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CHAPTER I 

INTRODUCTION 

A primary measure of the validity of any theory is the degree to 

which it is capable of providing predictions which can be put to the ex-

perimental test. The agreement between theory and experiment in the 

case of spinor electrodynamics is almost legendary; however, no such 

statement can be made regarding the electrodynamics of vector particles. 

Much of the difficulty lies in the properties of the massive 

charged vector particles available for study; all are short lived mem-

bers of the hadron family so that in production processes final state 

interactions due to the strong force obscure the more delicate radiative 

corrections which constitute the nontrivial predictions of the theory. 

In addition these vector bosons are thought to consist of quark-anti-

quark bound states, a fundamental theory involving point-like interac-

tions therefore being inapplicable except as an approximation. 

If current optimism isborneout, the above cited problems will be 

overcome when the next generation of colliding beam accelerators begin 

+ 
to produce thew-, long hypothesized as the intermediaries of the weak 

interaction, which have the dual attributes of being both disposessed 

of strong interactions, and, it is expected, lacking in structure. 

Before the question of detailed comparison may be seriously addressed, 

however, it is necessary that one theoretical ambiguity be resolved by 

answering convincingly, if not conclusively, the question: what is the 

l 
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value of the magnetic moment parameter K for a pointlike particle? Al-

though playing a role analogous to the g of spinor electrodynamics in 

the magnetic moment: 

-+ 
µ 

e 
2M 

w 

-+ 
(1 + K) S (1-1) 

by the very nature of its introduction K cannot be calculated from the 

theory; rather the mathematics must be coupled with some compelling 

argument (1). An example in this regard is T. D. Lee's (1) result for 

the radiative corrections to the basic quadrupole moment 

Q := (1-2) 

obtained as an infinite sum of Feynman graphs using the renormalizable 

model he and C. N. Yang (2) developed: 

Q M~ ~ + ~ a 0 a ln ( a.K
2 ~ 

w 

(1-3) 

It is readily observed from this form that all coefficients in the usual 

perturbation expansion are infinite, and so the theory is unrenormaliza-

ble, unless 

or 

K = -~ a 

a = o 
0 

Moreover, the coefficient of the log is given by 

(1-4) 

(1-5) 
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a = 
0 

2 
(K+3) (K-1) 

21T 
(1-6) 

thus three possibilities are provided. 

In the face of the aforementioned uncertainty it becomes necessary 

to ask if there might not exist an alternative argument, one which 

allows a single value of K. It is exactly to that question that this 

thesis is addressed. In Chapter II an approach based upon the unitarity 

of the scattering matrix is described, and pair production in two-photon 

collisions is singled out for study in this regard. In Chapter III the 

concept of a transversality mapping is introduced as a simplification 

tool and its implications for this study discussed. Chapter IV concerns 

the comparison of asymptotic behavior with the prediction of unitarity 

while Chapter V checks the result with the literature. Appendixes are 

provided which detail vector electrodynamics, relevant kinematics, the 

application of the transversality mapping, and the computer programs 

used. 



CHAPTER II 

THE UNITARITY BOUND 

Aside from the more obvious defect of providing several candidates 

for K, the renormalization argument cited in Chapter I has the additional 

deficit that it is rooted not in some profound physical principle but 

rather in the mathematics needed to deal with the recurrent infinities 

that plague quantum field theory. While renormalizability appears to be 

a common feature of those theories which correspond to nature it must be 

kept in mind that they are all limited in scope and the possibility of a 

completely finite unified theory cannot be excluded. An alternative 

approach should therefore have the merit of resting on much firmer physi-

cal grounds. 

Just such an approach is provided by the consequences of the unitar-

ity of the scattering matrix, which in essence is the generalization of 

the conservation of probability principle familiar to ordinary quantum 

mechanics, and as such may be taken to be a fundamental requirement of 

any physically meaningful theory. Taken together with an austere set of 

parallel assumptions, namely that the amplitude is an analytic function 

of the mandelstam variables S and T, andpolynomiallybounded in S, 

unitarity restricts the asymptotic behavior in s of a cross-section to 

be 

o(S) ~ C(ln s) 2 
S+oo 

4 

v s > s 
a 

(2-1) 
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here S denotes the beginning of the asymptotic region and C is some 
a 

finite constant (3). It is therefore possible to make the following 

hypothesis: 

process 

if there exists some set of K.s such that for a given 
l 

a(S,K) ~ C(ln s) 2 

S-r<x> 

2 
a(S,K) > C(ln S) 
s-)<O 

K K. 
l 

K "/ K. 
l 

(2-2) 

(2-3) 

then {K.} constitute the possible physical values of K. This is the line 
l 

of attack that will be used. 

