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CHAPTER I 

CRYSTAL DEFECTS 

Introduction 

The study of crystal defects forms an important aspect of solid­

state science. This is largely because many interesting properties of 

crystalline solids are dominated by effects due to a tiny concentration 

of imperfections in an otherwise perfect lattice. The physics of such 

lattice defects plays an important role in a great variety of 

applications and on the other hand the investigation of defect 

properties forms an active area of fundamental research in solids. Thus 

an extensive science of point defects has been constructed during the 

past years. 

One category of numerous types of point defects present in 

crystalline solids is known as color centers which invioves electrons or 

holes responsible for the optical bands in the visible, ultraviolet and 

near infrared region of the spectrum in otherwise transparent 

crystals. Radiation damage studies have contributed significantly to 

the understanding of creation of color centers. Radiation damage leading 

to the formation of color centers in solids can be induced by: i) 

particle irradiation such as high energy electrons, protons and 

neutrons; ii) ionizing radiation such as x-rays, Y-rays; iii) additive 

coloration in which the crystal is heated at a high temperature in an 

excess of the metallic vapor. Another category of crystal defects is 

characterized by the presence of foreign atoms or ions in an otherwise 
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perfect lattice which may be present as impurities or can be 

deliberately doped during the crystal growth. Such defects are termed 

as impurity related defects, due to the presence of which optical 

properties of an otherwise perfect crystal can be changed markedly. 

Among the crystalline solids, alkali halides have been investigated 

in a most extensive manner. More recently the alkaline earth oxides 

have also been the subject of many studies (1) due to the fact that 

oxides were new materials to study and the information obtained from 

simpler systems such as alkali halides could be used to explain the 

behavior of crystal defects in oxides. 

In this dissertation, the optical properties of defects in alkali 

halides and oxides will be investigated. From an organizational point 

of view this thesis can be divided into three parts one of which 

concentrates on an alkali halide system (NaCl) doped with a foreign ion 

(Cu) while the other two are aimed at investigating the optical 

properties of some oxides (Al2o3 and MgA1204)~ 

Statement of the Problem 

NaCl:Cu-

Optical properties of impurity ions with ns2 electron configuration 

have been investigated in detail. The outermost electron configuration 

of Cu- is also of ns2 (n = 4 for Cu-) type. Cu- .ions can be produced in 

NaCl by x-irradiation of NaCl crystals doped with Cu+. Thus there is a 

change in the charge state of Cu+ during irradiation. The pre­

irradiation state (recovery of Cu+ ions) can be achieved by thermal 

annealing of the irradiated crystals (2,3). However, the mechanism of 

the recovery process through which Cu- ions are converted to Cu+ has not 
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been investigated in a detailed manner. The present work involves a 

detailed investigation of this recovery process. 

MgA12o4 is an oxide with complicated crystal structure, its parent 

oxides being MgO and a-Al2o3 ~ An optical absorption band at 5.3 eV has 

been assigned with some confidence due to absorption by F-centers (two 

electrons trapped at an oxygen vacancy) in thermochemically reduced 

samples (4). Though luminescence from F-type centers in similar oxides 

such as MgO and CaO has been detected, there is no reported evidence of 

luminescence and photoconductivity from F-centers even in thermo­

chemically reduced MgA12o4• The results obtained in this work strongly 

suggest that F-centers in MgA12o4 may luminesce and produce photo­

conductivity effects. 

Most of the as received samples of a-Al2o3 show the presence of 

anion vacancy (F-type) defects detected through characteristic 

absorption and luminescence (5,6). F-type defects in a- Al2o3 can also 

be produced by particle irradiation or by thermochemical reduction. 

Though much is now known about the optical properties and electronic 

structure of these F-type defects in particle irradiated and thermo­

chemically reduced a- Al2o3, annealed samples have received little 

attention. The purpose of the present work is to investigate the 

optical properties of annealed Al2o3 samples and to explain the possible 

origin of the observed luminescence and photoconductivity in thermally 

quenched crystals. 



CHAPTER II 

THEORETICAL BACKGROUND 

Introduction 

This dissertation is based upon the study or: i ) electronic 

structure and optical properties of defects in MgA1204 and A1203, ii ) 

optical properties and ionic motion of Cu- ions (impurity related 

defect) in NaCl. Optical absorption, luminescence, photoconductivity 

and isothermal anneal experiments were performed to gain information 

about these defects. This chapter builds the necessary theoretical 

framework in the light of which the results of different experiments 

(Chapters IV, V, and VI) will be interpreted. For organizational 

purposes, this chapter is divided into two sections. Section A includes 

the theory of optical absorption, luminescence and phototconductivity in 

crystals containing defects. Section B includes the discussion of 

optical properties of impurity ions with ns2(n=2,3,4, ••• ) outermost 

electronic configurations in alkali halides. The background in Section 

B is related to the present work on Cu- ions whose outermost electronic 

configuration is also of ns2(n=4 for Cu-) type. 

Section A 

Configurational Coordinate Model 

The optical absorption and emission of defects in crystals can be 

4 
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qualitatively understood using the configuration coordinate model which 

describes in simple terms the interaction between the defect and the 

host lattice. The essential features of the model will be developed in 

the beginning before discussing the applicability of this model to the 

phenomena of optical absorption and luminescence due to defects in a 

crystal. 

The configuration coordinate model, as applied to both the singly 

and doubly electron occupied anion vacancy defects or to the impurity 

related defects having two outermost valence electrons as discussed in 

this section, is a simple model used to represent information about the 

electronic structure of a defect. 

In a crystal containing a defect, the one or two electron ground 

state eigenfunctions obtained for the defect electrons are more 

localized than are the single electron orbitals for the perfect 

crystal. The ground and excited states of the defect electron will 

differ, however, from those of a free atom or molecule because the wave 

functions ions have to reflect the symmetry of the surrounding ions and 

the interaction with neighboring ions spread out over a larger volume. 

The energy scheme for the crystal containing such defects is represented 

in Figure 1, where the bound levels below the conduction band are 

associated with-the defect electron and the levels in the filled valence 

band are associated with the host electrons in the crystal. When the 

defect electron has been raised to its lowest optically accessible 

excited state, it may require only a small additional energy (-0.2eV), 

which can often be supplied by thermal vibrations of the lattice to be 

freed in the conduction band. 

The total energy of a crystal containing a defect is the sum of the 
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Figure 1. Schematic Diagram Showing the Relative Energies 
of the Valence and Conduction Band of the 
Crystal and the Energy Levels for the Defect 
Electron Trapped at the Anion Vacancy 

6 

'• 



7 

total electronic energy ( d_efect electron and other electrons in the 

crystal) and the lattice energy. Figure 2 shows the variation of the 

total energy of the crystal with the effective configuration coordinate 

Q, where Q represents in some sense the positions of the nuclei. Each 

point on the curves, corresponding to the ground state (lower curve) and 

the first excited state, represents the total energy (Ui) of the crystal 

corresponding to the nuclei frozen into a particular configuration Q. 

These curves, though representing the total energy U i, are given the 

label corresponding to the state for the defect electron. Curves 

representing the upper and lower excited states are parabolic in the 

configuration cooridante Q, indicating the simple harmonic nature of 

vibration of the nuclei for linear electron-phonon coupling and the 

typical energy spectrum being given by (N~/~ nw, where w is the 

frequency for a single normal mode of vibration, usually assumed to be a 

breathing mode of the defect's nearest neighbors. The frequency, w, is 

determined by the mass of the vibrating ions and the curvature of the 

potential energy curve. The eigenvalues (n~/~ ~w represent the vibronic 

energy level for a particular state of the defect in the crystal. The 

energy of a given state-electronic and vibrational - can be represented 

by a horizontal line on the configuration coorinate diagram. Associated 

with an electronic energy curve, the vibrational levels differ in energy 

by ~w. The energy difference between two states or two different curves 

is the difference between the energy eigenvalues of each represented by 

the horizontal lines. Since the curvature of the configuration 

coordinate curves for different electronic states may be different, the 

vibrational frequency, and hence the vibrational energy spacing within 

any one states in the configuration coordinate curve can be different 
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than those corresponding to that of another state. 

Optical Absorption 

When a crystal containing defects is exposed to photons of the 

correct energy, electronic excitation of the defect may take place. The 

defect electron after absorbing a photon is raised to an excited state 

and may radiatively decay back to the ground state. The probability 

per unit time that the defect electron will make a transition from state 

mn to kY is directly related to the oscillator strength of the 

transition which is given by: 

fmn,kY (1) 

where the state function of the defect in the ground and the excited 

state is written as following using Born-Oppenheimer approximation: 

-+ -+ 
'¥ (r,R) mn 

and 

In Equation (1), r kY is the dipole matrix element sandwiched between mn, 

the initial and final states of the crystal and is written as 

(2) 
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For convenience, Equation (2) is rewritten as 

+ I + * + + + + r y= dRX (R) rmR(R) XrY(R) mn,r mn (3) 

where 

(4) 

Equation ( 4) explicitly contains the dependence of the dipole matrix 

elements on the nuclear coordinates. In fact transitions between such 

discrete states (mn+kY) are often not observed for crystals containing 

defects. What is observed is a broad band representing the sum of many 

such transitions. One thus considers Equation (1) with a sum over final 

vibrational states Y and a thermal average over initial vibrational 

states. The oscillator strength is thus written as 

f k= av r f kY m n mn, 
(5) 

2m I+ 12 =- av r r 3h n Y wmn,kY mn,kY ·' 

where the dipole matrix element is given by Equation (3). 

The Franck-Condon Principle states that during an electronic 

transition, the electronic state changes so fast that a) atomic nuclei 

do not move and b) the nuclei do not change their momenta. With this 

approximation the transition is therefore shown as a vertical line 

(Figure 2) indicating that the positions of the neighboring 'nuclei in 

the latti~e do not have time to change appreciably during the electronic 

transition. The quantum mechanical formulation of the Franck-Condon 
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Principle rests on the assumption that the variation of the electronic 

transition moment with R is slow, thereby allowing it to be replaced by 

+ + an average value r k(R ) • Using this approximation the expression for 
m o . 

oscillator strength becomes 

(6) 

Furthermore it is evident that the integral in Equation (3) involves an 

overlap integral between two vibrational wave functions. Consequently 

the most likely transitions will be those between vibrational levels for 

which the overlap integral is relatively large. 

The oscillator strength as expressed in Equation (6) is a useful 

quantity in determining the absorption and emission transition 

probabilities of the defect electron. In Equation (5), the strength of 

the transition is summed and averaged over vibrational states which 

points to the fact that the absorption or emission spectrum of a defect 

center is spread out into a broad band due to the proximity of the 

vibrational levels associated with the various electronic states. To 

illustrate this, let us consider Figure 2. The dotted curve represents 

the probability density for the n=O vibrational level, i.e. the 

probability of the neighboring nuclei appearing at various distances 

from the center of the defect, the total energy of the system remaining 

the same for these different values of Q. For centers, with the 

neighbouring nuclei displaced from the equilibrium position, the 

transition will be to points displaced from B on the excited electronic 

curve. Therefore the lattice vibrations at A lead to a spread in 

energies due to the steepness of the curve at B thereby giving rise to a 
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broad absorption band. Immediately after the transition to the excited 

state, (1o12 _ ~o-13 sec) the lattice relaxes, emitting phonons, as a 

new equilibrium position of the nearest neighbor ions is reached. 

The oscillator strength is also used on relationships which connect 

the number of centers involved in an electronic transition with the 

optical absorption coefficient. It can be shown, that for centers which 

do not have interactions with each other, the area under the absorption 

curve is directly proportional to the concentration of the absorbing 

centers. By measuring the absorption coefficient at the peak of the 

absorption band and knowing the oscillator strength for that particular 

transition, it can be shown that the following equation holds, 

Nf 

where N 

f 

number of centers/cm3. 

n 
2 2 amaxw' 

(n + n) 

oscillator strength for a particular electronic transition. 

(7) 

n = refractive index of the crystal for the wavelength at the peak 

of the absorption. 

amax absorption coefficent (cm-1) at the peak of the absorption 

band. 

W half-width of the band in electron-volts. 

m = mass of the defect electron. 

e = charge of the electron. 

c = speed of light. 

Equation (7) is called Smakula's equation which is used to estimate the 

concentration of absorbing centers in a crystal. 

Another feature of the absorption band is the temperature 
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dependence of the half-width of the band, which for gaussian bands and 

linear electron-phonon coupling is given by the following equation: 

w2 (T) 
- 2-- = coth (hw/2kBT), 
w (0) 

(8) 

where w is the average vibrational frequency in the initial state and W0 

is the half-width at T=OK. By measuring W as a function of T, one can 

derive the effective frequency w. From this the Huang-Rhys factor which 

is a dimensionless quantity measuring the strength of the linear 

coupling of the defect with its nearest neighbors can be estimated. 

Equation (8) shows that the absorption band should get broader with 

increasing temperature. This type of behavior is found for the F-center 

absorption bands in most crystals. The configuration coordinate diagram 

also predicts the absorption band to be symmetric. The asymmetric 

absorption bands found in crystals (e.g. F+ center absorption in CaO and 

SrO) cannot be explained by the configuration co-ordinate model which 

takes into account only a single mode of vibration. The dynamic Jahn-

Teller effect is the usual explanation for additional structure observed 

in the absorption bands of some defects in ionic crystals such as the F+ 
band in CaO. 

Before concluding this section on the absorption of light by 

crystal defects, let us look at the selection rules which govern the 

probability that the defect electron will make a transition from the 

ground state to the excited state. The selection rules may be expressed 

in group theoretical terms (8). One considers R (configuration 

coordiate) to equal some equilibrium R0 , in a rather symmetric 

* configuration. The functions cjlm and cjlk (Equation 4) and the dipole 
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operator~ will each transform as some irreducible representation of·the 

group of the Schrodinger' s equation. One forms the direct product of 

any two of these irreducible representations (e.g., r m 
* If the 

result contains the third irreducible representation, the matrix element 

may be nonzero; if it does not contain the third irreducible 

representation, the matrix element must be zero and the· transition is 

"forbidden". 

This result is illustrated in the case of a cubic center and 

+ - + states r 1 (s like) and r 4 (p-like)~ The direct product of r 1 x r 4 
- -+ -is r4, and since r transforms as r 4, the transition is allowed. There 

are other cases in which the selection rules may be determined almost by 

inspection, but when this is not possible the general theorem just 

stated may be used. 

Generally, -+ -+ if r k(R ) is nonzero, m o it is not too important to 

investigate its behavior as a function of R. In a number of cases, 

however, ~mk(R0 ) will be zero, whereas ~mk(R) will be nonzero for 

-+ certain values of R. In other words forbidden transitions may be made 

partially allowed through lattice vibrations and this is indeed the case 

for some absorptions of Cu- ions in NaCl. The results of Cu- absorption 

in NaCl will be discussed in detail in Chapter IV. 

Luminescence 

This dissertation investigates in detail the luminescence from 

Temperature dependence of the 

luminescence originating from these samples have yielded valuable 

information about defects present in these crystals. ·Thus it is 

necessary to build a framework through which the results of lumine·scence 
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experiments can be interpreted. 

Luminescence originating from crystal defects, usually consists of 

broad bands. Also the peak energy of emission is usually at a lower 

energy than that of the corresponding absorption- band. These two 

phenomena can be explained on the basis of configuration coordinate 

model as shown in Figure 2. The system, in absorbing light, undergoes 

an electronic transition to an optically accessible excited state 

(A~B in Figure 2). In the excited electronic state the wavefunction of 

the defect is often more diffuse and spreads out over the surrounding 

ions. A polarization effect occurs which gives rise to lattice 

relaxation. This is indicated by B~c in Figure 2 by a different 

equilibrium separation of the neighboring ions from the center of the 

defect in the excited state. At C, the center will again experience 

thermal vibrations. After some time, the defect may make another 

transition to the ground state, with the emission of light. This 

transition is shown going from C to D. Here, too, D is on a sharply 

varying part of the total energy curve, so that variations in the 

configuratidn co-ordinate about C lead to a variation in energy which 

causes a broad emission band. 

At D, the defect will again relax to the starting point A by giving 

off the excess energy as phonons. As can be seen in Figure 2, the 

emission energy is less than the energy of absorption by the defect. 

This effect is often termed as the Stokes shift. The difference in 

energy is B to C and D to A, which appears in the lattice as phonons 

during the complete cycle process. 

Once the defect electron is in its relaxed excited state as 

explained above, it has three completing modes of escape: i) radiative 
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decay to the ground state with the emission occuring at a lower energy 

than that of the absorption; ii) thermal release into the conduction 

band across a small energy gap giving rise to photoconductivity; or iii) 

nonradiative decay to the grounfr state. 

The probability per unit time for spontaneous radiative decay to 

the ground state is given by - 1- where 1R is the radiative life time~ 
1R 

The transition takes place from an excited electronic state "i "' to a 

lower electronic state "i" and 1R is the weighted average of 
i '-+ i -1 

all 1 over initial vibrational states v', summed over all final 

states v. 

1 

-1 
1R 

(9) 

The second mode of escape for the electron from the relaxed excited 

state of the center is governed by a temperature dependent probability 

per unit time for thermal ionization of the electron across an energy 

gap Ea into the conduction band: 

1 

1T 
1 

1o 

E a 
exp (- k T). 

8 . 
( 1 0) 

The lifetime of the excited state may be written in terms of a simple 

model as 

1 
1 

E 
1+_! (a)+_! exp - -- , 

1 R 1 o kBT 1 Q 

where is the probability 

( 11) 

per unit time of any other process 1 

1Q 

occuring. Assuming a two level model and neglecting other processes 
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such as nonradiative recombination to the ground state, the lifetime of 

the excited state is given by 

( 12) 

The fraction of optically excited electrons which are thermally assisted 

into the conduction band is given by 

1 ( 13) 

where. nr is the quantum efficiency for thermal ionization or the yield 

of free electrons. Similarly the quantum efficiency for radiative 

decay nR or the fluorescence yield is given by 

11-rR 1 
n = --- + ------~--------~~ R 11-r E a 

1 + CrR!-ro) exp (- -) 
k 8T 

In this model, 

( 1 4) 

( 15) 

Equations (12) and (14) predict identical temperature dependence for the 

fluorescence yield and the lifetime of the excited state and such 

results were obtained by Swank and Brown (10) for the F-centers in KCl 

(Figure 3a). Equation (12) also shows that the quantum efficiency for 

fluorescence should decrease and that for photoconductivity increases 

with increasing temperature. Such results were likewise obtained by 



~ 

• I I I IV 

106 
I ro-o...a > 

.......... a___ t-
0 D 

> 
·-·-· ---~{ . -l1o2 

Doo 

- t-
0 . 
::> 

I\ a - t z " 0 0 
• 

., 
' 0 

Ill -
0 ' ____. 0 

1 \ ~ 
t-~ 101~ a FLUOR, 
0 
J: 
D.. ~ • PHOTOCON. 
w r-) I 

...J 

> -t-
oC( 

...J 
w 
fX 

0 50 100 150 

TEMPERATURE (K) 

(a) 

10 
1 'll..o..a • 1 

I I I I I 

0 100 200 

TEMPERATURE (K\ 
lb) 

300 

Figure 3. Lifetime of the Excited State From Fluorescence and Photoconductivity 
Measurements (a); the Relative Fluorescence Yield and Photconductivity 
Yield for Illumination in the F-Band of KCl (b) 
Source: R.F. Swank and F.C. Brown (11) 

, 
r 
c 
0 
::0 
m 
en 
0 
m 
z 
0 
m 

..... 
00 



19 

Swank and Brown for F-center in KCl (Figure 3b). At low temperatures 

near OK, ,-,R~ For electric dipole transitions in atoms, 1 is of the 

order 10-8 sec. If no allowed transitions can occur, the mean lifetime 

is much larger. If the probability for thermal iohization is small but 

the lifetime of the excited state is reasonably long, then the electron 

has a better chance of getting to th~ conduction band. The temperature 

dependence of the luminescence in MgAl2o4 studied in this dissertation 

shows the decrease in the luminescence intensity as the temperature is 

raised from 77K to 300K as indicated by Equation (12). More comments on 

this aspect will be made in Chapter V. 

