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CHAPTER I 

INTRODUCTION 

The te~m 11web 11 describes a thin strip of material which has negl igi

ble resistance to bending. A thin strip is one in which the length is 

much larger than the width and the width is several orders of magnitude 

greater than the thickness. Many household products are packaged in or 

sold as webs. The most common web products are paper, foil, film, and 

fabric. Most directly analogous to the types of webs studied in this re

port are the wrappers for food, such as candy bars and potato chips. 

Many materials, in spite of their final state, are at one time han

dled in a web form. For example, flat sheets of asbestos are rolled to 

form pipe and tubing. The advantage to processing in this manner is its 

efficiency and savings in time. Webs can be handled in a continuous fa

shion rather than in discrete pieces. Consider the publishing and print

ing industry which previously used flat plate printing. Now almost all 

printing is done by rotary printers which operate at high speeds. Much 

of the technology in web handiing comes from the paper and pulp industry. 

It is not uncommon for machines which handle other forms of webs, such 

as film or fabric, to be converted paper machines. 

Due to the continuous nature of webs, they are typically handled in 

rolls or spools. Therefore, winding and unwinding are major operations 

in web handling. In the interest of efficiency, these processes are done 

at high speeds. As with any high speed rotary equipment, special problems 
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exist with the dynamic response. These problems manifest themselves in 

various forms. Some cause vibration or chattering of the winding equip

ment while others affect the web directly. These web effects include a 

starred or buckled region inside the core of the roll, permanent stretch 

marks and wrinkles, hard lumps or bulges in the roll, known as gage band 

defects, and telescoping. 

Although the exact causes of these problems are not known, they can 

generally be divided into two categories: winding machine effects and 

wound roll effects. Eccentricities of the cores, roller alignment, char

acteristic frequencies of the machine and fluctuations in web tension 

are common winding machine effects. Wound rol 1 effects include reson

ances in thickness variation, air entrainnent, and limited interlayer 

friction. 

Web winding machines have been designed to deal with the problems 

mentioned above. Two types of winding machines are the center driven

riding roll winder and the surface driven winder. Both ofthese machines 

utilize the contact or nip pressure between a drum or roller and the 

wound roll to limit air entrainment. A device on many winders used to 

control on-1 ine longitudinal tension is known as a dancer. The dancer 

can be a passive device which moves about a static equilibrium position 

in response to fluctuations in web tension or be a part of a tension con

trol system including braking and input torque control. The design and 

control of these winding machines is constrained by a lack of true under

standing of the mechanics involved in winding and web handling in general. 

An extensive 1 iterature search was conducted using dial-on computer 

libraries and engineering references. The results of these searches re

vealed an important reason for the lack of understanding of web handling. 
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Little quantitative work has been conducted in this important area of 

manufacturing and processing. TAPPI, the technical journal of the paper 

and pulp industry, contains several informative entires on the winding 

process. However, these works are qualitative in nature. Since the con

clusions of these papers are commonly drawn on empirical evidence, they 

serve to provide background information and inspire topics for future 

analytical and theoretical research. Many of these papers provideagood 

source of experimental data which can be used to check the performance 

of a model simulation. 

A 1 imited amount of analytical work has been published in the last 

15 years. In 1968, Altmann [1] published formulas for computing stresses 

in center-wound rolls. Two important equations were presented. The first 

expresses the interface pressure and the second relates the in-roll ten

sion stress as a function of winding tension stress, radius ratio, and 

elastic properties of the web. 

Later in 1963, Shelton [2] published his thesis which dealt with 

lateral dynamics and stability of webs. This thesis spawned two works 

by Shelton and Reid [3, 4]. The first offered a simplified dynamic anal

ysis of a moving web neglecting the material properties. The second pre

sents a second-order method used for systematic derivation of ordinary 

differential equations describing the lateral dynamic behavior of mass

less, moving webs. 

Another dissertation presenting analytical work was published in 

1974 by Blaedel [5]. Blaedel considered the winding of a roll of paper 

as a design problem in which a mathematical model of the roll structure 

was developed and applied to a surface driven winder. Also, system equa

tions were derived which could be used to control the winding process. 
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Soong and Li [6] in 1979 extended the work published by Shelton and 

Reid by performing an elastic analysis of multi-roll endless web systems. 

