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CHAPTER I 

INTRODUCTION 

From the earliest times man has endeavoured to survive 

by mastering his surroundings. He has continually improved 

the quality of his life by utilizing the natural resources 

of his planet. Water is one such resource. It is an 

essential part of our existance. We drink it, bath in it, 

grow our food with it and dispose of our waste in it. A 

large percent of our useable water is conveyed in rivers and 

channels. The movement of water in these rivers and 

channels therefore affects our lives beneficially or 

adversely. 

In a river basin rainfall can produce runnoff. ln 

periods of low rainfall, a stream or river flows at its 

lowest rate resulting in a reduced water supply, a poorer 

quality of water, and a less navigable channel. In periods 

of high rainfall, flooding can occur causing damage to 

valuable agricultural property and expensive river basin 

structures • The ability to predict water conveyance is 

therefore importantw 

Mathematical models are used to evaluate the impacts of 

water movementw The models simulate the depths and rates of 

flow in a channel as the result of rainfall and runoff 

1 
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within a river basin. An important component in these 

simulations is the movement of flood waves through channels. 

This component is predicted with flood routing techniques. 

Water resources engineers use flood routing techniques in 

the planning, design, regulation and management of 

structures, rivers and channels in river basins. 

One the most widely used hydrologic flood routing 

methods is the Muskingum flood routing technique. The 

Muskingum method is a simple, lumped parameter model based 

on the assumptions of a linear system. The accuracy of this 

method depends on the values of the parameters I< and x. 

Empirical techniques are available to determine K and x for 

gaged rivers. Physically based techniques, however, are 

needed for ungaged rivers~ Since most rivers and streams are 

ungaged, the evaluation of the f'r1uskingum parameters with 

physically based techniques is an important problem. Dooge 

et al. <1982) have addressed this problem by relating the 

Muskingum parameters I< and >~ to the hydraulic parameters 

of the channel system. 

Objectives 

The purpose of this study was to evaluate the accuracy 

of Dooge et al. 's approach and to examine conditions far its 

use an streams by: 

(a) Comparing the simulation results from Doege et 

al. 's linear Hydrodynamic Muskingum routing method to the 

simulation re~ults obtained from a finite element solution 
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to the Saint Venant equations. 

(b) Comparing. the simulation results from Doege et 

al. ·s nonlinear Hydrodynamic Muskingum routing method to the 

simulation results obtained by a finite element solution to 

the Saint Venant equation. 

\c) Conducting sensitivity analysis. 

Scope of the Study 

A flow model was developed using the techniques 

proposed by Dooge et al~ (1982> • A finite element solution 

to the St~ Venant equations was used to evaluate the 

accuracy of this approach. Predicted results from the linear 

Hydrodynamic Muskingum .method were compared to simulated 

results from the Saint Venant equations for varying lengths, 

slopes, rbughness coefficients, and channel geometries. 

A nonlinear feature was incorporated into the flow 

model by allowing K and x to vary with distance downstream. 

The predicted results from the nonlinear model were compared 

to simulated results from the Saint Venant equations for 

varying lengths, slopes, roughness coefficients, inflow 

hydrographs, and channel geometries. The models sensitivity 

to variations in subreach length, time step, and reference 

flow value were examined. Finally, an observed inflow 

hydrograph was routed through a natural channel using the 

nonlinear Hydrodynamic Muskingum method and the finite 

element solution to the Saint Venant equations. The 

pr·edieted outflow hydrographs from the two methods were 
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compared to observed values in a natural channel. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

Flood routing techniques are used to predict the 

movement of flood waves through irregular shaped 

channels. These techniques·are divided into two general 

categories: hydrologic routing and hydraulic routing. 

Hydrologic routing techniques are based on a mass balance 

equation for an entire reach length. Flow rate functions 

are evaluated using either empirical data or idealized water 

surface profiles. In contrast, hydraulic routing techniques 

are based on a mass balance equation applied to 

infinitesimally small reach length within a channel reach. 

Flow rate functions in these models are usually evaluated 

using the equation of motion.. The hydrologic routing 

methods are relativily easy to solve and are not limited by 

extensive input data. On the other hand, hydraulic routing 

methods are based on established and sound physical 

principles and are generally more applicable to a wider 

range of situations. Hydrologic routing should only be used 

when backwater effects and surges are unimportant, such as a 

flood wave moving down a long river. 

In the following sections hydraulic models will be 

5 
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discussed using the one-dimensional unsteady flow equations 

of open channel flow= The discussion on hydrologic models 

will be limited to those techniques corresponding to the 

Muskingum methoda 

One-Dimensional Unsteady Flow Equatons 

This section will describe three different hydraulic 

routing models: the complete dynamic wave model, the 

kinematic wave model and the diffusion wave model. All three 

models use the equation of continuity in a similar manner, 

but differ in their use of the momentum equationm These 

differences will be illustrated in this secton. 

Dynamic Wave Model 

The partial differential equations describing open 

channel flow were first developed by Barre de Saint Venant 

in 1871 and are usually called the Saint Venant equationsu 

More recently Chow <1964)~ Gilcrest <1950) and Henderson 

\1966) have derived these equations by considering the 

momentum balance and forces acting on a cross-section of 

flow. Strelkoff (1969) has presented a more rigorous 

derivation by using the point form of the equations of 

continuity and energy for incompressible flow. Kouiss <1975) 

has also given a similar derivation. Fread <1973> has shown 

tha.t the Saint Venant equations form a system of two 

nonlinear, first order, first degree partial differential 

equations of the hyperbolic kind for which no analytical 
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solutions are known. Numerical solutions, however, are 

possible for given initial and boundary conditions. 

Strelkoff (1969>, Fread (1973>, Kouiss <1975> have 

based their det ... ivations on the following assumptions as 

summarized by Weinmann (1977>: 

the flaw is one dimensional, 

the flow is incompressible and homogeneous in density, 

the bed of the channel is fixed, 

the longitudinal axis of the channel can be approximated 

by a straight line, 

-the bottom slope of the channel is small~ 

the flow is gradually varied with hydrostatic pressure 

prevailing at all points in the flow, such that the 

vertical acceleration of water may be neglected, 

- the water surface is horizontal and the velocity constant 

across any section perpendicular to the longitudinal axis 

(i.e. the velocity distribution coefficient= 1>, 

the resistance coefficient for steady uniform flow is 

considered applicable and an empirical resistance 

equations such as Manning's equation describes the 

resistance effects, 

the effects of wind resistance on the water surface and of 

the Coriolis force can be neglected. 

The equations for gradually varied, unsteady channel flaw 

with lateral inflow can be written as: 

Continuity, 
aQ + aA 
ax at 

= q 
(2. 1) 
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Momentum, 

=,g( So- S.., ) av + 
at 

v av + 
ax 

av.q + g ~ 
aA ax (2.2) 

where, 

Q =volumetric flow rate [L3 /TJ, 

q =lateral inflow per unit length o~ channel CL2 /TJ, 

A =cross-sectional area [L2 l, 

So =bed slope [L/Ll, 

Sf =friction slope [L/Ll, 

v =mean velocity CL/TJ, 

g =acceleration of gravity (L/P'!J, 

t =time CTJ, 

X =distance down the channel CLl, 

y =depth of ·flow [LJ, 

Differences between the dynamic wave model and the 

other hydraulic flood routing methods can be illustrated 

with a velocity-resistance equation. As an example, flow 

rate for nonuniform flows can be approximated using 

Manning's formula as, 

Q =1 R2'3 A S..,1,z 
n (2.3} 

where n is the roughness coefficient, R is the hydraulic 

radius. 

Far uniform flow or normal flows (Qn) flow rate can 

also be predicted from Manning's formula, or, 

Q" =1 A R2'3 Sa1'2 
n (2.4> 



Thus, 

Q =Q., 5 0 1r2 

5 _..1,2 

9 

(2.5) 

Neglecting lateral inflow, eq 2.2 can be expressed as 

friction pressure 

av - v av 
ax 9 ax 

- 1 av 
9 at 

gravity inertia 

By substituting eq 2~5 into 2.6, the differences in the 

three hydraulic models can be illustrated as; 

< 1 - 1 g_y -_v_ 
set ax 9 • s..,. 

av - 1 av> ---ax g.So at 

Kinematic 
Diffusion 

Dynamic 

(2.7) 

Equation 2.7 illustrates the differences between the 

complete dynamic equation and the simpler diffusion and 

kinematic wave models. If the inertia terms are neglected 

the dynamic equation is reduced to the diffusion wave model. 

If both the inertia and pressure terms are neglected, the 

dynamic equation is further simplified to the kinematic wave 

model. Details of the kinematic and diffusion wave models 

are given in the following sections. 

Kinematic Wave Model 

Lighthill and Whitham C1955) have shown that kinematic 

waves (i.e. motion in time and space disregarding mass and 

force) exist when the flood wave movement can be described 
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by the equation of continuity and Kleitz-Seddon law. 

Kinematic waves travel without attenuation. The shape of the 

entire flood wave, however, does change because of variation 

in travel speed with flow rate <Weinmann, 1977). 

Kinematic waves have only one characteristic and its 

speed can be expressed in terms of the Kleitz-Seddon law 

0-lenderson, 1966) , or, 

C~o~ = dQ 
dA 

= dX' 
dt 

where ck =wave celerity. 

(2.8) 

By using the continuity equation (eq 2.1) and Kleitz-

Seddon law (eq 2.8) and neglecting lateral inflow the 

following equation can be written, 

aQ + c:k aQ - o 
at ax 

(2.9) 

The kinematic wave model uses a single value rating 

curve and only pt-ovides for translational effects. Its 

application is restricted to cases where attenuation is not 

significantb The model successfully simulates well confined 1 

moderately steep channels and overland flow. 

Diffusion Wave Model 

The diffusion .wave model was obtained by Lighthall and 

Whitham (1955) by adding a diffusion term to the kinematic 

wave model. The diffusion wave can also be derived by 

Linearizing the Saint Venant equations and neglecting the 
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inertia terms <Ponce, 1978). The standard diffusion equation 

can be written as, 

aQ= 
ax 

where D = hydraulic diffusivity. 

(2.10) 

Ponce (1981> showed that the diffusion wave models are 

applicable for a wider range of bed slopes and wave periods 

than the kinematic wave model~ The diffusion wave model 

breaks down when acceleration effects or downstream 

disturbances become important. Ponce et al. (1982> developed 

the following criteria to determine when the diffusion wave 

will predict acceptable results. 

