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PREFACE 

The solutions of geometric construction problems have 

always intrigued me. The simplicity of the problems can 

frustrate the begining geometer. Much to the suprise of 

most mathematicians, algebra plays a fundamental role in the 

understanding of the solutions. 

This paper analyzes the properties of a construction 

tool called the Mira. Also included is a discussion of 

constructible polygons a Mira can construct. Later~ 

compass and straightedge constructions in the hyperbolic 

plane are discussed. 

At this time, I wish to express my gratitude and 
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deepest appreciation to my major adviser, Dr. Joel K. Haack~ 

~·Jho has been an invaluable mentor and friend. Also, I 1-'JOUl d 

like to thank the other members of my committee, Dr. Paul F. 

Duvall~ and Dr. David C. Ullrich, for their assistance. 

I would like to thank Professor Phil Briggs from East 

Central University for his help in locating an importamt 

resoLtrce= A special thanks are due: Bobby Winters, for his 

encouragement along the way; Tom Potter~ for his help in 

drawing several figures; and Steve Roy, for helping me to 

relax by pulling me away to play golf. 

Of course, I thank my family for their constant 

encouragement and support. My wife, Angela, deserves much 
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credit for her constant love~ devotion, and support for me 

while I finished the paper. This paper is dedicated to my 

son, Marc who has been a source of inspiration. 
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CHAPTER I 

INTRODUCTION 

The idea of drawing geometrical figures is not new. 

Certainly, when people first started to draw geometric 

figun:!s, they must have wondered what figures they 

draw and which they could not. It was the Greeks, however, 

who first formalized and popularized such problems. Toc!a.y 

these problems are often presented to high-school geometry 

classes. 

The tools most commonly used in the drawing of the 

geometrical figures are the compass and straightedge. Nuch 

has been proved concerning the efficacy of these tools, 

hence we will not dwell on this. Rather, we introduce and 

analyze a new tool, called the Mira, produced by Creative 

Publications~ Inc. The Mira consists of a rectangular piece 

of red plastic that is supported vertically by two end 

pieces; it resembles an I-beam. The reason the Mira is made 

of red plastic 1s so that one can see through it but, at the 

same time, one can see the reflection of objects on the 

other side. In this manner, the reflection of a line in the 

plane can be constructed. 

Accompanying the Mira is an exercise booklet. In the 

booklet, the student is led through several construction 
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techniques~ culminating in the trisection of an arbitrary 

angle. It was this capability of the Mira, along with the 

ease of its use, that make it an attractive target of 

This work analyzes the constructions possible 

with the Mira~ along with a consideration of constructions 

in the hype~bolic plane~ 

Chapter 2 considers constructions with a Mira and 

results in a characterization of the numbers a Mira can 

construct: construct second-degree and third-degree 

extensions of the rationals. 

Chapter 3 examines the class of regular polygons the 

Mira can construct. The Nira can construct . . regu1ar po1ygons 

with a prime number of sides when the prime is of the form 

...,k <j 
..::... ·-· + 1. 

Chapter 4 then proceeds to the hyperbolic plane. Here 

a theorem is proved that states the relationship between 

constructions in the hyperbolic plane and constructions 

using Euclidean tools in the upper-half-plane model. 

The paper concludes with some suggestions for further 

research. 



CHAPTER II 

CONSTRUCTIONS IN THE EUCLIDEAN PLANE WITH A MIRA 

The compass and straightedge are familiar tools to the 

beginning geometer. Nevertheless, a new approach is needed 

to sol~e some of the construction problems presented by the 

ancient Greeks. 

§t~§ightg~gg, we mean a finite list of operations used ~o 

obtain a locus of points. The operations allowed are 

1) Locate the intersection of two lines; 

2) Locate the intersection of two circles; 

3) Locate the - + -~--:Ln ..... ersec ..... :Lon of a line and a circle. 

A number N is £QD§t~Y£ti~!§ if, given a unit segment, a 

construction can be given that produces a segment of 

length N. 

Although most mathematicians are familiar with the 

characterization of numbers that are constructible via 

compass and straightedge, we will state it here for 

reference. A number is constructible if and only if it is 

an element of a field obtained in a finite tower of 

quadratic extensions of the rationals r'7 
L ~ ' 

p. 21L An early 

formulation of this theorem was given by Descartes in 1637 

[11, p.106J. The remainder of this section is devoted to 

developing a similar characterization for the numbers 
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constructible with a Mira. A number N is said to be ~iC2 

given a unit segment, a construction with 

a Mira can be given that produces a segment of length N. 

