THE DEVELOPMENT AND UTILIZATION OF AN AVERAGE
 ILLUMINANCE CALCULATING
 SOFTWARE PROGRAM

By
RICHARD D. WHITNEY
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
1982

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
December, 1985

> Thesis
> 1985
> $w 623 d$

THE DEVELOPMENT AND UTILIZATION OF AN AVERAGE
 ILLUMINANCE CALCULATING
 SOFTWARE PROGRAM

This individual research investigation, INDEN 5350-Industrial Engineering Problems, is accepted and approved as partial fulfillment of the requirements for the degree of Master of Science.

Date: / $0 / 20 / 85$

This study focuses on the development and utilization of an average illuminance calculating software program. The software will be applicable to most general lighting systems. The primary objectives are: 1) to develop a software model utilizing the zonal cavity and lumen method concepts associated with quantitative lighting design, 2) to establish a permanent luminaire data base which will contain luminaire descriptions, $C U$ values, maximum spacing to mounting height ratios, luminaire distributions, and maintenance categories for each included luminaire, 3) to establish a luminaire output report which will enable the user to analyze various luminaire/lamp combinations in an efficient and effective manner.

The author wishes to express his appreciation to his advisor, Dr. Wayne C. Turner, for his guidance and timely encouragement and support throughout the preparation of the report.

Recognition and thanks are given to Ms. Teresa Schwabedissen for her excellence in typing of this manuscript.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. BACKGROUND 5
Lighting System Quality 5
General Lighting 6
III. AVERAGE ILLUMINANCE CALCULATIONS 8
Overview 8
Coefficient of Utilization Determination 9
Zonal Cavity Method 9
Room Cavities 11
Cavity Ratios 11
Reflectance 15
Effective Reflectance 16
Light Loss Factors 18
Lamp Dirt Depreciation Factor (LDD) 20
Room Surface Dirt Depreciation Factor (RSDD) 21
Lamp Burn-Out Factor 24
Lamp Lumen Depreciation Factor 24
Lumen Method 25
Luminaire Spacing 27
Example Calculations Utilizing the Lumen Method. 28
Chapter Summary 32
IV. SYSTEM DEVELOPMENT 34
Standard Program Operation Subprogram 35
The Coefficient of Utilization Append Module 38
Luminaire Description Append Subprogram 40
v. LOADING AND RUNNING THE "LIGHT DESIGN" SOFTWARE 41
Loading the "Light Design" Software 41
How to Obtain a Luminaire Output Report 42
How to Add a Luminaire Description. 43
Chapter Page
How to Modify a Luminaire Description 44
How to Add Luminaire Data 45
How to Modify Luminaire Data 46
VI. SOFTWARE APPLICATION AND OUTPUT ANALYSIS 47
Software Application. 47
The "How To" of Standard Program Operation 48
The "How To" of the CU Append Module. 54
The "How To" of the Luminaire Description File Append Subprogram 57
Luminaire Output Analysis 59
Lamp Dirt Depreciation 63
Coefficient of Utilization 64
Lighting Economics. 64
Additional discussion 65
VII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 67
SELECTED BIBLIOGRAPHY 70
APPENDIXES 71
APPENDIX A - DESCRIPTION OF FILES, ARRAYS, AND VARIABLES 72
APPENDIX B - CALCULATIONS 78
APPENDIX C - PROGRAM FLOWCHART AND PROGRAM LISTING 86

LIST OF TABLES

Table Page
I. Coefficients of Utilization 10
II. Luminaire Dirt Depreciation Constants. 21
III. Room Surface Dirt Depreciation Factors 23
IV. Data Inputs. 62
LIST OF FIGURES
Figure Page

1. The Three Room Cavities 12

CHAPTER I

INTRODUCTION

Prior to the Mid-1970's lighting design calculations were primarily performed manually and on hand calculators. The advent and mass marketing of the small personal computer, however, has resulted in cheaper computer power and more versatility in all design challenges including those involved in lighting design (Napoli, 1984a, p. 18).

At present the technology exists to design lighting software systems linking illumination values for a space, the number and placement of luminaires, and financial accounting data. A total interior design facilities management and lighting system. However, it is felt that the market does not exist to economically justify the software's development (Napoli, 1984b, p. 25). Hence, marketability and not technology appears to fuel the computerization of lighting design techniques. Computerization, however, has rendered archaic the old "put a 2×4 troffer every 6 foot and things will be just fine" solution.

Basically, the harder the design question the more it costs to find the answer. Most hand lighting decisions, such as machinery's effect on light levels in a room, are answered on the fly assuming the room is empty.

The advent of the IBM PC (utilized in the development of the lighting software included within this report) has increased the market scope of lighting software and, therefore, computer interest among lighting professionals and developers is on the increase because of the broader potential for exposure and sales (Napoli, 1984b, p. 23).

Computer programs, in addition to calculating illuminances, may have the capability of determining surface luminances, visual comfort probabilities (V.C.P.), and equivalent sphere illumination (E.S.I.). The programs may also be applicable to daylighting, as well as to electric sources. Several comprehensive computer programs have been developed for calculating extensive printouts on illumination levels for a matrix of points. These programs are applicable to non-uniform room surface reflectances as may be caused by windows, doors, or other wall inserts. These programs are under constant expansion and development to be more versatile and to handle more complicated systems (Napoli, 1984b, p. 25).

Evaluation has to be performed by lighting designers to determine which scheme meets the design objectives and satisfies the project considerations, e.g., lumen method, point calculations, E.S.I., V.C.P., and luminance. The lighting design scheme to be utilized depends on or is a function of the size and complexity of the lighting system, degree of computational ability available, time, funding and need. Because of the broadness associated with the consideration of all lighting systems, this report will concentrate on the uniform general lighting system.

The design of a lighting system is concerned with both the quality and quantity of the light provided. Quality deals with the quality of the visual environment, e.g., color, direct/indirect glare, brightness and shadows produced. These factors are influenced by the type of luminaires utilized as well as the entire optical system. Due to the broadness of scope associated with this phase of the lighting design process, it is only considered briefly within the report.

Specifically, the major concentration of this report is the development of a general lighting system software model which will enable the user to calculate average illuminance for most general lighting systems. The software utilizes the zonal cavity and lumen method approach to quantitative lighting design. Proper utilization of the software herein contained will allow the lighting designer to more intelligently answer the following questions.

How many luminaires are required to maintain a required illumination level? What combination of wall, floor, and ceiling colors will provide maximum system efficiency? What lamping system will provide the lowest annual operating cost while providing the required minimum lighting level? What room shape and sizing, and luminaire mounting height will provide the lowest annual operating cost? What lamping system should be implemented in order to meet recommended wattage per square foot limits? What ceiling type should be utilized to minimize lamp operating costs?

With the manual approach (non-computerized) to general lighting design, the task of varying wall colors, mounting heights, replacement intervals, luminaire types, lamp lumens, and spacing criterion in order
to compare alternative systems is quite tedious. Numerous data points must be manually interpolated/extrapolated for each system alternative. Arduous, methodical calculations must be performed rendering the manual approach to general lighting design extremely time consuming. The advent of the small personal computer, however, has antiquated noncomputerized methodical calculations. The computer has allowed data sets to be placed in files, and methodical, technical calculations to be software encoded.

Discussion of the lumen method utilizing the zonal cavity concept and its application to general lighting systems will follow in the text, as well as discussion of the software developed to aid in the average illuminance design of uniform general lighting systems. The software serves as a potential economic instrument permitting opportunities for energy and cost savings in the field of general industrial lighting.

CHAPTER II

BACKGROUND

Lighting System Quality

The lumen method approach to general lighting system design does not consider the quality of the light produced, only the quantity. The cumulative effect of even slightly glaring conditions or overly bright conditions can result in loss of visual efficiency and fatigue. Therefore, it is of necessity for the lighting designer to apply considerable thought to the luminaire type to be selected for implementation and to further consider the placement of the luminaire within the operating environment upon selection. Frier (1980) felt that considerable emphasis should be placed on the following prior to luminaire selection: ambient dirt conditions, ambient temperature, noise criterion, mounting height, beam spread, shielding angle and reflector shape. Luminaire dirt depreciation is directly related to the luminaire maintenance category of the lamp being considered. Cleaning to maintain light outputs for some luminaire types could be cost prohibitive or not cost effective. It should also be mentioned that in some hazardous operating environments where explosion from electrostatic discharge is possible, explosion proof luminaires should be utilized. Ambient temperature will effect the lumen output of some lamps as well as lamp life.

Some luminaires are designed for installment at low mounting heights, that is below 7.6 meters (25 feet) while other luminaires are intended for use primarily above 7 meters. Available beam spreads of luminaires being considered should also be researched as beam spread can drastically effect light distribution and uniform light levels. Shielding angles will effect the direct and indirect glare produced by a lamping system and hence, operator comfort. Reflector shapes are important in that they redirect the luminaire intensity of the light source. Other aspects of the lamping system which may need to be considered prior to "quantity" determination (lumen method utilizing the zonal cavity approach) are the color of the illuminated light, brightness, and veiling reflections. It may be found, especially in office \cdots areas, that veiling reflectance is critically important. If this be the case, then equivalent sphere illumination (E.S.I.), a concept that relates the visibility of the task to the illumination level needs to be considered.

General Lighting

Prior to expounding on the methodology entailed in the lumen method and its application to general lighting design, we should discuss what is meant by a general lighting system.

General lighting is intended to provide relatively uniform illumination throughout a specified area for closely grouped tasks and for surrounding (ambient) lighting on isolated tasks. Examples of general lighting utilization would be warehouse lighting, manufacturing area lighting, and ambient office lighting. Uniform general lighting
is the distribution of light such that the maximum and minimum illumination at any point is not more than $1 / 6$ above or below the average level (I.E.S., 1979). Following the recommended spacing to mounting height criterion associated with a select luminaire type will in general provide uniform lighting while avoiding variance in light distribution.

The lumen method applies most soundly to the average illuminance design of uniform general lighting systems. General lighting is the simplest and often the most effective layout. It is usually a regular array of luminaires designed to achieve an overall level of illumination. Usually with a general lighting system, sufficient light is provided to allow specific visual tasks to be carried out anywhere within the room.

AVERAGE ILLUMINANCE CALCULATIONS

Overview

The lumen method is used in calculating the illuminance of all points on the work plane in an interior. It is based on the definition of average illuminance as luminous flux per unit area. It should be noted that this method assumes a relative uniform spacing of luminaires within the interior, surfaces of known diffuse reflectance, and an empty room with no interference from partitions or furniture. The lumen method is a proven procedure for determining the number of luminaires necessary to achieve an average lighting level or for predicting the general level from an existing specific lighting system (Pierpoint, 1979, p. 31).

To properly utilize the method, the lighting designer must initially collect accurate room dimension data, luminaire and lamp data, wall, ceiling, and floor reflectivity data, and operating environment data. The purpose of the collected or researched data as well as the calculations involved in the lumen method will be discussed in length in the sections which follow.

All of the principles, concepts, and calculations which are contained in the sections which follow were utilized in the development of the software enclosed within this report (Appendix C). Discussion of the software will be provided in the subsequent chapter.

Coefficient of Utilization Determination

Zonal Cavity Method

The coefficient of utilization (CU) is the ratio of the lumens which fall on the work surface (usually a plane about 0.9 meters, or 3 feet above the floor) to the lumens generated by the lamp. The $C U$ charts in photometric data are based on a luminaire spacing of approximately 0.7 times the mounting height. This is a realistic spacing to use for high bay lighting, but it is often too close for systems installed at heights between 3 and 6 meters (10 and 20 feet). Any error in $C U$ tables resulting from the use of a constant spacing to mounting height (S/MH) ratio is not significant (Frier, 1980, p. 92).

The $C U$ value is a critical input into the lumen method's calculations. Manufacturers of luminaires provide $C U$ tables such as the one shown in Table I for each of the luminaires manufactured. The $C U$ value for a given luminaire type is dependent on the room cavity ratio of the room being considered, effective ceiling and wall reflectances, and the floor reflectance. In most cases interpolation or extrapolation of the tables is necessary in order to obtain system accuracy. Poor accuracy in this area will only be duplicated in later calculations.

The horizontal row entitled "PCC" shown at the very top of Table I is an abbreviation for the effective ceiling reflectance. The intervals within this row are quite large and, therefore, interpolation/ extrapolation is often required. The numerical values shown in the row are percent values associated with the expected reflectance of the ceiling.

TABLE I
COEFFICIENTS OF UTILIZATION

$\mathrm{pcc} \rightarrow$		80			70			50			30			10		0		$\mathrm{pcc} \rightarrow$
$\mathrm{pw} \rightarrow$	50	30	10	50	30	10	50	30	10	50	30	10	50	30	10	0	WDRC	$\mathrm{pW} \rightarrow$
$\underset{\downarrow}{\text { RCR }}$				Coefficients of Utilization for 20 Per Cent Effective Floor Cavity Reflectance (pfc = 20)														$\underset{\downarrow}{\mathrm{RCR}}$
0	. 52	. 52	. 52		. 51	. 51	. 48	. 48	. 48	. 46	. 46	. 46	. 45		. 45	. 44	-	0
1	. 49	. 48	. 48		. 48	. 47	. 47	. 46	. 46	. 45		. 44	. 44		. 43	. 42	. 036	1
2	. 47	. 46	. 45	. 46	. 45	. 44	. 45	. 44	. 43	. 44		. 42	. 43		. 42	. 41	. 034	2
3	. 45	. 44	. 43	. 45	. 43	. 42	. 44	. 42	. 42	. 43	. 42	. 41	. 42		. 40	. 40	. 033	3
4	. 43	. 42	. 41	. 43	. 41	. 40	. 42	. 41	. 40	. 41	. 40	. 39	. 41	. 40	. 39	. 38	. 032	4
5	. 42	. 40	. 39	. 41	. 40	. 38	. 41	. 39	. 38	. 40	. 39	. 38	. 39	. 38	. 38	. 37	. 033	5
6	. 40	. 39	. 37	. 40	. 38	. 37	. 39	. 38	. 37	. 39	. 38	. 37	. 38	. 37	. 36	. 36	. 032	6
7	. 39	. 37	. 36	. 39	. 37	. 36	. 38	. 37	. 35	. 38	. 36	. 35	. 37	. 36	. 35	. 35	. 032	7
8	. 37	. 36	. 34	. 37	. 35	. 34	. 37	. 35	. 34	. 36	. 35	. 34	. 36	. 35	. 34	. 33	. 032	8
9	. 36	. 34	. 33	. 36	. 34	. 33	. 35	. 34	. 33	. 35	. 34	. 33	. 35	. 33	. 33	. 32	. 032	9
10	. 35	. 33	. 32	. 35	. 33	. 32	. 34	. 33	. 32	. 34	. 33	. 32	. 34	. 32	. 31	. 31	. 032	10

It should be noted that reflectance values should never exceed 100\%. Row number 2 is entitled "PW" which is an abbreviation for the percent wall reflectance.

The vertical column of the table is entitled "RCR" which stands for the room cavity ratio. A room cavity ratio (RCR) of 10 is the limit of coefficient of utilization (CU) tables used in the zonal cavity method of lighting design. Some areas or rooms have RCR values exceeding 10; this is characteristic of long, narrow, deep areas where the mounting height is much greater than the width of the area. In such situations it is desirable to use calculation methods that are similar to those used for outdoor lighting in that only the direct component contribution of the luminaires is considered (Frier, 1980, p. 158).

In selecting a $C U$ value for a given luminaire the designer should enter the table along the columns/rows correspondent with the determined reflectances and RCR value. Interpolation/extrapolation is frequently required to obtain an accurate $C U$ value. Since $C U$ tables
are generally established for a 20 percent floor reflectance, adjustments must be made to take into account floor reflectances significantly less/greater than 20 percent.

The software developed and presented in Appendix C of this report uses the interpolation/extrapolation process associated with the $C U$ tables since a CU table for the luminaire being considered by the designer will be in the luminaire data base. Adjustments are made to the CU value to take into account the effect of floor reflectivities significantly larger or smaller than 20 percent. The interpolation/ extrapolation methodology is internally software encoded.

Room Cavities

The term "zonal cavity" was presented in the previous section. The term refers to the method utilized by designers in calculating the $C U$ value. With the zonal cavity method, which is incorporated in the included lighting design software, the designer divides the room into zones. The ceiling cavity is the space between the ceiling and the bottom of the luminaire. The room cavity is the space between the bottom of the luminaire and the work plane, and the floor cavity is the space between the work plane and the floor. If the work space is broken up by partitions, beams, furniture, or other light impeding obstructions, the designer may want to break the room into smaller sections for design purposes since the lumen method assumes the room is empty.

Cavity Ratios

Cavity ratios for the floor, room and ceiling cavities (zones) may
be determined by utilizing select equations which incorporate the dimensions of the room being considered for illumination (I.E.S., 1981). Figure I indicates illustratively the three zones and also presents the heights that will be required for the subsequent cavity ratio equations.

Figure 1. The Three Room Cavities
The room cavity ratio ($R C R$) is a necessary value for the determination of the CU value as was related in the initial paragraphs of this chapter. Each of the cavity ratios may be determined through the utilization of specific equations which incorporate various room dimensions. The following equation is useful in the determination of the room cavity ratio ($R C R$) for rectangular cavities.

$$
\begin{equation*}
\mathrm{RCR}=5 \mathrm{hrc}(\mathrm{r} .1 .+\mathrm{r} . \mathrm{w} .) /(\mathrm{r} .1 . \mathrm{x} \mathrm{r} . \mathrm{w} .) \tag{3-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{RCR}=\text { room cavity ratio } \\
& \mathrm{HRC}=\text { room cavity height } \\
& \text { R.L. }=\text { room length } \\
& \text { R.W. }=\text { room width }
\end{aligned}
$$

The ceiling cavity ratio (CCR) is a necessary value if the effective ceiling cavity reflectance is to be determined. Tables exist in most all lighting handbooks for determining the effective ceiling reflectance if the ceiling cavity ratio, wall reflectance, and ceiling reflectance are known. The equation for determining the ceiling cavity ratio is shown below.

$$
\begin{equation*}
\text { CCR }=\mathrm{rcr} \times \mathrm{hcc} / \mathrm{hrc} \tag{3-2}
\end{equation*}
$$

where CCR = ceiling cavity ratio RCR $=$ room cavity ratio HCC = ceiling cavity height HRC = room cavity height

The floor cavity ratio is also necessary if the effective floor cavity reflectance is to be determined utilizing the tabular method mentioned in the previous paragraph. The floor cavity ratio (FCR) may be determined through the utilization of the equation which follows. FCR $=\operatorname{rcr} \mathrm{x}$ hfc/hre
where

```
        FCR = floor cavity ratio
        RCR = room cavity ratio
        HRC = room cavity height
        HFC = floor cavity height
```

The above formulations are useful if the room is rectangular.
However, if the room is not of rectangular type, other equations are necessary. If the area to be illuminated is irregularly shaped, the RCR can be found with this formula.

$$
\begin{equation*}
\text { RCR }=2.5 \times \text { hrc } \times \text { perimeter/area of work plane } \tag{3-4}
\end{equation*}
$$

The CCR and FCR can be determined utilizing equations 3-2 and 3-3, respectively.

If the area to be illuminated is circular, then the following formula may be utilized.

$$
\begin{equation*}
\mathrm{RCR}=5 \mathrm{hcc} / \text { room radius } \tag{3-5}
\end{equation*}
$$

As with the irregularly shaped room, the $C C R$ and $F C R$ for the circular room may be determined through utilization of equations 3-2 and 3-3.

Thus far we have considered only horizontal ceiling types or assumed that the ceiling type was horizontal. If, however, the ceiling is nonhorizontal, the tabular approach to determine effective ceiling reflectivity need not be utilized. The following formula will suffice (I.E.S., 1981).

$$
\begin{equation*}
\text { PCC }=\text { pao/as }-\mathrm{pas}+\mathrm{pao} \tag{3-6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { Ao }=\text { area of ceiling opening } \\
& \text { As }=\text { area of ceiling surface } \\
& p=\text { reflectance of ceiling surface }
\end{aligned}
$$

It should be mentioned that if the luminaires are flush with the ceiling or recessed, the CCR will be zero since the ceiling cavity height is zero. Likewise, if the work plane is at floor level, the FCR will be zero. If this case exists, the effective ceiling and floor cavity reflectances are equivalent to the initial ceiling and floor reflectances. The concept of effective ceiling and floor reflectances will be discussed in more detail in a later section of this chapter.

To this point in time, however, we should realize that they may be determined from tables found in most all lighting handbooks and that they are used in determination of the $C U$ value for a luminaire mounted in a specific room type.

Reflectance

The higher the reflectivity of the walls, ceiling and floor the greater the coefficient of utilization will be for the luminaire type being considered. A review of Table I will indicate clearly that higher ceiling and wall reflectivities will indeed result in a larger CU value; therefore, in general, the higher the reflectances, the higher the utilization of light.

Reflection values should approximate expected initial reflectivities if the maintained illumination level is to be determined. If the initial illumination level is to be calculated, the initial expected reflectivities should also be utilized. If large pieces of furniture, windows, or other light absorbing or reflecting obstructions exist or will exist within the area being considered, it becomes necessary to obtain a weighted average reflectivity. The weighted average reflectivity will provide more accuracy to the reflectivities obtained. If reflectivities are unknown or cannot be estimated or measured, a 30 percent wall, 30 percent ceiling, and 20 percent floor reflectance can be used (Frier, 1980, p. 105).

The lighting software contained within this report eases the problem of identifying exact numerical values to attach to particular surfaces by presenting to the user a color table. The color table
contains a list of 24 colors which correlate to numerical reflectivity values. It should be mentioned that the color chosen should approximate what would actually be seen by an observer under the lamp types being considered for implementation.

Much research has been directed to surface texture. Texture of the surface does offset reflectivity, but this will not be considered within this report since it is an area of study in itself. The user of the software contained herein may account for textures by avoiding the color table and directly entering the reflectivity values.