In selecting a process for examination it is useful to keep in mind 

the advantage of excluding virtual photons and thereby remove questions 

of Y-z0 mixing as predicted in the Weinberg-Salam (4) model. This 

essentially limits the possibilities to Compton scattering and two-

photon production, the latter of which will be chosen, albeit somewhat 

arbitrarily. The three lowest order diagrams contributing to this 

process are illustrated in Figure 1 and using the rules of Table II, 

Appendix A, the amplitude is found to be given by 

(2-4) 

where 

Ma.Sµv = Ma.Bµv + Ma.Bµv + Ma.Sµv 
(a) (b) (c) (2-5) 

Ma.Bµv cmµ pSv 
(a) - v (-Pl,ql,K) sap(ql) V (q1 ,P 2 ,K) (2-6) 

Ma.Sµv a.av PBµ . ) 
(b) - v (-Pl,q2,K) sap (q2) V (q 2 ,P 2 ,K (2-7) 



Figure 1. 

(a) 

-P 
1 

(b) 

-P 
1 

(c) 

Lowest order graphs contributing 
to yy -+ w+w-

6 
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(2-8) 

Applying Equations (A-10) and (A-11), the squared amplitude, sununed 

over final and averaged over initial spins, is given by 

== 

x 

x (2-9) 



CHAPTER III 

Trill TRANSVERSALITY MAPPING 

Although Equations (2-5) through (2-9) together with the definitions 

of Table II, Appendix A, constitute all the information needed to calcu­

late jMfil 2 directly, it should be noted that such a straight forward 

evaluation involves some one hundred and sixty thousand terms; thus it 

aSµv 
is only prudent to consider means by which the tensor structure of M 

can be simplified, so as to make the problem more manageable. Towards 

this end the concept of a transversality mapping is introduced as 

follows: consider an arbitrary vector electrodynamic process involving 

N external lines, with amplitude 

Defining 

MA iN=ITl E: (q ) ' . /\., l 
l 

A. A. A. ···A. 
M 1 2 3 N 

I A 
M + 

A. ·••A. A.. •·•A. 
1 i-1 i+l n 

S1. 
l 

if n of the N transversality conditions 

A.. 
q.J E:, (q.) 

J /\.. J 
J . 

0 

8 

(3-1) 

(3-2) 

(3-3) 

(3-4) 

(3-5) 



are used, Equations (3-1) and (3-3) imply 

'A N 
M 1' U1 s' ( ) I\. q. 

1 1 

= 

or equivalently 

MA 'A 
-+ M 

A 'A 
so that the operation maps the tensor M onto M now let 

PA A' 
i i 

= 

then according to Equation (3-5) 

and similarly 

(CT) Ai (CT) 
Is,, (q.) [q. s, (q.)] 
CT /\, 1 1 /\, 1 

1 1 

0 

0 

so that with N 
0 

the number of lines in the initial state 

= 

9 

(3-6) 

( 3-7) 

(3-8) 

(3-9) 

(3-10) 

(3-11) 
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h h · I 12 · · t us t e mapping leaves Mfi invariant. 

As it stands, the transversality mapping is sufficient to allow 

a6)JV all terms proportional to Pla and P26 to be dropped from M since 

Equation (A-11) is unique. In the case of kl)J and k2\!, however, Equa­

tions (3-9) and (3-10) are unnecessarily restrictive as the following 

theorem demonstrates: let {k.} C{q.} such that 
J i 

and choose 

then 

where 

cS 

k 2 
j 

PA.A~ -
J J 

JMfi 12 = 

-N 
2 0 

wj.Q, 

0 

0 

- gA.A~ 
J J 

IMfiJ2 - cS 

n 
w£j i~j~.Q, PA.A: 

i i 

(3-12) 

(3-13) 

(3-14) 

( 3-15) 

(3-16) 

A.Q, 'A 
with wJ . .Q, the negative of the coefficient of k.Q, ink.A M • The proof 

J . 
J 

is as follows: writing in analogy to equation (3-3) 

'A 
M = 

A. A 
k. J Q 

J j 

it follows from Equations (3-12) and (3-13) that 

( 3-17) 



but also 

since the ki's are 

I A 
M =: 

arbitrary 

k.;\ J . 
J 

it 

M 
';\ 

11 

(3-18) 

9, "I j (3-19) 

must be that 

"i 
=: k9, w j Q, 

;\£ -
;\ 

k£ (kj •Q£) (3-20) 

and Equation (3-16) follow, Q.E.D. It may be noted that if there is 

only one external line belonging to {k,}, or if only one of the condi-
1 

tions (3-5) is applied to {k.}, then equations (3-12), (3-13) and 
l 

(3-18) have the immediate consequence that 

0 =: 0 (3-21) 