Tr So [~] 1 /2 >= 15 
Yo 

where Tr = time to peak of the inflow hydrograph, g is the 

gravitational acceleration and Ya is the depth of flow at 

reference flow rate. The accuracy of the diffusion wave 

model improves as the left hand side of equation 2.11 

becomes larger. 

Numerical Solutions of Dynamic Wave Equations 

Finite Difference Models 

Weinmann and Laurenson <1977J discuss the various 

finite di~ference schemes used to convert the momentum 

equation and the continuity equation into al.gebraic 
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(difference> equations. These equations may be salved far y 

and V at finite incremental values of X and ta The solution 

schemes can be categorized into four groups: 

finite difference schemes that salve the characteristic 

equations for y and V at <X,t> values defined by the 

characteristic grid, 

- explicit finite difference schemes that salve the 

characteristic equations using a rectangular X-t grid, 

- explicit finite difference schemes for the original 

equations using a rectangular X-t grid, 

- implicit finite difference scheme for the original 

equations using a rectangular grid. 

Isaacson et alo (1966) pioneered this work by applying 

an explicit finite difference scheme to flood routing in the 

Ohio River. Amein and Fang (1970> used an implicit scheme to 

simulate floods in natural channels in North Carolina. 

Pinder and Saver (1971) predicted flood wave attenuation 

from bank storage using an explicit scheme. Fread (1973) 

used implicit four-point and weighted four-point finite 

difference schemes to investigate routing problemsa Chaudry 

and Contractor <1973), Ligget and Woolhiser <1967> .,Viessma.nn 

et al. (1972) and many others have presented implicit and 

explicit finite difTerence solutions to approximately solve 

the Saint Venant equations .. Explicit methods must meet a 

stability condition which relates the size of the time step 

to the size of the distance step <Amein and Fang 9 1970). An 

implicit scheme is usually preferred over an explicit scheme 
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Implicit schemes are inherently more stable. 

Finite Element Methods 

The finite element method discretizes the distance or 

region into elements in which polynomials are fitted to 

minimize error between exact and approximate solutions. This 

differs from the finite difference method which discretizes 

the governi~g differential equation directly. The finite 

element method therefore has an advantage over the finite 

difference method when complex geometries are being modelled 

(Myers 1971). 

Cooley and Main <1976) applied a finite element 

technique to the space derivatives of the Saint Venant 

equations. Difficulties were encountered in the error 

analysis stage because finite difference approximations 

were still used for the time derivatives. Nwaogazie and 

Tyagi (1984> presented finite element solutions far the 

complete dynamic model~ the diffusion model, and the 

kinematic model using weighted implicit and explicit 

schemes. The time derivatives were approximated using a 

finite difference technique. The author found an error in 

the Nwaogazie and Tyagi (1984> finite element formulation of 

the momentum equation. The correct formulation is given in 

Appendix E. 

The United States Army Corps of Engineers have 

incorporated a finite element solution to the St. Venant 

equations in their Stream Hydraulics Package based on work 
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by Smith <1979). The finite element solution uses 

Galerkin's weighted residual method (Zienkiewicz, 1977>. A 

linear function is used to approximate the depth of flow and 

a quadratic function is used to describe unit width flow 

rate. Thus, a three node element is used to model flow in a 

subreach with values of flow being defined at both ends and 

at the middle, and depth at the ends only. The time 

dependent terms are modelled using an implicit finite 

difference scheme. The Newton Raphson method is used to 

reduce the nonlinear set of simultaneous equations 

(resulting from the Galerkin method> to a purely 

simultaneous form. An iteration technique is then used to 

reach a converged solution of the simultaneous equations. 

Gauss elimination is used in the intermediate steps to solve 

the matrix equations. 

Classical Muskingum's Method 

Original Formulation 

McCarthy (1938) is ~redited with developing the 

Muskingum method around 1934 (Viessman et al, 1972). The 

Muskingum method is based on a spacia.lly lumped continuity 

equation and an.assumed storage-discharge relationship 

<Gilcrest, 1950). A general derivatan is given below. 

(a) Continuity Equation. The continuity equation is the 

cornerstone of all hydrologic routing. The Muskingum method 

uses the continuity equation in a spacially lumped form, 
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Q1<t> - Q2<t> = dS 
dt (2.12) 

where, 

Ql<t> = inflow rate into the reach 

Q2(t) = outflow rate from the reach 

dS= the rate of change of storage within the reach 
dt 

<b> Storage-Discharge Relationship. Equation 2.12 is a 

single equation with two unknowns (Q2 and 8). To solve this 

equation a storage-discharge relationship must be specified. 

A number of authors (e.g. Chow, 1959, Crass and Johnstone, 

1949, Knappen et al, 1952 and Puls, 1959J have suggested 

ways to represent the storage-discharge relationship using 

simplified methods, Chow <1959) mentions the use of 

semigraphical techniques , nomographs and circular 

computersD 

McCarthy's formulation assumed that storage is a linear 

(2.13) 

where, 

K = the storage time constant for the reach 

x = the weighting factor which varies from 

0 to 0.5 for a given river section. 

K and x are determined from the channel characteristics of 

the particular channel of interest. 

Parameters for Gaged Streams 
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The accuracy of the Muskingum method depends on the 

accuracy of its parameters K and x. These parameters can 

be estimated for a given reach if inflow-outflow data is 

known. The parameters are usually determined graphically 

<Viessmen et al •. 1972)= McCann and Singh <1980) evaluated 

methods of optimizing Muskingum parameters using least 

squares analysis, method of moments, method of accumulants, 

graphical methods and direct optimization~ 

Parameters -for Ungaged Streams 

The parameters k: and x are more difficult to estimate 

on ungaged streams. Viessman et al. <1972> suggest a K 

value equal to the travel time in the reach and an average x 

value of 0.2 or 0.25. 

Mockus (1962) developed a method for estimating I< .:rz.nd x 

based on a 'wedge· and 'prism' storage concept, 

K = L/V 

X = 0.5V/( 1.7+V ) 

(2.14) 

(2 .. 15) 

where V is the steady state velocity at reference flow rate. 

Attempts have been made to rewrite the hydraulic 

routing methods into the Muskingum format. This allows K and 

x to be expressed in terms of hydraulic parameters (Cunge, 

1969, Dooge, 1982i~ 

Diffusion Method of Flood Routing 

Cunge (1969) showed that the Muskingum method 

approximated a convection-diffusion equationa Ponce (1981) 
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developed a linear and non-linear form of the method. 

The Soil Conservation Service (Reily~ 1985) is 

currently developing a range of unsteady flow routing models 

varying from simple coefficient methods to the numerical 

solution of the Saint Venant equations. The linear 

diffusion method , developed by Ponce (1981>, is being 

strongly considered as a coefficient method. The method 

relates the coefficients K and x to the frictional and 

cross-sectional characteristics of the channel and to the 

computational grid dimensions. The method is consistant as 

the computational algorithm reproduces similar results for 

varying degrees of substepping. 

Linear Diffusion Model. The linear diffusion model is 

based on the convection-diffusion equation (eq 2.10). For 

zero lateral inflow this equation can be rewritten as <Ponce 

and Yevjevich~ 1978),. 

aQ + 
at 

where the hydraulic diffusivity, D, is expressed in terms of 

physical properties of the system, 

(2.17) 

where Qo is the reference flow value, B is the channel top 

width at Go, Sa is the water surface slope for steady 

equilibrium flow conditions. The ather terms are previously 

defined. 
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Ponce (1981> obtained the following hydrodynamic 

estimates of the Muskingum parameters by first discretizing 

the left hand side of equation 2.16 on the x-t plane, 

n+.1 n n+:l. M ... M+1 n+1 

x(Q~ -Q~ > + <1-x> (QJ+:t -QJ+:t>+ c(Q~ ..... :t -QJ +Q~ ... :~. -Q~ >=O 
ft 2U 

<2.18) 
where, x =weighting factor, j= space index, n =time index, 

'X =space step and 6t =time step. 

Equation 2.18 can be rewritten as~ 

... n+1 n n+1 

Q~ + Q~ - Q~+1 +Q~ ..... 1 = 
2 2 -

n+1 n+1 M M 

( ~X J < x.Q~ +(1-x> Q~·:~.> r IX l <x.QJ +( 1-x> Q~ ..... :~.> 
Ck It Ck St 

(2.19) 

An examination of equation 2.19 indicates that it is 

similar to the hydrologic continuity equation <i.e. 

inflow-outflow= rate of change in storage>. The storage 

in the reach can be approximated by the Muskingum equation, 

M ... 
S = K ( X Q~ + (1-x) Q~+:t ] (2.20) 

By comparing equations 2m19 and 2m20 an expression for the 

parameter K can be written as, 

(2.21) 
Substituting equation 2.21 into equation 2.19 and by 

rearranging the terms the Muskingum-Cunge version of the 

flood routing equation can be derived as, 



n+:l. ... n+:l. 

where, 

C:~. = 6t/K +2x 
5t/K + 2< 1-x) 

c2 == Stll< -2x 
§t/K + 2< 1-x> 

C:s = 2< 1-x) - St/K 
6t/K + 2( 1-x> 

19 

n 

(2 .. 24) 

<2.25) 

Ponce (1981) derives a numerical diffusion coefficient 

by expanding the grid function Q(j 6X,n &t> in terms of a 

Taylor series about the grid point {j 6X,n 't> , or, 

D.-. = ck 6X < 0.5 -x) <2.26) 

where, 

D,.. =numerical diffusion coefficient 

The hydraulic diffusivity can now be set equal to the 

numerical diffusion coefficient. Equating equations 2.17 and 

2=26 yields the following expression for x, 

X =0. 5 ( 1-
(2.27) 

The Courant and the Reynolds numbers can be defined as; 

<2.28) 

(2.29) 

where q = Qb/B is the reference unit width flow rate, C is 

Courant number and D is the cell Reynolds Number. By using 
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the definitions for C and D the routing coefficients for the 

linear diffusion model of Ponce <1981> can be written as, 

C:~. = 1+ c- D 
1+ C+ D 

(2.30) 
C::z = -1 +C +D 

1 +C +D 
(2.31) 

C:s = 1 -c +D 
1 +C +D 

(2.32) 

The above equations for I< and X can be derived by 

rearranging the diffusion and Muskingum's models in a number 

of different ways Cse~ Koussis, 1978; Gill, 1979; Wilson et 

al., 1983>~ All of these approaches give the same values 

for I< and x. 

