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PREFACE 

This research combines, for the first time, the aggregate produc

tion and manpower planning problem in one model. Two such models have 

been developed, both of which will allow the managers of production 

organizations to more easily and accurately project future manpower and 

production requirements. The first (an extension to the Orrbeck et al. 

model (68)) incorporates the effects of the personnel transition 

matrix of the organization on manpower and production decisions. The 

second is the development of a goal programming model for the aggregate 

production and manpower planning problem. 

The research also led to the development of an algorithm to test 

the goal programming solution and to generate a nondominated solution if 

the goal programming solution turns out to be dominated. This algor

ithm is used to solve the second model, and furthermore, a solution 

methodology has been proposed to include all the goals in the optimiza

tion process. 
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CHAPTER I 

INTRODUCTION 

General 

The aggregate planning problem has received a great deal of atten

tion over the last three decades. The term "aggregate planning" is used 

for a broad planning of production and workforce to maintain an economi

cal stability over time. Recognition of the widespread existence of this 

problem has led to the publication of a number of different approaches 

for solvir.g the aggregate planning problem. A broad discussion of this 

problem and its pr0posed solution may be found in Buffa (16) or in 

Khoshnevis (47). 

Unfortunately, even though there are several approaches available to 

managers of production organizations, aggregate planning methods are sel

dom used in practice. Taubert (1968, p. 343) states that "simplified 

aggregate scheduling models have not found widespread use in industry." 

It is apparent that there are several reasons which have prevented a dis

semination of these approaches into management practice. The most impor

tant one is that the present approaches of aggregate planning assume an 

aggregate workforce without any classifications to manpower classes. 

However, reality would suggest a specification of the kinds and the num

ber of workers an organization will need to accomplish its objectives. 

The rapid growth and complexity of modern production organizations 

have increased the importance of manpower planning, and the managers of 

1 
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many such organizations now desire to include manpower as well as pro-

duction planning models in their kits. However, although there are 

various papers and books describing myriad applications of manpower 

planning models, no model which combines the aggregate manpower and pro-

duction planning model can be found in the literature. The increasing 

need of management to accurately project future manpower and production 

requirements has made the development of such a combined model poten-

tially critical. 

Statement of the Problem 

Aggregate planning is the problem of scheduling ag~regate work~ 

force, production and inventories. It has long interested businessmen 

and academicians, and hence a number of approaches to this problem have 

been proposed in the literature. All of these approaches address in 

common the same pr, )lem in its general form, which is defined as: given 

St' the demand for each period t in the planning horizon which extends 

over T periods, determine the production level Xt' inventory level It' 

and workforce Nt for periods t = 1, 2, ••• , T which minimize relevant 

costs over the planning horizon. Models and decision rules have been 

developed, and a variety of solution techniques can be found in the lit-

erature. Although some of these techniques can be proven to be optimal 

and have been widely promulgated in classrooms and textbooks, it is dif-

ficult to find real world solutions where these techniques are applied 

to aggregate production and workforce decisions. 

It can be said that the main drawback of the existing approaches to 

aggregate production planning is not in the solution methodology, but in 
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the assumptions of the model. All the present approaches assume that 

the workforce and productivity factors are scalars. However, because 

workforce and productivity factors are the most important controllable 

variables in this problem, treating them as scalars would get the prob

lem far from reality. The assumptions of treating these variables as 

aggregate numbers is not an acceptable one to the management. This is 

probably one reason that managers are not willing to include the current 

aggregate production planning approaches in their kits. 

There have been a variety of recent applications of stochastic 

models of the so-called Markov matrix type to manpower planning. These 

Markov models generally multiply a vector of personnel in various job 

categories by a matrix of transition rates. This allows one to obtain a 

projection of the current workforce based upon past trends. Many re

searchers suggest that Markov models contain an essential element for 

developing manpower projections. This turns out to be that the transi

tion matrix allows the analyst to interconnect the internal and external 

manpower flows across time periods, which leads to dynamic models of the 

Markov decision variety. 

No attempt has previously been made to represent aggregate planning 

in multidimensional space. The proposed research will not only repre

sent this problem in multidimensional space, but will also develop 

appropriate aggregate production/manpower planning models. The concepts 

of mathematical manpower planning with embedded Markov processes will be 

used in this development. The research problem can be illustrated by 

introducing the definition given below. 



A General Definition of the Aggregate Production 

and Manpower Planning Problem 

4 

The problem of aggregate production and manpower planning can be 

defined as: given st, Io' No, cp and M, determine Nt, xt and It; t - 1, 

2, ••• , T to achieve organization goals. 

Where: 

- the demand for period t 

the graded workforce in period t 

the amount to be produced in period t 

- the on-hand inventory 

- productivity factor 

- personnel transition matrix of the organization with 

dimension ex e (e is the number of graded workforce). 

T • the number of periods in the planning horizon 

I and N are the initial values of the inventory and the graded 
0 0 

workforce respectively. 

The problem of aggregate production and manpower planning can be 

formulated by different methods. Such formulation will depend upon the 

desired details, solution technique, constraints, goals of organization, 

etc. 

Research Objectives 

One major objective of this research is to develop appropriate 

aggregate production and manpower planning models which incorporate per-

sonnel transition rates. The development of the models will be based on 



the method of embedding Markov processes into mathematical programming 

decision models. 

~nother objective is to develop an algorithm to test the goal pro

gramming solution, to generate a nondominated solution if the goal 

programming solution turns out to be dominated, and to provide a solu

tion methodology to include all the goals in the optimization process. 

Summary of Results 

5 

The objectives of this research have been met. The two new models 

developed in this study are evaluated using the Orrbeck data (68) for the 

first one and hypothetical data for the second. The evaluation results 

of these models have demonstrated their capabilities in representing 

more realistic situations. The results also show that these models are 

highly flexible and can easily incorporate additional constraints regard

ing manpower and production requirements. The major conclusions are: 

1. A substantial improvement in the model's results can be made by 

integrating personnel transition rates with manpower requirements. 

The fundamental change is that the model goals and constraints, ex

pressed as manpower and production requirements, and as budgetary and 

other constraints, influence the final manpower and production decisions 

recommended by the model. 

2. The results obtained from the first model have been compared 

with that of the Orrbeck model (68). The results indicate that the 

performance of the new model is much better than that of the Orrbeck 

model with respect to representing more realistic situations and yield

ing minimum cost. The results show a savings of 7.18% and 3.67% in 



the total cost over the Orrbeck model for the two cases that have been 

investigated. 

3. The models are formulated as mathematical programming models 

(linear and goal programming); therefore, they should be easy for mana

gers to understand and use. Furthermore, they are capable of providing 

optimal decisions regarding: 

a. The graded number of workers an organization needs to 

accomplish its objectives 

b. The graded number of hiring and firing 

c. Production and overtime decisions 

d. Inventory decisions 

4. Some of the goal programming difficulties have been solved by 

using the nondominance algorithm developed in this research. 

6 

5. The solution methodology, developed to include all the goals in 

the optimization process, has been accomplished. The results of this 

investigation indicate that it is possible to develop such a methodology 

and that the decision maker can be incorporated in the optimization pro

cess to provide reasonable aspiration levels for the goals. 

Contributions 

This research has made several major contributions in the area of 

aggregate production and manpower planning. These include: 

1. The introduction of a general definition to the aggregate pro

duction and manpower planning problem. 

2. Incorporating the effect of the transition matrix on workforce 

and production decisions. 

3. The development of a linear programming aggregate production 

and manpower planning model. 



4. The development of a goal programming aggregate production and 

manpower planning model. 

The developed models in this research have the following new char

acteristics: 

7 

a. They are considered as applications of large scale models for 

manpower and production planning in manufacturing firms. 

b. The cases of quit, attrition, etc., are considered in the 

developed models by representing them in the personnel transi

tion matrix of the firm. 

c. The number of hiring or firing in each class of workforce for 

each period can be explicitly determined. For instance, the 

management may hire and fire in the same period (i.e., hiring 

for one class and firing from another). 

d. The models achieve management goals such as stabilizing the 

graded workforce, minimizing cost, meeting the demand, etc., 

taking into consideration the dynamics of internal workforce 

that are represented in the personnel transition matrix. 

Other major contributions are in the area of goal programming. 

These include: 

5. The development of an algorithm to test the goal programming 

solution and to generate a nondominated solution if the goal programming 

solution turns out to be dominated. 

6. The development of a solution methodology to include all the 

goals in the optimization process and to obtain a goal programming and a 

nondominated solution(s) to the model. This method allows the decision 

maker to be involved in the optimization process and to provide informa

tion regarding reasonable values of the targets. 



CHAPTER II 

BACKGROUND 

Introduction 

The present research combines aggregate planning and manpower plan

ning in one model. Upon reviewing the literature, no such model has been 

found and the areas of aggregate planning and manpower planning are 

treated as separate areas of research. Therefore, the background of each 

area will be independently reviewed in this chapter. 

Background of Aggregate Planning 

The application of mathematical programming techniques to aggregate 

planning began during the great post-World War II management science 

movement. Mathematical programming is a recently developed branch of 

optimization theory. The older branches originated from minimization and 

maximization problems that arise in geometry and physical sciences. 

Mathematical programming originated during World War II from minimiza

tion and maximization problems that arose in the decision sciences; 

namely, management sciences, operations research, and engineering design 

Since then the work on application of mathematical techniques to aggre

gate planning has continued at an accelerated pace. This work has been 

motivated, in part, by the tremendous economic consequences of aggrega

ted decisions and by the current development and improvement of research 

methodologies in the field of management science. The initial thrust of 

8 



this work was to use mathematical optimizing techniques such as differ

ential calculus and linear programming to solve necessarily simplified 

aggregate planning cost models. Solving a model yielded a set of deci

sions or decision rules, which produced mathematically optimum resultA 

with respect to the cost model. 

9 

More recently, perhaps following a newer wave of management science 

emphasis, new proposals for solving the aggregate planning problem have 

been taking the form of decision rules which are based on heuristic 

problem-solving approaches and computer search methods. The objective of 

this newer methodology is to enable the model builder and decision maker 

to introduce greater realism. This added realism should, hopefully, more 

than compensate for the fact that heuristic and computer search techni

ques do not guarantee mathematically optimum decision rules. Advocates 

of heuristic and search decision rule approaches argue that since the 

decisions produced by a model can be no better than the model itself, it 

follows that greater realism should produce better overall results. All 

of these approaches have one thing in common: they address the aggregate 

planning problem, which is one of the most important problems in indus

try today. 

Current Aggregate Planning Approaches 

Apart from decisions which are made by managers or committees with

out any mathematical help, there is a group of approaches which uses 

more or less mathematical sophistication in order to better model or 

efficiently solve aggregate planning decision problems. In general, 

these approaches are divided into two classes: those which guarantee 

optimality of the solution for a given model, and those which do not 
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guarantee optimality, but find a near optimal solution. Examples of the 

former include linear programming, differential calculus, dynamic pro

gramming, goal programming, and an application of the discrete and con

tinuous maximum principle. 

The decision rules which do not guarantee mathematically optimum 

solutions with respect to the model are of two general types. The first 

is heuristic in nature and hypothesizes that decision rules can be re

presented by heuristically derived equations. The numerical values 

assigned to the coefficients of the equations are obtained in two ways. 

Bowman (13), in his management coefficients approach, performs a regres

sion analysis of historical management decisions to obtain coefficients. 

Jones (46), in his parametric production planning approach, builds a 

forward-looking multistage cost model and simulates the operation of the 

model by plugging in trial values of the coefficients. The simulation 

takes the f~rm of a coarse grid search based on systematically evalua

ting certain combinations of coefficient values. At the conclusion of 

the coarse grid search, the best set of coefficients is selected for use 

in the heuristically postulated decision rules. 

The second major solution methodology of this type does not postu

late the form of decision rule equations, but rather obtains specific 

numerical values associated with various decisions by climbing or search

ing the mathematical response surface formed by the criteria function of 

the model. This approach combines the advantage of realistic model repre

sentation by means of a computational algorithm with newly developed 

computer routines which search for the optimal point, or points, on a 

mathematical response surface. This approach is termed the "Search Deci

sion Rule," as devised by Taubert (79). 



From the foregoing discussion, it is possible to use the solution 

methodology to classify aggregate planning models: 

1. Mathematical Programming Optimal Decision Rules (MPODR). 

2. Heuristic and Search Decision Rules. 

The background of the studies relative to the above two areas will be 

presented by some details on the most successful approaches. 

Mathematical Programming Optimal 

Decision Rules (MPODR) 
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The area of aggregate planning has been the subject of intensive 

research and writing for more than two decades. Although under different 

titles (such as production smoothing or master production planning) it 

has been considered by some to be the major decision framework involved 

in production management. The best decisions, by using MPODR, are found 

in optimizing the model in each period. The simplest approach in this 

group is that of linear models with corresponding linear programming 

solutions. There are many models of this type in the literature with 

different assumptions about costs, capacities, and demand patterns. The 

models which will be mentioned here are related to the original aggre

gate planning problem. Bowman (12) proposed a transportation method for

mulation for aggregate planning in 1956. The Bowman approach required 

the specification of a restricted number of production levels for each 

period and neglected the costs of changing levels. Bowman did not consi

der the work force explicitly. The increased complexity of the simplex 

method of linear programming was proposed by Magee (51) to incorporate 

the workforce decision and the costs of changing levels. Additional 



linear programming formulations have been proposed for aggregate sche

duling (McGarrah (57), Charnes, Cooper, and Farr (20), and Dzielinski 

and Gomory (26)). 

12 

Hanssman and Hess (36) describe a linear programming model similar 

to the model developed by Holt, Modigliani, and Simon (36), which will 

be described later. Their model is simple and easy to implement; there

fore, it will be discussed in some detail. 

Aggregate planning reached a significant point with the publication 

of Planning Production, Inventories, and Workforce by Holt, Modigliani, 

Muth, and Simon (37) in 1960. The orientation of this book was based on 

an intensive research study conducted by the authors in an empirical 

situation. Their formulation of the problem was based on the assumption 

that the costs involved in aggregate planning could be represented by 

linear or quadratic functions. The resultant cost model was then minimi

zed by differentation with respect to the decision variables, production 

and workforce. This operation produced a set of linear equations which 

could be solved for the values of the two decision variables. The net 

result was a set of two linear decision rules which related the present 

state of the system and the forecasted sales for an infinite time hori

zon to give the minimum cost values for the production and workforce for 

the next time period. Their model (HMMS model) will be discussed in more 

detail. 

Dynamic programming is another approach extensively used for this 

problem or related problems. Bellman (11) applied dynamic programming 

to aggregate planning in 1956. The most important related reference is 

the Wagner and Whitin (85) dynamic lot size model. Unfortunately, the 
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so-called "curse of dimensionality" ma'kes the solution of any real plan

ning problem impractical. 

Goodman (31) proposed a goal programming approach for solving non

linear aggregate planning models. This approach was illustrated via two 

case applications. The first was applied to the HMMS model, and the 

second used a higher order of cost terms. The two case applications 

demonstrated that the effectiveness of such an approach is highly de

pendent upon the degree of nonlinearity which the goal programming mod

els must approximate. The author suggested that for relatively low 

degree models, goal programming may provide an efficient and effective 

solution approach, while for higher degree models the approach may be 

inappropriate. 

More recently, Masud and Hwang (56) describe a multiple objective 

formulation of the multi-product, multi-period aggregate production 

planning problem. A numerical example is solved by using three Multiple 

Objective Decision Malting (MODM) methods. The methods used are: Goal 

Programming (GP), Step Method (STEM), and Sequential Multiple Objective 

Problem Solving (SEMOPS). Masud and Hwang indicate that if GP is used, 

the analyst can solve a set of problems using different goals and 

priority structures, and then let the Decision Maker (DM) make the final 

selection for implementation. In the case of interactive methods, such 

as STEM and SEMOPS used in their research, the analyst can provide the 

trade-off decision required in each iteration in lieu of the DM. The 

analyst can also generate a set of solutions by providing different 

trade-off information, and from these solutions, the DM can make the 

final selection. The authors conclude that there is at present no best 

MODM method for solving such problems and that all such possible options 



using MODM methods are highly flexible and adaptable to different 

circumstances. 

The details of the HMMS model and the Hanssman and Hess model will 

be presented in turn. 

HMMS Model or Linear Decision Rule (LDR) 
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The HMMS Model or Linear Decision Rule (LDR) is the basis of all the 

approaches that will be presented in detail. All the others have been 

compared with this one because it is based on a reasonable model and an 

optimal solution can be obtained. Other methods must lead to nearly the 

same costs as this one, for the same reality, in order to qualify for 

being useful. 

Holt et al. (37) suggest that four cost terms should be considered. 

These costs are: 

1. Regular Payroll Costs 

The size of the workforce is adjusted once a month, and setting the 

workforce at a certain level implies a commitment to pay the employees 

at least their regular time wage for a month. This is a linear cost 

function as defined by 

Regular Payroll costs = 

The assumption here is that the cost is linearly related to the size of 

the workforce Wt. An additional cost term can be added to the above 

equation, but that would not affect the solution. 

2. Hiring and Layoff Costs 

The cost of increasing or decreasing the workforce is assumed to 

take the form of the quadratic function: 
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Hiring and Layoff Costs = 

where Wt - Wt_1 is the change in the level of the workforce from period 

t-1 tot. Here the cost is assumed to be symmetrical, i.e., an increase 

or a decrease in the workforce by a given amount incurs the same cost. 

~symmetry in the cost function can be introduced, for example, by 

C2(Wt- Wt_1 - C/10 ) 2 , but Holt et al. (37, p. 53) state that "this 

additional constant proves to be irrelevant in obtaining optimal deci-

sions." 

3. Overtime and Undertime Costs 

If the size of the workforce is held constant, changes in the pro-

duction rate can be absorbed by overtime or undertime. Undertime is the 

cost of idle labor at regular payroll rates. The overtime cost depends 

on the size of the workforce, Wt' and the aggregate production rate, Pt. 

The overtime cost function is assumed to be 

Overtime Costs = 

where c3 , c4 , c5 , and c6 are constants. 

4. Inventory, Back Order, and Setup Costs 

The minimum cost inventory level is assumed to be linearly related 

to the demand, taking the form c8 + c9Dt, where Dt is the forecast de

mand for period t. In fact, it is known from inventory theory that the 

optimal inventory level is proportional not to demand, but to its square 

root. In the HMMS model it is assumed that the linear relationship is an 

adequate approximation. 

The total cost of inventory, back order, and setup are then assumed 

to take the quadratic form: 



16 

Inventory, Back Order and Setup Costs 

Figure 1 summarizes the four basic cost equations. The data employed 

are from a paint factory which was used ex~ensively in their study. 

The HMMS model can be written as: the costs to be minimized are 

represented by the following function considering the workforce, Wt; 

aggregate producti~n, Pt; net inventory, It; and demand Dt (where the 

subscript t designates the time period): 

(2.1) 

By definition, the excess of production over orders affects net in-

ventory as: 

(2.2) 

where t = 1, ••• , T. 

For a paint factory, which has been the example for comparisons, 

Holt et al. (37) determined the values of the Ci's from statistical 

estimates based on accounting data and subjective estimates of intangi-

bles. They found that the objective function could be stated as 

c 

(2.3) 

It is not a simple task to determine these coefficients, which is one 

difficulty in using this model. 



DIRECT PAYROLL COST 

Direct Workforce (wt) 

OVERTIME COST 

Production Rate Pt, Gallons/Month 

HIRING/LAYOFF COST 

Workers 
Laid off 

(Wt - Wt-1) 

Workers 
Hired 

C2 = 64.3(wt - Wt-1) 2 

INVENTORY CARRYING/ 
STOCK OUT COST 

Net Inventory It, Gallons 

C4 = 0.0825(It - 320)2 
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Source: From Holt, C. C., Modigliani, F.,, Muth, J. F., and Simon, H. A., 
Planning Production, Inventories and Workforce, Prentice-Hall, 
1960. 

Figure 1. Cost Relationships of the Paint Factory Cost Model 
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By elimination of Pt (or It) using the constraints, the model become 

quadratic with no constraints. Then by using differentiation a system of 

linear equations can be obtained. By inversion of the system matrix a 

set of linear decision rules (LDR) is found. As the interest is primari-

ly in the first period decisions, only expressions for the optimal work-

* * force (W1) and the optimal production level for the first period (P1) 

are needed. 

(2.4) 

= (2.5) 

The a's and e's decrease rapidly; therefore, the sensitivity to horizon 

increase is small. 

The drawbacks of this approach are (besides the unusual quadratic 

cost expressions and the difficulty of finding the Ci's) the possible 

occurrence of a negative Wt or Pt' a negative component cost, and too 

high It' Wt' or Pt. Additional constraints have to be included in the 

model to control these variables. 

Some advantages of this model are the ease of repetitive application 

of the linear decision rules and the guaranteed solution optimality 

(assuming that the optimum decision variables have a positive value). 

Hanssmann and Hess Model 

The Hanssmann and Hess model (35) is based on the general assump-

tiona of the HMMS model, but it uses linear functions. Their model is: 

minimize the function 
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(2.6) 

subject to the restrictions 

where the Di and the initial conditions (I , W ) are given. If one 
0 0 

defines (for any real number, a) 

and 

then, 

+ a 

a 

= 

= 

+ 

Ia I for a > 0 

0 otherwise 

0 for a > 0 

I a I otherwise 

a = a - a 

(2. 7) 

(2.8) 

(2.9) 

This definition may be thought of as an assumption rather than a re-

striction. Since it is generally known that an optimum solution of a 

linear programming problem will automatically yield pairs of numbers 

+ - + -(a , a ) with the property that either a = 0 or a = 0, the problem can 

be easily reformulated and solved by any linear programming algorithm. 

Some advantages of this model are the possibility of establishing 

bounds for the variables, the ease of obtaining the cost coefficients, 
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the possibility of obtaining more realistic cost functions using piece

wise linear functions, and the possibility of performing sensitivity 

analysis using the dual solution. Some disadvantages are the linear 

assumptions and the computational work. 

Orrbeck, Schwette, and Thompson in 1968 (68) developed a model in 

which the assumptions of constant wages and productivity in the produc

tion smoothing problem were dropped. Their model is an extension of the 

Hanssmann-Hess model; therefore, the necessary transformation to convert 

the model into linear programming format has been provided. The Orrbeck 

model classifies the workers into experience classes and can be used to 

illustrate the concept of incorporating personnel movement in aggregate 

planning models. For convenience, this model will be discussed in more 

detail in Chapter III. 

Heuristic and Search Decision Rules 

The MPODR methods provide an optimum solution to a specific aggre

gate planning problem. The main drawback of these methods is that the 

assumptions are so restrictive that the models are unrealistic, or that 

realistic models are so complex that they are impossible to solve with 

current computational methods and equipment. The heuristic and search 

decision rule approaches are more free of the constraints of the mathe

matical forms. Thus, a trade-off must be made between the desirabilty 

of obtaining a known optimum solution to a relatively simplified model 

versus obtaining a near optimum solution to a more realistic model. 

The most important approaches of heuristic and search decision rules 

are the management coefficients model, parametric production planning, 
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and search decision rule. Therefore, these approaches will be discussed 

in turn. 

The Management Coefficients Model 

Bowman (13) proposed a different approach to modeling managerial 

problems and tested his hypothesis on the aggregate planning problem. He 

said that on the average, managerial decisions are more accurate than 

those of any simplified model because managers have a more complex and 

complete mental model than can be expressed in mathematical terms. He 

showed that there was a high correlation between the actual decisions 

and those of the LDR, the decision rules corresponding to good regres-

sions of the actual decisions. Then, by using the format of the LDR and 

regression, he tried to estimate decision rules for other cases. The 

best results were obtained using a feedback form similar to the original 

decision rules. For example, the versions of decision rules developed 

for regression were: 

= (2.10) 

= (2.11) 

where W, P, and I are as given before, Dt represents actual sales in the 

current period, n2_4 represents average actual sales in the next three 

- -periods, and D, W, and I represent averages of these variables over the 

total period of investigation. 

The theory behind Bowman's rules is that experienced managers are 

quite aware of and sensitive to the criteria of a system and the 
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managerial decisions are basically sound. What is needed is to elimin

ate the "erratic" elements by making them more consistent. By averaging 

out the inconsistency, near optimal performance could be achieved. 

Some of the advantages of this method are: 

1. Easy implementation because it is not necessary to find costs 

and regression analysis is easy to perform. 

2. More realism because implicitly a more realistic model is used. 

Some of the criticisms of this approach are: 

1. The form of the multiregression function is arbitrary and a 

particular regression of past decisions over a narrow range may lead to 

erroneous conclusions. 

2. The regression model relies on decisions made by a particular 

manager or group of managers. Changes in personnel may render the model 

invalid. 

3. The assumptions of unbiased managerial decisions and a nondyna

mic environment are not realistic. 

Parametric Production Planning (PPP) 

Jones (46) developed a heuristic approach to aggregate planning 

which is called Parametric production Planning (PPP). PPP postulates the 

existence of two linear feedback rules. The first rule provides the num

ber of workers and the second provides the production rate. Each rule 

contains two parameters. The rules are formulated to include the full 

range of possible decisions. The universe of possible parameters is 

searched to find the set of parameters that provides the lowest cost for 

a particular firm. Each set of parameters is evaluated by comparing the 

costs resulting from the application of rules bearing these parameter 



23 

values to a likely sequence of sales forecasts and actual sales. The 

cost structure is not limited to linear functions or quadratic func-

tions; therefore, it should be the best quantitative representation 

possible of the firm. 

Jones (1967, p. 848) postulated the following rules: 

1. Workforce rule. 

I )) 
0 

(2.12) 

2. Production rule. 

3. Weighting Function. 

= 

where: 

A = Parameter between 0 and 1 indicating the portion of the 

desired workforce to be increased or decreased. 

B = Parameter between 0 and 1 determining the relative 

weights to be placed on the forecasts for each of the E 

future periods. 

th = Weight applied to the sales forecast for the i period 

in the future. 

c = Parameter between 0 and 1 indicating the portion of the 

desired production to be increased or decreased. 

D = Parameter between 0 and 1 determining the relative 

weights to be placed in the forecasts for each of the E 

future periods. 



di = Weight applied to the sales forecast for ith period in 

the future. 

E = Number of future periods to be included. 

= th The sales forecast for the i period in the future. 
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i = Number of the period where 0 is the period just completed 

and 1 is the immediate future period. 

= Inventory of goods on hand. 

= Optimal inventory at the end of the immediate future 

period. 

K(p) = Number of workers which can produce p units at the 

lowest total cost. 

K-1(w) = Number of units which can be produced by w workers at the 

lowest cost unit. 

= Production quantity determined by the production rule. 

W = Workforce on hand at the end of the zero period. 
0 

w1 = Workforce determined by the workforce rule. 

For the'same paint factory used in the HMMS study, assuming that the 

HMMS cost model was realistic, Jones estimated his parameters, finding 

* (with I 1 = c8 = 320) that 

A = .2685, B = .7745, c = .9475, D = .4692 

In this comparison, PPP lost to the LDR by only .04 percent of the 

minimal cost, which shows a good approximation to the linear decision 

rule. 

The great advantage of PPP is freedom from a given form of the 

reality model. The main disadvantage of this decision model is the 



limitation of four parameters; therefore, it has low flexibility for 

adaptation to complex situations. 

Search Decision Rule (SDR) 
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Taubert (79) used a general model and completely solved the optimi

zation problem at each period. Therefore, he did not really provide any 

decision rule. As the problem formulation is general, techniques for 

general nonlinear programming must be used. Taubert used a pattern 

search routine (Hooke and Jeeves (38) and Weisman, Wood and Rivlin (87)) 

in order to find optimal decisions (W's and P's), given initial condi

tions and demands (see Buento-Neto (15)). 

The Search Decision Rule (SDR) does not guarantee optimality, but it 

does offer a new way of breaking through the restrictive barrier imposed 

by the analytic model (the optimal solution methods discussed before). 

The SUR approach proposes building the most realistic cost or profit 

model possible and expressing it in the form of a computer subroutine 

which has the ability to compute the cost associated with any given set 

of decision variable values. Mathematically, the subroutine defines a 

multidimensional cost response surface with a dimensionality determined 

by the number of decision variables and the number of time periods in

cluded in the planning horizon. In short, the cost model forms a mul

tistage decision system model in which the state represents the cost 

structure of the operation at the point in time when decisions are made, 

such as monthly, quarterly, etc. A computerized search routine is then 

used to systematically search the response surface of the cost model for 

the point (combination of decisions) producing the lowest total cost 

over the planning horizon. A mathematically optimum solution is not 



guaranteed, but the solutions found by the model cannot easily 

be improved. 
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For a practical application and comparison, Taubert used the same 

paint factory cost model as Holt et al. (37), but limited the planning 

horizon to 10 months in order to avoid too many dimensions in his search. 

Ten months means 20 dimensions for the search, as in each month there are 

two decision variables (Wt and Pt). In comparison with LDR, SDR lost by 

only .1 percent. SDR cannot guarantee the exact optimum, but the differ

renee will not be large. 

The great advantage of SDR is its capability to handle any form of 

reality model, although for some functions we may have problems in the 

search. The disadvantage is the non-guarantee of optimality as the SDR 

may stop far from the optimum or at a local minimum or maximum. Also, if 

the cost function is complex the computation time and cost may offer 

some inconvenience, especially if a long horizon must be used. 

There are other heuristic approaches to aggregate planning which 

can be found in the literature. Among them, Elmaleh and Eilon (28) sug

gested a switching procedure for use in industries in which production 

is limited to discrete levels. Millichamp and Love (58) proposed a sim

ple modification to the production switching heuristic which renders the 

methodology appropriate for aggregate planning problems in general. They 

based their approach on the random walk approach to aggregate production 

planning proposed by Orr (67) and adapted by Elmaleh and Eilon (28). 

More recently, Khoshnevis (47) incorporated the effects of the 

improvement curve productivity phenomena, present in most industrial 

situations, into the aggregate planning problem. He also described the 
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effects of disruptions in productivity improvement, progress, and retro

gression to the production and workforce planning area. Aggregate plan

ning of both long cycle and short cycle production situations were 

considered and models peculiar to each case were developed in his work. 

For more details of the aggregate planning problem and its exten

sions, refer to Khoshnevis (47). He presents a detailed discussion on 

the state-of-the-art of aggregate production models and analyzes the 

effects of a dynamic productivity factor throughout the planning 

horizon. 

Background of Manpower Planning 

(Human Resource Planning) 

Manpower planning is a process intended to assure an organization 

that it will have the correct number of properly qualified and motivated 

employees in its workforce at some specified future time to carry on the 

work that will then have to be done. Manpower planning has been a func

tion of management since the origin of modern industrial organization. 

The relatively sophisticated techniques available to management today 

are the outcome of a long period of evolution. A variety of approaches 

to manpower planning has been developed and proposed. These approaches 

are broadly termed "human resource planning models." 

A review of human resource planning models by Milkovich and Mahoney 

(60) indicates that the general types of models observed in practice and 

in literature can be classified as: 

1. Heuristic: to provide organization and direction 

2. Theory-research based: for analysis and strategy development 

and determination 
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3. Technique oriented: for analytical models and their solutions 

The general nature of each of these models and their applications is 

considered in turn. The heuristic and theory-research based models are 

taken from Milkovich and Mahoney (47). The current research is not con

cerned with these models; they are repeated here for illustration, not 

as a review of literature. 