Effective Reflectance

Before the coefficient of utilization can be selected, the combination of ceiling and wall reflectance as well as floor and wall reflectance must be converted to effective ceiling or floor reflectance. The effective reflectance of the ceiling and floor cavities takes into account the effect of interreflection of light among the various room surfaces. Again, charts or tables can be found for this conversion. But, if the reflectances are assumed to be perfectly diffuse and the flux is assumed to enter the cavity in a perfectly diffuse way, it is possible to calculate the effective cavity reflectance utilizing flux transfer theory. DiLauru (1978, p. 5) states that the zonal cavity method of calculating illuminance is derived from flux transfer theory which bases its derivation on the above assumptions. Therefore, by utilizing the zonal cavity method of calculating illuminances, we commit ourselves to the underlying
assumptions and principles associated with flux theory. Hence, with these assumptions in mind, we can utilize the following equation derived from flux transfer theory (I.E.S., 1981).

$$
\begin{equation*}
\operatorname{PEFF}=(\mathrm{AB} / \mathrm{AW}) \operatorname{PW}(1-F)^{2} \times(1+\mathrm{PBF})^{2} \tag{3-7}
\end{equation*}
$$

$$
1-[1-\mathrm{AB} / \mathrm{AW}(1-F)] \mathrm{PW}-\mathrm{AB} / \mathrm{AW}(1-F)^{2} \mathrm{PWPB}
$$

where

$$
\begin{aligned}
\mathrm{AB}, \mathrm{AW}= & \text { Areas of the cavity base (ceiling or floor), and } \\
& \text { walls. } \\
\mathrm{PB}, \mathrm{PW}= & \text { Reflectance of cavity base (ceiling or floor), and } \\
& \text { walls. } \\
\mathrm{F}= & \text { Radiative exchange factor between the cavity opening and } \\
& \text { the cavity base (flux) }
\end{aligned}
$$

where

$$
\begin{aligned}
F= & 2 / \pi x y\left(\operatorname{Ln}\left[\left(1+x^{2}\right)\left(1+y^{2}\right) / 1+x^{2}+y^{2}\right]^{1 / 2}\right. \\
& +y\left(1+x^{2}\right)^{1 / 2} \tan ^{-1}\left[y /\left(1+x^{2}\right)^{1 / 2}\right] \\
& +x\left(1+y^{2}\right)^{1 / 2} \tan ^{-1}\left[x /\left(1+y^{2}\right)^{1 / 2}\right] \\
& -y \tan ^{-1}(y)-x \tan ^{-1}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{x}=\text { Cavity Length/Cavity Depth } \\
& \mathbf{y}=\text { Cavity Width/Cavity Depth }
\end{aligned}
$$

* NOTE: Arc tangents are expressed in radians.

Equation 3-7 may be utilized in the calculation of the effective ceiling cavity reflectance and floor cavity reflectance, bearing the previous assumptions in mind. Calculation of the effective ceiling cavity reflectance will require the designer to enter various ceiling dimensions and reflectivity values into the equation. Calculation of the effective floor cavity reflectance will require entry of floor data.

Thus far in Chapter III we have reflected on wall, floor, and ceiling reflectivities. We have discussed the utilization of transfer flux theory in calculating effective ceiling and floor reflectances. Equations have been presented to allow us to calculate the $R C K, C C R$, and FCR for rectangular, square, circular and irregularly shaped rooms with horizontal or nonhorizontal ceilings. The use of this data in calculating the coefficient of utilization (CU) has been presented.

Report focus will now center on those factors which contribute over a period of time to a decline or degradation of the light output of a given lamping system.

Light Loss Factors

Once the basic facts about the task, the area to be illuminated, and the chosen luminaire are collected, light loss factors (LLF) can be researched. Light loss factors are those factors which contribute over a period of time (relamping period) to a decline of the light output of a given lamping system. The light loss factor is usually considered to be the lamp lumen depreciation (LLD) times the luminaire dirt depreciation factor (LDD) times the room surface dirt depreciation factor (RSDD) times the lamp burn-out factor (LBO). Equation 3-8 is the formula representing the LLF and is the equation used in the lighting software to be presented in a subsequent chapter.

$$
\begin{equation*}
L L F=L L D \times L D D \times \operatorname{RSDD} \times L B O \tag{3-8}
\end{equation*}
$$

where

Abstract

LLF = light loss factor LLD = lamp lumen depreciation factor LDD = lamp dirt depreciation RSDD $=$ room surface dirt depreciation LBO = lamp burn-out factor Some of the factors associated with loss of light from an optical system over time are not as correctable through standard maintenance procedures as are others. The factors which are more difficult to correct once luminaire installation has occurred are the luminaire ambient temperature, luminaire surface depreciation, voltage to the luminaire, and ballast factor. These factors are not considered within the software developed within this report due to the difficulty of predicting and/or modeling their effect on lumen output. Each of the factors deserve additional research; but due to the broadness of scope associated with each and the limitations of scope of this report, they will not be considered in the software.

However, there are several factors which can be modeled and software encoded with reasonable accuracy. These factors, which contribute to a significant loss of light over an extended period of time and which can be maintained through lamp maintenance programs, are the lamp dirt depreciation factor (LDD), room surface depreciation factor (RSDD), and lamp burn-out factor (LBO). Each of these light reducing factors are represented in the developed software provided within this report; and, therefore, each deserves further delineation.

Lamp Dirt Depreciation Factor (LDD)

The lamp dirt depreciation factor (LDD) is associated with the accumulation of dirt on the luminaire. Dirt accumulation is primarily due to the type of enclosures associated with the luminaire being considered for installation, the dirtiness of the ambient environment, and the time elapsed since the last cleaning. The type of enclosures utilized determines which of the six maintenance categories the luminaire falls into. Maintenance categories for select luminaire/lamp combinations can be obtained from manufacturers data or from generic-type photometric data provided in the I.E.S. Handbook. In most cases, the maintenance category is positioned adjacent to the coefficients of utilization (CU) within the photometric data. The maintenance category is usually expressed as a Roman numeral of value I. through VI. with I. representing no top or bottom enclosures.

The I.E.S. Handbook and most other lighting design books recognize five degrees of dirt conditions, e.g., very clean, clean, medium, dirty, and very dirty. The dirtier the ambient environment the faster the rate of lamp dirt depreciation with time.

The I.E.S. Handbook also provides six categories of curves (one set of curves for each maintenance type) from which the LDD factor may be obtained given that the elapsed time (months) since the previous cleaning and the degree of dirtiness is known. However, this approach to LDD determination is not easily computerized since each set of curves (five curves for each maintenance category) must be modeled in nonlinear equation form. An alternative approach is to utilize the curve-fitted formula (I.E.S., 1981):

$$
\begin{equation*}
L D D=e^{-A\left(t^{B}\right)} \tag{3-9}
\end{equation*}
$$

where
LDD represents the lamp lumen depreciation factor.
A is a dirt depreciation constant.
B is a constant dependent on the maintenance category.
t is the elapsed time since the previous cleaning in months. Both A and B may be obtained through reference of the Luminaire Dirt Depreciation Constant Table which is shown in Table II.

TABLE II
Luminaire dirt depreciation constants

Luminaire M.t"itenar... C.ategory	B	A				
		Very Clean	Ciean	Medium	Lirty	Vedy Dirty
1	. 69	. 038	. 071	.111	. 162	.301
11	. 62	. 033	. 063	. 102	. 147	188
III	. 70	. 079	. 106	. 143	. 184	. 236
N	. 72	. 070	.131	. 216	.314	. 452
v	. 53	. 078	. 128	.190	. 249	. 321
VI	. 88	. 076	. 145	. 218	. 284	. 396

Source: I.E.S. Handbook, 1981
As can be denoted through observation of Table II and equation 3-9, the longer the time duration since the last cleaning, and the dirtier the environment the larger the value of LDD, e.g., the closer to 1.0 . Room Surface Dirt Depreciation Factor (RSDD)

The room surface dirt depreciation factor (RSDD) is a quantitative light loss factor represented the proportion of light lost because of accumulation of dirt on room surfaces. The dirt accumulation reduces the amount of light reflected from all surfaces and, therefore, causes
a reduction in illumination at the work plane level. As a note it should be remembered that utilization of the RSDD factor in our calculations requires us to use the initial expected reflectances of the surfaces in determining both the initial and maintained illumination levels since reduction in surface reflection is taken into account by the RSDD factor.

To determine the RSDD factor we need as inputs the luminaire distribution type, percent expected dirt depreciation, and the room cavity ratio (RCR).

There are five standard luminaire distribution types which are described briefly as follows (ANSI/IES, 1979, p. 13):

- Direct - Units which emit practically all (90 to 100 percent) of their light downward.
- Semi-Direct - Units which direct from 60 to 90 percent of their light downward.
- Direct-Indirect - Units in which the downward and upward components are approximately the same: 40 to 60 percent of the total luminaire output.
- Semi-Indirect - Units which emit most of their light (60 to 90 percent) upward.
- Indirect - Units emitting from 90 to 100 percent of their light upward.

With each of these luminaire types, it is imperative that the surfaces to which most of the light is directed be of high reflectance value in order to increase the utilization of light (coefficient of utilization). It is also imperative that the luminaire type considered for installation provide the qualitative results desired.

The second input necessary in the determination of the RSDD is the percent expected dirt depreciation. The percent expected dirt depreciation may be obtained from expected dirt depreciation curves. The curves are provided in the I.E.S. Handbook and are shown in Table III below.

The software formulated for the basis of this report piece-wise interpolates the percent expected dirt depreciation provided the room surface cleaning interval and environmental dirt condition are known. Upon obtaining the luminaire type, percent expected dirt depreciation, and the room cavity ratio (RCR), the RSDD factor may be determined from the Room Surface Dirt Depreciation Factor Table (I.E.S., 1981) which is also shown in Table III.

TABLE III

ROOM SURFACE DIRT DEPRECIATION FACTORS

Source: I.E.S. Handbook, 1981

The structure of the RSDD Factor Table lends itself to software encoding. More will be presented on both the LDD and RSDD factors and their method of determination in the software development chapters of this report.

Lamp Burn-Out Factor

Another light loss factor controllable through a good lamp maintenance program is the lamp burn-out factor (LBO). The LBO factor is defined as the ratio of lamps remaining lighted to the total number of lamps. The LBO is dependent on the type of lamps used and the lamping program in place. The value of LBO to be utilized in the lumen method calculation is dependent on the time frame for which the maintained illumination level is to be calculated. If the minimum maintained illumination level is to be determined then the designer would utilize a LBO factor representing the maximum number of burn-outs allowed by the maintenance relamping program.

Lamp Lumen Depreciation Factor

One factor that has not been mentioned but contributes significantly to light loss is the lamp lumen depreciation factor (LLD). The LLD figure is the percentage of initial rated lamp lumens which are still being emitted at the time of relamping. In order for this figure to be accurate, the expected time of relamping should be known, so that the corresponding figure may be obtained from the photometric data provided by they lamp manufacturer. It is not significantly correctable after installation; therefore, it should be
analyzed prior to average illuminance calculations and installation. The designer should consider lamps that have a lower lamp lumen depreciation over rated life even though the lamps may have a higher initial investment since the investment can generally be recovered by lower energy and maintenance costs.

Lumen Method

Prior to calculating the average illuminance (utilizing the lumen method) the designer should consider the quality of illumination provided by the tentative choice of luminaire and lamp type. The initial lumen output of the lamp type to be utilized should also be considered. The wattage or lumen output of the lamp will determine the luminaire spacing and, consequently, the ratio of spacing to mounting height (S/MH). Manufacturers photometric data and most photometric data in general provide the $S / M H$ ratio for the luminaire being considered. A "rule of thumb" formula that may be used to determine the approximate initial lumen output and, consequently, the lamp size is provided to the designer in equation 3-10 (Frier, 1980, p. 122). Approximate initial lumen output per lamp = Adjustment (3-10) factor x Maintained illumination level $x M H^{2}$
where

- The adjustment factor is the reciprocal of the proportion of light (decimal value less than 1.0) expected to reach the work plane.
- The maintained illumination level is the minimum illumination desired at the work plane level (footcandles).
- The mounting height (MH) is the expected mounting height (feet) of the luminaire above the work plane.

Equation 3-10 will give the designer direction with regard to the approximate lamp size that will be required to attain the maintained illumination level without requiring extensive trial and error calculations.

Once the tentative luminaire type, lamp type, lamp size, $C U$ value, and light loss factors have been identified, the designer may apply the lumen method calculations. The lumen method will allow the lighting designer to determine the number of lamps required to provide a maintained illumination level (footcandles). The direct and reflected component of light are calculated for the particular room dimensions and reflectance and type of luminaire used, as was mentioned in our previous discussion of the coefficient of utilization. The calculations are simplified by the use of tabular data and the basic formula presented below.

Total Number of Luminaires $=$
(Room Area) \mathbf{x} (Maintained Illumination Level)
(No. Lamps/Luminaire) \mathbf{x} (No. Lumens/Lamp) \mathbf{x} CU \mathbf{x} LLF

Equation 3-11 can be modified such that maintained illumination
level is determined as is presented in the following formula.
Maintained Illumination Level =
$\frac{\text { (No. of Luminaires) } x \text { (Lamps/Lumin.) } \times \text { (Lumens/Lamp) } \times \text { CU } \times \text { LLF }}{\text { (Room Area) }}$
It should be noted that the initial illumination level may be determined by dividing the maintained illumination by the LLF.

These equations represent the primary equations utilized in the lumen method. Most other quantitative aspects of average illumination associated with the general lighting system may be determined through
manipulation of the two equations presented above. However, uniform lighting levels will not be attained if the recommended spacing to mounting height ratio is violated as is discussed in the following paragraphs.

Luminaire Spacing

Luminaire spacing is determined by the light distribution from the luminaire, the level of illumination required, the height of the building, and other practical considerations, e.g., the layout of the roof structure members to which the luminaire can be attached. Manufacturers of lighting luminaires specify for any given luminaire a maximum spacing to mounting height ratio (S/MH) which takes into consideration the beam spread and light distribution and the spacing required to provide illumination on the horizontal plane such that the minimum value is not less than 0.7 of the maximum (Hewitt, 1975, p. 123). Frier (1980) indicates that the $S / M H$ ratio is frequently utilized with the assumption that the quality of the lighting system remains constant regardless of the luminaire spacing, so long as the S / MH ratio is not exceeded. Frier states that this is not always the case, especially when luminaires are used which have a highly polished reflector, such as is the case in the metal working industry, and if visibility is influenced by both the reflected brightness and the average illumination level. To clear up this ambiguity the Design Practice Committee of the Illuminating Engineering Society (I.E.S.) redefined the concept and established a new criterion called the luminaire space criterion (SC), which designers will want to utilize
when considering lighting system quality, especially when using spherical reflectors. However, for most general lighting systems the S/MH ratio will suffice and may in fact provide higher quality illumination, especially if the $S / M H$ ratio is less than the $S C$ rating (Frier, 1980, p. 46).

How does the maximum spacing to mounting height ratio work? Manufacturers, as was previously mentioned, provide photometric data containing the $S / M H$ ratio. The designer determines the $S / M H$ ratio for the luminaire he is considering and he also determines the mounting height. If the system he has designed exceeds the recommended ratio, the designed lighting system could provide a nonuniform light distribution. Frier (1980) also points out that the luminaire brightness will get brighter as $S / M H$ is increased because the lamp image (the reflection the worker sees when viewing the luminaire) is lower on the reflector when viewed from any given viewing angle.

Hopefully, the $S / M H$ ratio is now more understandable. To aid the lighting designer the software presented in Appendix C will provide the maximum spacing to mounting height ratio for the luminaire being considered and the maximum allowed spacing of the luminaires. This will allow the user to determine if the layout he has in mind for the required number of luminaires is in violation of the maximum spacing, e.g., exceeds the maximum spacing. More will be mentioned on this subject in later chapters.

Example Calculations Utilizing the Lumen Method

There are a multitude of quantitative calculations which may be performed utilizing the lumen method. The designer may determine how
increasing room size will effect operating costs, how changing room colors may effect illumination levels, how increases/decreases in luminaire mounting height will effect illumination levels. The method may be utilized to determine the number of luminaires required to provide a maintained illumination level, the lamp size required in existing luminaires to satisfy a maintained illumination level, etc. It is obvious that even more calculations could be performed by interrelating the above lamping design concepts. To provide the user with an idea of how the calculations are performed manually and how the method is software encoded, example calculations will be provided.

To aid in the simplification of the following examples, we will assume the coefficient of utilization (CU) and light loss factors (LLF) have already been determined. This should not imply that the $C U$ and LLF are insignificant for they are not. An understanding of how the CU is determined by the software program through the utilization of the zonal cavity technique may be attained by referencing Chapter II. An understanding of how the light loss factors are determined may be obtained by referencing portions of this chapter.

As has been mentioned earlier, the lumen method is primarily a method of calculating the expected level of illumination on a horizontal plane from a particular lamp-luminaire combination, although many other quantities may be calculated. The following example will illustrate some of the concepts which may be quantitatively determined through the utilization of the lumen method.

Scenario: The desired maintained illumination level to be obtained with a general lamping system is 70 footcandles. The area of the room
is $10,000 \mathrm{ft}^{2}$. The value of the coefficient of utilization is .50 , the LLD is .60 , the LDD is .42 . The ratio of lamps burning to the total (LBO) is . 97 and the RMSD is .60 . The type of luminaire to be utilized in illuminating the area is the two lamp ($4 \mathrm{ft}$.) florescent strip unit. The wattage associated with each of the lamps is 34 watts and the design lumens per lamp is 3,500 .
(1) Determine the number of required luminaires to illuminate the environment.
(2) Given that the S/MH ratio is .7 and the mounting height is 15 feet, does square spacing ${ }^{1}$ of the luminaires satisfy the S/MH ratio?
(3) Determine the wattage per square foot.
(4) If the lamp lumen depreciation is increased to .80 and the LDD and RMSD factors are raised to .70 and .80 , respectively, determine the decrease in the number of lamps required.

Analysis Question 非: To determine the solution to Question 1 we must initially calculate the light loss factor (LLF). This may be determined by utilizing equation 3-8 below.

$$
L L F=L L D \times L D D \times L B O \times R S D D
$$

By inserting the numerical values into equation 3-8 we obtain the following:

$$
L L F=.80 \times .42 \times .97 \times .60=0.19
$$

[^0]To find the number of luminaires for this application, we may use the following formula (equation 3-11):

Total Number of Luminaires $=$
$\frac{\text { (Room Area) } x \text { (Maintained Illumination Level) }}{\text { (No. Lamps/Luminaire) } \times \text { (No. Lumens/Lamp) } \times \text { CU } \times \text { LLF }}$

Total Number of Luminaires $=$
$\frac{\left(10,000 \mathrm{ft}^{2}\right) \times(70 \mathrm{f} . \mathrm{c} .)}{(2) \times(3,500) \times(.50) \times(0.19)}$

1,052.6 (or) 1,053 1uminaires
Analysis Question 非2: To determine the solution to this question we must first determine the distance between luminaires utilizing the square spacing formula. A comparison must then be made between the actual spacing and the design spacing. The maximum spacing allowed to provide uniform illumination is the actual mounting height multiplied by the S / MH ratio.

> Square Spacing $=(\text { Area of Room/Number of Luminaires })^{1 / 2}(3-13)$
> Square Spacing $=\left(10,000 \mathrm{ft}^{2} / 1,053\right)^{1 / 2}=3.08 \mathrm{ft}$

The maximum spacing allowed may be determined by equation 3-14.
Maximum Spacing $=($ Actual Mounting Ht.) x (S/MH Ratio) (3-14)
Maximum Spacing $=(15 \mathrm{ft}) \times.(.7)=10.5 \mathrm{ft}$.
Therefore, since 3.08 ft . is less than 10.5 ft . we may assume that uniform illumination will be provided by the lamping system.

Analysis Question \#3: To determine the wattage per square foot we must divide the total lamp wattage by the square footage of the room. This is, obviously, ((34 watts $x 1,053$)/10,000) equal to 3.6 watts per square foot which may be compared to recommended power limits established by the Illuminating Engineering Society (I.E.S., 1981).

Analysis Question $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ ：Recalculation of the LLF is required and then through utilization of equation $3-8$ we may determine the solution．

```
LLF = LLD x LDD x LBO x RSDD
    =.80 x . 70 x . 97 x . 80= . 43
Total Number of Luminaires =
(10,000 ft 2) x(70 f.c.)
```

The reduction in the number of luminaires required through improve－ ment of the LLF by 56 percent is 588．A dramatic reduction which could be obtained by selecting a lamp type having a higher LLD over the rated life of the lamp and by improving the cleaning of luminaires and room surfaces．

Chapter Summary

This chapter has presented many concepts necessary in the determi－ nation of the average illuminance of a general lamping system．While inclusive with respect to many of the concepts，it lacks in full cover－ age of all the aspects of general lighting design．The quality of illumination is very important in most operating environments and limited coverage of this area was provided．Likewise，spacing crite－ rion was not fully covered．These aspects may be researched further by referencing the bibliography contained at the conclusion of this report．

Critical to the understanding of the software presented herein is a basic understanding of the zonal cavity technique and the lumen method．Qualitative descriptions have been provided within this report
to aid the user in becoming familiar with these concepts. Quantitative examples have been presented to aid the user in understanding how the lumen method may be utilized.

Chapter IV will familiarize the user with the software development of the general lighting design program.

CHAPTER IV

SYSTEM DEVELOPMENT

The concepts developed and presented in the previous chapters will enable the reader to have a basic understanding of how to design a uni－ form general lighting system and how the lighting software performs the required calculations．Two of the major concepts presented previously were the zonal cavity technique utilizing flux transfer theory and the lumen method both of which are useful in determining general lighting system illuminances and both of which are utilized in the general lighting software which is the focus of this report．This chapter will present the operational methodology of the software（written in basic） developed to aid the user in calculating general lighting system illu－ minances．The software was developed on the IBM PC 3270.

The software program＂Light Design＂is menu driven thereby stream－ lining the accomplishment of the desired objectives．The software consists of an optional help session，a master program（Standard Pro－ gram Operation－Option 非1）and two subprogram modules（Coefficient of Utilization（CU）Data Append－Option $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2）and（Luminaire Description File Append－Option 非3）．Each of which contains a menu driven screen． The standard program operation module utilizes four data files（LUMDSC， FILENM $\$$ ，LUMDDC，ROOMSD）．LUMDSC is utilized in the storage of lumi－ naire numbers and luminaire descriptions，which are user input．

FILENM $\$$ is a sequential data file
utilized in the storage (user input) of the $C U$ values, maximum spacing to mounting height ratio, maintenance category and light distribution type. LUMDDC is a sequential permanent data file utilized in the storage of the luminaire dirt depreciation constants. ROOMSD is also a permanent sequential data file, which is utilized in the storage of room surface dirt depreciation factors. The Standard Program Operation module temporarily stores data during the program operation in a series of eleven separate arrays. The CU Data Append Subprogram primarily utilizes one data file (FILENM\$) which stores luminaire data (CU values, $S / M H$, maintenance category and light distribution type). The Luminaire Description File Append Subprogram utilizes the data file LUMDSC which allows luminaire descriptions to be permanently stored. The help session which has yet to be expounded on provides the user with the information required to accomplish the program objectives the user has in mind in an efficient and effective manner.

