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CHAPTER I 

INTRODUCTION 

An extremely wide variety of proteins are found in nature. In 

some cases the chemical and physical properties of proteins differ 

dramatically from one another. For example, the major proteins of hair 

and collagen fibrils, keratin and tropocollagen, are quite different 

in molecular weight and chemical composition from the proteins of low 

molecular weight, such as insulin, that act as hormones (1). The 

variations in chemical structure among other proteins are small or 

subtle, and yet these small differences may be associated with major 

differences in physiological function. For example, hemoglobin S 

differs from hemoglobin A by only a single amino acid residue (2) , and 

yet the behavior of the two proteins in red blood cells is significant. 

To be sure, such differences occur in terms of the total number and 

chemical nature of amino acids in a protein and in the arrangement of 

the amino acids sequence which results in the folding of the polypep­

tide chain in space (3). Thus, a study of the sequencing and chemistry 

of amino acids should provide a foundation for a deeper understanding 

of the biological function of any organism. 

Among the twenty amino acids in proteins, cysteine perhaps is one 

of the most interesting. Instead, it was discovered that cysteine 

may exhibit different biological functions by virtue of its remarkable 

chemical properties (4). For instance, cysteine has an SH group and 
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it is known that sulfhydryl groups dissociate near a neutral pH. Thus, 

the reactive species RS- is frequently 500 times more nucleophilic than 

the corresponding oxygen analogue RO- (5). Moreover, RS- may also lose 

an electron to give a reactive free radical which may participate in 

chain reactions (6). Another interesting biological property of an SH 

group is that it can be oxidized to form disulfide bridges which are 

much less active than SH groups and can function as the cross-linking 

system to add stability to the protein structure. Interestingly, an 

SH group can also act as a reagent and react with the S-S group of a 

different disulfide (7) to generate a new -S-S- system and a new thiol. 

Because the thiol group can undergo oxidation and reduction with 

ease and because it is an aggressive nucleophile, it has been observed 

that thiol groups are at the catalytic sites in many enzymes (8, 10) • 

Thus, enzymes like phosphoglucomutase, ovalbumin, a-lactoglobulin, 

phosphorylase, oxidoreductases, transferases, hydrolases, lyases and 

isomerases possess SH as the catalytically functional group (9). 

2 

Nature may also employ the thiol group as the key in the regulation 

of cellular activities. Because stimulation of many SH-enzyme activi­

ties by glutathione also occurred intracellularly, Barron suggested in 

a review in 1951 (10) that it might be involved in "the regulatory 

mechanisms of cellular respiration." It was implied that possibly 

certain SH-enzymes were partly in an inactivated state due to the 

presence of natural inhibitors which inactivated the SH group. 

Thus, the SH group may be involved in many fundamental biological 

functions (11) such as: 1) direct catalysis, 2) binding of substrates, 

3) binding of regulators at allosteric sites or concerning allosteric 

regulation, and 4) structural cohesion in the interaction of protein 



subunits. Considering these four basic functions of SH groups, one can 

extend the theory even further. Perhaps some protein hormones, drugs, 

vitamins and various disease conditions may activate or inhibit SH 

groups in enzymes or other vital proteins so that their physical con­

ditions may be altered and thus the biological behavior of organisms 

is affected. 

3 



CHAPTER II 

LITERATURE REVIEW 

In view of the results to be discussed in this thesis, it is 

appropriate to establish an adequate background in several areas: 

1) physical and chemical properties of thiols; 2) alkylation 

reactions; 3) other general thiol reactions, S-S cleavage reactions; 

and 4) cleavage of peptide bonds. Each of these areas will be 

treated separately. 

General Physical Properties 

As mentioned previously, thiol-containing compounds are frequently 

500 times more reactive than the hydroxyl counterpart in nucleophilic 

displacement processes (5). The drastic difference can partially be 

explained by the ease of thiol deprotonation compared to deprotonation 

of the hydroxyl group near pH=7. As an example, the ionization pattern 

and constants for cysteine and reduced glutathione are illustrated in 

Figure 1 and Table I. 

In comparing the pKa of hydroxyl derivatives with the corresponding 

thiol compounds,.the pKa of the R-OH is frequently 15-16 while the pKa 

of the R-SH group is near 9 (14). Therefore the number of RS- anion 

species compared to RO- species at neutral pH is, in general, much 

greater from RSH than from ROH, respectively. Moreover, it is usually 

conceded that RS- is a much better nucleophile than the RO- species (15). 
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TABLE I 

IONIZATION CONSTANTS OF CYSTEINE AND REDUCED GLUTATHIONE (25°C)* 

Macroscopic Microscopic 

Compound Constants Constants Ionic 
Strength 

pKl pK2 pKA pKB pKc pKD 

L-Cysteine 8.35 10.46 8.49 8.81 10.39 10.13 0.1 

Glutathione 8.74 9.65 8.92 9.20 9.16 9.44 0.16 

* Data measured by kinetic, titration, ultraviolet, Raman and calori-
metric methods; the values are averaged from data in references (12-14). 



Alkylation Reactions 

Since with cysteine in water~ the concentration of reactive 

species, i.e., sulfide ions, is highly pH dependent, near the neutral 

7 

pH the rate of alkylation of the sulfide ion by an alkylating agent 

must also depend upon the pH of the media. Increasing the pH of the 

medium results in an increase in RS- available for nucleophilic attack. 

Thus, the rate of reaction should increase at alkaline pH (16-18) 

values. However, success of the attack also depends upon the bond 

strength and salvation properties of the leaving group X in R'X, as 

illustrated in the general reactions (Table II) . The greater the bond 

energy of R'X (Table III), the slower the reaction. It can be seen that 

the rate pattern in the halogen family in Table !I does correlate with 

the bond strengths shown in Table III. 

General Thiel Reactions 

Thiols undergo a host of chemical reactions which are of biological 

interest (20). Such reactions which involve the thiol group are substi­

tution, addition, elimination and/or oxidation to give products 

containing S-C, S-metal, S-S bonds or sulfonyl group (21). In this 

section, major types of reactions are summarized and, where possible, 

are illustrated via applications in reactions of biochemical interest. 

For example, a number of reagents react with cysteine for a variety of 

reasons such as to provide: (a) a radioactive marker, (b) a fluores­

cent marker, (c) a reversible masking group, (d) a nonreversible 

masking group, (e) a marker for photospectrometry, (f) an environ-. 

mental reporter, and, perhaps the most widely used of all, (g) an 



pH 

5.6 

6.3 

7.0 

7.4 

8.4 

7.4 

7.4 

7.4 

7.0 

7.0 

7.0 

TABLE II 

RS-+ R'-X + RS-R' + X-
RATE OF REACTION OF THIOLS AT DIFFEREJ.~T pH VALUES WITH 

HALOACETIC ACIDS (XCH2C02H) 

x Relative Rate 

cysteine I 0.14 

cysteine I 0.28 

cysteine I 1.0 

cysteine I 1.3 

cysteine I 2.1 

cysteine Br 0.094 

cysteine Cl 0.07 

cysteine F no reaction 

thioglycolate I 1.33 

glutathione I 0.056 

ethane thiol I no reaction 

8 
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TABLE III 

BOND DISSOCIATION ENERGY OF C-X BONDS 

Bond E -D 

CHrF 108 kcal/mole 

CHrCl 81 kcal/mole 

CH3-Br 67 kcal/mole 

CHrI 53 kcal/mole 
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enzyme inhibitor. Several of the reagents are given in Table IV. 

