FEASIBILITY OF USING A TILLAGE

TOOL AS A MOBILE

PENETROMETER

By

CRAIG CLAYTON REISBECK n Bachelor of Science Oklahoma State University

Stillwater, Oklahoma

1983

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1985

-

•

. ?

FEASIBILITY OF USING A TILLAGE

TOOL AS A MOBILE

PENETROMETER

Thesis Approved:

mmera Thesis Adviser Batchel

Dean of the Graduate College

PREFACE

Tests were performed to determine the feasibility of using forces acting on tillage tools to predict soil cone index. The tools which do a good job of predicting cone index can than be used as a mobile penetrometer.

I wish to express by sincere gratitude to my major thesis adviser, Dr. James D. Summers, for his guidance and assistance throughout this study. Special thanks are also due to the staff of the Oklahoma State University Agricultural Engineering Laboratory for their help in completing this project.

Finally, I would like to express my appreciation to my family, my parents, Dr. and Mrs. Robert F. Reisbeck, and my younger sister, Holly. Without their encouragement the work would never have been completed.

iii

TABLE OF CONTENTS

Chapter		Page
I. INTRODUCTION	ы н	. 1
Objectives		. 2
II. LITERATURE REVIEW	ы.	. 3
Factors Affecting Cone Index	• •	. 3
Cone Index-Tool Force Relationships	•	. 5
Factors Affecting Tool Forces		. 6
III. EXPERIMENTAL EQUIPTMENT AND PROCEDURE	ب م	. 9
Pertinent Quantities		. 10
Design of Tool Bar	æ ,	. 11
Frame Design	-	. 11
Depth	. ,	. 12
Velocity	-	. 12
Tools Shanks and Force Measurement.	_	
Data Logger		. 21
Field Tests.	•	. 32
	•	. 32
Experimental Design	-	
Data Collection		. 33
IV. RESULTS AND DISCUSSION		. 38
IV. RESULTS AND DISCUSSION	-	. 50
V. SUMMARY AND CONCLUSIONS	a 1	. 67
VI. SUGGESTIONS FOR FURTHER RESEARCH	-0	- 69
REFERENCES CITED	•	. 70
APPENDIX A - MACHINE LANGUAGE SUBROUTINE FOR DATA COLLECTION	-	. 73
APPENDIX B - BASIC PROGRAM FOR DATA MANIPULATION	-	. 77
APPENDIX C - MACHINE LANGUAGE PROGRAM FOR DATA TRANSFER TO MAINFRAME COMPUTER	Ð	. 82
APPENDIX D - BULK DENSITY AND MOISTURE CONTENT DATA.	-	. 88
APPENDIX E - FORCE DATA	.	. 90

				x
				,
Chapter	· · · ·			Page
APPENDIX F -	VELOCITY, CONE	INDEX AND DEPTH I	DATA	92
APPENDIX G -	II-TERMS		• • • • •	94
		1		

▼

LIST OF TABLES

Table		Page
Ι.	Maximum Expected Strain due to Draft and Vertical Force	. 20
11.	Calibration Equations Force $(kN) = A + Bx$.	. 31
III.	Pertinent Quantities and Symbols	. 32
IV.	Correlations Between I-terms and II_1 for Draft and Vertical Force Calculated by Equation (5).	. 39
Υ.	Correlations Between I-terms and I ₁ for Draft and Vertical Force Calculated by Equation (6).	. 40
VI.	Correlations Between I-terms and I ₁ for Draft and Vertical Force Calculated by Equation (7).	. 41
VII.	Actual Values and Design Values of Depth	. 42
VIII.	Regression of Π_1 onto Π_2 $\Pi_1 = \mathbf{A} + \mathbf{B} \Pi_2$. 60
IX.	Regression of I_1 onto I_3 $I_1 = C + DI_3$. 62
Χ.	Prediction Equation $\Pi_1 = E + F \Pi_2 + G \Pi_3$. 65
ХІ.		. 66

LIST OF FIGURES

 \wedge

Figu	re P	age
1.	Tool Bar Mounted on the Tractor During Tests	13
2.	Top View of Tool Bar	14
з.	Side View of Tool Bar	15
4.	Adjusting Height of Gage Wheels	16
5.	Fifth Wheel Assembly and Magnetic Sensor	18
6.	Arrangement of Strain Gages on Tool Shanks	19
7.	Calibration Data for Chisel Draft	23
8.	Calibration Data for Chisel Vertical Force	24
9.	Calibration Data for Sweep Draft	25
10.	Calibration Data for Sweep Vertical Force	26
11.	Calibration Data for Coulter Draft	27
12.	Calibration Data for Coulter Vertical Force	28
13.	Calibration Data for Disk Draft	29
14.	Calibration Data for Disk Vertical Force	30
15.	Arrangement of Blocks One through Four	35
16.	Arrangement of Blocks Five and Six	36
17.	\mathbb{I}_1 versus \mathbb{I}_2 for the Chisel using Draft to Calculate \mathbb{I}_1	44
18.	\mathbb{I}_{1} versus \mathbb{I}_{1} for the Chisel using Draft to Calculate $\mathbb{I}_{1}^{\mathbb{I}_{1}}$	45
19.	\mathbb{I}_{1} versus \mathbb{I}_{2} for the Chisel using Vertical Force to Calculate \mathbb{I}_{1} .	46
20.	\mathbb{I}_1 versus \mathbb{I}_1 for the Chisel using Vertical Force to Calculate ${}^3\mathbb{I}_1$	47

Figure

\mathbb{I}_1 versus \mathbb{I}_2 for the Sweep using Draft to 21. 48 ⁺Calculate⁺ II_1 22. 49 ${\rm I\hspace{-.1em}I}_1$ versus ${\rm I\hspace{-.1em}I}_2$ for the Sweep using Vertical Force to 23. Calculate^fI₁..... 50 24. 51 II_1 versus II_2 for the Coulter using Draft to Calculate II_1 25. 52 II_1 versus II_1 for the Coulter using Draft to Calculate³ II_1 26. 53 27. ${\rm I\hspace{-.1em}I}_1$ versus ${\rm I\hspace{-.1em}I}_2$ for the Coulter using Vertical Force 54 28. 55 I_1 versus I_2 for the Disk using Draft to 29. ^{\perp}Calculate^{$\perp} I₁</sup>$ 56 \mathbb{I}_1 versus \mathbb{I}_2 for the Disk using Draft to 30. 57 $\begin{array}{c} {\rm II}_1 \ {\rm versus} \ {\rm II}_2 \ {\rm for} \ {\rm the} \ {\rm Disk} \ {\rm using} \ {\rm Vertical} \ {\rm Force} \ {\rm to} \\ {\rm Calculate}^2 \ {\rm II}_1 \ {\rm .} \ \ ~} \ {\rm .} \$ 31. 58 \mathbb{I}_1 versus \mathbb{I}_2 for the Disk using Vertical Force to 32. Calculate³I₁. . 59

Page

viii

CHAPTER I

INTRODUCTION

Cone index is used as an indicator of soil strength. It is the resistance of soil to penetration by a right circular cone. Numerically, cone index is the ratio of the force required to push a cone into the soil at a constant rate of penetration to the base area of the cone. Different penetrometers with varying base areas, cone angles, and penetration velocities bave been used (Gill and Vanden Berg, 1968; Durgunoglu and Mitchel, 1975; Johnson, Jensen, Schafer, and Bailey, 1980). In an effort to to provide a common method of expressing general soil conditions, the American Society of Agricultural Engineers has developed a standard specifying the geometry and operating procedures for cone penetrometers (ASAE, 1984b).

Cone index has been utilized for many purposes, such as predicting tractive performance of off-road vehicles, evaluating tillage tool performance, predicting draft forces, and determining root penetration and seedling emergence (Ayers and Bowen, 1983). The procedure used to evaluate tillage tools at Oklahoma State University requires cone index readings to be taken before and after the tillage operation is performed (Khalilian, Self, and Batchelder, 1983). This is

expensive in terms of time required to collect the penetration data. It would be advantageous to develop a faster method of determining cone index. The problem addressed by this research is the development of a system that would make measurements related to cone index from a moving vehicle. This mobile penetrometer could then be used to gather values related to cone index while performing some tillage operation thereby reducing the time required to collect penetration data.

Objectives

The overall objective of this research is to determine the feasibility of using a tillage tool as a mobile penetrometer. The specific objectives are:

1. Evaluate four tillage tools for possible use as a mobile penetrometer.

2. Define the pertinent quantities for the tool-penetrometer systems.

3. Develop prediction equations relating cone index to forces acting on each tillage tool from field test data.

CHAPTER II

LITERATURE REVIEW

Factors Affecting Cone Index

Frietag (1968) described the advantages and disadvantages of using cone penetromers to measure in situ soil strength. Shear strength of soil is a function of two components, cohesion and the internal angle of friction. On most soils it is impossible, using the cone penetrometer, to separate these two components. Experiments were conducted on air-dry sand where cone index was interpretable in terms of the friction angle. Since the cohesion in sand was considered to be negligible, data collected with the cone penetrometer were meaningful measurments of soil strength.

Durgunoglu and Mitchell (1975), proposed a new technique for prediction of penetration resistance. It was stated that penetration resistance is a function of cone geometry, cone surface roughness, soil strength parameters, soil compressibility, in situ lateral stress, and penetration depth. Above a certain critical depth penetration resistance increased rapidly with depth. At depths greater than the critical depth, soil compression became the controlling factor and the rate of penetration resistance with depth decreased. This critical depth was directly pro-

З

portional to the soil friction angle and the roughness of the penetrometer surface. Experiments conducted on air-dry sand produced measurements of cone index which agreed with predicted values calculated by the proposed technique.

Ayers and Perumpral (1981) investigated the effects of soil moisture content and dry density on cone index. Experiments were performed using mixtures of Zircon sand and Fire clay. Mixtures were placed in a cylindrical mold. Changes in dry density were achieved by compacting soil samples with the use of a drop hammer. Water was added to soil samples to vary the moisture content. Penetration resistance was measured with a standard ASAE cone penetrometer with a base area of 3.2 cm². The cone index was determined by averaging the penetration force over the first 15.2 cm and dividing by the base area of the the cone. Results of the test yielded a prediction equation for cone index as a function of dry bulk density, moisture content, and soil type. The prediction equation was more valid for soils with a high percentage of clay and less accurate for 100% sand.

Using a similitude approach, Upadhyaya, Kemble, Collins, and Wiliams (1982) developed a prediction equation for cone index in Delaware soils. Cone index was found to be a function of the moisture content, particle density, bulk density, and bulk modulus. Two different soil types were investigated, silty clay and sandy loam. Bulk density of the soil was varied using a rotary tiller. Different values of moisture content were achieved by applying water to the

surface of the soil with a calibrated sprayer. Bulk modulus of the soil was determined by measuring the ratio of the change in pressure to the change in volume for a water saturated soil placed in a watertight container. A significant correlation was observed for the ratio of cone index to bulk modulus and soil moisture content.

Cone Index-Tool Force Relationships

Sirohi and Reaves (1969) reported a study of the performance of cultivator sweeps to determine the feasibility of using similitude techniques to predict draft of cultivator sweeps. Pertinent quantities used to describe the soil were resistance to penetration and bulk volume weight, which is analogous to bulk density. Penetration resistance was measured using a 30° cone penetrometer. Tests were conducted on sand at the National Tillage Machinery Laboratory. Results of the study showed that similitude techniques are an effective method of studying cultivator sweeps. Results also indicated that a relationship existed between cone index of soil and draft of a cultivator sweep.

Johnson et al. (1980) used an analog-prototype system to predict draft forces acting on tillage tools. Cone penetrometers were used to model disks and chisels. Different sizes of cone pentrometers, chisels, and disks were used. Tests were performed on two types of soil, Norfolk sandy loam and Decatur clay loam. An integrated average was used to determine the penetration resistance over the depth of

operation. Results of the test showed the system where cone penetrometers were used to model disks was the best analogprototype system tested because the coefficients in the prediction equation were constant for varying soil conditions.

Factors Affecting Tool Forces

Rowe and Barnes (1961) have shown that draft of a tillage tool can be approximated by an analytical procedure based on soil mechanics. The tool used for the experiment was an inclined flat blade. It was assumed that the soil failed in shear. Soil types used were sand, silt loam, silty clay loam, and silty clay. Results indicated that soil shear strength increased as the rate of shear increased. This increase in shear strength was less for soils low in clay. Thus, the draft of the implement was a function of soil type and velocity.

Using dimensional analysis, Wang, Lo, and Liang (1972) predicted the draft force on a horizontal chisel using four soil parameters. Soil parameters studied were friction between the soil and tillage tool, apparent cohesion, bulk volume weight, and internal angle of friction of the soil. Tool properties used in the analysis were velocity and depth. Cohesion and soil friction angle were determined by the direct shear method while soil-tool friction was measured with a slider. Tests were performed in a soil bin on a soil with 0.3% sand 5.5% silt, and 94.2% clay. Different soil conditions were prepared by varying cohesion, bulk vol-

ume weight, soil friction angle, and soil-tool friction. Results showed draft could be predicted with acceptable accuracy using these four soil properties.

The soil reacting forces acting on disks were measured by Harrison (1977). Factors of interest were disk angle, depth and velocity of tillage as well as soil type. Forces measured were draft, lateral force and vertical force. The experiment was conducted on silty loam and clay loam soils with varying densities and moisture contents. Analysis of the results showed velocity did not contribute significantly to the change in draft or vertical force, but was significantly related to lateral force. Soil type, depth of tillage and disk angle did contribute significantly to all three forces measured.

Bloome, Batchelder, Khalilian, and Riethmuller (1983) measured the effect of velocity on draft of tillage tools in typeical Oklahoma soils. The soil types were Port silt loam and Meno loamy fine sand. Tillage tools used were a moldboard plow, sweep plow, chisel plow, and tandem disk. Results showed draft for the moldboard plow was a function of the velocity squared. The drafts of the chisel plow and disk were linearly proportional to velocity. For one soil type the draft of the sweep plow varied with the velocity squared while for the other soil type draft varied linearly with velocity.

Effects of velocity and depth of tillage on implement draft were reported by Summers, Khalilian, and Batchelder

(1984). Tillage implements used were a moldboard plow, chisel plow, disk, and sweep plow. Soil types were Tabler silt loam, Holister clay loam, and Reinach silt loam. Draft was found to vary linearly with velocity for chisel plows, disks, and sweep plows and quadraticly with velocity for moldboard plows. The draft was linearly propertional to depth for all implements tested.

Kydd, Frehlich, and Boyden (1984) developed prediction equations for draft of tillage tools operating in Canadian soils. Tools used were cultivators, tandem disk harrows, rod weeders, and one-way disk harrows. The prediction equations showed draft was a function of velocity and depth of tillage. In addition, draft of tandem disk harrows was dependent on the disk angle. It was concluded that draft depends primarily on tillage depth.

Draft prediction equations for tillage tools are included in the Agricultural Engineers Yearbook (ASAE, 1984a). The draft of moldboard plows and disk plows is a function of velocity squared. Draft of disk harrows is dependent on the mass of the implement and draft of cultivators is a function of depth and an interaction of depth and velocity.

Nicholson, Bashford, and Mielke (1984) reported that draft of sweep and chisel plows was affected by velocity and depth in the same manner as that described by the ASAE prediction equations. The draft of tandem disks was not affected by velocities in the range of 1 to 8 km/h. Tests were conducted on silt loam and silty clay loam soils.

CHAPTER III

EXPERIMENTAL EQUIPMENT AND PROCEDURE

Research has shown that soil cone index is a function of soil properties. Cone index is also dependent on penetrometer geometry and operational procedures. The mode of soil failure for penetrometers is shear for shallow depths and compression for deeper depths. Literature indicates a positive correlation between cone index and tillage tool draft, as cone index increases draft increases. Tool forces are also dependent on velocity and depth of tillage as well as soil properties.

Tools selected to perform this experiment were a chisel, sweep, disk and rolling coulter. Research has indicated a relationship between draft and cone index for chisels, sweeps and disks. The rolling coulter was selected based on the assumption that a significant portion of the draft on coulters is due to soil-metal friction. This was assumed to be similar to the significance of the soilmetal friction of the penetrometer being a factor of cone index.

The chisel selected was a standard chisel point such as those used on a chisel plow. Width of the chisel was 5.1 cm. Dimensions of the sweep were: width, 26.0 cm; approach

angle, 0° ; lift angle, 20.3°; and lift height, 6.4 cm. The disk had a radius of 27.9 cm and a concavity of 6.35 cm. It was mounted with a disk angle of 45° and a 0° tilt angle. The coulter used in the test had a radius of 27.9 cm.

Pertinent Quantities

Soil properties which affect cone index are cohesion, internal angle of friction, soil-metal friction, bulk density, moisture content, and soil type. Pertinent geometric properties of the penetrometer are cone apex angle and base area. Cone index is also dependent on rate of penetration. If the same penetrometer is used for collecting all cone index data and operated at a constant rate of penetration, geometric and operating parameters of the penetrometer can be omitted from the analysis because they will be constant. Soil properties can be omitted if it is assumed that soil properties affect tool forces and cone index in the same manner.

Tillage tool properties should include a characteristic length of the tillage tool and the type of tool. Characteristic length used for the chisel and sweep was width. Radius was used for the characteristic length of the disk and coulter. Operational parameters for tillage tools are velocity and depth of tillage. The five quantities which are then needed to describe the tool-penetrometer system are:

1. Cone index

- 2. Force acting on the tillage tool
- 3. Velocity of tillage
- 4. Depth of tillage
- 5. Characteristic length of the tool

Design of Tool Bar

The tool bar was designed so the four tools could be tested simultaneously. This allowed variation in tool forces due to changing soil conditions to be minimized. Other factors included in the tool bar design are maintainance of a constant depth, velocity measurement, and tool force measurement.

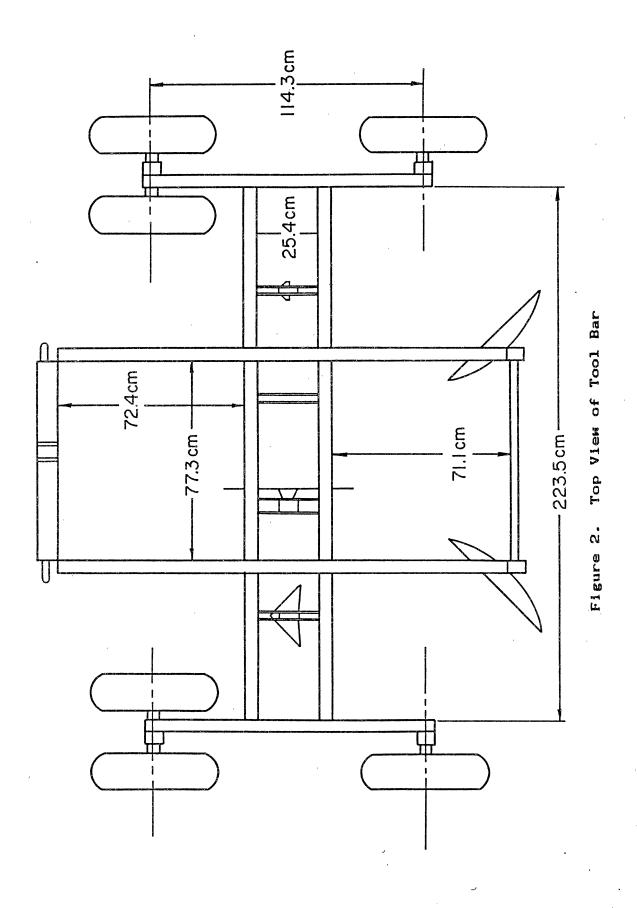
Frame Design

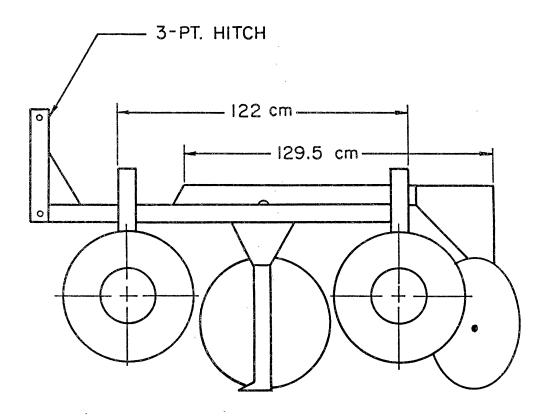
The simplest frame to satisfy the requirements was three-point hitch mounted with the tools mounted side by side. To allow the tools to act independently, the width of the frame was determined by a suggested minimum distance between tools of 2.5 times the depth of tillage (Gill and Vanden Berg, 1968). When the frame was first tested, the lateral force on the disk caused the frame to pull at an angle. To overcome this problem, a stabilizer disk was added facing the opposite direction of the test disk. Both disks were then mounted far enough behind the other tools so the soil displacement wave caused by the disks would not interfere with the other tools.

