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PREFACE 

In this study I have tried to present the Quantum Theory of Free 

Electron Lasers in connection with the classical theories. A model for 

wiggler wavelength-tapering is proposed as a gain enhancement mechanism 

and Quantum Mechanical calculations of frequencies and gain have been 

carried out. In Chapter I, I have tried to give an overall account of 

Free Electron Lasers especially the experimental aspects before I dis­

cussed the theory in later chapters. Chapter I I summarizes the Classical 

theories and ca~ be skipped if one is interested in Quantum Theory only. 

Chapter I II discusses the proposed model for tapering. Quantum Theory 

is presented in Chapters IV and V. 
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CHAPTER I 

FREE ELECTRON LASERS 

1. Description of Free Electron Lasers 

Free Electron Lasers (FEL) are generators of coherent radiation. FEL 

does not refer to a physical device or experiment but to various physical 

mechanisms in which coherent radiation is produced from the energy of rela-

tivistic electrons. The essential part of a FEL is a magnet structure into 

which the relativistic, high energy electrons are injected. There are 

basically two types of magnet structures, undulators and wigglers. Undula-

tors originally proposed by Motz [1] long time ago are simply arrays of 

magnets with alternating polarity. Figure 1 shows the undulator. The mag-

netic field of the undulator near the axis is approximately sinusoidal . 

. The wiggler structure originally proposed by Madey [2] is really in-

genious. Magnets with alternating polarity are set in a helical arrange-

.ment. Figure 2 makes this structure more vivid. The best way to describe 

a wiggler magnetic field analytically is by means of its vector potential 

which can be written as 

~ 

A = (a cos k z)x + (a sin k z)y w w 
( 1. 1) 

Here kw is the wavenumber (1/\w) of the wiggler. 

High energy (relativistic) electrons injected into this magnetic field 

radiate due to their helical accelerated motion in this field. According 

to classical electrodynamics the process involved here is synchrotron 
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radiation,. but it can equivalently be described as Magnetic Bremsstrah­

lung. 
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In classical picture, the radiation due to helical motion of elec­

trons self consistently interacts with the electrons and forces them to 

oscillate at the same frequency. A resonance follows. The result of this 

resonance between the electron frequency and the radiation frequency is 

that an observer riding on the electron sees the wiggler wavelength and 

the optical wavelength as the same. Due to this resonance the repeatedly 

reflected spontaneous radiation will intensify and become coherent as it 

stimulates the electrons to radiate at the same resonant wavelength. 

Laser action results. 

Summaries of classical theories of FEL will be given in Chapter I I 

but to facilitate the understanding of this lasing process, let us go into 

a little more detail, again in the framework of classical electrodynamics. 

Quantum mechanical discussion will be presented in Chapters IV and V. At 

the injection point electrons oscillate (wiggle) with random phases. Con­

sequently radiation is incoherent. The~ x B force on the electrons com­

bined with the radiation field causes a longitudinal ,density wave which 

bunches the electrons by decelerating some and accelerating the others. In 

the literature this longitudinal density wave is called 11ponderomotive11 or 

11 trapping11 wave and acts like the slow traveling electromagnetic wave 

traveling in a waveguide. 

If the axial velocity of electrons is slightly greater than the 

velocity of the trapping wave, then the average energy of electrons de­

creases and this means energy is extracted from slowing electrons in the 

form of radiation. Bunching and extraction of energy from electrons are 

intimately related. If an electron enters the magnetic field, just at 
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the moment when it is accelerated by the trapping wave it will still be 

accelerated at the end of the wigglerandalso most of the time in between. 

Similarly if an electron is decelerated at the moment it enters the wig­

gler, it will sti 11 be decelerated when it leaves the wiggler. We can say 

that whether an electron is accelerated or decelerated by the trapping 

wave depends on its entrance phase. In order to have a 11gain 11 in radia­

tion the number of decelerated electrons should be greater than the number 

of accelerated electrons. If there is no spread in the velocity of elec­

trons, then the number of decelerated electrons equals the number of 

accelerated electrons and hence no qain. That is why a slight spread 

in the velocity of electrons is necessa~v. But an excessive 

spread reduces bunching,obviously,because electrons too fast or too slow 

can not be trapped by the trapping wave. Long bunches result in incoher­

ence. Untrapped electron means losing another electron to extract radia­

tion Ln short, we can say that gain increases as we increase the 

number of trapped electrons and coherence gets better as we shorten the 

electron bunches. 

To summarize, in the classical picture of FEL, the basic idea is to 

create electron bunches in the wiggler so that they oscillate in 

phase to produce coherent light at a certain fundamental frequency. A 

slight spread in the velocity of electron beam will trigger a gain in 

radiation. In this way very powerful and intense coherent radiation would 

be obtained. Furthermore, it could be designed to produce any continuous 

wavelength. Above all, there would not be any breakdown of the lasing 

medi urn. 

2. Use and Applications of FEL 

Since this work relates to a particular model of a FEL it may not be 
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out of place to review the applications of a FEL to show its importance. 

FEL are distinguished from conventional lasers by two important char­

acteristics, wide range continuous tunability and high power. Wide range 

tunability is desparately needed in spectroscopy. FEL operating in 

extreme-ultra-violet (xuv) and far-infra-red (fir) bands will especially 

benefit spectroscopic investigations. The fir range is of particular 

interest to solid-state experimenters, because almost all the collective 

excitations of solids, phonons, magnons, occur at these wavelengths. Re­

cently successful FEL experiments have been demonstrated in this range 

[3]. With kilowatts of tunable fir power it is anticipated that one will 

be able to excite collective modes in a non-linear fashion. At low power, 

solid state experimenters have been restricted to exciting phonons and 

magnons with wavenumbers near zero. Now they will be able to explore the 

entire Brillouin zone. Also, with high power laser sources operating in 

fir one can study lattice instabilities which are thought to be important 

in ferro-electric transitions and excited DNA modes that may play a role 

in replication. 

Conventional sources of coherent radiation have limited optical power 

output and efficiency at short wavelengths. That is why FEL at xuv are 

very much sought after. Currently FEL oscillators at this frequency range 

are plagued by the mirror reflectivity problems but FEL amplifier at xuv 

is a certain possibility. Explanation of FEL oscillators and amplifiers 

will be given in Section 4 of this chapter. 

The high power lasers promised by FEL sources can be used in a 

variety of places. One of the most important applications is to use them 

as heating sources in inertial fusion reactors [4]. Another promising 

application is in accelerator technology. Accelerator physicists are 

particularly interested in using high power FEL output in the 1 em 
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wavelength regime to drive miniature versions of conventional RF-lineacs 

[5]. Currently large RF-lineacs for High Energy Physics are driven by 10 

em radio-frequency input from powerful klystron tubes. By reducing the 

driving wavelength by an order of magnitude we could have a miniature SLAC 

type lineae with an accelerating gradient of several hundred Mev per 

meter. A two mile lineae of such design could then accelerate electrons 

to perhaps Tev. 

Another much sought after application is that a high peak power FEL 

operating at submicron wavelengths with an efficiency exceeding 10% would 

be of considerable interest for military applications. Microwave communi­

cations, especia.lly radars require high power sources. FEL are expected 

to be heavily used in communications. 

3. Short History of Experimental and 

Theoretical Efforts 

Madey [1] resurrected the basic idea of Motz [2] after twenty years. 

As we stated before, Madey proposed wiggler structure and carried out a 

QED calculation to prove that gain is indeed possible. He treated the 

problem as the scattering of wiggler-magnetic-photons (Weisacker-Williams 

method) from the incoming electrons. In 1976 the first FEL amplifier was 

demonstrated by Elias, Madey et al. [6] at Stanford University. A year 

later Deacon and Madey et al. [7] reported the first operation of FEL 

oscillator. In the beginning everyone thought that gain mechanism was 

due to purely quantum mechanical causes. It was not long before quite a 

few theoretical papers appeared describing the physics of FEL according 

to Classical Electrodynamics. Colson [8] derived the now famous gain 

expression classically. Later Louisell, Colson et al. [9] gave single­

particle classical theory of FEL. They showed that equations of motion 



are considerably simplified if motion with energy in the neighborhood of 

resonance is discussed. Meanwhile FEL amplifiers and oscillators have 

been demonstrated in several laboratories. An article in Physics Today 

[10] summarizes all the experimental set-ups up to that time. 
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It was so0n realized that the central problems in FEL is efficiency 

enhancement. This led to the formulation of Classical Theory of Variable 

FELs. Kroll, Morton and Rosenbluth [11] showed in an elegant exposition 

that by decreasing resonant energy adiabatically more electrons could be 

trapped and hence one could have increased gain. There are many sugges­

tions on how to increase gain and overall efficiency. Those who are con­

cerned with overall efficiency are concentrating on storage-ring acceler­

ators. The most successful group in this context is the one in France 

[12] who first demonstrated FEL oscillation in the visible range of the 

optical spectrum. 

One should not neglect the efforts of two Italian physicists Bambini 

and Renieri [13] in the development of classical theories of FEL. They 

analyzed the motion of electrons in a moving frame so that the basically 

relativistic problem could be reduced to a nonrelativistic one. 

The current theoretical and experimental research is developing in 

two directions, efficiency enha~cement and higher frequency generation 

through FEL mechanisms. 

After Madey's initial QED effort Quantum Mechanical theories of FEL 

have been neglected for awhile. It was later developed to some extent by 

Becker et al. in a series of papers [15]. Quantum Theory of variable 

wiggler FELs is still missing. It is our intention to fill this gap par­

tially in this thesis. 



4. Brief Review of Some Experimental 

Aspects of FEL 

Relativistic electron beams used in FEL are produced by different 
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types of accelerators. Original Stanford experiment used RF-Lineac. Later, 

storage-ring accelerators have been used. Most recently there is an effort 

to utilize Van de Graaff accelerators for microwave generation. With the 

development of Pulsed-RF-Lineacs now there is a new trend towards using 

Pulsed RF-Lineacs. Depending on the type of accelerator used and beam 

characteristics there are two modes of FEL mechanisms~ FEL amplifiers and 

FEL oscillators. In FEL amplifiers, output of an external laser is beamed 

into the wiggler alongside the electron beam from the accelerator. There 

are no mirrors. Radiation emitted by the wiggling electrons intensify the 

laser beam, that in turn stimulates the electrons to radiate more intensely. 

Amplification of the laser beam follows. FEL oscillator does not need an 

external laser. Radiation emitted by the electrons will be reflected off 

the mirrors and intensifies inside the wiggler cavity. 

There are two regimes of FEL operation, Compton and Raman regimes. 

Compton regime can be described as high energy but low current electron 

beam operation. Compton regime FEL use RF-Iineacs, microtrons, storage­

ring accelerators. These accelerators are characterized by their high 

energy, low current output. Low current makes the single particle approach 

plausible. Since they produce very high energy electrons these accelera­

tors are generally used to produce optical and ultra-violet wavelengths. 

