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Scope of Study: This research incorporates the personnel transition
rates, inherent in all industrial situations, into the aggregate
planning problem, and introduces the definition of the aggregate
production and manpower planning problem. Two models are develop—
ed. The first is a linear programming model in which the Orrbeck
model is used for the purpose of comparison and as a point of de-
parture from which the new model is developed. The second is an
extension of the first model from a single objective to a multiple
objectives decision making model, and the goal programming is used
as a method of multiple objectives procedures. The analysis of
these models indicate their capabilities in presenting more real-
istic situations than existing models. A nondominance algorithm
is developed to test the dominance of the goal programming
solution, and to generate a nondominated solution if the goal
programming solution turns out to be dominated. Also, a solution
methodology for linear goal programming to include all the goals in
the optimization process is proposed.

Findings and Conclusions: A substantial improvement in the model's
results can be obtained by integrating the personnel transition
matrix with manpower requirements. For instance, the results of
the first model indicate that the performance of the new model is
better than that of the Orrbeck model in representing more realis-
tic situations and providing substantial savings for the two cases
that are considered. The solution methodology developed in this
research 1s applied to the second model and all the goals are in-
cluded in the optimization process. A preferred solution (goal pro-
gramming solution) and a nondominated solution are also obtained.
The new method enables the decision maker to be involved in the op-
timization process and to provide reasonable aspiration levels for
the targets, particularly if the targets are not known. Some of
the goal programming difficulties are discussed and solved by the
nondominance algorithm developed in this research. The nondomin-—
ance algorithm, as well as the solution methodology, can be used to
evaluate the results of current goal programming applications.
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PREFACE

This research combines, for the first time, the aggregate produc-
tion and manpower planning problem in one model. Two such models have
been developed, both of which will allow the managers of production
organizations to more easily and accurately project future manpower and
production requirements. The first (an extension to the Orrbeck et al.
model (68)) incorporates the effects of the personnel transition
matrix of the organization on manpower and production decisions. The
second is the development of a goal programming model for the aggregate
production and manpower planning problem.

The research also led to the development of an algorithm to test
the goal programming solution and to generate a nondominated solution if
the goal programming solution turns out to be dominated. This algor-
ithm is used to solve the second model, and furthermore, a solution
methodology has been proposed to include all the goals in the optimiza-
tion process.
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CHAPTER I

INTRODUCTION

General

The aggregate planning problem has received a great deal of atten-
tion over the last three decades. The term "aggregate planning” is used
for a broad planning of production and workforce to maintain an economi-
cal stability over time. Recognition of the widespread existence of this
problem has led to the publication of a number of different approaches
for solvirg the aggregate planning problem. A broad discussion of this
problem and its proposed solution may be found in Buffa (16) or in
Khoshnevis (47).

Unfortunately, even though there are several approaches available to
managers of production organizations, aggregate planning methods are sel-
dom used in practice. Taubert (1968, p. 343) states that "simplified
aggregate scheduling models have not found widespread use in industry.”
It is apparent that there are several reasons which have prevented a dis-
semination of these approaches into management practice. The most impor-
tant one 18 that the present approaches of aggregate planning assume an
aggregate workforce without any classifications to manpower classes.
However, reality would suggest a specification of the kinds and the num-
ber of workers an organization will need to accomplish its objectives.

The rapid growth and complexity of modern production organizations

have increased the importance of manpower planning, and the managers of



many such organizations now desire to include manpower as well as pro-
duction planning models in their kits. However, although there are
various papers and books describing myriad applications of manpower
planning models, no model which combines the aggregate manpower and pro-
duction planning model can be found in the literature. The increasing
need of management to accurately project future manpower and production
requirements has made the development of such a combined model poten-

tially critical,
Statement of the Problem

Aggregate planning is the problem of scheduling aggregate work-
force, production and inventories. It has long interested businessmen
and academicians, and hence a number of approaches to this problem have
been proposed in the literature. All of these approaches address in
common the same pr: )lem in its general form, which is defined as: given
St’ the demand for each period t in the planning horizon which extends
over T periods, determine the production level Xt’ inventory level It’
and workforce Nt for periods t = 1, 2,..., T which minimize relevant
costs over the planning horizon. Models and decision rules have been
developed, and a variety of solution techniques can be found in the 1lit-
erature. Although some of these techniques can be proven to be optimal
and have been widely promulgated in classrooms and textbooks, it is dif-
ficult to find real world solutions where these techniques are applied
to aggregate production and workforce decisions.

It can be said that the main drawback of the existing approaches to

aggregate production planning is not in the solution methodology, but in



the assumptions of the model. All the present approaches assume that
the workforce and productivity factors are scalars. However, because
workforce and productivity factors are the most important controllable
variables in this problem, treating them as scalars would get the prob-
lem far from reality. The assumptions of treating these variables as
aggregate numbers is not an acceptable one to the management. This is
probably one reason that managers are not willing to include the current
aggregate production planning approaches in their kits.

There have been a variety of recent applications of stochastic
models of the so-called Markov matrix type to manpower planning. These
Markov models generally multiply a vector of personnel in various job
categories by a matrix of transition rates. This allows one to obtain a
projection of the currentiworkforce based upon past trends. Many re-
searchers suggest that Markov models contain an essential element for
developing manpower projections. This turns out to be that the transi-
tion matrix allows the analyst to interconnect the internal and external
manpower flows across time periods, which leads to dynamic models of the
Markov decision variety.

No attempt has previously been made to represent aggregate planning
in multidimensional space. The proposed research will not only repre-
sent this problem in multidimensional space, but will also develop
appropriate aggregate production/manpower planning models. The concepts
of mathematical manpower planning with embedded Markov processes will be
used in this development. The research problem can be illustrated by

introducing the definition given below.



A General Definition of the Aggregate Production

and Manpower Planning Problem

The problem of aggregate production and manpower planning can be
defined as: givén St’ Io’ ﬁo’ Ep and M, determine ﬁt’ it and It; t=1,
2,405 T to achleve organization goals.

Where:
S, = the demand for period t
N, = the graded workforce in period t
X, = the amount to be produced in period t
I, = the on-hand inventory
C_ = productivity factor
M = personnel transition matrix of the organization with

dimension e x e (e is the number of graded workforce).

T = the number of periods in the planning horizon

Io and ﬁo are the initial values of the inventory and the graded
workforce respectively.

The problem of aggregate production and manpower planning can be
formulated by different methods. Such formulation will depend upon the

desired details, solution technique, constraints, goals of organization,

etc.

Research Objectives

One major objective of this research is to develop appropriate
aggregate production and manpower planning models which incorporate per-

sonnel transition rates. The development of the models will be based on



the method of embedding Markov processes into mathematical programming
decision models.

Another objective is to develop an algorithm to test the goal pro-
gramming solution, to generate a nondominated solution if the goal
programming solution turns out to be dominated, and to provide a solu-

tion methodology to include all the goals in the optimization process.

Summary of Results

The objectives of this research have been met. The two new models
developed in this study are evaluated using the Orrbeck data (68) for the
first one and hypothetical data for the second. The evaluation results
of these models have demonstrated their capabilities in representing
more realistic situations. The results also show that these models are
highly flexible and can easily incorporate additional constraints regard-
ing manpower and production requirements. The major conclusions are:

1. A substantial improvement in the model's results can be made by
integrating personnel transition rates with manpower requirements.

The fundamental change is that the model goals and constraints, ex-
pressed as manpower and production requirements, and as budgetary and
other constraints, influence the final manpower and production decisions
recommended by the model.

2. The results obtained from the first model have been compared
with that of the Orrbeck model (68). The results indicate that the
performance of the new model is much better than that of the Orrbeck
model with respect to representing more realistic situations and yield-

ing minimum cost. The results show a savings of 7.18% and 3.67% in



the total cost over the drrbeck model for the two cases that have been
investigated.