Nonlinear Diffusion Model. In the linear diffusion model, 

Muskingum constants C1, C::z and C3 are calculated at the 

start of routing and then held constant until the entire 

hydrograph is routed through the reach <i.e. independant of 

time and space>s The accuracy of the method therefore 

depends on the correct selection of the reference hydraulic 

values (i.e., Qa, Sa, and Bin equation 2.28). Ponce and 

Yevjevich <1978> have shown, through numerical 

experimentation, that reference flows based on base flow 

values tend to predict a slower movement of the floodwave 

than expected. On the other hand, reference flows based an 

pea.k flow values tend to overpredict floodwave movement. The 

linear coefficients also failed to account for steepening of 

the rising limb of the hydrograph as it moved downstream. 



21 

This occurs because different flows travel at different 

celerities. Applying the linear model to short reaches 

reduces the effects of these problemsa 

Ponce and Yevjevich <1978) have presented a variable 

parameter diffusion model that remains within the 

computational framework of the linear diffusion model. The 

parameters ck and D, and thus routing coefficients 

<C~,c2,C3>, are defined in terms of local flow conditions. 

For each computational cell consisting of four grid points, 

~t is fixed and 6X and Sa are specifiedc The values of the 

floodwave celerity, ck, and the uni.t width discharge q, are 

determined for each computational cell. The celerity, ck, 

and discharge q are defined at grid point (j,n) by: 

c = dQ: 
dAI~on 

q = Q 
B 

(2.33) 

<2.34) 

The celerity and unit discharge are calculated by using 

a four-point average and iterating until covergences The 

intial value at (j+1,n+1) is obtained by a three point 

average of (J 7 n), (j+1,n) and <J,n+l). 

Non-linear diffusion models account for wave 

steepening. Their disadvantages include a substantial 

increase in computer time and a slight tendency not to 

conserve mass. 

Daoge et al. Approach. Dooge et al. (1982) has taken the 
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Saint Venant equations for unsteady flow and the Muskingum 

method in their conventional forms and transferred them into 

a space-state formulation. The hydrodynamic equation of 

motion is written for a state space trajectory system. This 

result is solved by neglecting second order variations in 

the space state variables, and then linked to an equivalent 

Muskingum model. Muskingum's K and x are obtained in terms 

of the hydraulic properties of the channel system. The 

results are written for any cross-sectional shape and any 

type of friction law. Details of this derivation are given 

in chapter three. 



CHAPTER III 

FLOW MODEL DEVELOPMENT 

Introduction 

This chapter contains the derivation of a physically-

based model for Muskingum's parameters formulated on the 

method proposed by Dooge et alg (1982>. A discussion of the 

theoretical limitations of the method is presented. A 

nonlinear form of Daage's hydrodynamic Muskingum method is 

given. 

Hydrodynamic Muskingum's Method 

The Muskingum method described in the previous chapter 

is a linear, spacially lumped model with two parameters K 

and x. This section will relate these parameters to 

the physical pr-operties of the system. Dooge et al Q 

(1982> developed their theory using space state trajectory 

techniques. Their theory is reformated in this section 

following the more traditional approach given by Lighthill 

and l..,hi tham < 1955). This format makes it easier to compare 

Dooge et ala ·s approach to those based on the diffusion wave 

model. A summary of this format is presented herea 

'The equation o-;c; motion for one-dimensional unsteady open 

channel flow without lateral inflow can be written as < 



Dooge et al., 1982>, 

ag = -gy <1 - F2 > aA 
M n 

where 

and 

and 

~2 = QZ T 
g A3 

y = A 

2Q aQ + gA <Sa - s~> 
A ax 
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(3.1) 

<3.2a> 

<3.2b> 

T <3.3) 

The symbols Q is the volumetric flow rate, A is the 

cross-sectional area, g is the acceleration of gravity, Sa 

is the bed slope, t is time, x is the distance downstream, F 

is the Froude number as defined by equation 3.2a, y is an 

average flow depth, Ko is a constant that can be defined 

from uniform flow cohditions, T is the top width and b is a 

constant equal to 3 for Chezy•s equation and 3.333 for 

Manning's equation. 

The continuity equation (2.1) and momentum equation 

(2.2) are the Saint,Venant equations. These equations form 

a nonlinear spacially varied system of equations. If a 

comparison ~ith the Muskingum method is to be made, the 

Saint Venant equ~tions must be transformed into a linear 

iumped system. 

Equation 1.1 ~an be linearized using a general 



25 

approach given by Lighthill and Whitham (1955>. In this 

approach, it is assumed that variables Q and A can be 

written using small perturbation as, 

Q = Q.,. + Q' <3.4a) 

A = A.,. + A' (3.4b) 

where Q~ and A.,. are the flow rate and cross-sectional area, 

respectively, at reference flow condition corresponding to 

steady uniform flow, and Q' and A'are the small perturbation 

about this flow condition. 

By substituting these relationships into equation 3m1 7 

by eliminating appropriate reference flow condition terms, 

and by neglecting insignificant perturbation terms <e.g., 

Q' 2 >, equation 3.1 is linearized as, 

a <G!. > = 
at 

-gy.,. [1 - F.,.2 l a<A') 
ax 

2Q.,. a<Q') + gS.,. CbA' -2Ao Q'l 
A.,. ax Q.,. 

(3.5) 

In equation 3.5 the energy slope term is expanded 

using a binomial expansion with b as an integer value. 

The time derivative of equation 3.1 can be expressed as 

a space derivative using the kinematic wave approximation in 

conjunction with the continuity equation. This 
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from equation 3~2. A linearized form of the equation of 

motion can now be written as, 

QYo [1 - Fo2 J a<A') 
ax 

+ (4-b)Q9 8(Q') = 
2Ao ax 

gSa tbA' - 2Aa Q'l 
Glo 

(3.6) 

The neKt step is to use equation 3.6 in formulating a 

spacially lumped mad~l* In a spacially lumped model the 

conditions are only known at the inlet and outlet of the 

reach.. Therefore, the derivative te'rms are approximated as, 

a <A·> = A:zo' A:~.' 
ax L <3.7a) 

and 

a <Q. > = G:zo' Q.1 . 
ax L (3.7b) 

where L is the reach length. 

Equation 3.6 can be applied to any point within the 

channel reach. Once again far a lumped system, the logical 

locations to use this equation are at the upstream and 

downstream points. By .using equations 3. 7a and 3. 7b, the 

upstream point can be evaluated as, 

g Ya <1-Fo2 ) (A:z' A:~.')+ <4-b)Qa (Q:z• Q.~.'> 
L 2Ac L 

=gSa <b A1~- 2A~ Q1~> 
Q .... 

and the downstream point can be evaluated as, 

g Ya ( 1-F.,.2 > <A:e. - A1') + <4·-b) Q~ ((~;;!!· - Gh '> 
L 2Ac L 

1:1:: g s.,. (b A:z ; ·- 2A.,. t!:z.) 
'Q~ 

(3.Ba> 

(3.8b) 
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A reasonable estimate of the storage perturbation in 

the channel reach as a result of perturbation in flow rates 

can be defined as, 

(3.9) 

where s· is the perturbation of storage in the reach. 

Finally, by rearranging equations 3m8a and 3u8b for 

A1' and A2' and by substituting these values into equation 

3.9, a storage equation in the form of Muskingum's equation 

can be obtained as, 

(3.10) 

where 

K = L 
Ck 

and 

X = 1 - v 
~ 

(1 - (b - 1)2 Fco 2 ] 

bSoL 2 
{3.12) 

where.ck is the kinematic wave speed of the reference flow 

rate, L is the reach length, Yeo is the depth at reference 

flaw rate calculated from steady state condtions, b is the 

pot-Jer friction slope and Fo is the Froude number at 

reference flow conditions" 

To summarize, the Muskingum parameters are derived by 

linearizing the Saint Venant equations and evaluating 

derivative and storage terms using only the endpoint 
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conditions. These steps resulted in an equation of the form 

used in the classical Muskingum method. By making a one to 

one correspondence between terms in the Muskingum equation 

(2.13> and the terms given by equation 3.10, the parameters 

K and x are related to the physical properties of the flow 

system. This approach is not based on the traditional 

"prism" and "wedge 11 storage concepts, but built on the 

equation of motion for open channel flow. Dooge et al. 's 

approach will be referred to as the hydrodynamic Muskingum 

method to distinguish it fr·om the classical Mu.skingum 

procedure. Appendix A contains a computer printout of the 

linear hydrodynamic Muskingum model. 

Disscusion of TheorY 

The e:..;pected accuracy of Doege et al ~ • s < 1982> method 

depends on the validity of their assumptions. There are 

three major assumptions used in the method~ 

(a) A reference flowrate can be found such that the 

perturbation terms are small <i.~. equations 3.4a 

3 .. 4b). 

(b) The derivative terms at the endpoints can be 

approximated by a straight line between these points 

(i.e. equations 3=7a and 3.7b). 

(~) Kinematic wave theory ~an be ~sed to approximate 

aQ'/8tu 

The reference flowrate, Qo, should be sel~cted to 

minimize Q"4 Seve~al possible alternatives exist to select 
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Qb, such as the peak flow rate, base flow rate, 1/2 or 

3/4 the difference between peak flowrate and base flow rate, 

or a volume weighted average. Dooge et al. <1982) also 

implied a time varying Qa could be used. This would give the 

Muskingum method a non-linear feature. 

The derivative approximations using endpoint conditions 

are more reasonable when the wavelength (in distance> of· the 

inflow 'hydrograph is l~rge compared to the reach lengthM 

This approximation may lead to problems in early stages of 

the run. The aQ'/aX is initially equal to zero <assuming 

uniform flow initially) at the outlet of the reach until the 

leading edge of the flood wave reaches this point. The 

error associated with this condition can be reduced by 

selecting a. larger time increment or by subdividing reach 

into smaller reach lengths. 

Kinematic wave theory is used to approximate the 

temporal rate .of change in flow.rate. Although an 

approximation, this approach is still superior to the 

approach taken by Kous•is (1978), Gill <1979>, Ponce <1982> 

and others who manipurate the diffusion wave model to obtain 

Muskingum K and x values. In the diffusion wave model, the 

inertia terms are neglected completely. Therefore, in 

theory, Doege at alti (1982) would have a .larger range of 

applicability than those models based on the diffusion wave 

apprpach .. 

Nonlinear Hydrodynamit Muskingum Method 
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A nonlinear feature is incorporated into the model 

by using a space varying Qo. Ga is evaluated at the end 

of each subreach as a fraction, Qr.~, of the peak outflow 

value minus the base flaw value, 

~+1 ~ 

Qa = ( Qp - Qb ) Qr•~ + Qb 

where Qb is the base flow and j+1 is the subreach of 

interest. 

