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THE ABSORPTION AND METABOLISM OF N-ACETYL-D-GLHCOSAMINE 

AND D-GLUCOSAMINE IN THE INTACT RAT

CHAPTER I 

INTRODUCTION

Corl (1), in the introduction to his classic paper, "The Fate of 

Sugar in the Animal Body” , summarizes very concisely the problems 

involved in obtaining information on the overall metabolism of a sugar 

in the intact animal. He states; "Without an accurate knowledge of 

the laws of intestinal absorption it would seem impossible to follow 

the fate of sugar in the animal organism on a quantitative basis. For 

convenience, the fate of sugar in the animal body may be divided into 

four steps; first, the absorption from the intestinal tract; second, 

the passage through the blood and occasionally elimination in the 

urine; third, the penetration into the tissues; and fourth, the 

disposal in the tissues".

In the studies reported here, the investigation involves the 

absorption of N-acetyl-D-glucosamine and D-glucosamine, their incorpo­

ration into serum and tissue glycoproteins, their conversion into 

other compounds, and their elimination from the body. All studies were 

carried out on intact albino rats.
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CHAPTER II

REVIEW OF THE LITERATDRE

General Chemistry of Glucosamine (2)

The chemical properties of glucosamine are those typical of both 

hexose monosaccharides and primary amines* Glucosamine is a reducing 

sugar and behaves as do neutral hexoses towards alkaline copper and 

silver reagents* Oxidation of the reducing group leads to the formation 

of the corresponding 2-amino gluconic acid* More vigorous oxidation 

results in the loss of the amino group and the formation of a mixture 

of dicarboxylic acids such as oxalic, maleic, etc* Glucosamine is 

susceptible to oxidation by glycol splitting reagents, such as sodium 

metaperiodate and lead tetra acetate* O— and N- derivatives are formed 

with acetylating reagents, and methyl ethers are formed under conditions 

similar to those applied to other hexoses; pyranosides and furanosides 

are known*•

Glucosamine reacts readily with carbonyl compounds to give Schiffs 

bases* N-acyl derivatives are formed when the amino sugar reacts with 

molar proportions of acid chlorides and acid anhydrides in organic 

solvents. Secondary and tertiary bases and quaternary ammonium 

derivatives result from the alkylation of the amino group*. 1-fluoro-

2 ,4-dinitrobenzene condenses with glucosamine to form the DNB

2



3
derivative. This reaction is particularly useful in the separation of 

glucosamine from galactosamine and from other sugars by chromatography 

or paper electrophoresis. Oxidative degradation with ninhydrin or 

ch1oramine-T results in the loss of the amino group and decarboxylation 

at carbon number one with the formation of D-arabinose.

A number of relatively specific c o Io t  reactions are used in the 

quantitation of glucosamine. The two of major importance are the 

Elson-Morgan and Dische-Borenfreund tests.

In the Dische-Borenfreund method (3> the 2-aminohexoses are 

deaminated by nitrous acid which leads to the formation of 2,5- 

anhydrosugars. These sugars give a color reaction with indole in the 

presence of HCl. Other sugars also appear to react with indole and 

give values for the amino sugars that are higher than those obtained 

in the Elson-Morgan method. The basis for the Elson-Morgan reaction 

(4) is the condensation of the 2-amino hexose molecule with acetyl- 

acetone in alkaline solution to give pyrroles. The presence of amino 

acids and reducing sugars interfere with the color production. A 

number of modifications of the method (5), (6), (7) have been described 

for the estimation of glucosamine in the presence of proteins and 

protein hydrolysates.

Glucosamine does not give a positive Molisch reaction for 

carbohydrate, nor does it react with any of the acid phenol reagents 

for aldoses.

In aqueous alkaline conditions, glucosamine undergoes a series of 

complex changes, including deamination. It is readily oxidized in the 

presence of air. Deamination is also brought about by condensation
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with phenylhydrasine and by reaction with nitrous acid.

Distribution of Glucosamine 

Glucosamine is found in a wide range of animal species as a 

constituent of the structural substances and biological fluids.

Heparin, a sulfated mucopolysaccharide with marked anticoagulative 

properties, was first isolated in 1916 by McLean (8). Analysis of , 

highly purified heparin (from lung and liver) has shown that the 

principle monosaccharide units are D-glucosamine and D-glucuronic 

acid (9),(10). Hoffman and Meyer (11)'have designated the structure of 

the heparin disaccharide as 0-(2-acetamido-2-deoxy- -D-glucopyranosyl)- 

(1— )4) D-glucuronic acid.

Chitin, an important constituent of the exoskeleton of inverte­

brates, yields equimolar portions of D-glucosamine and acetic acid when 

completely hydrolyzed under acidic conditions (12). Chitin is a 

relatively common constituent of fungi (2). In 1934 Meyer and Palmer 

(13) isolated a mucosubstance from bovine vitreous humor which they 

named hyaluronic acid. Hyaluronic acid is now considered to be 

composed of repeating units of hyalbiuronic acid (H-acetyl-glucosamine

and D-glucuronic acid). The hexosaminidic linkages are /3 (1--^4) and

the glucuronidic linkages are (5 (1— ^3) (11). Substances with properties 

similar to hyaluronic acid have subsequently been isolated from umbili­

cal cord (14), tumor fluids (15), synovial fluid (16), ocular fluids, 

skin, and group A and C hemolytic streptococci (2). Blood group sub­

stances are mucopolysaccharides of high molecular weight and are 

composed of carbohydrates and peptide constituents. Acidic hydrolysis
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of the purified A and O substances of hog gastric mucin results in 

the liberation of L—fucoss, D-glucosamine, D-galactosamine and D- 

galactoae, along with about eleven amino acids (2),

Other mueosubstances reported to contain glucosamine are; 

Submaxillary mucin, gastric mucin, urinary mucin, cervical mucins, 

respiratory mucins, hen egg mueosubstances and frog spawn mucin (2), 

Craig and Uzman reported in 1957 (17) the isolation of a lipopoly- 

saceharide composed of glucose, galactose, glucosamine, fatty acids, 

and neuraminic acid from human liver. Glucosamine and its derivatives 

are also found in components of a wide variety of bacterial and 

fungal products (2).

Proteins containing carbohydrate (glycoproteins) have as their 

sugar constituents, in addition to the neutral sugars mannose, 

galactose, fucose and various derivatives of neuraminic acid, the 

amino sugars glucosamine and galactosamine, usually present in their 

N-acetyl form. N-acetylglucosamine is a major carbohydrate constituent 

of the following glycoproteins; Orosomucoid, fetuin, hapto-globin, 

ceruloplasmin, transferrin, bovine protlurombin, bovine fibrinogen,

7s gamma globulins, 19s gamma globulins, Tam and Horsfall urinary 

glycoprotein, human follicle-stimulating hormone, human chorionic 

gonadotropin, human thryrogiubulin, ovine submaxillary glycoprotein, 

and ovalbumin (18).

The protein bound hexosamine in the serum is elevated in many 

disease states. Boas (19) has demonstrated an increase in serum 

hexosamine levels following myocardial infarctions, surgical operations.
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and an acute attack of gout» In gout, an increase in the alpha- 

globulin hexosamines was shown to account for the observed increase 

in total serum hexosamine. Elevated serum hexosamine levels were 

also noted in rheumatic fever, rheumatoid arthritis, and lupus 

erythematosus. In diseases of the central nervous system, an 

increase of total hexosamine content and protein was found in the 

cerebrospinal fluid of patients with meningitis, progressive paralysis, 

and with brain tumors. Similar increases of hexosamine and protein 

were not found in degenerative vascular and senile conditions, or in 

treated epileptics (20). An increase in serum hexosamine has also 

been demonstrated in patients with diabetes mellitus (21), Wins1er

(22) reports the level of protein bound hexosamine (both glucosamine 

and galactosamine) in normal sera to be 83 + 9 mg, %, Shetlar, et al.

(23) report a somewhat lower value of 71 + 4 mg, %,

Metabolism of Glucosamine 

In efforts to determine whether glucosamine can be utilized 

directly, by animals, various feeding experiments have been carried 

out. In 1929, Ariyama and Takahasi (24) fed glucosamine-HCl to rats 

and found an assimilation of 0,30 gm, per 100 gm. of body weight. 

Catchert and Fabian (2) have reported a slow rate of absorption of 

glucosamine from the intestine. Using sacs of hamster intestine, 

Wilson and Crane (25) were able to show that D-glucosamine is not 

transported across the intestinal wall.

Rats fed a diet supplemented with dried beef fibers which had 

been heated with 15% D-glucosamine showed a marked decrease of growth
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and a mortality of 50% (26), The first deaths occurred at 19 days 

and the livers were abnormal. The addition of 20% D-glucosamine 

to the diet after heating had no effect,

Kent and Whitehouse (2), in their review on amino sugars, state 

that in man glucosamine can apparently be metabolized in amounts up to 

100 mg,/kg., and that larger doses fail to produce hyperglycemia or 

glucosuria even in insulin-treated patients,

Becker and Day (27) fed glucose-l-C^^ and glucosone-l-C^^ to 

rats and found that in those animals fed the labeled glucosone, the 

labeled glucosamine level in the mucoproteins was higher than in 

animals which had been fed glucose. Glucosamine labeled in the 

number one position was isolated from the ovomucoid of eggs after 

feeding chickens glucose-l-C^^ (28).

Spiro (29) injected rats with glucose-l-C^^ and found consider­

able incorporation of the label into the bound glucosamine of the 

liver and serum. There appeared to be very rapid interchange between 

the liver and serum glucosamine. The calculated turnover time for 

glucosamine was 0,8 hour for liver and 2 hours for serum. The liver 

appeared to be the primary site of synthesis of serum glucosamine 

from glucose. The synthesis of the protein-bound glucosamine from 

glucose in the other organs studied, namely, kidney, lung, testes, 

and spleen, was shown to be well below than of the liver.

Other studies (30),(31) have also indicated the presence of enzymes 

in several mammalian tissues which are capable of synthesizing glucos­

amine, Similar enzyme systems have been found in bacteria (32),(33) 

and in fungi (34),
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A number of observations indicate the existence of an alter­

native pathway (other than through glucose) utilizing preformed 

glucosamine in the biosynthesis of hexosamine moieties. Dorfman 

et al, (35) report the direct incorporation of glucosamine labeled 

with and into hyaluronic acid by hemolytic streptococci with­

out previous deamination.