Photoconductivity 

The photoconductivity process involves the absorption of light, the 

excitation of a charge carrier from a non-conducting ground state to an 

excited state where it is free to contribute to electric conductivity, 

and the ultimate trapping of charge carriers from the conduction band. 

Information about the relaxed excited states of a defect, the carrier 

mobility, and trapping centers can be obtained from photoconductivity 

experiments. 

In a photoconductivity experiment, the crystal is mounted between 

plane parallel electrodes and illuminated with light. An electrometer 

measures the current produced. The photocurrent originating from 

defects can be classified to two classes, namely primary and 

secondary. When a crystal is illuminated with light of suitable 

wavelength, the electrons are raised to the conduction band and drawn 

towards the anode giving rise to a current. Such a type of current is 

called primary photocurrent, and this type of current has been measured 
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in the present work. 

The defect electron after making the transition to conduction band 

are" drawn by the field into the unilluminated portion of the crystal 

where they are trapped after drifting a certain distance. If the 

applied electric field is zero, the electron will execute a kind of 

Brownian motion before getting trapped. When the el.ectric field is 

turned on, the number of electrons trapped at points lying nearer the 

anode from the point where they were released is greater than the number 

of electrons which are trapped at points lying towards the cathode. 

Consequently a current is detected by the electrometer. The detected 

current is the same as it would be if all the photoelectrons had drifted 

down the field a certain small distance w' , the same for all. 

known as the mean range of the carriers in the applied field. 

q 

The charge measured by the electrometer is given by 

X 
e d' 

where e electronic charge 

x = distance travelled by the photoelectron 

d distance between the electrodes. 

w' is 

( 16) 

Each photoelectron drifts in the applied field with a kind of diffusive 

motion and constant mobility ll=v/E where "d is the velocity of the 

electron and .E is the applied field. 

Mean range w' is related to the mobility by the following equation 

w'= llET. ( 1 7) . 
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If n0 electrons are released at time t = 0, as shown in Figure 4, the 

number remaining at time "t" is given by 

t n = n exp (- -). 
0 T 

( 18) 

The' time 't' and distance x are related by n=~ET so that Equation (18) 

can be rewritten as 

n = n exp (- .! , ) . 
0 (I) . 

( 1 9) 

where the definition of w' as given in Equation (17) has been used. 

The number of electrons ·which end their path in the range dx is 

given by 

dn d -X 
dx 

no x 
exp (- -, .) dx. 

(I) (I) 
(20) 

The total distance drifted by the particles which are trapped before 

reaching the anode is 

x dn 
J ox dx dx 
0 

Thus, 

fxo no x 
x - exp (- - ) dx o w w' 

X 
exp (- w' ) x I x o 
· <- .!.,>2 <- ;,- nJ o ~ 

(I) 

jo dn - x- dx 
. o dn 

X X 
n { w ' ( 1 - exp (- __£) - x exp (- .Jf) } . 

o w' o w . 
(21) 
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From Equation ( 19), the total 

particles which reach the anode is. 

xo 
x n exp (- -;-). 

0 0 w 
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distance drifted by 

(22) 

From Equations (21) and (22), the mean distance drifted by an electron 

is given by 

xo 
x = w (1- exp (- -,)). 

w 
(23) 

If d is the length of the crystal, the ratio 111 of the charge passing 

through the electrometer, n0 e x/d , to the charge released, n0 e, is 

given by 

w' xo 
111 = d (1- exp (-WI)). (24) 

This formula has been derived by Hecht (12). 

The above equation can be used to derive the net charge flow in the 

external circuit for the simple case described above. However, in 

reality the relation between measured charge and the charge released is 

complicated by the penetration of light into the crystal. The 

discussion which follows is based on one given by Van Heyningen and 

Brown (13). 

For light pulses of N0 total photons incident upon the crystal, the 

number actually entering the crystal is N0 (1-R) where R is the 

reflection coefficient. The light intensity at a depth x can be 

expressed in terms of the incident intensity and is given by 



I I exp(-a.x) 
0 

N (1-R) exp (-a.x), 
0 

24 

(25) 

where a. = absorption coefficient for a given wavelength. From Equation 

(25) the number of photons actually absorbed within the crystal in the 

interval x to x + dx is 

dN a. N (1-R) exp (-a.x) dx. 
0 

(26) 

The quantum efficiency, nT, or the number of free electrons, dn, 

produced per absorbed photon for the interval dx can be written as 

and 

dn nT a. N0 (1-R) exp (-a.x) dx. (27) 

Integrating (27) from o to d, one gets 

(28) 

where n is now the number of electrons released within the crystal. 

The charge flowing in the external circuit is given by 

Q nq (29) 

where ~ is a saturation factor defined as x/d SUCh that X iS the average 
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electro~ displacement, equaJ_ to the total displacement X of all the 

electrons divided by n electrons. -The factor ~ takes into account the 

mean range of the electron and the finite depth of the optical 

absorption. 

To derive ~ one proceeds in a manner similar to that used earlier 

(Equations 19-24) for the simpler case in which n0 electrons were 

released a distance x0 from the anode. The problem encountered here is 

somewhat more complicated since the electrons are, in reality, released 

at all depths throughout the crystal. The total displacement X consists 

of two parts; x1 due to electrons trapped in the crystal volume and x2 

due to electrons collected at the 'anode. Of the ~n electrons released 

within the interval x to x+dx, a number d(~n') will be trapped in the 

interval x'' to x'+dx' (Figure 5). Following from Equation (20), 

d(~n 1 ) 
~n 

w' 
(x'-x) exp [- , J dx';x 1 >x. 

w 

Integrating the following expression over all values of x 1 gives 

~x1 J~<x'-x)d (~n') 

Jd(x 1-x) ~~ exp[- (x~:x)] dx 1 ;x'>x 
X 

w~~n [1 - d-x+w'exp [- (d-x)]] 
WI WI ' 

(30) 

the contribution to x1 coming from electrons released in the interval x 

to x+dx which are subsequently trapped in the crystal volume. Analogous 

to Equation (22), for the simple case above, the contribution ~x2 to x2 
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which comes from the electrons released between x and x + dx which are 

collected.at the anode is given by 

~n (d-x) exp [- (d~x)]. 
w -

( 31 ) 

Equations (30) and (31) were obtained assuming all the electrons (~n) 

were released in the interval x to x+dx. However x can take all values 

between o and d. Replacing the ~ 1 s by differentials, using equation 

(27) for dn and integrating over O~x~d gives 

I d-x+w 1 [- ( d-x)] x1 w 1 [ 1 - -- exp dn 
w1 w' 

w'nT a N0 (1-R) Jd[exp(-ax)][1 - d-~~w'exp [- (d=~)]]dx. (32) 
0 

Similarly 

nTaN (1-R) Jd exp(-ax) (d-x) exp[- (d-~)]. 
0 0 w -

The total displacement X is the sum of x1 and x2 giving 

X I N ( 1 R) Jd ( ) Jd ( ) [ ( d-x)] w nTa 0 - dxp -ax dx- w1nTaN0 exp -ax exp -w-1- dx. 
0 0 

So, 

X 
2 

n N (1-R)[w1[1- exp(-ad)] - wl a exp(-ad) + 
T o _ 1-aw 1 

2 w' a 
d exp (- -~ 
w 

1-aw 1 

Dividing X by the total number of electrons released one gets 

J. 

(33) 
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w' a. exp(- ~ ) X w' t.>' « exp(-a.d) w' 
x "' - = 1 ( d) [ C1-exp ( -a.d) - + ----::~--:--...;..;.._]. n -exp -a. 1 -a.w' 1-a.w' 

(34) 

and consequently, 

, a.w'exp(- ~ ) 
1jJ = ! 1 ( ~) [ 1_ exp ( -a.d) + w' ] 

d 1-exp(-a.d) d 1-a.w 1-a.w.' • ( 35) 

Taking the limit of 1jJ as a. ~ ® which corresponds to all the light being 

absorbed at X=O gives 

w' d 
1jJ = d [1-exp (- w')], (36) 

which is in agreement with Equation (24) obtained for the simpler case 

above. 

Taking the limit as a.~o corresponds to uniform absorption. In this 

limit 1jJ becomes 

w' d 
1jJ = d [1 -w'/d (1-exp(- -,)]. 

w ' 
(37) 

This case is of particular interest in this study since the experimental 

measurements were made in the samples having small optical densities and 

thus correspondingly small absorption coefficients. In addition, for 

small electric fields, since w<<d, 1jJ is further approximated by 

x w' 
1jJ = d - d" (38) 

The photocurrent is therfore given by 
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I (39) 

where N0 is the number of photons incident on the crystal per unit 

time. This can be rearranged to give 

where 

n = n (1-R) (1-exp(-ad)) 
T d 

w = w'-. 
0 v. 

(40) 

In this form all of the measurable quanti ties are on one side of 

the equation and nw0 , the photoresponse of the crystal for a given 

wavelength, is on the other. It should be noted that the magnitude of 

the photoresponse from a center is expressed as the product nw where n 
0 

is the quantum efficiency per incident photon and w is the mean range 
- 0 

of the free electron per unit applied electric field. 

It should be emphasized that the above analysis is simplified. 

Even so, it provides a picture in terms of which the photoconductivity 

observed· from F-centers in alkali halides and related materials can be 

understood. This study is interested principally in the study of 

photoconductivity originating from F-type centers as a meaningful way to 

investigate the electronic structure of the defects. For these purposes 

the above development proves quite satisfactory and is directly related 

to our present work, viz, the photoresponse from thermochemically 

reduced MgA1204 as discussed in Chapter V. 
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Section B 

ns2 Ions in Alkali Halides 

A major portion of this dissertation is concerned with the studies 

of optical properties and ionic motion of Cu- ions in Sodium Chloride. 

Optical absorption, isothermal annealing, thermoluminescence and optical 

bleaching experiments were performed to gain information about this 

impurity related defect. Cu- is an ion with two electrons in its 

outermost 4s shell and thus it is isoelectronic with those ions having 

ns2 electron configurations. In this section a survey of different 

experiments and proposed theories regarding the absorption of ns2 type 

of ions in alkali halides will be presented. Such a review is necessary 

to relate the optical absorption properties of Cu- in alkali halides 

with those of other ions having the same outermost electron 

configuration. 

Among the ions with s2 configuration, Tl +(6s2) in alkali halides 

has been investigated in details. Seitz (14) was the first to present a 

detailed analysis of Tl+ absorption in alkali halides. The next section 

will examine Seitz's model regarding Tl + absorption in halides and 

compare the results with experiments. 

Optical Absorption of Tl+ 

The absorption spectrum of Tl + in KCl is shown in Figure 6. The 

spectrum consists of two parts, one part characteristic of the pure 

substance (halide host), and the other part characteristic of the 

impurity ion Tl +. The latter component is weaker and lies on the long 

wavelength side of the former as shown in Table I. The first 
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TABLE I 

POSITION OF THE ABSORPTION PEAKS IN VARIOUS ALKALI 
HALIDE-THALLIUM PHOSPHORE$ IN ELECTRON VOLTS 
(A, B, and C REFER TO THE PEAK OF FIGURE 6) 

NaCl 
KCl 
RbCl 
CaCl 

LiBr 
NaBr 
KBr 
RbBr 
CsBr 

Lii 
Nai 
KI 
Rbi 

First 
Fundamental 

Peak 

7.82 
7~60 
7;39 
7;63 

6.68 
6.49 
6~58 
6;43 
6; 61 

5.59 
5~39 
5.63 
5.55 

A B c 

4.87 5.80 6.20 
4~92 5~90 6~30 
4;98 5;94 6;40 
4.90 5.90 6~30 

4.63 5.72 
4;73 5;88 
4; 77 5;82 
4;69 5.76 

4.22 5.28 
4;30 5;23 
4;32 5;15 

-------------------------------·------------------------·----
Source: F. Seitz ( 1 4) 
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fundamental peak corresponds to the excitation of an electron to the 

excitation levels which lie below the conduction band. The positions of 

the other three bands named A, B, and C in Figure 6 shift only slightly 

as the alkali or halogen ions are inter~hanged. For example, the shift 

is only about 0. 7 eV, toward the red, in passing from chlorides to 

iodides. In contrast, the fundamental absorption peak shifts by 2. 1 

eV. This invariance in the peak positions dictates the view that these 

three peaks correspond to absorption by Tl+ ion and this was the 

hypothesis used by Seitz. A possible alternative of the transfer of an 

electron from a halogen ion to a neighboring Tl + ion giving rise to 

these bands was rejected by Seitz since the peaks show none of the 

doublet structure associated with the doublet state of a halogen atom. 

The analysis of the Tl+ absorption bands due to Seitz is based upon 

+ the positions of the energy levels of the free Tl ion and upon the 

expected modifications of these levels when the ion is in crystal (see 

Figure 7). 

On the left hand side of Figure 7 are drawn the free ion states, as 

determined from the spectroscopic measurements. The ground state is1s0 , 

and there exists an excited state multiplet made from a 6s6p 

configuration. When the Tl+ ion is placed in the crystal, all of the 

free Tl + states are raised in energy by the Madelung field of the 

surrounding ions. This raising is more pronounced for the lowest level, 

and becomes less important as the electron goes to higher levels where 

it comes more and more into the field of the next nearest positive ions. 

In addition to the raising of the levels, splitting of some 

degenerate levels due to the crystal field also takes place due to the 

Oh symmetry of Tl + in the crystal. States with higher than threefold 
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degeneracy are split. Thus on the right hand side of Figure 7, 3p2 

(j=2) free ion state splits in to a doublet. Symmetries are denoted by 

the point group notation of the lattice (r). 

1 re -+ 3r 0 ·(A Band) 
1 4 

1 r~-+ 1r; (C band) 

1 3 ° 3 ° r~ -+ r 3, r 5 (B band) 

Seitz suggested the C and A bands bands are allowed by the spin-orbit 

1 1 0 3 0 
coupling and are caused by the transitions from r1 e to r 4 and r4 

respectively. 3r4 ° state will have some residual triplet character, 

while the 1r: will be mainly singlet. Since pure singlet-triplet 

transitions are forbidden, C should be a stronger absorption line than A 

and this difference in intensity is observed. Seitz assingned the B 

band as the transition from the ground state to either 3r3o or 3 r5 °~ 

Transitons to these states are forbidden in the free ion but lattice 

vibrations may make them weakly allowed in the crystal. This suggestion 

is consistent with the strong temperature dependence of the B band (15). 

After studying the observed transitions of Tl + in KCl, let us 

discuss the essence of several theoretical calculations to predict the 

energy levels of Tl + in the halide host lattice. The situation is 

complicated because the Tl+ ion itself has many electrons, and exchange 

and spin-orbit effects must be considered. For a free Tl + ion, the 

effect of the exchange and the spin orbit coupling in the 6s6p 

configuration split this level into four states - as pointed out by Knox 

and Dexter ( 1 6) • In the case in which both exchange and spin orbit 

effects are important, neither the LS or jj coupling approximations can 

be used and the Hamil toni an submatrix must be diagonalized exactly. 

This procedure yields, in the notation of Condon and Shortley (17), the 
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following energies relative to the 1s0 ground state: 

wl = w - G -
0 1 z;;p 

z;;/4- [(G1 + 1/4 2 + 1;2 A 2 z;; 2 j /2 ( 41) w2 = w - z;;p) 
0 p 

w3 = W - G - z;; /2 
0 z;;l p 

+ 1;4 z;; )2 + 1;2 A 21;2 jl2 w4 = W -, + [(G 
0 1 p p 

In the LS limit, the states w1, W2, W3, W4 will go into the states 

3 3 3 1 P0 , P1, P2, and P1 respectively. G1 and z;;P are the, exchange and 

spin orbit energies respectively as defined by Condon and Shortly 

( 17). A is a parameter, introduced by King and Van Vleck (18) which-

allows for the possiblity that ~P and 3p radial functions may differ. 

The ratio of the "singlet" and "triplet" oscillator strengths is 

given by 

(42) 

where 

Here E3 and E1 are the transition energies to 3p1 and 1P1 states (A and 

C band transition energies) 
3f 

respectively. In the LS limit, 

and --1 +o. In the jj limit z;;p>>>G1 
f ' 

3f E3 
and -- + 1;2-- if A = 1 • 

~ f E1 
Thus the oscillator strength ratio may be a sensitive test of 

computed wavefunctions. By deriving the values of W0 , d1, z;;P and A as 

demanded by experiment, comparison of these values yielded by calcula-



36 

tion can be made. Table II shows the computed and experimental values 

of the parameters for free Tl+. When the Tl+ ions is in the crystal the 

approach to calculate the energy parameters to get the triplet to 

singlet oscillator strength becomes difficult. Sugano (19) analysed the 

spectra of s2 ions in the crystal. He accepted Seitz assignments of the 

A,B, and C bands and proceeded by means of a molecular orbital model to 

derive a relation for the ratio of the C-band dipole strength to the A­

band dipole strength [( 1f/3f) E3/E1J given by 

1 f/3 E3/E !! R 
f 1 

where 

2 1;. 
4-2x+[6-2(2x-1) ] 2 

2 I ' 2+2x-[ 6-2 ( 2x-1 ) ] 2 
(43) 

(44) 

Thus by simply measuring the positions of A,B, and C bands, the dipole 

strength ratio using the Sugano formula can be predicted. Fakuda (20) 

and Mabuchi et al. (21) carried out such computations for 14 impurity 

systems involving In+, Tl+, aa+, Pb++ and Sn++. Their results as shown 

in Figure 8 are in remarkably good agreement with the experiment. Since 

Sugano formula is independ€nt of the representation and can be derived 

directly from the results of Equation (41), the values of W0 , 

~p' and a1 can be calculated and compared with those derived from the 

positions of the A, B, and C bands. In KCl:Tl, W0 = 5.82 eV, a1 = 0.25 

eV and ~ = 0.67 eV. From Table II the following points are noted: i) 
p 

the reduction in W0 can be understood by the effect of the Madelung 

field which is expected to raise the ground state by more than it does 
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TABLE II 

COMPARISON OF THE ENERGY PARAMETERS FOR FREE Tl+ WITH THOSE 
OBTAINED BY SUGANO FORMULA WHEN THE ION IS IN KCl LATTICE 

Parameters Sugano Formula 
Tl+:Kcl 

5.82 eV 
0;25 eV 
0.67 eV 

Free Tl+ 
(experimental) 

8.19 eV 
1 .05 eV 
1.015 eV 

------------------------------------------------------------------------
Source: w .B. Fowler ( 35) 
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the exci teet states and thus decreases the transition energy; ii) 

reduction in 1;P (also found in Ag 0 , Cu 0 in alkali halides) is mainly 

due to the Tl + wavefunctions becoming more diffuse probably through 

configuration interaction or · mixing with the state responsible for D 

band. Knox ( 22 ) showed that such a mixing is large; iii) 

e2 2 2 - R (2) R (1) r 1 r 2 dr1dr2 r12 s P 
G1 is the exchange 

integral involving matrix elements of the s and p functions with the 

coulomb interaction and is sensitive to the overlap of these 

functions. A sizable reduction in this overlap may be achieved by 

mixing the atomic p state with more diffuse states. 

+ From the above considerations, it appears that in Tl absorption, 

exicted state wavefunction of Tl + in the crystal are different from 

those when the ion is free. Knox (22) considers this to be a possible 

effect of the D band (5.50 eV) on the other three absorption bands 

discussed so far. 

Another feature of interest in Tl+ absorption is the existence of 

structure in the A and C bands. For example, Yuster et al. (15) found 

that C band in KI:Tl has three components. However the absorption 

spectrum of Cu in alkali halides which will be discussed next, does not 

show such fine structure. 