This allows Q' to be minimized over the entire reach 

length. The nonlinear model should perform better than the 

linear model in cases were the inflow hydrograph attenuates 

significantly on its travel down the reach. Appendix A 

contains a computer printout of the Hydrodynamic Muskingum 

model. 

The outflow values for each subreach are calculated 

from, 

<3.14} 

(3.15) 

The nonlinear Hydrodynamic method is an easy method to 

apply. It requires far less computational time than the 

finite element solution to the Saint Venant equations. The 

finite element solution to the Saint Venant equations also 

requires precise values for the initial and boundary 

conditions to ensure stability of the solution algorithm~ 



The nonlinear Hydrodynamic Musldngum method is far more 

robust and allows a degree of flexibility in the selection 

of input parameters. This feature will be discussed in 

later chapters. 
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The Hydrodynamic Muskingum method divides the channel 

reach into a number of subreaches~ This should 

theoretically produce better results as the assumptions made 

in the derivation become better as the length over which 

they are applied becomes smaller <e.g., approximation of 

derivatives by a straight line between end points). This 

differs from the classical Muskingum method which is applied 

to the whole channel reach. 



CHAPTER IV 

DESCRIPTION OF VALIDATION PROCEDURES 

Introduction 

Dooge et al. 's <1982) method of estimating K and x was 

evaluated for three different types of channel geometries. 

Tests were conducted on rectangular channels < Series I, II, 

III,IV,VII>, triangular channels (Series V>, and a 

natural channel ( Series VI>. For all tests, the predicted 

values using the nonlinear hydrodynamic Muskingum method 

were compared to those predicted with the Saint Venant 

equations. The linear Hydrodynamic Muskingum method was 

applied to Series I tests only. In addition, an actual 

observed hydrogr~ph was also used for the natural channel. 

Series I,II,IV~V,VI and VII used a reference flow rate 

fraction (Q~-~> of a half. 

The Saint Venant equations were solved using a finite 

element algorithm developed by the Corp of Engineers 

<Smith, 1979). The Corp of Engineers program is written to 

handle a variety of real world problems such as irregular 

channel geometries and variations of Manning's n with 

distance and flaw depth. Additional information about 

finite eleme~t methods i~ given in Appendix F. Data format 

ia similar to Corp of Engineer's HEC II simulation program. 

32 
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To check numerical error, .it and 6X values were reduced by 

two, and the extreme tests were again simulated. The 

changes in predicted values were insignificant. A steady 

state rating curve was used as the downstream boundary 

condition. Series I,II,III,IV,V and VII used uniform flow 

initial conditions. Series VI used a backwater curve to 

calcualte the initial flow conditions. 

Inflow Hydrographs 

A total of six different inflow hydrographs were 

available as the upstream boundary condition.. An observed 

inflow hydrograph at the upstream gaging station of the 

natural channel was used in a simulation. This allowed a 

comparison to be made between the observed downstream 

hydrograph and the predicted downstream hydrographs. For 

the rectangular and triangular channels, five synthetic 

hydrographs were used to provide a range of different 

hydrograph shapes. The peak flow rates ~nd base flow rates 

were selected to represent a range of flow conditions for 

the given channel geometry using the data reported by 

Leopold et al (1963>. Inflow hydrographs two to five have 

the same total volume of flow in the first forty-eight 

hours~ All five synthetic inflow hydrographs were predicted 

from the following equation (used by Weimann, 1977 and 

Ponce, 1982) , 
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TABLE I 

SIMUALTION PARAMETERS FOR THE INFLOW HYDROGRAPHS 

Inflow Qb G.!p tp to 
Hydrograph ems ems sees sees 

one 50 100 14400 21600 
two 10 100 14400 21600 

three 5 30 43200 131000 
four 5 40 7200 95000 
five 5 60 28800 46500 

TABLE II 

SUMMARY OF CONDITIONS USED IN SERIES I TESTS 

Length Slope Manning's Inflow Number 
m n Hydrograph of Run·s 

sqoo 0.01 0 .. 05 0.10 one two 4 
0.001 0.05 0.10 one two 4 
0 .. 0001 0.05 0.10 one two 4 

10000 0.01 0.05 0.10 one two 4 
0.001 0.05 0.10 one two 4 
0 .. 0001 0.05 0.10 one two 4 

15000 0.01 0.035 0.05 0.10 one two 6 
0.001 0.035 0 .. 05 0.10 one two 6 
0 .. 0001 0.035 0.05 0.10 one two 6 
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where 

(4~ 2') 

where Qs~ Qb, and QP are the inflow, base and peak 

volumetric flow rates, respectively, t~ and tg are the time 

to peak and time to center of gravity, respectively, and t 

is the time. The actual values ~or these parameters· are 

summarized in Table I. 

Series I Tests 

Series 1 tests were conducted an rectangular channels~ 

The rectangular channels had a constant width of twenty 

meters. Runs were made for different combinations of reach 

length, bed slope, roughness coefficient and base flow rate. 

A summary of conditions considered is given in Table II. 

Overall forty-two simulation tests were conducted for 

comparison between the Saint Venant equations, the linear 

hydrodynamic Muskingum method and the nonlinear hydrodynamic 

Musldngum method (see Table VII> .. 

The linear model was only used in this Series of tests. 

Theoretically the nonlinear model is superior to the linear 

model, therefore it will be examined in more detail than the 

linear model. Other justifications·for this decision will 

be given in Chapter V~ 

. Series I I Tests 

Series II tests were conducted to examine the effects 



of varying the ratio, ~X/It, subreach length, &X, and time 

step, &t, on the nonlinear hydrodynamic Muskingum method~ 

Six simulations from Series I tests were chosen using 
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three different bed slopes, two different inflow hydrographs 

and a constant roughness coefficient. 

Initially, the time step was selected so as to 

adequately describe the inflow hydrograph <i.e. &t < Tp/5 

Ponce and Theurer, 1982). All time steps used satisfied 

this criteria. The total reach length was then divided into 

subreaches using the criteria recommended by Weinmann 

(1977> , where the subreac:h &X = &t c..,. The ratio, &X/&t~ 

was held const.ant while &X and &t were varied simultaneously 

by a factor ranging from 0.1 to 10m Another set of tests 

were conducted to evaluate the sensitivity of the predicted 

results to n:. The subreach 1 ength, &X, was vari i::!d from 

&Y../10 to 106::;( for a constant eSt. The time step was 

again selected to adequately describe the inflow hydrograph. 

In the third set of tests, the time step, &t, was varied 

from 2.St to &t/100 with a constant .bX of &:(=eSt ck, where .St 

was selected to adequately describe the inflow hydrograph. 

A more detailed description of parameter values is given in 

Chapter Vm 

Series III 

Series III tests were preformed to evaluate the effect 

of varying the reference flow value, 9a. The best and the 

worst run fo~ each slope value were selected from Series Ic 
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The reference flow rate was then varied from base flow rate 

to peak flow rate in twenty-five percent increments, for 

each case. An additional run using a slope of 0.0001, a 

Manning's n of Oa05 and inflow hydrograph four was also 

performed. A total of thirty-five simulation runs were 

conducted for the nonlinear hydrodynamic Muskingum methoda 

Table III contains a summary of the conditions used. 

Series IV 

Series IV tests were used to evaluate the model's 

performance under the influence of different types of inflow 

hydrographs. A rectangular channel with a constant 

roughness coefficient, width and length of 0.05, 20 meters 

and 15000 meters respectively, was used. Five inflow cases 

were used in conjunction with three different bed slopes 

Some of the tests were identical to Series I tests. 

Series V 

To evaluate the effect of different channel geometries, 

tests were also conducted with a triangular shaped channel. 

This channel had a constant single sideslope of 2:1, a 

reach length of 15000 meters, bed slopes of 0.001 and 0.0001 

and Manning"s roughness coefficients of 0.05 and 0.1. These 

channel parameters were used for all five hydrograph shapes 

given in Table Ib Table IV summarizes the conditions used. 

The simulation runs were conducted for both the Saint Venant 

and the nonlinear hydrodynamic Muskingum method~ 



Slope 

0.01 

0.001 

0.0001 

Sl,:Jpe 

0.001 

0.0001 

TABLE III 

SUMMARY OF CONDITIONS FOR SERIES III 

Manning's Inflow Q,... • ., 

n Type 0 .25 • 50 .75 1 

0.05 one X X }~ X X 

0.05 two X X X X X 

0 .. 05 one X X X X X 

0.05 two X X X X X 

0.05 one X X X X X 

0.05 two X X X X X 

0~05 four X X X X X 

TABLE IV 

SUMMARY OF SERIES V TESTS FOR TRIANGULAR 
CHANNELS WITH A 2:1 SIDESLOPE 

Manning's Inflow 
n Type 

0.05 one twa three four five 
0.10 one two three four five 

0.05 one two three four five 
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Number 
of Runs 

5 
""" • ..J 

5 
5 

5 
5 
5 

Number 
of Runs 

5 
5 

5 
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Series VI 

Series VI tests were conducted to compare predicted 

results of the nonlinear hydrodynamic Muskingum model and 

the Saint Venant. equations against the observed movement of 

a flood wave through a channel. The Illinois River in 

Oklahoma was selected as the natural channel. Data for this 

channel was obtained from Nwaogazie and Tyagi (1984). The 

reach length of interest was between the Watts and 

Tahlequah gaging stations. The reach length was 81100 

meters, and the bed slope was 0.0009. The roughness 

coefficient for this channel was expressed as a function of 

flow rate by Nwaogazie and Tyagi <1984)w This function was 

used in the finite element simulation. An average roughness 

coefficient of 0.055 was used for the hydrodynamic method. 

The observed hydrograph of April 14th, 1979, at Watts was 

used as the inflow hydrograph. Numerical results from both 

models were compared to the observed outflow hydrograph at 

the Tahlequah gaging station. 

Series VII 

Series VII runs were conducted to examine in more detail 

the effects of slope on the predictive re~ponse of the 

nonlinear Hydrodynamic Muskingum methods. Table V contains a 

summary of these runs. 



TABLE V 

MISCELLANEOUS RUNS FOR A RECTANGULAR 
CHANNEL OF LENGTH 15000 METERS 

Slope Inflow Manning's n 
Type 

0.01 four 0.05 
0.00:1. four 0.05 
0.0005 four 0.05 
0.0001 four 0.05 
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CHAPTER V 

RESULTS AND DISCUSSION 

Introduction 

This chapter contains the results for Series I through 

Vii. A discussion on each Series is presented in separate 

sections. A summary of all the results is then given~ 

In this chapter SV and NHDM mean Saint Venant equation 

model and nonlinear Hydrodynamic Muskingum method, 

respectively. This is done to present the results more 

simply. 