Boas (36) administered D-glucosamine HCl intravenously to rats 

and concluded that it was rapidly distributed in all tissues of the 

body, and that the greatest concentration Increase was in the kidneys, 

liver, and intestines.

Shetlar et al. (37) have shown that the radioactivity from D- 

glucosamine—1-C^^ administered intraperitoneally to rats is found in 

high concentrations in the kidney, liver, spleen, lung, brain, di­

gestive system and blood serum. Over 30% of the administered glucos­

amine was metabolized and converted to carbon dioxide, and 15% was 

excreted in the urine. Examination of tissues which had incorporated 

radioactivity from administered D-glucosamine-l-G^^ had shown that 

the labeled sugar is incorporated without appreciable degradation.

Such studies (38), (39) have been made in serum glycoproteins of 

rats and rabbits. In the serum studies, glucosamine was isolated 

from serum protein hydrolysates with the radioactivity still in the 

number one position, and only negligible amounts of radioactivity were 

found in the neutral sugars. Labeled sialic acid, however, was found. 

In rabbits administered D-glucosamine-l-C^^ intraperitoneally, labeled 

glucosamine was found in liver glycoproteins (40) and liver muco­

polysaccharides (41), No radioactivity was detected in liver glycogen.
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amino acids, extractable lipids or neutral sugars associated with 

protein, Kohn et al, (42) report similar findings on the incorpo­

ration of labeled glucosamine into glycoprotein of rat liver. They 

also found that administered N-acetyl—1-C^^-D—glucosamine was not as 

readily incorporated in glycoproteins as glucosamine and that it was 

rapidly deacetylated.

In in vitro studies of plasma glycoprotein metabolism with per­

fused rat liver, Richmond (43) found that glucosamine was converted to 

sialic acid derivatives at a slightly faster rate initially than to 

glycoprotein N-acetylglucosamine, and that N-acetylglucosamine was a 

poorer precursor of macromolecular N-acetylglucosamine than glucosamine.

Enzymatic Studies on the Metabolism of Glucosamine 

Numerous studies on the metabolism in vitro of D-glucosamine 

have shown that the initial step in its utilization is the conversion 

to D-glucosamine-6-phosphate, This is apparently accomplished by a 

nonspecific hexokinase, Hexokinases, found in extracts of brain, 

liver, kidney, and yeast, are capable of phosphorylating not only 

glucose, but also preformed glucosamine (51),(44), Glucosamine-6- 

phosphate has a low reactivity with phosphoglucomutase (45), and it 

is doubtful if the 6-phosphate is converted to the 1-phosphate by 

this enzyme. The acétylation of glucosamine-6-phosphate has been 

studied in Neurospora crassa (46) and yeast (47), Davidson al, 

have shown that the enzyme concerned is specific for glucosamine-6- 

phosphate (48), The resulting N-acetylglucosamine-6-phosphate can 

then be converted to N-acetylglucosamine—l-phosphate by a mutase (49),
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The reaction of N-acetylglucosamine-l-phosphate with uridine triphos­

phate in the presence of a pyrophosphoryiase to form UDP-N-acetyl- 

glucosamine has been described by Maley and Lardy (50). Glucosamine- 

6-phcsphate can also be deaminated to D-fructose-6-phosphate and 

ammonia (51); however, Malay and McGarrahan (52) have shown in ^  vivo 

experiments with rat liver that the sequence of reactions from glucos­

amine to N-acetylglucosamine-6-phos|>hate, fructose-6-phosphate and 

ammonia is greatly influenced by the free D-glucose concentration of 

the liver, and because of its potent inhibitory effect on the phosphory­

lation of glucosamine, they have proposed another pathway: that of

glucosamine ---^ N-acetylglucosamine --- ^ N-acetylglucosamine-6-

phosphate. They support this hypothesis by the finding in rat liver, 

after the intraportal injection of glucosamine-l-C^^ and N-acetylglucos- 

amine-l-C^^, the primary products N-acetylglucosamine, N-acetylglucos- 

amine -6-phosphate, and a mixture of uridine diphosphate N-acetyl­

glucosamine and uridine diphosphate N-acetylgalactosamine. Little or 

no" radioactivity was detected in the hexoses, hexose phosphates, or 

uridine diphosphate glucose. The glucose content of liver was great 

enough to inhibit the phosphorylation of glucosamine in Most instances.

No information is available on the mechanism of incorporation of DDP- 

N-acetylglucosamine into glycoprotein fractions; nor has it been estab­

lished that the UDP derivative is essental for incorporation. In the 

case of acid mucopolysaccharides, the picture is a little clearer, and 

uridine derivatives of the amino sugars appear to be obligatory for their 

Incorporation into the polysaccharide polymers (53). Stanley ̂  al. (54) 

have reported the synthesis of N-acetylglucosaminylribitol linkages
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in teicholic acid by a particulate enzyme preparation from Staphylo­

coccus aureus.

Besides incorporation into glycoproteins and acid mucopoly­

saccharides, PDF-N-acetylglucosamine has been observed to undergo an 

epimerase reaction to UDP-N-acetylmannosamine and then to sialic acids 

(55), (56), (57), Card ini and Leloir (58-) have described the enzymatic 

epimerization of PDP-N-acetylglucosamine by rat liver to DDP-N-acetyl— 

galactosamine.

The Effect of Glucosamine and N—Acetyl— 

glucosamine on Metabolism 

The.inhibition of glucose metabolism by glucosamine and N-acetyl"- 

glucosamine has been reported by various investigators. Spiro noted 

a pronounced competitive inhibition of glucose conversion to glycogen 

and carbon dioxide, as well as a decrease in-fatty acid synthesis and 

in the calculated glucose phosphorylation by these two amino sugars(59). 

Glucosamine in the presence of insulin produced a significant inhibition 

of glucose-l-C^^ oxidation when it was incubated with segments of rat 

epididymal fat pad (60), N-acetylglucosamine was ineffective in this 

respect. Voss et (61) report that glucosamine inhibits glycolysis

in both Yoshida rat and Ehrlich mouse ascites tumors. In contrast to 

the inhibition of glycolysis by glucosamine and N-acetylglucosamine, 

Kushida (62) reports that N-acetyl-D-glucosamine has no effect on the 

respiration of rat liver slices and that N—acetyl-D-galactosamine 

stimulated the respiration by about 60%.



CHAPTER III

MATERIALS AND METHODS

Radioisotopes

N—acetyl-D-glucosamine-l-C^^ was provided through the courtesy 

of Dr» Domenie lezzoni, Chas, Pfizer and Co«, Brooklyn, New York. 

D-glucosamine-l-G^^, N-acetyl-l-C^^-D-glucosamine and D-glucose-l-C-^ 

were purchased from the New England Nuclear Corporation, Boston, 

Massachusetts. The radiopurity of these compounds was checked by a 

paper chromatography technique. Aqueous samples of the isotopes 

were applied to Whatman No. 1 chromatography paper and developed by 

the descending technique with a n-butanol, pyridine, and 0.1 N HCl 

solvent (5:3:2) (63).

The D-glucosamine-1-C^^ and the N—acetyl-l-C^^-D-glucosamine 

were found to be pure; but the N-acetyl-D—glucosamine-1—C^^ was 

contaminated with glucosamine. This impurity was removed by passing 

a solution of the mixture through a Dowex-50W-Xi2 resin column. The 

pure N-acetyl-D-glucosamine-l-C^^ was washed from the column with water.

Preparation of Feeding Solutions

One molar solutions of D-glucose (Mallinckrodt, DSP), N-acetyl- 

D-glucosamine (Pfizer, DSP), and D-glucosamine-HCl (Calbiochem, A grade) 

were prepared in distilled water. Although the hydrochloride form of

12
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glucosamine was used, the solution was prepared so as to be one molar 

with respect to glucosamine. These solutions were checked by the 

paper chromatographic technique described for the labeled compounds 

and no impurities were found.

On the day of the experiment, 15 ml, of the appropriate one-molar 

sugar solution were added to a weighed aliquot of the tracer to be 

used. The specific activities of the tracers were high enough so 

that the molarity of the final solutions was not appreciably changed. 

The maximum amount of tracer added was 15 mg, in 15 ml. The final 

solutions contained 5 microcuries of isotope per ml, for the N-acetyl- 

1-C^^-3-glucosamine, D-glucose-l-C^^, and D-glueoaamine-l-C^^ prepa­

rations. The N-acetyl-D-glucosamine-l-C^^ solution contained 2,5 

microcuries of isotope per ml.

Experimental Animals 

Young Holtzman male rats weighing approximately 100 gm, were 

used. Twenty-four hours prior to the experiment, the animals were 

fasted and provided with water only. The fasting period was generally 

long enough to provide a relatively empty intestinal tract.

Neomycin Sulfate Treatment 

In some cases the rats were treated with neomycin sulfate 

(Nutritional Biochemical Corp.) for two days. The antibiotic was 

supplied in the drinking water at a concentration of 0,5%, The 

animals were allowed food on the first day and then fasted the final 

24 hours prior to the experiment. At the end of the neomycin treatment 

period, rectal swabs were made and streaked on desoxycholate agar.
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At the end of 72 hours, only an occasional calony of E, coll. could 

be found on the cultures fr<sa the treated rats. In the case of the 

untreated animals, a heavy growth of E, coll was obtained.

Insulin Treatment 
Some of the animals were treated with insulin prior to the 

experiment. The fasted animals were Injected subcutaneouly with 

1.0 unit/kilogram body weight of insulin (Lilly, ÜSP Iletin) 30 min­

utes before the beginning of the experiment. Although this dosage 

caused the animals to appear sluggish and drowsy. It did not produce 

a condition of shock,

Phlorizidin Treatment 

Another group of animals was poisoned with phlorizidin by the 

method of Bogdanova and Barker (64). Prior to the experiment, the 

animals were given five 0.25 ml, subcutaneous Injections of 10% 

phlorizidin dihydrate (Calbiochem) in sesame oil at Intervals of 

12 hours. This treatment was in addition to the routine 24 hour 

fasting period. At the end of the phlorizidin treatment all animals 

exhibited a copious glycosuria.

In some groups of animals there was a combination of neomycin 

and insulin treatment or neomycin and phlorizidin treatments.

