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PREFACE 

The purpose of this study is to develop a method for synthesizing a 

geared five-link mechanism by coordinating the finite and infinitesimal 

displacements of the input-crank with that of a tangent-line which draws 

a prescribed enveloping curve. The position, velocity, acceleration, 

jerk, and kerk of both the input-crank and the tangent-line are possible 

design parameters. The procedure developed would be incorporated into a 

computer program, for ease of synthesis. 
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CHAPTER I 

INTRODUCTION 

Developing fundamental theories .for rigid body motion on a plane or 

in space has been a problem of significant interest kinematicians. 

With these developments, it then becomes possible to design mechanical 

devices or mechanisms to perform a variety of tasks for industrial 

applications. In developing such theories, kinematicians have 

contributed significantly to the problems on rigid-body guidance, point­

path generation, and coordination of input and output links. Recently, 

there is an increased interest in studying the motion of a line and 

developing synthesis procedures to design mechanisms to generate an 

enveloping curve. This thesis extends this concept to the design of a 
' ' 

geared five-link mechanism, in which, the motion of the input-crank is 

coordinated with the positions of a tangent-line drawing a prescribed 

enveloping curve. 

Design of linkages with gears dates back to more than two 

centuries. . * Accord1ng to Duffy [1] , the first study of geared 

mechanisms performed in 1706 by De La Hires [2] showed that two distinct 

cycloidal systems generated the same point path. The geometric, 

a 1 gebra i c, and harmonic properties of more camp 1 ex gear curves were 

* Numbers in brackets refer to numbered references in the Bibliography. 
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considered by Wunderlich [3,4] in detail with careful consideration for 

their synthesis to approximate a desired point-path. Detailed 

analytical as well as graphical descriptions of cycloidal point paths 

were given by Schmidt [5]. A detailed analysis of the algebraic 

properties of the knee curve for these mechanisms was suggested by 

Freudenstein and Primrose [6]. A synthesis procedure for designing 

geared five-bar mechanisms useing the displacement matrix was developed 

by Suh and Radel iffe [7]. Rooney and Jones [8] analyzed of various 

five-bar mechanisms including sliding pairs and supplemented their 

results using analog simulation. Kaufman and Sandor used cycloidal 

constraints to synthesize, a specified Co-planar motion [9]. Sandor and 

Kaufman [10] discussed a synthesis procedure for finitely separated 

positions, for the geared five-bar. Myklebust and Tesar [11], studied 

coplanar synthesis by algebraic methods for five finitely separated 

positions of these mechanisms. Mohan Rao and Sandor [12] studied the 

correlation of input and output crank positions of geared five-bars for 

fou~ and five point approximation. Erdman and Sandor [13] discussed the 

kinematic synthesis of a geared five-bar function generator. Lee and 

Freudenstein [14] investigated the design of geared five-bar mechanisms 

for unlimited crank rotation and optimum trQnsmission. Fitcher and Hunt 

[15] discussed the degree of the input-output equations of certain 

geared five-bar mechanisms. And, finally, Vadasz and Soni [16] studied 

the limit and dead center positions of geared five-link mechanisms. 

However, a clear and general method leading to the coordination of 

input-crank motion of geared five-bars with the enveloping tangent-line 

for a number of finitely and infinitesimally separated positions has not 
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been addressed in any of the previous works. In this thesis, the loop­

closure synthesis method is combined with the planar tangent-line 

concept, in order to develop an analytical closed-form synthesis 

procedure for five finitely separated positions. This method is 

preferred because the equations used for the finitely separated 

positions synthesis can be readily differentiated to obtain the 

equations for the infinitesimally separated position synthesis of any 

degrea. The advantage of combining the loop-closure synthesis method 

with the planar tangent-line concept is that the synthesis equations are 

independent of the output angle. Consequently, the designer is not 

required t,o provide any initial information concerning the output 1 ink 

oscillation angles. Moreover, this method accommodates for any 

combination of finit~;ly and infinitesimally separated positions, thus 

enhancing the capability of the designer to meet a wide range of 

position requirements. The increased mobility, versatility, and force 

transmission characteristics of the geared five-link mechanisms have 

been \utilized in many practical applications, such as shaking machine~ 

for vibration testing, high-speed presses, textile machinery, automobile 

hood linkages, etc. 

Geared five-link mechanisms have long been studied in a variety of 

forms and under a variety of names. Three types of geared five-link 

mechanisms consisting of two gears are illustrated in Figure (1). The 

geared five-link mechanism of type 1 consists of two geared cranks 

mounted on fixed revolute pairs. The motion of the mechanism can be 

controlled by attaching the input source to either of the two gears. 

Geared five-link mechanism of type 2 consists of one fixed gear at one 
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Type-1 
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Figure 1. Geared Five-Link Mechanisms 
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of the fixed revolute pairs and a second gear which is rigidly fixed to 

the second input link, pivots at the end of the first input link. In 

this case, the input source can be attached to the link which connects 

the gears. Geared five-link mechanism of type 3 consists of two gears 

which are fixed to two revolute pairs located at the ends of a floating 

link. The nearest gear to any of the fixed revolute pairs is fixed with 

the link which is pivoting about that fixed revolute pair. The gear 

farther from the fixed link is fixed onto the second floating link. 

Geared five-1 ink mechanisms of type 1 and 2 are the two most commonly 

used in industry. This may be due to their superior dynamic 

characteristics and versatility over the type 3 mechanisms. The input 

source for type 1 and 2 of these mechanisms can be mounted on the fixed 

base. But for type 3, the input source should be carried on the 

floating link which connects the gears. Consequently, it creates a 

severe dynamic problem from the point of view of balancing. Geared 

five-link mechanisms of type 1 and 2 have two unattached 1 inks to the 

gears which provide increased mobility for these mechanisms. Geared 

five-link mechanism of type 3 has one of the two free links grounded, 

which greatly reduces the versatility of this type. 

Although these three types of geared five-link mechanisms differ in 

their dynamic characteristics, the synthesis procedures developed in 

this thesis are quite similar. Therefore, this thesis will decument the 

synthesis procedure for the geared five-link mechanisms of type 2 only. 