Sakoda et al. (23) have done molecular orbital calculation of the 

electronic structure of Tl+ in KCl. Their calculation is in reasonably 

satisfactory agreement with experiment for the A, B, and C band energies 

as shown in Table III. 

So far among the s2 ions, Tl+ has been discussed. Work on other s2 

ions . in alkali halides has been pursued by several investigators 

( + + 2+ + (20,21 ,24) .- Their work shows that these ions Ga , In , Ge , Pb , 



TABLE III 

VALUES OF PARAMETERS W0 , G, ~ AND OF ENERGIES OF THE A, B, 
AND C BANDS IN FREE Tl+ AND KCl:Tl+ (IN UNITS OF eV) 

40 

Paramters Experimentally derived 
free Tl+ KCl:Tl+ 

MO Computation 
* 

wo 8.180 5.875 5.96 
G 1.008 0.28 0.32 
~ 1 ~ 015 . 0~69 0~46 

EA 6.47 5.03 5.30 
EB 7~68 5.94 5~87 

Ec 9~38 6~36 6~39 

------------------------------------------------------------------------
* Obtained from the MO Computation by Sakoda et al. (23). 

Source: Sakoda et al. (23). 
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Sb3+, Bi 3+) behave in a way similar to Tl + in alkali halides. 

Three bands n~med A, B, and C are observed due to ns2 +nsnp transitions 

of those ions. 

Having discussed the absorption due to ns2 positive ion impurities 

in alkali halides, the next section will describe the absorption due to 

Cu- ions in alkali halides and examine whether Cu- ·ions in alkali 

halides behave in a similar way like other ns2 ions or not. 

Section III discusses the different methods of formation of Cu-

ions in halides and Section IV will discribe the essential features of 

Cu- absorption. 

Production of Cu~Centers 

Cu-- centers can be produced in alkali halides by; a) electrolytic 

+ coloration (2) b) x-irradiation at room temperature of Nacl:Cu crystals 

(3). In electrolytic coloration, NaCl:Cu+ crystals can be colored using 

a pointed cathode with an applied voltage of 450 - 470 V in a furnance 

at a temperature of 350 -500°C. After coloration, the crystal contains 

Cu- and F-centers (an F-center is a sin~le electron trapped at a halide 

ion vancany) • The process of Cu- formation involves the movement of 

copper ions from the cation to the anion sublattice. In electrolytic 

coloration the crystal is heated at a temperature where appreciable 

ionic motion can occur. The mechanism of Cu+ + Cu- conversion has been 

clarified by Melinkov et al. (25) and by Baranov et al. (26). Melinkov 

et al. suggested that formation of Cu- center involves a stage in which 

Cu 0 or Cu + is in interstitial position. In alkali halides containing 

+ Cu , the presence of ·interstitial ions has been confirmed experimentally 

(27). 
0 

Therefore Cu atom is also expected to be in an interstitial 
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position. It is suggested that the interstitial and diffusible Cu 0 

traps an electron forming interstitial Cu- which subsequently replaces 

the halide ion, the crystal being heated to a high temperature where 

appreciable ionic motion of the host lattice will occur, for the 

electrolytic coloration. Cu- centers are formed at anion sublattice in 

addition to F centers also formed during this process. 

Cu- centers can also be produced by x-irradiation of NaCl:Cu+ 

crystals at room temperature, and this method has been applied in this 

present work. Cu- and F-centers are formed after x-irradiation, but in 
..;. 

this case the mechanism of Cu+ + Cu conversion appears to be different 

from that in the case of electrolytic coloration. The mechanism of 

formation of Cu- centers in x-irradiated NaCl: Cu + crystals has been 

clarified by Melinkov and Baranov et al. (25,26). It is suggested that 

Cu+ ion in a cation site captures an electron to form Cu 0 which remains 

in the same cation sublattice. It is the movement of anion vacancies 

during irradiation that plays a key role in the formation of Cu-
0 

centers. Cu in the cation site combines with an anion vacancy to form 

0 0 1 
CuF-center in which the spin of the unpaired electron in Cu (4s 

electron configuration) is aligned in the direction of the combining 

anion vancancy as evidenced by - esr experiments. The sequence of 

formation of Cu- can be explained by the following steps: 

+ 0 
1. Cu k + e = Cu k 

0 + kT 0 + 
2. Cu k + v == Cu Va (Cu°F-center) a k 

3. 
0 

Cu F + e = Cu a vk 

4. Cu VK 
kT Cu + v == a a a 

where the subscripts k and a refer to a cation and anion site 

respectively. v+ and v- refer to anion and cation vacancies. F-centers 
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are produced by the well established radiolysis mechanism by which 

interstitial chlorine atoms and F centers are formed in the crystal. 

The roles of interstitial chlorine and F centers regarding the thermal 

annealing of Cu- centers during which the crystal can be brought back to 

the preirradiation state is the aim of this present study. The 

intepretation of the experimental results will be made in Chapter IV. 

Cu- Absorption in Alkali Halides 

NaCl: Cu- crystal exhibits three strong absorption bands at 288, 

232, 189 nm (2) called s1,s2 , and s3 bands and three weak bands at 272, 

269 and 259 nm. Figure 9 shows the absorption spectrum of a NaCl: Cu-

crystal at 15K and Table IV shows the peak positions and relative 

intensities of the Cu- absorption bands in NaCl, KCl and KI at 15K. 

When the crystal is Y-irradiated at room temperature, Cu- absorption 

bands are at 292 (4.24 eV), 278 (4.46 eV), 258 (4.80 eV), and 234 nm 

(5.30 eV) in addition to the broad F-band peaking at 460 nm as shown in 

Figure 10 (3). Each of the two prominent bands at 288 and 232 nm (292 

and 234 nm in Y-irradiated crystals) is found to have a symmetric 

gaussian shape without fine structure. These bands have constant areas 

for variation with temperature. Oscillator strengths of 292, 234, and 

189 nm bands at 300K were estimated to be 0. 025, 0. 096 and 0. 820 

respectively (2). 

Absorption of other s 2 ions in alkali halides, including Tl+, have 

2 been assigned due to the ns ~nsnp transition as discussed Section II. 

The analysis and proposed transitions of the Cu- absorption bands have 

been made by Tsuboi (28) and Kleeman (29). It is suggested that the Cu-

absorption bands consist of as 



?\ C:nm)-+ 
' . 

Figure 9. Absorption Spectrum of NaCl:cu- Crystal at 
15K. Five Weak Bands are Shown by.Arrows 
Source: T. Tsuboi (2) 
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TABLE IV 

PEAK POSITIONS AND RELATIVE INTENSITIES OF THE Cu­
ABSORPTION BANDS IN NaCl, KCl and KI at 15 K 

NaCl 

Band Peak Position 
(nm) 

308 
( 288 :) 287.1 

271.8 (272*) 
268;0 (269*) 
256. (256 ) 
242 

(232 *) 231~2 
189• 

Relative 
Intensity 
(nm) (nm) 

- 0.01 
1 . 
0.04 
0~08 
0~04 

0~03 

3; 91 
40 

KCl 

Peak 
Position 

* 301* 
286* 
280 

254* 
242* 
195 * 

45 

KI 

Peak 
Position 

348 
324.4 

300 

273 
263.8 

------------------------------------------------------------------------
* Measured at 77K. 

Source: T. Tsuboi (2) 
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observed for other s2 ions) and 3d104s2 -+- 3d94s24p(d-+-p) transitions. 

According to Tsuboi's assignment, A and B bands as seen in the 

absorption spectra of ns2 type of ions in alkali halides are too weak to 

be observed in NaCl:Cu-. The band at 288 nm {called s 1 as in Table IV) 

is assigned to be the C band ,(4s2 -+- 4s4p ) from the observation of 308 

nm band at the low energy side of this band. Two other weak bands at 

272 nm and 308 nm cannot be assinged to B and A bands since (1A the 272 

nm band increases in intensity with increase in temperature but unlike 

other s2 ions doped in alkali halides, the energy peak of this band 

shifts to high energy (ii) the energy separation between the 308 nm and 

288 nm bands is much smaller than the energy separation between the C 

and the A band for other s2 ions in alkali halides. 

Since the spectroscopic data for a free Cu- ion are not available, 

it is difficult to estimate the values of the Slater-Condon parameters 

and spin-orbit coupling parameters as has been done for Tl+ in Section 

II. Tsuboi (28) used the weak field approximation to speculate about a 

feature of the 3d 1 04s2 -+- 3'd94s 4p spectrum and thus to explain the 

origin of other bands. The weak field approximation is better for the 

Cu- ion in alkali halides than the strong field approximation, because 

the 3d inner-core orbital which is under the 4s2 shell will not be 

strongly affected by its ligand ions. 

3d94s24p configuration gives multiplets 3p0, 1, 2,3o1, 2,3, 3F2, 3,4, 

1 1 1 . P1, o2, and F3 ~ Band assignments are as follows: 

s2 band (232 nm): 1 s .... 
0 

1F 
3 (allowed by the cubic crystal field). 

s3 band ( 189 nm): 1 s .... 
0 

1p 
1 (dipole allowed, strongest intensity). 

[308, 269, 256, 242] nm: 1 s .... 3P1 ,3o1, 3o3,3F3,3F4 (spin-orbit allowed). 
0 
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The remaining band at 272 nm is suggested to arise from the transition 

3 3 3 1 to one of the forbidden states such as P0 , P2, o2, or F2 ~ Thus it 

is suggested that the 234 nm band, the intensity of which was used as a 

measure of the concentration of Cu- centers in the isothermal anneal 

experiments and the strongest 189 nm band arise from the transition to 

the ~F3 and 1P1 states respectively. 

The 3d94s24p configuration of a Cu- ion is qualitatively equal to 

the 3d94p configuration of a Cu+ ion (28), suggesting that the 

spectroscopic data of a free Cu + ion may be used to speculate the 

optical properties of a free Cu- ion. The energy diagram as shown in 

Figure 11 is qualitatively in agreement with Tsuboi's assignment of Cu-

bands. For example, the 1 P1 state is at the highest energy site, 

whereas the lower spin orbit allowed states are at the low energy side 

of· 1F3 states. However for a free ion, the intensity of d~p transition 

should be smaller than s~p transition (30,31). The bands at 234 and 189 

nm (assigned due to d~p transition) are however bigger in intensity than 

the 292 nm band (s~p transition). According to Tsuboi (28) such an 

intensity inversion is caused by the configuration interaction among the 

1 P1 and 1 F3 states of the dp configuration since these states contain 

the same 1T1u representation in the cubic crystal field. Other support 

for d~p transition comes from the observation of a large absorption band 

at the tail of the exciton band in LiCl:Cu+ (32) and NaCl:Cu+ (2). 

McClure et al. (32) have assigned this band due to 3d10~3d94p transition 

in Cu+. From a viewpoint of equivalence of the electron configurations 

between Cu+ and Cu- ions, it is believed that the observation of such 

a 3d~4p bands in alkali halide: Cu- crystals is plausible. It should be 

noted that no detailed theoretical calculation has been done to predict 
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the energy levels of Cu- ion in halides and thus the band assignments 

are difficult to make. 

The next chapter (Chapter III) discusses the details of the 

experimental procedures and apparatus used in this dissertation before 

moving to the presentation and interpretation of experimental results. 



CHAPTER III 

EXPERIMENTAL APPARATUS AND PROCEDURE 

Introduction 

This thesis is concerned with three projects. In the first 

project, the motion of Cu- ions, their correlations with F-centers and 

the solid state physics - + of Cu -+ Cu conversion process in NaCl was 

studied. In the second project, photoluminescence and photoconductivity 

from thermochemically colored MgA1204 (spinel) were examined. The third 

was concerned with the study of luminescence and photoconductivity of 

thermochemically reduced Al2o3 crystals which were subsequently annealed 

at high temperatures. In this chapter the details of the experimental 

equipment and procedures used in these projects are described. The 

general background of the experimental techniques will be discussed as 

it pertains to the present work. 

Sample Preparation 

The NaCl:Cu crystals used were grown in O.S.U's crystal growth 

laboratory by Mr. Charles Hunt. 0.05 mole percent of CuCl was added to 

the melt and the crystals were grown by Czochralski technique. Rods of 

NaCl:Cu were obtained and the samples used in the experimental work were 

cleaved from these rods. The approximate dimensions of the samples were 

1.50 mm by 15.0 mm by 6.50 mm. 

The MgA1204 crystal used was obtained from Dr. J.H. Crawford, Jr. 

50 



51 

(33) of The University of North Carolina at Ch~pel Hill. The dimension 

of the sample was 0. 75 mm by 14.0 mm by 9mm. The single crystal of 

spinel was cut from a boule grown by Union Carbide Corporation and 

subsequently colored by heating in an atmosphere of Al vapor. Impurity 

analysis of the sample showed the presence of Chrominum (4ppm), Iron (76 

ppm) and Copper (22 ppm). Uncolored samples also grown from Union 

Carbide Corporation, were. used for comparison. 

Al2o3 crystals used were· supplied by Insaco and grown by Adolf 

Miller Corporation. Three samples of Insaco crystals were used, one of 

which was unannealed and the other two samples were annealed at 1250°C 

and 1500°C, for 12 hours respectively. For the sake of convenience the 

samples will be referred to as Insaco 119 (unannealed), Insaco 119a 

(annealed) at 1250°C) and Insaco #9b (annealed at 1500°c) respectively. 

Optical Absorption 

In studying ·the . optical properties of point defects and impurity 

ions in insulators, optical absorption measurements are valuable since 

insulators with their large band gaps make the electronic transitions 

associated with impurities and lattice defects relatively easily 

observed.Electrons in crystal defects with energy levels in the band gap 

can be excited by absorbing light analogous to excitations of isolated 

atoms. The presence of the ions surrounding the defect modifies the 

electronic trans! tion by introducing phonon interactions and possible 

splitting of degenerate states by the crystal field, lifting to some 

extent forbiddenness of selection rules and reducing degeneracy. 

The measurements of optical absorption were made using a Perkin­

Elmer 330 spectrophotometer in the spectral range from 800 nm to 185 
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nm. The intensity· or the light passing through the crystal is a 

function of the crystal thickness. One usually measures the optical 

density which is given by the relation 

I 
OD 0 

log10 I? (45) 

where I 0 is the intensity of the reference light and I is the intensity 

of the light transmitted by the sample. The intensity of transmitted 

light is given by: 

I I 0 exp ( -at ) , (46) 

where t = thickness of the crystal and a = absorption coefficient. 

From Equations (45) and (46) the relation between absorption 

coefficient a and optical density 'OD' is given by 

-1 
em. (47) 

By measuring the absorption coefficient, one can estimate the 

concentration of absorbing defects through Smakula' s equation which is 

given by 

Nf 0.87 x 10~ 7 n a w (n2 + 2)-2 

' 
where N concentration of absorbing defects/cm3, n 

(48) 

index of 

refraction of ·the crystal, w = full width at half maximum (FWHM) of the 

absorption band, and f oscillator strength of the transition 
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responsible for the absorption. The factor o. 87 is applicable for a 

Gaussian line shape. If the band is phonon independent, the shape would 

be Lorentzian and the corresponding factor in Smakula's equation would 

then be 1.29. 

Thermoluminescence 
/ 

Thermoluminescence occurs when electrons (holes) are thermally 

released from a trap and radiati vely recombine with holes (electrons) 

trapped at another site. An example of this process is found in 

thermoluminescence involving F-centers (oxygen vacancies each of which 

has trapped two electrons) in a-Al2o3 

F + hv ~ F+ + e (conduction band) ~ F+ + e (trapped) 
e:(trapped) + phonons (2~0K) t e- (conduction band) 
e (conduction band) + F ~ F ~ F + hv (A=410 nm) 

where F+- centers are oxygen vacancies containing one electron only and 

thus positively charged with respect to the lattice and F* is the 

excited state of an F-center. The energy of emitted light is 3 eV (410 

nm) and this is the energy given off when the electron trapped at a 

different site recombines with F+ center at 260K. 

In TL, the light given off when electron-hole recombination occurs 

at some site is measured. The trans! tion energy observed will be 

characteristic of the recombination center whereas the light intensity 

is proportional to the number of released charge carriers. 

I 

Intensity of emitted light is given by 

- A dN nNvaA' dt 
(49) 
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where A = proportionality constant, N = number of trapping sites/cm3, n 

= number of carriers/cm3, v = velocity of the carrier, and a = capture 

cross section. Equation ( 49) shows that the light intensity, which is 

directly proportional to the rate of radiative recombination, reflects 

the concentration of thermally released carriers. 

The experimental apparatus for TL experiments utilized a. linear 

heating rate of the sample. In the TL runs from 77K to 300K, the 

heating rate was - 5 K per minute provided by the heater wrapped around 

an insert for the continuous flow system, while for TL runs above 300K, 

the heating rate was - 20°C per minute. In a typical TL experiment 

below room temperature the sample was cooled to liquid nitrogen 

temperature and then illuminated with unfiltered light from a 60 W D2 

lamp and then warmed up with a linear heating rate. The light given off 

from the sample was measured by a water cooled RCA 31034 photo 

multiplier. THe horizontal scale· of the X-Y recorder monitored the 

temperature at intervals of 10K. The Y motion of the recorder measured 

the intensity of the emitted light. Standard thermometric techniques 

were employed for monitoring temperatures. The cryostats were equipped 

with copper vs constantan thermocouples attached to the tail piece near 

the sample. For TL runs above room temperature as was required for 

NaCl: Cu samples, a computerized set up developed by Dr. s.w.s. McKeever 

(34) was used. The heating was provided by "Eurotherm" heater. 

Crystals were placed on the hot plate attached to a heat sink. An EMI 

photomultiplier tube measured the intensity of the light and the 

digitized system made it possible to record 200 data points while the 

smple was heated from room temperature to 500°C, the intensities being 

recorded at a temperature interval of 0.20°C. 
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The spectral dependence of the TL intensity was measured by 

dispersing the emission with a 1/3 m McPherson monochromoter between the 

sample and C31034 PMT. Another EMI photomultiplier monitored the total 

increase in TL intensity as the temperature was raised. When the 

temperature of the samples was close to the TL peak, the light emitted 

by the sample was quickly scanned by the monochromator at a rate of 200 

nm minute-1• The sample was heated by a rapid heating rate so that the 

temperature corresponding to the TL peak could be attained quickly. 

Photoluminescence 

A block diagram of the photoluminescence apparatus is shown in 

Figure 12. The exciting light was emitted by a 60W o2 Lamp and then 

focused on the sample with a lens. All of the lenses used in these 

experiments were made from S-1 UV grade quartz because of its flat 

response from 250 to 2000 run. Oriel G-522 series interference filters 

were used to select excitation energies of the luminescence of the 

sample. After exiting from the cryostat, the emitted light passed 

through sui table sharp cut filters to eliminate stray light. The 

emitted light was dispersed by a GCA McPherson 218 0.3 m monochromator 

with its slits set at 1.5 mm. The monochromator had a linear dispersion 

of 26.5A /mm and contained a gra~ing blazed at 3000A (other blazes were 

also available) with 1200 groves/mm. The dispersed light from the 

monochromator was detected by an RCA C31034 photomultiplier tube cooled 

to -30°C by a water cooled Pacific photometric Institute Thermoelectric 

Photomultiplier Housing Model 3463 powered by a power supply/temperature 

controller model 33. This PMT has a detection range from 200 nm to 900 

nm. The current from the photomultiplier was amplified and detected by 
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a Keithley 414S picoammeter. The output was fed into an Omnigraphic 

(X-Y) chart recorder. The recorder and the McPherson monochromator were 

synchronized to record signal strength as a function of wavelength. In 

another set up, the light from the o2 lamp passed through a Princeton 

Applied Research (PAR) mechanical light chopper before falling on the 

interference filter. The current from the photomultiplier tube was 

amplified by a PAR Model 181 current sensitive preamplifier. This 

signal was then fed into a PAR Model 128 A Lock-In amplifier. A 

reference signal from the mechanic.al chopper was used by the lock-in 

amplifier to produce a de output signal proportional to that part of the 

preamplifier signal which was synchronous with the chopper's signal. 