An analysis was performed to determine frame member

Estimates for forces acting on the tillage tools were size. made from data in literature. А maximum of 4.8 kN was used for the draft of the chisel and sweep (ASAE, 1984a). Maximum estimated draft for the rolling coulter was 3.6 kN (Ferguson, 1970). Disk draft of 1.8 kN and lateral force of 1.4 kN were used (Kepner, Bainer, and Barger, 1972). Stress analysis using these forces resulted in a 76 mm x 76 mm x 6 mm square tube frame member. This mass was not sufficient to counteract the estimated vertical forces. Therefore, a final member size of 76 mm x 51 mm bar was used. Figure 1 shows the completed frame. Frame dimensions are shown in Figures 2 and 3.

Depth


Depth of tillage was varied with the three-point hitch of the tractor. To maintain a constant depth for each test run, two 15.2 cm x 22.9 cm tires were placed at each corner of the frame. Tires were mounted so depth could be changed (Figure 4). Eight tires were originally used to minimize sinkage of tires into the soil. After inital tests, the inside rear tires were removed because they were riding on soil displaced by the disks causing the disks to operate at a depth shallower than the other tools.


Velocity

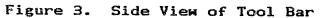

Velocity of tillage was maintained by the tractor and monitored using a fifth wheel attached to the frame. A 45

Figure 1. Tool Bar Mounted on the Tractor During Tests

tooth sprocket was fixed to the fifth wheel hub with a Di-Mag Digital #58423 magnetic sensor manufactured by the Electro Corp. mounted adjacent to the sprocket as shown in Figure 5. Using sensitivity curves for the sensor, the required gap between the sensor pole and the gear teeth was set at 0.127 mm so velocities in the range of 4.0 km/h to 8.7 km/h could be measured.

Tool Shanks and Force Measurement

Using estimated values of forces acting on the tools, an analysis was performed to select tool shank sizes. Shank dimensions for the chisel, sweep and coulter were 1.91 cm by 7.62 cm. Shank dimensions for the disk were 5.08 cm by 7.62 cm. The larger shank size was needed for the disk to resist the added lateral force.

Draft and vertical force acting on each tool were predicted using strain gage bridge voltage measurements. Gages used were type CEA-06-125UW-350 manufactured by Micro-Measurements Group, Inc. Gages were configured so one bridge measured draft and another measured the vertical force on each shank. Effects due to forces other than those of consideration were eliminated by gage placement. The procedures used to mount the strain gages were outlined in M-Line Accessories Instruction Bulletin B-137-11 (Micro-Measurements, 1979). Figure 6 shows gage configuration on the tool shanks. The output voltage, $V_{\rm O}$, and the strain in the tool shank at the location of the gages along their princi-

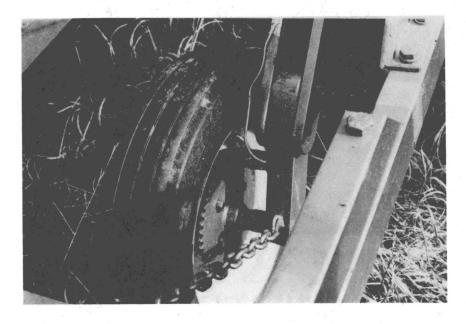
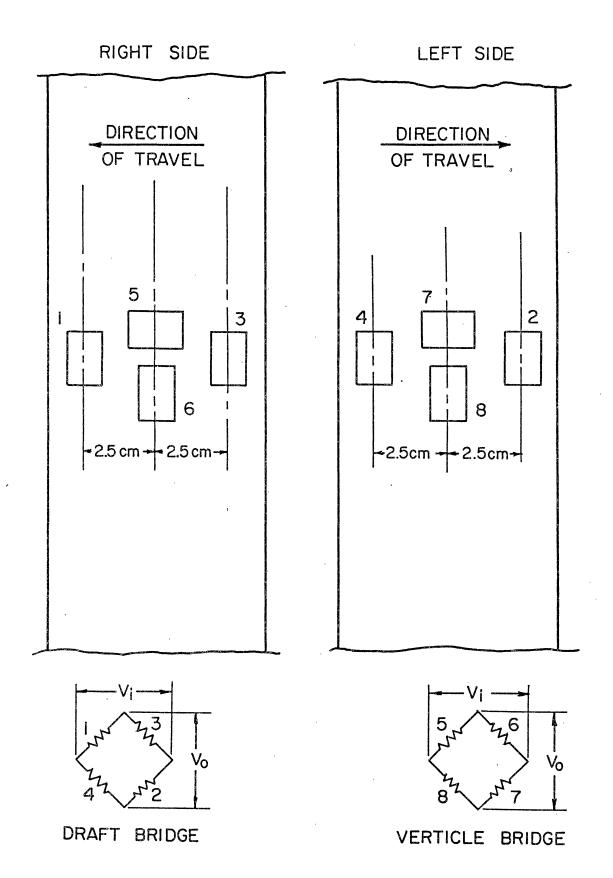
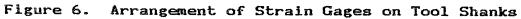




Figure 5. Fifth Wheel Assembly and Magnetic Sensor

pal axes, ϵ , are related according to the following equation:

$$V_{\alpha} = V_{1} * F * \varepsilon *_{n} / 4 \tag{1}$$

Where V_i is the input voltage to the bridge, F is the gage factor and n is the number of active arms in the strain gage bridge (Micro-Measurments, 1982). For the gages used, F was 2.08. The value of n for the draft bridges was four and two for the vertical force bridges. The input voltage to the strain gage bridges was +10 VDC. Using beam theory and the maximum estimated forces, the theoretical strains can be calculated. Table I lists the maximum strain in each tool shank due to the estimated draft and vertical force on each tool.

TABLE I

Force Component	Force (kN)	Strain
draft	4.8	.000420
vertical	1.8	.000005
draft	4.8	.000390
vertical	1.8	.000005
draft	3.6	.000320
vertical	1.8	.000005
draft	1.8	.000060
vertical	1.8	.000002
	Component draft vertical draft vertical draft vertical draft draft	Component(kN)draft4.8vertical1.8draft4.8vertical1.8draft3.6vertical1.8draft1.8draft1.8

MAXIMUM EXPECTED STRAIN DUE TO DRAFT AND VERTICAL FORCE

Using equation (1) and the maximum expected value of strain, the maximum strain gage bridge output voltage expecled is +8.74 mVDC for +10 VDC input.

Data Logger

Force and velocity data were gathered and stored using an AIM 65 micro-computer based data logger (Summers, Batchelder, and Lambert, 1984). The data logger has an analog to digital converter, A/D, capable of converting the analog voltage signals from the force measuring strain gage bridges to digital output. Output from the A/D board was address selected as the high byte of the original twelve bit word. The A/D board was configured to measure a full scale voltage of ±10 mVDC. Output signals from the strain gage bridges were used as input signals to the A/D board. Comparing the maximum expected output voltages of the bridges with the maximum input voltages to the A/D board, it was determined that the A/D board was capable of measuring the strain gage bridge outputs for the maximum expected tool forces.

The +10 mVDC input to the A/D board corresponded to a reading of 4080 for the high byte of the twelve bit output word. Using this relationship to determine a value for V_O from the A/D board reading and equation (1) to calculate tool shank strain from the value of V_O , the forces acting on the tool could have been calculated using beam theory.

Considerable errors may be included in the calculated forces due to material in the shanks not behaving as as-

sumed, nonsymmetrical bending of shanks, improper placement and alignment of gages and the bridges not being purely temperature compensated. Therefore, the tool shanks were calibrated to compensate for possible errors.

Calibration was performed by reading the output from the A/D board during loading and unloading of each tool shank. Load increments of 670 N were applied up to a maximum load approximately equal to the maximum force expected on the tool. Plots of draft and vertical force versus the A/D output for each tool are shown in Figures 7 through 14. Regression equations for each tool corresponding to the line on the Figures are listed in Table II along with strain gage bridge resolutions. A positive draft acts in the opposite direction of travel and a positive vertical force acts upward.

During the field tests, measurements were made at a sampling frequency of 814 Hz. This was the maximum frequency at which the data logger could collect data. Appendix A lists the machine language subroutine used by the AIM 65 to collect the force and velocity measurements. Appendix B lists the BASIC computer program used to average the force measurements into one value for each force component per tool per plot. This program also stores the force and velocity data on cassette tape. The machine language program to transfer the data from the cassette tape to the Oklahoma State University IBM 3081D mainframe computer is listed in Appendix C.

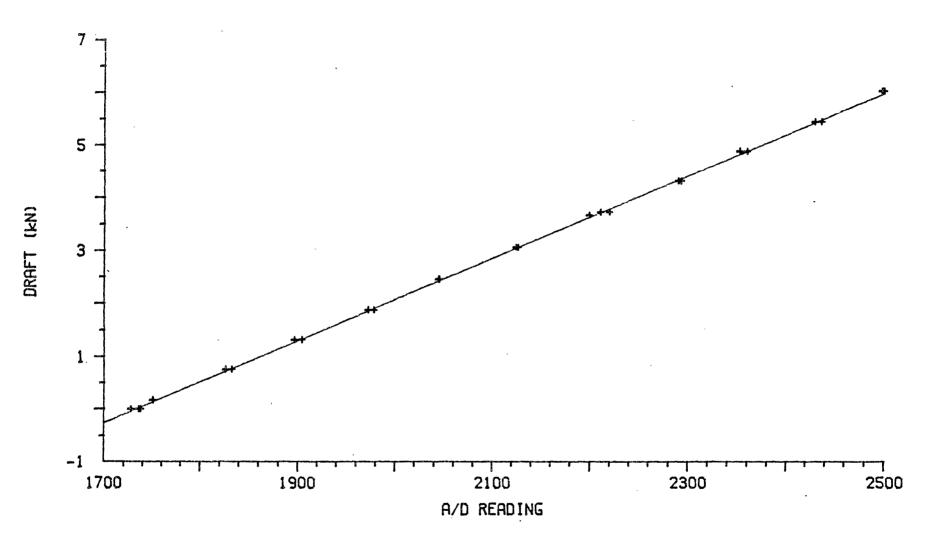


Figure 7. Calibration Data for Chisel Draft

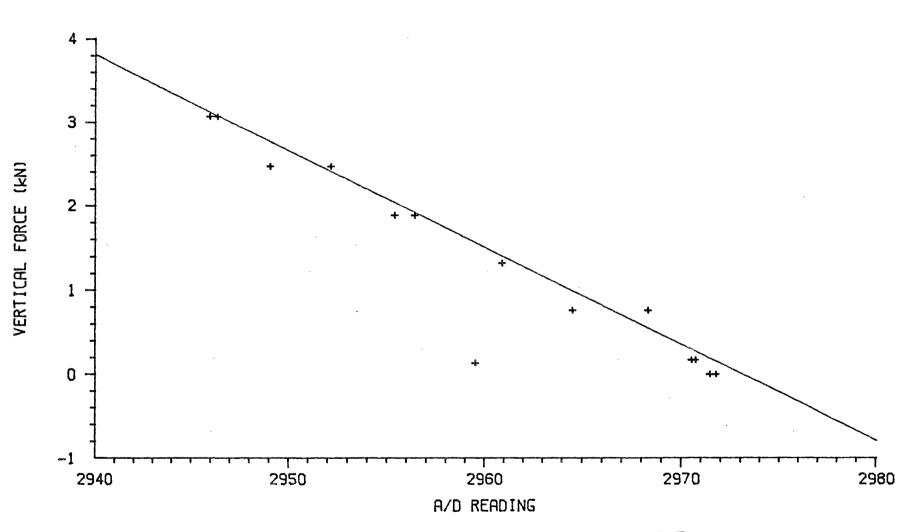
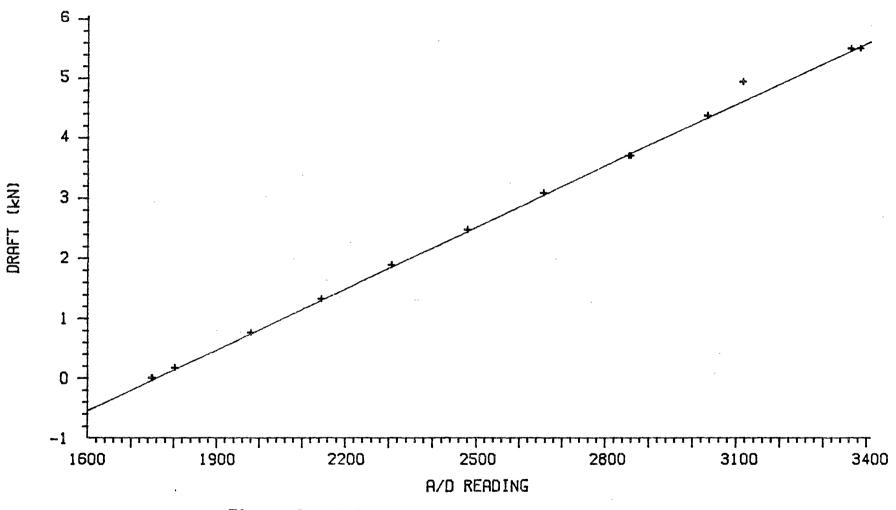



Figure 8. Calibration Data for Chisel Vertical Force

N4 4

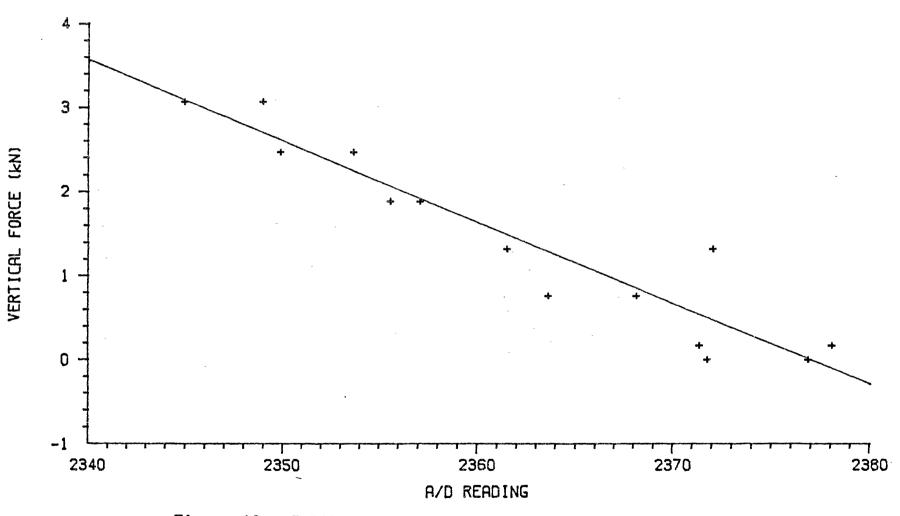


Figure 10. Calibration Data for Sweep Vertical Force

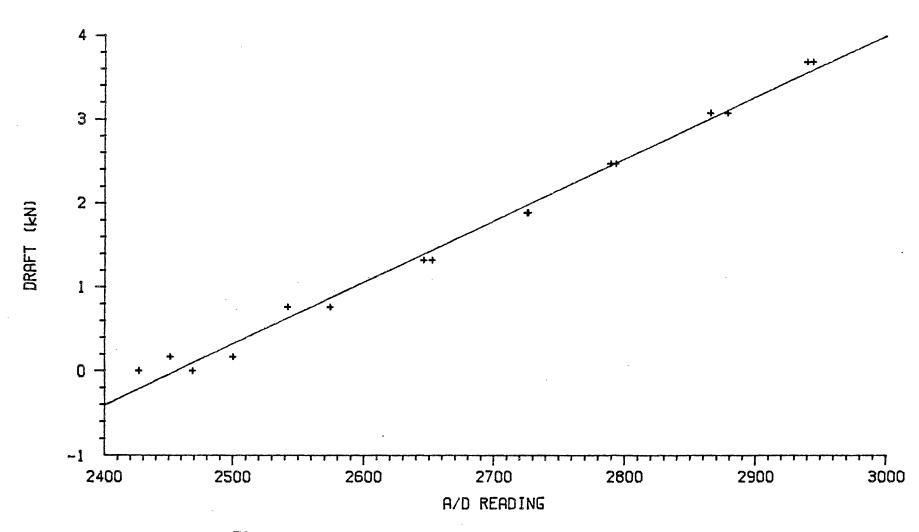


Figure 11. Calibration Data for Coulter Draft

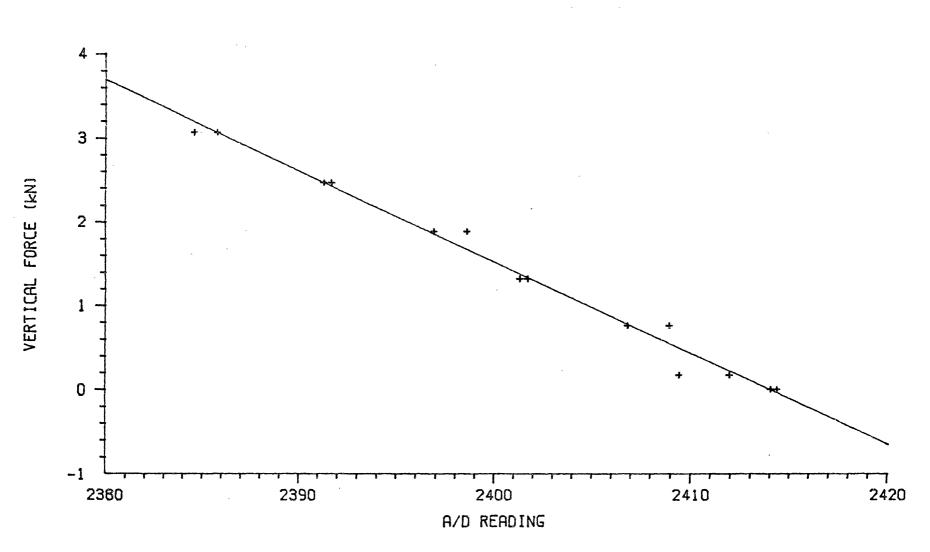


Figure 12. Calibration Data for Coulter Vertical Force

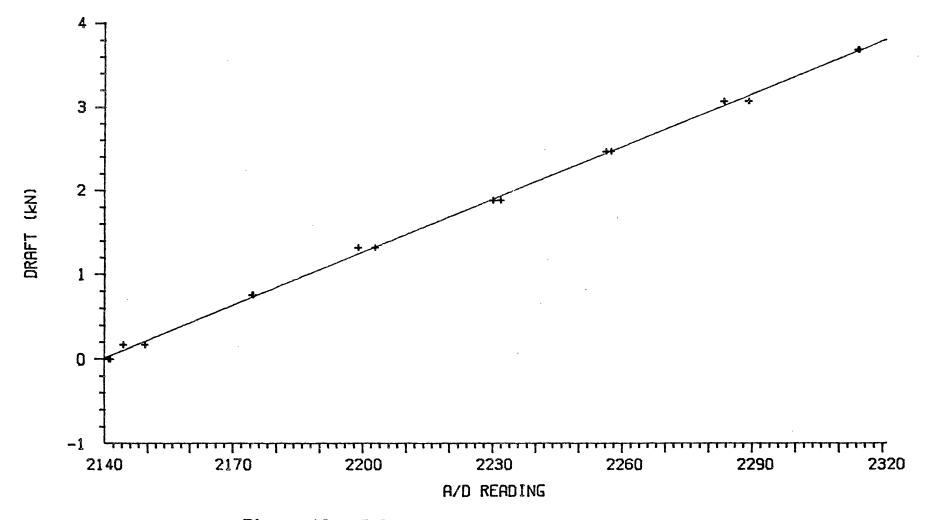


Figure 13. Calibration Data for Disk Draft

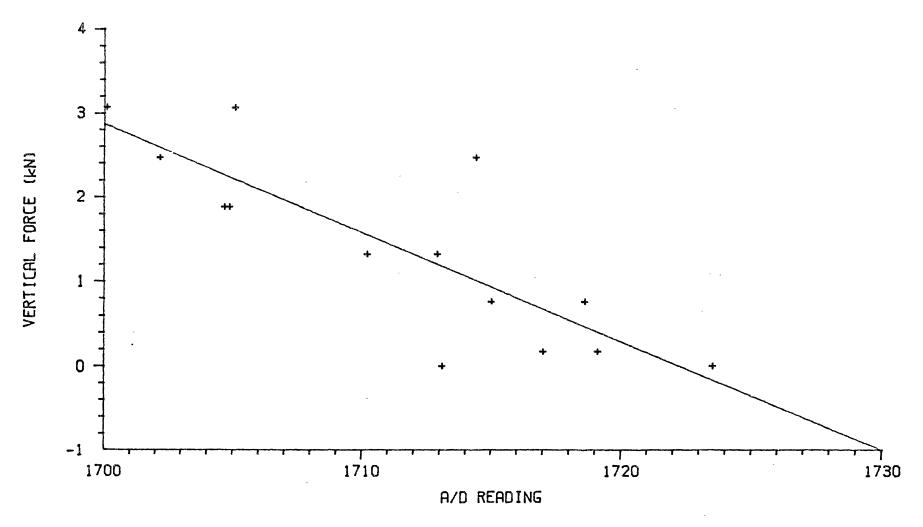


Figure 14. Calibration Data for Disk Vertical Force

TABLE II

CALIBRATION EQUATIONS FORCE (kN) = A + Bx

Tool	Force Component	A	В	Res. (kN)	r2	PR>F
Chisel	draft	-13.52	0.008	<u>+</u> .004	0.999	.001
	vertical	345.91	0.115	<u>+</u> .055	0.892	. 001
Ѕмеер	draft	-5.93	0.003	<u>+</u> .002	0.998	.001
	vertical	229.37	-0.097	<u>+</u> .049	0.892	.001
Coulter	draft	-18.00	0.007	<u>+</u> .004	0.991	.001
	vertical	262.42	-0.109	<u>+</u> .055	0.986	.001
Disk	draft	-44.94	0.021	<u>+</u> .011	0.998	.001
	vertical	222.23	-0.129	<u>+</u> .065	0.683	.001

Field Tests

Experimental Design

The experiment was performed using an experimental design based on theories of similitude (Murphy, 1950). The advantage of using a similitude approach is that fewer observations are needed to determine the relationship between tool forces and cone index. The first step in a dimensional analysis is to determine pertinent quantities. Quantities needed to describe the tool-penetrometer system are listed in Table III.