Series I 

Series I tests were used to evaluate the sensitivity of 

the linear Hydrodynamic Muskingum method and the nonlinear 

Hydrodynamic Muskingum method to variations in slope, 

roughness, and reach length. The sensitivity of high and 

low base flow rates was also considered. 

The time step was selected so as to adequately describe 

the inflow hydrograph, as discussed in Chapter IV. The 

total reach length was divided into subreaches using the 

c:i~i teria t-ecommended by Weinmann ( 1977), where the subreach 

length hX ::::.lt c:..,. The outflow hydrograph from the subreach 

is w;;;ed as the inflowhydrograph for the next subreach. 

41 
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This process is continued until an outflow hydrograph at the 

outlet of the reach is obtained. Adopting this subreach 

approach reduces the importance of the channel length as an 

input parameter. The longer the channel the greater the 

accumulation of numerical error, if the subreach is kept 

constant for the different runs. The significance of this 

error was evaluated by examining results for the 5000 and 

10000 meter runs. 

The linear flow model performed well over the range of 

runs conducted in Series I tests= The different reach 

lengths showed no significant trend in accumulation of error 

from the 5000 meter channel to the 15000 meter channel far 

the same subreach length. Predicted peak outflow rates for 

the 15000 meter reach length simulations are tabulated in 

Table VI. Overall the linear model does an excellent job of 

approximating the Saint Venant equations for those runs with 

relatively small attenuation in the peak flow rate (QP = 

100 ems ) of the inflow hydrograph. As shown in Table VI, 

the predicted peak flow rates between the two models were 

reasonably close for the 0.01 and 0~001 slope simulations. 

In these simulations the downstream peak flow rate was 85 

ems or greater, which corresponds to an attenuation of less 

than 15Z in the inflow peak flow rate. For the 0.0001 slope 

simulations~ however, the deviations between the Saint 

Venant and the Hydrodynamic Muskingum method were more 

noticeable (see Table VI Runs A13-A18 >, especially far a 

ManMing's n.of 0.1 .. These runs corresponded to a greater 
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TABLE VI 

SIMULATED PEAK OUTFLOW RATES FOR RECTANGULAR CHANNELS OF 
OF SERIES I TESTS ·USING A TOTAL REACH LENGTH OF 15000 M 

Run Slope Manning's Inflow Simulated Peak Outflow 
n Type 

Saint Hydrodynamic 
Venant Muskingum Method 

Nonliner Linear 

m/m m=s/sec m3 /sec m3 /sec 

A1 0.01 0.035 one 99.5 99.9 99.9 
A2 0.050 one 99.5 99.9 99.9 
A3 <moderate) 0.100 one 98.8 99.2 99.5 
A4 0.035 two 99.1 99.9 99.9 
A5 0.050 two 99.1 99.8 99.8 
A6 0.100 two 97.6 99.6 99.7 

A7 0 .. 001 0.035 one 97.9 98.9 98.9 
AB 0.050 one 95.8 97.5 97.9 
A9 <mild> 0.100 one 90.4 92.9 93.8 
AlO 0.035 two 96.2 98 .. 0 98.2 
A11 0.050 two 92.5 94.0 96.2 
A12 o. 100 two 82.1 87.3 87.6 

A13 0.0001 0.035 one 77.3 80.6 81.2 
A14 0.050 one 78.6 80.3 81.0 
A15 ( almost ) 0.100 one 73.7 84.0 84.5 
A16 level 0.035 two 67.7 62.0 63.7 
A17 0.050 two 58.9 57.9 60.9 
A18 0.100 two 44.6 63.6 65.7 



attenuation in peak flow rate. With the exception of 

Manning's n of 0.10, the peak flow rates for this slope 

were still adequately predicied by the linear model. 
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One possible reason for the relatively poor predictive 

accuracy of the 1 i near . Hydrodynamic Musk i ngum method a.t the 

mild slopes was the procedure used to define the reference 

flaw rate. A constant Qa value was used far all subreaches. 

This value was reasonable when the attenuation of the 

hydrograph was small (less than 15X>. However, for those 

reaches with large attenuations, the outflow hydrograph 

varies noticeablely between each subreach. A mare 

reasonable approach would be to use a different Q.,. value for 

each subreach. 

The nonlinear hydrodynamic Muskingum method 

incorporated a space varying 0..,. as described in Chapter 

Three. In general the nonlinear hydrodynamic Muskingum model 

more accurately simulated the results of the Saint Venant 

equations than the linear hydrodynamic Muskingum method. 

This can best be seen by examining the peak flow rates in 

Table VI for Runs A7 to A12. Although the difference 

between linear and nonlinear models is small, there is still 

an improvement in simulated values. 

The nonlinear hydrodynamic Muskingum method also 

simulates the Saint Venant equations well for the those runs 

with attenuations in the inflow hydrograph of less than 

fifteen percent. Runs A1 to A12 in Table VI highlight the 

excellent agreement in predicted peak ·flow rates~ For the 
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0.0001 slope the predicted peak flow rates were fairly close 

(less than 8X error) for the Manning's ns of 0.035 and 0.05 

values between the two models <see Table VI Runs A13,A14 and 

A16,A17). The largest difference between the two models 

occurred with the combination of smallest slope and largest 

roughness coefficient (0.10) for both inflow cases (Table VI 

Runs A15 and A18). 

Typical fits between the Saint Venant and nonlinear 

hy:1drodynamic Muskingum methods for each slope using inflow 
I! 

hy~rographs one and two are shown in Figure 1, Figure 2 and 

Figu~e 3, respectively. The overall shape of the outflow 

hydrograph, time to peak and peak flow rates of the 

nonlinear Hydrodynamic Muskingum method were reasonably 

close to the Saint Venant results for the 0.01 and 0.001 

slope simulations. Figure 1 and Figure 2 demonstrate this 

point. The 0.0001 slope simulations, however, showed a 

tendency to rise too quickly causing differences in the 

time to peak and in the shape of the rising limb of the 

outflow hydrograph. Figure 3 demonstrates this point. The 

early rise of the rising limb of the inflow hydrograph goes 

against the trend present in the lower slope simulations 

where the time to peak was delayed as the slope decreased 

for constant roughness coefficient and inflow type~ This 

oddity will be examined further in Series V!Ic 

For the nonlinear model, no significant trend can be 

seen in the accumulation of error, as the reach length was 

varied from 5000 meters to 15000 meters for a const<int 
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subreach length. Appendix B contains all the nonlinear 15000 

meter runsa 

Series II 

The Series II tests were conducted to evaluate the 

nonlinear Hydrodynamic Muskingum method's sensitivity to 

subreach length 9 ax, time step, at and ratio aX/at.. The 

subreach length ax was varied from 15m to 15000m, the time 

step was varied from 60 seconds to 3600 seconds and the 

ratio axtat was varied from 0.004 to 250. 

Table VII contains a summary of the results. In Table 

VII, the results with an * beside the &t represent the runs 

which used the cri t.eria ~X = 5t ck <Weinmann, 1977> , where 

Jt was selected to adequately describe the inflow hydrograph 

as described in Chapter IV~ It can be seen from these 

results that a wide range of ~YJ5t was examined. 

Only a small change in the predicted peak flow rate and time 

to peak was noticed. Figure 4 and Figure 5 demonstrate this 

point in graphic fashion. The values plotted were 

normalized against the standard* values for each slope and 

inflow case. The 0.01 and 0.001 slope results showed a 

decrease in peak flow values with increasing 5XI5t ratio~ 

This trend was not as evident in the 0.0001 slope cases. 

From these results, it would seem that the method will 

still produce reasonable estimates of time to peak and peak 

flow values as long as the ratio is within an order of 

magnitude above or three orders .of magnitude below the 
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TABLE VII 

SUMMARY OF RESULTS FOR SERIES II TESTS 

Run Slope 6:( .6t Inflow u: Qp tp 
Type 6t 

m/m m sees m/sec ems hrs 

B1* 0.01 1667 400 one 4 .. 166 99.98 5 
B2 " 16.7 400 .. 0~0417 99c98 5 
B3 " 15000 400 " 37.5 99.75 5 
B4 .. 15000 60 II 250.0 99.74 5 

B5* " 1500 400 two 3 .. 75 99.88 5 
B6 II 15 3600 .. 0.0042 100.00 5 
B7 " 150 400 II 0.375 99.89 c:-

....J 

B8 II 1500 100 I! 15.0 99.86 5 
B9 " 5000 100 II 50 .. 0 99.80 5 
B10 II 15000 100 " 150.0 99.32 5 

B11* 0.001 1154 600 one 1.923 97.54 6 
B12 II 15 3600 II 0.0042 98.20 6 
B13 " 15 600. " 0.025 97.88 6 
B14 .. 150 600 II 0.25 97.55 6 
B15 II 15000 600 II 25.0 97.50 6 

B16* " 682 400 two 1. 725 95.60 7 
B17 .. 100 3600 II 0.028 96.90 7 
B18 .. 1000 100 II 10.0 95.60 7 
B19 II 15000 60 II 250.,0 94.,05 6 

B20* 0.0001 536 600 one 0.888 80.30 5 
B21 II 32 3600 II 0.00889 80.30 5 
B22 II 536 60 II 8.888 80.25 5 
B23 " 5000 60 .. 83.0 80 .. 48 5 

B24* .. 469 600 two 0.78 57.9 5 
B25 II 30 600 .. 0 .. 05 57.9 5 
B26 " 15000 400 .. 37.5 59 .. 1 6 
B27 .. 7500 60 It 125~0 60.7 6 
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standard* value= In general, the method proved to be 

flexible in the selection of time step and distance step, as 

long as the time step selected adequately described the 

inflow hydrograph. This feature allows the engineer a great 

deal of latitude in selecting the distance step and time 

step. 