Heuristic Models 

These models are heuristic in the sense that they are designed to 

enable the users to organize their thoughts and to approach the issues 

in a systematic manner. Such models serve to provide aid or direction in 

the solution of the manpower planning problem. The literature has 

several illustrations of these conceptualizations of human resource 

planning (Burack and Walker (18). Generally, the common components of 

the models reported include: 

1. Determining the human resource objectives; 

2. Analyzing the internal labor supplies available and projecting 

into the future; 

3. Matching the desired human resource position with the estimated 

actual position and identifying areas of surplus and/or shortages for 

each period; 

4. Generating and analyzing alternative policies and strategies to 

achieve the human resource objectives, including alternative staffing, 

recruiting, job and organ~zational design, and training programs; and 

5. Implementing the programs and reevaluating results against the 

human resource objectives. 
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Theoretical-Research Based Models 

Another major class of manpower models can be labeled as theoretical

research based models. These models are more concerned with the identifi

cation of the variables that influence an organization's human resource 

objectives. Some of the questions theoretical models are designed to an

swer include: 

1. What are the specific determinants of unit productivity, em

ployee performance, job satisfaction, or unit labor cost? 

2. What relationships exist between budget expenditures on manpower 

programs such as training and unit productivity? 

3. How does a policy of "promotion from within" impact unit pro

ductivity, labor costs, or legal compliances with EEO? 

The focus is more on the specification of the substance or content 

of human resource objectives than on the issue to be considered or the 

analytical techniques to be used. For example, a heuristic model in

cludes "determine human resource objectives," whereas a theoretical mod

el may include "employee performance as a function of skills, motivation 

and technology." 

These models are derived from economic and organizational research 

theories; therefore, they can provide critical input for human resource 

planning. Most managers currently operate with implicit models of the 

critical factors that will impact their human resources. Concepts and 

insights drawn from organization-related theory and research may also 

prove to be of value. 

Technique-Oriented Models 

The third area of human resource modeling is the application of 
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mathematical models to human resource issues. There is a wide variety of 

technique-oriented models that have been applied to various human re

source planning elements with reasonable success. The most significant 

advances in human resource modeling techniques have occurred in the ap

plication of Markov chains, renewal, and goal programming models to the 

human resource stock and flow processes within the organization. The 

applications of these models include: 

1. Forecasting the future human resources requirements that will be 

satisfied by the current inventory of personnel, and forecasting the fu

ture human resource budget commitments represented by the current stock 

of personnel 

2. Analyzing the impact of proposed changes in policy and programs 

3. Designing and structuring systems that will balance the flows of 

internal human resource supplies, requirements, and costs, and designing 

human resource information systems suitable for policy analysis and 

planning 

It is an extremely difficult task to attempt to discover the first 

application of each concept in manpower planning. However, the most com

mon mathematical models, as classified in the literature, are given 

below: 

1. Markov Chain Models 

2. Renewal Models 

3. Normative or Optimization Models 

These models are briefly reviewed in turn. 
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Markov Chain Models 

There have been a variety of recent applications of Markov chain 

models to manpower planning. These Markov models generally multiply a 

vector of personnel in various job categories by a matrix of transition 

rate. This allows one to obtain a projection of the current workforce 

based upon past trends. Early work in this field dates back to the late 

1940's, but it was only in the late 1960's that a coherent body of theo

ry began to emerge. Probably the best known applications are those of 

Vroom and MacCrimmon (84), Bartholomew (6), Merch (59), and Mahoney and 

Milkovich (52). Among the others using Markov models for manpower plan

ning are Forbes (29), Rowland and Sovereign (75), Marshall and Oliver 

(54), Stewman (78), and Nielsen and Young (66). 

Markov chain models are most appropriate where the job classes and 

rates of flow between them are stable and the flows out of a class de

pends on the class occupied and the number of personnel in the class. 

The rates of movement depend upon the current class which has been de

fined in terms of organization level, salary grade~ function, experi

ence, age, sex or race. The Markov models contain an essential element 

for developing manpower projections. This turns out to be that the tran

sition matrix allows the analyst to interconnect the external and 

internal flows across time periods. 

The Markov chain model is capable of describing the changes in a 

graded manpower system. Given suitable assumptions about future loss and 

transition probabilities, the model can be used for forecasting the 

grade structure. It can also be used as a tool for exploring the conse

quences of different manpower policies and hence for controlling the 

structure. It is also possible to validate the model to the extent that 
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recent history can be verified on the basis of prediction from the dis

tant past. 

Renewal Models 

Renewal models are most usefully applied to situations where grade 

size is closely controlled within the organization and where promotion 

and hiring decisions are made only to fill vacant positions. In many 

situations, this type of model can be used to examine various policies 

and to evaluate the results of their application on system parameters 

such as promotion rates, length of stay in grade, etc. 

~artholomew (7) developed the mathematical equations of the renewal 

models that permit the evaluation of variables in both discrete and con

tinuous time. ~artholomew and Forbes (8) show how renewal models can be 

used to study career patterns and contrast these results with those that 

can be obtained from Markov models. Piskor and Dudding (70) describe the 

incorporation of a renewal model in a conversational program in use for 

the planning of grade sizes, hiring, firing and transfers in the Cana

dian Public Service. Stewman (78) compares the performance of the Markov 

chain, the r1arkov chain with duration of stay (Semi-Markov) and a va

cancy model having both renewal and Markov properties. He finds that the 

renewal or opportunity model performs better in general than either the 

Markov chain or the ~1arkov chain with duration of stay. 

Normative Models 

The Markov chain and renewal models are descriptive in nature and 

are used to forecast future manpower requirements or to study the 

various policies on manpower systems. Normative models suggest a 



33 

solution to the manpower planning model. This solution is optimal for a 

set of management goals or objectives. 

One of the earliest applications of the normative techniques to the 

manpower planning models was the use of linear programming and its exten

sions. Kildebeck, Kipnis and Macky (48) developed a linear programming 

model for the pilot training cycle of the U.S. Air Force. The Marine 

Corps, as described by lfarsh (53), used a linear programming model to 

assist in the planning of troop rotations. Purkiss (74) describes a lin

ear programming model that was used to help drive training budgets for 

manpower in the British steel industry, while Morgan (62) and Clough, 

Dudding and Price (24) used this framework in studies of the Royal Air 

Force and the Canadian forces. Among the other works that one could 

cite are the industrial manpower models utilizing mathematical program

ming by Purkiss (73) for the British Iron and Steel Institute, and that 

of Alagizy (1) for IBM. Most of these models have experienced implemen

tation difficulties. In addition to the problem of management communica

tions, their implementation has been slowed by the model's construction. 

They have optimized a single objective function, and generally, have not 

handled the problem of multiple period planning very well. In personnel 

management, objectives are multiple and the appropriate solution techni

que is goal programming. 

Charnes, Cooper and Niehaus (23) describe a goal programming model 

for guiding and controlling manpower planning at the level of the Office 

of Civilian Manpower Management (OCMM) of the u.s. Navy. The personnel 

requirements are accommodated by the goal programming aspect and the 

transition of recruits and job incumbents from one position to another 

are accommodated by the stochastic elements of a ~mrkov chain. This 
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model has been extended to consider more complex transitional effects, 

e.g., those due to retirement and to allow for interperiod Markov 

transition matrices which change over time. Most of these models have 

been developed and applied in military and government settings. Price 

and Piskor (72) describe a successful application of goal programming 

to the planning of hiring and promotions in the Canadian Armed Forces. 

Zanakis and Maret (90, 92) presented a Markov chain application to 

model the manpower supply of over 1,000 engineers in a department of a 

large chemical company. They also suggested a Markov chain/preemptive 

goal programming sequential approach for solving manpower macro planning 

problems under various restrictions and conflicting goals. 

More recently, r1artel and Price (55) showed how state space models 

for human resource planning may be extended from linear and goal program

ming formulations to cover the case where manpower demands and available 

resources for future periods are not known for certain. However, they 

stated that the model can be treated as a multi-period stochastic pro

gram with simple recourse. They used normal and Beta probability 

distributions to fit the right hand sides and solved the equivalent deter

ministic program using convex separable programming. They also applied 

their methodology to a military human resource planning problem. 

There have been a number of books published on the subject of man

power systems. The proceeding of NATO-sponsored meetings on human re

sources planning contains many illustrations of the use of diverse 

methods and models (14, 25, 77, 89). In addition, Bartholomew (7), 

Bartholomew and Smith (10), Bartholomew and Forbes (8), Bartholomew and 
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Morris (9) Charnes et al. (23), Grinold and Marshall (33), Moore and 

Charach (61), Niehaus (64), Vajda (81), Walker (86) and Verhoeven (82) 

have published books on specific areas of the mathematics and techniques 

of manpower and human resources planning. 



CHAPTER III 

INCORPORATING THE PERSONNEL TRANSITION MATRIX IN 

AGGREGATE PRODUCTION PLANNING MODELS 

Introduction 

One major objective of this research is to study the effect of a 

personnel transition matrix on aggregate production planning models and 

to develop appropriate aggregate production and manpower planning 

models. The developed models will consider the fact that the workers 

must be treated as a graded workforce and hence differ in both producti

vity and wage. Such models incorporate the effect of a personnel tran

sition matrix on workforce and production decisions. 

To achieve this objective, two models will be developed. The first 

one will be developed in this chapter and be called Model I. The second 

will be developed in Chapter VI and will be called Model II. 

Model I is a linear programming model of the aggregate production 

and manpower planning problem. The Orrbeck model (68) will be used as a 

point of departure from which this new model will be developed. This 

model will be considered as a starting point for developing aggregate 

production and manpower planning models and will also be used to verify 

the results of Model II. 

Model II is an extension to Model I from a single objective to a 

multiple objectives model in which goal programming is selected as a 

multiple objectives solution procedure. 

36 
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In this chapter, some of the definitions and concepts of manpower 

planning will be presented. The Orrbeck model will also be discussed in 

detail since it is the first model which incorporated the effect of worker 

productivity on production smoothing and classified the workers into dif-

ferent classes. These materials are appropriate for developing the new 

models. 

Manpower Planning 

Vetter (1967), among others, defined manpower planning as: 

The process by which management determines how the or
ganization should move from its current manpower position to 
its desired manpower position. Through planning, management 
strives to have the right number and the right kinds of peo
ple, at the right spaces, at the right time, doing things 
which result in both the organization and the individual re
ceiving maximum long run benefits (p. 15). 

Manpower System 

A manpower system is considered to be composed of mutually exclu-

sive and exhaustive classes of states so that each member of the system 

may be in one and only one class at any given time. These classes may 

be defined in terms of any relevant variables. The manpower system is 

concerned with the numbers in each of these classes at discrete points 

in time, and with the numbers (or flows) moving between these classes 

from one point to the next. The system is open so that flows to and 

from the outside world are permitted. These flows correspond to wastage 

and recruitment respectively. 

Markov Chain Models 

There have been a variety of recent applications of stochastic 

models of the so-called Markov matrix type to manpower planning. In the 
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Markov model the flows are assumed to be governed by transition proba-

bilities, and each class is homogeneous and independent with respect to 

these probabilities. That is, each member of a class has the same pro-

bability of making a particular transition, and furthermore, these 

probabilities operate independently. The basis of the Markov assumption 

is that the transition probability depends only on the class of state 

occupied at present. 

The Markov models generally multiply a vector of personnel in var-

ious job categories by a matrix of transition rates. This allows one to 

obtain a projection of the current workforce based upon past trends. 

Many researchers suggest that Markov models contain an essential ele-

ment for developing manpower projections. This turns out to be that the 

transition matrix allows one to interconnect the internal and external 

manpower flows across time periods, which leads to dynamic models of . 
the Markov decision variety. 

The Markov chaln model can be represented by the matrix equation: 

X(t+l) = X(t) M + n(t+l) P 

where: 
X(t+l) = the expected stocks vector at time t+l. 

X(t) = the stocks vector that is observed at time t. 

M = Personnel Transition Matrix (PTM) or transition 

probability matrix of the organization. 

n(t+l) = the number of entrants at time t+l. 

p = a vector showing how the entrants are distributed 

among the state of the system. 

Repeated application of this equation allows forecasting of the 

stocks vector for later points in time. The Markov models contain an 
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essential element for developing manpower projections since PTM allows 

the analyst to interconnect the internal and external manpower flows 

across time periods. 

Orrbeck Model 

As previously mentioned, the first aggregate planning model which 

incorporated the effect of worker productivity and classified the 

workers into classes was developed by Orrbeck et al. (68). This model is 

an extension of the Hanssman-Hess model (35) which presents a linear 

programming formulation of the aggregate planning problem. The Hanssman

Hess model was discussed in Chapter II and will be repeated here for the 

purpose of clarity. The essential cost elements of the Hanssman-Hess 

model are regular payroll costs, overtime pay, costs of hiring and fir

ing workers, and storage and shortage costs. The sum of these costs 

accounts for the total relevant cost in any period. The problem, then, 

is one of choosing production and workforce levels in order to minimize 

the sum of the total relevant costs over the planning horizon. The reg

ular payroll costs in any period t are assumed to be proportional to the 

number of workers employed in that period. The cost of overtime is found 

by first establishing an upper limit on the production that can take 

place on regular time. Any production in excess of this amount must be 

done on overtime. To establish the upper limit to regular time produc

tion, Hanssmann and Hess (35) assume that each employee can produce ex

actly the same amount in a given period. The hiring or firing costs in 

any period t are assumed to be proportional to the number of workers 

hired or fired in that period. The inventory carrying costs and back 

order costs are assumed to be proportional to the amount of inventory or 



shortage at the end of the period. The production planning problem, 

then, is to determine Xt and Nt (t = 1, ••• , T) in order to minimize 

c 

Subject to 

where: 

T 
= 1: [Cr Nt Payroll Costs t=1 

1 - N )+ Overtime Pay + co (K xt t 

+ ch (Nt - Nt-1) 
+ Hiring Costs 

+ cf (Nt - Nt-1) Firing Costs 

+ CI I+ 
t 

Inventory Costs 

+ c It Shortage Costs s 

T = number of periods in the planning horizon 

Nt = workforce level in period t 

= production level in period t 

= demand in period t 

C = wage rate per period 
r 

c 
0 

= overtime pay per worker per period 

1 K number of units of output per employee per period 

Ch = hiring cost per employee per period 

= firing cost per employee per period 

= inventory cost per unit per period 

= shortage cost per unit per period 

It inventory level in period t 

40 
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By using the proper transformations, the problem can be converted into a 

linear form and thus be solved by standard linear programming methods 

(refer to Hanssman and Hess (35) for details). 

Orrbeck (68) made the following assumptions: 

1. All employees fall into one of e experience classes, where 

class e represents the most experienced class of workers. 

2. The number of workers in an experience class will be the num

ber of workers in the next most experienced class in the preceding per

iod, minus the number of workers released from the group. Exceptions 

are the first and last groups. The first group will consist of newly 

hired workers and the most experienced class will consist of employees 

in this group in the previous period plus those promoted into the class 

by the passage of time. 

3. If workers are to be fired, the least experienced workers are 

fired first. Should the number of workers fired in a period exceed the 

number of employees in the first class of the previous period, some 

workers from the second experience class would have to be laid off. 

4. Constraints governing the assignments of overtime are: (a) the 

unduly large amount of overtime not assigned to any class of employees 

and (b) the workers will be called upon in order of seniority. Thus the 

most experienced workers will work overtime first, subject to the limit 

of their capacity. If overtime work still remains, the next most ex

perienced class will be called upon until all overtime work is assigned. 

5. No shortages will be allowed and the inventory carrying cost 

will be assumed proportional to the average inventory. 

As a result of the above assumptions, Orrbeck (68) added a set of 

new constraints to the original Hanssmann-Hess model, then transformed 
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the model into a linear programming format. The Orrbeck model prior to 

transformation has the following structure: 

Min. C 

(3.1) 

Subject to the following constraints: 

(3.2) 

e 
0 = [X - E Pi Ni]+ 

t t i=1 t (3.3) 

i = 1, 2, ••• , e-1 (3.4) 

i = 1, 2, ••• , e (3.5) 

(3.6) 

i-2 _i-1 E j 
[Nt-1 - (j=1 Nt-1 i = 2, ••• , e-1 (3. 7) 

[Ne + Ne-1 
t-1 t-1 

e-2 
( E j 

j=1 Nt-1 (3.8) 

Where: 

e = maximum number of experience classes. 



a 

= 

= 

= 

= 

= 

= 

= 

= 

th 
the number of units produced by each member of the i 

experience class on regular time. 

total amount of overtime production in period t. 

amount of overtime production assigned to class i in 

period t. 

amount of overtime work remaining available in period t to 

the members of class i and the workers with less experience 

after overtime work has been assigned to the more experi-

enced workers. 

number of workers in class i in period t. 

number of workers hired in period t. 

number of workers fired in period t. 

regular payroll cost per worker in class i per period. 

!1.. = a constant such that !/..pi is the maximum production 

(in units) by one worker of experience class i on regular 

time and overtime. 

= i a constant such that a C is the overtime payment per worker 

in class i. 

The remainder of the variables were defined previously. 

Personnel Transition Matrix and 

the Orrbeck Model 

As previously stated, Orrbeck (68) assumed that the number of 

workers in an experience class would be the number of workers in the 
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next most experienced class in the preceding period, minus the number of 
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workers released from the group. This assumption does not represent the 

dynamics of the internal workforce which includes both movement (or lack 

of it) within the organization and external losses. The loss rates may 

be further subdivided into terminal losses from persons retiring and 

quitting. Considerable insight can be gained into the structure of the 

organization through analysis of movements and retirements. The internal 

movements are important if one is to obtain correct estimates of inter-

nal supplies and losses of personnel in the future. For example, the 

movement of a worker in class 1 to class 2 represents both a loss to 

class 1 and a gain to class 2. In planning aggregate skills, the basic 

source of this information is the transition matrix. 

For the sake of clarity, consider a hypothetical example of the 

steps required to develop a transition matrix. For the purposes of this 

example, the following job categories will be used: 

Job Category 

Management 
General Administration 
Skilled Worker 
Unskilled Worker 

Code 

Mgt 
Gen 
sw 
uw 

These categories can be used to go into the historical personnel 

files to obtain the data needed to build the transition matrix. What 

is needed are data on the job categories occupied by each individual in 

a sample (or complete count) at two relevant time periods. This allows 

a "snapshot" to be taken of personnel population between the two time 

periods. In this numerical example these data take the form shown in 

Figure 2. 



Employee Number 

3024 
3025 
3047 
3072 

Time 1 

Mgt 
sw 
Gen 

Job Category 

Figure 2. Transition Data File 

Time 2 

Mgt 

Mgt 
uw 

The resulting file can now be used to develop the transition 

matrix by using a table, such as Table I. In this transition table, of 

the 50 employees in the management category at Time 1, only 40 remained 

in that job category by Time 2. Also, five of the 50 transferred to the 

general administrative category and five had left the organization. By 

adding the columns, one can obtain the population distribution at Time 

2. The rates of movement can be obtained by dividing the number in 

each category in a given row of the row total. For example, in the row 

associated with the management, the 40 remaining in management are 

divided by the 50 at the start to give .8 (80%) and the five that moved 

to general administration results in a .1 (10%) movement rate, etc. The 

rates for the complete transition matrix are given in Table II. 

Transition matrices can be established for a wide variety of job 

categories and time periods. In a planning model, the critical factor 

is that the transition rates be consistent with time periods used in 

the model. The transition ruatrix may also be modified to more accurate-

ly reflect the period being projected. 
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Job Category 

Mgt 
Gen 
uw 
sw 
Entries 

Totals 
Time 2 

Mgt 
Gen 
uw 
sw 

TABLE I 

HISTORICAL TRANSITION STATISTICS 

Totals 
Time 1 Mgt Gen uw sw 

50 40 5 
300 10 210 
600 360 60 
500 450 

5 110 300 

55 325 660 510 

TABLE II 

TRANSITION RATES FROM TIME 1 TO TIME 2 

MGT GEN uw sw 

.80 .10 

.03 .70 
.60 .10 

.90 

Source: From Niehaus, R. J., Computer Assisted Human Resources 
Planning, Wiley Interscience, New York, 1979. 
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Exits 

5 
80 

180 
50 

Exits 

.10 

.27 

.30 

.10 
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From the foregoing discussion, it seems natural to drop assumptions 

2 and 3 of the Orrbeck model in favor of a model in which the personnel 

transition matrix (PTM) of the organization will be used. The PTM governs 

the personnel movement during the time horizon and it will achieve the 

following characteristics which do not exist in the Orrbeck model. These 

characteristics are as follows: 

1. The cases of quit, attrition, promotion, etc., will be 

considered in the new model by representing them in the PTM of the 

organization. 

2. The number of workers hired or fired in each class for each 

period can be explicitly determined. For instance, management may hire 

and fire in the same period, i.e., hiring for one class and firing from 

another class. 

The other assumptions of the Orrbeck model will not change in the 

new model since they are relevant assumptions. 

Workforce Constraints 

A general formula of workforce is: 

Number Remaining 
in a Class + New Hires - Fires = Number in 

a Class 

To calculate the above equation for each period in the planning hori-

zon, the initial number in each class (Job Category) is assumed to be 

constant and known. This initial number is then multiplied by the tran-

sition rates to project those staying in a particular class, those be-

ing promoted, and those leaving the organization. New hiring or firing 

is added to the number remaining in each class to get the number of 

workers in each class in the first period of the forecast. The process 
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is repeated for the next period, multiplying the projected number at 

the end of the first period by the transition rates to obtain the 

number remaining and class changes in the second period. Again the new 

hiring and firing are added to obtain the number of workers in each 

class in the second time period. This process is then repeated for all 

the periods included in the model. 

It is convenient to use a matrix notation to develop a mathematical 

expression of the above word equation. This can be done by introducing 

the following notation: 

M = Personnel Transition Matrix (PTM) of the organization with 

-h 
Nt 

-f 
Nt 

N 
0 

= 

= 

= 

= 

dimension e x e. 

a column vector represents the number in each class 

in period t. 

a column vector represents the number of hires in each class 

in period t. 

a column vector represents the number of fires in each class 

in period t. 

a column vector represents the number of workers in each 

class initially. 

Nt' ~' N!, N0 are nonnegative vectors each with dimension e. 

By using the above notation one can write the following workforce 

constraints: 

Period 1: 

MN + Nh -f 
N1 N1 = 

0 1 
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Period'2: 

M2N + MNh - MNf + ~ - Nf2 = N 
0 1 1 2 2 

Period t: 

t i h t t-i -f -
MtN + l: Mt- N - l: M Ni = Nt 

0 i=l i i=1 

Thus, the workforce constraints can be given by 

t t 
N - l: Mt-i ~ + l: Mt-i Nf = Mt N d t = 

t i=1 i i=l i o an 1, ••• , T. (3.9) 

Model Formulation 

As mentioned before, the assumptions concerning the workforce 

constraints in the Orrbeck model are unrealistic because they do not 

represent the dynamics of the personnel movement in the firm. In the 

proposed model, these constraints will be replaced by those developed in 

the prevlous section. Therefore, the new model can now be formulated as: 

Min. C = 

Subject to the following constraints: 

It = It-1 + X - S t t 

ot = (X - :p N )+ 
t t 

Ri 
e 

pj Nj]+ = [Ot I. (2-1) j=i+l i = 1' 

e i i 
l: c 

i=l Pi 0t 

2, ... ' 

(3.10) 

(3.11) 

(3.12) 

e-1 (3.13) 
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= i = 1, ••• , e (3.14) 

(3.15) 

~ t-i ~ t t-i -f 
i=1 M i + i~1 M Ni = (3.16) 

Nt > o, N~ ~ o, N~ ~ o, xt ~ o, It~ 0 fort= 1, 2, ••• , T. 

where: 

c = a constant row vector represents the regular payroll cost 

i i = i, with elements C , . . . ' e • 

ch = a constant row vector represents the hiring cost. 

= a constant row vector represents the firing cost. 

P = productivity row vector with elements Pi, i = 1, ••• , e. 

The other variables were previously defined. 

Model Transformation 

In order to solve the above model by linear programming methods, a 

set of variables must be determined in such a way that the cost func-

tions and constraints are linear. In its present form, the overtime 

constraints are the only nonlinear constraints. To convert the over-

time constraints to linear functions, define the variables 
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For the next most experienced class 

= 

The general relationship is 

= 

Then, from the definition of R! one can write 

and also from the definition of R~ and U~ one can write 

From the foregoing results the transformed model will be 

+ a (3.17) 

Subject to the following constraints: 

(3.18) 
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e 
pj Nj Re = ot = xt + ue l:. (3.19) 

t t j=1 t 

Ri ui 
e 

(JI.-1) pj N~' = Re + L: i = 1, 2, ••• , e-1 (3.20) 
t t t j=i+1 

oi Ri i-1 (3.21) = - R t t t 

e 
xt ~ £ L: pj Nj (3.22) 

j=1 t 

t 
t-i ~ 

t -f L: L: t-i = N Mt (3.23) N - M i + i=1 M Ni t i=l 0 

i = 1, ••• , e fort= 1, 2, ••• , T. 

Remarks 

The model developed in this chapter is by no means the final pro-

duction manpower planning model. It does, however, illustrate how the 

important aspects of a personnel transition matrix of the organization 

and Markov processes, heretofore neglected, can be incorporated into 

the aggregate production planning models. The model has been formulated 

as a linear programming model and its solution can be found by any 

available linear programming package. The model application, along with 

the comparison with the Orrbeck model, will be presented in Chapter 

VII. 

A substantial improvement of the linear programming models can be 

made by the use of goal programming procedures. An early contribution 

is the work of Charnes, Cooper, and Ferguson [22]. In a model they 
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designed for the General Electric Company to assist in setting execu

tive compensation, they developed the concept called "goal programm

ing." Here, the idea is to try to hit a number of management goals "as 

closely as possible," subject to a set of underlying constraints. How

ever, goal programming models with embedded Markov processes have been 

developed and used in manpower planning [23]. A goal programming model 

(Model II) for aggregate production and manpower planning will be de

veloped in Chapter VI after reviewing goal programming and some of its 

difficulties in Chapter IV, and developing a nondominance algorithm for 

goal programming in Chapter V. 



CHAPTER IV 

NONDOMINANCE IN LINEAR GOAL PROGRAMMING 

Introduction 

The area of multiple objective decision making has received a great 

deal of interest in recent years due to the realization that many real 

world decision making problems rarely involve only one objective. Among 

the many methods presented for solving the multiple objective problems, 

goal programming (GP) has received considerable attention. GP is a rela-

tively new tool that has been used as a methodology for analyzing multi-

ple objective decision making problems. It is an outgrowth of the early 

ideas of Charnes and Cooper (20) and has been extended by Ijiri (45), 

Lee (50), and Ignizio (41), among others. It has also been applied in 

many diverse areas such as manpower planning, energy/water resources, 

transportation problems, production planning, etc. For further applica-
' 

cations and references, the reader is referred to Ignizio (42). 

A goal programming solution can turn out to be dominated, that is, 

not the best one with respect to currently available alternatives. This 

suboptimizing feature of GP is implied by the fact that the goals are 

set a priori, as discussed in Zeleny (92). Hannan (34) gives a few num-

erical examples of GP difficulties. To overcome these difficulties 

Hannan suggests setting the goals a priori and then maximizing or mini-

mizing the corresponding goal functions on a further constrainted set. 

Goicoechea, Hansen, and Ducksten (30) stated that it is possible for a 
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GP solution to be a dominated solution, in which case the targets would 

need to be adjusted and the model solved again. Ignizio (43, 44) sug

gested that by setting the objective aspiration levels high enough that 

they may not be attained for any solution, the GP solution cannot be 

dominated. 

In this chapter some of the definitions and concepts of GP, its 

formulation, and its solution methods will be presented. The dominance 

in a GP solution will also be discussed through an example. These mater

ials are appropriate for developing the nondominance test theorem to GP, 

and can be found in (2, 3, 5, 30, 34, 41, 42, 43, 44, 92, 93). 

Terminology and Concepts 

Terminology and concepts, as always, play an important part in the 

understanding and appreciation of a methodology. GP has a number of spe

cial terms, concepts, and definitions that are appropriate for develop 

ing the GP model. Included among these are: 

Objective: An objective is a relatively general statement (in 

narrative or quantative terms) that reflects the desires of the decision 

maker. For example, one may wish to "maximize profit" or "minimize labor 

turnover" or "wipe out poverty." 

Aspiration level: An aspiration level is a specific value associ

ated with a desired or acceptable level of achievement of an objective. 

Thus, an aspiration level is used to measure the achievement of an ob

jective and generally serves to "anchor" the objective to reality. 

Goal: An objective in conjunction with an aspiration level is 

termed a goal. For example, we may wish to "achieve at least X units of 

profit" or "reduce the rate of inflation by Y percent." 
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Goal Deviation: The difference between what one accomplishes and 

what one aspires to is the deviation from his goal. A deviation can 

represent overachievement as well as underachievement of a goal. 

Deviation Variables: A deviation variable reflects either the 

underachievement (negative deviation) or overachievement (positive devi-

ation) of an objective. All deviation variables are assumed to be non-

negative. 

Achievement Function: The goal programming achievement function 

indicates the degree of achievement of the associated goals. Given a 

function that is to be lexicographically minimized, the achievement 

function is an ordered (i.e., ranked or prioritized, vector). This vee-

tor can be written as: 

a = Ca1 , a 2 , ••• , ~, ••• , ~), 

where 
~ = gk(d-,d+), k = 1, 2, ••• , K 

where 
a = achievement vector, 

k = ranking or priority, 

d- = negative deviation vector, 

d+ = positive deviation vector, and 

gk(d-,d+) = linear function of the goal or constraint 

deviation variables that are to be minimized at rank or 

priority k. 

Lexicographic Minimum: Given an ordered array a of nonnegative 

-(1) -(2) 
elements ak's, the solution given by a is preferred to a if 
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(1) < (2) 
~ ~ 

and all higher order elements, i.e., a,.1, ••• , ~-1 are equal. If no 

- -other solution is preferred to a, then, a is the lexicographic minimum. 

Note that the lexicographic minimum is a nondominated solution (43). 

Goal Programming Formulation 

Key aspects of the formulation for a goal programming model used 

here are the specification of the preemptive priorities, establishment 

of an aspiration level for each objective, and generation of the achieve-

ment function. 

The concept of assigning a preemptive priority structure to goals 

is fundamental to the specific goal programming formulation discussed 

herein. It assumes that one can establish a preference relationship for 

the goal set comprising the problem. The prioritization of goals is pre-

emptive in the sense that the assignment of goals, say G1, to priority 

level 1, say P1 , will be satisfied before the goals at P2 through Pk, 

assuming that there are K priority levels in the problem. One of the key 

features of the preemptive priority-based goal programming model is that 

it involves no weighting or quantative multiplier in relating one prior-

ity level to the next. As Ignizio (41) points out, the achievement of 

the set of objectives at "any one priority level is immeasurably prefer-

red to the achievement of the objective set at any lower priority" for a 

large number of real world problems. 

One of the more troublesome problems encountered in GP formulation 

is the establishment of an aspiration level for goals. In the typical 

linear programming model, there is a constraint set containing a column 
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vector of right hand side values. This column is often referred to as 

the "resource level." In the context of GP, this is termed the aspira-

tion level. This aspiration level must always be specified. For absolute 

goals (rigid or real constraints) this assignment is straight forward, 

but for goals which are actually objective functions from the single 

objective optimization domain, the process is less straight forward. 