Identical arguments apply in the case of scalar electrodynamics, the 

sole difference being that {E;\. (qi)} E {ki}. This extention allows a 
l 

simple example to illustrate the correctness of Equations (3-15) and 

(3-16); 
. 2 

apart from an overall factor of ie the amplitude for pair pro-
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duction of scalar particles in two-photon collisions is Mµvt:µ(k 1 )sv(k2), 

where 

(2P1-k1 )µ(k 2-2P2 )V 

2k ·P 
1 1 

+ (3-22) 

is easily seen to satisfy Equation (3-13). Proceeding as in Equations 

(3-17) and (3-18): 

M' ]JV 

p µp v 
- 2[ 1 2 

k ·P 
l l 

p VP µ 
l 2 µVJ +----g 

k ·P 
2 1 

p v p v 
Mµv - k µ [ 2 + 1 J 

1 k ·P k ·P 
1 1 2 1 

p µ p v 
kV[ 1 + 2 J 

2 k ·P k ·P 
1 1 2 1 

µ v[ 1 1 J 
+ kl k2 2k ·P + 2k ·p 

1 1 2 1 

= 1Mfil2 + ~[2] [2] 

1Mfil2 + 2 

- 1Mfil2 + 0 

Now applying the transversality mapping theorem 

k M' µv 
l]J 

= 

- 2k \) 
2 

(3-23) 

p 
+ lv ] 

k ·p 
2 1 

(3-24) 

(3-25) 



and 

k M'µv 
2v 

= 

= 

- 2k µ 
1 

= ~ [ (2) (2) + (2) (2)] 

2 

13 

(3-26) 

(3-27) 

so the equivalence is demonstrated; if, for example, (3-5) is applied 

to k v only 
2 

M' µv = 

= 2 

= 0 

P V(2P -k )µ 
2 1 1 

kl.pl 
+ 

P \I (k -2P ) V 
1 1 2 

k2•pl 
2 µ\I 

+ g (3-28) 

(3-29) 

(3-30) 

thus o vanishes and the note preceeding Equation (3-21) is also verified. 

The application of the transversality mapping and theorem are de-

tailed in Appendix B. Rather more has been done than simply dropping 

Pla' P28 , klµ and k 2v; instead a program of recombination has been 

· d h' h 11 'aBµv be · · h carrie out w ic a ows M to written compactly in terms of t e 

constants 

1 - K ( 3-31) 



and tensors 

as 

_ M'aSµv 

p µp v 
2 aS [ 1 2 

- g k ·p 
1 1 

crµ k a aµ k cr 
g 1 - g 1 

I aSµv(P P k) 
0 l' 2' 1 

1 + K 

+ 

µv] - g 

14 

(3-32) 

( 3-33) 

(3-34) 

(3-35) 

(3-36) 

The initial objective has been achieved for these are now less than three 

thousand terms to be considered, and Equation (2-9) becomes 
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One final manipulation that will prove useful is to eliminate c2 

in favor of c1 via 

so that 

_ M'a.Bµv 

+ 

+ 

= 

+ 

2 µv a.B 
- g g 

2 

+ 

+ [ I~a.cr (k2) + P ~ ga.a] [ I~BP (kl) + P~gBp J} 
(k2·Pl) 

(3-38) 

(3-39) 

(3-40) 



CHAPTER IV 

ASYMPTOTIC BEHAVIOR AND THE UNITARITY BOUND 

Owing to the fact that 

T (4-1) 

u (4-2) 

the general form of the function A(S,T) defined in Appendix C is, by 

Equations (3-27) through (3-30): 

A(S,T) = (4-3) 

where the constraint i+j+k = 6 follows from dimensionality and note has 

been taken of the property of I 1 that 

O'ip 
Il (k,P 1.) P. 

l.CJ, 
l. 

= 0 (4-4) 

Of the two hundred and sixteen coefficients appearing in Equation 

(4-3) , only a few may be expected to appear in the limit S + ro. This is 

readily demonstrated; let 

z = (4-5) 

16 



y 

then 

A (YI Z) 
1 ]-2 zi 

[ (Z-1) (Z + - - 1) L a -
y i+k~6 i,6-(i+k) ,k yk 

and Equation (C-15) becomes 

2 
2 2 na 2 

M a(S,M ,K) = - 4- Y 

(1-i;) 

2Y fl -

1 - (l+i;) 
2Y 

2 
na 
- 4- h(y ,K) 

where 

A change of variables 

z = w + 1 

gives 

az A(Y,Z) 

l 
2y 

h(y,K) = [ 1 1 ]2 r 
aw (yw - 2) (yw + 2) i+jlk=6 

2y 

a second change of variables 

r = YW 
1 
2 

17 

(4-6) 

(4-7) 

(4-8) 

(4-9) 

(4-10) 

(4-11) 

(4-12) 



allows this to be reexpressed as 

h(y,K) 
1 

= -
y 

I 
1 -c.;-1> 

- 21'(1;+1) 
2 

1 
- - H(y,K) 

y 

2 
dr [ r (r+l)] 