The disadvantage of Compton regime FELis their low gai·n and efficiency. 

That is why only FEL oscillators are designed to operate in Compton 

regime. 
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In Raman regime space-charge effects cannot be ignored and single 

particle approach is not valid. Raman regime FEL use induction lineacs or 

pulsed transmission-line accelerators which are characterized by their 

high current but low energy electron beam output. High current dramati­

cally increases the gain, but the low energy electrons can only produce 

microwave frequencies. In Raman regime amplifier mode is more practical. 

Some suggest a third operating regime, High-gain Compton regime. 

Wiggler field is very strong so that the ponderomotive force on electrons 

is dominant over the space-charge effects. Strong wiggler makes it possi­

ble to use high current accelerators and yet the theoretical calculations 

can be carried out using the single particle approach which makes the 

analysis easier. 

Wiggler magnet structure is used in most of the FEL experiments 

mainly because transverse momentum of the electrons is minimal compared to 

that of undulators. Elias and Madey gave a technical description of the 

superconducting wiggler they used in the original FEL experiments in 

Reviews of Scientific Instruments article [16]. Typical values of experi­

mental parameters used in the various FEL experiments are shown in Table I. 

If a pu~sed accelerator is used, electron pulse and external laser 

pulses are synchronized so that they interact with each other. Long opti­

cal pulse duration is very much desired in applications because the fourier 

transform of a much longer optical pulse produced by long electron pulse, 

has a far narrower frequency spectrum, permitting spectroscopic studies 

with very high energy resolution. Furthermore, long optical pulse implies 

greater time-averaged power delivered to the experimental sample. Long 

pulses of electron beam are not only desirable but are necessary as well 

for FEL oscillators and amplifiers to operate. A reasonable gain is 
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TABLE I 

TYPICAL EXPERIMENTAL PARAMETERS OF FEL USED IN VARIOUS EXPERIMENTS 

Experiment 

Stanford Univ. (Amplifier 
uses rf lineae 

Stanford Univ. (oscillator) 
uses rf lineae 

Bell Labs (amplifier) uses 
microtron 

MIT 
(pulse-line-generated beams) 

NRL 
(uses induction lineae) 

ORSAY 
(uses storage-ring) 

Parameter 

wavelength 
beam energy 
peak current 

wavelength 
beam energy 
peak current 

wavelength 
beam energy 
peak current 

peak power 
wavelength 
beam energy 
beam current 

wavelength 
beam energy 
peak current 

wavelength 
beam energy 
beam current 

Typical Value 

10.6 microns 
24 MeV 
0. 1 A 

3.3 microns 
43 MeV 
1.3A 

100-400 microns 
10-20 MeV 
5 A 

1 .5 MW 
3 mm 
1 MeV 
5 kA 

8 mm 
0.7 MeV 
200 A 

0.5 microns 
2.40 MeV 
2 A 
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possible only when the radiation bounces back and forth many times before . 
the electron beam disappears. Induction lineae pulses last only on the 

order of 10 nsec, too short for FEL oscillator requirement. That is why 

high power FEL are amplifiers and not oscillators. 

Most of the FELs are operating in the amplifier mode. Microwave FEL 

amplifiers have special significance. Optical output of FEL operating at 

microwave frequencies has a broad bandwidth (Fourier components of an 

optical pulse) and this makes it possible to amplify, without turning a 

knob, milimeter wave signals containing a wide spectrum of frequencies 

(broad-band high-power amplifier). This would be particularly useful for 

microwave communications. One could shape a desired signal waveform on a 

low power device and then amplify it to very high power with a FEL. 

Lastly there is the possibility of producing optical wavelengths 

without using high energy beams. (Optical wavelength is proportional to 

the wiggler wavelength and since the wiggler wavelengths cannot practi-

cally be made smaller than a few centimeters, high energy, relativistic 

electrons are needed to produce optical wavelengths.) One possibility is 

to use intense laser beam or the output by another FEL as a pump field to 

stimulate the electrons of not so high energy. This idea is based on the 

physical principle that electrons behave exactly the same in the field of 

an electromagnetic plane wave as they do in a static wiggler field 

(Weizacker-Williams). In the field of an external laser beam, slow elec-

trans will wiggle (oscillate) at higher frequencies and amplification at 

higher optical wavelengths wi 11 follow. The requirement here for the ex-

ternal laser beam is to be intense. Since we now know that only FEL 

mechanisms can generate great intensities, this set-up is sometimes called 

"two-stage FEL11 • The output of another FEL is used as the external laser. 
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The resonance frequency in the second stage will be much higher than the 

frequency in first stage because in the frame of moving electro-magnetic 

plane waves an incoming electron appears to be much faster even though it 

is slow in the lab frame. As can be seen, a two-stage FEL mechanism is an 

ingenious frequency multiplication scheme. The price of this frequency 

multiplication however is the low efficiency. A two-stage FEL is far less 

efficient than a one-stage FEL. 
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CHAPTER II 

SUMMARY OF THE CLASSICAL THEORIES OF FEL 

1. Synchrotron Radiation 

In Chpater I we described the undulator and the wiggler fields. We 

also discussed the physics of electrons in a wiggler, qualitatively. In 

this chapter we shall give a more detailed description of the FEL physics 

in the framework of Classical Electrodynamics. 

In order to understand the radiation due to electrons moving in heli-

cal (sinusoidal in undulators) orbits we need to look at the energy spec-

trum. The average energy emitted into frequency range between wand 

w + dw is 

(2. 1) 

-+ 
JL (r•) is the Fourier amplitude of the component of the current den-

kw 
-+ -+ 

sity vector perpendicular to k, and k is a vector of absolute value 

w -+ -+ =-which points from the current element at r• to the observer at r. 
c 

The expression for J~ is derived from the equations of motion. In his 
kw 

pioneering work in which the suggestion of a FEL was first made, Motz [1] 

demonstrated the radiation characteristics of an electron in an undulating 

magnetic field. 

The relevant equations of motion are 

17 
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+ e + + d (m~) F = - vxB dt c 
(2.2) 

where the undulator magnetic . + f1eld B is 

B = a sin k z, B = 0, B = 0 y w X z 
(2. 3) 

and m is the moving mass, then the equations of motion become 

me .. 
sin k z -x = za 

e w 

(2. 4) 

me "" sin k z -z = -xa e w 

We also know that x « 1 (motion in x-direction is negligible). Then we 

can write the equations of motion as 

d 
dt (mv) 

v 
X 

m = 

dx 
dt' 

= eaR sin k z r ~.., 

dz 
v = z dt 

m 
0 

The current densities turn out to be 

J 
X 

= ev 
X 

o(y) o(z-cSt) o(x + ea~ 
Scm w 

0 0 

sin w t) 
0 

(2. 5) 



J 
z 

= eSc o(y) o(z-cSt) o(x + eaiJ7 . 
2 s1n 

Scm w 
0 0 

(JJ t) 
0 

S is the longitudinal velocity 

w = 27rSck 
0 w 

A = wavelength of the undulator 
w 

The Fourier components will be 

J xw 

J zw 

ev 
s/ o(y) o(x + 

eag. 
2 s1n w z) 

0 

iwz 
Sc e 

Scm w 
0 

e o(y) o(x + 
eag. 

2 s1n 
Scm w 

0 0 

w z) 
0 

'iwz 
Sc e 
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(2.6) 

(2. 7) 

Let the direction of observation k have polar angles ~.e with respect 

to z-axis, then 

J = J (1 - cos 2 ~ sin2e) 112 u1 + J sine 02 kw xw zw 

A 

where ul and u2 are unit vectors in the directions of the components per-

pendicular to k. When we substitute (2.7) into (2. 1) and evaluate the 

integral, it is found [1] that the energy radiated per unit area into nth 

harmonic is 

2 
1 (~) 

( 1- s cos e) 2 w 1 

(2. 8) 



where 

z = 

= 

E = 
0 

G -n 

w ea(l-s2) 112 £sine cos<jl 
~ 2nS E0 (1-S cos8) 

2nS ck 
l-S w (fundamental frequency) cos8 

2 m c 
0 

£n 

J :: 
exp[i (.l!L- n) s]ds 

wl 
A w 

2 sin(J£..- n) 
wl 

£n 
A 
w 

s i n X = iJ - cos 2 <P s i n 2 8 

2 
Note that G has a large maximum in a narrow frequency range 

n 

Also if the observer is on the z-axis, fundamental frequency becomes 

= 
2nS ck 

w 
1- s 
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(2. 9) 

This expression is found to be valid for nonrelativistic and relativistic 

electrons alike. But in a practical FEL, electrons are highly relativis-

tic, that is 
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S:::l,l-S"-1-zi 

In the relativistic limit the fundamental frequency will be 

v ::: 2Y2 ck 
l w 

(2. l 0) 

In Chapter IV we shall see that (2. 10) needs to be corrected for quantum 

mechanical effects like radiation reaction. Equation (2. 10) is derived on 

the basic assumption that radiation field does not change the path of the 

electrons in the undulator. In general this assumption is not valid in a 

FEL cavity. We will discuss the effect of radiation on the electrons in 

the next section. The relativistic expression for fundamental frequency 

d • . . 1 2 b f eserves some attention. w1 IS proport1ona toY not toY, ecause o 

the Relativistic Doppler shift. 

An observer riding on the relativistic electron takes a time 

21 
t 1 =--to cover the distance 2 1 • He sees n 

v 

as he passes them. Therefore, the frequency 

2 1 v v 

2 2 1 

= ~ = IT magnet 
w w 

he sees is 

v• =~=IT 

but A1 

w 

w w 

/1-s2 A , hence he sees a frequency 
w 

v• v 
= 

A /l-SI 
w 

vY 
A 
w 

poles (waves) 

(2. 11) 

The observer in the laboratory frame sees the same frequency (2. 11) multi-

plied by a factorY. 2 That is how the Y dependence can be understood 

[2]. 
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So far we discussed the synchrotron radiation of electrons moving in 

an undulator. Same approach can be adopted for the radiation of electrons 

in a wiggler [3]. Kincaid has calculated the power spectrum using the 

notations and formulas of Jackson which is equivalent to the Fourier ex-

pansion formalism. 