The model builder must specify what he or she feels to be a reasonable 

aspiration level which should be exceeded, or conversely, not exceeded. 

Deviation from the aspiration level is 1measured via a pair of deviation 

variables; one negative, one positive. Every goal in the GP model car

ries a negative and positive deviation variable. Label these di and d1 

th respectively for the i goal. Based upon the material presented so 

far, it should be obvious that the GP has the following assumptions and 

components: 

Assumptions: 

1. Aspiration levels may be associated with all objectives so as to 

transform them into goals. 

2. Any real (rigid) constraints, i.e., absolute goals, are ranked at 

priority 1. All remaining goals may be ranked according to importance. 

3. With the exception of priority 1, i.e., the set of real constra-

ints, all goals within a given priority must either be commensurable, 

i.e., measured in the same units, or be made commensurable by means of 

weights. 

Components: 

1. A set of decision variables 
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2. A set of priority levels 

3. A set of goals c1, G2, ••• , Gm which have a one-one correspon

dence with objectives f 1(x), f 2(x), ••• , fm(x). 

4. A set of aspiration levels b1, b2, ••• , bm; one for each goal. 

5. 
- + -A set of deviation variables (d1, d1), (d2, + - + 

d2)' ••• , (d ' d) m m 

to measure the amount of deviation away from the aspiration level from 

goals. 

6. An achievement function a= [g1(d-,d+), g2(d-,d+), ••• , 

gK(d-,d+)] to indicate the degree of achievement of the associated 

goals. 

The appearance of deviation variables in the achievement function 

is based upon the nature of the goals. Achievement is measured as 

follows: 

th -
1. If the i goal is of the "less than or equal to" type, fi (x) < 

bi' "d;" appears in the achievement function. 

2. If the ith goal is of the "greater than or equal to" type, 

fl(i)~bl' "d~" appears in the achievement function. 

3. If the th is of the "equality" type, fi(i) b. ' "d- d+" i goal = + 
1 i i 

appears in the achievement function. 

A general model for the "n-variable, m-objective, and K-priority 

level" goal programming problem can now be stated as: 

Find x = (x1 , x2 , ••• , xn)' 

so as to lexicographically minimize 

such that: 

1, 2, ••• , m 
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and 

x, d-, d+ > o. 

Methods of Goal Programming Solution 

The most commonly used algorithms for solving linear goal program 

ming (LGP) problems are sequential linear goal programming [44], multi-

phase linear goal programming [44] and partitioning [5]. The first and 

second algorithms are taken from Ignizio [44] and each algorithm will be 

briefly discussed. 

Sequential Linear Goal Programming (SLGP) 

Algorithm 

Step 1. Set k=1 (where k is used to represent the priority level 

under consideration and K is the total of these). 

Step 2. Establish the mathematical formulation for priority level 1 

only: that is, minimize a 1 = g1(d-, d+) subject to 

n 

j~ 1 Ci,jxj + di- d1 = bi fori 9-Pi 

and 
x, d-, d+ > o. 

The resulting problem is simply a conventional (single-

objective) linear programming problem and may be solved by 

the simplex method. 

Step 3. Solve the single-objective problem associated with 

priority level k via any appropriate algorithm or code. 

Let the optimal solution to this problem be given as a~, 

where a~ is the optimal value of gk(d-,d+). 

Step 4. Set k = k+1. If k ~ K, go to Step 7. 



Step 5. Establish the equivalent, single-objective model for the 

next priority level (level k). This model is given by: 

minimize ak = gk (d-,d+) subject to 

= 

g (d-,d+) = a* 
s s 

x, d-, d+ > 0 

where 

s = 1, .•• , k-1. 

t = set of subscripts associated with those goals 

or constraints included in priority levels 1, 2, ••• , k. 

Step 6. Go to Step 3. 

-* Step 7. The solution vector x , associated with the last single-
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objective model solved, is the optimal vector for the ori-

ginal goal programming model. 

The Multiphase Linear Goal Programming 

Algorithm 

The multiphase (or modified simplex) algorithm is simply a refine-

ment of the well-known two phase method. Before discussing the algor-

ithm, the special tableau that is used in the procedure is presented in 

Table III. Table III differs somewhat from those employed for the single 

objective because it shows the general, initial multiphase tableau in 

its condensed form, i.e., only nonbasic columns are included. 

The headings and elements within this tableau may be defined as 

follows: 
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Headings: 

Elements: 
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th 
Pk = k priority level, k = 1, ••• , K. 

V = problem variables--both decision and deviation. The 

+ variables to the right of V (xj and dj) are the 

initial set of nonbasic variables; the variables 

below V (d~) are the initial set of basic variables. 

XB = the initial values of the basic variables (elements 

below XB). Since the initial basis (associated 

with d1 ••• , d:) is an identity matrix, these ini

tial values are simply the original right-hand 

side values (bi's) of the model. 

j = 1, 2, •.• , n 

i = 1, 2, ••• , m 

s = 1, 2, ••• , s 

k = 1, 2, ••• , K 

th interior tableau element in the i row under the 

th 
s nonbasic variable; initially, yi is simply ,s 

th the coefficient of the s nonbasic variable in the 

ith goal. 

W = weighting factor for the nonbasic variable in k,s 

column s at priority level k (Pk). 

ui k = weighting factor for the basic variable in row i at 
' th the k priority level. 

R_ = indicator row element for priority level k under -l<,s 
th 

the s nonbasic variable, that is, the "shadow 

price" or "marginal utility" for the sth nonbasic 

th variable at the k priority level. 
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~ = level of achievement of the goals in priority k, 

where 

All the elements in the initial tableau, except for ~,s and ~' 

are simply obtained from the mathematical model. However, ~,s and ~' 

must be computed as follows: 

T 

~,s = u y -w 
}<'S k,s 

(4.1a) 

or 
rn 

~,s = t.: (yi ui k) - wk i=1 ,s ' ,s 
(4.1b) 

and 
T 

~ 
= ukxB (4.2a) 

or 
m 

~ 
= t.: (xB iui k) i=1 ' ' 

(4.2b) 

The Multiphase Simplex Algorithm: By following the steps given 

below, the optimal solution to the linear goal programming model may be 

derived. 

Step 1. Initialization. Establish the initial multiphase tableau 

and the indicator row for priority level 1 only (the R1 elements). ,s 

Set k = 1 and proceed to Step 2. 

Step 2. Check for optimality. Examine each positive-valued indica-

tor row element (~ ) in indicator row k. Select the largest positive --k,s 

~ for which there are no negative-valued indicator numbers at a high---k,s 

er priority in the same column. Designate this column ass~. In the 
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event of ties, the selection of ~ may be made arbitrarily. If no -lc,s 
th 

such~ may be found in the k row, go to Step 6. Otherwise, go to --K, s 

Step 3. 

Step 3. Determining the entering variable. The nonbasic variable 

associated with column s' is the new entering variable. 

Step 4. Determining the departing variable. Determine the row 

associated with the minimum nonnegative value of 

In the event of ties, select the row having the basic variable with the 

higher-priority level. Designate this row as i'. The basic variable 

associated with row i' is the departing variable. 

Step 5. Establishment of the new tableau. 

(a) Set up a new tableau with all Yi,s' XB,i' ~,s' and ~ 

elements empty. Exchange the positions of the basic vari-

(b) 

(c) 

able heading in row i' (of the preceding tableau) with the 

nonbasic variable heading in column s' (of the preceding 

tableau). 

Row i' of the new tableau (except for yi, ,) is obtained by ,s 

dividing row i' of the preceding tableau by yi, ,. 
,s 

Column s' of the new tableau (except for yi, ,) is ,s 

obtained by dividing column s' of the preceding tableau by 

the negative of y1 , , (i.e., by -yi, ,). 
,s ,s 

(d) The new element at position yi, , is given by the 
,s 

reciprocal of yi, , (from the preceding tableau). The ,s 

remaining tableau elements are computed as follows: Let 
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any element with a caret over it (i.e., xB,i' Yi,s' etc.) 

represent the new set of elements, while those without the 

caret denote the values of these elements from the preced-

ing tableau. Then, for those elements not in either row i' 

or column s': 

(xB .,)(yi ,) 

xB,i = xB,i -
21 ,s 
yi, , ,s 

(4.3) 

(yi, s)(yi s') 
yi s = Yi,s - 2 ' 

yi, , ' ,s 
(4.4) 

(yi, ,)(\: S') 

~,s = ~,s-
zs ' 
yi, , ,s 

(4.5) 

(xB 2 i')C~,s ,) 

~ = ~- yi, , ,s 

(4.6) 

An alternative approach to computing the new ~,s and ~ values is to 

employ (4.1) and (4.2). Note that (4.3) through (4.6) all have the fol-

lowing form: 

where: 

APRV 

APCV 

PNV = 

i' = 

s 
, = 

New Value 

associated pivot 

associated pivot 

Old Value - (APRV)(APCV) 
PNC 

row value 

column value 

pivot number value, i.e., yi, , ,s 

pivot row 

pivot column 
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(e) Return to Step 2. 

Step 6. Convergence check. Examine each column vector of indicator 

elements (R ) in the present tableau. At least one of these column s 

vectors must consist solely of zeros if the present solution is to be 

improved. If so, go to Step 7. Otherwise, we have reached the optimal 

solution and may stop. 

Step 7. Evaluate the next-lower priority level. Set k = k + 1. If k 

now exceeds K (the total number of priorities), then stop, as the pre-

sent solution is optimal. If k ~ K, establish the indicator row for pri-

ority k (Pk) from (4.1) and (4.2) and go to Step 2. 

The Partitioning Algorithm 

Arthur and Ravindran (5) have devised an efficient partitioning 

algorithm which consists of solving the series of linear programming 

subproblems, with the solution to the higher priority problem used as 

the initial solution to the lower priority problem. They also reported 

that the partitioning algorithm takes only between 12 and 60 percent of 

the computer time required by Lee's goal programming algorithm (50). 

The partitioning algorithm begins by solving the smallest subprob-

lem s1 , which is composed of those goal constraints assigned to the 

highest priority and the corresponding terms in the objective function. 

The optimal tableau for this subproblem is then examined for alternate 

optimal solutions. If none exist, then the present solution is optimal 

for the original problem with respect to all of the priorities. The 

algorithm then substitutes the values of the decision variables into 

the goal constraints of lower priorities in order to calculate their 

attainment levels, and the problem is solved. However, if alternate 



optimal solutions do exist, the next set of goal constraints (those 

assigned to the second highest priority) and their objective function 

terms are added to the problem. This brings the algorithm to the next 

largest subproblem in the series, and the optimization resumes. The 

algorithm continues in this manner until no alternate optimum exists for 

one of the subproblems, or until all priorities have been included in 

the optimization. The linear dependence between each pair of devia

tional variables simplifies the operation of adding the new goal con

straints to the optimal tableau of the previous subproblem without the 

need for a dual-simplex iteration. 

At the time when the optimal solution to the subproblem Sk_1 is 

obtained, a variable elimination step is performed prior to the addition 

of the goal constraints of priority k. The elimination step involves 

deleting from further consideration all nonbasic columns which have a 

positive relative cost (Cj- Zj ~ 0) in the optimal tableau of Sk_1• 

This is based on the well known LP result that a nonbasic variable with 

a positive relative cost in an optimal tableau cannot enter the basis to 

form an alternate optimal solution. 

Dominance in Linear Goal Programming 

As mentioned before, the GP solution can turn out to be dominated, 

i.e., not the best one with respect to other available solutions. The 

present approaches for solving the dominance in GP are not practical 

ones. They change the original problem to another by changing the goals 

and/or constraints. A proposed method will be developed later in this 

chapter to examine the nondominance of GP and determine the nondominated 

solution(s) if the GP solution turns out to be dominated. 
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To clarify the discussion of the dominance in GP and the proposed 

method, the following example is adopted from Zimmermann (93) and refer 

red to throughout this chapter. 

Example. A company manufactures two products, 1 and 2. Product 1 

yields a profit of $2 per piece and product 2 of $1 per piece. While 

product 2 can be exported, yielding a revenue of $2 per piece in foreign 

countries, product 1 needs imported raw materials of $1 per piece. Two 

goals are established: (a) Profit maximization and (b) maximum improve-

ment of the balance of trade, i.e., maximum differenc~ of exports minus 

imports. This problem can be modeled as follows: 

such that 

-x + 1 3x2 < 21 

x1 + 3x2 < 27 

4x1 + 3x2 < 45 

3x1 + x2 < 30 

x1' x2 > o. 

The aspiration level (target) for z1(x) is 15 and for z2(x) is 10; 

also that z1(x) is ranked before z2(x). The resultant linear goal 

programming formulation is: 
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such that: 

-x + 3x2 + d1 d+ = 21 1 1 

x1 + 3x2 + d; d+ = 27 2 

4x1 + 3x2 + d; d+ = 45 3 

3x1 + x2 + d -4 
d+ = 30 

4 

z1(x): 2x1 + x2 + d; d+ = 15 5 

z2(x): -x1 + 2x2 + d6 d+ = 10 6 

x, d-, d+ > 0 

The solution of the above GP problem can be obtained by any of the 

above previous methods. For the purpose of clarity, the graphical solu 

tion will be used. 

A graphical solution of the example can be pursued by plotting the 

six goals (4 constraints and 2 objectives) as straight lines (Figure 3). 

Note that only the decision variable x1 and x2 appear in the plot. The 

- + effect of increasing either di or di is reflected by arrows perpendicu-

cular to each goal line. The particular deviation variables to be mini-

mized, i.e., those which appear within the achievement vector, have been 

circled. 

The four goals with the highest priority are considered first. 

+ + + 
These goals may be satisfied by simultaneously minimizing d1, d2 , d3 , 
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X2 

1 2 3. 4 5 6 7 H 9 10 11 

\, 
·Figure 3. Graphical Solution to the First Priority 



+ and d4 ; in fact, they may be 
+ + 

completely achieved by setting d1 = d2 = 
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+ + 
d3 = d4 = o. The region for the first priority is shown in Figure 3 as 

the crosshatched area. Note that the crosshatched area is the feasible 

region of the original constraints. 

Next, move to priority level 2, which is achieved through the 

minimization of d5• Note that in Figure 3, d; may be set to zero with

out degrading the solution achieved for priority 1. The new reduced area 

is now indicated as the crosshatched region in Figure 4. 

Last, move to priority level 3, the final priority level, and 

attempt to minimize d6• Again d~ may be set to zero without increasing 

either the value of a1 or a2 from the achievement function (p. 56). The 

reduced region is now indicated as the crosshatched area in Figure 5, 

which represents the final solution to the example. 

From Figure 5, one obtains an optimal solution of x1 = 4 and x2 = 7 

which should be obtained by any of the previous analytical methods. This 

implies that z1(x) is satisfied fully, that is, 2(4) + 1(7) = 15; z2(x) 

is also satisfied fully, that is, -4 + 2(7) = 10. 

This solution is dominated; it is inferior. For example, x1 = 4.8 

and x2 = 7.4. At this feasible solution z1(x) reaches 2(4.8) + 7.4 = 17, 

+ that is d5 = o, d5 = 2; z2(x) attains -4.8 + 2(7.4) = 10. A vector 

of values (4.8, 7.4) dominates the previous one (4,7). Also a vector of 

values (3.6, 7.8) dominates (4,7). 

Dominated solutions are returned by any goal programming approach, 

regardless of the used method for obtaining the GP solution. The reason 

is that the goals are determined a priori without the true potentials of 

a feasible region being first explored (92). 
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X2 

0 L___j____t _ __,___.J.. _ __,____.J.._.....l--..lf-1-~....u-...~-....__ X 1 
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\, 
F1gure 4. Graphical Solution to First and Second Priorit1es 
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X2 
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~ 
Figure 5. Solution to ail Priority Levels 



75 

Hannan (34) gives an example of an unbounded solution which will 

also go undetected by the GP procedure: 

- -Minimize d1 + d2 

subject to: 

< 6 

x1 < 4 

2x2 + x3 + d1 d+ = 12 1 

x1 + x2 + x3 + d2 d+ = 10 2 

Solving the above GP problem, one obtains x1 = 4, x2 = 6 and x3 = 0; 

that is, d1 = d2 = 0. But note that both objectives can actually be 

raised beyond any bounds, because x3 can be made arbitrarily large. 

Thus, setting the goals to 12 and 10 respectively is certainly subopti-

mal in this case. 

It should be noted that the solution obtained by GP may be a pre-

ferred solution to the decision maker since it satisfies the set goals 

as closely as possible. However, it is desired to identify the nondomi-

nance of such solution and make available to the decision make a nondom-

inated solution to his model. The following section is devoted to a 

theorem to test the nondominance of a GP solution and to obtain a non-

dominated solution if the GP solution turns out to be dominated. 

Nondominance Test for Linear Goal Programming 

Suppose that x* is the solution of a goal programming problem. Con-

sider what could be the results of solving the following linear program-

ming problem. 



Subject to: 

where: 

Maximize w = 

n 
}.; 

j=1 = b 
r 

r = 1, 2, ••• , m 

j = 1, 2, ••• , n 

Constraints (4.8) represent the rigid constraints. 
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(4.7) 

(4.8) 

(4.9) 

(4.10) 

Constraints (4.9) represent the objectives to be maximized; i.e., 

the goals of type greater than or equal to. 

Constraints (4.10) represent the objectives to be minimized; i.e., 

the goals of type less than or equal to. 

i is the subscript for goal constraints of type greater than or 

equal to. 

k is the subscript for goal constraints of type less than or equal to. 

fi(x*) is the value of the goal i at x*. 

fk(x*) is the value of the goal k at x*. 

x* is the goal programming solution. 

Note that the objective function, w, has no dimension. It serves to 

obtain the maximum or the minimum of some or all goals. 

The following is then true: 

1. x* is a nondominated solution if and only if w = 0 (all di and 

dk are zeros) and f(x*) is a reasonable aspiration level vector. 
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0 2. x* is a dominated solution if and only if w > 0. The solution x 

of the above linear programming problem is a nondominated solution to 

the original goal programming problem and the reasonable aspiration 

levels might be: 

1. for maximization of goals 

2. for minimization of goals 

where 

Proof: 

fi(x) = ~ cij xj 

fk(x) =' ~j xj 

1. w = 0 implies that for all i and k, di and dk are equal to 

zero. If di = 0 and~= 0 for all i and k, then fi(x*) cannot be de

creased and fk(x*) cannot be increased. Therefore, it is impossible to 

find a solution to the LP problem (4.7 to 4.10) that can dominate x*, 

thus x* should be a nondominated solution to the GP problem. On the 

other hand, suppose that x* is a nondominated solution and di or ~ is 

greater than zero for some i or k. Then, there can be a solution that 

dominates x*. This contradicts the nondominance of x*. Accordingly, di 

and dk must be equal to zero for all i and k, and therefore w = 0. 

2. w > 0 implies that di and/or ~ are greater than zero for some 

i and/or k. 

increased. 

Therefore, fi(x*) could be decreased and/or fk(x*) could be 

0 Accordingly, there will be a solution x to the LP problem 

that dominates x* and x* is a dominated solution. On the other hand, 

suppose that x* is a dominated solution, and di and dk are equal to zero 

for all i and k. This implies that fi(x*) cannot be decreased and fk(x*) 
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cannot be increased. Therefore, x* is a nondominated solution and this 

contradicts the dominance of x*. Accordingly, di and/or ~ should be 

greater than zero and therefore w > 0. 

Corollary. In the course of obtaining a GP solution, if the optimal 

tableau for subproblem Sk has no alternate optimum solution, then the GP 

solution of the original problem is nondominated and there is no need to 

perform the nondominance test. 

The corollary follows immediately from the preceeding test and the 

obser~ation that obtaining a unique optimum of the subproblem Sk means 

that at least one of the goals of Sk attain its maximum or (minimum) and 

any trial to solve the LP test problem w~ll lead to the same solution. 

To clarify the above nondominance test, the previous example will be 

considered. x* = (4,7) is a solution obtained by goal programming. To 

test the nondominance of x*, the values of the objectives z1(x) and 

z2(x) at x* are calculated: 

z1(x*) = £1(x*) = 2(4) + 7 = 15 

z2<x*) = £2(x*) = -4 + 2(7) = 10 

Then the linear programming test problem can now be formulated as: 

Subject tot 

Maximize w = d1 + d2 

xl + 3x 2 ~ 27 

4x1 + 3x2 ~ 45 

3x1 + x2 < 30 

2x1 + x2 + d1 ~ 15 

-x1 + 2x2 + d2 ~ 10 
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xj ~ 0, di ~ 0, j = 1, 2, and i = 1, 2. 

A solution to the above linear programming problem is: 

x1 = 3.6 

x2 = 7.8 

d1 = 0.0 

d2 = 2.0 

and 

w = 2.0 

Therefore, the solution x* = (4,7) is dominated and a nondominated 

0 solution to the given goal programming problem is x = (3.6, 7.8). 

The reasonable aspiration levels might be: 

f 1(x) = 15 

£2(x) = 12 



CHAPTER V 

A NONDOMINANCE ALGORITHM FOR LINEAR 

GOAL PROGRAMMING 

Introduction 
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Having shown that the GP solution may be a dominated solution, the 

nondominance test has been proposed in the previous chapter to identify 

the GP solution and to generate a nondominated solution(s). The non

dominance test is simply formulating and solving a linear programming 

problem. To implement this test in any goal programming algorithm, a 

subroutine(s) may be added to set up and solve the linear programming 

problem. In this research, PAGP, the partitioning algorithm for linear 

goal programming problems (5), is modified to include the nondominance 

test; however, similar modifications can be done for any other GP com

puter code. The partitioning algorithm is chosen for the following 

reasons: 

1. It consists of solving the series of linear programming subprob

lems with the solution of the higher priority problem used as the ini

tial solution to the lower priority problem. 

2. It has been coded in FORTRAN. The program structure and nota

tions are similar to those of Ignizio (41). Ignizio's code is one of the 

well-known codes in goal programming. 

3. It finds the solution to the original problem in less time than 

the other methods. This is because the constraint partitioning and 
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variable elimination steps used in the partitioning algorithm decrease 

the basis size and number of columns. 

In this chapter, the partitioning algorithm will be reviewed in some 

detail and notes on it will be addressed since they are appropriate for 

developing the new algorithm. General concepts and some features of the 

new algorithm are.presented and algorithm limitations are provided. 

The Partitioning Algorithm 

The GP methods presented by both Lee (50) and Ignizio (41) used the 

simplex algorithm (69) as their base and they added a modified decision 

rule for selecting the nonbasic variable to enter the basis at each iter-

ation. However, both failed to take advantage of the reduction in the 

number of computations at each iteration offered by the definition of the 

preemptive priority factor which states that any lower priority level 

cannot be satisfied to the detriment of a higher priority level. Arthur 

and Ravindran (5) developed an efficient algorithm which consists of 

three procedures: partitioning, elimination, and termination. For con-

venience, each procedure will be briefly discussed (refer to Arthur (3) 

for further details). 

The Partitioning Procedure 

The partitioning of the GP problem is accomplished by observing that 

for any goal constraint i, one and only one of three things may occur: 

1. 

2. 

3. 

only di appears in the objective function, 

only d+ appears in the objective function, and 
i 

both di and d; appear in the objective function. 
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In case (1) the partition would assign goal constraint i to the pri-

ority factor associated with di, in case (2) constraint i would be as-

+ signed to the priority factor associated with di, while in case (3) the 

partition would determine the higher order priority factor (in terms of 

the ordinal ranking) associated with either di or d~ and constraint i 

would be assigned to that priority. 

The Elimination Procedure 

The elimination procedure is based on the fact that in order to 

maintain the levels of achievement for the higher priority goals, a 

number of nonbasic variables (whose introduction into the basis can only 

destroy the level achieved for the higher order goals) can be eliminated. 

The motivation behind the elimination procedure comes from the theory of 

linear programming which states: "Let z be the optimal value of the LP 

problem; Min Z subject to Ax = b, x ~ o, and suppose that cj = cj - zj ~ o 

for some nonbasic variable xj. Then xj cannot enter the basis to form an 

alternate optimal solution." 

It follows from the above theorem that in the course of obtaining a 

GP solution, if the optimal tableau for subproblems Sk has been found, 

then any nonbasic variable t (where t can be a decision variable or a 
s s 

deviational variable) which has at least one positive relative cost, 

- -i.e., cj > o where cj is the relative change in priority P. per unit 
s - s J 

increase in t ) can be eliminated from entering the basis in subproblems 
s 

The Termination Procedure 

The termination procedure is based on the linear dependence between 
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- + each pair of deviation variables di and di. To clarify the discussion of 

the termination procedure, suppose a unique optimal solution has been 

found to subproblem Sk, then no nonbasic variable can enter the basis at 

priority Pk. Now suppose that goal constraint i is assigned to priority 

Pk+l by the partitioning procedure. By adding this goal constraint to 

the optimal tableau of subproblem Sk and performing the row reduction 

necessary to maintain a canonical form, i.e., eliminating the basic vari-

ables from constraint i through elementary row operations, either di or 

+ di will enter the basis as the basic variable corresponding to this new 

row in the new tableau. Hence, there will still be a unique optimal tab-

leau at priority Pk+l since no nonbasic variable can enter the basis. If 

more goal constraints were assigned to priority Pk+l' the same thing 

would happen as each constraint was added to the new tableau. Therefore, 

if a unique optimal solution has been found to subproblem Sk' there is no 

need to t~y to improve the lower priorities Pk+l' ••• , PK and the 

algorithm terminates. 

The Algorithm 

The partitioning algorithm can now be summarized in the following 

steps: 

Step 1: Find a basic feasible solution to the real constraints by 

using a Phase I simplex method with a full artificial basis. If the real 

constraints have no feasible solution, the algorithm terminates. If the 

real constraints are feasible or the problem has no real constraints, 

move to Step 2. 

Step 2: Solve the smallest subproblem containing only the goal 



constraints and associated variables belonging to the highest prior

ity level. 
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Step 3: Examine the optimal tableau for alternate optimal solu

tions. If none exists, it is not possible to optimize the goals of lower 

priorities and the current solution is optimal for the original problem; 

move to Step 4. Otherwise go to Step 5. 

Step 4: Substitute the values of the decision variables (xj's) in 

the goal constraints assigned to lower priority levels, calculate their 

levels of achievement, then terminate the algorithm. 

Step 5: If alternate optimal solutions do exist, goal constraints 

assigned to the next highest priority and the corresponding terms in the 

objective function are appended to the tableau while preserving its 

feasibility. The elimination procedure is then used to delete all the 

nonbasic columns with positive criteria coefficients and the optimization 

resumes. 

Step 6: If all priority levels have been included in the 

optimization, the algorithm terminates. Otherwise go to Step 3. 

The flowchart of the partitioning algorithm is given in Figure 6. 

Notes on the Partitioning Algorithm 

The partitioning algorithm has been coded in FORTRAN and problems of 

various sizes and complexities have been solved to test its efficiency 

with the widely used goal programming algorithm by Lee (50). In all of 

the test problems, the partitioning algorithm did much better than the 

algorithm by Lee, taking as little as 12 percent of Lee's time and never 

more than 60 percent. The authors of PAGP attribute the efficiency of 

their algorithm to the constraint partitioning and variable elimination 
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Figure 6. Flowchart of the Partitioning Algorithm 
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steps. They used the Phase I simplex procedure with a full artificial 

basis to find a basic feasible solution to the real constraints before 

optimizing the goals. 
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As previously stated, this research uses the PAGP as a GP algorithm. 

As this research progressed, some interesting observations were made 

regarding PAGP. These observations are presented below: 

Phase I with a Full Artificial Basis 

A major requirement of the simplex method is the availability of an 

initial basis solution in canonical form. Without it the initial simplex 

tableau cannot be formed. An approach to finding an initial basis invol

ves using artificial variables. A Phase I algorithm may then be to find 

an initial basic solution to the original problem by removing the artifi

cial variables. 

It should be noted that many linear programming problems do not need 

the use of Phase I with a full artificial basis. For instance, if one of 

the real constraints is in the form of "less than or equal to," then that 

constraint will have a basis and there is no need to use the full artifi

cial basis. However, since PAGP uses a full artificial basis, the fol

lowing cases may arise from the PAGP output: 

1. If the original GP program has an alternate optimum solution and 

at least one of the constraints is in the form"~" or"=", then the solu

tion obtained by PAGP may be different than the solution obtained by the 

other methods. 

2. If the original program has a unique optimal solution, then the 

solution obtained by any method must be the same. 
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Another requirement in the structure of PAGP is that the real con-

straints must be in the form Ax = b, hence the slack (surplus) variables 

should be treated as decision variables in the original problem. 

With regard to the structure of PAGP, if the real constraints have 

no feasible solution, the algorithm terminates. While Ignizio (41) point-

ed out that if the problem has no solution that satisfies the real con-

straints, then the final results derived will indicate the solution that 

is nearest to being implementable. 

Based upon the previous discussion, Phase I has been deleted in the 

development of the nodominance algorithm. 

Missing Statements in PAGP 

There are some missing statements in the output subroutine of PAGP 

(as published by Arthur and Ravindran (4)). These statements are neces-

sary to correct the output when the number of decision variables in the 

GP program are greater than the number of goals. To illustrate the dis-

cussion, consider the following example which is taken from Murty (63) 

and formulated as a goal programming model: 

Min a = 

Subject to: 

d+ = 17 
1 

= 5 

= 8 
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and all the variables are nonnegative. 

Note that the number of the decision variables (x's) are 6 and the 

number of the deviation variables (d's) are 4. 

Table IV shows the output of PAGP for the above example before the 

correction, while Table V shows the output after the correction. It is 

- + - + clear that the example does not have the variables d5 , d5 , d6 and d6 

which appear as zeros in the output summary of Table IV. These variables 

should not have any values since they are not in the problem. The output 

summary of Table V does not have values for these variables. 

A complete list of the output subroutine (Subroutine POUT) after the 

correction is given in Appendix A as a subprogram of the nondominance 

algorithm. 

The Nondominance Algorithm 

Having shown that the nondominance test is the formulation and sol-

ution of a LP problem, the development of a nondominance algorithm can 

now be summarized in the following steps: 

Step 1. Solve the GP problem. 

Step 2. Formulate a LP problem from the information of the original 

problem and the GP solution obtained from Step 1. 

Step 3. Solve the LP problem formulated in Step 2. 