Feeding of Animals 

After the pretreatment and/or fasting period, the animals were 

weighed and divided Into groups of 9 each. Each group was then fed 

by stomach tube 1 ml. of the 1 M sugar solution to be Investigated,
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The device used to feed the animals was fashioned from a tuberculin 

syringe fitted with a blunt nosed 20 gauge needle over the hub of which 

had been slipped a No. 8 urinary rubber catheter. The inside diameter 

of the catheter was small enough so that capillary action prevented 

the solution from draining after the device was filled. This assembly 

was fitted into a lock device which insured a constant filling of the 

syringe and catheter when the plunger was retracted to its maximum 

preset limit. The constancy of delivery of this feeding device was 

determined and the average error was found to be 0.82 per cent in a 

series of 9 on a 1 ml, delivery.

One ml, of each feeding solution was emptied from the feeding 

device into a volumetric flask and diluted to 200 ml, with water.

The radioactivity found in this solution was used as the base line 

for the calculations of absorption.

Immediately after feeding, the animals were divided into groups 

of three and placed in Roth metabolism cages (65) where they had free 

access to water. They were maintained in the cages for 3 hours during 

which time urine was collected and expired carbon dioxide was trapped 

in a gas washing tower containing either 130 ml of 3M NaOH or 100 ml, 

of a mixture of monoethano1amine and ethylene glycol monoethyl ether 

(1:2 v/v) (66), NaOH was used to trap the carbon dioxide for the 

untreated animals fed D-glucosamine-l-C^^; the organic mixture was 

used for all other experiments. Both methods are equally efficient 

in trapping carbon dioxide, but the subsequent determination of radio­

active carbon dioxide is much easier with the organic~solvent mixture.
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Sacrifice of the Animals and Recovery 

of the Intestinal Contents 

After the three-hour period in the metabolism cages, the animals 

were anesthesized with ether and exsanguinated through the abdominal 

aorta. The gastrointestinal tract was clamped off with hemostats at 

its upper and lower extremities, gently pulled loose from the mesentary 

and placed in a beaker where it was slit longitudinally and thoroughly 

washed with water. The washings, intestinal contents, and instrument 

rinsings were transferred to a Waring blendor and homogenized. The 

homogenate was made up to 200 ml. with water and layered with toluene. 

An aliquot of this mixture was then centrifuged at 35,000 x g for 

1 hour at -50 C, An aliquot of the resulting clear supernatant was 

then processed immediately for radioactivity determinations and the 

remainder stored at -20° C.

The liver was perfused with ice cold 0.85% saline and lyophilized. 

The washed gastrointestinal tract (stomach, small intestine, and large 

intestine) was lyophilized.

Studies of Serum Proteins 

Blood collected from the animals was allowed to clot at room 

temperature, and the serum was obtained by centrifugation.

Total serum radioactivity was determined after incubating 0.050 ml, 

of serum with 1.0 ml. of Hyamine Hydroxide (diisobutyl cresocyethoxy- 

ethyl dimethylbenzylammonium hydroxide. Pilot: Chemicals, Inc.) in 

capped scintillation vials (Nuclear Chicago Corp.) in an oven at 40°- 

50° C for 4 hours. Fifteen ml. of standard scintillation solution
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were added (4 g. 2j5-diphenyloxazole and 50 mg. 154-bis-2-(5-phenyl- 

oxazolyD-benzene, Nuclear Chicago Corp. ) per 1000 ml, spectro quality 

toluene, (Matheson, Coleman and Bell). To effect solution of the 

Hyamine-serum complex in the toluene, 1,0 ml, absolute ethanol was 

added to the scintillation solution. This mixture was then counted 

in a Nuclear Chicago Corp, 725 room temperature liquid scintillation 

system. Results were expressed as c/m per mg, protein. Protein was 

determined by the biuret method.

Protein bound radioactivity was determined by dialyzing 0.20 ml, 

of serum in Visking casing against running tap water at 8° C for 72 

hours. The dialyzed serum was diluted to 5,0 ml, and 1,0 ml. of this 

solution was pipetted into scintillation vials, taken to dryness, and 

then heated with 1,0 ml. Hyamine as before. The determination of radio­

activity was as previously described. The results were also expressed 

as c/m per mg, protein.

Tissue Studies

The dried tissues (liver and small intestine) were ground in a 

Wiley mill to pass through a 60-mesh screen. Solutions of tissue 

for total radioactivity were made by heating aliquots (4 to 30 mg.) 

of the ground, dried tissue with 1,0 ml, Hyamine and 0.1 ml, water 

in capped scintillation vials at 40°-50° c for & hours. Fifteen 

ml, of the standard scintillation solution and 1,0 ml, ethanol was 

added to the samples and they were then counted as previously 

described. The activity was expressed as c/m per mg, dry tissue.

Bound radioactivity of the tissues was determined after dialysis
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of hcmogeïiates of ground dry tissue in tap water» Two ml. of the 

homogenates were pipetted into Visking casings and dialyzed against 

running tap water at 8° C for 72 hours. Two ml. aliquots of the 

dialyzed material were pipetted into weighed scintillation vials and 

taken to dryness. The vials and their contents were then weighed and 

the weight of the tissue determined by difference. The procedure for 

counting the dialyzed tissues was the same as described for the non- 

dialyzed tissue. The radioactivity was expressed as c/m per mg, dry 

tissue.

Déterminât ion of Radioactivity in Intestinal Contents.

Feeding Solutions, and Expired COg 

0,020 ml, of the diluted feeding solutions and intestinal contents 

were pipetted into scintillation vials, 3,0 ml, absolute ethanol and 

15 ml, of standard scintillation solution were added, and the radio­

activity measured. Radioactivity was expressed as c/m per ml, for the 

feeding solutions and as total c/m washed from the gastrointestinal 

tract for the intestinal washings.

Radioactivity in the expired carbon dioxide, in the cases where 

the organic solvent mixture was used as the trapping agent, was 

determined by pipetting 3,0 ml, of the COg-amine complex into scintil­

lation vials and adding 15 ml, of scintillation solution composed of 

toluene, ethylene glycolmonomethyl ether (2:1 v/v), and 5.5 gm.

2,5-diphenyloxazoIe per 1000 ml. of solution. Samples were counted 

as previously described and the radioactivity was expressed as total 

c/m expired in 3 hours.

In the experiment in which NaOH was used to trap the COg,
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sliquots of the HaOK solution were mixed with an excess of saturated 

BaClg* The precipitated BaCO^ was washed with water and suspended 

in absolute ethanol. An aliquot of the suspension was plated on 

concentric stainless steel planchets (Atomic Accessories), dried, and 

the radioactivity determined in a Nuclear Chicago gas flow counting 

system. Corrections were made for self-absorption of the sample and 

machine efficiency so that the determined c/m expired could be adjusted 

to absolute counts. This data may then be compared directly with that 

obtained with the liquid scintillation system.

Identification of Radioactive Compounds 

Samples of the dialyzed tissues (serum, liver and small intestine)

were prepared by pooling aliquots from within each experimental group.
S

These samples were hydrolysed in two systems, one designed to liberate 

amino acid and amino sugars, and a less rigorous one which liberates 

neutral sugars. For the amino acid and amino sugar studies of the 

tissues and serum, samples (10-20 mg.) were hydrolyzed in 4 ml. of 

6 N HCÎ at 100° C in closed tubes for 20 hours. For neutral sugar 

studies, the samples were hydrolyzed in 2 N HCl at 100° C in closed 

tubes for 18 hours. The hydrolysates were then decolorized with 

Norite A and taken to dryness under vacuum over CaSO^ or silica gel 

and NaOH pellets.

To effect the separation of neutral sugars, amino sugars and 

amino acids, the dried hydrolysate residues were dissolved in 0.5 ml. 

of water and chromatographed on a 1 x 6.5 cm. column of Dowe% 50X12, 

100-200 mesh resin in the hydrogen form. Neutral sugars were washed
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from the column with 20 mi. of water, hesosamines were eluted with 

30 ml, of 0,3 N HCl and the amino acids with 20 ml, of 4 N HCl,

These fractions were taken to dryness by the same procedure used for 

the original hydrolysates and the residues dissolved in 0,5 ml, water, 

0,20 ml, of these solutions were pipetted into scintillation vials, 

mixed with 30 ml, absolute ethanol and 15 ml, of the standard scintil­

lation solution and counted, 0.03 ml, of the remaining solution were 

applied to Whatman No, 1 chromatography papers and the chromatograms 

developed in an n-butanol, pyridine, 0,1 N HCl (5%3;2) system. Amino 

acids <fere detected by dipping the chromatograms in 0,2% ninhydrin in 

a 1% solution of glacial acetic in acetone, Hexoses were detected by 

dipping the chromatograms in a solution of 0-aminobiphenyl (5% amino- 

biphenyl in a 1,3% solution of phosphoric acid in glacial acetic acid), 

and then heating at 100-110° C for 2-5 minutes. The amino sugars 

were detected with both color developing reagents.

The intestinal contents were, not hydrolyzed prior to application 

to the column because even mild acid hydrolysis destroys N-acetyl- 

glucosamine. In addition to hexoses, N-acetylglucosamine is present 

in the water eluant.

Radioactive sugars in the urine were detected after applying 

0,005 ml, aliquots to Whatman No, 1 paper and developing the chromato­

gram in the butanoI-pyridine-HCl solvent. The sugars were located 

with the aminobiphenyl reagent. The radioactivity of these spots was 

detected by cutting them out, placing them in scintillation vials with 

7 ml, of the standard scintillation solution and counting them for 20 

minutes.



Correction of Observed Counts 

for Quenching

All counts obtained with the liquid scintillation counter, with 

the exception of those from the paper chromatogram spots, were corrected 

for quenching by the channels ratio method (67), (68). This method was 

found to give results identical to those obtained by internal stand­

ardization for all samples with the exception of the liver tissues. For 

these tissues a special efficiency to ratio curve was constructed from 

nonradioactive liver and added

Statistical Methods
With the exception of the paper chromatogram spots, all samples 

were counted until a total count of at least 10,000 was obtained.

The per cent error is 2.00 at the 96% confidence level for this 

total number of counts.

Data were compared statistically by the ”t" test as applied 

to the means of small samples (69) using the formula

Xi - %2
t  =   :_____________________________________________   :_____________

wnere x^ and X2 represent tne means or two groups, and 

number in each group, and Sj and S2 , the respective standard

deviation.
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In the following discussion, differences are considered to 

be significant only where the calculated probability values are 

equal to or less than 0*01.