18 

.~ a1.J'k yj (r+y)i 
i+J+k=6 

(4-13) 

As H(y,K) is, by Equation (4-6), lim H(y,K) in the limits+ 00 , Equation 
y7o 

(4-13) may be expanded about y = o; to leading order in y: 

h(y,K) + .l Jo dr [ r (r+l) r 2 ~ 
y -1 i 

b. a. 6 . 1 1,0, -1 

By one more change of variables: 

T 
r -

s 

h (Y ,K) 
_1_ 10 

dT [ T (T+Y) T 2 
asymp 2 2 -s 

S M 

It may readily be seen by comparison to 

2 
h(S,K,M ) 

1 
2 

SM 

s 
- -(1-F,;) 

2 

s - -<1+.;> 2 

i 2 j k 
x a. 'k T (M ) S 

1J 

that the asymptotic form of the 

2 

cross-section 

s - -<i+s> 2 

is 

b. 
i 

r 
1 

~ b. 
i 6-i 

T S 
i 1 

given by 

J:: _!_ ( M4 1Hl 
dT A(S,T)] (J + -- s 

4s 2 4 2 M - -(1+0 
2 M =O 

(4-14) 

(4-15) 

(4-16) 

(4-17) 

(4-18) 



A' (S,T) 

provided that 

i 6-i 
l: b. T S 
i 1. 

J o dT A' (S,T) 

-s 

[M4 A(S,T)]j 2 
M =O 

f(S,T) [T(T+S)] 2 

19 

(4-19) 

(4-20) 

(4-21) 

It is next noted that Equations (3-27) and (3-28) imply that A(S,T) 

may be written as 

(4-22) 

where A2 (s,T,o) is given by the substitution 

M' a.f3µv 
= (4-23) 

4 
e 

in Equation (3-27), except for an overall factor of ~4 . Contracting P 
la. 

Na.f3µv P P = 2gµv(k ·P + k ·p - P ·P) 
la. 2(3 l l 2 l l 2 

+ 2{P~(P2-k2 )µ + P~(P1-k1 )V 

P~P~(M2 -2P1 ·k1 ) 
-------} 

(Pl ·kl) 

P~E~(M2-2P 1 ·k2 )} 
(P 1 ·k2) 



so 

(NaSµv P P ) (Na' B' Pl"''P2a•) 
la 2B µv "" J-J 

Also 

then 

and similarly 

+ (-P~P~ki + P~gBµ(k1 ·P 2 ) + P~P~(P1-k)BJ} 
(k2·Pl) 

2 µv 
4M N N 

µv 

20 

(4-24) 

(4-25) 

(4-26) 

(4-27) 

(4-28) 
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The function A2 (s,T,o) is thus 

A2 (S ,T, o) = (4-29) 

-4 
so that lacking any factors of M , it does not contribute to the 

leading asymptotic behavior of Equation (4-19). 

With the foregoing developments in mind, the function Ai (S,T,c1 ) 

has been calculated using the Reduce II program listed in Appendix D 

(5). The result is expressed in terms of the variable 

for which 

2 

J a (K) 
7T<l = 

s-+«> 4s2 

T' 

.!. s 
2 

.!. s 
2 

T+!s 
2 

dT I A I ( s TI c ) 1 , , 1 

Equation (4-21) is precisely satisfied, and 

= 

Substituting Equation (4-32) into (4-31) and integrating 

cr(S,M) = 
2 

{5c1 - 12 c1 + 12}S 
s -+ 00 

(4-30) 

(4-31) 

(4-32) 

(4-33) 

In utilizing Equation (2-1) , it is useful to differentiate both 

sides with respect to S and then take the limit s -+ 00 , so that 

2 2 
ira c 1 

{SC~ - 12 c1 + 12} c lim 
lns 

24M4 
:$ 

s s+oo 

= 0 (4-34) 
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Since the cross section must be non-negative, the unitarity bound re-

quires 

0 

The polynomial in brackets has two roots which give 

-+ 

-+ 
µ 

K = -1 + 2i/6 
5 

+ i 16 
5 

e -+ -s 
M 

w 

(4-35) 

(4-36) 

(4-37) 

however as µ is a physically measureable quantity these must be excluded. 

Thus, there remains only 

and K is uniquely fixed. 

K 

-+ 
µ 

0 

= 1 

e -+ = -s 
M 

w 

(4-38) 

(4-39) 

(4-40) 



CHAPTER V 

IMPLICATIONS OF K 1 

One immediate consequence of Equation (4-39) is that 

a 
0 

0 (5-1) 

and so the theory is renormalizable. This argument between the first 

order unitarity approach and the infinite order quadrupole calculation 

may be easily understood by noting that in the Lee and Young model, K 

is a renormalized quantity. It should further be noted that K = 1 is the 

value assigned in the Weinberg-Salam (4) theory of electro-weak inter-

actions, the preceeding argument thus lending support to that model. 