Step 4. Identify the nondominance of the GP solution from the LP 

solution. These steps can be done by two methods. In the 

first method, the solution of the GP problem and the formu-

lated LP problem may be obtained by a GP code and a LP code 

respectively. This method is straight-forward, but it may 



TABLE IV 

COMPUTER OUTPUT OF PAGP BEFORE 
THE CORRECTIONS 

THE OPTIMIZATION ENDED ON SUBPROBLEM 3 
THERE WERE 4 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU.' 
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****************************************************************************~ 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1)" 0.4000 

X( 2)" 6.2000 

X( 3)= 0.0000 

X( 4)" 3.8000 

X( 5)" 0.0000 

X( 6)" 0.0000 

***************************************************************************** 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
2 
3 

GOAL NUMBER 
1 
2 
3 
4 

OVER-ACHIEVEMENT UNDER-ACHIEVEMENT 
0.0000 
0.0000 
1 .6000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

****************************************************************************~ 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 

ACHIEVEMENT 
0.0000 
0.0000 
0.0000 

****************************************************************************' 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 0.4000 0.0000 0.0000 
2 0.0000 6.2000 0.0000 0.0000 
3 0.0000 0.0000 1.6000 0.0000 
4 3.8000 0.0000 0.0000 
5 0.0000 0.0000 0.0000 
6 0.0000 0.0000 0.0000 



TABLE V 

COMPUTER OUTPUT OF PAGP AFTER 
THE CORRECTIONS 

THE OPTIMIZATION ENDED ON SUBPROBLEM 3 
THERE WERE 4 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 
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**************************************************************************** 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1)= 0.4000 

X( 2)= 6.2000 

X( 3)= 0.0000 

X( 4)= 3.8000 

X( 5)= 0.0000 

X( 6)= 0.0000 

****************************************************************************' 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
2 
3 

GOAL NUMBER 
1 
2 
3 
4 

OVER-ACHIEVEMENT UNDER-ACHIEVEMENT 
0.0000 
0.0000 
1 .6000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

****************************************************************************' 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 

ACHIEVEMENT 
0.0000 
0.0000 
0.0000 

****************************************************************************' 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 0.4000 0.0000 0.0000 
2 0.0000 6.2000 0.0000 0.0000 
3 0.0000 0.0000 1.6000 0.0000 
4 3.8000 0.0000 0.0000 
5 0.0000 
6 0.0000 
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take a considerable amount of time to formulate and solve 

the LP test problem. 
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In the second method, a modification which includes the formulation 

and the solution of the LP test problem should be made as part of the GP 

code. This method is more attractive than the first one since there is 

no need to use two different codes (one for GP and the other for LP). 

Also the analyst does not need to formulate the LP test problem. The 

only limitation of this method is that the developed algorithm may occupy 

a large amount of computer memory. Therefore, the first method would 

likely be used when computer storage is a limiting factor, while the se

cond method is the preferred one when computer memory is not limited. 

As previously mentioned, the main purpose of this chapter is to de

velop a nondominance algorithm for an existing GP code. Therefore, the 

second method will be presented in some detail. 

General Concepts of the Algorithm 

The concepts of a nondominance algorithm can actually be generalized 

so as to be utilized in any GP computer code. These concepts can be des

cribed in the following steps: 

Step 1. Perform minor modifications in the GP code to facilitate 

the embedding of a nondominance algorithm into the code. 

Such modifications may include definitions of new vari

ables, dimension statements, adding or deleting subpro

grams, etc. 

Step 2. Save the original information to be used in the nondomin

ance test after obtaining the GP solution. 

Step 3. If the GP program has no alternate optimal solutions, then 
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the GP solution is nondominated and the algorithm termin-

ates. Otherwise, move to Step 4. 

Step 4. Set up the LP problem: 

Step s. 

Step 6. 

Step 7. 

Max w = 

Subject to: 

n 
L: a X + S 

j=l rj j r 
= 

j = 1,2, ••• ,n 

= 

b ' r 

= 

r = 

and all variables are nonnegative. 

Where: 

1, 2, ••• , m 

X = decision variables 

D = variables to be maximized 

s = slack or surplus variables in real 

constraints 

G = slack or surplus variables in goal 

constraints 

Solve the above LP problem. 

Check for alternate (nondominated) solutions. 

Print out the results of the nondominance test. 
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The key to the effectiveness of the algorithm is the choice of the 

appropriate GP computer code and implementation of the above steps into 

the code. The partitioning algorithm has been chosen as an appropriate 

GP computer code and the above steps have been successfully implemented. 

Only one more input card is added to the current input cards of PAGP. 

This card is for the type of real and goal constraints. 

The nondominance algorithm for linear goal programming (NAGP) has 

been coded in FORTRAN. The program structure and notations are similar 

to those of Arthur and Ravindran (4) and Ignizio (41). Appendix A gives 

a complete listing and documentation of the nondominance algorithm along 

with the partitioning algorithm. 

Some Special Features of the Algorithm 

The program for the nondominance algorithm given in Appendix A has 

the following features: 

1. Phase I is deleted from PAGP. 

2. The first priority is associated with the set of real constra

ints and the remaining priorities are associated with the ranking of the 

original objective set. 

3. The case of the infeasibility of real constraints is treated by 

assuming that the real constraints are considered as goals in the nondom

inance test, i.e., the values of the R.H.S. of real constraints are cal

culated from the final GP solution. 

4. The traditional simplex method is used for solving the LP 

problem. 
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Some GP problems of varying difficulty were selected in order to 

test the efficiency and validation of the new algorithm. Appendix B has 

four problems and their solutions by the new algorithm. 

Problem 1 shows that the GP solution can turn out to be dominated. A 

nondominated solution is obtained by the algorithm. 

Problem 2 innicates the case of an unbounded solution which also can 

go undetected by the GP procedure. In such case, the algorithm is de

signed to show that the solution is unbounded. 

Problems 3 and 4 illustrate the effect of establishing high values 

for the aspiration levels (targets) on the GP solution. The GP solution 

of Problem 3, as presented by Ignizio (43), may be obtained by solving a 

LP problem. In such case, the GP problem can be reduced to a LP problem. 

Problem 4 is taken from Zanakis and Maret (92) to show that setting a low 

value (in case of minimization) for an aspiration level may have a direct 

impact on the other goals, i.e., not all the goals would be included in 

the optimization process. An attempt to include all the goals in the 

optimization process will be presented in the next chapter as a solu

tion methodology to GP for aggregate production and manpower planning 

models. 

AlgoritQ! Limitations 

Unfortunately, the algorithm is not totally general. For example, 

it does not generate all nondominated solutions, but rather it is design

ed to investigate a GP solution and determine a nondominated solution if 

the GP solution turns out to be dominated. However, this limitation is 

common in most of the efficient (nondominated) solution techniques which 

have difficulty in solving problems of other than small to moderate size. 



CHAPTER VI 

A GOAL PROGRAMMING MODEL FOR AGGREGATE 

PRODUCTION AND MANPOWER PLANNING 

Introduction 

In recent years there has been an increased awareness of the need 

to identify and consider simultaneously several objectives in the solu

tion and optimization of some problems, in particular those derived 

from the study of large scale systems. For instance, the problem of 

manpower planning is to determine the number of people by grade to best 

meet future manpower needs of an organization in the light of multiple 

objectives» e.g., economic conditions, production/sales trends, people 

skills, inventory, government regulations, organization history and 

policies regarding personnel hiring, training, promotion, firing and 

retirement. The problem of aggregate production planning, like many 

other real life problems, involves multiple objectives which are often 

conflicting. For example, a decrease in inventory levels may necessi

tate either increasing overtime or decreasing customer service. Incre

ased overtime results in higher costs and hence less profit. On the 

other hand, an unbalanced workforce generates increased back orders and 

shortages, unfavorable customer relations, lost sales, and again, less 

profit. 

In Chapter III, an aggregate production/manpower planning model 

(Model I) was presented. The Orrbeck model was used as a point of 
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departure from which the model was developed, and the linear program

ming technique was used as a solution methodology. A substantial im

provement can be made in the use of personnel transition rates when 

they are integrated in a model with manpower and production require

ments. The fundamental change is that management decisions, expressed 

as manpower and production requirements or goals and as budgetary and 

other capacity constraints, influence the final manpower flows and 

production decisions recommended by the model. It seems, therefore, 

natural to model and optimize the problem of aggregate production and 

manpower planning by a method of multiple-objectives procedures. Goal 

programming as a method of these procedures has been used in manpower 

planning and aggregate production planning (42). 

This chapter is devoted to the development of a goal programming 

model (Model II) for aggregate production and manpower planning. The 

new model is an extension of Model I and incorporates so~e basic con

cepts of the Charnes et al. models (23) which were developed for man

aging and controlling the Navy's civilian labor force. Furthermore, a 

solution methodology is proposed to include all the goals in the opti

mization process. 

Assumptions of the Model 

The assumptions of the model developed in this chapter are the 

same as those of the model developed in Chapter III (Model I). A 

summary of these assumptions are: 

1. The objective functions and constraints are linear 

functions. 
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2. Demand is deterministic and production is constrainted to 

meet the forecasting demand. 

3. No shortages will be allowed and the inventory carrying cost 

is based upon the average of the beginning and ending 

inventory for each period. 

4. The personnel transition matrix will be used for projecting 

manpower transition and it ts assumed to be constant. 

5. The cost of retirement and quit are not considered in the 

model. 
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6. The most experienced workers will work overtime first, subject 

to the limit of their capacity. If overtime work still 

remains, the next most experienced class will be called upon, 

and similarly for the remaining experience classes until all 

overtime work is assigned. 

Objectives of the Model 

Among the objectives mentioned separately in the literature of 

manpower planning and aggregate production planning, the objectives 

listed below have been selected to be used in the model. These objec

tives will be presented in the order in which they are ranked by man

agement, where P1 is the highest priority and associated with the real 

constraints. Of course, a different set of objectives can be used to 

represent the actual situation. 

Pl: Operate within the manpower and production requirements (P1 

is assigned to the real constraints). 

P2: Minimize the total number of hiring and firing. 

P3: Minimize the total production cost. 
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P4: Minimize the total inventory carrying cost. 

P5: Hold the total overtime production down to a minimum. 

Formulation of the Goal Programming Model 

In this section the GP model will be presented by first defining 

additional variables which are not defined in the previous chapters, 

followed by formulating the constraints of manpower and production re-

quirements. Next, management objectives will be presented according to 

their priorities. Lastly, the complete goal programming model will be 

formulated by including the constraint and goal deviational variables. 

Notation 

In addition to the variables defined in previous chapters, the 

following have been employed to facilitate the goal programming formu-

lation: 

= total dollar budget of workers in period t. 

= total manpower ceiling in period t. 

s • a row vector represents the maximum payroll (regular 

and overtime) for each class of workers. 

u = (1' 1' ... ' 1); unity row vector with dimension e. 

appropriate deviational terms of the real and goal constraints. 
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Constraints 

For each period, there are two sets of constraints: manpower 

requirements and production requirements. Constraints can be added 

(modified) to suit the actual problem. 

1. Manpower constraints: 

t = 1, ••• , T (6.1) 

t = 1, ••• , T (6.2) 

t = 1, ••• , T (6.3) 

Equations (6.1) ensure that the manpower requirement of each class 

of workers in any period must equal the projected manpower (remaining 

from the previous period) plus the new hires minus the fires in the 

current period. Equations (6.2) ensure that the sum of the manpower 

for all classes in any period must be less than or equal to the total 

manpower ceiling. Equations (6.3) are the budget constraints. They 

are used to guarantee that the regular and overtime payroll, hiring and 

firing costs must be "less than or equal to" the total dollar budget 

that is stipulated for each period. 

2. Production Constraints: 

It = 1t-1 + xt - st (6.4) 

e 
Nj Re = ot = xt + ue l: pj (6.5) t t j=1 t 

Ri Re + ui 
e j = j~i+l(.Q.- 1 ) pj i = 1, ••• , e-1 (6.6) t t t Nt' 
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(6.7) 

(6.8) 

Equations (6.4) through (6.8) are the equations (3.18) through 

(3.22) of Chapter III. 

Objective Functions 

As mentioned before, the following objectives are considered in 

the model according to their priorities: 

(6.9) 

This objective is to minimize the total number of hiring and firing. 

This is to minimize the production cost. 

Min 

This is to minimize the total inventory carrying cost. 

Min 
T 
L: 

t=1 

This is to keep the total overtime production down to a minimum. 

(6.10) 

(6.11) 

(6.12) 
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The Model 

The complete goal programming model can now be formulated by intro-

ducing the deviational variables in the real and goal constraints and by 

specifying the appropriate deviational variables in the objective func-

tion of the model. 

T 
Min a = ( L ru d- + u d+ + t=l mt mt 

1st priority 

e + d+ ] + l: (d~ot + diot ) + 
i=l xt ' 

d+ 2nd priority 
g ' 1 

d+ 3rd priority 
g ' 2 

d+ 4th priority 
g ' 3 

d+ ) 5th priority 
g4 

Real constraints: 

Nt M Nt-1 Nh + Nf + d- d+ = 0 
t t mt mt 

u Nt + d- d+ = Lt ct ct 



+ di rt 

X -9,PNt+d t xt 

fort = 1, 2, ••• , T. 

Goal constraints: 

= B 
t 

= s 
t 

= o, i=l, ••• , e-1 

= 0 ~ i =1, ••• , e 

= 0 

= 0 
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T 
E 

t=l 

fort = 1, 2, ••• , T, 

T 
E 

t=1 

where all the variables are nonnegative. 

Solution Methodology 

= 0 

= 0 

Most of the published papers on the applications of preemptive 

goal programming used the same procedure as presented in the previous 

sectlon for establishing the aspiration levels of the goals. For in-

stance, if management wants to minimize cost, the aspiration level for 

this goal might be zero. The method of establishing low values (in 

case of minimization) or high values (in case of maximization) for the 

aspiration levels may cause some of the goals to have no impact on the 

model. In other words, not all the goals would be included in the 
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optimization process and some of these goals may be eliminated from the 

model without any effect on the model solution. 

For the purpose of illustration, consider the industrial case 

study (in a department of a large chemical company) presented by Zana-

kis and Maret (91). In their study they used a preemptive GP model to 

determine the manpower mix that best satisfies several conflicting 

socio-econo-organizational objectives. Their model has five structural 

variables (x's), 15 deviational variables (d's), and six priorities 

which are formulated as follows: 



Goal Priority 

(1) 1 

(2) 1 

(3) 1 

(4) 2 

(5) 2 

(6) 2 

(7) 3 

(8) 4 
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Formulation Objective Function 

Impose lower limit on new hires 

x1 + d~ - d; = 40 

Maintain at least 100 contract 
employees 

x5 + d2 - d; = 100 

Number of contract people not to 
exceed department's people 

-x1 - x2 - x3 - x4 + x5 

+ d- - d+ = 1063 
3 3 

Number of re-hires to be 5 or a few 
more 

Keep transfers-in at 20 or a 
few more 

Non-exempt promotions to be 30 
or less 

Satisfy the forecast future year 
people required 

x1 + x2 + x3 + x4 + 2x513 

+ d7 - d; = 787 

Minimize labor costs 

13.358X1 + 14.846X2 + 18.073X3 

+ 7.024X4 + 26X5 + d~- d; = 0 

minimize d1 

minimize d2 

minimize d; 

minimize d4 

minimize d5 

minimize d: 

+ minimize d7 + d7 

minimize d; 



(9) 5 

(10) 6 

(11) 6 

(12) 6 

(13) 6 

(14) 6 

(15) 6 

where: 

Limit department growth rate 

x1 + x2 + x3 + x4 

+ d - d+ ~ 219 
9 9 

Satisfy position level ratio goals 

0.0048X1 + 0.0513X2 - 0.1659X3 
- + + d10- d10 = 32.273 

- 0.0048Xl - 0.0513X2 + 0.0711X3 
+ 

+ d11- d11 = 28.789 

0.9568X1 + 0.5383X2 + 0.9670X3 

+ x4 + d~2- d~2 = 875.715 

0.9712X1 + 0.6922X2 - 0.3271X3 
+ + x4 + d13- d13 = 239.78 

0.7627X1 - o.0512X2 - 0.4834X3 
- + + 0.9643X4 + d14- d14 = 338.926 

- 0.8402 - 0.2821X2 + 0.0758X3 
+ - 0.9762X4 + d15- d15= 47.411 

x1 = number of new hires 

x2 = number of re-hires 

minimize d; 

+ minimize d10 

+ minimize d11 

+ minimize d12 

minimize d13 

+ minimize d14 

+ minimize d15 

x3 = number of transfers-in from other departments 

x4 = number of promotions from non-exempt 

x5 = number of contract engineers 
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As can be shown from the above formulation, goal number 8 (prior

ity 4) has an aspiration level of zero. The solution of the above GP 

model is the same solution which may be obtained by eliminating goals 9 

through 15 (all the goals of priorities 5 and 6). Appendix B has the 

solution of the above GP model and the solution after eliminating goals 

9 through 15 from the model. The results obtained in both cases are: 

x1 = 655.333 

x2 = 5.0 

x3 = 20.0 

x4 = 30.0 

xs = 100.0 

It is clear from the above example that a procedure to include all 

the goals in the optimization process is critically essential. Such a 

procedure is described in the steps given below: 

Step 1. Formulate the model with hypothetical aspiration levels. 

Step 2. Solve the model by using NAGP. If one or more of the 

priority achievement values are greater than zero, move 

to Step 3. Otherwise go to Step 4. 

Step 3. Establish reasonable aspiration levels for the goals of 

priority k (where k is the highest priority which has a 

non-zero achievement value) by using the following 

relations: 

for minimization of goals, 

AL'(•) ~ AL(•) - AT(•); 

for maximization of goals, 



= AL(•) .:!: AT(•); 

for the goals of equalty type, 

where: 

AL•(.) = new aspiration level 

AL ( *) = hypothetical aspiration level 

AT (.) = the value of the deviational 

variable in the achievement 

function. 

Then, go to Step 2. 

Step 4. All the goals are included in the optimization process. 

Check the nondominance of the final solution and the 

procedure terminates. 

A numerical example of hypothetical data will be presented in 

Chapter VII to illustrate the above procedure to a GP model for 

aggregate production and manpower planning. 
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CHAPTER VII 

ANALYSIS OF RESULTS 

Introduction 

The objective of this chapter is to evaluate the new models devel

oped in this research and illustrate the solution methodology proposed 

for linear goal programming models. 

Model I (developed in Chapter III) is an extension to the single 

objective Orrbeck model and may serve as a general case for the linear 

programming models of aggregate production and manpower planning. To 

evaluate the performance of, this model, a comparison with the Orrbeck 

model will be presented. 

Model II (developed in Chapter VI) is a completely new model in the 

sense that a multiple objectives model has been developed which incor

porates the personnel transition matrix into aggregate production plan

ning models. Also, the solution methodoloy which aims to include all 

the goals in the optimization process is a new procedure for optimizing 

linear goal programming models, especially if the targets are not known. 

Because no model can be found in the literature for the purpose of com

parison, hypothetical data will be furnished to demonstrate Model II and 

to illustrate the solution methodology, and Model I will be used to 

verify the results. 
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Evaluation of Model I 

As previously mentioned, Model I is an extension of the Orrbeck 

model and incorporates the PTM of the organization in manpower constra-

ints. Therefore, to test the performance of Model I, hypothetical data 

are furnished by introducing personnel movement data (Table VI). 

TABLE VI 

PERSONNEL MOVEMENT DATA 

~ Class 1 Class 2 
m 

Class 1 0.2 0.75 

Class 2 0.0 0.95 

Reading across, .2 or 20% of workers in class 1 remain in class 1 

and .75 or 75% transfer from class 1 to class 2. Similarly, 0.0 or 0.0% 

of class 2 are projected to transfer to class 1 with .95 or 95% remain-

ing in class 2. 

For the purpose of comparison, the data of Table VI are very close 

to the data described by Orrbeck (68). The personnel movement data as 

described by Orrbeck is shown in Table VII. Note that in Table VI the 

cases of quit and retirement (which are only 5%), are not considered in 

the Orrbeck model. 
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TABLE VII 

PERSONNEL MOVEMENT DATA FOR 

THE ORRBECK MODEL 

~ Class 1 Class 2 
m 

Class 1 0 1.0 

Class 2 0 1.0 

-

The other data used by Orrbeck are given below: 

The set of demands over the six period planning horizon will be: 

sl = 11,000 

s2 = 11,500 

s3 = 9,000 

s4 = 12,300 

s5 = 8,400 

s6 = 9,200 

The common cost and productivity parameters will be: 

c = (400, 450) 

Ch = (200, -):-means no hiring for class 2 is permitted. 



c ... 
f (100, 100) 

p2 = 30 

!IJ = 1.5 

a = 1.5 

c ... 
I 1.0 

The initial conditions are: 

I = 1000 
0 

Two cases for productivity of class 1 workers will be considered: 

P1 = 25 for case 1 and P1 = 10 for case 2. 

The linear programming problem to be solved contains 72 variables 

and 42 constraints (not including non-negative constraints). For the 
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general case of a T period horizon and e experience classes, the number 

of variables is T(5e+3) and the number of constraints is T(2e+3). These 

numbers can be reduced by using equality constraints to eliminate vari-

ables from the problem. They may also be reduced by model restrictions. 

For instance, no hiring for class 2 is permitted in the above example, 

and consequently, the number of variables is reduced to T(5e+2). 

The resulting linear programming problem can be solved by using one 

of the linear programming packages available on most large computers. 

The Mathematical Programming System Extended (MPSX) is used and the 

details of the results of Model I and the Orrbeck model for P1 = 25 and 

P1 = 10 are given in Tables VIII, IX, X and XI. All the numbers of 

these tables have been rounded off to the first decimal point. 



st 
1 

t Nt 

1 11000 166.4 

2 11500 33.3 

3 9000 6.7 

4 12300 1.3 

5 8400 0.0 

6 9200 0.0 

TOTAL COST = $949,295.7 

N~ 

227.5 

340.9 

348.8 

336.4 

300.9 

285.8 

TABLE VIII 

OPTIMUM EMPLOYMENT AND PRODUCTION 
SCHEDULES OF MODEL I 

(P1 = 25) 

Hl F1 ; 
t t t 

156.4 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.3 1 9.:. 7 

0.0 0.0 0.0 

01 X 
t t 

10984.7 0.0 

11059.4 0.0 

10631.2 0.0 

10124.6 0.0 

9025.6 0.0 

8574.4 0.0 

02 
t 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

I 
t 

984.7 

544.1 

2175 . .4 

0.0 

625.6 

0.0 

t-' 
t-' 
N 



t st 
N1 

t 
N2 

t 

1 11000 184.1 227.5 

2 11500 36.8 354.2 

3 9000 0.0 364.1 

4 12000 0.0 345.9 

5 8400 0.0 300.9 

6 9200 0.0 285.8 

TOTAL COST = $1~01-6,407. 70 

TABLE IX 

OPTIMUM EMPLOYMENT AND PRODUCTION 
SCHEDULES OF MODEL I 

(P 1 = 10) 

H1 
t 

F2 
t 

F1 
t xt 

174.1 0.0 0.0 10000.0 

0.0 0.0 0.0 11500.0 

0.0 7.4 0.0 10923.1 

0.0 0.0 o.o 10376.9 

0.0 0.0 27.7 9025.6 

0.0 0.0 0.0 8574.4 

01 02 
t t 

0.0 1334.0 

0.0 505.9 

0.0 0.0 

0.0 0.0 

0.0 0.0 

0.0 0.0 

I 
t 

0.0 

0.0 

1923.1 

0.0 

625.6 

0.0 

1-' 
1-' 
w 



st 
1 N2 t Nt t 

1 11000 118.2 250.0 

2 11500 0.0 368.2 

3 9000 0.0 355.0 

4 12300 0.0 355.0 

5 8400 0.0 293.3 

6 9200 0.0 293.3 

TOTAL COST = $943,080.3 

TABLE X 

OPTIMUM EMPLOYMENT AND PRODUCTION 
SCHEDULES OF THE ORRBECK MODEL 

<P1 = 25) 

H1 
t 

1 
Ft 

F2 
t 

118.2 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 13.2 

0.0 0.0 0.0 

0.0 0.0 61.7 

0.0 0.0 0.0 

X 01 
t t 

10454.5 0.0 

11045.5 0.0 

10650.0 0.0 

10650.0 0.0 

8800.0 0.0 

8800.0 0.0 

02 
t 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

I 
t 

454.5 

0.0 

1650.0 

0.0 

400.0 

0.0 

...... 

...... 

.j:'-



t s N1 N2 
t t t 

1 11000 105.0 250.0 

2 11500 0.0 355.0 

3 9000 0.0 355.0 

4 12000 0.0 355.0 

5 8400 0.0 293.3 

6 9200 0.0 293.3 

TOTAL COST= $979,217.7 

TABLE XI 

OPTIMUM EMPLOYMENT AND PRODUCTION 
SCHEDULES OF THE ORRBECK MODEL 

(P 1 = 10) 

Hl F1 F2 X 
t t t t 

105.0 0.0 0.0 10000.0 

0.0 0.0 0.0 11500.0 

0.0 0.0 0.0 10650.0 

0.0 0.0 0.0 10650.0 

0.0 0.0 61.7 8800.0 

0.0 0.0 0.0 8800.0 

01 02 
t t 

0.0 1450.0 

0.0 850.0 

0.0 0.0 

0.0 0.0 

0.0 0.0 

0.0 0.0 

I 
t 

0.0 

0.0 

1650.0 

0.0 

400.0 

0.0 

I-' 
I-' 
U1 



116 

Where: 

st = demand in period t. 

N1 = number of workers in class 1 in period t. t 

N2 = number of workers in class 2 in period t. t 

H1 = number of workers hired in class 1 in period t. t 

F1 
t number of workers fired from class 1 in period t. 

F2 = number of workers fired from class 2 in period t. t 

xt = production level in period t. 

01 = amount of overtime production assigned to class 1 t 

in period t. 

02 = amount of overtime production assigned to class 2 t 

in period t. 

Comparison with the Orrbeck Model 

The solutions obtained by using Model I and the Orrbeck model are 

optimal ones based on the assumptions of each model. The comparison of 

these kind of models is somewhat irrelevant because each model has its 

assumption and its optimal solution. However, a traditional comparison 

for these kind of models may be done as described below: 

Suppose that the actual PTM in the data described by Orrbeck is the 

matrix 

M = ( 0.20 
0.75 

0.0 ) 
0.95 
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as presented in Table VI. What will be the actual system cost if: 

1. Model I is used. 

2. The Orrbeck Model is used. 

Clearly, if Model I is used, the actual system cost is $949,295.70 for 

P1 = 25 and $1,016,407.70 for P1 = 10. The corresponding workforce deci-

sions and the production schedules are given in Tables VIII and IX 

respectively. 

If Orrbeck's decisions are employed, calculations for the workforce 

decisions and related cost components should be made to obtain the actual 

system cost. These calculations can be computed by using the following 

steps: 

Step 1. Calculate the actual number of workers in each class from 

the relation: 

= t = 1' ••• ' 6 

and workers of class 1 are fired first if workers are to 

be fired. 

Step 2. Calculate the regular payroll cost based on the actual 

number of the workers obtained from Step 1. 

Step 3. Calculate the overtime by using the relations: 

= 

and overtime is assigned first to class 2 workers. 

Step 4. Calculate the overtime cost based on the actual overtime 

obtained from Step 3. 

The results of Steps 1 and 2 are shown in Tables XII and XIII for 



t 

1 
N 

t 

1 118.2 

2 0.0 

3 0.0 

4 0.0 

5 0.0 

6 0 .. 0 

TOTAL 
- -----

TABLE XII 

ACTUAL WORKFORCE DECISIONS AND THE REGULAR 
PAYROLL COST FOR THE ORRBECK MODEL 

(P 1 = 25) 

Orrbeck's Decisions 

N2 Payroll Nl 
t Cost ($) t 

250.0 159780.0 128.2 

368.2 165690.0 25.6 

355.0 159750.0 0.0 

355.0 159750.0 0.0 

293.3 131985.0 0.0 

293.3 131985.0 0.0 

908940.0 

Actual Decisions 

N2 
t 

227.5 

312.3 

307.1 

291.7 

215.4 

204.7 

-

Payroll 
Cost ($) 

153655. 

150775. 0 

138195. 0 

131265. 0 

96930. 0 

92115. 0 

762935. 0 

--- t-' 
t-' 
co 



t 

N1 
t 

1 105.0 

2 0.0 

3 0.0 

4 0.0 

5 0.0 

6 0.0 

TOTAL 

TABLE XIII 

ACTUAL WORKFORCE DECISIONS AND THE REGULAR 
PAYROLL COST FOR THE ORRBECK MODEL 

(P 1 = 10) 

Orrbeck's Decisions 

N2 Payroll N1 
t Cost ($) t 

250.0 154500.0 ll5.0 

355.0 159750.0 23.0 

355.0 159750.0 4.6 

355.0 159750.0 0.9 

293.3 131985.0 0.0 

293.3 131985.0 0.0 

897720.0 

Actual Decisions 

N2 
t 

227.5 

302.4 

304.5 

292.7 

217.3 

206.4 

Payroll 
Cost ($) 

148375.0 

145280.0 

138865.0 

132075.0 

97785.0 

92880.0 

755260.0 
...... 
...... 

"" 
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P1 = 25 and P1 = 10 respectively, while the results of Steps 3 and 4 are 

shown in Tables XIV and XV. 

The actual total cost incurred (when Orrbeck's decisions are used) 

can now be calculated in the following way: 

1. P1 = 25 

Regular Payroll Cost = $ 762,935.0 

Hiring Cost = $200 (118.2) = 23,640.0 

Firing Cost = 100 (13.2 + 61.7) = 7,490.0 

Overtime Cost = 220,365.0 

Inventory Cost = (500 + 454.5 + 1650 + 400) = 3 2004.5 

Total Cost = $1 ' 017 '434. 5 

2. P1 = 10 

Regular Payroll Cost = $ 755,260.0 

Hiring Cost = $200 (105) = 21,000.0 

Firing Cost = 100 (61. 7) = 6,170.0 

Overtime Cost = 268,672.5 

Inventory Cost = (500 + 1650 + 400) = 2,550.0 

Total Cost = $1,053,652.5 

Table XVI summarizes the cost analysis for Model I and the actual 

cost incurred when Orrbeck's decisions are employed. It can be seen 

from Table XVI that Model I yields a total cost of $949,295.70 and 

1 1 $1,016,407.70 for P = 25 and P = 10 respectively, while the Orrbeck 

model yields $1,017,434.50 and $1,016,407.70. These results show a 

saving of $68,138.80 (7.18%) for P1 = 25 and $37,244.80 (3.67%) for P1 = 

10 when Model I is used. 



t 

1 
ot 

1 0 

2 0 

3 0 

4 0 

5 0 

6 0 

TOTAL 

TABLE XIV 

ACTUAL OVERTIME COST FOR THE ORRBECK MODEL 

( P1 = 25) 

Orrbeck's Overtime 

02 Overtime 1 
t Cost ($) ot 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

Actual Overtime 

2 
ot 

42.4.5 

1036.5 

1437.0 

1899.0 

2338.0 

2659.0 

Overtime 
Cost ($) 

9551.3 

23321.3 

32332.5 

42727.5 

52605.0 

59827.5 

220365.0 

..... 
N ..... 