Problems concerning edge guide force, steering moment, pivoting cylin

ders, and other parameters were analyzed. 

The most recent publication uncovered by the literature search was 

written by Veits, Beilin, and Merkin [7] in 1983. Analysis was perform

ed on elastic strips of web which were modeled as a flexible plate under 

the action of longitudinal tensile forces. The validity of a one-dimen

sional model for the elastic strip is also examined. 

An important problem not yet considered in the area of web handling 

is determining the effect of tension control on the winding process. Ten

sion control is important because the on-1 ine tension directly affects 

air entrainment, buckling of the web core, wrinkling, yielding, and stretch

ing of the web. All of these phenomena are important to the final qual

ity of the wound roll. 

It is the objective of this thesis to quantitatively determine the 

control! ing parameters in obtaining an acceptable response in a web wind

ing system. The analysis which follows will focus on the rewind portion 

of a "typical" center driven-rider roll winding machine. Actually, the 

field of web handling is so diverse that a typical winding machine does 

not exist. However, all winding machines share certain common elements, 

such as a web, rewind rolls, and some type of device for tension control. 

The methods presented in this thesis are directly applicable to any cen

ter driven-rider roll winding machine. 

To accomplish the above task, it wi 11 be necessary to construct a 

detailed mathematical model of the dancer, the rewind roll, and the con

trolling feedback system. The continuous nature of the web must also be 
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included in the model. The most influential parameters of the model can 

be identified through a sensitivity analysis. The type of analysis to 

be employed in this thesis is presented by Hornberger and Spear [8]. The 

particular method offers several advantages over the classical Bode sen

sitivity technique. The Hornberger and Spear method is: (l) easy to ap

ply to nonlinear system, (2) dependent on the range of a parameter and 

not a point value, and (3) not directly affected by the numberofunknown 

parameters. 

Chapter I of this thesis has provided some definitions of terms used 

in web handling and presented the objective of the work that follows. 

Chapters I I and I I I deal with the development and analysis of a continu

ous and discrete model of the web and dancer on a center driven-rider 

roll winding machine. The sensitivity analysis of the model is present

ed in Chapter IV. Conclusions and recommendations appear in Chapter V. 



CHAPTER I I 

SYSTEM DESCRIPTION 

In the investigation of physical problems, mathematical modeling is 

essential. It is common practice to approximate certain processes or 

elements of the actual system with components whose scientific descrip

tions are well known. The measures for the value of a model are its abil

ity to accurately describe the system it represents and its compliance 

to mathematical manipulation. 

2. l Component Descriptions 

The analysis conducted in this thesis applies to a center driven

rider roll (CDRR) winding machine as shown in Figure l. The vector V 

shows the direction of the moving web during the winding process. The 

terms lateral, longitudinal, and normal wi I 1 be used often in the follow

ing text. Figure 2 clarifies the meaning of these terms. 

All of the elements shown in Figure l are connected by flexible free 

spans of the web. Since the thickness of the web is much smaller than 

the width and span length, the web has little resistance to torsion or 

bending about the lateral axis. However, the web will resist a moment 

about the normal axis. This resistance allows .for in-plane steering of 

the web by changing the alignment of the rollers. 

The dancer is a tension controlling device which can passively re

spond to variations in longitudinal tension or can be part of a control 

6 
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Center-Driven-Rider Roll Winding Machine 
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Figure 2. Definition of Web Directions 
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system. Physically, the dancer is a roller which is elastically support

ed. As a passive device, the dancer moves up and down to keep the web 

taut. When tension in the web decreases, the spring pulls the dancer 

down until the slack in the web is exhausted. The dancer can also be us

ed as a tension sensor. The position of the dancer can be used to con

trol the input torque applied at the center of the mill roll. For exam

ple, when the web is slack, the dancer wil 1 move down. A signal, indi

cating both the sense and magnitude of the dancer motion, sent to the mo

tor can increase the input torque accordingly to take up the excess web. 

The mill roll consists of windings of web about a spool of metal, 

plastic, cardboard, or similar material. Ideally, the mill roll is homo

geneous with a circular cross section. However, variations in thickness, 

stretching, and air entrainment create problems such as starring (Figure 

3) and gage bands (Figure 4). Excessive air entrainment can even cause 

some of the windings to droop when the mill roll is not rotating. 

