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·PREFACE 

This study investigates ligament reactions in the human knee joint 

when torsional loads are applied to the tibia. A method for clinical 

diagnosis of chronic knees is demonstrated for external rotation of the 

tibia on the femur at a 45 degree f lexion angle. 
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CHAPTER I 

INTRODUCTION 

A clinical problem exists in quantitatively analyzing chronic knee 

injuries, A knee injury or damaged knee will, in this study, be classi

fied as a knee having ligamentous damage. 

Knee injuries are divided into two categories; acute and chronic, 

When a ligament is damaged, discoloration occurs for a period of time in 

the damaged area, while the discoloration and tenderness arotmd the 

injured ligament exists, the injury ~s said to be acute, If an ortho

pedic surgeon is consulted soon after an injury occurs (within a week), 

the surgeon can note what part of the knee seems to be loose and in 

opening up that area, he can visually diagnose which ligament was 

damaged and s·uture that ligament back together, 

If however, the patient doesn't seek help soon after the injury, 

the ligament discoloration disappears and the damaged ligament becomes 

more difficult to identify. The knee may no longer be sensitive and a 

localized area of pain may no longer exist. Yet, with laxity in the 

ligaments, a knee may be very unstable and tend to "give out" on the 

patient, The knee injury would now be considered a chronic condition. 

The acute knee injury is more easily diagnosed than is the chronic, In 

the chronic condition, a surgeon can no longer identify ligament damage 

by discoloration. Re also has the difficulty of knowing how much a 

ligament needs to be tightened because ligament damage no longer exists 
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as a "tear", but rather as a "stretch" of that ligament. A reconstruc...: 

tion may be necessary but if the ligaments are shortened too much, 

knee motion will be restricted and if they are not shortened enough, 

the joint will remain unstable, 

Currently, stress tests and drawer tests are being used to clini-

cally identify knee instabilities and ligament damage. Hughston (6) 

reviews the use and application of these tests, Briefly, forces are 

manually applied to the knee joint and the resulting motion is catego-

rized and statistically related to ligament damage. The problem with 

these tests is in obtaining quantitative data regarding knee motion 

and ligamentous damage, The tests are subject to variance of appli-
. . 

cation and interpretation, Gradations of severity which have been pro-

posed for evaluating the degree of i~stability de_monstrated during 

stress testing, are stated here, 

A mild (l+) instability indicates that the joint surfaces 
separate five millimeters or less; a moderate (2+) insta
bility, that they separate between five and ten millimeters; 
and a severe (3+) instability, that they separate ten milli
meters or more, • , , In the knees with a 3+ clinical abduc
tion stress test or a 3+ clinical anterior drawer test, the 
displacements certainly seemed much greater then ten milli
meters in most instances (and often were greater), but mea
surements at operation confirmed that the actual separation 
was not in excess of ten millimeters in many knees even 
though the severity had been graded 3+ preoperatively (6, p. 160). 

It is evident that a quantitative way to clinically determine liga-

ment damage would be a great improvement over the qualitative methods 

currently being used. 

To quantitatively determine ligamentous damage of a clinical knee, 

the following research must be conducted: 

1. Establish a means to quantitatively descrive knee motion. 

2. Establish a means to quantitatively describe ligament damage. 



3. Determine the relationship between knee motion and ligament 

damage. 
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Three methods were investigated for classifying knee motion. They 

are: 

1. Shift of the screw axis during loading, 

2. Drawer tests (not for quantitative data, but for comparison 

with current research). 

3. Tibia rotation at a given flexion angle. 

The loading condition of a knee-joint is a critical problem. A 

torsional load may be applied about the mechanical axis or about the 

anatomical axis of the tibia or femur. Maiya (13) used the loading 

conditions originally proposed by Walker (18). The present investiga

tion uses an alternative loading condition. A torsional load is applied 

to the anatomical tibial axis and a U-joint is mounted approximately 21 

inches from the condyles, on the anatomical femoral axis, The U-joint 

provides two of the three degrees of rotational freedom normally sup

plied by a hip joint. A restraint is made on the third degree of rota

tional freedom to allow application of a torsional load to the knee 

joint, 

Shift of the screw axis during loading of the knee joint was 

observed by plotting the intersection of the screw axis with a plane 

defined by the tibia plateau. 

Drawer tests ·were conducted before and after loading by Dr, Grana 

or Dr. Shiveley. These tests were used as a means for comparison of 

current clinical analysis with the current quantitative research being 

conducted. 

As torsional loads were applied to the tibia at a 45 degree f lexion 
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angle of the knee joint, rotation of the tibia on the femur was recorded. 

This data provided a third means for classifying knee motion. 

Also needed is a quanti~ative method for determining ligamentous 

damage, to which knee motion data may be related. Two parameters used 

to describe ligament damage are: 

1. Ligament stretch 

2. Ligament twist. 

After testing, the knee was dissected for a visual check of which 

ligaments were damaged. 

The present investigation involved collection and processing of 

data for six knees (three left and three right). Using these six knees, 

the three methods of classifying knee motion and the two parameters 

describing ligament damage as stated above, were examined. 



CHAPTER II 

TESTING PROCEDURE 

The apparatus and instrumentation developed by Jones (8) was 

used in this investigation. Appendix B lists the equipment used. 

Appendix C describes the mounting procedure used to prepare the knee 

joint for testing. Figure 1 is a flow chart of the procedure used 

for conducting knee tests. 

After the knee joint has been mounted in the test stand, the 

linkage transducer is used to locate. ligament endpoints. Dr. Grana 

or Dr. Shively first mounts the linkage on the tibia to locate liga

ment endpoints on the tibia in the tibia reference system. He then 

mounts the linkage on the femur to locate the other ends of the liga

ments in the femur reference system. Ligaments located at this time 

are given in Table I. 

Figure 2 shows the ligament endpoints as located by Dr. Grana 

and Dr, Shively, As the ligament endpoints were located, the linkage 

length was calculated and displayed on the CRT screen. This length 

was checked manually with a pair of dividers and a ruler to verify 

the potentiometer ·readings be~ng collected, The linkage is mounted 

between the tibia and the femu.r to yield the relative position of 

these two bodies to each other. Potentiometer voltages from the 

linkage transducer are read by the Interdata Mini-Computer through 

the analoque to digital converter. Voltages of each potentiometer 

5 
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Figure 1: Flow Chart of Testing Procedure 
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Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE I 

LIGAMENTS LOCATED BEFORE LOADING . 

Name 

Superficial Medial Capsular Ligament 

Superficial Medial Capsular Ligament 

Anterior Deep Medial Capsular Ligament 

Miodle Deep Medial Capsular Ligament 

Posterior Deep Medial Capsular Ligament 

Illiotibial Band 

Illiotibial Band 

Anterior Lateral Capsular Ligament 

Middle Lateral Capsular Ligament 

Posterior Lateral Capsular Ligament 

Abbreviation 

SMCL 

SMCL 

ADM CL 

MDMCL 

PDMCL 

IB 

IB 

ALCL 

MLCL 

PLCL 
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1 - sue 
2 - ADMC 
3 - MDMC 
4 - PDMC 
5 - IB 
6 - ALC 
7 - MLC 
8 - PLC 
9 - AC 

10 - DLCl 
11 - DLC2 
12 - DLC3 
13 - PC 

8 

5 

1 

LATERAL MEDIAL 

Figure 2. Ligament Endpoint Locations 



are multiplied by a calibration factor to yield potentiometer rotation 

in degrees, and a correction factor is added to each reading to pro

vide the angle of the given potentiometer, relative to a previously 

initialized position, These potentiometer angles are stored on disk 

for later processing, to obtain ligament length and twist data. 