The master program (Standard Program Operation) and the two subprograms (CU Data Append and Luminaire Description File Append) will now be discussed in more detail.

Standard Program Operation Subprogram

The master program, Standard Program Operation (Option \#1), allows the user to accomplish the following objectives:

1) Transfer control to subprogram modules, e.g., Luminaire Descr. Append and Luminaire Coeff. of Utilization Append, to allow the addition/modification of luminaire/lamp descriptions, luminaire/lamp data, $C U$ values, $S / M H$ ratio, light distribution and maintenance category.

2）Input the lamp burn－out factor（LBO），lamp lumen depreciation factor（LLD），ceiling，wall，and floor reflectivities and／or colors，lamp operating details，and operating environment details．

3）Select luminaire／lamp type from luminaire description screen．

4）Utilize the zonal cavity approach and the lumen method to calculate the room surface dirt depreciation factor（RSDD）， lamp dirt depreciation factor（LDD），room cavity ratio（RCR） for circular，irregular and rectangular rooms，effective cavity reflectances for the ceiling and floor，coefficient of utilization，light loss factor，initial and maintained illu－ mination level，power per square foot，maximum suggested spacing for uniform light levels，total material and instal－ lation cost，annual operating cost，annual lamp replacement cost，and total operation cost．

5）Print a Luminaire Output Report to the printer or to the screen．

6）Exit program operation．
The Standard Program Operation Module（Option $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴ 囗 十 一 ~ i n ~ t h e ~ m a s t e r ~ m e n u ~$ screen）is the controlling program in the software structure．This module must be entered into initially if the programmer desires to enter luminaire data coefficients of utilization and various other luminaire data，since the variable luminaire data file name is deter－ mined through the concantenation of the string constant＂LUMEN＂with the number of the luminaire selected from the luminaire menu screen． For example，if the user selected luminaire number one from the luminaire description screen and then transferred control to the

Coefficient of Utilization Append Module to add luminaire data, the software would allow the user to proceed in adding or modifying data. The software would store the data in the file "LUMEN1". However, if the user had not entered the luminaire number, then program control would transfer the user back to the master menu screen. This safety feature prevents the user from entering all of the luminaire data only to find that it was stored in the file "LUMENO" ${ }^{1}$ which corresponds to none of the luminaire numbers in the description screen.

If the user desires to enter a luminaire type not existing in the luminaire data base, control must be transferred to the Luminaire Description File Append Module where the luminaire description may be added. Control would then be transferred to the Standard Program Operation Module where the luminaire number would be entered. The user would then proceed to the CU Append Module where entry of luminaire data would be allowed.

The master program performs numerous calculations, most of which were detailed in Chapter III. Transfer flux theory (equation 3-7) is utilized to determine effective cavity reflectances. The zonal cavity method is utilized to calculate the appropriate CU value. A three variable interpolation/extrapolation program within the master program allow the $C U$ values to be determined with high accuracy. The room surface dirt depreciation constants in the data file ROOMSD allow the user to determine the room surface dirt depreciation factor (RSDD) if the expected dirt depreciation (determined internally through

[^1]interpolation), luminaire distribution type, and room cavity ratio are known. The luminaire dirt depreciation constants in the data file LUMDDC allow the designer to determine the LDD factor given that the luminaire maintenance category (file entry) and degree of dirtiness are known.

An environmental dirtiness selection screen is provided to the user in the Standard Program Operation Module. This screen allows the user to better understand the entry of the dirt condition, as examples are provided.

A Color Table selection screen is also provided within this module to aid the user in determining the reflectivities of the ceiling, wall, and floor. Twenty-four colors are provided in the Color Table. The user may select a different color for the walls, ceiling, and floor or he may enter the reflectivities directly.

The end result of input of luminaire/lamp data and various screen entries and software calculations is the Luminaire Output Report which may be used by the designer to evaluate the quantity of light provided by the lamping system as well as a multitude of other quantitative aspects associated with the selected lamp/luminaire combination. More emphasis will be placed on the Luminaire Output Report and analysis of the report in Chapter VI - Software Application and Analysis of Output.

The Coefficient of Utilization Append Module (Option 非)

The CU Append Module may be utilized provided the user has entered the luminaire number. The subprogram allows addition of luminaire data and modification of luminaire data. The luminaire data that may be entered are the $C U$ values, maximum spacing to mounting height ratio,
maintenance category, and light distribution type. Luminaire data associated with each of the luminaires incorporated into the luminaire data base is stored in separate sequential luminaire data files. Luminaire data associated with luminaire number one would be stored in the sequential file "LUMEN1" while data associated with luminaire number two would be stored in the file "LUMEN2". The variable string "FILENM\$" allows the process to be accomplished. The subprogram module utilizes the major array $C U($ row, column) to allow temporary storage of $C U$ values prior to or after transfer from the luminaire data file. The array allows the process of modification/addition of $C U$ values to be performed. The CU array subscript "row" is dimensioned to 11 and the subscript "column" is dimensioned to 15. Therefore, 165 CU values must be entered by the user for each luminaire being considered. A positive note, however, is that once entered the data forms a permanent luminaire data file which will aid in subsequent analyses, unless, of course, the data becomes extremely outdated due to technological advances in the area of luminaire development which, consequently, could effect the utilization values. The modification option of the program, however, would allow any of the data associated with a select luminaire to be changed, therefore, eliminating some of the effect of technological advancement.

In summary, the CU Append Module allows the user to write luminaire input data to an individual sequential file by means of a temporary storage array (CU(row, column)). The data forms a permanent data base thereby increasing the volume of luminaires that may be considered. Modification of the data (an option in the CU Append menu screen) will allow a complete revision of all of the $C U$ data if such action is found to be necessary.

Luminaire Description Append Subprogram

The Luminaire Description Append Subprogram's objective is to allow the user to add or modify luminaire descriptions. The subprogram stores luminaire data in the sequential data file "LUMDSC". The array utilized in temporary storage of the descriptions and which allows output to the file and input from the file is LUMDESC $\$(J)$ which is dimensioned to 100. An internal check within the software coding will not allow the user to exceed a string length of 80 characters. If the length of the description exceeds 80 characters, the user will be asked to reenter the description.

CHAPTER V

LOADING AND RUNNING THE "LIGHT DESIGN" SOFTWARE

This chapter will present the necessary information to enable the user of the software to operate the software in a reasonably comfortable manner. Step by step instructions are presented to the user to allow operation methodology to be better understood.

Loading the "Light Design" Software

The following is a list of instructions for loading and unloading the lighting design software

Step 1 If the power is off on the system, turn it on. Be sure that there are no diskettes in the disk drive. Turn on the printer.

Step 2 Locate the "DOS" diskette and insert it into the A disk drive. Be sure the label on the disk is on the top and the arrow is pointing toward the computer.

Step 3 Flip on the disk drive switch, monitor switch, and printer. The computer will prompt you to supply the date in the form HH:MM:SS (HH (hours)) varies from 1 to 24). The computer will subsequently prompt you with a >.

Enter the word Basica to load basic language into program memory. Note: When entering in all input, make sure that capital letters are typed and that the return key is depressed after each input.

Step 4 Remove the "DOS" diskette. Locate the diskette labeled "Light Design" and insert it into the A disk drive. Be sure the label on the disk is on the top and the arrow is pointing toward the computer.

Step 5 Type in the following command: LOAD "LIGHT DESIGN" and hit the enter key. The software will be loaded and the computer will begin prompting the user for data.

Step 6 When you are finished using the software, remove the diskette from the disk drive and return it to the protective diskette cover. Be sure to never remove the diskette while the red light on the disk drive is lit.

Warning*** While using the software do not depress the break or clear keys on the keyboard. $* * *$ If you hit the break key, type CONTINUE to resume.

How to Obtain a Luminaire Output Report

This option (option number one in the master menu screen) is utilized when the user desires to analyze a given luminaire/lamp combination and obtain a luminaire output report for the combination. Following are the steps which will enable the user to obtain the report. *System Warning - All input should be entered in capital type to avoid system errors. After entry the user should depress the enter key.

Step 1 Enter option number one from the master menu screen.
Step 2a Enter the luminaire number from the Luminaire Description Screen. If the desired luminaire does not exist in the screen then proceed to Step 2 b . Otherwise proceed to Step 3.

Step 2 b Return to the master menu screen and select option number three to allow entry of the luminaire description. After the luminaire description has been entered, option number two should be selected from the master menu screen to allow the user to enter luminaire data, e.g., $C U$ values, S/MH, maintenance category, light distribution type. After entry of the luminaire data, the user should process through Steps $1,2 a$, and 3 through 6.

Step 3 Enter requested luminaire/lamp data, operating data, implementation costs, and room dimensions.

Step 4 Enter the wall, ceiling, and floor colors from the Color Table or enter the reflectance values directly (less than 1.0).

Step 5 Enter environmental dirt conditions from the dirt condition selection screen.

Step 6 Enter number one if the luminaire output report is to be printed to the screen. Enter number two if it is to be printed to the printer.

How to Add a Luminaire Description

This feature is used when the user desires to add luminaire descriptions to the list of descriptions already established. It
should be noted that the user should not enter a description unless he/ she is prepared to enter luminaire data (Luminaire Data Append Subprogram), otherwise, system errors would result in attempting to analyze the luminaire/lamp type since data would not exist.

Step 1 Enter option number three from the master menu selection screen.

Step 2 Select option number one from the Luminaire Description Append menu screen (add option)

Step 3 Input the number of descriptions to be added.
Step 4 Enter a luminaire description less than or equal to 80 characters.

Step 5 Review the addition(s) if necessary.
Step 6 Change addition(s) if required.

Step 7 Return to master menu screen and select new option.

How to Modify a Luminaire Description

This feature will allow the user to modify previously entered luminaire descriptions.

Step 1 Enter menu number one (Standard Program Operation).
Step 2 Review the luminaire descriptions, particularly review the luminaire description to be changed.

Step 3 Return to the master menu screen. Enter menu number three from the master menu screen.

Step 4 Select option number two from the Luminaire Description Append menu screen (modify option).

Step 5 Upon prompt enter the number of the luminaire description to be modified.

Step 6 Reenter the luminaire description.
Step 7 Review the modification if necessary.
Step 8 Change modification if required.
Step 9 Return to the master menu selection screen and select a new option.

How to Add Luminaire Data

This feature allows the user to add luminaire data, e.g., coefficient of utilization values, maximum spacing to mounting height ratio, maintenance category, luminaire distribution type, and lamp length.
*** Warning *** The user may not enter luminaire data prior to the entry of the associated luminaire description. To add a luminaire description follow steps one through six of "How to Add a Luminaire Description."

Step 1 Enter option number one (Standard Program Option).
Step 2 Select the luminaire number associated with the data to be entered upon system prompt.

Step 3 Upon prompt return to the master menu screen.
Step 4 Enter menu number two (CU Data Append Subprogram).
Step 5 Select option number one from the CU Data Append menu screen.

Step 6 Enter luminaire data upon prompt.
Step 7 Review the entered data if necessary. Return to the master menu and enter new option.

Warning*** Program methodology will not allow luminaire data to be entered if luminaire data for the selected luminaire number was previously entered.

How to Modify Luminaire Data

Step 1 Enter option number one (Standard Program Option)
Step 2 Select the luminaire number associated with the data to be entered upon system prompt.

Step 3 Upon prompt return to the master menu screen.

Step 4 Enter menu number two (CU Data Append Subprogram).
Step 5 Select option number two from the CU Data Append menu screen (modify option).

Step 6 Modify luminaire data upon prompt.
Step 7 Review the entered data if necessary. Return to the master menu and enter new option.

SOFTWARE APPLICATION AND OUTPUT ANALYSIS

Software Application

Vital to the proper operation of any software program is an understanding of how the software appears on the screen, how the data should be input, and how to manipulate the software to achieve the desired objectives. To aid the user in obtaining the necessary tools to operate the lighting software efficiently and effectively, three example applications are provided within this section.

Example number one demonstrates the manipulation of the software to analyze a luminaire/lamp combination and to obtain a luminaire output report (e.g., Standard Program Operation).

Example number two demonstrates the utilization of the CU Append Subprogram to view and modify existing luminaire data.

Example number three presents the methodology required to enable the user to modify existing luminaire descriptions.

Selection of option number one from the master menu screen will allow the user to enter the Standard Program Operation module as is shown in the following printout.

THIS PRogram will aid the designer in selecting a cost Efficient LUMINAIRE/LAMP COMBINATION SYSTEM THAT WILL PROVIDE AN AVERAGE MAINTAINED ILLUMINATION LEVEL CORRESPONDENT WITH THE LIGHTING LEVEL REQUIREMENTS OF THE AREA TO BE ILLUMINATED. THE PROGRAM WILL AID THE USER TO ANALYZE EXISTING GENERAL LIGHTING SYSTEMS OR AID THE USER in designing new systems

TO CONTINUE FORWARD IN EVALUATION-HIT ANY KEY

A design lighting menu screen

*-*1-STANDARD PROGRAM OPERATION *-*2-LUMINAIRE COEFFICIENTS OF UTILIZ *----ATION APPEND *-\#3-LUMINAIRE DESCRIPTION FILE APPEND* *-\#4-EXIT

```
PLEASE INPUT NUMBER OF SELECTION :I.E. : #1-4
```

? 1

Selection of option number one will provide the user with an opportunity to peruse the luminaire descriptions existing in the luminaire description data base. After perusal the user will be asked to enter the luminaire number corresponding to the luminaire type he/ she wishes to analyze.

Selection of the luminaire type and continuation in the Standard Program module will require the user to enter lamp/operating area data. The necessary entries are shown in the following printout.

```
PLEASE ENTER THE LAMP'S LIFE IN HOURS-#ONLY? 24000
PLEASE ENTER THE LAMP OPERATING HRS. PER YEAR-NUMBER ONLY PLERSE
? 2800
PLEASE ENTER THE LAMP LUMEN DEPRECIATION FACTOR(LLD)
AT 70x OF THE USEFUL LIFE OF THE BULB - DECIMAL FORM PLEASE-
IE.:.80.. 70 ETC.
?. }8
PLEASE ENTER THE DECIMAL VALUE OF THE NUMBER OF BULBS EXPECTED
TO BE BURNING AT REPLACEMENT TIME 170X OF USEFUL LIFE.EG...97: . 85: ETC.
?.99
ENTER THE INITIAL LUMENS PER LAMP-NUMBER ONLY PLEASE
? 140000
ENTER THE # OF LAMPS PER LUMINAIRE-NUMBER ONLY PLEASE
? }
ENTER THE WRTTAGE. PER LAMP-# ONLY PLEASE
? 1000
ENTER THE BALLAST WATTAGE/LUMINAIRE-NUMBER ONLY PLEASE-IF ZERO INPUT O
? 50
IS THE DESIGN BEING CONSIDERED R NEW DESIGN-Y/N
? Y
ENTER THE DESIRED MAINTAINED ILLUMINATION LEVEL IN FOOTCANDLES
(NUMBER ONLY)-EG. .70.60.50 ETC.
? }7
ENTER THE DOLLAR COST PER LUMINAIRE - NUMBER ONLY PLEASE-NUMBER ONLY
? 63.00
ENTER THE INSTALLATION COST PER LUMINAIRE-NUMBER ONLY
? 50.00
ENTER THE ENERGY COST-$/KWH-NUMEER ONLY PLEASE
?.04
ENTER THE COST PER LAMP IN DOLLARS-NLi^BER ONLY
? 22.00
ENTER THE LABOR COST PER LAMP INSTALLATION IN DOLLARSNLMBER ONLY PLEASE
? 10
```

In entering all data the user should make sure that all alphabetic entries are made in capital letter format and that the enter key is depressed following the entry of data.

Following the detail entry section, the user will be presented with the room shape selection screen from which the room shape should be selected. Selection of option number two from the screen will require the user to enter the following room dimension data. Selection of options one or three will require entry of similar data.

THE FOLLOWING PROGRAMMING SECTION WILL DETERMINE THE ROOM CAVITY RATIO FOR THE AREA UNDER CONSIDERATION


```
please input the # CORresponding to the description best
dEgRIEING THE SHAPE OF THE ROOM
? ₹
ENTER THE RDOMLENGTH IN FEET-NUMBER ONLY
? 200
ENTER THE ROOMWIDTH IN FEET-NUMEER ONLY
? 200
ENTER THE FIXTURE MCUTING HEIGHT ABOVE THE WORKPLANEIN FEET-NUMEER ONLY
? 20
```

The next software input section enables the software program to determine the floor, wall and ceiling reflectances and subsequently the effective floor and wall reflectances. The user is provided with two options: (1) the user may enter the room reflectivities directly or (2) the user may observe the Colored Surfaces Selection Guide and select the representative colors for the floor, wall, and ceiling. These provisions are illustrated for the user in the following.

DO YOU WISH TO ENTER THE REFLECTANCE VALUES FOR THE FLOOR WALL AND CEILING DIRECTLY (OR) DO YOU WISH TO OBSERVE THE COLORED SURFACES TABLE-TYPE 1 FOR DIRECT ENTRY AND 2 FOR TABLE OBSERVATION
COLORED SURFACES SELECTION GUIDE

COLOR\# COLOR DESCRIPTION	
1	WHITE PAPER
2	LIGHT GRAY
3	MEDIUM GRAY
4	DARK GRAY
5	IVORY WHITE
6	BUFF STONE
7	TAN
8	COCOANUT BROWN
9	SATIN GREEN
10	BRIGHT SAGE AND IVORY TAN
11	BRIGHT SAGE
12	FOREST GREEN
13	OLIVE GREEN
14	PALE AZURE AND WHITE

REVIEN SCREEN FOR ENTRY OF WALL: CEILING AND FLOOR COLORS. WHEN YOU DESIRE TO CONTINUE TYPE I

$$
?^{2}
$$

DO YOU WISH TO ENTER THE WALL AND CEILING COLORS NOW OR DO YOU
WISH TO OBSERVE THE REMAINING COLORS-TYPE 1 FOR ENTRY AND 2 FOR COLOR OBSERVATION
$? 1$
INPUT THE NUMBER ASSOCIATED WITH THE COLOR OF THE WALLS--1
PLEASE INPUT THE NUMBER ASSOCIATED WITH THE CEILING COLOR-1
PLEASE ENTER THE NUMEER ASSOCIATED WITH THE FLOOR COLOR-17
IS THE CEILINGTYPE (1) HORIZONTAL (2)NONHORIZONTAL? 1
ARE THE LUMINAIRES SURFACE MOUNTED/RECESSED?-IF SURFACE
MOUNTED/RECESSED TYPE 1 IF NOT TYPE 0
$? 1$
IS THE WDRKPLANE TO BE CONSIDERED FOR ILLUMINATION PURPOSES AT FLOOR LEVEL?---Y/N ? N
ENTER THE AREA OF THE FLOOR CAVITY BASE (FLOOR SURFACE AREA) 40000
PLEASE ENTER THE FLOOR CAVITY WALL AREA (SURFACE AREA OF THE WALLS WITHIN THE FLOOR CAVITY) $240 O$
PLEASE ENTER THE FLOOR CAVITY LENGTH(LENGTH IN FEET ASSOCIATED WITH THE FLOOR CAVITY) EOO
PLEASE ENTER THE FLOOR CAVITY WIDTH (WIDTH IN FEET ASSOCIATED WITH THE FLOOR CAVITY) ZOO
PLEASE ENTER THE DISTANCE FROM THE FLOOR TO THE WORKPLANE LEVEL.E. G. . $>=0.0$
? 3
-..- If the user selects the color entry option, he/she should enter
representative colors as they would appear under the lamp source being
investigated. It should be mentioned that selection of the color entry
does not take into consideration the texture of the room surfaces.
However, the user may take surface texture into consideration by enter-
ing the initial room reflectivities directly.
The questions following the color/reflectance entry section allow the software program to determine the effective ceiling and floor reflectances. If the luminaires are surface mounted or recessed, the effective ceiling reflectance is equivalent to the initial ceiling
reflectance. If the work plane is at floor level, the effective floor reflectivity is equivalent to the initial floor reflectance, otherwise floor cavity data must be entered and an effective floor cavity reflectance determined.

Following the entry of the surface reflectances, the user will be entering operating environment dirt conditions, room surface cleaning intervals, and lamp/luminaire cleaning intervals as is shown below.

FIVE DEGREES OF DIRT CONDITIONS

	(1)	(2)	(3)	(4)	(5)
	VERY CLEAN	CLEAN	MEDIUM	DIRTY	VERY DIRTY
generated DIRT	NONE	VERY LITTLE	NOTICEABLE/ NOT HEAVY	ACCUMULATES RAPIDLY	CONSTANT ACCUMULATION
AMBIENT DIRT	NONE (OR NONE ENTERS	SOME-ALMOST NONE ENTERS	SOME ENTERS AREA	LARGE AMNT ENTERS AREA	ALMOST NONE EXCLUDED
REMOVAL OR FILTRATION	EXCELLENT	BETTER THAN AVERAGE	PODRER THAN AVERAGE	ONLY FANS OR BLOWERS IF ANY	NONE
ADHESION	NONE	SLIGHT	VISIBLE AFTER SOME MONTHS	HIGH-DUE TO OIL: HUMIDITY: OR STAT IC	HIGH

PLEASE PONDER THE CHARACTERISTICS OF THE VARIQUS ENVIRONMENTS: AND PREPARE TO ENTER THE FITTING DIRT CONDITION -TYPE 1 TO CONTINUE ? 1

DIRT CONDITION EXAMPLES

The dirt condition descriptions and dirt condition examples were taken from the I.E.S. Handbook. The descriptions and examples provide uniformity to the selection of the dirt conditions.

At this point, all Standard Program screens have been perused and all necessary data has been entered. The screen printout (Luminaire Output Report) below displays the results of our input efforts.

