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CHAPTER I 

INTRODUCTION 

A coupler curve is the path of a point on the connecting link of a 

four-bar linkage. The coupler point may be used directly as an output 

or to drive other 1 inks to achieve certain motions (Figure 1). 

In 1784, Watt invented the "straight line motion" generated by the 

coupler of a four-bar linkage (l).· His invention of this significant 

motion diverted the attention from the follower link as the output to­

wards the coupler. The coupler curve was first studied analytically by 

Prony (2), who examined Watt's mechanism for deviations in 1796. Samuel 

Roberts (3) in 1876 found that the coupler curve of a four-bar linkage 

is of the sixth order. He called it a "Three-Bar Curve"; since then 

only the moving 1 inks were counted and called bars. Later, Cayley and 

others (4) tried to explore some I inkages that are able to generate 

specific algebraic curves of any order. For more information about the 

four-bar coupler curve, the reader is referred to Chapter 6 of Reference 

( 1 ) • 

Coupler curves have a variety of shapes. They may have symmetry 

about an axis as well as double points. A double point is a point where 

the curve intersects itself; that is, it has two tangents at that point. 

The double point might be a crunode where the tangents are distinct and 

intersect at an angle. It also might be a cusp where the tangents are 

coincident; that is, the curve is tangent to itself. Also, the four-bar 
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1 inkage is able to generate an approximate straight 1 ine coupler curve. 

Burmester (5) motivated by finding a general method for the synthe­

sis of a four-bar 1 inkage developed his famous theory which is an impor­

tant part of the curvature theory. His graphical method guides a point 

through up to five finitely separated positions. Mueller (6) attacked 

the same problem but concentrated on the concept of a single-position 

design. His work was purely geometrical. Allievi (7, 8) directed his 

attention towards purely analytical methods in coplanar motion. Hain 

(9), Beyer (10}, Hall (16}, and Cowie (19) also presented some synthesis 

procedures in their books. 

There is no general and easy procedure to synthesize a four-bar 

1 inkage that generates a desired coupler point motion. The curvature 

theory is very complicated and researchers usually attack special prob­

lems in special ways. 

In this work the emphasis is oriented towards a single-position 

design (6). The higher-path curvature theory which was first introduced 

by \.Jolford (13} in 1960, and Freudenstein (14) in 1964 can serve the 

purpose. The basic characteristics of the motion are then studied in 

terms of the "instantaneous invariants" in which the motion is repre­

sented as a displacement from a reference position by means of a power 

series in the motion coordinates. This concept was first introduced by 

Bottema (15) in 1961, and elaborated by Veldkamp (16) later in 1963. 

For a better view about this method, see Appendix C. 

The higher-order curvature theory is not going to be used in this 

work since the geometrical methods are more convenient for this particu­

lar problem. In other problems, such as the design of a linkage that 

generates an approximate straight-I ine motion or a circular arc, the 



higher-order curvature theory become more powerful. A brief introduc­

tion about the straight-line motion is presented in Appendix C. 

This study deals mainly with the double point of a coupler curve. 

4 

In particular its aim is to synthesize a four-bar linkage that generates 

a symmetrical coupler curve with a single cusp and another which gener­

ates two symmetrical cusps. 



CHAPTER 11 

GENERAL BACKGROUND 

2.1 Introduction 

Before dealing with the synthesis problem, it is felt that a brief 

introduction to the theory behind it is necessary. The theoretical con­

cepts that are going to be dealt with later on in Chapter 111 can be 

divided into four topics: 

1. Instant Center 

2. Fixed and Moving Centrodes 

3. Symmetrical Coupler Curve 

4. Double Point. 

2.2 Instant Center 

When two bodies move relative to one another, the instant center is 

the point common to both bodies and has the same velocity in each of the 

two bodies (1, 17, 18). 

The instant center of a four-bar linkage, relative to which the 

coupler 1 ink moves, coincides with the intersection of the two straight 

lines colinear with the two grounded links, respectively. In Figure 2. 

I is the instant center of the moving 1 ink AB of the linkage A0ABB0 . 

2.3 Fixed and Moving Polodes 

Fixed and moving polodes are the curves traced by the instant center 

5 
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of velocity on both fixed and moving planes. That is, a body moving 

with respect to another fixed body and two planes each is attached to 

one of them; the plane attached to the moving body is called the moving 

plane and the plane attached to the fixed plane is called the fixed 

plane. The curve traced by the instant pole on the moving plane is 

called the moving polode or centrode; it is also called the body polode. 

The curve traced on the fixed plane is called the fixed polode or cen-

trade; it is also called the space polode (Figure 3). 

This relative motion of the moving body with respect to the fixed 

body can be reproduced by having two bodies with profiles similar to 

the polodes moved against each other by pure rolling. The motion is 

puie rolling because the polodes are the locii of the instant center of 

velocity in two distinct planes. The relative velocity between the two 

bodies at the position of the instant center is zero. 

As an example, a circular disk rolling along a straight path repre-

sents a circular body polode and a straight-line space polode (Figure 4) 

(1, 17, 18). 

2.4 Symmetrical Coupler Curve 

A four-bar linkage will generate a symmetrical coupler curve if the 

length of the coupler link AB is equal to the length of the follower 

1 ink BB0 and equal to the coupler arm BP (Figure 5) (1, 19, 20). The 

axis of symmetry of the coupler curve passes through the fixed point B0 

and through the point P*; p* is the position of P when the input link 

A0A is in line with the fixed link A0B0. The angle made by the inter­

section of the axis of symmetry and the fixed 1 ink is equal to [7r/2 -

S]; S is the angle PAB. 



s 

Figure 3. Fixed and Moving Po\odes 
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2.5 Double Point 

A double point is the point where the coupler curve intersects it-

self. The double point is always located on a circle that circumscribes 

the triangle A0e0c, which is similar to the coupler triangle ABP (Figure 

6) (1, 19, 20). It is also called the circle of singular foci. A dou-

ble point can be a crunode or a cusp. 

2.5. 1 Crunode 

If the tangents at the double point intersect at an angle, the 

double point is called a crunode. An eight shape (00 ) is an example of 

a crunode. It is possible that a coupler c~rve intersects itself in 

more than one point (I, 9, 20). 

2.5.2 Cusp 

A cusp is a double point where the tangents are col inear or the 

angle between the two tangents is zero. A very common example of a 

cusp is the curve traced by a point on the periphery of a rolling wheel. 

In Figure 7, the curve is the cycloid. The wheel is the body polode and 

the straight line is the space polode. A point Pon the periphery be­

longs to the moving or body polode. Let I be a point on the fixed or 

space polode. When P coincides with I, I becomes the instantaneous cen-

ter of velocity. P comes down towards I, stops as it coincides with I, 

and moves back in an opposite approach. Although the velocity of P is 

zero at I, it experiences no discontinuity. 

A cusp, then, can be generated if a point belongs to the body 

polode and coincides with the instantaneous center of velocity. For a 
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Figure 6. Coupler Curve With a Double Point 
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four-bar linkage, a coupler point that is lying on the moving centrode 

will develop a cusp if it is coinciding with the instant center at that 

instant. 

