GEOMETRIC CONSTFUCTIONS

By
JACK M. FRA
Bachelor or Science
Stillwater: OK

1983

```
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of
the Degree of MASTER OF SCIENCE July: 1985
```

Thesis 1985

$$
R 234
$$

$$
10 p .2
$$

geometric constructions

Thesis Approved:

FREFACE

The solutions of geometric construction problems have always intrigued me. The simplicity of the problems can frustrate the begining geometer. Much to the suprise of most mathematicians, algebra plays a fundamental role in the understanding of the solutions.

This paper analyzes the properties of a construction tool called the Mira, Also included is a discussion of the constructible polygons a Mira can construct. Later, compass and straightedge constructions in the hyperbolic plane are discussed.

At this time, I wish to express my gratitude and deepest appreciation to my major adviser, Dr. Joel K. Haack, who has been an invaluable mentor and friend. Also, I would like to thank the other members of my committees Dr. Faul F: Duvall; and Dr, David C: Ullrich, for their assistance.

I would like to thank Professor Phil Briggs from East Central University for his help in locating an importamt resource. A special thanks are due: Eobby Winters, for his encouragement along the way; Tom Fotter; for his help in drawing several figures; and Steve Roy, for helping me to relax by pulling me away to play golf=

Of course, I thank my family for their constant encouragement and support. My wife, Angela, deserves much

```
credit for her constant love, devotion; and support for me
while I finished the paper. This paper is dedicated to my
son, Mare who has been a source of inspiration.
```


TABLE OF CONTENTS

Chapter Fage
I. INTRODUCTION 1
II. CONSTRUCTIONS IN THE EUCLIDEAN FLANE WITH A MIRA. उ
III. CONSTRUCTION OF REGULAR POLYGONS 16
IV. CONSTRUCTIONS IN THE HYPERBOLIC PLANE 20
$V=$ CONCLUDING REMARKS. 32
REFEREMCES 54
APFENDIX 35

LIST OF FIGURES

Figure Page

1. Addition of Segments with a Mira $=$. $=$. . $=$ 5
2. Multiplication of Segments 6
3. Extraction of Square Foots 7
4. Angle Trisection 3
5. Simultaneous Fieflection 10
S: The Cubic Formula. 13
7: Heptagon 17
B. Vertical Radius Case 24
6. Nonvertical Radius Case 25
7. Hyperbalic Center of a Circle - Case 1 29
11: Hyperbolic Center of a Circle - Case 2 27
8. Hyperbolic Center of a Circle - Case J 30

CHAPTEF I

INTFODUCTION

The idea of drawing geometrical figures is not newa Certainlys when people first started to draw geometric figures, they must have mondered what figures they could draw and which they could not. It was the Greaks; however, who first formalized and popularized such problems: Today these problems are often presented to high-school geometry classes.

The tools most commonly used in the drawing of the geometrical figures are the compass and straightedges much has been proved concerning the efficacy of these tools, hence we will not dwell on this. Fatherg we introduce and analyze a new toolg called the Mira, produced by Creative Fubications, Inc. The Mira consists of a rectangular piece of red plastic that is supported vertically by two end piecess it resembles an I-beam. The reason the Mira is made of red plastic is so that one can see through it buty at the Same time, one Gan see the reflection of objects on the other side \quad In this manner; the reflection of a line in the plane can be constructed.

Accompanying the Mira is an exercise booklet. In the booklet, the student is led through several construction
techniques, culminating in the trisection of an arbitiary angle. It was this capability of the Mira, along with the Ease of its use, that make it an attractive target of analysis. This work analyzes the constructions possible atith the Mirag along with a consideration of constructions in the hyperbolic plane.

Chapter 2 considers constructions with a Mira and results in a characterization of the numbers a Mira can construct: construct second-degree and third-degree extensions of the rationals.

Chapter 3 examines the class of regular polygons the Mire can construct, The Mira can construct reguiar polygons with a prime number of sides when the prime is of the form $2^{k} 3^{j}+1$.

Chapter 4 then proceeds to the hyperbolic plane. Here a theorem is proved that states the relationship between constructions in the hyperbolic plane and constructions using Euclidean tools in the upper-half-plane model.

The paper concludes with some suggestions for further

CMAPTER II

COMSTRUCTIONS IN THE EUCLIDEAN PLANE UITH A MIRA

The compass and straightedge are familiar tools to the beginning geameter. Nevertheless, a new epproach is needed to solve some of the construction problems presented by the
 §traightedgeg we mean a finite $1 i \leq t$ of operations used to ottain a locus of points. The operations allowed are

1) Locate the intersection of two lines;
2) Locate the intersection of two circles;
3) Locate the intersection of a line and a circlea A number Nis constructible if, given a unit segment, a construction can be given that produces a segment of length N.