CHAPTER IV

RESULTS AND DISCUSSION

Absorption of D-Glncosamlne and H-Acetyl-D-Glucosamtne 

In 1925, Carl F. Cori (1) published a method for the quantitative 

study of absorption from the whole intestinal tract of the rat. The 

animals were fed a known amount of the substance under investigation 

by a stomach tube* After a given time, the rats were killed and the 

amount of substance remaining in the intestines was determined quanti­

tatively* The difference between the amount fed and the amount re­

covered from the whole intestinal tract was considered as the amount of 

substance absorbed. He proposed that the amount of a given substance 

that is absorbed should be proportional to the absorbing surface of 

the intestinal tract, and that, since the surface of the intestine 

will vary with body weight, larger animals will absorb more than 

smaller ones* He showed that the ratio of the amount absorbed to 

body weight was a constant. He was careful to point out, however, 

that this proportionality between the amount absorbed and the body 

weight was found in rats that were still in a period of active growth, 

and that it might not be valid for fully grown rats where variations 

in depot fat and other factors might play a role. In addition to the 

relationship between absorption and body weight, he was able to show

23
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that, when the amount of sugar that is absorbed per 100 gm. of body 

weight is plotted against time, a straight line relationship is 

obtained. On the basis of these experiments utilizing the sugars 

glucose, galactose, fructose, mannose, xylose and arabinose, he 

formulated the following equation for calculating absorption co­

efficients (C), the amount of a given substance absorbed per 100 

gm. of body weight in one hour;

C = A X 100 
W X T

where A is the total amount of substance absorbed in a given period,

W is the weight in grams of the rat after fasting for 48 hours and 

T is the length of the period in hours.

Cori found that the rate of absorption was not affected by the 

concentration or amount of sugar fed; however, a hypertonic sugar 

solution was diluted in the stomach. Other workers, using Cori's 

technique for studying sugar absorption, have published results 

which are at variance with those of Cori. Cori's conclusion that 

the rate of absorption of glucose was not influenced by variations 

in the concentration of the administered solution has been questioned. 

Macleod et al. (70) concluded that absorption was greatest from a 

13.5 per cent glucose solution, and MacKay and Bergman (71) have 

reported that the absorption rate is influenced by the concentrations 

of the administered solutions. The conclusion that the rate of absorp­

tion is constant has been objected to by Pierce et al. (72) and by 

Feyder and Pierce (73), who have shown a decreased rate of absorption 

during the second and third hours of the absorption period. In



25
similar investigations, Fenton (74) was led to conclude that absorption 

from the intestine of the intact animal increased significantly as the 

concentration of the solution which was fed increased, and that the 

rate of absorption, as well as the absorption coefficient, decreased 

with time, Fenton also reported a nonlinear relationship between body 

weight and absorption; however, he also found that the absorption was 

not entirely independent of body weight.

In the investigations reported here, it was of interest not only 

to obtain Information concerning the absoption of D-glucosamine and 

N-acetyl-D-glucosamine in the intact rat, but also to determine the 

fate of these amino sugars after they were absorbed. For these 

reasons, the basic technique as described by Cori (1), even though 

it appears not to give the best estimates of absorption rates, was 

chosen.

An attempt has been made to limit as many variables as possible 

in these studies. All animals were approximately the same age and 

body weight and were males of the Holtzman strain. The sugar solutions 

fed were the same molar concentrations. The majoritity of other studies 

of absorption have been made with sugar solutions whose concentrations 

have been expressed as percentages. It is felt that, regardless of 

the mechanism of movement of the sugars from the mucosal to the 

serosal side of the intestine, i.e., whether an active transport 

mechanism or a simple diffusion process is in operation, a more 

realistic approach to the problem of sugar concentration would be to 

make comparisons of absorption only when the sugars are present at
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initially equal molar concentrations. The period of absorption was 

3 hours in every case. This time period was chosen not only for ease 

in handling several animals over a staggered period of time, but also 

because, at intervals longer than 3 hours, the animals fed the amino 

sugars exhibited diarrhea.

Cori and other workers have used colorimetric copper reduction 

methods to determine the amount of sugar remaining in the intestine 

after the absorption period. These methods are not only tedious, 

but also have the disadvantage that substances may be present in the 

intestinal contents which interfere with the colorimetric determin­

ations. In the absorption studies reported here, the amount of sugar 

absorbed was determined by the Isotope dilution technique. From the 

amount of radioactivity associated with the initial sugar concen­

tration of the feeding solution and the amount of radioactivity 

recovered in the intestinal washings, the amount of sugar absorbed 

can be calculated by simple ratio and proportion. This technique is 

valid only if there is no degradation of the labeled sugar while it 

is in the lumen of the intestine. To investigate the possibility of 

such degradation, aliquots of the intestinal contents from the animals 

fed D-glucosamine-l-cl4 and N-acetyl-D-glucosamine-l-C^^, and also 

aliquots of intestinal contents from animals fed the same labeled 

sugars but treated with the antibiotic neomycin, were concentrated 

and chromatographed on Whatman No. 1 paper in a n-butanol, pyridine, 

0,1 N HCl solvent system (5:3:2). The radioactivity associated with 

the chromatographically isolated compounds, is given in Table 1. The 

only appreciable radioactivity was found associated with the original
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radioactive sugar. This would appear to indicate that there is no 

destruction of the sugars tested in the intestine. However, this 

conclusion is not entirely valid since a conversion of glucosamine 

to a more readily metabolizable compound, such as fructose, might 

provide a hexose which could easily pass through the intestinal wall 

and would not be detected by the procedure. Data will be presented 

later which indicate that there is probably some destruction of the 

glucosamine molecule by the intestinal flora. It is significant, 

however, that no glucosamine was found in the intestinal contents of 

the animals that were fed N-acetylglucosamine, This provides direct 

evidence that the acetylglucosamine molecule is not appreciably de- 

acetylated before leaving the lumen& Cori (1) investigated the 

possibility of loss of glucose from the intestine due to bacterial 

action, and found that the loss was so small that it could be ne­

glected.

Using a combination of Cori's technique and the radioisotope 

dilution technique, the absorption coefficients for D-glucosamine 

and N-acetyl-D-glucosamine were determined. These results (Table 2) 

indicate that both .glucosamine and N-acetylglucosamine are absorbed 

at approximately the same rate, and that this rate of absorption is 

much slower than the absorption rate for glucose. These results are 

in agreement with the hypothesis of Crane (25) which predicts the 

characteristics a sugar molecule must have in order to be actively 

absorbed by the intestine, i.e., the compound must possess a D- 

pyranose structure, a methyl or substituted methyl group at carbon 

five of this structure, and a hydroxyl group in the glucose configu-



ration at carbon two. It is readily apparent that both glucosamine 

and N-acetylglucosamine meet this criteria with the exception of the 

hydroxyl group in the glucose configuration at carbon two. It is 

not the purpose of this investigation to determine the mechanism of 

transport of the amino sugars across the intestinal wall.

It should be mentioned that the data given for the absorption 

of glucose is misleading in that it indicates that only one millimole 

of glucose is absorbed in a 3-hour period. Almost identical values 

(Table 3) were obtained for 1-hour absorption periods. It is indi­

cated then that an animal fed 1 ml. of 1 M glucose (0.18 gm. glucose) 

is able to completely absorb this amount in at least one hour. This 

is in agreement with Cori (1) who gives a value of 0.178 gm. glucose 

absorbed per 100 gm. body weight pgr hour. The absorption data for 

glucose (Table 2) is included only for the purpose of contrasting 

the absorption rate of an actively transported sugar and the amino 

sugars.

There is a significant difference in the absorption of glucos­

amine in animals which have had their intestinal flora diminished by 

neomycin treatment and in untreated animals (Table 2). The decrease 

in the absorption rate in the treated animals could possibly be due 

to an inhibition by the neomycin.

It is to be noted that there is no difference in the absorption 

rate of N-acetyl-D-glucosamine as determined by isotope dilution with 

the acetylhexosamine molecule labeled in either the acetyl moiety or 

the glucosamine moiety (Table 2), This data, together with that from 

the chromatograms of the intestinal contents of rats fed N-acetyl-D-
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g l u c o s a m i n e - 1 ( T a b l e  1), lead to the conclusion that N-acetyl— 

glucosamine Is absorbed from the lumen without degradation. This Is 

perhaps significant in that the majority of the naturally occurring 

forms of glucosamine, as found in tissue glycoproteins and mucopoly­

saccharides, is N-acetylglucosamine. It is possible, therefore, that 

an animal may utilize a dietary source of N-acetyl-D-glucosamine to 

supplement the de novo synthesis of acetylglucosamine compounds in 

the body.

Metabolism of Absorbed D-Glucosamine 

and N-Acetyl-D-Glucosamine 

Having established that D-glucosamine and N-acetyl-D-glucosamine 

are absorbed from the intestine, it was of interest to follow the 

metabolism of these compounds in the living animal.

At the end of the 3-hour period, 10% of the absorbed radio­

activity had been expired as COg in the animals treated with neomycin 

and fed N-acetyl-D-glucosamine-l-C^^ (Table 7). Essentially similar 

results were found in the untreated animals fed N-acetyl-D-glucosamine- 

1-CÏ4, There was a large difference in the per cent absorbed radio­

activity expired as GOg in the treated and untreated animals fed glucos- 

amine-l-C^^ (4.5% for the neomycin treated animals and 17.9% for the 

untreated animals>. This is a further indication that in animals not 

treated with neomycin glucosamine is degraded in the lumen of the 

intestine by microorganisms.

An appreciable amount of radioactivity from absorbed D-glucosamine= 

l-C^* and N-acetyl-D-glucosamine-l-C^^ was found in the body tissues^
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Radioactivity was also found in tissues of animals fed glucose—1-C^^« 

In the tables referred to below which show the distribution of radio­

activity in the tissues, the data in the columns headed "Percentage 

Absorbed Radioactivity in ---" (serum, liver or small intestine) are 

the percentage of the radioactivity that was absorbed from the in­

testine and found to be present in the entire tissue under investi­

gation, This value then is based upon the total radioactivity in 

the particular tissue and represents both "bound" and "unbound" 

radioactivity. The data in the columns headed "Percentage Non- 

Dialyzable Radioactivity in —— “ (serum, liver or small intestine) 

is the percentage of the radioactivity in a tissue (c/m per mg.) 

which remains after dialysis of the tissue against running tap water 

for 72 hours.