ARE ENERGY EFFICIENT LAMPS UTILIZED. TYPE 1 FOR YES AND 2 FOR NO ? 2

REQUIRED DATA

* INITIAL LUMENS/LAMP. 140000
* INITIAL LUMENS/LLMINAIRE........ 140000
* LAMPLIFE............................. 24000
* AVERAGE WATTS/LAMP. 1000
* WATTS /LUMINAIRE.................. 1050
* U. P. D. (POWER LIMIT-WATTS/SQ.FT). 1.072782
* CDEFFICIENT OF UTILIZATION........ 0.74
* MAINTENANCE CATEGORY............. 3
* LUMINAIRE LIGHT DISTRIBUTION. ... 1
* LIGHT LOSS FACTOR (LLF). 0.66
* LAMP LUMEN DEPRECIATION FACTOR... 0.80
* LAMP BURNOUT FACTOR. 0.99
* LAMP DIRT DEPRECIATION FACTOR.... 0.84
* RODM SURFACE DIRT DEPREC. FACTOR. . 0.99
* ROOM CAVITY RATID(RCR)............. 0.00
* MAX. SPC/MNTING HT. RATID............ 0.70
* EXISTING SPACING (=0 IF NEW. DESIGN CONSIDERED................. 0
* SUGGESTED MAX SPACING FOR UNIFQRM LIGHTING LEVELS................... 14
* MAINT. ILLUM. LEVEL (FC) 70
* INITIAL ILLUMINATION LEVEL.. (FC) 105.8112
* LUMINAIRES REQUIRED FOR UNIFORM. MAINTAINED FOOTCANDLES. 10.21697
* AREA OF ROOM (SQ.FT.)........... 10000
* OPERATING HOURS PER YEAR......... 2800
* LAMP REPLACEMENTS PER YEAR....... 1. 19198

MATERIAL AND INSTALLATIGN COST

| * LUMINAIRE COST. | $\$ 643.67$ |
| :--- | :--- | ---: |
| * LAMP COST. | $\$ 224.77$ |
| * LUMINAIRE INSTALLATION CHARGE.... | $\$ 510.85$ |
| * LAMP INSTALLATION CHARGE.......... | $\$ 102.17$ |
| | |
| * TOTAL MATERIAL AND INSTALLATION. | |
| | |
| | |

ANNLAL DPERATING COST

* ANNUAL ENERGY COST...............	$\$ 1.201 .52$
* LAMP REPLACEMENT COST/YEAR.......	$\$ 11.92$
*TOTAL ANNUAL OPERATING COST......	$\$ 1.213 .44$

Analysis of the output may now be performed. Analysis will be provided in the analysis section of this chapter. Report focus will now concentrate on example number two -- the utilization of the CU Append Subprogram to view and/or modify existing luminaire data.

The "How To" of the CU Append Module

The example which follows demonstrates the utilization of the CU Append Subprogram module to view and/or modify existing luminaire data. The user should first enter the luminaire number from the luminaire description screen (Standard Program Operation) and return to the master menu screen. The user should select option number two from the master menu screen to transfer program control to the Luminaire Data Menu Screen.

A design lighting menu screen

pLEASE INPUT NUMBER OF SELECTION :I.E., \#1-4
? 2

Upon entry into the CU Append Program module the lighting designer will be required to acknowledge a system warning. The purpose of the warning is to remind the user that the luminaire number should be entered prior to the utilization of the CU Append Program module. If the luminaire number was not previously entered, the methodology of the software will return the user to the master menu screen.

Selection of option number two from the Luminaire Data Menu Screen will allow the user to modify existing luminaire data. Existing luminaire data is displayed on the screen for the perusal of the user. The user may modify the data or leave it as is. These points are demonstrated in the following.
ACKNOWLEDGE THE SYSTEM WARNING BY PRESSING ANY KEY
${\underset{?}{2}}_{\text {ENTRY STATUS/HAVE YOU ENTERED THE LUMINAIRE DESCRIPTION-TYPE } 1 \text { FOR YES AND } E \text { FOR NO }}^{1}$

PLEASE INPUT THE NUMBER ASSOCIATED WITH YOUR SELECTION:E.G..1-3 ? 2

DO YOU WISH TO CHANGE A DATA ENTRY-Y/N ? N

COEFFICIENTS OF UTILIZATION

In this example a $C U$ value was selected for change. The $C U$ value to be changed was $C U(1,1)$ which has a numerical value of .93. To change a CU value the user must enter the row and column number of the existing value to be modified. The new CU value should also be entered.
do you wish to change a cul value-y/n ? Y enter the row number of the cu value to be changedi enter the column \# of the cu value to be changed 1 enter the new cu value.os

The new CU value is read into a temporary storage array and output to the luminaire data file. Review of the luminaire data after modification reveals the following.

coefficients of utilization

As can be quickly observed, the $C U(1,1)$ value has been modified from . 93 to . 05 .

The add option operates similarly, therefore, it will not be expounded on.

The exit option will return the user to the master menu screen.

The "How To" of the Luminaire Description File Append Subprogram

This example will demonstrate the utilization of the Luminaire Description Append Subprogram in modifying existing luminaire descriptions.

The user should select option number three from the master menu screen to transfer software control to the Luminaire Description Append Menu Screen which is shown in the following printout.

```
                                    A DESIGN LIGHTING MENU SCREEN
                                    *****************************************
                                    *-*1-STANDARD PROGRAM OPERATION
*
*-#2-LUMINAIRE CDEFFICIENTS OF UTILIZ *
*----ATION APPEND *
* *
*-*3-Luminaire descripiion file append*
*
*-#4-EXIT
****************************************
```

PLERSE INPUT NUMEER OF SELECTION :I.E.: \#1-4
? 3

please input the mumber of your selection. E. G. : \#1-3
? 2

Entry from the Luminaire Description Append Menu Screen is required at this point．To modify existing luminaire descriptions the user will select option number two．

After perusal of the luminaire descriptions（shown in the following printout），the lighting designer may decide to modify an existing lumi－ naire description．
please acknowledge the correctness of the present or previous data entries

LUMINAIRE MENU SCREEN

Lum＊	LUMINAIRE DESCRIPTION
\＃ 1	＂HIGH BAY＂NARROW DISTRIBUTION VENTILATED REFLECTOR WITH CLEAR HI D LAMP
2	＂HIGH BAY＂INTERMEDIATE DISTRIBUTION VENTILATED REFLECTOR WITH CL EAR HID LAMP
3	＂HIGH BAY＂WIDE DISTRIBUTION VENTILATED REFLECTOR WITH CLEAR HID LAMP
\＃ 4	＂HIGH BAY＂WIDE DISTRIBUTION VENTILATED REFLECTOR WITH PHOSPHOR C OATED HID LAMP
5	WIDESPREAD，RECESSED，SMALL OPEN bottom reflector with low wattage diffuse hid lamp
6	2 LAMP PRISMATIC WRAPAROUND．MAY BE UTILIZED WITH $巳$ OR 4 FLUORESCE NT LAMPS
7	＂HIGH BAY＂INTERMEDIATE DISTRIBUTION VENTILATED REFLECTOR WITH PH OSPHOR COATED HID LAMP
8	FLUOR．UNIT W／FLAT PRISMATIC LENS UTILIZED W／A MAXIMUM OF 4 LAMPS
REVIEW	W THE SCREEN FOR POSSIbLE INPUT ERROR TYPE 1 To CONTINUE
\＃ 9	FLUORESCENT UNIT WITH FLAT PRISMATIC LENS．MAY USE E．3．OR 4 LAMPS
10	GOOD

If this be the case，the number of the description to be changed must be entered．For the purposes of this example，luminaire descrip－ tion $⿰ ⿰ 三 丨 ⿰ 丨 三 一 10$ will be modified．A new description less than 80 characters must be entered to replace the old description．The existing descrip－ tion in this example is simply＂Good＂．The new description to replace the old description is＂This was changed＂．The results of the modification are shown in the screen printout which follows．

```
DO YOU WISH TO CHANGE A LUMINAIRE DESCRIPTION:Y-N
? Y
ENTER THE NDF THE DESCRIPTION TO BE CHANGED-10
PLEASE ENTER A SHDRT USEFUL DESCRIPTION LESS THAN 2 LINES--THIS WAS CHANGED
DO YOU WISH TO CHANGE ANOTHER DESCRIPTION-Y/N
? N
dO yOU dESIRE TO SEE the Changes-y/N
? Y
```

LUMINAIRE MENU SCREEN

This section of Chapter VI has presented pragmatic applications of the "Light Design" software. The section should have aided the user in understanding how the software appears on the screen, how the data should be input, and how to manipulate the software to achieve the desired objectives.

The next section of this chapter will aid the user in analyzing the luminaire oùput report data.

Luminaire Output Analysis

The purpose of this section is to provide to the user a basic understanding of how the data supplied on the Luminaire Output Report may be utilized to aid in the selection of a cost efficient luminaire/ lamp combination.

To aid in the analysis of the data, two separate luminaire output reports will be referenced. The reports were generated for the same luminaire and lamp types utilizing varying parameters, e.g., room cleaning and luminaire cleaning intervals, room colors, and room dimensions (room length and width). The Luminaire Output Reports are shown in the following printouts.

LUMINAIRE OUTPUT REPORT - SCENARIO \#1

ARE ENERGY EFFICIENT LAMPS UTILIZED. TYPE 1 FOR YES AND Ξ FOR NO ? 2
$* * *$ LLUMINAIRE OLITPUT REPORT***
LUMINAIRE DESCRIPTION:
"HIGH EAY" NARROW DISTRIBUTION VENTILATED REFLECTOR WITH CLEAR HID LAMP

REQUIRED DATA

* INITIAL LUMENS/LAMP............... 140000 * INITIAL LUMENS/LUMINAIRE........ 140000 * LAMPLIFE. 24000 * aVERAGE WATTS/LAMP................ 1000 * WATTS /LUMINAIRE................... 1050 * U.P.D. (POWER LIMIT-WATTS/SQ.FT). 1.072782 * COEFFICIENT DF UTILIZATION........0. 74 * maintenance category.............. 3 * LUMINAIRE LIGHT DISTRIBUTION.... 1 * LIGHT LDSS FACTOR(LLF).............. 0.66 * LAMP LUMEN DEPRECIATION FACTDR...0. 80 * LAMP bURNOUT FACTOR.. O. 99 * LAMP DIRT depreciation factor....0.0. 84 * ROOM SURFACE DIRT DEPREC.FACTOR..0. 99 * ROOM CAVITY RATIO(RCR)..............e. 00 * MAX. SPC/MNTING HT. RATIO........... 0.70 * EXISTING SPACING($=0$ IF NEW...... DESIGN CONSIDERED.................. * SUGGESTED MAX SPACING FOR UNIFORM LIGHTING LEVELS. 14 * MAINT. ILLUM. LEVEL (FC)............ . . 70 * INITIAL ILLUMINATION LEVEL.. (FC) 105.8112 * LUMINAIRES REQUIRED FOR UNIFQRM. MAINTAINED FODTCANDLES. 10.21697 * AREA OF ROOM (SQ.FT.)............ 10000 * operating hours per year......... 2800 * LAMP replacements per year...... 1.19198 MATERIAL AND INSTALLATION COST * Luminaire cost..................... * LAMP COST................................. * Luminaire installation charge... $\$ 510.85$ * LAMP INSTALLATION CHARGE......... $\$ 102.17$ * total material and installation. cost............................... $\$ 1.481 .46$ ANNUAL OPERATING CDST * ANNUAL ENERGY COST................

Scenario number one was obtained from entry of the data presented in the "How To" of Standard Program Operation section of this chapter.

The second luminaire report to be analyzed is shown in the printout which follows.

ANNUAL DPERATING COST

* ANNUAL ENERGY COST................. $\$ 3.701 .28$
* LAMP REPLACEMENT COST/YEAR....... $\$ 36.72$
*TOTAL ANNUAL OPERATING COST...... \$3.738.00
DESIRE TO ANALYZE ANOTHER LAMPING SYSTEM OR CONTINUE:E.G.:TRANSFER CONTROL TO THE MASTER MENU SCREEN:Y/N ? N

As was previously mentioned, the same luminaire/lamp types were considered in both analyses. Table IV defines the data inputs associated with the individual output reports which were not the same; all other data inputs besides those delineated in Table IV were identical.

TABLE IV

DATA INPUTS

DATA DESCR.	OUTPUT REPORT \#1	OUTPUT REPORT 非2
Dirt Environment	Very Clean	Very Dirty
Lum. Cleaning Interval	3 Years	. 25 Years
Room Cleaning Interval	12 Mos.	1 Mo.
Room Width	100 Feet	200 Feet
Room Length	100 Feet	200 Feet
Wall Color	Olive Green (.14)	White Paper (.81)
Floor Color	Ivory Tan (.58)	Whell Pink (57)
Ceiling Color	White Paper (.81)	

Similar data inputs were associated with both software runs. A mounting height of 20 feet was utilized, a rectangular room type and horizontal ceiling type were assumed. The work plane was estimated to be three feet from floor level and the luminaires were surface mounted in both cases. The high bay narrow distribution ventilated reflector with clear HID lamp (1,000 watts - 140,000 lumens) was used in both calculations.

Not all of the data provided within the luminaire output report deserve delineation. It will be left up to the user to understand the basic data inputs, since a basic understanding of lighting design is assumed. Among the data deserving qualitative focus are the lamp dirt depreciation factor, room surface dirt depreciation factor, $C U$ value, reflectance values, room sizes, mounting height, lamp lumen depreciation, and the economics associated with the installation and operation of the lamping system.

Lamp Dirt Depreciation

By cleaning fixtures and lamps more frequently, even though the operating environment is extremely dirty, we can maintain a high LDD factor. This is evidenced in the output reports. Scenario number one assumed a very clean operating environment and a luminaire cleaning interval of three years. The associated LLD was .84. Output report number two assumed a very dirty operating environment and a luminaire cleaning interval of . 25 years. The associated LLD was . 91 .

The higher LDD value was associated with the dirtier environment. The reason for this lies in the frequent cleaning of the luminaires.

The same concepts apply to the room surface dirt deprecation.
In summary, LDD and RSDD may be maintained at high levels if frequent cleaning of the luminaries and room surfaces is performed. This, however, is not without cost since increased maintenance will be required.

Coefficient of Utilization

The coefficient of utilization is primarily based on the room dimensions and room surface reflectances. Data input for scenario number one resulted in a $C U$ value of .74 while data input associated with scenario number two resulted in a $C U$ value of .88 .

Why does this difference exist? Clean surfaces and surface colors of higher reflectance provide more illumination at the work plane level with the same lumen output. The larger the room and the lighter the color of the room surfaces the lower the rate of light absorption.

In our example applications these concepts are pointed out. Output report number one utilized a room width and length of 100 feet; number two a room width and length of 200 feet. Scenario number two utilized wall and ceiling colors significantly higher than those used in scenario number one.

The room dimensions associated with the second report resulted in a RCR value of 1.0 as compared to an $R C R$ of 2.0 for number one.

The combination of room dimensions and higher room reflectivities resulted in a 15 percent increase in the luminaire $C U$ value.

Lighting Economics

The objective of a routine lighting maintenance program is to maintain a desired light level for the minimum operating and maintenance cost. This objective may be achieved by computing the B/C ratio. The B / C ratio could be represented by the ratio of maintained illumination to the uniform annual cost per unit area. A similar analysis approach could be utilized in analyzing the material and
installation costs. It should, however, be mentioned that the time duration associated with the elapsed time between the obtainment of the initial illumination level and the maintained illumination level is most likely not a single year. The lamp replacement time, which more of ten than not corresponds to the minimum maintained illumination level, should be determined prior to luminaire analysis.

Calculation of the B / C ratio (maintained footcandles/annual operating cost/ft ${ }^{2}$) for scenario number one results in a value of 583. The B/C ratio for scenario two is 777 . Therefore, if analysis were totally based on the annual operating cost per square foot in comparison with the maintained footcandles, we would select scenario number two.

Additional Discussion

It should be noted by referring to the output reports that scenario number two required 32 luminaires (one lamp per luminaire) to illuminate a 40,000 square foot area while scenario number one required 11 luminaires to illuminate a 10,000 square foot area. This indicates that larger areas with higher reflectance surfaces result in more efficient utilization of light.

What about luminaire spacing? If we assume square spacing, e.g., (room area/number luminaires) ${ }^{1 / 2}$, then both scenarios result in spacings exceeding 30 feet which is twice as large as the suggested maximum spacing (14 feet, e.g., S/MH x MH). Therefore, uniform light distributions would possibly not be obtained for either scenario utilizing the narrow distribution reflector with large lumen output HID lamp.

It is possible that a wide distribution reflector or a lower lumen output lamp be considered to aid in the maintenance of uniform light distributions.

If maximum spacing were not violated by both scenarios, scenario number two would be selected over scenario number one provided that both room designs were pragmatic and cleaning costs were not prohibitive.

CHAPTER VII

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This report has presented the development of a general lighting system software model which will enable the user to calculate average illuminance for most general lighting systems. The software utilizes the zonal cavity and lumen method approach to quantitative lighting design, where the proper utilization of the lumen method assumes a relative uniform spacing of luminaires within the interior, surfaces of known diffuse reflectance and an empty room with no interference from partitions or furniture. Proper utilization of the software and analysis of the calculated lighting data will allow the lighting designer to more intelligently analyze general lighting system alternatives.

General conclusions drawn from this research effort are:
(1) Average illuminance calculating routines may be software encoded in basic and run on the IBM PC.
(2) The time associated with the performance of average illuminance calculations may be significantly reduced through the utilization of a microcomputer.
(3) Flux transfer theory equations may be accurately modeled in basic language.
(4) Three variable interpolation/extrapolation routines may be accurately encoded in basic language.
(5) Average illuminance calculations are quite complex due to the large number of contributing factors that are involved, e.g., room dimensions, room reflectances, luminaire/lamp types, luminaire/lamp data, and environmental factors.

Several areas are recommended for further research and development. Further research in these areas will improve the operation of the software model and the accuracy and pragmatism of the model.

Areas deserving future research and development are as follows:
(1) Diskette Load and Unload Routine - An interactive diskette load and unload routine should be established to allow the addition of new luminaire data on a new diskette once the present diskette is full.
(2) Modification of Select Parameters - Add a temporary data storage file to enable the user to modify one or several data inputs from a previous run without necessarily modifying all previous data inputs.
(3) Spacing Criterion Parameter - The addition of the spacing criterion parameter to the luminaire data base will allow a more in-depth analysis of luminaire spacing.
(4) Expansion of Lighting Software Analysis - The addition of subprograms to enable the consideration of partitioned rooms, brightness levels, luminance, and daylighting.
(5) Flux Transfer Theory - Consider the utilization of flux transfer theory to calculate $C U$ values. This modification will reduce user input time and diskette storage space.
(6) Advanced Economics - The addition of lifecycle costing techniques including consideration of group replacement/ singular replacement, maintenance costs, room cleaning costs, and luminaire cleaning costs.
(7) Demand Billing - The addition of a demand input to fit localized utility billing.
(8) Surface Textures - Future research into the effects of surface texture on surface reflections would improve model accuracy.
(9) Field Test - Illumination calculations assume ideal conditions such as uniform diffusing reflective surfaces and empty rooms, which are rarely found in practice. There is, therefore, possibly an element of uncertainty in the calculations. Field testing of the calculated illuminances will identify the error of uncertainty to be accounted for in future analyses.

SELECTED BIBLIOGRAPHY

Ewing, J. L. "Extending the Coefficient of Utilization." Journal of Illuminating Engineering, July, 1978, pp. 207-211.

Frier, John P. and M. E. Frier. Industrial Lighting Systems. New York: McGraw Hill Book Co., Inc., 1980.

Hewitt, H. and A. S. Vause. Lamps and Lighting. New York: American Elsevier Publishing Company, Inc., 1966, pp. 124-180.

Illuminating Engineering Society of North America. "Lighting Calculations." I.E.S. Lighting Handbook. New York: 6th Ed., Sec. 9, 1981.

Illuminating Engineering Society of North America. American National Standard Practice for Industrial Lighting. New York: ANSI/IES RP-7-1979, 1979.

Jones, J. R. and B. F. Jones. "Using the Zonal-Cavity System in Lighting Calculations." Part I, Illuminating Engineering, May, 1964, Sec. II, pp. 413-415.

Napoli, Tony. "Computer Applications in the Design Professions." Lighting Design and Application, June, 1984, pp. 18-21.

Napoli, Tony. "Computers and Lighting Calculations." Lighting Design and Application, June, 1984, pp. 22-25.

Ottaviano, V. B. Energy Management. Melville, New York: OTS Publication, 1984.

Pierpoint, W. "Energy Conservation from Lighting Maintenance." Journal of Illuminating Engineering Society, July, 1979, pp. 195-200.

Pritchard, D. C. Lighting. 2nd 3d. New York: Lonyman Group Ltd., 1978, pp. 42-80.

Truister, John E. Principles of Illumination. Indianapolis, Indiana: Howard W. Sams and Co., Inc., 1980, pp. 45-97.

Zekowski, G. "The Undeification of the Calculation." Lighting Design and Application, February, 1984, pp. 27-29.

APPENDIXES

APPENDIX A

DESCRIPTION OF FILES, ARRAYS, AND VARIABLES

LUMDSC Sequential file utilized in the storage of luminaire descriptions.

FILENM $\$$

LUMDDC

ROOMSD

Major Arrays
LUMDESC $\$(J)$ Array utilized in the temporary storage of luminaire descriptions. The array is dimensioned to 100. String length may not exceed 80 characters.

CU! (Row, Col.) Array utilized in the temporary storage of $C U$ values. Maximum row dimension is 11 , and the maximum column dimension is 15.

COLR!(I) Array utilized in the storage of reflection factors associated with the colors presented in the program screen entitled "Colored Surfaces Selection Guide". The array is dimensioned to 24 values.

MAIN\$	String variable represented by "LUMEN". Utilized in the
	determination of which coefficient of utilization file to
	write to or read from or to create, (e.g., FILENM\$ (vari-
	able file name) = MAIN\$ + STRG(LUMNO\$) - i.e., LUMEN1,
	LUMEN2, etc.)
MAXSP	Variable representing the maximum spacing to mounting
	height ratio. The variable is allocated to one field of
	the data file FILENM ${ }^{\text {d }}$
MAINTCAT	Represents the maintenance category (Numbers 1-5) asso-
	ciated with the luminaire type, allocated to one field of
	the data file FILENM\$.
LUMDIST	Represents the luminaire distribution type. The
	luminaire distribution may be direct, semi-direct,
	direct-indirect, semi-indirect, or indirect. The value
	assigned to LUMDIST is an integer value between 1 and 5.
LAMPLENGTH	Integer value representing the length of the lamp in
	feet. Value must be greater than or equal to 0 and less
	than 8.
ROW	Subscript for CU array, e.g., CU(row, column).
COLUMN	Subscript for coefficient of utilization array, e.g.,
	CU(row, column).
LAMPLIFE	Expected lamp life in hours: (User input).
OPERHRS	Lamp operating hours per year: (User input).
LLD	Decimal value representing the lamp lumen depreciation
	factor, i.e., .70, .60, etc.: (User input).
LBO!	Value representing the lamp burn-out factor (decimal
	value of the number of bulbs expected to be burning at
	replacement time): (User input).

