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CHAPTER |
INTRODUCT I ON

A coupler curve is the path of a point on the connecting link of a
four-bar linkage. The coupler point may be used directly as an output
or to drive other links to achieve certain motions (Figure 1).

In 1784, Watt invented the “s}raight line motion'' generated by the
coupler of a four-bar linkage (1). His invention of this significant
motion diverted the attention frbm the follower link as the output to-
wards the coupler. The coupler curve was first studied analytically by
Prony (2), who examined Watt's mechanfsm for deviations in 1796. Samue!l
Roberts (3) in 1876 found that the coupler curve of a four-bar linkage
is of the sixth order. He called it a '"Three-Bar Curve''; since then
only the moving links were counted and called bars. Later, Cayley and
others (4) tried to ekplore some linkages that are able to generate
specific algebraic curves of any order. For more information about the
four-bar coupler curve, the reader is referred to Chapter 6 of Referehce
(1).

Coupler curves have a variety of shapes. They may have symmetry
about an axis as well as double points. A double point is a point where
the curve intersects itself; that is, it has two tangents at that point.
The double point might be a crunode where the tangents are distinct and
intersect at an angle. |t also might be a cusp where the tangents are

coincident; that is, the curve is tangent to itself. Also, the four-bar
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Figure 1. Coupler Curves Generated by a
Four-Bar Linkage



linkage is able to generate an approximate straight line coupler curve.

Burmester (5) motivated by finding a general method for the synthe-
sis of a four-bar linkage developed his famous theory which is an impor-
tant part of the curvature theory. His graphical method guides a point
through up to five finitely separated positions. Mueller (6) attacked
the same problem but concentrafed on the concept of a single-position
design. His work was purely geometrical. Allievi (7, 8) directed his
attention fowards purely analytical methods in coplanar motion. Hain
(9), Beyer (10), Hall (16), and Cowie (19) also presented some synthesis
procedures in their books. |

There is no general and easy procedure to synthesize a four-bar
linkage that generates a desired coupler point motion. The curvature
theory is very complicated and researchers usually attack special prob-
lems in special ways.

In this work the emphasis is oriented towards a single-position
design (6). The higher-path curvature theory which was first introduced
by Wolford (13) in 1960, and Freudenstein (14) in 1964 can serve the
purpose. The basic characteristics of the motion are then studied in
terms of the '""instantaneous invariants' in which the motion is fepre-
sented as a displacement from a reference position by means of a power
series in the motion coordinates. This concept was first introduced by
Bottema (15) in 1961, and elaborated by Veldkamp (16) later in 1963.

For a better view about this method, see Appendix C.

The higher-order curvature theory is not going to be used in this
work since the geometrical methods are more convenient for this particu-
lar problem. In other problems, such as the design of a linkage that

generates an approximate straight-line motion or a circular arc, the



higher-order curvature theory become more powerful. A brief introduc-
tion about the straight-line motion is presented in Appendix C.

This study deals mainly with the double point of a coupler curve.
In particular its aim is to‘synthesize a four-bar linkage that generates
a symmetrical coupler curve with a single cusp and another which gener-

ates two symmetrical cusps.



CHAPTER Il
GENERAL BACKGROUND
- 2.1 Introduction

Before dealing with the synthesis problem, it is felt that a brief
introduction to the theory behind it is necessary. The theoretical con-
cepts that are going to be dealt with later on in Chapter 11l can be
divided into four topics:

1. Instant Center

2. Fixed and Moving Centrodes

3. Symmetrical Coupler Curve

4. Double Point.
2.2 Instant Center

When two bodies hove relative fo one another, the instant center is
the point common to both bodies and has the same velocity in each of the
two bodies (1, 17, 18).

The instant center of a four-bar linkage, relative to which the
coupler link moves, coincides with the intersection of the two straight
lines colinear with the two grounded links, respectively. In Figure 2,

I is the instant center of the moving link AB of the linkage AOABBO.

2.3 Fixed and Moving Polodes

Fixed and moving polodes are the curves traced by the instant center
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*Figure 2. Instantaneous Center of the
Coupler of a Four-Bar
Linkage



of velocity on both fixed and moving planes. That is, a body moving
with respect to another fixed body and two planes each is attached to
one of them; the plane attached to the moving body is called the moving
plane and the plane attached to the fixed plane is called the fixed
plane. The curve traced by the instant pole on the moving plane is
called the moving polode or centrode; it is also called the body polode.
The curve traced on the fixed plane is called the fixed polode or cen-
trode; it is also called the space polode (Figure 3).

This relative motion of the moving body with respect to the fixed
body can be reproduced by having two bodies with profiles similar to
the polodes moved against each other by pure rolling. The motion is
pure rolling because the polodes are the locii of the instant center of
velocity in two distinct planes. The relative velocity between the two
bodies at the position’of the instant center is zero.

As an example, a circular disk rolling along a straight path repre-
sents a circular body polode and a straight-line space polode (Figure 4)

(1, 17, 18).
2.4 Symmetrical Coupler Curve

A four-bar linkage will generate a symmetrical coupler curve if the
length of the coupler link AB is equal to the length of the follower

link BB, and equal to the coupler arm BP (Figure 5) (1, 19, 20). The

axis of symmetry of the coupler curve passes through the fixed point B0

s

and through the point Ph; P" is the posifion of P when the input link
AOA is in line with the fixed link AOBO' The angle made by the inter-
section of the axis of symmetry and the fixed link is equal to [n/2 -

B]; B is the angle PAB.
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Figure 3. Fixed and Moving Polodes



Figure 4. A Straight Line Space and a Circular
Body Centrode



Figure 5.

Symmetrical Coupler Curve

10
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2.5 Double Point

A double point is the point where the coupler curve intersects it-
self. The double point is always located on a circle that circumscribes

the triangle AOB C, which is similar to the coupler triangle ABP (Figure

0
6) (1, 19, 20). It is also called the circle of singular foci. A dou-

ble point can be a crunode or a cusp.

2.5.1 Crunode

If the tangents at the double point intersect at an angle, the
double point is called a crunode. An eight shape (=) is an example of
a crunode. It is possible that a coupler curve intersects itself in

more than one point (1, 9, 20).

2.5.2 Cusp

A cusp is a double point where the tangents are colinear or the
angle between the two tangents is zero. A very common example of a
cusp is the curve traced by a point on the periphery of a roliing wheel.
In Figure 7, the curve is the cycloid. The wheel is the body polode and
the straight line is the space polode. A point P on the periphery be-
Iohgs to the moving or body polode. Let | be a point on the fixed or
space polode. When P coincides with |, | becomes the instantaneous cen-
ter of velocity. P comes down towards I, stops as it coincides with 1,
and moves back in an opposite approach. Although the velocity of P is
zero at |, it experiences no discqntinuity.