3. The models are formulated as mathematical programming models
(l1inear and goal programming); therefore, they should be easy for mana-
gers to understand and use. Furthermore, they are capable of providing
optimal decisions regarding:

a. The graded number of workers an organization needs to

accomplish its objectives

b. The graded number of hiring and firing

c. Production and overtime decisions

d. Inventory decisions

4. Some of the goal programming difficulties have been solved by
using the nondominance algorithm developed in this research.

5. The solution methodology, developed to include all the goals in
the optimization process, has been accomplished. The results cf this
investigation indicate that it is possible to develop such a methodology
and that the decision maker can be incorporated in the optimization pro-

cess to provide reasonable aspiration levels for the goals.
Contributions

This research has made several major contributions in the area of
aggregate production and manpower planning. These include:

1. The introduction of a general definition to the aggregate pro-
duction and manpower planning problem.

2. Incorporating the effect of the transition matrix on workforce
and production decisions.

3. The development of a linear programming aggregate production

and manpower planning model.



4, The development of a goal programming aggregate production and
manpower planning model.

The developed models in this research have the following new char-
acteristics:

a. They are considered as applications of large scale models for

manpower and production planning in manufacturing firms.

b. The cases of quit, attrition, etc., are considered in the
developed models by representing them in the personnel transi-
tion matrix of the firmf

c. The number of hiring or firing in each class of workforce for
each periocd can be explicitly determined. For instance, the
management may hire and fire in the same peried (i.e., hiring
for one class and firing from another).

d. The models achieve management goals such as stabilizing the
graded workforce, minimizing cost, meeting the demand, etc.,
taking into consideration the dynamics of internal workforce
that are represented in the personnel transition matrix.

Other major contributions are in the area of goal programming.

These include:

5. The development of an algorithm to test the goal programming
solution and to generate a nondominated solution if the goal programming
solution turns out to be dominated.

6. The development of a solution methodology to include all the
goals in the optimization process and to obtain a goal programming and a
nondominated solution(s) to the model. This method allows the decision
maker to be involved in the optimization process and to provide informa-

tion regarding reasonable values of the targets.



CHAPTER II

BACKGROUND

Introduction

The present research combines aggregate planning and manpower plan—
ning in one model. Upon reviewing the literature, no such model has been
found and the areas of aggregate planning and manpower planning are
treated as separate areas of research. Therefore, the background of each

area will be independently reviewed in this chapter.

Background of Aggregate Planning

The application of mathematical programming techniques to aggregate
planning began during the great post-World War II management science
movement. Mathematical programming is a recently developed branch of
optimization theory. The older branches originated from minimization and
maximization problems that arise in geometry and physical sciences.
Mathematical programming originated during World War II from minimiza-
tion and maximization problems that arcse in the decision sciences;
namely, management sciences, operations research, and engineering design
Since then the work on application of mathematical techniques to aggre-
gate planning has continued at an accelerated pace. This work has been
motivated, in part, by the tremendous economic consequences of aggrega-—
ted decisions and by the current development and improvement of research

methodologies in the field of management science. The initial thrust of



this work was to use mathematical optimizing techniques such as differ-
ential calculus and linear programming to solve necessarily simplified

aggregate planning cost models. Solving a model yielded a set of deci-
sions or decision rules, which produced mathematically optimum results

with respect to the cost model.

More recently, perhaps following a newer wave of management science
emphasis, new proposals for solving the aggregate planning problem have
been taking the form of decision rules which are based on heuristic
problem—solving approaches and computer search methods. The objective of
this newer methodology is to enable the model builder and decision maker
to introduce greater realism. This added realism should, hopefully, more
than compensate for the fact that heuristic and computer search techni-
ques do not guarantee mathematically optimum decision rules. Advocates
of heuristic and search decision rule approaches argue that since the
decisions produced by a model can be no better than the model itself, it
follows that greater realism should produce better overall results. All
of these approaches have one thing in common: they address the aggregate
planning problem, which is8 one of the most important problems in indus-

try today.

Current Aggregate Planning Approaches

Apart from decisions which are made by managers or committees with-
out any mathematical help, there is a group of approaches which uses
more or less mathematical sophistication in order to better model or
efficiently solve aggregate planning decision problems. In general,
these approaches are divided into two classes: those which guarantee

optimality of the solution for a given model, and those which do not
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guarantee optimality, but find a near optimal solution. Examples of the
former include linear programming, differential calculus, dynamic pro-—
gramming, goal programming, and an application of the discrete and con-
tinucus maximum principle.

The decision rules which do not guarantee mathematically optimum
solutions with respect to the model are of two general types. The first
is heuristic in nature and hypothesizes that decision rules can be re-
presented by heuristically derived equations. The numerical values
assigned to the coefficients of the equations are obtained in two ways.
Bowman (13), in his management coefficients approach, performs a regres—
sion analysis of historical management decisions to obtain coefficients.
Jones (46), in his parametric production planning approach, builds a
forward-looking multistage cost model and simulates the operation of the
model by plugging in trial values of the coefficients. The simulation
takes the form of a coarse grid search based on systematically evalua-
ting certain combinations of coefficient values. At the concl;éion of
the coarse grid search, the best set of coefficients 1s selected for use
in the heuristically postulated decision rules.

The second major solution methodology of this type does not postu-—
late the form of decision rule equations, but rather obtains specific
numerical values associated with various decisions by climbing or search-
ing the mathematical response surface formed by the criteria function of
the model. This approach combines the advantage of realistic model repre-
sentation by means of a computational algorithm with newly developed
computer routines which search for the optimal point, or points, on a
mathematical response surface. This approach is termed the "Search Deci-

sion Rule,” as devised by Taubert (79).
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From the foregoing discussion, it is possible to use the solution
methodology to classify aggregate planning models:

1. Mathematical Programming Optimal Decision Rules (MPODR).

2. Heuristic and Search Decision Rules.
The background of the studies relative to the above two areas will be

presented by some details on the most successful approaches.

Mathematical Programming Optimal

Decision Rules (MPODR)

The area of aggregate planning has been the subject of intensive
research and writing for more than two decades. Although under different
titles (such as production smoothing or master production planning) it
has been considered by some to be the major decision framework involved
in production management. The best decisions, by using MPODR, are found
in optimizing the model in each period. The simplest approach in this
group is that of linear models with corresponding linear programming
solutions. There are many models of this type in the literature with
different assumptions about costs, capacities, and demand patterns. The
models which will be mentioned here are related to the original aggre-—
gate planning problem. Bowman (12) proposed a transportation method for-
mulation for aggregate planning in 1956. The Bowman approach required
the specification of a restricted number of production levels for each
period and neglected the costs of changing levels. Bowman did not consi-
der the work force explicitly. The increased complexity of the simplex
method of linear programming was proposed by Magee (51) to incorporate

the workforce decision and the costs of changing levels. Additional
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linear programming formulations have been proposed for aggregate sche-
duling (McGarrah (57), Charnes, Cooper, and Farr (20), and Dzielinski
and Gomory (26)).

Hanssman and Hess (36) describe a linear programming model similar
to the model developed by Holt, Modigliani, and Simon (36), which will
be described later. Their model is simple and easy to implement; there-
fore, it will be discussed in some detail.

Aggregate planning reached a significant point with the publication

of Planning Production, Inventories, and Workforce by Holt, Modigliani,

Muth, and Simon (37) in 1960. The orientation of this book was based on
an intensive research study conducted by the authors in an empirical
situation. Their formulation of the problem was based on the assumption
that the costs involved in aggregate planning could be represented by
linear or quadratic functions. The resultant cost model was then minimi-
zed by differentation with respect to the decision variables, production
and workforce. This operation produced a set of linear equations which
could be solved for the values of the two decision variables. The net
result was a set of two linear decision rules which related the present
state of the system and the forecasted sales for an infinite time hori-
zon to give the minimum cost values for the production and workforce for
the next time period. Their model (HMMS model) will be discussed in more
detail.

Dynamic programming is another approach extensively used for this
problem or related problems. Bellman (11) applied dynamic programming
to aggregate planning in 1956. The most important related reference is

the Wagner and Whitin (85) dynamic lot size model. Unfortunately, the
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so-called "curse of dimensionality” makes the solution of any real plan-
ning problem impractical.