At 90 degree flexion, Dr. Grana or Dr. Shively conducted drawer 

tests at a neutral position, with internal rotation of tibia on femur 

and with external rotation of tibia on femur. Potentiometer angles 

from the linkage transducer were also recorded on disk for these knee 

configurations. 

With the linkage transducer still mounted on the knee joint, an 

Instron testing machine was used to apply a torque through a torque 

transducer, to the tibia, Direction of the torque caused external 

rotation of the tibia on the femur. The Instron was controlled by 

the Mini-Computer through a Universal Logic Interface (ULI). Knees 

were cyclically loaded to a maximum torque specification (TMAX) by 

increments of TMAX/10.0 in-lbs and then unloaded to 0 in-lbs. 

Unloading was done by incrementing the angle of rotation of the tibia 

as shown in Table II. Cyclic loading was repeated for TMAX specifi

cations as given in Table III. 

Potentiometer voltages and angles, as read by the computer, 

were listed on the lineprinter during loading for each position of 

the knee joint, in this way, erroneous potentiometer readings caused 

by mechanical failure could be noticed and corrected. 

A potentiometer was used to record rotation of the tibia during 

the test, The computer stored on disk the potentiometer angles from 

the linkage transducer, the potentiomer angle for tibia rotation, 

9 



TABLE II 

TIBIA ANGLE INCREMENTS USED DURING UNLOADING 

Knee Number 

19 

20 

21 

22 

23 

24 

TABLE III 

Degrees 

2.0 

0.8 

0.8 

0.4 

0.4 

1.0 

MAXIMUM TORQUE SPECIFICATIONS FOR LOADING CYCLES 

Knee Number TMAX Specifications (in-lbs) 

19 30, 60, 90, 120 

20 30, 60, 90, 120, 150 

21 8, 24, 42, 175, 200 

22 30, 60' 90, 120, 150, 180 

23 30, 60, 90, 120, 150, 180 

24 30, 60, 90, 120 

10 



and the applied torque. 

When the loading portion of the test was completed drawer tests 

were again conducted. Tests performed after loading were compared 

with those done before loading to correlate change in motion of the 

knee joint, with instabilities developed during loading. 

11 

A second set of ligaments as specified in Table IV and shown in 

Figure 2 were then located. The knee was dissected without removing 

the linkage mounting blocks from either the tibia or the femur. Liga

ment endpoints were located on the tibia and on the femur in the same 

way as was the first set of ligaments. Since the relative position 

between tibia and femur has already been obtained, this information 

does·not need to be collected again. 

The last step of the procedure ~eing described, was to locate 

three points on the tibia plateau. Screw axis parameters were related 

to the plane defined by these points and are explained further in the 

section of this document related to knee motion. 

Three left and three right knee joints were tested. All knees 

were above knee (AK) after below knee (BK) amputees of ages 60+ years 

old and were amputated for peripheral vascular disease. Notes in

cluding drawer test information and knee integrity were written to a 

designated portion of the data file by the knee test computer pro

gram, before the file was closed. 

All muscles w~re passive during this investigation and their 

contribution to knee stability was not considered, 
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TABLE IV 

LIGAMENTS LOCATED AFTER LOADING 

Number Name Abbreviation 

1 Superficial Medial Capsular Ligament SMCL 

2 Anterior Deep Medial Capsular Ligament ADM CL 

3 Middle Deep Medial Capsular Ligament MDMCL 

4 Posterior Deep Medial Capsular Ligament PDMCL 

5 ·Anterior Cruciate AC 

6 Illiotibial Band IB 

7 Anterior Deep Lateral Capsular Ligament DLCl 

8 Middle Deep Lateral Capsular Ligament DLC2 

9 Posterior Deep Lateral Capsular Ligament DLC3 

10 Posterior Cruciate PC 



CHAPTER III 

KNEE MOT!ON 

Determine the motion and change in motion of the human knee, 

resulting from forced external rotation of the tibia on the femur, 

at a 45 degree f lexion angle. 

A. Relative Motion Between Tibia and Femur 

· Relative motion between tibia and femur is given as rotation 

about and translation along a screw _axis. Maiya (13) describes the 

procedure for obtaining direction cosines of the screw axis, rotation 

about and translation along that axis, and a point on the line locat

ing that axis is the fixed body, A way of comparing screw location 

from knee to knee is to plot the intersection of the screw axis with 

the tibia plateau. Location of the origin of the tibia plateau coor

dinate system and of the orientation of that coordinate system with 

respect to anatomical landmarks such as the tibial eminence, is 

important for comparing results from knee to knee. The X, Y, Z 

tibial plateau coordinate system was established by first locating 

three points on the tibia plateau as seen in Figure 3. Point one 

was located on the left edge of the left condyle and point two was 

located on the right edge of the right tibial condyle. Point three 

was located anterior to points l and 2 and also on the tibia plateau, 

X, Y, Z coordinates of these points were obtained using the same 

13 
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Anterior 
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1 

Posterior 

Figure 3. Locating Points to Define 
Tibia Plateau 
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method as Jones (8) used to locate ligament endpoints on the fixed 

body. X, Y, Z coordinates of the point halfway between points one 

and two are given by equation 1, 2 and 3. 

Now 

and 

O' 
xl + x2 

= x 2 

O' 
yl + y2 

= y 2 

O' 
zl + z2 

= z 2 

we define two vectors 

~ --+ ~ 
O'l "" 0 l - 0 O' 

--,-+ --+ --+ . 
0 1 3"" O 3 - 0 O' 

____. -

(1) 

(2) 

(3) 

(4) 

(5) 

By crossing vectors 0 13 and O'l we obtain a vector perpendicular 

to the tibia plateau, which will be the Z axis of the tibia plateau 
___. 

coordinate system. Vector O'l is the new Y axis and by crossing --vector O'l with the vector describing the new Z axis, we obtain the 

X axis of the new coordinate system. The tibia plateau coordinate 

system is shown in Figure 4, Direction cosines of the screw in the 

new coordinate system are obtained by multiplying the direction 

cosines in the fixed reference system by a transformation matrixl. 

1coordinates transformation procedures are well documented by 
Kinzel Ul), Maiya (13), and Jones (8) and will not be repeated in 
this document. 

15 
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A parametric equation of the line describing the screw axis is 

X' ·= x + u t (6) 
0 x 

Y' = y + u t (7) 
0 y 

Z' = z + u t (Z = 0.0) (8) 
0 z 0 

Point (Xo, Yo, O) is the point of intersection of the screw with the 

tibia plateau. Coordinates of the new point Pare X', Y' and z'. Then, 

t = -Z'/U (9) 
z 

x = X' u *t (10) 
0 x 

y Y' - u *t (11) 
0 y 

The line describing the screw axis in the tibial plateau coordi-

nate system is obtained from that in the fixed coordinate system, via 

the transformation matrix. 

B. Screw Axis Shift 

Change in motion of the human knee is given by the screw axis 

parameters, describing the motion of the tibia with respect to the 

femur. 

Location of the screw axis is given by its intersection with the 

tibia plateau. Change in motion of the human knee is observed as the 

screw shifts and hence as this point of intersection shifts. The 

pattern of this shift will be referred to as the screw patterns for 

torsional· loads applied to the tibia. With the exception of knees 21 



and 24, cyclic loads were applied to the joints in increments of 30 

in-lbs. Figures 5 through 10 are screw patterns for six knees having 

had external torsional loads applied to the tibia. 

