((0,8) (9,89 (0,67)) = 0, (0,1 (g0 = o,(r() 7)) =

O - 6.y (B(g),ao). So G]Jl(Y(g),Yo) UlJ](B(g),BO)- Then

(r(g),Y p

999,

B(g) = Y(g) = since o,J, is a monomorphism. So B8 = Y since g was chosen

11

arbitrarily and we have a contradiction to B and Y being distinct. So the

amalgamation property fails in Q;. Hence, it fails in P; and Q; since all

f-groups in P; or Q; are R-groups.
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