Goodman (31) proposed a goal programming approach for solving non-
linear aggregate planning models. This approach was illustrated via two
case applications. The first was applied to the HMMS model, and the
second used a higher order of cost terms. The two case applications
demonstrated that the effectiveness of such an approach is highly de-
pendent upon the degree of nonlinearity which the goal programming mod-
els must approximate. The author suggested that for relatively low
degree models, goal programming may ptovide an efficient and effective
solution approach, while for higher degree models the approach may be
inappropriate.

More recently, Masud and Hwang (56) describe a multiple objective
formulation of the multi-product, multi-period aggregate production
planning problem. A numerical example is solved by using three Multiple
Objective Decision Making (MODM) methods. The methods used are: Goal
Programming (GP), Step Method (STEM), and Sequential Multiple Objective
Problem Solving (SEMOPS). Masud and Hwang indicate that if GP is used,
the analyst can solve a set of problems using different goals and
priority structures, and then let the Decision Maker (DM) make the final
selection for implementation. In the case of interactive methods, such
as STEM and SEMOPS used in their research, the analyst can provide the
trade—off decision required in each iteration in lieu of the DM. The
analyst can also generate a set of solutions by providing different
trade-off information, and from these solutions, the DM can make the
final selection. The authors conclude that there is at present no best

MODM method for solving such problems and that all such possible options
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using MODM methods are highly flexible and adaptable to different

circumstances.

The details of the HMMS model and the Hanssman and Hess model will

be presented in turn.

HMMS Model or Linear Decision Rule (LDR)

The HMMS Model or Linear Decision Rule (LDR) is the basis of all the
approaches that will be presented in detail. All the others have been
compared with this one because it is based on a reasonable model and an
optimal solution can be obtained. Other methods must lead to nearly the
same costs as this one, for the same reality, in order to qualify for
being useful.

Holt et al. (37) suggest that four cost terms should be considered.
These costs are:

1. Regular Payroll Costs

The size of the workforce is adjusted once a month, and setting the
workforce at a certain level implies a commitment to p#y the employees
at least their regular time wage for a month. This is a linear cost

function as defined by

Regular Payroll costs = clwt

The assumption here is that the cost is linearly related to the size of
the workforce Wt' An additional cost term can be added to the above
equation, but that would not affect the solution.

2. Hiring and Layoff Costs

The cost of increasing or decreasing the workforce is assumed to

take the form of the quadratic function:
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_ _ 2
Hiring and Layoff Costs = C,(W, Wt—l)

where Wt - Wt-l is the change in the level of the workforce from period
t-1 to t. Here the cost is assumed to be symmetrical, i.e., an increase
or a decrease in the workforce by a given amount incurs the same cost.
Asymmetry in the cost function can be introduced, for example, by
CZ(Wt Wy - C/lO)z’ but Holt et al. (37, p. 53) state that "this
additional constant proves to be irrelevant in obtaining optimal deci-
sions.”

3. Overtime and Undertime Costs

If the size of the workforce is held constant, changes in the pro-
duction rate can be absorbed by overtime or undertime. Undertime is the
cost of idle labor at regular payroll rates. The overtime cost depends

on the size of the workforce, Wt, and the aggregate production rate, Pt'

The overtime cost function is assumed to be

- 2 -
Overtime Costs = C3(Pt C4Wt) + C Pt C.W

5 6t

where C3, C4, CS’ and C6 are constants.

4, Inventory, Back Order, and Setup Costs

The minimum cost inventory level is assumed to be linearly related
to the demand, taking the form 08 + C9Dt’ where Dt is the forecast de—
mand for period t. In fact, it is known from inventory theory that the
optimal inventory level is proportional not to demand, but to its square
root. In the HMMS model it is assumed that the linear relationship is an
adequate approximation.

The total cost of inventory, back order, and setup are then assumed

to take the quadratic form:
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Inventory, Back Order and Setup Costs = C7[It - (08 + Cth)]2

Figure 1 summarizes the four basic cost equations. The data employed
are from a paint factory which was used extensively in their study.
The HMMS model can be written as: the costs to be minimized are

represented by the following function considering the workforce, Wt;

aggregate production, Pt; net inventory, I, ; and demand Dt (where the

t
subscript t designates the time period):

T
= T - - 2
Cop p=p [CgW, + Cyg +# C W - W ) - Cpy)
2
+ C3(Pt - C4Wt) + CSPt - CGWt + CIZPtWt
+ ¢ (I, - Cy - C,D %] (2.1)
7't 8 97t ‘

By definition, the excess of production over orders affects net in-

ventory as:

I, = 1 +P -D 2.2)

where t = 1, ..., T.

For a paint factory, which has been the example for comparisons,
Holt et al. (37) determined the values of the Ci's from statistical
estimates based on accounting data and subjective estimates of intangi-

bles. They found that the objective function could be stated as
%? 9 9
C = 24 [340 W, +64.3(W -W__ )"+ .2(P - 5.67 W)
+51.2 B - 281 W, + .0825(I_ - 320)°] (2.3)

It is not a simple task to determine these coefficients, which is one

difficulty in using this model.
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Source: From Holt, C. C., Modigliani, F., Muth, J. F., and Simon, H. A.,

Planning Production, Inventories and Workforce, Prentice-Hall,
1960.

Figure 1. Cost Relationships of the Paint Factory Cost Model
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By elimination of Pt (or It) using the constraints, the model become
quadratic with no constraints. Then by using differentiation a system of
linear equations can be obtained. By inversion of the system matrix a
set of linear decision rules (LDR) is found. As the interest is primari-
ly in the first period decisions, only expressions for the optimal work-
force (W;) and the optimal production level for the first period (P:)

are needed.

*
w1 = alnl + ce. + aTDT + bwo +c - dIo (2.4)
* D £W

The a's and e's decrease rapidly; therefore, the sensitivity to horizon
increase is small.

The drawbacks of this approach are (besides the unusual quadratic
cost expressions and the difficulty of finding the Ci's) the possible
occurrence of a negative Wt or Pt’ a negative component cost, and too
high It’ Wt, or Pt' Additional constraints have to be included in the
model to control these variables.

Some advantages of this model are the ease of repetitive application
of the lineér decision rules and the guaranteed solution optimality

(assuming that the optimum decision variables have a positive value).

Hanssmann and Hess Model

The Hanssmann and Hess model (35) is based on the general assump—
tions of the HMMS model, but it uses linear functions. Their model is:

minimize the function
n

" = ¥ -
C(Pyy weey Py Wy wuey W) = I (CW, +C W -W_,

)+
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- + l
+C(W - W, _,) +C (K, - W)

+ -
#0170 +cy17) (2.6)

subject to the restrictions

B, 2 0 (2.7)
w, >0 (2.8)
Ii = Ii-1+Pi_Di (1‘1, e ey n) (2.9)

where the Di and the initial conditions (IO, Wo) are given. If one

defines (for any real number, a)

+ |a| for a > 0
a =
0 otherwise
and
_ 0 for a > 0
a =
la| otherwise
then,
= .t -
a = a -a

This definition may be thought of as an assumption rather than a re-
striction. Since it is generally known that an optimum solution of a
linear programming problem will automatically yield pairs of numbers
(a+, a ) with the property that either a+ =0Qora = 0, the problem can
be easily reformulated and solved by any linear programming algorithm.
Some advantages of this model are the possibility of establishing

bounds for the variables, the ease of obtaining the cost coefficients,
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the possibility of obtaining more realistic cost functions using piece-
wise linear functions, and the possibility of performing sensitivity
analysis using the dual solution. Some disadvantages are the linear
assumptions and the computational work.

Orrbeck, Schwette, and Thompson in 1968 (68) developed a model in
which the assumptions of constant wages and productivity in the produc-
tion smoothing problem were dropped. Their model is an extension of the
Hanssmann-Hess model; therefore, the necessary transformation to convert
the model into linear programming format has been provided. The Orrbeck
model classifies the workers into experience classes and can be used to
illustrate the concept of incorporating personnel movement in aggregate
planning models. For convenience, this model will be discussed in more

detail in Chapter III.