Shift of the screw axis during loading of the tibia is summa

rised in Table v. Under zero load, the screw is located in the 

fourth quadrant for the left knees (22, 23 and 24) and in the third 

quadrant for right knee number 21. Screws of the primary component 

18 

of rotation of these four knees passed through the medial inter

condylar tubercle of the tibia plateau. Direction of shift of the 

screws during loading, and rotation about the screws are shown in 

Table v. If more knees. were tested and th~ir screw patterns examined, 

the shift of the screws under load could be related to specific liga

mentous damage. Ligament damage could then be clinically determined 

by observing screw shifts for small torsional loads, and by relating 

these shifts to ligament damage as determined experimentally. 

Knees 19 and 20 differ from the other four knees in the location 

of their screws under no load. Knee 20 has a two-direction, back and 

forth shift of the screw over a distance in the X-direction of twice 

the magnitude of the other knees (Figure 6). Shaw and Murray (16, p. 

1609) observed that, " increased limberness of the freshly amputated 

joints resulted in patterns with greater irregularity than that observed 

in patterns obtained from joints from cadaver." It is possible that 

as ligament properties change with age, older joints display a more 

defined pattern of motion than do fresher specimens. Shaw and 

Murray go on to state that, ". a definite center of rotation for both 

cadavera and fresh joints could be determined in all instances in which 

the cruciate ligaments were intact". Their comments are in reference to 
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TABLE V 

SUMMARY OF SCREW AXIS SHIFT DURING LOADING 

Knee Number Type Tibia Plateau 

19 , Right ~ 
20 Right ~ 
21 Right {h 
22 Left ~ 
23 Left $ 
24 Left $ 

• Location of screvs describing primary component of rotation 

....--.. Direction of rotation of tibia 

---..Direction of shift of screw axip during loading 
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rotation of the tibia on the femur with the anterior cruciate ligament 

severed, as the knee approaches full extension. Markolf (14) showed 

that the knee joint has greater rotational laxity at 45 degree flexion 

than at 0 degree flexion. With the greater laxity present, even with 

the cruciates intact one could expect to see a variation in screw 

patterns between fresh and aged specimens. Knee 20 was in significantly 

better condition than the other specimens tested. This might explain 

the increased randomness of its screw patterns. Inversely, this also 

suggests that a "larger" screw pattern may be indicative of a "fresh" or 

good knee speciman. 

Torsional loading ~equence of knee 21 .varied from that of the other 

knees because of technical problems related to computer control of the 

Instron loading machine. The long straight line seen in cycle 3 of 

Figure 7 corresponds to a single step torsional load from 0 in-lb to 

175 in-lb torque. Since the testing procedure for this knee differed 

significantly from the others, a variance in screw patterns is expected. 



CHAPTER IV 

KNEE INSTABILITY 

This chapter describes the use of two methods for determining 

knee instability. The methods investigated are drawer tests and 

tibia range of rotation at a given flexion angle. 

A. Drawer Tests 

Before and after torsional loading, clinical drawer tests were 

conducted by Dr. Grana or Dr. Shively to determine the integrity of 

the given knee joint. Straight anterior drawer, internal rotation of 

tibia on femur and external rotation of tibia on femur were performed. 

Range of rotation of tibia on femur both before and after loading, 

was recorded. This data along with the maximum torque as applied to 

each specimen is given in Table VI. Chapter VI details the results 

of these tests. 

B. Tibia Rotation at a Given Flexion Angle 

Markolf and Menach (14)have tabulated tibia range of rotation 

data for 35 intact knee joints in 6 flexion positions. At 90 degree 

flexion and applying a torque of 8 newton meters, they observed a 

laxity of 24.3 degrees, with a standard deviation of 4.7 degrees. 

Two standard deviations produce a "stan.dard" range of rotation of 

24.3 ± 9.4 degrees. This data is not adequate for determining the 
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Knee Number 

24 

23 

22 

21 

20 

19 

TABLE VI 

RANGE OF ROTATION OF TIBIA ON FEMUR AND MAXIMUM 
TORQUE APPLIED DURING LOADING 

Before Loading (Degrees) After Loading (Degrees) 

31 40 

30 NA 

32 NA 

28 37 

33 49 

51 56 

Max. Torque 

120 

180 

180 

200 

150 

120 

(In-lbs) 

N 
00 
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stability of an injured knee joint. Since tibia rotation ranges 

vary from person to person as this large deviation of ± 9.4 degrees 

indicates, comparision of a patient's injured knee with the patient's 

good knee would most accurately reflect the extent of the damage to 

the injured joint. By noting the tibia range of rotation at various 

f lexion angles, a complete motion pattern can be established. Varia

tions of that pattern between left and right knees can be related to 

quantitative ligament damage information. 

Chapter VI explains and demonstrates the relationship between 

variations of external tibia rotation to ligament damage, at a 45 

degree f lexion of the knee joint. 



CHAPTER V 

LAGAMENTOUS DAMAGE 

Ligamentous damage will be described in terms of.two parameters, 

change in length (A), and twist (l), of the individual ligaments. 

A, Ligament Stretch 

Jones (8) describes a method for determining ligament endpoints 

on the tibia and corresponding coordinates of the ligament endpoints 

on the femur. In knowing the location of the endpoints of ligaments 

in each successive position of the knee joint, he was able to calcu

late percentage strain in the ligaments with respect to their initial 

length. Percent strain is dependent on initial length of a given 

ligament, Four variables affecting determination of initial length 

are: 

1. Anatomical geometry of the given knee such as size, shape, 

and points of attachment of the ligaments. 

2. Error in the linkage transducer (Appendix D.) 

3, Variation as to what part of the ligament is defined as the 

endpoint. Ligaments in general do not have single point 

attachments to the honey structures, but are only 

"modeled" as such. 

4, Variation between indiv~duals in locating ligaments. Dr. 

Grana located ligament endpoints on knees up to and 
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including knee 20. Dr. Shively worked with knees 21 to 24. 

Wang (18) and Erkman (4) stated ligament lengths for the AC, PC, 

Medial Collateral (MC) and lateral colateral (LC) ligaments. Another 

set of ligament lengths can be obtained from the X, Y, Z coordinates 

for these four ligaments (AC, PC, MC and LC) at a 0 degree flexion, 

as given by Edwards, Lafferty and Lange (2). These data are given 

in Table VII. Table VIII lists initial ligament length plus or minus 

one standard deviation for the six knees tested during the course of 

the research being presented. 
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Change in length of the ligaments will be plotted as a function of 

torque. These plots are shown in Appendix E for all ligaments of knee 

24 a6 listed in TableVIII, and for the AC, PC, SMC, and MLC ligaments 

of knees 19 through 23. Ligament numbers on these figures correspond to 

those given in Table VII. Numbers at the ends of the curves are cycle 

numbers corresponding to maximum torque specifications given in 

Table III. Further observations regarding figures given in Appenxix E 

and ligament change in length are made in Chapter VI, subheading C, of 

this report. 

B. Ligamentous Twist 

Ligamentous twist is the second parameter used to investigate 

ligament damage. As Markolf's (14) investigation shows, there is a 

certain amount of rotary laxity in all positions of the knee joint. At 

a fixed flexion angle and as the tibia rotates on the femur, the knee 

joint tends to tighten, Upon medial rotation of the tibia with respect 

to the femur, the crucitate ligaments twist or "wrap" on themselves. 