S-S Cleavage Reactions 

In nature, cysteine is rarely found free in protein but rather in 

the oxidized form as cystine with disulfide bridges, apparently to 

maintain specific three dimensional structures. Chemical cleavage of 

the S-S bond is a quite common procedure in protein sequencing and 

other related studies (29). A variety of cleavage techniques are 

S1.llilillarized in Table V. 

Cleavage of Peptide Bonds 

Protein research frequently requires the chemical cleavage of 

peptide bonds. One common reason for this has been for partial 

degradation of this type of complex biological molecules. In protein 

sequencing for example, chemical cleavage of ~pecific peptide bonds 

can result in the generation of peptide fragments useful for estab­

lishing the original protein structure. A series of chemical cleavage 

re~gents are listed in the following sections. 

The Cyanogen Bromide Reaction 

A highly specific cleavage at the carbonyl side of methionine in 

a peptide can be effected using BrCN (30). However, the polypeptide 

must be unfolded to expose methionyl residues (31) . Bovine pancreatic 

ribonuclease was the first protein to be cleaved by cyanogen bromide 

(32), because it contained a relatively high amount of methionine 

units. Two of the four methionine units present in the molecule are 

adjacent in the peptide. Thus, cleavage occurred at this site and 



Classification/Reagent 

Acylation (22) 

0 
II 

(CH3c) 20 

acetic anhydride 

Benzylation (23) 

02N-©<:c1 
N02 

chlorodinitrobenzene 

02N-©(F 
N02 

fluorodinitrobenzene 

Oxydation (24) 

per acids 

Alkene Addition (25) 

0 

¢N~ 
0 

N-ethylmaleimide (NEM) 

acrylonitrile 

11 

TABLE IV 

OTHER CYSTEINE REACTIONS 

Product 

0 
II CH c-s-CH 

3 3 

0 

~·~ 
-sA( 

0 

-CH S-CH CH C=N 2 2 2 -

Comment 

Remove with dilute -OH or 
NHzOH. 

Quite specific. 

Reacts with lysine, 
histidine and tyrosine 
also. 

Used as a pretreatment 
before acid hydrolysis for 
cysteine and tryptophan. 

Reacts slightly with 
lysine. 

Very selective at p~ 8.0; 
other groups react at 
higher pH, such as lysine, 
arginine and histidine. 



TABLE IV (Continued) 

Classification/Reagent Product 

N-(4-dimethylamino-
- 3,5-dinitrophenylmaleide) 

Mixed Disulfide Exchange (23) 

-o2cCH2SH 

thioglycolate 

Metal Reactions 

_£-chloromercuribenzoate 

azobenzene mercurial 

Carbamylation (27) 

HO-C:.N 

potassium cyanate 

-CH s-s-CH co 2 2 2 

0 
II 

-SCNH 
2 

12 

Comment 

Allows colorimetric esti­
mation of substitution; 
pKa of dimethyl ammonium. 
group depends on its 
environment used as a 
probe of -SH environment. 

Readily reversible with 
thiols. 

Extent of reaction can be 
estimated spectrophoto­
metrically. 

The pKa of the dimethyl 
ammonium ion depends on its 
local environment. 

Product is stable below 
pH 6. 0. 



TABLE V 

REAGENTS FOR CYSTINE CLEAVAGE 

Reagent (R'H) 

HSCH2CH20H 

mercaptoethanol 

RC03H 

peracids 

Na2s2o3 
sodium thiol sulfate 

*Product formed reversibly. 

Product (RCH2-SR') 

RCH2-s-S-CH2CH20H* + RCH2SH 

or 

- + + RCH2S-S03 Na + RCHzS~a 

13 
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homoserine lactone was liberated. Tile reaction can be briefly 

outlined: 

. + 0 
pH 7.0 NH......._A + 0 
r.t. RNHJ T ,R'' 

~ ~~O R' 
'+s-CN 

RNH m+R" 
i--. ~ R' CH:S-CN 

methionyl peptide t 

cyanosulf onium 
bromide 

aminoacyl 
peptide 

The use of BrCN is now quite general. 

Cleavage at Aspartic Acid 

+ 

iminolactone 
bromide 

peptide homoserine 
lac tone 

With peptides which have aspartic acids, it is possible to bring 

about a fairly specific cleavage at the C(O)-N bond of the aspartic 

acid unit at a controlled pH level. The aspartic acid peptide bonds 

are preferentially cleaved at a rate at least 100 times greater than 

other bonds (33). A number of acids and buffers have been used to 

cleave several proteins. The one to be described will be with hydro-

chloric acid although in certain cases acetic acid alone or in 

combination with other acids has been used (34). Various concentrations 

0 of ribonuclease A or insulin were heated with 0.003 N HCl at 105 C for 

about 25 hr. and 80% cleavage occurred at the C(O)-N bond of aspartic 

acid (35). The proposed mechanism is outlined as follows: 



_ro2 
RNH~NHR' 

0 

0.03 N' HCl 
105°/8 hr> 

Cleavage of Seryl and Threonyl Residues 

(N-0 Acyl Rearrangement) 

+ 
+ 

H NR' 
3 

In peptides containing the above units, cleavage of the C(O)-N 

bond (N is part of serine or threonine unit) in I can be done at low 

temperatures (36). The process can be summarized as follows with II 

as the suspected intermediate. 

Serine: R = H; Threonine: 

R 
R'...._ ).._. 

I 'OH 

~R'' 
0 I 

SOC12 
+or 

POC13 

-H 0 
2 

R = CH 3 

R' R' r-< myo 
R.'' 

oxazoline· 
derivative 

II 

o-acyl 
derivative 

H2so4/Ac2o l 
R 

15 

R0H + HO CR" 2 
H3N 

+ 

Many proteins have been treated by this method, and it has been found 

that the amount of cleavage varies from 60% to 90% (36) of the available 

threonyl or seryl units. Generally, threonine units undergo a smaller 

degree of cleavage than the serine units. 
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N-Bromosuccinimide (NBS) Cleavage on a Trypto-

phane-Containing Peptide, Tyrosine-Containing 

Peptide, and Histidine-Containing Peptide 

Cleavage of peptide bonds with NBS is not as specific or efficient 

as with the cyanogen bromide (37-42). The amount of cleavage with the 

former is often 50-90% of the C(O)-N bonds of tryptophan, tyrosine or 

histidine in simple model systems and 10-50% in proteins (37). Such 

cleavages of tyrosine-containing peptides also depend upon the nature 

of the adjacent amino acid. The following data indicate the critical 

nature of the adjacent amino.acid: tyrosine-glutamic (34%), tryptophan-

serine (65%), tryptophan-valine (60%), tryptophan-lysine (55%), 

tyrosine-carboxymethylcysteine sulfone (40%), and tyrosine-proline 

(36%) (37). All of these data are for cleavages performed on the 

known primary structure of ribonuclease (37). 

Trytophanyl Peptide 

1. urea, 8.0 M acetic acid (pH 4) 
2. NBS/15 min H 7-8 
3. NaHC03 l-fluoro-2,4-dinitrobenzene 

in etl'ianol 
4 6 N HCl/108°/12-16 hr. 