TABLE III

Parameter	Symbol	Units
Cone index	CI	N/cm ²
Force on tool	F	N
Velocity	v	cm/s
Depth	D	CM
Characteristic length	L	cm
Acceleration of gravity	× g	cm/s ²

PERTINENT QUANTITIES AND SYMBOLS

Acceleration of gravity was added so dimensional homogeneity of dimensionless terms could be maintained. Utilization of Buckingham's Pi Theorem results in the combination of the pertinent quantities into π -terms. One valid set of π -terms is:

$$I_1 = \frac{F}{CI*D^2}$$
(2)

$$II_2 = \frac{V^2}{L^*g}$$
(3)

$$\Pi_3 = \frac{L}{D}$$
(4)

where $I_1 = f(I_2, I_3)$. Velocity was used to vary I_2 and I_3 was varied by changing the depth of tillage. Values of velocity used to design the experiment were 4.0, 5.6, 7.1 and 8.7 km/h. Design values of depth were 5.1, 10.2, 15.2 and 20.3 cm. These velocities and depths were selected to cover the range of velocity and depth used for most tillage operations.

Data Collection

Field tests were performed at Lake Carl Blackwell Experimental Range Area, Stillwater Oklahoma. Cone index data were collected from January 14 to January 18, 1985. Force data were collected on January 19, 1985. Air temperature ranged from 0 °C to 7.2 °C.

Experimental plots were arranged in a randomized complete block design. Each plot consisted of one combination of depth and velocity. This resulted in sixteen plots. Each group of plots, block, was then replicated six times. Due to space limitations, four blocks were placed in one field and the remaining two blocks were placed in a second field. Figures 15 and 16 show the layout of plots. Plot size was determined by the width of the frame and the minimum length needed to collect data. These specifications resulted in plots 3.1 m wide and 12.2 m long.

Soil type for the four replicating shown in Figure 15 was Pulaski fine sandy loam. This field had not been tilled in a minimum of three years. The field surface had a cover of cheat, which was growing, and bluestem. Soil type for the two blocks shown in Figure 16 was Mclain silt loam. A sweep plow had been used to till this field approximately one year prior to testing. The surface of this field also had a cover of growing cheat and dead bluestem.

Moisture content of the soil was high, but it was not above the range where most tillage is done. Soil moisture content and dry bulk density for each plot are listed in Appendix D.

Cone index data were taken at six locations in each plot. Cone index data were collected using a tractor mounted, hydraulically operated, digital recording soil penetrometer system developed by Riethmuller, Batchelder, and, Bloome (1982). Data from these six locations were averaged resulting in one value of cone index for each 20 mm of depth. These were further reduced to one value of cone

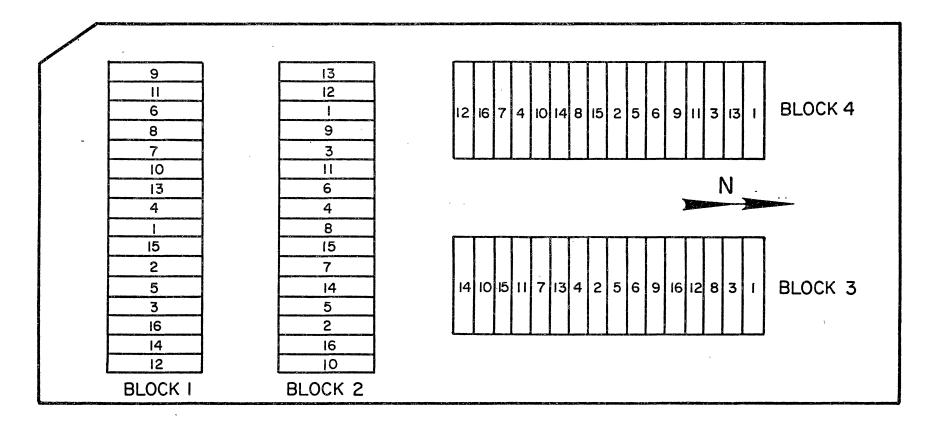
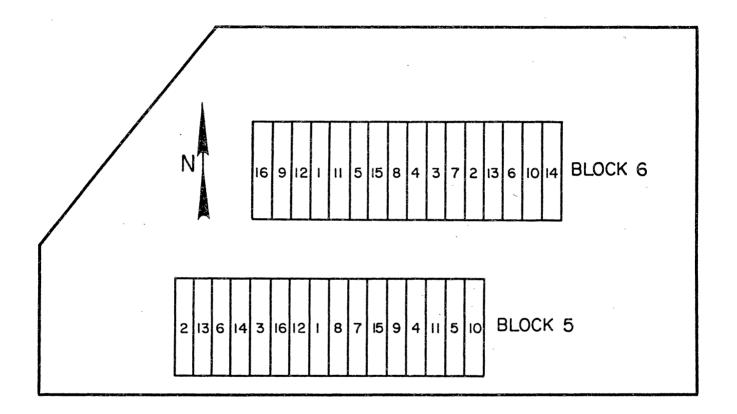



Figure 15. Arrangement of Blocks One through Four

•.

•

Figure 16. Arrangement of Blocks Five and Six

· .

. .

index per plot by determining an integrated average, using the rectangular rule, over the depth of tillage.

After cone index data were collected, draft and vertical force measurements were collected while operating at the specified depth and velocity. For ease in performing the experiment, all operations of equal depth were performed at one time. Since two force measurements were taken in each plot for each tool, two values of II_1 exist for each plot.

The first three depths were completed for the four replications shown in Figure 15. The first two depths were completed for the two replications shown in Figure 16. Data collection stopped here because of data logger problems caused by the cold weather. It was determined that sufficient data had been collected to conduct the analysis.

After the data were gathered, depth of tillage was measured. Depth was measured using the ground surface in the gage wheel track as the zero reference.

CHAPTER IV

RESULTS AND DISCUSSION

Force data collected during field tests are listed in Appendix E and cone index, velocity and depth data are listed in Appendix F. Equations (3) and (4) were used to calculate I_2 and I_3 using these data. Three different expressions for I_1 can be considered. These are:

$$\Pi_{1} = \frac{F}{CI * D^{2}}$$

$$\Pi_{1} = \frac{F}{CI * L^{2}}$$

$$\Pi_{1} = \frac{F}{CI * L^{2}}$$
(5)
(6)
(7)

To determine the best form of I_1 , correlation matrices were formed between the three forms of I_1 and the other two I-terms. Correlations between I_1 and I_2 and between I_1 and I_3 are listed in Tables IV, V and VI. The form of I_1 selected was the one having the highest correlation with I_2 and I_3 . The form of I_1 used in the remainder of the analysis is equation (5). Values of I_1 , I_2 and I_3 are listed in Appendix G.

The functional relationship between \mathbb{I}_1 and \mathbb{I}_2 is determined by holding \mathbb{I}_3 constant. The only variable that

TABLE IV

CORRELATIONS BETWEEN I - TERMS AND IL FOR DRAFT AND VERTICAL FORCE CALCULATED BY EQUATION (5)

Tool	Force		П2		^п з			
	Component	Depth 1	Depth 2	Depth 3	Vel. 1	Vel. 2	Vel. 3	Vel. 4
Chisel	draft	0.065	0.367	0.340	0.814	0.667	0.907	0.841
	vertical	-0.189	-0.338	-0.432	0.918	0.874	0.716	0.892
Ѕѡеер	draft	-0.111	0.231	0.308	0.885	0.840	0.928	0.803
	vertical	0.066	-0.066	-0.544	0.722	0.518	0.291	0.644
Coulter	r draft	-0.081	0.236	-0.224	0.803	0.607	0.777	0.663
	vertical	0.273	0.170	-0.350	0.859	0.762	0.653	0.831
Disk	draft	0.044	0.362	0.053	0.783	0.837	0.922	0.752
	vertical	-0.133	0.141	-0.084	0.632	0.131	0.358	0.448

TABLE V

.

CORRELATIONS BETWEEN I-TERMS AND IL FOR DRAFT AND VERTICAL FORCE CALCULATED BY EQUATION (6)

Tool	Force	Π2			п ₃			
	Component	Depth 1	Depth 2	Depth 3	Vel. 1	Vel. 2	Vel. 3	Vel. 4
Chisel	draft	0.065	0.367	0.340	-0.631	-0.689	-0.679	-0.875
	vertical	-0.189	-0.338	-0.432	0.766	0.640	0.701	0.834
Ѕмеер	draft	-0.111	0.231	0.308	-0.488	-0.449	-0.691	-0.646
	vertical	0.066	-0.066	-0.544	0.827	0.733	0.751	0.860
Coulter	• draft	-0.081	0.236	-0.224	-0.062	0.077	-0.099	-0.057
	vertical	0.273	0.170	-0.350	-0.010	0.080	-0.122	0.411
Disk	draft	0.044	0.362	0.053	-0.506	-0.724	-0.682	-0.751
	vertical	-0.133	0.141	-0.084	-0.661	-0.751	-0.612	-0.763

TABLE VI

CORRELATIONS BETWEEN I-TERMS AND IL FOR DRAFT AND VERTICAL FORCE CALCULATED BY EQUATION (7)

Tool C	Force		π2		п3			
	Component	Depth 1	Depth 2	Depth 3	Vel. 1	Vel. 2	Vel. 3	Vel. 4
Chisel	draft	0.065	0.367	0.340	0.410	0.212	0.405	0.116
	vertical	-0.189	-0.338	-0.432	0.890	0.796	0.735	0.894
Ѕѡеер	draft	-0.111	0.231	0.308	0.685	0.609	0.406	0.348
	vertical	0.066	-0.066	-0.544	0.798	0.654	0.596	0.775
Coulter	draft	-0.081	0.236	-0.224	0.665	0.473	0.607	0.474
	vertical	0.273	0.170	-0.350	0.527	0.436	0.214	0.668
Disk	draft	0.044	0.362	0.053	0.349	0.307	0.423	0.125
	vertical	-0.133	0.141	-0.084	0.091	-0.388	-0.126	-0.205

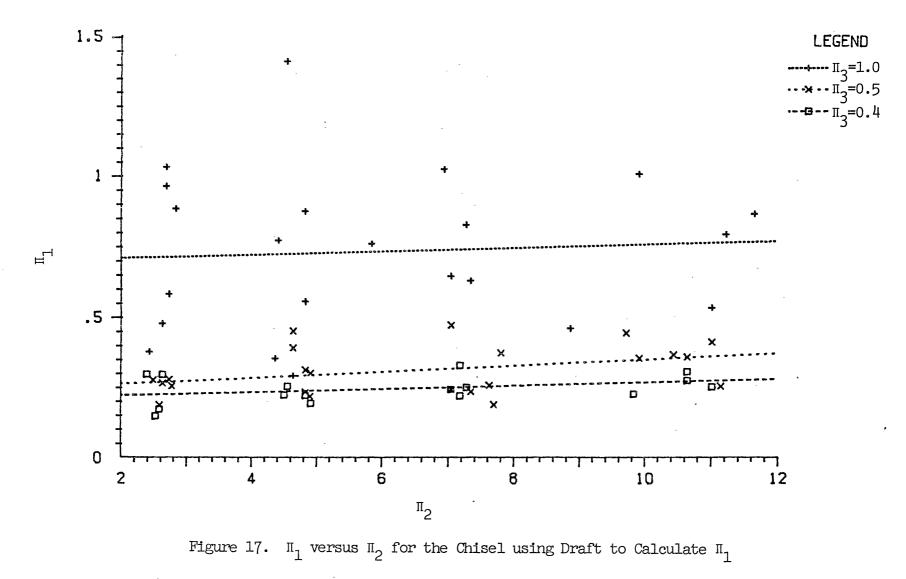
changed in \mathbb{I}_3 was depth of tillage. However, the actual depths of tillage were not equal to the design values. Table VII shows the actual values and design values of depth.

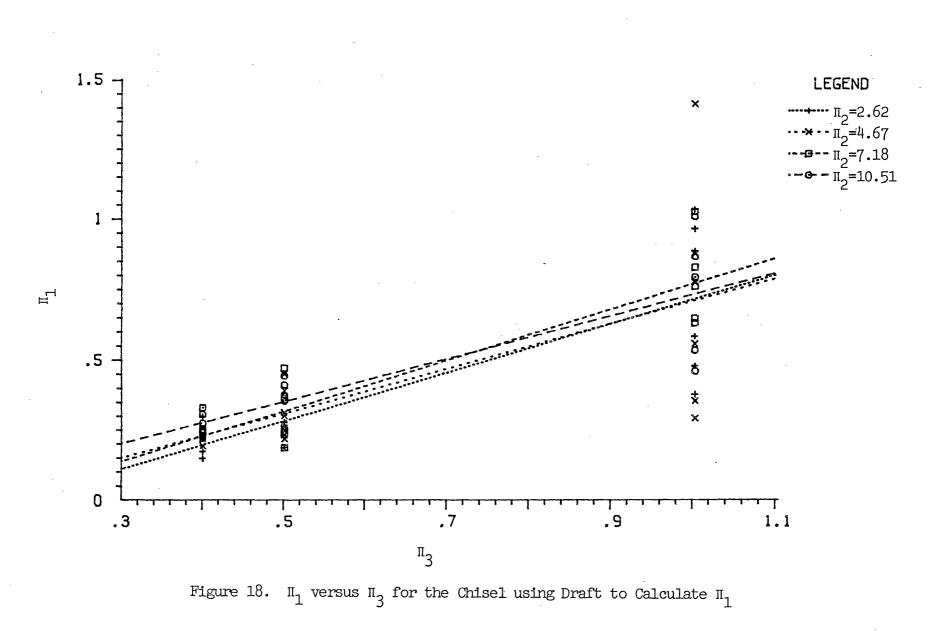
TABLE VII

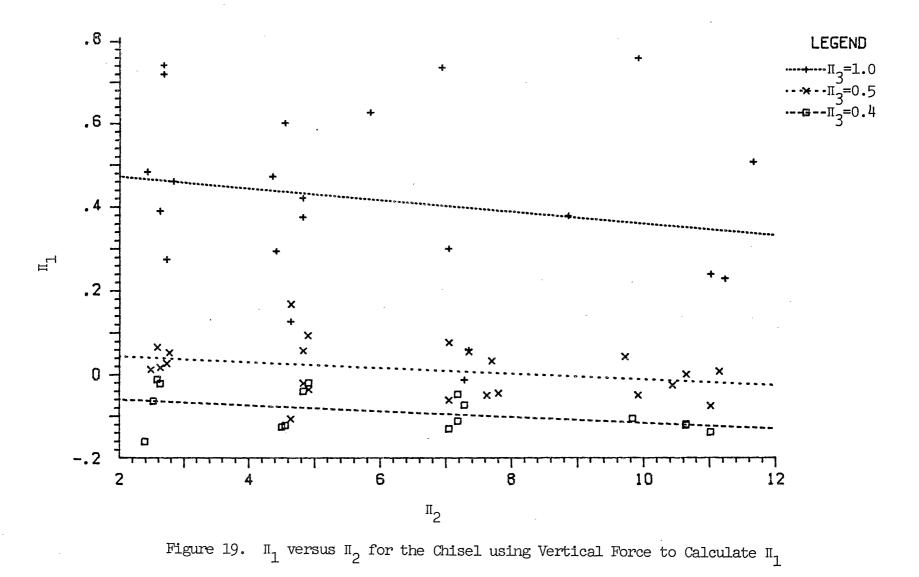
ACTUAL VALUES AND DESIGN VALUES OF DEPTH

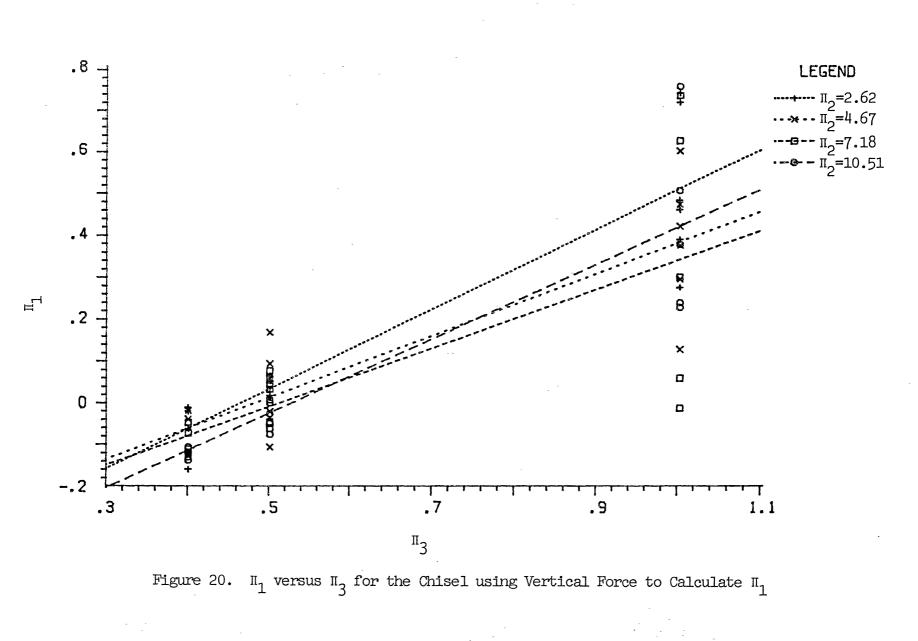
Design Depth (cm)	Actual Depth (cm)
5.1	5.1
10.2	10.2
15.2	12.7
20.3	*

*The fourth depth was omitted from the experiment because the temperature dropped below the operational limits of the data logger.