The brightness per electron is given by [4] 

di (w) 
dQ 

2 2 e w 
= --2-

4'TT c [ [iw(t-n. r~t))] 
n X (nxS) e dt 

2 

(2.12) 

This equation is equivalent to (2. 1). Hence n is a unit vector point­

ing from the origin to the observer. ~(t) is the vector describing the 

path of the electron, S(t) 
-+ 

is i·(t) 
c 

The orbit of a relativistic electron in a wiggler (helical) magnetic 

field is also a helix, with the same wavelength A • The pitch angle of 
w 

the helix is given by 

2 

2Tir 
A 
w 

= 
A 
w 

27Tp 
(2.13) 

Where P -- YSmc · th 1 t d" eS IS e eye o ron ra 1us. We can also express the pitch 

angle as 

e . h p1 tc = 
A eS w 

2 
2TIYmc 

A A 

k 
y 

(2. 14) 

If the vector to the observer is n = z case + y sine and if the radius of 

the helical orbit is denoted by a, the equations of motion will be 
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+ ·'· r ( t) = S"ct z + a sin w t y + a cos W t X 
0 0 

(2. 15) 

aw aw 
S(t) 

~'·,.., + __9. 0 = S"z cos w t y ---sin W t X c 0 c 0 

2 1/2 
here s~~ = s[l - (.IS) J which is the longitudinal velocity of the e lee-

y 

tron in wiggler magnetic field. K is small for al 1 practical FEL since y 

the strength of the magnetic field K is always negligible compared to the 

energy (numerically) of the relativistic electrons. 

If we look at the motion of an electron from an inertial frame moving 

in the +z direction at the average speed of an electron, v = s~''c. In this 

frame an electron travels in a nonrelativistic circular orbit if the mag-

netic field is weak (k<l). Radiation will be a dipole pattern as shown in 

Figure 4. In the Jab frame the radiation pattern will be as shown in 

Figure 4 due to Doppler effect. If the field is strong (k>l) the circu-

Jar motion in moving frame is also relativistic, hence a cyclotron radia-

tion pattern wi 11 be seen in moving frame and the radiation in lab frame 

will contain harmonics. Figure 5 shows the details of these two cases. 

Figure 3 is the result of the evaluation of (2.12). Using (2.15) it 

is seen that 

= [ K • 2 • K 2 • J Y s1n 8 s1n w0 t + Y cos 8 s1n w0 t x 

+ [-s* sin2e + ~ cose sine cos w t] i y 0 
(2. 16) 

and 
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K (" 1 
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z 

Figure 4 • Radiation pattern produced in a weak wi3gler field 
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Figure ('5 .Radiation pattern produced in strong wiP,gler 
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" n -;:(t) = 
c 

s*t cose +~sin w t 
c 0 

( 2. 17) 

(2. 16) and (2. 17) are to be substituted in (2.12) and then the somewhat 

length integral needs to be evaluated. This has been done by Kincaid [3] 

in the Appendix of his paper. The result is, 

di(w) 
dQ = 

2 2k2 e w' 
2 2 2 

7T cw y 
0 

oo [ 2( ) (YB n)2] 2( ) sin2 [ (w )] n~ 1 J ~ X + k - X J n X X _..;~-- NIT wl - n 

k e 
Here x = ~ 

ywo 

w 
0 

i": 
( 1- s cos e) 

= 
* ( 1- S cos e) 

(~ - n) 2 
wl 

(2.18) 

fundamental frequency (2.19) 

Note that the expression for fundamental frequency is identical in form to 

the expression we obtained fo~ the undulator. 

As far as the fundamental frequency is concerned, wigglers and undula-

tors are not different. Here S of the undulator is replaced by the s* of 

the wiggler. When we were discussing the undulator we set B ~ 1 assuming 

the magnetic field to be weak. When the magnetic field is strong 

/1 - (.IS) 2 
y 

..... 
B -+ B" = This expression for s* is identical in form for 

undulators and wigglers. The only difference is in K the strength of the 

magnetic field. K might be different for wigglers and undulators. 

In the ultra-relativistic limit (2. 19) becomes 

2Y2w 
0 
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For 8 = 0 (on axis) all the higher harmonics vanish and only fundamental 

frequency remains 

2/w 
0 (2.20) w = wl = 

(l + K2) 

In terms of wavelength 

A 
( 1 + K2) A 

w 
= 

2/ 

The brightness on the axis wi ll be 

di (w) I = 
dQ w=w 1 

(2.21) 

8=0 

N is the number of electrons. 

2. Single Particle Electron Dynamics in a FEL 

A free electron in vacuum cannot radiate energy since such a process 

would not conserve both energy and momentum, which is required in all the 

physical processes. In the case of FEL radiation, necessary momentum is 

provided by the periodic static magnetic field. As we mentioned in Chap-

ter I, radiation process can be seen either as synchrotron radiation or 

as Magnetic Bremsstrahlung. In either case one has to consider the effect 

of the radiation field on the motion of electrons. 

The electron motion is obtained from the single particle Hamiltonian 

H 

2 
y 

2 me Y 

1 + ( 
i\ p 2 

+ (2-) 
me 

(2.22) 



where the transverse vector potential is 

with 

= a 
s 

- i (kz-wt) A e E: 

A 

being the circularly polarized radiation field. Here E: 

+ 
a a __ s << 
az 

w A 

k =- z and a is a slowly varying function of z. 
c s 

The other term in (2.23) is the wiggler vector potential 

t. (~) 
w 

= a e 
ik z 

w A 

E: + a e 
-ik z 

w 
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(2.23) 

(2.24) 

A o A 

= X + I y' 

a a 
ka s' 

__ s << wa at s 

(2.25) 

Note that (2.25) is identical to (1.1). This way of writing the wiggler 

vector potential makes it possible to consider the periodic magnetic field 

as a traveling wave in the moving reference frame which we discussed in 

Section 1 of this chapter. 

The Hamilton 1 s equations 

aH aH p. (2.26) = q i ' -ap. aq. I 
I I 

w i 11 lead us to 

1+¢) 
l/2 

z ci3 c(l - (2.27) 2 
y 

mYp 
-+ 

= p - e AT T 

2 
Pz = - .!!!£__ ~ 

2Y az 
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where 

<P = 

1 = (p,z), 

Generally, a>> a , that is, the magnitude of the wiggler field is always 
s 

much greater than the magnitude of the radiation field. Then (2.27) can 

be written as 

s = 

Now substituting (2.25) in 

(me) 2 + (P -
T 

(mcY) 2 

(2.28) we obtain 

2 
e w a i (k z + k -wt) 

Y = - i s [a e w z 
2m2c2Y s 

- a e s 

(2.28) 

-i(k z + k -wt) 
w z ] (2.29) 

Let us define U _ -wa and ¢ _ k z + kz-wt. Using the above definitions 
s w 

d d and --dt = v --we obtain the equations of motion for an electron inside z dz 

the wiggler cavity 

dY (~) 
dz = 

= k + k 
w 

k 
s 

(2.30) 

(2. 31) 
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As we discussed in Chapter I, the phase ¢ of the electron is constant as 

long as the electron is trapped. In reality, however, as the electron loses 

energy to the radiation its phase slips. But this means low efficiency. 

In practice ¢ is always kept constant by either changing k with respect 
w 

to z or the wiggler magnitude a. We shall discuss this concept in more 

detail in the next section and also in Chapter II I. For the time being 

let us assume that phase¢ is kept constant somehow. Then (2.31) can be 

integrated 

= 2 I I 
2 e A 

y (0) - 2 2 ~ U(O) sin(¢ + ¢ ) 
m c P 

(2.32) 

S is approximated by unity since the electrons are highly relativistic. 
i ¢ 

And U(~,t) = iu(o) I e Pis the ponderomotive (trapping) potential. 

The trapping potential U(~,t) is not easy to determine [4]. As a mat­

ter of fact numerical methods need to be applied to calculate !U(O)i and 

¢ . 
p 

3. Free Electron Lasers With Variable Wigglers 

After the first successful operations of FEL amplifiers and oscilla-

tors, it was realized that uniform wigglers with constant wavelength and 

constant magnitude were not capable of trapping most of the electrons. The 

physical reason is simple. Energy is extracted from the electron in the 

form of radiation and this means electron is slowing down. If the wave-

length of the wiggler is constant, then the observer riding on the elec-

tron will see the wavelength of the wiggler increasing as he rides through 

it. The way out of this difficulty is to either increase the wiggler 

magnitude slowly in the z-direction so that the electron gains the lost 
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energy from the wiggler or to decrease the wiggler wavelength so that the 

observer on the electron sees a constant wavelength. Same physical pro-

cesses can be explained in terms of the equations of motion given in last 

section. In general ~: (7:) f 0. If the coupled equations of motion (2.30), 

(2.31) could be solved we could have seen that ¢ was not constant. In 

other words same physical processes can be described as the slipping of 

the phase of an electron with respect to the trapping potential. Electron 

phase slips and goes out of the trap as it radiates. 

Kroll, Morton and Rosenbluth proposed a theory taking the above ideas 

into account [5]. Keeping the electron in resonance, or keeping the elec-

tron phase constant is called, 11The adiabatic decrease of the resonant 

energy•• in their theory. They discuss the motion about this synchronous 

energy. They also introduced the concept of 11 Bucket•• which corresponds to 

the trapping potential well. Figure 6 shows clearly what a bucket is. 

It is a closed curve and its interior in phase-space. An electron in-

side a closed curve of phase-space is called ••trapped electron••. 

The motion of electrons about the synchronous energy can be discussed 

as fo 11 ows: 

y y + oY resonance 

where synchronous energy and phase are defined as 

2 
Here J.l 

2 2 = l + a + a . s 

2 
Y (z) 

r = k]/ 
2k (z) 

w 

kaa 
s . " - -- s1n 't'r 

Yr 

(2.33) 

(2.34) 

(2.35) 
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-rr 'tlr 

Figure 6 • Stable phase plane trajectories 
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Note that it is possible to look at Equations (2.34) and (2.35) as either 

definitions of Y and~ assuming that k , a, a are known functions of z, r r w s 

or it is possible to consider these equations as design equations where 

the wiggler functions k and a are to be determined to achieve the desired 
w 

functions Y , ~ and a . 
r r s 

To continue the discussion of the motion about synchronous energy, 

if I oY I 
a 

s 
<< Y we can neglect-- terms, and then we have 

r a 

~· 

(OY) I 

k 
= 2 w (oY) 

Yr 

kaa 
- __ s (sin~- sin~ ) 

Yr r 

(2.36) 

(2.37) 

Here prime denotes the derivative with respect to longitudinal posi-

tion z, along the wiggler. 

These equations of motion (2.36), (2.37) could be obtained from a 

Hami 1 toni an 

k 
(oY) 2 + F(~) H w (2.38) = 

Yr 

where 

k aa 
F(~) 

s s (cos~ + ~sin~ ) 
Yr r 

The closed orbits in phase-space correspond to electrons trapped in 

buckets which perform stable oscillations about the synchronous value. 

If the parameters change adiabatically, then the maximum value of oY for 

which a particle may be trapped in a bucket is calculated from the re-

quirement that the area of the closed phase curve remains constant, i.e., 
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constant 

Kroll, Morton and Rosenbluth have calculated this. The results are 

2Y ;aa-
8Y . = r s r (¢ ) 

max1mum ]..1 r (2.39) 

with 

r (¢ ) 
r 

= /cos¢ - (~ sgn¢ -¢ )sin¢ r 2 r r r 

The area of the bucket is 

J = (2. 40) 

a(¢ ) 
r 

¢ 
rzf2 . 1/2 

= --8 [cos¢ +cos¢- (TI-¢ -¢)sin¢ ] d¢ 
¢1 r r r 

The electron will oscillate in the clockwise direction about the 

synchronous point at 8Y = 0, ¢ = ¢r with frequency n 

2k 
n = w /a a cos¢ = 

l-l s r 

Ieos¢ 8Y 
-r-T-r ( ___!!!.) k r (¢ ) y w 

r 

4. Phase Area Displacement 

(2.41) 

Phase area displacement method refers to an operational mode wherein 

the phase area occupied by the electrons is degraded downward in energy. 