Series III 

Series III tests were performed to examine the 

sensitivity of the nonlinear hydrodynamic Muskingum method 

to the reference flow fraction Qref. In general, there was 

a trend for the peak flow values to increase as Qref was 

varied from zero to one <i~e., Go varied from Qb to QP in 

equation 3.13). A value of 0.5 for Q~•4 produced the best 

prediction of peak flow in most cases. Both these trends 

can be seen in Table VIII. The only run that showed a wide 

variation in peak flow values far different Qref values was 

the 0.0001 slope, inflow two case < Table VIII, Runs C26-C30 

>. All the other runs were within plus or minus five 

percent of the peak values predicted by the finite element 

solution to the Saint Venant equation. The time to peak was 

later at Qref equal to zero in all cases other than the 

0.0001 slope, inflow two case. In all cases the time to peak 

remained the same for Qref equal to 0.5 or greatera Data 

shown in Table VIII highlight these points. 

Figure 6 illustrates the effect on the overall shape of 

the hydrograph of varying the reference flow fraction. The 

higher values of Qref produced a steeper rise in the rising 



Run 

Ci 
C2 
C3 
C4 
C5 

C6 
C7 
ca 
C9 
C10 

C11 
C12 
C13 
C14 
C15 

C16 
C17 
CiS 
C19 
C20 

C21 
G22 
C23 
C24 
C25 

C26 
C27 
C28 
C29 
C30 

TABLE VIII 

SUMMARY OF RESULTS FOR SERIES III TESTS FOR 
A RECTANGULAR CHANNEL OF CONSTANT 

ROUGHNESS OF N = 0.05 

Slope Qref Inflow Peak Flow Rate Time 
m/m Type <ems> Y.error NHDM 

0.01 OuOO one 99.8 + 0 .. 35 5 
u 0.25 " 99.9 + 0~42 5 
II 0 .. 50 " 99.9 + 0.47 5 .. 0.75 .. 99.9 + 0.47 5 
II 1.00 ll 99.9 + 0.46 5 

II 0.00 two 98.8 0.37 6 
II 0.25 II 98 .. 8 - 0~38 5 
II 0 .. 50 " 99.8 + Ow60 5 
" 0.75 " 99.9 + 0.83 5 .. 1.00 " 99.9 + Ou77 5 

0~001 0.00 one. 97.7 + 2.00 7 .. 0.25 II 97.7 + 2.04 6 
" 0.50 II 97 .. 5 + 1.85 6 
II 0.75 II 98.2 + 2.50 6 
II 1.00 II 98.2 + 2.55 6 

II o.oo two 93.4 + 1.03 9 
II 0.25 .. 96.1 + 3.92 7 
II 0.50 .. 94.1 + 1. 70 6 
II 0 .. 75 " 96.1 + 3.98 6 
" 1.00 II 96.2 + 4.02 6 

0.0001 0~00 one 77.7 - L07 5 
II 0.25 .. 79.1 + 0.70 5 
II 0.50 " 80.0 + 2.25 5 .. 0=75 .. 81.3 + 3.50 5 
" 1..00 II 82.2 + 4.62 5 

u o .. oo two 44.6 -24s30 10 .. 0.25 II 51 .. 5 -12.52 7 
II 0-50 .. 57.8 - 1.79 5 .. 0~7.5 il 63.0 + 6.98 5 .. 1~00 " 66m7 +13.25 5 
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limb of the outflow hydrograph. The lower values of Q,_."' 

cause a delay in the arrival of the time to peak. Figure 6 

was used to demostrate the trend of varying Qa on the 

hydrograph shape= Although the same trend exists on the 

other runs the differences are much smaller, as can be seen 

i n Tab 1 e VI I I. 

In general the method is not overly sensitive to the 

selection of Q,... • ..,. 

Series IV 

Series IV tests were conducted to assess the nonlinear 

Hydrodynamic Muskingum method's behaviour under the 

influence of different types of inflow hydrographs. A 

summary of the results are presented in Table IX& Figure 1 

and Figure 2 contain typical plots for inflow one and two 

and have previously been discussed in this chapter. Figure 7 

and Figure 8 contain typical plots for inflows three, four 

and five. The goad agreement between the nonlinear 

Hydrodynamic Muskingum method and the Saint Venant equations 

can be seen here. Fr·om Table IX it can be seen that the 

predicted peak flow rates and the predicted time to peaks 

compare favorably with the values from the finite element 

solution to the Saint Venant equations for all five inflow 

types. The runs using inflows three, four and five proved to 

be more accurate in their prediction of time to peak. In 

general the lower peak flow va.lues of the inflow hydrograph 

produced marginally better results. The method was able to 
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TABLE IX 

SUMMARY OF RESULTS USED IN SERIES IV TESTS. ALL SIMULATIONS 
SIMULATIONS USED 15000 METER RECTANGULAR CHANNELS 

Saint Nonlinear 
Venant Hydrodynamic 

Equation Muskingum 

Run Slope Manning's Inflow Q.,. t.,. Qp tp 
n Type ems hrs ems hrs 

Dl 0.01 0.05 one 99.5 5 99,.9 5 
D2 0.05 two 99.1 5 99.8 5 
D3 0~05 three 29 .. 9 14 29.9 14 
D4 0.05 four 39.5 3 39.7 5 
05 0.05 five 59.8 9 59.8 9 

D6 0.001 0=05 one 95.8 6 97 .. 5 6 
D? 0.05 two 92.5 7 94.1 6 
DB 0.05 three 29.9 15 29.9 16 
D9 0~05 four 38.8 7 39 .. 5 6 
010 0.05 five 59.0 11 59a5 11 

D11 0.0001 0.05 one 78.6 a 80.0 5 
D12 0.05 two 58.9 8 57.9 5 
D13 0.05 three 27.7 22 26.9 23 
014 0.05 four 30.6 15 29.0 15 
D15 0.05 five 46 .. 2 14 42.0 14 
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successfully handle all inflow types used in this series of 

tests. Appendix 0 contains plots of all the runs simulated 

in Series IV. 

Series V 

Series V tests were made to evaluate the nonlinear 

hydrodynamic Muskingum method's performance on a non

rectangular channel geometry. A summary of the results with 

their corresponding slope and Manning's n for triangular 

channels is presented in Table X. Overall the results for. 

the triangular channels were good for the runs with a 

roughness coefficient of 0.05. The predicted peak flaw 

values far the higher roughness coefficients were not as 

good as the otherss Typical hydrograph for Runs E5 and E6 

are presented in Figure 9m As shown by these figures the 

nonlinear Hydrodynamic Muskingum method also adequately 

predicted the shape of. the outflow hydrograph. 

The worst outflow hydrograph for the triangular channel 

at a slope of 0.001 and the coresponding hydrograph for the 

rectangular channel for the same slope, length, and 

roughness coefficient are shown in Figure 10 • As shown by 

this figure, the predictive accuracy of the hydrodynamic 

Muskingum method is less accurate for the triangular 

channel. In these runs the Saint Venant solution was 

relatively independant of geometry whereas, for the 

triangular channel the response with the hydrodynamic 

Muskingum method was quicker with less attenuation in peak 
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TABLE X 

SUMMARY OF RESULTS USED IN SERIES V TESTS. ALL 
SIMULATIONS USED 15000 METER TRIANGULAR 

CHANNELS WITH A 2:1 SIDE SLOPE 

Slope Manning's Inflow Simulated Peak Outflow Rate 
n Type 

Saint Nonlinear 
Venant Hydrodynamic 

Muskingum 
m::s/sec m::s/sec 

0.001 0.05 one 96.2 98.7 
0 .. 05 two 93.1 97.4 
0.05 three 29.85 29.9 
0.05 four 38.5 39.8 
0.05 ·five 58.9 59.7 
0 .. 10 one 90.6 96.5 
0.10 two 82.5 94.0 

0.0001 0.05 one 78.0 82~6 

0.05 two 57.7 65.9 
0.05 three 27.4 28.4 
0.05 four 27.7 32.1 
0.05 five 45.1 48.5 
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Series VI 

Series YI test was used to examine predicted results for 

a natural channel reach. In addition, an observed outflow 

hydrograph was also available for this channel reach. In 

Figure 11, the observed outflow and those predicted by the 

nonlinear hydrodynamic Muskingum methods are shown. In 

comparison to the observed values, the nonlinear 

Hydrodynamic Muskingum method does a good jab of predicting 

the outflow hydrographa Figure 11 also highlights the fact 

that the Saint Venant equations only approximate the actual 

movement of a flood wave. 

Series VII 

Series VII was conducted to examine the effect of 

varying the slope from 0.01 to 0~0001 for a constant inflow 

type and roughness coefficient. Figure 12 shows the same 

trend found in all the Series I simulations. The 0.0001 

slope simulation tended to rise too quickly resulting in a 

difference in time to peak and in the shape of the rising 

limb of the outflow hydrograph. This early rise goes against 

the trend in the other slope simulations~ In these 

simulations the time to peak was delayed as the slope was 

decreased from 0.01 to 0.0001 (see Figure 12J. As discussed 

in Chapter III, there are three major assumptions which 

could account for the relatively poor results for the 0.0001 
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slope. Numerical error could also be a possible source of 

the discrepency in the observed trend. 
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A possible reason for this difference may be the fact 

that the time derivative is approximated with a space 

derivative in the derivation of the methodg This 

approximation was examined by looking at the values for 

aQ/at and -c aann: for the 0.001 slope, inflow two, 0.05 

roughness coefficient and the 0.0001 slope, inflow two, 0.10 

roughnes coefficient • The 0.001 slope value showed a 

difference of approximately 10% between the two terms 

compared to a difference of approximately 30% for the 0.0001 

slope valuem The differences between the two terms were 

calculated from printout of the finite element program. This 

early rise may be a problem for the model at slopes of 

0.0001 or less. 

Table X contains a summary of the distribution of bed 

slopes for 188 Oklahoma streams <Sauer, 1979}. It can be 

seen from Table X that only three percent of the Oklahoma 

streams examined had a bed slope of less than 0.005, while 

ninety percent had slopes of 0.001 or greater. The 

nonlinear hydrodynamic Muskingum method when compared to the 

Saint Venant equations performed excellently when the slope 

values were greater than 0.0001, and only failed to model 

the rising limb of the outflow hydrograph for the 0.0001 

slope runs. From this it would seem that the poor 

performance at the 0.0001 slope values of the nonlinear 

Hydrodynamic Muskingum method would not be a drawback when 
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TABLE XI 

DISTRIBUTION OF BED SLOPES FOR OKLAHOMA STREAMS 

Range of Bed Slopes Percentage of Number of 
Total %. Channels 

> 0.03 0 0 

0.03 - 0.01 15 28 

0.01 - 0.005 21 40 

Oa005 - 0.001 53 100 

0.001 - 0 .. 005 8 15 

0.005 - 0 .. 0001 3 5 

< 0.0001 0 0 
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applying the method to Oklahoma streams. 