This output was fed into the X-Y chart recorder. 

In order to analyse the data, the response of the dection system 

had to be determined as a function of wavelength. The system was set up 

as in Figure 12 except that a 100 W Tungsten lamp was directed into the 

McPherson monochromator. The intensity of the light was recorded as a 

function of wavelength. At 5 nm intervals this resulting curve 

intensity was divided into the relative number of photons emitted by the 

lamp. The relative number of photons emitted by the lamp was calculated 

by· approximating the output of a blackbody at the filament. The 

response of the detection system (photons/sec) as a function of 

wavelength was determined and the results normalized. One such response 

curve for the detection system with the monochromator grating blazed 

at 3000'¥ is shown in Figure 13. The response of the luminescence 

detection system thus obtained was corrected by multiplying the emission 

intensity at a given wavelength by the corresponding ratio of 

(number of photons)/sec at that particular wavelength. system response 
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The temperature dependence of the photoluminescence was measured by 

an Oxford Instrument CF 201 continuous flow helium cryostat. The outer 

chamber of the cryostat was filled with dry helium gas and temperatures 

down to 10K could be obtained with the apparatus. Intermediate 

temperatures between 10K and room temperature were achieved by heating 

the sample with an automatic temperature controller. The temperature 

reading in the controller varied within ±0.5 K from the reading of 

copper vs constantan thermocouple which was attached to the tail piece 

near the sample. The reference jucntion of the thermocouple was 

maintained at 0°C. The intermediate temperatures between 10K and 300K 

were maintained for a few minutes to allow the system to come to thermal 

equilibrium before the varous measurements were recorded. 

In order to study the polarization properties of the luminescence 

in a Al2o3 , the set·UP is the same as in Figure 12, except a polariser 

was inserted between the sample and the monochromator. The transmission 

0 0 

axis of the polariser could be set at angles between 0 and 90 with 

respect to the C-axis of the sample. Polarised luminescence curves for 

different orientation of the transmission axis of the polariser were 

corrected for the inherent polarisation effect of the detection system, 

in which the polariser was placed between the lamp and the entrance slit 

of the monochromator. Intensity of the dispersed light as a function of 

0 
wavelength between ·300 nm and 530 nm at polariser angles between 0 and 

(at 
0 

intervals of 15 ) was measured. From the intensity vs. 

wavelength curves for different orientations of the transmission axis of 

the polarizer, the correction factors for the inherent polarization of 

the detection system as a function of the orientation of the polarizer 

transmission axis were obtained. 
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Excitation 

The excitation spectrum for a corresponding luminescence band was 

determined as follows: the light from a GOW D2 lamp was dispersed by 

the Mcpherson monochromator before falling on the sample. Suitable band 

pass filters corresponding to the wavelength of the luminescence band 

were inserted between the sample and EMI photomultiplier tube used for 

detection. The intensity of the emission at the peak wavelength was 

then obtained as the wavelength of the exciting light was varied. 

Since the intensity of the emission was measured at a set 

wavelength, the only changing factor was the power and the corresponding 

number of photons/sec incident upon the sample for a given wavelength of 

the exciting light. The exciting light from the D2 lamp was dispersed 

by the Mcpherson monochromator before entering a sodium salicylate 

detector whose output was directly proportional to the number of 

photons. The power of the dispersed light at a particular wavelength 

was measured by a Molectron radiometer placed at the sample position. 

From this information, corresponding number of photons/sec incident on 

the sample was determined. The corrected excitation spectrum was 

obtained by dividing the excitation intensities by the corresponding 

number of photons/sec falling on the sample. 

The set- up to study the temperature dependence of the excitation 

was the same as in photoluminescence measurements. 

Photoconductivity 

A block diagram of the apparatus used in photoconductivity 

measurements is shown in Figure 14. Incident photon wavelengths were 

varied from 200 to 350 nm at temperatures rang-ing from 77K to 295K. 
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Figure 14. Photoconductivity Set-Up 
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Light from a 60W D2 source entered the entrance slit of the 

monochromator. The dispersed light was focussed on the crystal. the 

incident light fell on the crystal of thickness d, between plane 

parallel electrodes. The crystal was placed in the cryostat and an 

electric field E = vld, was across the sample in a direction parallel to 

that of the incident light. A 300 V battery in the external circuit 

provided the polarizing potential. The signal was detected by Cary 401 

vibrating reed electrometer operated in either current or rate of charge 

mode. The reflection grating of the monochromator was blazed 

at 2000R • To maximize transmission, Corning glass filters with sharp 

optical cut off were used following the light source to eliminate higher 

orders from the incident light falling on the sample. 

60W D2 source was calibrated in a separate experiment by placing a 

Molectron 100 pyroelectric radiometer at the sample position. The 

radiometer was used to determine the power, in microwatts, of the 

incident light falling on the surface of the sample holder as a function 

of wavelength. The number of photons striking the front surface of the 

sample is given by 

PA 
n = he' 

where p = power measured 

speed of light. The number 

order of 1013 sec-1 at 

photons/sec striking the 

in J.l watts, 

of photons 

300 nm. 

sample as 

(50) 

h = Planck's constant, and c = 

falling on the sample was of the 

Knowing the relative number of 

a function of wavelength, the 

photoconductivity data in an experiment could be corrected according to 

the spectral dependence of the exciting system. 
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The photoconductivity measurements were made with the sample holder 

as shown in Figure 15. The sensitive electrode, g, made of copper foil 

0.05 mm thick, 3 mm wide and 3 mm long was connected to the 

electrometer. This electrode was electrically insulated from the copper 

tail of the cryostat, a, by a sapphire plate, h, 0.25 mm thick. The 

incident light passed into the crystal, e, through the front electrode, 

d, a phosphor-bronze screen of 0.55 mm diameter wire and 100 mesh. The 

screen was held against the crystal by a quartz plate, c, which was 

supported by phosphor-bronze springs. Sapphire plates, f, 0.25 mm thick 

were placed on either side of the crystal and the corresponding 

electrode to prevent charge from entering or leaving the sample. The 

sample was located in a copper chamber bolted to the tail of the 

cryostat. Dry helium exchange gas could be admitted to the chamber to 

produce good thermal ·contact. 

A shielded lead was connected to the phosphar-bronze screen 

electrode to a battery in the external circuit which produced an 

electric field of about 500 v/cm, in a direction parallel to that of the 

incident light. The direction of the applied electric field was 

reversed after individual measurements to prevent polarization effects 

in the crystal. 

The sensitive electrode was connected, by a shielded lead, to the 

input of a Cary 401 vibrating reed electrometer which was used in either 

the "rate of charge" or "current" mode. For the detection of small 

photocurrents (- 10-~ 4 amp) , the "rate of charge" method was used. The 

output of the electrometer was fed to an Omnigraphic 2000 X-Y 

potentiometric recorder. 

In the "rate of charge" method, the photocurrent corresponding to 



a 

b 

c 

d 

e 

f 

9 

h 

Sample Holder: a. c~yostat tail, b. mask, c. quartz, d. phosphor­
bronze screen, e. sample, f. sapphire plates, g. copper electrode, 
h. sapphire plate 

Figure 15. Sample Holder used in Photoconductivity Experiments 
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the incident light of a given 'wavelength is given by: 

dQ 
dt 
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( 51) 

where Q charge in coulombs, C0 =charge collecting capacitor= 1.9915 

x 10-11 farad, ~E =change in the recorder reading as a fraction of the 
r 

full scale times the electrometer range in volts, and ~t = time interval 

in seconds. Photocurrents measured in the rate of charge method were 

typically of the order of 1 o-15 amps. In the"current mode" of the 

electrometer, photocurrents as high as 10-12 amps were detected. 

The background drift current detectable was of the order of 5 x 

10-17 amps. The sensitivity of the apparatus fell off as the wavelength 

of the incident light approached 200 nm due to the fact that the output 

of the light source fell off rapidly in this region of the spectrum. 

X-Irradiation 

It was necessary to irradiate NaCl:Cu samples with x-rays at room 

temperature. 1. 5 MeV electrons (current = 10 ).lA) were deflected by a 

thick copper target (thickness= 1.5 em) before falling on the sample. 

The sample was mounted on a brass sample holder and was placed in air. 

The geometry of the set up was kept the same during subsequent 

irradiations to ensure the constancy of the dose. The sample was 

irradiated for 10 minutes at room temperature in the Van de Graaff set-

up. The irradiation dose for 10 minutes exposure was found to 

be - 6 Mrad by comparing the absorption co-efficients at the peak of the 

F band of two samples of pure NaCl having same dimensions in which one 

sample was irradiated in the VDG set-up for 10 minutes and the other was 
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exposed to 60c0 source for one hour, the dose from the 60c0 source being 

21 x 103R/hr. The details of the dose calculation in VDG set up will be 

explained in Chapter IV. 

Isothermal Anneal 

Isothermal anneal expermients were performed by placing the sample 

in an optical cryostat. The cryostat was then placed in the sample 

chamber of Perkin Elmer model 330 spectrophotometer. Heating of the 

sample was provided by a D.C. Power Supply operating at 1.5A. Once the 

desired temperature of the sample was obtained, absorption spectrum of 

the sample was taken by scanning the proper wavelength range. The time 

interval between subsequent scans was two minutes. Heater voltage was 

adjusted during the runs and the temperature of the sample was within ± 

0.2°C of the desired temperature at which the anneal experiment was 

performed. 



CHAPTER IV 

NaCl:Cu 

Introduction 

This chapter describes the optical properties and ionic motion of 

Cu- ions in NaCl. Cu- is isoelectronic with Tl+ type ions with ns2 

(n=4, 5, 6) electron configuration. The optical properties of positive 

ion impurities (e.g. Tl+) with ns2 electron configuration which are 

doped in alakli halides, have been well understood (35) although there 

are some unknown properties with regard to the absoprtion spectra of the 

individual s2 ions. Three absorption bands named A, B, and C have been 

observed in alkali halides containing Tl+, In+, Ga+, Pb2+, Sn2+, Ag- or 

Au- ions. These bands arise from ns2~ ns np transition of the impurity 

ion and can be identified in the absorption spectra. Additionally, an 

absorption band named D has been observed on the low energy tail of the 

i ' ' Tl+ In+, Ga· +, Pb+ or Sn2+ exciton band in alkali hal des conta1mng , 

ions (15,36) whereas two bands named o1 and D2 have been observed in 

alkali halides containing Ag- or Au- ions (37,38). The D band has been 

attributed to a perturbed exciton band, although its theoretical 

analysis has not been established. In case of Cu- ions, the band 

assignment becomes difficult since Cu- absorption spectra are quite 

different from the spectra of other s2 ions. Tsuboi (2) investigated, 

in details, the absorption of Cu- in NaCl and suggested that the 

observed Cu- spectra consist of the 4s2 ~ 4s4p (s~p) and 3d104s 

67 
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~ 3d94s24p (d~p) transitions. Lack of theoretical work on Cu- ions in 

alkali halide hosts has make the band assignments mainly qualitative in 

nature. However, the present work is concerned not as much with the 

assignment of Cu -- transitions in alkali halides but rather with the 

behavior of Cu-- centers on optical and thermal annealing and the 

- + mechanism which governs the process of Cu ~cu conversion in NaCl. 

Optical absorption, isothermal and isochronal annealing and 

thermoluminescence experiments were carried out but to understand the 

thermal motion of Cu- ions in a NaCl host lattice and the process by 

which the preirradiation state of the crystal is achieved. Before 

presenting the results of the different experimentations, however, it is 

necessary to explain how radiation induced defects such as Cu- ions and 

F centers are produced in NaCl and how these defects anneal thermally as 

evidenced from theromluminescence and isothermal anneal experiments 

performed by earlier workers. 

Cu- is highly unstable in the free state and cannot be doped 

directly into a halide lattice. In order to produce Cu-- centers in 

alkali halides, the host crystal is first doped with Cu+ ions in small 

concentrations and subsequent Y or x- irradiation at room temperature or 

electrolytic coloration of the crystal produces measurable Cu-

concentration of Cu- ions as evidenced from optical absorption 

measurements. 

Figure 16 shows the crystal structure of NaCl. It can be seen from 

the figure that each ion is surrounded by six ions of the opposite 

sign. There is a coulomb interaction between an ion at a particular 

site and all other ·ions in the lattice. This interaction gives rise to 

Madelung energy which is the largest part of the cohesive energy of the 
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Figure 16. Crystal Structure of NaCl 
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crystal. The crystal structure of NaCl is face-centered cubic with a 

basis consisting of an anion (Cl-) at (0,0,0) and a cation at (1/2a, 

1/2a, 1/2a), where a is the length of a cube side. Cu+ ions are doped 

into NaCl structure during the growth of the crystal by adding small 

amount of CuCl in the melt. cu+ being monovalent, occupies the 

substitutional cation site and does not require any charge 

compensation. The presence of Cu + ions in NaCl host is detected by 

optical absorption measurements which shows a band at 254 nm ( 4. 83 

eV). This band has been assigned to the d+p transition of Cu+ ions in 

the crystal. Fussgaenger (39) investigated the temperature dependence 

of the oscillator strength of Cu+ absorption and using his value Tsuboi 

(2) obtained the value of 0.020 for the 254 nm Cu+ band in NaCl at 

300K. One feature of interest regarding Cu + absorption is that the 

bands are nearly independent of the halide host and are rather far from 

the free ion values. In free Cu+ the 3d10+3d94s multiplet spans the 

energy range of 2.7 to 3.3 ev· and 3d10+ 3d94p encloses 8.3 to 9.2 eV 

(35) but in the crystal, Cu+ transitions take place over the spectral 

range from 4.70 to 6.2 eV. + Excitation in the 254 nm Cu band produces a 

single emission band peaking at 351 nm and with a half width of 0.27 eV. 

+ When NaCl: Cu crystals are x or Y- irradiated at room temperature 

or electrolytically colored, Cu- ions and F- centers are produced. 

The absorption spectrum of the x-irradiated or electrolytically colored 

sample shows the formation of new bands in the visible and ultraviolet 

region while the 254 nm band is no longer detected in these samples 

suggesting that Cu +- centers have been removed by these treatments. 

In x-irradiated samples, the broad band peaking at 470 nm is assigned 

to be due to F-centers and the UV bands at 292 (4.24 eV), 278 (4.46 
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eV), 258 (4.80 eV) and 234 nm (5.30 eV) are assigned to internal 

transition of the Cu- ions. The suggested mechanisms of production of 

Cu-- and F centers in NaCl need to be discussed at this point. To 

understand the recovery of the pre-irradiation state of the crystal by 

which the annealing of radiation induced defects (Cu-- and F-centers in 

this case) occur, it is important to know the mechanisms of formation of 

such defects in the lattice. 

The formation of F-centers in irradiated NaCl:Cu crystal is by the 

well established mechanism of radiolysis. In radiolysis defect 

production three steps are involved: (i) an electronic excitation 

resulting in the creation of polarized or charged electronic defect in 

the lattice, (ii) the conversion of this energy into the kinetic energy 

of a lattice ion in such a way that the ion moves and, (iii) the motion 

and stabilization of the displaced ion. The essential idea of the model 

stems from a characteristic of ionic crystals that may permit the 

production of directed motion (ionic) from a single ionization of a 

halide ion. This characteristic is the large amount of ionic relaxation 

that follows any electronic change and forms the basis of the model 

proposed by Pooley and Runciman ( 40) to explain the highly efficient 

defect production in alkali halides. They concluded that there exists a 

relation between electron-hole recombination and the production of ionic 

defects. When a hole is self-trapped, the two halide (Cl-) nuclei are 

much closer than are two normal ions. A recombining electron will 

produce an impulse pushing the two Cl- ions toward their normal lattice 

positons. The relaxation of the halides that occurs upon the electron­

hole recombination becomes large enough to cause a replacement collision 

to be propagated by halide ions along a close packed <110> direction and 
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efficient production of Frenkel pairs consisting of F and H 

<interstitial Cl0 ) center is achieved. 

The mechanism of production of Cu-:.. centers is more complex in x-

irradiated alkali halides at room temperature. Melinkov et al.(25) and 

Baranov et al.(26) investigated the production mechanism of Cu- and Ag--

centers in irradiated halides. Melinkov et al.(25) performed electron 

paramagnetic resonance and optical absorption experiments to study the 

formation of various silver centers which were produced during the 

radiation induced coloring of KCl :Ag crystals. Their investigations 

(25) were mainly concerned with the processes leading to the formation 

of Ag-a ions ('a' refers to an anion site) which replaced the anions in 

the KCl lattice (B centers). A four-stage formation mechanism of B 

centers (Ag- in an anion site) was proposed namely: i) formation of 

+ cation silver atoms Ag~ through electron capture by AgK ions, where K 

refers to a cation site; ii) migration of anion vacancies to Ag~ atoms 

and formation of Ag;-centers; iii) formation of Ag- ions through 

electron capture by Ag; centers; and iv) migration of cation vacancy 

from the Ag- center and formation of a B-center. Ag;-centers are an 

intermediate stage in the formation fof Ag-- centers. EPR and linear 

dichroism experiments were performed to establish the structure 

of Ag;-centers and to obtain information on the distribution of the spin 

densities. More particularl-y, it was shown that the degree to which the 

unpaired electron of the silver atom is shifted toward the anion vacancy 

amounts to about 30%. By capturing an electron, the Ag;-centers are 

transformed into Ag- ions, for which the anion site is most appropriate 

from the viewpoint of the Madelung energies involved. When this 

transformation process takes place at high temperatures the cation 
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vacancies neighboring the Ag- ions disappear and a-centers are formed. 

At low temperatures, at which the cation vacancies are immobilized, a aM­

center which has a cation vacancy in its neighborhood can be formed upon 

capture of an electron by AgF centers; such aM- centers .have been 

observed experimentally (40). These 8M-centers transform to 8-centers 

upon heating. In this model of the formation of Ag- centers ( 8-

centers), great importance is attributed to the cation Ag 0 atoms and to 

the AgF (on a cation site). 

experimentally (25,26,42). 

Ag;-centers have been detected 

The formation mechamism of Cu- centers in alkali halides appears to 

be similar to the one described above for Ag-- centers. cu;-centers are 

also formed in an intermediate stage in the production of Cu--centers in 

irradiated alkali halides. Optical absorption and emission bands 

of cu;-centers in KCl were identified by means of correlated EPR and 

optical investigations. 8aranov et al. (26) observed four optical bands 

(between 2.50 and 3.50 eV) due to cu;-centers and two absorption bands 

(between 2.40 and 2.80 eV) due to Cu~-centers~ They reasoned that the 

appearence of an anion vacancy near a Cu0 atom results in the splitting 

of each of the Cu~ absorption bands into two~ A similar effect has been 

found for the Ag;-centers (25)~ In the case of cu;-centers, 40% of the 

unpaired spin density is delocalised to an anion vacancy in the C4 

direction. During x-irradiation at room temperature a cu;-center is 

able to trap an electron by means of which Cu-- centers are produced in 

the anion sublattice. 

After Cu-- and F-centers are formed in x-irradiated crystals, the 

following questions may be addressed; ( i) what is the decay kinetics 

that governs the thermal decay of Cu-- centers? (ii) what is the charge 
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state of the impurity ion after the completion of the annealing 

experiments? (iii) what is the mechanism by which the pre-irradiation 

state of the crystal is achieved? Annealing of radiation induced 

defects in pure and doped halides has been studied by several 

investigators. Kleeman (43) investigated the dissociation of Ag--

centers by optical and thermal excitation in alkali halides. He 

concluded that the thermal or optical excitation causes the Ag-- centers 

to dissociate into neutral silver (Ag 0 ) atoms and F-centers. The Ag 0 

centers are bound to interstitial positions at low temperatures. At 

high temperatures interstitial Ag 0 - centers combine to form colloidal 

+ centers. The mechanism of Ag + Ag conversion by which the full thermal 

+ recovery of Ag ions could be achieved was, however, not investigated. 