In the animals treated with neomycin and then fed D-glucosamine— 

1-C^^, 2.0% of the absorbed radioactivity was in the serum (Table 4), 

7.1% of the absorbed radioactivity was in the liver (Table 5), and 

12-4% was in the walls of the small intestine (Table 6). The 

relatively high values for the percentage absorbed radioactivity in 

the liver and the percentage nondialyzable radioactivity in the liver 

of the animals fed D-giucose-l-C^^ as ccapared to those fed D-glucos- 

amine-l-C^^ or K—acetyl-D-glucosamine-l—C^^ probably reflects the 

conversion of the absorbed glucose to glycogen. Other investigators 

have reported (39), (40),(42) that intraperitoneally injected glucos­

amine is not converted to glycogen, and the data in Table 5 indicate 

that glucosamine or N-acetylglucosamine which is absorbed from the 

intestine is also not readily converted to glycogen. Results in
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Tables 4, 5, and 6 also show that in the animals fed D-glucosamine- 

1-C^^, 53.2% of the radioactivity in the serum was nondialyzable or 

"bound" (presumably to serum protein); 16,2% of the radioactivity in 

the liver was nondialyzable and 23.2% of the radioactivity in the 

small intestine tissue was nondialyzable. These results are in agree­

ment with those of others (37), (38), (39), (42), (43), who have reported 

D-glucosamine-l-C^^ to be efficiently incorporated into plasma proteins 

and tissues.

In animals treated with neomycin and then fed N-acetyl-D-glucos- 

amine-l-C^^, 1,4% of the absorbed radioactivity was found in the serum 

at the end of the 3 hour absorption period, and 19.7% of the radio­

activity there was nondialyzable (Table 4); 2.2% of the radioactivity 

was in the liver, and 37.3% of the liver radioactivity was nondialyzable 

(Table 5), The small intestine tissue contained 8.7% of the radio­

activity absorbed from the intestine, and 28,6% of its radioactivity 

was nondialyzable.

In the animals treated with neomycin and then fed glucosamine, 

the radioactivity which was absorbed from the intestine and present 

in the serum was significantly higher than similarly treated animals 

fed N-acetyl—D-glucosamine-l-C^^. The data for the percentage of the 

radioactivity in the serum and tissues which was nondialyzable indicate 

that there also was significantly greater binding of the label in the 

serum of the neomycin treated and glucosamine-l-C^^ fed animals. How­

ever, the amount of label bound in the liver was significantly less 

than in those animals treated similarly and fed N-acetyl-D-glucosamine- 

There appeared to be no difference in the percentage of the
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absorbed radioactivity found in the small intestine tissue of the 

animals fed 1-C^^ labeled glucosamine or N-acetylglucosamine, or 

in the percentages of the nondialyzable radioactivity there.

It was demonstrated that there was no difference in the rate 

of absorption of N-acetyl-D-glucosamine-1-C^^ and N-acetyl-l-C^^- 

D-glucosamine in the animals treated with neomycin and in those 

which were not. This indicates that no deacetylation of N-acetyl­

glucosamine occurred in the lumen of the intestine. There was the 

possibility, however, that N-acetylglucosamine was deacetylated after 

leaving the lumen of the intestine. If this were to occur to any 

appreciable extent, it might be expected that the glucosamine formed 

would spill over into the urine; however, no glucosamine was found 

in the urine of animals fed N-acetylglucosamine. Glucosamine was 

detected in the urine in the experiments in which an equivalent amount 

of glucosamine was absorbed (Table 14). The kidney has been reported 

to have a very low threshold for glucosamine (75), and radioactive 

glucosamine has been reported to be present in the urine of rats after 

parental injections of tracer amounts of g l u c o s a m i n e - 1 (42). 

Glucosamine was not detected on paper chromatograms of the urine from 

animals fed N-acetyl-l-C^^-glucosamine or N-acetylglucosamine-1-C^^, 

nor was any radioactivity detected in the area of glucosamine mobility 

(Table 13). The data in Table 7 indicate an increase in the percentage 

absorbed radioactivity expired as COg for the animals fed the N-acetyl- 

labeled glucosamine (29.9%) as compared to the N-acetylglucosamine- 

1-C^* fed animals (10.1%). This would mean that approximately 0.08 

millimoles of acetylglucosamine had been deacetylated or, stated
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another vay, 0,08 millimoles of glucosamine (14.4 mg.) had been 

produced. This amount was in excess of the 4,5 mg. of glucosamine- 

l-cl4 tracer injected by Shetler et al, (37) in the experiment in 

which they reported finding radioactivity (glucosamine) in the urine. 

There was no apparent explanation for the absence of labeled glucos­
amine in the urine of animals fed N-acetylglucosamine-l-cl4. however, 

N-acetylglucosamine is absorbed at a slow rate from the intestine 

and it is possible that the free glucosamine formed would be metabo­

lized before accumulating to s serum level high enough to spill over 

into the urine, __

If deacetylation of the acetyl-labeled hexosamine molecule does 

occur in the animal body, it might be expected that the distribution 

of the label in the tissues would differ from that obtained with the 

hexoamine-labeled molecule. The only significant difference detected 

was in the percentage of nondialyzable radioactivity in the small 

intestine tissue (Tables 4, 5, and 6). The acetyl-labeled hexos­

amine produced a greater percentage of bound radioactivity in the 

small intestine and this is perhaps a reflection of the incorporation 

of the acetate moiety into lipid material.

The data presented do not give a clear picture as to the fate of 

the acetyl moiety of absorbed N-acetylglucosamine. There was evidence 

that the molecule was deacetylated as indicated by the increased per­

centage of the label in the expired CO2 as compared to the percentage 

expired when N-acetylglucosamine-l-Cl4 was fed. However, the deacetyl­

ation reaction does not. appear to be extensive since no glucosamine was 

found in the urine. Kohn et al. (42), in studies made with parenterally
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injected (3 microcuries) N—acetyl—1-G^^—glucosamine and sodium 

acetate-l-C^^, reported the recovery of 38,3% of the isotope in CO2 

in the case of administered N-acetyl-l-C^^-glucosamine, and 54,5% 

in CO2 from administered sodium acetate. There was a small percentage 

of labeling, frcm both compounds, of liver lipids. They interpreted 

these results as indicating a rapid deacetylation process for N- 

acetylglucosamine. However, no information was given concerning the 

amount of sodium acetate or acetylglucosamine injected, and no con­

sideration was made of the effect of dilution on the injected isotopes 

by the acetate and acetylglucosamine pools.

It has been established by short term experiments vivo (39), 

(40) and in vitro (30), (43) with glucossaine-l-cl^ that this compound 

in addition to being readily incorporated into tissue glycoproteins 

and muco-substances, was not appreciably degraded in the animal. To 

investigate the possibility that enzymic reactions in the tissues of 

the small Intestine could degrade absorbed glucosamine and N-acetyl- 

glucosamine, samples of dialyzed serum, and liver and small intestine 

tissue were hydrolyzed in 6 H HCl,, and the hydrolysates fractionated 

on Dowex 50 columns into hexosamine and amino acid components. The 

radioactivity of each fraction was determined. Under ideal conditions 

only hexosamine8 are eluted with 0,3 B HCl and amino acids are eluted 

with 4 N HCl, However, it was demonstrated by paper chromatography 

that the 0,3 N HCl fraction was contaminated by traces of amino acids. 

No contamination of the 4 N HCl fraction by hexosamines was detected. 

Although the vigorous hydrolysis in 6 K HCl destroys almost completely
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the neutral sugars and a portion oË the hexosamlnes, this extreme 

condition was necessary in order to effect a nearly complete hydrolysis 

of the tissues so that contamination of the fractions by peptides was 

minimal. For this reason, the radioactivity detected in the hexos­

amine fraction from the column was lower than would have been detected 

if the hexosamine moieties in the tissues had been liberated without 

partial destruction, A more gentle hydrolysis of the tissues in 2 N 

HCl made it possible to identify the neutral sugar components by 

paper chromatography. Glucose, mannose, and galactose were detected 

in the hydrolysates of liver and the small intestine, and mannose and 

galactose were detected in the serum hydrolysates. If these sugars 

contained carbon-14, their specific activity was not high enough to 

be detected by the usual procedures.

Although not strictly quantitative because of the partial 

destruction of hexosamine during hydrolysis, the data presented in 

Table 15 indicate that a majority of the glucosamine absorbed from 

the intestine was incorporated without degradation of the carbon 

chain into héxosamine-containing substances of the tissues investi­

gated. A greater percentage of the radioactivity in the hydrolysates 

of tissues from animals not treated with neomycin was in the amino 

acid fraction than in those animals which were treated with neomycin. 

These results are a further indication that glucosamine was degraded 

by the intestinal flora. Neomycin treatment does not seem to be a 

factor in the incorporation into serum and tissue amino acids of 

carbon-14 from K-acetylglucosamine-l-C^^ fed animals. As in the
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case of the gluccsamine-l-C^^ fed animals, both hexosamines and amino 

acids appear to be labeled.

The Effect of Phlorizidin and Insulin on the Absorption and 

Metabolism of D-Glucosamine and H-Acety1-D-Glucosamine 

It has been demonstrated that under the conditions described 

for these investigations absorbed glucosamine was more efficiently 

incorporated into the hexosamine-containing components of the body 

than was absorbed N-acetylglucosamine» It is possible that N- 

acetylglucosamine does not penetrate t^e cell membranes and, as a 

result, is not available to the enzymatic mechanisms responsible 

for the incorporation of hexosamine into glycoproteins and muco- 

substances. It may also be that preformed N-acetylglucosamine is 

not readily phosphorylated in the cell, although McGarrahan and Maley 

(53) have demonstrated that N-acetylglucosamine is readily phosphory­

lated, in the absence of glucose, by rat liver.

The mechanisms of action of insulin are still somewhat obscure, 

but it appears that insulin is involved in: the transfer of certain

sugars across cell membranes, the formation of hexose-6-phosphate 

and the regeneration of adenosine triphosphate (76). Phlorizidin 

has been demonstrated to produce glycosuria, inhibit the phosphory­

lation of hexose and the absorption of glucose, mannose, and galactose 

from the intestine (76). The action of phlorizidin and insulin on 

the absorption and metabolism of glucosamine and N-acetylglucosamine 

was investigated. Since it has been shown that glucosamine was 

degraded by the intestinal flora, only animals that had been treated
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with neomycin were need.