LAMPLUM	Integer value representing the initial lumens per lamp at
	installation time: (User input).
LAMP	Integer value representing the number of lamps per luminaire: (User input).
LAMPWATT	Value representing the wattage per lamp: (User input).
CUCORRECT\$	String variable containing user's answer to yes or no
	type questions.
MAINTILLUM	Integer value representing the desired maintained illumi-
	nation level in footcandles, i.e., $70,60,50$, etc.:
	(User input).
LUMCOST:	The dollar cost per luminaire: (User input).
LUMINSTALL!	The installation cost per luminaire: (User input).
LUMEXIST	The number of existing luminaires (Retrofit System) :
	(User input).
EXISTSP!	The maximum existing spacing of the luminaires.
ENERGYCOST!	\$/KWH: (User input).
LAMPCOST:	The individual lamp cost: (User input).
LAMPLAB!	The labor cost per lamp installation: (User input).
ROOMSHAPE	The decision variable for the room shape selection screen.
ROOMWIDTH	The width of the room (ft): (User input).
ROOMLENGTH	The length of the room (ft): (User input).
MOUNTHT !	The fixture mounting height (ft) above the work plane:
	(User input).
ROOMRADIUS:	The radius (ft) of a circular room: (User input).
AREAPER!	The perimeter (ft) of an irregularly shaped room: (User
	input).

ROOMAREA	The area of the room (ft ${ }^{2}$): (User input).
RCR!	The room cavity ratio for the room type being considered.
REFLECTWALL:	The decimal reflectivity value of the walls.
REFLECT	
CEILING!	The decimal reflectivity value of the ceiling.
CEILINGTYPE	Variable depicting the ceiling type, e.g., (1) horizon-
	tal, (2) nonhorizontal: (User input).
SURFACEMT	Variable depicting the method of luminaire mounting. (1)
	surface mounted or recessed, (2) not surface mounted or
	recessed: (User input).
BASEAREA	Ceiling or floor area (ft ${ }^{2}$) : (User input).
WALLAREA!	Ceiling cavity wall area (ft ${ }^{2}$) : (User input).
CEILINGL!	Ceiling cavity length (ft): (User input).
CEILINGW!	Ceiling cavity width (ft): (User input).
CAVITYD:	Ceiling or floor cavity depth in feet: (User input).
PCEFF	The effective ceiling cavity reflectance.
A1	Area of the ceiling opening in sq. ft. (nonhorizontal
	ceilings): (User input).
A2	Area of ceiling surface (nonhorizontal ceiling - ft ${ }^{2}$)
	(User input).

APPENDIX B

CALCULATIONS

```
Room Cavity Ratio (Rectangular Room)
= 5 x (Mounting Ht. Above the Work Plane)
    x (Room Length + Room Width)
Room Cavity Ratio (Circular Room)
= (5 x Mounting Ht. Above the Work Plane)/(Room Radius)
Room Cavity Ratio (Irregular Room)
= (2.5 x Area Perimeter)/(Room Area)
Effective Cavity Reflectance - PCC (Rectangular Cavity)
= AB/AW PW(1 - F) }\mp@subsup{}{}{2}\times(1+PBF)2/1-[1-AB/AW(1 - F)]PW
    -AB/AW(1 - F)}\mp@subsup{}{}{2}\textrm{PWPB
```

where
$\mathrm{AB}, \mathrm{AW}=$ Area of the Cavity Base and Walls, respectively
$\mathrm{PW}, \mathrm{PB}=$ Reflectance of Cavity Base and Walls, respectively
F = Radiative exchange factor between the cavity opening and the cavity base;
where

$$
\begin{aligned}
F= & 2 / \pi x y\left[\operatorname{Ln}\left[\left(1+x^{2}\right)\left(1+y^{2}\right) / 1+x^{2}+y^{2}\right]^{1 / 2}\right. \\
& +y\left(1+x^{2}\right)^{1 / 2} \tan ^{-1}\left[y /\left(1+x^{2}\right)^{1 / 2}\right]+ \\
& \left(1+y^{2}\right)^{1 / 2} \tan ^{-1}\left[x /\left(1+y^{2}\right)^{1 / 2}\right]-y \tan ^{-1}(y) \\
& \left.-x \tan ^{-1}(x)\right]
\end{aligned}
$$

where

$$
x=\frac{\text { Cavity Length }}{\text { Cavity Depth }} \quad y=\frac{\text { Cavity Width }}{\text { Cavity Depth }}
$$

and the arc tangents are expressed in radians.

```
    Effective Cavity Reflectance - PCC (Nonhorizontal Ceilings)
    = pAo/As - pAs + pAO
where
    Ao = Area of Ceiling Opening
    As = Area of Ceiling Surface
    p= Reflectance of Ceiling Surface
    Luminaire Dirt Depreciation Factor (LDD)
    = e
where
\(A\) and \(B\) are luminaire dirt depreciation constants and \(t\) is the luminaire cleaning interval in decimal years.
Room Surface Dirt Depreciation (RMSD)
Calculations utilized in determination of the room surface dirt depreciation factor are similar in concept to those used in extrapolation/interpolation of the \(C U\) value (see CU calculation)
Light Loss Factor (LLF)
\(=\) (Room Surface Dirt Depreciation Factor) \(\mathbf{x}\) (Lamp Lumen Deprecation Factor) \(\mathbf{x}\) (Lamp Burn-Out Factor) \(\mathbf{x}\) (Luminaire Dirt Depreciation Factor)
Maintained Illumination Level (MAINTILLUM)
\(=\) (Number Luminaires \(\mathbf{x}\) Number Lamps/Luminaire \(x\) Number Lumens/ Lamp \(x\) CU \(\times\) LLF)/Area of Room
Initial Illumination Level (INITILLUM)
\(=\quad\) Maintained Illumination Level/LLF
Maximum Suggested Spacing for Uniform Lighting Levels (MAXSPACING)
\(=\) (Mounting Height of Luminaires Above the Work Plane) \(\mathbf{x}\) (Maximum Spacing to Mounting Height Ratio)
```

```
Watts/Luminaire (LUMWATTS)
    = (Watts/Lamp x Number Lamps/Luminaire) + Ballast Wattage
    Total Number of Lamps (LAMPTOTAL)
    = (Number Luminaires) x (Number Lamps/Luminaire)
    Number Lumens/Luminaire (LUMUM)
    = Number Lumens/Lamp x Number Lamps/Luminaire
    Total Lamp Cost (TOTLAMPCOST)
    = (Total Number of Lamps) x (Lamp Cost)
    Total Lamp Installation Cost (LAMPLABCOST)
    = (Total Number of Lamps Installed) x (Installation Cost/Lamp)
    Total Luminaire Cost (TOTLUMCOST)
    = (Number Luminaires Installed) x (Cost/Luminaire)
    Total Luminaire Installation Cost (LUMLABCOST)
    = (Total Number of Luminaires Installed) x (Installation Cost/
    Luminaire)
    Total Material and Installation Cost (TOTALCOST)
    = Total Lamp Cost + Total Luminaire Cost + Total Lamp
        Installation Cost + Total Luminaire Installation Cost
    Annual Operating Cost
    = (Energy Cost) x (Lamp Operating Hours/Year) x (Watts/
    Luminaire) x (Number Luminaires)/1000
Annual Lamp Replacement Cost
    = (Lamp Life/Lamp Operating Hours/Year) x (Total Number of
        Lamps x Installation Cost/Lamp)
```

Total Operating Cost
$=\quad$ Annual Operating Cost + Annual Lamp Replacement Cost

Interpolation/Extrapolation Case Descriptions

The following is a presentation of the numerous cases that are considered by the software program in interpolating/extrapolating the CU values from the coefficient of utilization table.

Case Numbers

Case Descriptions

Ceiling Reflectance = Table Value (e.g., 80, 70, 50, 30, 10). Wall Reflectance $=$ Table Value (e.g., 50, 30, 10). $\operatorname{RCR}=0,1,2,3, \ldots, 10$ or $\operatorname{RCR}\langle>0,1,2,3, \ldots, 10$
$(3,4) \quad$ Ceiling reflectance $=$ Table Value (e.g., 80, 70, 50, 30, 10). Wall Reflectance < > Table Value but between Table Values, e.g., between 50,30 , and $10 . \quad \operatorname{RCR}=0,1$, $2,3, \ldots, 10$ or $\operatorname{RCR}<>0,1,2,3, \ldots, 10$.
$(5,6) \quad$ Ceiling Reflectance $=$ Table Value, Wall Reflectance $<$ > Table Value and outside Table Values, e.g., 50 and 10.
(7, 8) Ceiling Reflectance < > Table Value, Wall Reflectance $=$ Table Value, e.g., 50, 30, 10. $\mathrm{RCR}=0,1,2,3, \ldots, 10$ or $\mathrm{RCR}<>0,1,2,3, \ldots, \mathrm{I}^{\prime} 0$.
(9, 10) Ceiling Reflectance < > Table Value, Wall Reflectance < > Table Value but between Table Values, e.g., between 50,30 , and $10 . \operatorname{RCR}=0,1,2,3, \ldots, 10$ or RCR $<>0,1,2,3, \ldots, 10$.
(11, 12)
Ceiling Reflectance < > Table Value, Wall Reflectance < > Table Value and outside Table Values, e.g., outside 50 and $10 . \operatorname{RCR}=0,1,2,3, \ldots, 10$ or $R C R<>$ $0,1,2,3, \ldots, 10$.

To aid the user in understanding how the interpolation/ extrapolation program operates (utilizes three-way double interpolations in worst case scenario, e.g., ceiling and wall reflectance not equal to tabular value, row value not equal to tabular value), the following example calculations are presented.

Basic Calculation - Case 非3 (Integer RCR Value)

XDIFF! (Difference between the RCR value and the lower datum point ${ }^{1}$ (integer value $\leqq 10$) bounding the RCR value) $=$ RCR (Room Cavity Ratio) - X(I)

XSTO1 Lower row value bounding the $R C R$ value in the CU table. XSTO2 Higher row value bounding the $R C R$ value in the $C U$ table. ST01 Lower (column-wise) bounding datum point for the calculated wall reflectance value.

STO2 Higher (column-wise) bounding datum point for the calculated wall reflectance value.

PCW Wall reflectance value.

[^2]CU(XSTO1, STO2); Represents the lower (number-wise) CU value associated with the lower row value bounding the RCR value and the upper (column-wise) bounding datum point.

CUH! CU value for the lower row value bounding the RCR value. $C U=C U H!$ if XSTO 2 (higher row value) $=0$. = CU1! - YDIFF x (CU1! - CU2!)

Case \#\# (Non-integer RCR Value $\leqq 10$)

Note: Variables/equations presented in Case \#3 apply. Also, XSTO2 is not equal to zero ${ }^{1}$.

```
CUH = CU1! - YDIFF x (CU1: - CU2!): (Reference previous
    discussion)
CUL = CU1! - YDIFF! x (CU1! - CU2!)
```

[^3]where

CU1 and CU2 represent the $C U$ values associated with the higher row value bounding the RCR value in the CU table. CU2 represents the $C U$ value associate with the higher row value bounding the RCR value. $C U=A$ double interpolated value associated with the luminaire and room characteristics being considered.
$=$ CUH! - XDIFF! $\times(C U H!~-~ C U L!) ~$

APPENDIX C

Coefficient of Utilization (Continued)

Luminaire Description Append


```
10
20
30
30
40
50
60
70
80
90
Cgeccmecem"
100 PRINT TAB(26)"PURPOSE:TO PROVIDE THE USER WITH'A DESIGNATED PATHWAY FOR TH
E ACCOMPLISHMENT OF THE PROGRAM GOALS OR OBJECTIVES HE/SHE HAS IN MIND IN A REAS
ONABLY EFFICIENT MANNER"
```



```
Ececcemeccce"
12O PRINT"DO YOU DESIRE TO CONTINUE IN THE HELP SESSION OR DO YOU DESIRE TO PR
OCEED TO THE LIGHT DESIGN SOFTWARE"
130 PRINT:PRINT"TYPE 1 AND HIT THE ENTER KEY IF YOU DESIRE TO CONTINUE IN THE
HELP SESSION.TYPE 2 AND HIT THE ENTER KEY IF YOU DESIRE TO PROCEED TO THE LIGHT
DESIGN SOFTWARE"
140 INPUT DIRECT
150 IF DIRECT=1 THEN GOTO 160 ELSE GOTO 470
160 FDR I=1 TO 1000:PAUSE=1+I:NEXT I:CLS
170 PRINT "PROGRAM OBJECTIVE PATH DESCRIPTION":PRINT
180 PRINT"TO VEIW LUMINAIRE DESCRIPTIONS---SELECT OPTION#1 OR OPTION#3 FROM TH
E MASTER '
190 PRINT TAB(34)"MENU SCREEN.VEIW LUMINAIRE DESCRIPTIONS."
2OO PRINT TAB(34)"RETURN TO MASTER MENU SCREEN"
210 PRINT
¿こం PRINT"TO ADD LUMINAIRE DESCRIPTIONS----SELECT OPTION #3 FROM THE MASTER ME
NU SCREEN."
230 PRINT TAB(34)"RETURN TO MASTER MENU SCREEN:SELECT NEW OPTION":PRINT
240 PRINT"TO MODIFY LUMINAIRE DESCRIPTIONS-SELECT OPTION #3 FROM THE MASTER ME
NU SCREEN"
250 PRINT TAB(34) "MODIFY DESCRIPTION RETURN TO MASTER MENU"
260 PRINT TRB(34)"SCREEN.SELECT NEW OPTION":PRINT *
270 PRINT:PRINT:PRINT TAB(15)"*PERUSE THE OPTIONS/PATHWAYS.TO CONTINUE HIT ANY
KEY*"
28O J$=INKEY$
``90 IF J$="" THEN GOTO 280 ELSE GOTO 300
300 CLS:LDCATE B:1
310 PRINT"TO ADD LUMINAIRE DATA(CU VALUES--SELECT OPTION #1 TO VEIW LUM.DESCRI
PTIONS"
320 PRINT"MAINT. CATEGORY.S/MH RATIO.LIGHT AND TO SELECT LUMINAIRE#.RETURN TO M
ASTER MENU"
330 PRINT"DISTRIBUTION) SCREEN.SELECT OPTION #こ.***WARNING**
*DO NOT"
340 PRINT" . ADD DATA(OPTION#2)UNLESS LUM. # HAS B
EEN SELECTED":PRINT
350 PRINT"TO MODIFY LUMINAIRE DATA--------SELECT OPTION#1.SELECT LUMINAIRE#.SE
LECT "
360 PRINT" OPTION#こ.MODIFY DATA. RETURN TO MASTE
R MENU."
370 PRINT" SCREEN. SELECT NEW OPTION":PRINT
380 PRINT"TO PERFORM LUMINAIRE ANALYSIS---SELECT OPTION#1.SELECT LUM.* AND PRO
CEED"
390 PRINT"ON LUM. /LAMP COMRINATION"
400 PRINT"AND OBTAIN OUTPUT REPORT"
410 PRINT:PRINT
420 PRINT"REVEIW THE OBJECTIVES TO FIND THE APPROPRIATE PATHWAY. IF YOU DESIRE
TO REVEIW FURTHER TYPE 1 IF NOT TYPE こ"
430 INPUT RESUM
440 IF RESUM <> 1 AND RESUM <>こ THEN GOTO 420
450 IF RESUM = 1 THEN GOTO 1EO
4FO, TF RFGIIM =O THFN FOTM }47
```



```
1650
1660'
1670
1680
1690
    OR TO
1700
1710 IF DES $="N" THEN GOTO 172O ELSE GOTO }96
1720 COLOR 4.7:CLS
1730 LOCATE 1.12
1740
1750
1760
1770
1780
1790
1800
1810
1820,
1830
1840
1850
1860
1870
1880
1890
1900,
1910
1920
1930
1940
1950
1360
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
C150
E1EO
2170
2180
2190
2200
玉こ10
こ2こ0
2030
    TO
    MAIN$="LUMEN"
    L=LEN (STR$ (LUMNO))
    LUMNO$=STR$ (LUMNO)
    LUMNO$=MID*(LUMNO$: 2:L-1)
    FILENM$=MAIN$+LUMNO$
    OPEN FILENM$ FOR INPUT AS #1
    WHILE NOT EOF (1)
    INPUT#1. MAXSP.MAINTCAT, LUMDIST. LAMPLENGTH
                                    READ IN LUMINAIRE VALUES
    FOR ROW=1 TO 11
        FOR COLUMN =1 TO 15
                            INPUT #1:CU!(ROW. COLUMN)
        NEXT COLUMN
    NEXT ROW
    WEND
    CLOSE #1
    STANDARD PROGRAM OPERATION
    PRINT TAE(26)"LAMP OPERATING DETAIL ENTRY"
    PRINT TAR(26) "-----------------------------------
    PRINT:PRINT
    INPUT"PLEASE ENTER THE LAMP'S LIFE IN HOURS-*ONLY":LAMPLIFE
    PRINT "PLEASE ENTER THE LAMP OPERATING HRS. PER YEAR-NUMBER ONLY PLEASE
    INPUT OPERHRS
    IF OPRHRS <O THEN PRINT"INVALID ENTRY"
    IF OPERHRS <O THEN GOTO 1950
    PRINT "PLEASE ENTER THE LAMP LUMEN DEPRECIATION FACTOR (LLD)"
    PRINT "AT 7O% OF THE USEFUL LIFE OF THE BULB - DECIMAL FORM PLEASE-"
    PRINT"IE. . . 80. . 70 ETC. ":INPUT LLD!
    IF LLD! <O OR LLD!>1 THEN PRINT"INVALID DATA ENTRY"
    IF LLD! <O OR LLD!> I THEN GOTO 1990
    PRINT "PLEASE ENTER THE DECIMAL VALUE OF THE NUMEER OF BULES EXPECTED":
        "TO EE BURNING AT REPLACEMENT TIME(70x OF USEFUL LIFE.EG.:. 97: ":
        ".85. ETC. ":INPUT LED!
    IF LBO! <O OR LBO!> 1 THEN PRINT"INVALID DATA ENTRY"
    IF LRO! <O OR LBO!> I THEN GOTO 2040
    PRINT "ENTER THE INITIAL LUMENS PER LAMP-NUMBER ONLY PLEASE"
    INPUT LAMPLUM
    IF LAMPLUM <O THEN PRINT"INVALID DATA ENTRY"
    IF LAMPLUM <O THEN GOTO 2O70
    PRINT "ENTER THE # OF LAMPS PER LUMINAIRE-NUMEER ONLY PLEASE"
    INPUT LAMP
    IF LAMP <1 THEN PRINT "INVALID DATA ENTRY"
    IF LAMP<1 THEN GOTO 2110
    CLS
    PRINT "ENTER THE WATTAGE PER LAMP-# ONLY PLEASE":INPUT LAMPWATT
    IF LAMPWATT <O THEN PRINT"INVALID DATA ENTRY"
    IF LAMPWATT <O THEN GOTO 2160
    PRINT "ENTER THE EALLAST WATTAGE/LUMINAIRE-NUMBER ONLY PLEASE-":
            "IF ZERO INPUT O":INPUT BALLAST
    IF BALLAST <O THEN PRINT"INVALID ENTRY"
    PRINT "IS THE DESIGN REING CONSIDERED A NEW DESIGN-Y/N"
    INPUT CUCORRECT*
```


$2: 240$
2250
とこも0
2ご0

ここ80
こころ0
2300
0310
2320
2330
2340
2350
2．360 2370
2380 2390

2400

2410 2420

2430
2440
2450
24も0
2470
2480
2490
2500
2510

2700
2710

こ7き0
2730
2740
2750
27E0
2770
こ780
2790
2800
2810

```
    "SELECTION ENTRY-TRY AGAIN PLERSE"
    IF CUCORRECT\$ () "Y" AND CUCORRECT\$ () "N" THEN GOTO 2こ10
    IF CUCORRECT \(\$=\) "N" THEN DESIGN \(=2\) ELSE DESIGN=1
    IF CUCORRECT \(\$=" N "\) THEN GOTO ごコ80
    PRINT"ENTER THE DESIRED MAINTAINED ILLUMINATION LEVEL IN FOOTCANDLES":
        "(NUMEER ONLY)-EG. . 70.60 .50 ETC. "
    INPUT MAINTILLUM
    IF MAINTILLUM〈1 OR MAINTILLUM〉 100 THEN PRINT"INVALID ENTRY"
    IF MAINTILLUM(1 OR MAINTILLUM) 100 THEN GOTO \(2 こ 70\)
    PRINT"ENTER THE DOLLAR COST PER LUMINAIRE - NUMEER ONLY PLEASE":
        "-NUMBER ONLY" : INPUT LUMCOST!
    IF LUMCOST! <O THEN PRINT "INVALID ENTRY"
    IF LUMCOST! <O THEN GOTO 2310
    PRINT "ENTER THE INSTALLATION COST PER LUMINAIRE-NUMEER ONLY"
    INPUT LUMINSTALL!
    IF LUMINSTALL! <O THEN PRINT"INUALD DATA ENTRY"
    IF LUMINSTALL! <O THEN GOTO 2340
    IF CUCORRECT \(\$=\) "Y" THEN GOTO 2450
    PRINT "ENTER THE NUMBER OF EXISTING LUMINAIRESIN THE RREA ":
            "EEING CONSIDERED FOR RETROFIT-NUMEER ONLY ": INPUT LUMEXIST
    IF LUMEXIST <O THEN PRINT"INVALID DATA ENTRY"
    IF LUMEXIST <O THEN GOTO 2390
    PRINT "ENTER THE MAXIMUM EXISTING SPACING OF THE LUMINAIRES ":
            "IN FEET-NUMBER ONLY": INPUT EXISTSP!
    IF EXISTSP! <O OR EXISTSP!=0 THEN PRINT"INVALID ENTRY"
    IF EXISTSP! <O OR EXISTSP! \(=0\) THEN GOTO 2420
```



```
    INPUT ENERGYCOST!
    IF ENERGYCOST! «O THEN PRINT"INVALID ENTRY"
    IF ENERGYCOST! <O THEN GOTO 2450
    CLS
    PRINT "ENTER THE COST PER LAMP IN DOLLARS-NUMEER ONLY"
    INPUT LAMPCOST!
    PRINT "ENTER THE LAEOR COST PER LAMP INSTALLATION IN DOLLARS":
        "NUMBER ONLY PLEEASE" : INPUT LAMPLAB!
            ROOM CAVITY RATIO DETERMINATION
    CLS
    LOCATE 1. 12
    PRINT TAB(14)"THE FOLLOWING PROGRAMMING SECTION WILL DETERMINE THE ":
    TAB(14) "ROOM CAVITY RATIO FOR THE AREA UNDER CONSIDERATION"
    PRINT: PRINT
    PRINT TAB (2G) "*******************************"
    PRINT TAB(26)"*A ROOM SHAPE SELECTION SCREEN*"
    PRINT TAB(26)"* *"
    PRINT TAB(26)"*
    PRINT TAB(26)"*
    PRINT TAB(26)"*
    PRINT TAB(26)"*
    PRINT TAB(26)"*
    PRINT TAB(26)"*
                            *3--I RREGULAR ROOM
    PRINT TAB (26)"*******************************"
    PRINT TAB(26)"-----------------------------***
    PRINT "PLEASE INPUT THE \# CORRESPONDING TO THE DESCRIPTION BEST ":
    "DESRIBING THE SHAPE OF THE ROOM"
    INPUT ROOMSHAPE
    IF ROOMSHAPE 〈〉1 AND ROOMSHAPE 〈〉こ AND ROOMSHAPE 〈〉 3 THEN :
    PRINT"IMPROPER SELECTION INPUT -PLEASE TRY AGAIN"
    IF ROOMSHAPE << 1 AND ROOMSHAPE (》 2 AND ROOMSHAPE () 3 THEN GOTO 2530
    IF ROOMSHAPE \(=1\) THEN GOTO 2860
    IF ROOMSHAPE \(=2\) THEN GOTO 2760
    IF ROOMSHAPE \(=3\) THEN GOTO 2930
    PRINT "ENTER THE ROOMLENGTH IN FEET-NUMEER ONLY"
    INPUT ROOMLENGTH!
    PRINT "ENTER THE ROOMWIDTH IN FEET-NUMBER ONLY"
    INPUT ROOMWIDTH!
    PRINT "ENTER THE FIXTURE MOUTING HEIGHT ABOVE THE WORKPLANE":
        "IN FEET-NUMEER ONLY"
    INPUT MOUNTHT"
```