Tyrosyl Peptide 

OH 

~~R' 
0 

1. 50% acetic acid 
2. acetic acid/NBS 
3. l-fluoro-2, 4-dinitrobenzene/ethanol 
4. 6 N HCl/105°/17 hr. 

Brt;~ 
RNH O 

+ 



Histidine 
Peptide 

Histidine Peptide 

1. pyridine acetate buffer 
3 K NBS/r.t. ~~~~~~~~~• 

2. 85°-100°/1 hr. 

Peptide Cleavage at the H2N Terminals of 

Cysteinyl Residues 

50% Cleavage 

One of the reactions for peptide cleavage at the cysteinyl 

residues in reduced glutathione is based upon a reaction with an acyl 

chloride followed by a cyclization as illustrated (43). 

C02 - L 
H NNyNHl., .... NH...-.......C02 -

3+ 0 SH 

RC(O)Cl • 

17 

Acid chlorides used are quite reactive but the reaction conditions are 

critical. This cleavage depends upon the abilities of thiol group to 

react spontaneously with the acid chlorides to give an S-acyl-containing 

system. The data in Table VI demonstrate that the cleavage rate is also 

related to the stability of the anion R- which is liberated (43). 

2,4-Dinitrofluorobenzene is widely used for H2N-terminal labelling 

and also for cleavage of cysteine units in a peptide. The disadvantage 

of the reaction is that serine also combines with 2,4-dinitrofluoro-



TABLE VI 

EFFECT OF VARIOUS S-ACYL GROUPS ON THE CLEAVAGE OF REDUCED 
co - 0 0 
I 2 11 11 

GLUTATHIONE, HyCH2CH2C-NH?HC-NHCH2co2-' by RC(O)Cl 

Thiol Derivatives 
RC(O) 

4-No2c6H40C(O) 

c6H5SC(O) 

n-C4H9SC(O) 

(CH3) 2NC(O) 

c6H5C(O) 

~2 9H2 
SH 

Percent Glutamic 
Acid Formed 

(Specific Fission) 

30 

47 

10 

7 

1 

Percent Glycine 
Formed 

(Nonspecific Fission) 

2 

3 

3 

5 

3 

18 
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benzene and a similar cleavage ensues (44). Selective cleavage of 

cysteine residues has been studied with several polypeptides and 

proteins. The kinetics of the S-elimination reaction (step 2) can be 

measured by spectrophotometry at 408 nm, the absorption maximum of the 

thiodinitrophenolate anion (45-48) see below. 

0 

HO~NHR' 
0 

11. H 02 

2. 0~1 N NaOH 

R'NH2 + co2 
+ 

HO..-C02H 

1. H:C03H: 
2. 0.1 N NaOH: 

The S-S linkage can also be cleaved by CN-. For example, treatment 

of glutathione with cyanide ion at pH < 8 results in formation of the 

thiocyano derivative III and the thiol anion IV. Then the thiocyano 

derivative III cyclizes to form the 2-iminothiazolidine derivative V 

which spontaneously fragments to glutamic acid and an iminothiazolidine 

VI (49-51). 



0 
RcomY-a11 

• • •-S) 

0 

~R" 
0 

+ 
Rco2 
+ 

NH3 

III 

RCONHV' 

0 

+ 

SCN 
VI 

HN)-s 
Reo\) 
O~R" 
v 

Activated thiols can also react with CN (39-41). By treating a 

20 

thiol with 5,5'dithiobis(2-nitrobenzoic acid), (DTNB), a reactive inter-

mediate VII can form. Cyanide ion reacts rapidly with VII to give the 

thiazole with concomitant cleavage of the peptide link (39-41). One 

possible mechanism is outlined: 
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0 ~··· 
Thiolysis 

0 >=; ~ NHR" 
RSH 

. R.Jl...NH NUR.11 

0 0 

Disulfide-
formation 

DTNB 

s-ea!Jc 
Cyanolysis f;B RJLNH~kmn 
-CN/&. ~NH NHR" 

0 0 

1 
VII 

Peptide 01 R" 

Cleavage 

H20 ~ R" R_.ILN NH/ NH/ 
HR 

HN~s HN~s 



CHAPTER III 

EXPERIMENTAL METHODS 

Chemicals 

Reduced glutathione was obtained from Sigma Chemical Company and 

stored in a freezer (-20°c). Trichloroacetamide was obtained from ICN 

Pharmaceutical Inc. (K and K) and .E_-anisidine was obtained from MC & B 

Company and redistilled under vacuum. Pyridine was obtained from 

Eastman Company. Finally, other miscellaneous reagents such as KOH, 

NaOH, O=PC13, ethanol, acetic acid, formic acid, propionic acid, 

trifluoroacetic acid, and K3Fe(CN) 6 were supplied by Mallinckrodt, 

Fisher Scientific, Pierce, Sigma, Eastman and Aldrich Chemical Company. 

Laboratory 

The project was divided into two major parts: 1) the organic 

syntheses portion with Dr. Berlin (Chemistry Department), and 2) the 

biochemical reactions and amino acids analysis with Dr. Liao (Biochem­

istry Department). 

Synthesis of 2-Cyano-6-Methoxybenzothiazole 

Exactly 48.72 g of KOH was dissolved by 500 ml of 95% ethanol in a 

three-neck one-liter flask equipped with two addition funnels and a gas 

inlet tube. The solution was stirred (magnetic), and H2S was bubbled 

22 
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into the basic ethanol solution for two hours. Then 47.1 g (0.29 mole) 

of trichloroacetamide in 335 ml of 95% ethanol was added dropwise 

through the addition funnel to the stirred solution. At the same time, 

39.3 g (0.32 mole) of .E_-anisidine in 175 ml of ethanol was also added 

dropwise into the flask through the second funnel. The solution 

initially was deep red-orange and turned bright yellow after one half 

of the reactants were mixed at room temperature. After 2.5 hr, a 

solid had precipitated and was filtered. The crude product 4-methoxy­

thiooxanilamide was purified by fractional crystallization (95% 

ethanol). The yield for the step was about 0.032 mole. After all the 

4-methoxythiooxanilamide was dissolved in a 10% sodium hydroxide 

solution (94 g NaOH/936 ml H2o) with vigorous stirring, potassium 

ferricyanide (105 g, 0.32 mole) was added dropwise at room temperature 

over a 2-hr period. A white precipitate formed and was filtered and 

then recrystallized (methanol). The yield of 2-carbamoyl-6-methoxy­

benzothiazole was 1.5 g (~ 22%), with a melting point of 255-2S7°c 

[Lit. (52-53) 255-257°C]. In a hood, 2-carbamoyl-6-methoxybenzothiazole 

(1.5 g, 0.008 mole) was dissolved in excess phosphorus oxychloride (10 

ml, 0.11 mole), and the solution was boiled for 2 hr at ll0°c with con­

stant stirring. The solution turned red-pink during this period. 

Excess phosphorus oxychloride was removed under aspirator pressure. 