The operations allowed in a construction with a Mira are 

1) Connect two points with a straightedge 

Locate the intersection of two nonparallel lines 

3) Reflect a point through a line 

4) Reflect a line through a line 

A fifth operation will be discussed in connection with the 

trisection of an angle. This operation is nat needed for 

the first two results. 

First, we compare the field E of numbers constructible 

with compass and straightedge with the set F of numbers 

that are constructible with the Mira. 

The set F of Mira constructible numbers is a 

field. If r is a nonnegative element of F, then the square 

root of r is also an element of F. 

We will demonstrate three of the operations: 

addition~ multiplication, and extraction of square roots. 

The others are similar. For the addition of t~o segments AC 

and DE, the Mira is positioned to reflect ~ne segment AC to 

so that one endpoint A~=D is common to both segments. 

;nen the Mira is used to reflect the segment A~c~ to A''C'' 

so that both segments A'C''and DE lie on a line; see 

Figure 1. 
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Figure i Addition of segments •. -1-h M~-~ .... Wl. '-'' a !!..5.! a 

The multiplication of two segments is almost as simple. 

Lay off one of the given segments OA on a ray OX. On the 

same ray~ lay off the unit segment OI, such that both 

segments have the vertex of the ray as a common endpoint. 

Erect a perpendicular OV at the vertex 0 and lay off the 

other given segment DB. Now erect perpendiculars at A, I~ 

and B. Construct the line through the vertex 0 and the 

intersection D of the perpendicular at I and at B. Then 

drop a perpendicular from the point E of intersection of the 

line and the perpendicular at A n. 

perpendicular thus constructed C. 

Call the base of the 

Then the segment Tram the 

vertex to C is the required segment; see Figure 2. 
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Figure 2. Multiplication of Segments 

To perform the extraction of square roots~ first add 

the unit segment AB to the given segment BC. Erect a 

perpendicular at the common endpoint B. Using a line of 

reflection through the midpoint M of the segment AC~ use the 

Mira to reflect A onto the perpendicular~ call the point X. 

Then the segment BX is the square root of segment BC; see 

Figure 3 [3, p.29J. 
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A c 

Figure Extraction of Square Roots 

Using this lemma and the characterization of compass 

and straightedge numbers, one can show that any compass and 

straightedge construction can be performed with the Mira. 

The field of Mira constructible numbers, F, is 

an extension of the field of compass and straightedge 

numbers, E. 

In fact, the inclusion in Theorem 2 is proper since F 

properly contains E. We are now able to perform 
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constructions with the Mira that the compass and 

straightedge cannot. For example, the trisection of an 

arbitrary angle cannot be done with a compass and 

straightedge [7, p.26l, but can in fact be accomplished with 

the Mira by following a construction due to Pappus (300 AD); 

see Figure 4. In this construction, the fifth operation 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 

~\ 

Figure 4. Angle Trisection 
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Gi \lEf1 choose P on ray OX and locate S on ray OX 

such that OP = PS. Through P construct line n parallel to 

OY and line m perpendicular to line OY. Fi rH:I tt-~e 1 i ne t 

that reflects S onto m and the line n through 0. Laca.te F~!! 

the image of 0 under reflection in t • Then ~ ROY is one-

thir-d of .lo' vo'·' ... ....,. ~ A• i L·.:.• p. 54J. 

The operation that was performed above which could not 

be accomplished by the compass and straightedge was that of 

locating a line that would reflect a point onto a line and a 

line through a point simultaneously. We will call this 

operations we will allow the Mira to perform: 

11 Connect two points with a straight line 

21 Locate the intersection of two non-parallel lines 

3) Reflect a point through a line 

4) Reflect a line through a 1 in,e 

5) Perform a simultaneous reflection 

1n other words~ these operations, and only these~ are those 

used to perform any Mira construction. 