The rider roll is simply a follower on a cam which is held in place 

by the tension of a pneumatic spring. The rider serves to limit air en

trainment and to insure smooth rolls. The rider roll is mounted on a 

pivot which is part of a sled connected to the frame of the winder. As 

the diameter of the mill roll increases, the sled moves backward which 

allows the rider roll arm to remain approximately vertical. During ideal 

operating conditions, the rider roll is in constant contact with the mill 

roll. The rotation of the rider roll arm is quasi-static, changing only 

with the gradual increase in diameter of the mill roll. 

2.2 The Model and Assumptions 

Viets, Beilin, and ~·1erkin [7] investigated an elastic strip in 



Figure 3. Starring Defect 
in the Mill 
Roll 

Figure 4. Gage Band De
fect in the 
Mi II Roll 
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mechanisms with flexible coupling. Their approach was a comparison to 

general solutions of the planar oscillations of plates on strips of web. 

For free longitudinal oscillations, comparison of the first eigenfrequen

cies of a two-dimensional and rod model found that the difference was 

Jess than percent. Viets et al. determined that for longitudinal os-

cillations, the use of one-dimensional models for the purpose of simp] i

fication was expedient even with a large relative strip width and Pois

son1s ratio of the strip material. 

If the assumptions are made that the oscillations of the web remain 

in plane, the centerline of the web moves along the longitudinal axis, 

and the web is straight, uniform, and uncambered, then it is reasonable 

to employ a one-dimensional representation of the web. The appropriate 

one-dimensional model for the web is the axial rod. The rod will permit 

tension to vary along the length which supports axial vibration but of

fers no resistance to bending about any axis. Since the actual web will 

resist a moment about the normal axis, it is necessary to assume that 

the rollers have parallel alignment and deflections in the lateral direc

tion are nonexistent. 

The dancer is a heavy flywheel which is supported via a pneumatic 

spring and rotates at a rate proportional to the line speed of the web. 

The dancer is constrained to translate in one direction only. Thus, 

there will be no gyroscopic effects if both ends of the dancer move to

gether. This is equivalent to stating that no rotation can occur about 

the longitudinal axis. Without rotary properties, the dancer reduces to 

an elastically supported point mass. 

Figure 5 shows the model which is equivalent to the web and dancer. 

The forcing function, f(t), is a displacement input to the web span 
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representing any relative change in the mill roll radius from the nomi

nal value. Ideally, f(t) would be zero for all time. However, eccentri

cities in the core and starring of the windings in the mill roll can ac

count for a nonzero displacement input. The forcing function, f(t), is 

of the form 

where 

f(t) r - ~2 + e2 + 2er cos wt - N cos n wt 

r = m i 1 1 ro 11 rad i us ; 

e =eccentricity of the mill rol 1 core; 

w =rotational speed of the mill roll; 

n =number of nodes on the star inside the mill roll; and 

N amplitude of the mill roll stars. 

( 2. 1) 

Notice that all of the idlers and the rider roll have been omitted 

from the model. The idlers have no contribution because they are fixed 

in space and can only rotate about their own lateral axis. The coeffi

cient of friction is assumed to be small between the web and rollers. 

For this reason, it is assumed that the rotation of the idlers and rider 

roll have no effect on the moving web. 

The rods shown in Figure 5 have axial stiffness, EA, and mass per 

unit length, p, which correspond to the same properties of the web. The 

block has the same mass as the dancer while the elastic element, K, has 

the same properties as the pneumatic spring, 1 inearized about its nomi

nal position. The rods are grounded at one end because personal observa

tion of winding machines has shown that web disturbances propagate a fi

nite distance upstream from the winding apparatus. 
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2.3 Justifications of Assumptions 

The model for the web and dancer was presented in the previous sec

tion. Several assumptions were made in the development of the model. 

These assumptions should be examined further to determine if any impor

tant aspects of the problems have been omitted. 

The foremost assumption is that the two-dimensional web can be exam

ined as a rod. This assumption entails that the web be straight and uni

form. This is never true in the strictest sense. However, since the 

thickness is sever a I orders of magnitude sma I I er than the width and I ength, 

small variations in this thickness are negligible to the dynamic proper

ties of the web. These same variations in thickness are important in 

examining the internal structure of the mill roll, which is beyond the 

scope of this thesis. To ~reat the web as a rod, it is also necessary 

to require that the gradient of lateral tension is zero. A lateral gradi

ent would arise from misalignment of rollers. It seems reasonable to as

sume that with care proper alignment of the rollers is possible. The 

causes and effects of lateral tension gradients will be investigated in 

future works. 