Heuristic and Search Decision Rules

The MPODR methods provide an optimum solution to a specific aggre-
gate planning problem. The main drawback of these methods is that the
assumptions are so restrictive that the models are unrealistic, or that
realistic models are so complex that they are impossible to sclve with
current computational methods and equipment. The heuristic and search
decision rule approaches are more free of the constraints of the mathe-
matical forms. Thus, a trade—off must be made between the desirabilty
of obtaining a known optimum solution to a relatively simplified model
versus obtaining a near optimum solution to a more realistic model.

The most important approaches of heuristic and search decision rules

are the management coefficients model, parametric production planning,
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and search decision rule. Therefore, these approaches will be discussed

in turn.

The Management Coefficients Model

Bowman (13) proposed a different approach to modeling managerial
problems and tested his hypothesis on the aggregate planning problem. He
sald that on the average, managerial decisions are more accurate than
those of any simplified model because managers have a more complex and
complete mental model than can be expressed in mathematical terms. He
showed that there was a high correlation between the actual decisions
and those of the LDR, the decision rules corresponding to good regres-—
sions of the actual decisions. Then, by using the format of the LDR and
regression, he tried to estimate decision rules for other cases. The
best results were obtained using a feedback form similar to the original
decision rules. For example, the versions of decision rules developed

for regression were:

i s D I_

W, o= W__, +b®,_, ‘_J) W._; +b,(D, - I._;) +ta (2.10)

P, = bW +bD (ﬁ D - W)+ b.(D i -I_.,)+a (2.11)
t 37t 4 5 2-4 t 5t 5 t-1 2 '

where W, P, and I are as given before, Dt represents actual sales in the
current period, 52_4 represents average actual sales in the next three
periods, and 5, ﬁ, and I represent averages of these variables over the
total period of investigation.

The theory behind Bowman's rules is that experienced managers are

quite aware of and sensitive to the criteria of a system and the
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managerial decisions are basically sound. What is needed is to elimin-
ate the "erratic" elements by making them more consistent. By averaging
out the inconsistency, near optimal performance could be achieved.

Some of the advantages of this method are:

1. Easy implementation because it 1s not necessary to find costs
and regression analysis is easy to perform.

2. More realism because implicitly a more realistic model is used.

Some of the criticisms of this approach are:

1. The form of the multiregression function 1is arbitrary and a
particular regression of past decisions over a narrow range may lead to
erroneous conclusions.

2. The regression model relies on decisions made by a particular
manager or group of managers. Changes in personnel may render the model
invalid.

3. The assumptions of unbiased managerial decisions and a nondyna-

mic environment are not realistic.

Parametric Production Planning (PPP)

Jones (46) developed a heuristic approach to aggregate planning
which is called Parametric production Planning (PPP). PPP postulates the
existence of two linear feedback rules. The first rule provides the num-
ber of workers and the second provides the production rate. Each rule
contains two parameters. The rules are formulated to include the full
range of possible decisions. The universe of possible parameters is
searched to find the set of parameters that provides the lowest cost for
a particular firm. Each set of parameters 1s evaluated by comparing the

costs resulting from the application of rules bearing these parameter
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values to a likely sequence of sales forecasts and actual sales. The
cost structure 1is not 1imited to linear functions or quadratic func-
tions; therefore, it should be the best quantitative representation
possible of the firm.

Jones (1967, p. 848) postulated the following rules:

1. Workforce rule.

E *
= by - -
W) WO+ AGEL biK(Fi) W+ b, R(I;, = I)) (2.12)
2. Production rule.
1 & 1 *
= = z - X -
P, Ko@) +C( L dF, - K “(W) +d,(I; - 1)) (2.13)
3. Weighting Function.
E E
= ni; 57 o1 =nl/ v ol
b, B/ %, B, d, =D /i=1 D
where:
A = Parameter between 0 and 1 indicating the portion of the

desired workforce to be increased or decreased.

B = Parameter between 0 and 1 determining the relative
welights to be placed on the forecasts for each of the E
future periods.

bi = Weight applied to the sales forecast for the ith period
in the future.

C = Parameter between O and 1 indicating the portion of the
desired production to be increased or decreased.

D = Parameter between O and 1 determining the relative
weights to be placed in the forecasts for each of the E

future periods.
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di = Weight applied to the sales forecast for ith period in

the future.

E = Number of future periods to be included.
Fi = The sales forecast for the ith period in the future.
i = Number of the period where O is the period just completed

and 1 is the immediate future period.

I0 = Inventory of goods on hand.
I1 = Optimal inventory at the end of the immediate future
period.
K(p) = Number of workers which can produce p units at the

lowest total cost.
K-l(w) = Number of units which can be produced by w workers at the

lowest cost unit.

P1 = Production quantity determined by the production rule.
Wo = Workforce on hand at the end of the zero period.
Wl = Workforce determined by the workforce rule.

For the same paint factory used in the HMMS study, assuming that the

HMMS cost model was realistic, Jones estimated his parameters, finding
*

(with I, = C8 = 320) that

A = .2685, B = .7745, C = .9475, D = .4692

In this comparison, PPP lost to the LDR by only .04 percent of the
minimal cost, which shows a good approximation to the linear decision
rule.

The great advantage of PPP is freedom from a given form of the

reality model. The main disadvantage of this decision model is the
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limitation of four parameters; therefore, it has low flexibility for

adaptation to complex situations.

Search Decision Rule (SDR)

Taubert (79) used a general model and completely solved the optimi-
zation problem at each period. Therefore, he did not really provide any
decision rule. As the problem formulation is general, techniques for
general nonlinear programming must be used. Taubert used a pattern
search routine (Hooke and Jeeves (38) and Weisman, Wood and Rivlin (87))
in order to find optimal decisions (W's and P's), given initial condi-
tions and demands (see Buento-Neto (15)).

The Search Decision Rule (SDR) does not guarantee optimality, but it
does offer a new way of breaking through the restrictive barrier imposed
by the analytic model (the optimal sclution methods discussed before).
The SDR approach proposes bullding the most realistic cost or profit
model possible and expressing it in the form of a computer subroutine
which has the ability to compute the cost associated with any given set
of decision variable values. Mathematically, the subroutine defines a
multidimensional cost response surface with a dimensionality determined
by the number of decision variables and the number of time periods in-
cluded in the planning horizon. In short, the cost model forms a mul-
tistage decision system model in which the state represents the cost
structure of the operation at the point in time when decisions are made,
such as monthly, quarterly, etc. A computerized search routine is then
used to systematically search the response surface of the cost model for
the point (combination of decisions) producing the lowest total cost

over the planning horizon. A mathematically optimum solution is not
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guaranteed, but the solutions found by the model cannot easily
be improved.

For a practical application and comparison, Taubert used the same
paint factory cost model as Holt et al. (37), but limited the planning
horizon to 10 months in order to avoid too many dimensions in his search.
Ten months means 20 dimensions for the search, as in each month there are
two decision variables (Wt and Pt). In comparison with LDR, SDR lost by
only .l percent. SDR cannot guarantee the exact optimum, but the differ-
rence will not be large.

The great advantage of SDR is its capability to handle any form of
reality model, although for some functions we may have problems in the
search. The disadvantage is the non—guarantee of optimality as the SDR
may stop far from the optimum or at a local minimum or maximum. Also, if
the cost function is complex the computation time and cost may offer
some inconvenience, especially 1f a long horizon must be used.

There are other heuristic approaches to aggregate planning which
can be found in the literature. Among them, Elmaleh and Eilon (28) sug-
gested a switching procedure for use in industries in which production
is limited to discrete levels. Millichamp and Love (58) proposed a sim-
Ple modification to the production switching heuristic which renders the
methodology appropriate for aggregate planning problems in general. They
based their approach on the random walk approach to aggregate production
planning proposed by Orr (67) and adapted by Elmaleh and Eilon (28).