Although most methematicians are familiar with the characterization of numbers that are constructible via compass and straightedge, we will state it here for reference: A number is constructible if and only if it is an element of a field obtained in a finite tower of
 formulation of this theorem was given by Descartes in 16.37 [11; Filot]. The remainder of this section is devoted to developing a similer characterization for the numbers
constructible with a Mirar A number N is said to be Mipa Sgnstyuctiole it; given a unit segmenty a construction taith a hira can be given that produces a segment of length M. The operations allowed in a construction with a Mira are

1) Connert two points with a straightedge
2) Locate the intersection of two nomparallel lines
3) Fieflect a point through a line
4) Reflect a line through a line

A fifth operetion will be discussed in connection with the trisection of an angles This operation is not needed ror the first two results.

First, we compare the rield E of numbers constructibie with compass and straightedge with the set F or numbers that are constructible with the Miran

L능ma_1
The set F of Mira constructible numoers is a field. If r is a nonnegative element of F, then the square root of r is also an element of $F=$

Progi

We will demonstrate three of the operations: additions multiplication, and extraction of square roots, The others are similar: For the addition of two 三egments AC and $D E_{;}$the Mira is positioned to reflect one segment AC to $A^{\prime} C^{3}$ so that one endpoint $A^{3}=D$ is common to both segments. Then the Mira is used to reflect the segment $A^{3} C^{3}$ to $A^{3} C^{3}$ So that both segmants A. C^{3} and DE 1 ie on a lines ses Figure 1.

Figure 1. Addition of segments with a Mira

The multiplication of two segments $i \equiv$ almost as simple. Lay off one of the given segments of on a ray ox. On the same ray, lay off the unit segment $O I$, such that both segments have the vertex of the ray as a common endpoint. Erect a perpendicular $O Y$ at the vertex 0 and lay off the other given segment $0 B$. Now erect perpendiculars at A, I_{s} and B. Construct the line through the vertex 0 and the intersection D of the perpendicular at I and at B. Then drop a perpendicular from the point E of intersection of the line and the perpendicular at A. Call the base of the perpendicular thus constructed C. Then the segment from the vertex to C is the required segment; see Figure 2.

Figure 2. Multiplication of Segments

To perform the extraction of square roots, first add the unit segment $A B$ to the given segment BC . Erect a perpendicular at the common endpoint B. Using a line of reflection through the midpoint M of the segment $A C$, use the Mira to refleat A onto the perpendicular; call the point X. Then the segment BX is the square root of segment EC; see Figure 3 [3; p.29].

Figure 3. Extraction of Square Roots

Using this lemma and the characterization of compass and straightedge numbers, one can show that any compass and straightedge construction can be performed with the Miras

Theorem_?
The field of Mira constructible numbers, F_{3} is an extension of the field of compass and straightedge numbers, E.

In fact, the inclusion in theorem 2 is proper since F properly contains E. We are now able to perform
constructions with the mira that the compass and straightedge cannot. For Exampleg the trisection of an arbithary angle cannot be done with a compass and straightedge [7, pa 2b], but can in fact be accomplished with the mire by following a construction due to Pappus (sog AD) see Figure 4. In this annstruction; the fifth operation appears=

Figure 4, Angle Trisection
 such that $O F=P S$. Through P construct line n parallel to OY and line m perpendicular to line oy. Find the line t that reflects 5 onto m and the line n through 0 . Locate Fi, the image of 0 under reflection in t. Then χ ROY is onethirg of x xay [3 pes4].

The operation that was performed above which could not be accomplished by the compass and straightedge was thet of locating a line that would reflect a point onto a line and a line through a point simultaneously. We will call this operation \equiv inditanegus reflectign and now $1 i s t$ all of the operations we will allow the Mira to performs

1) Connect two points with a straight line
2) Locate the intersection of two non-parallel lines
3) Reflect a point through a line
4) Reflect a line through a line
5) Perform a simultaneous reflection

In other words, these operations, and only these, are those used to perform any Mira construction.

Now we must analyze the operation of simultaneous reflection, Then, without loss of generality, we may assume that we are given two lines, one the y-axis, the other with equation $y=a x+r$ g intersecting the first at the point $(0, r)$, with r an element of F. Also, we may essume the points are $0=(c, 0)$, and $5=(5, t)$, where $C_{3} \Xi_{3}$ and t are all elements of F. This is possible since all the various rotations and translations are accomplished
by a compass and straightedge, and Theorem 2 assures us that these are possible with the Mira also. Then $Q_{\text {, }}$ the reflection of the point 0 onto the line $y=a x+r$ and H the image of 5 reflected onto the y-axisy are the new points. L三t the coordinates of H be (0,4) and of D be (v, wis see Figure S.