Conversely, they "unwrap" with external rotation of the tibia on the 



TABLE VII 

LIGAMENT LENGTHS FOR 0 DEGREE FLEXION 

Ligaments Erkman and Walker Edwards, Laferty and Yang Wang, Walker and Wolf 
(inches) (inches) (inches) 

AC 1.26 1.00 1.13 

PC 1.34 1.43 1.31 

MC 2.17 3.98 2.6 

LC 1.65 3.5 2.14 
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TABLE VIII 

INITIAL LIGAl.IENT LENGTHS 

. Ligament Length (IN) 
No. Ligament Abbreviation + cr for 6 knees 

1 Superficial Medial Capsular (SMC) 2.58 + 0.30 

2 Anterior Deep Medial Capsular (ADMC) 1. 65 + 0.31 

3 Middle Deep Medial Caps (MDMC) 1. 75 + 0.27 

4 Posterior Deep Medial Caps (PDMC) 2.21 + 0.40 

5 Illiotibial Band (IB) 4.46 + 0.42 

6 Anterior Laterial.Caps (ALC) 1.60 + 0.10 

7 Middle Lateral Caps (MLC) 1.80 + 0.14 

8 Posterior Lateral Caps (PLC) 2.15 + 0.06 

9 Anterior Cruciate (AC) 1.00 + 0.19 

10 Deep Lateral Caps (DLCl) 4.3 + 0.84 

11 Deep Lateral Caps (DLC2) 2.02 + 0.26 

12 Deep Lateral Caps (DLC3) 2.47 + 0.63 

13 Posterior Crucitate (PC) 1.33 + 0.25 



34 

femur. Hence, the angle of twist of ligaments, particularly cruciates, 

influences stress and damage to the ligaments. Calculation of liga

mentous twist is demonstrated in Appendix F. 

As a rubber band 11 tightens" when it is twisted, so it can be ex

pected that ligaments tighten as they are twisted. Hence, it is con

ceivable that ligament length could actually decrease, while the stress 

in the ligament may increase, Both change in length and twist must 

be considered in qualifying ligament damage. Table IX compares cru

ciate ligament twist (1) to rotation of the tibia with respect to the 

femur (41), 

C. Dissection 

When all testing of the knee joint was completed, Dr. Grana 

or Dr, Shively dissected. the joint and visually investigated the in-

. tegrity of individual ligaments. Table X contains a summary of 

observations made through clinical drawer tests and visual inspection. 



Knee No. 

19 

20 

21 

22 

23 

24 

18* 

17* 

16* 

TABLE IX 

TIBIA ROTATION VERSUS CRUCIATE 
LIGAMENT TWIST 

Internal Twist of 
Tibia Ant. Cruc. 

Rotation (Deg.) 
(Deg.) 

YA 

24.34 23.4 

21.9 16.6 

30.02 21.3 

31.92 26.7 

32.69 31.5 

39.52 . 34. 9 

10.55 7.5 

14.33 4.9 

14.00 0.1 

Twist of 
Post. Cruc. 

(Deg.) 

Yp 

22.3 

21.5 

28.8 

31.9 

32.1 

36.4 

8.3 

10.9 

5.3 

* David Jones's Loading Conditions. (Torsional load applied 
to femur with tibia fixed). Knees 19 through 24 had 
torsional loads applied to the tibia with a U-joint 
mounted on the femoral axis. 
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Knee Number 

19 Right 

20 Right 

21 Right 

22 Left 

23 Left 

24 Left 

TABLE x· 

OBSERVATIONS FROM DRAWER TESTS AND DISSECTION 

Before 

2+ Ant. inst. with ant. 
med.and ant. lat. rotary 
inst. 

Stable 

l+ ant. drawer rotary 
stability 

Stable to ant/post and 
Varus-Valgus 

Stable 

l+ ant. drawer and mild 
anterolateral inst. 

After 

Same as before but worse 

2+ Valgus inst. 

3+ ant. drawer antero
lateral inst. · 

l+ inst. with Valgus 
0 

stresses at 30 & no. 
inst. with Varus l+ ant. 
drawer at neutral, antero·
lateral rotary inst. & 
questional anteromedial 

l+ Valgus inst. at 30° 2+ 
ant. drawer at neutral & 
internal rotation 

2+ ant. drawer l+ Varus 
0 Valgus at 30 anterolateral 

& anteromedial inst. 

Dissection 

Gross ant. cruc. inst. and deep 
capsular laxity on medial side 

Laxity of superficial medial colla
teral and deep medial capsular 

Laxity of superficial medial colla
teral, deep capsular ligs. and 
laxity of ant. cruc. and lateral 
capsular ligaments 

Laxity of deep and superficial 
layers of medial collateral ligs. 
and of lateral collateral and ant. 
cruciate 

Laxity of superficial and deep 
medial collateral & laxity of 
ant. cruciate 

Laxity of deep medial and lateral 
caps. ligs. and of the ant. cruc. 



CHAPTER VI 

KNEE INSTABILITY VERSUS LIGAMENTOUS DA1-1AGE 

Observations relating knee instability to ligament data, are given 

here. 

A. Drawer Tests 

Knees 22 and 23 were both stable before testing. Maximum torque 

applied to these knees were 160 and 178 in-lb. At these loads, liga

ment reactions and knee instabilities were observed as given in Table 

XI. Drawer tests indicated a l+ valgus instability. This is in agree

ment with the laxity of the superficial and deep medial collateral 

ligaments observed visually during dissection. It also reflects the 

significant change in length of medial ligaments when loaded. Clini

cal observations of l+ and 2+ anterior drawer are in agreement with 

the laxity of the AC as observed during dissection. A stretch of 0.1 

to 0.2 inches and a ligament twist of 26.7 to 31.5 degrees was enough 

to cause AC damage, Knee 22 has a l+ anterior drawer and anterolateral 

instability corresponding to damage of the anterior cruciate and the 

lateral collateral. ligaments. Knee 23 had a 2+ anterior drawer with 

lateral collaterals intact. It is evident that a torsional load 

applied to the tibia cannot be assumed to cause identical ligamentous 

damage from knee to knee, Medial ligaments were damaged in all six 

knees to which an external torsional load was applied to the tibia. 
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TABLE XI 

LIGAMENT REACTIONS OF KNEES 22 AND 23 

Knee (in-lb) Tibia AC PC AC PC SMC MLC MDMC DLC Inst. Ligament 
torque roi:ation rotation rotation f)../L A/L A/L b./L A/L A/L Damage 

(Deg.) (Deg.) (Deg.) 

22 160 31.92 26.7 31.9 0.2 o.o 0.2 0.35 0.4 0.2 l+ valgus at PMC, SMC 
0.9 TI 3:0 2.0'" 1.8 2.1 30 degrees LC, AC 

l+ ant. at 
neut. antero-
lateral 

23 178 32.69 31. 5 32.l 0.1 0.1 0.4 o.s 0.2 0.3 l+ valgus at PMC, SMC 
1. 0 T.3 2.9 2.2 1.8 2.4 30 degrees AC 

2+ ant. at 
neut. & Int. 
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However, damage to the anterior cruciate and also to the lateral liga

ment varied from knee to knee. Upon dissection, significant anterior 

cruciate damage was observed in five of these six knees, Damage to 

lateral ligaments varied from knee to knee. 

Two explanations can be given for variations observed in data 

collected, First, no two knee joints are identical in size, shape or 

ligament strength, Hence, no two knee joints will react identically 

under a given loading condition. Second, the importance of estab

lishing the integrity of a knee joint before testing is critical. 