The significant contributions of this thesis are summarized below. 

(1) Development of a generalized method for the synthesis of 

geared five-link mechanisms with an enveloping tangent-line for five 
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finitely separated positions. 

(2) Deve 1 opment of a genera 1 i zed method for the synthesis of 

geared five~link mechanisms with an enveloping tangent~line for first, 

second, third, and fourth infinitesimally separated positions. 



CHAPTER II 

DESCRIPTION OF THE GEARED FIVE-LINK 

MECHANISM IN STUDY 

In general, a five-link mechanism has two degrees of freedom. In 

the case of geared five-link mechanisms, one degree of freedom is 

obtained by using a pair of gears. Figure {2) shows the geared five­

link mechanism which will be studied in this thesis. In this figure, M, 

A, B, C, and Q are revolute pairs joining the rigid links a, b, c, and 

d, and the ground link MQ. The links a, b, c, and d are the first input 

link, second input link, coupler-link, and output link respectively. 

The rigid link f is attached rigidly to the coupler 1 ink at the pin 

joint B and its orientation is measured by an angle a with respect to 

the coupler link. The link 00 1 ' is a rigi'd link' pivoting about the 

origin of the fixed coordinate system {XY). The motion of the rigid 

tangent-line EE 1 is controlled by two sliders at points E and P. These 

two sliders are oriented at right angles to each other. The sliders at 

P and E are fixed perpendicular to the link f and the tangent-line EE 1 

respectively. The gear G1 is the fixed gear and the gear G2 pivots on 

first input link and is rigidily fixed onto the second input link. The 

angles 82, 83, 84, and 95 measure the orientations of the links a, b, c, 

and d respectively, in counterclockwise direction with respect to X­

axis. The angle 9 measures the orientations of the links f and 00 1 in 

counterclockwise direction with respect to X-axis. The input angles 92 

7 
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and e3 are linearly related according to the following relationship. 

(1) 

where, GR is the gear ratio of the gears G1 and G2, and is equal to 

the ratio of pitch diameters of the gears G1 and G2• The angle 1/J is 

called the phase angle and it represents the initial orientation of the 

second input link with respect to the first input link. N is called the 

gear train speed ratio and is equal to (l+GR). 



CHAPTER III 

GENERALIZED PROCEDURES FOR SYNTHESIS OF 

GEARED FIVE-LINK MECHANISMS 

In this thesis, closed form synthesis equations are developed for 

the synthesis of a geared five-link mechanism function generator with an 

enveloping tangent-line for five finitely separated precision 

positions. Loop-closure method and tangent-line concepts are applied in 

order to derive the synthesis equations. Five precision positions were 

chosen, since five is the maximum number of precision positions for 

which the synthesis equations involving the loop (I) as shown in figure 

(2) can be made linear. The complete synthesis of the mechanism is 

performed in two steps.· In the first step, a set of simultaneous linear 

synthesis equations will be solved for the unknowns loop (I). In the 

second step, a set of nonlinear synthesis equations will be solved using 

Newton-Raphson method [17] for the unknowns in loop (II) of the 

mechanism. For five precision positions synthesis, the designer must 

supply the input angles corresponding to each precision position as well 

as the gear ratio of the gears and the phase angle between the first and 

second input links. The selection of the gear ratio and the phase angle 

allows the designer to come up with a good practical or optimum design 

for a set of specified input angles. However, the optimization of the 

final design is beyond the scope of this thesis. 

10 
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Once the synthesis equations for finitely separate precision posi­

tions were obtained, these equations are differentiated successively in 

order to obtain the synthesis equations for first, second, third, and 

fourth infinitesimally separated precision positions. A set of 

nomenclature for describing the possible combinations of finitely and 

infinitesimally separated displacements for five separate positions has 

been suggested by Tesar [18]. The possible combinations are: 

P-P-P-P-P 
PP-P-P-P 
PP-PP-P 
PPP-P-P 
PPP-PP 
PPPP-P 
ppppp 

P-PP-P-P 
PP-P-PP 
P-PPP-P 
PP-PPP 
P-PPPP 

P-P-PP-P 
P-PP-PP 
P-P-PPP 

P-P-P-PP 

I 

The symbols P-P and PP represent two finitely and two infinitesimally 

separated positions respectively. In this thesis, we present an ana­

lytical method of synthesizing for all of the above motions. These 

combinations can be applied to obtain a wide variety of function 

generation motions. These procedures can be readily adapted to any 

specified function in the form of y = f(x). Graphical configurations of 

the arbitrarily designed mechanisms will also be presented for some of 

the above combinations of motions, in order to demonstrate the 

capabilities of the synthesis procedures. 



CHAPTER IV 

LOOP-CLOSURE SYNTHESIS METHOD FOR FINITELY 

SEPARATED PRECISION POSITIONS 

The basic constraint on the function which needs to be generated is 

that it is continuous and, differentiable in the interval between the 

first and the last precision position. We let the function be expressed 

as y = f(x) and the coordinates of each specified precision position 

(SPP) on this function as XTi and YTi for i = 1,2, •• ,5. We also let the 

input angles be expressed as e2i, and their corresponding second input 

angles are obtained from equation (1) (93 j = N92 j + 1jl, J = 2, •• ,5). At 

the first precision position, the orientation of the second input link 

is specified by the phase angle measured with respect to the first input 

link. 

Since, the tangent-line EE 1 must remain tangent to the function at 

all specified separated precision positions, we can express the slope of 

the tangent-line at the ith precision position by differentiating the 

, function with respect to x for each (SPP) as 

d 
Si = dx f(x) I 

xTi 
i = 1,2, •• ,5 

where Si is the slope of the tangent-line at the ith (SPP). Having 

defined the slope of the tangent-line at the ith (SPP), we can express 

12 
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the magnitude and orientation of an oscillating vector r, which 

corresponds to the position and orientation of the slider E, as 

jril = (X2Ei + Y2Eif~ 
9i = ATAN (YEi/XEi) 

where 

XEi = (Si Xr; - Yr;)/(S; +liS;) 

and 

for all i = 1,2, •• ,5 

All the above equations are va1id for all values of si; except for the 

case S; = o. However, in most practical cases, a null slope can be 

replaced by a very small nonzero value, in order to avoid division by 

zero errors. Having described the vector r, we can now write the 

synthesis equations for the loop (I) in figure (2) using vector loop-

closure method. 