This method can be best explained by graphics. Figure 7 shows graphi-

cally what happens to a bucket, full of electrons, as they traverse a 

wiggler of variable parameters. 
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The method illustrated in Figure 7 is called 11 Deceleration of buc­

ket11, end result being the decrease of resonant energy. In this method a 

certain amount of energy-spread is allowed whereas in the method of 

11Acceleration of empty bucket11 which is illustrated by Figure 8 there is 

no restriction on the energy-spread of the electron beam. Figure 8 

shows how the resonant energy decreases as the empty bucket is acceler­

ated. 

The graphical method of FEL physics proved to be very useful in 

understanding the physics and also in the design of FEL. Almost all the 

simulations of FEL work with the bucket concept. 
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CHAPTER II I 

DISCUSSION OF THE TAPERING 

Currently free electron lasers operate at very low efficiencies. 

Typical values are between 2%- 5% for the overall efficiency. Overall 

efficiency is calculated by multiplying the efficiencies of each compon­

ent of the FEL (accelerator, wiggler, etc.). 

Experimenters first attempted to increase the overall efficiency be­

cause at that time single-pass gain enhancement mechanisms were not con­

ceived. Main idea was to circulate the electrons. While a storage-ring 

accelerator would serve the purpose, the problem in this is that the elec­

tron beam is very sensitive to any velocity spread (emittance) in the 

beam. The ponderomotive potential inside the wiggler would certainly in­

crease the emittance dangerously since it accelerates some of the elec­

trons and decelerates the others. It was also found impossible to insert 

straight wigglers longer than 1.5 minto a storage-ring assembly. The 

LURE Laboratory in France developed a FEL based on storage-ring accelera­

tor anyway. Their emphasis was on producing optical wavelengths of radia­

tion not on efficiency enhancement. They found very surprisingly that the 

spread introduced by wiggler did not cause any instabilities. 

The recent efforts of physicists at Santa Barbara have been to improve 

overall efficiency by designing a FEL based on an electro-static accelera­

tor and a circulation mechanism. Although it is successful the electron 

beam produced by Van de Graaff accelerators is of modest energy and can be 

run only for short pulse durations. We discussed in Section IV of Chapter 

39 



40 

I that FEL oscillators or amplifiers require long electron pulse durations 

to achieve any reasonable gain. 

Meanwhile other ideas came forth on how to increase the single-pass 

gain and efficiency. There are two factors that could be improved, the 

first one being the number of electrons trapped in ponderomotive paten-

tial. Gain is increased simply because there are more electrons trapped 

and trapping ensures energy extraction. 

The second factor is the slipping of electrons out of resonance as 

they lose energy to the radiation field. Kroll, Morton and Rosenbluth 

[1] came up with an idea that could increase the number of trapped elec-

trans and keep them trapped (in resonance) all the way through the wiggler. 

This idea is to vary parameters like wiggler wavelength and amplitude 

adiabatically. We discussed this theory in Chapter II. In this chapter 

we shall concentrate on the experimental features of this theory. Most 

of the experimenters taper (decrease adiabatically) the wiggler wavelength 

and others decrease the amplitude of the wiggler and a few taper both [2]. 

Some experiments use linear taperings, that is, the wiggler. wavelength 

or the amplitude is decreased in a linear fashion. Typical value for the 

gradient is 9-10%. Almost all the laboratories reported more than 90% 

efficiency enhancement even with snall gradients. 

Many physicists so far have attempted to study the physics of FEL by 

simulation methods. Most notable of those are Mani [3] and Coffey, Lax 

and Eliot [4] Mani proposed a wiggler-wavelength-tapering which has a func-

tiona] form 

A 
w 

A 
0 

e 

- (~) 
z 

0 

n 

( 3. 1) 

For n = 2 and n = 4 simulation showed that almost 100% of the elec-

trans would be trapped. Mani physically argued that initially wiggler 
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wavelength should change slowly and towards the end of the wiggler it 

should decrease faster because electrons start feeling the effect of radi-

ation field only towards the end. 

Coffey et al., reported the results of their simulation which is 

based on Los Alamos Laser using linear tapering. Results are comparable 

to Mani 's results. Coffey et al., also showed classical mechanically what 

the functional form of the wavenumber k (z) should be to keep the electrons 
w 

always in resonance. Their conclusion is 

k (Z) 
w 

k . 1 (i- - 1) 
s1gna ~"z 

where 

8 = 
z 

m is a constant 

1+M2 ---2 
'( 

2 
'( = 

M 
ea 

= M"C' 
0 

a: amplitude of the wiggler field. 

2 
y (0) -mZ 

(3. 2) 

( 3. 3) 

These classical mechanical calculations motivated us to consider a 

wiggler-wavelength-tapering of the form 

k (Z) 
w 

= k 
w 

b 
z where z . » b 

m1n 

We are not allowed to start the z-dependence from zero or other small z 

value because that would be too steep a change in the wiggler wavelength 

which is against the basic requirement and assumption that wavelength 

(wavenumber) of the wiggler changes adiabatically. We show the different 

taperings graphically in Figure 9. In the figure this curve is concave 
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to the z-axis as against the exponential tapering of Mani but the rise 

is similar. 

We argue that our tapering increases the gain more than the other 

proposed taperings do. The final gain expression is proportional to the 

average wavenumber of the wiggler and also to the third power of effec-

tive interaction length. It is very easy to see that effective interac-

tion length of a wiggler with a wavenumber increasing concavely to the 

z-axis, is greater than the one with same geometrical length and a wave-

number increasing linearly or convexly to the z-axis. To illustrate this 

we calculate the number of magnet elements in a wiggler of 16 m long. We 

recall that the effective interaction length i.s really determined by the 

number of magnet elements and not by the geometrical length. 

The number of magnet elements in a wiggler tapered according to 

k (z) = 
w 

b 
kw- -2 , z . = Boo, z = 2400 would be m1 n max 

r4oo b (k - -) dz = 486.5 
800 w 2 

k 0.37 
-1 (3. 4) 

= em w 

b = 96' A.. • • l 1n1t1a = 4 em, ;\final = 3 em 

whereas the number of magnet elements for a linearly tapered wiggler and 

a uniform wiggler would be respectively 

Jl600 
(k + mz)dz = 464 

0 w 

1TI = 0.00005 

k 
w 

- 1 
0 . 2 5 em , A. • • • 1 = 4 em , A. f . 1 1n1t1a 1na 3 em 



and 400. The effective interaction length with our suggested tapering 

would thus be larger by a factor of 1.216 over uniform wiggler and by 

1.048 over a linearly tapered wiggler. It turns out that this would re-

4 sult in a gain-increase by a factor of (1.216) over the gain obtained 

by uniform wiggler. 

44 

If we did not use the same geometrical length but the same number of 

magnet elements, the gain would then increase 

the average wavelength of the tapered wiggler 

by a factor of 1.216 since 

(k (z) = k - £.) is 1.216 
w w z 

times greater than the wavelength of uniform wiggler. 
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CHAPTER IV 

QUANTUM THEORY OF AN ELECTRON 

IN A TAPERED WIGGLER 

1. Introduction 

Becker and Mltter [1] gave solutions of Dirac equation for the one­

dimensional motion of a relativistic elec~ron In a uniform wiggler field. 

Those solutions were not derived in detail in any of their papers. Our 

objective is to derive the solutions for motion in a tapered wiggler 

field for the most general case and then to show that these solutions 

reduce to Becker-Mitter solutions for a uniform wiggler. We also derive 

solutions of the Dirac equation for the motion of an electron in 3-dimen­

sions. We would like to point out that our solutions are more explicit 

and easy to work with. 

Classical mechanical calculations have already proved that tapering 

the wiggler wavelength or amplitude increases gain. We shall calculate 

this gain enhancement Quantum Mechanically. We propose a model for the 

tapering. The merit of this particular functional model is that the rela­

tivistic motion of the electron in this tapered wiggler and'associated 

harmonics, gain etc., can be studied elegantly from a quantum mechanical 

viewpoint. 

Question of whether Quantum Mechanics is necessary at all to analyze 

FEL can be answered simply by the fact that it is made imperative by 

quantizing the electromagnetic field as a photon field. Another important 
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point is that classical theories of FEL do not take into account the spin 

of the electron. Especially for those FEL using strong wigglers spin-

wiggler field interaction is significant. High gain requires strong wig-

gler field. In future FEL experiments, effects of electron spin will play 

a much more significant role. 

We use Dirac equation instead of the Klein-Gordon equation since only 

Dirac equation incorporates spin. Using Klein-Gordon equation one obtains 

the erroneous result that emitted radiation is unpolarized. But as far as 

calculation of gain is concerned Klein-Gordon equation can be used effec-

tively and this has indeed been done in the past. 

As it is discussed in an earlier chapter we propose a tapering of the 

wiggler wavelength of the form 

i'~ 

k = 
w 

k 
w 

b 
z 

The numerical values given below pertain to Los Alamos FEL. 

so that 

k 
w 

= 0.37 
-1 

em b = 96 

2400 em Z . = 800 em, Z m1n max 

"w in i t i a 1 
= = 

k;'; 

w 

4 em, "w final = 
k;'; 

w 

3 em. 

( 4. 1) 

The choice of limits does not affect the geometrical length but it 

determines the effective interaction length £ 1 and therefore the region 

of integration over z of the relevant matrix element which happens to be 

a function of k*z. 
w 



2. Derivation of Solutions in a Tapered Wiggler 

The vector potential of the tapered wiggler is 

t.. = a cos 
A 

x +a sin 

-'· 
k" is the modulated wavenumber which characterizes the tapering 
w 
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(4.2) 

k = k 
w w 

b Here a measures the strength of the field and b (a dimension-
z 

less number) the degree of tapering. 