In investigating the annealing processes leading to the recovery of 

the preirradiation state of irradiated alkali halide crystals, 

thermoluminescence (TL) has been proved to be a useful experimental 
I 

technique from which some conclusions about the nature of the defects 

induced by irradiation can be drawn. Since the sample used in this 

study contained F-centers in addition to Cu-- centers, it was necessary 

to know how TL glow peaks observed in alkali halides irradiated at room 

temperature are related to the annealing of F centers at the temperature 

maxima of the glow peaks. The investigations of 

thermoluminescence phenomena in irradiated alkali halides were aimed to 

establish in a few cases a correlation between the thermoluminescent 

processes and the thermal stability ' of the radiation induced color 

centers, mainly F-centers. There are differing points of view about the 

role of the F-centers in the thermoluminescent process. According to 

Jain and Mahendru (44,45), F-centers play the role of electron traps in 
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the thermoluminescent process. It has also been suggested that F-

centers act as a recombination centers for holes which are thermally 

released from traps (46,47). Holes which are trapped at different 

impurity sites during x-irradiation are emitted from the traps 

corresponding to the temperature maxima of the TL peak and radiatively 

recombine with the F-centers as evidenced from the spectral dependence 

of the emitted light. This model has been commonly used to explain the 

thermoluminescence observed in irradiated LiF. A quite different model 

has been recently proposed by Ausin and Alvarez Rivas (48,49). In this 

model the mobile entity in the thermoluminescent process is neither an 

electron nor a hole as in the previous models but halogen atoms· which 

are stabilzed at interstitial positions after irradiation. They are 

thermally released and migrate until they recombine with F-centers. At 

this stage there is an electron hole recombination and light is 

emitted. Mariani et al.(50) perfomed thermoluminescence experiments in 

KI, KBr, NaCl and NaF crystals irradiated at room temperature to gain 

support for this model. The main support for F + H recombination 

hypothesis came from the experimental observation of the variation in 

the thermoluminescence spectrum in each material with the irradiation 

dose. · Also, in the earlier models where F-centers are either electron 

traps or recombination centers, the existence of thermally stimulated 

currents associated with the thermoluminescence spectrum would be 

expected. These currents have not been observed in the investigation of 

thermoluminescence of irradiated halides either at room temperature or 

at liquid nitrogen temperature (48,49). Regarding the evolution of TL 

spectra with increasing F-center concentration, it was noted that in 

both the earlier models either each type of F-center or type of hole 
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trap might saturate but never is expected to vanish as the irradiation 

dose increases. The experimental observation of the removal of low 

temperature TL glow peaks with increasing F center concentrations can 

not be fit into earlier models for the reasons just stated. However the 

observed features (49,50) fit well into the model proposed by Ausin and 

Alvarez Rivas (49) in which the mobile entities for the 
I 

thermoluminescence process are interstitial halogen atoms. The 

variation in the thermoluminescence spectrum is caused by the formation 

of large interstitial aggregates (51). The situation is different 

regarding the thermoluminescence of alkali halides doped with impurities 

whose valence states vary by irradiation. In this case, 

thermoluminescence in which the mobile entities are either electrons or 

holes has been observed. This view has also been invoked to explain the 

thermoluminescence of NaCl:Cu+ samples irradiated at room temperature 

(52,53). Recent work on the thermoluminescence of NaCl:Mn samples 

irradiated at room temperature has shown that the glow peaks are 

simultaneous with the recovery of Mn2 t ions and annealing stages of F-

centers (54). This result has been ascribed to the simultaneous release 

of holes and intersti tials (Cl 0 ) trapped together somewhere in the 

lattice. From these considerations it is apparent that during the 

thermoluminescent processes in pure or impurity doped alkali halides 

irradiated at room temperature, the annealing of F- centers and the 

recovery of the initial charge state of the impurity ion can be 

explained by either the release of intersti tials or by electron hole 

recombination. Both these possibli ties will be important in 

interpreting our data on thermoluminescence and isothermal annealing 

experiments performed on NaCl:Cu- samples. 
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Thermal annealing of Cu- ions in electrolytically colored NaCl:Cu-

crystals has been observed by Tsuboi (2). He briefly examined the 

thermal stability of Cu--centers by warming the crystal to a temperature 

more than 200°C. It was observed that when the colored crystal was 

warmed up to 500°C the Cu- bands were completely annihilated whereas a 

band at 4.88 eV assigned to Cu+-center was detected. The experimental 

resu1ts indicated that Cu- ions were converted to the Cu+ ions by 

warming the crystal up to a very high temper~ture near the melting 

point. Our work will show that Cu+ ions can be recovered completely,at 

a much lower temperature in x-irradiated crystals. 

After presenting the required background to interpret the 

experimental results of the present work, the next section will describe 

the results of several experimentations done on NaCl:Cu- systems aimed 

+ at understanding the process of Cu- ~ Cu conversion. 

Experimental Results 

Optical Absorption 

+ The optical absorption spectrum of NaCl: Cu ( 0. 05 mole percent of 

CuCl in the melt) as measured by a Perkin Elmer model 330 

spectrophotometer is shown in Figure 17. The spectrum shows a broad 

band formed at 4.88 eV (254 nm) due to the presence of substitutional 

Cu+ ions in the crystal. When the photon energy exceeds 5.20 eV, the 

spectrum shows monotonic increase in the optical density till 185 nm. 

The thickness of the sample was - 0.03 em and taking the oscillator 

strength of the absorption as 0.020 at room temperature, it was 

estimated using Smakula's equation that the concentration of Cu+ ions 

was about 1016 per cm3. 
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The NaCl:Cu+ samples were x-irradiated in the VDG set up (discussed 

in Chapter III, Section VII) for 10 minutes at room temperature. An 

estimate for radiation dose received by the sample at room temparture 

was obtained by comparing the absorption coefficients at the peak of the 

F-band (460 nm) of two samples of pure NaCl in which one sample was 

irradiated in the VDG set up for one minute and the other was exposed to 

60co Y cell (Y cell dose- 21 x 103 Rad/hour) for one hour. Figure 18 

shows the absorption spectrum of these samples of NaCl. The absorption 

coefficient at 460 nm of the sample x-irradiated in VDG set up was 26.02 

cm-1 while the absorption coefficient (at 460 nm) was found to 5.30 cm-1 

for the other sample exposed to the Y cell for one hour. From this 

information the dose received by the sample in VDG set-up for 10 minutes 

irradiation at room temperature was calcualted to be - 6 M Rad. The 

growth curve of x-irradiated NaCl:Cu is shown in Figure 19 where it is 

shown that the optical density of 5. 3 eV band due to Cu- centers does 

not show appreciable change after 10 minutes of irradiation and this was 

the time chosen for subsequent irradiation of NaCl:Cu crystals. 

Figure 20 shows the absorption spectrum of NaCl:Cu, x-irradiated at 

room temperature which shows bands at 4.24 (292 nm), 4.246 (278 nm), 

4.80 (258 nm) and 5.30 (234 nm) eV all of which have been assigned due 

to Cu--centers formed in the crystal after irradiation. An off scale F­

band (F-band in NaCl:Cu peaks at 460 nm as observed during irradiation 

for less time) and a smaller M- band (peaking at 725 nm) were also 

detected. The 4.88 eV band present in the "as received" sample can no 

longer be detected in x-irradiated samples, showing that Cu+ ions have 

been converted into Cu- centers during the irradiation. Among the Cu­

bands detected, the band at 5.34 eV had the maximum intensity. 2n all 
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the subsequent experiments regarding the absorption of Cu- ions, the 

optical density of the band at 5.30 eV was used as a measure of Cu- ion 

concentration in the crystal. In order to find the correlation between 

Cu--and F-centers, optical bleaching experiments were perfomed. Figure 

21 shows the absorption spectrum of an x-irradiated sample which has 

been bleached by F-light (A = 460 nm) for one hour. The F-band peaking 

at 460 nm is not present in the bleached sample indicating that most of 

the F centers produced during irradiation have been destroyed. Figure 

21 also shows that the intensities of the 5.30 and 2.92 eV bands (due to 

Cu- centers) have increased by about 20% due to the optical bleaching. 

The thermal stability of Cu--centers was investigated by isochronal 

anneal experiments. In this experiment the sample was heated to the 

desired temperature for ten minutes, quickly quenched back to room 

temperature and absorption spectra were taken. Two sets of samples were 

used. In both cases the samples were x-irradiated, but for one set 

only, the samples were subsequently bleached with F-light for one hour 

to remove the F-centers. The concentration of Cu- centers in the sample 

without any F-centers showed a decrease as the temperature was 

increased, Figure 22. Till 80°C the decrease was slow and after 100°C 

Cu- centers were destroyed at a much faster rate and at 160°C all the 

Cu- centers were annealed completely. The growth of Cu +- bands as 

monitored from the absorption coefficient at 4. 88 eV is also shown in 

Figure 22, where it is seen that Cu+-band reappeared at 180°C. By 220°C 

full recovery of the Cu + ions was achieved. Heating the sample at 

temperatures greater than 220°C did not produce any change in the Cu~ 

band. Annealing of Cu --centers in the sample containing F-centers is 

also shown in Figure 22. In this case the concentration of Cu--centers 
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increased until 120°C after which it showed a rapid decrease in Cu­

concentration so that by 160° C almost all the Cu-- centers· were 

destroyed. Thermal annealing of M-centers (aggregate of two F-centers 

produced by prolonged irradiation) is also shown in Figure 22. After 

60°C the concentration of M-centers showed a rapid decrease and by 

120°C, were fully destroyed. F-centers were observed to be annealed 

completely near 150°C. An interesting point to note is that in the 

temperature range between 80° and 120°C where the F-and M-center 

concentrations showed a rapid decrease, a corresponding increase in the 

Cu--centers was observed. 

Isothermal anneal experiments were performed to investigate the 

kinetics of the thermal decay of Cu- ions. As can be seen from Figure 

22, the concentration of Cu- ions decreases sharply between 140° and 

150°C. Temperatures selected for isothermal anneal experiments were 

138, 140, 142 and 146°C which fall near this temperature range. Much 

attention was paid to the measurement of the sample temperature during 

these experiments. The sample was placed on the base plate of the 

cryostat finger and the top cover plate was bolted down to the base 

plate so that the sample was tightly secured between these two plates 

during thermal annealing. A copper versus constantan thermocouple which 

measured the crystal temperature was attached to the back of the sample 

holder. To ensure that the temperature indicated by the thermocouple 

was close to the temperature of the crystal, in a special experiment~the 

readings of two thermocouples, one attached to the back of the base 

plate and the other attached directly to the crystal surface, were 

compared. The difference between the two readings was observed to be 

less than ±0.02°C. In a typical experiment the sample was heated to the 
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desired temperatureand the absorption of Cu ions was observed as a 

function of time. The decrease in Cu- ion concentration was observed 

(by noting the absorption coefficient at 5.3 eV Cu- band) during each 

scan and the scans were continued till the Cu- ions were annealed 

completely. It took more than one hour for the Cu- ions to be annealed 

completely for the anneal temperatures at 138°, 140°C and 142°C while at 

146 °C the Cu- ions were destroyed by 20 minutes. Figure 23 shows the 

absorption spectrum of NaCl:Cu- (F-bleached) sample at t = 0 minute and 

Figure 24 shows the spectrum of the same sample at t = 90 minutes, the 

anneal temperature being 142°C. In Figure 23, Cu- band at 5.30 eV can 

be clearly seen while in Figure 24 this Cu- band is not present. The 

later spectrum shows an incr~asing background. Cu+ band at 254 nm does 

not appear in the spectrum at t 90 minutes ( T = 1 42 °C) and no other 

absorption bands were observed to grow during the anneal process. 

Figure 25 shows the absorption spectrum of the same sample which has 

been heated at 142°C for 90 minutes and then reheated to 200°C. The 

presence of 4.88 eV band shows the preirradiation state of the crystal 

(compare with Figure 17). The absorption spectra of the samples 

annealed at 130°, 140°, and 146°C show similar behavior in the sense 

- + that after the complete annealing of Cu centers, ~he Cu band did not 

reappear and subsequent heating at higher temperatures was needed for 

the recovery of Cu+_ions. 

In order to analyse the thermal decay of Cu- ions it was necessary 

to plot the intensity of 5.30 eV Cu- band as a function of anneal time 

for each of the anneal temperatures. Due to the presence of a sloping 

background and an accompanying shoulder near 4.84 eV ·the optical density 

of 5.30 eV band was subtracted from the sloping background and the data 
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points obtained from the resulting curve (between 300-200 nm) showed two 

Gaussian shaped bands at 5.30 eV and - 4.84 eV, the intensity of the 5.3 

eV peak being much larger than that at - 4.84 eV. The experimental data 

points were then fitted to a double gaussian curve in obtaining the 

"true" intensity of the Cu- band at 5.30 eV. A PDP 11/10 minicomputer 

-was used for the fitting of the data points. The function used to do 

this was, 

I 
E -E E -E 

K exp{-2.772 (-1--)2} + K2 exp{-2.772 (-2--)2} 
1 H1 H2 ' 

(52) 

where K1 and K2 are the heights at the band peaks, H1 and H2 the half 

widths, and E1 and_ E2 the photon energies at the peak heights for the 

5.3 and 4.84 eV bands respectiyely. E is the energy parameter and I is 

the absorption intensity. The program used is a Fortran library program 

on the University's IBM-370 computer. It uses their Patrn (OSU computer 

center classification) search routine and does a linear least squares 

fit. Figure 26 shows such a fit to the data points at t = 140°C, t = 36 

minutes, where the solid line is the computer fit and the circles are 

the data points. Since the band-width of the 5.3 eV Cu- band did not 

change appreciably with the anneal times at a particular anneal 

temperature, the peak height (computer fitted) at 5.3 eV band was taken 

as a measure of Cu- concentration. Isothermal anneal curves for the 

four temperatures are shown in Figure 27. The rate of decay for T = 

146°C is shown to be fastest as expected. In all the curves it is seen 

that there is an early transient decay which is approximately 

exponential. This is followed by a non-exponential decay at longer 

times. 
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Analysis of the Isothermal Decay Curves 

The isothermal decay curves for Cu- ions were analysed to gain 

information about the nature of the decay kinetics (i.e.whether first, 

second order, etc.). 

For a first order process, the rate equation for Cu- ion decay can 

be written, 

d[N] ---dt 

where [N] = cencentration of Cu- ions and K1 

Equation (51) yields 

[N] 

or 

ln[N] 

-K t 
[N ]e 1 

0 

(53) 

constant. Integrating 

(54) 

where [N0 ] is the c~ncentration of Cu- ions at t=O. From Equation (54), 

plot of ln[N] versus anneal time should yield a straight line. Figure 

27 shows such a plot from which it is seen that the thermal decay of Cu-

ions does not obey a first order kinetics. 

For a second order process, the rate equation governing the decay 

of Cu~centers can be written as (56), 

_ d[N] 
dt 

(55) 
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(55) gives after integration 

(56) 

The temperature dependence of K2 is given by 

(57) 

where ~E = thermal activation energy for the process. 

k8 Boltzmann's constant. 

Graphs of A-1 (A = absorption coefficient at 5.3 eV Cu- band) against 

time of anneal 't' were found to be linear (Figures 28,29 and 30). 

Since A = C[N], where C is a constant of proportionality, the decay of 

the Cu- ions is shown to be second order (bimolecular) over the measured 

temperature region. 

. 103 
A plot of lnK2 aga1nst -r- was also found to be linear (Figure 31) 

giving the thermal activation energy for the process. From the slope of 

1 o3 
lnK2 against .T graph, the activation energy was calculated to be 0.80 

± 0.05 eV. 

Thermoluminescence 

The role of thermoluminescence experiments in obtaining information 

regarding the annealing of radiation induced defects has been described 

in the Introduction • In an attempt to clarify the mechanism which 

governs the process by which NaCl:Cu- crystals are brought back to the 

preirradiation state, TL experiments were perfomed on x-irradiated 
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NaCl:Cu- crystals with and without (F-bleached) F-centers. TL 

experiments were performed in the temperature range 25° - 500°C with a 

linear heating rate of the sample. The TL glow curve of NaCl:Cu sample 

containing F-centers is shown in Figure 32. 

present but the main TL peak is at- 165°C. 

A small peak at 80°C is 

Figure 33 shows the TL glow 

curve of NaCl:Cu- after irradiation and F-bleaching. Intensities of the 

TL peaks observed are about an order of magnitude smaller than those 

observed in samples containing F-centers. Figure 33 shows the main TL 

peak at 162°C, with a shoulder near 125°C which is not present in TL 

spectrum of the sample containing F-centers (Figure 32). A small peak 

near 250°C is also detected in the F-bleached sample. 

The spectral dependence of the l~ght emitted at each TL glow peak 

plays an important role in knowing the nature of the defect being 

annealed. The spectral dependence of the 165°C peak in samples 

containing F-centers was measured for this purpose. The temperature 

corre-sponding to the TL peak was obtained quickly by rapid heating of 

the sample and once the desired temperature was obtained, the light 

given off by the sample was scanned quickly, the temperature being kept 

constant at the temperature of the peak. Figure 34 shows the spectral 

dependence of 165 °C TL peak in the sample containing F-centers. The 

spectrum consisted of a single gaussian shaped peak at 360 nm with no 

other bands observed in the_ range 300-500 nm. An attempt was made to 

investigate the spectral dependence of 162 and 125°C peaks in F-bleached 

samples, but due to the extremely small intensity of the light emitted 

from the sample (compare the vertical scales in Figure 32 and Figure 33) 

no bands could be detected at 125°C glow peak. TL peak at 162°C showed 

a very weak band peaking at 360 nm. 



8000 

6000 

_.J 

1-4000 

2000 

101 

OL-------~------~~----~------L-----~ 

0 100 200 300 400 500 
TEMP <DEG C> 

Figure 32. Thermoluminescence Spectrum (50°C - 500°C) of NaCl:CU­
x-irradiated at Room Temerature for 10 minutes 



102 

400 

300 

_j 

I- 200 

100 

OL---~--~--------_.------~~--------~------~ 

0 100 zoo 300 400 
TEMP<DEG C) 

Figure 33. Thermoluminescence Spectrum (50°C-500°C) of NaCl:Cu­
x-irradiated at Room Temperature and Bleached with 
F-light for One Hour 

500 



103 

1. 51 l 
I . 

NaClaCu ! 

I 
~ 

I 
"' 

1 ~ 
I 

• ft ' 
I .., 

I i I 

'" I ~ 1 c f I l :» I I l • , ' i Jl ' '- 0 t 
I 

a T•165C I 
I ! 