(2) 

where each vector in equation (2) can be expressed in terms of its real 

and imaginary components as 

ot~ = X - jY m m 

MA = a cos e2 - ja sin 

AB = b cos 93 jb sin 

BP = f cos 9- jf sinS 

PE = -g sin 9- jg cos9 

OE = r cos 9- jr sin9 

e2 

93 
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where Xm, Ym are the x and y coordinates of the pin-joint M in the fixed 

coordinate system XY. And "g" is the distance between the sliders at P 

and E. Now substituting the above expressions into equation (2) and 

separating the real and imaginary terms, we have 

Xm + a cos 82 + b cos 83 + f cos 8- g sin 8= r cos 9 

Ym + a sin 92 + b sin 83 + f sin 9 + g cos 8= r sin 8 

(3-a) 

(3-b) 

Multiplying equation (3-a) by (cos8), and equation (3-b) by (sin9) and 

adding both equations together in order to eliminate the term "g", it 

yields: 

Xm cos 8 + Ym sin9 + a cos (8 - 92) + b cos (8 - 83) + f = r (4) 

Such an equation can be written for each (SPP). So, it is more 

convenient to express equation (4) in its general, simplified form as 

K1; Xm + K2i Ym + K3ia + K4ib + f = ri (5) 

where 

Kli = cos 8. 
1 

K2i = sin 8. 
1 

K3i = cos (9 i 82i) 

K4i = Cos (8i 83i) i = 1,2, •• ,5 

Equation (5) yields the synthesis equations loop (I) of the mechanism 

from which five 1 inear equations corresponding to the five (SPP) are 

obtained. Then, this set of linear .equations is to be solved 
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simultaneously, in order to find the unknown values Xm, Ym, a, b, and f. 

The equations (3-a) and (3-b) can also be manipulated in a 

different manner to yield an expression for gi (the distance between the 

sliders P and E at the ith (SPP)). The procedures would still be the 

same, excepting that we multiply equation (3-a) by (sinS) and equations 

(3-b) by (-cos8) in order to eliminate the unwanted term "f" from these 

two equations. This yields: 

where 

K5i = sin (8;- e2;) 

K6i = sin (8;- e3i) 

(6) 

; = 1,2, •• ,5 

After solving equation (5) for the unknown terms, we can evaluate 

equation (6) to check if there is any crossing-over of the sliders atE 
' ' 

and P. If the sign of gi changes as the mechanism moves from the ith 

(SPP) to the (i+l)th (SPP), the slides will cross over. From a 

practical design point of view, such a phenomenon cannot be tolerated. 

However, selection of the gear ratio and the phase angle will give the 

designer enough freedom to come up with a practical design and avoid 

such a problem in most cases. 

Similarly, another set of synthesis equations can be written for 

the loop (II) of the mechanism by following the same procedures 

explained above. We first write the vector loop-closure expression for 

the loop (II) from figure (2) as 
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OM + MA + AB + Bf = OQ + QC (7) 

the above vectors can be expressed in terms of their real and imaginary 

components as: 

OM = X - J·y m m 

MA = a cose2 - ja sine2 

AB = b cose3 - jb sin93 

BC = c cos (8 - a) - jc sin (8 - a) 

OQ = Xq - j Yq 

QC = d cases - jd sin8s 

where Xq and Yq are the x and y coordinates of the pin-joint Q in the 

fixed coordinate system XY. Substituting the above expressions into 

equation (7) and separating the real and imaginary terms, it yields 

Xm + a cose2 + b cos83 + c cos (9 - a) - Xq = d cos8s (8-a) 

Ym + a sine2 + b sin83 + c sin (8 - a) - Yq = d sines (8-b) 

Now, we can eliminate the unwanted output angle (8s) from these equa­

tions by squaring and adding these two equations and expressing the 

resulting equation for the ith (SPP) in its general form, as 

2 2 2 2 Xq + Yq + c - d + W1iXQ + W2;Yq +W3;c + w4;=0 (9) 

where 

Wli = (K7i + K8ic cos a+ Kg;c sin a) 

W2; = (KlOi + Kgic cos a- K8ic sin a) 

i = 1,2, •• ,s 
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w3; = (K11 ; + K12 i + Kui + K14i)cosa+ (K15 i + K16 i + K17 i + K18 i)sina] 

W4i = K19i 

K7i = -2(Xm + cos8zi + b cos83i) 

Kg; = -2Kli 

Kg; = -2kz; 

K1o; = -2(Ym + a sin82; + b sin83;) 

Kn; = 2Xm Kli 

Kl2i = 2YmKz; 

Ku; = 2a cos (8 i - 8z;) 

K14i = 2b cos (8; - 83i) 

K15i = 2XmKzi 

K16i = -2YmKli 

Kn; = -2a sin (8zi - 8;) 

K18i = -2b sin (83 i - 8 i) 

K19 i=X~+Y~+a2+b2+2a(Xmcos82 ;+Ymsin82 i)+2b(Xmcose3 i+Ymsin83 ;) 

+2abcos(83;-8z;) i=l,2, •• ,5 

Equation (9) consist£ of five independent nonlinear equations 

corresponding to the five (SPP)s which can be solved by Newton-Raphson 

method to yield the solution for the unknown parameters x0, v0, c, d, 

and a • Having solved equations (5) and (9), we can construct our 

designed geared five link mechanism. Hhile constructing the designed 

mechanism, one needs to know the output angle at the ;th (SPP) which can 

be readily determined from dividing equation (8-a) by (8-b) which 

yields: 

(10) 

i=1,2, •• ,5 



where 

Zli = (Xm +a cos82i + b coss3i + c cos(Si- a}-XQ) 

Z2i = (Ym + a sin92i + b sin93i + c sin(Si - a}-YQ} 

18 

An example of the above sample synthesis problem for five finitely 

separated precision positions is provided in Table I. The mechanism 

that was designed for this input data is drawn to full scale in figure 

3. 