The tangent to the coupler curve at the cusp is normal to the fix­

ed polode (I, 9). 



CHAPTER 111 

SYNTHESIS 

3. 1 Synthesis of a Four-Bar Linkage That 

Generates a Symmetrical Coupler 

Curve With Two Cusps 

A coupler point which happens to lie on the moving polode will gen-

erate a cusp as it coincides with the instantaneous center of velocity 

(1). The concept of single-position design is followed here. Let the 

design position be taken at the instant the coupler point is coinciding 

with the instantaneous center of velocity of the coupler 1 ink (Figure 

8). This position of the four-bar will satisfy the condition for a cusp. 

A point P (Figure 8) coinciding with I, the instant center of the coup-

ler 1 ink belongs to the moving centrode which at that instant is rolling 

over the fixed centrode. 

Introducing symmetry to the problem, another cusp wi 11 be generated. 

The two cusps are symmetrical about an axis that passes through a0 and 

makes an angle a with the fixed link of the four-bar (Figure 9). 

a = (~ - B) 
2 

where B is the angle PAB. 

Symmetry will add the condition that requires the length of the fol-

lower l'ink BB0 to be equal to the length of the coupler link and to the 

length of the coupler arm BP. 

15 



Figure 8. Design Position; the Coupler 
Point is Coinciding With 
the Instant Center 
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To synthesize a four-bar, the lengths of its four links should be 

found. The coupler link's dimensions should also be found. The con-

straints on this design are introduced by the symmetry and the position 

of the four-bar linkage. 

From symmetry, 

Some 

BB = AB = BP 
0 

a = f - 13) 

assumptions have to 

links of the four-bar 1 i nkage 

is preserved. The lengths of 

terms of the assumed length. 

be 

is 

the 

The 

For every a. there is a different 

1T 
a. = (- - 13) 

2 

made. If the length of 

assumed, the genera 1 i ty 

other three 1 inks w i 11 

angle a. can be treated 

design (Figure9). 

Assume a is given and then find: 13. 

13 = (!.. - a.) 
2 

one of the 

of the problem 

be found in 

as a parameter. 

Angles APB and BAP are equal since the coupler triangle ABP is isosceles. 

Angle ABP is equal to y. 

y = 1T = 213 

or 

y = 2a. 

By assumption let the length of the link BBQ be equal to unity. 

From symmetry then, 

AB= BP= BBQ= 1.Q 
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and 

(AP) 2 = (AB) 2 + (BP) 2 - 2(AB)(BP) cos(y) 

or 

2 (AP) = 2(1 - cosy) 

Let e be the angle ABB0 . 

6=1T-y 

At this stage one more parameter is needed. Let the angle of span 

between the two cusps be equal to s: it is the angle at B0 between PB0 
J. 

and PnB0 (Figure 9). Therefore, the angle between PB0 and the axis of 

symmetry is equal to half of S· Since a is assumed before (a is the 

angle between the fixed link A0s0 and the axis of symmetry), the angle 

between PB0 and A0B0 can be found. Let this angle be called 6. 

o=f.+a 
2 

Let the angle A0AB be called A. Then, 

For the quadrilateral A0ABB0 , the sum of the internal angles should be 

equal to 360°. Therefore, 

~ = 360° - 6 - e - A 

So far the lengths of the links A0A and A0B0 are not yet found. 

Applying ~he Sine law in triangle A0PB0 : 
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B0P is known and all the angles~' B, and 6 are also known; it is easy 

then to determine the length of the I ink A0B0 . 

and 

and 

B0P sinB 

AOBO = sin~ 

A0P 
B0P s i no 

= 
sin~ 

f i na 11 y, 

A0A = A0P - AP. 

3.2 Synthesis of a Four-Bar Linkage That 

Generates a Symmetrical Coupler Curve 

With a Single Cusp 

It has been mentioned before that a cusp is generated when a coup-

ler point lying on the moving centrode passes through the instantaneous 

center of velocity. In the first part of this chapter, a four-bar that 

generates a symmetrical coupler curve with two cusps is synthesized. 

The design position is chosen at a point that does not belong to the 

axis of synvnetry. In that case, another cusp is generated symmetrical 

to the first with respect to the axis of symmetry. It is clear then 

that a point lying on the axis of symmetry chosen as the design position 

will develop a symmetrical coupler curve but it will have only one cusp. 

A very convenient design position is B0 , the fixed end of the fol­

lower link (Figure 10). P should coincide with B0 . The instantaneous 

center of velocity 11 111 should also coincide with B0 . The points 11 P11 and 

11 111 will then coincide and P will belong to the moving centrode which at 
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that instant is rolling over the fixed centrode at the position of the 

instant center I. This position will allow a cusp to be developed. 

The orientation of the four-bar will be such that the input link AB is 

in line with the fixed link A0B0. The coupler point P will coincide 

with BO. BO belongs to the axis of symmetry of the coupler curve. The 

cusp w i 11 1 i e on the axis of symmetry and thus symmetry conditions w i 11 

not help to generate another one. The curve itself is symmetrical and 

the axis of symmetry is the tangent at the cusp. 

To synthesize the Ii nkage two parameters a re needed as in the pre-

vious case. Let the angle of inclination a of the axis of symmetry with 

respect to the fixed link A0B0 be one parameter. The second parameter 

is the length of the segment along the axis of symmetry limited by the 

two extreme positions of the coupler point. These two extreme positions 

are coordinated by the position of the linkage when the input link AB is 

in line with the fixed link A0B0 (Figure 11). 

In Figure 12, a is known; then 

y = 1T - 2f3 = 2a. 

If the follower link B0B is assumed unity: 

B0 B =BP= AB= J.O 
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therefore, 

Once 0 is known, A. can be found and thus 

2 2 ( l - cos:>..) (A2 BO) = 

From Figure 13, 

2 2 ( l - cosy} (A1B0) = 

but 

Al BO = A2BO = 2AA0 

therefore, 

and finally, 

3,3 Results and Discussion 

To complete the design procedures, two computer programs were writ-

ten. One solves for two symmetrical cusps and the other solves for a 

single cusp. Both programs calculate the lengths of the four links fol-

lowing the procedure presented in sections 3. l and 3.2, respectively. 

The type of linkage is checked by Grashof 's rule for a four-bar mechan-

ism. A subroutine was written for this purpose. The crank-rocker 

mechanism is th~ one of significant importance to this work. In the 
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B, 

Figure 13. Detailed Figure for a Single Cusp Design 
(Position 1) 
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case of a crank-rocker, the minimum and maximum transmission angles are 

calculated. 