3400
3410
34き0
3430
3440
3450
3460
3470
3480
3430
3500
3510

3520

3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630

3650
3660
3670

3680

3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3日こ0
3830
． 0 AND
3840
3850
－AGAIN＂
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960

```
    ORINT TAB(こ`)"COLORED SURFACES SELECTION GUIDE"
    PRINT:PRINT TAE(33)"COLOR" COLOR DESCRIPTION"
    PRINT:PRINT TAE(36)"15" TAE(40)"PALE AZURE"
    PRINT TAE(36)"16" TAE(40) "SKY ELUE"
    PRINT TAE(3E)"17" TAE(4O)"SHELL PINK"
    PRINT TAE(36)"18" TAE(40)"PINK"
    PRINT TAE(36)"19" TAE(40)"CARDINAL RED"
    PRINT TAE(36)"こ0" TAE(40)"IVORY TAN"
    PRINT TAE(3E)"こ1" TAE(40)"CAEN STONE"
    PRINT TAE(36)"ここ" TAB(40)"PRIM ROSE"
    PRINT TAR(36)"23" TAE(40)"SILVER GRAY"
    PRINT TAB(36)"こ4" TAB(40)"PEARL GRAY"
    DATA . 81:. 73,.46:. 18..76:.51..37:. 22:.67:.47
    DATA .43:.21:.14!.53:.36:. 31:.57:.51%. 27:. 58
    DATA . 72:.67:. 50:.70
    FOR I =1 TO 24
        READ COLR!(I)
    NEXT I
    INPUT"INPUT THE NUMEER ASSOCIATED WITH THE COLOR OF THE WALLS--":WALL
    IF WALL <1 OR WALL >24 THEN PRINT"INVALID DATA ENTRY -TRY AGAIN"
    IF FIX(WALL)-WALL<>O THEN PRINT"INVALID DATA ENTRY-TRY AGAIN"
    IF WALL<1 OR WALL\ 24 THEN GOTO }358
    IF FIX(WALL)-WALL (>O THEN GOTO 3580
    REFLECTWALL! = COLR (WALL)
    INPUT"PLERSE INPUT THE NUMEER ASSOCIATED WITH THE CEILING COLOR-".CEILIN
    IF CEILIN <1 OR CEILIN\ 24 THEN PRINT"INVALID DATA ENTRY-TRY AGAIN"
    IF FIX(CEILIN)-CEILIN<>O THEN PRINT"INVALID DATA ENTRY-TRY AGAIN"
    IF CEILIN(1 DR CEILIN) 24 THEN GOTO }364
    IF FIX(CEILIN)-CEILIN<>O THEN GOTO }364
    REFLECTCEILING!=COLR(CEILIN)
    INPUT"PLEASE ENTER THE NUMEER ASSOCIATED WITH THE FLOOR COLOR-".FLOOR
    IF FLOOR(1 OR FLOOR) こ4 THEN PRINT"INVALID DATA ENTRY-TRY AGAIN PLEASE"
    IF FLOOR <1 OR FLOOR \24 THEN GOTO 3700
    IF FIX(FLOOR)-FLOOR<>O THEN GOTO 3700
    FLOORREF=COLR (FLOOR)
        IF SELECT=1 THEN PRINT"PLEASE ENTER IN DECIMAL FORM THE REFLECTIVITY":
        "OF THE WALLS IE.: RELECTIVITY\O.O AND <1.O" ELSE GOTO 3870
        INPUT REFLECTWALL!
        IF REFLECTWALL!>1 OR REFLECTWALL!<O THEN PRINT"INVALID DATA ENTRY":
        "TRY AGAIN PLEASE"
        IF REFLECTWALL!)1 OR REFLECTWALL! <O THEN GOTO 3750
    PRINT"PLEASE ENTER IN DECIMAL FORM THE REFLECTIVITY OF THE CEILING":
    "I.E. . > =0.O AND <=1.O"
    INPUT REFLECTCEILING!
    IF REFLECTCEILING!>1 OR REFLECTCEILING!<O THEN PRINT"INVALID DATA ":
    "ENTRY-PLERSE TRY AGAIN"
    IF REFLECTCEILING!>1 OR REFLECTCEILING!<O THEN GOTO 37Э0
    PRINT"PLEASE ENTER IN DECIMAL FORM THE REFLECTIVITY OF THE FLOOR.E.G.: )=0
    <" 1.0"
    INPUT FLOORREF!
    IF FLOORREF!>1 OR FLOORREF!〈O THEN PRINT"INVALID DATA ENTRY-PLEASE TRY --
    IF FLOORREF!> 1 OR FLOORREF! <O THEN GOTO }383
    INPUT"IS THE CEILINGTYPE (1) HORIZONTAL (2)NONHORIZONTAL":CEILINGTYPE
    IF CEILINGTYPE<<1 AND CEILINGTYPE<<こ THEN PRINT"INVALID DATA ENTRY":
    "TRY AGAIN PLEASE"
    IF CEILINGTYPE<<1 AND CEILINGTYPE<<2 THEN GOTO 3870
    IF CEILINGTYPE=2 THEN GOTO 4310
    PRINT"ARE THE LUMINAIRES SURFACE MOUNTED OR RECESSED?-IF SURFRCE "
    PRINT"MOUNTED TYPE 1 IF NOT TYPE O":INPUT SURFACEMT
    IF SURFACEMT () 1 AND SURFACEMT ()O THEN PRINT"INVRLID DATA ENTRY-TRY ":
    "AGAIN PLERSE"
    IF SURFACEMT \)1 AND SURFRCEMT (>0 THEN GOTO 3310
    IF SURFACEMT =1 THEN GOTO 4360
    INPUT"ENTER THE ARER OF THE CEILING CAVITY EASE--".EASEAREA!
```


[^4]
4510 IF FLOORW＝O OR FLOORW ©O THEN GOTO 4430

4520 print＂please enter the distance from the floor to the workplane level．e．g ．$)=0.0$＂
4530 INPUT CAVITYD！
4540 IF CAVITYD！＝0 OR CAVITYD：© 0 THEN PRINT＂INVALID DATA ENTRY－MUST EE $>=0.0$＂
4550 IF CAUITYD！＝0 OR CAVITYD！<0 THEN GOTO 45こO
45EO X＝FLOORL／CAVITYD！
$4570 \quad \mathrm{Y}=\mathrm{FLOORW}$ ！／CRVITYD！
4580 $A!=2 /(3.14 * X * Y)$

4610 D！＝ATN（Y／（1＋（X＾气））＾．S $)$
$4620 \quad E!=X *(1+(Y \wedge 2)) \wedge .5$
4630 F！＝ATN（X／（1＋（Y＾2））＾． 5 ）
$4640 \mathrm{G}!=(-\mathrm{Y} * \mathrm{ATN}(\mathrm{Y}))-(\mathrm{X}$ ATN $(\mathrm{X}))$
$4650 H!=A!*((2.3 * \operatorname{LOG}(B!))+(C!* D!)+(E!* F!)+G!)$
4660 FLOORREF $=($ BASEAREA！／WALLAREA $) *($（REFLECTWALL！）＊（（1－H！）＾2））
4670 FLOORREFこ＝（（1＋FLOORREF！＊H）へこ）
4680 FLOORREF3＝（（1－GASEAREA！／WALLAREA！）＊（1－F！）＊（REFLECTWALL！））
4690 FLOORREF4＝（－（BASEAREA！／WALLAREA！）＊（（1－H！）へ2））＊REFLECTWALL！
4700 FLOORREFS $=((H!) へ$ ）$) * F L O O R R E F!$
4710 FLOORREF ！＝（（FLOORREF 1 ＊FLOORREF2）／（FLOORREF3＋FLOORREF4））＋FLOORREF5
4720 LPRINT＂FLOORREF＝＂．FLOORREF
4730 IF FLOORREF！）＝． 17 AND FLOORREF！（ $=.23$ THEN GOTO 5040
4740 ＇FLOOR REFLECTANCE RDJUSTMENT FACTOR SECTION
4750 OPEN＂FLOORADJ＂FOR INPUT AS＂ 1
$4760 \quad$ FOR ROW $=1$ TO 10
FOR COLUMN＝ 1 TO 12
INPUT \＃1．ADJ！（ROW．COLUMN）
NEXT COLUMN

NEXT ROW

RCRNEW！＝CINT（RCR！）
IF RCRNEW） 10 THEN RCRNEW $=10$
IF RCRNEW＜ 1 THEN RCRNEW $=1$
$Z(1)=8050: Z(2)=8030: Z(3)=8010: Z(4)=7050: Z(5)=7030: Z(6)=7010: Z(7)=5050$
$Z(8)=5030: Z(9)=5010: Z(10)=1050: Z(11)=1030: Z(12)=1010$
IF PCEFF！ l ． 8 OR PCEFF！$=$ ． 8 THEN PCEF $!=.8$
IF PCEFF！！ 75 AND PCEFF！（． 8 THEN PCEF！$=.8$
IF PCEFF！$\} .6$ AND PCEFF！$=.75$ THEN PCEF！$=.7$
IF PCEFF！）． 3 AND PCEFF！$=.6$ THEN PCEF！$=.5$
IF PCEFF！＞． 1 AND PCEFF！＜$=3$ THEN PCEF！$=1$
IF PCEFF！$\{=.1$ THEN PCEF！$=.1$
IF REFLECTWALL）$=.5$ THEN REFLECT $=.5$
IF REFLECTWALL）$=.4$ AND REFLECTWRLL（． 5 THEN REFLECTWALL $=. S$
IF REFLECTWALL）$=.3$ AND REFLECTWALL＜． 4 THEN REFLECT $=.3$
IF REFLECTWALL）$=1$ AND REFLECTWALL $<.3$ THEN REFLECT＝． 1
PCEFNEW＝PCEF ！＊ 10000
YUALUE＝PCEFNEW＋（REFLECT＊100）
FOR $I=1$ TO 12
IF $Y V A L U E=Z(I)$ THEN GOTO 5010
NEXT I
FACTOR＝ADJ！（RCRNEW．I）
CLOSE\＃1

5030 ．

INITIALIZE ROW COUNTER RRRAY TO RESPECTIVE VALUES
FOR $I=1$ TO 11
$\mathrm{X}(\mathrm{I})=\mathrm{I}-1$
CHECK FOR RCR VALUES OUTSIDE THE TAELE
NEXT I
IF RCR！©O THEN RCR！$=0$＇IF ROOM CAVITY RATIO＜O SET＝0
IF RCR！ 110 THEN RCR $=10$＇IF ROOM CRUITY RATIO） 10 SET $=10$
CHECK FOR RCR VALUES EXACT TO THOSE IN THE TAELE
FOR $\mathrm{I}=1$ TO 11
IF RCR！$=\mathrm{X}(1)$ ，THEN GOTO 5210
NEXT I


```
5770
5780
1865
5790
5800
5810
5820
5830
5840
S850
5860
5870
5880
5890
5900
5910
5920
5330
5940
5 9 5 0
5 9 6 0
5970
5980
5990
6 0 0 0
6 0 1 0
6 0 2 0
6 0 3 0
6 0 4 0
6 0 5 0
6 0 6 0
6 0 7 0
EOBO
6 0 9 0
```

 YSTO11 = YSTO1-1:YSTO22 = YSTOE-1
    ```
    YSTO11 = YSTO1-1:YSTO22 = YSTOE-1
                        DETERMINE DIFFERENCE BETWEN C4 SET UALUES SUCH THAT EXACT
                        DETERMINE DIFFERENCE BETWEN C4 SET UALUES SUCH THAT EXACT
                        CU VALUE MAY EE EXTRAPOLATED
                        CU VALUE MAY EE EXTRAPOLATED
                        DETERMINE DIFFERENCE BETWEN C4 SET URLUES SUCH THAT EXACT C
                        DETERMINE DIFFERENCE BETWEN C4 SET URLUES SUCH THAT EXACT C
                    CU VALUE MAY EE EXTRAPOLATED
                    CU VALUE MAY EE EXTRAPOLATED
    CUYSTO1DIFF! = CU(XSTO1.YSTO11) - CU(XSTO1.YSTO1)
    CUYSTO1DIFF! = CU(XSTO1.YSTO11) - CU(XSTO1.YSTO1)
    CUYSTOEDIFF! = CU(XSTO1.YSTOここ) - CU(XSTO1.YSTOE)
    CUYSTOEDIFF! = CU(XSTO1.YSTOここ) - CU(XSTO1.YSTOE)
        CUYSTO1NEW! = CU!(XSTO1.YSTO1) - ((10-REFLECTWALL!)/ZO) * CUYSTOIDIFF!
        CUYSTO1NEW! = CU!(XSTO1.YSTO1) - ((10-REFLECTWALL!)/ZO) * CUYSTOIDIFF!
    CUYSTOZNEW! = CU(XSTO1.YSTOE) - ((10-REFLECTWALL!)/2O) * CUYSTOEDIFF!
    CUYSTOZNEW! = CU(XSTO1.YSTOE) - ((10-REFLECTWALL!)/2O) * CUYSTOEDIFF!
                OBTAIN THE CEILING REFLECTIVITY FOR THE HIGHER (NUMBER-WISE)
                OBTAIN THE CEILING REFLECTIVITY FOR THE HIGHER (NUMBER-WISE)
                COLUMN USED IN THE EXTRAPOLATION
                COLUMN USED IN THE EXTRAPOLATION
    A! = Y(YSTO1)/100
    A! = Y(YSTO1)/100
                OBTAIN THE CEILING REFLECTANCE FOR THE LOWER COLUMN
                OBTAIN THE CEILING REFLECTANCE FOR THE LOWER COLUMN
    B! = Y(YSTOZ)/100
    B! = Y(YSTOZ)/100
    A1! = FIX(A!)
    A1! = FIX(A!)
    B1! = FIX(B!)
    B1! = FIX(B!)
    '
    '
    CU1! = CUYSTOZNEW! + (((PCEFF!-E1!)/(A1!-B1!))*(CUYSTO1NEW!-CUYSTOZNEW!))
    CU1! = CUYSTOZNEW! + (((PCEFF!-E1!)/(A1!-B1!))*(CUYSTO1NEW!-CUYSTOZNEW!))
    IF XSTO2 = O THEN CU! = CU1! 'IF ROW VALUE SET THEN SET CU1!=CU
    IF XSTO2 = O THEN CU! = CU1! 'IF ROW VALUE SET THEN SET CU1!=CU
    IF XSTOZ=O THEN GOTO }718
    IF XSTOZ=O THEN GOTO }718
                DETERMINE THE CU VALUE FOR THE NEXT LARGER ROW - ALLOWS
                DETERMINE THE CU VALUE FOR THE NEXT LARGER ROW - ALLOWS
                INTERPOLATION BETWEEN ROW VALUES
                INTERPOLATION BETWEEN ROW VALUES
    FOR J = 1 TO 14
    FOR J = 1 TO 14
    IF REFLECTWALL!<10 AND PCW (Y (J) AND PCW>Y (J+1) THEN YSTO1=J:YSTO2=YSTO1+3
    IF REFLECTWALL!<10 AND PCW (Y (J) AND PCW>Y (J+1) THEN YSTO1=J:YSTO2=YSTO1+3
    NEXT J
    NEXT J
    IF REFLECTWALL! <10 THEN YSTO11 = YSTO1-1 RND YSTOZZ = YSTOR-1
    IF REFLECTWALL! <10 THEN YSTO11 = YSTO1-1 RND YSTOZZ = YSTOR-1
    CUYSTO1DIFF! = CU(XSTO2:YSTO11) - CU(XSTO2: YSTO1)
    CUYSTO1DIFF! = CU(XSTO2:YSTO11) - CU(XSTO2: YSTO1)
    CUYSTOEDIFF! = CU(XSTOZ:YSTOここ) - CU(XSTOZ.YSTOこ)
    CUYSTOEDIFF! = CU(XSTOZ:YSTOここ) - CU(XSTOZ.YSTOこ)
    CUYSTOINEW! = CU(XSTO2. YSTO1) - ((10-REFLECTWALL!)/2O) * CUYSTOIDIFF!
    CUYSTOINEW! = CU(XSTO2. YSTO1) - ((10-REFLECTWALL!)/2O) * CUYSTOIDIFF!
    CUYSTOZNEW! = CU(XSTOZ:YSTOこ) - ((10-REFLECTWALL!)/2O) * CUYSTOZDIFF!
    CUYSTOZNEW! = CU(XSTOZ:YSTOこ) - ((10-REFLECTWALL!)/2O) * CUYSTOZDIFF!
    A! = Y (YSTO1)/100
    A! = Y (YSTO1)/100
    B! = Y(YSTO2)/100
    B! = Y(YSTO2)/100
    A1! = FIX (A!)
    A1! = FIX (A!)
    B1! = FIX (B!)
    B1! = FIX (B!)
    Cu2! = CUYSTOZNEW! + ((PCEFF!-B1!)/(A1!-B1!))* (CUYSTO1NEW!-CUYSTOZNEW!)
    Cu2! = CUYSTOZNEW! + ((PCEFF!-B1!)/(A1!-B1!))* (CUYSTO1NEW!-CUYSTOZNEW!)
    INTERPOLATE THE CU VALUES FOR THE EXACT CU VRLUE
    INTERPOLATE THE CU VALUES FOR THE EXACT CU VRLUE
    CU! = CU1! - (XDIFF! * (CU1! - CU巳!))
    CU! = CU1! - (XDIFF! * (CU1! - CU巳!))
    GOTO 7180
    GOTO 7180
    RCR SET AND NOT SET CASE FOR ALL REFLECTANCE > 5O
    RCR SET AND NOT SET CASE FOR ALL REFLECTANCE > 5O
            FOR J = 1 TO 14
            FOR J = 1 TO 14
    IF PCW <Y(J) AND PCW >Y(J+1) THEN YSTO1 = J+1
    IF PCW <Y(J) AND PCW >Y(J+1) THEN YSTO1 = J+1
    IF PCW <Y(J) AND PCW〉 Y(J+1) THEN YSTOE=(J+1)-3
    IF PCW <Y(J) AND PCW〉 Y(J+1) THEN YSTOE=(J+1)-3
    NEXT J
    NEXT J
    YSTO11 = YSTO1+1 :YSTO22 = YSTO2+1
    YSTO11 = YSTO1+1 :YSTO22 = YSTO2+1
    CUYSTO1DIFF! = CU(XSTO1.YSTO1) - CU(XSTO1.YSTO11)
    CUYSTO1DIFF! = CU(XSTO1.YSTO1) - CU(XSTO1.YSTO11)
    CUYSTOミDIFF! = CU(XSTO1.YSTOこ) - CU(XSTO1.YSTOここ)
    CUYSTOミDIFF! = CU(XSTO1.YSTOこ) - CU(XSTO1.YSTOここ)
    CUYSTOINEW! = CU(XSTO1.YSTO1) + ((REFLECTWALL!-50)/20)*CUYSTO1DIFF!
    CUYSTOINEW! = CU(XSTO1.YSTO1) + ((REFLECTWALL!-50)/20)*CUYSTO1DIFF!
    CUYSTOENEW! = CU(XSTO1.YSTOE) + ((REFLECTWRLL!-50)/2O)*CUYSTOEDIFF!
    CUYSTOENEW! = CU(XSTO1.YSTOE) + ((REFLECTWRLL!-50)/2O)*CUYSTOEDIFF!
    A! = Y(YSTO1)/100
    A! = Y(YSTO1)/100
    B! = Y(YSTO巳)/100
    B! = Y(YSTO巳)/100
    A1! = FIX(A!)
    A1! = FIX(A!)
    B1! = FIX(B!)
    B1! = FIX(B!)
    CU1! = CUYSTOINEW! + ((PCEFF! - A1!)/(E1!-A1!))*(CUYSTOENEW!-CUYSTOINEW!)
    CU1! = CUYSTOINEW! + ((PCEFF! - A1!)/(E1!-A1!))*(CUYSTOENEW!-CUYSTOINEW!)
    IF XSTOR = O THEN CU! = CUI!
    IF XSTOR = O THEN CU! = CUI!
    IF XSTOE =0 THEN GOTO 7180
    IF XSTOE =0 THEN GOTO 7180
DETERMINE CU VALUE FOR THE NEXT LARGER ROW
DETERMINE CU VALUE FOR THE NEXT LARGER ROW
    CUYSTO1DIFF! = CU(XSTOE: YSTO1) - CU(XSTOZ:YSTO11)
    CUYSTO1DIFF! = CU(XSTOE: YSTO1) - CU(XSTOZ:YSTO11)
    CUYSTOZDIFF! = CU(XSTO2. YSTO2) - CU(XSTOZ: YSTOZこ)
    CUYSTOZDIFF! = CU(XSTO2. YSTO2) - CU(XSTOZ: YSTOZこ)
    CUYSTO1NEW! = CU(XSTOZ.YSTO1) + ((REFLECTWALL!-50)/20)*CUYSTOIDIFF!
    CUYSTO1NEW! = CU(XSTOZ.YSTO1) + ((REFLECTWALL!-50)/20)*CUYSTOIDIFF!
    CUYSTOZNEW! = CU(XSTO2:YSTOこ) + ((REFLECTWALL!-50)/2O)*CUYSTOZDIFF!
    CUYSTOZNEW! = CU(XSTO2:YSTOこ) + ((REFLECTWALL!-50)/2O)*CUYSTOZDIFF!
    A! = Y(YSTO1)/100
    A! = Y(YSTO1)/100
    B! = Y(YSTOE)/100
    B! = Y(YSTOE)/100
    A1! = FIX(A!)
```

 A1! = FIX(A!)
    ```
```