In the direct product notation the time independent Dirac equation 

wi 11 be 

-+ -+ 2 
(ca·~ + S m c -E) $ = (~-E) $=0 

0 

where the kinetic momentum 

or 

-+ 

(p -
-x 

ea 
c 

cos ea . -- s1n c 

-p = -p- ~It 
c 

(4.3) 

( 4. 4) 

(4.5) 

Here a is a 4x4 and p is a 2x2 Dirac matrix. It is sufficient to solve 

the time independent equation because the vector potential is static. Our 

technique of solving the equation (4.3) is first to multiply it on the 

left with H+E and obtain 

$ = (4.6) 



where ¢ satisfies 

2 + + 2 2 4 2 
( c (o • P) + m c - E ) ¢ = 0 

0 
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( 4. 7) 

To arrive at this equation we used the well known anti-commutation rela-

tions of Dirac operators 

We have the identity 

·'· 
Defining the modulated wavenumber k" = k w w 

b 
z 

+ {p p - ~ p cos k\ + ~ (cos k, .• z)p }yA 
-z-x c -z w - ~x~z c w -z 

+ ea ;~ 
+~ (sin k\)p - ~yPx cos k z c Py w c w -z 

2 7: i-: (ea) sin k z cos k z}z 
c w w 

Using the commutation relations [p. ,p ] = 0 and 
I j 

[p ,f(z)] 
z 

- i-1'1 j_ f (z) 
dZ 

we obtain 

( 4. 8) 



-p.-p = 

+ 

(p -
-x 

(p -
-Y 

ea -cos c 

ea . - s1n c 

"Px"P = - itt k ~ A. w c 

ea . -- s1n c 

++ 
P·P = (+p2 2ea * 2ea '~ (ea) k · kz+-- -C- ex COS Wz - -C- ey SIn W C 

2 
+ 7 +2 2e -t- + (ea) P·l" = p - - A'p + c c 

Fi na 11 y we have 

+ 7 + + 
(cr•P) (cr•P) = 

+2 
p 

2 
2e A·P + (ea) 
c c 

e++ 
+ nk - cr•A w c 
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(4-9) 

2 

(4. 10) 

(4.11) 

The experiments have in the past been such that the electron propo-

gates in the z-direction with negligible transverse momentum. Later we 

will comment on what is involved in removing this restriction. We there-

fore assume that p = o = p and then obtain 
X y 

2 + + + + 
c (cr•P) (cr•P) 

22 ++ 22 = c p + (nk ec) cr•A + e a -z w 

The iterated Dirac equation in 2x2 form wi 11 be 

2 2 2 
c p +n -z 

eafik c e 
w 

-;'c 
ik z 

w 

where we set for brevity 

* - i k z 
eaflk c e 

w 

2 2 2 
c p +n -z 

w 

(4.12) 

= 0 (4. 13) 



. 2 2 
of momentum) c . 

We can now express 

or 

Also we used <P 

eaflk c e 
w 

x2 in terms 

x2 = 

of 

e 

xl 

i k ~·:z 
w 

"· 
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Now we have the coupled equations 

X =Q 
2 

2 2 2 
(c ~z +n ) x1 

eaflk c w 

(4. 14) 

( 4. 15) 

-ik"z 
2 2 2 

xl 

Eliminating x2 leads us to 

2 
(eailk c) 

w 
e 

e 
= 

We have the commutation relation 

2 
p e _z = e 

w (c p +n ) 
-z 

eafik c x2 (4. 16) 
w 

2 2 2 2 ik:z 2 2 2 
(c p +n )x 1-n e (c p +n )x 1=o _z z 

( 4. 17) 

( 4. 18) 

Therefore, we shall have an operator equation for x1 



e 
2 { (eank c) 

w 
2 2 2 2 2 c p (c p +n ) _z _z 

2 2 2 2 
2~k c (c p +n )p 

w z _z 

Completing this to a perfect square we have 
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(4. 19) 

(4.20) 

Since the operator operating on x 1 is a function of ~z only x 1 should 

be the eigenfunction of p and we can take _z 

where p1 is a continuous number. x2 can now be determined from Equation 

(4. 14), as a function of another continuous number p2, by eliminating x 1 

and using the commutation relation 

2 
p e _z = 

The operator equation for x2 is 

2 { (ea1'ik c) 
w 

i 

(4.21) 

(4.22) 

It is easy to determine p1 by insisting that 
,fi plz 

x1 = e satisfies the 

Equation (4.20). With the substitution n2 2 2 2 2 b . = e a - p c , we o ta1n 
z 



2 2 e a +---2 
c 

2 2 
p + -1'\k p 1) z w 

Using Equation (4.22) we obtain 

P2 

2 2 2 2 
(fik ) [e a -n ] 

w 
= 

2 
ffik p ) w z 
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(4.23) 

(4.24) 

(4.25) 

p2 , kw' a are design parameters, so p1 and p2 are determined in terms of 

the design parameters. More meaningfully we could write 

= 
fick I 2 flk 2 2 2 

E~ + [-~ + lc (p 1 + 2w) + (ea) ] (4.26) 

= (4.27) 

where E 
0 

2 = m c . 
0 

Note that these expressions for energy are equivalent. To 

complete the solution of the Dirac equation we have (for positive square-

root of Equation (4.7)) 

where 

¢ 1 i s a s p i nor. 

Equation (4.20) justifies the following choice of ¢ 1 
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i 

d 
-'¥i plz 

xl e 

¢1 = 
*(pl + fik ) z 

w 
(4.28) 

x2 g e 

Substituting this into Equation (4.7) we obtain 

0 (4.29) 

in order to have a unique solution,determinant must be equal to zero 

also from each equation we have 

g = 
( 2 2 2) - i b 
c p 1+n e 

------,-,.,..--- d 
ead'lk 

w 

0 (4.30) 

-

= ( 4. 31) 

where d is arbitrary. d and g are constants or functions independent of z. 

p1 is related to the effective momentum of the electron in the z-direction 

pz. Note that p1 is just a (physical) number. We are not interested in 

the negative energy solutions with negative square root because they refer 

to positrons. The complete solution in the bi-spinor will be 

1jJ = 

¢2 
-+-+ c a·p 

2 cpl 
E + m c 

0 

(4.32) 



Let us work it out 

-i (k z-b) i 

cp w d 
'K pl z 

-ea e e ++ _z 
c cr·~ = E + E E+E i (k z-b) *(p 1 +.l'ikw) z 0 0 w -ea e -cp g e -z 

where 

E = m c2 
0 0 

The complete unnormalized solution will be 

..... 
eacfik ik"z 

w w 
2 2 2 e 

c (p 1 ~k) +n 

,,,t = d 1 [ + 
'~'p E+E cpl 

0 

.!..(p z-Et) 
h 1 e 
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(4.33) 

(4.34) 

Note that this solution reduces to the solutions of Dirac equation for 
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motion of electrons in free space when the wiggler field is switched off, 

that is when 

a -+ 0 

k -+ 0 
w 

d is arbitrary, we let d = ~to normalize u uu I. 

The second positive energy solution is derived by taking 

<P 1 = 

This choice of <1> 1 is justified by the operator Equation (4.22). 

(4.35) 

(4.36) 

Again, d,g are independent of z. p2 is interpreted as the effective mo­

mentum in the z-direction when the electron enters the wiggler field with 

spin-down (spin is anti-parallel to z-direction). 

Substituting <1> 1 in the iterated Dirac equation we obtain 

= 

det = 0 leads to 

We also have 

..!..(p -A'ik ) z 
.f1 2 w 

g e = 0 

0 

( 4. 3 7) 

( 4. 38) 



2 2 2 i b 
c p2+n )e 

ib 
eacl'ik e 

w 
d eaofik g 

w 

where g is arbitrary. 

The complete solution in bi-spinor form will be 

++ 
c cr•p 
E + E ~1 

0 

= E+E 
0 

1 
= E+E 

0 

-ea e 

cp 
-z 

ljJ = 

i (k z-b) 
w 

~1 

++ 
c cr•p 

~1 E + E 
0 

-i(k z-b) 
w -ea e 

-cp 
-z 

The complete unnormalized second solution will be 
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(4.39) 

(4.40) 

(4.41) 
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- i (k z-b) 
-eaaf,k e w 

w 

- i (k z-b) i 1 c(p..,-thk ) eactlk 
- [ l. w w -- + 

E+E 2( ~k )2 2 
J w -(p z-Et) 

ea e h 2 
e 

(4.42) 
o c p 2 --n w +n 

2 2 
1 e a ol'lk 

-- [- w - cp J 
E+E 2 ( "-k ) 2 2 2 o c p2-..n w +n 

As is well known [3] when the Dirac particle is moving in a field the up 

or down spin of the particle can be known with precision only when the 

particle is momentarily at rest. We associate solution (4.42) with down­

spin since it reduces to U~ when the wiggler field is switched off and 
+ 

arbitrary 9 is taken to be 9 • \~ . 
There is one delicate calculation of limit that is not so obvious 

lim eacli + 0 (4.43) 
a-+o 2( )2 2 

k -+o c pl+~kw +n 
w 

as quoted in the litarature on untapered wiggler [1]. But 

( 4. 44) 

similarly, 



59 

= 0 (4.45) 

These limits are not obvious because p1 and n2 are rather complicated ex­

pressions which should be written explicitly before the limits are evalu-

a ted. 

3'. Comparison of the Solutions to Those 

of a Uniform Wiggler 

Becker [1] gives the solutions of Dirac equation with uniform Wiggler 

field (p = 0 = p ). 
X y 

-ik z 2 -ik A z 
(N (Y ~ e w - y_ (Ea) )Y w -

- z /2 2k A + e 
w -

ik z 2 -ik A z l(p z-Et) 
+ N (Y ~ e w - Y+ J~a~ )Y_e w + ]U(p)eh z 

+ z 12 w + 

where 

e 
€ = fie' 

also, 

(EY0 -

flk A w -+ 

y = ~ (Yl iY2), -+ 
± y = 

± 

cp Y - E ) U (p) 0, E2 -= z z 0 

-flk -rik 2 
-+ w [ ( p +- _..J:!...) = Pz -2-- z 2 

N_, N+ are normalization constants. 

-+ 
Sa. 