A further consequence of Equation (4-39) is 

A(S,T) A2 (S,T,o) (5-2) 

since A1 (S,T,C1 ) is proportional to c1 . The second term of Equation 

(4-29) is readily calculated: 

= 4 - 2 (5-3) 

while the first term has been found by the Reduce II program of Appen-

dix E (5) : 

23 



Combining these results 

so 

(k ·k ) 2 2 

+ 16{ ( (k ·Pl)(~ ·P )] 
1 1 2 1 

A2 cs ,T, o> 1 M2s M4s2 s4 s2 
48{- + - + --} + 16{-2 + 2 -} 

2 x x2 x x 

where 

24 

(5-4) 

(5-5) 

(5-6) 
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x 

2 2 2 2 
= T + T(8-2M ) - M (8-M ) (5-7) 

Integrating over the azimuthal angle ~, the differential cross-section 

is given by 

and then 

2 
41Tct 

a=--
82 

da 
dT 

= 
2 

41Tct 

82 

2 8 

J
M - 2(1-0 

2 s 
M - -(l+l;) 

2 

2 2 2 4 
3 8(3M +28) + 8 (8 +3M ) } {-+ -----
2 x x2 

2 2 2 4 
dT{-23 + S(3MX+28) + S (8 +3M)} 

x2 

__ 4na.2 [ _i ?:" 8 + 6M2 2 1-l; 2 2 4 
.., (S-2M )ln(l+?:") + - 2 l;(8 +3M)] 

8 2 2 8 .., M 

= 4na.2 l; [ _i M2 + 2 (1 + 3M2
4 ) + 6M2 (M2 _ 2M4 ) l_ ln (1-l;-) J 

M2 2 8 8 8 8 82 l; l+l; 

Expressed in terms of Y: 

(5-8) 

(5-9) 

(5-10) 

with t; given by Equation (4-9). This result agrees in detail with that 

given by 8ushkov, Flambaum, and Khriplovich (6). In the asymptotic 

limit 

a(K=l)Y+o (5-11) 
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thus the unitarity bound is respected; this behavior, and that of Equa-

tion (4-33) 

2 
cr (K~l) - a s 

S-7-00 4 
M 

(5-12) 

also agree with the qualitative forms given by Pesic (7). 

+ -Reactions in which YY + W W appears as a subprocess have been con-

sidered in several papers, their asymptotic results for K = 1 being of 

particular interest. With the diagram of Figure 2a dominating, Sushkov, 

Flambaum and Khriplovich (6) find 

cr - + 
e e 

- + 
+ e e 

4 
_ + - (ln S) 

WW 

Kompaniets (8), as well as Ter-Isaakyan and Khoze (9) find 

0 

Ye - + -
+ e w w 

- S (ln S) 

(5-13) 

(5-14) 

for the dominant diagrams of Figure 2b. While Equations (5-13) and 

(5-14) seem to imply a unitarity violation for K=l, it must be noted 

that these calculations ignore the mixing of the z0 with the virtual 

photon. Given the fact that this mixing has controlled bad behavior in 

other processes (4), they cannot, therefore, be considered as conflicting 

with this papers results; more realistic investigations would be desir-

able. 

Summary and Conclusions 

+ -In this paper the process YY + w w has been examined in compari-

son to the unitarity bound 



e 

+ e 

w 

+ w 

';.-----+---) -
.-/ 

e 

Figure 2. D · a· f - + om~n~mt .fiagrams ot' !! e _-+ 
· e.eTW-W and ye--+ e w+w 

27 

(a) 

(b) 

(c) 
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a 
(s-+<») 

< C(ln S) 2 

leading to the algebraic equation 

C~ [ SC~ - 12C1 + 12] 0 

In conjunction with the requirement that measurable quantities be purely 

real, this has been shown to give K=l as the sole physical value of the 

anomolous magnetic moment parameter. It should be noted, however, that 

this result only constrains K in 
0 

00 

K - . Z: 
i=o 

i 
K. (a) 

l. 

to be unity. The higher order terms could be found by the unitarity 

approach, or by direct calculation with K so fixed (10). 
0 

It remains to be seen if the W boson has a K value consistent with 

K = 1, although a deviation would imply structure, with serious con­
o 

sequences for the Weinberg-Salam model. The results of Pesic (7) for 

- + - + + -e e ~ e e w w and general K are based upon an unrealistically low w 

mass of less than 10 GeV; revision and extention to differential cross 

sections is needed here. In addition, as remarked at the end of Chapter 

V, this process as well as photoproduction want for more careful study 

in the context of the Weinberg-Salam model and K =l. 
0 

Finally, while the transversality mapping and theorem of Chapter 

III have resulted as a byproduct of this investigation their power should 

not be underestimated. As demonstrated by Appendix B, they expedite 

manipulations while allowing the metric form of the photon polarization 

sum to be retained. This resulted in a factor of fifty in simplification 
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here; even more dramatic reductions may be expected in processes having 

a larger number of external legs. 