The rotary effects of the rider roll and idlers was neglected. This 

assumption implies that the rotary inertia sees no acceleration and that 

no gyroscopic effects are induced. Except during start up or shut down, 

the handling operations for the web typically occur at constant line 

speed. Thus, for a steady state operation, the rollers would not accel

erate. However, longitudinal fluctuations in the web give rise to instan

taneous changes in the velocity of the web at any point along the span. 

The broad flat surface of the web traveling through open expanses of air 
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acts as a plate of a large capacitor which collects a static charge. 

This static charge suspends a thin film of air against the face of the 

web which practically negates any frictional effects between the web and 

the rollers. This allows the web to accelerate freely with little inter

action with the rollers. 

A displacement input, f(t), is applied to the free end of the rod. 

This input function accounts for the effects of the mill roll defects on 

the web. The causes and exact nature of mill roll defects have not been 

investigated. No attempt will be made in this thesis to accurately ex

plain these defects. They must, however, be included in any model of a 

web winding system. Thus, the mil 1 roll defects are assumed to be an in

herent part of the system 1 ike the web density or the modulus of elasti

city. 



CHAPTER I I I 

MATHEMATICAL MODEL OF A WINDING MACHINE 

The model to be analyzed is shown in Figure 5. The first step in 

the analysis ofany vibration problem with linear constant coefficients 

is the solution of the eigenvalue problem. This solution yields the 

characteristic frequencies and the mode shapes. The characteristic fre

quencies are a measure of the speed at whic~ free motion occurs. The 

mode shapes contain the corresponding spatial information for free mo

tion. Using the eigenvalue information, it is possible to obtain the 

solution by superimposing the mode shapes and the corresponding time 

functions. 

3.1 The Eigenvalue Problem 

The motion of the web, which is assumed to behave as a rod, is gov

erned by the wave equation. Because of the concentrated mass and spring 

in the midspan of the rod, it is convenient to replace the overall sys

tem by two subsystems. Figure 6 shows these subsystems and the coordi

nates used to describe their motion. The forcing function is omitted 

from the analysis because the eigenvalue problem deals with systems in 

free motion. The preliminary analysis of both subsystems is identical. 

The analysis will be performed in detail on subsystem A with the tacit 

understanding that equivalent operations are to be applied to subsystem 

B. 

16 
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The wave equation for a uniform, homogeneous rod in axial vibration 

is 

(3. 1 ) 

where 

E modulus of elasticity; 

A= cross-sectional area; and 

p =mass per unit length. 

This is a two-dimensional partial differential equation. The classic ap-

proach to solving this type of equation is to assume that the function 

which satisfies the above equation can be separated into a function of 

time and a function of space only. Thus, 

u(x,t) = w(x) h(t), (3. 2) 

Performing the required partial derivatives and substituting into Equa-

tion (3.1) yields 

where 

and 

pw(x) h(t) dx - EA w11 (x) h(t) dx 

iw w11 (x) - --- di 

0 

2 
Dividing by pw(x) h(t) and defining a as follows reveals that 

2 EA 
a =-

P 

(3.3) 

(3. 4) 
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(3. 5) 

The left side of Equation (3.5) is a function of time only, while the 

right side is a function of space only. This implies that both equa-

tions must equal a constant. 
2 Denoting this arbitrary constant as -w 

yields two independent second-order differential equations: 

.. 2 
h(t) = -w h(t) 

2 
w11 (x) + w2 w(x) = 0 

a 

The solution of Equation (3.7) is 

w(x) = Cl sin~ X+ C2 COS~ X 

(3. 6) 

(3. 7) 

(3. 8) 

where cl and c2 are arbitrary constants to be determined from the boun

dary conditions. The corresponding equations for subsystem Bare 

v(x,t) = y(x) ~(t), 

.. 
~(t) -rl ~(t) 

2 
y11 (x) + Q2 y(x) = 0 

a 

()D • Q D Q y X = l Sin a X + 2 COS a X 

The boundary conditions for this problem are 

u(o,t) = 0 

(3.9a) 