The results are tabulated in Tables I through XVI and some design 

charts for a crank-rocker mechanism are prepared. The tabulated results 

include the length of each link, the coupler arm AP and the angle 8 be­

tween AP and the coupler link AB (see Figure 14). For two symmetrical 

cusps, 8 is measured counterclockwise from AB. In the case of a single 

cusp design, 8 is measured in a clockwise direction from AB. Also, the 

design tables contain the minimum and maximum transmission angles as 

well as the type of the mechanism. Each table lists all of the above 

mentioned quantities for different values of the angle a and one value 

of the angles for the two cusps design or one value of the length B0P 

for a single cusp design. Fors equal to 10.0 and B0P equal to 0.5, 

see Tables I and II, respectively. Tables I I I through IX (Appendix A) 

are prepared for two symmetrical cusps design, while Tables X through 

XVI (Appendix B) are for a single cusp design. 

The tabulated results are plotted in the form of design charts. 

The plotted curves are those of the 1 ink proportions of the input, the 

coupler and the ground 1 inks normalized with respect to the follower 

link length. The input plot is a dotted line, the coupler plot is a 

solid line, and the ground plot is a hyphenated line. The abscissa in 

these graphs is a, the angle of inclination of the axis of symmetry 

with respect to the fixed link. The ordinates are the normalized 

lengths. Due to the symmetry, the coupler 1 ink should have the same 

length as the fol lower, and hence the normalized curve of the coupler is 

a straight line parallel to the a axis at a value of 1. 



Figure 14. Detailed Figure of a Synthe­
sized Four-Bar Linkage 
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TABLE I 

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH t; = 10 DEGREES 

t; a a b c d e e µ Min µ Max Type 

10.0 15.0 0.4132 l. 0 l. 0 2.6288 0.5176 75.0 Double Rocker 

10.0 20.0 0.5720 l. 0 l.O 2.7927 0.6840 70.0 Double Rocker 

10.0 2S.O 0. 1580 l. 0 1.0 l. 8184 0.8452 6S.O l 12. 2S 162.39 Crank - Roeker 

10.0 30.0 0. 14 72 1.0 l. 0 l . 7321 l. 0000 60.0 104.83 140.00 Crank-Rocker 

10.0 3S.O 0. 1442 l. 0 1.0 l . 6456 l . 14 72 5S.O 97.30 127.00 Crank-Rocker 

10.0 40.0 0. l S2 3 l.O l. 0 l .SS77 l .2856 so.o 89.30 11 7. so Crank-Rocker 

10.0 45.0 0. 1750 l. 0 l. 0 l. 4669 l. 4142 4S.O so.so 110. 40 Crank-Rocker 

10.0 so.o 0.2159 1.0 l. 0 l. 3717 l . 5 32 1 40.0 70.60 l os. l 0 Crank-Rocker 

10.0 ss.o 0.2792 l. 0 l. 0 l. 2700 1. 6383 3S.O S9.40 l 0 l . so Crank-Rocker 

10.0 60.0 0.3697 l. 0 l. 0 l. IS9S l. 7320 30.0 46.SO 99.70 Crank-Rocker 

10.0 6S.O 0.4933 l.O l. 0 l. 0370 1.8126 25.0 31. SS 99.84 Crank-Rocker 

10.0 70.0 0. 6577 LO 1.0 0.8983 l .8794 20.0 13.80 102.20 Crank-Rocker 

10.0 7S.O 0.3737 l. 0 1.0 0.7373 l. 9319 IS.O Drag-Link 



TABLE 11 

DESIGN TABLE FOR A SINGLE CUSP WITH 

B0P a a b c d e s 

0.5 30.0 0. 2324 1. 0 1.0 0.7676 1. 0000 60.00 

0.5 35.0 0.2230 1. 0 1.0 0.9241 1 . 1472 55.00 

o.s 40.0 0.2119 1. 0 1. 0 1 . 0737 1. 2856 50.00 

0.5 45.0 0. 1992 I. 0 1. 0 1.2150 1.4142 45.00 

o.s 50.0 0. 1850 1. 0 1.0 1 . 34 71 1. 5321 40.00 

0.5 55.0 0. 1694 1. 0 1. 0 1 . 4689 I. 6383 35.00 

0.5 60.0 0. 1525 I. 0 1.0 1. 5795 1. 7320 30.00 

o.s 65.0 0. 1344 1.0 l.O I. 6 732 1 . 8126 25.00 

0.5 70 .0 0. 1153 1. 0 1.0 1. 7640 1. 8794 20.00 

B0P = 0.5 

Min 

31. 00 

41. 00 

51. 00 

61. 00 

71. 00 

81 .00 

91.0 

IO I . 00 

I 1 I . 00 

Max 

60.00 

70.00 

ao.oo 

90.00 

100.00 

110.00 

120.00 

130.00 

140.00 

Type 

Crank-Rocker 

Crank"." Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

C rank - Roeker 

Crank-Rocker 

Crank-Rocker 

w 
0 
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Another parameter governs the results. For two symmetrical cusps 

the parameter is the angle of span F;, between th.e two cusps. For a sin­

gle cusp it is the segment B0P between the two extreme positions of the 

coupler point along the axis of symmetry. In Figure 15, the curves are 

those of the normalized lengths of the input, coupler, and ground links 

for a span angle of 10 degrees. In the case of a single cusp (Figure 

16), the normalized lengths are plotted against a for B0P equal to 0.5. 

The rest of the design data are plotted as design charts for both kinds. 

For two cusps (Figure 17), the curves are continuous within a range. 

For smaller values of a, the type of mechanism is a double rocker, while 

for larger angles the mechanism becomes a crank· rocker. When a. approaches 

90 degrees, the mechanism will more likely become a drag-link, depending 

on F;.. The design procedure for the single cusp gives a crank-rocker if 

the solution exists (Figure 18). The charts include only the designs 

whose maximum and minimum transmission angles are not larger than 140 

and not less than 30 degrees. The best transmission angle is 90 degrees. 

Transmission angles smaller than 40 or larger than 140 are not recommend­

ed, especially for high speed designs of mechanisms. 
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CHAPTER IV 

SUMMARY AND CONCLUSION 

4.1 Analysis and Summary 

The design procedure followed in the two problems presented before 

depends on the single-position method. In the first problem the design 

position does not belong to the symmetry axis; a case that will produce 

another cusp symmetrical to the first one. The design position belongs 

to the axis of symmetry in the second problem. The double point will 

not have a symmetrical image. The key point in both design is that a 

coupler point on the moving polode of the coupler link of a four-bar 

mechanism will produce a cusp if it coincides with the instantaneous 

center. As a start the third vertex of the coupler triangle is assumed 

to coincide with the instant center. This point will develop a cusp. 