Moreover, vigorous magnetic stirring of the solution and with mild 

warming with a heat gun at the top part of the reaction vessel were 

necessary in order to prevent bumping of the solution. After a 

majority of the phosphorus oxychloride had distilled, ice was added to 

decompose the remaining phosphorus oxychloride and crude 2-cyano-6-

methoxybenzothiazole precipitated. Sublimation of the crude product 
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0 -3 at 0.2 mm/60 C gave a light yellow compound (0.8 g, 4.2 x 10 mole) 

with melting point 126-128°c. Recrystallization (hexane) of this com-

pound gave silver-colored needles of 2-cyano-6-methoxybenzothiazole, 

mp. 128-129°C [lit. (52) mp. 126-128°CJ. The IR and NMR spectra of 

the product are shown in Figures 2 and 3, respectively. A brief 

synthetic scheme and a possible mechanism are outlined in Figure 4 

(52). 

General Methods for Reacting Reduced Glutathione 

with 2-Cyano-6-Methoxybenzothiazole 

A buffer solution was composed of 150 ml of pyridine, 100 ml of 

H2o, 29 ml of N-ethylmorpholine and enough glacial acetic acid to give 

a solution of pH= 8.0 (some earlier experiments were conducted without 

pyridine). Due to the ease of oxidation of the reduced glutathione, 

freshly reduced glutathione solution (O:Ol M) was made with the 

buffer immediately before each experiment. The solutions of 2-cyano-

6-methoxybenzothiazole used were approximately 0.05 M (some experiments 

were conducted with 0.1 Mand some with 0.01 M solutions) in ice-chilled 

acetone; the solutions were stored in freezer. Acetone was used as the 

solvent because the compound was not very soluble in water. The buffer 

solution (pH= 8.0) was not used, although 2-cyano-6-methoxybenzothia-

zole was quite soluble in the buffer, because the compound might react 

with pyridine over a long period of storage. For all of our later 

experiments, the internal standard valine was employed in the reactions. 

Its concentration was 0.001 Min a solution consisting of pyridine, 

N-ethylmorpholine, H2o and acetic acid (pH 8.0 buffer as· mentioned 

above). 
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The general procedure for the treatment of glutathione with 

2-cyano-6-methoxybenzothiazole consisted of the following steps. At 

least 1 equivalent of 2-cyano-6-methoxybenzothiazole (1 equivalent of 

2-cyano-6-methoxybenzothiazole:l equivalent of reduced glutathione) in 

acetone was added to a 3 ml test tube. The experiments were performed 

with evaporation of all acetone before the addition of the reduced 

glutathione. An explanation for this step is given in the Discussion 

Section of this thesis. To the 2-cyano-6-methoxybenzothiazole was 

added 10 µl of reduced glutathione solution and then 100 µl of valine 

(pH 8.0), the internal standard. (the earlier experiments were done 

without valine as the internal standard in the pH 8.0 buffer). The 

test tube was purged with nitrogen and was then quickly covered with 

parafilm before being placed in a shaking incubator for 4 hr at 37°C. 

After the incubation, the parafilm was punctured and the tube was 

placed in a dessicator under a high vacuum (2 mm) at room temperature 

for 2 hr. Then the parafilm was removed and 200 µl of an acid was 

added (the most common acids used were trifluoroacetic, formic, acetic 

or propanoic). All of these acids have relatively low boiling points 

(see Table VII) for easy removal. Once again the tube was purged (N2) 

with great caution and quickly covered with parafilm. At this point, 

it was noted that if the solution turned pale yellow, a high percentage 

of cleavage of glutathione was later observed. A bright yellow color 

indicated a medium percentage (~ 34%) of cleavage. In contrast, if the 

solution was crystal clear, almost no cleavage had occurred. The tube 

0 
was returned to the incubator (37 C) for 4 hr of additional shaking. 

Again, the parafilm was punctured, and the acid was removed by evapora-

tion under a high vacuum (2 mm). Finally, 100 µl of H20 was added and 



TABLE VII 

SOME ORGANIC ACIDS AND THEIR PHYSICAL PROPERTIES 

Carboxylic Acid 
0 Density 

Structure pKa (H20/25 C) MW BP (g/ml) 

trifluoroacetic CF3co2H 0.2 114.02 72.4 1.54 

Trichloroacetic c13cco2H 0.6 163.39 197.6 1. 62 

Dichloroacetic Cl2CHC02H 1. 3 128.94 194.0 1. 56 

Malanie acid H02CCH2co2H 1. 9 (pK1) 104.06 140 (d) 1. 62 

Fluroracetic CFH2co2H 2.58 78.04 165.0 1. 37 

Chloroacetic ClCH2co2H 2.8 94.50 187.8 1.40 

Formic acid HC02H 3.7 46.03 100. 7 1.22 

Acetic CH3co2H 4.8 60.05 117.9 1.05 

Propanoic CH3CH2co2H 5.0 78.08 141.0 0.99 

*CRC Handbook of Chemistry and Physics, 60th ed., CRC Press, 1979-1980. 

00 = infinity solubility; VS = very solubility; S = soluble. 

Solubility 

S:H20, alcohol, ether, acetic 

VS:H20; S:alcohol, ether 

oo:H20, alcohol, ether 

VS:H20; S:alcohol, ether 

S:H20, alcohol 

VS:H20, S:alcohol, ether 

00 :H2o, alcohol, ether acetic 

oo:H20, ether, acetone, benzene 

oo:H20, alcohol 

N 
l.O 



the solution was ready for the amino acid analyzer and high voltage 

paper electrophoresis. 

Procedure for Sample Preparation for the 

Amino Acid Analyzer 

30 

After removal of the acid under vacuum, 100 µl of H2o was added 

to the test tube. The sample was prepared for the amino acid analyzer 

by taking 20 µl of the above solution and then diluting it with 100 µl 

of Beckman Amino Acid Analysis buffer [sodium citrate (0.2 N buffer) 

and 0.5% t:hiodiglycol, pH 2.2]. Finally, the sample was loaded into a 

fully automated Amino Acid Analyzer constructed by Dr. Liao (56). 

After 4.5 hr of Amino Acid Analyzer operation time, the relative con­

centrations of each amino acid were printed out by the Autolab (System 

AA) via integrations of individual peaks on the chromatogram. The 

signals monitored were the absorbances at 440 nm and 570 run. The 

retention time for all the experimental species were listed in Table 

VIII. 

Preparation of High Voltage Paper Electrophoresis 

All the work in this section was performed with disposable gloves. 

There was also used Whatman chromatography paper (56 cm x 47 cm) (see 

Figure 5). Before applying any sample to the paper, it was necessary 

to soak this chromatography paper with formic acid:acetic acid:H2o, 

(25:100:875 ml) in a pH 1.9 buffer for 10 sec. Before the high voltage 

electrophoresis experiment was initiated, 5 µl of solution of 10 mg 

methyl green in 100 ml of H2o (methyl green is a fast moving dye in 

the high voltage chamber) was applied to the paper to facilitate 
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TABLE VIII 

RETENTION TIME FROM THE AMINO ACID ANALYZER 

Compound 
Retention Time 

(min) 

S-Carboxymethylcysteine 30 

Oxidized Glutathione 29 

Reduced Glutathione 30 

Glutamic Acid 45 

Half Cystine 50 

Glycine 62 

· Valine 84 
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detection of the migrating amino acids. Moreover, 10 µl of a standard 

solution of amino acids (2.5 µmole of each following amino acids:lysine, 

arginine, histidine, glycine, alanine, valine, leucine, serine, iso-

leucine, methionine, threonine, proline, glutamic acid, phenoalanine, 

tyrosine and aspartic acid per ml of H2o) was applied to each paper in 

each electrophoresis experiment. The standard solution was purchased 

from Sondell Scientific Instruments, Inc. After each run, the exact 

-
order (55) of each amino acid which appeared on the paper chromatogram 

was noted and shown in Figure 5. Instead of using a 20 µl solution,as 

in the preparation of the amino acid analyzer sample, a 10 µl of 

solution was applied directly to the pre-soaked paper. The paper was 

then submerged into a cooled (16°C; pH= 1.9 buffer, the same buffer 

used as in soaking the paper), high voltage electrophoresis chamber. 