Figure S. Simultaneous Reflection

Consider the difterent Evpressions for the slope of the Hire line so located by simutenequs refleation= Cne fommula for the slope m of the Mira line is given by

$$
\begin{equation*}
m=(u+t-w) /(s-c-v)_{y} \tag{1}
\end{equation*}
$$

Eincs ihe Mira inne passes through the midpoints of od and HS: Alsos ginme the Miraline is perperditular to inme HS,

$$
\begin{equation*}
m=5(u-t) \tag{2}
\end{equation*}
$$

Finally, the Mira line is also perpendicular to line OQ, so

$$
\begin{equation*}
\mathrm{m}=(c-v) / \mathrm{w} . \tag{3}
\end{equation*}
$$

Dur bnown parameters are $a_{3} C_{g} r_{3} s_{3}$ and ta we solve for va An equation for \forall in the general case of simultanequs recticction is

$$
0=\left(a^{2}+1\right) v^{3}+\left(a^{2} s-2 a t+2 a r+a^{2} c-5-a\right) v^{2}+
$$

$$
\begin{equation*}
\left(2 a r \equiv+2 a c t-2 r t-2 a r+r^{2}+r^{2}\right) v+\left(r^{2} s+2 c r t-r^{2}-a^{2}+c^{3}\right) \tag{4}
\end{equation*}
$$

Note the atove equation is cubic, not quadratic, so if bhe
 of Eg then a compass and straightedge can not construct va

Consider now the case in which the given lines are parallely assume their equations are $y=0$ and $y=r=A 1=0$ given are two distinct points; call them $B=(6, C)$ and
 If we fet the point $F=(v, r)$ be the reflection of B inder the reflection in the Miras then using the same type of analysis as above, we obtain the following equation for vi

$$
\begin{equation*}
0=(r-r-t) v^{2}+2(r s-c s+t h) v-(r s+s)= \tag{5}
\end{equation*}
$$

This polynomial is of lesser degree than a cubic, hences nothing rew is gained.

It is not ohyious that the paramenters aympast can be manipulated so that equation 4 can represent an arbitrary chbic polymomial with compicients in Fs Thus further investigation is necessary to determine that we cen in facty construct the moote of any mbic polynomial with coefricients in F using the mira.

He shall start by solving an equation of the form

$$
\begin{equation*}
v^{3}-w=0 \tag{6}
\end{equation*}
$$

where w is a nonnegative element of Fg that is, we wish to Bhou that we can find a real cube root of an arbitrary Element of $F_{:}$Now, equation 4 hecomes equation 6 if the following four conditions are satisfiedz

$$
\begin{align*}
& 1=1+a^{2} \tag{7}\\
& 0=a^{2} \equiv-2 a t-2 a r-a^{2} c-s-c \tag{B}\\
& 0=2 a r s+2 a c t-2 r t-2 a c r+r^{2}+c^{2} \tag{7}\\
& -w=r^{2} s+2 c r t-c r^{2}-s c^{2}+c^{3} \tag{10}
\end{align*}
$$

Whence equation 7 forces $a=0$; then equation θ results in $\equiv=-c$ and equations 9,10 become

$$
\begin{align*}
& 0=-2 r t+r^{2}+c \tag{i11}\\
& -w=-2 c r^{2}+2 c r t \tag{12}
\end{align*}
$$

This results in two equetions in three unknowns. Let c=1. Solving the resultant system we have

$$
\begin{equation*}
r^{2}=1+w \tag{13}
\end{equation*}
$$

which can then be used to find the values of the other parameters. Thus, equation 4 can be manipulated to obtain a cube root of any element of F.

Now that the Mira can find real cube roots of arbitrary
constructible real numbers, the question of the ability of the mire to solve arbitrary cubit equations whose Coefficients are in F arises. Examining the cubic formula below; we notice that the formula contains cube poots of ミquare roots=

CUBIC EQUATIONS

A cubic equation, $y^{3}+p y^{2}+q y+r=0$ may be reduced to the form, -

$$
x^{3}+a x+b=0
$$

by substituting for y the value, $x-\frac{p}{3}$. Here

$$
a=\frac{1}{3}\left(3 q-p^{2}\right) \text { and } b=\frac{1}{27}\left(2 p^{3}-9 p q+27 r\right)
$$

For solution let.-

$$
A=\sqrt[3]{-\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}}, \quad B=\sqrt[3]{-\frac{b}{2}-\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}},
$$

then the values of x will be given by,

$$
x=A+B,-\frac{A+B}{2}+\frac{A-B}{2} \sqrt{-3},-\frac{A+B}{2}-\frac{A-B}{2} \sqrt{-3} .
$$

Figure 6 . The Cubic Formula $[10, f .10 \leq]$

Thus, there may be occasions in which we need to tabe the cube root of a complex number of the form a + bis where ayb are in F: we denote the set of such complex numbers F(i). To be able to solve arbitrary cubics with coefficients in F by means of the cubic formula; we must be able to take the cube root of these complex numbers.