To verify it is necessary that the design position satisfies the 

double point conditions. In order that a coupler curve contains a dou­

ble point, this point should belong to the circle of singular foci. In 

Chapter I I, a brief introduction about this circle is presented. It 

circumscribes the triangle A0B0C such that this triangle is similar to 

the coupler triangle ABP (Figure 6). In the design position considered 

in the synthesis, the link A0A is in 1 ine with the coupler arm AP and 

the fo 11 ower 1 ink BB0 is also in 1 i ne with the arm BP. Any triangle 

A0B0C which is s imi Jar to the coupler triangle ABP wi 11 have its angle 

A0CB0 equal to the angle APB. This means that the angle A0PB0 is equal 
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to the angle A0CB0. If a circle circumscribes the triangle A0B0C, the 

angle A0CB0 will subtend the arc A0B0 and will be equal to half of it 

(Figure 19). But the angle A0PB0 is equal to the angle A0CB0 and thus 

it will be equal to half of the arc A0B0 . This implies that the point P 

must lie on the circumference of the same circle that circumscribes the 

triangle A0B0C. From definition that the circle is the circle of singu­

lar foci, and hence point Pat that instant satisfies the condition for 

a double point. Furthermore, this point coincides with the instant cen­

ter of the four-bar linkage. Kurt Haih (9) mentioned that a cusp will 

be developed at the point of intersection between the circle of singular 

foci and the fixed polode. The instantaneous center belongs to the 

fixed centrode. 

It is interesting to notice that if the coupler link AB is parallel 

to the fixed link A0B0 and the coupler point P coincides with the instan­

taneous center I (Figure 20), then the triangle A0B0C will be identical 

to the triangle A0B0P and C will coincide at P. P will still produce a 

cusp since it lies on the circle of the foci. 

In the case of a single cusp, double point conditions are more obvi­

ous. The instantaneous center and the coupler point P both coincide at 

B0 , which is always on the circle of the foci. It also belongs to the 

fixed centrode. 

Then the necessary and sufficient conditions for a coupler point to 

generate a cusp are satisfied by the design presented in Chapter I I I. 

4.2 Conclusion 

In conclusion, the design of a four-bar linkage that generates a 

symmetrical coupler curve with two cusps or with a single cusp is 



Figure 19. The Circle of Singular Foci Passing 
Through the Design Position 
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Figure 20. Special Case of the Design Position 
Coinciding With the Vertex of the 
Triangle Similar to the Coupler 
Triangle 

39 
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completed. ihe method followed is the single-position design. Once 

the position is defined, the solution of the problem is relatively easy 

to obtain. It is a geometrical solution depending on the position of 

the four-bar linkage. Two parameters are needed for each of the two 

designs. In the case of two synvnetrical cusps. the inclination angle 

of the symmetry axis wlth the fixed link is one and the other is the 

span angle between the two cusps. In the second design, the angle of 

inclination and the length of the segment between the two extreme posi­

tions of the coupler point along the axis of symmetry are needed. For 

practical purposes the two parameters in each case are suitable. A know­

ledge of the size of the path and its orientation will provide the need­

ed parameters. In addition to the two parameters, an assumption of the 

magnitude of the length of one of the links is helpful. This assumption 

will not affect the generality of the problem. The results are all nor­

malized in terms of the assumed length. The available space and the 

size of the mechanism will dictate the choice of that length. 

All the design specifications are presented in tables so that it 

can be used by designers. A set of design charts is also prepared for 

the crank-rocker design. 

This design is of practical importance to designers. Its uses can 

be divided into two main categories. The coupler curve can be used as 

an output of a four-bar linkage or as a guiding motion to drive other 

linkages; most important is the six-bar linkage. 

As an output of a four-bar, the design can be used in mechanisms 

that require a state of dwell enduring over a finite period of time. 

The cusp will cause an infinitesimal dwell at the double point and the 

coupler point will come to a complete stop. This means that the coupler 
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point is forced to approach this position very slowly. That is also 

true for the departure. All of that will generate a state of approxi­

mate dwell, and it is sufficient for most practical purposes. 

As a guiding motion, the coupler curve can be used to synthesize a 

six-bar mechanism. This six-bar is called a Coupler Driver Six-Bar 

Mechanism. In Figure 21, a six-bar driven by a coupler point of a four­

bar is shown. Any of the revolute pairs could be substituted by a pris­

matic pair since both have one degree of freedom. The output of the 

six-bar can be through a folower link or through a slider. There are 

21 types of six-bar linkages that have one degree of freedom and are 

driven by the coupler point of a four-bar linkage. These types can be 

classified by the two basic types of motion they execute: rotary to 

rotary, where the input and output cranks are both performing rotary 

motion; and rotary to linear, where the input crank performs rotary 

motion while the output performs sliding motion. For more information, 

the reader is referred to unit 15 of Reference (17). 
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Figure 2\. Coup\er-Dri""n six-Bar 11ecnanism 
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APPENDIX A 

TABULATED RESULTS OF A SYMMETRICAL COUPLER CURVE 

WITH TWO SYMMETRICAL CUSPS DESIGN 
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TABLE 111 

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH t = 15 DEGREES 

t a a b c d e 8 t Min t Max Type 

15.0 10.0 0.3887 1.0 1.0 2.4105 0. 3473 80.00 Double Rocker 

15.0 25.0 0.2376 1.0 1.0 1. 8266 0.8452 65.00 Double Rocker 

1s.0 30.0 0.2183 1.0 1.0 1 . 7332 1. 0000 60.00 98.50 154.70 Crank-Rocker 

15.0 35 .o 0.2058 1. 0 1. 0 1. 6404 1 . 14 72 55.00 91. 70 134.80 Crank-Rocker 

15. 0 40.0 0. 2031 1.0 1.0 1 . 5468 1. 2856 50.00 84.40 122.00 Crank-Rocker 

15.0 45.0 0.2136 I. 0 1.0 I. 4509 I . 4142 45.00 76.40 112.70 Crank-Rocker 

15.0 50.0 0.2406 1.0 1.0 1 . 3510 1 . 5 321 40.00 67,50 105.50 Crank-Rocker 

15.0 55.0 0.2876 1. 0 1.0 1 . 2454 1 . 6383 35.00 57.20 I 00. 10 Crank-Rocker 

15.0 60.0 0.3589 1.0 1.0 1.1316 1. 7320 30.00 45.50 96.40 Crank - Roeker 

15.0 65.0 0.4594 1.0 1. 0 l .0068 1 . 8126 25.00 31.80 94.30 Crank-Rocker 

15.0 70.0 0.5954 1.0 1.0 0.8670 1. 8794 20.00 15.60 94.00 Crank-Rocker 

15.0 75.0 0.7754 1.0 1. 0 0. 7067 1.9319 15.00 Drag-Link 

~ 
O' 