TABLE XV 

ACTUAL OVERTIME COST FOR THE ORRBECK MODEL 

(Pl = 10) 

Orrbeck's Overtime 
t 

01 02 Overt1.me 01 
t t Cost ($) t 

-

1 0 1450 32625 0 

2 0 850 19125 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

TOTAL 51750 

Actual Overtime 

02 
t 

2025.0 

1698.0 

1469.0 

1860.0 

2281.0 

2608.0 

Overtime 
Cost ($) 

45562.5 

38205.0 

33052.5 

41850.0 

51322.5 

58680.0 

268672.5 

1-' 
N 
N 



Cost 
Components 

Regular Payroll 

Hiring 

Firing 

Overtime 

Inventory 
-------

TOTAL 

TABLE XVI 

COST ANALYSIS OF MODEL I AND 
THE ORRBECK MODEL ($) 

Model I 

P1= 25 P1= 10 

911191.3 933630.7 

31277.6 34819.4 

1997.0 3511.2 

0.0 41397.7 

4829.8 3048.7 

949295.7 1016407.7 

The Orrbeck Model 

P1 = 25 t- = 10 

762935.0 755260.0 

23640.0 21000.0 

7490.0 6170.0 

220365.0 268672.5 

3004.5 2550.0 

1017434.5 1053652.5 

1-' 
N 
w 
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Remarks 

The foregoing analyses have indicated that the important aspect of 

the personnel transition matrix is that it can be successfully incor-

porated into the aggregate production problem. The results show that 

the performance of the new model is much better than that of the Orrbeck 

model with respect to representing more realistic situations and yield-

ing minimum cost. For 

.o ) .8 

in the above example, Orrbeck's decisions will not be able to meet the 

demand. 

As shown in Tables VIII through XI, the new model can provide de-

tailed information regarding workforce, production and inventory deci-

sions; consequently, the model might be considered as the first step 

toward establishing (building) integrated manpower and production poli-

cies for manufacturing firms. Also, the new model has some characteris-

tics which are non-existent in the present aggregate planning models. 

These characteristics are summarized below. 

1. It is a large-scale model for manpower and production planning. 

2. The cases of quit, attrition, etc., are considered in the model 

by representing them in the personnel transition matrix of the 

firm. 

3. The number of hiring or firing in each class of workforce for 

each period is explicitly determined. 

The new model is formulated as a LP model. The widespread and 

successful use of LP techniques in management operations makes it feasi-

ble to employ the model in practical applications. 
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Evaluation of Model II 

As described in detail in Chapter VI, Model II is a GP model for 

aggregate production and manpower planning. The concepts of PTM, as 

previously discussed, are not incorporated in the existing aggregate 

production planning models and hence no such model can be found for the 

purpose of evaluation and comparison. For this reason, hypothetical 

data are furnished to illustrate the application of this model and to 

clarify the solution methodology for the linear goal programming models 

proposed in Chapter VI. 

Numerical Example 

Tables XVII through XXI give purely hypothetical data of a four 

periods-two experience classes aggregate production and manpower 

planning model. Some of the data in this example was used in the 

analysis of Model I. 

Pertinent data not in the tables are: 

Initial inventory 

Hiring cost 

Firing cost 

Inventory carrying cost 

Overtime pay 

Maximum overtime duration 

= 

= 

= 

= 

= 

1000 units 

$ 200/man for each 

class of workers. 

$ 100/man for each 

class of workers. 

$ 1./~eriod/unit. 

1.5 times the regular 

pay. 

.5 times regular time. 



Period 
t 

1 

2 

3 

4 
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TABLE XVII 

BUDGET, CEILING, AND REGULAR PAYROLL DATA 

Regular Payroll 
Budget Ceiling ($/man/pen.od) 

B(t) L(t) 
($) (men) Class 1 Class 2 

250000.0 350 400.0 450.0 

250000.0 350 400.0 450.0 

250000.0 350 400.0 450.0 

250000.0 350 400.0 450.0 



TABLE XVIII 

PERSONNEL TRANSITION DATA 

~ Class 1 Class 2 
m 

Class 1 

Class 2 

Class 1 

Class 2 

0.2 

0.0 

TABLE XIX 

INITIAL POPULATION DATA 

Initial 
Population 

so 

200 

0.7 

0.8 
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Period 
t 

1 

2 

3 

4 

Class 1 

Class 2 

TABLE XX 

DEMAND DATA 

Demand 
S(t) 

11000 

11500 

9000 

12300 

TABLE XXI 

PRODUCTIVITY DATA 

Product1.vity 
(units/man/period) 

20 

30 

128 



Hypothetical aspiration levels for goals: 

Goal 

1 

2 

3 

4 

Aspiration Level 

0 

0 

0 

0 

129 

The goal programming problem to be solved contains five priorities 

(the first priority is assigned to the real constraints and the others 

to the goals), 36 real constraints, 4 goal constraints, 52 decision 

variables, and 80 deviational variables. The linear programming problem 

of the nondominance test contains 40 constraints and 96 variables. 

The above example is solved by the nondominance algorithm (NAGP) 

developed in Chapter V. Five runs have been made to include the goals 

in the optimization process and, at the end of each run, the aspiration 

levels are calculated according to the method described in Chapter VI. 

For example, the first run has been made with the hypothetical aspira

tion level values of goals, i.e., 0, O, O, 0 for the goals of priori

ties P2 , P3 , P4 and P5 respectively. From the output computer results 

of run 1, the aspiration levels are changed to 130, 0, 0, 0 for the 

goals of the above priorities, which then become the input of run 2. 

The procedure continues until all the goals are included in the optimi

zation process. 

Table XXII shows the values of aspiration levels and achievement 

functions of the five runs. In the last run (run 5), the values of the 



RUN 1 --
Aspiration 
Level 

Achievement 
Value 

RUN 2 --
Aspiration 
Level 

Achievement 
Value 

RUN 3 

Aspiration 
Level 

Ach~evement 

Value 

RUN 4 

Aspiration 
Level 

Achievement 
Value 

RUN 5 

Aspiration 
Level 

Achievement 
Value 

TABLE XXII 

THE ASPIRATION LEVELS AND VALUES OF 
ACHIEVEMENT FUNCTIONS FOR THE 

FIVE RUNS 

pl p2 p3 p4 

Real Con- Goal 1 Goal 2 Goal 3 
straints 

RHS 0.0 0.0 0.0 

0 117.6 774722.2 13695.4 

RHS 130.0 0.0 0.0 

0 0.0 768226.7 11650.6 

RHS 130.0 775000.0 0.0 

0 0.0 0.0 9256.1 

RHS 130.0 775000.0 10200.0 

0 0.0 0.0 0.0 

RHS 130.0 775000.0 10200.0 

0 0.0 0.0 0.0 

130 

p5 

Goal 4 

0.0 

14266.7 

0.0 

13195.8 

0.0 

14097.8 

0.0 

13647.3 

14000.0 

0.0 
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achievement function for all goals are equal to zero, which indicate 

that all the goals have been included in the optimization process. Two 

solutions are obtained from this run: a GP and a nondominated solution. 

Tables XXIII and XXIX show the workforce and production decisions of 

the GP and the nondominated solution respectively. 

Where: 

= the number of workers hired in 
class 2 in period t, 

and all the other variables are previously defined. Appendix C has the 

computer output of run 5. 

The solution results for the five runs in terms of goal attainment 

and goal value are given in Table XXV. Note that P1 is for the real 

constraints and is achieved in each run. It should also be noted that 

the solutions of runs 1 through 4 are nondominated, but in each case 

some of the goals are not included in the optimization process and may 

be elimated without effecting the model solution. For instance, the sol-

ution obtained from run 4 is nondominated, but the goal of P5 is not 

involved in the optimization process. 

Solution Difficulties 

The PAGP code, as well as the nondominance algorithm, use the 

pivoting operation to obtain a new basis. The major drawback in this 

method is that round off errors accumulate as the algorithm moves from 

step to step. After several steps, the basis obtained by using the 

pivoting operation may be quite different from the basis which would 

be obtained if round off errors did not occur. Consequently, the com-

monly available goal programming codes are unable to solve large scale 



t 

1 

2 

3 

4 

* 

1 N2 
st Nt t 

11000 10.9 280.0 

11500 2.2 270.5 

9000 5.7 217.9 

12300 1.1 178.3 

TABLE XXIII 

WORKFORCE AND PRODUCTION DECISIONS 
OF THE GP SOLUTION 

Hl H2 * Fl 2 
F xt t t t t 

0.9 85.0 0.0 0.0 12615.6 

0.0 38.9 0.0 0.0 12216.5 

5.2 0.0 0.0 0.0 9920.3 

0.0 0.0 0.0 0.0 8047.6 

H2 is the number of workers hired in class 2 in period t, t 

and all other variables are previously defined. 

1 2 
ot ot 

0.0 3998.4 

0.0 4057.6 

0.0 3269.0 

0.0 2674.9 

It 

2615.6 

3332.1 

4252.4 

0.0 

I-' 
w 
N 



t 

1 

2 

3 

4 

* 

s Nl N2 
t t t 

11000 10.0 287.9 

11500 2.0 274.4 

9000 0.4 220.8 

12000 0.1 177.0 

TABLE XXIV 

WORKFORCE AND PRODUCTION DECISIONS 
OF A NONDOMINATED SOLUTION 

Hl H2 * Fl F2 xt t t t t 

0.0 92.9 0.0 0.0 12490.4 

0.0 37.1 0.0 0.0 12389.2 

0.0 0.0 0.0 0.0 9950.6 

0.0 0.0 0.0 0.0 7970.0 

H2 is the number of workers hired in class 2 in period t, 
t 

and all other variables are previously defined. 

01 02 
t t 

0.0 3654.1 

0.0 4116.4 

0.0 3314.1 

1.2 2655.5 

It 

2490.4 

3379.6 

4330.0 

0.0 

t-' 
w 
w 



Goal attain. 
Run 1 

Goal value 

Goal attain. 
Run 2 

Goal value 

Goal attain. 
Run 3 

Goal value 

GDal attain. 
Run 4 

Goal value 

Goal attain. 
Run 5 
GP solution Goal value 

Goal attain. 
Run 5 
Nondom. solution Goal value 

TABLE XXV 

GOAL ATTAINMENT AND GOAL VALUE 
FOR THE FIVE RUNS 

Minimization Minimization 
of hiring and of production 

firing cost 
(man) ($) 

Not achieved Not achieved 

117.6 774722.2 

Achieved Not achieved 

130.0 768226.7 

Achieved Achieved 

130.0 775000.0 

Achieved Achieved 

130.0 775000.0 

Achieved Achieved 

130.0 775000.4 

Achieved Achieved 

130.0 772247.9 

Minimization Minimization 
of inventory of overtime 

Cost production 
($) (units) 

Not achieved Not achieved 

14195.4 14266.7 

Not achieved Not achieved 

12150.6 13195.8 

Not achieved Not achieved 

9756.1 14097.8 

Achieved Not achieved 

10700.0 13647.3 

Ach~eved Achieved 

10700.0 14000.0 

Achieved Ach~eved 

10700.0 13741.3 1-' 
w 
+>-
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problems (91). Thus, the initial results of the above example were un

satisfactory because, due to round off error, some of the real (goal) 

constraints were not satisfied. 

To reduce the effect of these round off errors, four functions 

have been investigated. The first one is used in Ignizio's code (41). 

This function brings the floating point values that are either + or 

- 0.0001 from an integer to that integer. The second brings the 

floating points that are either + or - 0.000001 from an integer to that 

integer. The third and fourth functions are double precision functions 

which delete the floating point values whose absolute values are less 

than or equal to 0.001 and 0.0001 respectively. The four functions are 

listed in Appendix D. 

To test the efficiency of these functions, the final run (run 5) 

has been made by using each function. Run 5 is used because the LP 

problem in the NAGP code is supposed to be solved in this run. The 

absolute value of the errors in the real constraints is calculated for 

the GP and nondominated solutions. Table XXVI shows the performance of 

each function in terms of the absolute error and CPU time. As shown 

from the above table, function 2 has the lowest absolute error but 

longest computer time. 

It should be noted that function 4 has been used in runs 1, 2, 3 

and 4 and function 2 was used in run 5 of the previous numerical ex

ample. 

Verification of Results 

In this section Model I will be used to verify the results of 

Model II. To perform this analysis, the previous numerical example will 



TABLE XXVI 

ABSOLUTE ERRORS AND CPU TIME 
FOR FIXING ERROR FUNCTIONS 

Absolute Error 
Function GP LP 

Solution Solution 

l 2579.0477 ** 
2 1.8043 15.0088 

3 70.4732 ** 
4 1.6583 30.4169 

* IBM 3081 (FORTVCL 77 compiler) has been used in this analysis. 

** The LP test problem is not performed. 

Total 
absolute error 

in NAGP 

2579.0477 

16.8031 

70.4732 

32.0752 

CPU * 
(sec) 

7.02 

13.93 

6. 77 

9.18 

1-' 
UJ 
(j\ 
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be considered and formulated as a LP model similar to that of Model I. 

The constraints are the same and the objective function is to minimize 

the cost of hiring and firing, payroll, inventory, and overtime. The 

size of the resultant LP problem can be reduced to 32 constraints and 

48 decision variables instead of 36 constraints and 52 decision 

variables. One set of the overtime constraints and Ot (total overtime 

production in period t) are eliminated by using the relation 

0 = o1 + o2 
t t t 

The resultant LP problem is then solved by MPSX. 

Two goal programming problems are then considered. The first prob-

lem is equivalent to the linear programming formulation which consists 

of two priorities and one goal. The first priority is for the real con-

straints and the goal is for the objective function. The aspiration 

level for the goal is set equal to zero. The solution obtained from 

this GP formulation should not be dissimilar from the LP solution. 

The second problem is a goal programming problem with five priori-

ties and four goals. The first priority is for the real constraints and 

the other four priorities are for the goals. The goals are considered 

according to their priorities as follows: 

Goal 1: minimize hiring and firing cost 

Goal 2: minimize payroll cost 

Goal 3: minimize inventory cost 

Goal 4: minimize overtime cost 

The goals are constructed from the components of the LP objective 

function and the aspiration levels (R.H.S.) of the goals are calculated 

from the LP solution as given below: 



Goal 

1 

2 

3 

4 

Aspiration Level 

69862.0 

620092.0 

1474.0 

34734.0 

138 

The reason for the above structure of the GP problems is that, in 

order to verify the results of Model II, the results of the LP problem 

and GP problems should agree. 

The two GP problems are then solved by the NAGP. Table XXVII 

shows the results of the cost components for the LP problem and the two 

GP problems. ~!though the results of the second GP problem do not agree 

exactly with that of the LP solution, the results are close enough for 

the purpose of verification. However, better accuracy of the NAGP can 

be obtained by using the LU decomposition or Cholesky factorization 

method to alleviate the round off errors which result from the pivoting 

operation in the current code (for further details about these methods, 

refer to Murty (63)). 

~ppendix E has has the computer output results of: 

1. MPSX for the LP problem 

2. NAGP output for the equivalent GP problem of the LP 

problem 

3. NAGP output for the GP problem constructed from the 

solution of the LP problem 

The decision variables used in the computer outputs are also defined in 

Appendix E. 



139 

TABLE XXVII. 

COMPARISON OF MODEL I AND MODEL II RESULTS 

Cost LP Problem GP Brob lem 1 * GP Problem 2 ·** 
Components (Model I) (Model II) (Model II) 

Hiring and Firing 69862.0 69865.0 69862.0 

Payroll 620092.0 620122.0 620187.0 

Inventory 1474.0 1474.0 1470.0 

Overtime 34734.0 34707.0 34734.0 

Total 726162.0 726168.0 726253.0 

* GP problem 1 is the equivalent GP problem for the LP problem 

** GP problem 2 is the GP problem constructed from the solution of the LP 
problem 
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Remarks 

The previous analyses have demonstrated that a GP model can be 

developed and applied to the aggregate production and manpower planning 

problem. The solution methodology has been applied successfully, and 

all the goals are included in the optimization process. A preferred 

solution (GP solution) and a nondominated solution are also obtained. 

The new method can provide a set of solutions by providing different 

trade-off information. It also allows the decision maker to be involv

ed in the optimization process and to provide reasonable aspiration 

levels for the targets, especially if the targets are not known. 

It should also be noted that Model II has the same new character

istics as Model I. Furthermore, it is a multiple objectives decision 

making model in which a GP procedure is used, and accordingly, the re

sultant model will have the flexibility of choosing priorities. For 

instance, in one application the decision maker might assign the high

est priorities to the manpower goals, while in another application the 

first priorities might be reserved for production costs--or even a com

bination of the two. 

It should be remembered that the models presented in this research 

were developed to show the applicability of incorporating the personnel 

transition matrix in aggregate planning models, rather than the sophis

tication of the models themselves. With this is mind, it is felt that 

the goals of this research have been achieved. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The advances in information processing technology and quantative 

methodology during the past two decades have had a major impact on the 

design of production planning and control systems for manufacturing and 

distribution industries. Production planning and control systems, in a 

broad sense, are concerned with planning the use of productive resources 

to satisfy projected demand and then controlling the production process 

so that the plan is effectively carried out. The two essential elements 

in production planning are materials (equipment, raw materials, or 

semifinished products) and manpower. 

The material requirements have been extensively studied and myriad 

applications of computer based techniques have been developed (such as 

material requirement planning systems (MRP)) and are in use in many 

manufacturing firms. However, the concept of the personnel transition 

matrix in manpower planning has not previously been considered in 

aggregate production planning. One of the major contributions of this 

research is the incorporation of the PTM into production planning; thus 

the present research can be considered as a first step toward building 

integrated computer based aggregate production and manpower planning 

systems for manufacturing firms. This research should also be helpful 



to theoreticians and practitioners who are involved in the design, 

development and operation of production planning and control systems. 
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The models developed in this research are by no means the final 

production and aggregate planning models. They do, however, illustrate 

how the important aspects of the personnel transition matrix and Markov 

processes can be properly incorporated into the aggregate production 

planning models. The research has originated a definition of the aggre

gate production and manpower planning problem. 

Two models have been developed. The first is a linear programming 

model in which the Orrbeck model (68) has been used for the purpose of 

comparison and as a point of departure from which the new model (Model 

I) was developed. The second (Model II) is an extension of the first 

model from a single objective to a multiple objectives decision making 

model, and the goal programming technique has been used as a method of 

multiple objectives procedures. The analysis of these models indicated 

their flexibilities in presenting more realistic situations and accommo

dating budgetary and manpower ceilings as twin aspects of a simultaneous 

decision process. 

The second major contribution of this research has been in the area 

of goal programming. The dominance in linear goal programming has been 

discussed and a nondominance test has been proposed. Furthermore, an 

algorithm has been developed to test the goal programming solution and 

to generate a nondominated solution if the goal programming solution 

turns out to be dominated. A solution methodology has also been propos

ed to include all the goals in the optimization process. This new me

thod allows the decision maker to be involved in the optimization stages 
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and to provide reasonable aspiration levels for the targets, especially 

if the targets are not known. 

Finally, some of the goal programming difficulties have been dis

cussed and solved by the nondominance algorithm developed in this 

research. The algorithm and solution methodology can also be used to 

evaluate the results of current goal programming applications. 

Recommendations 

Because the problem of aggregate production and manpower planning 

is new, there are many possible areas of future research. These in

clude: 

1. The development of aggregate production and manpower planning 

models for multiproduct, multiplant firms. 

2. The possibility of applying the effect of incorporating the 

personnel transition matrix to the current aggregate production planning 

models. 

3. Extension of the models developed in this dissertation to 

include the effect of training and recruiting decisions. 

4. It is assumed in the models developed in this research that the 

productivity factors are known. In most situations the product is pro

duced by a varying number of workers, and consequently, the productivity 

factors are difficult to estimate. Further research should be done to 

accurately determine these factors. The work of Koshnevis (47) may be a 

good starting point for such research since he considered dynamic fac

tors such as learning, design changes, etc., on worker productivity. 

Furthermore, the statistical methods and/or simulation analysis may be 



used to get either a good estimation or approximated formulas to the 

productivity factors of the firm being considered. 
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The research on the goal programming technique presented in this 

dissertation has raised many new areas of further study. These include: 

5. The application of the nondominance test to nonlinear goal pro

gramming models. 

6. The development of a nondominance algorithm for nonlinear goal 

programming. 

7. The application of the nondominance test to integer goal pro

gramming. 

8. The development of a nondominance algorithm to integer goal 

programming. 

9. Application of the solution methodology proposed in Chapter VI 

of this dissertation to nonlinear goal programming models. 

10. Further research should be devoted to the development of a GP 

code to solve large scale problems, recognizing the fact that commonly 

available GP codes are unable to solve them. The inclusion of the goal 

programming technique as an option of MPSX (40), if possible, would be 

helpful for solving large scale GP problems. 
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The nondominance algorithm developed in Chapter V has been coded 

in FORTRAN to test the nondominance of the GP solution obtained by PAGP 

and to generate a nondominated solution to the linear goal programming 

problems. The algorithm can solve and test problems with up to 60 con-

straints and 140 variables (decision and deviational) and 10 priority 

levels. These restrictions can be increased by changing the appropriate 

dimension statements. The notations used in the computer code are the 

same as in Arthur and Ravindran (4) and Ignizio (41). The program uses 

PAGP to obtain the GP solution (for an explanation of the notation in 

the computer code, see Arthur and Ravindran (4)). 

To clarify the input to the NAGP algorithm, consider the example 

given in Chapter IV. The resultant linear goal programming formulation 

for this example is: 

c (dr + d+ + + + ) Min a • 2 d3 + d4)' d5' d6 

Real Constraints: 

-x1 + 3x2 + d~ - d+ = 21 1 

x1 + 3x2 + d; - d+ - 27 2 

4X1 + 3X2 + d; - d+ = 45 3 

3X1 + x2 + d~ - d+ = 30 4 

Goal Constraints: 

2X1 + x2 + d; - d+ = 15 6 



d+ = 10 
6 

X, d-, d+ > 0 
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The following list gives the order and input format of the data 

cards for the above example. Note that card types 1, 3, 4 and 5 of NAGP 

are card types 1, 3, 4 and 6 of PAGP respectively. 

Card 
Type 

1 

2 

3 

4 

Example: 

Example: 

Note: 

Example: 

Example: 

Description 

Total number of priorities - NPRIT 
Number of decision variables - NVAR 
Number of real constraints - NRCON 
Number of goal constraints - NGCON 

3 2 4 2 

How many constraints are assigned 
to each priority. 

4 1 1 

For each priority, one card is needed 
which gives the subscript of the con
straint(s) assigned to priority Pk. 

If there are no constraints assigned 
to Pk, no card type 3 is necessary. 

1 
5 
6 

2 3 4 

The number of terms (deviational vari
ables) assigned to each priority in the 
objective function. 

4 1 1 

Format 

415 

1015 

1615 

1015 



Card 
Type 

5 

6 

Note: 

Example: 

Example: 

Example: 

Description 

For each goal constraint (real constra
int in case of NRCON + 0) assigned to 

priority P , read in the right hand 
side and tAe coefficients of the decision 
variables (X ). If NVAR > 7, go 
to another cJrd. Enter as many type 5 
cards as there are goal constraints 
assigned to priority P1• The sequence 
of constraints must be in the order 
specified in card type 3 for P1• 

The first priority P1 is assigned to the 
real constraints unless there are no real 
constraints. 

21.0 
27.0 
45.0 
30.0 

-1.0 
1.0 
4.0 
3.0 

3.0 
3.0 
3.0 
1.0 

For each deviational variable assigned 
to priority P1, enter the following: 

!SUB - the variable subscript 

!TYPE = 

WGHT -

1 3 
2 3 
3 3 
4 3 

3, if positive deviational 
variable 

4, if negative deviational 
variable 

the cardinal weight assigned 
to the deviational variable 

1.0 
1.0 
1.0 
1.0 

Repeat card types 5 and 6 for priori
ties P2, P3, ••• , until all priorities 
are exliausted. Note that if for some 
priority PL there are no goal constraints 
assigned, then no type 5 card is required 
for Pk. However, for every priority Pk' 
there will be at least one type 6 card. 

The type 5 and type 6 cards for priori
ties P2 and P3 are as follows: 
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Format 

8Fl0.0 

(2I5,Fl0.0) 



Card 
Type 

7 

ExamEle: 

Description 

P2: 15.00 2.0 1.0 
5.0 4.0 1.0 

P3: 10.0 -1.0 2.0 
6.0 4.0 1.0 

Enter the type of real or goal constra
ints as follows: 

8, if the constraint of 
type "~" 

NRGT = 9, if the constraint of 
type "~" 

10, if the constraint of 
equality type. 

8 8 8 8 9 9 
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Format 

12I5 

The example problem has been solved using the computer program of 

the nondominance algorithm (see pages 156 to 158 for the computer out-

put). The first part of the computer output is the solution of the GP 

problem and the second part is the summary of the nondominance test 

including a nondominated GP solution, which is the solution of the LP 

test problem. In this example two nondominated solutions are obtained 

with the same value of the objective function, i.e., the LP problem has 

an alternate solution. The computer output is self-explanatory. 

The FORTRAN program listing of the NAGP algorithm is given on pages 

159 to 17~ The program was written to be performed on the Oklahoma State 

University IBM 3081 computer using a FORTVCL 77 complier. Slight modi-

fications may be necessary for other systems. 



156 

THE OPTIMIZATION ENOED ON SUBPROBLEM 3 
THERE WERE 6 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

*************************************************************************• 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(~) 

X( 1)= 4.0000 

X( 2 )= 7.0000 

************************************************************************** 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
1 
1 
2 
3 

GOAL NUMBER 
1 
2 
3 
4 
5 
6 

OVER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

UNDER-ACHIEVEMENT 
4.0000 
2.0000 
8.0000 

11.0000 
0.0000 
0.0000 

************************************************************************** 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 

ACHIEVEMENT 
0.0000 
0.0000 
0.0000 

************************************************************************** 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 4.0000 0.0000 4.0000 
2 0.0000 7.0000 0.0000 2.0000 
3 0.0000 0.0000 8.0000 
4 0.0000 11.0000 
5 0.0000 0.0000 
6 0.0000 0.0000 

**************************************************************************• 
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********************************************************************************** 

OUTPUT SUMMARY OF THE NONDOMINANCE TEST 

********************************************************************************** 

THE GOAL PROGRAMMING SOLUTION IS DOMINATED . 

********************************************************************************** 

THE OBJECTIVE FUNCTION IN THE NONDOMINATED SOLUTION 2.0000 

********************************************************************************** 

OUTPUT SUMMARY OF A NONDOMINATED SOLUTION 

SUBSCRIPT X NONDOMINATED D G s 

1 4.8000 3.6000 
2 7.4000 0.0000 
3 3.6000 
4 8.2000 
5 2.0000 0.0000 
6 0.0000 0.0000 

********************************************************************************** 

WHERE 

X DECISION VARIABLES 
D VARIABLES TO BE MAXIMIZED IN THE LP PROBLEM OF THE NONDOMINANCE TEST 
G = SLACK OR SURPLUS VARIABLES IN GOAL CONSTRAINTS 
S = SLACK OR SURPLUS VARIABLES IN REAL CONSTRAINTS 

******************************************************************************* 

THE LINEAR PROGRAMMING PROBLEM OF THE NONDOMINANCE TEST HAS ALTERNATE OPTIMUM 
SOLUTION(S) . 

******************************************************************************* 
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*********************************************************************************** 

ALTERNATE NONDOMINATED SOLUTION NUMBER 

OUTPUT SUMMARY OF A NONDOMINATED SOLUTION 

SUBSCRIPT X NONDOMINATED D G s 

1 3.6000 1.2000 
2 7.8000 0.0000 
3 7.2000 
4 11.4000 
5 0.0000 0.0000 
6 2.0000 0.0000 

********************************************************************************** 

WHERE 

X DECISION VARIABLES 
D VARIABLES TO BE MAXIMIZED IN THE LP PROBLEM OF THE NONDOMINANCE TEST 
G = SLACK OR SURPLUS VARIABLES IN GOAL CONSTRAINTS 
S SLACK OR SURPLUS VARIABLES IN REAL CONSTRAINTS 

****************************************************************************************~ 



c ********************************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

**** 
**** 
**** 
**** 
**** 

* 
THE FORTRAN PROGRAM LISTING OF THE NAGP, NONOOMINANCE ALGORITHM * 
FOR (LINEAR) GOAL PROGRAMMING * 

• 
**** * 
**************•******************************************************* 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 

NAGP (THE NONDOMINACE ALGORITHM FOR LINEAR GOAL PROGRAMMING) IS 
DESIGNED TO TEST THE GP SOLUTION AND TO GENERATED A NONDOMINATED 
SOLUTION IF THE GP SOLUTION TURNS OUT TO BE DOMINATED . 
PAGP (THE PARTITIONING ALGORITHM FOR GOAL PROGRAMMING) IS 
MODIFIED TO INCLUDE THE NONDOMINANCE ALGORITHM, AND ACCORDINGLY, 
MUCH OF THE NOTATION AND STRUCTION OF THE NAGP ARE TAKEN FROM 
ARTHUR AND RAVINDRAN (4,5) AND IGNIZIO (41) . 