Three of the six knees tested indicated anterior instability before 

testing and therefore, could not be expected to react as would a stable 

knee· joint. In future research, knees having any clinical instability 

should not be tested, 

B. Screw Patterns 

Knee instability as given by drawer tests and by the screw 

patterns may be used to specify ligamentous damage. For screw patterns 

to be effective in this application, a larger scale investigation 

involving stable knees would have to be conducted. Similarities in 

direction and initial location of the screw patterns of knees 22 and 23 

were observed. A difference between these two is that the screw pattern 

of knee 22 was located closer to the orgin of the tibia plateau coordi

nate system, than ~as the screw pattern of knee 23. Ligament damage as 

given in Table X corresponds to screw patterns noted here. 
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C. Tibia Rotation 

At a 45 degree f lexion angle a knee joint has a certain amount of 

rotational laxity. Therefore, it is difficult to determine a standard 

neutral position of the knee, from which tibia rotation measurements 

can be made and compared from knee to knee, A 15 in-lb torque exter

nally applied to the tibia, may cause a 5 - 15 degree rotation of the 

tibia, depending on where the neutral position was chosen. Also, 

variation in motion from specimen to specimen can be expected. To 

minimize these factors, motion comparison of a patient's right and 

left knees can be made. 

· A patient's damaged knee can be analyzed as follows: 

1. Determine range of tibia rotation of the patient's undamaged 

knee at specific flexion angles. 

2. Determine range of tibia rotation of the patient's damaged 

knee at the same flexion angles, 

3. Relate the difference in rotation ranges of the two knees 

to quantitative ligament damage information. 

Quantitative information must therefore be available relating knee 

motion to ligament damage. The method used to obtain this information, 

and the use of the data collected is presented here, 

A knee joint was mounted as explained in Appendix c. A 15 in-lb 

torque.was applied in external rotation of the tibia. This position 

was assumed to be the normal limit of external rotation of the tibia 

(it will be referred to as the 11 original11 position of the tibia). 

Ligament lengths as recorded at this position were considered to be 



the "original" lengths of the ligaments. Torque was increased and 

ligament lengths and tibia rotation were recorded at apecif ied torque 

intervals. Change in ligament length and percent starain of the liga

ments (based on the "original" lengths) were plotted as a function of 

tibia rotation, as seen in Figures 11 and 12. It is noted that tibia 

rotation is the rotation of the tibia from its "original" position. 

Tibia rotation is therefore analogous to the difference in rotation 

range of a damaged and undamaged knee joint. Charts such as those 

given in Figures 11 and 12 can be used to clinically diagnose an 

unstable knee. 

When a difference in range of external rotation of a patient's 

damaged and undamaged knees is noticed, damaged ligaments must first 

be identified. By consulting the per~ent strain curves (Figure 11), 
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the relative damage to each ligament can be determined. For a 10 degree 

difference in external rotation of the tibia, the percent strain curves 

indicate that the anterior deep medial capsular ligament has incurred the 

most serious damage (approximately 8.6% strain). Change in length curves 

are then consulted (Figure 12) to determine the extent of the damage. 

For 10 degree rotation, the ADMCL has stretched 0.14 in. One may note 

that at 10 degree rotation, a 0.04 inch change in length of the AC repre

sents only a 4~% strain (Fig's. 11 and 12). This is true because the 

original length of the AC (l.O inch) is less than half the original 

length of the SMC (2.98 inches). 

Trent, Walker and Wolf (17) plot percent increase and percent 

decrease of cruciate lengths for a 40 in-lb torque applied to the tibia 

in internal and external rotation, as shown in Figure 13. Figures 11 

and 12 both indicate little or no change in PC length for external 
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Figure 11. Ligament Percent Strain Versus 
External Rotation of Tibia on 
Femur at a 45 Degree Flexion 
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Figure 13. Percentage Change in Length of Ligaments with Internal 
and External Rotation of Tibia on Femur at a 45 Degree 
Flexion Angle as Given by Trent (17, p. 268). Note: 
Tibia was Torsionally Loaded with 40 in-lb Torque. 
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rotation of the tibia. Figures in Appendix E show that the AC ligament 

(ligament no. 9) of knees 20, 21 and 24 did initially shorten in length. 

When the 15 in-lb torque was applied to the tibia, ligaments were 

stressed, removing the laxity or "looseness" of the joint and drawing 

the condyles closer together. At this point, the AC was shorter than 

before the torque was applied and this decreases in length is what was 

observed by Trent, Walker and Wolf. However, as torque was increased, 

the AC increased in length from this original position (the position 

of 15 in-lb torque), and from this point on, the AC ligament increased 

in length. This increase in length is shown in Figure 12. 

Figures 11 and 12 demonstrate a quanti.tative method for determining 

ligamentous damage. These charts are for external rotation of the tibia 

at a 45 degree flexion angle. A complete set of charts for both 

internal and external tibia rotation ranges is needed to give a complete 

picture of ligamentous damage. 



CHAPTER VII 

CONCLUSIONS 

Numerous difficulties are encountered in relating ligamentous 

reactions due to a torsional load applied to the tibia, to the in

stability of the knee, Included is the complication of deducing 

and stating a "general" or "expected" reaction for all stable knees. 

Some of the variables encountered are listed here, 

1. Fresh, stable specimens are needed to obtain results which 

can be related back to the clinical case, 

2. Variation of knee reactions can be expected between speci

mens from males and females. 

3. Race, sex, age and weight of a person affect knee motion (16). 

4. Variation has been observed between matched right and left 

specimens (14) • 

5. Any variation in the testing procedure as to loading and 

unloading speeds and maximum applied loads affects the 

ligament reactions and hence tne knee instability. 

These difficulties are responsible for variation from knee to knee, 

of the data collected. 

The effectiveness of each of the five parameters noted in the 

abstract of this report, is given here. 
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A. Screw Patterns From Loading and Unloading the Tibia 

Shift of the screw axis during loading indicated a definite trend 

as knee instability increased. Through a large scale investigation, 

this shift could be directly related to specific ligamentous damage. 

B. Drawer Test 

Drawer tests were effective in subjectively determining knee in

stability. Difficulties arise in maintaining consistency of applica

tion and interpretation of such tests, Drawer tests conducted in 

this investigation provided a clinical means of verification of knee 

joint stability before and after testing, They did not, however, yield 

quantitative data with regard to liga.mentous damage, 

C. Tibia Rotation at a Given Flexion Angle 

Tibia rotation has been shown to have great potential as a clinical 

tool for identifying knee instabilities, A method for relating tibia 

rotation to quantitative ligament damage information has been demon

strated. It is reconnnended that further research be conducted to ex

amine internal and external tibia rotation at f lexion angles other than 

45 degrees, and to relate this data to quantitative ligament damage 

information. This would provide a complete diagnostic tool for the 

orthopedic surgeon. 

D. Ligament Stretch 

Ligament change in length can be effectively used to quantita

tively indicate ligament damage, The correlation of excess tibia 



rotation to ligament stretch has been demonstrated in this report 

to be a useful tool both for identifying damaged ligaments and also 

for determining the amount of damage incurred by those ligaments. 

E. Ligament Twist 

Ligament twist is of particular importance in describing cru

ciate damage. Ligament twist calculation is demonstrated in 

Appendix F. Further research must be conducted to determine the 

functional relationship between cruciate ligament twist and cruciate 

ligament damage. 