TABLE IV 

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH ~ = 30 DEGREES 

~ Cl a b c d e e µ Min µ Max Type 

30.0 10.0 0.6074 1.0 . 1.0 2.2246 0.3473 80.00 Doub 1 e Rocker 

30.0 35.0 0.3899 1.0 1.0 1 .6436 1 . 1472 55.00 Double Rocker 

30.0 40.0 0.3528 1.0 1.0 1.5321 1. 2856 50.00 72.30 140.90 Crank-Rocker 

30.0 45.0 0.3256 1.0 1.0 1. 4205 1 . 4142 45.00 66.40 121 . 60 Crank-Rocker 

30.0 50.0 0.3109 1.0 1.0 1 . 3071 1 . 5 321 40.00 59.80 108.00 Crank-Rocker 

30 .0 55.0 0.3112 1. 0 1.0 1 . 1899 1 . 6383 35.00 52. 10 97.30 Crank-Rocker 

30.0 60.0 0. 3292 1.0 I. 0 1. 06 70 1 . 7320 30.00 43.30 88.50 Crank-Rocker 

30.0 65.0 0.3679 LO 1.0 0.9357 1. 1a126 25.00 33.00 81. 40 Crank-Rocker 

JO.O 70.0 0.4308 1.0 1. 0 0. 7931 1 . 8791, 20.00 20.90 75.50 Crank-Rocker 



TABLE V 

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH ~ = 45 DEGREES 

~ a a b c d e a Min Max Type 

45.0 10.0 0. 7978 I. 0 1.0 2.0988 0.3473 80.00 Double Rocker 

45.0 40.0 0.5021 I. 0 I. 0 1. 54 39 1 . 2856 50.-00 Double Rocker 

45.0 45.0 0.4348 1.0 I. 0 1 . 4152 1.4142 45.00 58.]0 135.30 Crank-Rocker 

45.0 50.0 0. 3778 I. 0 1.0 1.2872 1.5321 40.00 54. 10 112. 70 Crank-Rocker 

45.0 55.0 0.3330 1.0 1.0 1. 1582 1. 6383 35.00 48.70 96.40 Crank-Rocker 

45.0 60.0 0.3022 1.0 1.0 1. 0259 1. 7320 30.00 42.40 83.20 Crank-Rocker 

45.0 65.0 0.2872 1.0 1.0 0.8883 1.8126 25.00 35.00 72.00 Crank-Rocker 

45.0 10.0 0.2898 1.0 I. 0 0.7426 1 . 8794 20.00 26.20 62.20 Crank-Rocker 



TABLE VI 

DESIGN TABLES FOR TWO SYMMETRICAL CUSPS W~TH t = 60 DEGREES 

t a a b c d e 8 Min Max Type 

60.0 10.0 0.9705 1. 0 1.0 2.0190 0.3473 80.00 Doub 1 e Rocker 

60.0 40.0 0.6564 1. 0 1.0 1. 5832 1. 2856 50.00 Double Rocker 

60.0 45.0 0.5450 1.0 1. 0 1. 4343 1 . 4142 45.00 52.80 163.50 . Crank-Rocker 

60.0 50.0 0.4439 1.0 1.0 1 . 2897 1 . 5 321 40.00 50.00 120.20 Crank-Rocker 

60.0 55.0 0.3541 1.0 1.0 1 . l 4 72 1. 6383 35.00 46. 72 97.30 C rank - Roeker 

60.0 60.0 0.2769 1.0 1. 0 1 . 0045 1. 7320 30.00 42.70 79.70 Crank-Rocker 

60.0 65.0 0.2131 1. 0 1.0 0.8594 1 . 8126 25.00 37.70 64.90 Crank-Rocker 

60.0 70.0 0. 1637 1. 0 1. 0 0.7095 1 . 8794 20.00 31. 70 51. 80 Crank-Rocker 

60.0 75.0 0. 1294 LO 1.0 0.5523 1 . 9319 15. 00 24.40 39.90 Crank-Rocker 



~ a 

75.0 10.0 

75.0 1,5. 0 

75.0 50.0 

75.0 55.0 

75.0 60.0 

75.0 65.0 

75.0 70.0 

TABLE VI I 

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH ~ = 75 DEGREES 

a b c d e B µ Min µ Max 

1. 1 334 1.0 1.0 1. 9778 0.3473 80.00 

0.6603 1.0 1. 0 1. 4796 1 • 4142 45.00 

0.5113 1.0 1.0 1.3147 1 . 5 321 40.00 47. 40 131. 90 

0.3752 1.0 1.0 1 • 1560 1. 6383 35.00 46.00 99.90 

0.2522 1.0 1.0 1 . 0007 1 . 7320 30.00 44.00 77.60 

0. 1425 1.0 1.0 0.8463 1 . 8126 25.00 41.20 59.30 

0.0464 1. 0 1.0 0.6906 1. 8794 20.00 37.60 43.20 

Type 

Doub 1 e Rocker 

Double Rocker 

Crank - Roeker 

Crank-Rocker 

Crank- Rocker 

Crank-Rocker 

Crank-Rocker 

V1 
0 



TABLE VI 11 

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH ~ = 90 DEGREES 

~ a a b c d e s µ Min µ Max Type 

90.0 10.0 1.2923 1.0 1.0 1 . 9712 0.3473 80.00 Double Rocker 

90.0 45.0 0.7853 1.0 1.0 1.5553 1 . 4142 45.00 Double Rocker 

90.0 50.0 0.5827 1.0 1.0 1. 3646 1 • 5 321 40.00 46.00 153.60 Crank-Rocker 

90.0 55.0 0. 3970 1.0 1.0 1 . 1854 1 . 6383 35.00 46.40 104.60 Crank-Rocker 

90.0 60.0 0.2272 1.0 1.0 1 . 0142 1 . 7320 30.00 46.30 76. 70 Crank-Rocker 

90.0 65.0 0 .0728 1.0 1.0 0.8480 1 • 8126 25.00 45.60 54.80 Crank-Rocker 

TABLE IX 

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH ~ = 120 DEGREES 

~ a a b c d e 8 µ Min µ Max Type 

120.0 10.0 1 . 62 11 1. 0 1. 0 2.0629 0.3473 80.0 Double Rocker 

120.0 50.0 0.7509 1.0 1.0 1. 5616 1 . 5321 40.0 Double Rocker 
120.0 55.0 0.4462 1.0 l.O 1.3192 1 . 6383 35.0 51. 80 123.90 Crank-Rocker 

120.0 60.0 0. 1728 1.0 l. 0 1 .0993 1 • 7320 30.0 55.20 79.00 Crank-Rocker 
V1 
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TABLE X 