A cusp, then, can be generated if a point belongs to the body

polode and coincides with the instantaneous center of velocity. For a



Figure 6.

Coupler Curve With a Double Point

12
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Figure 7. A Cusp Generated by a Point on the
Periphery of a Rolling Wheel
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four-bar linkage, a coupler point that is lying on the moving centrode
will develop a cusp if it is coinciding with the instant center at that
instant.

The tangent to the coupler curve at the cusp is normal to the fix-

ed polode (1, 9).



CHAPTER |11
SYNTHESIS

3.1 Synthesis of a Four-Bar Linkage That
Generates a Symmetrical Coupler

Curve With Two Cusps

A coupler point which happens to lie on the moving polode will gen-
erate a cusp as it coincides with the instantaneous center of velocity
(1). The concept ofvsingle-position design is followed here. Let the
design position be faken at the instant the coupler point is coinciding
with the instantaneous center of velocity of the coupler link (Figure
8). This position of the four-bar will satisfy the condition for a cusp.
A point P (Figure 8) coinciding with |, the instant center of the coup-
ler link belongs to the moving centrode which at that instant is rolling
over the fixed centrode.

Introducing symmetry to fhe problem, another cusp will be generated.
The two cusps are symmetrical about an axis that passes through Bo and

makes an angle o with the fixed link of the four-bar (Figure 9).
a=(%-8)

where B is the angle PAB.
Symmetry will add the condition that requires the length of the fol-
lower Tlink BBO to be equal to the length of the coupler link and to the

length of the coupler arm BP.

15



A, B,

Figure 8. Design Position; the Coupler
Point is Coinciding With
the Instant Center
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Figure 9.

17

Detailed Figure of the Design Position of Two Sym-
metrical Cusps
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To synthesize a four-bar, the lengths of its four links should be
found. The coupler link's dimensions should also be found. The con-
© straints on this design are introduced by the symmetry and the position
of the four-bar linkage.

From symmetry,

B8 AB = BP
0

[=3
]

(-8

Some assumptions have to be made. |If the length of one of the
links of the four=bar linkage is assumed, the generality of the problem
is preserved. The lengths of the other three links will be found in
terms of the assumed length. The.angle a can be treated as a parameter.

For every o there is a different design (Figure 9).
a= (3-8)
Assume o is given.and then find 8.
m
- B = (i' a)

Angles APB and BAP are equal since the coupler triangle ABP is isosceles.
Angle ABP is equal to y.

Yy =7 =28
or

2a

Y

By assumption let the length of the link BBo be equal to unity.

From symmetry then,

AB = BP = BB0 = 1.0



and

(ap)2 = (aB)% + (8P)% - 2(AB) (BP) cos (y)

or

(AP)2 2(1 - cosy)

Let 6 be the angle ABBO.

At this stage one more parameter is needed. Let the angle of span
between the two cusps be equal to §: it is the angle at B0 between PB0

and PEB0 (Figure 9). Therefore, the angle between PBo and the axis of

symmetry is equal to half of £. Since a is assumed before (a is the

angle between the fixed link AOBO and the axis of symmetry), the angle

between PB0 and AOBO can be found. Let this angle be called §.

Let the angle AOAB be called Xx. Then,

A=m-R

For the quadrilateral AOABBO’ the sum of the internal angles should be
equal to 360°. Therefore,

o = 360° -8 -9 - A
So far the lengths of the links AOA and AOBO are not yet found.

Applying the Sine law in triangle AOPBO:

BOP ) AOBO ) AOP
sing sinB siné
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BOP is known and all the angles ¢, B, and § are also known; it is easy
then to determine the length of the link AOBO'
AB = BOP sinB
00 sing
and
AP = BOP sing
0 sind
and finally,
AOA = AOP - AP.

3.2 Synthesis of a Four-Bar Linkage That
Generates a Symmetrical Coupler Curve

With a Single Cusp

It has been mentioned before that a cusp is generated when a coup-
ler point lying on the moving centrode passes through the instantaneous
center of velocity. |In the first part of this chapter, a four-bar that
generates a symmetrical coupler curve with two cusps is synthesized.

The design position is chosen at a point that does not belong to the
axis of symmetry. In that case, another cusp is generated symmetrical
to the first with respect to the axis of symmetry. It is clear then
that a point lying on the axis of symmetry chosen as the design position
will develop a symmetrical coupler curve but it will have only one cusp.

A very convenient design position is BO’ the fixed end of the fol-
lower link (Figure 10). P should coincide with Bo. The instantaneous

center of velocity '"'I'" should alsc coincide with BO' The points ''P'" and

"1'"" will then coincide and P will belong to the moving centrode which at



Figure 10.

Symmetrical Coupler Curve With a Single Cusp

21
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that ‘instant is rolling over the fixed centrode at the position of the
instant center 1. This position will allow a cusp to be developed.
The orientation of the four-bar will be such that the input link AB is
in lTine with the fixed 1ink AOBO' The coupler point P will coincide
with BO. B0 belongs to the axis of ;ymmetry of the coupler curve. The
cusb'will fie on the axis of symmetry and thus symmetry conditions will
not help to generate another one. The curve itself is symmetrical and
the axis of symmetry is the tangent at the cusp.

To synthesize the linkage two parameters are needed as in the pre-
vious case. Let the angle of inclination a of the axis of symmetry with

respect to the fixed link A be one parameter. The second parameter

0%
is the length of the segment along the axis of symmetry limited by the

~ two extreme positions of the coupler point. These two extreme poéitions
are coordinated by the position of the linkage when the input link AB is
in line with the fixed link AgBy (Figure 11).

In Figure 12, a is known; then

In triangle B.B,P

02
(BOP)2 - (3032)2 + (8,P) - 2(8,P) (8,8,) coso
2 2 2
cost = (BOBZ) + (BZP) - (BOP)
7(5,7) (B,5,)

If the follower link B_.B is assumed unity:

0

BOB =8P =AB=1.0



Figure 11.

The Two Extreme Positions of the Coup-
ler Point of a Four-Bar Linkage
Generating a Coupler Curve With a
Single Cusp

23



Figure 12.

I

e

Bo, 1
Detailed Fiqure for a Single Cusp Design
(Position 2)

24
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" therefore,

2
2 (BOP)
2

cosf =

Once 6 is known, A can be found and thus

2

(AZBO) = 2(1 - cosi)
From Figure 13,
(A,B)% = 2(1 - cosy)
1°0 Y
but
A]B0 = AZBO = 2AA0
therefore,
an = 1% ~ A2
0 2

and finally,

AOBO = AZAO + AZBO.