Consider the polar representation of a complex number, that is, zeit, where z is an element of F_{y} and it is an angle between O and 2π, Since we can construct cube roots,
we can find the cube root of such a number= Simply take the cube root of z and trisect ty both of the operations can be done mith a Mira. Hence, the Mire can construct the cube root of any complex number in $F(i)$. Therefore, we may use the Mira to golve eny cubic equation with coefficients in F.

The quartic formula, as in the case of the cubic formula; involves only cube and square roots. Hence we may use the Mira to solve any quartic equation whose coefficients are in F. The above arguments have just proved Theorem 3 .

Thegrem_콜

The Mira can be used to construct the real and imaginary parts of the roots of any quartic equation whose coefficients are in F.

Now that the algebraic significance of the operation called simultaneous reflection is known, let us formally state the characterization of the field of numbers the mire operations will produce.

Thegrem_4
A number p is Mira constructible if and only if there is a finite tower of extensions of the rationals, with each intermediate extension of degree three or less, such that p is in the last field of the tower.

Ergef
Suppose pis constructible. Then p can be located by the finite application of operations the Mira can perform. If operations $1-4$ are used, then the extension
is at most guadratics If simultaneous reflection is used, we have proved that we have formed at most a cubic extension of e quadratic extension of gur field. Hence, application of the various operations leads to a finite tower of extensions of degree two or three.

Conversely; let N be the order of a tower of quadratic and cubic extensions of the rationals. The proof is by induction on the order of the tower= If $\mathrm{H}=\mathrm{O}$; then the point is rational and is constructible. Assume the theorem is irue for N=M. Let abe in the M+1 st field in the towerg then a $i \equiv$ of the form dterc, or of the form g+jhb+k $\sqrt[3]{ }$, where d, $\mathrm{w}_{\mathrm{g}} \mathrm{g}_{\mathrm{g}}$ or g, $\mathrm{h}_{\mathrm{g}} \mathrm{j}_{\mathrm{g}} \mathrm{k}$ are in the M th field. Ey the inductive hypothesiss a is constructible,

Now we are ready to apply these results to the Greal eonstruction protlems introduced earlier. As we have shown, the trisection problem can be solyed by the Mira. A Eimilar result holds for the duplication of the cube; since theorem 3 tells us that we may now solve the equation $x^{3}-2=0$ However; the squaring of the circle is still not solvable by the Mira. We know that pi is transcencental, not the root of any polynominal with rational coefficients [7, p. 4B]. Hence, the Mira cannot square the circle.

CHAPTER III

CONSTRULTION OF REGULAR POLYGONS

The problem of the construction of regular polygons is well knowna with a compass and straightedge, we know that a regular polygon'with n sides $i s$ constructible if and only if
 primess that is, primes of the form $2^{\mathrm{m}}+1 ;$ [1; p.1B6].

However; with the Mira; the answer takes a new form= We know thet a nonagon can not be constructed with a compess and straightedge; but an angle of 120 degrees can be constructed and trisected with the Mirag hence constructing an angle of 40 degrees and from that a nonagon. we would like to characteriae the polygons the Mira can construct.

The problem may be viewed as constructing the p-th roots of unitys for p primeg because the vertices of the regular p-gon insoribed in the unit circle in the complex plane are the roots of the equation

$$
\begin{equation*}
x^{p}-1=0 \tag{14}
\end{equation*}
$$

If the left side of equation 14 is factored, the irreducible factor other than $x-1$ is called the pth cyolotomic polynomial. The degree of this cyclotomic polynomial is F-1. The roots of this polynomial generate an extension of the rationalsa we would lite to characterize this extension
to compare it to the field of mira constructible numbers. Following the characterization of the constructibility of a regular polygon with a prime number or sides with a compess and straightedge, we are led to the following theorem.

THEDREM_5

For a prime p, a regular phon is constructible by a Mira if and only if p is of the form $2^{n} 3^{k}+1_{j}$ with n and k nonnegative integers.

Frgof
Let p be prime and suppose a regular p-gon is constructible by the Mira. Then the degrea of the cyclotomic polynomial is p-1. The Galois group of the polynomial will have order $p-1$ and be cycli= [日; p.299], hence solyable. Then the composition factors in the normal series for the group correspond to intermediate extensions of prime degree in a tower of fields over the rationals. Since the Mira can only construct extensions of order 2 or Ss the composition factors must have order 2 or $3=$ Hences $p-1$ is of the form $2^{n} 3^{k}$.