DESIGN TABLE FOR A SINGLE CUSP WITH B0P = 0.25 

B0P a a b c d e e µ Min µ Max Type 

0.25 20.0 0. 120 l 1.0 l.O 0.5639 0.6840 70.00 25.60 40.00 Crank-Rocker 

0.25 25.0 0. 1166 l.O l.O 0.7286 0.8452 65.00 35.60 50.00 Crank-Rocker 

0.25 30.0 0. 1122 l.O l.O 0.8878 l . 0000 60.00 45.60 60.00 Crank-Rocker 

0.25 35.0 0. l 069 l.O l. 0 l . 040 3 1.1472 55.00 55.60 70.00 Crank- Rocker 

0.25 40.0 0. l 008 l.O l.O 1 . 1848 1. 2856 50.00 65.60 . 80.00 Crank-Rocker 

0.25 45.0 0.0939 l.O l.O 1 . 3203 1 . 4142 45.00 75.60 90.00 Crank-Rocker 

0.25 so.a 0.0864 l.O l.O 1. 4457 1 . 5 321 40.00 85.60 100.00 Crank-Rocker 

0.25 55.0 0.0781 l. 0 l.O 1. 5602 1.6383 35.00 95.60 l l 0. 00 Crank-Rocker 

0.25 60.0 0.0693 l.O l.O 1. 6628 1. 7320 30.00 105. 60 120;00 Crank-Rocker 

0.25 65.0 0.0599 l.O l.O 1. 752 7 l . 8126 25.00 11 3. 60 130. 00 Crank-Rocker 

0.25 70.0 0. 0501 l.O l.O l. 3293 1. 8794 20.00 125.60 140.00. Crank-Rocker 



TABLE XI 

DESIGN TABLE FOR A SINGLE CUSP WITH B0P = 0.75 

B0P a a b c d e e µ Min µ Max Type 

0. 75 35.00 0.3490 1.0 1.0 0.7981 1. 1472 55.00 26.00 70.00 Crank-Rocker 

0.75 40.00 0.3342 1. 0 1. 0 0.9514 1.2856 50.00 35.95 80.00 Crank-Rocker 

0.75 45.00 0.3168 1.0 1.0 1 .0974 1.4142 45.00 46.00 90.00 Crank-Rocker 

o. 75 50.00 0. 2969 1. 0 1.0 1. 2351 1. 5321 40.00 56.00 100.00 Crank-Rocker 

0. 75 55.00 0.2749 1.0 1.0 1. 3634 1 .6383 35.00 66.00 110. 00 Crank-Rocker 

0.75 60.00 0.2507 1.0 1.0 1. 481 3 1. 7320 30.00 76.00 120.00 Crank-Rocker 

o. 75 65.00 0.2246 1.0 1.0 1. 5880 1.8126 25.00 86.00 130.00 Crank-Rocker 

0. 75 70.00 0. 1968 1.0 1.0 1.6826 1. 8794 20.00 96.00 140.00 Crank-Rocker 



DESIGN TABLE 

B0P a a b c 

l.00 45.00 0.4483 1.0 1.0 

l.00 50.00 0.4240 1.0 l. 0 

l.00 55.00 0.3965 1.0 1.0 

l.00 60.00 0.3660 1.0 1.0 

l.00 65.00 0.3327 l. 0 1.0 

l .00 70.00 0.2969 1.0 1.0 

1.00 75.00 0.2588 1.0 1.0 

TABLE X 11 

FOR A SINGLE CUSP WITH B0P = l .00 

d e 8 µ Min 

0.9659 l .4142 45.00 30.00 

l. l 081 l. 5321 40.00 40.00 

l. 2418 1.6383 35.00 50.00 

l. 3660 l. 7320 30.00 60.00 

1.4799 1.8126 25.00 70.00 

l. 5825 l .8794 20.00 80.00 

1.6730 1.9319 15.00 90.00 

µ Max 

90.00 

100.00 

110. 00 

120.00 

130.00 

140.00 

150.00 

Type 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

V'1 
V'1 



TABLE XI 11 

DESIGN TABLE FOR A SINGLE CUSP WITH B0P = 1.25 

B p 
0 a a b c d e e µ Min µ Max Type 

1.25 20.00 0.0217 1.0 1.0 0.6623 0.6840 70.00 37.40 4o;oo Crank-Rocker 

1. 25 25.00 0. 1861 1. 0 1.0 0.6592 0.8452 65.00 27. 40 50.00 Crank-Rocker 

1. 25 55.00 0.5382 1. 0 1. 0 1 . 1001 1. 6383 35.00 32.60 110. 00 Crank-Rocker 

I. 25 60.00 0.5025 1.0 1.0 1. 2296 1. 7320 30.00 42.60 120.00 Crank-Rocker 

1.25 65.00 0.4630 1. 0 1.0 1 . 3497 1 . 8126 25.00 52.60 130.00 Crank-Rocker 

1. 25 70.00 0.4199 1.0 1.0 1. 4595 1. 8794 20.00 62.60 140.00 Crank- Rocker 



B0P a a 

l.50 25.00 0.0224 

l.50 30.00 0.1812 

l.50 35,00 0.3386 

1.50 65.00 0.6238 

1.50 70.00 0.5747 

l.50 75.00 0. 5211 

TABLE XIV 

DESIGN TABLE FOR A SINGLE CUSP WITH B0P = l. 50 

b c d e 8 µ Min 

1.0 l. 0 0.8228 0.8452 65.00 47.20 

l. 0 l. 0 0.8186 1 . 0000 60.00 37.20 

1.0 1.0 0.8086 1.1472 55.00 27. 20 

1.0 l. 0 l . 1888 l . 8126 25.00 32. 80 

1.0 1.0 l . 304 7 l. 8794 20.00 42.80 

1.0 1.0 l . 4107 l . 9319 15.00 52.30 

µ Max 

50.00 

60.00 

70.00 

130. 00 

140.00 

150.00 

Type 

Crank-Rocker 

Crank-Rocker 

Crank - Roeker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Vl 
-....J 



DESIGN TABLE 

B0P Ct a b c 

_J. 75 35 .00 0. 1345 1.0 1.0 

1 . 75 40.00 0.2837 1.0 1. 0 

1. 75 45.00 0.4307 1.0 1. 0 

1. 75 50.00 0.5745 1.0 1.0 

I. 75 75.00 0.7248 1.0 1.0 

I. 75 80.00 0.6600 1.0 I. 0 

TABLE XV 

FOR A SINGLE CUSP WITH B0P = 1. 75 

d e s µ Min 

1.0127 1.1472 55.00 52.00 

1 . 0019 1. 2856 50.00 42.00 

0.9835 1.4142 45.00 32.00 

0.9576 1 . 5 321 40.00 22.00 

1 . 2071 1.9319 15.00 27.90 

1. 3096 1. 9696 10.00 37,90 

µ Max 

70.00 

80.00 

90.00 

100.00 

150.00 

160.00 

Type 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

\Tl 
00 



DESIGN TABLE 

s0P a. a b c 

2.00 50.00 0. 1233 l.O l. 0 

2.00 55.00 0.2456 1.0 l. 0 

2.00 60.00 0.3660 1.0 1.0 

2.00 65.00 0.4837 l. 0 1.0 

2.00 70.00 0.5977 1.0 1.0 

2.00 75.00 0. 7071 1.0 1.0 

TABLE XVI 

FOR A SINGLE CUSP WITH B0P = 2.00 

d e 8 Min 

l. 4088 1.5321 40.00 80.00 

l. 3927 1.6383 35.00 70.00 

l. 3660 l. 7320 30.00 60.00 

l. 3289 1.8126 25.00 50.00 

1.2817 1.8794 20.00 40.00 

l .2247 1.9319 15.00 30.00 

Max 

100. 00 

110.00 

112.00 

130.00 

140.00 

150.00 

Type 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Crank-Rocker 

Vl 
\..0 



APPENDIX C 

THEORETICAL BACKGROUND ABOUT STRAIGHT LINE 

MOTION, CANONICAL SYSTEMS, AND 

INSTANTANEOUS INVARIANTS 
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C. 1 Straight Line Segment 

At any instant there exist some points in the moving plane, part of 

which the coupler link is, that are going into inflection with respect 

to the fixed plane. The locus of these points is called the inflection 

circle. At each inflection point there is three-point contact between 

the curve and its tangent. Moreover, there is at least one real point 

among the inflection points that is going into four-poiht contact with 

its tangent. This happens when the inflection circle is intersecting 

the cubic of stationary curvature. The cubic of stationary curvature 

Is the locus of all points that are going through a fixed curvature at a 

particular instant. The intersection of the inflection circle and the 

cubic of stationary curvature is cal led Bal 1 's point (I, 8, 13, 14, 15, 

21 ) • 

C. I. 1 Canonical System and 

ln~tantaneous Invariants 

The concept of instantaneous invariants was introduced by Bottema 

and Veldkamp (8, 9). It is a powerful method to study the kinematic 

geometry of infinitesimally separated positions of a moving plane. 