6380
E330
6400
E410
E420
6430
E,440
6450
E460
6470
E480
6 4 9 0
6500
6510
6520
E530
6540
ES5O
6560
6570
6 5 8 0
E590
6 6 0 0
E610
6620
6630
6640
6 6 5 0
E660
6 6 7 0
6680
E690
6700
6710
6 7 2 0
6730
6740
6 7 5 0
6 7 6 0
6 7 7 0
6 7 8 0
6790
6 8 0 0
6 8 1 0
6 8 2 0
6830
6 8 4 0
E850
6 8 6 0
870
6 8 8 0
6890
6 9 0 0
6 9 1 0
6920
6930
6 9 4 0
6 9 5 0
6 9 6 0
6970
6 9 8 0
6 9 9 0
7000
7 0 1 0
7020
70.30

```
```

 E1!= FIX(E!)
    ```
    E1!= FIX(E!)
    CU2! = CUYSTO1NEW! + ((PCEFF-A1!)/(E1!-A1!))*(CUYSTOENEW!-CUYSTO1NEW!)
    CU2! = CUYSTO1NEW! + ((PCEFF-A1!)/(E1!-A1!))*(CUYSTOENEW!-CUYSTO1NEW!)
    CU! = CU1! - (XDIFF! * (CU1! - CUZ!))
    CU! = CU1! - (XDIFF! * (CU1! - CUZ!))
    GOTO 7180
    GOTO 7180
        RCR (ROW VALUE) SET CASE (EXACT) FOR CEILING REFLECTANCES
        RCR (ROW VALUE) SET CASE (EXACT) FOR CEILING REFLECTANCES
        EETWEEN TABULAR VALUES AND WALL REFLECTANCES EETWEEN TAEULAR
        EETWEEN TABULAR VALUES AND WALL REFLECTANCES EETWEEN TAEULAR
        VALUES
        VALUES
        RCR (ROW SET) CASE
        RCR (ROW SET) CASE
    RESTDRE
    RESTDRE
    FOR J = 1 TO 4
    FOR J = 1 TO 4
                            IF PCEFF!<K(J).AND PCEFF!\K(J+1) THEN YSTO1=K(J):YSTOZ = K(J+1)
                            IF PCEFF!<K(J).AND PCEFF!\K(J+1) THEN YSTO1=K(J):YSTOZ = K(J+1)
    PCWT1 = (YSTO1 * 100) + REFLECTWALL!
    PCWT1 = (YSTO1 * 100) + REFLECTWALL!
    NEXT J
    NEXT J
    PCWT2 = (YSTO2 * 100) + REFLECTWALL!
    PCWT2 = (YSTO2 * 100) + REFLECTWALL!
    FOR J = 1 TO 14
    FOR J = 1 TO 14
        IF PCWT1<Y(J) AND PCWT1\rangle Y(J+1) THEN YSTO11 = J:YSTO22 = J+1
        IF PCWT1<Y(J) AND PCWT1\rangle Y(J+1) THEN YSTO11 = J:YSTO22 = J+1
    NEXT J
    NEXT J
    TOP=PCWT 1-Y (YSTO22)
    TOP=PCWT 1-Y (YSTO22)
    BOTTOM=Y (YSTO11)-Y(YSTOZZ)
    BOTTOM=Y (YSTO11)-Y(YSTOZZ)
    YDIFF! = TOP/BOTTOM
    YDIFF! = TOP/BOTTOM
    CU1! = CU(XSTO1.YSTO11)
    CU1! = CU(XSTO1.YSTO11)
    CU2! = CU(XSTO1:YSTOE2)
    CU2! = CU(XSTO1:YSTOE2)
    CUHI! = CUI! - (YDIFF!*(CU1! - CUZ!))
    CUHI! = CUI! - (YDIFF!*(CU1! - CUZ!))
    IF XSTOZ >O THEN GOTO 6760
    IF XSTOZ >O THEN GOTO 6760
- DETERMINE THE CU VALUE FOR THE LOWER CEILING REFERENCE VALUE
- DETERMINE THE CU VALUE FOR THE LOWER CEILING REFERENCE VALUE
    FOR J = 1 TO 14
    FOR J = 1 TO 14
        IF PCWT2 (Y(J) AND PCWT2)Y(J+1) THEN YSTO11=J :YSTO22=J +1
        IF PCWT2 (Y(J) AND PCWT2)Y(J+1) THEN YSTO11=J :YSTO22=J +1
    NEXT J
    NEXT J
    YDIFF! = (PCWT2-Y(YSTOZこ))/(Y(YSTO11)-Y(YSTOZこ))
    YDIFF! = (PCWT2-Y(YSTOZこ))/(Y(YSTO11)-Y(YSTOZこ))
    CU1! = CU(XSTO1: YSTO11)
    CU1! = CU(XSTO1: YSTO11)
    CUE! = CU(XSTO1.YSTOL2)
    CUE! = CU(XSTO1.YSTOL2)
    CULO! = CU1! - (YDIFF! * (CU1! - CU2!))
    CULO! = CU1! - (YDIFF! * (CU1! - CU2!))
    CUF! = CULO! + ((PCEFF! - YSTOE)/(YSTO1 - YSTOZ)) * (CUHI!-CULO!)
    CUF! = CULO! + ((PCEFF! - YSTOE)/(YSTO1 - YSTOZ)) * (CUHI!-CULO!)
    IF XSTOZ = O THEN CU! = CUF!
    IF XSTOZ = O THEN CU! = CUF!
            IF XSTOZ = O THEN GOTO }718
            IF XSTOZ = O THEN GOTO }718
    IF XSTO2 >0 THEN GOTO 6810
    IF XSTO2 >0 THEN GOTO 6810
            ROW VALUE NOT SET CASE (I.E. : BETWEEN ROW VALUES)
            ROW VALUE NOT SET CASE (I.E. : BETWEEN ROW VALUES)
    CU11! = CU (XSTO2.YSTO11)
    CU11! = CU (XSTO2.YSTO11)
    CU22! = CU(XSTOZ:YSTOZ2)
    CU22! = CU(XSTOZ:YSTOZ2)
    CUHII! = CU11! - (YDIFF! * (CU11! - CUC2!))
    CUHII! = CU11! - (YDIFF! * (CU11! - CUC2!))
                            DETERMINE THE CU VALUE FOR THE LOWER CEILING REFLECTANCE VALUE
                            DETERMINE THE CU VALUE FOR THE LOWER CEILING REFLECTANCE VALUE
    IF XSTOC>O THEN GOTO 662O
    IF XSTOC>O THEN GOTO 662O
    CU1! = CU(XSTO2. YSTO11)
    CU1! = CU(XSTO2. YSTO11)
    Cu2! = CU(XSTO2. YST022)
    Cu2! = CU(XSTO2. YST022)
    CULO! = CU1! - (YDIFF! * (CUI! - CUZ!))
    CULO! = CU1! - (YDIFF! * (CUI! - CUZ!))
    CUG!=CULO! + ((PCEFF! - YSTO2)/(YSTO1-YSTOZ))*(CUHII! - CULO!)
    CUG!=CULO! + ((PCEFF! - YSTO2)/(YSTO1-YSTOZ))*(CUHII! - CULO!)
    CU! = CUF! - (XDIFF! * (CUF! - CUG!))
    CU! = CUF! - (XDIFF! * (CUF! - CUG!))
    GOTO }718
    GOTO }718
            CEILING REFLECT. EXACT TO A TABULAR VALUE AND WALL REFLECT.
            CEILING REFLECT. EXACT TO A TABULAR VALUE AND WALL REFLECT.
            BETWEEN TAELUAR VALUES
            BETWEEN TAELUAR VALUES
            DETERMINE CU VALUE
            DETERMINE CU VALUE
    FOR I = 1 TO 14
    FOR I = 1 TO 14
            IF PCW <Y(I) AND PCW >Y(I+1) THEN STO1=I:STOE=I +1
            IF PCW <Y(I) AND PCW >Y(I+1) THEN STO1=I:STOE=I +1
    NEXT I
    NEXT I
    YDIFF! = (PCW - Y(STOZ)) / (Y(STO1)-YSTOE))
    YDIFF! = (PCW - Y(STOZ)) / (Y(STO1)-YSTOE))
    CU1! = CU (XSTO1: STO1)
    CU1! = CU (XSTO1: STO1)
    CUE:! = CU (XSTO1: STOE)
    CUE:! = CU (XSTO1: STOE)
    CUH! = CU1! - YDIFF! * (CU1! - CU巳!)
    CUH! = CU1! - YDIFF! * (CU1! - CU巳!)
                        IF XSTOE = O THEN CU! = CUH!
                        IF XSTOE = O THEN CU! = CUH!
                        IF XSTOE = O THEN GOTO 7180
                        IF XSTOE = O THEN GOTO 7180
    CU1: = CU(XSTOR: STO1)
    CU1: = CU(XSTOR: STO1)
    CUE! = CU (XSTO2. STOE)
    CUE! = CU (XSTO2. STOE)
    CUL! = CU1! - YDIFF! * (CU1! - CUミ!)
    CUL! = CU1! - YDIFF! * (CU1! - CUミ!)
    CU! = CUH! - XDIFF! * (CUH! - CUL!)
    CU! = CUH! - XDIFF! * (CUH! - CUL!)
    GחTM 71AO
```

 GחTM 71AO
    ```
\begin{tabular}{|c|c|}
\hline 7040 & PROGRAMMING TO DETERMINE CU UALUE FOR CEILING REFLECTANCE＝ \\
\hline 7050 & TO TABULAR VALUE AND WALL REFLECTANCE＝TAEULAR VALUE \\
\hline 7060 & FOR I \(=1\) TO 15 \\
\hline 7070 & IF PCW \(=\mathrm{V}(\mathrm{I})\) THEN STO1 \(=I\) \\
\hline 7080 & NEXT I \\
\hline 7090 & CUH！\(=\) CU（XSTO1．STO1） \\
\hline 7100 & IF XSTO2 \(=0\) THEN CU！\(=\) CUH！ \\
\hline 7110 & IF XSTOE \(=0\) THEN GOTO 7180 \\
\hline 71 ¢0 & CUL！＝CU（XSTOE：STO1） \\
\hline 7130 & CU！＝CUH！－XDIFF！＊（CUH！－CUL！） \\
\hline 7140 & ＇FLOOR REFLECTIVITY RDJUSTMENT \\
\hline 7150 & IF FLOORREF！\(\langle=17\) THEN CU！\(=\) CU！／FACTOR \\
\hline 7160 & IF FLOORREF ！\(>=23\) THEN CU！\(=\) CU！\(*\) FACTOR \\
\hline 7170 & LPRINT＂FACTOR＝＂FACTOR \\
\hline 7180 & CLS \\
\hline 7190 & LOCATE 1こ： 1 \\
\hline 7200 & ，TABLE DISPLAYING THE USER THE 5 DEGREES OF DIRT CONDITIONS \\
\hline 7210 & PRINT TAB（31）＂FIVE DEGREES OF DIRT CONDITIONS＂ \\
\hline 7220 & PRINT \\
\hline 7230 & PRINT TAB（19）＂（1）＂TAB（33）＂（2）＂TAB（45）＂（3）＂TAE（59）＂（4）＂TAE（70）＂（5）＂ \\
\hline 7240 & PRINT \\
\hline 7250 & PRINT TAB（16）＂VERY CLEAN＂TAB（32）＂CLEAN＂TAB（44）＂MEDIUM＂TAB（58）＂DIRTY＂： TAB（68）＂VERY DIRTY＂ \\
\hline 7260 & PRINT \\
\hline 7270 & PRINT TAB（3）＂GENERATED＂TAB（16）＂NONE＂TAB（29）＂VERY LITTLE＂TAB（4こ）： ＂NOT ICEABLE／＂TAB（55）＂ACCUMULATES＂TAB（68）＂CONSTANT＂ \\
\hline 7280 & PRINT TAB（3）＂DIRT＂TAB（42）＂NOT HEAVY＂TAB（55）＂RAPIDLY＂TAB（68）： ＂ACCUMULATION＂ \\
\hline 7290 & PRINT \\
\hline 7300 & ```
PRINT TAB(3)"AMBIENT"TAB(16) "NONE (OR"TAB(29)"SOME-ALMOST" TAE(42):
"SOME ENTERS"TAB(55) "LARGE AMNT"TAB(68) "ALMOST NONE"
``` \\
\hline 7310 & PRINT TAB（3）＂DIRT＂TAB（16）＂NONE ENTERS＂TAB（29）＂NONE ENTERS＂： TAB（42）＂AREA＂TAB（55）＂ENTERS AREA＂TAB（68）＂EXCLUDED＂ \\
\hline 7320 & PRINT \\
\hline 7330 & PRINT TAB（3）＂REMOVAL OR＂TAB（16）＂EXCELLENT＂TAB（29）＂EETTER THAN＂： TAB（42）＂POORER THAN＂TAB（55）＂ONLY FANS＂TAB（68）＂NONE＂ \\
\hline 7340 & PRINT TAB（3）＂FILTRATION＂TAB（29）＂AVERAGE＂TAB（42）＂AVERAGE＂TAB（55）： ＂OR BLOWERS＂ \\
\hline 7350 & PRINT TAB（55）＂IF ANY＂ \\
\hline 7360 & PRINT \\
\hline 7370 & PRINT TAB（3）＂ADHESION＂TAB（16）＂NONE＂TAE（29）＂SLIGHT＂TAB（42）＂VISIELE＂： TAB（55）＂HIGH－DUE TO＂TAB（68）＂HIGH＂ \\
\hline 7380 & PRINT TAB（42）＂AFTER SOME＂TAB（55）＂OIL：HUMID－＂ \\
\hline 7390 & PRINT TRB（42）＂MONTHS＂TAB（55）＂ITY．OR STAT＂ \\
\hline 7400 & PRINT TAB（55）＂IC＂ \\
\hline 7410 & PRINT \\
\hline 7420 & PRINT＂PLEASE PONDER THE CHARACTERISTICS OF THE VARIOUS ENVIRON－＂： ＂MENTS：AND PREPARE TO ENTER THE FITTING DIRT CONDITION－TYPE 1 ＂： ＂TO CONTINUE＂ \\
\hline 7430 & INPUT ENV：IF ENV＝1 THEN GOTO 7440 ELSE GOTO 74ご0 \\
\hline 7440 & CLS：LOCATE 12． 1 \\
\hline 7450 & PRINT TAB（28）＂DIRT CONDITION EXAMPLES＂ \\
\hline 7460 & PRINT \\
\hline 7470 & PRINT TAB（5）＂VERY CLEAN＂TAB（21）＂CLEAN＂TAE（37）＂MEDIUM＂： \\
\hline & TAB（53）＂DIRTY＂TAB（69）＂VERY DIRTY＂ \\
\hline 7480 & PRINT：PRINT \\
\hline 7490 & PRINT TAB（5）＂HIGH GRADE＂TAB（21）＂OFFICES IN＂TAE（37）＂MILL OFFICE＂： TAB（53）＂HEAT TREAT－＂TAB（69）＂SIMILAR TO＂ \\
\hline 7500 & PRINT TAB（5）＂OFFICES NOT＂TAB（21）＂OLDER EUILD＂TAE（37）＂PAPER PROC－＂： TAB（53）＂ING：HIGH＂TAB（69）＂DIRTY BUT＂ \\
\hline 7510 & PRINT TAB（5）＂NEAR PROD－＂TAB（21）＂－INGS OR－＂TAB（37）＂ESSING：＂ TAB（53）＂SPEED PRINT＂TAB（69）＂LUMINAIRES＂ \\
\hline 7520 & PRINT TAR（5）＂UCTION：LABS＂TAB（こ1）＂NEAR PROD－＂TAE（37）＂LIGHT MACH－＂： TAB（53）＂ING：RUBEER＂TAB（69）＂WITHIN－＂ \\
\hline 7530 & PRINT TAB（5）＂CLEAN ROOMS＂TAB（21）＂UCTION．ASS－＂TAB（こ7）＂INING＂TAE（53）： ＂PROCESSING＂TAB（69）＂IMMEDIATE＂ \\
\hline
\end{tabular}
```

7540
7 5 5 0
7560
7570
7580
7590
7 6 1 0
7620
7 6 3 0
7 6 4 0
7 6 5 0
7 6 6 0
7 6 7 0
7 6 8 0
7 6 9 0
7 7 0 0
7 7 1 0
7 7 2 0
7 7 3 0
7740
7750
7 7 6 0
7 7 7 0
7 7 8 0
7 7 9 0
7800
7 8 1 0
7820
7830
7 8 4 0
7850
7 8 6 0
7 8 7 0
7 8 8 0
7 8 9 0
7 9 0 0
7 9 1 0
7 9 2 0
7 9 3 0
7 9 4 0
7 9 5 0
7 9 6 0
7 9 7 0
7 9 8 0
N-9)
7 9 9 0
8000
8010

- 3) 

8020
MCLEAN - 6)
B030 IF ROOMCLEAN ) 12 AND ROOMCLEAN {=36 THEN EXPDD: = 24 + .5*(ROOMC
LEAN - 12)
8O4O GOTD 8090
BOSO IF ROOMCLEAN < =3 THEN EXPDDD: =5 * RDOMCLEAN

```
8420
```

    IF ROOMCLEAN > 3 AND ROOMCLEAN {=6 THEN EXPDDD! = 15 + 2.3
    * (ROOMCLEAN - 3)
    IF ROOMCLEAN >6 AND ROOMCLEAN <=Э THEN EXPDD! = 2こ + 1.E7
    * (ROOMCLEAN - 6)
    IF ROOMCLEAN >9 AND ROOMCLEAN &=3E THEN EXPDD! = 27 + . Se
    * (ROOMCLEAN - 9)
    TABLE = (LUMDIST * 100) + EXPDDD!
    K(1)=110:K(2)=120:K(3)=130:K(4)=140:K(5)=210:K(6):=220:K(7)=ご30:K(8)=240
    K(9)=310:K(10)=320:K(11)=330:K(12)=340:K(13)=410:K(14)=4こ0:K(15)=430
    K(16)=440:K(17)=510:K(18)=520:K(19)=530:K(20)=540
    DATA 420:430,440,510,520.530.540
    LPRINT"RCR="RCR;"XSTO1 ="XSTO1: "XSTOL=" XSTOC
    IF RCR! <=1 THEN XSTO1=1:XSTO2=0
    IF RCR!>1 AND RCR! &=10 THEN XSTO1=XSTO1-1:XSTO2=XSTO2-1
    IF XSTO2 <O THEN XSTOE=0
    IF RCR!>10 THEN XSTO1=XSTO1-1:XSTOE=0
    LPRINT"XSTO1="XSTO1: "XSTOE="XSTO2
    STO1 = O : STOE = O: STOZ = O
    OPEN "A:RODMSD" FOR INPUT AS #1
    FOR I =1 TO 10
        FOR J= 1 TO 2O
            INPUT #1,RSD!(I:J)
        NEXT J
    NEXT I
    CLOSE#1
    RESTORE
    FOR I = 1 TO 19
    IF K(I) <TABLE AND K(I+1)>TABLE THEN STO1 = I:STOZ = I +1
    NEXT I
    LPRINT"STO1="STO1"STOE="STOZ
    IF STOI <>O AND STOL 《> THEN GOTO 8460
    , DETERMINE IF THE EXPECTED DIRT DEPRECIATION IS EQUIVALENT
    TO A TABULAR VALUE
    FOR I = 1 TO 20
    IF K(I) = TABLE THEN STOJ = I
    NEXT I
            IF STOZ >O THEN GOTO 8590
            IF EXPDD! <10 THEN GOTO 8650
            IF EXPDD! >40 THEN GOTO 882O
    , CALCULATIONS TO DETERMINE THE ROOM SURFACE DIRT DEPRECIATION
    FOR EXPECTED DIRT DEPRECIATION BETWEEN TAEULAR VALUES
    RSDHI! = RSD!(XSTO1.STO1)
    RSDLO! = RSD! (XSTO1: STOE)
    RSD1! = RSDHI! - (TABLE - K(STO1))/10* (RSDHI! - RSDLO!)
            IF XSTO2 =0 THEN RMSD! = RSD1!
            IF XSTOQ =0 THEN GOTO 9000
    RSDHI! = RSD! (XSTO2.STO1)
    RSDLO! = RSD!(XSTOこ.STOこ)
    RSD2! = RSDH1! - (TAELE - K(STO1))/10 * (RSDH1! - RSDLO!)
    IF RMSD!>1! THEN RMSD!=.99
    LPRINT"3101--RMSD="RMSD!
    GOTO 9000
        CALCULATIONS TO DETERMINE THE ROOM SURFACE DIRT DEPRECIATION
        FOR EXPECTED DIRT DEPRECIATION EXACT TO TAEULAR VALUES
    RSDH! = RSD! (XSTO1: STO3)
                        IF XSTO2 =0 THEN RMSD! = RSDH!
        IF XSTOZ =0 THEN GOTO 9000
    RSDLO!=RSD!(XSTO2.STO3)
    RMSD! =RSDHI!-(XDIFF!)* (RSDHI!-RSDLO!)
    GOTO 9000
            - CALCULATIONS TO EXTRAPOLATE THE ROOM SURACE DEP. FACTORS
    IF LUMDIST =1 THEN STO1=1:STOE=2
    IF LUMDIST=2 THEN STO1=5 :STOE=6
    IF LUMDIST }=3\mathrm{ THEN STO1=9:STNP=10
    ```
 '
```