Conversely; let P be of the form indicated. Then the Galois group of the splitting field of the cyclotomic polynomial over the rationals will have order $2^{n} s^{k}$. Furthermore, the group will be cyclic, hence solvable: Any normal series for the group will have composition fantors that are of prime order 2 or 3 . These factors correspond to Extensions of degree 2 or 3 . By our characterization of Mira constructible numberss the Mira can construct
extensions of degree 2 or 3 , Therefore; the regular p-gon is constructible.

We mill call the primes of Theorem 5 Mira primes: Now that the problem is solved for these primes, it is easy to determine for which n a regular n-gon is Mira constructiole=

THEDREM_6
For general n, a regular $n-g o n$ is constructible with a Mira if and only if n can be factored as

$$
n=2^{k} s^{l} \prod_{p}
$$

where the p_{i} are distinct Mira primes.
Ergof
The primative n-th roots of unity are
constructible if and only if the primative m-th roots of unity are constructible, for $m=2^{k}, 3^{i}, P_{i}$.

Consider the following example. Certainly, a heptagon is not constructible with compass and straightedge, but seven is a Mira prime. So consider the 7 th cyclotomic polynomial, [5, section 4.4],

$$
\begin{equation*}
o=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1= \tag{15}
\end{equation*}
$$

Now substitute $y=x+1 / x$ in equation 13 to produce a cubie equation in $y=$

$$
\begin{equation*}
0=y^{3}+y^{2}+2 y-1= \tag{16}
\end{equation*}
$$

By the proof of Theorem 3, we can actually exhibit a construction of the solutions of equation 16 , hence exhibit solutions of equation 15 ; see Figure 7.

The Mira cannot solve all construction problems, as we have seen. For further example; consider the construction

Figure 7. Heptagon
gf a regular 11-gon. Using an analysis similar to that above; we find our substitution redures the degree of the polynomial to five. In fact, the resultant irreducible fitth degree polynomial cannot be golved by the Mirag since the Mira cannot produce elements of a fifth degree extension.

Therefore, the Mira again can produce more geometric figures than the compass and straightedge. Also. we see that algebra again is used to produce the necessary proofs.

CHAPTER IV

CONSTRUCTIONS IN THE HYFEREROLIC FLANE

In order to answer questions about constructions in the hyperbolic plane [6, Ch. 6], we will use a model of hyperbolic geometry in the Euclidean plane. In this way, we hope to convert questions about hyperbolic construction with hyperbolic tools into those constructions that involve only the more familiar Euclidean tools. The model we choose to use is the upper-half-plane model. In this model, the hyperbolic plane is the set of all the points in the real plane with positive y-coordinates. Then we interpet "line" as "an open vertical ray with $i t s$ vertex on the x-axis or an open semi-circle with its center on the x-axis". The usual interpetations of incidence and betweenness are still used [6; p.1911. In this model, one can easily see how it is possible for the negation of the parallel postulate to holda

However, more needs to be said about the interpretation of congruence. Two angles are congruent in the model if they are congruent in the Euclidean sense. A model of this type is said to be gonformal. Two segnents are congruent if their hyperbolic lengths are equal. To the casual observer; the distance seems to be distorted in the vertical. The Euclidean length of a hyperbolic segment of length one
that is closer to the $x-a x i s, ~ c a l l e d ~ t h e ~ l i n e ~ a t ~ i n f i n i t y, ~$ is less than the Euclidean length of a hyperbolic segment of length one that is farther from the x-axis. For an exact formula for the distance between two points in terms of their Euclidean coordinates, see the appendix.

The relationship between Euclidean circles and hyperbolic circles is easy to state. The locus of points of the circle is the same, but the hyperbolic center is closer to the line at infinity than is the Euclidean center; because of the distortion of distance in the model.

There are curves in the hyperbolic plane that have no Euclidean counterparts; these are called hypercircles and horocircles. If we take all the points that are equidistant to a given hyperbolic line (on one side of the line), the resultant locus of points is not a line, but a curve called a hypercircle. To obtain a horocircle, take a point off a given line and draw the circle with the point as its center and the distance from the point to the line as its radius. As the point recedes from the line a larger circle is drawn. In the Euclidean plane, the limit of these circles is the line itself. In the hyperbolic plane, however, the limiting locus of points is not the line, but rather a curve called the horgaircle.

Now, we say that a point is constructible in the hyperbolic plane if we can locate it as the intersection of any of the following hyperbolic figures either with a similar figure or with another of the list: a line through
wo points previousiy constructed; a circle with a center and radius given; a hypercircle with given radius, or a horocircle with given radius. The tools employed in the hypertalic plane include the hypercompass; to draw the hypercircle through a point off a line; and the horooompass, minch $i \equiv$ used to draw the horacircle with any given ray as radius. Now our list of hyperbolic tools is completē a straightedge, a compass, a hypercompass; and a horocompass.