Now we must analyze the operation of simultaneous 

reflection:; Then, without loss of generality, we may 

assume that we are given two lines, one the y-axis, . '-
"'C.! .e 

other with equation y = ax + r, intersecting the first at 

the point (O,ri~ with ran element of F. Also, we may 

assume the points are 0 = (c,OJ, and S = (s,t), where 

c, s, and t are all elements of F. This is possible since 

all the various rotations and translations are accomplished 
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by a compass and stt-aightedge, and Theorem 2 assures us that 

these are possible with the Mira also. Then Q, the 

reflection of the point 0 onto the line y = ax + r, and H 

the image of S reflected onto the y-axis, are the new 

points. L2t the coordinates of H be <O,u) and of Q be 

(v,wi; see Figure 5. 

' ' 

(OJC) 

' ' ' ' ' ' ' 
Figure 5. Simultaneous Reflection 
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Consider the different expressions for the slope of ~ne 

Mira line so located by simultaneous reflection. One 

f orrriLtl a. for the slope m of the Mira line is given bv 
' 

m = !u + t- w)/(s- c- v), 

since the Mira line passes through the midpoints of OQ and 

HS. Also, since the Mira line is perpendicular to line HS, 

m = s/ (u - t). 

Finally, the Mira line is also perpendicular to line OQ, so 

m = (c - v)/w. 

Our known parameters are a,c,r,s, and .... 
L. We solve for v • 

An equation for v in the general case of simultaneous 

r~fl2ction is 

~ - (~2+1)·v3 +(a2c:-~_.-~ .... +~--~-+-2--s-r-)v2 + V - .a - -OL -a• d L ~ . 

Note the above equation is cubic, not quadratic, so if the 

polynomial is irreducible over the extension E(a,c,r,s,t), 

of E, then a compass and straightedge can not construct v. 

Consider now the case in which the given lines are 

parallel; assume their equations are y = 0 and y = r. Also, 

given are two distinct points, call them B = <b,c) and 

S=<s:~t)Q Then reflect B onto y = r, and S onto y = 0. 

If we let the point R = (v,r) be the reflection of B under 

the'reflection in the Mira, then using the same type of 

analysis as above, we obtain the following equation for v: 

' 2 0 = \c-r-t)v + 2(rs-cs+tb)v- (rs+cs). (5) 

This polynomial is of lesser degree than a cubic, hence, 

~othing new is gained. 
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It is not obvious that the paramenters a,c~r,s,t can be 

manipulated so that equation 4 can represent an arbitrary 

c.Ibi c polynomial with coefficients . r-
l.n r. further 

investigation is necessary to determine that we can in fact, 

construct the roots of any cubic polynomial with 

coefficients in F using the Mira. 

We shall start by solving an equation of the form 

3 v - w = o, { ! \ 
·.OJ 

where w is a nonnegative element of F; that is, we wish to 

show that we can find a real cube root of an arbitrary 

element of F. Now, equation 4 becomes equation 6 if the 

following four conditions are satisfied: 

2 
1 = 1 + a , 

0 = a 2s-2at-2ar-a 2c-s-c, 

0 = 2ars+2act-2rt-2acr+r 2+c2, 

-w = r 2s+2crt-cr 2-sc 2+c3. 

(9) 

( 10) 

Whence equation 7 forces a = 0; then equation 8 results in 

s = -c and equations 9,10 become 

2 0 = -2rt+r +c 

2 -w = -2cr +2crt ( 12) 

This results in two equations in three unknowns. Let c=l. 

Solving the resultant system we have 

2 
r = 1+w, 

which can then be used to find the values of the other 

parameters. Thus, equation 4 can be manipulated to obtain a 

cube root of any element of F. 

Now th.~t th.e Mira ca.n find real cube roots of ar-bitrary 
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constructible real numbers, the question of the ability of 

the Mira to solve arbitrary cubic equations whose 

coefficients are in F arises. Examining the cubic formula 

below, we notice that the formula contains cube roots of 

square roots. 

CUBIC EQUATIONS 

A cubic equation, y 3 + py2 + qy + r • 0 may be reduced to the form,

x3 +ax + b • 0 

by substituting for y the value, x - ~ . Here 

a- i(Jq- p2)andb- n(2p3 - 9pq + 27r). 