TABLE I 

SYNTHESIS OF A GEARED FIVE-LINK MECHANISM 
FOR FIVE FINITELY (SPP) 

INPUT DATA 

Function y = -0.3x3 + 0.2x2 - 0.3x + 3.0 

XT ( 1 ) = -1. 0 00 
XT(2) = -0.500 
XT(3) = 0.000 
XT(4) = 0.500 
XT(5) = 1.000 

8(1) = 32.005 
8(2) = 54.058 
8(3) = 73.301 
8 ( 4) = 71.9 96 
8(5) = 41.340 

GR = . 1.000 
1jJ = 60.000 

xm = 1.002 
Ym = 0.289 
a = 3.038 
b = 1.317 
f = 0.729 

Xq = -0.741 
Yq = -1.101 
c = 0.241 
d = 3.185 
a = 174.258 

All angles are in degree. 

YT(1) = 3.800 
YT(2) = 3.237 
YT(3) = 3.000 
YT(4) = 2.862 
YT(5) = 2.600 

82(1) = 160.000 
82(2) = 150.000 
82(3) = 140.000 
82(4) = 130.000 
82(5) = 120.000 

RESULTS 

S{1) = -1.600 
S(2) = -0.725 
S(3) = -0.300 
S(4) = -0.325 
S(5) = -0.800 

83(1)=220.000 
83(2)=200.000 
83(3)=180.000 
83(4)=160.000 
83(5)=140.000 

g(1) = -2.291 
g ( 2) = -1.6 42 
g(3) = -0.651 
g(4) = -0.396 
g(5) = -0.910 

85(1) = 95.738 
85(2) = 86.581 
85(3) = 78.381 
85(4) = 72.997 
85(5) = 70.471 

19 



Figure 3. Configuration of the Designed 
Mechanism For Type P-P-P-P-P 
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CHAPTER V 

DESCRIPTION OF INFINITESIMALLY SEPARATED 

DISPLACEMENTS OF RIGID BODY 

Generally, motion of a rigid body can be described in a number of 

ways. For instance, it can be described by a series of successive 

infinitesimal screw displacements or by the displacement of a point in 

the body and the rotation of the body. In either case, one can choose 

one of parameters as the reference parameter of the motion, and express 

the other parameter as a function of the reference parameter. In the 

same fashion, the instantaneous motion of a rigid body involving 

infinitesimal changes in angular displacement can be described by taking 

the derivative with respect to time successively upto any desired order, 

along with specifying the successive' derivatives of the linear motion 

with respect to time upto any desired order. 

The infinitesimally separated displacements of a rigid body tangen­

tial to any curve, is described by the properties of the rigid body as 

it approaches the curve at the tangential point. These properties may 

be the velocity, acceleration, jerk, time rate of change of jerk (kerk) 

etc. In this thesis the tangent-line EE' is considered as a rigid body 

whose properties are cons ide red to be the same as that of the des ired 

specified infinitesimal displacement at the ith finitely separated 

precision position on the specified function. Hence, the instantaneous 

angular motion of the rigid body EE' involving infinitesimal changes in 
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angular displacements can be described with respect to changes in time 

by specifying d8/dt, d28/dt2, d38/dt3, d48/dt4, and so on, upto the 

required order. 

In the previous chapter, we developed the synthesis equations for 

five finite precision positions of the geared five-link function 

generation mechanism. In the following chapters, we will develop the 

synthesis precedures for infinitesimal displacements of these function 

generation mechanisms. 



CHAPTER VI 

SYNTHESIS PROCEDURES FOR FIRST ORDER 

INFINITESIMALLY SEPARATED POSITIONS 

The synthesis equations derived in the previous chapter will be 

used here derive the synthesis equations for any combination of first 

order infinitesimal displacements for five finite precision positions. 

In general, for the first order infinitesimal displacement of five 

finitely (SPP), two basic combinations exist. 

PP-P-P-P . 

P-PP-P-P 

P-P-PP-P 

.P-P-P-PP 

P-PP-PP 

PP-P-PP 

PP-PP-P 

The first combination, describes four finite precision positions and one 

first order infinitesimal displacement at one of the four precision 

positions. The second combination describes three precision positions 

and one infinitesimal displacement at two of the finite positions. 

However, in either case, the first infinitesimal displacement synthesis 

equations at the precision position J is obtained by differentiating the 

synthesis equations (5) and (9) with respect to time, it yields 

(11) 
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where 
. 

F1J = -aj sin8J 

F2J = aJ cos8J 

F3J = -(SJ - e2J) sin(8J - 82J) 

F4J = -(SJ - 83J) sin(8J - a3J) = -(SJ - NS2J) sin(8J - a3J) 

J = 1 ' •• ,4 

The term rJ is the first time rate of change of radial component of the 

vector r (procedures for evaluating the radial time derivatives of the 

vector r is provided in Appendix A). From equation (1}, we have 

Successive differentiation of equations (1) yields: 

... .. 
a3 = N82 

a3 = N82 

a3 = N82 

Now, differentiating equation (9) with respect to time, 

where 

. 
F5J = a2J(a sin82J + Nb sin83J) 

F GJ =8 J (sin ( 8 J - a) ) 
. 

F7J = -a2J(a cosa2J + Nb cosa3J) 

(12) 

(13) 

(14) 

(15) 



. 
F8J = -8J(cos(8J -a)) 

FgJ = SJ(-xm sin(8J -a)+Ym cos(8J -a)) 

F10J = -a(e2J - SJ)(sin(82J - 8J +a)) 

F11J = -b(NB2J - 8J)(sin(83J - 8J +a)) 

F12J = ae2J(-Xm sin82J + Ym cos82J) . 
F13J = bN82J(-Xm sin83J + Ym cos83J) . . 
F14J = ab{82J - N8zJ) sin(e2J - e3J) 

25 

J=1, •• ,4 

Equation (11} is a linear equation in unknowns Xm, Ym, a, and b and 

equation (16) is a nonlinear equation in unknowns x0, v0, c, and a. 