***•****************************************************************** 
**** 
**** 
**** THE 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
•••• 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 

CODE FOR NAGP USES THE FOLLOWING ARRAYS : 

TE(NROW,NCOL) = THE COEFFICIENT OF THE VARIABLE IN 
COLUMN NCOL IN THE CONSTRAINT IN ROW NROW 

TED(NROW,NCOL)• THE COEFFICIENT OF THE VARIABLE IN 

TT(NP,NCOL) 

TB(NROW) 

TBD(NROW) 

TL(NROW,NP) 

TI(NP,NCOL) 

TA(NP) 

NC(NP) 

NCON(I,NP) 

NTOF(NP) 

IND(NCOL) 

vROW(NROW,1) 

COLUMN NCOL IN THE CONSTRAINT IN ROW NROW 
IN THE LP PROBLEM OF NONDOMINANCE TEST 

= THE WEIGHT OF THE VARIABLE IN COLUMN NCOL 
AT PRIORITY NP 

• THE RIGHT HAND SIDE CONSTANT OF THE 
CONSTRAINT IN ROW NROW 

= THE RIGHT HAND SIDE CONSTANT OF THE 
CONSTRAINT IN ROW NROW IN THE LP PROBLEM 
OF NONDOMINANCE TEST 

= THE WEIGHT ASSIGNED TO THE BASIC VARIABLE 
IN ROW NROW AT PRIORITY NP 

• THE RELATIVE WEIGHT OF THE VARIABLE IN 
COLUMN NCOL AT PRIORITY NP 

• THE TOTAL DEVIATION FROM THE GOALS AT 
PRIORITY NP 

= THE NUMBER OF GOAL CONSTRAINTS ASSIGNED 
TO PRIORITY NP BY THE PARTITION 

• THE SUBSCRIPT OF THE I-TH CONSTRAINT 
ASSIGNED TO PRIORITY NP (I=1, ... ,NC(NP)) 

• THE NUMBER OF TERMS IN THE OBvECTIVE 
FUNCTION AT PRIORITY NP 

= 1, IF THE VARIABLE IN COLUMN NCOL IS 
ELIGIBLE TO ENTER THE BASIS 

• 0, OTHERWISE 

= THE TYPE OF BASIC VARIABLE IN ROW NROW, 
WHERE TYPE IS GIVEN BELOW 

TYPE vROW( • 1 ) 
**** *********** 

X 2 
D+ 3 
D- 4 
D 5 
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c **"'"' 
c "'**"' •••• 

G 
s 

6 
7 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

**** 
**** 

JROW(NROW,2) = THE SUBSCRIPT OF THE BASIC VARIABLE IN 
ROW NROW 

**** 
"'*** JCOL(NCOL,1) 
***"' 

= THE TYPE OF VARIABLE IN COLUMN NCOL 
(TYPE IS DEFINED AS ABOVE) 

**** 
**** JCOL(NCOL,2) 
**"'* 

= THE SUBSCRIPT OF THE VARIABLE IN 
COLUMN NCOL 

**** 
**** 
**** 

NRGT(.) • TYPE OF REAL OR GOAL CONSTRAINT, 
WHERE TYPE IS GIVEN BELOW 

**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 

TYPE 
**** 

LE 
GE 
EQ 

NRGT(.) 
******* 

8 
9 

10 

********************************************************************** 

c 
c 

c 

**** 
**** 

THE MAIN PROGRAM 
**** 
**** 

IMPLICIT REAL"'8(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TED(60,180),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /CHNG/ NCON(60,10),NTOF(10) 
COMMON /OUTPT/ WOUT(140,4) 
COMMON /DOMNC/ NGCON,NRAG,IOBJ,NCOLR,NCOLG,NCOL,NPHS1,IALT, 

1NRGT(60) 
COMMON /OBJDM/ W,WART,C(180),CR(180),CB(60) 
COMMON /ENTDPR/ NEVC,NDVR 
INTEGER ALTST 

C *"'** READ IN PROBLEM DATA 
c **** 
C **** NPRIT=THE TOTAL NUMBER OF PRIORITIES 
c **** 
C **** NVAR=THE NUMBER OF DECISION VARIABLES 
c **"'* 
C ***"' NRCON=THE NUMBER OF REAL CONSTRAINTS 
c **** 
C **** NGCON=THE NUMBER OF GOALS 
c 

c 

READ (5,130) NPRIT,NVAR,NRCON,NGCON 
READ (5,131) (NC(NP),NP=1,NPRIT) 
DO 101 NP=1,NPRIT 

IF (NC(NP).EQ.O) GO TO 101 
NCTMP=NC(NP) 
READ (5,132) (NCON(N,NP),N=1,NCTMP) 

101 CONTINUE 
READ (5,131) (NTOF(NP),NP=1,NPRIT) 

C **** INITIALIZE SUBPROBLEM DIMENSIONS AND COLUMN INDICATORS. 
c **** 
C **** NCOLI=THE NUMBER OF COLUMNS IN THE CURRENT WORKING TABLEAU 
c **"'* 
C **** NROWI=THE NUMBER OF ROWS IN THE CURRENT WORKING TABLEAU 
c **** 
C **** NPRIC•THE PRIORITY CURRENTLY BEING OPTIMIZED 
c **** 
C **"'* ZERO THE TE, TL, TT, AND TI ARRAYS. 
c 

NCOLI =0 
NROWI=O 
NPRIC=O 
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c 

DO 104 NCR•1,140 
IND(NCR)•1 
DO 102 NR=1,60 

102 TE(NR,NCR)•O. 
DO 103 NP•1,10 

TI(NP,NCR)•O. 
103 TT(NP,NCR)•O. 
104 CONTINUE 

DO 105 NR•1,60 
DO 105 NP•1, 10 

105 TL(NR,NP)•O. 

C **** THE PARTITIONING ALGORITHM BEGINS. 
c 

c 

106 NPRIC=NPRIC+1 
IF (NPRIC.EQ.1) GO TO 107 
GO TO 108 

107 CALL READ1 
GO TO 109 

108 CALL READ2 
109 CALL CINDX 

CALL TEST (NEVC,NDVR) 

C **** IF NEVC IS LESS THAN ZERO, THE SUBPROBLEM IS OPTIMIZED. 
c 

IF (NEVC.LE.O) GO TO 110 
c 
C **** IF NDVR IS LESS THAN ZERO, NO MINIMUM POSITIVE RATIO WAS FOUNO. 
c 

c 

IF (NDVR.LE.O) GO TO 116 
CALL PERM (NEVC,NDVR) 
GO TO 109 

C **** IF THERE ARE NO MORE PRIORITIES, TOTAL PROBLEM IS OPTIMIZED. 
C **** PRINT THE OPTIMAL SOLUTION. 
c 

c 
c 
c 
c 
c 
c 

c 

110 IF (NPRIC.EQ.NPRIT) GO TO 115 

•••• 
**** 
**** •••• 

SINCE THERE ARE MORE PRIORITIES, MOVE ON TO THE NEXT SUBPROBLEM 
IF THERE ARE ALTERNATE SOLUTIONS. FIRST, ELIMINATE THOSE 
COLUMNS WHICH CAN NOT ENTER THE BASIS. IF THERE ARE NO 
ALTERNATE SOLUTIONS, PRINT THE UNIQUE OPTIMAL SOLUTION . 

INOND•O 
120 ALTST•O 

DO 112 NCR•1,NCOLI 
IF (IND(NCR).EQ.O) GO TO 112 
IF (TI(NPRIC,NCR).GT.O.) GO TO 112 
DO 111 NR•1,NROWI 

IF (~ROW(NR,1).EQ.~COL(NCR,1).AND.~ROW(NR,2).EQ.~COL(NCR,2)) 
1 GO TO 112 

111 CONTINUE 
ALTST•1 

112 CONTINUE 

C **** IF ALTST=1, THERE ARE ALTERNATE SOLUTIONS. 
c 

c 

IF (INOND.EQ.O.AND.ALTST.EQ.1) GO TO 113 
IF (INOND.EQ.1.AND.ALTST.EQ.O) GO TO 118 
IF (INOND.EQ.1.AND.ALTST.EQ.1) GO TO 119 
GO TO 115 

C **** ELIMINATE THOSE COLUMNS WITH A POSITIVE RELATIVE COST AT 
C **** PRIORITY NPRIC. 
c 

c 

113 DO 114 NCR•1,NCOLI 
114 IF (TI(NPRIC,NCR).GT.O.) IND(NCR)•O 

GO TO 106 

C **** THE OPTIMIZATION IS OVER. PRINT OUT THE FINAL SOLUTION. 
c 

115 CALL POUT 
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c 

c 

GO TO 117 
116 WRITE (6,133) NPRIC 
117 CONTINUE 

C **** THE NONDOMINANCE TEST BEGINS 
c 

c 

WRITE (6,135) 
IF (NPRIC.LT.NPRIT) GO TO 118 
INOND=1 
GO TO 120 

118 WRITE (6,143) 
GO TO 125 

119 NRAG•NRCON+NGCON 

C **** READ IN THE CONSTRAINT OR GOAL TYPE 
c 

c 

READ (5,134) (NRGT(NG),NGc1,NRAG) 
CALL SETUP 
CALL PHSE1 

C **** PHASE 1 IS NOT USED IF THE REAL AND GOAL CONSTRAINTS ARE OF 
C **** TYPE '<' . 
c 

IF (NPHS1.EQ.O) WRITE (6,136) 
c 

IF (DABS(WART).GT.O.O ) GO TO 126 
c 

CALL PHSE2 
c 
C **** IF NDVR•O , THE PROBLEM HAS UNBOUNDED SOLUTION . 
c 

IF (NDVR.EQ.O) GO TO 124 
c 
C **** IF W•O , THE GOAL PROGRAMMING SOLUTION IS NONDOMINATED . 
c 

c 

c 

IF (DABS(W).LE.0.0005) GO TO 121 
WRITE (6,137) 

w .. -w 
WRITE (6, 138) W 
CALL DOUT 
30 TO 122 

121 WRITE (6,140) 
CALL DOUT 

C **** CHECK FOR ALTERNATE OPTIMUM 
c 

c 

c 

c 

122 CALL ALTOP 
IF (IALT.EQ.O) 
GO TO 125 

123 WRITE (6,141) 
GO TO 125 

124 WRITE (6,142) 
GO TO 125 

126 WRITE (6,143) 
WRITE (6,144) 
WRITE (6,145) 

125 STOP 

130 FORMAT (4I5) 
131 FORMAT (10I5) 
132 FORMAT (16I5) 

GO TO 123 

WART 

133 FORMAT (/ 40H THE PROGRAM TERMINATED ON SUBPROBLEM ,I4, 42H NO 
1 MINIMUM POSITIVE RATIO COULD BE FOUND) 

134 FORMAT (12I5) 
135 FORMAT (1H1,//120(1H*)///20X, 41H OUTPUT SUMMARY OF THE NONDOMINA 

1NCE TEST ,///120(1H*)) 
136 FORMAT (// 21H PHASE 1 IS NOT USED,////120(1H*)) 
137 FORMAT(// 46H THE GOAL PROGRAMMING SOLUTION IS DOMINATED ., 
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c 

1////120(1H*)) 
138 FORMAT (// 55H THE OBJECTIVE FUNCTION IN THE NONDOMINATED SOLUTI 

10N =,F15.4,////120(1H*)) 
140 FORMAT(// 48H THE GOAL PROGRAMMING SOLUTION IS NONDOMINATED ., 

1////120(1H*)) 
141 FORMAT (// 93H THE LINEAR PROGRAMMING PROBLEM OF THE NONDOMINANC 

1E TEST HAS NO ALTERNATE OPTIMUM SOLUTION .,////120(1H*)) 
142 FORMAT (// 114H THE ORIGINAL PROBLEM HAS UNBOUNDED SOLUTION AND 

1THE GOAL PROGRAMMING SOLUTION IS CERTAINLY SUBOPTIMAL SOLUTION ., 
1////120(1H*)) 

143 FORMAT (//// 55H THE ABOVE GOAL PROGRAMMING SOLUTION IS NONDOMIN 
1ATED .,////120(1H*)) 

144 FORMAT (// 43H THE LP PROBLEM TERMINATES AT PHASE 1 AND ) 
145 FORMAT (// 44H THE VALUE OF PHASE 1 OBJECTIVE FUNCTION =,F15.4, 

1////120(1H*)) 

END 
c **** 
c ********************************************************************** 
c **** 

SUBROUTINE READ1 
c 
C **** SUBROUTINE READ1 READS IN THE GOAL CONSTRAINTS AND OBJECTIVE 
C **** FUNCTION TERMS ASSIGNED TO PRIORITY ONE. 
c 

c 

IMPLICIT REAL*B(A-H,O-Z) 
COMMON TT ( 10, 140) , TB ( 60) , TE ( 60, 140) , TL ( 60, 10) , T A ( 10) , TI ( 1 0, 140) , 

1TED(60,180),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /CHNG/ NCON(60,10),NTOF(10) 

C **** SET COLUMN AND ROW HEADINGS. 
c 

c 

DO 100 NV=1,NVAR 
JCOL(NV, 1)=2 

100 JCOL(NV,2)=NV 
NC11•NC(1) 
DO 101 NCR•1,NC11 

NC1=NVAR+2*NCR-1 
NC2zNVAR+2*NCR 
JCOL ( NC 1 , 1 ) .. 4 
JCOL(NC1,2)=NCON(NCR,1) 
JCOL(NC2,1)=3 
JCOL(NC2,2)=NCON(NCR,1) 
JROW(NCR, 1)=4 

101 JROW(NCR,2)=NCON(NCR, 1) 

C ****READ IN THE GOAL CONSTRAINTS ASSIGNED TO PRIORITY 1. 
c 

NC1=NC(1) 
DO 103 NCR=1,NC1 

NV1•NVAR+2*NCR-1 
NV2=NVAR+2*NCR 
READ (5,105) TB(NCR),(TE(NCR,NV),NV"1,NVAR) 

c 
C ****SAVE THE INFORMATION FOR THE NONDOMINACE TEST. 
c 

IGSUB=NCON(NCR,1) 
DO 102 NVc1,NVAR 

TED(IGSUB,NV)=TE(NCR,NV) 
102 CONTINUE 

IF (NRCON.NE.O) TBD(IGSUB)=TB(NCR) 
c 
C **** PUT +1 IN FOR D- AND -1 IN FOR 0+. 
c 

c 

TE(NCR,NV1 )=1. 
TE(NCR,NV2)=-1. 

103 CONTINUE 
NCOLI-=NV2 
NROWI=NC(1) 

C ****READ IN THE OBJECTIVE FUNCTION TERMS FOR PRIORITY 1. 
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c 

c 

c 

NT1o:NTOF(1) 
DO 104 NT•1,NT1 

READ (5,106) ISUB,ITYPE,WGHT 
CALL PLACE (ISUB,ITYPE,WGHT) 

1 04 CONTINUE 
RETURN 

105 FORMAT (8F10.0) 
106 FORMAT (2I5,F10.0) 

END 
c **** 
c ********************************************************************** 
c **** 

c 
c 
c 
c 
c 
c 
c 

**** 
**** 
**** 
**** 
**** 

SUBROUTINE READ2 

SUBROUTINE READ2 READS IN THE GOAL CONSTRAINTS AND OBJECTIVE 
FUNCTION TERMS ASSIGNED TO PRIORITY NPRIC. 
SUBROUTINE READ2 IS ALSO USED TO READ IN THE FIRST PRIORITY GOAL 
CONSTRAINTS AND OBJECTIVE FUNCTION TERMS IF REAL CONSTRAINTS ARE 
PRESENT. 

IMPLICIT REAL*S(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TED(60,180),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /CHNG/ NCON(60,10),NTOF(10) 
IF (NC(NPRIC).EQ.O) GO TO 107 

c 
C **** READ IN THE COEFFICIENTS OF THE X'S. 
c 

NCTMP•NC(NPRIC) 
DO 106 NRI•1,NCTMP 

NR•NRI+NROWI 
NC1•NCOLI+2*NRI-1 
NC2•NCOLI+2*NRI 
JCOL(NC1,1)•4 
JCOL(NC1,2)•NCON(NRI,NPRIC) 
JCOL(NC2,1)•3 
JCOL(NC2,2)•NCON(NRI,NPRIC) 
READ (5,109) TB(NR),(TE(NR,NV),NV•1,NVAR) 

c 
C ****SAVE THE INFORMATION FOR THE NONDOMINACE TEST. 
c 

c 

c 

IGSUB•NCON(NRI,NPRIC) 
DO 100 NV•1,NVAR 

TED(IGSUB,NV)•TE(NR,NV) 
100 CONTINUE 

T E ( NR , NC 1 ) • 1 . 
TE(NR,NC2)•-1. 

C **** PERFORM THE ROW REDUCTION. 
c 

c 

DO 102 NRC=1,NROWI 
IF (JROW(NRC,1).NE.2) GO TO 102 
J•JROW(NRC,2) 
TB(NR)•TB(NR)-TE(NR,J)*TB(NRC) 
DO 101 NCR=1,NC2 

IF (NCR.EQ.J) GO TO 101 
TE(NR,NCR)=TE(NR,NCR)-TE(NR,J)*TE(NRC,NCR) 

101 CONTINUE 
TE(NR,J)=O. 

102 CONTINUE 

C **** DETERMINE THE DEVIATIONAL VARIABLE TO ENTER THE BASIS. 
c 

IF (TB(NR)) 103,105,105 
c 
C **** SINCE TB IS LESS THAN ZERO, MULTIPLY THE ROW BY -1 AND ENTER D+ 
C **** IN THE BASIS. 
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c 

c 

103 DO 104 NCR=1,NC2 
104 TE(NR,NCR)c-TE(NR,NCR) 

TB(NR)•-TB(NR) 
JROW(NR,1)•3 
JROW(NR,2)=NCON(NRI,NPRIC) 
GO TO 106 

C **** SINCE TB IS GREATER THAN OR EQUAL TO ZERO ENTER D- IN THE BASIS. 
c 

c 

105 JROW(NR,1)=4 
JROW(NR,2)=NCON(NRI,NPRIC) 

106 CONTINUE 

C **** INCREASE THE PARAMETERS NCOLI AND NROWI. 
c 

c 

NCOLI=NC2 
NROWI=NR 

C **** READ IN THE OBJECTIVE FUNCTION TERMS FOR PRIORITY NPRIC. 
c 

c 

107 NTTMP=NTOF(NPRIC) 
DO 108 NT=1,NTTMP 

READ (5,110) ISUB,ITYPE,WGHT 
CALL PLACE (ISUB,ITYPE,WGHT) 

108 CONTINUE 
RETURN 

109 FORMAT (8F10.0) 
110 FORMAT (2I5,F10.0) 

END 
c **** 
c ********************************************************************** 
c **** 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

**** 
**** 
**** 
**** 
**** 
**** 
***~ 

•*** 
**** 
**** 
**** 

SUBROUTINE PLACE (ISUB,ITYPE,WGHT) 

SUBROUTINE PLACE PUTS THE OBJECTIVE FUNCTION WEIGHTS FOR THE 
DEVIATION VARIABLES AT THE CURRENT PRIORITY LEVEL (NPRIC) IN THE 
CORRECT POSITIONS IN THE AUGMENTED TABLEAU. 

ISUB=THE SUBSCRIPT OF THE DEVIATIONAL VARIABLE 

ITYPE=3, IF POSITIVE DEVIATIONAL VARIABLE (D+) 
4, IF NEGATIVE DEVIATIONAL VARIABLE (D-) 

WGHT=THE CARDINAL WEIGHT OF THIS DEVIATIONAL VARIABLE AT THE 
CURRENT PRIORITY LEVEL 

IMPLICIT REAL*B(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TE0(60,180),TB0(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /CHNG/ NCON(60,10),NTOF(10) 

C **** PLACE THE WEIGHT IN THE PROPER COLUMN IN THE TOP STUB. 
c 

c 

NC1=NVAR+1 
DO 101 NCR=NC1,NCOLI 

IF (JCOL(NCR,1).EQ.ITYPE.AND.JCOL(NCR,2).EQ.ISUB) GO TO 102 
101 CONTINUE 
102 TT(NPRIC,NCR)=WGHT 

C **** PLACE THE WEIGHT IN THE PROPER ROW IN THE LEFT STUB. 
c 

DO 103 NR=1,NROWI 
IF (JROW(NR,1).EQ.ITYPE.AND.JROW(NR,2).EQ.ISUB) GO TO 104 

103 CONTINUE 
GO TO 105 

104 TL(NR,NPRIC)=WGHT 
105 CONTINUE 

RETURN 
END 
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c **** 
c ********************************************************************** 
c **** 

c 
c 
c 
c 
c 
c 

c 

***"' 
*"'*"' 
"'*** 
"'**"' 

SUBROUTINE CINOX 

SUBROUTINE CINDX COMPUTES THE RELATIVE COST COEFFICIENTS FOR EACH 
VARIABLE IN THE CURRENT TABLEAU(THE TI( . , . ) ARRAY) AND THE 
OBJECTIVE FUNCTION VALUE(THE TA(.) ARRAY) AT THE CURRENT 
PRIORITY(NPRIC) 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TED(60,180),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

C *"'*"' COMPUTE TA(NPRIC) AND TI(NPRIC,NC) 
c 

NC= 1, .... , NCOLI 

TA(NPRIC)=O. 
DO 101 NR•1,NRDWI 

101 TA(NPRIC)sTA(NPRIC)+TB(NR)*TL(NR,NPRIC) 
DO 102 NCRs1,NCOLI 

TI(NPRIC,NCR)=TT(NPRIC,NCR) 
DO 102 NR=1,NROWI 

102 TI(NPRIC,NCR)•TI(NPRIC,NCR)-TE(NR,NCR)*TL(NR,NPRIC) 
RETURN 
END 

c *"'*"' 
c ********************************************************************** 
c "'*"'* 

c 
c 
c 
c 
c 
c 
c 
c 

c 

**** 
**** 
**** 
**** 
**** 
"'*"'"' 

SUBROUTINE TEST (NEVC,NOVR) 

SUBROUTINE TEST DETERMINES THE NEXT ENTERING VARIABLE'S COLUMN 
(NEVC) AND THE NEXT DEPARTING VARIABLE'S ROW(NDVR). IF NO 
FURTHER OPTIMIZATION IS POSSIBLE, THE VALUE NEVC•O IS RETURNED. 
IF NDVR•O IS RETURNED, NO MINIMUM POSITIVE RATIO COULD BE FOUND 
IN THE CURRENT PIVOT OPERATION,I.E., ALL OF THE COEFFICIENTS 
TE( . ,NEVC) ARE NONPOSITIVE. 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON TT( 10,140), TB(60), TE(60,140), TL(60,10), TA( 10), TI( 10,140), 

1TED(60,180),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

NDVR•O 
NEVC=O 
VEVC=O. 
VDVR=10.0E+20 

C **** DETERMINE ENTERING VARIABLE'S COLUMN. 
c 

c 

DO 101 NCR=1,NCOLI 
IF (TI(NPRIC,NCR).GE.O.) GO TO 101 
IF (IND(NCR).EQ.O) GO TO 101 
IF (TI(NPRIC,NCR).GE.VEVC) GO TO 101 
NEVC=NCR 
VEVC=TI(NPRIC,NCR) 

101 CONTINUE 

C *"'*"' IF NEVC=O, SUBPROBLEM NPRIC IS OPTIMIZED. RETURN. 
c 

IF (NEVC.EQ.O) RETURN 
c 
C **** DETERMINE DEPARTING VARIABLE'S ROW. 
c 

DO 105 NR=1,NROWI 
IF (TE(NR,NEVC).LE.O.) GO TO 105 
V=TB(NR)/TE(NR,NEVC) 
IF (NDVR.EQ.O) GO TO 104 
IF (V-VDVR) 104,102,105 

102 DO 103 NP=1,NPRIC 
IF (TL(NR,NP)-TL(NDVR,NP)) 105,103,104 

103 CONTINUE 
104 VOVR=V 
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NDVR•NR 
105 CONTINUE 

RETURN 
END 

c **** 
c ********************************************************************** 
c **** 

SUBROUTINE PERM (NEVC,NDVR) 
c 
C **** SUBROUTINE PERM PERFORMS THE PIVOT OPERATION USING THE PIVOT 
C **** ELEMENT IN COLUMN NEVC AND ROW NDVR AND COMPUTES THE NEW TABLEAU. 
c 

c 

IMPLICIT REAL*B(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TED(60,1BO),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

C **** REPLACE HEADING FOR ROW NDVR. 
c 

c 

JROW(NDVR,1)mJCOL(NEVC,1) 
JROW(NDVR,2)•JCOL(NEVC,2) 

C **** REPLACE TL VECTOR FOR ROW NDVR 
c 

DO 101 NP•1,NPRIC 
101 TL(NDVR,NP)•TT(NP,NEVC) 

c 
C ****COMPUTE NEW TE ARRAY. 
c 

PIV=TE(NDVR,NEVC) 
PIB=TB(NDVR) 
DO 103 NR=1,NROWI 

IF (NR.EQ.NDVR) GO TO 103 
IF (DABS(TE(NR,NEVC)).LE.0.000050) GO TO 103 
PIX•TE(NR,NEVC)/PIV 
TB(NR)•FIX(TB(NR)-PIX*PIB) 
DO 102 NCR•1,NCOLI 

102 TE(NR,NCR)•FIX(TE(NR,NCR)-TE(NDVR,NCR)*PIX) 
103 CONTINUE 

TB(NDVR)•FIX(PIB/PIV) 
DO 104 NCR=1,NCOLI 

104 TE(NDVR,NCR)•FIX(TE(NDVR,NCR)/PIV) 
RETURN 
END 

c **** 
c ********************************************************************** 
c **** 

DOUBLE PRECISION FUNCTION FIX(Z) 
c 
C **** FUNCTION FIX DELETES FLOATING POINT VALUES WHOSE ABSOLUTE 
C**** VALUES ARE LESS THAN OR EQUAL TO 0.0001 . 
c 

c 
IMPLICIT REAL*B(A-H,O-Z) 

FIX=DINT(Z+DSIGN(.5D+O,Z)) 
IF (DABS(FIX-Z).GT. 1.D-4) FIX=Z 
RETURN 
END 

c **** 
c ********************************************************************** 
c **** 

SUBROUTINE POUT 
c 
C **** SUBROUTINE POUT PREPARES AND PRINTS THE SOLUTION INFORMATION OF 
C **** THE GOAL PROGRAMMING PROBLEM 
c 

c 
IMPLICIT REAL*B(A-H,O-Z) 

COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 
1TED(60,180),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /CHNG/ NCON(60,10),NTOF(10) 
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c 

COMMON /OUTPT/ WOUT(140,4) 
DIMENSION DIFF(60),RLHS(60,10) 

WRITE (6, 122) 
WRITE (6,123) NPRIC,NROWI 

c 
C **** OUTPUT ARRAY IS ZEROED. 
c 

c 

DO 100 1•1, 140 
D0100u•1,4 

100 WOUT(I ,u)•O. 

C **** OUTPUT ARRAY IS FILLED. 
c 

c 

DO 101 NP=1,NPRIC 
101 WOUT(NP,1)~FIX(TA(NP)) 

DO 102 NR•1,NROWI 
I1=uROW(NR,1) 
I2•uROW(NR,2) 

102 WOUT(I2,I1)•FIX(TB(NR)) 

C **** IF ALL PRIORITIES HAVE BEEN INCLUDED, PRINT OPTIMAL SOLUTION. 
C **** IF NOT, WE MUST CALCULATE VALUES FOR REMAINING TA'S AND D- AND D+ 
c 

c 

IF (NPRIC.GE.NPRIT) GO TO 114 
NP1=NPRIC+1 
DO 113 NP•NP1,NPRIT 

TA(NP)•O. 
IF (NC(NP).EQ.O) GO TO 106 

C **** READ IN THE GOAL CONSTRAINTS ASSIGNED TO PRIORITY NP. 
c 

NCTMP•NC(NP) 
DO 105 NCI•1,NCTMP 

NR•NROWI+NCI 
READ (5,124) TB(NR),(TE(NR,NV),NV•1,NVAR) 

c 
C **** SAVE THE INFORMATION FOR THE NONDOMINACE TEST. 
c 

c 

c 

IGSUB•NCON(NCI,NP) 
DO 103 NV•1,NVAR 

TED( IGSUB, NV) =T.E (NR, NV) 
103 CONTINUE 

RLHS(NCI,NP)"'O. 
DO 104 NV•1, NVAR 

104 RLHS(NCI,NP)•RLHS(NCI,NP)+TE(NR,NV)*WOUT(NV,2) 
DIFF(NCI)=TB(NR)-RLHS(NCI,NP) 

105 CONTINUE 

C **** READ THE OBuECTIVE FUNCTION TERMS FOR PRIORITY NP. 
c 

c 

106 NTTMP~NTOF(NP) 
DO 112 NT=1,NTTMP 

READ (5,125) ISUB,ITYPE,WGHT 
IF (NC(NP).EQ.O) GO TO 111 
NCTMP•NC(NP) 
DO 110 NCI•1,NCTMP 

IF (ISUB.NE.NCON(NCI,NP)) GO TO 110 
IF ( D IFF ( NC I ) ) 107 , 108 , 109 

107 IF (ITYPE.NE.3) GO TO 110 
WOUT(ISUB,3)=-DIFF(NCI) 

108 GO TO 110 
109 IF (ITYPE.NE.4) GO TO 110 

WOUT(ISUB,4)=DIFF(NCI) 
110 CONTINUE 
111 TA(NP)=TA(NP)+WGHT*WOUT(ISUB,ITYPE) 
112 CONTINUE 

NROWI•NROWI+NC(NP) 

C **** FILL IN THE OUTPUT VALUE FOR ATTAINMENT OF PRIORITY NP. 
c 
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WOUT(NP,1)•FIX(TA(NP)) 
113 CONTINUE 

c 
C **** PRINT OPTIMAL SOLUTION 
c 

c 

c 

c 

114 WRITE (6,126) 
WRITE (6,127) 
DO 115 NV•1,NVAR 

WRITE (6,128) NV,WOUT(NV,2) 
115 CONTINUE 

WRITE (6,126) 
WRITE (6,129) 
DO 116 NP•1,NPRIT 

IF (NC(NP).EQ.O) GO TO 116 
NCTMP•NC(NP) 

DO 139 NC0•1,NCTMP 
N•NCON(NCO,NP) 
WRITE (6,130) NP,N,WOUT(N,3),WOUT(N,4) 

139 CONTINUE 
116 CONTINUE 

WRITE (6,126) 
WRITE (6,131) 
DO 117 NP•1,NPRIT 

WRIT~ (6,132) NP,WOUT(NP,1) 
117 CONTINUE 

WRITE (6, 126) 
WRITE (6,133) 
WRITE (6,134) 
I•MAXO(NPRIT,NVAR,NROWI) 
00 121 Ko:1 , I 

IF (K.GT.NPRIT) GO TO 119 
IF (K.GT.NVAR) GO TO 118 
WRITE (6,135) K,(WOUT(K,J),J•1,4) 
GO TO 121 

118 WRITE (6,136) K,WOUT(K,1),(WOUT(K,J),J•3,4) 
GO TO 121 

119 IF (K.GT.NVAR) GO TO 120 
IF (K.GT.NROWI) GO TO 140 
WRITE (6,137) K,(WOUT(K,J),J•2,4) 
GO TO 121 

140 WRITE (6,141) K,WOUT(K,2) 
GO TO 121 

120 WRITE (6,138) K,(WOUT(K,J),J•3,4) 
121 CONTINUE 

WRITE (6, 126) 

RETURN 

122 FORMAT (1H1) 
123 FORMAT (/ 39H THE OPTIMIZATION ENDED ON SUBPROBLEM ,I5 / 13H T 

1HERE WERE ,I5, 42H CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU.) 
124 FORMAT (8F10.0) 
125 FORMAT (2I5,F10.0) 
126 FORMAT (//120(1H*)) 
127 FORMAT (1HO, 52HTHE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X( 

1J)) 
128 FORMAT (1HO, 2HX(,I3, 2H)•,F15.4) 
129 FORMAT (1HO, 25HTHE GOAL ACHIEVEMENTS ARE// 9H PRIORITY,2X, 11H 

1GOAL NUMBER,8X, 16HOVER-ACHIEVEMENT,4X, 17HUNDER-ACHIEVEMENT) 
130 FORMAT (4X,I2,10X,I2,10X,F15.4,10X,F15.4) 
131 FORMAT (1HO, 29HTHE PRIORITY ACHIEVEMENTS ARE// 9H PRIORITY,13X, 

1 11HACHIEVEMENT) 
132 FORMAT (4X,I2,10X,F15.4) 
133 FORMAT (1HO, 15H OUTPUT SUMMARY) 
134 FORMAT (1HO, 9HSUBSCRIPT,11X, 8H A OPT,7X, 8H X OPT,7X, 9H 

1 POS DEV,6X, 9H NEG DEV /) 
135 FORMAT (I8,7X,4F15.4) 
136 FORMAT (I8,7X,F15.4,15X,2F15.4) 
137 FORMAT (I8,22X,3F15.4) 
138 FORMAT (I8,37X,2F15.4) 
141 FORMAT (I8,22X,F15.4) 
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END 
c **** 
c ********************************************************************** 
c **** 

SUBROUTINE SETUP 
c 
C **** SUBROUTINE SETUP ESTABLISHES THE INITIAL TABLEAU OF 
C **** THE LINEAR PROGRAMMING PROBLEM FOR THE NONDOMINANCE TEST . 
c 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON TT( 10,140), TB(GO), TE(60,140), TL(60,10), TA( 10), TI( 10,140), 

1TED(60,180),TBD(GO),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /OUTPT/ WOUT(140,4) 
COMMON /DOMNC/ NGCON,NRAG,IOBJ,NCOLR,NCOLG,NCOL,NPHS1,IALT, 

1NRGT(60) 
c 
C ****INITIALIZE JCOL( ., . ) AND JROW(., .) 
c 

c 

c 

c 

NVD=NVAR+1 
DO 97 NV=NVD,180 

JCOL(NV,1)=0 
JCOL(NV,2)=0 

97 CONTINUE 

DO 98 NV=1,60 
JROW(NV, 1)"0 
JROW(NV,2)"'0 

98 CONTINUE 

IOBJ•NRCON+1 

C **** IF THE REAL CONSTRAINTS HAVE NO FEASIBLE SOLUTION (TA(1)>0) , 
C **** THEN THE REAL CONSTRAINTS WILL BE TREATED AS GOALS . 
c 