For solution let,-

A- - T +4 + 27' 
~ b ~bz 0 3 

then the values of x will be given by, 

X • A + 8, -~+~v'"=I _A+B_A-Bv=J". 
2 2 • 2 2 

Figure 6. The Cubic Formula [10, p.103] 

Thus, there may be occasions in which we need to take 

the cube root of a complex number of the form a + bi, wher-e 

a,b are in F. We denote the set of such complex numbers 

F (i). To be able to solve arbitrary cubics with 

coefficients in F by means of the cubic formula, we must be 

able to take the cube root of these complex numbers. 

Consider the polar representation of a complex number, 

th t . ~~ h . 1 t f F d t . a 1s, ze , w ere z 1s an e emen o , an 1s an 

angle between 0 and 2 1f'. Since we can construct cube roots, 
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we can find the cube root of such a number. Simply the 

cube of z and trisect of the operations can be 

done with a Mira. Hence, the Mira can construct the cube 

root of any complex number in F\i)2 Therefore; we may use 

the Mira to salve 2D~ cubic equation with coefficients in 

The quartic formula, as in the case of the cubic 

formula, involves only cube and square roots= Hence we may 

use the Mira to solve any quartic equation whose 

coefficients are in F= The above arguments have just proved 

The Mira can be used to construct the real and 

imaginary parts of the roots of any quartic equation whose 

coefficients are in F. 

Now that the algebraic significance of the operation 

called simultaneous re~lection is known, let us formally 

state the characterization of the field of numbers the Mira 

operations will produce. 

A number p is Mira constructible if and only if 

there is tower of the rationals; with 

each intermediate extension of degree three or less, such 

that p is in the last field of the tower. 

Suppose p is constructible. Then p can be located 

by the finite application of operations the Mira can 

perfortn. If operations 1-4 are used, then the extension 
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l.S most quadratic. If simultaneous reflection is used, 

i'-le have proved that we have formed at most a cubic extension 

of a quadratic extension of our field. Hence, application 

of the various operations leads to a finite tower of 

ex~ens1ons of degree two or three. 

Conversely, let N be the order of a tower of 

quadratic and cubic extensions of the rationals. The proof 

is by induction on the order of the tower. If N=O, then the 

point is rational and is constructible. Assume the theorem 

is true far N=M. Let a be in the M+l st field in the tower; 

then a is of the form d+ei'C, or of the form g+jff.+k ~' 

where d,c,e, or g,h,J,k are in theM th field. By the 

inductive hypothesis, a is constructible. 

Now we are ready to apply these results to the Greek 

construction problems introduced earlier. As we have shown, 

the trisection problem can be solved by the Mira. A similar 

result holds for the duplication of the cube,since theorem -

tells us that we may now solve the equation i{3- 2 = G. 

However, the squaring df the circle is still not salvable oy 

the Mira. We know that pi is transcendental, not the root of 

any polynominal with rational coefficients [7, p.48J. 

Hence, the Mira cannot square the circle. 



CHAPTER III 

CONSTRUCTION OF REGULAR POLYGONS 

The problem of the construction of regular polygons is 

well known. With a compass and straightedge, we know that a 

regular polygon·with n sides is constructible if and only if 

- . ,., k) ,.... --1- h -1- d. t. t- C" t n - \ .._ . p q. • • . ::. ,_ , w ere p , q, .•. , r , s, ,_ are 1 s 1 n c _ , erma 

primes, that is, primes of the form 2m+ 1, [1, p.186J. 

However~ with the Mira, the answer takes a new form. 

We know that a nonagon can not be constructed with a compass 

and straightedge, but an angle of 120 degrees can be 

constructed and trisected with the Mira, hence constructing 

an angle of 40 degrees and from that a nonagon. We would 

like to characterize the polygons the Mira can construct. 

The problem may be viewed as constructing the p-th 

roots of unity, for p prime, because the vertices of the 

regular p-gon inscribed in the unit circle in the complex 

plane are the roots of the equation 

:-; p - 1 = 0. 

If the left side of equation 14 is factored, the irreducible 

factor other than x - 1 is called the pth cyclotomic 

polynomial. The degree of this cyclotomic polynomial is 

p -1. The roots of this polynomial gene~ate an extension of 

the rationals~ we would like to characterize this extension 

16 



to compare it to the field of Mira constructible numbers. 

Following the characterization of the constructibility of a 

regular polygon with a prime number of sides with a compass 

and straightedge~ we are led to the following theorem. 

For a prime p, a regular p-gon is constructible by 

a Mira if and only if p is + 1~ with n 

and k nonnegative integers. 