BIBLIOGRAPHY 

J.. Lee, F. D. "Application of .;-Limiting Process to Intermediate 
Bosons." Physical Review, Volume 128, Number 2 (1962), 
pp. 899-901. 

2. Lee, F. D. and C. N. Yang. "Theory of Charged Vector Mesons Inter­
acting With the Electromagnetic Field." Physical Review, 
Volume 128, Number 2 (1962), pp. 885-890. 

3. Queen, N. M. and G. Violini. Dispersion Theory in High-Energy 
Physics. London: Macmillan Press Limited, 1974, pp. 51-54. 

4. Taylor, J. c. Gauge Theories of Weak Interactions. Cambridge: 
Cambridge University Press, 1976. 

5. Hearn, A. C. Interactive Systems for Experimental Applied Mathe­
matics. New York: Academic Press, 1968. 

6. Sushkov, O. P., V. U. Flambaum, I. B. Khriplovich. "A List of 
Renormalizable Models of Weak Interactions in e+ e- Colli­
sions." Soviet Journal of Nuclear Physics, Volume 20, Number 
5 (1975). 

7. Pesic, P. D. "Two-Photon Cross Section for W-Pair Production by 
Colliding Beams." Physical Review D, Volume 8, Number 3 
(1973) f PP• 945-951. 

8. Kompaniets, U. G. "Photoproduction of W-Meson Pairs on Electrons." 
Soviet Journal of Nuclear Physics, Volume 12, Number 4 (1971), 
pp. 447-450. 

9. Ter-Isaakyan, N. L. and v. A. Khose. "Electromagnetic Production 
of W-Meson Pairs." Soviet Journal of Nuclear Physics, Volume 
15, Number 1 (1972), pp. 51-55. 

10. Bardeen, W. A., R. Gustrnans, B. Lautrup. "Static Quantities in 
Weinberg's Model of Weak and Electromagnetic Interactions." 
Nuclear Physics, B46 (1972). 

30 



APPENDIXES 

31 



APPENDIX A 

VECTOR BOSON ELECTRODYNAMICS 

The total Lagrangian for vector electrodynamics is 

L 

. ,i,* ,!, 
- ieK F A.w 'YA. 'Y w {A-1) 

= {A-2) 

= (A-3) 

where ~ is a regularization parameter that will be put equal to zero as 

lowest order processes are being considered, A is the electromagnetic 
(JJ 

field, and cp is the boson field (2). The resulting Feynman rules are 
w 

given in Table I. To convert these rules, which use imaginary fourth 

component, scalar product 

and metric 

= 

to standard notation involving real zeroth component, scalar product 

32 
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TABLE I 

FEYNMAN RULES FOR VECTOR BOSON ELECTRODYNAMICS 

Element 

Internal Photon 
Line 

Internal Boson 
Line 

Three-Vertex 

Four-Vertex 

Graph 

A~·w 

p w 

w 
P' 

w 

Value 

- ie [ o, (P+P 1 ) -o, (-KP' +P+KP) 
AW p Ap W 

-o (-KP+P'+KP'),] 
wp /\ 

- ie 2 [ a o o - o o - o o ] 
pa ;\w wp ACT wa AP 



and matric 

the transformation 

= 

0 ++ = A B - A·B 
0 

1 
0 

0 
0 

0 
-1 

0 

0 

2 2 
q + - q 

0 
0 

-1 
0 

0 + - g 
Aw Aw 

is used to obtain the resultant rules of Table II. 

Polarization sums are given by 

l: E: (A) (k) £ (A) (k) 
A w p 

for massless vector particles and 

l: E: (A) (P) E: (A) (P) 
A w P 

-2 = - g + m P P 
wp w p 

for massive vector particles. 
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(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-11) 



Element 

Internal Photon Line 

Internal Meson Line 

Three-Vertex 

Four-Vertex 

TABLE II 

VECTOR BOSON ELECTRODYNAMICS IN STANDARD NOTATION 

Graph 

w 

w 

w 

Value 

-i ev, (P ,P' ,K) = -ie [ g, (P+P') 
AWP AW p 

- g, (-KP'+P+KP) 
AP w 

- g (-KP+P'+KP') ] 
WP A. 