The experiment was initiated by setting the power level at 3000 volts 

for about 1 hr. The power was stopped when the methyl green dye had 

migrated to within about three to four inches from the end of the paper 

chromatogram. This chromatogram was dried in the hood overnight and 

then was checked for fluorescent spots under a UV and/or IR lamp. 

Finally, the last step of the experiment involved innnersing the paper 

chromatogram into a staining solution which consisted of cadmium 

acetate (2 g), acetic acid (40 ml), ninhydrin (1 g) and acetone (200 

ml). Each amino acid was detectable on the paper which had been 

treated with ninhydrin followed by heating in an oven (ll0°c) for 3 min 

immediately after the immersion. 

Method for Protein Hydrolysis (6 N HCl) 

The acid hydrolysis was done under high vacuum (2 mm) to prevent 
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the oxidation of reactive amino acids during the incubation period 

(110°C/24 hr). The protein sample was dried in a pyrex test tube (3 

ml) before it was treated with 200 µl of 6 N HCl. The air was evacu-

ated from the test tube by a vacuum pump while at the same time a 

point near the open end was heated with a gas-oxygen combination torch. 

With slow rotation in the flame and constant pulling on both ends of 

the tube, it was possible to seal the tube. This tube was placed in 

0 
an oven (110 C) for 24 hr. The sealed tube, after the contents had 

undergone complete hydrolysis, was opened cautiously by applying a hot 

glass rod to a scratch mark on the pyrex tube. After the sealed tube 

was opened, H2o and HCl were removed under vacuum (2 mm) at room 

temperature. 

KF Calculation for Glutathione 

It was possible to identify each amino acid, S-carboxymethyl-

+ - -cysteine H3 NCH(co2 )CH2ScH2co2 and oxidized and reduced glutathione 

from the information provided by the amino acid analyzer according to 

the appropriate retention times. The retention times for all detectable 

species are listed in Table VIII. Using standard solutions, it was 

possible to determine constant KF which by definition is equal to the 

peak area (unit area)/amino acid concentration in nmole per ml. Each 

amino acid had an individual KF value. 

The equivalent of glutathione could be calculated from the inte-

grated peaks provided by the amino acid analyzer. Concurrently, the 

same sample of glutathione was acid-hydrolyzed and the resulting 

product was analyzed for the equivalents of glycine or glutamic acid 

residues. Reduced glutathione (100 µl, 0.01 M) and 100 µl of valine 



(0.001 M) were added to a test tube. This solution was evaporated 

completely (2 mm) at room temperature to give a solid. Then 100 µl 

of H2o was added to the solid, and 20 µl of the resultant solution 
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was taken for the amino acid analysis. The remaining solution was 

again evaporated. The residue was hydrolyzed with 6 N HCl as described 

in Methods for Protein Hydrolysis (.£_ N HCl). To the final residue was 

added 80 µl of H2o. Once again, 20 µl of this solution was taken for 

amino acid analysis. The analysis data for the samples examined, 

before and after acid hydrolysis, are in Table IX. With this data, it 

was possible to determine the KF for glutathione. The calculation for 

this KF value was done as follows: 

Case 1: 

144.24 nmole valine 
~~~~~~~~~~ x 88.06 nmole of glycine and glutamic acid 
140.96 nmole valine 

8.54 unit area 
average = 

KF 

KF = 0.0948 unit area/nmole 

Case 2: 

148.08 nmole valine 
~~~~~~~~~- x 78.94 nmole of glycine and glutamic acid 
126.00 nmole valine 

8.57 unit area 
average = 

KF 

KF = 0.0924 unit area/nmole 

AVERAGE KF = 0.0936 unit area/nmole 

Determination of the Percentage of Reduced 

Glutathione by Sodium Iodoacetate 

Due to the moisture and the long period of storage, some reduced 



TABLE IX 

BEFORE AND AFTER ACID HYDROLYSIS OF GLUTATHIONE WITH VALINE AS THE INTERNAL STANDARD 

Glycine Glutamic Glutathione 1/2 Cystine Valine 
nmole/ml nmole/ml unit area nmole/ml nmole/ml 

Before Acid Hydrolysis 

Case 1 0 0 8.54 0 144.24 

Case 2 0 0 8.57 0 148.08 

After Acid Hydrolysis 

Case 1 84.94 91.18 0 37.64 140.96 

Case 2 78.51 79. 36 0 26.35 126.00 

w 

"" 
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glutathione might have been oxidized. The method for calculating the 

percentage of reduced glutathione was as follows. The cysteine unit 

in the reduced glutathione rapidly reacted with iodoacetate and formed 

S-carboxymethylcysteine which could be detected by the amino acid 

analyzer. The retention time for S-carboxymethylcysteine and KF were 

almost identical to these of aspartic acid (56). The retention times 

for the experimental species were listed in Table VIII. For all 

practical purposes, the author used the KF of aspartic acid which is 

0.1298 for the S-carboxymethylcysteine in order to calculate its con-

centration. 

The experimental approach was to use various amounts of excess 

iodoacetate to react with freshly prepared reduced glutathione. All 

of the following solutions were made in the pH 8.0 buffer: 10 µl of 

0.01 M freshly-prepared, reduced glutathione, and 100 µl of 0.001 M 

valine were mixed in each of the six 3 ml pyrex test tubes. To the six 

labelled test tubes were added O, 10, 30, SO, 100, and 200 µl of 

0.1 M sodium iodoacetate, respectively. The mixture was purged 

thoroughly with Nz and then allowed to stand at room temperature for 

2.5 hr. The tubes were transferred to an incubator (37°c) for 4 hr. 

It was assumed that all cysteine had reacted with iodoacetate. Thus, 

tubes 1-6 were dried in vacuum (2 mm), and then acid hydrolysis (6 N 

HCl) was performed on the contents immediately. After the hydrolysis, 

glycine, glutamic acid and S-carboxymethylcysteine were analyzed in the 

amino acid analyzer. Partial results of the analysis (only the S-car­

boxymethylcysteine was shown) outlined in Figure 6. From this experi­

ment, the conversion of reduced glutathione could be estimated as 

92%. 
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0 ........................................................ ... 
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Figure 6. The Results from the Analysis for the Percentage 
of Reduced Glutathione by Sodium Iodoacetate 
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Sample Calculation for Reduced Glutathione 

Cleavage Percentage 
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Perhaps this could be the most crucial calculation within the 

entire thesis. For example, the data from the amino acid analyzer 

showed that unreacted glutathione had 3.75 unit area. Thus the amount 

of unreacted glutathione = 3.75/0.0936 = 40.06 nmole. With the same 

data from the analysis, the equivalents of glycine were also deter­

mined. For instance, if there was 65 nmole of glycine in the same 

sample with 40.06 nmole of unreacted glutathione (calculated from 

above), then the% of cleavage would obviously be, (65.00/65+40.06) 

x 100 = 62%. 