More recently, Khoshnevis (47) incorporated the effects of the
improvement curve productivity phenomena, present in most industrial

situations, into the aggregate planning problem. He also described the
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effects of disruptions in productivity improvement, progress, and retro-
gression to the production and workforce planning area. Aggregate plan-
ning of both long cycle and short cycle production situations were
considered and models peculiar to each case were developed in his work.

For more details of the aggregate planning problem and its exten-—
sions, refer to Khoshnevis (47). He presents a detailed discussion on
the state—of-the—art of aggregate production models and analyzes the
effects of a dynamic productivity factor throughout the planning

horizon.

Background of Manpower Planning

(Human Resource Planning)

Manpower planning is a process intended to assure an organization
that it will have the correct number of properly qualified and motivated
employees in its workforce at some specified future time to carry on the
work that will then have to be done. Manpower planning has been a func-
tion of management since the origin of modern industrial organization.
The relatively sophisticated techniques available to management today
are the outcome of a long period of evolution. A variety of approaches
to manpower planning has been developed and proposed. These approaches
are broadly termed "human resource planning models.”

A review of human resource planning models by Milkovich and Mahoney
(60) indicates that the general types of models observed in practice and
in literature can be classified as:

1. Heuristic: to provide organization and direction

2. Theory-research based: for analysis and strategy development

and determination
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3. Technique oriented: for analytical models and their solutions

The general nature of each of these models and their applications is
considered in turn. The heuristic and theory-research based models are
taken from Milkovich and Mahoney (47). The current research is not con-
cerned with these models; they are repeated here for illustration, not

as a review of literature.

Heuristic Models

These models are heuristic in the sense that they are designed to
enable the users to organize their thoughts and to approach the issues
in a systematic manner. Such models serve to provide aid or direction in
the solution of the manpower planning problem. The literature has
several illustrations of these conceptualizations of human resource
planning (Burack and Walker (18). Generally, the common components of
the models reported include:

1. Determining the human resource objectives;

2., Analyzing the internal labor supplies available and projecting
into the future;

3. Matching the desired human resource position with the estimated
actual position and identifying areas of surplus and/or shortages for
each period;

4, Generating and analyzing alternative policies and strategies to
achieve the human resource objectives, including alternative staffing,
recruiting, job and organizational design, and training programs; and

5. Implementing the programs and reevaluating results against the

human resource objectives.
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Theoretical-Research Based Models

Another major class of manpower models can be labeled as theoretical-
research based models. These models are more concerned with the identifi-
cation of the variables that influence an organization's human resource
objectives. Some of the questions theoretical models are designed to an—
swer include:

l. What are the specific determinants of unit productivity, em-
ployee performance, job satisfaction, or unit labor cost?

2. What relationships exist between budget expenditures on manpower
programs such as training and unit productivity?

3. How does a policy of "promotion from within" impact unit pro-
ductivity, labor costs, or legal compliances with EEO?

The focus is more on the specification of the substance or content
of human resource objectives than on the issue to be considered or the
analytical techniques to be used. For example, a heuristic model in-
cludes "determine human resource objectives,” whereas a theoretical mod-
el may include "employee performance as a function of skills, motivation
and technology."”

These models are derived from economic and organizational research
theories; therefore, they can provide critical input for human resource
planning. Most managers currently operate with implicit models of the
critical factors that will impact their human resources. Concepts and
insights drawn from organization-related theory and research may also

prove to be of value.

Technique—Oriented Models

The third area of human resource modeling is the application of
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mathematical models to human resource issues. There is a wide variety of
technique-oriented models that have been applied to various human re-
source planning elements with reasonable success. The most significant
advances in human resource modeling techniques have occurred in the ap-
plication of Markov chains, renewal, and goal programming models to the
human resource stock and flow processes within the organization. The
applications of these models include:

1. Forecasting the future human resources requirements that will be
satisfied by the current inventory of personnel, and forecasting the fu-
ture human resource budget commitments represented by the current stock
of personnel

2. Analyzing the impact of proposed changes in policy and programs

3. Designing and structuring systems that will balance the flows of
internal human resource supplies, requirements, and costs, and designing
human resource information systems suitable for policy analysis and
planning

It is an extremely difficult task to attempt to discover the first
application of each concept in manpower planning. However, the most com-
mon mathematical models, as classified in the literature, are given
below:

1. Markov Chain Models

2. Renewal Models

3. Normative or Optimization Models

These models are briefly reviewed in turn.
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Markov Chain Models

There have been a variety of recent applications of Markov chain
models to manpower planning. These Markov models generally multiply a
vector of personnel in various job categories by a matrix of transitiom
rate. This allows one to obtain a projection of the current workforce
based upon past trends. Early work in this field dates back to the late
1940's, but it was only in the late 1960's that a coherent body of theo-
ry began to emerge. Probably the best known applications are those of
Vroom and MacCrimmon (84), Bartholomew (6), Merch (59), and Mahoney and
Milkovich (52). Among the others using Markov models for manpower plan-
ning are Forbes (29), Rowland and Sovereign (75), Marshall and Oliver
(54), Stewman (78), and Nielsen and Young (66).

Markov chain models are most appropriate where the job classes and
rates of flow between them are stable and the flows out of a class de-
pends on the class occupled and the number of personnel in the class.
The rates of movement depend upon the current class which has been de-
fined in terms of organization level, salary grade, function, experi-
ence, age, sex or race. The Markov models contain an essential element
for developing manpower projections. This turns out to be that the tran-
sition matrix allows the analyst to interconnect the external and
internal flows across time periods.

The Markov chain model is capable of describing the changes in a
graded manpower system. Given suitable assumptions about future loss and
transition probabilities, the model can be used for forecasting the
grade structure. It can also be used as a tool for exploring the conse-
quences of different manpower policies and hence for controlling the

structure. It is also possible to validate the model to the extent that
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recent history can be verified on the basis of prediction from the dis-

tant past.

Renewal Models

Renewal models are most usefully applied to situations where grade
size is closely controlled within the organization and where promotion
and hiring decisions are made only to fill vacant positions. In many
situations, this type of model can be used to examine various policies
and to evaluate the results of their application on system parameters
such as promotion rates, length of stay in grade, etc.

Bartholomew (7) developed the mathematical equations of the renewal
models that permit the evaluation of variables in both discrete and con-
tinuous time. Bartholomew and Forbes (8) show how renewal models can be
used to study career patterns and contrast these results with those that
can be obtained from Markov models. Piskor and Dudding (70) describe the
incorporation of a renewal model in a conversational program in use for
the planning of grade sizes, hiring, firing and transfers in the Cana-
dian Public Service. Stewman (78) compares the performance of the Markov
chain, the Markov chain with duration of stay (Semi-Markov) and a va-
cancy model having both renewal and Markov properties. He finds that the
renewal or opportunity model performs better in general than either the

Markov chain or the Markov chain with duration of stay.

Normative Models

The Markov chain and renewal models are descriptive in nature and
are used to forecast future manpower requirements or to study the

various policies on manpower systems. Normative models suggest a
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solution to the manpower planning model. This solution is optimal for a
set of management goals or objectives.

One of the earliest applications of the normative techniques to the
manpower planning models was the use of linear programming and its exten-
sions. Kildebeck, Kipnis and Macky (48) developed a linear programming
model for the pilot training cycle of the U.S. Air Force. The Marine
Corps, as described by Marsh (53), used a linear programming model to
assist in the planning of troop rotations. Purkiss (74) describes a lin-
ear programming model that was used to help drive training budgets for
manpower in the British steel industry, while Morgan (62) and Clough,
Dudding and Price (24) used this framework in studies of the Royal Air
Force and the Canadian forces. Ameng the other works that one could
cite are the industrial manpower models utilizing mathematical program-—
ming by Purkiss (73) for the British Iron and Steel Institute, and that
of Alagizy (1) for IBM. Most of these models have experienced implemen-—
tation difficulties. In addition to the problem of management communica-
tions, their implementation has been slowed by the model's comstruction.
They have optimized a single objective function, and generally, have not
handled the problem of multiple period planning very well. In personnel
management, objectives are multiple and the appropriate solution techni-
que is goal programming.