(3. 9b) 

(3.9c) 

(3. 9d) 

(3. lOa) 

(3. lOb) 

(3.10c) 

(3. lOd) 
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Using Equations (3.2), (3.6), and (3.9), the boundary conditions become 

w(o) = 0 

y(L 1 + L2) = 0 

Substituting Equation (3. 11), Equation (3.8) becomes 

w(x) = Cl sin~ X 

Expansion of Equation (3.12) reveals that 

Substitution into Equations (3.13) and (3.14) yields 

wL 1 D2w . wL 1 
EA[~ (Dl - cl) cos - - - sIn -] a a a a 

. wL 1 
Sin

a 

(3. 11) 

(3. 12) 

(3. 13) 

(3. 14) 

(3. 15) 

(3. 16) 

(3. 17) 

(3. 18) 

Combining Equations (3. 16) through (3. 18) yields the following matrix 

equation: 

. 2 wll 
s1n -

a 

sin 

wll . wl1 EA w 
cos - s 1 n - + ---'----:::2-

a a a(K-t1w) 

cos 

0 

0 

(3. 19) 
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The only nontrivial solution to Equation (3.19) is for the determinant 

to be nonzero. Thus, 

0 (3.20) 

Equation (3.20) is a transcendental equation which can only be solved 

numerically. Note that a singularity exists at the undamped natural fre-

quency of the dancer mass and spring acting as an independent single-

degree-of-freedom system. This frequency corresponds to 

w =~ (3.21) 

It is also interesting to note that Equation (3.20) is satisfied for w = 

0. This frequency represents column buckling and is meaningless for this 

application. 

3.2 Analysis of Subsystems 

In the solution of continuous vibration problems, it is possible to 

use the orthogonality ofthe eigenfunctions to find a set of principal 

coordinates. Principal coordinates allow for the spatial and dynamic in-

formation to be separated. 

3.2. 1 Eigenvalue Analysis of Subsystem A 

Figure ?(a) shows subsystem A which is excited by g 1 (t). This func-

tion represents the effect of subsystem B on subsystem A and also de-

scribes the motion of the concentrated mass. Analysis of subsystem A now 

becomes a support motion problem with eigenvalues on the boundary. 
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Timoshenko, Young, and Weaver [9] treat problems of this nature by 

dividing the total motion into two parts: 

(3.22) 

In the above expression the symbol ust denotes the displacement of any 

point on a massless bar due to support motion. Such a function is deter-

mined by static analysis to be 

(3. 23) 

This part of the displacement is. generalized as the flexible-body motion 

* of a massless rod. The symbol u represents the displacement of any 

point on the rod relative to ust' * Thus, the relative motion u will be 

associated with the inertial forces distributed over the length of the 

bar. Substituting Equation (3.22) into Equation (3.1) and using Equa-· 

tion (3. 23) yields 

2 ·k 2 ~·~ a2 
a u a u ust 

dx (3.24) p -- dx- EA - 2- dx = -p 
at2 ax at 2 

Since eigenvalues are a measure of free response, the forcing function 

is set to zero. Thus, Equation (3.24) is now identical to Equation (3.3). 

Separation of time and spatial components can be achieved by assuming 

that 

;': 
u (x,t) <j>(x) q(t) 

It follows from the boundary conditions that 

. w 
Sin- X 

a 

The boundary condition at the concentrated mass is 

(3.25) 

(3.26) 
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(3.27) 

Substitution for ~(L 1 ) and ~· (L 1) from Equation (3.26) leads to 

wll EA w 
tan -- = ---=---

a a(Mw2 - K) 
(3. 28) 

Equation (3.28) is a transcendental equation which can be solved for an 

infinite number of eigenvalues. Limiting the focus on the first eigen-

value and assuming that a» w1 L1, then 

(3. 29) 

It is interesting to note that the first eigenfrequency is independent 

of the mass of the rod. Equation (3.28) shows that the rod acts as a 

massless spring of stiffness EA/L 1 for all modes of vibration where the 

assumption of a» wi L1 is valid. 