Treatment of the animals with insulin produced no change in 

the rate of absorption when glucoaamine-l-Cl^ was fed; however, 

the amount of carbon-14 in the CO2 expired almost doubled with insulin 

treatment (Table 11). A slight increase was also detected in the 

amount of radioactivity expired in the CÔ2 from the N-acetylglucosamine- 

1-CÏ4 fed animals; however, no change in absorption was detected, 

Phlorizidin increased significantly the rate of absorption of glucos­

amine and decreased slightly the radioactivity expired as C02. The 

effect of phlorizidin on the absorption of K-acetylglueosamine was 

quite pronounced. The absorption coefficient decreased from 0.068 

to 0.026 after treatment with phlorlzinlm, and a slight increase in 

the percentage of absorbed radioactivity expired as CO2 was found 

(Table 11).

The effects of insulin and phlorizidin treatment on the incorpo­

ration of radioactivity from absorbed glucosamine-l-C^^ and N-aeetyl- 

‘glucosamine-l-C^^ into the liver, aerum and small Intestine tissue 

as compared to incorporation in untreated animals are summarized in 

Tables 8, 9, and 10. Insulin produced no significant effect on the 

incorporation into tissues of radioactivity from D-glucosamine-l-C^^ 

fed animals. Insulin was also ineffective on the incorporation of 

radioactivity into the tissues of 8-acetyl-D-glucosamine-l-C^^ fed 

animals.

The effect of insulin in increasing oxidation of the carbon—14 

labeled sugars was similar to its effect on glucose oxidation (Table 11),
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and suggests that insulin facilitates the entry of these amino sugars 

into the cell. There was a slight increase in the percentage of non­

dialyzable radioactivity in the serum, liver and small intestine tissues, 

but the differences were not significant at the 1% probability level,

Wick et al, (77) have reported that insulin greatly enhances the ent­

rance of glucosamine into the muscle cells of eviscerated rabbits. Their 

experimental conditions differed from those described in this investi­

gation in that they gave the animals a maximal amount of insulin (20 

units per kilogram), which necessitated the maintainence of the animal 

by glucose infusions, and they made a single injection of glucosamine.

The findings that insulin had no significant effect on either the total 

amount of glucosamine in the tissues or Œi the amount bound in the 

tissues, but did increase the oxidation of glucosamine to carbon di­

oxide (and perhaps accounts for the lack uf increase in the total amount 

in the tissues), suggests that accessibility to the interior of the 

cell is not a factor in the incorporation of glucosamine into hexosamine- 

containing substances of the tissues. The lack of effect of insulin on 

the absorption coefficient for glucosamine, in view of its enhancement 

of cell permeability to glucosamine, suggests that the same mechanisms 

are not involved in moving glucosamine across the intestinal walls as 

are involved in moving glucosamine^ into the cells. A similar argument 

may be proposed for the action of insulin on the metabolism of absorbed 

N-acetylglucosamine, The lack of effect on the rates of absorption of 

glucosamine and N-acetylglucosamine by insulin suggests that these 

sugars were not transported across the intestinal wall by a mechanism
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similar to that for glucose and galactose.

The effect of phlorizidin treatment on the incorporation of 

radioactivity from D-glucosamine-l-C^^ into tissues was to signifi­

cantly decrease the total radioactivity in the serum and liver and 

to significantly increase the bound activity in the serum.

The increase in absorption of glucosamine and the increase in 

bound activity in the serum of animals treated with phlorizidin and 

fed glucosamine-l-Cl4 could possibly be explained by the following. 
Hexokinases have been described which phosphorylate both glucose and 

glucosamine (31), (32), (33), (34); it is, however, possible that a 

different enzyme is responsible for the phosphorylation of these two 

sugars and that they both compete for a source of high energy phosphate, 

McGarrahan and Maley (30) observed that glucose inhibits the phosphory­

lation of glucosamine. If the glucose-hexokinase system were phlorizi­

din sensitive and the glucosamine-hexokinase system were not, then the 

action of phlorizidin on an organism could favor the phosphorylation 

of glucosamine and possibly account for the observed increase in 

absorption rate and the increased binding of glucosamine in the serum, 

Phlorizidin treatment of the animals fed N-acetyl-D-glueosamine-l-C^* 

significantly increased the total radioactivity in the serum and the 

total radioactivity in the small intestine tissue, and significantly 

decreased the percentage of bound carbon-14 in the small intestine. 

Phlorizidin is known to inhibit the phosphorylation of hexoses.

Since phlorizidin was found to decrease the percentage of bound radio­

activity from absorbed N-acetylglucosamine in the small intestine
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tissue, while causing an increase in the total radioactivity in the 

serum and small intestine tissue, it would appear that phlorizidin 

was inhibiting some process which is essential for the incorporation 

of N-acetylglucosamine into tissue bound hexosamine (possibly the 

phosphorylation of N-acetylglucosamine) and, as a result, the free 

N-acetylglucosamine level increased* The decrease in the absorption 

coefficient for N-acetylglucosamine could possibly also be explained 

on the basis of phlorizidin inhibition of N-acetylglucosamine phos­

phorylation.

In animals treated with phlorizidin and fed either glucosamine 

or N-acetylglucosamine, there was incorporation of the amino sugars 

into tissue bound components (irrespective of degree of incorporation). 

It is significant that, although the urine of the phlorizldin-treated 

animals contained glucosamine, galactose; glucose and mannose, no 

appreciable radioactivity was found associated with these sugars 

except in the animals that had been fed the specific sugar (Tables 

12, 13, and 14), It is known that phlorizidin inhibits the resorption 

of glucose, galactose and mannose in the renal tubles. It follows, 

therefore, that if g l u c o s a m i n e - 1 o r  N-acetylglucosamine were 

converted to any appreciable extent into either glucose, galactose 

or mannose, they would be excreted in the urine.

It may be proposed from the results of the insulin and phlorizidin 

experiments that: (1) permeability of the cell to D-glucosamine

and N-acetyl-D-glucosamine is not a limiting factor in the ^  vivo 

metabolism of D-glucosamine or N-acetylglucosamine, (2) the metabolism



41

of intestinally absorbed D-glucosamine and N-acetyl-D-glucosamine is 

by different paths.



CHAPTER V

SUMMÂRV

1, The absorption and metabolism of D-glncosamine and N-acetyl- 

glucosamine In the intact rat has been investigated,

2, Both D-glncosamine and N-acetyl-D-glqcosamine are absorbed from 

the intestine at the same rate; however, the rate is much slower 

than the absorption rate for D-glucose.

3. A portion of the D-glucosamine in the intestinal lumen is apparently 

degraded by the intestinal flora in rats not treated with neomycin.

4. N-acetyl-D-glucosamine is not degraded by the intestinal flora 

in similar animals.

5» Absorbed D—glucosamine and N-acetyl-D-glucosamine are efficiently 

incorporated into hexosamine-containing tissues of the body.

6. A portion of the absorbed N-acetyl-D-glucosamine is deacetylated 

after leaving the lumen of the intestine.

7. A small amount of absorbed N-acetyl-D-glucosamine and D-glucosamine 

is oxidized to carbon dioxide. More N-acetyl—D-glucosamine is 

oxidized to carbon dioxide than is D-glucosamine.

8. In addition to incorporation into tissue hexosamines or oxidation 

to carbon dioxide, absorbed D-glucosamine and N-acetyl-D-glucos­

amine are metabolized to amino acids. There is apparently little

42
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conversion to hexoses,

9. A portion of absorbed D-glncosamine and N-acetyl-D-glucosamine 

is excreted unchanged in the urine,

10, Insulin apparently facilitates the entry of D-glucosamine and 

N-acetyl-D-glucosamine into the cells; however, it does not 

increase their incorporation into hexosamines of the tissues,

11, Phlorizidin inhibits the absorption of N-acetyl-D-glucosamine 

from the intestine and stimulates the absorption of D-glucosamine,

12, The effects of phlorizidin on the incorporation of D-glucosamine 

and N-acetyl-D-glucosamine into tissues are variable.
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TABLE 1

RADIOACTIVITY® ASSOCIATED WITH CHROMATOGRAPHICALLY DETECTED 

SUGARS^ IN INTESTINAL CONTENTS ITIREE HOURS AFTER FEEDING

Sugar Fed Sugar Identity and Radioactivity (c/m)
A. Untreated Animals Glucose Glucosamine N-Acetylelucosamine

D-Glucosamine-1-C^^ (-) 10 (+> 240 (-) 2

N-Ac etyl-D-Glucosamine- 
1-C14 (•*■) 6 (-) 1 (*) 329

B. Neomycin Sulfate 
Treated Animals

D-Glucosamine'-l-C^^ (-) 35 (+) 689 (-) 13

N-Acety1-D-Glucosamine-
1-ci* (+) 10 (-) 5 (+) 235

Radioactivity detected by cutting out aminobiphenyl positive areas 
of the chromatogram and counting the area in the liquid scintillation 
counter,

^A (+) indicates that the sugar was detected with the aminobiphenyl 
reagent.

A (—) indicates that the sugar was not detected with the aminobiphenyl 
reagent; however, the area was counted.



TABLE 2
ABSORPTION OF D-GLUCOSAMINE, N-AGETYL-D-GLUCOSAMINE 

AND D-GLUCOSE DURING A THREE HOUR PERIOD

Sugar Fed 
and Label

No. of Animals Animal -Weights
m i Treatment

Millimoles Sugar 
Absorbed

Absorption
Coefficient

Acetylglucûsamine-1-Ĉ ^ 9 116 None 0,267 + 0,079 0,077 + 0,023
(110-125) (0,152 - 0,397) (0,043 - 0,120)

Acetylglucosamine-l-Ĉ ^ 9 137 Neomycin 0,276 + 0,059 0,068 + 0,016
(123-149) (0,204 - 0,365) (0,048 - 0,087)

Acetyl-1-Ĉ -̂Glucosamine 8 121 None 0,256 ± 0,072 0,070 + 0,018
(102-136) (0,183 - 0,305) (0,046 - 0,103)

Glucosamine-1-C ̂ ̂ 9 111 None 0.307 ♦ 0,062 0,104 ± 0,017
(86-122) (0,227 - 0,388) (0,080 - 0,135)

Glucosamine-l-Ĉ ^ 9 150 Neomycin 0,276 ± 0,027 0.062 + 0,007(136-163) (0,210 - 0,298) (0,050 - 0,073)
Glucose-1 9 96 None 0,996 ± 0,009

(91-100) (0,985 - 1.009)

Vjl•P*

M̂illimoles sugar absorbed per 100 gm. body weight per hoiir,.
Values given are the means and their standard deviations. Values in parentheses are the ranges.



TABLE 3
ABSORPTION OF D-GLUCOSE DURING A ONE HOUR PERIOD

V̂alues given are means; the range is in parentheses.