3.3 Results and Discussion

To complete the design procedures, two computer programs were writ-
ten. One solves for two symmetrical cusps and the other solves for a
single cusp. Both programs calculate the lengths of the four links fol-
lowing the procedure presented in sections 3.1 and 3.2, respectively.
The type of linkage is checked by Grashof's rule for a four-bar mechan-
ism. A subroutine was written for this purpose. The crank-rocker

mechanism is the one of significant importance to this work. In the



Figure 13.

/ﬁ\o : ESD’I%,]:

Detailed Figure for a Single Cusp Design
(Position 1)
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case of a crank-rocker, the minimum and maximum transmission angles are
calculated.

The results are tabulated in Tables | through XVI and some design
charts for a crank-rocker mechanism are prepared. The tabulated results
include the length of each link, the coupler arm AP and the angle B be-
tween AP and the coupler link AB (see Figure 14). For two symmetrical
cusps, B is measured counterclockwise from AB. In the case of a single
cusp design, B is measured in a clockwise direction from AB. Also, the
design tables contain the minimum and maximum transmission angles as
well as the type of the mechanism. Each table lists all of the above
mentioned quantities for different values of the angle a and one value
of the angle £ for the two cusps design or one value of the length BOP
for a single cusp design. For £ equal to 10.0 and BOP equal to 0.5,
see Tables | and |1, respectively. Tables |1l through IX (Appendix A)
are prepared for two symmetrical cusps design, while Tables X through
XVI (Appendix B) are for a single cusp design.

The tabulated results are plotted in the form of design charts.
The plotted curves are those of the link proportions of the input, the
coupler and the ground links normalized with respect to the follower
link length. The input plot is a dotted line, the coupler plot is a
solid line, and the ground plot is a hyphenated line. The abscissa in
these graphs is a, the angle of inclination of the axis of symmetry
with respect to the fixed link. The ordinates are the normalized
lengths. Due to the symmetry, the coupler link should have the same
length as the follower, and hence the normalized curve of the coupler is

a straight iine parallel to the a axis at a value of 1.



A

Figure 14,

d B,

Detailed Figure of a Synthe-
sized Four-Bar Linkage

28



DESIGN TABLE FOR TWO

SYMMETRICAL CUSPS WITH £ = 10 DEGREES

TABLE |

Type

o a b c d e B u Min 1 Max

10.0 15.0 0.4132 1.0 1.0 2.6238 0.5176 75.0 --- --- Double Rocker
10.0 20.0 0.5720 1.0 1.0 2.7927 0.6840 70.0 --- --- Double Rocker
10.0 25.0 0.1530 1.0 1.0 1.8184 0.8452 65.0 112,25 162.39 Crank-Rocker

10.0 30.0 0.1472 1.0 1.0 1.7321 1.0000 60.0 104.83 140.00 Crank-Rocker

10.0 35.0 0.1442 1.0 1.0 1.6456 1.1472 55.0 97.30 127.00 Crank-Rocker

10.0 Lko.o 0.1523 1.0 1.0 1.5577 1.2356 50.0 89.30 117.50 Crank-Rocker

10.0 45.0 0.1750 1.0 1.0 1.4669 1.4142 k5.0 80.50 110.40 Crank-Rocker

10.0 50.0 0.2159 1.0 1.0 1.3717 1.5321 40.0 70.60 105.10 Crank-Rocker

10.0 55.0 0.2792 1.0 1.0 1.2700 1.6383 35.0 59.40 101.50 Crank-Rocker

10.0 60.0 0.3697 1.0 1.0 1.1595 1.7320 30.0 46.50 99.79 Crank-Rocker

10.0 65.0 0.4933 1.0 1.0 1.0370 1.8126 25.0 31.55 99.84 Crank-Rocker

10.0 70.0 0.6577 1.0 1.0 0.8983 1.8794 20.0 13.80 102.20 Crank-Rocker

10.0 75.0 0.3737 1.0 1.0 0.7373 1.9319 15.0 --- --- Drag-Link

62



DESIGN TABLE

TABLE 11

FOR A SINGLE CUSP WITH BOP = 0.5

BOP a a b c d e B Min Max Type

0.5 30. .2324 0 1.0 0.7676 1.0000 60.00 31.00 60.00  Crank-Rocker
0.5 35. .2230 0 1.0 0.9241 1.1472 55.00 41.00  70.00  Crank-Rocker
0.5 k. .2119 0O 1.0 1.0737 1.2856 50.00 51.00 80.00  Crank-Rocker
0.5 45, .1992 0 1.0 1.2150 1.4142 45.00 ~ 61.00  90.00  Crank-Rocker
0.5 50. .1850 0 1.0 1.3471 1.5321 40.00  71.00 . 100.00  Crank-Rocker
0.5 55. 1694 0 1.0 1.4689 1.6383 35.00 81.00 110.00  Crank-Rocker
0.5 60. .1525 0 1.0 1.5795 1.7320 30.00  91.0 lzo.od Crank-Rocker
0.5 65. L1344 0 1.0 1.6782 1.8126 25.00 101.00 130.00  Crank-Rocker
0.5 70. 1153 0 1.0 1.7640 1.879% 20.00 111.00 140.00  Crank-Rocker

o€
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Another parameter governs the results. For two symmetrical cusps
the parameter is the angle of span £ between the two cusps. For a sin-

gle cusp it is the segment B_P between the two extreme positions of the

0
coupler point along the axis of symmetry. In Figure 15, the curves are
those of the normalized lengths of the input, coupler, and ground links
for a span angle of 10 degrees. |In the case of a single cusp (Figure

16), the normalized lengths are plotted against a for B.P equal to 0.5.

0
The rest of the design data are plotted as design charts for both kinds.
For two cusps (Figurell?), the curves are continuous withih a range.

For smallef values of o, the type of mechanism is a double rocker, while
for larger angles the mechanism becomes a crank-rocker. When a approaches
,90 degrees, the mechanism will more likely becomé a drag-link, depending
on £. The design procedure for the single cusp gives a crank-rocker if
the solution exists (Figure 18). The charts include only the designs
whose maximum and minimum tranSmissidn angles are not larger than 140
and not less than 30 degrees. The best transmission angle is 90 degrees.

Transmission angles smaller than 40 or larger than 140 are not recommend-

ed, especially for high speed designs of mechanisms.