Note that the differentiation of equation (5) and (9) causes the 

constant terms such as 11 f" and ud2u to vanish. Again the subscript J 

corresponds to the Jth precision point, at which there are infinitesimal 

displacement. All the coefficients F1 •••••••• F15 are time dependent . 
coefficients. The term e2J is the known angular velocity of the first 

input link at the Jth finite precision point. ej is the known angular 

velocity of the tangent-line as it approaches the specified function at 

the Jth finite precision position. The Tables (II) and (III) present 

two sample synthesis problems of the geared five-link mechanism for 

first order infinitesimal displacement of types PP-P-P-P and PP-PP-P 

respectively. The actual configurations of the arbitrarily designed 

mechanisms are shown in figures 4 and 5 respectively. 



TABLE II 

SYNTHESIS OF A GEARED FIVE-LINK MECHANISM FOR 
FIRST ORDER INFINITESmAL DISPLACEt~ENT 

OF TYPE PP-P-P-P 

INPUT DATA 

Function y = -0.3x3 + 0.2x2 - 0.3x + 3.0 

XT(1) = -1.000 
XT(2) = -0.500 
XT(3) = 0.500 

. XT ( 4) = 1. 500 

9(1) = 32.005 
9(2) = 54.058 
9(3) = 71.996 
9(4) = 30.101 . 
9(1) = 1.000 

GR = 6.000 
1jJ = -55.000 

Xm = -6.542 
Ym = -6.924 
a = 4.050 
b = 1.037 
f = 8.587 

XQ = -4.164 
Yo = -4.073 
c = 6.371 
d = 7.213 
a. = 26.053 

All angles are in degree. 

YT(1) = 3.800 
YT(2) = 3.237 
YT(3) = 2.862 
YT(4) = 1.987 

92(1) = 110.000 
92(2} = 100.000 
92(3) = 90.000 
92(4) = 70.000 
• 
92(1) = 1.000 

RESULTS 

S(1) = -1.600 
S(2) = -0.725 
S(3) = -0.325 
S(4) = -1.725 

93(1) = 55.000 
93(2) = -15.000 
93(3) = -85.000 
93(4) =-225.000 

r(1) = -4.834 

g(1) = -1.962 
g(2) = -3.175 
g(3) = -4.928 
g(4) = -0.890 

95(1) = 88.394 
95(2) = 97.854 
95(3) = 116.156 
95(4) = 75.367 
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Figure 4. Configuration of the Designed 
Mechanism For Type PP-P-P-P 
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TABLE III 

SYNTHESIS OF A GEARED FIVE~LINK MECHANISM FOR 
FIRST ORDER INFINITESIMAL DISPLACEMENT 

OF TYPE PP~PP~P 

INPUT DATA 

Function y = ~0.3x3 + 0.2x2 ~ 0.2x + 3.0 

XT(1) = ~1.000 
XT(2) = 0.500 
XT(3) = 1.500 

8(1) = 33.690 
8(2) = 77.320 
8 (3) = 31.608 

~(1) = 1.000 
8(2) = 1.000 

GR = 6.000 
1/J = 10.000 

Xm = ~1.229 
Ym = ~1.974 
a·= 4.314 
b = 0.615 
f = 1.070 

x0 = o.741 
YQ = 3.992 
c = 6.904 
d = 4.940 
a = 24.885 

All angles are in degrees. 

YT(1) = 3.700 
YT(2) = 2.912 
YT(3) = 2.138 

82(1) = 95.000 
82(2) = 75.000 
82(3) = 55.000 

~2(1) = 1.000 
82 (2) = 1.000 

RESULTS 

S(l) = ~1.500 
S(2) = ~0.225 
S(3) = ~1.625 

83(1) = 105.000 
83(2) = ~35.000 
83(3) = ~175.000 

r(1J = ~4.457 
r(2) = 4.181 

g(1) = ~3.407 
g{2) = ~0.022 
g{3) = ~0.952 

85{1) = 77.211 
85{2) = 111.496 
85(3) = 41.468 



Figure 5. Configuration of the Designed 
Mechanism For Type PP-PP-P 
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CHAPTER VII 

SYNTHESIS PROCEDURES FOR SECOND ORDER 

INFINITESIMALLY SEPARATED POSITIONS 

An additional design criterion might be the specification of the 

acceleration characteristics of the function at the Jth precision 

position. Generally, for the second order infinitesimal displacement of 

five precision positions, there are two basic combinations as shown 

below. 

PPP-P-P 

P-PPP-P 

P-P-PPP 

PPP-PP 

PP-PPP 

The first combination, describes three finite precision positions and 

one second infinitesimal displacement at one of the three finite preci­

sion positions. The second combination describes two finite precision 

positions with first and second order infinitesimal displacements at the 

finite precision positions. 

In order to develop the synthesis equations for the second infin­

itesimal displacement, we differentiate equations (11) and (16), with 

respect to time. Differentiating equation (11), we obtain, 

(17) 

where 
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•. •• . .. .. 2 
L4J = -(9J - N92J) s1n(8J - 93J) - (9J - N92J) cos(9J - 83J) 

For all J=l,2,3 

The terms rJ, SJ, and 92J are known second time rate of change of radial 

component of the vector r, angle 9, and the first input angle 92 at the 

Jth precision position respectively. 

Similarly, differentiation of equation (16) with respect to time 

results in 

where 

,.. I • 2 
= [9J sin(9J -a) +8J cos(9J -a)] 

LsJ = (-SJ cos(9J -a) + SJ sin(9J -a)] 
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j=1, •• ,3 

Equations (17) and (18) are similar to equations (11) and (16) 

respectively, with the same unknown parameters. Again, in these two 

equations, all the terms with subscript J correspond to the Jth 

precision position at which a second order infinitesimal displacement is 

under consideration. Tables IV and V show two of the arbitarily 

designed mechanisms for types PPP-P-P and PP-PPP and their corresponding 

configurations are shown in fig~res (6) and (7) respectively. 