F. Dissection 

Dissection clearly indicated which ligament had been damaged 

and was used to check experimental findings. No quantitative data 

was collected during dissection. Dissection was used for validating 

hypotheses regarding knee instability and ligarnentous damage. 
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ABDUCT: 

ADDUCT: 

ANTERIOR: 

CARTILAGE: 

CONDYLE: 

EXTEND: 

FEMUR: 

FLEX: 

LATERAL: 

LIGAMENT: 

MEDIAL: 

POSTERIOR: 

SCREW HOME 
MECHANISM: 

TIBIA: 

GLOSSA.."R.Y 

To move away from the middle of the body, on one 
of its parts. 

To draw toward or beyond the median line of the body 
or of its parts. 

In front of or in the front part of. 

A translucent elastic tissue characterized by its 
scanty blood supply. 

A rounded surf ace at the extrimity of a bone. 

To straighten out a limb. 

Thigh bone. 

To bend a limb. 

On the side (outside) opposite of medial. 

A band or sheet of fibrous tissue connecting two or 
more bones, and providing the integrity of the 
joint. 

Relating to the middle or center. 

Behind - in the back opposite of Anterior. 
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Knee motion characteristic causing rotation of the tibia 
about the tibial axis as full extension of the knee 
joint is approached. 

Larger of the two bones of the calf. 

TIBIAL· EMINENCE: Protrussion between tibial condyles. 

TRANSVERSE: Crosswise - lying across the long axis of the body 

TUBERCLE: A bump or protrusion such as the tibial eminence. 

VALGUS: Contact between lateral condyles is lost. 

VARUS: Contact between medial plateau is lost. 
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INSTRUMENTATION AND EQUIPMENT ASSEMBLY 

1. Lebow 1104S Rotating Strain Gauge Torque Transducer. 

2. Datronic Transducer Amplifier with Type 90 Strain Gauge Module 
and Type P Galvanometer Driver. 

3. Potentiometer mounted to torque transducer (indicating tibia 
rotation) Usable range - 0 to 192 degrees. 

4. Seven-bar Linkage Transducer including six potentiometers. 

5. Interdata 7 /16 Minicomputer System including 

A) Universal Logic Interface (ULI) 

B) 10 Bit Analog to Digital converter (A/D) 

C) CDC Hawk disk drive 

D) Centronics Lineprinter 

E) ADM CRT Terminal 

6. Harrison Model 865C power supply 25V source used to drive 
relays controlling Instron testing machine. 

7. Kepco power supply lOV source used to excite potentiometers. 

8. Instron testing machine. 

The following figure is a schematic representation of the 

testing equipment used. 
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PREPARING AND MOUNTING 
THE KNEE JOINT 

1) Remove knee fi_·om freezer and place in sink with warm running 

water for 2 hours. 

2) Drill femur at1d tibia with ~" bit. Clean holes with test tube 

cleaner and water, and dry the hole using paper towels. 

3) Cement long aluminum arbor in femur and short arbor in tibia. 

Position shqf ts and allow bone cement to cure without moving 

shafts in b1Jne. 

4) Insert threadod pins on medial side of knee to mount linkage 

transducer. Positioning of pins is accomplished using a 

spacing blo1•k. Pins should extend ~!.z;" beyond the knee surface. 

S) Drill fibula end, insert pin into hole and fasten pin to the 

shaft in tho tibia, using a hose clamp. 

6) Keep knee moi~t during the course of the experiment. A plastic 

bag around the knee accomplishes this. 
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TRANSDUCER ERROR ANALYSIS 

A statistical approach was used to investigate the accuracy of 

the linkage transducer. For 100 different configurations of the 

transducer, the X, Y, Z coordinates of a known point as given by the 

transducer, were recorded. 

X, Y, Z. coordinates were averaged and standard deviations from 

those averages are given in Table XII. 

Parameter 

x 

y 

z 

R, 

D 

TABLE XII. 

STANDARD DEVIATIONS FROM AVERAGE 
X, Y, Z COORDINATES 

Average 
Value 
(in.) 

-0.90 

6.49 

-2.61 

7.06 

Standard 
Deviation 

CJ (in.) 

0.08 

0.05 

0.08 

0.056 

0.121 

60 



Parameter i is average length as given by 

equation Cl. 

i ~ x. + y. + z. 100 i100J2 2 2'] I 
i=l 1 1 1 

cr is the standard deviation from the point located. 
0 

If X, Y, Z coordinates of a point Pare known and X., Y., Z. are 
l l 1 

(li) 

coordinates given by the linkage transducer in locating point P, then 

X., Y., Z. actually describe a point P' (Figure 33). The distance (D) 
l 1 1 

between P and P' is the error incurred by the linkage transducer in 

locating point P. 

J<x X I) 2 - Y.')2 
I 

D. + (Y + (Z - z •I) 2 
l l l 1 

(13) 

(Dl - 0)2 + (Dz - 0)2 2 + ... + (DlOO - O) 
crD = 100-1 (14) 
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Figure 15 . Linkage Error 



Standard deviations from the known values of X, Y, Z coordinates 

of Point P are given in Table XIII. 

Parameter 

x 

y 

z 

fl 

D 

TABLE XIII 

STANDARD DEVIATION FROM KNOWN 
X, Y, Z COORDINATES 

Known 
Value 
(in.) 

-0.95 

6.48 

-2.55 

7 .03 

Standard 
Deviation 

a (in.) 

0.12 

0.08 

0.12 

0.085 

0.190 

Known values of X, Y, and Z coordinates were obtained using a vernier 

caliper. 

In Tables XII and XIII for zero error, D would have a value of 

zero. So, er is the deviation from the zero error condition. 
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LIGAMENT STRETCH VERSUS TORQUE 

Ligament number11 abown on Table VIII and reproduced in Table 

XIV are those used to identify ligmaent• ao figures 16 to 24. Num

bers 11hown in the plots of figures 16 to 24 identify maximum loading 

points of each loading cycle of the given knee jointa. 

TABLE XIV 

LIGAMENT NUMBERS AND ABBREVIATIONS 

Lig. No. Abbreviation Lig. No. Abbreviation 

1 SMC 8 PLC 

2 ADMC 9 AC 

3 MDMC 10 DLCl 

4 PDMC 11 DLC2 

5 IB 12 DLC3 

6 ALC 13 PC 

7 HLC 
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Figure 19. Knee 24 PC Ligament Stretch 
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LIGAMENT TWIST CALCULATIONS 

If direction cosines of a screw axis defining motion between 

two bodies, and rotation about that axis are given, then rotation 

about any other axis can be detennined. Directions cosines (U , U , 
x y 

U ) of the screw axis defining motion of the knee joint and rotation z 

(¢) about that axis, are known (12). It is desired to find the twist 

(y) of a ligament for a given rotation ¢ between tibia and femur. 

Referring to Figure 25, T and F1 are initial locations of liga-

ment endpoints on the tibia and femur of a knee joint. F2 is the 

location of the same ligament endpoint on the femur, after the femur 

has rotated about the screw axis ¢ degrees, to its second position. 

Ligament twist_ (y) is the rotation of the ligament about its initial 

--+ 
axis, TF1 • has no influence on y for given U , U , 

x y 

U and ¢. That is, if U were to pass through point T having direcz 

tion cosines U , U , U and rigid body rotation ¢, ligament twist y x y z 

would be the same as if U was located as depicted in Figure 25. 

Furthermore, the distance d describes a translation of the femur with 

respect to the tibia and does not influence ligament twist. 