32

L3
a/c
b/c -—— a/c
d/c '
—-— d/c
2.0 4
——— b/c
"\‘
\m\\
1.6 - \\
\~
\0\‘
\‘
\Q‘
1.2 = e
\‘
° * » + o o . —-- S —
T~
0.8 -
P
P
P
P 2
0.4 rad
’ Pl
//Q’-
_ 0
&--_*__'___o- e
0
T - . T > a
20 30 Lo 50 60 70
Figure 15. Sample Design for Two Symmetrical Cusps; Length

Proportions Versus a for { = 10



33

/ A -—=-- a/c
a/c
b/c —-— d/c
d/c

— b/c
2.0 A

.0
-
-
1.6 7 o
f/
o//
v
I.ZJ -
’/
A

0.8 7 /

0.4
T T — — o o
0= =0~ — o _
0
T T T T Lha
20 30 4o 50 60 70

Figure 16. Sample Design for a Single Cusp; Length Propor-

tions Versus o for BOP = 0.5



alc
b/c
d/c

2.0 A

0.8 1

0.4 4

20

Figure 17.

- =~ a/c
—-—d/c
b/c
\\\
S~
\\
\~
o~
\~\‘
S~
all ¢
~o -~
~ ~
~ - \\\
—_—— \\\\:\
= - ——-:}( _____
T L T
30 40 50

Design Chart for a Symmetrical Coupler Curve With

Two Symmetrical Cusps

34

€=15

£=30
g=45
£=60
£=75
g=15

£=30

£=b5



With a Single Cusp

‘b/c —-—d/c
d/c
b/c
2.0
_-0
f/'
0.7 —
- -
- - _1
1.6 /// -
/’ // //l
,/ /'/ ,//’/ _/'
| - - e Py ~
. - - /
ad . e
e 7 ”
”
0.84  F——1.50
§’/\'.2 ~
4 e \\\\]
0.2 7 150~~~ _ T Tm-al_ :
// “-~_~~-
1.25, Pad =0
[~ — — e
7~ L T A 0
0.0 I Z X
. T T T T P a
20 30 40 50 60 70
Figure 18. Design Chart for a Symmetrical Coupler Curve

35

.00
.25
.50



CHAPTER IV
SUMMARY AND CONCLUSION
4.1 Analysis and Summary

The design prbcedure followed in the two problems presented before
depends on the single-position method. In the first problem the design
’pésition does not belong fo the symmetry axis; a case that will produce
another cusp symmetrical to the first one. The design position belongs
to the axis of symmetry in the second problem. The double point will
not have a symmetrical image. The key point in both design is that a
coupler point on the moving polode of the coupler 1link of.a four-bar
mechanism will produce a cusp if it coincides with the instantaneous
center. As a start the third vertex of the coupler triangle is assumed
to coincide with the instant center. This point will develop a cusp.

To verify it is necessary that the design position satisfies the
double point Conditidns. In order that é coupler curve contains a dou-
ble point, this point should belong to the circle of singular foci. In
Chapter 11, a brief introduction about this circle is presented. It |

circumscribes the triangle AOB C such that this triangle is similar to

0

the coupler triangle ABP (Figure 6). In the design position considered

in the synthesis, the link ALA is in line with the coupler arm AP and

0

the follower link BB0 is also in line with the arm BP. Any triangle

AOBOC which is similar to the coupler triangle ABP will have its angle

'AOCBO equal to the angle APB. This means that the angle AOPBO is equal
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to the angle A If a circle circumscribes the triangle AOBOC, the

OCBO.
angle AOCB0 will subtend the arc AOBO and will be equal to half of it

(Figure 19). But the angle A is equal to the angle AOCB0 and thus

0P80
it will be equal to half of the arc AOBO' This impligs that the point P
must lie on the circumference of the same circle that circumscribes the
triangle AOBOC. From definition that the circle is the circle of singu-
lar focf, and hence point P at that instant satisfies the condition for
a double point. Furthermore, this point coincides with the instant cen-
ter of the four-bar linkage.v Kurt Hain (9) mentioned that a cusp will
be developed at the point of intersection between the circle of singular
foci and the fixed polode. The instantaneous center belongs to the
fixed centrode.

It is interesting to notice that if the coupler link AB is parallel

to the fixed link A B, and the coupler point P coincides with the instan-

00
taneous center | (Figure 20), then the triangle AgBoC will be identical
to the triangle AOBOP and C will coincide at P. P will still produce a

cusp since it lies on the circle of the foci.

In the case of a single cusp, double point conditions are more obvi=-
ous. The instantaneous center and the coupler point P both coincide at
Bo,'which is always on the circle of the foci. It also belongs to the
fixed centrode. |

Thén the necessary and sufficient conditions for a coupler point to

generate a cusp are satisfied by the design presented in Chapter {11.
4.2 Conclusion

In conclusion, the design of a four-bar linkage that generates a

symmetrical coupler curve with two cusps or with a single cusp is



Figure 19.

The Circle of Singular Foci Passing
Through the Design Position
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Figure 20.

Special Case of the Design Position
Coinciding With the Vertex of the
Triangle Similar to the Coupler
Triangle
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completed. The method followed is the single-position design. Once

the position is defined, the solution of the problem is relatively easy
to obtain. It is a geometrical solution depending on the position of
the four-bar linkage. Two parameters are needed for each of the two
designs. In the case of two symmetrical cusps, the inclination angle

of the symmetry axis with the fixed link is one and the other is the
span angle between the two cusps. In the second design, the angle of
inclination and the length of the segment between the two extreme posi-
tions of the coupler point along the axis of symmetry are needed. For
practical purposes the two parameters in each case are suitable. A know-
ledge of the size of the path and its orientation will provide the neéd-
ed parameters. |In addition to the two parameters, an assumption of the
magnitude of %he length of one of the links is helpful. This assumption
will not affect the generality of the problem. The results are all nor-
malized in terms of the assumed length. The available space and the
size of the mechanism will dictate the choice of that length.

All the design specifications are presented in tables so that it
can be used by designers. A set of design charts is also prepared for
the crank-rocker design.

This design is of practical importance to designers. |Its uses can
be divided into two main categories. The coupler curve can be used as
an output of a four-bar linkage or as a guiding motion to drive other
linkages; most important is the six-bar linkage.

As an output of a fodr-bar, the design can be used in mechanisms
that require a state of dwell enduring over a finite period of time.

The cusp will cause an infinitesimal dwell at the double point and the

coupler point will come to a complete stop. This means that the coupler



iy

point is forced to approach this position very slowly. That is also
true for the departure. All of that will generate a state of approxi-
mate dwell, and it is sufficient for most practical purposes.