Figure 6. Configuration of the Designed 
Mechanism For Type PPP-P-P 
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TABLE V 

SYNTHESIS OF A GEARED FIVE-LINK MECHANISM 
FOR SECOND ORDER INFINITESIMAL 

DISPLACEMENTOF TYPE PP-PPP 

Function y = 1.25ex- 0.75 

XT (1) = -1.500 
XT(2) = -0.250 

8(1) = -74.416 
8(2) = 134.231 
. 
8(1) = 1.000 
§(2) = 1.000 
8(2) = o.ooo 

GR = 3.000 
1/J = -55.000 

Xm = 2.080 
Ym = -3.870 
a = 5.666 
b = 1.166 
f = 1.928 

Xq = -0.855 
Yq = -0.914 
c = 4.021 
d = 7.252 
a. = 141.531 

All angles are in degrees 

INPUT INFORMATION 

YT(1) = -0.471 
YT(2) = 0.224 

82(1) = 130.000 
82(2) = 60.000 

~2(1) = 1.000 
§2(2) = 1.000 
82(2) = o.ooo 

RESULTS 

S(1) = 0.279 
S(2) = 0.974 

93(1) = 75.000 
83(2) =-205.000 

r(1J = -o.816 
r(2) = -o.o31 
r(2J = -5.587 

g(1) = 0.786 
g(2) = 3.831 

85(1) = 137.792 
85(2) = 15.464 
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Figure 7. Configuration of the Designed 
Mechanism For Type PP-PPP 
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CHAPTER VII I 

SYNTHESIS PROCEDURES FOR THIRD ORDER 

INFINITESIMALLY SEPARATED POSITIONS 

An additional design criterion might be the specification of the 

jerk characteristics of the function at the Jth precision position. In 

such cases, the synthesis equations derived in the previous chapter will 

be used to derive the synthesis equations for third order infinites­

imally separated positions. Generally, for the third infinitesimal 

displacement of five finite precision positions, there is only one basic 

combination as shown below: 

PPPP-P 

P-PPPP 

which specifies two finite precision positions and a third order 

infinitesimal displacement at either of the finite precision 

positions. Again, in order to develop the synthesis equations for the 

third order infinitesimal displacement, we differentiate equations (17) 

and (18) with respect to time. Differentiating equation (17), we have 

where 
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q2J = cisJ - ej) coseJ - 3eJeJ sinSJJ 

q3J=-[((BJ-82J)-(BJ-92J) 3)sin(8J-e2J)+3(SJ-92J)(BJ-82J)cos(8J-82J)] 

38 

... ... . . 3 . .. - ,. -
q4J=-[((8J-N82J)-(8J-N82J) )sln(8J-8JJ)+3(9J-N82J)(8J-N92J)cos(8J-83J)] 

and similarly differentiation of equation (18) with respect to time 

results in 

where 

••• ••• • " 3 . .,., ' •. • • 
q10J=-a[({82J-8J)-(82J-8J) )sln(82J-8J+a)+3(82J-8J)(82J-8J) 

cos (82J-8 J+ a)] 

••. ••• ... • 3 . •. •• • • 
qllJ=-b[((N82J-8J)-(N92J-8J) )s1n(83J-9J+~+3(N92 J-9J)(N82 J-8J) 

cos(e3J-eJ +a)] 
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Equations (19) and (20) are similar to the previous infinitesimal 

synthesis equations. Again, all the terms with subscript J in these two 

synthesis equations correspond to the Jth precision position at which a 

third order infinitesimal displacement is under consideration. The term 

·;J is the known third time rate of change of the rad i a 1 component of 

vector rat the Jth precision position. ·aJ, and 82J represent the known 

third time rate of change of the angle 8 and the first input angle e2 

at the Jth precision position respectively. A sample synthesis of 

geared five-link mechanism for third order infinitesimal displacement is 

included in Table VI.The corresponding design is shown in figure 8. 



TABLE VI 

SYNTHESIS OF A GEARED FIVE-LINK MECHANISM 
FOR THIRD ORDER INFINITESIMAL 

DISPLACEMENT OF TYPE PPPP-P 

Function y = 0.25ex - 0.15 

XT(1) = -1.000 
XT(2) = 1.000 

8(1) = 105.425 
8(2) = 153.872 

8 (1 )' = 1.000 
.~.(1) = 0 .ooo 
8(1) = o.ooo 

GR = 6.000 
1jJ = -22.500 

Xm = 3.181 
Ym = -10.606 
a = 8.235 
b = 0.478 
f .= -3.083 

x0 = 9.648 
Yo = -1.603 
c = 6.628 
d = 3.655 
a. = 61.118 

All angles are in degrees 

INPUT INFORMATION 

YT{1) = 0.426 
YT(2) = 2.189 

82(1) = 110.000 
82(2) = 100.000 
. 
.~2(1) = 1.000 
.~.2(1) = o.ooo 
82(1) = o.ooo 

RESULTS 

S(1) = 0.276 
S(2) = 2.039 

83(1) = 87.500 
83(2) = 17.500 

r(1) = o.636 
'r(1) = -5.287 
·y: ( 1 ) = 1. 71 0 

g(1) = 0.264 
g(2) = 1.140 

85(1) =-140.402 
85(2) = 123.382 
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Figure 8. Configuration of the Designed 
Mechanism For Type PPPP-P 
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CHAPTER IX 

SYNTHESIS PROCEDURES FOR FOURTH ORDER 

INFINITESIMALLY SEPARATED POSITIONS 

In case our objective is to design a mechanism for fourth order 

infinitesimal displacement of the function, the synthesis equations 

developed in the previous chapter have to be differentiated with respect 

to time. The resulting synthesis equations will grant this design 

criterion. Basically, the only possible combination for the fourth 

order infinitesimal displacement of five finitely specified precision 

positions is 

ppppp 

which specifies one finite precision position and a fourth order 

infinitesimal displacement at that finite precision position. Following 

the same precedure as in the previous chapter, we start with 

differentiating equation (19) with respect to time, for synthesis of 

loop(!). We obtain, 

(22) 

The coefficients S1 1, s21 , s31 , and s41 have been included in Appendix 

B. 

Similarily, the synthesis equations for loop (II) are obtained by 

differentiating equation (20) with respect to time which results in 
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The coefficients s51 , s51 , •• ,s141 have been provided in Appendix C. The 

term "rj describes the known fourth time rate of change of the radial 

component of the vector r at the Jth precision position. An example of 

the above synthesis for for fourth other infinitesimal displacement is 

provided in Table VII. The corresponding mechanism is shown in figure 

9. 