2 2 E2 c Pz = 
0 

2 1/2 
- (~) J 

c 

(4.46) 

(4.47) 

( 4. 48) 

(4.49) 



Let us write the Becker solutions explicitly 

v/ N+ = p 

= N 

(sa) 2 

k A w + 

ik z 
w sa e 

(sa) 2 cp2 

kwA+ E+E 
0 

ik z cp 
w z 

sa e E+E 

- sa e 
-ik z 

w 

2 (sa) 
k A 
w -

-ik z cp 
w z 

0 

1/J+ 
p 

sa e E+E 

In our solutions we chose 

g = 

Becker and Mitter chose 

2 (sa) 
k A 
w -

0 

cp 
z 

E+E 
0 

eaclik 
w 
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- i (k A 
pz 

- -)z w + -t'i (4.50) e 

- i (k A (4.51) 
w -

e 



d = 

which are equivalent. 

eacl'ik 
w 

2 2 2 9 
c p 1+n 

Equivalence of Becker 1 s and our solutions is established when we 

identify the effective momentum terms 
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= p - ~k A 
z w + 

(4.52) 

P2 = p - ..tlk A z w -

then d, g relation leads us to 

eac.~k . w 
d = - __,.2__,...2....;..;..2.,... 9 ' 9 is arbitrary let 9 = 

d = 

d = 

c p 1+n 

eayilk 
w 

2 2 2 
c (p -Jik A ) +n 

z w + 

eacnk 
w 

s i nee flk A w + 
= 

= 2 2 c (p - 2p ..t'lk A 
z z w + 

eac,l'tk 
w 

I hk 2 2 
/(pz + 2w) - (e:) 

above express for d reduces to 

d = = sa 
+~ 

w + 

2 2 
+ e a 

(4.53) 

2 2 
- c p 

z 

(4.54) 

t 
then~ follows. Note that Becker and Mitter multiply all the rows in 

p 

the bi-spinor by sa in other words they let 9 = sa since 9 is arbitrary. 
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To examine whether Becher and Mitter solutions reduce to free-parti-

cle solutions we need to know 

1 i m ea 
0 a+o kwA+ 

but 

2 2 
1 i m · e a + kwA+ 

= 
a+o 

We notice that defining effective momentum 

0 

(4.55) 

(4.56) 

in the wiggler as p -~k A 
z w + 

and p -~k A is an unnecessary complication. A and A unnecessarily 
z w - + -

complicate the solutions. Another point we would like to make is that 

Becker solutions are two particular solutions whereas our solutions are 

more general We also derived the determining equations for p1 and 

p2 which correspond to the determining equation for.flk L. 
w + 

Becker and 

Mitter introduced Equation (4.49) as a defining equation for ~kwA_ some-
. + 

what abruptly. It is to be noticed however when the tapering is switched 

off, i.e., in the limit b + o, Our solutions go over into Becker and 

Mitter solutions. 

5. 3-Dimensional Solutions of Dirac Equation in 

a Uniform Wiggler 

Three-dimensional solutions of Dirac equation need to be considered 

when px ~ 0, py ~ 0. Following the same techniques used in Section (3) of 

this chapter we obtain 

2 + + + + 
c (a• P) (a· p) 

2+2 2 2 
c p + e a - 2e 



Iterated Dirac equation in 2x2 form is 

2+2 2 
c p - 2eac(p cosk z + p sink z)+n 

-x w -y w 
ea.f1ck e 

w 

-ik z 
w 
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=0 

eanck e 
w 

ik z 
w 2+2 . 2 

c p -2eac(p cosk z+p s1nk z)+n x2 _ -x w -y w 

(4.57) 

we substitute 

xl l i+ + 

.d 
.fi pl·r 

x2 j= 
e 

<Pl = i· + + 
.fi(p 1·r + Jikwz) 

g e 

(4.58) 

After some straightforward algebra we obtain 

9 = 

2+2 2 
c p1 - 2eac(p 1xcoskwz + plysinkwz) + n 

eac.flk d (4.59) 
w 

d is arbitrary. 

Complete solution wi 11 be 

(4.60) 



where 

++ 

ik z 
w 

-ik z 
w cp_-ea e 

-cp 
-lz 

p+ = ~1x + 

p = elx -

i + + 
- p •r 

d eh 1 

i p. 
-I y 

i p 1 - y 

ik z 
[cdp1z-eag] + [cgp + cifl(~ -i ag)]e w 

- d X d y 

C.£.:.e.. 
E+E cp1 = E+E 

ik z 0 0 
·X. d g] w 

Cl'll- e 
dZ 

The first unnormalized positive energy solution is 

lj!t 
+ pl 

d 

g e 
ik z 

w 

1 ik z 
-E-+E {[cdplz - eag] + [cgp + ci-tl(ag - i ~) J e w } 

0 - ax a y 

ik z 
e w } 

) 

The second positive energy solution is obtained by substituting 
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(4.61) 

(4.62) 

i + + 
-(p · r- Et) 11 1 

e 

(4.63) 
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i -+ -+ - tflk z) ~(p2·r 
d w e 

<Pl 
i -+ -+ 

(4.64) 

,K p2·r 
9 e 

in Equation (4.57). 

After some simple algebra we obtain 

d = 

h2 2 c p - 2eac(p2 cosk z + p~ sink z) + n 
2 X w "-Y w 

----------------~~---------------- 9 eacfik 
(4.65) 

w 

where g is arbitrary. 

-ik z 
[cd(p 22 -A1kw) + ci-11 ~~ - eag]e w + [cgp_] 

= E+E 
0 

i -+ -+ -(p ·r-Et) 
.-fi 2 
e 

ad ad -ikz 
[cdp++ ci.rl(a;z + i ay-) ]e w - [ead + cgp22] 

The second unnormalized positive energy solution is 

d e 

9 

-ik z 
w 

-ik z 
." ad 

Cl'll -­a z 
eag]e w + [cgp ]} 

-ik z 
1 {[ d ·L.(ad +.ad)] w 

E+E C p+ + C I'll -"- I -::;--- e 
0 oX oy 

- [ead + cgp22]} 

i -+ -+ -(p ·r-Et) 
1\ 2 

e 

(4.66) 
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where 

p' = Pzx + ip2y + 

( 4. 6 7) 

p~ = Pzx - ip2y 

This goes to show that the Dirac equation has analytical solutions for 

the type of tapering proposed even if there happens to be a transverse 

component to the motion of the electron. 
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CHAPTER V 

RADIATION AND GAIN 

1. Radiation 

Our objective is to calculate the frequencies and gain quantum mechan-

ically. Since the radiation field inside the wiggler is weak compared to 

the energy of relativistic electrons, perturbation theory can be used to 

calculate the probability of emission of a single photon from the perturbed 

electron. We can also calculate the probability of absorption of a photon. 

Difference between the probabilities of emission and absorption of a photon 

will lead us to the calculation of gain. Frequencies will be derived from 

the conservation of energy and momentum principles. 

Let us consider the interaction of a charged particle and an electro-

magnetic field. The nonrelativistic Hamiltonian for the quantum mechanical 

system of charged particle and electromagnetic field is 

1-+ e -r- 12 1 I 3 -+2 -x2 
H = Zm p - c A + V + &;T d x ( E +tj ) 

Same Hamiltonian can be written as 

where 

H 
0 

1 -+2 
= 2p +V, H rad 
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(5. 1) 

(5.2) 
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2 
= - ~ -p.t + _e_ !A:!2 

me 2mc2 
(5. 3) 

H1 is called the interaction Hamiltonian and this will be treated as 

a perturbation. The passage to Quantum Mechanics is done by replacing the 

measurable quantities in the classical Hamiltonian by the corresponding 

operators (First quantization). The quantum mechanical Hamiltonian for 

the electron will be 

H 
2 

= _21 m p2 + V (~ A•p + _e_ p•A + _e_ !A!2) 
me - 2mc _ 2 2 

me 
(5. 4) 

Our system consists of a charged particle and electromagnetic plane 

waves (Radiation). One way to obtain the plane waves from the Maxwell 

++ 
equations is to set V·A = 0 (Coulomb Gauge). 

Then the Interaction Hamiltonian will become 

2 
= i-fle A. 'd. + ~ !Ai 2 

me 1 1 2mc 
(5. 5) 

2 
e !+A!2. To 1st order perturbation theory we can neglect the term ----2 

2mc 
Thus the interaction Hamiltonian in nonrelativistic Quantum Mechanics is 

= ifle A.'d. 
me 1 1 

(5.6) 

So far we discussed the interaction Hamiltonian semiclassically inasmuch 

as the radiation field is not quantized. A complete Quantum Mechanical 

discussion requires the quantization of electromagnetic fields also. This 

is done by ••second quantization••. Classical electromagnetic waves are 

quantized to yield photons, and the wavefunctions themselves are now 

operators. 
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+ The wavefunction of a photon with definite momentum k and a definite 

polarization e, normalized to 1 photon per unit volume can be written as 

A(r,t) = 
.+k + 

A 1 • r-wt 
e e 

w 
(5. 7) 

After second quantization procedure this wavefunction becomes the radiation 

field operator. 

~(r,t) = 2: /2rf e [a 
n I w n -n n 

e 
ik·~-w t -i (k·~-w t) 

n +a+ e n J 
-n 

(5. 8) 

+ where a and a are creation and annihilation operators respectively. 
n n 

In order. to treat the subject most generally we must consider the rel-

ativistic interaction Hamiltonian as well as the quantized electromagnetic 

field. Dirac equation in the presence of electromagnetic field is 

terms can be arranged as 

++ 2 ++ 
{(ca•p + Sm c -E) - ea•A + e~}~=O 

0 

Here the interaction Hamiltonian will be 

++ 
e a•A + ecp ea AJ.l 

].l 

(5.9) 

(5. 10) 

( 5. 11) 

We take H1 as the perturbation and apply lst order perturbation theory to 

calculate the probability of emission of a photon. That is 

(transitio~ probability) 
t1me . . (5. 12) 

emiSSIOn 
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Let us write the initial and final states more explicitly to illus-

trate that they are composite states of electron and the photons 

<fl = (5.13) 

li> = I~; electron>ln> 

Then the matrix elements will be 

= f (5. 14) 

In general we substitute (5.8) in (5. 14) for A~. But since we are inter-

ested in emission only it is sufficient to write 

Now we have 

s i nee 

and 

we sha 11 have 

- i (k·""?"-w t) + n a e 
n 

1'lw 
n 

= 

<n+ 11 a+ In> = In+ 1 <n+ 11 n+ 1 > = In+ 1 
n 

(5.15) 

(5. 16) 
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( 5. 17) 

In our calcuations we shall assume circularly polarized photons. Cir-

cular polarization can be represented as 

= right-circularly polarization 

A 

e 
n 

1 (A 0A) = - X- IY 12 
left-circularly polarization 

Now let us define Y+ = ~ (Y 1 + iY2), then Yen_ 

+ 

= y_ 
+ 

Since we assumed p = p = 0 in Chapter IV, our cavity is basically one­
x y 

dimensional. Then the matrix elements will be 

(5. 18) 

where t is the interaction length, and interaction time is assumed infin-

ite to conserve energy. In the next section we will drop the numerical 

constants for brevity. In Section (4) will reintroduce them when we cal-

culate the actual transition probabilities. 

2. Matrix Elements 

Before we proceed to calculate the matrix elements it is necessary 

to write down the solutions of Dirac Equation in a tapered wiggler in a 

concise form. 



E 
0 

2 _ m c 
0 

ments are 

ik z 
w 

-ik z 
w 

-ib 
e 

ib 
e 

-ik z 
- ea]e w 

-eacnk 
w 

are normalization constants. 
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(5. 19) 

(5.20) 

Matrix ele-



w: 

+: 

L2 I 00 I £1/2 dz -dt tjJPI y tjJ 
-oo -£1/2 + p 

effective interaction length 

cross-sectional area of the electron beam 

i (wt-kz) e 

frequency of the emitted or absorbed radiation 

right-circularly polarized radiation 

left-circularly polarized radiation 
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(5. 21) 

First, we need to evaluate tjJ 1 Y_ tjJ terms. ($) means Parl i ad­
p + p 

joint. 