The relationship between I_1 and I_3 is determined by holding I_2 constant. The variable used to vary I_2 was velocity. The velocity was to be maintained by the tractor. Due to changing soil conditions and depths of tillage the velocity did not remain constant for all depths. Therefore, the relationship between I_1 and I_3 was determined for each gear the tractor was operated in. Graphs of I_1 versus I_2 and I_1 versus I_3 were made (Figures 17 through 32) for both forces acting on each tool. Regression equations were developed for each I_1 versus I_2 and I_1 versus I_3 using an IBM PC and Plotrax 2 by Engineering Science, Inc. This regression analysis software was used because it offered an easy wasy to fit the data to several different mathematical models. Based on the coefficient of determination, the models which best explained the variance are linear relationships for both I_1 versus I_2 and I_1 versus I_3 . The equations are of the form:


$$I_1 = A + BI_2 \tag{8}$$


$$\mathbf{I}_1 = \mathbf{C} + \mathbf{D}\mathbf{I}_3 \tag{9}$$


Final regressions of the component equations were made using a general linear model procedure available in the Statistical Analysis System on the Oklahoma State University IBM 3081D computer. Regression equations are listed in Tables VIII and IX.

Analysis of the component equations (Tables VIII and IX) shows that I_1 is more highly correlated to I_2 than to I_3 . Correlation coefficients for I_1 versus I_3 range from 0.130 to 0.920. No value greater than 0.544 is observed for the correlation coefficient between I_1 and I_2 . This indicates that tool forces are not strongly related to velocity in this analysis, but they are dependent on depth of tillage. The graphs of I_1 versus I_2 show more scatter at the largest value of I_3 than for the other two values of I_3 . The largest value of I_3 corresponds to the shallowest

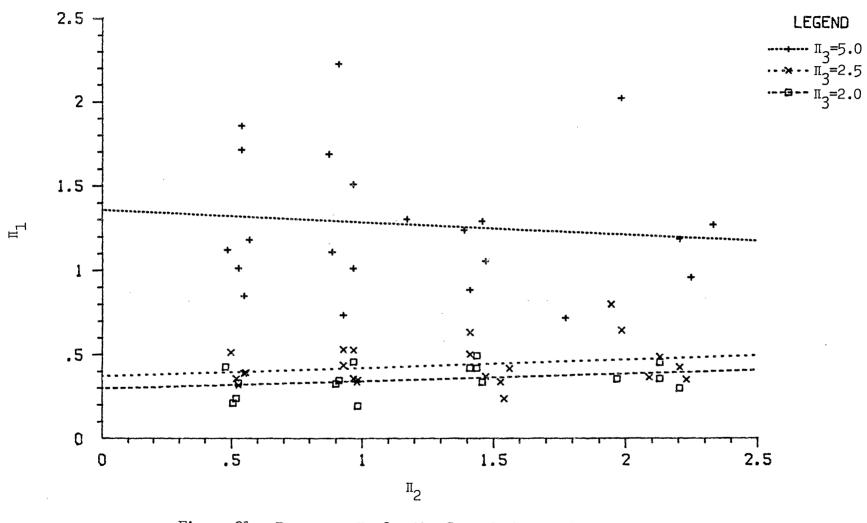
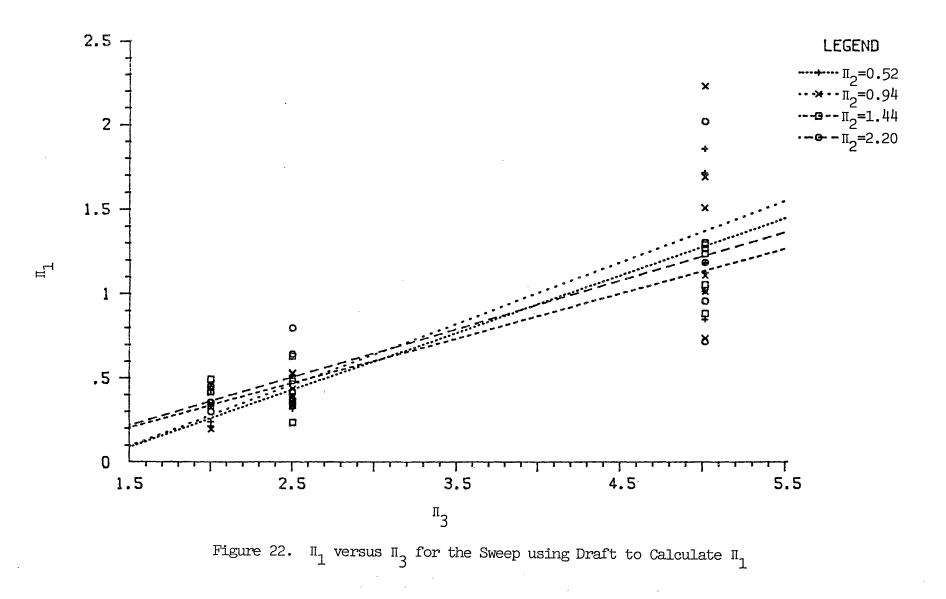



Figure 21. II_1 versus II_2 for the Sweep using Draft to Calculate II_1

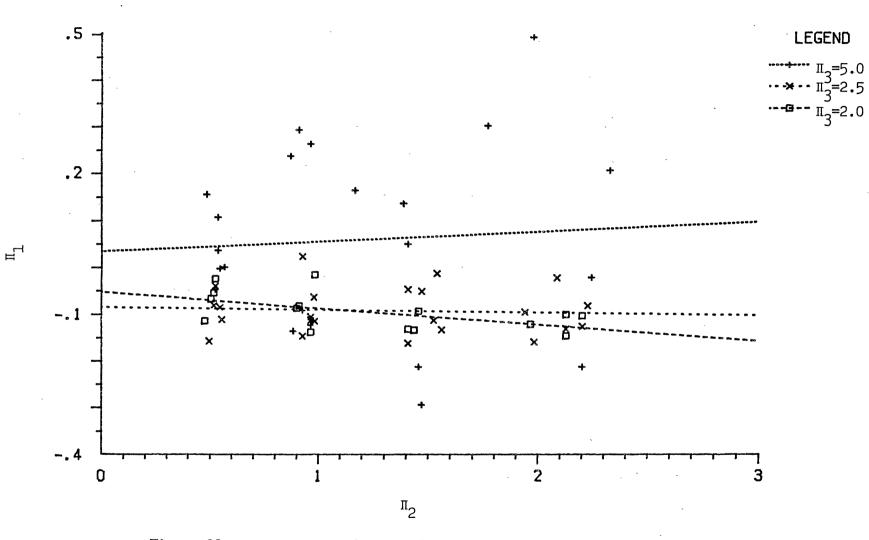
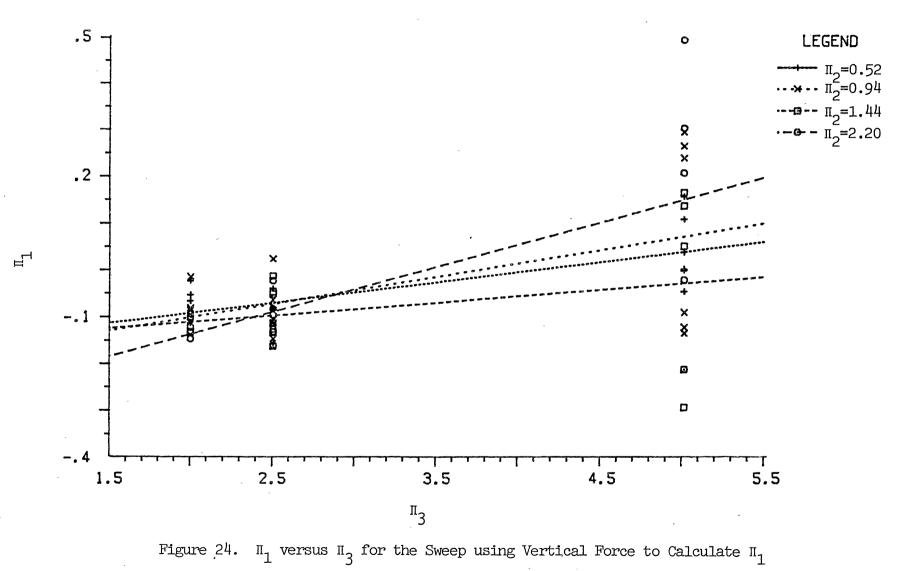



Figure 23. II_1 versus II_2 for the Sweep using Vertical Force to Calculate II_1

បា

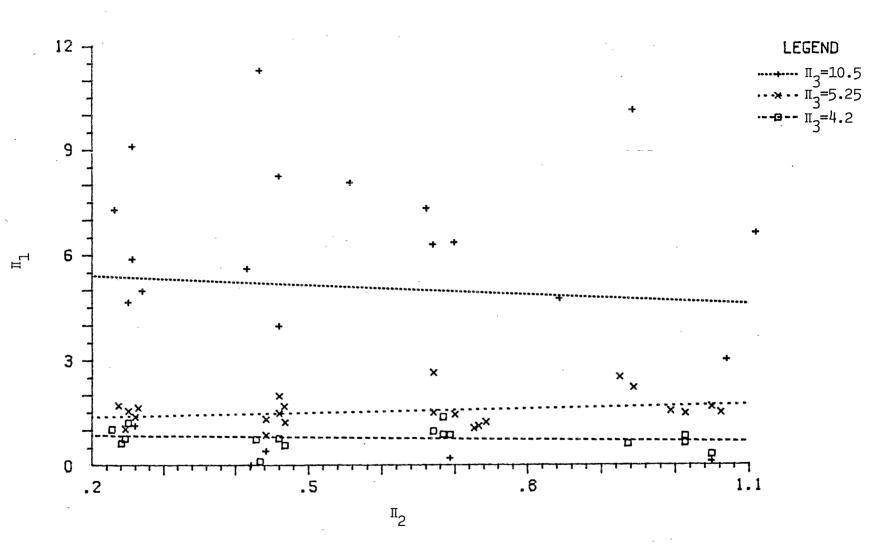
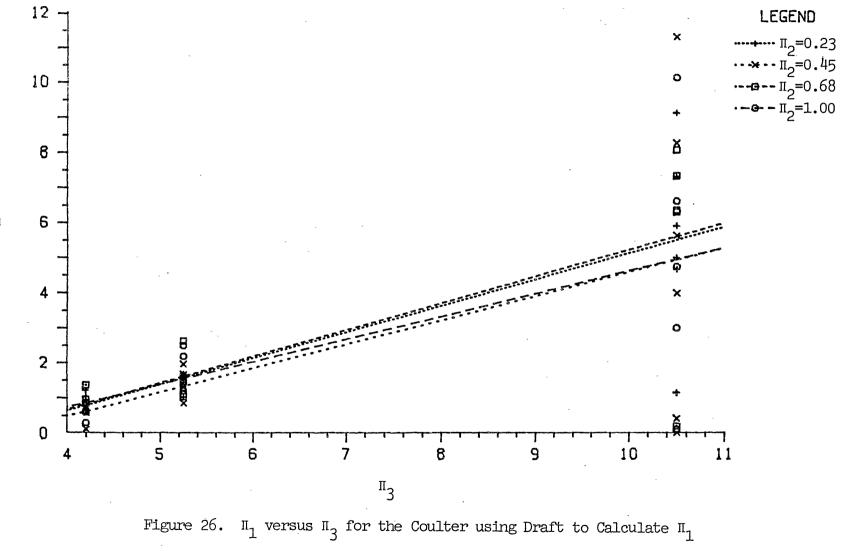



Figure 25. I_1 versus I_2 for the Coulter using Draft to Calculate I_1

Ľ

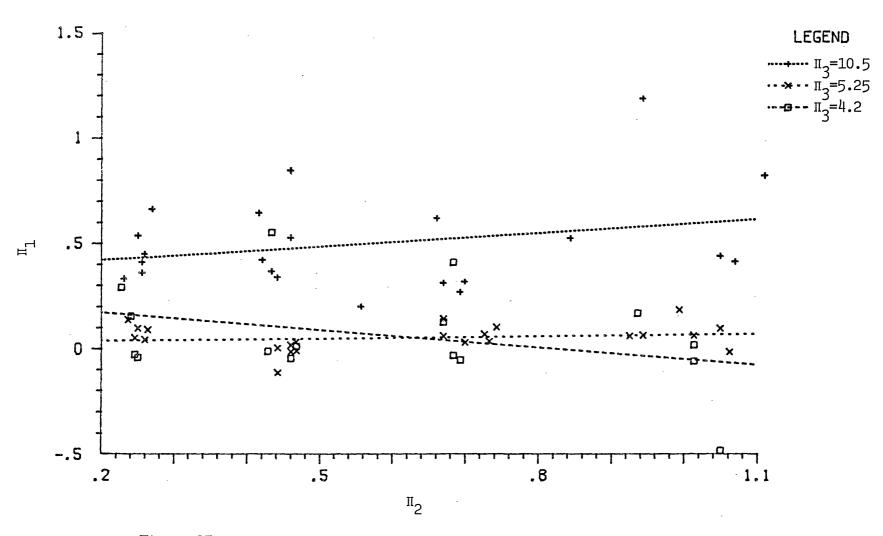


Figure 27. II_1 versus II_2 for the Coulter using Vertical Force to Calculate II_1

ů

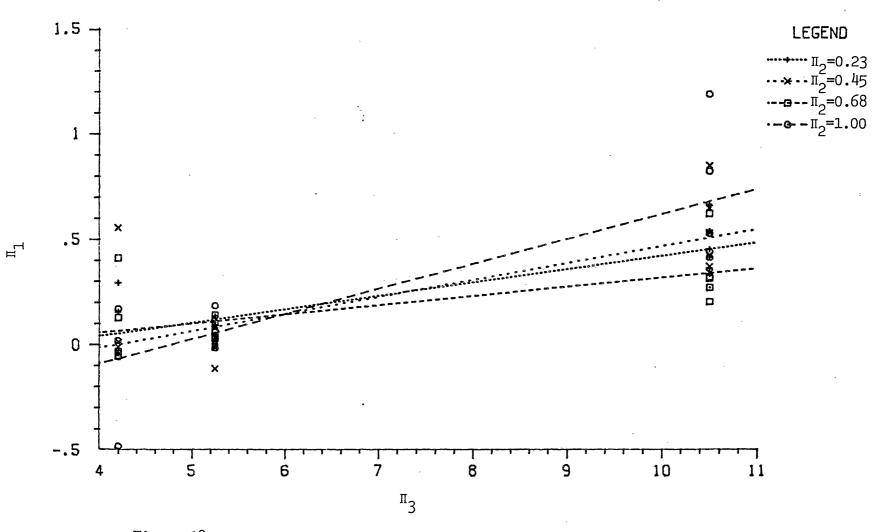
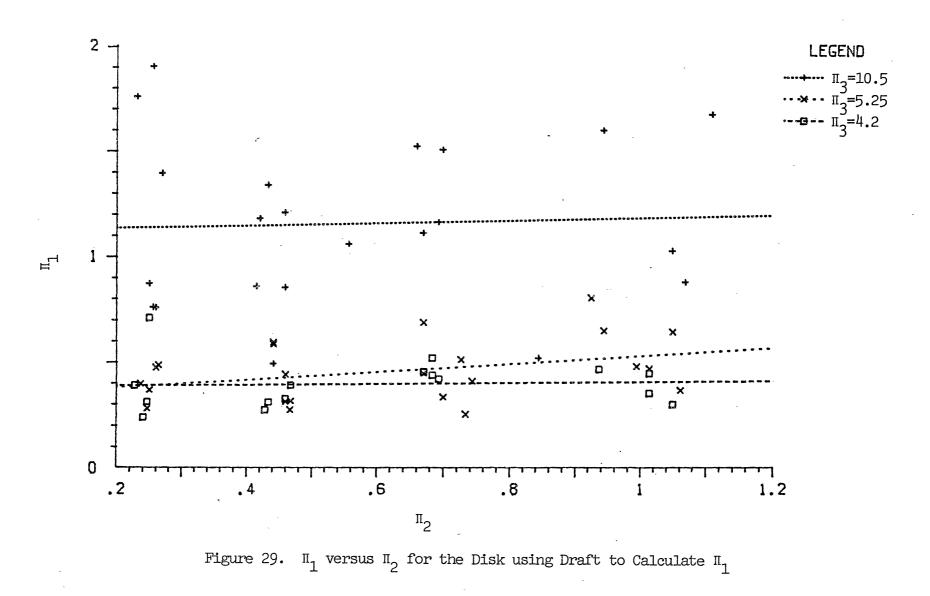
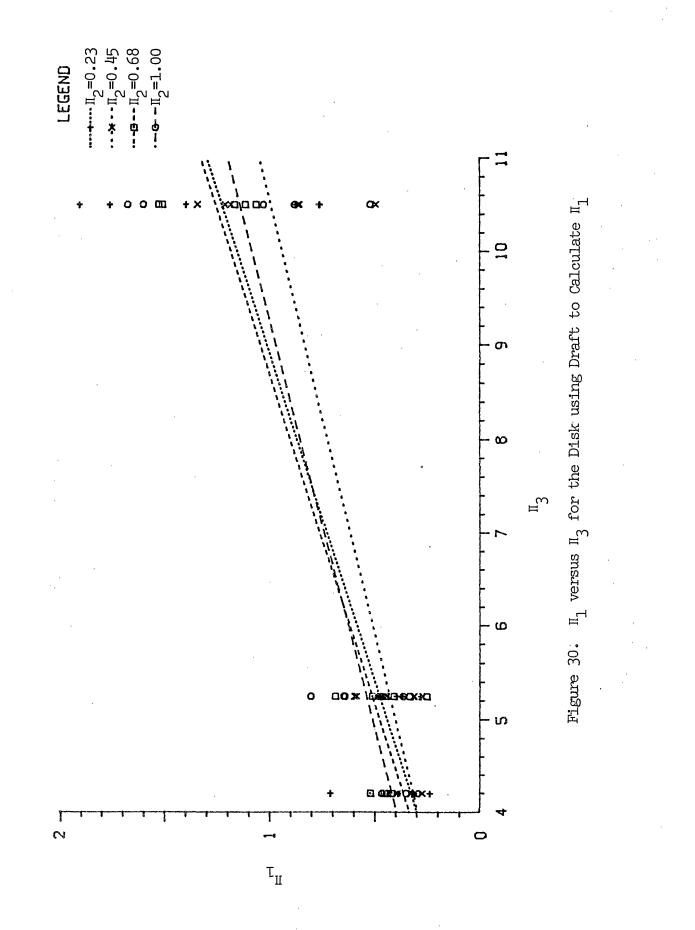