Unfortunately; we cannot lay our hands on these hyperbolic tools: Therefore, we wish to show that we Ean use our Euclidean tools in a hyperbolic model to三imulete any hyperbolic construction. We will use the notation H-line for a hyperbolic line, and H-aircle for a Hyperbolic cirele. Similarly, we use E-1ine and E-circle to denote a Euclidean line and circle, fespectively.

Thegrem_7
A construction is possible in the hyperbolic plane if and only if it is possible in the upper-half-plane model with Euclidean tools.

Frgef

We have two cases to consider in the forward implication: an $H-1$ ine through two points, and a hyperbolic circle with a given radius.

Given two points, it is simple to construct the H-1ine through them with a Euclidean compass and straightedge. If the points have the same x-coordinates then draw a vertical E-ray through themg this will be the $H-$
line through them also. If the points are piterwise positioned; we must Eonstruct the Euclidean circle centered on the x-axis that passes through them. First; draw the Esegment that connects the two points. Mext; draw the EFerpendichlar bisector of the segment. The point in which the perpendicular bisector intersects the x-axis is the center of the semicircle that is the desired H-line. The perpendicular bisector must intersect the x-axis since the points are not vertical.

Next, if we are given a radius ii.e. a hyperbolic segment) and a center, we must be able to construct the hyperbolic circle at that paint. Unfortunately, the hyperbolic and Euclidean centers of a circle in this model never coincide. If we can construct a vertical diameter of the hyperbolic circle, we could bisect it to find the Euclidean centerg hence we can then draw the circle. Without loss of generality, we may assume that we are given an H-segment CA where C is the center of the hyperbolic circle. First, we assume that cA is a vertical segment. Consider the H-1ine perpendicular to segment CA at the point C. It will be a Euclidean semicircle. If we reflect CA about this H-1ine, we will gbtain a vertical diameter of the circle. Feflections through $H-1 i n e s$ in the upper-half-plane model are given by Euclidean inversions in the circles that represent H-1ines or by Euclidean refiections through vertical rays that represent $H-1$ ines. Gor this and other results concerning inversions, see
[6; P=i74rf and p=2g7ff]. Hence; all we need do is invert the segnenti Eee Figure 8.

Figure B. Vertical Fiadius Case

Mext; assume that CA is not a vertical segment we will now reflect the segment CA so that it is a vertical radius of the circles using Euclidean tools.

Let 0^{*} and $0^{\prime *}$ be the ideal points where the $H-$
line CA strikes the x-axis. Consider the semi-circle with radius 0^{3} Ce $I f$ we invert $C A$ through this semi-circle, then CA will become a vertical segment with C as an endpoint, [6, Prop 7.83: Now we are done by the case above; see Figure $9=$

Figure 9. Nonvertical Radius Case

Conversely, we show that any point constructible by Euclidean tools in the upper-half-plane model can be
constricted hy hyperbolic compass and straightedge Ey the Mohr-Mascheroni theorems all Euclidean constructions can be cartied out using a compass alone, [4; pa172]. This result
 For examples consider a segment of an E-line in the model. Let bs tale an arbitrary circle in the madel and invert the segment through the circle, we know that the inversion takes the line to a circle, that is inside the given circle but passing through the center of the given circle Et, Frop 7.71. Note that in the proof of the Mohr-Mascheroni Theorem; we may invert in any arbitrary circle in the model, ensuring that all circles required in a construction will be entirely contained in the upper-half-plane.

Thus, it suffices to show that, giver two points in the upper half-plane, we are able to construct the Euclidean circle having one of the points as its center (with hyperbolic tools), if the circle lies entirely in the upper half-plane. For this construction we will employ more than just compass and straightedge. As discussed before, the other tools commonily used in the Myperbolic plane are the horocompass and hypercompass. In 1944, Nestorowitsch proved that the three kinds of compasses; together with a straightedges are of efficacy equal to that of standard hcompass and straightedges [z; p.270]. With this result, we may use all of the compasses in our construction.

Assume we are given paint C as the Euclidean center of a circle through a point. Note that the locus of
points on the circle is the same for the hyperbolic and Euclidean circles, the only difference being the location of the center: We assume that we are given a "vertical" HIine 1 through the point C. For case 1, assume that the point A is not on this line. Then construct a horocircle through A with the vertical ray from A away from the axis as its diameter. This produces a horizontal E-line m that intersects the vertical line through C at a point D. Using the compass, lay off the E-segment DA on the horocircle m on the opposite side of 1 to produce the point B. Note that the Euclidean length of $A D$ is equal to that of gD since the E-line m is horizontal. Then E is also on the circle. Next; drop a perpendicular n to the $E-1 i n e m$ at point $A ;$ this will be another "vertical" H-1ine. Using the hypercompass, draw the hypercircle through the points C and E. Let the intersection of the hypercircle and line n be called E.