Charnes, Cooper and Niehaus (23) describe a goal programming model
for guiding and controlling manpower planning at the level of the Office
of Civilian Manpower Management (OCMM) of the U.S. Navy. The personnel
requirements are accommocdated by the goal programming aspect and the
transition of recruits and job incumbents from one position to another

are accommodated by the stochastic elements of a Markov chain. This
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model has been extended to consider more complex transitional effects,
e.g., those due to retirement and to allow for interperiod Markov
transition matrices which change over time. Most of these models have
been developed and applied in military and government settings. Price
and Piskor (72) describe a successful application of goal programming
to the planning of hiring and promotions in the Canadian Armed Forces.

Zanakis and Maret (90, 92) presented a Markov chain application to
model the manpower supply of over 1,000 engineers in a department of a
large chemical company. They also suggested a Markov chain/preemptive
goal programming sequential approach for solving manpower macro planning
problems under various restrictions and conflicting goals.

More recently, Martel and Price (55) showed how state space models
for human resource planning may be extended from linear and goal program—
ming formulations to cover the case where manpower demands and available
resources for future periods are not known for certain. However, they
stated that the model can be treated as a multi-period stochastic pro-
gram with simple recourse. They used normal and Beta probability
distributions to fit the right hand sides and solved the equivalent deter-
ministic program using convex separable programming. They also applied
their methodology to a military human resource planning problem.

There have been a number of books published on the subject of man-
power systems. The proceeding of NATO-sponsored meetings on human re—
sources planning contains many illustrations of the use of diverse
methods and models (14, 25, 77, 89). In addition, Bartholomew (7),

Bartholomew and Smith (10), Bartholomew and Forbes (8), Bartholomew and
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Morris (9) Charnes et al. (23), Grinold and Marshall (33), Moore and
Charach (61), Niehaus (64), Vajda (81), Walker (86) and Verhoeven (82)

have published books on specific areas of the mathematics and techniques

of manpower and human resources planning.



CHAPTER III

INCORPORATING THE PERSONNEL TRANSITION MATRIX IN

AGGREGATE PRODUCTION PLANNING MODELS

Introduction

One major objective of this research is to study the effect of a
personnel transition matrix on aggregate production planning models and
to develop appropriate aggregate production and manpower planning
models. The developed models will consider the fact that the workers
must be treated as a graded workforce and hence differ in both producti-
vity and wage. Such models incorporate the effect of a personnel tran-
sition matrix on workforce and production decisions.

To achieve this objective, two models will be developed. The first
one will be developed in this chapter and be called Model I. The second
will be developed in Chapter VI and will be called Model II.

Model I is a linear programming model of the aggregate production
and manpower planning problem. The Orrbeck model (68) will be used as a
point of departure from which this new model will be developed. This
model will be considered as a starting point for developing aggregate
production and manpower planning models and will also be used to verify
the results of Model II.

Model II is an extension to Model I from a single objective to a
multiple objectives model in which goal programming is selected as a

multiple objectives solution procedure.
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In this chapter, some of the definitions and concepts of manpower
planning will be presented. The Orrbeck model will also be discussed in
detail since it is the first model which incorporated the effect of worker
productivity on production smoothing and classified the workers into dif-

ferent classes. These materials are appropriate for developing the new

models.
Manpower Planning

Vetter (1967), among others, defined manpower planning as:
The process by which management determines how the or-
ganization should move from its current manpower position to
its desired manpower position. Through planning, management
strives to have the right number and the right kinds of peo-
ple, at the right spaces, at the right time, doing things

which result in both the organization and the individual re-
ceiving maximum long run benefits (p. 15).

Manpower System

A manpower system is considered to be composed of mutually exclu-
sive and exhaustive classes of states so that eacﬁ member of the system
may be in one and only one class at any given time. These classes may
be defined in terms of any relevant variables. The manpower system is
concerned with the numbers in each of these classes at discrete points
in time, and with the numbers (or flows) moving between these classes
from one point to the next. The system is open so that flows to and
from the outside world are permitted. These flows correspond to wastage

and recruitment respectively.
Markov Chain Models

There have been a variety of recent applications of stochastic

models of the so-called Markov matrix type to manpower planning. In the
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Markov model the flows are assumed to be governed by transition proba-
bilities, and each class is homogeneous and independent with respect to
these probabilities. That is, each member of a class has the same pro-
bability of making a particular transition, and furthermore, these
probabilities operate independently. The basis of the Markov assumption
is that the transition probability depends only on the class of state
occupied at present.

The Markov models generally multiply a vector of personnel in var-
ious job categories by a matrix of transition rates. This allows omne to
obtain a projection of the current workforce based upon past trends.
Many researchers suggest that Markov models contain an essential ele-
ment for developing manpower projections. This turns out to be that the
transition matrix allows one to interconnect the internal and external
manpower flowq across time periods, which leads to dynamic models of
the Markov decision variety.

The Markov chaln model can be represented by the matrix equation:

X(t+1) = X(t) M + n(t+l) P

where:
X(t+1) = the expected stocks vector at time t+l.
X(t) = the stocks vector that is observed at time t.
M = Personnel Transition Matrix (PIM) or transition
probability matrix of the organization.
n(t+l) = the number of entrants at time t+l.
P = a vector showing how the entrants are distributed

among the state of the system.
Repeated application of this equation allows forecasting of the

stocks vector for later points in time. The Markov models contain an
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essential element for developing manpower projections since PTM allows
the analyst to interconnect the internal and external manpower flows

across time periods.

Orrbeck Model

As previously mentioned, the first aggregate planning model which
incorporated the effect of worker productivity and classified the
workers into classes was developed by Orrbeck et al. (68). This model is
an extension of the Hanssman—-Hess model (35) which presents a linear
programming formulation of the aggregate planning problem. The Hanssman-
Hess model was discussed in Chapter II and will be repeated here for the
purpose of clarity. The essential cost elements of the Hanssman-Hess
model are regular payroll costs, overtime pay, costs of hiring and fir-
ing workers, and storage and shortage costs. The sum of these costs
accounts for the total relevant cost in any period. The problem, then,
is one of choosing production and workforce levels in order to minimize
the sum of the total relevant costs over the planning horizon. The reg-
ular payroll costs in any period t are assumed to be proportional to the
number of workers employed in that period. The cost of overtime is found
by first establishing an upper limit on the production that can take
place on regular time. Any production in excess of this amount must be
done on overtime. To establish the upper limit to regular time produc-
tion, Hanssmann and Hess (35) assume that each employee can produce ex-
actly the same amount in a given period. The hiring or firing costs in
any period t are assumed to be proportional to the number of workers
hired or fired in that period. The inventory carrying costs and back

order costs are assumed to be proportional to the amount of inventory or



shortage at the end of the period. The production planning problem,

then, is to determine X, and Nt (t=1, «e., T) in order to minimize

c = tgl [Cr Nt Payroll Costs
yecGEx - Overtime Pay
oK't t
+C_ (N, -N )+ Hiring Costs
h 't t-1
+C. (N, - Nt—l)— Firing Costs
+ CI I: Inventory Costs
+ C8 I; ] Shortage Costs
Subject to
Xt > 0, Nt 20, It = It—l + Xt - St’ t=1, «e., T
where:

T = number of periods in the planning horizon

Nt = workforce level in period t

Xt = production level in period t

St = demand in period t

Cr = wage rate per period

Co = overtime pay per worker per period

% = number of units of output per employee per period

Ch = hiring cost per employee per period

Cf = firing cost per employee per period

CI = inventory cost per unit per period

CS = shortage cost per unit per period

I_ = 1inventory level in period t



41

By using the proper transformations, the problem can be converted into a
linear form and thus be solved by standard linear programming methods
(refer to Hanssman and Hess (35) for details).