8690
8700
8710
8720
8730
8740
8750
8760
8770
8780
8790
8800
8810
8820
8830
8840
8850
880
8870
8880
8890
8900
8910
8920
8930
8940
8950
8960
8970
8980
8990
9000
9 0 1 0
9020
9030
9040
9050
9 0 6 0
9070
9080
9090
9100
9110
9120
9130
9 1 4 0
9150
9160
9170
9180
9190
9200
9210
9220
9230
9240
9250
9260
9270
9280
9290
9300
9310
9320
9330
9.340

```
```

IF LUMDIST=4 THEN STO1=13:STOQ=14

```
IF LUMDIST=4 THEN STO1=13:STOQ=14
IF LUMDIST=5 THEN STO1=17:STOR=18
IF LUMDIST=5 THEN STO1=17:STOR=18
RSDHI!=RSD!(xSTO1.STO1)
RSDHI!=RSD!(xSTO1.STO1)
RSDLO!=RSD!(XSTO1,STOE)
RSDLO!=RSD!(XSTO1,STOE)
YDIFF!=RSDHI!-RSDLO!
YDIFF!=RSDHI!-RSDLO!
RSD1!=RSDHI!+((10-EXPDD!)*(YDIFF!/10))
RSD1!=RSDHI!+((10-EXPDD!)*(YDIFF!/10))
IF XSTOE=0 THEN RMSD!=RSD1!
IF XSTOE=0 THEN RMSD!=RSD1!
IF XSTOミ=0 THEN GOTO 9000
IF XSTOミ=0 THEN GOTO 9000
RSDHI!=RSD!(XSTO2.STO1)
RSDHI!=RSD!(XSTO2.STO1)
RSDLO!=RSD!(XSTOQ.STO2)
RSDLO!=RSD!(XSTOQ.STO2)
 RSDE!=RSDHI!+((10-EXPDD!)*(YDIFF!/10))
 RSDE!=RSDHI!+((10-EXPDD!)*(YDIFF!/10))
 RMSD!=RSD1!-(XDIFF!)*(RSD1!-RSD2!)
 RMSD!=RSD1!-(XDIFF!)*(RSD1!-RSD2!)
 GOTO 9040
 GOTO 9040
 , CALCULATIONS TO EXTRAPOLATE THE ROOM SURFACE DIRT DEPRECIATION
 , CALCULATIONS TO EXTRAPOLATE THE ROOM SURFACE DIRT DEPRECIATION
 FACTOR FOR EXPECTED DIRT FACTORS >40
 FACTOR FOR EXPECTED DIRT FACTORS >40
 IF LUMDIST =1 THEN STO1=3:STO2=4
 IF LUMDIST =1 THEN STO1=3:STO2=4
 IF LUMDIST=2 THEN STO1=7:STO2=8
 IF LUMDIST=2 THEN STO1=7:STO2=8
 IF LUMDIST=3 THEN STO1=11:STOE=12
 IF LUMDIST=3 THEN STO1=11:STOE=12
 IF LUMDIST=4 THEN STO1=15:STOE=16
 IF LUMDIST=4 THEN STO1=15:STOE=16
 IF LUMDIST=S THEN STO1=19:STOL=20
 IF LUMDIST=S THEN STO1=19:STOL=20
 RSDHI!=RSD!(XSTO1.STO1)
 RSDHI!=RSD!(XSTO1.STO1)
 RSDLO!=RSD! (XSTO1:STOE)
 RSDLO!=RSD! (XSTO1:STOE)
 YDIFF!=RSDHI!-RSDLO!
 YDIFF!=RSDHI!-RSDLO!
 RSD1!=RSDHI!-((EXPDD!-40)*(YDIFF!/10))
 RSD1!=RSDHI!-((EXPDD!-40)*(YDIFF!/10))
 IF XSTO2=0 THEN RMSD!=RSD1!
 IF XSTO2=0 THEN RMSD!=RSD1!
 IF XSTOE=O THEN GOTO 9040
 IF XSTOE=O THEN GOTO 9040
 RSDHI! =RSD! (XSTO2. STO1)
 RSDHI! =RSD! (XSTO2. STO1)
 RSDLO!=RSD!(XSTO2,STO2)
 RSDLO!=RSD!(XSTO2,STO2)
 YDIFF!=RSDHI!-RSDLO!
 YDIFF!=RSDHI!-RSDLO!
 RSD2!=RSDHI!-((EXPDD!-40)*(YDIFF!/10))
 RSD2!=RSDHI!-((EXPDD!-40)*(YDIFF!/10))
 RMSD!=RSD1!-(XDIFF!)*(RSD1!-RSD2!)
 RMSD!=RSD1!-(XDIFF!)*(RSD1!-RSD2!)
 , CALCULATIONS TO TAKE INTO ACCOUNT THE UTILIZATION OF ENERGY
 , CALCULATIONS TO TAKE INTO ACCOUNT THE UTILIZATION OF ENERGY
 EFFICIENT LAMPS
 EFFICIENT LAMPS
 PRINT"ARE ENERGY EFFICIENT LAMPS UTILIZED.TYPE 1 FOR YES AND 2 FOR NO"
 PRINT"ARE ENERGY EFFICIENT LAMPS UTILIZED.TYPE 1 FOR YES AND 2 FOR NO"
 INPUT ENERGYEFF
 INPUT ENERGYEFF
 IF ENERGYEFF=1 THEN GOTO 9050 ELSE GOTO 9070
 IF ENERGYEFF=1 THEN GOTO 9050 ELSE GOTO 9070
 IF LAMP) =2 AND LAMP <4 THEN CU! =CU!*1.03
 IF LAMP) =2 AND LAMP <4 THEN CU! =CU!*1.03
 IF LAMP> =4 THEN CU!=CU!*1.07
 IF LAMP> =4 THEN CU!=CU!*1.07
 LLF!=RMSD!*LLD!*LRO!*LDD!
 LLF!=RMSD!*LLD!*LRO!*LDD!
 IF DESIGN=2 THEN GOTO 9090 ELSE GOTO 9120
 IF DESIGN=2 THEN GOTO 9090 ELSE GOTO 9120
 MAINTILLUM!=(LUMEXIST*LAMP*LAMPLUM*CU!*LLF!)/ROOMAREA!
 MAINTILLUM!=(LUMEXIST*LAMP*LAMPLUM*CU!*LLF!)/ROOMAREA!
 INITILLUM!=MAINTILLUM!/LLF!
 INITILLUM!=MAINTILLUM!/LLF!
 GOTO 9140
 GOTO 9140
 LUMEXIST=(MAINTILLUM! *ROOMAREA!)/(LAMP*LAMPLUM*CU!*LLF!)
 LUMEXIST=(MAINTILLUM! *ROOMAREA!)/(LAMP*LAMPLUM*CU!*LLF!)
 INITILLUM!=MAINTILLUM!/LLF!
 INITILLUM!=MAINTILLUM!/LLF!
 MAXSPARCING=MOUNTHT!*MAXSP
 MAXSPARCING=MOUNTHT!*MAXSP
 LUMWATTS = (LAMPWATT*LAMP) +BALLAST
 LUMWATTS = (LAMPWATT*LAMP) +BALLAST
 LAMPTOTAL=LUMEXIST*LAMP
 LAMPTOTAL=LUMEXIST*LAMP
 LUMLUM=LAMP*LAMPLUM
 LUMLUM=LAMP*LAMPLUM
 TOTLAMPCOST=LAMPTOTAL*LAMPCOST
 TOTLAMPCOST=LAMPTOTAL*LAMPCOST
 LAMPLABCOST!=LAMPTOTAL*LAMPLAB!
 LAMPLABCOST!=LAMPTOTAL*LAMPLAB!
 LUMLAECOST! =LUMINSTALL! *LUMEXIST
 LUMLAECOST! =LUMINSTALL! *LUMEXIST
 IF DESIGN=1 THEN TOTLUMCOST=(LUMEXIST*LUMCOST!)
 IF DESIGN=1 THEN TOTLUMCOST=(LUMEXIST*LUMCOST!)
 - CALCULATE THE TOTAL MATERIAL AND INSTALLATION COSTS
 - CALCULATE THE TOTAL MATERIAL AND INSTALLATION COSTS
 TOTALCOST=TOTLAMPCOST+TOTLUMCOST+LAMPLABCOST+LUMLABCOST
 TOTALCOST=TOTLAMPCOST+TOTLUMCOST+LAMPLABCOST+LUMLABCOST
 , CALCULATE tHE ANNUAL OPERATING COST
 , CALCULATE tHE ANNUAL OPERATING COST
 ANNUALCOST=(ENERGYCOST*OPERHRS)*((LUMWATTS*LUMEXIST))/1000
 ANNUALCOST=(ENERGYCOST*OPERHRS)*((LUMWATTS*LUMEXIST))/1000
 LAMPREP= (OPERHRS/LAMPLIFE) *LAMPTOTAL
 LAMPREP= (OPERHRS/LAMPLIFE) *LAMPTOTAL
 LAMPREPCOST=(LAMPREP) *LAMPLAB!
 LAMPREPCOST=(LAMPREP) *LAMPLAB!
 TOTOPERCOST=ANNUALCOST+LAMPREPCOST
 TOTOPERCOST=ANNUALCOST+LAMPREPCOST
 UPL=(LUMWATTS) *LUMEXIST/ROOMAREA
 UPL=(LUMWATTS) *LUMEXIST/ROOMAREA
 LPRINT CHR$(14) TAB(5)"***LUMINAIRE OUTPUT REPORT***"
 LPRINT CHR$(14) TAB(5)"***LUMINAIRE OUTPUT REPORT***"
 LPRINT "LUMINAIRE DESCRIPTION:"LUMDESC*(LUMNO)
 LPRINT "LUMINAIRE DESCRIPTION:"LUMDESC*(LUMNO)
 LPRINT
 LPRINT
 LPRINT TAB(15) "REQUIRED DATA"
 LPRINT TAB(15) "REQUIRED DATA"
 DRTNT"---
```

    DRTNT"-------------------------------------------------------------
    ```


9930
9940
9950
9960
9370
3980
9790 R YES AND 2 FOR NO＂：INPUT DES
10000 IF DES 〈〉 1 AND DES 《 2 THEN PRINT＂INVALID ENTRY＂
10010 IF DES 〈〉1 AND DES 〈〉 2 THEN GOTO 9990
10020 IF DES \(=1\) AND TESTFLAG＝O THEN PRINT＂INCORRECT ANSWER－YOU MUST FIRST ENT ER THE LUMINAIRE DESCRIPTION \＃PRIOR TO UTILIZING THIS SUBPROGRAM．YOU WILL NOW E E RETURNING TO THE MAIN MENU＂
10030 IF DES＝1 AND TESTFLAG＝0 THEN GOTO 11480
10040 IF DES \(=2\) THEN GOTO 11480
10050 PRINT TAB（19）＂＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＂
10060 MAIN\＄＝＂LUMEN＂
10070 L＝LEN（STR\＄（LUMNO））
10080 LUMNO \(\$=\) STR \(\$\)（LUMNO）
10090 LUMNO\＄＝MID\＄（LUMNO\＄．2．L－1）
10100 FILENM \(\$=\) MAIN \(\$+\) LUMNO \(\$\)
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350 CLOSE
10360 IF MAINTCAT 《＞ 0 AND MAXSP（〉 0 AND CU！（1．1）《 0 AND CU！（11：15）《〉 0 TH
EN GOTO 10370 ELSE GOTO 10430
10370 PRINT TAE（3こ）＂＊＊＊＊WARNING＊＊＊＊＂
10380 PRINT：PRINT＂DATA HAS RLREADY BEEN ENTERED FOR LUMINAIRE \＃＂LUMNO＂－IF YOU
DESIRE TO CHANGE DATA FOR THIS LUMINAIRE YOU WILL NEED TO SELECT OPTION \＃ \(\mathcal{E}\) FROM
THE LUMINAIRE DATA MENU SCREEN＂
10390 FOR I＝ 1 TO 700
\(10400 \quad \mathrm{I}=\mathrm{I}+1\)
10410 NEXT I
10420 GOTO 10110
10430 OPEN FILENM\＄FOR OUTPUT AS \＃1
10440 INPUT＂ENTER THE MAXSPACING TO MOUNTING HEIGHT RATIO－＂．MAXSP
10450 IF MAXSP \(\langle=0\) THEN PRINT＂RATIO MUST BE GREATER THAN 1 －TRY AGAIN＂
10460 IF MAXSP \(<=0\) THEN GOTO 10440
10470 INPUT＂ENTER THE MAINTENANCE CATEGORY－＂．MAINTCAT
10480 IF MAINTCAT \＆1 OR MAINTCAT）S THEN GOTO 10470
10490 INPUT＂ENTER THE LUMINAIRE DISTRIBUTION TYPE－＂．LUMDIST
10500 IF LUMDIST \(=0\) OR LUMDIST \(>5\) THEN PRINT＂LUM．DIST MUST EE AN INTEGER＂：
＂）\(=1\) AND 《＝5＂
10510 IF LUMDIST \(\leqslant=0\) OR LUMDIST＞5 THEN GOTO 10490
```

10520
10530
10540
10550
10560
10570
10580
10590
10600
10610
10620
10630
10640
10650
10660
10670
10680
10690
10700
10710
10720
10730
10740
10750
10760
10770
107B0
10790
10800
TA HAS NOT BEEN ENTERED FOR THIS LUMINAIRE.RETURN TO THE CU MENU SCREEN AND ENTE
R THE DATA":
10810 IF MAINTCAT=0 AND MAXSP=0 AND CU(1:1)=0 AND CU(11:15)=0 THEN GOTO 1011
O
10820
10830
10840
10850
10860
10870
10880
10890 INPUT CUCORRECT\$
10900 IF CUCORRECT$="N" THEN GOTO 10940
10910 INPUT "ENTER THE CORRECT MAX.SP. /MOUNT HEIGHT RATIO".MAXSP
10920 IF MAXSP { =0 THEN PRINT "RATIO MUST BE > THAN 1-TRY AGAIN PLEASE"
10930 IF MAXSP <=0 THEN GQTO 10910
10940 PRINT"DO YOU WISH TO CHANGE THE MAINT.CATEGORY-Y/N"
10950 INPUT CUCORRECT$
10960 IF CUCORRECT $="N" THEN GOTO 11000
10970 INPUT "ENTER THE MAINTENANCE CATEGORY".MAINTCAT
10980 IF MAINTCAT <1 OR MAINTCAT)S THEN PRINT"MAINTENANCE CATEGORY MUST EE":
    AN INTEGER EETWEEN 1 AND 5"
    IF MAINTCAT(1 OR MAINTCAT)S THEN GOTO 10970
11000 PRINT "DO YOU WISH TO CHANGE THE LUMINAIRE DISTRIBUTION-Y/N"
11010 INPUT CUCORRECT$
11020 IF CUCORRECT \$="N" THEN GOTO 11060
11030 INPUT"ENTER THE LUMINAIRE DISTRIRUTION TYPE".LUMDIST
11040 IF LUMDIST < =0 OR LUMDIST > S THEN PRINT"LUMDIST MUST EE AN INTEGER":
")=1 AND <= 5"
11050 IF LUMDIST <= 0 OR LUMDIST>S THEN GOTO 11030
\&10GO PRINT"DO YOU WISH TO CHANGE THE LUMINAIRE LENGTH-Y/N"*

```

11070
11080
11090
11100
11110
11120
11130
11140
11150
11160
11170
11180
11190
11200
11210
11220
11230
11240
11250
11260
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
11390
11400
11410
11420
11430
11440
11450
11460
11470
11480
11490
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
Y＂
11640
11650
11660
11670 11680 ＇ 11690

INPUT CUCORRECT\＄
IF CUCORRECT \(\$=\)＂N＂THEN GOTO 11110
INPUT＂ENTER THE LAMPLENGTH IN FEET－ONLY＂．LAMPLENGTH
IF LAMPLENGTH〉B OR LAMPLENGTH＜O THEN PRINT＂YOU MAY NOT ENTER A＂： ＂LAMPLENGTH〉B OR 〈O．PLEASE TRY AGAIN＂
IF LAMPLENGTH＞B OR LAMPLENGTH \＆O THEN GOTO 11090
CLS
LOCATE 5． 12
PRINT TAB（26）＂COEFFICIENTS OF UTILIZATION＂
PRINT TAB（26）＂－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－＂ PRINT：PRINT PRINT TAE（15）＂PCC／ 80 ／ 70 ／ 50 ／ \(30 / 10 / 0 /\)
 PRINT TAB（15）＂RCR＂
FOR ROW \(=1\) TO 11
PRINT TAB（16）ROW：
PRINT TAE（18）：
FOR COLUMN \(=1\) TO 15
PRINT USING＂．\＃\＃＂：CU（ROW，COLUMN）：
NEXT COLUMN
NEXT ROW PRINT：PRINT PRINT＂DO YOU WISH TO CHANGE A CU UALUE－Y／N＂ INPUT CUCORRECT＊
IF CUCORRECT \(\$=" N "\) THEN GOTO 11470
INPUT＂ENTER THE ROW NUMBER OF THE CU VALUE TO BE CHANGED＂．R
IF R《1 OR R＞11 THEN PRINT＂ROW VALUE SELECTED MUST BE BETWEEN 1＂： ＂AND 11＂
IF R〈1 OR R〉11 THEN GOTO 11310
INPUT＂ENTER THE COLUMN \＃OF THE CU VALUE TO BE CHANGED＂：C
IF C＜1 OR C） 15 THEN PRINT＂ROW VALUE SELECTED MUST BE BETWEEN 1 AND15＂
IF C＜1 OR C） 15 THEN GOTO 11340
INPUT＂ENTER THE NEW CU VALUE＂：NEWCU
OPEN FILENM\＄FQR OUTPUT AS \＃1
PRINT\＃1，MAXSP；MAINTCAT，LUMDIST，LAMPLENGTH
FOR ROW＝1 TO 11
FOR COLUMN＝1 TO 15
IF ROW＝R AND COLUMN＝C THEN CCU！（ROW．COLUMN）＝NEWCU
PRINT\＃1．CU（ROW．COLUMN）：
NEXT COLUMN
NEXT ROW
GOTO 11280
CLOSE\＃ 1
RETURN
＇COLOR 9．0：CLS

PRINT TAB（19）＂＊LUMINAIRE DESCRIPTION APPEND MENU SCREEN＊＂
PRINT TAE（19）＂＊
PRINT TAB（19）＂＊－－＊1－ADD／VIEW LUMINAIRE DESCRIPTIONS＊＂
PRINT TAB（19）＂＊
PRINT TAB（19）＂＊－－\＃2－MODIFY EXISTING LUMINAIRE DESCRIP－＊＂
PRINT TAB（19）＂＊TIONS＊＂
PRINT TAB（19）＂＊－－\＃3－EXIT LUMINAIRE DESCRIPTION SUBPROG－＊＂
PRINT TAB（19）＂＊RAM＊

PRINT＂PLEASE INPUT THE NUMEER DF YOUR SELECTION．E．G．：\＃1－3＂
INPUT DESCSEL
IF DESCSEL《＜1 AND DESCSEL（）E AND DESCSEL《 3 THEN PRINT＂INVALID DATA ENTR
IF DESCSEL（） 1 AND DESCSEL（）こ AND DESCSEL（） 3 THEN GOTO 11610
IF DESCSEL \(=1\) THEN GOTO 11690
IF DESCSEL \(=2\) THEN GOTO 11840
IF DESCSEL \(=3\) THEN GOTO 12330 SUBROUTINE LUMINAIRE APPEND OPEN＂A：LUMDSC＂FDR ADDFNN AS＊ 1
```

11700
PRINT"ENTER THE NUMEER OF DESCRIPTIONS TO RE ADDED-(TYPE O IF YOU DO":
"NOT WANT TO ADD ANY)-----":INPUT NUMEER
11710
117こ0
11730
11740
11750
11760
REQUAL
11770
11780
11790
11800
11810
11820
11830
11840
11850
11860
11870
11880
11890
11900
11910
11920
11930
11940
11950
11960
11970
11980
11990
12000
12010
12020
12030
12040
12050
12060
12070
12080
12090
12100
12110
12120 PRINT"DO YOU WISH TO CHANGE A LUMINAIRE DESCRIPTION:Y-N"
12130 INPUT CUCORRECT\$
12140
12150
12160
12170

```
```

12170
12180

- LUMDESC (LUMCHG)
121\ni0 IF LEN(LUMDESC$(LUMCHG)) >80 THEN PRINT"DATA ENTRY TOO LONG-PLEASE TRY"
: "AGAIN"
12e00 IF LEN(LUMDESC$(LUMCHG))) 80 THEN GOTO 1こ180
12210 PRINT"DO YOU WISH TO CHANGE ANOTHER DESCRIPTION-Y/N"
1E2eo INPUT CUCORRECT\$
12230 IF CUCORRECT $="Y" THEN GOTO 12150
12240 PRINT"DO YOU DESIRE TO SEE THE CHANGES-Y/N"
12250 INPUT CHG
12260 IF CHG$\approx"Y" THEN GOTO 11940
12270 OPEN "A:LUMDSC" FOR OUTPUT AS \#1
12280 FOR L=1 TO J
12290
12300 NEXT L
12310 GOTO 12320
12320 CLOSE \#1
12330 RETURN

```
```


[^0]:    $I_{\text {Although }}$ layout is not considered within the report, this question will allow the designer to have a better understanding of how the $S / M H$ ratio is used. Square spacing is determined from utilization of the following formula: Spacing between luminaires = (Area of Room/ Number of Luminaires) $1 / 2$

[^1]:    $1_{\text {LUMENO }}$ would result since the luminaire number was not entered. The default for blanks is the numeral zero.

[^2]:    $1_{\text {Datum refers to the tabular row and column heading in the }} \mathrm{CU}$ table, e.g., RCR integer values, ceiling reflectivity heading values, and wall reflectivity table heading values.

[^3]:    $1_{\text {XSTO2 }}$ was equal to zero in Case $\# 3$ since the RCR was an integer value. XSTO1 in Case 非 3 represented the row value associated with the integer RCR. However, in Case $\# 4$ the RCR value is not an integer but falls between integer RCR values.

[^4]:    $\because-$