-t tjlt y 
*PI = -p 

where 

A 

= -

where 

tjJP 

/2 N1 N 
2E 1 1 

0 

E1+E 
0 

y 
tjJP -+ 

Fl e 

B 

- tjJ+ yoy tjJ 
+ p 

- i (k z-b) w 

E+E 
0 

e 

E1 +E 
0 

-l(p 1 -p )z 
.-1'\ 1 1 

E 
0 

i.(E I -E) t 
..t'i e 

2 
- m c 

0 

-l(p 1 -p ) l.(E 1 -E)t 
...., 2 2 '" e e 

(5.22) 

(5.23) 



~+ y y+ 
pi - p 

t- -.J..(p 1 -p ) J..(E 1-E)t 
= v2 N 1 N F- '" 2 1 -11 

-ZE21 3e e 
0 

where 

- -2i (k z-b) -J.(p 1 -p) }(E 1 -E)t 
= - ~~ N l N 2 F 4 e . w e 'Tl 1 2 e, I 

0 

where 

where 

where 

where 

-t t 
1/Jpl y 1/J + p 

1:2 + i (kwz-b) -~(p 1 -p ) l(E 1 -E)t 
= 2 N1 N F e 1 1 e.-f'l 2E 1 1 1 e 

--1- t 
1/Jpl y 1/J + p 

0 

-t + 
1/Jpl y 1/J + p 

-l(p 1 -p ) -b-<E I -E) t A1 2 2 41 e e 

-l(p 1 -p ) ~(E 1 -E)t 
,J1 2 1 'll 

e e 

- -lt p I - p ) J..< E I -E) t 
..f2 N I N F+ A'i , 1 2 If] 

= 2E 1 2 4 e e 
0 
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(5. 24) 

(5.25) 

(5.26) 

(5. 2 7) 

(5. 28) 

(5.29) 



where 

We are now ready to calculate the matrix elements. 

x e 

where 

in (k z- b) 
w 

n = 0, + 1 , +2 

k = 1 ,2 m = 1 ,2 

+ G (w.) 
I 

G (w:) 
I 

'W+ 
1 £ i - i nb 

= -sin(--) e w: 2 
I 

1 £ 'w: 
- sin(--1 ) 

- 2 W. 
I 

inb 
e 
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(5.30) 

(5.31) 

(5.32) 



-+ F. have already been listed. 
I 

To calculate transition rates we shall need jM~j 2 
I 
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(5.33) 

(5. 34) 

We shall evaluate (N 1N) 2 and (F~) 2 terms in the ultrarelativistic limit. 
I 

In the ultrarelativistic limit 

A = ~ E1 +E0 -+ 
- E+E l ' 

0 

E+E 
s=\ 0 -+1 - \ E 1 +E 

0 

2 2 A1, A2 , A1A2 , AlA2 , AlA2 terms can be neglected because these terms are 

ea 2 
of the order of(-·) which is very small in the ultrarelativistic limit. 

cpz 

(5.35) 



we also have 

2 2 
e a 

2 2 e a 
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(5.36) 

0 

In nonrelativistic Quantum Mechanics a plane wave is either delta function 

normalized or normalized to give unit probability of finding the particle 

in a finite volume, that is, 1jJ~·~1jJ = 1. Analogous normalization for the 

relativistic plane wave is 

uu (5.37) 

The factor~ was introduced in the unnormalized solutions so that 

UU = 1. When we normalize we would like to keep this factor and state 

the normalization as 

= (5.38) 

In our case 

= 
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2 E+Eo 2 1 2 2 
N2 ~ [A 2 + 1 + ([c(p2 - ~kw)A2 - ea] + [eaA2 + cp2] ) = 

o (E+E ) 2 
0 

Evaluating these expressions in the ultrarelativistic limit we obtain 

then, 

(N'N ) 2 -1 1 

2E 
0 

2E 
0 

[2cp - c2-l'lk ] z w 
[2cp + c2fik ] z w 

E2 
--=-.....;:0;....__ [ 1 

2 c p'p z z 

2 

_!_,y,k 
2 w 

] 2 (pI +p ) 
+ ·dn kw) __;:z~z=-- + .... ] 

't I 2 2 

E2 
--=--=0;....__ [ 1 + _!_ .n k 

2 2 w 
c p'p z z 

(N'N )2 
2 1 

(N'N )2 
1 2 

::: 

3. Frequencies 

Pz pz 

2 c p'p z z 

(5.39) 

(5. 40) 

(5.41) 

(5.42) 

The best method to calculate frequencies is to use the conservation 

of momentum and energy. Let us write the four-vectors of effective momen-

tum 

= = (5.43) 

Squares of these four-vectors will be 

(5. 44) 
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After the emission or absorption of a photon, we have 

El2 2 
= I T- P (5.45) 

The recoil due to a photon is not enough to conserve the momentum. 

The additional momentum is provided by the wiggler magnetic field. The 

observer on the electron sees the wiggler field as an incoming electro-

magnetic wave even though from the laboratory frame it is just a static 

magnetic field with ulternating polarity. This motivates us to write the 

following equation for conservation of momentum 

= n=0,±1,±2 (5. 46) 

where 

= (O,O,O,nk ) 
w 

= (~.o.o,k) 
c 

Here n~k is the magnetic quantum of the wiggler field ~k is the quantum 
w 

of the radiation field. In the case of a uniform wiggler k = k . If w w 

the wiggler is tapered, we take k as the average wavenumber. In the 
w 

tapering we proposed, this average wavenumber is 

k = k 
w w 

z 
b ln max 
Q, z-:-

mln 
(5.47) 

We can also show that Equation (5.46) is indeed the correct conservation 

of momentum equation by looking at the line shape of emission or absorp-

tion. We derived the line-shapes when we calculated the matrix elements. 

We now modify Equations (5.31) and (5.32) by replacing k (z) ~ k . w w 



G (W.) 
I 

-

1 R_ I w • 
= ...--sin (-2-1 ) w. 

I 

w7 = ~ - * + k ± nkw' n = 0' 1 ,2 
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(5. 48) 

(5. 49) 

Since the line shape is very sharp and peaks at W. = 0 we can obtain the 
I 

conservation of momentum equation by letting W. = 0. We then transformed 
I 

(5.49) into four-vector notation. This shows that all the information 

relating to frequencies and conservation laws are contained in the matrix 

elements. 

We now combine Equations (5.44), (5.45) and (5.46) and obtain 

this leads to 

= 

where n = +1 -·emission 
+: absorption 

= 

.!< 2- 2 + 2npT .. c kw + E1 -

2(E- cp --Kcnk) 
1 w 

(5.50) 

(5.51) 

We used the dispersion relation w = ck which is valid for the emission in 

forward direction. Above expression for 11w 1 is exact. Similarly other 

frequencies can be calculated 

2 2 2 12 2- 2 E2 + (rtl'lck ) 2 c Pz - c Pz + 2np2-11c kw + E I -
w 

n=+l 
2 (E - cp - nflck ) 2 w 

(5. 52) 

2 2 2 12 2- El2 - E2 + (oock ) 2 c Pz - c pl + 2np('lc kw + w n=+2 
2(E - cp2 - oockw) 

(5. 53) 
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(5. 54) 

A typical FEL, especially the ones which operate in visible and far 

infrared, uses highly relativistic electrons (for Los Alamos Laser 

Y = 200) [2]. This makes it possible to evaluate the exact expressions 

for frequencies in the ultra-relativistic limit. 

E = E y "' 
0 

cp 
z 

2 
we shall ignore the terms of the order of (~) 

cpz 

k cl1 
w 
ry 

0 

<< 1, << 1, 1 -z­
y 

E 
(__2_) 
cp 

z 

A 1 so, 

2 

<< 1 

In the ultrarelativistic limit determining equations for pl 

become 

=~ (pz 
A"ik 2 2 -l'ik 

pl +~) (ea) w 
-2-2 c 

=\ 
.f\k 2 2 ·flk 

p2 (p - ~) - (ea) +~ 
z 2 c 2 

Applying these approximations and using 

E 

the frequencies can be written as 

::: 

::: 

p (ea) 
z c 

p -
z 

(ea) 
c 

E2 
+J__o_+ 

2 2 2 
c Pz 

2 

(2p + fik ) 
z w 

2 

(2p z - fik ) w 

and p2 

(5.55) 

(5.56) 



tt ftw 1 = 

= 

= 

[1 + 

2 -
-2nY 'Ilk c w 

.f!K. c 
(ea) 2 
E 2nY --f-J 

0 

2 --2nY :-tlk c 
w 

0 

-111( c 
[1 + (~a) 2 - 2nY --f-J 

0 0 

2 --2nY :.tlk c 
w 

11k c 
[1 + (~a) 2 - 2nY --f-J 

0 0 

n = +1 (fundamental) 

emission 
+: absorption 

n = +1 (fundamental) 

n = +2 (1st harmonic) 

2 
[ 1 + (~) J 

E 

emission only (O'th harmonic) 

0 

The fundamental optical wavelength {A= 2:) will be 

nA 2 
Y = w [ 1 + (ea) 

- 2y2 Eo 

·fik c 
2nY --f-J 

0 

n = +1 
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(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

The reason n = -1, -2 gives emission is because negative frequency means 

absorption. In other words positive energy of quanta necessarily implies 

emission. 

The terms in the expression for fundamental optical wavelength can be 

explained physically. 
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1st term: This term is the same as the expression we obtain from 

relativistic doppler shift argument in Chapter II. In that argument it 

was assumed that wiggler magnetic field does not affect the path of the 

ultrarelativistic electron. 

2nd term: Magnetic field actually modifies the motion of the elec-

tron, second term shows the effect of this interaction. 

3rd term: Lowest order correction due to recoil. When the electron 

emits photon in the forward direction it recoils. This is purely Quantum 

Mechanical, that is, photon is a Quantum Mechanical concept. That is why 

classical mechanical calculations cannot account for this term. 

Most important of all is the fact that this term is the basis of gain 

mechanism. Expressions for emission and absorption are identical except 

this term. In other words the difference between the emitted and absorbed, 

radiation frequency is due to this term and this makes the transition rates 

for absorption adn emission different, hence the gain in radiation follows. 

Details of gain mechanism will be elaborated in the next section. 

Finally in this section we would like to examine the correspondence 

between frequencies and matrix elements. We know that peak of the line-

shape occurs when W = 0 which determines the frequency. 

If W"j = 0 then p• = pl - ...Mk - -lik (5 .62) 
1 w 

w- = 0 then p• = P2 - --tl k - -nk. 2 2 w 

W4 = 0 then p• = P2 - 11k - 2flk 
1 w 

w- = 0 then p• = pl - -lfk 
3 2 

-+ 
0 then p• - A'\k + ilk wl = pl 1 w 

w+ = 0 then p• = P2 - flk + flk 
2 2 w 

w+ 0 then p• = p1 - .J'ik + 21'\k 
3 2 w 

w+ 
4 0 then p• 

1 
= p - ,f'ik 

2 



When we compare these expressions to 

p•J.l 
eff 

= 

we shall find out that Wl = 0, w; = 0 corresponds ton= -1 which indi­

cates emission. By similar arguments we conclude that matrix elements 

associated with emission are M1, M2 , M3, M4 , and M~. But IM41 2 ~ 0 so 

- - - + we choose M1, M2, M3 ,and M4 as the 4 matrix elements associated with 4 

different emission frequencies. 