For simplification of calculations, U is assumed to pass through 

T and a new coordinate system is set up as shown in Figure 26. To 

~ 

find the twist of the ligament about its initial axis TF1 , calculate 

the rotation of a vector on the moving body (femur), in the plane 
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Figure 25. Ligament Twist 
Schematic 

77 



78 

z 

u 

F~gure 26. Screw Axis Repositioned 



perpendicular to TF1 , For the coordinate system shown in Figure 26, 

;point A, is assumed to be on the femus and has coordinates (1, o, 0). 

--+
l1roint A, is defined by vector TA1 • 

!A rotation matrix R is now needed to determine ligament end-

point coordinates on the femur, after rotating ¢ degrees. 

= (15) 

79 

.Rotation matrix R is a matrix product of three matrices which rotate 

TA1 through- CJ. degrees about the X-axis, ¢degrees about the Y-axis 

and than a degrees about the X-axis. 

[R] 

[R, :J- a.,x = 

[ R] cj>,y = 

[ Rlx, x = 

[ cos$ 
[R] -sina sin¢ = 

sincp cosa 

= [R ]a,x [R]cp,~ [ R]_a,x 

D 
0 -sin~-a)J cos(-a) 

sin (-a) .cos (-a) 

[co~$ 0 
-sini J 1 

sin<P 0 cos¢ 

[ 1 0 -si~~ 0 cos a 
0 sina cos a 

sincj> sina 
2 + <P • 2 cos a cos sin a 

sina cosa (1-cos<f>) 

( 17) 

(18.) 

(19.) 

-sincj> cosa l 
sina cosa(l-coscj>) (20) 

sin2a + cos¢ cos2a.J 

Rnowing that [TAJ = [ ~ J, [TAJ is found using equations C2 and C7 

= [ 
coscj> J 

-s~na sin<f> 

Slncj> COSCI.-

(21) 



---+ 
Ligament twist (y) is the rotation of TA1 .about the Y-axis as seen 

in Figure 27 • 
~ ----r• 

y then is the angle between TA1 and TA2 
---+ 

the projection of TA2 into the X - Z plane. 

[ cos¢ J 
sin¢0cosa. 

---+' where TA2 
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(22) 

~ --+ 
Since TA1 lies on the X-axis, yis the angle between TA2 and the X-axis. 

y = -1 (. sin¢ cosa ·i tan "' cos't' (23) 

--+ 
It should be noted that TA1 must not only be perpendicular 

-+ 
to the ligament axis defined by TF1 , but also to the screw axis. 

The case when the screw axis is perpendicular to the ligament axis 

verifies this. 
--+ 

In this case, if TA1 is perpendicular to those two 

axes, then a rotation ¢ about the screw axis will not cause a rotation 

about the ligament axis. That is if a = 90° the Z coordinate of ~ 

will always be zero (eq. C9). 

In summary, ligament twist (y) is dependent on two parametner; 

the rotation cp· about the screw axis, and the angle (a) between the 

screw axis and the ligament axis. Angle a is given by the dot pro-

duct between the screw axis and the ligament axis. 

cos a = 

-+- ---+ 
U ' TF 

1 
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~0 l·~Uh~:EC=l·HJl1PEC+:I. 
4(:1 PAUSE 

GO TO :20 
!50 Ir < NUMREC. LE. 62) GO l 0 999 

N1.Jl·1RF.:C=l·,1.Jt1RF.~C-:1. 

c 

c 
CAl..L. .-:i:-:AJ>F..R ( f.:l..IF :1., :1.1 :1.) 
cr-11 .. L J;:FAl)Ef''. q~:uF;:;.! .. ;.:, :1.) 
CRl..L Vi:=.Af)ER ( 81 .. rF::~, :?-, :"i.) 
CAl..L RFAr.'F.P ( F:UF4, 4, :1.) 
CFil..l. F'.FAl)F.R ( F.:1.JF~~:;, 5, :1.) 
CAl..L. PF.Af.)f.:f': ( E:l..IF 6, 6 .• :1.) 
CAl..L ~:F.RrWR < r.-:uF ·?, , .. / :1. > 
CAl..l. f':FADER(f:l.JF81 8, :1.). 

co 
Ln 



c 

CALI .. REAl>EF':<t-:UF9, 9,-j~) - -
CAL.I.. f':EADt:_R ( 8UF:1.0, :1.~,, :1.) 

· C ALIGN J.T 
c 

c 

c 

CALL EW.JRlF... < Al..PHf1 .. 81..lF:L 6, :1., !:D 
CALL. E(!UflTF.: (A, r.:UF:l. ( :1.3) I (:., :1., ~)) 

CAL.I.. F.f!l..IRTF.: ( s, P.UF:1. ( :::::5) I 61 :1.1 5) 

CF-11..1.. r:::r::iur--nF < Pt·n F, t-;l..IF:1. < ?7 >, 4, :L 5 > 
cnu.. F.:r:::!l . .tAl F. < i:·NTM, r.:ur: :u 4~», 4, :b 5 > 

CAl..l.. EOl..IRTF. < Pt·n :L r.:1.JF2, 61 :L ~:; > 
CALL EQ1.JATF.ff'NT2, F.:1.JF?.Cl.3), 6, :1.1 ~.i) 

CAL.I .... EC!llAlF.(F-'Nl3, 81.JF2<25), 61 :L 5) 
CALL EOl.JATF..<.PNT4, F.:l . .IF2C~?), 6, :t, 5) 

CAL.I.. DR(Jl.JND< Al..PHA, 6, ::n 
CAl..L DF'.01.Jt·m ( R, 6, ~) 
CAL.L l)kOUND ( ::-;, 6, :~) 
cR1..1.. PP.OUND < P~n F, 4, 3·) 
CRl..L. f)f;'.01 . .IND ( PMl M, 4 I :-~) 

CRl..l. l)ROl..lt·ff> ( PNT L 6, ?, ) 

CAl..L DRl:".11.JND ( PNI 21 6, 3) 
CAL.I.. l)F:Ol..IND ( P~H ~:S, 6, 3 > 
CFil .. I.. r:i~:Ol.Jt-H> < f'Nl 4, 61 ::; ) 

C OFF l ~H::: 1 T 
c 

DO 6H ,J"-':L· :t6, 5 
cAu.. UNPACK< :?F.:1 A< :L ,r >, ~:t0, :-:t > 

60 CAl_L Ut-WAO:.". ( i:·::-; J. ( :L ,1 ) I 3~1, :;; > 
C. 

C GF.T THE TRANSFOl-'~MATlO~' MATF.:lX FROM 01 .. DRF..F 10 NF.:l..JRF.:F 
c 

CFIU.. HFMRFf) ( Al..PHA.· A, S .. f'NTF, P~·H:L Ptrf 21 Pt-'1 :<, 'TRFOF::M) 



, .. ... 
Nl .. OMNT:.:..20 
l·~OlJT::::i:l 

NC"r'O=:'i. 
11=:1. 
DO f.Wt l'H~'.EC=6~:t .• NUMRF..C 
CALL. Fi:F..ADER ( X N, NF.:r.-:c, :1.) 
IF <NTP. F..Q 0) GO 10 80 
NC'r'O=t·K;'r' 
1·~1 . .1['0::.::i~Uf) 
t·HPO=l-fTP 
RN(3F'O:.::RNOPO~..;. 