As a guiding motion, the coupler curve can be used to synthesize a
six-bar mechanism. This six-bar is called a Coupler Driver Six-Bar
Mechanism. In Figure 21, a six-bar driven‘by a coupler point of a four-
bar is shown. Any of the revolute pairs could be substituted by a pris-
matic pair since both have one degree of freedom. The output of the
six-bar can be through a folower link or through a slider. There are
21 types of six-bar linkages that have one degree of freedom and are
drivenvby the coupler. point of a four-bar linkage. These types can be
classified by the two Basic types of motion they execute: rotary to
rotary, where the input and output cranks are both performing rotary
motion; and rotary to linear, where the input crank performs rotary
motion while the §utput performs sliding motion. For more information,

the reader is referred to unit 15 of Reference (17).
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Figure 21.

Coupler-Driven Six-Bar Mechanism
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APPENDIX A

TABULATED RESULTS OF A SYMMETRICAL COUPLER CURVE

WITH TWO SYMMETRICAL CUSPS DESIGN
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TABLE 111

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH £ = 15 DEGREES

£ a a d e B E Min £ Max Type
15.0 10.0 0.3387 4105  0.3473 80.00  --- ---  Double Rocker
15.0 25.0 0.2376 .8266 0.8452 65.00  --- ---  Double Rocker
15.0 30.0 0.2183 .7332 1.0000 60.00 98.50 154.70 Crank-Rocker
15.0 35.0 .0.2058 6404 1.1472  55.00 91.70 134.80 Crank-Rocker
15.0 40.0 0.2031 .5468 1.2856 50.00 84.40 122.00 Crank-Rocker
15.0 45.0 0.2136 4509 1.414k2  45.00 76.40 112.70  Crank-Rocker
15.0 50.0 0.2406 3510 1.5321 40.00 67.50 105.50 Crank-Rocker
15.0 55.0 .2876 .2454 1.6383 35.00 57.20 100.10 Crank-Rocker
15.0 60.0  0.3589 .1316  1.7320 30.00 45.50  96.40 Crank-Rocker
15.0 65.0 0.4594 L0068 1.8126 25.00 31.80  94.30 Crank-Rocker
15.0 70.0  0.595k .8670 1.8794 20.00 15.60  94.00 Crank-Rocker
15.0 75.0  0.775h .7067 1.9319 00  --- ---  Drag-Link

15.

9



DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH £ = 30 DEGREES -

- TABLE 1V

u Min

u Max

Type

30.
30.
30.
30.
30.
30.
30.
30.
30.

10.
35.
Lo.
hs.
50.
55.
60.
65.
70.

.6074
.3899
.3528
3256
.3109
.3]]2
.3292
.3679
0.4308

2. 22146
6436
.5321
L4205
.3071
.1899
.0670
19357
. 7931

.3473
L1472
.2856
k2
.5321
.6383
.7320
.13126
.8794

30.
55.
50.
45,
40.
35.
30.
25.

00
00
00
00
00
00
00

00

.00

72.
66.
59.
52.
43.
33.

20.

30
Lo
80
10
30
00

90

Double Rocker
Double Rocker
Crank;Rocker
Crank-Rocker
Crank-Rocker
Crank-Rocker
Crank-Rocker
Crank-Rocker

Crank-Rocker

Lh



TABLE V

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH £ = L5 DEGREES

g a a d e B Min Max Type

Ls. 10. .7978 .0988 0.3h73 80.00 - -—- Double Rocker
45, Lo. .5021 .5h3§ 1.2356 50.00  --- --- Double Rocker
45. 45. 4348 .hlsé 1.4142 45,00 58.70 135.30 Crank-Rocker
45. 50. .3778 .2872  1.5321 40.00 54.10 112.70 Crank-Rocker
45.0 = 55. .3330 1582 1.6383 35.00 48.70  96.40  Crank-Rocker
45, 60. .3022 .0259 1.7320 30.00 42.40  83.20 Crank-Rocker
45, 65. .2872 .8883 1.8126 25.00 35.00  72.00 Crank-Rocker
45, 70. .2898 L7426 1.8794  20.00 26.20  62.20

Crank-Rocker

8



TABLE VI

DESIGN TABLES FOR TWO SYMMETRICAL CUSPS WITH £ = 60 DEGREES

£ a a b c d e B Min Max Type

60.0 10.0 .9705 1.0 1.0 2.0190 0.3473 80.00 --- --- ADouble Rocker
60.0 40.0 .6564 1.0 1.0 1.5832 1.2856 50.00 === === Double Rocker
60.Q Ls.0 .5450 1.0 I;O 1.4343 1.4142 h5100 52.80 163.50 © Crank-Rocker
60.0 50.0 .L4439 1.0 1.0 1.2897 1.5321 4Lo.00 50.00 120.20  Crank-Rocker
60.0 55.0 . 3541 1.0 1.0 1.1472 1.6383 35.00 46.72 97.30  Crank-Rocker
60.0 60.0 .2769 1.0 1.0 1.0045 1.7320 30.00 42.70 79.70  Crank-Rocker
60.0 65.0 .2131 1.0 1.0 0.8594 1.8126 25.00 37.70 64.90 Crank-Rocker
60.0 70.0 .1637 1.0 1.0 0.7095 1.8794 20.00 31.70 5].80‘ Crank-Rocker
60.0 75.0 .1294 1.0 1.0 0.5523 1.9319 15.00 24.40 39.90

Crank-Rocker
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DESIGN TABLE FOR TWO

TABLE Vi1

SYMMETRICAL CUSPS WITH & = 75 DEGREES

£ o a b c d e B Min p Max Type
75. 10. L1334 1.0 1.0 1.9778 .3473 80.00 --- === Double Rocker
75. 5. .6603 1.0 1.0 1.4796 L4142 45,00 --- --- Double Rocker
75. 50. 5113 1.0 1.0 1.3147 .5321  L4L0.00 47.40 131.90 Crank-Rocker
75. 55. .3752 1.0 1.0 1.1560 .6383 35.00 46.00 99.90 Crank-Rocker
75. 60. .2522 1.0 1.0 1.0007 .7320 30.00 44.00 77.60  Crank-Rocker
75. 65. 1425 1.0 1.0  0.8463 .8126  25.00 L41.20 59.30 Crank-Rocker
75. 70. .0464 1.0 1.0 0.6906 .8794 20.00 37.60 43.20  Crank-Rocker