Orrbeck (68) made the following assumptions:

1. All employees fall into one of e experience classes, where
class e represents the most experienced class of workers.

2. The number of workers in an experience class will be the num-
ber of workers in the next most experienced class in the preceding per-—
iod, minus the number of workers released from the group. Exceptions
are the first and last groups. The first group will consist of newly
hired workers and the most experienced class will consist of employees
in this group in the previous pericd plus those promoted into the class
by the passage of time.

3. If workers are to be fired, the least experienced workers are
fired first. Should the number of workers fired in a period exceed the
number of employees in the first class of the previous period, some
workers from the second experience class would have to be laid off.

4. Constraints governing the assignments of overtime are: (a) the
unduly large amount of overtime not assigned to any class of employees
and (b) the workers will be called upon in order of seniority. Thus the
most experienced workers will work overtime first, subject to the limit
of their capacity. If overtime work still remains, the next most ex-
perienced class will be called upon until all overtime work is assigned.

5. No shortages will be allowed and the inventory carrying cost
will be assumed proportional to the average inventory.

As a result of the above assumptions, Orrbeck (68) added a set of

new constraints to the original Hanssmann—-Hess model, then transformed
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the model into a linear programming format. The Orrbeck model prior to

transformation has the following structure:

T e e 1
= I [z nct 1 £ r C ol
Min. C 21 [i=1 N_ €+ C N, + CN_ +a I pi 0,
+ilc . +1. 0
21 t t-1
Subject to the following constraints:
L = L v %~ 5
e
- . T i i.+
O¢ [X, =45 P NI
1 S ot
Rt = [Ot - j=i+1 (2/—1) P Nt ’ i = 1’ 2, sv ey E"'l
oi = Ri - Ri_l, i=1,2, .., e
e
i.i
L1
X £ 45 PN
i-2
i _ 1-1 g0 ] I A _ _
N, [N, _; (j=1 NS, Nt) 1, i=2, veu, e-1
e-2
e _ e e _ X i _ -+
N NGy + N - G Ny Ni) ]
M >o0,0t>0, 850, x >0, 1. 50, £t =1 T
gL U Ve 2V N 2V AL 2V 4y ’ 5 eocey .

Where:

e = maximum number of experience classes.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

(3.8)
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Pi = the number of units produced by each member of the ith
experience class on regular time.
0t = total amount of overtime production in period t.
Oi = amount of overtime production assigned to class i in
period t.
i
Rt = amount of overtime work remaining available in period t to
the members of class i and the workers with less experience
after overtime work has been assigned to the more experi-
enced workers.
Ni = number of workers in class i in period t.
Ni = number of workers hired in period t.
Ni = number of workers fired in period t.
Ci = regular payroll cost per worker in class i1 per period.
£ = a constant such that lpi is the maximum production
(in units) by one worker of experience class i on regular
time and overtime.
a = a constant such that a Ci is the overtime payment per worker

in class 1.

The remainder of the variables were defined previously.

Personnel Transition Matrix and

the Orrbeck Model

As previously stated, Orrbeck (68) assumed that the number of
workers in an experience class would be the number of workers in the

next most experienced class in the preceding period, minus the number of
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workers released from the group. This assumption does not represent the
dynamics of the internal workforce which includes both movement (or lack
of it) within the organization and external losses. The loss rates may
be further subdivided into terminal losses from persons retiring and
quitting. Considerable insight can be gained into the structure of the
organization through analysis of movements and retirements. The internal
movements are important if one 1s to obtain correct estimates of inter-
nal supplies and losses of personnel in the future. For example, the
movement of a worker in class 1 to class 2 represents both a loss to
class 1 and a gain to class 2. In planning aggregate skills, the basic
source of this information is the transition matrix.

For the sake of clarity, consider a hypothetical example of the
steps required to develop a transition matrix. For the purposes of this

example, the following job categories will be used:

Job Category Code
Management Mgt
General Administration Gen
Skilled Worker SW
Unskilled Worker w

These categories can be used to go into the historical personnel
files to obtain the data needed to build the transition matrix. What
is needed are data on the job categories occupied by each individual in
a sample (or complete count) at two relevant time periods. This allows
a "snapshot” to be taken of personnel population between the two time

periods. In this numerical example these data take the form shown in

Figure 2.



Job Category

Employee Number Time 1 Time 2
3024 Mgt Mgt
3025 SW
3047 Gen Mgt
3072 OW

Figure 2. Transition Data File

The resulting file can now be used to develop the transition
matrix by using a table, such as Table I. In this transition table, of
the 50 employees in the management category at Time 1, only 40 remained‘
in that job category by Time 2. Also, five of the 50 transferred to the
general administrative category and five had left the organization. By
adding the columns, one can obtain the population distribution at Time
2. The rates of movement can be obtained by dividing the number in
each category in a given row of the row total. For example, in the row
agssoclated with the management, the 40 remaining in management are
divided by the 50 at the start to give .8 (80%) and the five that moved
to general administration results in a .1 (10%) movement rate, etc. The
rates for the complete transition matrix are given in Table II.

Transition matrices can be established for a wide variety of job
categories and time periods. In a planning model, the critical factor
is that the transition rates be consistent with time periods used in
the model. The transition matrix may also be modified to more accurate-

1y reflect the period being projected.



TABLE I

HISTORICAL TRANSITION STATISTICS

Totals

Job Category Time 1 Mgt Gen 8)°) SW Exits

Mgt 50 40 5 5

Gen 300 10 210 80

uw 600 360 60 180

SW 500 450 50

Entries 5 110 300
Totals
Time 2 55 325 660 510

TABLE IT
TRANSITION RATES FROM TIME 1 TO TIME 2
MGT GEN w SW Exits

Mgt .80 .10 .10
Gen .03 .70 .27
uw .60 .10 .30
SW .90 .10
Source: From Niehaus, R. J., Computer Assisted Human Resources

Planning, Wiley Interscience, New York, 1979.

46
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From the foregoing discussion, it seems natural to drop assumptions
2 and 3 of the Orrbeck model in favor of a model in which the personnel
transition matrix (PTM) of the organization will be used. The PTM governs
the personnel movement during the time horizon and it will achieve the
following characteristics which do not exist in the Orrbeck model. These
characteristics are as follows:

1. The cases of quit, attrition, promotion, etc., will be
considered in the new model by representing them in the PTM of the
organization.

2. The number of workers hired or fired in each class for each
period can be explicitly determined. For instance, management may hire
and fire in the same period, i.e., hiring for one class and firing from
another class.

The other assumptions of the Orrbeck model will not change in the

new model since they are relevant assumptions.
Workforce Constraints
A general formula of workforce is:

jusber RIS | Vo Hires - ires - NEOT t2
To calculate the above equation for each period in the planning hori-
zon, the initial number in each class (Job Category) is assumed to be
constant and known. This initial number is then multiplied by the tran-
sition rates to project those staying in a particular class, those be-
ing promoted, and those leaving the organization. New hiring or firing
is added to the number remaining in each class to get the number of

workers in each class in the first period of the forecast. The process
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is repeated for the next period, multiplying the projected number at
the end of the first period by the transition rates to obtain the
number remaining and class changes in the second period. Again the new
hiring and firing are added to obtain the number of workers in each
class in the second time period. This process is then repeated for all
the periods included in the model.

It is convenient to use a matrix notation to develop a mathematical
expression of the above word equation. This can be done by introducing
the following notation:

M = Personnel Transition Matrix (PTM) of the organization with

dimension e x e.

ﬁt = a column vector represents the number in each class
in period t.

ﬁ: = a column vector represents the number of hires in each class
in period t.

ﬁi = a column vector represents the number of fires in each class
in period t.

ﬁo = a column vector represents the number of workers in each

class initially.
— ﬁh ...f -—
N, s N No are nonnegative vectors each with dimension e.