Then E is on the Euclidean circle, hence on the hyperbolic circle. Consider the Euclidean triangles EDC and CFE; certainly x DEC $=\Varangle$ FCE and $\chi \operatorname{DCD}=\Varangle$ CEF $: A 1$ so, the Euclidean segments $\mathrm{BD}=\mathrm{DA}=\mathrm{CF}$, hence the triangles are congruent. Then the Euclidean distances BD and CF are congruent. Therefore, E is on the circle. To find the hyperbolic center, use the hyperbolic compass to construct the H-perpendicular bisector of the H-segment $A E$. The intersection of this line with the $\mathrm{H}-1 \mathrm{ine}$ DC is the hyperbolic center of the circle; see Figure 10.

Figure 10. Hyperbolic Center of a Circle-Case 1

For case 2, assume A is on the vertical H-line through $C=$ Draw the $H-1$ ines perpendicular to the line AC at points A and C Dram the horocircle through C and the point at infinity; this intersects line AC at point C. Thens the horocircle and the perpendicular at A intersect at the point B. Next, draw the hypercircle (equidistant curve) to AC with radius AB. 'This hypercircle intersects the perpendicular at C in a point D. The E-segment DB is not vertical. By case 1; we can draw a circle with D as its center and the Euclidean segment DE as its radius. The hypercircle intersects this circle in a point E. If the draw a perpendicular to AC through E, the foot of the Perpendicular F produces the vertical diameter of the circle centered at C : see Figure 11.

Figure 11. Hyperbolic Center of a Circle - Case 2

One last case must be considered, that which occurs when A and C lie on the horocircle through C and the point at infinity. As we have seen, the horocircle is a E-horizontal line perpendicular to the vertical H-line at C. Let 0 be the ideal point, i.e. the vertex of the vertical $H-$ line through $C . \quad$ Let D^{\prime} be the ideal point produced by the vertical through A. Let $0^{\prime \prime}$ be the ideal point produced by the perpendicular through C. Now draw the vertical through the point 0^{*}. Draw perpendiculars to the vertical line through \square^{\prime} from the points 0 and D^{\prime} and; call these points D and 5 respectively. The E-segment DE is congruent to the E-
segment CA. Hence, the segment DR is vertical. Ey case 2 , we may draw the circle centered at B with radius DB. Next; draw the horocircle through D and the point at infinity The horocircle intersects the vertical through C at the point E. Then the E-segment $C E$ is congruent to the Esegment CA ; and by case 2 , we may draw the circle centered at C ; see Figure 12.

Figure 12. Hyperbolic Center of a Circle - Case 3

With Theorem 7, hyperbolic constructions may be explored with ease. For example, consider the simple

Eonstruction of dividing a segment into three congruent parts. Assume that the coordinates of the endpoints of the segment are $(0,1)$ and $(0,2)$: Using the formula for the hyperbolic distance between these points (see the appendix), we find the distance to be ln 2. Eutz the coordinates of the point that is one-third of this distance can be found by letting q be the y-coordinate of the point, and letting d be the distance between that point and (0,1) . we then set $d=(1 / 3) \ln 2 ;=1 ;$ and $h=p=0$ in the formula for the hyperbolic distance between the two points isee the appendix):

$$
\begin{equation*}
e^{2(1 / 3) \ln 2}=\frac{1+g^{2}+\sqrt{\left(1-q^{2}\right)^{2}}}{1+q^{2}-\sqrt{\left(1-q^{2}\right)^{2}}} \tag{17}
\end{equation*}
$$

This reduces tos

$$
\begin{equation*}
\sqrt[3]{2}=q \tag{19}
\end{equation*}
$$

Since we cannot construct the cube root of two with a compass and straightedge in the Euclidean plane, the segment cannot be trisected in the hyperbolic plane.

CHAPTER V

CONCLUDING FEMAFKS

Theorem 7 opens the door for many more questions about the hyperbolic plane, the foremost question being: is there an analogous version of Theorem 7 for the "hyperbolic mira"? Also, can the numbers the Mira can construct in the hyperbolic plane be characterized?

Theorem 5 states which regular polygons with a prime number of sides which the Mira can construct in the Euciidean planes note that not all primes are included. We conjecture that there is a limitation on which polygons can be constructed with any tool. Regular polygons also occur in the hyperbolic plane; can we charactertize the ones we can construct?

As with most areas of mathematics, geometry increasingly uses other areas of mathematics to solve more difficult problems. We have seen a good example of this in the construction problems. In effect; mathematics has become all one field, with no one sub-field completely selfcontained.