0s



TABLE VI

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH & = 90 DEGREES

a b c d e B U Min u Max

_Type
.2923 1.0 1.0 1.9712 0.3473 80.00 -—- ~--- Double Rocker
0.7853 1.0 1.0 1.5553 1.4142 45.00 --- - Double Rocker
0.5827 1.0 1.0 1.3646 1.5321 L4o.00 46.00 153.60 Crank-Rocker
0.3970 1.0 1.0 1.1854 1.6383 35.00 L46.40 104.60 Crank-Rocker
0.2272 1.0 1.0 1.0142 1.7320 30.00 46.30 76.70 Crank-Rocker
0.0728 1.0 1.0 0.8480 1.8126 25.00 45.60 54.80 Crank-Rocker

TABLE IX

DESIGN TABLE FOR TWO SYMMETRICAL CUSPS WITH £ = 120 DEGREES

a b c d e B u Min u Max

Type

1.6211 1.0 1.0 2.0629 0.3473 80.0 - ---
| 0.7509 1.0 1.0 1.5616 1.5321 ko.o --- ---
0.4462 1.0 1.0 1.3192 1.6383 35.0 51.80 123.90
0.1728 1.0 1.0 1.0998 1.7320 30.0 55.20 79.00

Double Rocker
Double Rocker
Crank-Rocker

Crank-Rocker

1S



APPENDIX B

TABULATED RESULTS OF A SYMMETRICAL COUPLER CURVE

WITH A SINGLE CUSP DESIGN
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TABLE X

DESIGN TABLE FOR A SINGLE CUSP WITH B_P = 0.25

0

BOP a a b c d e B u Min U Max . Type

0.25 20.0 . 1201 1.0 1.0 0.5639 0.6840 70.00 25.60 40.00 Crank-Rocker
0.25 25.0 .1166 1.0 1.0 0.7286 0.8452 65.00 35.60 50.00 Crank-Rocker
0.25 30.0 L1122 1.0 1.0 0.8878 1.0000 60.00 45.60 60.00 Crank-Rocker
0.25 35.0 .1069 1.0 1.0 1.0403 1.1472 55.00 55.60 70.00 Crank-Rogker
0.25 -hQ.O .1008 1.0 1.0 1.1848 1.2856 50.00 65.60 80.00 Crank-Rocker
0.25 hS.d .0939 1.0 1.0 1.3203 1.4142 45.00 75.60 96.00 Crank-Rocker
0.25 50.0 0.0864 1.0 1.0 1.4457 1.5321 40.00 85.60 100.00  Crank-Rocker
0.25 55.0 .0781 1.0 1.0 1.5602 1.6383 35.00 95.60 110.00 Crank-Pocker
0.25 60.0 .0693 1.0 1.0 1.6628 1.7320 30.00 105.60 120.00 Crank-Rocker
0.25 65.0 .0599 1.0 1.0 1.7527_ 1.8126 25.00 113.60 130.00 - Crank-Rocker
0.25 70.0 .0501 1.0 1.0 1.3293 1.8794 20.00 125.60 140.00 Crank-Rocker




TABLE XI

DESIGN TABLE FOR A SINGLE CUSP WITH BOP = 0.75

BOP a b c d e u Min u Max Type

0.75 35.00 . 3490 1.0 1.0 0.7931 .1472 55,00 26.00 70.00 Crank-Rocker
0.75 ho.oo .3342 1.0 1.0 0.9514 .2856  50.00 35.95 80.00 Crank-Rocker
0.75 45.00 .3168 1.0 1.0 1.0974 4142 45.00 46.00 90.00 Crank-Rocker
0.75 50.00 .2969 1.0 1.0 1.2351 .5321 Lo.00 56.00 100.00 Crank-Rocker
0.75 55.00 .2749 1.0 1.0 1.3634 .6383 35.00 66.00 110.00 Crank-Rocker
0.75 60.00 .2507 1.0 1.0 1.4813 | .7320 30.00 76.00 120.00 Crank-Rocker
0.75 65.00 .2246 1.0 1.0 1.5880 .8126 25.00 86.00 130.00 Crank-Rocker
0.75 70.00 .1968 1.0 1.0 1.6826 .8794 20.00 96.00 140.00 Crank-Rocker
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TABLE X11

DESIGN TABLE FOR A SINGLE CUSP WITH BOP =1.00

BOP a b c d e B u Min u Max Type

1.00 45.00 L4483 1.0 1.0 0.9659 142 45.00 30.00 90.00 Crank-Rocker
.00 50.00 4240 1.0 1.0 1.1081 .5321 40.00 L4o.00 100.00 Crank-Rocker
.00 55.00 . 3965 1.0 1.0 1.2418 .6333 35.00 50.00 110.00 Crank-Rocker
.00 60.00 . 3660 1.0 1.0 1.3660 .7320 30.00 60.00 120.00 Crank-Rocker
.00 65.00 . 3327 1.0 1.0 1.4799 .8126 25.00 70.00 130.00 Crank-Rocker
.00 70.00 .2969 1.0 1.0 1.5825 .8794 20.00 80.00 140.00 Crank-Rocker
.00 75.00 .2588 1.0 1.0 1.6730 .9319 15.00 90.00 150.00 Crank-Rocker

s



DESIGN TABLE FOR A SINGLE CUSP WITH B.P = 1.25

TABLE XI11

0

BOP o a d e B u Min u Max Type

1.25 20.00 0.0217 1.0 0.6623 0.6840 70.00 37.L40 L0.00 Crank-Rocker
1.25 25.66 0.1861 1.0 0.6592 0.8452 65.00 27.L40 50.00 Crank-Rocker
1.25 55.00 0.5382 1.0 1.1001 1.6383 35.00 32.60 110.00  Crank-Rocker
1.25 60.00 0.5025 1.0 1.2296 1.7320 30.00 42.60 120.00 Crank-Rocker
1.25 65.00 0.4630 1.0 1.3497 1.8126 25.00 52.60 130.00 Crank-Rocker
1.25 70.00 0.4199 1.0 1.4595 1.8794 20.00 62.60 140.00 Crank-Rocker
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TABLE X1V

DESIGN TABLE FOR A SINGLE CUSP WITH BOP = 1.50

BOP a b c d e B p Min p Max Type

.50. 25.00 - 0.0224 1.0 1.0 0.8228 0.8452 65.00 47.20 50.00 Crank-Rockef
.50 30.00 0.1812 1.0 1.0 0,8]86 1.0000 60.00 37.20 60.00 Crank-Rocker
.50 35.00 0.3386 1.0 1.0 0.8086 1.1472 55.00 27.20 70.00 Crank-Rocker
.50 65.00 0.62338 1.0 1.0 1.1888 1.8126 25.00 32.80 130.00 Crank-Rocker
.50 70.00 0.5747 1.0 1.0 1.3047 1.8794 20.00 42.80 140.00 Crank-Rocker
.50 75.00 0.5211 1.0 1.0 1.4107 15.00 52.30 150.00 Crank-Rocker