IF (TA(1).GT.0.0000500) IOBJ•1 
c 
C **** INITIALIZE TBD(.) ARRAY 
c 

c 

DO 99 IB=IOBJ,NRAG 
TBD(IB)=O.O 

99 CONTINUE 

C **** CALCULATE THE RHS OF GOALS FROM THE GP SOLUTION 
c 

c 

DO 100 ID=IOBJ,NRAG 
DO 100 JD=1,NVAR 

TBD(ID)•TBD(ID)+WOUT(JD,2)*TED(ID,JO) 
100 CONTINUE 

C **** CASE OF NEGATIVE GOAL VALUES 
c 

DO 104 NEG=IOBJ,NRAG 
IF (TBD(NEG).GE.O.) GO TO 104 
IF (NRGT(NEG).EQ.8) GO TO 101 
IF (NRGT(NEG).EQ.9) GO TO 102 

101 NRGT(NEG)=9 
GO TO 103 

102 NRGT(NEG)=8 
103 TBO(NEG)=-TBO(NEG) 

00 104 NV= 1, NVAR 
TED(NEG,NV)=-TEO(NEG,NV) 

104 CONTINUE 
c 
c **** SET COLUMN AND ROW HEADINGS FOR SLACK OR 
c **** CONSTRAINTS 
c **** SET COLUMN AND ROW HEADINGS FOR SLACK OR 
c **** CONSTRAINTS 
c 

IF (NRCON.EQ.O) GO TO 108 
IF (TA(1).GT.0.0000500) GO TO 108 

JR=NVAR 

SURPLUS 

SURPLUS 

OF REAL 

OF GOAL 
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c 

c 

DO 107 NR•1,NRCON 
IF (NRGT(NR).EQ.10) GO TO 107 
uR•uR+1 
uCOL(uR,1)=7 
uCOL(uR,2)sNR 
IF (NRGT(NR).EQ.S) GO TO 105 
IF (NRGT(NR).EQ.9) GO TO 106 

105 TED(NR,uR)•1. 
uROW(NR,1)•7 
uROW(NR,2)•NR 
GO TO 107 

106 TED(NR,uR)•-1. 
107 CONTINUE 

NCOLR=uR 
GO TO 109 

108 NCOLR•NVAR 
109 KGL•O 

DO ·112 IG•IOBu,NRAG 
IF (NRGT(NG).EQ.10) GO TO 112 
KGL•KGL+1 
uG1•NCOLR+2*KGL-1 
uG2•NCOLR+2*KGL 
uCOL(uG1,1)o:5 
uCOL(uG1,2)=IG 
uCOL(uG2,1)=6 
uCOL(uG2,2)=IG 
IF (NRGT(IG).EQ.S) GO TO 110 
IF (NRGT(IG).EQ.9) GO TO 111 

110 TED(IG,uG1)=1. 
uROW(IG,1)•5 
uROW(IG, 2) •IG 
TED(IG,JG2)c1. 
GO TO 112 

111 TED(IG,uG1)=-1. 
TED(IG,JG2)•-1. 

112 CONTINUE 

NCOLG•uG2 
RETURN 
END 

c **** 
c ********************************************************************** 
c **** 

SUBROUTINE PHSE1 
c 
C **** SUBROUTINE PHSE1 PERFORMS A PHASE 1 SIMPLEX PROCEDURE IN ORDER TO 
C **** FIND AN INITIAL BASIC FEASIBLE SOLUTION TO 
C **** THE LINEAR PROGRAMMING PROBLEM FOR THE NONDOMINANCE TEST 
c 

c 

c 

IMPLICIT REAL*S(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TED(60,180),TBD(60),uCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1uROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /DOMNC/ NGCON,NRAG,IOBu,NCOLR,NCOLG,NCOL,NPHS1,IALT, 
1NRGT(60) 

COMMON /OBuDM/ W,WART,C(180),CR(180),CB(60) 
COMMON /ENTDPR/ NEVC,NDVR 

DO 100 NV=1,180 
C(NV)•O.O 

100 CONTINUE 

C **** SUBROUTINE PHASE 1 IS NOT USED IF THE REAL AND GOAL CONSTRAINTS 
C **** ARE OF TYPE " < " 
c 

NPHS1•0 
DO 101 NR=1,NRAG 

IF (NRGT(NR).EQ.S) GO TO 101 
NPHS1•NPHS1+1 
GO TO 102 

101 CONTINUE 
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c 

c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

IF (NPHS1.EQ.O) RETURN 
102 CONTINUE 

DO 103 NV•1,NRAG 
CB(NV)•O.O 

103 CONTINUE 

**** 
**** 
**** 
**** 

SET COLUMN AND ROW HEADINGS FOR ARTIFICIAL VARIABLES 
SET 1. IN TED(.,.) FOR EACH ARTIFICIAL VARIABLE 
SET C(J)•O.O FOR ALL DECISION VARIABLES AND C(v)•1. FOR THE 
ARTIFICIAL VARIABLES 

IAR•NCOLG 
DO 104 NR•1,NRAG 

IF (NRGT(NR).EQ.8) GO TO 104 
IAR•IAR-+-1 
vROW(NR,1)•1 
vROW(NR', 2)•NR 
vCOL(IAR,1 )•1 
vCOL(IAR,2)•NR 
TED(NR, IAR)•1. 
C(IAR)=1. 
CB(NR)=1. 

104 CONTINUE 

NCOL•IAR 
105 CALL CHKOP 

IF (NEVC.EQ.O) GO TO 106 
NENT•NEVC 
CALL DPRT 
NDPR•NDVR 
CALL PIVOT (NENT,NDPR) 
GO TO 105 

106 WART•O.O 
DO 107 NR•1,NRAG 

WART•WART-+-TBD(NR)*CB(NR) 
107 CONTINUE 

IF (WART.GT.O.O) RETURN 

DO 108 NR•1,NRAG 
DO 108 NV•1,NCOL 

IF (NV.LE.NCOLG) GO TO 108 
TED(NR,NV)•O.O 

108 CONTINUE 

RETURN 
END 

c **** 
c ********************************************************************** 
c **** 

SUBROUTINE PHSE2 
c 
C **** SUBROUTINE PHSE2 PERFORMS A PHASE 2 SIMPLEX PROCEDURE IN ORDER TO 
C **** FIND AN OPTIMAL SOLUTION TO THE LP PROBLEM OF THE NONDOMINANCE 
C **** TEST . 
c 

c 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON TT( 10, 140), TB(60), TE(60, 140), TL(60, 10), TA( 10), TI ( 10, 140), 

1TED(60,180),TBD(60),vCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1vROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /DOMNC/ NGCON,NRAG,IOBv,NCOLR,NCOLG,NCOL,NPHS1,IALT, 
1NRGT(60) 

COMMON /OBvDM/ W,WART,C(180),CR(180),CB(60) 
COMMON /ENTDPR/ NEVC,NDVR 

NCOL•NCOLG 
DO 101 NV=1,NCOL 

C(NV)•O.O 
101 CONTINUE 

DO 102 NV=1,NRAG 
CB(NV)•O.O 
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c 

c 

c 

102 CONTINUE 
NG•NCOLR+1 
DO 103 NV•NG,NCOL 

KSUB•vCOL(NV,2) 
IF (vCOL(NV,1).EQ.5.AND.NRGT(KSUB).EQ.8) C(NV)•-1. 
IF (vCOL(NV,1).EQ.5.AND.NRGT(KSUB).EQ.9) C(NV)=-1. 

103 CONTINUE 

NRB•1 
IF (NPHS1.EQ.O) NRB•IOBv 
DO 104 NR•NRB,NRAG 

KSUB•vROW(NR,2) 
IF (vROW(NR,1).EQ.5.AND.NRGT(KSUB).EQ.8) CB(NR)•-1. 
IF (vROW(NR,1).EQ.5.AND.NRGT(KSUB).EQ.9) CB(NR)•-1. 

104 CONTINUE 

105 CALL CHKOP 
IF (NEVC.EQ.O) GO TO 106 
NENT•NEVC 
CALL DPRT 

C **** IF NDVR•O , THE PROBLEM HAS UNBOUNDED SOLUTION . 
c 

IF (NDVR.EQ.O) RETURN 
NDPR=NDVR 
CALL PIVOT (NENT,NDPR) 
GO TO 105 

106 W•O.O 
DO 107 NR•1,NRAG 

W•W+TBD(NR)*CB(NR) 
107 CONTINUE 

RETURN 
END 

c **** 
c ********************************************************************** 
c **** 

SUBROUTINE CHKOP 
c 
C **** SUBROUTINE CHKOP CALCULATES RELATIVE COST COEFFICIENTS, 
C **** PERFORMS A CHECK FOR OPTIMALITY AND 
C **** DETERMINES THE ENTERING VARIABLE'S COLUMN 
c 

c 

IMPLICIT REAL*S(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TED(60,180),TBD(60),vCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1vROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /DOMNC/ NGCON,NRAG,IOBv,NCOLR,NCOLG,NCOL,NPHS1,IALT, 
1NRGT(60) 

COMMON /OBvDM/ W,WART,C(180),CR(180),CB(60) 
COMMON /ENTDPR/ NEVC,NDVR 

C **** COMPUTE RELATIVE COST COEFFICIENTS . 
c 

c 

DO 101 NV=1,NCOL 
CR(NV)•C(NV) 

DO 101 NR•1,NRAG 
CR(NV)•CR(NV)-CB(NR)*TED(NR,NV) 

101 CONTINUE 

C **** CHECK FOR OPTIMALITY 
c 

VEVC=O. 
NEVC•O 
DO 102 NC0•1,NCOL 

NV=NCO 
IF (CR(NV).GE.O.O) GO TO 102 
IF (CR(NV).GE.VEVC) GO TO 102 
VEVC•CR(NV) 
NEVC .. NV 

102 CONTINUE 
RETURN 
END 
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c **** 
c ********************************************************************** 

. c *"'** 
SUBROUTINE DPRT 

c 
C **** SUBROUTINE DPRT DETERMINES DEPARTING VARIABLE'S ROW . 
c 

c 

IMPLICIT REAL*S(A-H,O-Z) 
COMMON TT ( 10, 140) , TB ( 60) , T E ( 60, 140) , T L ( 60, 10) , T A ( 10) , TI ( 10, 140) , 

1TED(60,180),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /DOMNC/ NGCON,NRAG,IOBJ,NCOLR,NCOLG,NCOL,NPHS1,IALT, 
1NRGT(60) 

COMMON /ENTDPR/ NEVC,NDVR 

NDVR"'O 
VDVR=10.0E+20 
DO 102 ND•1,NRAG 

IF (TED(ND,NEVC).LE.O.O) GO TO 102 
V•TBD(ND)/TED(ND,NEVC) 
IF (NDVR.EQ.O) GO TO 101 
IF (V-VDVR) 101,101,102 

101 VDVR,.V 
NDVR=ND 

102 CONTINUE 
RETURN 
END 

c **** 
c ********************************************************************** 
c **** 

SUBROUTINE PIVOT (NEVC,NDVR) 
c 
C **** SUBROUTINE PIVOT COMPUTES THE NEW TABLEAU : GIVEN A VALUE OF THE 
C **** ENTERING VARIABLE'S COLUMN (NEVC) AND THE DEPARTING VARIABLE'S 
C **** ROW (NDVR) . 
c 

c 

c 

c 

c 

c 

c 

IMPLICIT REAL*S(A-H,O-Z) 
COMMON TT ( 10, 140) , TB ( 60) , T E ( 60, 140) , T L ( 60, 10) , T A ( 10) , T I ( 10, 140) , 

1TED(60,180),TBD(60),JCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1JROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /DOMNC/ NGCON,NRAG,IOBJ,NCOLR,NCOLG,NCOL,NPHS1,IALT, 
1NRGT(60) 

COMMON /OBJDM/ W,WART,C(180),CR(180),CB(60) 

JROW(NDVR,1)=JCOL(NEVC,1) 
JROW(NDVR,2)"'uCOL(NEVC,2) 
CB(NDVR)•C(NEVC) 

PIV=TED(NDVR,NEVC) 
PIB=TBD(NDVR) 
DO 102 NR•1,NRAG 

IF (NR.EQ.NDVR) GO TO 102 
IF (DABS(TED(NR,NEVC)).LE.0.000050) GO TO 102 
PIX=TED(NR,NEVC)/PIV 
TBD(NR)=FIX(TBD(NR)-PIX*PIB) 

DO 101 NVa1,NCOL 
101 TED(NR,NV)•FIX(TED(NR,NV)-TED(NDVR,NV)*PIX) 
102 CONTINUE 

TBD(NDVR)=FIX(PIB/PIV) 

DO 103 NV•1,NCOL 
TED(NDVR,NV)aFIX(TED(NDVR,NV)/PIV) 

103 CONTINUE 

RETURN 
END 

c **** 
c ********************************************************************** 
c **** 

SUBROUTINE AL TOP 
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c 
c 
c 
c 
c 
c 

c 

c 

**** 
**** 
**** 
**** 

SUBROUTINE ALTOP CHECKS THE LINEAR PROGRAMMING PROBLEM 
OF THE NONDOMINANCE TEST FOR ALTERNATE OPTIMUM SOLUTIONS. 
IF ONE DR MORE VALID SOLUTIONS, ALTOP GENERATES AND OUTPUTS 
THEMS. 

IMPLICIT REAL*B(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TED(60,180),TBD(60),uCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1uROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /OUTPT/ WOUT(140,4) 
COMMON /DOMNC/ NGCON,NRAG,IOBu,NCOLR,NCOLG,NCOL,NPHS1,IALT, 

1NRGT(60) 

1 
101 

COMMON /OBuDM/ W,WART,C(180),CR(180),CB(60) 
COMMON /ENTDPR/ NEVC,NDVR 

IALT•O 
NEVC•O 
DO 104 NCR•1,NCOL 

IF (CR(NCR).GT.O.O) GO TO 104 
DO 101 NR•1,NRAG 

IF (uROW(NR,1).EQ.uCOL(NCR,1).AND.uROW(NR,2).EQ.uCOL(NCR,2)) 
GO TO 104 

CONTINUE 
IALT=IALT+1 
IF (IALT.EQ.1) WRITE (6,105) 
WRITE (6,106) 
WRITE (6,107) IALT 
NEVC•NCR 
CALL DPRT 
NDPR•NDVR 
NENT•NEVC 

c **** 
c **** 
c 

PIVOT IS CALLED AGAIN TO RETURN THE TABLEAU TO ITS ORIGINAL 
FORM FOR FURTHER ALTERNATE SOLUTION SEARCH. 

c 

c 

1 
102 
103 

104 

ND•NDVR 
DO 102 NE•1,NCOL 

IF (uROW(N0,1).EQ.uCOL(NE,1).AND.uROW(ND,2).EQ. 
uCOL(NE,2)) GO TO 103 

CONTINUE 
NEAG•NE 
CALL PIVOT (NENT,NDPR) 
CALL DOUT 
CALL PIVOT (NEAG,NDPR) 

CONTINUE 
RETURN 

105 FORMAT (// 93H THE LINEAR PROGRAMMING PROBLEM OF THE NONDOMINANC 
1E TEST HAS ALTERNATE OPTIMUM SOLUTION(S) .,////120(1H*)) 

106 FORMAT (1H1,//120(1H*)) 
107 FORMAT (// 41H ALTERNATE NONOOMINATED SOLUTION NUMBER ,I3) 

END 
c **** 
c ********************************************************************** 
c **** 

SUBROUTINE DOUT 
c 
C **** SUBROUTINE DOUT PREPARES AND PRINTS THE SOLUTION INFORMATION OF 
C **** THE NONDOMINANCE TEST . 
c 

c 

IMPLICIT REAL*B(A-H,O-Z) 
COMMON TT(10,140),TB(60),TE(60,140),TL(60,10),TA(10),TI(10,140), 

1TED(60,180),TBD(60),uCOL(180,2),NCOLI,NROWI,NPRIC,NC(10), 
1uROW(60,2),NVAR,NPRIT,NRCON,IND(140) 

COMMON /DOMNC/ NGCON,NRAG,IOBu,NCOLR,NCOLG,NCOL,NPHS1,IALT, 
1NRGT(60) 

COMMON /OUTPT/ WOUT(140,4) 

C **** OUTPUT ARRAY IS ZEROED 
c 
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c 

DO 101 I =1 , 140 
DO 101 v=1,4 

WOUT(I,u)=O.O 
101 CONTINUE 

C **** OUTPUT ARRAY IS FILED 
c 

c 

DO 104 NR=1,NRAG 
I1=uROW(NR,1) 
I2•uROW(NR,2) 
IF (I1.EQ.2) GO TO 102 
I1•I1-3 
GO TO 103 

102 I1=1 
103 WOUT(I2,I1)=FIX(TBO(NR)) 
104 CONTINUE 

C **** PRINT NONOOMINATED SOLTION 
c 

c 

WRITE (6,121) 
WRITE (6,122) 
I=MAXO(NVAR,NRAG) 

C **** THE REAL CONSTRAINTS WILL BE TREATED AS GOALS IF THEY HAVE NO 
C **** FEASIBLE SOLUTION . 
c 

c 

c 

c 

c 

c 

IF (IOBv.EQ.1) GO TO 112 

DO 111 K•1 , I 
IF (NRGT(K).EQ.10) GO TO 105 
IF (K.GT.NVAR) GO TO 108 
IF (K.GT.NRAG) GO TO 106 
IF (K.GT.NRCON) GO TO 110 
WRITE (6, 123) K,WOUT(K, 1),WOUT(K,4) 
GO TO 111 

105 IF (K.GT.NVAR) GO TO 107 
106 WRITE (6,124) K,WOUT(K,1) 

GO TO 111 
107 WRITE (6,125) K 

GO TO 111 
108 IF (K.GT.NRCON) GO TO 109 

WRITE (6,126) K,WOUT(K,4) 
GO TO 111 

109 WRITE (6,127) K,WOUT(K,2),WOUT(K,3) 
GO TO 111 

110 WRITE (6,128) K,(WOUT(K,u),u=1,3) 
111 CONTINUE 

GO TO 118 

112 DO 117 K=1,I 
IF (NRGT(K). EQ.10) GO TO 113 
IF (K.GT.NVAR) GO TO 116 
IF (K.GT.NRAG) GO TO 114 
WRITE (6, 128) K,(WOUT(K,v),u=1,3) 
GO TO 117 

113 IF (K.GT.NVAR) GO TO 115 
114 WRITE (6,124) K,WDUT(K,1) 

GO TO 117 
115 WRITE (6,125) K 

GO TO 117 
116 WRITE (6, 127) K,WOUT(K,2),WOUT(K,3) 
117 CONTINUE 

118 WRITE (6,129) 
WRITE (6, 130) 
RETURN 

121 FORMAT (1HO, 42H OUTPUT SUMMARY OF A NONDOMINATED SOLUTION) 
122 FORMAT (1HO, 9HSUBSCRIPT,9X,14HX NONDOMINATED,9X,1HD,14X,1HG, 

114X,1HS/) 
123 FORMAT (I8,7X,F15.4,30X,F15.4) 

li6 



c 

124 FORMAT (I8,7X,F15.4) 
125 FORMAT (IS) 
126 FORMAT (I8,52X,F15.4) 
127 FORMAT (I8,22X,2F15.4) 
128 FORMAT (I8,7X,3F15.4) 
129 FORMAT (//120(1H*)///,10X, SH WHERE :) 
130 FORMAT (//20X, 24H X • DECISION VARIABLES,/20X, 

1 74H D ~ VARIABLES TO BE MAXIMIZED IN THE LP PROBLEM OF THE NON 
1DOMINANCE TEST,/20X, 52H G • SLACK OR SURPLUS VARIABLES IN GOAL 
1CONSTRAINTS,/20X, 53H S • SLACK OR SURPLUS VARIABLES IN REAL CON 
1STRAINTS ,///120(1H*)//) 

END 

177 



APPENDIX B 

EXAMPLES OF GP DIFFICULTIES 

178 



179 

Some GP problems of varying difficulty have been selected in order 

to test the correctness and efficiency of the new algorithm. These 

problems are: 

Problem 1 (Hannan (34)): 

Subject to: 

x2 + x3 < 6 

x1 < 4 

2x2 + x3 + d~ d+ 
1 = 10 

• 

x1 + x2 + x3 + d2 - d+ 
2 = 12 

x1 + 3x2 + d -3 
d+ 

3 = 16 

Where all the variables are nonnegative. 

Pages 180, 181 show the computer output of Problem 1. x1 • 4, x2 

• 4, x3 • 2 is the GP solution and this solution is dominated. x1 • 4, 

x2 • 6, x3 • 0 is a nondominated solution for this problem. 

Problem 2. (Hannan (34)): 

Another example of an unbounded solution which will also go unde-

tected by the goal programming procedure is: 
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COMPUTER OUTPUT OF PROBLEM 1 

THE OPTIMIZATION ENDED ON SUBPROBLEM 4 
THERE WERE 5 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

*************************************************************************** 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(u) 

X ( 1 ) = 4.0000 

X ( 2) = 4.0000 

X( 3 )= 2.0000 

*************************************************************************** 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
2 
3 
4 

GOAL NUMBER 
1 
2 
3 
4 
5 

OVER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

UNDER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
2.0000 
0.0000 

*************************************************************************** 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 
4 

ACHIEVEMENT 
0.0000 
0.0000 
2.0000 
0.0000 

***************************************************************************~ 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG OEV 

1 0.0000 4.0000 0.0000 0.0000 
2 0.0000 4.0000 0.0000 0.0000 
3 2.0000 2.0000 0.0000 0.0000 
4 0.0000 0.0000 2.0000 
5 0.0000 0.0000 

***************************************************************************~ 
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********************************************************************************* 

OUTPUT SUMMARY OF THE NONDOMINANCE TEST 

********************************************************************************* 

THE GOAL PROGRAMMING SOLUTION IS DOMINATED . 

********************************************************************************• 

THE OBJECTIVE FUNCTION IN THE NONDOMINATED SOLUTION -8.0000 

********************************************************************************* 

OUTPUT SUMMARY OF A NONDOMINATED SOLUTION 

SUBSCRIPT X NONDOMINATED D G s 

1 
2 
3 
4 
5 

WHERE 

4.0000 0.0000 
6.0000 0.0000 
0.0000 2.0000 0.0000 

0.0000 0.0000 
6.0000 0.0000 

X DECISION VARIABLES 
D VARIABLES TO BE MAXIMIZED IN THE LP PROBLEM OF THE NONDOMINANCE TEST 
G SLACK OR SURPLUS VARIABLES IN GOAL CONSTRAINTS 
S SLACK OR SURPLUS VARIABLES IN REAL CONSTRAINTS 

*********************************************************************************• 

THE LINEAR PROGRAMMING PROBLEM OF THE NONDOMINANCE TEST HAS NO ALTERNATE OPTIMUM 

SOLUTION . 

*********************************************************************************' 
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Subject to: 

< 6 

< 4 

= 12 

- 10 

Where all the variables are nonnegative. 

Assign priority P1 to the real constraints and perform the neces

sary changes in the subscripts of d's. The problem can be written as: 

Min a • 

Real Constraints: 

.. 6 

x1 + d- -
2 

d+ 
2 = 4 

Goal Constraints: 

2x2 + x3 + d; - d+ 
3 - 12 

x1 + x2 + x3 + d~ - d+ 
4 - 10 

Where all the variables are nonnegative. 

The computer output of Problem 2 is shown on pages 183, 184. X = 
. 1 

4, x2 • 6, x3 • 0 is the GP solution. The nondominance algorithm 

indicates that the GP problem has unbounded solutions as shown in the 

computer output. 



183 

COMPUTER OUTPUT OF PROBLEM 2 

THE OPTIMIZATION ENDED ON SUBPROBLEM 3 
THERE WERE 4 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

***************************************************************************-

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1)= 

X( 2)= 

X( 3)= 

4.0000 

6.0000 

0.0000 

***************************************************************************' 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
2 
3 

GOAL NUMBER 
1 
2 
3 
4 

OVER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 

UNDER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 

***************************************************************************' 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 

ACHIEVEMENT 
0.0000 
0.0000 
0.0000 

*************************************************************************** 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 4.0000 0.0000 0.0000 
2 0.0000 6.0000 0.0000 0.0000 
3 0.0000 0.0000 0.0000 0.0000 
4 0.0000 0.0000 

*************************************************************************** 



********************************************************************** 

OUTPUT SUMMARY OF THE NONDOMINANCE TEST 

********************************************************************** 

THE ORIGINAL PROBLEM HAS UNBOUNDED SOLUTION AND THE GOAL PROGRAMMING 
SOLUTION IS CERTAINLY SUBOPTIMAL SOLUTION • 

********************************************************************** 
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Problem 3. (Ignizio (43)): 

Min a = 

Real Constraints: 

= 21 

= 27 

= 45 

= 30 

Goal Constraints: 

= 40 

= 20 

Where all the variables are nonnegative. 

Page 186 shows the computer output of Problem 3 which demonstrates 

that the second goal has no impact on the solution as a result of set-

ting a high value for the aspiration level of the first goal, and the GP 

problem may be reduced to a LP problem. 

Problem 4 (Zanakis (91)): 

This problem has been discussed in Chapter VI and the resultant GP 

formulation is: 

( d1 
- + 

d4 + d5 + 
+ 

Min a = + d2 + d3' d6' 

- + 
d7 + d7' 

+ 
d8' 

+ 
d9' 

+ + 
d10 + dll 

+ 
+ d12 + - + + 

d13 + d14 + d15 ) 



COMPUTER OUTPUT OF PROBLEM 3 

THE OPTIMIZATION ENDED ON SUBPROBLEM 2 
THERE WERE 5 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

**************************************************************************** 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1 )= 

X( 2 )= 

9.0000 

3.0000 

**************************************************************************** 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
1 
1 
2 
3 

GOAL NUMBER 
1 
2 
3 
4 
5 
6 

OVER-ACHIEVEMENT 
0.0000 
o.oooo 
0.0000 
0.0000 
0.0000 
0.0000 

UNDER-ACHIEVEMENT 
21.0000 
9.0000 
0.0000 
0.0000 

19.0000 
23.0000 

***************************************************************************~ 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 

ACHIEVEMENT 
0.0000 

19.0000 
23.0000 

***************************************************************************' 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 9.0000 0.0000 21.0000 
2 19.0000 3.0000 0.0000 9.0000 
3 23.0000 0.0000 0.0000 
4 0.0000 0.0000 
5 0.0000 19.0000 
6 0.0000 23.0000 

*************************************************************************** 

THE ABOVE GOAL PROGRAMMING SOLUTION IS NONDOMINATED. 

*************************************************************************** 
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Goal constraints: 

- + + d3 - d3 = 1063 

- + + d - d = 787 7 7 

13.358X1 + 14.846X2 + 18.073X3 

0.0048X1 + 0.0513X2 - 0.1659X3 

- 0.0048X1 - 0.0513X2 + 0.0711X3 
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0.9568X1 + 0.5383X2 + 0.9670X3 

0.9712X1 + 0.6922X2 - 0.3271X3 

0.7627X1 - o.0512X2 - 0.4834X3 

- 0.8402 - 0.2821X2 + 0.0758X3 

Where all the variables are nonnegative. 

Pages 189, 190 show the computer output of Problem 4 when all the 

goals are included, and page 191 shows the computer output when the 

goals of P5 and P6 are eliminated. The results demonstrate that if one 

or more of the higher priority goals has a lower aspiration level, some 

goals of the lower priorities may be eliminated from the GP model with-

out changing the solution results. For instance, goals of P5 and P6 are 

eliminated and the solution is the same as shown in the computer out-

puts. 



COMPUTER OUTPUT OF PROBLEM 4 

( ALL THE GOALS ARE INCLUDED ) 

THE OPTIMIZATION ENDED ON SUBPROBLEM 4 
THERE WERE 8 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1)= 665.3330 

X( 2)= 5.0000 

X( 3)"' 20.0000 

X( 4)= 30.0000 

X( 5)= 100.0000 

**************************************************************************' 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
1 
2 
2 
2 
3 
4 
5 
6 
6 
6 
6 
6 
6 

GOAL NUMBER 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

OVER-ACHIEVEMENT UNDER-ACHIEVEMENT 
625.3330 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

12133.9282 
501.3330 

0.0000 
0.0000 
0.0000 
0.0000 

187.5285 
0.0000 

0.0000 
0.0000 

1683.3330 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
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**************************************************************************~ 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 
4 
5 
6 

ACHIEVEMENT 
0.0000 
0.0000 
0.0000 

12133.9282 
501.3330 
187.5285 

*************************************************************************** 

OUTPUT SUMMARY 

SUBSCRIPT A OPT 

0.0000 

X OPT 

665.3330 

POS DEV NEG DEV 

625.3330 0.0000 



2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0.0000 
0.0000 

12133.9282 
501.3330 
187.5285 

5.0000 
20.0000 
30.0000 

100.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

12133.9282 
501.3330 

0.0000 
0.0000 
0.0000 
0.0000 

187.5285 
0.0000 

0.0000 
1683.3330 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

**************************************************************************** 

THE ABOVE GOAL PROGRAMMING SOLUTION IS NONDOMINATED •. 

**************************************************************************** 
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COMPUTER OUTPUT OF PROBLEM 4 
( ALL THE GOALS ARE NOT INCLUDED 

THE OPTIMIZATION ENDED ON SUBPROBLEM 4 
THERE WERE 8 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

****************************************************************************~ 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1)• 665.3330 

X( 2)• 5.0000 

X( 3)• 20.0000 

X( 4)• 30.0000 

X( 5)• 100.0000 

****************************************************************************~~ 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
1 
2 
2 
2 
3 
4 

GOAL NUMBER 
1 
2 
3 
4 
5 
6 
7 
8 

OVER-ACHIEVEMENT 
625.3330 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

12133.9282 

UNDER-ACHIEVEMENT 
0.0000 
0.0000 

1683.3330 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

***************************************************************************** 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 
4 

ACHIEVEMENT 
0.0000 
0.0000 
0.0000 

12133.9282 

****************************************************************************•· 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 665.3330 625.3330 0.0000 
2 0.0000 5.0000 0.0000 0.0000 
3 0.0000 20.0000 0.0000 1683.3330 
4 12133.9282 30.0000 0.0000 0.0000 
5 100.0000 0.0000 0.0000 
6 0.0000 0.0000 
7 0.0000 0.0000 
8 12133.9282 0.0000 

*****************************************************************************· 

THE ABOVE GOAL PROGRAMMING SOLUTION IS NONDOMINATED . 