By using the above notation one can write the following workforce

constraints:
Period 1:
— sh =f _ <
MNo + N1 - N1 Nl
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Period 2:

W+ MRS - MND + WD - N = N

Period t:

t
t-1 =h t-i =f _ =
- 2 =
1 M Ni i=1 M Ni Nt

ipg ot

t_.
MNo+i

Thus, the workforce constraints can be given by

t-1 =f _ t = _
lM Ni—M NO andt 1’ ee ey T. (3.9)

e et

t
- 2 N
Ne =gz M 1t

Model Formulation

As mentioned before, the assumptions concerning the workforce
constraints in the Orrbeck model are unrealistic because they do not
represent the dynamics of the personnel movement in the firm. In the
proposed model, these constraints will be replaced by those developed in

the prevlious section. Therefore, the new model can now be formulated as:

T h £ e g 4
= I [CN C N C. N . &
Min. C 21 [C N, +C N +C. N +a I o 0,
+1 c., (1. +1_ )] (3.10)
2 "I Tt t-1 *
Subject to the following constraints:
I, = I, +X -5 (3.11)
0. = (x_ -pw8)H?t (3.12)
t t t
i e § i+
- —— 7: — = -—
R [0, =yl G-D PINTT 1 =1,2, .0, el (3.13)



ot = RI-Rr' 1=1, .., e (3.14)
X, L 4PN (3.15)
= Foutigh, 5o tigE t <
- X X = .
N - 5 M 1 T 5N MO N (3.16)
N >0, B'>0, N.>0, X >0, I >0 fort=1, 2 T
t SV N2V N 2V A LY e 2 ’ 9 *oocy .
where:
C = a constant row vector represents the regular payroll cost
with elements Ci, i=1, .., €.
Eh = a constant row vector represents the hiring cost.
Ef = a constant row vector represents the firing cost.
P = productivity row vector with elements Pi, i=1, «c., €.

The other variables were previously defined.

Model Transformation

In order to solve the above model by linear programming methods, a
set of variables must be determined in such a way that the cost func-
tions and constraints are linear. In its present form, the overtime
constraints are the only nonlinear constraints. To convert the over-—

time constraints to linear functions, define the variables
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For the next most experienced class
e-1 _ e _ (o e ye1”
U = (R, (2-1) P~ N]

The general relationship is

e
i _ e _ N R
U, = [Rg - j=f+1 (2-1) P N;]

Then, from the definition of Ri one can write

e
e

- % -1 pInd = -
R, j=i+1(z 1) P° Ny R, -U

and also from the definition of R: and Ui one can write

e O 4
I 3 =
+a i, pl 0 +5C (It + It—l)]
Subject to the following constraints:
I, =1 + X -8
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(3.18)
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v pd N
X, < ek PUNG (3.22)
t t
O S g -1 of o= ot
N -5 M g T M TN =N M (3.23)
=t =h =f i i
N">o0, N >0, N >0, X >0, I >0,R >0, U >0,
i = 1, vee,efort=1, 2, «e., T,
Remarks

The model developed in this chapter is by no means the final pro-
duction manpower planning model. It does, however, illustrate how the
important aspects of a personnel transition matrix of the organization
and Markov processes, heretofore neglected, can be incorporated into
the aggregate production planning models. The model has been formulated
as a linear programming model and its solution can be found by any
available linear programming package. The model application, along with
the comparison with the Orrbeck model, will be presented in Chapter
VII.

A substantial improvement of the linear programming models can be
made by the use of goal programming procedures. An early contribution

is the work of Charnes, Cooper, and Ferguson [22]. In a model they



53

designed for the General Electric Company to assist in setting execu-
tive compensation, they developed the concept called "goal programm—
ing." Here, the idea is to try to hit a number of management goals "as

closely as possible,” subject to a set of underlying constraints. How-
ever, goal programming models with embedded Markov processes have been
developed and used in manpower planning [23]. A goal programming model
(Model II) for aggregate production and manpower planning will be de-
veloped in Chapter VI after reviewing goal programming and some of its

difficulties in Chapter IV, and developing a nondominance algorithm for

goal programming in Chapter V.



CHAPTER IV

NONDOMINANCE IN LINEAR GOAL PROGRAMMING

Introduction

The area of multiple objective decision making has received a great
deal of interest in recent years due to the realization that many real
world decision making problems rarely involve only one objective. Among
the many methods presented for solving the multiple objective problems,
goal programming (GP) has received considerable attention. GP is a rela-
tively new tool that has been used as a methodology for analyzing multi-
ple objective decision making problems. It is an outgrowth of the early
ideas of Charnes and Cooper (20) and has been extended by Ijiri (45),
Lee (50), and Ignizio (41), among others. It has also been applied in
many diverse areas such as manpower planning, energy/water resources,
transportation problems, production planning, etc. For further applica-
cations and references, the reader is referred to Ignizio (42).

A goal programming solution can turn out to be dominated, that is,
not the best one with respect to currently available altermatives. This
suboptimizing feature of GP is implied by the fact that the goals are
set a priori, as discussed in Zeleny (92). Hannan (34) gives a few num-
erical examples of GP difficulties. To overcome these difficulties
Hannan suggests setting the goals a priori and then maximizing or mini-
mizing the corresponding goal functions on a further constrainted set.

Goicoechea, Hansen, and Ducksten (30) stated that it is possible for a

54
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GP solution to be a dominated solution, in which case the targets would
need to be adjusted and the model solved again. Ignizio (43, 44) sug-
gested that by setting the objective aspiration levels high enough that
they may not be attained for any solution, the GP solution cannot be
dominated.

In this chapter some of the definitions and concepts of GP, its
formulation, and its solution methods will be presented. The dominance
in a GP solution will also be discussed through an example. These mater-
ials are appropriate for developing the nondominance test theorem to GP,

and can be found in (2, 3, 5, 30, 34, 41, 42, 43, 44, 92, 93).

Terminology and Concepts

Terminology and concepts, as always, play an important part in the
understanding and appreciation of a methodology. GP has a number of spe-
cial terms, concepts, and definitions that are appropriate for develop
ing the GP model. Included among these are:

Objective: An objective is a relatively general statement (in
narrative or quantative terms) that reflects the desires of the decision
maker. For example, one may wish to "maximize profit” or "minimize labor
turnover” or "wipe out poverty.”

Aspiration level: An aspiration level is a specific value associ-
ated with a desired or acceptable level of achievement of an objective.
Thus, an aspiration level is used to measure the achievement of an ob-
jective and generally serves to "anchor” the objective to reality.

Goal: An objective in conjunction with an aspiration level is
termed a goal. For example, we may wish to "achieve at least X units of

profit” or "reduce the rate of inflation by Y percent.”
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Goal Deviation: The difference between what one accomplishes and
what one aspires to is the deviation from his goal. A deviation can
represent overachievement as well as underachievement of a goal.

Deviation Variables: A deviation variable reflects either the
underachievement (negative deviation) or overachievement (positive devi-
ation) of an objective. All deviation variables are assumed to be non-
negative.

Achievement Function: The goal programming achievement function
indicates the degree of achievement of the associated goals. Given a
function that is to be lexicographically minimized, the achievement

function is an ordered (i.e., ranked or prioritized, vector). This vec-

tor can be written as:

[ON]

= (al, Bys weos s sees aK),
where _
a, = gk(d—,d+), k=1, 2, «o., K
whera
a = achlevement vector,
k = ranking or priority,
i- = negative deviation vector,
d+ = positive deviation vecter, and
gk(a—,a+) = linear function of the goal or constraint

deviation variables that are to be minimized at rank or

priority k.

Lexicographic Minimum: Given an ordered array a of nonnegative

elements ak's, the solution given by 5(1) is preferred to 5(2) if
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(2)

(1)
5 <

and all higher order elements, l.e., a,.l, ..., a,_, are equal. If no
other solution 1is preferred to 5, then a is the lexicographic minimum.

Note that the lexicographic minimum is a nondominated solution (43).
Goal Programming Formulation

Key aspects of the formulation for a goal programming model used
here are the specification of the preemptive priorities, establishment
of an aspiration level for each objective, and generation of the achieve-
ment function.

The concept of assigning a preemptive priority structure to goals
is fundamental to the