1.9319
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DESIGN TABLE FOR A SINGLE CUSP WITH B.P = 1.75

TABLE XV

0

B,P a a b d e u Min  u Max Type

.75 35.00 0.1345 1.0 1.0 1.0127 1.1472 55.00 52.00  70.00 Crank-Rocker
.75 L40.00 0.2837 1.0 1.0 1.0019 1.2856 50.00 42.00  80.00 Crank-Rocker
.75 45.00 0.4307 1.0 1.0 0.9835 k2 45.00  32.00  90.00  Crank-Rocker
.75 50.00 0.5745 1.0 1.0 0.9576 1.5321 40.00 22.00 100.00 Crank-Rocker
.75 75.00 0.7248 1.0 1.0 1.2071 .9319  15.00 27.90 150.00 Crank-Rocker
.75 80.00 0.6600 1.0 1.0 1.3096 1.9696 10.00 37.90 160.00 Crank-Rocker

§9



DESIGN TABLE FOR A SINGLE CUSP WITH B.P = 2.00

TABLE XVI

0

BOP o a b c d e Min Max Type

2.00 50.00 0.1233 1.0 1.0 1.4088 .5321 40.00 80.00 100.00 Crank-Rocker
2.00 55.00 0.2456 1.0 1.0 1.3927 .6383 35.00 70.00 110.00 Crank-Rocker
2.00 60.00 0. 3660 1.0 1.0 1.3660 .7320 30.00 60.00 112.00 Crank-Rocker
2.00 65.00 0.4837 1.0 1.0 1.3289 .8126 25.00 50.00 130.00 Crank-Rocker
2.00 70.00 0.5977 1.0 1.0 1.2817 .8794 20.00 40;00 140.00 Crank-Rocker
2.00 75.00 0.7071 1.0 1.0 1.2247 .9319 15.00 30.00 150.00 Crank-Rocker
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APPENDIX C

THEORETICAL BACKGROUND ABOUT STRAIGHT LINE
MOTION, CANONICAL SYSTEMS, AND

INSTANTANEQUS [INVARIANTS
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C.1 Straight Line‘Segment

At any instant there exist some points in the moving plane, part of
which the coupler link is, that are going into inflection with respect
to the fixed plane. The locus of these points is called the inflection
circle. At each inflection point there is three-point contact between
the curve and its fangent. Moreover, there is at least one real point
among the inflection points that is going into four-point contact with
its tangent. This happens when the inflection circle is intersebting
the cubic of stationary curvature. The cubic of stationary'curvature
is the locus of all points that are going through a fixed curvature at a
particular instant. The intersection of the inflection circle and the
cubic of stationary curvature is called Ball's pdint (1, 8, 13, 14, 15,

21).

C.1.1 Canonical Syétem and

Instantaneous lInvariants

The concept of instantaneous invariants was introduced by Bottema
and Veldkamp (8, 9). It is a poWerful method to study the kinematic
geometry of infinitesimally separated positions of a moving plane.

A plane m in a continuous motion with respect to a fixed plane f
is showh in Figure 22. A cartesian system (x,y) is attached to the mov-
ing plane and another (X,Y) is attached to the fixed plane. The origin
of the moving system at a particular instant has the coordinates (a,b)
with respect to the fixed system. a and b are functions of ¢, the rota-
tion angle of m relative to f. This means X and Y are functions of ¢.

The coordinates of a point on the moving plane m with respect to the
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Figure 22.

Relative Motion of Two Planes
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fixed systems of axes can be expressed as follows (21, 22, 23):

X(¢)7 _ rcos(¢) _ sin(¢)q (x a(¢)
[yi6)! = Lsine) ™ cos(o)) [yl * [o(s)] (.1

Let the two origins of the two systems of axes m and f coincide
and the x-axis of the moving system be in line with the X-axis of the
fixed system. Let this instant be the reference or zero instant. At
this instant ¢ is equal to zero. The set of coordinates consisting of
the coordinates of the moving and stationary systems is called the
: canohigal system.

Differentiate Equation (C.1) with respect to up to the ith crder.
Let the symbols Xi, Yi’ a:, and bi be the ith derivatives of X, Y, a,
and b with respect to ¢. The derivatives a; and bi for i varies from
] to n are called the intantaneous invariants. The instantaneous invari-
ants a

b], and a, are equal to zero because at the reference position

1’ 2
¢ is equal to zero and the origins of both axis systems are coinciding.
To describe the instantaneous invariants kinematically, the chain rule

of differentiation is applied and the derivatives with respect to time

are obtained. The ith time derivative of Equation (C.1) is:

di[’i(] = [di?] [x] + di[?] (c.2)
dt dt dt
where
[x] = [}]
[x] = (7]
[a] = [2]

o
f w, a, 8, and ® are the respective time derivatives of ¢, and X, X,
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000 O 00 030

and X , Y, Y, and are the velocity, acceleration, and jerk compo-

nents of the :oupler point, the final results will be listed as follows:

X=x and Y=y (c.3.a)
g = -wy and $ = wx » : (C.3.b)
o) o .
OX = -(wzx + ay) and oY = ax - wzy + wzb2 (C.3.¢)
000 3 O 3
X =-3wx+ (W -a)y +w ag (C.3.d)
000 )
Y = -(w3 - a)x + 3wa(b2 -y) + w3b3’ (C.3.e)

For more information about the instantaneous invariants, see References

(21), (22), and (23).
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$JOB 2 T122=(9,03)

DATA NR,ND,EI/5,6,3.14159/
3b0=1.2
Ap=380
BF=LRO

REAC(NR, *) ZETA
WRITE(ND,LO050) ZETA
TETA=ZZTA=*P /190

10 REALQIR, *,END=997) ALPEA
ALPHA=ALPIHA*DI/L 30
BETA=PI/2=-ALPuA
GAMA =2*ALPHA
THETA= Pll-GAHA
DELTA=Z=TA/2+ALPHA
LAMEDA="1-BETA
PUT=2421-DELTA-THETA -LAMEBOA
AP=(22(1.0-COS(CA'trR)))**0,.5
BOP=p8)¢npP
A0OBO=(0F*SINCRETA)) /ST (PUT)
AOP=(ROPASIN(DLTA)) /SIE(PHI)
AOA=ACP-AP
ARITE(ND,1010) AJA,AH8,820,A080
BETA=35TA*140.0/P1