Let p be prime and suppose a regular p-gon is 

constructible by the Mira. Then the degree of the 

cyclotomic polynomial is p-1. The Galois group of the 

polynomial will have order p-1 and be cyclic [8~ p.299J, 

hence solvable. Then the composition factors in the ~ormal 

series for the group correspond to intermediate extensions 

of prime degree in a tower of fields over the rationals. 

Since the Mira can only construct extensions of order 2 or 

3, the composition factors must have order 2 or 

p-1 is OT the form 2n 

Conversely~ let p be of the form indicated. Then 

the Galois group of the splitting field of the cyclotomic 

polynomial over the rationals will have order 2n 3k . 

Furthermore, the group will be cyclic, hence solvable. Any 

normal series for the group will have composition factors 

that are of prime order 2 or These factors correspond to 

extensions of degree 2 or By our characterization of 

Mira constructible numbers, the Mira can construct 



e}~tensions of degree 2 or -:r ._.. Therefore, the regular p-gon is 

constructible. 

We will call the primes of Theorem 5 ~iC2 QCiffi§§= Now 

that the problem is solved for these primes, it is easy to 

determine for which n a regular n-gon is Mira constructible. 

For general n, a regular n-gon is constructible 

with a Mira if and only if n can be factored as 

n=2k3lTfp 1 , 

where the pi are distinct Mira primes. 

E:!:QQf 

The primative n-th roots of unity are 

constructible if and only if the primative m-th roots of 

unity are constructible, for m = 2k -:rl 
--· 'pi. 

Consider the following example. Certainly, a heptagon 

is not constructible with compass and straightedge, but 

seven is a Mira prime. So consider t~e 7th cyclotomic 

polynomial, (5, section 4.4], 

0 = x 6 +~< 5 +x 4 +x 3 +x 2 +x + .1 • 

Now substitute y = x + lh< in equation 13 to produce a cubic 

equation in y: 

0 = y 3 +y 2 +2y - 1 • ' (16) 

By the proof of Theorem 3, we can actually exhibit a 

construction of the solutions of equation 16, hence exhibit 

solutions of equation 15; see Figure 7. 

The Mira cannot solve all construction problems, as we 

have seen. For further example, consider the construction 
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Figure 7. Heptagon 

of a regular 11-gon. Using an analysis similar to that 

above, we find our substitution reduces the degree of the 

nolvnomial to ~iVP. r- ~~·· - ·-- In I. -1- • h . ac~, -c .• e resultant irreducible 

fifth degree polynomial cannot be solved by the Mira, since 

the Mira cannot produce elements of a fifth degree 

e}!tensi an :a 

Therefore, the Mira again can produce more geometric 

figures than the compass and straightedge. Also, we see 

that algebra again is used to produce the necessary proofs. 



CHAPTER IV 

CONSTRUCTIONS IN THE HYPERBOLIC PLANE 

In order to answer questions about constructions in the 

hyperbolic plane [6, Ch.6J, we will use a model of 

hyperbolic geometry in the Euclidean plane. In this way, we 

hope to convert questions about hyperbolic construction with 

hyperbolic tools into those constructions that involve only 

the more familiar Euclidean tools. The model we choose to 

use is the upper-half-plane model. In this model, the 

hyperbolic plane is the set of all the points in the real 

plane with positive y-coordinates. Then we interpet "line" 

as "an open vertical ray with its vertex on the x-axis or an 

open semi-circle with its center on the x-axis". The usual 

interpetations of incidence and betweenness are still used 

[6, p.191J. In this model, one can easily see how it is 

possible for the negation of the parallel postulate to hold. 

However, more needs to be said about the interpretation 

of congruence. Two angles are congruent in the model if 

they are congruent in the Euclidean sense. A model of this 

type is said to be £QQfQ~ffi~l· Two segments are congruent if 

their hyperbolic lengths are equal. To the casual observer, 

the distance seems to be distorted in the vertical. The 

Euclidean length of a hyperbolic segment of length one 

20 



21" 

that is closer to the x-axis, called the line at infinity, 

is less than the Euclidean length of a hyperbolic segment of 

length one that is farther from the x-axis. For an exact 

formula for the distance between two points in terms of 

their Euclidean coordinates, see the appendix. 