However, from the sodium iodoacetate experiment (Figure 6), there 

was only 8% unreduced glutathione detected. Thus, the true reduced 

glutathione cleavage percentage would be (0.62/0.92) X 100 = 67.39%. 



CHAPTER IV 

RESULTS 

In our efforts to cleave cysteine on the carbonyl side of the 

peptide bond with 2-cyano-6-methoxybenzothiazole, many solvents and 

reaction conditions were examined. The most successful solvent system 

employed 150 ml pyridine:lOO ml H20:29 ml N-ethylmorpholine and enough 

acetic acid to obtain a pH 8.0 for the reduced glutathione/2-cyano-6-

methoxybenzothiazole coupling step. Using the most successful solvent, 

as indicated in Table X, acetic acid provided 61.8% net cleavage. 

However, in the experiments the acetic acid/pyridine combination did 

not greatly affect the acid cleavage much. Among the less successful 

solvent combinations used before the acid cleavage to initiate coupling 

of 2-cyano-6-methoxybenzothiazole and reduced glutathione was ethanol/N­

ethylmorpholine/H20/ acetic acid (pH 8.0 buffer). The amount of cleavage 

only about 2-4%. Another combination of acetone/N-ethylmorpholine/H2o/ 

acetic acid (pH 8.0 buffer) was used before the acid cleavage step, but 

the yield was improved only to about 10-30% overall. 

In the experimental results reported in Table XI, it was the 

author's mistake by not using the same amount of 2-cyano-6-methoxyben­

zothiazole as the experiments in Table X for the 2-cyano-6-methoxy­

benzothiazole-reduced glutathione coupling reaction in the pH 6.8 

buffer. Otherwise one could definitively conclude the fact that pH 

8.0 coupling was more efficient than the one in pH 6.8. 

40 
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TABLE X 

ACID CLEAVAGE STEP BY THE ACETIC ACID/PYRIDINE COMBINATION1 

Acetic Acid/Pyridine 
Glutathione 

(v/v) 

--
100/0 56.20 

99/1 255. 77 

95/5 69.12 

90/10 169.98 

75/25 66.67 

Glutamic 
nmole/ml 

Glycine 

0 74.17 

0 541.69 

0 77 .98 

0 386.00 

0 91. 25 

3 
% Cleavage 

56.9 

67.9 

53.0 

69.4 

57.8 

Corrected %4 
Cleavage2 

61.8 

73.8 

57.6 

75.5 

62.8 

1ro each tube was placed 20 µl of 0.05 M 2-cyano-6-methoxybenzothiazole, 10 µl of 0.01 M reduced glutathione 
and 100 µl of pH 8.0 buffer. 

2The controls for tubes 1-5 (without 2-cyano-6-methoxybenzothiazole) displayed no cleavage at all. 

3calculations were based upon the amount of glycine which was cleaved divided by (the original equivalent 
of glutathione, which is the nmole of glutathione determined after the cleavage process+ nmole glycine). 
The amount of glycine and glutathione after the cleavage reaction is listed in the Table. 

4only 92% glutathione was in reduced form in the starting material; therefore the true reduced glutathione's 
cleavage % was (% cleavage/92.0 x 100 or = corrected % cleavage. 

""" I-' 
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TABLE XI 

2-CYAN0-6-METHOXYBENZOTHIAZOLE AND REDUCED GLUTATHIONE UNDERGOING NEUTRAL pH COUPLING! 

Acetic Acid/Pyridine 
Glutathione Glutamic 

(v/v) nmole/ml 

--
100/0 57.5 0 

99/1 98.08 0 

95/5 63.57 0 

90/10 93.59 0 

75/25 73.61 0 

Glycine % Cleavage 

62.6 5Z.3 

55.17 36.0 

62.97 49.8 

47.36 33.6 

51.96 41.4 

Corrected % 
Cleavage 

56.9 

39.1 

54.1 

36.5 

45.0 

1To each tube, 5 µl of 0.05 M 2-cyano-6-methoxybenzothiazole, 10 µl of 0.01 M reduced glutathione and 100 
µl of pH 6.8 buffer. 

2The controls for tubes 1-5 (without 2-cyano-6-methoxybenzothiazole) displaced no cleavage at all. 

.j::'­
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The results reported in Table XII clearly indicated that the 

efficiency of acid cleavage decreased in the order: acetic > propanoic 

> formic > trifluoroacetic acid. Moreover, two hours of incubation in 

the acid was insufficient for the acid cleavage step. 

From the Mechanism II in the Discussion, H2o is also involved in 

the role of acidic catalytic cleavage process. Therefore the experi­

ments in Table XIII employed the combination acid/pyridine/H20 for the 

acid cleavage step. However, both pyridine and HzO provided no sub­

stantial improvement over the results obtained from using pure acids. 

The results of experiments reported in Table XIV were interesting. 

However, another cleavage occurred to give 7-10 nmole of glutamic acid 

(~ 5% equivalent of glutathione) which is extremely high. However, the 

improvement of the specific cleavage was obvious; in vacuum, the thiols 

were not being oxidized by the oxygen. Thus, the maximum amount of 

thiol was available to react with the 2-cyano-6-methoxybenzothiazole. More­

over, the 32°c incubation (instead of 37°C) might have helped the coupling 

step because the reaction entropy would favor the association (2-cyano-

6-methoxybenzothiazole-glutathione coupling) at a lower temperature. 

All of the high voltage paper chromatographic data for glutathione 

cleavage are quite reproducible. A representation of the typical 

experimental result is outlined in Figure 5 (page 32). 



TABLE XII 

TIME STUDY FOR ACID CLEAVAGE STEP WITH TRIFLUOROACETIC, FORMIC, ACETIC AND PROPANOIC ACID 

Tube Period for Acid Glutathione Glutamic Glycine Acid % Cleavage Corrected % 
Incubation (hr) nmole/ml Cleavage 

1 6 21.26 0 0 TRIF. 0 0 

2 0 88.14 0 5.08 TRIF. 5.4 5.9 

3 2 94.20 0 11.31 TRIF. 10.7 11. 7 

4 6 79.91 0 28.93 TRIF. 26.6 28.9 

5 6 152.03 0 0 FORM. 0 0 

6 0 113 .14 0 4.79 FORM. 4.1 4.41 

7 2 71.90 0 30.08 FORM. 29.5 32.1 

8 6 66.24 0 37.46 FORM. 36.1 39.3 

9 6 150.32 0 0 ACET. 0 0 

10 0 100.21 0 16.40 ACET. 14.1 15.3 

11 2 62.39 0 78.79 ACET. 55.8 60.7 

12 6 67.41 0 76.36 ACET. 53.1 76.4 

13 6 114.74 8.08 0 PROP. 0 0 ~ 
+-· 



TABLE XII (Continued) 

Tube Period for Acid Glutathione Glutamic Glycine Acid % Cleavage Corrected % 
Incubation (hr) nmole/ml Cleavage 

14 0 83.54 0 8.66 PROP. 9.4 10.21 

15 2 50.43 5.29 55.73 PROP. 52.5 57.1 

16 6 51. 71 7.12 62.30 PROP. 54.6 59.4 

All tubes contained 10 µl of 0.01 M reduced glutathione and 100 µl pH 8.0 buffer, and all contained 5 µl 
of 0.005 M 2-cyano-6-methoxybenzothiazole except for tube 1, 5, 9 and 13. 