Label No. of Animals
Animal Weights 

gms. Treatment
Millimoles Sugar® 

Absorbed

Glucose-1 3 Ill
(100-118)

None 0.919
(0.903-0.935)

Glucose-l-Ĉ ^ 3 115
(96-126)

Insulin 0.966
(0.952-0,975)

Glucose-l-Ĉ ^ 3 110
(107-112)

Phlorizidin 0.949
(0.937-0.972) UlUl



table 4
RADIOACTIVITY® IN SERUM FOLLOWING ORAL ADMINISTRATION OF LABELED SUGARS

Sugar Absorbed 
and Label

No, of Animafs
Absorption̂
Coefficient

Specific Activity 
of Sugw 

(c/m per millimole)
Percentage Absorbed Radioactivity 

in Serum

percentage 
Nondialyzable Radioactivity 
in Serum

N-Acetyl»D<«Glucosamine~ 
1.C14 b

9 0.068 + 0,016 
(0.048 - 0.087)

4.3 ]: 10® 1.4 1 0.1 
(1.2 - 1.7) 19.7 + 3.5 

(14.8 " 24.9)
N-Acetyl -1 

Glaco'saiaine
8 0.070 + 0.018 

(0.046 - 0.103)
12.1 X 10® 1.2 t 0.2 (1.0 - 1.4) 26.1 ♦ 7.0 

(19.2 - 41.2)
D-Glucosamine-I-C'̂ ^̂ 9 0.062 * 0.007 

(0.050 “ 0.073)
17.8 X 10® 2.0 ± 0.2 

(1.7 - 2.2) 35.2 i 8.5 ; 
(22.8 - 50.0)

D-Glucose-lrC'̂ 9 0.996 ± 0.009̂  
(0.985 - 1.009)

9.5 X 10® 3.0 ± 0.1 
(2.8 - 3.0)

28.8 
(26.9 - 30.1)

Values given are means and their standard deviations. Values in parentheses are the ranges. 
'’Animal8- treated x̂ ith neomycin.
M̂illimoles sugar absorbed per 100 gm, body weight per hour.
M̂illimoles sugar absorbed.



TABLE 5
RADIOACTIVITY® IN LIVER FOLLOWING ORAL ADMINISTRATION OF LABELED SUGARS

Sugar Absorbed 
and Label

No. of 
Animals

Absorption̂
Coefficient

Specific Activity 
of Sugar 

(c/m per millimole)
Percentage Absorbed 
Radioactivity 
in Liver

Percentage 
Nondialyzable Radioactivity ih Liver

N-Acetyl-D-Glucosaraine- 
1-L. ^ ^

9 0,068 4 0.016 
(0.048 - 0.087)

4.3 X 106 2.2 i 0,3 
(1,6 - 2,5)

37.3 + 3.4 
(31.7 - 41,8)

N-Acetyl-l-Cl4_D-
Glucosamine

8 0,070 + 0.018 
(0,046 - 0,103)

12.1 X 106 1,7 1 0,1 
(1,5 - 1,8)

33,8 ± 3.6 
(25,3 - 36,0)

D-Glucoisamine-l-Ĉ ^̂ ' 9 0.062 ± 0.007 
(0.050 - 0,073)

17,8 X 10^ 7,1 ± 0.8 
(6,0 - 8,6)

16,2 t 2.0 
(14.3 - 20.3)

D-Glucose-l-Ĉ ^ 9 0,996 ± 0,009"̂  
(0,985 - 1.009)

9.5 X 10̂ 19,7 i 5,3 
(9,4 - 25,8)

45.0 + 7.2 
(32.8 - 58,5)

Vnvj

V̂alues given are means and their standard deviations. Values in parentheses are ranges, 
Ânimals treated with neomycin,
M̂illimoles sugar absorbed per 100 gm, body weight per hour.
M̂illimoles sugar absorbed.



TABLE 6
RADIOACTIVITŶ  IN SMALL INTESTINAL TISSUE FOLLOWING ORAL ADMINISTRATION OF LABELED SUGARS

Specific Activity Percentage Absorbed
Percentage

Nondialyzable
Sugar Absorbed 
and Label

No, of 
Animals Absorption̂

Coefficient
of Sugar 

(c/m per millimole)
Radioactivity in 
Small Intestine

Radioactivity in 
Small Intestine

N-Acetyl-D-Glucosamine-
i_ci% b

9 0,068 * 0.016 
(0,048 - 0.087)

4,3 X 10^ 8.7 i 2,6 
(4.3 _ 15,6)

28.6 .1 7,8 
(18.8 - 46,9)

Glucosamine
. 8 0.070 + 0.018 

(0,046 - 0,103)
12.1 X 10^ 9,9 ± 3.8 

(5.8 - 16,4)
45,3 ± 12,3 
(23,4 - 60,7)

D-Glucosamine-l-Ĉ ^̂ 9 0.062 + 0.007 
(0.050 - 0.073)

17,8 X 10^ 12,4 ± 3.0 
(9,3 - 17.7)

23,2 1 5.9 
(12.4 - 30,7)

D-Glucose-l-Ĉ ^ 9 0,996 ♦ 0.009*̂  
(0,985 I 1.009)

9,5 X 10® 6,8 ± 2.7 
(3.3 - 10.4)

99.8 i 14.5 
(77.7 - 119.4)

VjlCO

V̂alues given are means and their standard deviations. Values in parentheses are the ranges. 
Ânimals treated with neomycin,
CMillimoles sugar absorbed per 100 gm. body weight per hour,
M̂illimoles sugar absorbed.



TABLE 7
PERCENTAGE OF RADIOACTIVITY EXPIRED AS CARBON DIOXIDE FROM NEOMYCIN-TREATED 
RATS AND UNTREATED RATS FOLLOWING ORAL ADMINISTRATION OF LABELED SUGARS

Sugar Fed 
and Label

No. of 
Animals

Absorption 
Period(Hours)

Neomycin
Treated

Absorption̂
Coefficient

Specific Activity 
of Sugar 

(c/m per millimole)
Percentage 

Absorbed Activity 
Expired as CÔ

N“Aeetyl-D"Glueosamine-
l-cl4

9 3 No 0.077̂ 0.023 
(0,043-0.120)

4.2 X 10̂ 10.1(10.0-10.3)

N-Acetyl-D-Glucosamine-
1_C14

9 3 Yes 0.068*0.016
(0.048̂ 0.087)

4.3 X 10® 9.0(6.9-11.2)

N-Acetyl“1 -̂D- 
Glucosamine

8 3 No 0.070*0,018
(0.046-0.103)

12.1 X 10® 29.9(28.2-31.6)

D-Glucosaraine-l"Ĉ ^ 9 3 No 0.104*0,017
(0.080-0.135)

7.8 X 10® 17.9(14.8-19.6)

D-Glucosamine-l-Ĉ ^ 9 3 Yes 0.062+0.007
(0.050-0,073)

17.8 X 10® 4.5(4.1-5.0)

D-Glucose-l-Ĉ ^ 9 3 No 0,996+0,009̂(0.985-1.009)
10.9 X 10® 31.4(30.4-32,5)

D-Glucose-l-Ĉ ^ 3 3 No 20.2 X 108 42.6*’
D-Glucose-l-Ĉ ^ 3 1 Yes 0.919=

(0.903-0.935)
10,6 X 10® 6.4

Millimoles sugar absorbed per 100 gm„ body weight per hour»
Values given are means and their standard deviations. Values in parentheses arc ranges, 
'̂Rats injected intraperitoneally with 2 microcuries D-gïueose-1-Ĉ  ̂in saline,
CMillimoles sugar absorbed.

VIVO



TABLE 8
RADIOACTIVITŶ  IN SERUM FOLLOWING ORAL ADMINISTRATION OF LABELED SUGARS 

TO RATS TREATED WITH INSULIN OR PHLORIZIDIN 
(All Animals Treated with Neomycin)

ûgar Absorbed 
and Label

No, of 
Animals

Absorption̂
Coefficient

Specific Activity 
of Sugar,

(c/m per millimole)
Percentage Absorbed 
Radioactivity 
in Serum

Percentage 
Nondialyzable 
Radioactivity 
in Serum

A* No Ireatment 
N-Acê l̂-D-Glucosamine- 9 0.068+0.016

(0.048-0.087)
4.3 X 10® 1.4+0.1 (1.2-1.7) 19.7+3.5(14.8-24.9)

D-Glucosamine-l-Ĉ -̂ 9 0.062+0.007
(0.050-0.073)

17.8 X 10® 2.0+0.2 
(1.7-2,2) 33.2+8.5(22.8-50.0)

B. insulin Treated 
N-Acetyl-D-Glucoaamine- 9 0.062+0.024

(0.030-0,099)
4,3 X 10® 1.4+0.4 

(0.9-2.2) 21.8+5.9(13.4-30.0)
D-Glucosamine-l-Ĉ 4 9 0.056+0.011

(0.041-0.070)
13.4 X 10® 2.2+0.4 

(1.7-2.9)
39.4+13,7
(24.3-59.6)

C. Phior iz id in-Treated 
N-Acetyl-D-Glucosamine- 9 0.026+0.015

(0.013-0.053)
4.2 X 10® 1.7+0.5 

(1.1-2.7)
45.9+12.1
(33.3-72.1)

D-Glucosamine-l-Ĝ *̂ 9 0.080+0.016
(0.071-0.105)

14.6 X 10® 1,0+0.2 
(0,8-1.2)

55.1+15.4
(22.9-80.9)

^Values given are means and their standard deviations. Values in parentheses are ranges.
^Millimoles sugar absorbed per 100 gm,. body weight per hour.