2 
-i e U 

A.wpa 

-g;\p (P+P I) p 

w 
U1 



APPENDIX B 

APPLICATION OF THE TRANSVERSALITY MAPPING 

1 . h . . aSµv . . f 
In app ying t e transversality mapping to M it is use ul to note 

that this tensor is symmetric under exchange of the two photons; then 

according to Equations (2-5) through (2-8) and the definition of uaSµv 

(B-1) 

under the operation 

(B-2) 

(B-3) 

. aSµv 
so that it is sufficient to work with M(a) : 

-gcrp + 
qlcrqlp 

2 
x [ 

M ] 
2 2 

ql - M 
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(B-4) 

Taking first the terms involving qlcr q1P: 

(B-5) 

then 



Next considering terms proportional to g 
op 

2 [ aµ a a11 a] [ pv 13 Sv P] {l+K) g kl - g k1 g k 2 - g k 2 g 0 p 
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(B-6) 

(B-7) 



Combining these expressions 

where 

:::: -2k ·P 
1 1 
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(B-8) 

(B-9) 

I CY.(3jJ\) 
Applying the transformation of Equations (B-2) and (B-3), M(b) is ob-

£ 'a(311v 
tained rom M(a) and 

a(3µv M'aSµv + M'aSµv 
u + (a) (b) (B-10) 



then 

I a.f3µV 
- M 

2 [ av a. a.v a] [ pµ f3 Sµ p] 
+ (l+K) g k 2 - g K2 g kl - g kl gap 

Contracting with k 1µ and k 2v: 

k M 1 a.f3µv 
2v 

4 
so except for a factor of e 

40 

(B-11) 

(B-12) 

(B-13} 
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p p p p I 

2-2[ 8 aSa'B'c- la la')( + 2S2B)] 
g g · g aa' + 2 -g BB' 2 

M M 

(B-14) 



APPENDIX C 

MANDELSTAM VARIABLES AND PHASE SPACE 

The Mandelstam variables for the process yy ~ 

T = 

= 

u = 

= 

(P + p ) 2 
1 2 

(k -
1 

p )2 
1 

(P -
2 

k )2 
1 

(k -
1 

P2)2 

(P -
1 

k )2 
2 

+ -

In the center of mass frame 

s = 2k •k 
1 2 

2 s 
cos8) T = M - -c1-s 2 

2 s 
cos8) u M - -c1+s 

2 

where 

s Ii 4M2 
- s 
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are: 

(C-1) 

(C-2) 

(C-3) 

(C-4} 

(C-5) 

(C-6) 

(C-7) 



and in this frame 

dcr 
dst 

1 1 (21T) J 1 IM fi 12 d (cos 8) a 4 (41T2 ) s -1 

Noting the constraints 

kl + k2 = pl + p2 

S + T + U 

A(S,T) is defined as 

4 
e 4 A(S,T) 

then since by Equation (C-5) 

Equation (C-8) becomes 

and the cross-section is 

a = 

dT 
dcos8 

1 
2 

given by 

r: 2 
1Ta 

2 
4S 

1 

st; 
2 

4 
e 
4A(S,T) 

s 
- -(1-t,:) 

2 
A(S,T)dT 

s 
- -(1+0 

2 

2 
S+T-M 

2 
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(C-8) 

(C-9) 

(C-10) 

(C-11) 

(C-12) 

(C-13) 

(C-14) 

(C-15) 



APPENDIX D 

REDUCE II PROGRAM FOR Ai (S,T,Cl) 