.i::­
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TABLE XIII 

ACID CLEAVAGE WITH THE COMBINATION OF ORGANIC ACID/PYRIDINE/H20 (VALINE AS AN INTERNAL STANDARD) 

Tube Acid/Pyridine/H20 Glutathione Glutamic Glycine Acid % Cleavage Corrected % 
(V/V/V) runole/ml Cleavage 

1 100/0/0 37.39 0 53.84 ACET. 59.01 64.15 

2 95/5/5 34.29 0 54.80 ACET. 61.51 66.86 

3 90/10/0 39. 74 0 55.15 ACET. 58.12 63.17 

4 80/20/0 42.32 0 52.07 ACET. 55.17 59.97 

5 90/5/5 35.26 0 50.30 ACET. 58.79 63.90 

6 90/5/5 89.20 0 0 ACET. 0 0 

7 80/10/10 30.55 0 41.92 ACET. 57.84 62.87 

8 80/10/10 91.23 0 0 ACET. 0 0 

9 60/20/20 39.96 0 56 .96 ACET. 52 .41 56.96 

10 60/20/20 75.96 0 0 ACET. 0 0 

11 95/0/5 37.18 0 47 .00 ACET. 55.83 60. 69 

12 95/0/5 N.A. N.A. 0 ACET. (F.P.E.) 0 "' 0 

13 90/0/10 34.08 0 4 7. 53 ACET. 58.24 63.30 .!'-
0\ 



TABLE XIII (Continued) 

Tube Acid/Pyridine/H20 Glutathione Glutamic Glycine Acid % Cleavage Corrected % 
(V/V/V) runole/ml Cleavage 

14 90/0/10 91.56 0 0 ACET. 0 0 

15 80/0/20 32.69 0 34.46 ACET. 51.32 55.78 

16 80/0/20 96.15 0 0 ACET. 0 0 

17 100/0/0 30 .88 0 35.69 PROP. 53.62 58.28 

18 95/5/0 33.33 1.99 37.23 PROP. 52.76 57.35 

19 90/10/0 31.94 0 36.3 PROP. 53.19 57.82 

20 80/20/0 36.00 1. 76 34.92 PROP. 49.24 53.35 
" 

21 90/5/5 33.54 0 34.30 PROP. 50.55 54.95 

22 90/5/5 N.A. N.A. 0 PROP. (F. P. E.) 0 l\.i 0 

23 80/10/10 34.51 0 34.61 PROP. 50.07 54.43 

24 80/10/10 N.A. N .A. N.A. PROP. (F.P.E.) 0 0 

25 60/20/20 44.12 0 29.46 PROP. 40.04 43.51 

26 60/20/20 N.A. N.A. N.A. PROP. (F.P.E.) 0 0 

27 95/0/5 32 .91 0 38.15 PROP. 53.69 58.36 ~ 
-..J 



TABLE XIII (Continued) 

Tube 
Acid/Pyridine/H2o Glutathione Glutamic Glycine Acid % Cleavage Corrected % 

(V/V/V) nmole/ml Cleavage 

28 95/0/5 N.A. N.A. N.A. PROP. (F .P. E.) 0 0 

29 90/0/10 32.26 0 31.30 PROP. 49.24 53.52 

30 90/0/10 N.A. N.A. N.A. PROP. (F. P. E.) 0 0 

31 80/0/20 29.06 0 23.3 PROP. 44.50 48.37 

32 80/0/20 N.A. N.A. N.A. PROP. (F. P. E.) 0 0 

The controls were tubes 6, 8, 10, 12, 14, 16, 22, 24, 26, 28 and 30, which did not contain the 20 µl of 
0.05 M 2-cyano-6-methoxybenzothiazole. All tubes contained 10 µl of 0.01 M reduced glutathione, 100 µl 
of 0.001 ML-Valine pH 8.0 buffer. 

N.A. = not available 

(F.P.E.) = from high voltage paper electrophoresis chromatogram. 

.i:-­
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TABLE XIV 

COUPLING UNDER VACUUM OF 2-CYAN0-6-METHOXYBENZOTHIAZOLE WITH REDUCED GLUTATHIONE FOR 3 HOURS AT 32°c 

Tube 
Acid/Pyridine Glutathione Glutamic Glycine Acid % Cleavage Corrected % 

(V /V) nmole/ml Cleavage 

1 100/0 39.96 10.94 111. 92 ACET. 73.69 80.1 

2 95/5 49.34 0 84.31 ACET. 63.08 69.56 

3 90/10 39.74 0 75.40 ACET. 65.48 71.18 

4 50/50 51.49 7.94 64.37 ACET. 59.22 64.37 

5 100/0 65.05 7.93 32.98 PROP. 33.64 36.61 

6 95/5 46. 79 6.79 33.76 PROP. 41. 92 45.56 

7 75/25 35.26 9.03 35.84 PROP. 50.41 54.79 

To each tube, 10 µl of 0.01 M reduced glutathione, 20 µl of 0.05 M 2-cyano-6-methoxybenzothiazole and 200 
µl of valine pH 8.0 buffer were added. 

~ 
\() 



CHAPTER V 

DISCUSSION 

Mechanism 

From the data which was presented in Chapter III, there appears to 

be two reasonable mechanisms to explain the observed cleavage of reduced 

glutathione. Of course, other mechanisms could be operational but the 

two given ones seem to fit the conditions used and the results obtained. 

Figures 7 and 8 contain the pathways we suggest for the cleavage of 

reduced glutathione with 2-cyano-6-methoxybenzothiazole. 

Mechanism I and II 

In mechanism I, formation of the crucial cleavage intermediate VIII 

depends upon the electronically rich cyano nitrogen to undergo nucleo­

philic attack on the peptide backbone. The more electron rich the 

nitrogen, the more favorable the nucleophilic attack would be. On the 

other hand, in mechanism II, the crucial cleavage intermediate IX 

depended upon the more electron deficient carbon in the cyano group 

to participate in the cyclization. The more electron deficient this 

carbon, the more favorable the cyclization should be. 

The cyclization step in mechanism I or in mechanism II could be 

the rate limiting step for the entire cleavage process. Step 1 in both 

mechanisms as shown in Figures 7 and 8 is believed to be controlled by 

50 
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Step 1. c).i 
·pH 8.0 RN .l"".)t + + 

RN'-1- NH~ -
37°C/4 hr. ,J· ;su H NH3 

s~ co2 

+ 

Step 3. 
0 

37 C/4 hr. 

~ ~ f{.J' s 
CH~N 

3 VIII . 

Figure 7. Proposed Mechanism I for Glutathione Cleavage by 
2-Cyano-6-Methoxybenzothiazole 



HN 0 -

> s~z-
CH o.@-N NH~C02 

3 ~3 

Step 2. 