Figure 28. I_1 versus I_3 for the Coulter using Vertical Force to Calculate I_1

ប្ដ

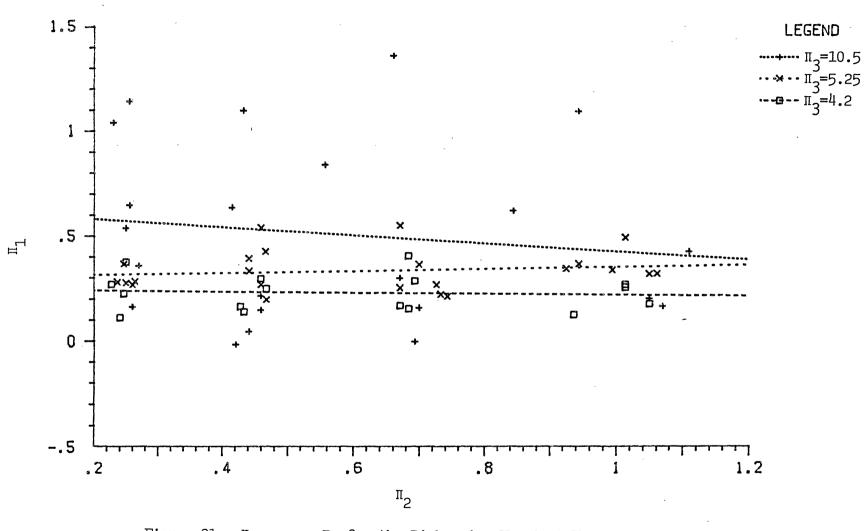
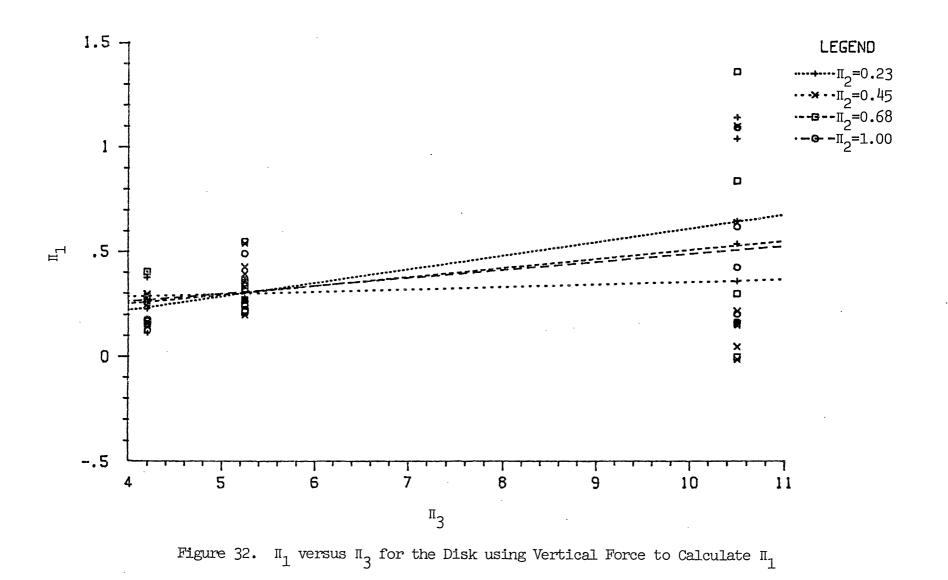



Figure 31. II_1 versus II_2 for the Disk using Vertical Force to Calculate II_1

TABLE VIII

REGRESSION OF Π_1 **ONTO** Π_2 $\Pi_1 = \mathbf{A} + \mathbf{B} \Pi_2$

Tool	Force Component	п3	A	В	r ²	PR>F
Chisel	draft	1.0	0.696	0.006	0.004	.7746
	vertical	1.0	0.494	-0.014	0.036	. 3990
	draft	0.5	0.241	0.011	0.134	.0852
	vertical	0.5	0.055	-0.007	0.114	.1149
	draft	0.4	0.209	0.006	0.116	.0948
	vertical	0.4	-0.048	-0.007	0.187	.0948
Ѕмеер	draft	5.0	1.356	-0.075	0.012	.6236
	vertical	5.0	0.033	0.021	0.004	.7719
	draft	2.5	0.371	0.050	0.053	.2892
	vertical	2.5	-0.086	-0.006	0.004	.7637
	draft	2.0	0.297	0.044	0.095	.2454
	vertical	2.0	-0.054	-0.035	0.296	.0292

Tool	Force Component	^п з	A	B	r ²	Pr>F
Coulter	draft	10.5	5.576	-0.940	0.007	.7186
	vertical	10.5	0.375	0.216	0.075	.2188
	draft	5.25	1.300	0.368	0.056	.2775
	vertical	5.25	0.028	0.038	0.029	.4369
	draft	4.2	0.896	-0.238	0.050	.4050
	vertical	4.2	0.225	-0.277	0.123	.1838
Disk	draft	10.5	1.120	0.060	0.002	.8466
	vertical	10.5	0.615	-0.195	0.018	.5546
	draft	5.25	0.342	0.187	0.131	.0900
	vertical	5.25	0.301	0.048	0.020	.5219
	draft	4.2	0.383	0.021	0.003	.8451
	vertical	4.2	0.242	-0.025	0.007	.7574

TABLE VIII (Continued)

REGRESSION OF Π_1 **ONTO** Π_3 $\Pi_1 = \mathbf{C} + \mathbf{D}\Pi_3$

			2			
Tool	Force Component	п2	С	D	r ²	PR>F
Chisel	draft	2.62	-0.148	0.862	0.663	.0002
	vertical	2.62	-0.443	0,949	0.843	.0001
	draft	4.67	-0.089	0.798	0.445	.0047
	vertical	4.67	-0.357	0.737	0.763	.0001
	draft	7.18	-0.133	0.903	0.823	.0001
	vertical	7.18	-0.359	0.698	0.513	.0027
	draft	10.51	-0.025	0.757	0.708	.0001
	vertical	10.51	-0.469	0.887	0.796	.0001
Sweep	draft	0.52	-0.419	0.340	0.783	.0001
	vertical	0.52	-0.178	0.043	0.521	.0024
	draft	0.94	-0.448	0.364	0.706	.0001
ŗ	vertical	0.94	-0.215	0.057	0.268	.0400
	draft	1.44	-0.193	0.266	0.862	.0001
	vertical	1.44	-0.165	0.027	0.085	.2923
	draft	2.20	-0.210	0.287	0.645	.0003
	vertical	2.20	-0.327	0.095	0.414	.0096

Too1 (Force Component	П2	С	D	r2	PR>F
Coulter	draft	0.23	-2.343	0.745	0.644	.0003
	vertical	0.23	-0.212	0.063	0.738	.0001
	draft	0.45	-2.245	0.682	0.369	.0126
	vertical	0.45	-0.336	0.080	0.581	.0006
	draft	0.68	-2.359	0.757	0.604	.0007
	vertical	0.68	-0.115	0.043	0.427	.0082
	draft	1.00	-1.849	0.646	0.440	.0071
	vertical	1.00	-0.564	0.118	0.691	.0001
Disk	draft	0.23	-0.269	0.142	0.613	.0006
	vertical	0.23	-0.041	0.065	0.399	.0115
	draft	0.45	-0.133	0.107	0.701	.0001
	vertical	0.45	0.233	0.012	0.017	.6285
	draft	0.68	-0.229	0.141	0.849	.0001
	vertical	0.68	0.077	0.043	0.128	.1898
	draft	1.00	-0.060	0.114	0.565	.0012
	vertical	1.00	0.107	0.038	0.201	.0938

TABLE IX (Continued)

depth of tillage. The scatter at this value of II_3 is caused by uneveness in the ground surface and most likely by the root system of the weed cover on the field.

Because the component equations are linear in arithmetic coordinates, they combine additively. The final form of the prediction equation is:

$$\Pi_1 = \mathbf{E} + \mathbf{F} \Pi_2 + \mathbf{G} \Pi_3 \tag{10}$$

The prediction equations for both draft and vertical force on each tool are listed in Table X. The chisel exhibits the highest correlation between I-terms when the vertical force acting on the chisel is used as the force for calculating I_1 . The coefficient of determination for this relationship is 0.727. The disk exhibits the worst correlation between I-terms when the disk vertical force is used to calculate I_1 . Coefficient of determination for this relationship is 0.154.

Another source of variation in addition to ground cover and surface roughness is the tillage history of each field. Analysis of the I-terms listed in Appendix G reveals that I_3 tends to be larger for replications five and six. This is due to smaller values of cone index for for these two replications. Since the observed forces acting on the tillage tools were equal for all six replications it appears that these forces were more dependent on field surface cover than on soil properties. This indicates that the list of pertinent quantities was not sufficient to describe the tool-penetrometer systems for conditions as tested.

TABLE X

PREDICTION EQUATION $II_1 = E + FI_2 + GI_3$

Tool	Force Componenet	Е	F	G	<mark>ہ</mark> 2	PR>F
Chisel	draft	-0.145	0.007	0.831	0.628	.0001
	vertical	-0.348	-0.009	0.817	0.727	.0001
Ѕмеер	draft	-0.323	0.001	0.317	0.724	.0001
	vertical	-0.215	-0.004	0.055	0.266	.0001
Coulter	draft	-2.028	-0.267	0.705	0.495	.0001
	vertical	-0.314	0.012	0.076	0.565	.0001
Disk	draft	-0.227	0.091	0.126	0.652	.0001
	vertical	0.130	-0.056	0.039	0.154	.0079

٠.,

A polynomial regression was done to determine if any correlation between cone index and tillage tool force exists. Only the first order equation was statistically significant. These equations are listed in Table XI. Analysis of these equations shows that no more than 30 percent of the variation in tool force is explained by the change in cone index. This indicates that the initial assumption, soil properties affect cone index and tool forces similarly, is not valid and a measurement of draft or vertical force acting on the tillage tools tested cannot be used to predict cone index for conditions as tested.

TABLE XI

Too1 Force r^2 Component Н J PR<F Chisel draft 98.93 26.39 0.296 .0001 vertical 735.38 -20.09 0.233 .0001 draft 445.97 31.37 0.251 .0001 Sweep 327.59 -16.50 0.250 .0001 vertical Coulter draft 4135.81 24.66 0.020 .2726 vertical 260.11 2.04 0.001 .8548 Disk 242.45 draft 38.74 0.234 .0001 8000. vertical 101.48 24.43 0.175

REGRESSION EQUATION F = H + J(CI)

CHAPTER V

SUMMARY AND CONCLUSIONS

Equations were developed to predict soil cone index from tillage tool forces in order to determine the feasibility of using a tillage tool as a mobile penetrometer. Prediction equations were developed for four different tillage tools using draft and vertical force. Tools used were a chisel, sweep, rolling coulter, and disk. Literature indicates pertinent variables are velocity, depth of tillage, and characteristic length of the tool. The range of velocities and depths used in this research covers the range of velocities and depths used in most tillage operations. Soil properties were omitted from this analysis based on the assumption that they affect tool forces and cone index similarly. Cone index data were collected at six locations in each plot prior to force measurement. A single value of cone index was calculated by averaging data from the six locations together and determining an integrated average over the depth of tillage. Experimental data were then combined into three I-terms. The functional relationship between the three I-terms was determined for each tool. A regression was also performed to determine if a direct correlation exists between tool forces and cone index.

67

Conclusions derived from this research are:

1. For the chisel, sweep, coulter, and disk tested, it is not feasible to predict cone index from tool forces for soil with high moisture content and surface cover.

2. The pertinent quantities, cone index, force, velocity, depth, and characteristic length did not adequately describe the tool-penetrometer systems.

3. Analysis of the developed prediction equations indicates:

A. Tool forces are highly correlated to depth of tillage.

B. Correlation between tool forces and velocity of tillage is low for high soil moisture conditions.

C. Tool forces and soil cone index are poorly correlated for the conditions tested.

D. The assumption that soil properties affect tool forces and cone index similarly is not valid for the conditions tested.

CHAPTER VI

SUGGESTIONS FOR FURTHER RESEARCH

Further research should be conducted in three areas:

1. Different field conditions

2. Different tools

3. Soil-cone index relationships

Relationships between tool forces and cone index should be investigated for soil with no ground cover and a lower moisture content. This will allow prediction equations to cover a more complete range of tillage operating conditions.

Other tools might provide a better correlation between forces and cone index. One tool which should be tested is a horizontal penetrometer. This would be the standard cone mounted horizontally and operated at some depth in the soil parallel with the soil surface.

Studies should be conducted to increase knowledge about soil cone index. Currently, interpretation of cone index as a measurement of soil strength can only be made for pure clay or sand.

69

REFERENCES CITED

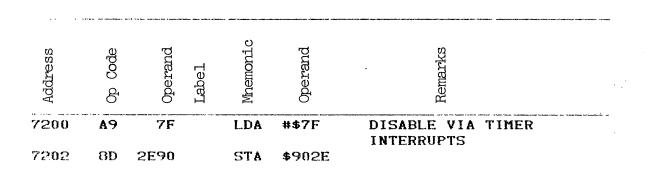
- ASAE. 1984a. Agricultural engineers yearbook. ASAE Data: ASAE D230.4. Agricultural machinery management data. pp. 156-162. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- ASAE. 1984b. Agricultural engineers yearbook. ASAE Standard: ASAE S313.1. Soil cone penetrometer. p. 456. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Ayers, P. D. and H. D. Bowen. 1983. Predicting soil density profiles using cone penetration resistance. ASAE Paper No. 83-1051. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Ayers, P. D. and J. V. Perumpral. 1981. Moisture and density effect on cone index. ASAE Paper No. 81-1047. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Bloome, P. D., D. G. Batchelder, A. Khalilian, and G. P. Riethmuller. 1983. Effect of speed on draft of tillage on Oklahoma soils. ASAE Paer No. 83-1032. American Society of Agriculutural Engineers. St. Joseph, MI 49085.
- Durgunoglu, H. T. and J. K. Mitchell. 1975. Static penetration resistance of soils. Proceedings of the Conference In Situ Measurement of Soil Properties 1:151-189.
- Ferguson, W. 1970. Some draught measurement of scarifier shares. Journal of Agricultural Engineering Research 15(2):194-199.
- Frietag, D. R. 1968. Penetration tests for soil measurements. Transactions of the ASAE 11(6):750-753.
- Gill, W. R. and G. E. Vanden Berg. 1968. Soil dynamics in tillage and traction. USDA Agriculture Handbook No. 316. U. S. Government Printing Office. Washington, DC 20402.

- Harrison, H. P. 1977. Soil reacting forces for disks from field measurements. Transactions of the ASAE 20(5): 836-838.
- Johnsosn, C. E., L. L. Jensen, R. L. Schafer, and A. C. Bailey. 1980. Some soil-tool analogs. Transactions of the ASAE 23(1):8-13.
- Kepner, R. A., R. Bainer, and E. L. Barger. 1972. Principles of farm machinery. 2nd ed. AVI Publishing Company, Inc. Westport, CT 06880.
- Khalilian, A., K. Self, and D. G. Batchelder. 1983. Soil strength and cotton yields from five tillage systems. ASAE Paper No. 83-1023. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Kydd, H. D., G. E. Frehlich, and A. R. Boyden. 1984. Tillage power requirements in western Canada. ASAE Paper No. 84-1027. American Society of Agricultural Engieers. St. Joseph, MI 49085.
- Micro-Measurements. 1979. Strain gage applications with M-Bond AE-10/15 and M-Bond GA-2 adhesive systems. Instruction Bulletin B-137-11. Measurements Group, Inc. Raleigh, NC 27611.
- Micro-Measurements. 1982. Errors due to wheatstone bridge nonlinearity. Tech Note TN-507. Measurments Group, Inc. Raleigh, NC 27611.
- Murphy, G. 1950. Similitude in engineering. The Ronald Press Co. New York, NY.
- Nicholson, R. I., L. L. Bashford, and L. N. Mielke. 1984. Energy requirements for tillage from a reference implement. ASAE Paper No. 84-1028. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Riethmuller, G. P., D. G. Batchelder, and P. D. Bloome. 1982. Microcomputer system for soil strength measurement. ASAE Paper No. 82-3042. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Rowe, R. J. and K. K. Barnes. 1961. Influence of speed on elements of draft of a tillage tool. Transactions of the ASAE 4(1):55-57.
- Sirohi, B. S. and C. A. Reaves. 1969. Similitude techniques applied to performance of cultivator sweeps. Transactions of the ASAE 12(6):786-789.

- Summers, J. D., D. G. Batchelder, and B. W. Lambert. 1984. Second generation tractor performance moniter. ASAE Paper No. 84-1080. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Summers, J. D., A. Khalilian, and D. G. Batchelder. 1984. Draft relationships for primary tillage in Oklahoma soils. ASAE Paper No. 84-1024. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Upadhyaya, S. K., L. J. Kemble, N. E. Collins, and T. H. Williams. 1982. Cone index prediction equations for Delaware soils. ASAE Paper No. 82-1542. American Society of Agricultural Engineers. St. Joseph, MI 49085.
- Wang, J., K. Lo, and T. Liang. 1972. Predicting tillage tool draft using four soil parameters. Transactions of the ASAE 15(1):19-23.

APPENDIX A

MACHINE LANGUAGE SUBROUTINE


FOR DATA COLLECTION

Data Storage Locations

Force Data Starts at	5000 (Hex) 20480 (Decimal)
Ends at	67FF (Hex) 26623 (Decimal)
\$5000	Chisel Vertical
\$5001	Chisel Draft
\$5002	Sweep Vertical
\$5003	Sweep Draft
\$5004	Coulter Vertical
\$5005	Coulter Draft
\$5006	Disk Vertical
\$5007	Disk Draft
\$5008	Chisel Vertical
\$5009	Chisel Draft
\$500A	Sweep Vertical
\$500B	Sweep Draft
\$5000	Coulter Vertical
\$500D	Coulter Draft
\$500E	Disk Vertical
\$500F	Disk Draft
	Etc.

High RPM count stored at 6800 (Hex) 26624 (Decimal) Low RPM count stored at 6801 (Hex) 26625 (Decimal)

Computer Program

7205	A9	00		1.DA	#\$0 0	INPUT CONFIGURATION
7207	8D	2290		STA	\$9022	PORT B
720A	A9	20		LDA	#\$20	SET BIT 5 FOR PULSE
						COUNTING
720C	8D	2B90		STA	\$902B	ACR FOR VIA TIMER 2
						(COUNTS NEG. PULSES)
720F	A9	FF		LDA	#\$FF	LOW BYTE FOR TIMER 2
7211	8D	2890		STA	\$9028	ADDRESS FOR LOW BYTE
7214	A9	FF		LDA	#\$ FF	HIGH BYTE FOR TIMER
						COUNTER 2
7216	8D	2990		STA	\$9029	HIGH BYTE ADDRESS, STARTS
						DEC. RPM COUNT
7219	89	00		LDA	#\$00	BAL FOR DATA ADDRESSING
721B	85	EO		STA	EO	ADDRESS FOR BAL
721D	89	50		LDA	#\$50	BAH FOR DATA ADDRESSING
721F	85	E1		STA	\$E1	ADDRESS FOR BAH
7221	A9	03		LDA	#\$03	SET INDEX FOR 3 DATA
						SETS PER PLOT
7223	85	E6		STA	\$E6	STORE INDEX AT \$00E6
7225	89	01	D	LDA	#\$01	"DATA" COUNT (BLOCKS
						OF 256, DECIMAL)
7227	85	E2		STA	\$E2	ADDRESS FOR "DATA" INDEX
7229	AO	00		LDY	#\$00	ZERO Y REGISTER FOR DATA
						ADDRESS INDEXING
722B	A2	00	A	LDX	#\$00	SET DATA INDEX TO 100
722D	A9	00	В	LDA	#\$00	SET MUX CHANNEL TO FORCE
			-			ONE
722F	20	0073		JSR	FR	GO TO FORCE READING
		001.5		01311		SUBROUTINE
7232	A9					
				LDA	#\$01	SET MUX CHANNEL TO FORCE
	** 2	01		LDA	#\$01	SET MUX CHANNEL TO FORCE
7234						тыо
7234	20	01 0073		LDA JSR	#\$01 FR	TWO GO TO FORCE READING
	20	0073		JSR	FR	TWO GO TO FORCE READING SUBROUTINE
7234 7237						TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE
7237	20 A9	0073 02		JSR LDA	FR #\$02	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE
	20	0073		JSR	FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING
7237 7239	20 A9 20	0073 02 0073		JSR LDA JSR	FR #\$02 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE
7237	20 A9	0073 02		JSR LDA	FR #\$02	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE
7237 7239 7230	20 A9 20 A9	0073 02 0073 03		JSR LDA JSR LDA	FR #\$02 FR #\$03	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR
7237 7239	20 A9 20	0073 02 0073		JSR LDA JSR	FR #\$02 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING
7237 7239 7230 723E	20 A9 20 A9 20	0073 02 0073 03 0073		JSR LDA JSR LDA JSR	FR #\$02 FR #\$03 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE
7237 7239 7230	20 A9 20 A9	0073 02 0073 03		JSR LDA JSR LDA	FR #\$02 FR #\$03	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE
7237 7239 7230 7230 7238 7241	20 A9 20 A9 20 A9	0073 02 0073 03 0073 04		JSR LDA JSR LDA JSR LDA	FR #\$02 FR #\$03 FR #\$04	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE
7237 7239 7230 723E	20 A9 20 A9 20	0073 02 0073 03 0073		JSR LDA JSR LDA JSR	FR #\$02 FR #\$03 FR #\$04	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING
7237 7239 7230 7236 7241 7243	20 A9 20 A9 20 A9 20	0073 02 0073 03 0073 04 0073		JSR LDA JSR LDA JSR LDA JSR	FR #\$02 FR #\$03 FR #\$04 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE
7237 7239 7230 7230 7238 7241	20 A9 20 A9 20 A9	0073 02 0073 03 0073 04		JSR LDA JSR LDA JSR LDA	FR #\$02 FR #\$03 FR #\$04	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE
7237 7239 7230 723E 7241 7243 7246	20 A9 20 A9 20 A9 20 A9	0073 02 0073 03 0073 04 0073 05		JSR LDA JSR LDA JSR LDA JSR LDA	FR #\$02 FR #\$03 FR #\$04 FR #\$04	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SIX
7237 7239 7230 7236 7241 7243	20 A9 20 A9 20 A9 20	0073 02 0073 03 0073 04 0073		JSR LDA JSR LDA JSR LDA JSR	FR #\$02 FR #\$03 FR #\$04 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SIX GO TO FORCE READING
7237 7239 7230 723E 7241 7243 7246	20 A9 20 A9 20 A9 20 A9 20	0073 02 0073 03 0073 04 0073 05 0073		JSR LDA JSR LDA JSR LDA JSR LDA JSR	FR #\$02 FR #\$03 FR #\$04 FR #\$05 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SIX GO TO FORCE READING SUBROUTINE
7237 7239 7230 7236 7241 7243 7246 7248	20 A9 20 A9 20 A9 20 A9	0073 02 0073 03 0073 04 0073 05		JSR LDA JSR LDA JSR LDA JSR LDA	FR #\$02 FR #\$03 FR #\$04 FR #\$04	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SIX GO TO FORCE READING SUBROUTINE SUBROUTINE SET MUX CHANNEL TO FORCE
7237 7239 7230 7230 7238 7241 7243 7248 7248 7248	20 A9 20 A9 20 A9 20 A9 20 A9	0073 02 0073 03 0073 04 0073 05 0073 06		JSR LDA JSR LDA JSR LDA JSR LDA JSR LDA	FR #\$02 FR #\$03 FR #\$04 FR #\$05 FR #\$05 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SIX GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SUBROUTINE SET MUX CHANNEL TO FORCE SET MUX CHANNEL TO FORCE
7237 7239 7230 7236 7241 7243 7246 7248	20 A9 20 A9 20 A9 20 A9 20	0073 02 0073 03 0073 04 0073 05 0073		JSR LDA JSR LDA JSR LDA JSR LDA JSR	FR #\$02 FR #\$03 FR #\$04 FR #\$05 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SIX GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SEVEN GO TO FORCE READING
7237 7239 7230 7230 7238 7241 7243 7248 7248 7248	20 A9 20 A9 20 A9 20 A9 20 A9	0073 02 0073 03 0073 04 0073 05 0073 06		JSR LDA JSR LDA JSR LDA JSR LDA JSR LDA	FR #\$02 FR #\$03 FR #\$04 FR #\$05 FR #\$05 FR	TWO GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE THREE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FOUR GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE FIVE GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SIX GO TO FORCE READING SUBROUTINE SET MUX CHANNEL TO FORCE SUBROUTINE SET MUX CHANNEL TO FORCE SET MUX CHANNEL TO FORCE