APPENDIX C 

COMPUTER OUTPUT OF THE 

NUMERICAL EXAMPLE 

(RUN 5) 
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THE OPTIMIZATION ENDED ON SUBPROBLEM 5 
THERE WERE 40 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

************************************************************** 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1)= 10.9039 

X( 2)= 279.9687 

X( 3)= 2. 1808 

X( 4)= 270.5083 

X( 5)= 5.7156 

X( 6)= 217.9106 

X( 7)= 1.1431 

X( 8)= 178.3294 

X( 9)= 0.9039 

X( 10)= 84.9687 

X( 11)= 0.0000 

X( 12)= 38.9006 

X( 13)= 5.2285 

X( 14)= 0.0000 

X( 15)= 0.0000 

X( 16)= 0.0000 

X( 17)= 0.0000 

X( 18)= 0.0000 

X( 19)= 0.0000 

X( 20)= 0.0000 

X( 21)= 0.0000 

X( 22)= 0.0000 

X( 23)= 0.0000 

X( 24)= 0.0000 

X( 25) 10 2615.5768 

X( 26)= 3332.0676 

X( 27)• 4252.3556 
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X( 28)= 0.0000 

X( 29)= 12615.5768 

X( 30)'" 12216.4908 

X( 31) = 9920.2880 

X( 32)= 8047.6444 

X( 33)= 3998.4380 

X( 34)= 4057.6250 

X( 35)• 3268.9983 

X( 36)= 2674.9386 

X( 37)= 0.0000 

X( 38)= 0.0000 

X( 39)= 0.0000 

X( 40)= 0.0000 

X( 41)= 3998.4380 

X( 42)= 4057.6250 

X( 43)• 3268.9983 

X( 44)= 2674.9406 

X( 45)• 201 .0920 

X( 46)" 0.0000 

X( 47)= 0.0000 

X( 48)= 0.0000 

X( 49)= 0.0000 

X( 50)= 0.0000 

X( 51)= 0.0000 

X( 52)= 0.0000 

********************************************************************** 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
1 
1 
1 
1 
1 
1 
1 

GOAL NUMBER 
1 
2 
3 
4 
5 
6 
7 
8 
9 

OVER-ACHIEVEMENT UNDER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

59. 1274 
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1 10 0.0000 77.3109 
1 11 0.0000 126.3738 
1 12 0.0000 170.5288 
1 13 0.0000 37.3043 
1 14 0.0000 58.3183 
1 15 0.0000 98.4506 
1 16 0.0000 128.8359 
1 17 0.0000 0.0000 
1 18 0.0000 0.0000 
1 19 0.0000 0.0000 
1 20 0.0000 0.0000 
1 21 0.0000 0.0000 
1 22 0.0000 0.0000 
1 23 0.0000 0.0000 
1 24 0.0000 0.0000 
1 25 0.0000 0.0000 
1 26 0.0000 0.0000 
1 27 0.0000 0.0000 
1 28 0.0000 0.0000 
1 29 0.0000 0.0000 
1 30 0.0000 0.0000 
1 31 0.0000 0.0000 
1 32 0.0000 0.0000 
1 33 0.0000 310.1314 
1 34 0.0000 21.8079 
1 35 0.0000 56.6466 
1 36 0.0000 11.4314 
2 37 0.0000 0.0000 
3 38 0.0000 0.0000 
4 39 0.0000 0.0000 
5 40 0.0000 0.0000 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 
4 
5 

ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 10.9039 0.0000 0.0000 
2 0.0000 279.9687 0.0000 0.0000 
3 0.0000 2. 1808 0.0000 0.0000 
4 0.0000 270.5083 0.0000 0.0000 
5 0.0000 5.7156 0.0000 0.0000 
6 217.9106 0.0000 0.0000 
7 1 . 1431 0.0000 0.0000 
8 178.3294 0.0000 0.0000 
9 0.9039 0.0000 59.1274 

10 84.9687 0.0000 77.3109 
11 0.0000 0.0000 126.3738 
12 38.9006 0.0000 170.5288 
13 5.2285 0.0000 37.3043 
14 0.0000 0.0000 58.3183 
15 0.0000 0.0000 98.4506 
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16 0.0000 0.0000 128.8359 
17 0.0000 0.0000 0.0000 
18 0.0000 0.0000 0.0000 
19 0.0000 0.0000 0.0000 
20 0.0000 0.0000 0.0000 
21 0.0000 0.0000 0.0000 
22 0.0000 0.0000 0.0000 
23 0.0000 0.0000 0.0000 
24 0.0000 0.0000 0.0000 
25 2615.5768 0.0000 0.0000 
26 3332.0676 0.0000 0.0000 
27 4252.3556 0.0000 0.0000 
28 0.0000 0.0000 0.0000 
29 12615.5768 0.0000 0.0000 
30 12216.4908 0.0000 0.0000 
31 9920.2880 0.0000 0.0000 
32 8047.6444 0.0000 0.0000 
33 3998.4380 0.0000 310.1314 
34 4057.6250 0.0000 21.8079 
35 3268.9983 0.0000 56.6466 
36 2674.9386 0.0000 11.4314 
37 0.0000 0.0000 0.0000 
38 0.0000 0.0000 0.0000 
39 0.0000 0.0000 0.0000 
40 0.0000 0.0000 0.0000 
41 3998.4380 
42 4057.6250 
43 3268.9983 
44 2674.9406 
45 201.0920 
46 0.0000 
47 0.0000 
48 0.0000 
49 0.0000 
50 0.0000 
51 0.0000 
52 0.0000 

**************************************************************************** 
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*************************************************************************** 

OUTPUT SUMMARY OF THE NONDOMINANCE TEST 

*************************************************************************** 

THE GOAL PROGRAMMING SOLUTION IS DOMINATED . 

*************************************************************************** 

THE OB~ECTIVE FUNCTION IN THE NONDOMINATED SOLUTION = 2937.9943 

*************************************************************************** 

OUTPUT SUMMARY OF A NONDOMINATED SOLUTION 

SUBSCRIPT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

X NONDOMINATED 

10.0000 
287.8756 

2.0000 
274.4194 

0.4000 
220.8110 

0. 1180 
177.0330 

0.0000 
92.8756 
0.0000 

37.0700 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

2490.4149 
3379.6132 
4329.9719 

0.0000 
12490.4149 
12389. 1984 
9950.3587 
7970.0281 
3654. 1465 
4116.3995 
3314. 1196 

D G s 

52. 1244 
73.5734 

128.6587 
172.8489 
31. 1088 
56. 1368 

100.6246 
130.4341 

763.9877 
20.0000 

4.0000 



36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

2656.6760 
0.0000 
0.0000 
0.0000 
1.1804 

3654. 1465 
4116.3995 
3314.1196 
2655.4956 
663.9877 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
2679.3358 

0.0000 
258.6585 

0.0000 
0.0000 
0.0000 
0.0000 
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0.0000 

*********************************************************************************** 

WHERE 

X DECISION VARIABLES 
D VARIABLES TO BE MAXIMIZED IN THE LP PROBLEM OF THE NONDOMINANCE TEST 
G = SLACK OR SURPLUS VARIABLES IN GOAL CONSTRAINTS 
S SLACK DR SURPLUS VARIABLES IN REAL CONSTRAINTS 

******************************************************************************************~ 

THE LINEAR PROGRAMMING PROBLEM OF THE NONDOMINANCE TEST HAS NO ALTERNATE OPTIMUM • 
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C **** FUNCTION 1 
c 
C **** FUNCTION 1 BRINGS FLOATING POINT VALUES THAT ARE 
C **** EITHER + OR - 0.0001 FROM AN INTEGER TO THAT INTEGER 
c 

c 

c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 

FUNCTION FIX(Z) 
IMPLICIT REAL*B(A-H,O-Z) 

X•1. 
DO 101 N•1, 3 

IF (N.NE.1) X•10.*X 
F•X*Z 
I•F 
..J•I-2 

DO 101 K•1,3 
G•.J+K 
IF (ABS(F-G)-.005) 102,102,101 

101 CONTINUE 
FIX•Z 
RETURN 

102 FIX•G/X 
RETURN 
END 

**** ..... 
**** 

101 

102 

**** 

**** 

FUNCTION 2 

FUNCTION 2 BRINGS FLOATING POINT VALUES THAT ARE 
EITHER + OR - 0.000001 FROM AN INTEGER TO THAT INTEGER 

FUNCTION FIX(Z) 
IMPLICIT REAL*B(A-H,O-Z) 

A•1. 
DO 101 N•1,5 

IF (N.NE.1) A•10.*A 
F•A*Z 
I•F 
..J•I-2 

DO 101 K•1, 3 
G•.J+K 
IF (ABS(F-G)-0.00005) 102,102,101 

CONTINUE 
FIX•Z 
RETURN 
FIX•G/A 
RETURN 
END 

FUNCTION 3 

C**** 
FUNCTION 3 DELETES FLOATING POINT VALUES WHOSE ABSOLUTE 

VALUES ARE LESS THAN OR EQUAL TO 0.001 . 
c 

c 

DOUBLE PRECISION FUNCTION FIX(Z) 
IMPLICIT REAL*B(A-H,O-Z) 
FIX•DINT(Z+DSIGN(.SD+O,Z)) 
IF (DABS(FIX-Z).GT. 1.D-3) FIX•Z 
RETURN 
END 

C **** FUNCTION 4 
c 
C **** FUNCTION 4 DELETES FLOATING POINT VALUES WHOSE ABSOLUTE 
C**** VALUES ARE LESS THAN OR EQUAL TO 0.0001 . 
c 

DOUBLE PRECISION FUNCTION FIX(Z) 
IMPLICIT REAL*B(A-H,O-Z) 
FIX•DINT(Z+DSIGN(.SD+O,Z)) 
IF (DABS(FIX-Z) .GT. 1.D-4) FIX•Z 
RETURN 
END 
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COMPUTER OUTPUTS FOR VERIFICATION 
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MPSX OUTPUT OF THE LP PROBLEM 

MPSX/370 R1.6 PTF9 MPSCL EXECUTION 

NAME FILE1 
ROWS 

N OBJ 
E CON1 
E CON2 
E CON3 
E CON4 
E CONS 
E CON6 
E CON7 
E CONS 
L CON9 
L CON10 
L CON11 
L CON12 
L CON13 
L CON14 
L CON15 
L CON16 
E CON17 
E CON18 
E CON19 
E CON20 
E CON21 
E CON22 
E CON23 
E CON24 
E CON25 
E CON26 
E CON27 
E CON28 
L CON29 
L CON30 
L CON31 
L CON32 

COLUMNS 
X1 OBJ 400.00000 CON1 1.00000 
X1 CON3 .20000 CON4 . 70000 
X1 CONS 1.00000 CON13 .60000 
X1 CON21 20.00000 CON29 30.00000 
X2 OBJ 450.00000 CON2 1.00000 
X2 CON4 .80000 CON9 1.00000 
X2 CON13 .67500 CON21 30.00000 
X2 CON2S 15.00000 CON29 45.00000 
X3 OBJ 400.00000 CON3 1 .00000 
X3 CON5 .20000 CON6 . 70000 
X3 CON10 1.00000 CON14 .60000 
X3 CON22 20.00000 CON30 30.00000 
X4 OBJ 450.00000 CON4 1.00000 
X4 CON6 .80000 CON10 1.00000 
X4 CON14 .67500 CON22 30.00000 
X4 CON26 15.00000 CON30 45.00000 
X5 OBJ 400.00000 CON5 1 .00000 
X5 CON7 .20000 CONS . 70000 
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MPSX/370 R1 .6 PTF9 MPSCL EXECUTION 

X5 CON11 1.00000 CON15 .60000 
X5 CON23 20.00000 CON31 30.00000 
X6 OBJ 450.00000 CON6 1.00000 
X6 CONS .80000 CON11 1.00000 
X6 CON15 .67500 CON23 30.00000 
X6 CON27 15.00000 CON31 45.00000 
X7 OBJ 400.00000 CON7 1.00000 
X7 CON12 1.00000 CON16 .60000 
X7 CON24 20.00000 CON32 30.00000 
XS OBJ 450.00000 CONS 1.00000 
XB CON12 1.00000 CON16 .67500 
XB CON24 30.00000 CON28 15.00000 
XB CON32 45.00000 
X9 OBJ 200.00000 CON1 1.00000 
X9 CON13 .20000 
X10 OBJ 200.00000 CON2 1.00000 
X10 CON13 .20000 
X 11 OBJ 200.00000 CON3 1.00000 
X11 CON14 .20000 
X12 OBJ 200.00000 CON4 1.00000 
X12 CON14 .20000 
X13 OBJ 200.00000 CONS 1.00000 
X13 CON15 .20000 
X14 OBJ 200.00000 CONS 1.00000 
X14 CON15 .20000 
X15 OBJ 200.00000 CON7 1.00000 
X15 CON16 .20000 
X1S OBJ 200.00000 CONS 1.00000 
X1S CON16 .20000 
X17 OBJ 100.00000 CON1 1.00000 
X17 CON13 .10000 
X1S OBJ 100.00000 CON2 1.00000 
X18 CON13 . 10000 
X19 OBJ 100.00000 CON3 1.00000 
X19 CON14 . 10000 
X20 OBJ 100.00000 CON4 1.00000 
X20 CON14 .10000 
X21 OBJ 100.00000 CONS 1.00000 
X21 CON15 .10000 
X22 OBJ 100.00000 CONS 1.00000 
X22 CON15 .10000 
X23 OBJ 100.00000 CON7 1.00000 
X23 CON1S .10000 
X24 OBJ 1oo:ooooo CONS 1.00000 
X24 CON1S .10000 
X25 OBJ 1.00000 CON17 1.00000 
X25 CON1S 1.00000 
X2S OBJ 1.00000 CON1S 1.00000 
X26 CON19 1.00000 
X27 OBJ 1.00000 CON19 1.00000 
X27 CON20 1.00000 
X2S OBJ .50000 CON20 1.00000 
X29 CON17 1.00000 CON21 1.00000 
X29 CON29 1.00000 
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MPSX/370 R1.6 PTF9 MPSCL EXECUTION 

X30 CON18 1.00000 CON22 1.00000 
X30 CON30 1.00000 
X31 CON19 1.00000 CON23 1.00000 
X31 CON31 1.00000 
X32 CON20 1.00000 CON24 1.00000 
X32 CON32 1.00000 
X33 OBo..l 30.00000 CON21 1.00000 
X34 OBo..l 30.00000 CON22 1.00000 
X35 OBo..l 30.00000 CON23 1.00000 
X36 OBo..l "30.00000 CON24 1.00000 
X37 OBo..l 22.50000 CON21 1.00000 
X37 CON25 1.00000 
X38 OBo..l 22.50000 CON22 1.00000 
X38 CON26 1.00000 
X39 OBo..l 22.50000 CON23 1.00000 
X39 CON27 1.00000 
X40 OBo..l 22.50000 CON24 1.00000 
X40 CON28 1.00000 
X41 CON25 1.00000 
X42 CON26 1.00000 
X43 CON27 1.00000 
X44 CON28 1.00000 
X45 CON21 1.00000 
X46 CON22 1.00000 
X47 CON23 1.00000 
X48 CON24 1.00000 

RHS 
RHS1 CON1 10.00000 CON2 195.00000 
RHS1 CON9 350.00000 CON10 350.00000 
RHS1 CON11 350.00000 CON12 350.00000 
RHS1 CON13 250.00000 CON14 250.00000 
RHS1 CON15 250.00000 CON16 250.00000 
RHS1 CON17 10000. 00000 CON18 11500. 00000 
RHS1 CON19 9000.00000 CON20 12300.00000 

ENDATA 
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MPSX/370 AI.& PTF9 MPSCL EXECUTION 

SECTION I - ROWS 

NUMBER ... ROW .. AT ... ACTIVITY ... SLACK ACTIVITY . . LOWER LIMIT. .. UPPER LIMIT. . DUAL ACTIVITY 

I OB.J BS 726161.81109 726161.81109- NONE NONE 1.00000 
2 CONI EO 10.00000 10.00000 10.00000 87 0 13530 
3 CON2 EQ 195.00000 195.00000 195.00000 251.23751 
4 CON3 EQ 82.89619 
!5 CON4 EQ 248.95515 
6 CONS EQ 71.15102 
7 CON6 EO 236.47347 
8 CON7 EQ 32.85714 
9 CONB EQ 20!5.71429 

10 CON9 BS 333.42857 16.!57143 NONE 350.00000 
11 CONIO BS 347.08408 2.91592 NONE 350.00000 
12 CON11 BS 349.26109 .73891 NONE 350.00000 
13 CON12 BS 349.59!517 .40483 NONE 350.00000 
14 CON13 UL 2!50.00000 NONE 250.00000 256 0 18756 
1!5 CONI4 UL 250.00000 NONE 250.00000 244.77574 
16 CON IS UL 2!50.00000 NONE 250.00000 182.36735 
17 CONI6 UL 2!50.00000 NONE 2!50.00000 28.57143 
18 CON17 EO 10000 0 00000 10000 0 00000 10000 0 00000 22.50000-
19 CONI& EQ 11500 0 00000 11500 0 00000 11500 0 00000 22.50000-
20 CONI9 EQ 9000.00000 9000.00000 9000.00000 21.50000-
21 CON20 EQ 12300 0 00000 12300.00000 12300 0 00000 22.!50000-
22 CON21 EO 22.50000-
23 CON22 EQ 22.50000-
24 CON23 EO 21.50000-
2!1 CON24 EQ 22.!10000-

A 26 CON2!1 EQ 
A 27 CON26 EQ 
A 28 CON27 EO 
A 29 CON28 EQ 

30 CON29 BS 4854.28571- 4854.28571 NONE 
31 CON30 BS 4088.78367- 4088.78367 NONE 
32 CON31 BS 5236.91634- 5236.91634 NONE 
33 CON32 BS 4904.41535- 4904.41535 NONE 
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MPSX/370 AI.& PTF9 MPSCL EXECUTION 

SECTION 2 - COLUMNS 

NUMBER . COLUMNS AT ... ACTIVITY ... .. INPUT COST .. .. LOWER LIMIT. . . UPPER LIMIT . . REDUCED COST . 

34 XI •BS 10.00000 400.00000 NONE 
311 X2 BS 323.428!17 4110.00000 NONE 
38 X3 BS 2.00000 400.00000 NONE 
37 X4 BS 345.09408 4110.00000 NONE 
31 XII BS .40000 400.00000 NONE 
39 X& BS 348.18109 4110.00000 NONE 
40 X7 BS .09000 400.00000 NONE 
41 XI BS 349.511117 4110.00000 NONE 
42 X9 LL 200.00000 NONE 184. 10221 
43 XIO BS 121.421117 200.00000 NONE 
44 XII LL 200.00000 NONE 1&&.05896 
45 Xl2 BS 79.34122 200.00000 NONE 
48 X13 LL 200.00000 NONE 1&5.32245 
47 X14 BS 71.39382 200.00000 NONE 
41 XIII Ll 200.00000 NONE 172.111714 
49 XI& BS 70. 14&30 200.00000 NONE 
50 Xl7 Ll 100.00000 NONE 212.7540& 
51 XII Ll 100.00000 NONE 37&.15&27 
112 XII LL 100.00000 NONE 207.3737& 
53 X20 LL 100.00000 NONE 373.43272 
54 X21 LL 100.00000 NONE 119.3177& 
55 X22 Ll 100.00000 NONE 354.71020 
!I& X23 LL 100.00000 NONE 135.71429 
57 X24 Ll 100.00000 NONE 309.117143 
58 X211 Ll 1.00000 NONE 1.00000 
59 X28 LL 1.00000 NONE 2.00000 
80 X27 BS 1473.132&8 1.00000 NONE 
II X21 LL .110000 NONE 23.00000 
82 X29 BS 10000. 00000 NONE 
&3 X30 BS I I liDO. 00000 NONE 
84 X31 BS 10473.13281 NONE 
Ill X32 BS 1092&. 1&732 NONE 
&& X33 LL 30.00000 NONE 7.50000 
&7 X34 LL 30.00000 NONE 7.110000 
II X311 LL 30.00000 NONE 8.50000 
18 X38 LL 30.00000 NONE 7.!10000 
70 X37 BS 97. 1421& 22.110000 NONE 
71 X31 BS 1107.477115 22.110000 NONE 
72 X39 LL 22.50000 NONE 1.00000 
73 X40 BS 338.11221 22.50000 NONE 
74 X41 BS 47114.211171 NONE 
711 X42 BS 4091.783&7 NONE 
76 X43 BS 11232.81634 NONE 
77 X44 BS 4803.61!1311 NONE 
78 X411 LL NONE 22.50000 
78 X4& LL NONE 22.50000 
80 X47 LL NONE 21.110000 
It X48 LL NONE 22.110000 



NAGP OUTPUT OF THE EQUIVALENT 

GP PROBLEM FOR THE LP PROBLEM 

THE OPTIMIZATION ENDED ON SUBPROBLEM 2 
THERE WERE 33 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1) .. 10.0000 

X( 2)= 323.4286 

X( 3)= 2.0000 

X( 4)= 345.0841 

X( 5)= 0.4510 

X( 6)= 348.8384 

X( 7)= 0.0902 

X( 8)= 349.5490 

X( 9)= 0.0000 

X( 10)= 128.4286 

X( 11)• 0.0000 

X( 12)= 79.3412 

X( 13)• 0.0000 

X( 14) 10 71.3938 

X( 15) .. 0.0000 

X( 16)a: 70.1625 

X( 17)= 0.0000 

X( 18)• 0.0000 

X( 19)= 0.0000 

X( 20)= 0.0000 

X( 21 ) .. 0.0000 

X( 22)= 0.0000 

X( 23)= 0.0000 

X( 24)= 0.0000 

X( 25)• 0.0000 

X( 26)= 0.0000 

X( 27)• 1473.8327 

X( 28)= 0.0000 
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X( 29)• 10000.0000 

X( 30)= 11500.0000 

X( 31)= 10473.8327 

X( 32)= 10826. 1673 

X( 33)= 0.0000 

X( 34)• 0.0000 

X( 35)= 0.0000 

X( 36)= 0.0000 

X( 37)= 97.1429 

X( 38)= 1107.4776 

X( 39)= 0.0000 

X( 40)= 337.8935 

X( 41) = 4754.2857 

X( 42)" 4068.7837 

X( 43)= 5232.9163 

X( 44)= 4905.3413 

X( 45)= 0.0000 

X( 46)= 0.0000 

X( 47)" 0.0000 

X( 48)= 0.0000 

*************************************************************************** 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY 
1 
1 
1 
1 
1 

GOAL NUMBER 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

OVER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

UNDER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

16.5714 
2.9159 
0.7106 
0.3608 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
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21 0.0000 0.0000 
22 0.0000 0.0000 
23 0.0000 0.0000 
24 0.0000 0.0000 
25 0.0000 0.0000 
26 0.0000 0.0000 

1 27 o.oooo 0.0000 
1 28 0.0000 0.0000 
1 29 0.0000 4854.2857 
1 30 0.0000 4088.7837 
1 31 0.0000 5236.9163 
1 32 0.0000 4906.2433 
2 33 726191.2016 0.0000 

**************************************************************************~~-

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 

ACHIEVEMENT 
0.0000 

726191.2016 

**************************************************************************** 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 10.0000 0.0000 0.0000 
2 726191.2016 323.4286 0.0000 0.0000 
3 2.0000 0.0000 0.0000 
4 345.0841 0.0000 0.0000 
5 0.4510 0.0000 0.0000 
6 348.8384 0.0000 0.0000 
7 0.0902 0.0000 0.0000 
8 349.5490 0.0000 0.0000 
9 0.0000 0.0000 16.5714 

10 128.4286 0.0000 2.9159 
11 0.0000 0.0000 0.7106 
12 79.3412 0.0000 0.3608 
13 0.0000 0.0000 0.0000 
14 71.3938 0.0000 0.0000 
15 0.0000 0.0000 0.0000 
16 70.1625 0.0000 0.0000 
17 0.0000 0.0000 0.0000 
18 0.0000 0.0000 0.0000 
19 0.0000 0.0000 0.0000 
20 0.0000 0.0000 0.0000 
21 0.0000 0.0000 0.0000 
22 0.0000 0.0000 0.0000 
23 0.0000 0.0000 0.0000 
24 0.0000 0.0000 0.0000 
25 0.0000 0.0000 0.0000 
26 0.0000 0.0000 0.0000 
27 1473.8327 0.0000 0.0000 
28 0.0000 0.0000 0.0000 
29 10000.0000 0.0000 4854.2857 
30 11500.0000 0.0000 4088.7837 
31 10473.8327 0.0000 5236.9163 
32 10826. 1673 0.0000 4906.2433 
33 0.0000 726191.2016 0.0000 
34 0.0000 
35 0.0000 
36 0.0000 



37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

97. 1429 
1107.4776 

0.0000 
337.8935 

4754.2857 
4068.7837 
5232.9163 
4905.3413 

0.0000 
0.0000 
0.0000 
0.0000 
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***************************************************************************** 

***************************************************************************** 

OUTPUT SUMMARY OF THE NONOOMINANCE TEST 

***************************************************************************** 

THE ABOVE GOAL PROGRAMMING SOLUTION IS NONDOMINATED . 

***************************************************************************** 



NAGP OUTPUT OF THE GP PROBLEM CONSTRUCTED 

FROM THE SOLUTION OF THE LP PROBLEM 

THE OPTIMIZATION ENDED ON SUBPROBLEM 5 
T~ERE WERE 36 CONSTRAINTS IN THE FINAL OPTIMAL TABLEAU. 

***********************************************************' 

THE OPTIMAL SOLUTION FOR THE DECISION VARIABLES X(J) 

X( 1)• 10.0000 

X( 2)• 323.4286 

X( 3)• 2.0000 

X( 4)" 345.0841 

X( 5)= 0.6094 

X( 6)= 348.6428 

X( 7)= 0.3488 

X( 8)= 349.5188 

X( 9)" 0.0000 

X( 10)= 128.4286 

X( 11 ) .. 0.0000 

X( 12)= 79.3412 

X( 13)• 0.0000 

X( 14)« 71.2686 

X( 15)• 0.0000 

X( 16)= 70.2716 

X( 17)= 0.0000 

X( 18)" 0.0000 

X( 19)= 0.0000 

X( 20)= 0.0000 

X( 21)= 0.0000 

X( 22)= 0.0000 

X( 23)= 0.0000 

X( 24)= 0.0000 

X( 25)" 0.0000 

X( 26)= 0.0000 

X( 27)== 1470.0764 

X( 28)= 0.0000 
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X( 29)o: 10000.0000 

X( 30)= 11500.0000 

X( 31)• 10470.0764 

X( 32)• 10829.9236 

X( 33)• 0.0000 

X( 34)= 0.0000 

X( 35)= 0.0000 

X( 36)c 0.0000 

X( 37)= 97. 1429 

X( 38)• 1107.4776 

X( 39)= 0.0000 

X( 40)= 339. 1129 

X( 41 ) " 4754.2857 

X( 42)c 4068.7837 

X( 43)= 5231 . 0382 

X( 44)• 4905.0735 

X( 45)= 0.0000 

X( 46)• 0.0000 

X( 47)"' 0.0000 

X( 48)= 0.0000 

************************************************************************* 

THE GOAL ACHIEVEMENTS ARE 

PRIORITY GOAL NUMBER 
1 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

OVER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

UNDER-ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
o.oooo 

16.5714 
2.9159 
0.4282 
0. 1396 
0.0000 
0.0000 
o. 1096 
0.3038 
0.0000 
0.0000 
0.0000 
0.0000 
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1 21 0.0000 0.0000 
1 22 0.0000 0.0000 
1 23 0.0000 0.0000 
1 24 0.0000 0.0000 
1 25 0.0000 0.0000 
1 26 0.0000 0.0000 
1 27 0.0000 0.0000 
1 28 0.0000 0.0000 
1 29 0.0000 4854.2857 
1 30 0.0000 4088.7837 
1 31 0.0000 5235.0382 
1 32 0.0000 4906.2924 
2 33 0.0000 0.0000 
3 34 0.0000 101.3953 
4 35 0.0000 3.9236 
5 36 0.0000 0.0000 

****************************************************************************** 

THE PRIORITY ACHIEVEMENTS ARE 

PRIORITY 
1 
2 
3 
4 
5 

ACHIEVEMENT 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

******************************************************************************: 

OUTPUT SUMMARY 

SUBSCRIPT A OPT X OPT POS DEV NEG DEV 

1 0.0000 10.0000 0.0000 0.0000 
2 0.0000 323.4286 0.0000 0.0000 
3 0.0000 2.0000 0.0000 0.0000 
4 0.0000 345.0841 0.0000 0.0000 
5 0.0000 0.6094 0.0000 0.0000 
6 348.6428 0.0000 0.0000 
7 0.3488 0.0000 0.0000 
8 349.5188 0.0000 0.0000 
9 0.0000 0.0000 16.5714 

10 128.4286 0.0000 2.9159 
11 0.0000 0.0000 0.4282 
12 79.3412 0.0000 0. 1396 
13 0.0000 0.0000 0.0000 
14 71.2686 0.0000 0.0000 
15 0.0000 0.0000 o. 1096 
16 70.2716 0.0000 0.3038 
17 0.0000 0.0000 0.0000 
18 0.0000 0.0000 0.0000 
19 0.0000 0.0000 0.0000 
20 0.0000 0.0000 0.0000 
21 0.0000 0.0000 0.0000 
22 0.0000 0.0000 0.0000 
23 0.0000 0.0000 0.0000 
24 0.0000 0.0000 0.0000 
25 0.0000 0.0000 0.0000 
26 0.0000 0.0000 0.0000 
27 1470.0764 0.0000 o.oooo 
28 0.0000 0.0000 0.0000 
29 10000.0000 0.0000 4854.2857 
30 11500.0000 0.0000 4088.7837 



31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

10470.0764 
10829.9236 

·o.oooo 
0.0000 
0.0000 
0.0000 

97. 1429 
1107.4776 

0.0000 
339 •, 1129 

4754.2857 
4068.7837 
5231 .0382 
4905.0735 

0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

5235.0382 
4906.2924 

0.0000 
101.3953 
'3. 9236 
0.0000 
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************************************************•***************************** 

****************************************************************************** 

OUTPUT SUMMARY OF THE NONDOMINANCE TEST 

****************************************************************************** 

THE ABOVE GOAL PROGRAMMING SOLUTION IS NONDOMINATED . 

****************************************************************************** 

THE LP PROBLEM TERMINATES AT PHASE 1 AND 

THE VALUE OF PHASE 1 OBJECTIVE FUNCTION 3.7525 

****************************************************************************** 



i 

1, 3, 5, 7 

2, 4, 6, 8 

9, 11, 13, 15 

10, 12, 14, 16 

17, 19, 21, 23 

18, 20, 22, 24 

25, 26, 21, 28 

29, 30, 31, 32 

33' 34' 35, 36 

37, 38, 39, 40 

41, 42, 43, 44, 

45, 46, 47, 48 
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Definition of the Decision Variables 

X(i) 

Number of workers in class 1 in periods 1, 2, 3, and 4 

respectively. 

Number of workers in class 2 in periods 1, 2, 3, and 4 

respectively. 

Number of workers hired for class 1 in periods 1, 2, 

3, and 4 respectively. 

Number of workers hired for class 2 in periods 1, 2, 

3, and 4 respectively. 

Number of workers fired from class 1 in periods 1, 2, 

3, and 4 respectively. 

Number of workers fired from class 2 in periods 1, 2, 

3, and 4 respectively. 

Inventory level in periods 1, 2, 3, and 4 respectively. 

Production level in periods 1, 2, 3, and 4 respec

tively. 

Amount of overtime production assigned to class 1 

workers in periods 1, 2, 3, and 4 respectively. 

Amount of overtime production assigned to class 2 

workers in periods 1, 2, 3, and 4 respectively. 

Nonnegative variables used to transform the nonlinear 

overtime constraints to linear constraints. 
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