VECTORD Kl,K2,Pl,P2; 
MASS{) Kl=8,K2=8,Pl=M,P2=M; 
MSHELL 1:) Kl,K2,Pl,P2; 
OPERATOR,f) Il,I2,A,A1,A2,A3,A4,F; 
FURDALLlJ Bl,Kl,J3,Pl,Jl,J5 ~ LET 
Il(Bl,Kl,J3,Pl,Jl) = Bl*(Jl.J3)-(Kl.J3)*(Pl.Jl), 
I2(Jl,Kl,J5,J3) = (Jl.J3)*(Kl.J5)-(Jl.J5)*(Kl.J3); 
LET~ C2 = 2 - Cl; 
INDEX .f> JS, J6; 
2*(J3,J4)*((Pl.Jl)*(P2.J2)/Bl + (Pl.J2)*(P2.Jl)/B2 - (Jl.J2)) 
+(Il(Bl,Kl,J3,Pl,Jl)*Il(B2,K2,J4,P2,J2)*(Cl/M)**2 
+(J5.J6)*I2(Jl,Kl,J5,J3)*I2(J2,K2,J6,J4)*C2**1 
+2*C2*((Pl.Jl)*I2(J2,K2,J4,J3) + (P2.J2)*I2(Jl,Kl,J3,J4)))/(2*Bl) 
+(Il(B2,K2,J3,Pl,J2)*Il(B2,Kl,J4,P2,Jl)*(Cl/M)**2 
+(J5.J6)*I2(J2,K2,J5,J3)*I2(Jl,Kl,J6,J4)*C2**2 
+2*C2*((Pl.J2)*I2(Jl,Kl,J4,J3) + (P2.Jl)*I2(J2,K2,J3,J4)))/(2*B2) $ 
SAVE AS -fi A (J3,J4) $ 
SUB {)(J3=J7,J4=J8,A(J3,J4))$ 
SAVEAS ,.P A (J7 ,J8) $ 
INDEX .fJ Jl ,J2 $ 
A(J3,J4)*A(J7,J8) $ 
SAVE AS..]:) A(J3,J4,J7,J8) $ 
INDEX{) J3,J4,J7,J8; 
A(J3,J4,J7,J8)*(J3,J7)*(J4.J8) $ 
SAVE AS 'D Al; 
A(J3,J4,J7,JS)*(J3.J7)*(P2.J4)*(P2.J8) $ 
SA VEAS .£ A2 ; 
A(J3,J4,J7,JS)*(Pl.J3)*(Pl.J7)*(J4.J8) $ 
SAVEAS ..£> A3; 
A(J3,J4,J7,JS)*(Pl.J3)*(Pl.J7)*(P2.J4)*(P2.J8) $ 
SA VEAS .}$ A4; 
Al*(M**4) - A2*(M**2) - A3*(M**2) + A4; 
SUB .f:i (Bl= Kl.Pl,B2 = K2.Pl,!*ANS) $ 
SUB .f> (Pl.P2=Kl.K2-M**2, P2.K2=Pl.Kl,P2.Kl=Pl.K2,!*ANS); 
SUB 6 (Kl.K2=S/2,Kl.Pl = S/4-Tl/2,K2.Pl = S/4 + Tl/2,!*ANS); 
SUB 1J (M=8,!*ANS); 
FORALL ,I) Cl -0 SAVEAS lf:J F (Cl); 
F (Cl) - F ( 8) ; 

SAVEAS JS F (S, Tl) ; 
ARRAY ,l) X (6) ; 

COEFF(F(S,Tl) ,Tl,X); 
WRITE 1> "A8 -lS lS" ,X(8); 
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WRITE ·n "A2 1S lS" ,X (2); 
WRITE JS "A4 b lS" ,X (4); 
WRITE.£> "A6 ,1) lS" ,X(6); 
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APPENDIX E 

REDUCE II PROGRAM FOR NaBµv N 
af3µv 

VECTOR-15 Kl,K2,Pl,P2; 
MASS,£, Kl=0,K2=8,Pl=M,P2=M; 
MSHELL ,P Kl,K2,Pl,P2; 
OFF-6MCD; 
OPERATOPJJI1,I2,A,Al,A2,A3,A4,F; 
FORALLlSBl,Kl ,J3,Pl,Jl,J5 ..1J LET 
Il(Bl,Kl,J3,Pl,Jl) = Bl*(Jl.J30-(Kl.J3)*(Pl.Jl) I 

I2(Jl,Kl,J5,J3) = (Jl.J3)*(Kl.J5)-(Jl.J5)*(Kl.J3); 
LET .'.lJ Cl=G, C2=2; 
INDEX ,f) J5 ,~r6; 
2*(J3,J4)*((Pl.Jl)*(P2.J2}/Bl + (Pl.J2)*(P2.Jl)/B2 - (Jl.J2)) 
+(Il(Bl,Kl,S3,Pl,Jl}*Il(B2,K2,J4,P2,J2)*{Cl/M)**2 
+(J5.J6)*I2(Jl,Kl,J5,J3)*I2(J2,K2,J6,J4)*C2**2 
+2*C2*((Pl.Jl)*I2(J2,K2,J4,J3) + (P2.J2)*I2(Jl,Kl,J3,J4)))/(2*Bl) 
+(Il(B2,K2,J3,Pl,J2)*Il(Bl,Kl,J4,P2,Jl}*(Cl/M)**2 
+(J5.J6)*I2(J2,K2,J5,J3)*I2(Jl,Kl,J6,J4)*C2**2 
+2*C2*{(Pl.J2)*I2(Jl,Kl,J4,J3) + (P2.Jl)*I2(J2,K2,J3,J4)))/(2*B2) $ 
SAVE AS ..b A (,J3,J4) $ 
SUBA5(J3=J7,J4=J8,A(J3,J4)) $ 
SAVEAS ,,-D A (J7 ,JS) $ 
INDEX .6 Jl I J2 i 
A(J3,J4)*A(07,J8) $ 
SAVEAS.-i) A(,13,J4,J7,J8) $ 
INDEX /D J3,C'4 ,J7 ,J8; 
A(J3,J4,J7,,,8)*(J3.J7)*(J4.J8) $ 
SUB•b(Bl =Kl.Pl, B2 = K2.Pl,!*ANS) $ 
SUB-b(Pl.P2==Kl.K2-M**2, P2.K2=Pl.K. ,P2.Kl=Pl.K2, !*ANS); 
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