TABLE 9
RADIOACTIVITY® IN LIVER FOLLOlflNG ORAL ADMINISTRATION OF LABELED SUGARS 

TO RATS TREATED WITH INSULIN OR PHLORIZIDIN 
(All Animals Treated with Neomycin)

Sugar Absorbed 
and Label

No. of 
Animals

Absorption^
Coefficient

Specific Activity 
of Sugar 

(c/m per millimole)
Percentage Absorbed 
Radioactivity 
in Liver

Percentage 
Nondialyzable 
Radioactivity in Liver

A. No Treatment 
H-Acetyl-D-Glucosamine- 
1-Ĉ  ̂ .

9 0,068+0.016
(0.048-0.087)

4.3 X 106 2.2+0.3 
(1,6-2.5)

37.3+3.4
(31.7-41.8)

D-Glucosamine-l-c'-̂ 9 0,062+0,007
(0.050-0.073)

17.8 X 10̂ 7.1+0.8' 
(6.0-8.6)

16.2+2.0
(14.3-20.3)

B. Insulin-Treated 
N-Acetyl-D-Glucosamine- 1-Cl4 9 0.062+0.024

(0.030-0.099)
4.3 X 106 2.4+0.7 

(1.4-3.5)
40.0+8.8
(24.1-51.4)

D-Glucosamine-l-c'̂ ^ 9 0.056+0.011
(0.041-0.070)

13.4 X 10® 6.8+1.5 
(4.5-10.2)

20.5+5.3
(13.9-27.6)

C. Phior iz id in-Tr eated N-Acetyl-D-Glucosamine- 
1-0̂ 4

9 0.026+0.015
(0.013̂ 0.053)

4.2 X 10® 2.1+1,1 
(0.1-5.9)

38.7+11,4
(25.8-57.2)

D-Glucosamine-l-cl̂ 9 0.080+0.016
(0.071-0.105)

14.6 X 10® 5.0+0,6 
(4.2-6.3) 15.5+2.6

(11.0-19.1)
^Values given are means and their standard deviations. Values in parentheses
'^Millimoles sugar absorbed per 100 gm, body weight per hour.

are ranges.

a\



TABLE 10
RADIOACTIVITÏ® IN SMALL INTESTINE TISSUE FOLLOWING ORAL ADMINISTRATION OF LABELED SUGARS

TO RATS TREATED WITH INSULIN OR PHLORIZIDIN 
(All Animals Treated with Neomycin)

Sugar Absorbed 
and Label

No, of 
Animals

Absorptionb
Coefficient

Specific Activity 
. of Sugar 

(c/m per millimole)
Percentage Absorbed 
Radioactivity in 
Small Intestine

Percentage 
Nondialyzable 
Radioactivity in 
Small Intestine

A, No Treatment 
N-Ace t̂ l-D-Gluc 08 amine- 9 0.068*0.016

(0.048-0.087)
4,3 X 10^ 8.7+2,6 

(4.3-13,6)
28.6+7,8 , 
(18.8-46,9) '

D-01ucosamine-l»Ĉ .̂ 9 0,062*0.007
(0,050-0.073)

17,8 X 10® 12,4+3,0
(9,3-17,7)

23.2+5,9
(12,8-30,7)

B, Insulin-Treated 
N-Acetyl-D-Gluc os amine- 
1-Ĉ ^

9 0,062+0,024
(0.030”0.099)

4.3 X loG 12,4+4,5
(7,5-18,6)

30.2+9.5
(21,8-46.4)

D-Glucosamine-l-Ĉ ^ 9 0,056*0.011
(0.041-0.070)

13,4 X 10^ 8.7*2,5 
(5,5-13,2)

26.0*8.5
(20,4-42.3)

C, Phior i z id in-Tr eated 
N-Acetyl-D-Glucosamine- 1-Ĉ 4 9 0.026*0.015

(0.013-0.053)
4,2 X 106 25,9*10,1

(9.6-32,4)
19,1+5,3
(12.7-29,5)

D-Glucosamine-I-Cl̂ 9 0.080*0.016
(0.071-0,105)

14,6 X 10® 10,2+3,2
(6,4-15,2)

24.4*9.9
(12.7-46,4)

Values given are means and theif standard deviations. Values in parentheses are ranges,
^Millimoles suf;ar absorbed pet 100 gm,. body weight per hour.



TABLE 11
EFFECT OF INSULIN AND PHLORIZIDIN ON THE ABSORPTION OF D-GLUCOSE, D-GLUCOSAMINE 

AND N-ACETYL-D-GLUCOSAMINE AND THEIR CONVERSION TO CARBON DIOXIDE 
IN NEOMYCIN-TREATED RATS

Sugar Fed 
and Label

No. of 
Animals

Period of 
Absorption 
(Hours)

Absorption̂
Coefficient

Specific Activity 
ot Sugar 

(c/m per millimole)
Percentage 

Absorbed Activity 
Expired as CO2

A. No Treatment 
N-Acetyl-D-Glucosamin' » 
l-Ĉ ^

9 3 0.068+0,016
(0.048-0.087)

4,3 X 10® 9.0
(6.9-11.2)

D-Glucosamlne-l-Ĉ ^ 9 3 0.062+0.007
(0.050Z0.073)

17.8 X 10® 4.5 
(4.1-5.0)

D-Glucose-l-Ĉ ^
B. Insulin-Treated 
N-Acetyl-D-Glucosamine- 
l-Ĉ ^

3

9

1

3

0.831
(0.778-0,955)
0.062+0.024
(0.030-0.099)

10.6 X 

4,3 X

10®

10®

6.4

11.8
(9.3-14.9)

D-Glucosamine-l-Ĉ ^ 9 3 0.056+0,011
(0.041-0.070)

13,4 X 10® 8.2 (7.2-9.3)
D-Glucose-l-Ĉ ^ 9 1 .0.868 10,6 X 10® 9.9
C. Phlorizidin-Treated N-Acetyl-D-Glucosamine~

1-0^4
9 3 0.026+0.015

(0.013-0.053)
4.2 X 10® 11.5

(9.1-14,6)
D-Glucosamine-l-Ĉ ^ 9 3 0.080+0.016'

(0.071-0.105)
14.6 X 10® 3.1 (3.0-3.1)

D—Glucose—1—Ĉ ^ 3 1 0.863
(0.847-0.876)

11,6 X 10® 5.0

^Values given are means and their standard deviations.
Millimoles sugar absorbed per 100 gm, body weight per

-Values in parentheses are ranges, 
hour.



TABLE 12
RADIOACTIVITY® ASSOCIATED WITH CHROMATOGRAPHICALLY DETECTED SUGARS*̂  IN URINE FROM RATS 

FED D-GLUCOSE-l-Ĉ  ̂̂ ND TREATED WITH NEOMYCIN, INSULIN OR PHLORIZIDIN

Sugar Identity and Radioactivity (c/m)
Period
(Hours) Treatment

Uronic
Acid Glucosamine Galactose Glucose

Acetyl- 
Mannose glucosamine

1 Neomycin (-)4 (-)O (-)O (-)4 (-)l (-)O
1 Neomycin Insulin (-)l (-)O (-)3 (-)6 (-)3 (-)6
1 Neomycin —  Phlorizidin (-)l (-)2 (+)13 (+)395 (+)65 (-)4
3 “““ (-)O (-)O (-)O (-)O (-)O (-)O

R̂adioactivity detected by cutting out aminobiphenyl positive areas of the chromatograms and counting the 
area in the liquid scintillation counter.
*̂A (+) indicates that the sugar was detected with the aminobiphenyl reagent,
A (r) indicates that the sugar was not detected with the aminobiphenyl reagent; however, the area was counted.



TABLE 13
RADIOACTIVITŶ  ASSOCIATED WITH CHROMATOGRAPHICALLY DETECTED SUGARS*’ IN URINE FROM RATS 

FED N-ACETYL-D-GLUCOSAMINE-1-Ĉ  ̂and N-ACETYL-1-Ĉ -̂D-GLUCOSAMINE 
AND TREATED WITH NEOMYCIN, INSULIN OR PHLORIZIDIN

Sugar and Sugar Identity and Radioactivity (c/m)
Label
Fed Treatment

Uronic
Acid Glucosamine Galactose Glucose Mannose

Acetyl-
glucosamine

A, N-Acetyl-D- 
glucosamine-l?C*-̂ — —  (+)11 (-)O (-)3 (+)0 (-)2 (+)60

Neomycin —  (+)4 (-)O (-)4 (+)3 (-)l (+)86
Neomycin Insulin -- (+)7 (-)7 (-)7 (+)5 (-)4 (+)135
Neomycin Phlorizidin(+)0 (+)9 (+)1 (+)7 (+)2 (+)35

B, N-Acetyl-1- 
Ĉ -̂D-Glucosamine ——— (+)1 (-)O (-)3 (+)2 (-)4 (+194)

Radioactivity detected by cutting out aminobiphenyl positive areas of the chromatogram and counting the 
areas in the liquid scintillation counter,
*̂A (+) indicates that the sugar was detected with the aminobiphenyl reagent.
A (-) indicates that the sugar was not detected with the aminobiphenyl reagent; however, the area was counted.



TABLE 1.4
RADIOACTIVITY® ASSOCIATED WITH CHROMATOGRAPHICALLY DETECTED SUGARŜ  IN URINE FROM RATS 

FED D-GLUCOSmiNE-l-Ĉ  ̂AND TREATED WITH NEOMYCIN, INSULIN OR PHLORIZIDIN

Treatment
Uronic
Acid Glucosamine Galactose Glucose Mannose

Acqtyl-
glucosamine

— - —— (-)O (+)50 (-)l (-)O (-)O (-)O
Neomycin —— (+)34 (+)591 (-)16 (4)6 (-)4 (-)8

Neomycin Insulin (-)2 (+)227 C-)5 (-)2 (-)2 (-)6

Neomycin Insulin Phlorizidin (+)7 (4)259 (4)5 (4)2 (4)1 (-)3

R̂adioactivity detected by cutting out aminobiphenyl positive areas of the chromatogram and counting the areas 
in the liquid scintillation counter.
Â (+) indicates that the sugar was detected with the aminobiphenyl reagent.
A (-) indicates that the sugar was not detected with the aminobiphenyl reagent; however, the area was counted.
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TABLE 15
RADIOACTIVITY OF TISSUE HYDROLYSATE FRACTIONS

Tissue Hydrolyzed
Total

Radioactivity

Percentage Total 
Radioactivity in 
Column Fractions

and Source of Animal Treated of Column Amino
Label with Neomycin Eluate Water Wash Hexosamines Ac ids

A, B-Glucosamine- 
1-C14

Serum No 479 2.5 58.5 38.6
Serum Yes 222 1,4 78,8 19.8

Liver No 1042 14.5 24.4 61.1

Liver Yes 194 7.7 68.0 24.2

Smal1 Intestine No 1057 2.8 65.7 31,4

Small Intestine Yes 513 2.0 86.0 12.1

B. N-Acetyl-D- 
Glucosamine-L-C^^

Serum No 51 7.8 45.1 47.1

Serum Yes 47 2.1 36.2 61.7

Liver No 234 15.0 30.3 54.7

Liver Yes 163 7,4 35.0 57.7

Small Intestine No 218 1.8 65.1 33.0

Small Intestine Yes 175 3.4 68,6 28.0
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