TABLE VII 

SYNTHESIS OF A GEARED FIVE-LINK MECHANISM 
FOR FOURTH ORDER INFINITESIMAL 

DISPLACEMENT OF TYPE PPPPP 

Function y = 0.4ex + 4.0 

XT(1) = -1.000 

9(1) = 98.371 

8(1) = 1.ooo 
§,(1) = o.ooo 
9.(1) = o.ooo 
"8{1) = o.ooo 

GR = 1.000 
1/J = 120.000 

Xm = -1.551 
Ym = -0.565 
a = 5.426 
b = 0.701 
f = 1.403 

XQ = -2.303 
Yo = -4.280 
c = 4.033 
d = 5.952 
a = 103.654 

All angles are in degrees 

INPUT DATA 

YT{1) = 4.147 

92{1) = 40.000 . 
~2 {1) = 1.000 
.~2(1) = o.ooo 
J2(1) = o.ooo 
92(1) = o.ooo 

RESULTS 

S(1) = 0.147 

93{1)= 160.000 

r{l) = -o.631 
r{l l = 2.118 
·r(1 l = -1.926 
··r{1) = 2.216 

g(1) = 2.386 

95(1) = 85.075 
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Figure 9. Configuration of the Designed 
Mechanism For Type PPPPP 
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CHAPTER X 

SUr4MARY AND CONCLUSIONS 

This thesis develops an approach for synthesizing the geared five­

link mechanisms to coordinate the input-crank with an enveloping 

tangent-line for five positions. These five positions consist of both 

finitely and infinitesimally separated positions. There exist sixteen 

possible mixed combinations of finite and infinitesimally separated 

positions for which function generation motion can be obtained. The 

existence of the enveloping tangent-line facilitates the development of 

a set of synthesis equations, for both finitely and infinitesimally 

separated positions, independent of the output angle. 

The synthesis procedures start by separating the mechanism 

structure into two loops and writing the vector loop-closure equations' 

for each loop. The vector loop-closure method is preferred since the 

synthesis equations obtained for the finitely separate positions can 

readily differentiated successively to obtain any the equations for any 

desired order of infinitesimal displacement. The synthesis procedure 

developed in this thesis can be applied to synthesize different 

mechanisms with an enveloping tangent-line, not only for finite 

positions, but also for infinitesimally separated positions. It can be 

applied to both function generation synthesis problems as well as rigid 

body guidance synthesis problems. For instance, such a geared five-link 

mechanism designed in this thesis, can be used for filing the contour of 
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a precision cam if particular or locations on the contour of the cam 

must be filed with a set of prescribed characteristics such as velocity, 

acceleration, jerk, kerk, etc. These mechanisms can also be used for 

picking up an object with a certain velocity, acceleration, or jerk and 

locating it with a certain velocity, acceleration, or jerk at another 

location. A computer program has been developed on H P~9000 

minicomputer to synthesize and draw the configuration of the mechanism 

for any type of finitely or infinitesimally separated position motions. 

It should be emphasized here that all of the above synthesis 

procedures are in closed~form. Hence, they yield efficient and accurate 

routines independent of motion increment size or any other implied 

limitations characteristic of numerical, iterative procedures. A closed 

form solution the added advantage of disclosing all branches of 

closure. This is important to a designer who has synthesized a 

satisfactory solution by all other measures, but who has no idea if the 

closure branches intersect. The synthesis procedures developed in this 

thesis is well 'suited for both rational and non~rational· gear~ratios. 

This others the designer more flexibility to design the mechanism with 

any available gear pair. It should also be mentioned that although all 

the synthesis equations developed for the first loop of the mechanism 

are linear, care must be taken to check if the scalar length of the 

first and second input links are positive. When a design yields a 

negative value for the first input link or the second input link, this 

means that the specified input angles or the phase angle should be 

modified by a 180 degree offset. In such cases, it is possible to 

obtain a satisfactory design by varying the gears or the phase angle. 
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APPENDIX A 

PROCEDURES FOR FINDING THE RADIAL TIME 
DERIVATIVE COMPONENTS OF VECTOR r-

52 

Consider a moving tangent-line 11' in the canonical system XOY 

(Figure 10). The equation of the tangent-line 11' at the ith position 

can be expressed [19] as 

r. =X· case.+ y. sine. 
1 1 1 1 1 (A-1) 

Equation {A-1) gives the family of straight-lines with a single 

parameter ei _and _a dependant variable r i. In Chapter IV, we showed that 

the slope of such a tangent-line, tangential to a prescribed function, 

in the form of y=f{x), at the ith (SPP) can be obtained from the 

following relationship 

si; = __q_f(x) I x=x, . 
dx Tl 

(A-2) 

Letting ti be the angle that the tangent-line makes with X-axis at the 

ith {SPP). Then 

(A-3) 

Since, the vector r is always considered normal to the tangent-line 11', 

the relationship between the angles ~i a~d ei at the ;th (SPP) can be 

shown as 

(A-4) 
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The angles 'i and 8i are the angular displacement of tangent-line 11• 

and vector r at the ith (SPP) respectively. Differentiating equation 

(A-4) with respect to 

Figure 10. Tangent-Line in a Canonical System 

time successively, 

.. .. 
~ = 8i 

••f ••• 
~ = 8i 

"f = 9i 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

.. .. . .. 
where ~i' ~i' f;, and ~i are the angular velocity, acceleration, jerk 

and kerk of the tangent-line 11• at the ith (SPP). Similarily, Si, ei, 

·a·;, and 9i are the angular velocity, acceleration, jerk, and kerk of 

vector r at the ith {SPP). Now, considering equation (A-1), we can 
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express the first, second, third, and fourth time derivatives of radial 

displacement of the vector r as 

. 
r. 

1 = Ali cos9 i + Bli s i n9 i 
.. 

cos9i sin9i r. = Azi + Bz i 1 

r. 
1 = A3; cos9i + 83i si n9i 

ri = A4i cos9i + 84i sinS; 

where 

. . 
Ali = (X + Y9) i 

Az; = (X+ 2YS + YS- xs2); 

A3i = (x + 3YB + 3YS + ve -3XS -3XSS - ye3)i 

A4; = (x+4vs+6YB+4vs+va~6xe 2-Izxse-4xse-3xe2-4ve3-6ve82+xa4)i 
. . 