Figure 8. Proposed Mechanism II for Glutathione Cleavage 
by 2-Cyano-6-Methoxybenzothiazole 
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an equilibrium process. In essence, an excess of the 2-cyano-6-

methoxybenzothiazole would react with the majority of the reduced 

glutathione and strongly favor the product of step 1 reaction. Simi-

larly, step 3 also favored its product which was the result of cleavage, 

because in both mechanisms I and II the peptide carbonyl carbon (after 

the cyclic closure) became a highly unstable asymmetric center. More-

over, since step 3 was done under mild heating (37°C), the entropy of 

the reaction could strongly favor cleavage. In fact, the author 

believes step 3 is the fastest step for both mechanisms. 

Since mechanisms I and II had exactly opposite characteristics for 

the limiting step (step 2), being electronically rich and poor, respec-

tively, the author felt that he could distinguisn which mechanism was 

operating for the cleavage by setting individual experiments with an 

electron deficient cyano derivative, 4-cyanophenol ( HO-@-CN ) and an 

electronic poor cyano derivative, p-nitrobenzonitrile (02N-@-CN ). 

Both reagents were purchased from Aldrich Chemical, Inc. If mechanism 

I was operational, 4-cyanophenol would provide a higher concentration 

of glycine than _p_-nitrobenzonitrile. On the other hand, if mechanism 

II was operational, 4-cyanophenol would provide a lower concentration of 

glycine than .E_-nitrobenzonitrile. If the cyclic arrangement occurred 

at all with both reagents, the difference for peptide cleavage by 4-

cyanophenol and .E_-nitrobenzonitrile would be. expected to be over-

whelming. 

Unfortunately, by using trifluoroacetic, formic or acetic acid, no 

cleavage was detected from either reagent, even though both .E_-nitroben-

zonitrile and 4-cyanophenol, from high voltage paper chromatography, had 

shown covalent attachments to the reduced glutathione. The covalent 
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attachments were concluded from the fact that the Rf(s) of reacted 

glutathione shift extensively lower than the free reduced glutathione 

on the high voltage paper chromatogram. Presumably species such as 

~R 

o~~ -0 C NH 
2 ~NH NH~co2 -

NH O 
+ 3 

where R = N02 for .£_-nitrobenzonitrile, and R = OH for 4-cyanophenol, 

were formed. After experiencing the failure of this part of the experi-

ment, verification of the proper mechanism was still inconclusive. 

Thus, additional evidence for a mechanism has yet to be obtained. 

One More Possible Mechanism 

We predicted thiol anion of cysteine undergoes nucleophilic attack 

on the cyano carbon of 2-cyano-6-methoxybenzothiazole. If the thiol 

anion attacked the a. carbon* to the cyano group 

* CN 

c CH3o~T ) 

it could possibly provide us with a reasonable cleavage mechanism as 

well. The third mechanistic speculation is formulated in Figure 9. The 

third mechanistic proposal is the most unlikely model for the following 

reasons: 1) Nucleophilic attack on the peptide carbonyl by a secondary 

amine is extremely difficult and 2) Steric effects are too great to 

favor the product of step 2 in Figure 9. Therefore, by eliminating 



-o2c 
lNH 0-H - 1:'iJ o2cyv N~ Step 3. 

NH S l.c~QCH 
3 'j-i 3 

+ CN 

Figure 9. Proposed Mechanism III for Glutathione Cleavage by 2-
Cyano-6-Methoxybenzothiazole 
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the mechanism III, mechanisms I and II are still the most possible 

ones. 

After the failure of simple mechanistic verification methods, as 

mentioned earlier, verifying the proper mechanism is not an easy 

matter. Isolating the final cleaved product and determining its 

structure by NMR and mass spectrometry would be the most reasonable 

approach to the problem. A simpler alternative, replacing 4-cyano-

phenol and .E_-nitrobenzonitrile with the relatives 

_/7(CN 
HO-<Qj-N 

and 

shown might give evidence that one mechanism is more defensible than 

another. However, it may be difficult to rule out one mechanism 

com~letely based on any one simple test. 

Reactions of Amino Thiols with Aldehydes 

and Ketones 

The thiol group appears to be quite active toward carbonyls. Fre-

quently the reaction is an equilibrium process which is pH dependent 

(57-63). A representative reaction of this kind follows: 

+ 

Thus, in the experimental procedure (Chapter III) in order to obtain a 

maximum concentration of glutathione in the reduced form, the carbonyl-

containing acetone is evacuated before adding reduced glutathione. 
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Reactions Between Edman Reagent and 

Reduced Glutathione 

Since thiol is a good nucleophile, the thiol group of reduced 

glutathione may react with the Edman Reagent much easier than in the 

usual reaction between the H2N-terminus and the Edman Reagent. In the 

pH 8.0 buffer, the S-Edma.n reagent linkage, X presumably is formed. 

The conclusion is drawn from the fact that the Rf of the reacted 

glutathione (with Edman Reagent) shifted extensively lower than the 

free reduced glutathione on the high voltage paper chromatogram. How-

ever, treating X with trifluoroacetic acid at 37°c does not initiate the 

type of cleavage as with 2-cyano-6-methoxybenzothiazole. Actually, a 

reasonable cleavage mechanism can be summarized in Figure 10. However, 

the cleavage attempt is not successful so far. 



0 1·:-:! - ~ r-sNH-@ OzC NH +NH -
.....__co2 NH H-0 

+ 3 

·o 

-o2c~NHfiS 
~ s 

~3- (H~O 0 
o2c 

Figure 10. Proposed Mechanism for Gluta­
thione Cleavage by the 
Edman Reagent 
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CHAPTER VI 

SUMMARY 

The object of this study was to explore the use of 2-cyano-6-

methoxybenzothiazole as a peptide bond cleavage agent specific for the 

carbonyl side of cysteine residues in a peptide or protein. In this 

study, reduced glutathione was used as a simple model system to 

evaluate the efficiency and specificity of the cleavage under a variety 

of experimental conditions. 

Results from the amino acid analysis of glycine which is one of 

the cleavage products showed that under the best conditions, 76% of 

cleavage of the reduced glutathione were observed. However, the sample 

of the reduced glutathione used in this study contained only 92% of the 

reduced form, based on the alkylation study with iodoacetate. Therefore, 

the maximum cleavage after correction can be as high as 80%. Cleavage 

of the other peptide bond in glutathione will result in the release of 

glutamic acid. Since very little glutamic acid could be detected, it 

was concluded that cleavage was limited only to release glycine. Thus 

the present study showed the reagent, 2-cyano-6-methoxybenzothiazole, 

is specific for cysteinyl peptide bond cleavage and provides a high 

yield. The cleavage process was relatively clean and left a new free 

H2N-terminal. Thus the Edman reagent can then be used to sequence amino 

terminal. Thus the Edman reagent can then be used to sequence amino 

acid residues after the cysteine. Therefore, the 2-cyano-6-methoxyben-

59 



zothiazole appears to have considerable potential as a useful reagent 

in protein chemistry and may have a broad scope in other utilities 

as well. 

60 

Several cleavage mechanistic speculations were mentioned! However, 

not enough evidence uncovered to substantiate any one of the three 

possible mechanisms yet. 
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