"' ' i > I 
I 

' t- I ' 
I .... ' l (/) 

, 
; z I 

I l LIJ .5 ' ' , t- \ 
z , 

' I .... , 
' I \ 

I \ , 

' 4 
I 

* ''· ............ 
0 

2 2. 5 a a.5 4 4. 5 

PHOTON ENERGY<aV> 

Figure 34. Spectral Dependence of 165°C TL Peak in x-
Irradiated NaCl:Cu 



104 

Discussion 

From the experimental results presented in Section II, it is seen 

that prior to thermal anneal and optical bleaching experiments, the 

sample contains Cu -- and F-centers. When the irradiated sample is 

bleached with F-light, most of the F-centers are destroyed and an 

increase in the intensity of the Cu- absorption bands is observed. This 

observation can be interpreted as follows: although during the 

irradiation most of the Cu+- centers are converted to Cu--centers, the 

interconversion process is not complete, i.e, after ir~adiation, in 

addition to the Cu -- centers at anion sites, the crystal also contains 
0 

Cu0 atoms [CuF-center according to Melinkov et al. (25)] located at 

cation sites close to an anion vacancy. When the sample is bleached 

with F- light, electrons released from F-centers are trapped 
0 

by CuF- centers forming Cu--centers, and accordingly, increase in 

intensity of the Cu- absorption band is detected. This process also 

produces anion vacancies in the crystal. Similar correlation between the 

Cu- and F bands is also observed during isochronal anneal 

experiments. It is seen that when the irradiated and bleached NaCl:Cu 

crystal is heated above room temperature, an increase in the Cu-

absorption bands is detected until 120°C, after which the absorption due 

to Cu- centers decreases sharply, with the major annealing step occuring 

around 150°C. In unbleached irradiated samples, Cu--centers are stable 

up to 120°C, but in this temperature range quick thermal decay of F-

centers has been observed. Like F-centers, M-centers also decayed 

rapidly i~ this temperature range. These observations suggest that 

electrons from tnermally excited F-(and M) centers are captured by Cu 0 , 



thereby increasing 

Cu-- centers 

105 

the Cu- absorption. As the temperature exceeds 

become thermally unstable and a corresponding 

decrease in the Cu- absorption intensity is observed. During isochronal 

experiments on NaCl:Cu samples which have been x-irradiated and bleached 

with F-light, such an increase is not observed. This indicates that 

electrons released from F-centers due to thermal excitation are probably 

responsible for the initial increase in Cu- absorption in irradiated 

0 samples seen near 120 C. Similar effects have been observed by Tsuboi 

(55) in electrolytically colored NaCl:Cu samples. In colored crystals, 

Tsuboi (55) observed that after F-bleaching, or warming the crystals to 

200°C, there was an increase in the Cu- absorption. However in 

electrolytically colored samples, the release of electrons from F-

centers and its subsequent trapping by Cu 0 occurs at a much higher 

temperature (200°C) indicating that Cu--and F-centers are more stable in 

electrolytically colored samples than in x-irradiated crystals. Though 

the end 

NaCl:Cu+ 

products in both 

mechanisms 

crystals are the 

of production 

electrolytically colored and x-irradiated 

same, namely Cu- and F- centers, the 

differ. In x-irradiated sample large 

concentration of chlorine intersti tials are present which seem to play 

an important role in the less thermal stability of these defects. 

Thermoluminescnece experiments show the presence of a peak at 

160°C. In irradiated crystals, a TL peak very close to this is observed 

in samples which have been bleached with F-light. The TL peak in 

bleached samples has much less intensity than that is observed in 

samples containing F-centers. Isochronal and isothermal anneal 

experiments have shown that the main annealing steps of Cu-- and F­

centers occur close to the temperature of the glow peak. This result 
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suggests that the glow peak near 160°C detected in irradiated and F­

bleached samples corresponds to the annealing of Cu -- and F-centers. 

Isochronal anneal experiments show that at or above 160°C, Cu-- centers 

are thermally destroyed in samples with and without F-centers. F­

centers are also observed to be annealed completely near 150°C. The 

detected glow peak occurs near 160°C thereby suggesting it~ origin to 

the recombination processes which are triggered by the same initial 

thermally activated process. The spectral dependence of the 165°C glow 

peak in samples containing F-centers is peaked at 365 nm. Delgado et 

al. ( 3) in their detailed investigation of thermoluminescent processes 

involved in NaCl:Cu- crystals irradiated at different doses at room 

temperature have also observed the same 365 nm band in all the Tl glow 

peaks below 200°C. The 365 nm band has been assigned by a recent model 

(48,49) to be due to recombination of chlorine interstitials with F­

centers. An alternative model ( 45,46) also exists where the annealing 

of F-centers has been described by the release of trapped holes at the 

temperature of the glow peak and its subsequent reombination with F­

centers. Delgado et al. (3) have also detected an emission at 445 nm in 

the glow peak near 147°C where 365 nm band is also present. The 445 nm 

band was assigned by them to be due to the recombination of VK centers 

with Cu- ions. In samples used in this present study, a 445 nm band at 

the temperature of Tl glow peak was not detected. In F-bleached samples 

the 365 nm band could be barely detected. This result strongly suggests 

that 365 nm band is caused by the annealing of F-centers. The greatly 

reduced intensity of the 365 nm band in the F-bleached sample is 

explained by the substant~al decrease in F-center concentration. If the 

365 nm band is due to the recombination of interstitial chlorine atoms 
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with the F- centers then the same release of chlorine intersti tials 

should also account for the recovery of Cu+ ions since, at this 

- + temperature of the glow peak, Cu ions are also annealed and Cu band 

observed to grow at this temperature. The role played by interstitial 

chlorine ions in the recovery of Cu- ions seems uncertain at this 

point. We suggest that the annealing of F- and Cu-- centers and the 

recovery of Cu + ions are due to the release of trapped holes at the 

temperature of the glow peak. The recombination of the trapped hole 

with the F-centers induces the 365 nm band while the appearance of Cu+ 

band can be explained by the capture of these holes by Cu 0 and Cu-

ions. An interesting feature of this result is that the hole center 

captured by Cu 0 or Cu- ions should be the same recombining with F-

centers in order to explain satisfactorily the same TL peak responsible 

for the annealing of both the Cu-- and F-centers. 

It is observed that during isothermal anneal experiments carried 

out for extended times, the absorption due to Cu+ ion does not occur 

even if all the Cu- centers are destroyed. Absorption due to Cu + ions 

starts growing near 160°C as discussed in the earlier paragraph. At 

temperatures below 160°C, Cu-~ Cu+ conversion is not observed. Thus 

the recovery of Cu + ion seems to be at least a t·wo stage process, these 

two stages being characterized by temperatures above and below 160°C. 

At and above 160 °C, Cu--centers are annihilated and converted back to 

Cu +. Below 160°C where the thermal decay of Cu-- centers could be 

measured, no growth in the Cu + ion concentration could be observed. 

Conversion of Cu- to Cu 0 seems to be a likely mechanism in this stage. 

Cu0 atoms in NaCl are known to give rise to two absorption bands in the 

vicinities of 3.76 and 3.26 eV (53). These bands in thermally annealed 



108 

samples used in the present work were not detected, but could have been 

marked by the background absorption. 

The decay kinetics of Cu- decay is shown to be approximately 

bimolecular (non first order). Thus there is no correlation between the 

trapping (due to impurities) and the recombining centers. The 

bimolecular decay kinetics indicates that during the heating of the 

samples, holes are randomly released from the impurity sites and combine 

with Cu--centers elsewhere in the sample. 

Thus it is shown in the present work that:(i) correlation between 

F- and Cu-- centers exists in the sense that transfer of electrons 

between these two centers can occur by thermal and optical excitations; 

(ii) annealing of F-and Cu~ centers occurs at the same glow peak; (iii) 

recovery of Cu + ions after heating the irradiated crystals is a two­

stage process; (iv) annealing of Cu-- and F-centers may be due to the 

release of trapped holes; (v) radiation induced defects (cu: and F· 

centers) are thermally more stable in x-irradiated samples than in 

electrolytically colored samples; (vi) The decay kinetics of Cu~ centers 

is a non-first order (bimolecular) process with an estimated activation 

energy of 0.80 ± 0.05 eV. 



CHAPTER V 

Introduction 

This chapter is concerned with the study of luminescence and 

photoconductivity in thermochemically reduced spinel (MgA1204). MgA1204 

is an oxide with complicated crystal structure, its parent oxides being 

MgO and A1203~ Broad band emissions from simple oxides such as MgO and 

CaO have been detected and attributed due to the luminescence of F-type 

centers (oxygen vacancies each of which has trapped two electrons). 

Such broad band emissions originating from anion vacancies in these 

oxides, have made them potential candidates for color center lasers. 

Thermochemically reduced oxides are of particular interest due to the 

large thermal stability of these defect centers. The purpose of the 

present work is to investigate whether emissions due to F-type centers 

are also present in complex oxides such as MgA1204. 

With a melting point of 2135°C, MgA12o4 is in many respects quite 

similar to alkaline earth oxides. However, its structure is more 

complicated giving rise to a greater variety of possible point 

defects. MgA1 2o4 is a compound of MgO and Al2o3 and Table V shows some 

of the physical characteristics of the crystal. 

The crystal structure of MgA12o4 is shown in Figure 35, and Figure 

36 shows the symmetry of the individual crystal elements. The magnesium 

ions are divalent with tetrahedral symmetry while the aluminum ions are 

trivalent with octahedral symmetry. The oxygen ions are divalent and 
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TABLE V 

PHYSICAL CHARACTERISTICS OF MgA1204 

A1 203 MgA1204 MgO 
--------------------------------------------------------------
Resistivity (OHM CM) 1016 1015 1014 

Tmelt ( oc) 2045 2135 2800 

Symmetry HEX. CUB. CUB. 

Band Edge (eV) 8.3 7.7 7.8 

Index of Refraction 1. 76 1. 72 1. 73 

Hardness 9 7.5 - 8.0 6 
--------------------------------------------------------------
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are shared by one Mg2+ and three Al3+ ions occupying 1/8 of the 

tetrahedral sites and Al3+ ions occupy 1;2 of the available octahedral 

sites (58). This structure allows a much greater assortment of defects, 

both intrinsic and extrinsic, than does the structure of MgO 

Spinel's relatively complex crystal structure makes the 

study.of defects considerably more difficult than for either a-Al2o3 or 

MgO. Consequently, although much is now known about anion vacancy (F­

type) centers and cation vacancy (V-type) centers in both MgO 

and a-Al2o3, relatively little is known about these centers in 

MgA12o4. Part of the problem is that synthetic crystals of spinel are 

usually non stoichiometric and the existence of two kinds of cations 

with different charge states allows for . many possible defect 

configurations, especially antisite defects. Another problem has been 

that the usual experimental techniques such as photoluminescence, 

electron spin resonance and photoconductivity have so far not proved 

very productive. 

Defect Creation in MgA1204 

Defects in spinel can be created by: i) irradiation with electrons 

having energies greater than 0.35 MeV (57); ii) irradiation with 14-MeV 

neutrons (4); iii) thermochemical reduction (58). Thermochemical 

reduction consists of heating a crystal in the vapor of its metal 

constituent. This process is familiar in the alkali halides in which 

nonstoichiometry is produced by an excess of cations. Among the 

alkaline earth oxides, thermochemically reduced materials are less 

studied, due to the high temperatures required. In this case it appears 

that nonstoichiometry is caused by oxygen ions migrating to the surface 
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and evaporating. In spinel, both magnesium and aluminum vapors can be 

used for the reduction process. The sample used in this present work 

was thermochemically reduced by Crawford's group (60) by heating close 

to 2000° C in an atmosphere of aluminum vapor. In order to obtain as 

high a vapor pressure as possible around the crystal, the aluminum was 

kept close to the center of the heating element. 

Defect Identification in MgA1204 

Figure 37 shows the optical absorption spectrum of MgA1 204 

irradiated with 14-MeV neutrons (4). An optical absorption band peakin 

at 5.3 eV (234 nm) has been assigned with some confidence to the F­

center (an o2- vacancy with two electrons) on the basis of a Mollwo­

Ivey-type relationship (4). Optical bleaching at 5.3 eV band in 

electron irradiated MgA1 2o4 (57) causes the 5.3 eV band to decrease 

while a band at 4.75 eV (261 nm) develops, which has been assigned due 

to the F+-centers (an 02- vacancy with one electron). A similar 

phtochromic effect is observed both in MgO (59) and a-Al2o3 ( 60,71 ) 

measurements. In the case of spinel, however, no photoconductivity or 

luminescence has so far been reported from F-centers even in 

thermochemically reduced samples. 

The effect of x- and Y-rays on spinel has been studied in detail by 

Crawford's group (62,63). In particular, a careful analysis was made of 

possible charge trapping sites involved in thermally stimulated 

processes occuring above room temperature. Woosley et al. (64) have 

reported a comprehensive study of the photoelectric effect and 

photoconductivity in untreated, particle irradiated and x-irradiated 

spinel. They concluded that no photoconductivity could be attributed to 
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the F-center in their samples. 

The anion-cation separation is comparable in spinel, a-Al2o3 and 

MgO although the F-center site symmetry is different in each material. 

In MgO an oxygen vacancy site has octahedral, Oh, symmetry, whereas 

in a-Al2o3 an oxygen vacancy site is surrounded by four Al3+ ions in c2 

symmetry. In spite of the different symmetry, F-centers in both 

materials have somewhat similar properties. Accordingly, there seems to 

be no obvious reason why the optical properties of F-centers in spinel 

should be significantly different from those in a-Al2o3 or MgO, apart 

from the lack of stoichiometry of the samples. 

This present work investigates the photoluminescence, thermolumi­

nescence and photoconductivity produced by-optical excitation of the 5.3 

eV absorption band in thermochemically reduced spinel. The measurements 

were made over the temperature range 80-300K. The results suggest that 

the F-center in spinel may luminesce and produce photoconductivity, 

although much less efficiently than in some other oxides. 

Experimental Results 

Optical Absorption 

Figure 38 shows the optical absorption spectrum of thermochemically 

reduced spinel. An optical absorption band peaking at 5.3 eV supports 

Bunch's assignment (4) of this band as due to absorption by F-centers. 

The sample was 0.074 em thick and had an optical density of 3.7 at 5.3 

eV. Taking the oscillator strength of the F-center absorption as -1 and 

the half width of the band as - 1 eV, the concentration of F-centers in 

the sample was estimated to be - 1o18cm-3 using Smakula's equation. 
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Photoluminescence 

Photoluminescence was excited using light from a 60 W Deuterium 

lamp used in conjunction with an interference filter with peak 

transmission at 225 nm. Luminescence was dispersed by a 0.8 m McPherson 

monochromator and detected by a thermoelectrically cooled RCA C31 034 

phtomultiplier tube. The luminescence band excited in thermochemically 

reduced MgA1204 is shown in Figure 39 in which the data have been 

corrected for the spectral dependence of the detection system. At 95K, 

the peak of the luminescence is at 2.69 eV (461 nm), but there is a 

clearly resolved shoulder at 2. 95 eV ( 420 nm). As the temperature 

increased above 140K, the peak of the band shifted to lower energy and 

by 250K was located at 2.58 eV (480 nm). A detailed plot of the peak 

energy versus temperature is shown in Figure 40. The high energy side 

band became less clear as the temperature increased and by 250K was not 

resolved, Figure 39. The band became narrower as the temperature was 

raised, so that at 95 K the halfwidth was 0.66 eV, whereas at 250 K the 

half width was 0.51 eV. The relative intensity of the luminescence 

increased between 95 140 K, but then decreased again as the 

temperature was further raised to 300K, Figure 39. 

For measuring the excitation spectra of the 2. 69 eV luminescence, 

the light from the deuterium lamp was dispersed by the McPherson 

monochromator before falling on the sample. Stray light was reduced by 

inserting a sui table sharp cut f 11 ter before the phtomul tiplier. The 

sample was supported in the exchange gas space of an Oxford Instruments 

variable temperature cryostat system. Figure 41 shows the excitation 

spectrum of the 2.69 eV luminescence at 160k, which is the temperature 

region where the luminescence intensity is maximum. Figure 41 shows 
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that the excitation spectrum has a peak at 5.3 eV slightly skewed 

towards the high energy and has a halfwidth of - 1 • 0 eV. There is a 

small secondary secondary maximum at - 4.45 eV but this is only - 7% of 

the main peak. No difference was observed in the _excitation spectrum 

for luminescence anywhere in the 2.69 eV band. 

The 2.69 eV luminesence intensity decayed rapidly once the 

excitation was removed. The lifetime was less than - 1 ms, which was 

the time constant of the detection system. There was no evidence of the 

long life time observed for F-center luminescence in some samples of 

thermochemically reduced MgO and a-Al2o3 (61,65)~ Although the lumine­

scence was readily detected, it was only one tenth as intense as the 2.3 

eV F-center luminescence in a comparably-sized MgO sample which 

contained approximately the same concentration of F-centers and which 

was excited with the same system. The 2. 69 eV band could also be 

excited very weakly in as-received material 

Thermoluminescence 

Thermoluminescence measurements were made using the same cryostat 

system as described earlier. In this experiment the sample was cooled 

to liquid nitrogen temperature, illuminated for a few minutes with 

unfiltered light from a deuterium lamp and then heated to room 

-1 temperature at- 0.1 K S • Figure 42 shows the thermoluminescence, TL, 

glow curve for the same sample used in the photoluminescence 

experiments, Figure 39. Figure 42 shows that there are TL peaks at 95K 

and 265K, with the latter peak considerably weaker than the first. No 

TL was detected from an as-received sample under similar conditions. 

The spectral dependence of the emission at 95K and 265K is shown in 
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Figure 43. At 95K, the emission consists of a band with a main peak at 

2.68 eV and with a half width of - 0.65 eV. A shoulder is visible 

at- 2.95 eV. At 265K the peak shifts to 2.57 eV and the half width 

narrows to 0.52 eV. More comments regarding the origin of the 265 K TL 

peak will be made later (Section V). The bands in Figure 43 are clearly 

similar to the photoluminescence curves shown in Figure 39. 

Photoconductivity 

So long as the mean charge-carrier range, w0 v/d, in the direction 

of the applied field, vld, is smaller than the thickness of the sample, 

d, the photoresponse of an insulating material sandwiched between two 

plane parallel electrodes is given by (13) 

2 
( IIN) ( d I I e I v) , (58) 

where n is the free electron yield per incident photon, I is the 

photocurrent, N is the incident photon flux and lei is the magnitude of 

the charge on an electron. Equation (58) shows that the photoresponse 

at a certain wavelength depends not only on the probability of a photon 

producing a free charge carrier but also on the distance the charge 

carrier moves in the direction of the field before becoming trapped. 

The photocurrent is, ·therefore, sensitive to the distribution of 

effective traps in the sample and can be affected by altering this 

distribution, even if the quantum yield remains uncharged. 

During photoconducitvity measurements the usual sample holder was 

replaced by one in which the sample was held between a semitransparent 

front electrode and a high impedance back electrode made of copper 
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foil. The front electrode consisted of a spring-mounted fine phosphor­

bronze gauze, which was separated from the sample by a thin sapphire 

plate. This plate effectively "blocked" the front electrode. The rear 

electrode could be blocked in the same way. Photocurrents were excited 

with the same optical system used for luminescence measurements and were 

detected using a Cary 401 vibrating reed electrometer. Sapphire 

insulation was used throughout for the high impedance electrode. 

Figure 41 shows the photoresponse of the same sample that was used 

for the luminsecence measurements. The data shown in Figure 41 was 

taken at 216 K. At this temperature the photoresponse consists of two 

peaks, one at 5.39 eV and the other at 4.59 eV. There was no 

measureable photoresponse over the same evergy range for an as-received 

sample. The intensity of the 4.59 eV peak was approximatly independent 

of temperature over the range 80-300K and was not affected by prolonged 

exposure of the crystal to the incident light. The peak at 5. 39 eV, 

however, was only apparent between 190 - 250K and was very sensitive to 

bleaching by the incident light. For example when the spectrum was 

scanned from low to high photon energy, i.e, if the 4.59 eV band was 

excited first, the 5.39 eV band was not apparent. It was then necessary 

to reverse the direction of the applied electric field and to scan the 

spectrum from high to low photon energy to produce the 5.39 eV band. 

Although this behavior is particularly pronounced in MgA12o4, similar 

bleaching effects are observed in the photoresponse of F-centers in 

other oxides. This will be discussed further in Section V. 

Discussion 

Photoluminescence, thermoluminescence and photoconductivity results 
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for MgA1204 are presented in an earlier section, which taken as a whole 

are similar to results for other thermochemically reduced oxides, 

particularly MgO. The 5.30 eV absorption band of the F-center in 

MgA1 20 4 occurs between that for MgO ( 5. 0 eV for MgO and 6. 1 eV for 

~-Al2o3 ). It is tempting therefore to assign the 2.69 eV luminescence 

band, which falls between F-center emission bands in MgO (2.3 eV) 

and ~-Al2o4 (3~0 eV) to luminescence from F-centers in MgA12o4• This 

assignment is s4pported by the fact that the excitation spectrum of the 

2.69 eV band (Figure 41) peaks at -5.3 eV and has a half width 

of - 1. 0 eV, which are characteristic of the F-center absorption band. 