Summary 

Overall, the results presented in this chapter have 

shown that Dooge et al 's (1982) Hydrodynamic Muskingum 

Method is a useful technique for determining Muskingum's K 

and x. The nonlinear Hydrodynamic Muskingum method proved 

to be a slightly better model than the linear Hydrodynamic 

Muskingum method. In general, however, conclusions drawn 

from the nonlinear model also apply to the linear model. 

The nonlinear Hydrodynamic Muskingum method predicted 

the peak flow rates excellently for those runs with 

attenuations of less than fifteen percent over the fifteen 

kilometer reach. The model predicted peak flow rates better 

at lower values of Manning's nand higher slope values • 

These trends were illustrated in Series I, IV and V tests. 

The nonlinear Hydrodynamic Muskingum method predicted 

the time to peak accurately for all the 0.01 and 0.001 runs 

of Series I tests. The 0.0001 slope cases of Series I tests 

tended to have an earlier time to peak. Series IV tests 

showed excellent agreement between time to peak of the 

Nonlinear Hydrodynamic Muskingum and the Saint Venant 

equations for all slope values. Series V tests showed an 

earlier time to peak in all cases. In general there was a 

good agreement between time to peak of the nonlinear 

Hydrodynamic Muskingum method and the Saint Venant 

equations. 
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The overall shape of the outflow hydrographs predicted 

by the nonlinear Hydrodynamic Muskingum method was good when 

compared to the Saint Venant equations <see Series I, IV and 

V tests>. The 0.0001 slope values in all cases showed an 

earlier rise in the rising limb of the outflow hydrograph 

when compared to the Saint Venant Equations <Series VII 

tests>. The selection of time step, subreach length and 

subreach-time step ratio was not critical as long as the 

time step was selected to adequately describe the inflow 

hydrograph (see Series II tests). The nonlinear 

Hydrodynamic Muskingum method showed some sensitivity to the 

selection of reference flow fraction Qra4 • The peak flow 

rate increased and the time to peak decreased with 

increasing reference flow fraction. Qr•4 set equal to 0.5 

produced the best results for peak flaw values, time to peak 

and overall shape. 

In most cases, the predicted results with the nonlinear 

Hydrodynamic Muskingum method compared quite well to those 

with a finite element solution to the Saint Venant equation. 

The method showed some sensitivity to roughness coefficient, 

baseflows and inflow hydrograph, performing slightly better 

at lower roughness coefficients, higher baseflows and lower 

peak inflow flow values. The larger slope values produced 

better results. The method has applications to non

rectangular channels. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

A study was conducted to evaluate the validity of 

Dooge et al. 's <1982) hydrodynamically derived Muskingum 

flood routing coefficients. The objectives of the study 

were to <a> compare the simulation results from Doage et 

alz 's (1982) Hydrodynamic Muskingum routing method to the 

simulation results obtained from a finite element solution 

to the Saint Venant equations and to (b) compare the 

simulation results from Daoge et al. 's nonlinear 

Hydrodynamic Muskingum routing method to the simulation 

results obtained by a finite element solution to the Saint 

Venant equations. 

The Muskingum's flood routing coefficients K and x were 

derived by reducing the Saint Venant equations to a linear, 

spacially lumped system following a procedure similar to 

that used by Dooge et al. (1982)" A flow model was 

developed using this derivation and a nonlinear feature 

incorporate. Seven series of tests were conducted to 

evaluate the flow model for a range of slopes, inflow 

hydrographs , roughness coefficients and channel geometries. 

The method's sensitivity to time step, sub~each length and 
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subreach length-time step ratio was also studied. 

Based on the results presented in Chapter V the. 

following conclusions can be drawn: 

1. The nonlinear Hydrodynamic model performs slightly 

better than the linear Hydrodynamic model. 

2. The nonlinear Hydrodynamic model predicts the peak 

flow rates accurately when compared to the Saint Venant 

equations. The model predicted peak flow rates better at 

lower values of Manning's n and higher slope values. 
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3. The nonlinear Hydrodynamic model predicts time to 

peak accurately when compared to the Saint Venant equationsa 

The 0.0001 slope cases showed a tendancy to predict earlier 

time to peaks. 

4. The overall shape of the outflow hydrographs 

predicted by the nonlinear Hydrodynamic Muskingum method is 

good. The 0.0001 slope cases showed an earlier rise in the 

rising limb of the hydrograph. 

5. The smaller roughness coefficents and larger slopes 

produce slightly better results. 

6. The nonlinear Hydrodynamic Muskingum method can be 

used for non-rectangular geometries with less accuracy. 

7. The nonlinear Hydrodynamic Muskingum method was not 

sensitive to time step, subreach length or subreach-time 

step ratio as long as the time step adequately described the 

inflow hydrograph. 

8. The nonlinear Hydrodynamic Muskingum method worked 

best with a reference flow value half way between the 
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baseflow and peak flow values (i.e. ~-4 = 0.5 >. 

9. The nonlinear Hydrodynamic Muskingum method was not 

sensitive to inflow type. It performed slightly better at 

higher baseflows and lower peak flows. 

10. The nonlinear Hydrodynamic Muskingum method 

predicted the outflow hydrograph for the Illinois River 

reasonablely well when compared to the observed outflow 

hydrograph. 

Overall the model is robust~ simple and accurate for 

the range of runs considered in this study. Its has the 

potential to be a cheap useful engineering model. 

Recommendations for Future Research 

1. Perform runs on a more diverse set of channel 

geometries. 

2. Evaluate model using observed inflow and outflow 

data for actual channels. 

3. Perform more runs in the 0.0005 to 0.0001 slope 

range to determine the point where the model starts to 

p~edict an early rise in the rising limb of the outflow 

hydrograph. 

4. Evaluate the models performance under different 

boundary conditions= 

5. Compare the model against other Muskingum routing 

methods for ungaged streams. 
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c 
c 
C HYDRODYNAMIC MUSKINGUM METHOD PROGRAM 
c 
C THIS PROGRAM CALCULATES HYDRODYNAMIC HUSKINBUM PARAMETERS 
C UTILIZING A METHOD PROPOSED BY DODGE <1982). 
c 
c 

c 
c 

DIMENSION 0(3000),0UT<3000) 1 RIN<3000),A(5) 1 NP<5> 

78 

c **************************************************************** 
C QREF 0 - 1 THE FRACTIONAL VALUE OF <QP - QB) TO BE USED 
C TO CALCULATE REFERENCE FLOWRATE ,0.5 SUGGESTED. 
C ZE USED IN MANNING'S EQUATION ,1 OR 1.489 ,S.I. OR ENGLISH 
C INTP PRINTOUT INTERVAL IN SECONDS 
C AL CHANNEL LENGTH METERS OR FEET. N NUMBER OF SUBREACHES , 
C AS CHANNEL SLOPE. AM THE POWER OF FLOWRATE IN ENERGY SLOPE EQ. 
C AN MANNING'S N VALUE 
C A<l> - A(5) THE COEFFICIENTS 4TH POLYNOMIAL DESCRIBING AREA. 
C WP<1>-WP<5> THE COEFFICIENTS 4TH POLYNOMIAL DESCRIBING NETTED PE 
C TSIM TIME OF SIMULATION ,Tt TIME STEP 
C QP PEAK INFLDWRATE ,YO GUESS AT INITIAL DEPTH 
C QB BASEFLOW RATE CUBIC METERS/SEC OR FTA3/SEC 
c **************************************************************** 
c 

CHARACTER FILEit12,FILEDt12,FILE02t12 
c 
C **** OPEN DATA FILES FOR INPUT AND OUTPUT ***** 
c 

c 

OPEN <UNIT=1,FILE='CON') 
WRITE<1,9990) 

9990 FORMAT(//5X, 'LINEAR 1 OR NONLINEAR MODEL 2') 
READ<l,t) DLN 
WRITE C1, 9995) 

9995 FORMAT(//5X, 'ENTER FILE NAME FOR INPUT DATA') 
READ<1,9996) FILEI 

9996 FDRf1AT(A) 
OPEN <UNIT=5,FILE=FILEII 
WRITE<1,9997) 

9997 FORMAT(//SX, 'ENTER FILE NAME FOR OUTPUT DATA') 
READ<1,9996) FILED 
OPEN (UNIT=6,FILE=FILEO> 
WRITE ( 1, 9998) 

999B FORMAT(//5X, 'ENTER FILE NAME FOR OUTPUT PLOTTING') 
READ<1,9996) FILE02 
OPEN CUNIT=7,FILE=FILE02) 

READ<5,*) QREF,ZE 
READ<5,t) INTP,AL,AS,AM,AN,N 
READ<5,*) <A<I> ,1=1 1 5) 
READ<5,t) <WP<I> ,1=1,5) 
READ(5 1 f) TSIM,T1,VD,QP,QB 
QO=QB+<QP-QB)tQREF 



c 

QP=QP-QB 
TP=O 
NTRIB=O 
TC=l 
AL=ALIN 
WRITE<6 1 t) T1 1 AL 1 'SET RIHI0' 1 (AL/T1) 
CALL PRAM<A,WP,AN,YO,AL,AS,C1 1C2,C3,AM,QO,ZE,T1> 
I 1=INT <TSIM/T1) 

C CALCULATE INITAL VALUES OF C1,C2,C3 AND THEN READ IN 
C INFLOW DATA. 
c 

c 

CALL INFLOW<O~RIN 1 K 1 X,T1,I1,TSIM,QB,C1,C2,C3,QP,TP,TC> 
READ<S,t) TRIB 
QR=O 
DO 8 14=0,11 
OUTCl4>=RlN<I4) 
RIN<I4l=OU4> 
IF (QR.LT.RINCI4)) QR=RIN<I4) 

8 CONTINUE 
DO 5 I2=2tN 
IF <DLN.LT.2> 60 TO 18 
QR=QB+(QR-QB)IQREF 
CALL PRAM(A,WP,AN,YO,AL,AS,Cl 1 C2,C3 1 AM 1QR,ZE 1 T1> 

18 CALL ROUT<O,RlN,K,X,Il,TSIM,QB,Cl,C2,C3> 
QR = 0 
DO 7 13=0, Il 
IF CQR.LT.OU3)) QR=O<l3) 
R IN ( 13) =0 <I 3 > 

7 CONTINUE . 
IF <<INT<TRIB/AL>>.NE.I2) 60 TO 5 
CALL TRIBY<RIN~Il,Tl,QO) 

5 CONTINUE 
TOP=O 
H=O 
H1=0 
DO 15 1=0,11 
H=H+O(I) 
H1=H1+0UT<l) 
IF <TOP. GT. 0 <I) ) GO TO 13 
TOP=O<I> 
TOPI=<Il 
TOPO=OUT<I> 