The relationship between Euclidean circles and 

hyperbolic circles is easy to state. The locus of points of 

the circle is the same, but the hyperbolic center is closer 

to the line at infinity than is the Euclidean center, 

because of the distortion of distance in the model. 

There are curves in the hyperbolic plane that have no 

Euclidean counterparts; these are called hypercircles and 

horocircles. If we take all the points that are equidistant 

to a given hyperbolic line (on one side of the line>, the 

resultant locus of points is not a line, but a curve called 

To obtain a horocircle, take a point off a 

given line and draw the circle with the point as its center 

and the distance from the point to the line as its radius. 

As the point recedes from the line a larger circle is drawn. 

In the Euclidean plane, the limit of these circles is the 

line itself. In the hyperbolic plane, however, the limiting 

locus of points is not the line, but rather a curve called 

the h9~Q£iC£l~· 

Now, we say that a point is £QQ§t~~£iiQl~ in the 

hyperbolic plane if we can locate it as the intersection of 

any of the following hyperbolic figures either with a 

similar figure or with another of the list: a line through 



two points previously constructed, a circle with a center 

and radius given, a hypercircle with given radius, or a 

horocircle with given radius. The tools employed in the 

22 

hyperbolic plane include the hypercompass, to draw the 

hypercircle through a point off a line, and the horocompass, 

which is used to draw the horocircle with any given ray as 

radius. Now our list of hyperbolic tools is complete: a 

straightedge, a compass, a hypercompass, and a horocompass. 

Unfortunately, we cannot lay our hands on these 

hyperbolic tools. Therefore, we wish to show that we 

can use our Euclidean tools in a hyperbolic model to 

simulate any hyperbolic construction. We will use the 

notation H-line for a hyperbolic line, and H-circle for a 

hyperbolic circle. Similarly, we use E-line and E-circle to 

denote a Euclidean line and circle, respectively. 

Ibgg~gm_z 

A construction is possible in the hyperbolic plane 

if and only if it is possible in the upper-half-plane model 

with Euclidean tools. 

E~ggf 

We have two cases to consider in the forward 

implication: an H-line through two points, and a hyperbolic 

circle with a given,radius. 

Given two points. it is simple to construct the 

H-line through them with a Euclidean compass and 

straightedge. If the points have the same x-coordinate, 

then draw a vertical E-ray through them; this will be the H-
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line through them also. If the points are otherwise 

positioned, we must construct the Euclidean circle centered 

on the x-axis that passes through them. First~ draw the E-

segment that connects the two points. Next~ draw the E-
\ 

perpendicular bisector of the segment. The point in which 

the perpendicular bisector intersects the x-axis is the 

center of the semicircle that is the desired H-line. The 

perpendicular bisector must intersect the x-axis since the 

points are not vertical. 

Next, if we are given a radius (i.e. a hyperbolic 

segment) and a center, we must be able to construct the 

hyperbolic circle at that point. Unfortunately, the 

hyperbolic and Euclidean centers of a circle in this model 

never coincide. If we can construct a vertical diameter 

of the hyperbolic circle, we could bisect it to find the 

Euclidean center; hence we can then draw the circle. 

Without loss of generality, we may assume that we 

are given an H-segment CA where C is the center of the 

hyperbolic circle. First~ we assume that CA is a vertical 

segment. Consider the H-line perpendicular to segment CA 

the point C. It will be a Euclidean semicircle. If we 

reflect CA about this H-line, we will obtain a vertical 

diameter of the circle. Reflections through H-lines in the 

upper-half-plane model are given by Euclidean inversions in 

the circles that represent H-lines or by Euclidean 

reflections through vertical rays that represent H-lines. 

(For this and other results concerning inversions, see 
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[6, p.194ff and p.287ff].} Hence, all we need do is invert 

the segment; see Figure 8. 

A 

c 

I 

A 

',(. 

I 

Figure 8. Vertical Radius Case 

\ 

\ 
I 
\ 
' 

Next, assume that CA is not a vertical segment. We 

will now reflect the segment CA sa that it is a vertical 

radi~s of the circle, using Euclidean tools. 