3.2.2 Orthogonality Conditions for Subsystem A 

In order to develop the orthogonality relationships, the eigenvalue 

problem must be written for two distinct modes. For the sake of brevity, 

manipulations will be performed on the ith mode, while the corresponding 

operations on the jth mode will be omitted from the text. The eigenvalue 

problem for the ith mode is 

EA ,j,l.l = 2 ,/, 't' -pw. 't'· 
I I I 

(3. 30) 

Multiplication of Equation (3.29) by~· and integration over the domain, 
J 

EA fo 
l 

~·:~. dx 
I J 

= -pw:l fo ~.~. dx 
l I J 

(3.31) 
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The concentrated mass and spring located at the free end of the rod must 

also be included in the orthogonality relationships. Equation (3.27) may 

be written as 

I ( 2 EA cj> . ( L1 ) cj> . ( L1 ) = Mw . - K) cj> . ( L l ) cj> . ( L l ) 
I J I I J 

Subtraction of Equation (3.32) from Equation (3.31) leads to 

2 = pw. J0 cj>.cj>. dx 
I l I J 

2 - (Mw.- K) cj>. (L 1) cj>. (L 1) 
I I J 

(3.32) 

(3.33) 

The integral on the left-hand side of Equation (3.33) can be evaluated 

by parts. Thus, 

I f I I EA[cj>. (o) cj>.(o) + D cj>.cj>. dx] 
I J l I J 

2 
= pw. j0 cj>.cj>. dx 

I l I J 

Performing the same operations on the jth mode yields 

= pw: J0 cj>.cj>. dx 
J 1 I J 

2 + (Mw.-K) cj>.(L 1) cj>.(L 1) 
J I J 

(3.34) 

( 3. 35) 

Subtracting Equation (3.35) from Equation (3.34) and noting that cj>.(o) = 
I 

cj>.(o) = 0, the following relation is obtained: 
J 
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2 2 J (w. -w.) [p D cp.cp. dx + M cp.(L1) cp.(L 1)] = 0 
I J l I J I J 

(3.36) 

For the case when i = j, the above equation is identically satisfied. 

Thus, the bracketed term may equal any arbitrary constant, which will be 

denoted by m: 

( 3. 3 7) 

If the eigenfunctions are normalized such. that the constant m is of the 

same magnitude as p, then Equations (3.33) and (3.34) become 

2 2 
= Mw. - Kcp. ( L l ) 

I I 
(3.38) 

3.2.3 Equations of Motion for Subsystem A 

The equations of motion for subsystem A can be developed by recall-

ing Equation (3.25): 

The boundary condition at the free end of the bar is 

2 * 2 * 
M ~ (L 1 ,t) + EA ~ (L 1 ,t) + K/(L 1 ,t) = 0 

at ax 
(3.39) 

.. k 
Using the definition of u , multiplying by cp., and integrating over the 

J 

domain, Equation (3.39) becomes 

II 

pql ! 0 cp.cp. dx - EA q. j 0 cp.cp. dx 
l I J I l I J 

a2u st --=-2- cp . dx 
at J 

(3.40) 
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The boundary condition, Equation (3.39), can be transformed using Equa-

tion (3.25) to 

M q. ( t) ¢. ( L I ) + EA q. ( t) ¢ '.' ( L I ) 
I I I I 

+ K q.(t) ¢.(L 1) = 0 
I I 

(3. 41) 

Multiplication of Equation (3.41) by ¢j(L 1) and addition of Equations 

(3.40) and (3.41) yields 

[pfDl ¢;_¢j dx + M ¢i(Ll) ¢j(Ll)] qi(t) 

+ K ¢.(L 1) ¢.(L 1) q.(t) 
I J I 

J II I 

- EA [ D ¢. ¢. dx - ¢. ( L l) ¢. ( L l ) ] q. ( t) 
1 I J I J I 

2 
d u t 

-pf0 -~2 ¢. dx (3.42) 
1 at J 

Using Equations (3.37) and (3.38) when = j, Equation (3.42) becomes 

m(q. + w~ q.) = -pfo 
I I I l 

2 
a ust 

2 ¢. dx 
at 1 

But m is equal in magnitude top, so 

2 q. + w. q. 
I I I 

(3 .43) 

3.2.4 Analysis of Subsystem B 

Figure 7(b) shows that subsystem B is a rod subjected to indepen-

dent translations of both of its ends. However, the solution to the 

eigenvalue problem is obtained from an unforced system. Thus, subsystem 
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B is simply a rod with both ends free. The eigenfrequencies in Equation 

(3.9) are found by Meirovitch [10] to be 

rl. 
I 

i1ra 
L ' 2 

and the eigenfunctions are 

rl. 
y (x) D. cos - 1 X 

1 a 

=0.1,2, ... (3. 44) 

(3. 45) 

To develop the orthogonality condition, it will again be advantage-

ous to consider the absolute displacement as the sum 

v(x,t) ·'· = v + v" st (3.46) 

where v s t and v* are defined similarly to ust and 
-~ u", respectively. 