A plane m in a continuous mdtion with respect to a fixed plane f 

is shown in Figure 22. A cartesian system (x,y) is attached to the mov­

ing plane and another (X,Y) is attached to the fixed plane. The origin 

of the moving system at a particular instant has the coordinates (a,b) 

with respect to the fixed system. a and bare functions of qi, the rota­

tion angle of m relative to f. This means X and Y are functions of qi. 

The coordinates of a point on the moving plane m with respect to the 
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Figure 22. Relative Motion of Two Planes 
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fixed systems of axes can be expressed as fol lows (2 l, 22, 23): 

( c. l ) 

Let the two origins of the two systems of axes m and f coincide 

and the x-axis of the moving system be in line with the X-axis of the 

fixed system. Let this instant be the reference or zero instant. At 

this instant t is equal to zero. The set of coordinates consisting of 

the coordinates of the moving and stationary systems is called the 

canonical system. 

Differentiate Equation (C. 1) with respect to up to the ith order. 

Let the symbols X., V., a., and b. be the ith derivatives of X, V, a, 
I I I I 

and b with respect tot. The derivatives a. and b. for i varies from 
I I 

l ton are called the intantaneous invariants. The instantaneous invari-

ants a 1, b1, and a2 are equal to zero because at the reference position 

t is equal to zero and the origins of both axis systems are coinciding. 

To describe the instantaneous invariants kinematically, the chain rule 

of differentiation is applied and the derivatives with respect to time 

are obtained. The ith time derivative of Equation (C. 1) is: 

= [di~] [x] + di [~] 
dt I dt I 

(C. 2) 

where 

[X] 

[x] 

[a] = [~] 

0 00 000 
If w, a, a, and a are the respective time derivatives of$, and X, X, 
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000 0 00 000 
and X , Y, Y, and Y are the velocity, acceleration, and j~~rk compo-

nents of the .:oupler point, the final results wi 11 be 1 isted as fol lows: 

x = x ·and y = y (C.3.a) 

0 0 
(C.3.b) x = -wy and y = wx 

00 2 00 2 . 2 (c.3.c) x = -(w x + ay) and y = ax - w y + w b2 

000 
(w3 0 3 x = -3w x + - a)y + w a3 (C.3.d) 

000 3 0 
3wa (b2 - 3 (C.3.e) y = -(w - a)x + y) + w b3 

For more information about the instantaneous invariants, see References 

(21), (22), and (23). 



APPENDIX D 

LISTING OF COMPUTER PROGRAM 
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SJOB ,Tl~C:=(O,~J) 
1 DATA fiR,flP.,f!/5,"i,3.14151)/ 
2 3h0=1.J . 
3 H=BBO 
4 BP-=IJllO 
5 PF.\C(NQ,•) 7.f.U 
6 ~PIT!(~P~l050) iKTA 
1 ZLTA=z::r1•r111qo 
8 10 Rf':dJ(:i:;t, *1 r:Nl.l='J9'J) ALPf:A 
9 Al.Piit.=r.l.Pil~•l'J /l '.JO 

10 B£TA=Pl/2-ALPttA 
11 G.<~A =2*ALPriA 
12 r1lf.TA= f>ll-GA11,\ 
13 DELTA-=Z~T\/~+~LPdA 
14 La~BDA=?I-RETA 
15 ?l!l=2*?I-:>:.l.TA-1'•1C:T.\ -1.AMBJA 
16 AP=<2"Cl.0-C05(G.\'.1o\))) 0 0.5 
17 BOP=~SQ•AP 
18 AOB0=(10r•SIN(~iTA))/SI"(~~r) 
19 4QP.:(ROP•sI,(O~~TA))/SIN(Pril) 

20 AOA=~CP-AP 
21 ~RJT~(~?~l010) AJ~,A~1 R9~ 1 A080 
22 ll'.::TA=u'.:TA*l&0.0/PI 
23 Wf<lT~:c:?,1020) AP,iJETA 
24 ALPHA=~LPdA*ldO.J/Pl 
25 ~kIT~(~P,1040) ALPHA 
26 i:.<LL GQAS!l(AOGO,iaJA,Ab,£HlO,:ll?) 
27 GO TO 10 
2q 999 ~RIT~(~P,1030) 
29 1010 F'O~!~;.T(l/////////,5'1..,'1:1rur = 1 .,no.4,sx,•couPLER = •,no.4,sx, 

~ 'FOLLJ~E~ = •,FlJ.4,5X,•GRJUN~ : 1 1 Fl0.1,///) 
30 1020 F0R~.\T(5~, 1 A~M AP= •,Ft0.4,5X 1 1 BETA = •,fl0.41 ///) 

31 1030 fOR~ATC'l') 
32 1010 FORMAT(5X, 1 ALP~A = 1 ,F'l0.4,///) 
33 1050 POGMAT(5X1 •z[TA = •,fl0.1,/////) 
34 STOf' 
35 E ~lU 

36 
c 
c 
c 
c 

sunrOUTI ~;~:. '~!?ASll cn::CKS Tl!~ TY?:!-: 0!" T;!~ fOUR-rl.q L UIKAGE USlllG 
GRAShlW!" ~RU~!UA. 