						EIGHT
7252	20	0073		JSR	FR	GO TO FORCE READING SUBROUTINE
7255	CA			DEX		
7256	DO	D5		BNE	В	GO TO B IF 100 FORCE SETS NOT TAKEN
7258	C6	E2		DEC	\$E2	
725A	Dû	CF		BNE	A	GO TO A IF NOT ENOUGH Data blocks taken
725C	A9	02		LDA	#\$02	DELAY PARAMETERS
725E	85	E9		STA	\$E9	
7260	A9	00	M	LDA	#\$00	
7262	85	E7		STA	\$E7	
7264	A9	00	L	LDA	#\$00	
7266	85	E8		STA	\$E8	
7268	C6	E8	K	DEC	\$E8	
726A	DO	FC		BNE	K	,
7260	C6	E7		DEC	\$E7	
726E	DO	F4		BNE	L	
7270	C6	E9		DEC	\$E9	
7272	DO	EC		BNE	M	END OF DELAY
7274	C6	E6		DEC	\$E6	
7276	DO	AD		BNE	D	
7278	AD	2990		LDA	\$9029	READ RPM COUNTER HIGH ORDER BYTE
727B	91	EO		STA	C\$E03,Y	
727D	20	9073		JSR	AI	DATA ADDRESS INCREASING
						SUBROUTINE
7280	AD	2890		LDA	\$9028	READ RPM COUNTER LOW Order byte
7283	91	EO		STA	C\$E0],Y	STORE DATA
7285	60			RTS		
7300	8D	FA9F	FR	STA	\$9FFA	SET MUX CHANNEL
7303	A9	00		LDA	#\$00	
7305	8D	OBAO		STA	\$A00B	ACR SET FOR ONE TIME PULSE ON TIMER 2
7308	89	26		LDA	#\$26	LOW ORDER BYTE OF TIME (CLOCK CYCLES)
730A	8D	0880		STA	\$A008	LOW ORDER BYTE ADDRESS
73 0 D	A9	00		LDA	#\$00	HIGH ORDER BYTE OF TIME
730F	8D	0940		STA	\$A009	HIGH ORDER BYTE ADDRESS, START TIMER 2
7312	A9	20		LDA	#\$20	SET BIT 5 OF ACCUMULATOR
7314	SC	ODAO	E	BIT	\$A00D	TEST TIME OUT SIGNAL
7317	FO	FB		BEQ	E	TEST AGAIN IF NOT SET YET
7319	AD	0880		LDA	\$A008	CLEAR TIMER 2 TIME OUT SIGNAL
731C	8D	FB9F		STA	\$9FFB	START A/D CONVERSION
731F	89	02		LDA	#\$02	START OF 26*E-6 SECOND DELAY
7321	85	E4		STA	\$E4	
7323	C6	E4	F	DEC	\$E4	
7325	DO	FC		BNE	F	END OF DELAY LOOP
7327	EA			NOP		

7358	EA			NOP		
7329	EA			NOP		END OF DELAY
732A	AD	FF9F		LDA	\$9FFF	READ DATA
732D	91	EO		STA	C\$E0],Y	STORE DATA
732F	20	9073		JSR	AI	DATA ADDRESS INCREASING
****				DEC		SUBROUTINE
7332	60			RTS		
7390	18		AI	CLC		CLEAR CARRY
7391	A5	EO		LDA	\$E0	ADL OF DATA ADDRESS
7393	69	01		ADC	#\$01	INCREMENT DATA ADDRESS
7395	85	EO		STA	\$E0	STORE DATA ADL
7397	A5	E1		LDA	\$E1	ADH OF DATA ADDRESS
7399	69	00		ADC	#\$00	INCREMENT ADL IF
						NECESSAARY
739B	85	E1		STA	\$E1	STORE DATA ADH
739D	60			RTS		

APPENDIX B

BASIC PROGRAM FOR DATA

MANIPULATION

Variable Description

A1\$(1) - A5\$(3) =	computer display variable names
M1 - M8 =	regression equation constants
AA\$ =	dummy variable name for computer display
ZL =	display line number
A\$ =	the letter "S"
P(J) =	zeroing subroutine force name
RT\$ =	block and treatment number
ZV =	dummy variable
CV =	chisel vertical force
CD =	chisel draft
SV =	sweep vertical force
SD =	sweep draft
WV =	coulter vertical force
WD =	coulter draft
DV =	disk vertical force
DD =	disk draft
RP =	velocity in rev/s
VE =	velocity in cm/s
XZ =	dummy variable name
AT\$ =	repeat test variable name

Computer Program

10	POKE 4,176	
20	POKE 5,222	
30	A1\$(1)="THIS IS CRAIG'S FORCE DATA PROGRAM	**
40	A1\$(2)="START OF DATA AQUISTION	44
50	A1\$(3)="ENTER REP AND TRT AS XXX	**
60	A1\$(4)="PRESS S TO START DATA COLLECTION	44
70	A1\$(5)="DO YOU WANT TO MAKE ANOTHER TEST? (Y/N)	**
80	A1\$(6)="	**
90	A1\$(7)="ENTER TAPE FILE NAME AS XX	**
100	A2\$(1)="CHIS VERT="	
110	A2\$(2)=" CHIS DRAFT="	
120	A2\$(3)=" "	

```
130 A3$(1)="SWEEP VERT="
140 A3$(2)=" SWEEP DRAFT="
150 A3$(3)="
               **
160 A4$(1)="COLT VERT"
170 A4$(2)=" COLT DRAFT="
180 A4$(4)=" TRT="
190 A5$(1)="DISC VERT="
200 A5$(2)=" DISC DRAFT="
210 A5$(3)=" S="
220 M1=116.5
230 M2=7.8
240 M3=96.5
250 M4=3.4
260 M5=108.6
270 M6=7.3
280 M7=129.0
290 M8=21.0
300 F1=0
310 F2=0
320 F3=0
330 F4=0
340 F5=0
350 F6=0
360 F7=0
370 F8=0
380 AA$=A1$(1)
390 ZL=0
400 GOSUB 1880
410 AA$=A1$(6)
420 ZL=1
430 GOSUB 1880
440 FOR II=1 TO 1000
450 NEXT
460 ZL=0
470 AA$=A1$(6)
480 GOSUB 1880
490 AA$=A1$(7)
500 ZL=1
510 GOSUB 1880
520 INPUT A$
530 POKE 42030, ASC(LEFT$(A$,1))
540 POKE 42031, ASC(LEFT$(A$,2,1))
550 POKE 42010,0
560 POKE 42011,112
570 POKE 42012,46
580 POKE 42013,112
590 FOR J=0 TO 7
600 POKE 40954,J
610 FOR I=0 TO 100
620 NEXT I
630 POKE 40955,0
640 FOR I=0 TO 100
650 NEXT 1
655 P(J)=0
```

```
656 FOR JJ=1 TO 100
 660 P(J)=P(J)+PEEK(40959)
 661 NEXT JJ
 662 P(J)=P(J)/100
 670 NEXT J
 680 AA$=A1$(3)
 690 ZL=1
 700 GOSUB 1880
 710 INPUT RT$
 720 AA$=A1$(6)
 730 GOSUB 1880
 740 AA$=A1$(4)
 750 ZL=0
 760 GOSUB 1880
 770 GET A$: IF A$<>"S" GOTO 770
 780 AA$=A1$(2)
 790 ZL=0
 800 GOSUB 1880
 810 POKE 4,0
 820 POKE 5,114
830 ZV=USR(WD)
 840 POKE 4,176
850 POKE 5,222
 860 AA$=A1$(6)
870 ZL=0
 880 GOSUB 1880
 890 PRINT "DONE"
 900 FOR I=0 TO 767
 910 F1=F1+PEEK(20480+8*I)
 920 F2=F2+PEEK(20481+8*I)
 930 F3=F3+PEEK(20482+8*I)
 940 F4=F4+PEEK(20483+8*I)
 950 F5=F5+PEEK(20484+8*I)
 960 F6=F6+PEEK(20485+8*I)
 970 F7=F7+PEEK(20486+8*I)
 980 F8=F8+PEEK(20487+8*1)
 990 NEXT I
1000 CV=M1*(FI/768-P(0))*16
1010 CD=M2*(F2/768-P(1))*16/3
1020 SV=M3*(F3/768-P(2))*16
1030 SD=M4*(F4/768-P(3))*16/1.184
1040 WV=M5*(F5/768-P(4))*16
1050 WD=M6*(F6/768-P(5))*16/2.6
1060 DV=M7*(F7/768-P(6))*16
1070 DD=M8*(F8/768-P(7))*16/2.69
1080 RP=(65535-PEEK(26624)*256-PEEK(26625))/184.869135
1090 VE=RP*203.5
1100 CV$=STR$(1NT(CV+.5))
1110 IF LEN(CV$)<2 THEN CV$="
                                 "+CV$
1120 1F LEN(CV$)<3 THEN CV$="
                                 "+CV$
1130 IF LEN(CV$)<4 THEN CV$="
                              "+CV$
1131 IF LEN(CV$)<5 THEN CV$=" "+CV$
1140 CD$=STR$(INT(CD+.5))
1150 IF LEN(CD$)<2 THEN CD$="
                                 "+CD$
```

1160 IF LEN(CD\$)<3 THEN CD\$=" "+CD\$ 1170 IF LEN(CD\$)<4 THEN CD\$=" "+CD\$ 1171 IF LEN(CD\$)<5 THEN CD\$=" "+CD\$ 1180 SV\$=STR\$(INT(SV+.5)) 1190 IF LEN(SV\$)<2 THEN SV\$=" "+SV\$ 1200 IF LEN(SV\$)<3 THEN SV\$=" "+SV\$ 1210 IF LEN(SV\$)<4 THEN SV\$=" "+SV\$ 1211 IF LEN(SV\$)<5 THEN SV\$=" "+SV\$ 1220 SD\$=STR\$(INT(SD+.5)) 1230 IF LEN(SD\$)<2 THEN SD\$=" "+SD\$ 1240 IF LEN(SD\$)<3 THEN SD\$=" "+SD\$ 1250 IF LEN(SD\$)<4 THEN SD\$=" "+SD\$ 1251 IF LEN(SD\$)<5 THEN SD\$=" "+SD\$ 1260 WV\$=STR\$(INT(WV+.5)) 1270 IF LEN(WV\$)<2 THEN WV\$=" "+WV\$ 1280 IF LEN(WV\$)<3 THEN WV\$=" "+WV\$ 1290 IF LEN(WV\$)<4 THEN WV\$=" "+WV\$ 1291 IF LEN(WV\$)<5 THEN WV\$=" "+WV\$ 1300 WD\$=STR\$(INT(WD+.5)) 1310 IF LEN(WD\$)<2 THEN WD\$=" "+WD\$ "+WD\$ 1320 IF LEN(WD\$)<3 THEN WD\$=" 1330 IF LEN(WD\$)<4 THEN WD\$=" "+WD\$ 1331 IF LEN(WD\$)<5 THEN WD\$=" "+WD\$ 1340 DV\$=STR\$(INT(DV+.5)) 1350 IF LEN(DV\$)<2 THEN DV\$=" "+DV\$ 1360 IF LEN(DV\$)<3 THEN DV\$=" "+DV\$ 1370 IF LEN(DV\$)<4 THEN DV\$=" "+DV\$ 1371 IF LEN(DV\$)<5 THEN DV\$=" "+DV\$ 1380 DD\$=STR\$(INT(DD+.5)) 1390 IF LEN(DD\$)<2 THEN DD\$=" "+DD\$ 1400 IF LEN(DD\$)<3 THEN DD\$=" "+DD\$ 1410 IF LEN(DD\$)<4 THEN DD\$=" "+DD\$ 1411 IF LEN(DD\$)<5 THEN DD\$=" "+DD\$ 1420 VE\$=STR\$(1NT(VE*100+.5)/100) 1421 IF LEN(VE\$)<2 THEN VE\$=" "+VE\$ 1422 IF LEN(VE\$)<3 THEN VE\$=" "+VE\$ 1423 IF LEN(VE\$)<4 THEN VE\$=" "+VE\$ 1424 IF LEN(VE\$)<5 THEN VE\$=" "+VE\$ 1430 FOR J=1 TO 5 1440 POKE 28671+J,ASC(MID\$(CV\$,J,1)) 1450 POKE 28676+J,ASC(MID\$(CD\$,J,1)) 1460 POKE 28681+J,ASC(MID\$(SV\$,J,1)) 1470 POKE 28686+J,ASC(MID\$(SD\$,J,1)) 1480 POKE 28691+J,ASC(MID\$(WV\$,J,1)) 1490 POKE 28696+J,ASC(MID\$(WD\$,J,1)) 1500 POKE 28701+J,ASC(MID\$(DV\$,J,1)) 1510 POKE 28706+J,ASC(MID\$(DD\$,J,1)) 1520 POKE 28711+J, ASC(MID\$(VE\$, J, 1)) 1530 NEXT J 1531 FOR J=1 TO 3 1532 POKE 28716+J,ASC(MID\$(RT\$,J,1)) 1533 NEXT J 1540 A6\$(0)=A2\$(1)+CV\$+A2\$(2)+CD\$+A2\$(3) 1550 A6\$(1)=A3\$(1)+SV\$+A3\$(2)+SD\$+A3\$(3)

```
1560 A6$(2)=A4$(1)+WV$+A4$(2)+WD$+A4$(4)+RT$
1570 A6$(3)=A5$(1)+DV$+A5$(2)+DD$+A5$(3)+VE$
1580 FOR ZL=0 TO 3
1590 AA$=A6$(ZL)
1600 GOSUB 1880
1610 NEXT ZL
1620 POKE 4,0
1630 POKE 5,221
1640 XZ=USR(YZ)
1650 FOR ZL=0 TO 3
1660 PRINT A6$(ZL)
1670 NEXT
1680 POKE 4,176
1690 POKE 5,222
1700 AA$=A1$(6)
1710 FOR ZL=0 TO 3
1720 GOSUB 1880
1730 NEXT
1740 AA$=A1$(5)
1750 ZL=1
1760 GOSUB 1880
1770 INPUT AT$
1780 IF AT$="Y" GOTO 1810
1790 IF AT$="N" GOTO 1870
1800 GOTO 1740
1810 AA$=A1$(6)
1820 ZL=0
1830 GOSUB 1880
1840 FOR I=1 TO 1000
1850 NEXT
1860 F1=0
1861 F2=0
1862 F3=0
1863 F4=0
1864 F5=0
1865 F6=0
1866 F7=0
1867 F8=0
1868 GOTO 680
1870 END
1880 FOR ZR=0 TO 39
1890 ZZ$=MID$(AA$,ZR+1,1)
1900 ZX=USR((128+ASC(ZZ$))*256+ZL*64+ZR)
1910 NEXT
1920 RETURN
```

APPENDIX C

MACHINE LANGUAGE PROGRAM FOR DATA

TRANSFER TO MAINFRAME COMPUTER

0200A900LDA #\$00LOAD 00 INTO ACCUM.02028D01ACSTA \$ACO1RESET CHANNEL 1 OF ACIA02058D05ACSTA \$ACO5RESET CHANNEL 2 OF ACIA	
0205 BD 05AC STA SACOS RESET CHANNEL 2 OF ACTA	
ి కి. సి. మాల్లో కి. మాల్లో కి. మాల్లో కి. మాలు మాలు సినిమాలు సినిమాలు సినిమాలు సినిమాలు సినిమాలు సినిమాలు సిన మాలు సినిమాలు	
0208 A9 38 LDA #\$38 SET UP CONTROL REGISTER	
020A 8D 03AC STA \$AC03 SETS BAUD, WORD LENGTH, CLOCK SOURCE, STOP BITS	
020D A9 6B LDA #\$6B SET UP COMMAND REGISTER	
020F 8D 020C STA \$AC02	
0212 A2 CO LDX #\$CO START DISPLAY INDEX AT BOTTOM LINE	
0214 A9 52 LDA #\$52 ASCII R	
0216 20 7BEF JSR \$EF7B DISPLAY SUBROUTINE	
0219 E8 INX INCREMENT DISPLAY INDEX	
021A A9 45 LDA \$\$45 ASCII E	
021C 20 7BEF JSR \$EF7B DISPLAY SUBROUTINE	
021F E8 INX INCREMENT DISPLAY INDEX	
0220 A9 44 LDA #\$44 ASCII D	
0222 20 7BEF JSR \$EF7B DISPLAY SUBROUTINE	
0225 E8 INX INCREMENT DISPLAY INDEX	
0226 A9 49 LDA #\$49 ASCII I	
0228 20 7BEF JSR \$EF7B DISPLAY SUBROUTINE	
022B E8 INX INCREMENT DISPLAY INDEX	
022C A9 41 LDA #\$41 ASCIIA	
022E 20 7BEF JSR \$EF7B DISPLAY SUBROUTINE	
0231 E8 INX INCREMENT DISPLAY INDEX	
0232 A9 4C LDA #\$4C ASCII L	
0234 20 7BEF JSR \$EF7B DISPLAY SUBROUTINE	
0237 20 E303 JSR DS GO TO DSR SUBROUTINE	
023A A2 CO LDX #\$CO SET DISPLAY INDEX TO START OF FOURTH LINE	
023C A9 20 LDA #\$20 ASCII CARRIAGE RETURN	
023E 20 7BEF JSR \$EF7B	