Let a~ and o•~ be the ideal points where the H-
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line CA strikes the x-axis. Consider the semi-circle with 

radius O''C. If we invert CA through this semi-circle, then 

CA will become a vertical segment with C as an endpoint, [6, 

Prop 7.8]. Now we .:u-e done by the case above; see Figure 9. 

o' 

Figure 9. Nonvertical Radius Case 

Conversely, we show that any point constructible 

by Euclidean tools in the upper-half-plane model can be 
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constructed by hyperbolic compass and straightedge. By the 

Mohr-Mascheroni theorem, all Euclidean constructions can be 

carried out using a compass alone, [4, p.172J. This result 

is proved by means of inversion through a selected circle. 

For example, consider a segment of an E-line in the model. 

Let us take an arbitrary circle in the model and invert the 

segment through the circle. We know that the inversion 

takes the line to a circle, that is inside the given circle 

but passing through the center of the given circle [6, Prop 

7.7]. Note that in the proof of the Mohr-Mascheroni 

Theorem, we may invert in any arbitrary circle in the model, 

ensuring that all circles required in a construction will be 

entirely contained in the upper-half-plane. 

Thus, it suffices to show that, given two points 

in the upper half-plane, we are able to construct the 

Euclidean circle having one of the points as its center 

(with hyperbolic tools), if the circle lies entirely in the 

upper half-plane. For this construction we will employ more 

than just compass and straightedge. As discussed before, 

the other tools commonly used in the hyperbolic plane are 

the horocompass and hypercompass. In 1944, Nestorowitsch 

proved that the three kinds of compasses, together with a 

straightedge, are of efficacy equal to that of standard H-

compass and straightedge, [2, p.290J. With this result, we 

may use all of the compasses in our construction. 

Assume we are given point C as the Euclidean 

center of a circle through a point. Note that the locus of 
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points on the circle is the same for the hyperbolic and 

Euclidean circles, the only difference being the location of 

the centerc We assume that we are given a "vertical" H-

line 1 through the point C. For case 1, assume that the 

point A is not on this line. Then construct a horocircle 

through A with the vertical ray from A away from the axis as 

' its diameter. This produces a horizontal E-line m that 

intersects the vertical line through C at a point D. Using 

the compass, lay off the E-segment DA on the horocircle m on 

the opposite side of 1 to produce the point B. Note that 

the Euclidean length of AD is equal to that of BD since 

the E-line m is horizontal. Then B is also on the circle. 

Next, drop a perpendicular n to the E-line m at point A; 

this will be another "vertical" H-line. Using the 

hypercompass, draw the hypercircle through the points C and 

B. Let the intersection of the hypercircle and line n be 

called E. 

Then E is on the Euclidean circle, hence on the 

hyperbolic circle. Consider the Euclidean triangles BDC and 

CFE; certainly ~ DBC = ~ FCE and { BCD = l CEF. Also, the 

Euclidean segments BD = DA = CF, hence the triangles are 

congruent. Then the Euclidean distances BD and CF are 

congruent. Therefore, E is an the circle. To find the 

hyperbolic center, use the hyperbolic compass to construct 

the H-perpendicular bisector of the H-segment AEa The 

intersection of this line with the H-line DC is the 

hyperbolic center of the circle; see Figure 10. 



28 

Figure 10. Hyperbolic Center of a Circle - Case 1 

For case 2, assume A is on the vertical H-line 

through C. Draw the H-lines perpendicular to the line AC at 

points A and C. Draw the horocircle through C and the point 

at infinity; this intersects line AC at point C. Then, the 

horocircle and the perpendicular at A intersect at the point 

B. Next, draw the hypercircle (equidistant curve) to AC 

with radius AB. This hypercircle intersects the 

perpendicular at C in a point D. The E-segment DB is not 

vertical. By case 1, we can draw a circle with D as its 

center and the Euclidean segment DB as its radius. The 

hypercircle intersects this circle in a point E. If we draw 

a perpendicular to AC through E, the foot of the 

perpendicular F produces the vertical diameter of the circle 

centered at C; see Figure 11. 
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Figure 11. Hyperbolic Center of a Circle - Case 2 

One last case must be considered, that which 
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occurs when A and C lie on the horocircle through C and the 

point at infinity. As we have seen, the horocircle is a 

E-horizontal line perpendicular to the vertical H-line at C. 