23 WRITECNP,1020) AP,BETA

N = Pt et o bt et e b s b
QOWVWX®RJATLE WNMHOOUD-IANLE WA

NN
N e

24 ALPHA=ALPAA*180.0/P1
25 WIITZ(NP,1040) ALPHA
26 cALL GRASH(AOLO,adA,Ab,BDO,NP)
217 GO T0 10
28 299 WRITE(NP,1030)
29 1010 FORMAT(//I/II1/7777,5X,0PUT = 9,F10.4,5X, *COUPLER = *,F1l0.4,5X,
5 'FOLLIXER = ¢,F1).4,5X,%GRIUND = %,F10.14,//7)
30 1020 FORMAT(SX,'ARit AP = 9,F10,4,5X%,*BETA = *,F10.4,///)
31 1030 FORMAT('1Y)
32 1040 FORMAT(SX, YALPMA = ¢ ,F10.4,7//)
33 1050 FORBAT(S5X, Y2ETA = *,F10.4,//711717)
34 STOF
35 END
36 SUCROUTINS GRASH(ALYL,AL2,AL3,AL4,NP)
c v
Cc SUBPOUTI NG GRASH CHECKS THE TYPE OF TS FOUR-RAR LINKAGE USING
C GRASHhOFES CRIT:IRLA,
p
37 ALMAX=A4AX1(ALY,AL2,AL3, ALY)
39 ALMIA=ANTY1(ALL, AL2, AL3, A i4)
39 ALTOT=\L1vAL2+AL I+ ALY
40 ALMANSAL “AX e AL
41 CALRENSALTUT =ALMAY
42 [F(ALYAv. Lo iLRSY GO TO 100
13 ARITE(UM,LV1G)
14 RETURY
415 100 IFCALYI o NEQ ALY ANND AL 28 FeALMIN) GO TO 191
16 IF (MLL<EL<ALAIN) GU. TO 102
417 IF(AL2.FLUALMLIN) WRITE(YP,1030)
48 Xuli=aul-=-AL2 .
49 YS(ALI** 20 AL A*S 22X W *2) /(2% L3%2LA)
50 TLITN=VRCUS(Y)
51 XHMAX=ALI+L2
52 L=(rL3%* e AL Ar 2= MAX**2) /(2*AL3*ALY)

5 ThrAX=A3COS(2)



54
S5
56
57
51
59
60
ol
62
63
04
65
66

102

101
1010
1020
1030
1040

103

THMIN=THAIY*130./3.14159
THEAX=TuMAX*130./3.14159
WRITE("P,1040) TAUMIN,TUMAX
GO T0 103

WKITE(IP,1020)

GO "0 1013

WRITE(NP,1010)

FORPMAT (5X,'D0ULLE ROCKEEKY)
FOREAT(SX, 'DRaAG=-LLINK)
FORMAT(S L, *CRANK=-20CKERY)
FORMAT(SX, * 1IN PRES AINGLE =
RETURN

END

¢,F10.4,5X,' MAX PRES ANGLE = *,F10.4)
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IFEAL LAMBIA

DATA HR,NE,FI/5,5,3.14159/
380=1.)

AB=880

RP=LBO

PEAL(NY, *) BOP
READCNY, %, END=939) ALPHA
ALPHA=ALPHA*PI/1 10
BETA=P[/2=-ALPifA

GAMA=2*ALPHA

X=(2,0-30p*»2)/2
THETASARCOS(X)
SAMBLAZGA4A-TIIETA
A20B0=(2*(1.0~-COS(LAXBDA)))**0.5
Al20=(2*(1.0-CN3(GL4a)))**0.5
AAU=(ALBO=A250)/2
A03G=A_0+A2E0
WRITE(1?,1010) aa0,A8,BE0,AODY
AP=A1®)

BETA=B3TA®190.9/P1
WRITE(CUP,1020) AP, LETA
ALPHA=ALPHA*IROU/PI
KRITE(NP,1040) BIP,ALPHA

CALL GRASi(A0L0,A20, AB,BR0,XP)
GO TO 10

999 WKITE(YP,1030)

1010

1030
1040

F
$ YFOLLIWER = ',F10.4,5X,'GROUND =
1020, 3

FORMAT(/ /11111111 ,5%,L%PUT = *,F10.4,5X,'COUPLER = ¢,F10.4,5Y%,
F10.4,/11)

.
N 4
FORMAT(SX, *AKH AP = *,F10.4,5X,%8ETA = *,F10.4,///)
FORMAT(11%)
FORMAT(S5X, *HOP. = *,F10.4,5X,*ALPAA = *,F10.4,///)
STop

)
SUBROUTINE GRASH(AL1,AL2,AL3,AL4,NP)

SUBROUTINZ: GRASH CJiltCKS THE TYPE OF THE FOUR-BAR LIﬁKAGE USIHG‘
GRASHUFF CRITERIA.

ALMAX=AMAX1(ALY,AL2,AL3,ALY)
ALMIN=ANINYI(ALY, AL2,AL3,ALY)
ALTOT=nL1¢AL2+¢AL3¢ALY
ALMAVM=AL 4AX ¢ AL 4L N
ALREM=ALTUT=ALAANM
IF(ALMAMLELALREY) GO TO 100

© WEITE(YP,1010)

- 100

102

101
1010
1020
10390
1040

103

KLTURN

IFCALLONFL AL LN AID AL2L R GALMEYN) CO 70 101
IF (ALLGE o ALMIN) GU TO 192
IFCAL2.ECALNIN) WRITE(NP,1030)
XLi=AL1=aAL2 :

Y=2(ALI**2¢ ALI1*%2-XMIN**2)/(2*AL3I*ALY)
TEHIN=AKRCOS(Y)

XIAX=AL1+AL2
Z=(AL3"Ztde"Z-XMAX"2)/(2'§L3'RL4)
THMAX=AKCUS(Z)

THMIN=TiH M1 % *180./3.14159
THMAX=THYAX "1 /314150

WaITS(P,1040) TiaaLli,Tit X

GO T0 193

ARITECi2,00200)

S0 TO 103

ARITS(NP,1610)

FOR®AT (5C,'0UJJLE PUCKERY)

FOFPAT(SX, *BRAG-LIVY )
FORMAT(S X, YCRAVMK<~RQCKER"Y)

?0?3&2(3X,'1IV P28 ANGLE = $5710.4,5%, PAK PRES ANGIL = ',Fiv.4)
W TUp

£ND
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