4. Transition Rates, Gain 

In general transition probability per second is given by 
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(Fermi •s golden rule) (5.63) 

where 

(5.64) 

and p(E): density of final states. 

The reason we need to sum the mod-squares of matrix elements over 

final states and average this sum over initial spin states is dictated 

by the conditions of the experiment. In general the incoming beam of 

electrons will be unpolarized and the spins of the outgoing electrons 

are not observed. 

We previously calculated the matrix elements M: without the proper 
I 

numerical factors. We now introduce them. Each coupling of an electron 

to a real photon introduces a factor el~ (~ is in the denominator since 
v2w 

the photon wavefunction is normalized to l photon per unit volume), and 

4ne2 
each coupling of an electron to a virtual photon introduces -i In 

2w 
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our case we neglected space charge effects mainly because we look at the 

Compton regime where single particle approach is adopted. We replace 

Density of final states for the emitted photons is 

sions. But in most practical experiments of FEL p = p = 0 which is 
X y 

what we assumed in the beginning. Then our problem is basically 1-dimen-

sional. In 1-dim density of final states for photons is dk/27TV. 

This factor is already incorporated in the numerical factor~= since 

the photon wavefunctions are normalized to 1 photon per unit volume. 

Density of final states for electron making free-free transition is 

taken care of by integrating the transition rate with respect top~, 

since p~ is continuously distributed around a fixed pz value. 

I dr = r = 27T I 47Te2 (..!. LIM.I2 dp' 1 
per second lr 2w 2 1 z v3 

r . 1 = ~ 27T~ ~..!. LIM .12 
2 fd I 

Sing e paSS C W~ V3 2 I 
(5.65) 

We shall evaluate the transition rates for emission only. Transition rate 

of absorption is given by r(w+o) where o is the difference between absorp-

tion and emission frequencies (fundamental frequency). 

k ,.f'\c 2 -2 
w(absorption) - w(emission) - ckw(2Y) 3(-I--) [1 + (~a) ] (5.66) 

0 0 

<w> = average frequency = resonance frequency 



= 
2 

[l + (~) J 
E 

0 

, then o can be expressed in terms of <w>. 

= 
k the 

4 ..J!..._ E -----=-2-
Y<w> 

o [l + (~a) J 
0 

Suppose there are N photons in the wiggler cavity, then 

r . 1 • • st1mu ate em1ss1on = N r spontaneous emission 

rstimulated absorption = 
r . . (w+o) 
st 1m. em1 s. 
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(5.67) 

(5.68) 

(5.69) 

The average energy loss of an electron passing the wiggler field in 

Q,'/c secinds is 

Q,' 
= 41 w - ( r . ( w) - r ( w+ o) ) 

c st1m. emiss. stim. emiss. 

(w) ar 
t N spont = A'iw - o -~-~.;..;:__ __ 
C dW 

The gain is defined as the ratio of the energy loss/cm3 and the 

energy density of the stimulating field. 

g 
liE peV 

= -l'lcwN 

therefore, 

g 

pe: 

'1, 
- - Vop 

c e 

electron density 

3r spont. 
aw 

(5. 70) 

(5. 80) 



1 2 
Let us evaluate 2 E!Mi I in the ultrarelativistic limit 

We kept only the emission terms. 

E2 
+ 0 

2 c p'p z z 

E2 
+ 0 

2 
c p'p z z 

E2 
+ 0 

2 
c p'p z z 

in the ultra-relativistic limit 

ea 
/..1 - - 3cp' ' z 

then, 

!..' + /..2 = 0, /..1 + !..' 
1 2 

/..2 
ea - 3cp z 

"' 0, p -p' 
2 1 "' 0 

p -p' - 0 
1 2 -
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(5. 81 ) 

(5.82) 

(5.83) 
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A 1 so Wl w; since p1 ~ p2' then we can denote w- w~ = w;. Therefore, 

= 

where 

1 • £ 1w) = W s 1 n (-2- , w = 

pi 
1 

..t'i 

For the transition rate per single pass we have 

2 4 2 2 p 1 + 
e !l., 1 4rrL e a J 1 1 - z p z 2 r = --:;;:- - 3 -- - [ 1 - - -Ilk + · · · ]G (W) dp 1 
'II Wp 3 p I 2 W p I p Z 

c z v z zz 

The first term will give us the rate for fundamental frequency. 

(5. 85) 

Therefore, 

(5. 86) 

Fortunately we do not have to evaluate the integral explicitly because of 

the sharp maximum of function G2 (w). G2 (w) behaves much like a Dirac 

delta function. So we can replace all p 1 outside G(w) by the corresponding 
z 

values of the maximum. That is, 

I 2 cp _ v (E-11w 1) 

Before we take the derivative of this expression with respect tow, we 

need to look at the derivative of W with respect tow. 

In terms of the longitudinal velocity Sa of the electron in the wig­

gler field 



we have 

w = 

aw 
aw = 

2 
y 

2 
[ 1 + (ea) J 

E 
0 

k +~- ~ 
w c cs a 

[1 + 
2 

(ea) J 
E 

0 

2 
s2 = s2 - (~) 
a E y 

p• 
( . 1 s1nce--

-l"i 

0 

pl k 
-:::-) ., s 

a 

1 we used the approximations Y >> 1, 1-S- -- also - 2i' 

finally gain expression can be written as 

g = 

where 

k = k w w 

pe [1 - cos t 1w - -21 tw sin tw] 
(Yw) 3 

z b 1 max 
t n z-:­

mln 

k b z 
t• = t[_!!__- -- ln max] 

k tk z . wu wu m1n 

k wavenumber of the untapered wiggler. wu 
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(5. 87) 

*5. 88) 

(5. 89) 

(5.90) 

It is easily seen that when b + 0 gain expression reduces to the standard 

gain expression for uniform wiggler. 
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With the numerical values pertaining to the Los Alamos FEL it can be 

shown that the gain increases by a factor of 2.19 if the same geomet-

rical len~th is used and by a factor of 1.216 if the same number of 

magnet elements are used.A better way of stating the amount of increase 

would be as follows. 

If the same geometrical lengt~ is used 

Increase factor of single-pass gain=( k I 
w 

If the same number of magnet elements are used 

Increase factor of single-pass gain= k /k 
w wu 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Free electron laser physics has attracted the attention of quite a 

few theorists and experimenters in recent years, plasma physicists, laser 

QED physicists, computer programmers and electrical engineers. We can at­

tribute this phenomenon to the fact that physicists in different fields 

had found something interesting in FEL theory and experiment. 

The different approaches to FEL are equally valid and practical as 

far as the end results are concerned and hence there is no distinct advan­

tage in using classical theory over quantum mechanical theory. The most 

crucial word in FEL physics is 11Gain 11 • Although classical and quantum 

theories arrive at approximately the same gain expression which is given 

in Equation (5.90), the conceptual physical mechanisms explaining the 

11gain 11 are somewhat different in the two theories. Gain in quantum theory 

of FELis related to the concepts of 11photon 11 and ••recoil 11 • Gain is pos­

sible because the frequency of the emitted photon is less than the fre­

quency of the absorbed photon due to recoil. This frequency difference 

causes a difference between the rates of emission and absorption and since 

the rate for emission is greater than the rate for absorption, gain fol­

lows. In the classical theory gain is explained in terms of the number of 

decelerated electrons being greater than the number of accelerated elec­

trons. The average energy loss of the electron beam is the gain in radia­

tion field. 
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Energy extraction from the electrons in the form of radiation is a 

consequence of energy and momentum conservation requirements. If an e lee-

tron is to emit or absorb electromagnetic radiation, then the following 

conditions must be satisfied. 

a) Energy must be conserved between the initial and final states of 

the electron and radiation. 

b) Momentum must be conserved between the initial and final states 

of the electron and radiation.· 

c) The dispersion relationships for the interacting particles must 

be satisfied. 

The emission or absorption of electromagnetic radiation by charged 

particles in vacuum is an impossibility because there is nothing to con-

serve momentum. There are numerous mechanisms that satisfy the above 

conditions. We would like to name a few of these mechanisms which have 

been used in various FEL experiments. 

a) Cerenkov effect 

b) Compton scattering 

c) Magnetic Bremsstrahlung 

d) Static fields 

e) Limited interaction length 

The first four of the mechanisms are familiar and are to be found in stan-

dard texts. The last one is interesting and simple enough to clarify here. 

If a free electron were to emit a photon in the forward direction, imposing 

energy conservation leads to a momentum gap 

8 
p 

nw [l- l] 
v c 

where it has been assumed that photon energy is much less than the electron 
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energy. If the interaction length is limited, then the uncertainity prin-

ciple requires. 

(a ) (a ) 
z p 

fi 
:S 2 

This means that an uncertainity exists in the momentum that could 

allow single photon emission from a free electron. If Y is sufficiently 

large, then the interaction length can be many wavelengths long. This is 

the mechanism on which quantum theories of FEL have been based. In Chapter 

V when we calculated the matrix elements we used an infinite interaction 

time but a finite interaction length. The finite interaction length makes 

the line shape G(W) sharp enough to cause difference in the rates of emis-

sian and absorption. 

In this thesis we derived the solutions of Dirac Equation for the 

motion of an electron in a tapered wiggler field. We showed that these 

solutions reduce to those of uniform wiggler when the tapering is removed 

(b ~ o). Our proposed tapering is such that the wavenumber of the wiggler 

increases in the z-direction as 

k (z) = k w w 
b 
z Z . = 800 em 

m•n 

Z = 2400 em max 

b = 96 

for a 1600 em wiggler, these parameters having a bearing on experiment. 

Using the solutions for motion in a tapered wiggler we calculated the 

matrix elements, radiation frequencies and the gain. Final expression for 

gain shows that the tapering we proposed enhances the gain over the one 

with linear tapering. With the numerical values pertaining to Los Alamos 

FEL it can be shown that gain increases by a factor of 2.19 if the same 



geometrical length is used and bv a factor of 1.216 if the same number 

of magnet elements are used. 
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We conclude that the simplicity of quantum mechanical methods can 

easilv compete with the definiteness of the classical mechanical calcula­

tions. Furthermore the quantum theory of FEL has the advantage of including 

the effects of quantized electromagnetic field and the electron snin.In 

other words the quantum theorv of FEL provides a deeper and more detailed 

understanding of the FEL physics. 

The natural extension of this study would be the investigation of the 

xuv and x-ray FEL.In these frequencv regions it is necessarv to use the 

quantum theorv because as the photons becoMe more energetic the proba _ 

bility of the pair creations and annihilations increase. 
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