Let 0 be the ideal point, i.e. the vertex of the vertical H-

line through C. Let 0' be the ideal point produced by the 

vertical through A. Let 0'' be the ideal point produced by 

the perpendicular through C. Now draw the vertical through 

the point 0''. Draw perpendiculars to the vertical. line 

through 0'' from the points 0 and O'and; call these points D 

and B respectively. The E-segment DB is congruent to the E-
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segment CA. Hence, the segment DB is vertical. By case 2, 

we may draw the circle centered at B with radius DB. Next~ 

draw the horocircle through D and the point at infinity. 

The horocircle intersects the vertical through C at the 

point E. Then the E-segment CE is congruent to the E-

segment CA, and by case we may draw the circle centered 

at C; see Figure 12. 
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Figure 12. Hyperbolic Center of a Circle - Case 3 

With Theorem 7, hyperbolic constructions may be 

explored with ease. For example, consider the 



31 

construction of dividing a segment into three congruent 

parts .. Assume that the coordinates of the endpoints of ~· ~_ne 

segment are CO,lJ and (0~2). Using the formula for the 

hyperbolic distance between these points (see the appendix), 

we find the distance to be ln 2. But, the coordinates of 

the point that is one-third of this distance can be found by 

letting q b= the y-coordinate of the point, and letting d be 

the distance between that point and (0,1)~ We then set 

d=(1/3)ln 2, k=l, and h=p=O in the formula for the 

hyperbolic distance between the two points (see the 

appendix): 

2 <1/3)ln .., 
.,;.. 

2 Vo 2 ) 2 e = 1 + g + g (17) 

1 + 2 Yo q2 j 2 q 

This reduces to: 

= q (18) 

Since we cannot construct the cube root of two with a 

compass and straightedge in the Euclidean plane, the segment 

cannot be trisected in the hyperbolic plane. 



CHAPTER V 

CONCLUDING REMARKS 

Theorem 7 opens the door for many more questions about 

the hyperbolic plane, the foremost question being, is there 

an analogous version of Theorem 7 for the ''hyperbolic mira~? 

Also, can the numbers the Mira can construct in the 

hyperbolic plane be characterized? 

Theorem 5 states which regular polygons with a prime 

number of sides which the Mira can construct in the 

Euclidean plane; note that not all primes are included. We 

conjecture that there is a limitation on which polygons can 

be constructed with any tool. Regular polygons also occur 

in the hyperbolic plane; can we charactertize the ones we 

can construct? 

As with most areas of mathematics, geometry 

increasingly uses other areas of mathematics to solve more 

difficult problems. We have seen a good example of this in 

the construction problems. In effect, mathematics has 

become all one field, with no one sub-field completely self-

contained. 

Geometry, however, affords one the satisfaction of a 

visual completion of the problem. Along with this visual 

satisfaction, there are problems stemming from physically 
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earring out the constructions, mainly errors. Although we 

speak of lines with no width, physical lines have width. 
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This causes error in the construction. 

offender in producing drawing errors. 

The Mira is a major 

We found it hard to 

draw an accurate construction. The best results were 

obtained in a well-lighted room, with a very bright light 

behind the Mira, so that the reflection could be easily 

seen. In this way the construction of the heptagon was 

carried out. The error caused the first construction to be 

wildly inaccurate. The second construction was carried out 

with the help of a ruler for checking the length of the 

segments. This improved the accuracy of the construction 

greatly, and produced the correct figure. 
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APPENDIX 

One of the various models of the hyperbolic plane is 

called the Cayley-Klein unit disk model. The distance 

formula is known for this model [9, p.282J. If we let 

P=<x,y) and Q=<w,z), then the distanced between P and Q 

is give by: 

d = 

Also given in [9, p.285J is the isomorphism between the 

Cayley-Klein model and our upper-half-plane model. The map 

is defined by se~ding <x,y> to (x~,y~> where 

x" = x/(1 y)' (20) 

y~ = t/(1 y>, (21) 

and t is defined to be V 1-x 2-y 
2 . If we invert this 

isomorphism and substitute into equation 19, we have the 

distance formula for the upper-half-plane model. The 

distance d between two distinct points <h,k> and <p,q) in 

the upper-half-plane model is given by 

where 

d = {1/2)lnf (h-p)k+(k1+g~) + ~) , 
(h-p)l+(k .. +q&) - v--r-

T = 2 2 .4 2 2 2 (k-q) (k+q) +(h-pJ +2(h-p) (k +q }. 
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