0241	E8			INX		
0242	20	7BEF		JSR	\$EF7B	
0245	E8			INX		
0246	20	7BEF		JSR	\$ EF7B	
0249	E8			INX		
024A	50	7BEF		JSR	\$EF78	
024D	Ē8			INX	-0 United bits - 1 - 0 - 10***	
024E	20	7BEF		JSR	\$EF7B	
		rder			PLF / D	
0251	E8	Fred Sec. Sec. 1994		INX	5. One time and one.	
0252	50	7BEF		JSR	\$EF7B	
0255	A2	00	A 1	LDX	#\$0 0	SET DISPLAY LOCATION TO START
0257	20	E303	LO	JSR	DS	GO TO DSR SUBROUTINE
025A	A9	08		LDA	#\$08	SET BIT 3
025C	20	01AC		BIT	\$AC01	CHECK TO SEE IF ACIA
						RDR IS FULL
025F	FO	0C		BEQ	WR	IF NOT, GO TO WR
0261	AD	OOAC	A6	LDA	\$AC00	IF IS, READ RDR
0264	20	7BEF	AЭ	JSR	\$EF7B	GO TO DISPLAY SUBROUTINE
0267	20	F203		JSR	IN	GO TO DISPLAY INDEX SUBROUTINE
0264	4C	5702		JMP	LO	GO TO LO
026D	20	E303	WR	JSR	DS	GO TO DSR SUBROUTINE
0270	89	10		LDA	#\$10	SET BIT 4
0272	2Ć	OIAC		BIT	\$AC01	CHECK TO SEE IF ACIA
UZIZ	eL	UIAC		011	- ₩ 256-001	TDR IS FULL
0275	FO	F6		BEQ	WR	IF FULL, GO TO WR
0277	98			TYA		IF NOT, MOVE Y TO ACCUM
0278	48			рна		1
0279	8A			TXA		
027A	48			PHA		
027B	20	07E9		JSR	\$E907	SCAN KEYBOARD
027E	8D	1005		STA	\$0510	STORE LETTER
0281	68	1000		PLA	~0010	Bur A Tar A Balan , Das dan A ta Bur B 5
0282	AA			TAX		
0283	68			PLA		
0284	A 8			TAY		· · · · · · · · · · · · · · · · · · ·
0285	AD	1005	C9			GET LETTER
0288	C9	FF		CMP	#\$FF	COMPARE WITH NULL CHARACTER
028A	FO	CB		BEQ	LO	IF IS, GO TO LO
0280	C9	2D		СМР	#\$2D	IF NOT, COMPARE WITH A NEGATIVE SIGN
028E	FO	35		BEQ	TD	IF IS, GO TO TAPE DUMP ROUTINE
0290	C9	3B		СМР	#\$3B	IF NOT, COMPARE WITH A
0292	DO	03		BNE	D2	SEMI-COLON IF NOT, GO TO D2
0294	4C	2203		JMP	MD	IF IS, GO TO MEMEORY
						DUMP ROUTINE
0297	C9	AE	02	CMP	#\$3A	COMPARE WITH A COLON
0299	DO	03		BME	C8	IF NOT, GO TO C8
029B	40	D103		JMP	BR	IF IS, GO TO BREAK ROUTINE

029E	C9	2F	C8	CMP	#\$2F	COMPARE WITH SLASH
02A0	DO	08		BNE	D4	IF NOT, GO TO D4
0242	A9	20		LDA	#\$20	IF IS, LOAD ACCUM WITH
						ASCII SPACE
0284	8D	1005		STA	\$0510	STORE AT LETTER LOCATION
02A7	4C	B302		JMP	D3	GO TO D3
02AA	C9	7F	D4		#\$7F	COMPARE WITH DEL
02AC		05		BNE	D3	IF NOT, GO TO D3
02AE	A9	ЗD		LDA	#\$3D	IF IT IS, LOAD ACCUM WITH
						ASCII EQUALS
0280	8D	1005		STA	\$0510	
02B3	20	E303	DЗ		DS	GO TO DSR SUBROUTINE
02B6	AD	1005		LDA	\$0510	
02B9	8D	OOAC		STA		
02BC	20	7BEF		JSR		
02BF	20	F203		JSR	IN	GO TO DISPLAY INDEX
0000	4.00	270 C		***	10	SJBROUTINE
0202	40	5702 01	TD	JMP LDX	LO #\$01	GO TO LO SET DISPLAY INDEX
02C5 02C7	A2 A9	54	117	LDA		ASCII T
0209	20	7BEF		JSR	\$EF7B	DISPLAY SUBROUTINE
0203	20 E8	f edels"		i NX	\$er/D	INCREASE DISPLAY INDEX
02CC	A9	41		LDA	#\$41	ASCII A
02CF	20	7BEF		JSR	\$EF78	DISPLAY SUBROUTINE
02D2	E8	4 3.3 See 5.		INX		INCREASE DISPLAY INDEX
02D3	A9	50		LDA	**50	ASCII P
0205	20	7BEF		JSR	\$EF7B	DISPLAY SUBROUTINE
0208	ĒB	4 day' inged 2		INS	"" Bus & C Suf	INCREASE DISPLAY INDEX
02D9	A9	45		LDA	#\$45	ASCII E
02DB	20	7BEF		JSR	\$EF7B	DISPLAY SUBROUTINE
02DE	E8			INX		INCREASE DISPLAY INDEX
02DF	49	5C		LDA	#\$2C	ASCII COMMA
02E1	20	7BEF		JSR	\$EF7B	DISPLAY SUBROUTINE
02E4	E8			INX		INCREASE DISPLAY INDEX
02E5	A9	20		LDA	**20	ASCII SPACE
02E7	20	7BEF		JSR	\$EF7B	DISPLAY SUBROUTINE
02EA	E8			INX		INCREASE DISPLAY INDEX
02EB	A9	4E		LDA	#\$4E	ASCII N
0SED	20	78EF		JSR	\$EF7B	DISPLAY SUBROUTINE
02F0	E8			INX		INCREASE DISPLAY INDEX
02F1	A9	41		LDA	**41	ASCII A
02F3	20	7BEF		JSR	\$EF7B	DISPLAY SUBROUTINE
02F6	E8			INX		INCREASE DISPLAY INDEX
02F7	A9	4D		LDA	#\$4D	ASCII M
02F9	20	7BEF		JSR	\$EF7B	DISPLAY SUBROUTINE
02FC	E8			INX		INCREASE DISPLAY INDEX
02FD	A9	45 70FF		LDA	#\$45 ***7D	ASCII E Dicelay supponitive
02FF	20	7BEF		JSR	\$EF7B	DISPLAY SUBROUTINE
0302	E8	ЗD		INX	** & *>**	INCREASE DISPLAY INDEX ASCII EQUALS SIGN
0303 0305	A9 20			LDA	#\$3D 45570	
0305 0308	20 E8	7BEF		JSR INX	\$EF7B	DISPLAY SUBROUTINE INCREMENT DISPLAY INDEX
0309	ео 20	83FE		JSR	\$FE83	READ FROM KEYBOARD TO
0.202	1. S. F.			కి ఉని కి సి	~ra 1	ACCUM
						2 K - V - V - V - S - S - S - S - S - S - S

	030C	20	7BEF		JSR	\$EF7B	DISPLAY ROUTINE
	030F	E8			INX		INCREMENT DISPLAY INDEX
	0310	8D	2EA4		STA	\$A42E	PUT FIRST LETTER OF FILE
							NAME IN \$A42E
	0313	20	83FE		JSR	\$FE83	READ FROM DEYBOARD TO
							ACCUM
	0316	50	7BEF		JSR	\$EF7B	DISPLAY ROUTINE
	0319	8D	2FA4		STA	\$A42F	PUT SECOND LETTER OF FILE
							NAME IN \$A42F
	0310	20	1004		JSR	\$0410	LOAD TAPE TO MEMORY
	031F	40	5702	1.00	JMP	LO	CO TO LO
	0355	A5	FD	MD	LDA	\$FD	GET LENGTH OF LAST BLOCK
	0.004	40			CI C		READ FROM TAPE Clear Carry
	0324 0325	18 65	FE		CLC ADC	\$FE	ADD ADL OF START OF LAST
,	0323	60	rc.		ADC	ቅቦይ	BLOCK
	0.327	8D	0E05		STA	\$050E	STORE AT \$050E
	0324	A5	FF		LDA	\$FF	GET ADH OF START OF LAST
	01.72.13				1	***	BLOCK
	0320	69	00		ADC	#\$00	ADD CARRY IF ANY
	032E	8D	0D05		STA	\$050D	STORE AT \$050D
	0331	AO	00		LDY	#\$00	CLEAR Y
	0333	A9	00		LDA	#\$00	LOAD LOW ORDER BYTE OF
							START ADDRESS
	0335	85	00		STA	\$00	STORE AT \$0000
	0337	A9	70		LDA	#\$70	LOAD HIGH ORDER BYTE OF
							START ADDRESS
	0339	85	01		STA	\$01	STORE AT \$0001
	033B	A9	0B		LDA	#\$0B	\$OB IN ACCUM
	0.33D	8D	0F05		STA	\$050F	STORE \$050F (ELEVEN
							NUMBERS PER DATA LINE)
	0340	20	E303		JSR	DS	GO TO DSR SUBROUTINE
	0343	4C	5703		JMP	C1	GO TO C1 ON FIRST TIME
	0.546	50	E303	ro	ICD	DC	THROUGH
	0346 0342	A9	e.503 08	E0	JSR LDA	DS #\$08	GO TO DSR SUBROUTINE SET BIT 3
	u317 1134B	20	01AC		BIT	##UO \$AC01	CHECK TO SEE IF ACIA RDR
	(1.3.413	61.44	orac.		011	PACOL	IS FULL
	034E	FO	F6		BEQ	EO	IF NOT, GO TO EO
	0350	AD	OOAC		LDA	\$AC00	READ DATA FROM ACIA RDR
	0353	C9	20		CMP	#\$20	COMPARE WITH ASC11 BLANK
	0355	DO	EF		BNE	EO	IF NOT, GO TO EO
	0.357	A9	02	C1	LDA	#\$02	IS THIS ONE OF THE FIRST
							NINE NUMBERS
	0359	CD	0F05		CMP	\$050F	
	0.35C	B0	05		BCS	A2	IF NOT, GO TO A2
	035E	A2	05		LDX	#\$05	IF IS, THERE ARE 5 DIGITS
	0360	4C	7103		JMP	C6	GO TO C6
	0363	49	02	¥ 2	LDA	#\$02	IS THIS THE TENTH NUMBER
	0365	CD	0F05		CMP	\$050F	
	0368	DO	05		BNE	A4	IF NOT, GO TO A4
	036A	A2	01		LDX	#\$01	IF IS THERE IS 1 DIGIT
	0360	4C	7103	<u>к</u> л		C6	GO TO CO THERE ARE 2 DICITS
	036F	A2	02	A4	LDX	#\$02	THERE ARE 2 DIGITS

.

. 1

	0371	A9	10	C6	LDA	#\$10	SET BIT 4
	0373	20	01AC		BIT	\$AC01	CHECK TO SEE IF ACIA TDR
							IS FULL
	0376	FO	F9		BEQ	C6	IF IT IS, GO TO C6
	0378	B1	00		LDA		
							TO ACCUM
	037A	8D	OOAC	B1	STA	\$AC00	SEND TO ACIA TDR
	037D	A9	10	C2	I.DA	#\$10	SET BIT 4
	037F	2C	01AC		BIT	\$AC01	CHECK TO SEE IF ACIA TDR
							IS FULL
	0382	FO	F9		BEQ	C2	IF IT IS, GO TO C2
	0384	20	E303		JSR	DS	IF NOT, GO TO DSR
							SUBROUTINE
	0387	A5	01		LDA	\$01	HIGH BYTE OF CURRENT DATA
							ADDRESS
	0389	CD	0D05		CMP	\$050 D	COMPARE WITH HIGH BYTE OF
	0000	~~	~ •		0.0.0	50	DATA ENDING ADDRESS
	0380	90	A O		BCC	B3	IF NOT, GO TO B3
	038E	A 5	00		LDA	\$00	LOW BYTE OF CURRENT DATA ADDRESS
	0390	CD	0E05		CMP	\$050E	COMPARE WITH LOW BYTE OF
							DATA ENDING ADDRESS
	0393	90	03		BCC	B3	IF NOT, GO TO B3
	0395	4C	BF03		JMP	C5	GO TO C5
	0398	A5	00	B 3		\$00 ⁻	CURRENT DATA ADL
	039A	18			CLC		CLEAR CARRY
	039B	69	01		ADC	#\$01	INCREMENT DATA ADDRESS
	039D	85	00		STA	\$00	STORE NEXT DATA ADL
	039F	A 5	01		LDA	\$01	HIGH BYTE OF CURRENT DATA ADDRESS
	03A1	69	00		ADC	#\$00	ADD CARRY IF ANY
·	C 3A3	85	01		STA	\$01	STORE NEST DATA ADH
	0345	CA			DEX		DECREMENT BYTE COUNTER
	0346	DO	C9		BNE	C6	IF NOT ENOUGH BYTES READ,
							GO TO C6
	03A8	A9	10	CЗ	LDA	#\$10	SET BIT 4
	AAEO	5 C	01AC		BIT	\$AC01	CHECK TO SEE IF ACIA TDR
							IS FULL
	OBAD	FO	· F9		BEQ	CЭ	IF IT IS, GO TO C3
	03AF	50	E303		JSR	DS	IF NOT, GO TO DSR
							SUBROUTINE
	03B2	89	20		LDA	#\$20	ASCII SPACE
	03B4	8D	OOAC		STA	\$AC00	SEND TO TDR
	0387	CE	0F05		DEC	\$050F	DECREMENT NUMBER COUNT
	03BA	FO	03		BEQ	C5	IF 9 NUMBERS HAVE BEEN SENT, GO TO C5
	03BC	4C	5703		JMP	C1	IF NOT, GO TO C1
	03BF	A9	10	C 5		#\$10	SET BIT 4
	0301	20	OIAC		BIT	\$AC01	CHECK TO SEE IF ACIA TDR
							IS FULL
	0304	FO	F9		BEQ	C5	IF IT IS, GO TO C5
	0306	20	E303		JSR	DS ##OD	GO TO DSR SUBROUTINE
	03C9 03CB	A9 8D	0D 00AC		LDA Sta	#\$OD \$AC00	ASCII CARRIAGE RETURN SEND TO ACIA TDR
	0368	av	UUAL		DIA	ゆれしひひ	SEND IU KCIA IDK

0 3C E	4C	5702		JMP	LO	GO TO LO
03D1	89	10	BR	LDA	#\$10	SET BIT 4
03D3	5 C	01AC		BIT	\$AC01	CHECK TO SEE IF ACIA TDR
						IS FULL
03D6	FO	F9		BEQ	BR	IF IT IS, GO TO BR
03D8	20	E303		JSR	DS	IF NOT, GO TO DSR
						SUBROUTINE
03D8	A9	01		L.DA	#\$01	ASCII "BREAK"
03DD	8D	DACO		STA	\$AC00	SEND TO ACIA TDR
03E0	4C	5702		JMP	LO	GO TO LO
03E3	AD	01AC	DS	LDA	\$AC01	READ ACIA STATUS REGISTER
03E6	29	20	05	AND	#\$20	CHECK BIT 5 TO SEE IF
0.520	<i>с</i> ,	2.0		640	#420	DCD IS ON
03E8	DO	F9		BNE	DS	IF ON, GO TO DS
03E0	AD	01AC		LDA	\$AC01	READ ACIA STATUS REGISTER
03ED	29	40		AND	#\$40	CHECK BIT 6 FOR DSR ON
	27 D0				#\$40 DS	IF NOT ON, GO TO DS
03EF	60	F2		BNE RTS	05	RETURN TO MAIN PROGRAM
03F1			Th		*	
03F2	E8		IN		****	INCREMENT X Is display at end of
03F3	E0	28		СРХ	#\$28	FIRST LINE
0.005	150	00		nro	T 4	
03F5	FO	0D		BEQ	I1	IF IS, GO TO I1
03F7	E0	68		СРХ	#\$68	IS DISPLAY AT END OF
~~ ~ ~	120	~~			* 4	SECOND LINE
03F9	FO	09		BEQ	I1	IF IS, GO I1
03FB	EO	88		СРХ	#\$A8	IS DISPLAY AT END OF
					-	THIRD LINE
03FD	FO	05		BEQ	I1	IF IS, GO TO I1
0 3FF	E0	E8		СРХ	#\$E8	IS DISPLAY AT END OF
						FOURTH LINE
0401	FO	07		BEQ	12	IF IS, GO TO 12
0403	60			RTS		RETURN TO MAIN PROGRAM
0404	8 A		11	TXA		MOVE X TO ACCUM
0405	18			CLC		CLEAR CARRY
0406	69	18		ADC	#\$18	MOVE DISPLAY INDEX TO
						START OF NEXT LINE
0408	AA			TAX		MOVE X FROM ACCUM TO X
0409	60			RTS		RETURN TO MAIN PROGRAM
040A	A2	00	12	LDX	#\$00	MOVE DISPLAY INDES TO
						START
040C	60			RTS		RETURN TO MAIN PROGRAM
0410	A9	00		LDA	#\$00	
0412	48			PHA		
0413	48			PHA		
0414	4C	A4E3		JMP	\$E3A4	
0417	60			RTS		RETURN TO MAIN PROGRAM

APPENDIX D

-

BULK DENSITY AND MOISTURE CONTENT DATA

Block	Trt	Moisture content (%,Dry Basis)	Bulk density (g/cc)	
• • • • • • • • • • • • • • • • • • •	1	23.7	2.10	
	2	23.8	2.11	
	3	21.8	1.99	
	4	21.8	2.20	
	5	22.6	2.12	
	6	19.5	1.97	
	7	20.1	2.19	
	8	21.9	2.09	
	9	19.3	1.99	
	10	22.0	2.07	
	11	19.9	1.82	
	12	19.9	1.98	
2	1	21.2	1.71	
	2	22.1	2.07	
	3	20.6	1.85	
	4	24.6	1.87	
	5	23.2	1.94	
	6	21.7	2.06	
	7	22.1	1.99	
	8	23.2	2.00	
	9	21.9	2.00	
	10	21.2	1.39	
	11	20.5	1.25	
	12	22.0	2.07	
3	1	21.3	1.78	
	2	21.7	1.81	
	3	19.5	2.08	
	4	21.7	2.01	
	5	20.9	1.97	
	6	19.5	2.00	
	7	21.1	1.74	
	8	20.5	1.96	
	9	19.3	2.01	
	10	19.8	1.99	
	11	19.8	2.02	

Block	Trt	Moisture content (%,Dry Basis)	Bulk density (g/cc)
4	1	19.9	2.04
	2	21.7	1.86
	3	18.3	2.18
	4	18.9	2.44
	5	21.5	2.21
	6	20.9	1.50
	7	19.3	2.10
	8	20.6	1.86
	9	20.6	2.01
	10	19.2	2.08
	11	20.7	1.99
	12	21.3	2.26
5	1	23.2	2.38
	2	21.6	2.27
	3	23.6	1.65
	4	25.4	1.62
	5	24.2	1.94
	6	24.0	2.28
	7	22.8	2.42
	8	23.6	1.98
6	1	21.0	1.85
	2	20.7	2.12
	3	20.0	2.07
	4	20.7	1.87
	5	20.2	2.09
	6	19.8	2.04
	7	19.4	2.04
	8	19.3	1.96

APPENDIX D (Continued)

APPENDIX E

FORCE DATA

.