37 ALMAX=A~'XlCiLl,~L2,~L3 1 AL4) 
39 AL~I~=~~I1l(AL1,lL2,AL3,~L1) 
39 i.f. '!'O'l' = \ 1.1 +A I.::?+~!. 1+ .\I. t 
40 U'!;.:1=1\L·~AX+.~l.;H'I 
41 . ,\~i\r:r·=·~LTUT•,\L.~!:.~-~ 
42 If(AL~-~.L~.ALR~1) GO TO 100 
43 .rnnr:('li'i,li.JlO) 
44 ~ETU~~ 
15 101) IF(i.Ll .. ;f.:.1.:11·1.~:10.;.c.2.~.f..1.L:Hrl) GO TO in 
46 IF (~Ll.E~.AL~lM) ~U TO 102 
47 lf(AL2.fU.ALHl~J ~RITKc~r,lOJO) 
48 x :11 :1 =:. !. l -:. L2 
49 v=c:.L3*•2•AL4**l-(~1~··2)/(2*ALJ*tL1) 
50 ·n:•I \:\ilCll5(Y) 
st x~~x=~Ll+~tl 
:.i 2 l = ( ;.1. 3 ** .2 • :d. 1 * * 2 -J( :·IA X **2 ) /( 2 *A!.:;*;..'.. •1) 
~J r1i: ..• \X=>.;,:CoStZJ 



54 TllMiN=Tll"H·i•uo./3.14151'1. 
55 r111.::.x =r111~Ax •1 >JO. /J .141 ~9 
56 l~HTr:(11i1,104'J) T1l'HO:,Td~1AX 
57 GO TO lOJ 
5q lb2 WhlT~t~r,1020) 
5? co ~o 101 
60 101 ~PIT~l~~ 1 1010) 
bl 1010 fOP~AT (SK, 1 0UttbL~ ~OCK~~') 
62 1020 ~·o?t-:HC'.•x, 1 1n"r.-1.1•1K•> 
63 1030 fUR~AT(5~, 1 C1~~l-tOC~e~·> 
b4 1040 fOk~~T(~X, 1 ~1N PRES ANGLC = •,fl0.4,5X, 1 ~AX PRES ANGLE = •,rl0.4) 
65 103 R~TURN 
66 ENO 



1 
2 
3 
4 
5 
6 
7 
8 
9 

:: f. :.L I. htr.J A 
DATA :IR,Nr,Fl/5,~,3.14gq/ 
nhO:l.) 
A [l =lH-iO 
RP=OBO 
~E.\u( ~n, *) uOl' 

10 ~EAO(N1 1 * 1 l~D=9i~) ALPHA 
AL?fiA:.:it.PtU *Pl/1 !JO 
t3ETA=P! / 2-.1.LPiU 
GA :-tA=2 * ALf'JtA 
X=(2.0-BOP••2)/2 
THETA=l\RCOS( iC) 
".A 'lf1i,A:G:."4A-T:!~;l' l'l 
A2D0:(1*(1.0-COS(LA~BDA)))*•0.5 
~1B~=C2*(1.0-C03(GA~~)))**0.5 
AAU=(AlBO-A2Gv)/l 
A oao =·Ho +ueo 
~RlT!(,P,1010) ~~O,A9,BHO,AOC~ 
AP=Al~J 
DETA=li:TA 0 190.1/Pl 
wR!TE(~r,1020> AD,b£TA 
ALPµA=~LPHA*l~D.u/Pl 
WRITE(~P,1040) U~P,ALPHA 
CALL c~:.s11cAouo, .. to, .\R,f>tlO,t-:~> 
GO TO 10 

999 jkIT!C•P,1030) 
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10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 1010 FORM~T(//////////,5x,·1~PUT = •,F10.4,!1, 1 COUPL!R = •,r10.4,5x, 

S 1 FOLLJWER = •,~1u.4,5X, 1 GRJUHJ = 1 ,F10:4,///) 
213 
29 
33 
31 
32 

33 
c 
c 
c 
c 

1020. f0k~AT(5~,·Ak~ AP= •,fl0.4,SX,•aETA = •,r10.~,///) 
1030 f'ORMAT( 1 11 ) 

1040 f'DIHIATCSX,•1101•. = •,1"10.4,5X, 1 ALFO = •,no.4,1//) 
STOP 
C:tiD 

SUuhOUTINE GRASH(\L1,AL2,AL3 1 AL4,NP) 

:>UOROUTI tJ:;. l>RAS!t .:at::CKS TllE TYPE Or TllE FUUR-iUR l.INl<AGE USHll.i 
CRASiiOF'f' CR1Tl::RI l. 

34 AL~AK=l~AKl(ALl,ll.2,,L3,AL4) 
35 A L~J ~=4!~I1H (AL 11 .\Li, AL.3, A 1.4.) 
36 ALTOT="Ll+~L2+AL3+AL4 
37 ll.o'-IA~=AL '~AA +f,L H ,._, 
38 lL~E~=~l.TuT-.\t.A'~ 
39 JF(ALM\~.LE.AL~~4) CO TO 100 
40 '~[T~(~P,101~) 
41 H~TUR~ 
42 100 H"C.-Ll. ~~F' • .\L:~l'I. ~·iu • .i.L~. :1;.: • .\L:-ll ~I) CO TO 101 
43 If ('LL.E~.AL~I~) CO TJ 1~2 
44 If(t.L2.Ei.!.At.:•l!~) 1o.R[Tf(l•P,lOJO) 
45 X~l~=~~l-ALl 
46 V=(ALJ*•2+AL4**2-XMl~*•2)/(2*~L3*Al.4) 
47 TJ-:!11'\=flrn;L.JslO 
4q XllA:<=AL1+:.L2 
49 · Z=C~LJ•*2•~L4•*2-X~AX*•2)/(2*AL3*A~4) 
50 Tll~AX=,RCOS(Z) 
5( THHI~=Ta~1~*1H0./3.1~15Q 
52 r11~1.x:.,.·r:1~.:..x·1aJ. /J .1115Q 
53 \'i.,;IT:"(':r.104(1) r:l.Hil,Thl'H 
54 GO TO lry3 
55 102 .-r.u~:c·;:•.,10211> 
56 ~O TO \Ill 
57 1Pl 'RIT~(~P,ILIO) 
58 lUlO fO~~~r (~(,'JUJJL~ ~u:~ER') 
50 1020 l."on·.-.rc•;.x,•:i:·u·;·t.P'r.•> 
60 lOJu f'ORNAT(5X, 'l:flA'IK-:rnCKF.11•) 
fit l<i40 ::or.:iAT(.ix,·~1~ ··~:::~ ;.'\L!.!:.: = 1 ,:"lJ.4,.il(,•I':..< ?~[:> A>;i;(.;,. = •,tlll.4) 
62 lCJ ld:T1111:~ 
63 !:~ii) 



I 
VITA 

Hassan Khodr Sabeh Ayoun 

Candidate for the Degree of 

Master of Science 

Thesis: SYMMETRICAL COUPLER CURVE WITH A SINGLE CUSP OR TWO SYMMETRICAL 
CUSPS 

Major Field: Mechanical Engineering 

Biographical: 

Personal Data: Born in Sidon, Lebanon, May 15, 1954, the son of 
Hr. and Mrs. K. M. Sabeh Ayoun. 

Education: Graduated from The Nati ona 1 Evange 1ica1 Institute, SI don, 
Lebanon, with the Lebanese Baccalaureate II, in June, 1973; re­
ceived the Bachelor of Science in Mechanical Engineering degree 
from Oklahoma State University in 1978; completed the require­
ments for the Master of Science degree at Oklahoma State U~iver­
s ity in July, 1980. 

Professional Experience: Graduate teaching assistant, School of 
Mechanical and Aerospace Engineering, Oklahoma State University, 
1978 to 1980. 

Professional Organizations: Member of the American Society of Mechan­
ical Engineers (ASHE), and Pi Tau Sigma, Honorary Society of 
Mechanical Engineering Students. 