The results indicate, however, that the quantum efficiency of the 2.69 

eV band is only about one tenth that of the 2.3 eV F-center luminescence 

in MgO. The reason for such a low efficiency is difficult to determine 

without information about the local environment and electronic structure 

of the center. However, the large nonstoichiometry in MgA12o4 crystals, 

which can be as high as 20%, suggests that some F-centers may be 

surrounded by four Al3+ ions for example, while other may be surrounded 

by two Al3+ ions and two Mg2+ ions. It is possible that only those F­

centers in a particular configuration decay radiati vely. It is noted 

that F-centers in other more complex crystal structures such as KMgF3 do 

not decay radiati vely or decay radiati vely with a very low quantum 

efficiency. The resolved structure on the high energy side of the 2.69 

eV band does not appear to be a phonon side band. If the 2. 69 eV 

luminescence does indeed come from F-centers, the structure could be a 

result of a low site symmetry, which could raise the degeneracy of p­

like excited states. The position of the structure would thus indicate 

a splitting of- 0.2 eV. Splitting of this magnitude has been deduced 
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for the p-like emitting state of the F-center in a-Al2o3 (61) in which 

it was suggested that the 3.0 eV emission in a-Al2o3 ~s due to 

transitions from the crystal field split 3T1u excited state of the F­

center to the 1 A1 g ground state, although in this case no resolved 

structure was observed. The shift of the peak position of the 2.69 eV 

band to lower energy as the temperature is increased is observed in the 

luminescence of most anion vacancies. The shift is due mainly to the 

thermal expansion of the lattice with increasing temperature. 

The increase in intensity of the 2.69 eV band as the temperature 

increased to 160 K, followed by a decrease in intensity as the 

temperature increased further is similar to the behavior of the 2.3 eV 

band in MgO (66). In a simple three level model in which an electron in 

the excited state of an F-center can either decay radiatively to the 

ground state or escape into the conduction band, a decrease in 

luminescence intensity with increasing temperature is expected to be 

accompanied by a corresponding increase in photoconductivity (see 

Equations (13) and (14), Chapter II). This behavior is apparent in 

spinel above 160K.. The behavior of the photoconductivity is unusual, 

however, and deserves further comment. 

The peak of the photoconducivity band at 5.39 eV is- 0.1 eV higher· 

in energy than the F-center absorption band. However, the absorption 

band is quite broad(- 1.0 eV) and skewed to high energy, which suggests 

that it might consist of several components due to the low symmetry of 

the oxygen vacancy site, as discussed above. In this case photocon-

ductivity might be found only on the high energy side of the absorption 

band. Because of the point-by-point measurement technique used by 

Wooseley et al. (64), the precise locations of the photoconductivity 
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peaks they reported are somewhat uncertain. Peaks were reported at 

3. 75, 4.0, 4.25, 4.5, 5.0 and 5.5 eV in x and electron irradiated 

samples, and at 4.5, 5.0, and 5.5 eV in neutron irradiated samples. 

None of these bands coincides with the two bands as shown in Figure 

41. The 4.59 eV (276 nm) band in spinel is close in energy, however, to 

a band found in thermochemically reduced MgO. This band has not yet 

been identified (67). The magnitude of the photoresponse per absorbed 

photon at 5.39 eV is comparable to that .of F-centers in other high 

resistivity materials. For F-centers in electron irradiated CaO ( 68) 

and SrO (69) the values where- 1.5 x 10-10 and- 4 x 10-10 cm2v-1 

respectively. The bleaching effect observed in the 5. 39 eV has also 

been seen in MgO ( 67) , CaO ( 68) and SrO ( 69) • In each case it was 

necessary to irradiate the sample with x-rays or ultraviolet light to 

maximize the photoresponse. The usual explanation for this behavior is 

that the irradiation fills traps which would otherwise reduce the range 

of the free charge carriers. -It has also been difficult to observe the 

photoresponse of F-centers in thermochemically reduced MgO, especially 

when the concentrations were high. The behavior of the 5.39 eV 

photoresonse band in spinel is, therfore, unusual but not atypical of 

behavior seen in other oxides containing F-centers. 

The thermoluminescence glow curve of spinel, Figure 42, is similar 

to that seen in thermochemically reduced MgO (66) and CaO (70). In all 

cases there is a peak near room temperature and peak.below 100 K. The 

higher temperature peak in MgO and CaO is due to release of electrons 

from substitutional H- ions and their subsequent capture into the 

excited states of F-centers. The hydrogen originates as dampness in the 

starting materials from which the crystals are grown. A TL peak at 260K 
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is also seen in some samples of a.-Al2o3 (71) and this has also been 

tentatively assigned to release of electrons from H= ions. Accordingly 

one expects thermochemical reduction of to produce 

substitutional H- ions as well as F-centers, just as in the case of 

MgO. By analogy to the behavior of both MgO and a.-Al2o3 it is therfore 

suggested that the 260K TL peak in spinel is due to release of electrons 

from H- ions. The whole sequence can be represented as follows: during 

UV irradiation at 77K, electrons from F-centers in MgA1204 are raised to 

the conduction band and eventually get trapped at substitutional H­

ions. H- center in spinel would represent a region of local positive 

charge and therefore can act as a electron trap. As the crystal is now 

heated, at 260 K the electrons released from H- ions escape to the 

conduction band and recombine with the F+ centers. The 2.58 eV 

lminescence as seen in 260 K TL peak in MgA12o4 is due to the transition 

from excited state of an F-center to the ground state. The lower 

temperature peaks in MgO and CaO have not been identified. Just as in 

the case of spinel, however, these peaks are introduced by 

thermochemical reduction and are not present in the original material. 

Conclusions 

In Section V it has been shown that the optical behavior of 

thermochemically reduced MgA12o4 is generally similar to that of other 

oxides. This discussion suggests that the 2.69 eV photoluminsecence 

band is possibly due to a low quantum efficiency process involving F­

centers and that the 5.39 eV photoresponse band is due to electrons 

which are thermally exci t.ed into the conduction band from an excited 

state of the F-center. The -charge trapping mechanism seems very 
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efficient, however, so that the photoresponse is easily bleached. It is 

noted that the fact that the 2. 69 eV band was excited in some as­

received samples does not rule out the possibility of it being due to F­

centers, because crystals of oxides are often partially reduced during 

growth. ALternatively it could be argued that the 2. 69 eV band is due 

to emission from a chemical impurity which has an excitation spectrum 

similar to the F-center absorption spectrum. Iron group ions would seem 

to be the most likely candidates but cr3+ and v3+ can be ruled out which 

emit at 1.8 eV (72) and 2.38 eV (73) respectively. Mn2+ on tetrahedral 

sites emits at 2.38 eV (74). Fe2+ is unlikely to be found in the sample 

for the reasons discussed by White et al. (63) but Fe3+ on tetrahedral 

sites could be involved, although White et al ·suggested that these ions 

are also not observed in the as received samples. Fe3+ on octahedral 

sites absorbs at 4. 8 eV, but no absorption band is observed at this 

energy in our samples. Finally the 2.69 eV could be an emission from Cu 

ions, which as far as we can tell has not been reported in the 

literature for an MgA12o4 host. It is noted, however, that in MgO, 

substitutional Cu ions produce optical-absorption bands of about equal 

intensity at 5.5 and 4.5 eV, with half widths of- 0.6 eV at room 

temperature. Excitation of these crystals with ultraviolet light 

produces a weak luminescence band at 3.0 eV with a half width 

of - 1 • 3 eV. In untreated samples of the MgA12o4 used here, the only 

absorption bands visible occurred at 4.8 and 6.4 eV and these have been 

assigned to Fe3+ (58). Thus it is concluded that the evidence available 

strongly suggests that F-centers in thermochemically reduced MgA12o4 are 

more likely to be producing the photoluminescence and other effects 

rather than a chemical impurity. 



CHAPTER VI 

Introduction 

This chapter describes the experimental results obtained from 

unirradiated single crystals of a-Al2o3 which have been subsequently 

annealed at high temperatures in air. Optical absorption, thermo-

luminescence, photoluminescence and photoconductivity experiments were 

performed to gain information about the possible nature of the defect 

responsible for the observed results. "As-received" samples 

of a-Al2o3 show the presence of anion vacancy (F-type) defects detected 

through the characteristic absorption and luminescence. The samples 

used in this present work can be classified into two categories: i) as 

grown a-Al2o3 crystals not subjected to heat treatment; ii) as grown 

samples of a-Al2o3 which were annealed in air for 12 hours at 1250 and 

1500°C respectively. Much is now known about the luminescing. centers 

present in Al2o3 samples which fall in the first category whereas the 

thermally annealed samples have not been investigated in detail so 

far. The present work is concerned with the study of those crystals 

of a-Al2o3 which fall into the later category. In order to understand 

the observed effects detected in these crsytals, it is necessary to 

describe the crystalline structure of a-Al2o3, the conditions under 

which the crystals are grown prior to the heat treatments and how 

luminescing centers are formed in "as received" samples. 
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Figure 44 shows the The structure is 

hexagonal consisting of an equilateral triangle of o2- ions above and 

below an Al3+ ion. The apexes of the top triangle are rotated through 
0 

60 relative to those at the bottom triangle. Al3+ ion is situated 

along the line joining the centers of the triangles but is slightly 

displaced toward one of the triangles. The shorter Al3+ - o2- distance 

is 1.86 A0 and the longer Al3+_o2- distance is 1.97A0
• The symmetry of 

the unit cell is c3v whereas the symmetry of the crystal is c3 due to 

large interstitial spaces formed in the crystal by the process of 

combining the cells. Figure 44 also shows that an o2- ion is located at 

a site of c2 symmetry with two. pairs of surrounding Al3+ ions situtated 

at slightly distorted octahedral (Oh) site. 

Several kinds of defect configurations may be present in the 

crystal structure of a-Al2o3 ~ Removal of o2- ions results in the 

formation of bare anion vacancies. F- and F+ -centers would result if 

the anion vacancy traps two electrons or one electron respectively. V­

type centers are produced when Al3+ ions are removed from the cation 

site. Anion-cation vacancy pairs would result in the formation of P 

centers. P- centers are formed when an electron gets trapped in the 

vacancy pair. 

F-type centers in a-Al2o3 can be produced by: i) particle 

irradiation; ii) thermochemical reduction. Upon bombardment of Al2o3 

crystals with electrons (75), neutrons (76,77) or energetic ions, 

6everal new absorption bands including a prominent band at 6.1 eV and a 

smaller absorption band at 4.80 eV appeared. Since no satisfactory esr 

signal from irradiated a- Al2o3 has been reported, the indentifications 

of the absorption bands at 6.1 and 4.80 eV had to be made by indirect 
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means and by analogy with known properties of F-type centers in the 

alkaline earth oxides. In particle irradiated Al2o3 the radiation 

damage is in the form of intrinsic, structural damage as in alkaline 

earth oxides ( 75). The identification of the 6.1 eV absorption band 

with the F-type defects came from the bleaching experiments in x-

irradiated sapphire (78). An absorption band at 410 nm after Y-

irradiation was assigned to be due to v-OH centers (trapped hole). Upon 

bleaching theY-irradiated sample with 410 nm light,Turner and Crawford 

(78) observed that the 6.1 eV band was reduced in intensity indicating 

that the absorption band at 6.1 eV is due to a trapped electron 

center. They also observed that bleaching the neutron irradiated sample 

with 6.1 eV light caused the intensities of 4.80 and 5.40 eV bands to 

increase. These results were interpreted by assigning the 6.1 eV 

absorption band to be due to F-centers (two electrons trapped at an o2-

vacancy) while the absorption bands at 4.8 and 5.4 eV were assigned to 

be due to F+- (single electron trapped at an o2- vacancy) centers. The 

explanation of these results was that upon bleaching the irradiated 

crystal with F-light (6.1 eV) caused an electron to be removed from an 

F-center and consequently the F+ center concentrations were increased. 

Apart from particle irradiation, F-centers in a-Al2o3 can also be 

produced by thermochemical treatment (subtractive coloration). Some of 

the as grown samples exhibit the presence of the 6.1 eV absorption band 

due to F-centers also. . In subtractive coloration the sample is heated 

in an atmosphere of aluminum vapor or in an atmosphere with low partial 

pressures of oxygen. This process involves removal of oxygen ions from 

the sample and the charge compensation of the vacancies, thereby 

producing F-centers. The presence of 6.1 eV absorption band in as grown 
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samples of a- Al2o3 can be explained by the same reduction process which 

-
is likely to occur during the growth of a sample, so long as the oxygen 

partial pressure is less than 10-6 atmosphere (80). The 6.1 eV 

absorption band in growth colored samples behave in a similar way as in 

particle irradiated sample ( 79) thereby providing additional evidence 

for the assignment of the 6.1 eV absorption band in particle irradiated, 

thermochemically reduced and as-grown samples of a-Al2o3 to be due to F­

centers. 

An F-center's nearest neighbors are shown in Figure 45. The bond 

lengths indicate the shortest Al-0 and longest Al-Q distances in the 

unit cell discussed earlier. As seen in Figure 45, the F (also F+) 

-center has c2 symmetry compared to the crystal symmetry of c3 ~ One 

suprising fact is that only one F-center absorption band is observed 

over the range 2-9 eV ( 80). A possible explanation for this result is 

that the p-like excited state is widely extended and that the local 

symmetry close to the center is therfore relatively unimportant. No 

theoretical calcualtions have been reported for the electronic structure 

of the F-center in a-Al2o3 ~ However, La et al. (81) calculated the 

energy level scheme of F+ center in a-Al2o3 ~ Their predicted energy 

level scheme is shown in Figure 46 where the energies indicated are from 

the experiments conducted by Evans and Stapelbroek (82). The 1A state 

is equivalent to a 1 s state in a case with spherical symmetry. The 

upper three levels are derived from the triple degeneracy of a 2p 

state. The 2p state is split into components of A2, B1 , and B2 

charact'ers by the c2 symmetry of the center. The model predicts three 

absorption bands which have been detected experimentally at 4.8 eV, 5.4 

eV and 6.3 eV. 
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used in this work were grown under reduced 

atmoshpere. Unannealed a-Al2o3 sample from Insaco ( 119) was 

thermochemically reduced during growth. The effects observed in the 

annealed samples were somewhat different but related to those observed 

in the unahnealed sample as concluded from optical absorption, 

thermoluminescence, photoluminescence, excitation, and photoconductivity 

experiments. Thus it is necessary to understand the properties of F-

type defects in the unannealed sample of a-Al2o3 : 

Figure 47 shows the optical absorption spectrum of Insaco II 9 

(unannealed) sample where a band peaking at 6.1 eV with FWHM of 0.68 eV 

is the most prominent band and is due to 1A1g ~ 1T1u transition of the 

F-centers present in the crystal. Since the crystal was grown under 

vacuum, F-centers were incorporated during the growth process. Draeger 

and Summers (79) have shown that photoconductivity results when 6.1 eV 

light is absorbed by F-centers in reduced samples at temperatures down 

to 10K, which implies that the optically accessible excited state of the 

center is in or very close to the conduction band and the electrons can 

be removed from F-centers by UV light. In the Insaco sample, the 

conversion of F to F+ center is found to be efficient. Absorption of 

6.1 eV light by F-centers produces a blue luminescence with a maximum at 

410 nm (3.0 eV). The emission is partially polarized so that the 

intensity with the electric vector parallel to the C-axis of the crystal 

is less than the intensity with the electric vector perpendicular to 

it. Although the life time of the 3.0 eV luminescence is complicated 

below a temperature of 50K, above -70K a single lifetime of 34 ms is 

observed (61). From a consideration of these results in unannealed and 

irradiated samples, Brewer et al. (61) suggested that the 3.0 eV 
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Figure 47. Optical Absorption Spectrum (RT) of the Unannelaed 
(#9) Insaco Sample 
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emission is due to transition from the crystal field split 3T1u excited 

state of the F-center to the 1A1g ground state. They concluded that the 

emitting state of the F-center is a spin triplet. The transition is 

thus "forbidden" which accounts for the much longer lived lifetime 

components present in the emission at lowest temperatures. 

Jeffries et al. (71) have also investigated the presence of an 

electron trap which strongly affects the photoconductivity of unannealed 

samples of a-Al2o3 • This trap causes the 260K thermoluminescence peak 

observed in as received samples grown under reducing atmosphere and also 

makes possible the interconversion of F and F+ centers by optical 

means. The origin of the 265K TL peak comes as follows: uv light 

optically excites F-centers which are present in the sample when 

grown. At - 260K the trapped electrons are thermally excited back into 

the conduction band from the traps and become recaptured by F+ 

centers. F+ - e- recombination at 260K forms the excited state of an F-

center which decays radiatvely by emitting a 410 nm photon. The TL 

excitation spectrum is therfore expected to peak at - 6.1 eV which is 

observed to be the case ( 83) • Jeffries et al. (71) discussed the 

possibile identify of the trap as H- ions. Such a center would 

represent a region of local positive charge in an oxide and could act as 

an electron trap. Summers et al. (66) have also shown that TL peak near 

260K in thermochemically reduced MgO is caused by substitutional H-

ions. a-Al2o3 powder contains OH- ions like powdered MgO and since 

several growth techniques employ reducing conditions, the formation of 

H- ions may be expected. H- trap in 

conversion efficient. Upon bleaching the 

+ a-Al2o3 causes the F -+ F 

sample with 6.1 eV light (F 

absorption energy), electrons are removed from the F-centers and get 
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trapped at H- ions. Such a process increases F+ -center concentration i.n 

the crystal and 4.8 eV absorption band due to F+ centers is observed to 

grow in intensity. H- trap present in the sample also causes the 

photoconductivity to be observed even at temperatures as low as 10K. 

From the above considerations it is apparent that in the unannealed 

sample of a-Al2o3 (119), F centers are present indicated .by : i) the 

absorption band at 6.1 eV; ii) blue luminescence from the sample 

peaking at 410 nm under 6.1 eV excitation; iii) TL peak at 265K; iv) 

the similarity of excitation spectrum of the 3.9 eV luminescence with F­

center absorption at 6.1 eV; v) the photoresponse maxima at 6.1 eV. 

Existing literature on the luminescing defects in annealed a-Al2o3 

crystals is meagre. Even in simple oxides such as MgO and CaO, not much 

work has been done so far. In neutron or electron irradiated MgO, F­

and F+- centers disappear near 500°C whereas in thermochemically reduced 

crystals, annealing of these centers takes place at about 900 - 1000°C 

(84). The kinetics of the annealing process have not been examined in 

detail, but it has been suggested that in irradiated crystals, the anion 

interstitials become mobile at 500°C and annihilate the vacancies. 

Alternatively, in neutron irradiated samples, the F+- centers could be 

converted toP-- centers as cation vacancies become mobile (85). In 

neutron irradiated samples of MgO, F+ - P- conversion was observed after 

heating the neutron irradiated crystals above 300°C. The presence of P­

centers was detected from esr signals which showed that the complex 

hyperfine interaction is roughly four times that for the F+ centers 

showing the extent to which the cation vacancy affects the charge 

distribution. In thermochemically reduced samples, the annealing 

temperature must represent that of the diffusion of vacanqies 
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themselves, although which charge state is involved is not known. No 

similar data appear to be available in CaO, SrO or BaO. Sibley et al. 