~

Block Trt CV CD SV SD WV WD DV DD 1 1 315 646 -4 987 520 1317 187 881 2 169 396 -124 997 454 538 58 668 3 -13 721 -187 1126 231 160 -4 1015 4 258 912 -27 1099 472 3444 187 1010 5 102 1157 -356 1602 164 5700 1095 1749 7 -236 1873 -672 2078 503 6039 1050 2047 8 -120 1593 -512 2216 -267 7089 2074 2875 10 -200 1753 -156 1762 111 5126 2207 2852 11 -267 1807 -734 2697	بعارية مريد والمعارية			a million antio I for all agreed yet approved to the family a second				1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B lock	Trt	CV	CD	SV	SD	WV	WD	DV	DD
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(N)	(N)	(N)	(Ņ)	(N)	(N)	(N)	(N)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	315	646	-4	987	520	1317	187	881
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	169	396	-124	997	454	538	58	668
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	-13	721	-187	1126	231	160	-4	1015
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-4	258	912	-27	1099	472	3444	187	1010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5	102	1157	-356	1602	164	5700	1095	1967
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	-214	1682	-645	1949	-67	6733	1095	1749
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	-236	1873	-672	2078	503	6039	1050	2047
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8	-120	1606	-107	1584	801	6586	1460	2092
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9	-120	1593	-512	2216	-267	7089	2074	2875
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	-200	1753	-156	1762	111	5126	2261	3573
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11	-267	1807	-734	2697	-178	7436	2207	2852
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	-956	2158	-1157	2795	-463	4802	2078	2750
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		347		0	899	503	3787	271	1059
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	218	579	-102			0	-13	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	249					85	214	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	62							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							383			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	-316							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9	-134							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	-289		-970					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11	~574							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
61961113-37818695869781909157172491104-24917271346684170915668-91469-54319852495892200719149-9121695-6502412163857981513220710-11572020-7972959-10766531482247411-8861722-105532753213674211973449										
7 249 1104 -249 1727 134 6684 1709 1566 8 -9 1469 -543 1985 249 5892 2007 1914 9 -912 1695 -650 2412 1638 5798 1513 2207 10 -1157 2020 -797 2959 -107 6653 1482 2474 11 -886 1722 -1055 3275 3213 6742 1197 3449										
8 -9 1469 -543 1985 249 5892 2007 1914 9 -912 1695 -650 2412 1638 5798 1513 2207 10 -1157 2020 -797 2959 -107 6653 1482 2474 11 -886 1722 -1055 3275 3213 6742 1197 3449										
9 -912 1695 -650 2412 1638 5798 1513 2207 10 -1157 2020 -797 2959 -107 6653 1482 2474 11 -886 1722 -1055 3275 3213 6742 1197 3449		8	-9							
10 -1157 2020 -797 2959 -107 6653 1482 2474 11 -886 1722 -1055 3275 3213 6742 1197 3449		9								
11 -886 1722 -1055 3275 3213 6742 1197 3449		10	-1157							
		11								
						2879	1371	4753	1006	3827

Block	Trt	CV	CD	SV	SD	WV	WD	DV	DD
		(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)
4	1	418	565	62	1006	240	3449	378	445
	2	374	498	-111	908	472	3556	191	765
	З	53	587	-276	983	294	5919	147	1406
	6	378	903	-271	1388	125	6898	1762	1121
	7	191	1157	-89	1464	214	6800	1362	1558
	8	22	1135	-374	1558	-80	6515	1420	1629
	9	~663	1504	-690	2163	1562	6457	1117	2421
	10	-957	1980	-641	2683	4285	801	1072	2407
	11	-837	1549	-846	2679	805	6097	1068	2906
	12	-1193	2158	~890	2541	-4156	2421	1500	2537
5	1	401	316	129	. 939	276	6097	868	1469
	2	218	516	107	814	134	4125	401	490
	3	458	561	120	961	147	5945	619	783
	4	472	579	378	903	659	5945	779	654
	5	40	1095	-623	2020	530	6644	1090	1558
	6	401	1095	53	1291	-285	2047	801	1420
	7	294	952	-191	1962	231	5785	98 3	1753
	8	107	1166	-254	2096	151	6542	894	2100
6	1	365	512	18	921	178	4512	565	943
	2	512	387	258	1847	703	6032	694	939
	3	409	574	76	694	347	4098	761	854
	4	436	583	285	1170	685	5856	632	926
	5	160	805	-356	1246	280	5166	890	1540
	6	-102	1019	-498	1553	-67	6377	1161	1357
	7	-142	1055	-365	1411	312	5856	1224	1535
	8	-151	1041	-472	1891	182	6404	1068	1896

APPENDIX F

VELOCITY, CONE INDEX AND DEPTH DATA

Block	Trt	Cone Index (N/cm ²)	Velocity (cm/s)	Depth (cm)
1	1	45.2	117	5.1
	2	52.5	152	5.1
	З	33.9	190	5.1
	4	44.7	236	5.1
	5	40.2	117	10.2
	6	54.2	156	10.2
	7	48.7	197	10.2
	8	42.5	228	10.2
	9	57.4	114	12.7
	10	56.9	156	12.7
	11	34.0	189	12.7
	12	48.8	230	12.7
2	1	29.5	119	5.1
	2	29.1	148	5.1
	4	41.2	234	5.1
	5	40.1	114	10.2
	6	39.8	152	10.2
	7	54.4	194	10.2
	8	39.4	234	10.2
	9	36.0	114	12.7
	10	43.3	155	12.7
	11	47.7	190	12.7
	12	38.5	230	12.7
3	1 .	39.0	114	5.1
	2	23.7	155	5.1
	3	35.6	187	5.1
	4	26.1	241	5.1
	5	46.6	114	10.2
	6	34.5	155	10.2
	7	45.8	191	10.2
	8	39.8	230	10.2
	9	35.2	109	12.7
	10	56.5	150	12.7
	11	48.7	189	12.7
	12	50.9	221	12.7

Block	Trt	Cone Index (N/cm ²)	Velocity (cm/s)	Depth (cm)
· · · · · · · · · · · · · · · · · · ·		22.8	116	5.1
	2	34.8	155	5.1
	3	36.2	191	5.1
	6	40.3	156	10.2
	7	60.3	196	10.2
	8	43.4	236	10.2
	9	63.4	112	12.7
1	10	48.3	151	12.7
	11	39.6	187	12.7
	12	53.2	234	12.7
5	1	32.5	110	5.1
	2	14.2	151	5.1
	3	28.7	171	5.1
	4	48.9	210	5.1
	5	38.3	111	10.2
	6	23.6	152	10.2
	7	38.1	187	10.2
	8	25.4	219	10.2
6	1	19.3	116	5.1
	2	42.5	148	5.1
	3	21.8	186	5.1
	4	22.5	222	5.1
	5	30_8	118	10.2
	6	42.5	155	10.2
	7	21.7	187	10.2
	8	28.5	222	10.2

APPENDIX F (Continued)

APPENDIX G

4

-

∏ -TERMS

Tool	Block	Trt	Π _l		п2	п3
			Vertical	Draft	2	3
Chisel	1	1	0.271	0.581	2.73	1.0
		2	0.125	0.292	4.63	1.0
		3	-0.015	0.825	7.28	1.0
		4	0.224	0.791	11.22	1.0
		5	0.025	0.279	2.73	0.5
	· ·	6	-0.038	0.300	4.91	0.5
		7	-0.047	0.373	7.80	0.5
		8	-0.027	0.366	10.43	0.5
		9	-0.013	0.172	2.58	0.4
		10	-0.022	0.191	4.91	0.4
		11	-0.049	0.330	7.18	0.4
		12	-0.123	0.274	10.64	0
	2	1	0.456	0.882	2.84	1.1
		2	0.290	0.770	4.42	1 - 1
	e.	4	0.235	0.532	11.01	1.1
		5	0.015	0.265	2.63	0.9
		6	-0.108	0.391	4.64	0.
		7	-0.052	0.257	7.62	0.9
		8	-0.078	0.412	11.01	0.
		9	-0.023	0.297	2.63	0.
		10	-0.041	0.221	4.83	0.
		11	-0.075	0.250	7.28	0.
		12	-0.120	0.307	10.64	0.
	З	1	0.384	0.477	2.63	1.0
		2	0.371	0.872	4.83	1.1
		З	0.300	0.644	7.04	1.0
		4	0.501	0.863	11.65	1.1
		5	0.064	0.186	2.57	0.5
		6	0.055	0.312	4.83	0.!
		7	0.053	0.233	7.35	0.5
		8	-0.002	0.358	10.64	0.5
		9	-0.161	0.299	2.39	0.4
		10	-0.127	0.222	4.50	0.4
		11	-0.113	0.219	7.18	0.

Too1	Block	Trt	π1		π	п3
1001		Irc	Vertical	Draft	^П 2	
Chisel	4	1	0.721	0.962	2.69	1.0
		2	0.416	0.551	4.83	1.0
		3	0.057	0.628	7.35	1.0
		6	0.091	0.217	4.90	0.5
		7	0.031	0.186	7.69	0.5
		8	0.005	0.253	11.14	0.5
		9	0.065	0.147	2.53	0.4
		10	-0,123	0.254	4.55	0.4
		11	-0.131	0.242	7.04	0.4
		12	-0.139	0.252	11.01	0.4
	5	1	0.478	0.377	2.43	1.0
		2	0.595	1.408	4.55	1.0
		3	0.619	0.758	5.85	1.0
		4	0.374	0.458	8.85	1.0
		5	0.010	0.277	2.49	0.5
		6	0.165	0.450	4.64	0.5
		7	0.075	0.242	7.04	0.5
		8	0.041	0.444	9.71	0.5
	6	1	0.734	1.029	2.69	1.0
		2	0.467	0.353	4.37	1.0
		3	0.729	1.022	6.94	1.0
		4	0.751	1.003	9.90	1.0
		5	0.050	0.254	2.77	0.5
		6	-0.023	0.232	4.83	0.5
		7	-0.064	0.471	7.04	0.5
		8	-0.051	0.354	9.90	0.5
Ѕмеер	1	1	-0.004	0.847	0.54	5.0
ONCOP	•	2	-0.092	0.735	0.92	5.0
		3	-0.214	1.288	1.46	5.0
		4	-0.023	0.954	2.24	5.0
		5	-0.086	0.386	0.55	2.5
		6	-0.115	0.348	0.98	2.5
		7	-0.134	0.413	1.56	2.5
		8	-0.024	0.361	2.09	2.5
		9	-0.055	0.239	0.52	2.0
		10	-0.017	0.192	0.98	2.0
		11	-0.134	0.192	1.44	2.0
		12	-0.147	0.355	2.13	2.0
	2	1	0.0	1.180	0.57	5.0
	E.	2	-0.136	1.107	0.88	5.0
		4	-0.214	1.182	2.20	5.0
		5	-0.041	0.316	0.53	2.5
		6	-0.147	0.435	0.93	2.5
		7	-0.114	0.333	1.52	2.5
		8	-0.127	0.333	2.20	2.5
		9	-0.025	0.332	0.53	a

APPENDIX G (Continued)

-			Π			• Non - Las resolutions in high country,
Tool	Block	Trt	Пl		Π.	Π
• • / • • •			Vertical	Draft	^{II} 2	ЩЗ
	2	10	-0.139	0.456	0.97	2.00
		11	-0.094	0.333	1.46	2.00
		12	-0.102	0.451	2.13	2.00
	3	1	-0.049	1.011	0.53	5.00
		2	0.262	1.504	0.97	5.00
		3	0.048	0.882	1.41	5.00
		4	0.204	1.265	2,33	5.00
		5	-0.081	0.355	0.52	2.50
		6	-0.106	0.525	0.95	2.50
		7	-0.053	0.365	1.47	2.50
		8	-0.132	0.484	2.12	2.50
		9	-0.114	0.425	0.48	2.00
		10	-0.087	0.325	0.90	2.00
		11	-0.134	0.417	1.44	2.00
		12	-0.122	0.351	1.97	2.00
	4	1	0.106	1.711	0.54	5.00
		2	-0.124	1.010	0.96	5.00
		3	-0.295	1.052	1.47	5.00
		6	-0.065	0.334	0.98	2.50
		7	-0.014	0.235	1.54	2.50
		8	-0.083	0.347	2.23	2.50
		9	-0.067	0.211	0.51	2.00
		10	-0.082	0.345	0.91	2.00
		11	-0.132	0.419	1.41	2.00
		12	-0.104	0.296	2.20	2.00
	5	1	0.154	1.120	0.49	5.00
		2	0.291	2.222	0.91	5.00
		-3	0.162	1.299	1.17	5.00
		4	0.300	0.716	1.77	5.00
		5	-0.157	0.511	0.50	2.50
		6	0.022	0.531	0.93	2.50
		7	-0.049	0.499	1.41	2.50
		8	-0.097	0.798	1.94	2.50
	6	1	0.036	1.852	0.54	5.00
		2	0.236	1.686	0.87	5.00
		3	0.135	1.235	1.39	5.00
		4	0.490	2.015	1.98	5.00
		5	-0.112	0.392	0.55	2.50
		6	-0.114	0.354	0.97	2.50
		7	-0.163	0.630	1.41	2.50
		8	-0.160	0.643	1.98	2.50
Coulter	1	1	0.447	1.131	0.26	10.50
		2	0.335	0.397	0.44	10.50
		3	0.265	0.183	0.69	10.50
		4	0.409	2.988	1.07	10.50
		5	0.040	1.373	0.26	5.25

APPENDIX	G (Co	ntinued)
----------	-------	----------

Tool	Block	Trt	п		По	Π
1001	DICCK	ne	Vertical	Draft	^П 2	П3
Coulter	1	6	-0.012	1.203	0.47	5.2
		7	0.100	1.201	0.74	5.2
		8	0.183	1.502	0.99	5.2
		9	-0.029	0.765	0.25	4.2
		10	0.012	0.559	0.47	4.2
		11	-0.032	1.357	0.68	4.2
		12	-0.059	0.610	1.01	4.2
	2	1	0.660	4.970	0.27	10.5
		2	0.420	0.000	0.42	10.5
		4	0.436	0.080	1.05	10.5
		5	0.096	1.530	0.25	5.2
		6	0.001	1.289	0.44	5.2
		7	0.068	1.023	0.73	5.2
x		8	0.094	1.618	1.05	5.2
		9	-0.043	1.211	0.25	4.2
		10	-0.046	0.759	0.46	4.2
		11	-0.054	0.853	0.69	4.2
		12	0.019	0.807	1.01	4.2
	3	1	0.534	4.633	0.25	10.5
		2	0.843	8.226	0.46	10.5
		3	0.310	6.269	0.67	10.5
		4	0.817	6.582	1.11	10.5
		5	0.050	1.028	0.25	5.2
		6	0.016	1.959	0.46	5.2
		7	0.028	1.413	0.70	5.2
		8	0.061	1.436	1.01	5.2
		9	0.288	1.021	0.23	4.2
		10	-0.013	0.730	0.43	4.2
		11	0.409	0.859	0.68	4.2
		12	0.167	0.580	0.94	4.2
	4	1	0.409	5.869	0.26	10.5
		2	0.525	3.954	0.46	10.5
		3	0.314	6.330	0.70	10.5
		6	0.030	1.659	0.47	5.2
		7	0.034	10.92	0.73	5.2
		8	-0.018	1.453	1.06	5.2
		9	0.153	0.631	0.24	4.2
		10	0.551	0.103	0.43	4.2
		11	0.126	0.954	0.67	4.2
		12	-0.485	0.282	1.05	4.2
	5	1	0.329	7.271	0.23	10.5
		2	0.364	11.254	0.43	10.5
		3	0.198	8.034	0.56	10.5
		4	0.522	4.711	0.84	10.5
		5	0.134	1.680	0.24	5.2
		6	-0.117	0.842	0.44	5.2

APPENDIX G (Continued)

	Block	Trt	π ₁		alan basu dalam kalandar kalandar kalan dalam kalan dalam kalan basu dalam kalan basu dalam kalan basu dalam ka	rapatus in water in the state of
Tool			Vertical	Duaft	П2	п3
			vertical	Draft		
Coulter	5	7	0.059	1.470	0.67	5.25
		8	0.058	2.490	0.92	5.25
	6	1	0.358	9.073	0.26	10.50
		2	0.642	5.597	0.41	10.50
		3	0.618	7.294	0.66	10.50
		4	1.180	10.082	0.94	10.50
		5	0.088	1.627	0.26	5.25
		6	-0.015	1.454	0.46	5.25
		7	0.139	2.615	0.67	5.25
		8	0.062	2.177	0.94	5.25
Disk	1	1	0.160	0.756	0.26	10.50
		2	0.043	0.492	0.44	10.50
		3	-0.005	1.161	0.69	10.50
		4	0.162	0.876	1.07	10.50
		5	0.264	0.474	0.26	5.25
		6	0.196	0.312	0.47	5.25
		7	0.209	0.407	0.74	5.25
		8	0.333	0.477	0.99	5.25
		9	0.224	0.310	0.25	4.20
		10	0.247	0.390	0.47	4.20
		11	0.403	0.520	0.68	4.20
	0	12	0.264	0.349	1.01	4.20
	5	1	0.356	1.390	0.27	10.50
		2	-0.018	1.178	0.42	10.50
		4	0.201	1.022	1.05	10.50
		5	0.272	0.367	0.25	5.25
		6	0.390	0.593	0.44	5.25
		7	0.262	0.509	0.73	5.25
		8	0.314	0.640	1.05	5.25
		9 10	0.373	0.710	0.25	4.20
			0.294	0.326	0.46	4.20
		11	0.284	0.419	0.69	4.20
	Э	12 1	0.251 0.534	0.445	1.01	4.20
	С.	2	0.145	0.870 1.206	0.25 0.46	10.50 10.50
		3	0.296	1.109	0.67	10.50
		4	0.422	1.667	1.11	10.50
		5	0.363	0.278	0.25	5.25
		6	0.536	0.441	0.46	5.25
		7	0.361	0.331	0.70	5.25
		8	0.489	0.466	1.01	5.25
		9	0.266	0.389	0.23	4.20
		10	0.163	0.272	0.43	4.20
		11	0.152	0.439	0.68	4.20
		12	0.123	0.467	0.94	4.20
	4	1	0.644	0.757	0.26	10.50
		-				

APPENDIX G (Continued)

Tool	Block	Tr·t	п1		Π	Π
			Vertical	Draft	П2	П3
Disk	4	2	0.213	0.851	0.46	10.50
		3	0.157	1.504	0.70	10.50
		6	0.424	0.270	0.47	5.25
		7	0.219	0.250	0.73	5.25
		8	0.317	0.363	1.06	5.25
		9	0.109	0.237	0.24	4.20
		10	0.138	0.309	0.43	4.20
		11	0.167	0.455	0.67	4.20
		12	0.175	0.296	1.05	4.20
	5	1	1.035	1.751	0.23	10.50
		2	1.093	1.335	0.43	10.50
		З	0.836	1.058	0.56	10.50
		4	0.617	0.518	0.84	10.50
		5	0.276	0.394	0.24	5.25
		6	0.329	0.584	0.44	5.25
		7	0.250	0.445	0.67	5.25
		8	0.341	0.800	0.92	5.25
	6	1	1.136	1.897	0.26	10.50
		2	0.634	0.857	0.42	10.50
		3	1.354	1.520	0.66	10.50
		4	1.088	1.594	0.94	10.50
		5	0.280	0.485	0.26	5.25
		6	0.265	0.309	0.46	5.25
		7	0.546	0.686	0.67	5.25
		8	0.363	0.645	0.94	5,25

•

APPENDIX G (Continued)

VITA 2

Craig Clayton Reisbeck

Candidate for the Degree of

Master of Science

Thesis: FEASIBILITY OF USING A TILLAGE TOOL AS A MOBILE PENETROMETER

Major Field: Agricultural Engineering

Biographical:

- Personal Data: Born in Julesburg, Colorado, January 30, 1959, the son of Robert F. and Sandra Reisbeck.
- Education: Graduated from C. E. Donart High School, Stillwater, Oklahoma, in May, 1977; recieved Bachelor of Science degree in Agricultural Engineering from Oklahoma State University in December, 1983; completed requirements for the Master of Science degree at Oklahoma State University in May, 1985.
- Professional Experience: Teaching Assistant, Department of Agricultural Engineering, Oklahoma State University, January, 1984 to May, 1984; Research Assistant, Department of Agricultural Engineering, Oklahoma State University, May 1984 to May, 1985.