Geometry; however; affords one the satisfaction of a visual completion of the problem. Along with this visual satisfaction, there are problems stemming from physically
carting out the constructions. mainly errors. Although we speak of 1 ines with no width; physical lines have widthe This causes error in the construction. The Mira is a major offender in producing drawing errors. we found it hard to draw an accurate construction. The best results were obtained in a well-1ighted room, with a very bright ilght Behind the Miraz so that the reflection could be easily seen. In this way the construction of the heptagon was carried out. The error caused the first construction to be wildly inaccurate. The second construction was carried out with the help of a ruler for checking the length of the segments. This improved the accuracy of the construction greatiys and produced the correct figure.

FEFERENCES

[1] Eishop, Wayne: "How to construct a regular polygon=" American Mathematical monthlys March, 1778; pP = 136-19日.
[2] Coxeter; H. S. M. Mon-Eu드므를 Gegmetry. Srd Ed. Torontos The University of Toronto press, ifs7,
[3] Dayoubs Iris Mack and Lott; Johnny W. Gegmetrya Constructigns and Transformations: Falto Alto: Creative Fútilications. Inc. 3 1777.
[4] Eves, Howard: A Survey qf Gegmetry. 2nd Ed. Boston: Allyn and Eacons Inc.; 1772.
[5] Gael, Lisl. 드르드드르 Galgis Thegry. New Yorka Chelseas Fublishing Co., 1977.
 Gegmetries Develgement and History. 2nd Ed= San Francisco: W. H. Freeman and Company: 17Bo.
[7] Hadlock; Charles Robert. The Carus Mathematical Mongoraphs: Eield Theory and Its 드르르으드른 Froblems: Monograph No. 19. The Mathematical Association of America; 1778.
[E] Hungerford; Thomas w. Algebra. New Yort: SpringerVerlag. 1974.
[9] Martin; George E. The Fgundations of Geqmetry and the Non=Eucliddean Flane. New York: Intext Educational Futis = 1775.
 Ed. Clevelands CRC Fress, Inc.a 1775.
[11] Weaver, James $H=$ "The duplication problem." American

AFFENDIX

Dre of the various models of the hyperbolic plane is called the Cayley-klein unit disk model. The distance formula is known for this model [9; P=2日2]. If we iet $F=(x, y)$ and $D=(w, z)$ then the distance d between F and Q is give bys

$$
\begin{equation*}
\Delta=(1 / 2) \ln \left(\frac{1-x w-y x+\left[(w-x)^{2}+(z-y)^{2}-(x z-w y)^{2}\right]^{1 / 2}}{1-x w-y x+\left[(w-x)^{2}+(z-y)^{2}-(x z-w y)^{2}\right]^{1 / 2}}\right) \tag{17}
\end{equation*}
$$

Also given in $\left[9 ; P_{;} 285\right]$ is the isomorphism between the Cayley-Klein model and our upper-half-plane model. The map $i s$ defined by sending (x, y) to (x ' $y^{\prime \prime}$) where

$$
\begin{align*}
& x^{3}=x /\left(1-y^{\prime}\right. \tag{20}\\
& y^{3}= \pm /\left(1-y^{\prime}\right) \tag{21}
\end{align*}
$$

and t is defined to be $\sqrt{1-x^{2}-y^{2}}$. If we invert this isomorphism and substitute into equation 19 ; we have the distance formula for the upper-inalt-plane model. The distance d between two distinct points (h,k) and (p, \quad) in the upper-half-plane model is given by

$$
\begin{equation*}
d=(1 / 2) \ln \left(\frac{(h-p)^{2}+\left(k^{2}+q^{2}\right)+\sqrt{T}}{(h-p)^{2}+\left(k^{2}+q^{2}\right)-\sqrt{T}}\right) \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
T=(k-q)^{2}(k+q)^{2}+(h-p)^{4}+2(h-p)^{2}\left(k k^{2}+q^{2}\right)= \tag{23}
\end{equation*}
$$

VITA
 2
 Jack Michael Raul
 Candidate for the Degree of
 Master of Science

Thesis: GEDMETRIC CONSTRUCTIONS
Major Field: Mathematics
Biographical:
Personal Data: Born in Detroit, Michigan, June 7 , 1961, the son of Thomas H. and Judith $A=$ Raw. Married to Angela Marie Roy on July 2, 1983. Son Marc Edward born on February 28, 1985.

Education: Graduated from Sooner High School, Eartlesville, Oklahoma, in May, 1979; received Bachelor of Science Degree in Mathematics from Oklahoma State University in May, 178S; completed requirements for Master of Science Degree in Mathematics at Oklahoma State University in July, 1985

Professional Experience: Teaching Assistant, Department of Mathematics, Oklahoma State University, August, 1982, to May 1783: Graduate Assistant, Department of Mathematics, Oklahoma State University, August 198s, to present.