Bli = (Y- XS)i 

Bz; = (Y- 2XS - xe- ye2); 

B3i = (v - 3XS - 3XB - xe' -3ve2 - 3YSS + xs3) i 

B4 ;= (v:.4·xe-6XS-4Xa·-x'8-6v82-12YSS-4 v-s·a-3v'e2+4XS3+6Xe82-y94) i 

Now, if we express 8 as a function of time, 9 = t, then 

. 
a. = 1 

1 

~- = i. =·i. = 0 
1 1 1 

(A-9) 

(A-10) 

(A-ll) 

(A-12) 

i = 1, •• ,5 

(A-13) 

Substituting equations (A-13) into the above coefficients and expressing 

the resulting coefficients for point E on the tangent-link 

• 
Ali= (XE + YE)i 

Azi = (XE + 2YE- XE)i (A-14) 
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.... ... . 
A3i = (XE + 3YE - 3XE- YE)i 

Bli = (YE - XE)i .. . 
82i = (YE - 2XE - YE)i (A-15) 

.. . 
B3 i = (YE - 3XE - 3YE + XE)i 

84i = (YE- 4X~ - 6YE + 4XE - YE)i 

Now, the left-hand side components of the above equations can be 

evaluated by considering equations (A-2) and (A-3). From these two 

equations, we can write 

tan ~i = .21..1 = g (x) I x --
dx X = XE i X E i 

Rearranging equation (A-16) to find an expression for~' we have 
dt 

..9..._ tan .n • ..911 = d g ( x) • ~I 
d~ · r dt i ' dx dt i 

From above equation, we can result that 

~ I = [..9.._ tan ~ • .21 I dg(x)] 
dt i d~ dt dx i 

(A-16) 

(A-17) 

(A-18) 

By considering, equation (A-5), and assumption that 9=t, then the above 

equation can be simplified as 

~1. = [(1/cos 2 ~) /dg(x)]. 
dt 1 dx 1 

(A-19) 

Any terms in left-hand side of equation (A-19) are known. So, we can 

easily compute~ at any ;th (SPP). Please note that the term dg(x)must 
dt dx 

be evaluated at x=xEi• 



Now, in order to obtain an expression for~' we can write 
dt 

it I = [ .s!.Y_ I .5!!_ ] 
dx i dt dt i 

or 

~I = [.21.. ~] 
dt i dx dt i 
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(A-21) 

Please also note that the term~ must also be evaluated at x=xEi• 
dx 

Following the same procedure described above, we can obtain the higher 

time derivative of x and y terms as shown below. 

and 

~2 I. 
dt2 1 

.21.3 
3 I. 

dt 1 

~4 
4 I. 

dt 1 

= [((2 + 4 sin~ )/cos4 ~ )/ d3g(x) ]. 
dx 3 1 

= 

= 

= 

[(4(1 + 2 sin~+ 3 sin~ )/cos5~ )td4g(x)]. 
- 4 1 
dx 

[~. ~2 J 
dx 2 dt2 i 

[d3y • ~ 3 J . 
dx 3 dt 3 1 

[~ .~4 J . 
dx 4 dt4 1 

(A-23) 

(A-27) 

The equations (A-21) through (A-27) are obtained based on the assumption 

that 8=t. Moveover, it is important to observe that, we can obtain the 

nth order infinitesimal displacement of the enveloping tangent-line, 

only when the precribed function (y=f(x)) is differentiable with respect 

to x up to the (n + 1)th order. 



APPENDIX B 

COEFFICIENTS OF EQUATIONS (21) 
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APPENDIX B 

COEFFICIENTS OF EQUATION (21) 

The coefficients of the equation (21) are as following: 

.•.. - '2 . . .... 3 •.. . '•2 •. ·2 
S11=~[(8J-38J8J)Sln8J+8J(8J~9J)COS9J+38J8JCOS9J+39JCOS8J~39J8J 

sin9J] 

.... .. '2 . ... . 3 . ... • . .. 2 . . .. 2 
S21=[(8J-39J8J)COS8J-8J(8J-9J )Sln9J-38J9JSln9J-39JSln9J-38J9J 

cos8J] 



APPENDIX C 

COEFFICIENTS OF EQUATION (22) 
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APPEND IX C 

COEFFICIENTS OF EQUATION (22) 

The coefficients of the equations (22) are as followings: 

... _ •. • 2 . • .... • 3 .... • ... 2 
s51 =[2a((82J-392Je2J)sln92J+92J(82J+82J)Cos82J+3(92Je2J+82J) 

cose2J-3B~J82Jsin92 J)+2bN((e2J-3N2 9 2J8 2J)sin93J+NB2J(82 J-N2 
•3 .•. ..2 2" 2"' 
e2J)cose3J+3N{92J-92J)cos83J-3N 92Je2Jsine3J)] 

••. .• .. . ... . .. .... . .... •. . 2 
s71 =[-2a(-3(e2JeJ+e2JeJ)sln92J-392JeJe2Jcos92J+(92J-392Je2J) 

... '3 . ··2 . .. 2'2 
cose2J-(e2J-e2J)e2Jsin82J)-2bN(-3N(92J+ e2Je2J)sine3J-3N e2J 

B2Jcos83J+ (e2J-3N2e2Je~J) cos83J-NS2J (82J-N2S~J) si n83J)] 
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APPENDIX (C) CONTINUED 

•.. ,. • . 3 • ·~· ••. . .. .• .• 
Sin e2J+((-8JXm-38Ja2JYm+82JXm)82J+(8JYm-3(8J82J+38J82J)Xm-382J 

"2 a2JYm))Cos82J] 

•••. •• • • 2 3 ... •2 . 
Sl41=2ab[((l-N)82J-382J(82J-N82J) )-3(1-N) 82J82J)sln(82J-

~·· • • 3 t 2 ••• • •• a3J)+((l-N)(82J-(82J-N82J) 82J)+3(1-N) (82j82J+82J)) 

cos(e2J-e3J]] 
' ' 
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