(86) have shown that anion-cation vacancy pairs are formed after the 

plastic deformation of MgO crystals. They observed no changes in EPR 

spectra of impurity ions even after deforming up to 14% in compression 

but a new absorption band at 216.5 nm after the treatment was 

observed. Turner et al (87) also found deformation-induced absorption 

bands in CaO and SrO at 268.0 and 304.0 nm respectively. They have 

attributed these deformation-induced bands in MgO, CaO and SrO to the 

transition of a bound exciton formed in the neighborhood of a cation-

anion vacancy pair. Arguments in favor of the assignment were the 

similar modes of production in the three oxides and the linear 

dependence of the absorption intensity on deformation. In the case 

of a-Al2o3 , however, the formation of vacancy pairs has not been 

positively indentified. Effect of thermal annealing on the 6.1 eV 

absorption band in thermochemically reduced samples of A1203 has been 

studied briefly by Summers et al. (79). Like CaO and MgO, it was found 

that 6. 1 eV absorption band in the reduced samples was comparatively 

stable against thermal decay compared to the same band in particle 

irradiated material. They suggested that thermal decay of F- centers in 

reduced samples was not exclusively an electronic process since it was 

not possible to restore the 6.1 eV band in the unannealed Insaco sample 

by Y-irradiation once the band had decayed thermally. This present work 

focuses on these samples of a-Al2o3 which have been annealed at 1250°C 

and 1500°C in air for 12 hours. Recently Puzats et al. (88) have 

investigated the nature of violet luminescence from quenched single 

crystals of a-Al2o3 ~ Before the heat treatment the crystals did not 
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contain appreciable F-centers. They suggested that vacancy pairs in 

have been formed after heat treatment which luminesce in the 

violet region. More comments on their assignment will be made in 

Section III. Insaco Crystals (#9a, #9b) studied in this work contained 

F-centers before heat treatment. Optical absorption, 

thermoluminescence, photoluminescence and photoconductivity experiments 

done on these samples suggest that the observed effects are due to 

perturbed F centers, the perturbation being caused by heat treatment. 

Section II presents the experimental results and in Section III the 

results of different experimentations will be interpreted. 

Experimental Results 

Absorption 

Absorption spectr? of unannealed (#9) and annealed (#9a, #9b) 

samples of Al2o3 were measured with a Perkin Elmer Model 330 

spectrphotometer at. room temperature. Figure 47 shows the absorption 

spectrum of 119 and the absorption spectra of //9a and 119b crystals are 

shown in Figure 48. Unannealed sample shows a band peaking at 6.1 eV 

(204 nm) with the presence of no other bands at other photon energies. 

Absorption spectrum of 119a which has been heated to 1250 ° C shows the 

hint of a shoulder near 5.6 eV and near 6.1 eV. The sharp absorption 

band found in unannealed sample has become much broader in #9a. 

Absorption spectrum of 119b shows the disappearence of the 6.1 eV band 

and the shoulder near 5.6 eV can be clearly seen. Figure 49 shows the 

difference curve of absorption of #9a and #9b which shows that a broad 

band near 5.6 eV is clearly formed. 
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Figure 49. Difference (~ OD) in Absorption Between the Insaco 
Samples (#9a, #9b) 
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Photoluminescence 

Photoluminescence was excited with light from a deuterium lamp, 

used in conjunction with interference filters with peak transmissions at 

200 and 225 nm. The luminescence band excited by 200 nm in unannealed 

Al2o3 (119) sample is shown in Figure 50 in which the data have been 

corrected for the spectral dependence of the detection system. At room 

temperature the luminescence is at 3.0 eV and 4.8 eV respectively. When 

the luminescence peak is excited by 225 nm, the 3.9 eV luminescence peak 

is much reduced in intensity and that at 4.80 eV is observed to increase 

considerably. The luminescence spectrum at room temperature of IF9a 

sample (heated to 1250°C) is shown in Figure 51, the excitation being at 

225 nm. The peak of the luminescence is at 2.95 eV with a shoulder near 

3.1 eV. The experimental set-up in the detection of luminescence from 

119b" sample (heated to 1500°C) was slightly different than the usual set 

up, in the sense, that a polariser was inserted between the sample and 

the entrance slit of the monochromator to investigate any possible 

polarization properties of the luminescence. The C-axis of 119b was 

found to be in the plane of the crystal. This allowed the C axis to be 

horizontally oriented on the sample holder. The crystal was then put in 

the cryostat and oriented so that the angle of incidence of the exciting 

0 
light was less than 45 with a line perpendicular to the crystal face. 

The polariser was then rotated and the emission from the crystal due to 

continuous excitation was recorded. The luminescence band excited in 

the sample lf9b with the polariser transmission axis perpendicular to the 

C-axis of the crystal is shown in Figure 52. At 95K the peak of the 

luminescence is at 2.75 eV with a shoulder at 2.95 eV. As the 

temperature was increased above 160K, the peak of the band shifted to 
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Figure SO. Photoluminescence Spectra of the Unannealed Insaco 
(#9) Sample Excited by (a) 200 nm Light (b) 225 
nm Light 
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higher energy and by 250K was located at 2.95 eV with a shoulder near 

2.75 eV. When· the poalriser transmission axis was parallel to the C 

axis of the crystal, the relative intensity of the composite 

luminescence band decreased as shown in Figure 53 where the data have 

been corrected for the inherent polarization of the detection system. 

At 95 K the peak of the luminescence is at 2.75 eV with.the appearence 

of a shoulder near 2.95 eV. As the temperature was increased above 160 

K, the peak shifted to 2.91 eV with a shoulder near 2.89 eV and by 250 

K, the peak intensity of the luminescence was observed to be at 2. 95 

eV. The relative intensity of the luminescence decreased between 95 and 

250K so that at 250K the intensity of the band was about three 3 times 

weaker than that at 95K. 

The excitation spectrum of the composite luminescence in sample #9a 

at room temperature is shown in Figure 54. The spectrum has a peak at 

5.53 eV and at photon energies greater than 5.9 eV, the excitation 

intensity shows a steady increasing trend. Excitation spectrum of the 

same luminescence for sample #9b is shown in Figure 55 and as seen from 

the figure, the luminescence intensity at 80K is higher than that at 

room temperature. The peak energy is at 5.53 eV and shows the same 

increasing trend (as observed in #9a) with photon energies exceeding 5.9 

eV. 

Luminescence observed in samples #9a and #9b decayed rapidly once 

the excitation was removed. The lifetime was -1 .5 ms which was of the 

order of the time constant of the detection system. Luminescence from 

the unannealed sample (#9) showed the evidence of long lifetime and the 

relative luminescence. intensity was much higher than those detected in 

annealed samples of Al2o3• 
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Figure 53. Polarized Photoluminescence Spectra of the Annealed 
Insaco Sample (#9b) with 225 nm Excitation. 
Polarizer Transmission Axis was Parallel to the 
C-axis of the Crystal 
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Composite luminescence bands observed in annealed samples could not 

be decomposed into two gaussian bands. However, qualitative information 

regarding the temperature dependence of the luminescence detected in #9b 

sample was obtained by choosing two energy values in the band outside 

the region of overlap of the low and high energy component and noting 

how these two energy components present in the luminescence varied with 

temperature. Figure 56 shows the variation of the luminescence at 2.6 

eV and 3.0 eV with temperature. The low energy component shows a rapid 

decrease in intensity till 190K and as the temperature was increased 

·further the intensity did not show appreciable change. The high energy 

component behaved in the same way except that the rate of decrease is 

somewhat slower in this case. 

Thermoluminescence 

Figure 57 shows the theroluminescence glow curve for the sample 

#9b, used in the photoluminescence experiments. In TL measurements, the 

sample was cooled to liquid nitrogen temperature, illuminated for a few 

minutes with unfiltered light from a 60 W deuterium lamp and then 

subsequent warming up of the crystal at- 8K minute-1• Figure 57 shows 

the presence of a glow peak at 265 K. It was observed that the TL 

spectra of samples#9 and #9a also showed a single peak at 265 K. 

Photoconductivity 

Photoconductivity experiments were peformed on #9a (heated to 

1250°C). It has been shown (Chapter II) that the photoresponse of a 

crystal at a certain wavelength depends not only on the probability of ? 

photon producing a free charge carrier but also on the distance that the 
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Figure 57. Thermoluminescence (80K - 300K) Spectrum of the 
Insaco (#9b) Sample 
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charge carrier moves in the direction of the field before becoming 

trapped. The photocurrent detected in a sample is therfore sensitive to 

the distribution of effective traps and can be affected by altering this 

distribution, even if the quantum yield remains unchanged. 

Photoresponse observed in sample #9a was extremely weak. At room 

temperature it was not possible to detect photocurrent in the sample in 

the current mode of the detecting electrometer and it was necessary to 

use the "charge mode" of the detection system which can measure 

photocurrents as low as 10-16 amperes. At room temperature using the 

"charge mode", the dark current, (current detected in the sample 

unexposed to light) which occurs due to the thermal motion of the charge 

carriers due to the applied electric field, was too 

high (- 10-13 amperes). The spectral dependence of photoresponse was 

obtained at 80 K where the dark current present in the sample was 

minimum. 'Point-by-point' measurement technique was used in obtaining 

the photoresponse of the sample. Figure 58 shows the photoresponse at 

80K of the sample #9a where the data have been corrected for the 

spectral depencdence of the incident light. The spectrum shows a 

shoulder present near 5. 0 eV and with increasing photon energies the 

photoresponse increases continuously. There is a hint of a peak near 

6.2 eV. Data with photon energies greater than 6.2 eV would have 

clarified the existence of such a peak, but it was not possible to 

extend the measurements beyond 200 nm (6.2 eV) due to the low output of 

the deuterium lamp. 

Figure 59 shows the temperature dependence of the photocurrent 

detected in sample #9a in the temperture range 80K - 180K. Above. 180K 

the dark current became increasingly large, thus obscuring the 
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photocurrent present in the sample. Figure 59 shows that the 

photocurrent induced by 200 nm excitation shows a continous decrease in 

the temperature range studied in the present work. Similar temperature 

dependence has been observed in some samples of unannealed a-Al2o3 (71). 

Experimental results obtained from unannealed and annealed samples 

of a-Al2o3 presented so far will be interpreted in the next section. 

Discussion 

In Section II, results of optical absorption, thermoluminescence, 

photoluminescence · and photoconductivity experiments for annealed 

a-Al2o3 samples have been presented, which taken as a whole are 

different from the results for the unannealed a-Al2o3 sample. After the 

heat treatment new luminescing centers are formed whose optical 

properties are different from those of F - centers in a-Al2o3 • 

Excitation spectrum of the luminescence in heat treated samples has a 

peak at 5.6 eV which coincides with the shoulder at the same energy 

found in the absoprtion spectrum. The high energy component of the 

luminescence at - 2. 95 eV is close in energy to the F-center 

luminescence (3.0 eV) in the unannealed sample which suggests that the 

emission in heat treated samples may be due to some center whose 

structure (nearest neighbor and local symmetry) does not differ markedly 

from that of an F- center. Two possible models to explain the 

luminescence in heat treated samples (ll9a· and IF9b) are suggested: (i) 

formation of a cation-anion vacancy pair (P- center); (ii) formation of 

a perturbed F-center. The mechanism of production of these centers is 

not known. However, it has been suggested that anion and cation 

vacancies in thermochemically reduced Al2o3 samples are mobile at 
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temperatures above 1 000.°C which may play an important role in the 

formation of P-_ or perturbed F-centers in thermally annealed samples. 

Puzats et al. (88) have briefly investigated the luminescence observed 

in high purity crystals which have been annealed at 

temperatures as high as 1800°C. Before heat treatment their samples did 

not exhibit qny considerable luminescence bands under excitation by UV 

light in the 200 to 400 nm region. But after starting from annealing 

temperatures of about 1300°C, they observed a luminescence band at 420 

nm (2. 95 eV) with FWHM of 105 nm. The main excitation maximum of the 

luminescence peaked at 230 nm (5.39 eV) with other maxima at higher 

energies. Puzats et al. (88) reported that the absorbing and emitting 

0 0 
dipoles of the emitting centers were oriented at an angle of 60 ± 10 

to the c3 axis though no experimental data were presented to support of 

the assigned angular orientation of the centers. In samples #9a and #9b 

used in this work, the luminescence consisted of a composite band with 

the high energy component near 2.95 eV and the main excitation maxima of 

the luminescence was peaked at 5.6 eV, the values being close to those 

reported by Puzats et al. (88). If the model of anion-cation vacancy 

pair is assumed for the observed effects in our crystals, then the 

absorption at 5.6 eV can be envisaged as a sort of charge transfer 

transition from the oxygen ions surrounding the cation vacancy. to the 

state representing the electron trapped at the anion vacancy. The 

resulting excited state can be regarded as an exciton bound to a pair of 

vacancies. Life times of the luminescence (- 1.5 ms) in annealed Al2o3 

samples (if9a and 1!9b) were of the order of the time constant of the 

detection syst~m which suggest that the excited state of the vacancy 

pair (P-) had insignificant overlapping with the ground state. The 
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upper state of the center can thus be :regarded as that of a pe:rtu:rbed 

Luminescence cu:rs when the electron bound to the anion 

vacancy in the excited state of the center :radiatively combines with the 

hole left on the oxygen ion. However the presence of st:ructu:re in the 

luminescence cannot be explained with this model and mo:re difficulties 

a:re encountered in explaining the TL :response obtained f:rom these 

samples. According to the model of the pai:r of vacancies as the 

luminescent center, the :resulting excited state can be :regarded as the 

bound state of an electron-hole pai:r. The excited state wave function 

of the center would be :relatively compact and lie well below the 

conduction band. The observations of TL peak at 265K in thermally 

annealed samples of Al2o3 (#9a and H9b) suggests that the assignment of 

the anion-cation vacancy pai:r as the luminescent center may not be 

co:r:rect. The 265K Tl peak :requires the :removal of an electron f:rom the 

luminescent center to the conduction band and subsequent trapping at 

some electron trapping site. In unannealed samples of Al2o3, 

luminescent centers a:re the F-cente:rs whose excited states lie in o:r 

ve:ry close to the conduction band as evidenced f:rom photoconductivity 

measurements. H- ions a:re suggested as the possible electron t:rap and 

the TL emission at 265 K (hv = 3. 0 eV) is indeed found to be the 

emission of an F-cente:r. Consequently the TL :response at 265 K in 

annealed samples would also :require the presence of trapped electron 

centers whose excited states a:re close to the conduction band. Such 

requirements cannot be obviously met by the model of vacancy pai:r as the 

possible luminescent center. An al te:rnati ve model to inte:rp:ret the 

:results of different experimentations in annealed samples is to :regard 

the luminescent center :representing an F-cente:r in a perturbed 
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environment. An F-center in which one of the nearest neighbor Al3+ ions 

being replaced by an impurity ions may act as a suitable model as the 

possible luminescent center, i.e. an FA- center. Arguments in favor of 

this model are the closeness in peak energy of the luminescence 

band (- 2. 95 eV) with that of the F- center observed in unannealed 

sample and the presence of the 265 K TL peaks in both annealed and 

unaanealed samples. 265K TL peak detected in annealed sample can be 

explained in the light of the model as follows: UV excitation of the 

samples prior to TL measurement causes the electron to be trapped at the 

neighboring impurity ion. Though the charge state of the impurity ion 

nearest to the F- center is not known, a change in the Madelung energy 

at the defect site due to the presence of impurity may be expected. 

Thus the trapped electron at the impurity ion site would have a less 

binding energy and consequently be freed to the conduction band. Once 

freed into the conduction band the electron may get trapped by H-

ions. At 265 K, the electron being emptied from the trap recombines 

with the perturbed F~ center (since the c2 symmetry is changed due to 

the presence of the impurity) causing luminescence. The spectral 

dependence of the TL at 265 K was similar to that observed in photo­

luminescence in annealed samples. 

Luminescence from annealed ~-Al2o3 samples (119a, 119b) was 

polarized, in the sense, that the intensity of the electric vector 

parallel to the C-axis of the crystal was less than the intensity with 

the electric vector perpendicular to the C-axis. Similar polarization 

effects have been observed in F- center luminescence in unannealed 

~-Al2o3 (61). Information o~tained from the polarization measurements 

of the luminescence from annealed samples are not enough to determine 
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the angular orientation of the emitting dipole with respect to the C-

axis. Composite luminescence curves with a clearly resolved structure 

accompanying the peak maxima at temperatures from 95 to 250 K could not 

be decomposed to two gaussians thereby making the detailed temperature 

dependence analysis of the composite band somewhat difficult. The data 

shows that at low temperatures the peak maxima is near 2.8 eV with a 

shoulder near 2. 95 eV. As the temperatue is increased, luminescence 

intensity at 2.8 eV decreases while the intensity of the high energy 

component near 2.95 eV increases and at 250 K the luminescence is peaked 

at 2.95 eV with a resolved shoulder near 2.8 eV. This suggests that the 

emission is from a split excited state of the center. At low temp-

eratures the lower energy emitting state is essentially more populated 

than the state at higher energy and thus at these temperatures the 

lunminescence band has a peak at a low energy (- 2.85 eV) with a 

shoulder at 2. 95 eV. As the temperature is increased, the electrons 

escape to the higher energy emitting level and thus the high energy 

component (- 2.95eV) of the luminescence becomes more intense. Similar 

effects have been observed in fluoresence in unannealed CL-Al2o3 where 

the transition is from the crystal field split 3T state of the excited 
1u 

F- center. 

The photoresponse observed in #9a (heated to 1250°C) shows a 

shoulder near 5 eV. At incident photon energies greater than 5 eV the 

photoresponse spectrum shows a continuously increasing trend. The 

photoresponse at 200 nm was- 0.3 x 10-11 cm2v-1 which is much smaller 

than the photoresponse (- 10-8cm2v-1) observed in unannealed samples 

showing tha·t the charge carriers in thermally annealed samples have much 

shorter mean range. An unannealed sample of CL-Al2o3 shows a broad 
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photoresponse band near 5 eV (71). In our sample (1193), the origin of 

the photoresponse shoulder near 5 eV is not unkown. The temperature 

dependence of photoresponse in #9a, however, behaves in a similar way to 

that observed in unannealed samples which have been thermochemically 

reduced. 

In view of the above mentioned features regarding the luminescent 

centers in annealed at high temperatures, it is 

suggested that FA- (perturbed F-centers) centers may be responsible for 

the observed effects. This suggestion may be verified by esr experi­

ments in identifying the possible nature of luminescent centers in 

annealed samples of a-Al2o3• 



CHAPTER VII 

CONCLUSIONS AND FUTURE STUDY 

NaCl:Cu-

The results obtained in the present work have shown that: 

(i) Definite correlation exits between Cu- and F-centers 

in x-irradiated Sodium Chloride. Electron transfer 

between Cu- and F centers can be achieved by thermal or 

optical excitations. 

(ii) The isothermal decay of Cu- ions obey a non first 

order (biomolecular) decay kinetics with an estimated 

activation energy of 0.80 ± 0.05 eV. 

(iii) The same TL glow peak is responsible for the annealing 

of Cu-- and F- centers. Recombination of trapped 

interstitials or holes with Cu- and F-centers brings the 

crystal to the preirradiation state. 

(iv) Thermal recovery of Cu+ ions is a two stage process 

marked by temperatures above and below 160°C (89). 

Future experiments such as esr will be very helpful in clarifying the 

intermediate stage in Cu-~ Cu+ conversion. 

MgA1204 

Results obtained in the present work suggest that F- centers may 

luminesce in thermochemically reduced MgA12o4 ~ Photoluminescence and 

167 
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photoconducivity experiments show that the observed behaviors are 

similar to those present in its pareni oxides (90). The photoresponse 

maxima at 4.59 eV in reduced MgA12o4 and the origin of the 95K TL peak 

need to be investigated further. 

The results of different experiments on annealed a-Al2o3 samples 

have shown that the luminescence different from F- center luminescence 

can be excited in as grown crystals of Al2o3 after heat treatment. The 

possibla origin of the observed effects in annealed Al2o3 crystals seem 

to be due to F•centers in a perturbed environment (FA-centers), the 

perturbation being casued by heat treatment. 

Electron Spin Resonance and Optically Detected Magnetic Resonance 

experiments should be performed on annealed a-Al2o3 crystals to gain 

valuable information regarding the ground and excited states of the 

luminescent center responsible for the observed effects. 
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