13 IF ((INTCI*Tl/lNTP)>.NE. <I*Tl/INTP)) GO TO 15 
WRITE<6,t> INT<I*Tl/3600) ,OUT<IJ ,O<I> 
WRITEC7r*) lNT<IfT113600), ' 1 ',O<IJ 

15 CONTINUE 
WRITEC6 11) TOPI,TOPO,TOP 
WRITE<6,:*) 'VOLUME IN',Hl§VOLUME OUT' 1H 
STOP 
END 

C THIS SUBROUTINE CALCULATES HYDRODYNAMIC ROUTING PARMETERS 
C C 1 , C2, Cl ~. . 
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c 

803 

858 

873 

877 

970 

c 

' 
SUBROUTINE PRAMCA1,WP,AN1 1 VO,ALC,SO,C1,C2,C3,AM1 1 Q0 1 ZE,T1l 
DIMENSION Al (5) ,WP(Sl 
INTER = 0 
Vl= 1.25tVO 
GO TO 858 
INTER = INTER + 1 
IF <INTER.LT.5000) 60 TO 858 
WRITE<6 11) 'INTER ERROR QO Ql' 1QO,IH 
SO TO cno 
AO=A1(1)+A1!2)*YO+Al(3)1V0**2+A1<4l*Y0**3+A1(5)1V0**4 
WP1=WP!l)+WP(2)1VO+WP!3)1Y0*•2+WP(4)*Y0**3+WPC5l*Y0**4 
TO=A1(2)+2tA1(3)*VD+3*A1<41*Y0**3+4*A1(5l*VOt*4 
V=SiilRT<SO> 
Q1=<ZE/AN1>•AOI((A0/WP1l**<0.666667))1V 
IF (Q1.LT,(0,95fQ0ll GO TO 873 
IF (Q1.GT.(1.051Q0)) GO TO B77 
GO TO 970 
AV = VO 
YO = YO + 0,51ABS(V1-VO> 
Vl = AV 
GO TO 803 
AY = YO 
YO = YO - 0.51ABS<V1-V0) 
Yl = AY 
60 TO 803 
DX=(Q0/AOIAM1> 
WRITE<o,*) 'QO ,RATIO, SUBR' 1 QO,DX,INT<T11DX> 
K 1 =ALC I AM 11 QOIAO 
FO=Q0**2*TD/C32.21A0**3) 
Z1=1-F0**2*<AM1*AO/TO/Y0-1l**2 
X1=0.5-0.5/AHl*YO/SO/ALCtZ1 
KC=K1-K1tX1+0.5tT1 
C2=<K1tX1+0.5fT1)/~C 

C3=CK1-K1tX1-0.5tTll/Kt 
C1= 1-C2-C3 
CERROR = Cl+C2+C3 
WRITE<6,t) 'K ,X 9CERROR' 1KltXl,CERROR 
WRITE(6 1 t) 'C1,C2,C3',C1,C2,C3 
WRITE(6 1 1) 

RETURN 
END 

C THIS SUBROUTINE READS IN THE INFLOW HVDROGRAPH AND ROUTS 
C DOWN THE FIRST SUBREACH. INFLOW CAN BE IN PAIRS OF POINTS 
COR DEFINED USING QP •.• <PEAKFLOW- BASEFLOW) ,QB BASEFLOW 
C TP TlHE TO PEAK ,TG TIME TO CENTER OF GRAVITY USE <ID=3) 

80 

SUBROUTINE INFLOW<OUT,RINF,K,X 1 T1,I1 1 TSIH,QO,Cl,C2 1 C3 1 QP 1 TP 1 TCl 
c 

INTEGER A1 B 
DIMENSION OUT(Il>,TND<2,30l,RINFCI1l 
READ ( 5 I*) I D 
our< o > =Qo 
IF <1D.EQ.3> GO TO 7 



READ<S,tl TP,TC 
Rt= TP/CTC-TPI 
DO 6 IT=O, I 1 
G =<TP-ITtTll/CTC-TP> 
RINF<IT> =QO +QPt<ITtT1/TPlttR1tEXP<Gl 
IF CIT.EQ.O) GO TO 6 
OUT<IT>= C1tRINF<ITl+C2tRINF<IT-1) +C3tOUT<IT-ll 

6 CONTINUE 
GO TO 11 

7 READ<S,t) ND 
DO 70 J=1,ND 
READ<5,t) TNDC1,Jl,TND<2,J) 
WRITEC6,t) TND<1,Jl,TND<2,J) 

70 CONTINUE 
A=1 
9=2 
DO 80 J2=0, I1 

85 TT=TltJ2 
IF <TT.LE.TNDCt,BII GO TO 90 
A=A+l 
9=8+1 
GO TO 85 

81 

90 RINFCJ2)=(J2tT1-TND<1,A))/CTND<1,Bl-TND<1,A))tCTND<2,Bl-TND<2,A) 
1 l+TND<2,M 

c 

IF CJ2.EQ.O) GO TO 80 
OUT<J2>=CltRINFCJ2)+C2tRINF<J2-ll+C3tOUT<J2-11 

80 CONTINUE 
11 RETURN 

END 

C THIS SUBROUTINE ROUTS THROUGH THE REMAINING SUBREACHES. 
C C1,C2,C3 ARE EVALUATED AT THE BEGINNING OF EACH SUBREACH. 
c 

c 

SUBROUTINE ROUT<DUT 1 RINF,K,X,I1,TSIH,QO,Cl,C2,C3) 
DI"ENSION OUTCI1) ,RINF<Il> 
OUT<Ol=QO 
L=Il 
DO 40 I=O,L 
OUT<I+1>=C1tRINF<I+11+C2tRINF<I>+C3tOUT<I> 

40 CONTINUE 
RETURN 
END 

C THIS SUBROUTINE READS IN TRIBUTARY INFLOWS 
c 

SUBROUTINE TRIBY<RINF,I1,Tl,Q0) 
INTEGER A,B 
DIMENSION TND(2 130) ,RINF<I1) 
REA0(5,t) NTRIB 
DO 70 J=t ,NTRIB 
READ <5, f) TND (1 ,J), TND <2 ,J) 

70 CONTINUE 
A=1 
8=2 



DO 80 J2=0,I1 
85 TT=TltJ2 

IF <TT.LE'.TND~1,8ll 60 TO 90 
A=A+l 
8=8+1 

82 

90 RINF<J2>=<TNDC1 1 8)-T1tJ2)/(TND<1,Bl-TND<l,AlltCTNDC2,Bl-TNDC2 1 Al 
1 l+TND(2,Al+RINF<J2) ' 

80 CONTINUE 
QO=QO+TND<2,1) 
RETURN 
END 
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SERIES I LINEAR AND NONLINEAR PLOTS 
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LHDM - LINEAR HYDRODYNAMIC MUSKINGUM METHOD 

NHDM - NONLINEAR HYDRODYNAMIC MUSKINGUM METHOD 

SV - SAINT VENANT EQUATIONS 
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LHDM - LINEAR HYDRODYNAMIC MUSKINGUM METHOD 

NHDM - NONLINEAR HYDRODYNAMIC MUSKINGUM METHOD 

SV - SAINT VENANT EQUATIONS 
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LHDM - LINEAR HYDRODYNAMIC MUSKINGUM METHOD 

NHDM - NONLINEAR HYDRODYNAMIC MUSKINGUM METHOD 

SV - SAINT VENANT EQUATIONS 
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FINITE ELEMENT FORMULATION 

Nwagozie and Tyagi (1984) presented a finite element 

solution to the Saint Venant equations. Their derivation 

is similar to the derivation used by Smith (1977>, varying 

only in the selection of shape functions* Nwagozie and 

Tyagi (1924) selected linear shape functions for all 

variables to keep calculations simple and to minimize 

computational cost. Smith <1977) used a quadratic shape 

function to describe flow rateu An error was found in 

Nwagozie and Tyagi's finite element equations~ The second 

term of the finite element momentum equation was incorrect. 

The correct formulation is presented here. This derivation 

is also intended to present the reader with some 

understanding of the finite element model used for the 

evalu~tion of the Hydrodynamic Muskingum method. 

Linear functions are selected for the description of 

depth~ flow rate and velocity. A two node element is 

used with the variables being defined a.t the ends. The 

depth, Yf is defined as follows, 

y- N·~ y~+ N•~+~ Y~+t <A.1) 

where N·~ and N·~+~ are basis functions for element e, at 

nodes i and i+1, respectively, given by. 

N~ = < 1-~/L > <A~2> 

N:~. ... :~. =< Y</L > <A~3> 
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L is the element length and x is the distance down the 

element. Similar relationships can be written for velocity, 

flow rate and friction slope. 

Applying Galerkin's principle <Zienkiewicz, 1971) to 

equations 2~1 and 2.2 yields, 

L:-~ ;r NT ( }V + yjv + v.J::t.. - q ) dx - 0 
_;t }x Jx 

<A~4) 

L:-~ :J NT ( jv + v}v + ~ + g([y + s., - So>>dx ::::: 0 
}t }X y }X 

<A.5) 
where •:.:: is the total ·number o.f nodal points and NT is the 

transpose of the shape function,. Equations A.4 and A.S can 

be evaluated over the length of an element giving the 

following nonlinear, finite element equations for the 

c:ontinuity and momentum equations, respectively, 

fY:tl. 
Y2. 

-6.9. 
2 

<A.6> 

% [; ~] t~:I + t c=~~:;~= 2~::~:] r ~:J 
+~ G ~] r:~~~::J + ~t:! n r~~ + ~ [n]r~~:J -gS2l,·m 
~ 0 (Aa7) 

where y and v are the time derivatives. The element 

equations Au6 and A~7 can now be assembled into matri~ 

~quations <Zienkiewicz, 1971) containing the total number of 

elements, N~ A dimensit:mless time weighting f~ctor can 

be int:orperated in tha forward difference scheme of the time 

derivative. 



118 

The matrix equations can then be solved by imposing an 

upstream and a dowmstream boundary ~onditian. The upstream 

boundary condition can be defined using the inflow 

hydrograph. The downstream boundary condition can be 

defined using a rating curve or a simplified version of 

equation 2.2, containing only the pressure, friction, and 

gravity terms. 

A Newton-Raphson iterative method in conjunction with 

the Gauss elimination technique can be used to solve the 

system of linear algerbraic equations • 
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