TOF<:QO=Toi;:Ql..IE 
CAL.I.. l..INF'RC~( ( THF.:1 A, 6, 2 > 
CRt..t.. sc~:F..l<!D < At..F-'HA .. A, s, l HF.TA, u, P, t), PH x, M > 
J. F ( M. Fi:::!. :U CALI.. 5:rr:~Nr.:i ( Al..PHR, A, S, THF.:T fi, Al..NGTH, 5TRA IN, 

S: CF J:>~, CM X NF, CMOV, PNI F, Nl.S:iMtH, ~''.F.:TA, PS L M) 
CAl..L l .. GTlo.ISr.:o<CFJ.:>-;, CMXNF .. GF-1M, Nl..GM~n, fo1, U, PHI) 

CAL.I.. EQl..IATF. ( Sl F.:ANO, 51F-::A1 t·l, ;.:~~' :1., 4) 
CAL.I .. FnUAl F crr-::.1·1P:1. < ;.,::;. , P, ::~ .. :1., ~ > 
TEMP:1. ( :1.) ::::J .. J;::lfi~~ 

CAl..L. PROl)f)l ( TFi:FOkM, 1 EMP:L l F.MP::?., 4, 4, :1.) 
CAl..1.. F.G!URTE<P, TEMF'2(2), :?~, :L :::.> 
CAl..I.. Fr:::1UATF ( TFMF-'.':1. (;~~)I I.}, :-?;, :L ::~) 
Tl:-:t··iP:1. ( :1. > =O. l'.=Jl>0 

Cf'.ll..L F'f;,:Ot::o!YT ( TRFGr<M .. TF..MP:1., TFMP?., 4, 4, :t) 
cnu.. FG!UFn F.: < 1..1, TF..MP? c? >, :~~, :t.. ::; > 
IF <U<3>. EQ. 0. 0D0) GO 10 70 
T•::.-P(?-)/1.J(~) 

P <. :T. > ~P < :1.) +IJ ( :1. > >+=T 
P<2>=P<2>+JJ(2)>+=1 
PC~>=O. 0[)0 
CAl..l. EOUATE (I.JO, 1.J, 3, :L 4) 
CAl..I.. EQUflTF: (f·'O .. p I ~~ .. :L 4) 
PH X O=SNGI.. (PH :C > 
00::.;SNOI.. ( D) 
C(JNT 1 NI.IF. 



CALL EQl.JATF. ( GAMCI, GRM, 20.· :L 4) 
CALI.. l..JF: x l EF:: ( Ol.IT:L rml.JT, 2) 
NOUT=NOlJT+:1. 
M=~ 
WRllE(5,75) NREC 

·('~) FORMAT ( I 4) 
f:(-:t Cot.ff J. Nl..IF.. 
c 
999 STOP 

El·JD 
::WE:IJG 
:i-1 .. AE:= LGThlSD 
C ................ · ......................................... . 
c 
(.: ** DOl..IP.1..F.: Pf':F.:C XS l ON ** 
C CAI.. CUL ATES TM I ST AF.:Ol..IND EACH I.. X GAMF..Nl FOR A 
C G 1 VF.:H Tl..t I 51 AROUND THE SCRF.-:l..J. 
c 
f~ GI \·'Et·' : c~· I>< - F-~F:(.tt'1 Sl..IF.:~:(11.f"f J. r-'F.: ~. TRNr> 
'~ C~1 J. t-n=: - f."~:Ot·1 ~.l,.IF.:~~Ol.fT J. t·H7. s·r Rt·~D 
(' 

c 
c 
c 
c 
c 
c 

""- GMrn - NO. OF LI GAMFNTS 
M - A FLA('; THAT l'il..IST HF.. :1. UPON F x i;:~sT !:-Jn F<:'T' 
1..1 - Ft"~OM Sl..IF.-:F<:Ol.JT l NF. SCF:F.]..JD <rn RF..CTl ON co::.;r NF.."S 

OF SCPD·1 A:•a :7:) 
PH x - FF~:OM Sl .. IF!l~:mn J NE sc~:FMI) ( F.: x ('; J. I) P,IJl)'T' .-:oTAT J. ON 

RROl.JW) i HF.. ::-;cpr.J..J > 

C RF.TURNED: 
C GAM - AN ARRAY CONlAININO THE lMXST IN DEGREES 
C APOl.JND FACH OF THF. I.. l GAMENT5. 
c 
c ........................................................... . 
c 

SUF.;ROU'T I NE LGJ MSD (CF l x, CM J. NF I GAM, Nl .. GMNl I M, lJ, PH I ) 
IMPl..J.Cli J.NTF.:GFR*2 <l-N) 
001.1F:1..r::. PPF.C Is rm~ CF r >-~ ( 4, 2~1;:., CM x NF< 4, 20 >, VFM C?., 2~;:., 00 

00 



& PHXR,COSA,SINA, 
8: AViAGFM ( ~~i;:)) I AMAGU. I), GAM ( 20) I ALPHA. s, c, .1..1 (~)I PH l 

l..fR I TF.: < 6, 660) 
660 FOl<~MAT ( 9>'~ .... 1.V I :?."?X, ·' PH I ... I '??~ • ... VFM-' I 25!>'~ .... fil .. PHA-' I '?!>'~ • ... GAM-' ) 

DO '.1.00 I =:L Nl..GMNT 
IF ( M. HF.:. :1.) GO T(I 21i~ 

:1.1(:1 VFMO(, X )=CMINF <f(+:L J. )-CFJ.>~0(+:1., I) 
AMflGFM (I ~k::D:=:;;Qfn <. VFl"i < L J.) *VF M < ;t, I) +VFM ( ::e~, l )>tNFM ( 2, I)+ 

S: \.'FMC'~, X )>+:\/FMC:~, 'J.)) 

GAM( 1 )=0. 0D0 
GO TO :H'.Wt 

20 AMACil .. 1:.:l)SG!F<:T ( U ( :1.) *l..I ( :1.) +U ( 2) >+:1..1 ( 2) +U (:?.) *U ( ~:t)) 
f):.::AMAGl..li+:AMAGFl1 <. ). ) 

c 

IF ( P. NF. 0. ODO) GO TO ~:;;0 

GAM ( I ) ~270. 01)~1 
GO TO :t00 

C PH J: - RI (i I I) t:-:cir.N ~WTfil J. m-~ AROUND THE SCRF.:l..J AX l S 

C ALPHA - ANGLE' BEi l..fF.J:-'.r~ THF. '.7:CPFM AND l HE I.. J. GAMF.NT A:,..~ I 5 

f~ GAl'-1 - THE ·rlJ 151 F-ff;:Ol..11'-JD "l"HF.: I.. l (;At·1F..~~1 A:>~ J ~. 
c 
30 COSA::: ( VFM < :1., I) i+:U < :1.) +VFM <:?, J. ) *U ( 2 > +VFM C~, J. )>+:l.J C:t> ) /D 

SI NA""' ( :1 .. fi:1D~-~-COSR>+:CO:=::;F1) 

Al .. PHA=DA1 AN::? ( ~; J. t·m, COSA) 
PHIR~PHI/57. 29578D0 
S=-=DS J. H <. F'H IF:) >+:l)CO:::; <. Al..PHA) 
C:!:f)COS ( r'H :c F<:) 

. GAMCI)=DATAN2CS,C)*57. 29578D0 
i.u;,: J. TE< 6, t:.1)0 > u. PH 1, < VFM cf<., x ) , f:'.'.:.:::t. :~), ALPHA, r.;AM < I ) 

600 FORMAT(9Fj.0. 3) 
:1.00 CONT I NUF 

f'~F.-:TUF.:N 

El.JD 
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