Since both ends of subsystem B translate, the static analysis yields 

L -X 

- 2-- g2(t) + ( f(t) 
L2 2 

( 3. 4 7) 

The general equation describing the motion of the rod can be written as 

·iv'~ 2 ·'· 
2 

EA~dx 
3 vst 

dx ( 3. 48) p -- dx- -p 
at 2 3t2 3x2 

The space and time components of the relative motion can be separated by 

letting 

v'''(x,t) tJi. ( x) p. ( t) 
I I 

(3. 49) 

Equation (3.48) can be rewritten using Equation (3.49) as 

IJ!. (x) p. (t) - a2 IJI 1
•
1 (x) p. (t) 

I I I I 
-p (3. 50) 



29 

where a is defined in Equation (3.4). Multiplying by and integrating 

over the domain, D2 :{0 $ x $ L2}, yields 

•• J 2 J II p.(t) D ljJ.ljJ.dx-a p.(t) D ljJ.ljJ. dx 
I 2 I J I 2 I J 

a2 
vst 

- fo --::-2- l/J. dx 
2 at J 

(3.51) 

To obtain equations of motion, interest is focused on the case where i = 

j. Equation (3.51) becomes 

2 2 II ' 
p.(t) f 0 l)J. dx- a p. (t)f0 1/J.l/J. dx 

I 2 I I 2 I I 

From Equation (3.45), it is clear that 

ljJ. (x) 
I 

~~ 
- _I l)J. (x) 

a2 1 

Equation (3.45) can be normalized such that 

2 f 0 l)J.(x) dx = 
2 I 

Thus, Equation (3.52) becomes 

.. 2 
p. + ~- p. 

I I I 

2 
a vst -J --=-2- l)J. dx 

02 at 1 

3.2~5 Combining the Subsystems 

(3. 52) 

(3.53) 

(3.54) 

Using Equations (3.24) and (3.47), the principal equations of mo-

tion (3.43) and (3.54) can be rewritten as 
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2 q. + w. q. 
I I I 

= -
g 1 ( t) 

L fo x <P. dx 
1 1 I 

( 3. 55) 

2 p. + &6. p. 
I I I 

.. 
- f(t) J x l/J. dx (3.56) 

L2 D2 1 

Continuity of the rods dictates that g1(t) = g2(t) = g(t). Equations 

(3.55) and (3.56) are expressed in terms of three unknowns. The third 

equation necessary for a solution comes from applying Newton's Second 

Law to the mass, whose motion is g(t): 

Mg(t) + Kg(t) = EA[au* (L ) + av* (o)] 
3x 1 3x ( 3. 57) 

Equation (3.57) becomes the third equation of motion if the definitions 

for u* and v* are substituted: 

( 3. 58) 

Equations (3.55), (3.56), and (3.58) can provide the. equations of 

motion for as many modes of vibration as desired. Equation (3.55) can 

be written for q 1, q2 , ... , qn, while Equation (3.56) can be written for 

p1, p2 , ... , Pn· Equation (3.58) is written only one time but the right

hand side becomes the summation of ¢;(L 1) qi(t) and l/J;(o) pi(t). This 

This procedure will always result in 2n+l equations in 2n+l unknowns. 

3.3 Discrete Model of the System 

The solution to the equations of motion developed in the previous 

section allows for prediction of any point on the web as a function of 

time. However, the main goal of modeling this system was to predict 



31 

dancer motion and improve tension control. Since the mass of the web is 

small compared to the mass of the dancer, it may be possible to neglect 

the inertial effects of the web. Without inertia, the web behaves as a 

spring of stiffness EA/L. The partial differential equations reduce to 

a single, second-order differential equation. 

The advantages of a discrete model over the continuous model devel-

oped above are: the equations of motion are easier to manipulate, damp-

ing can be more easily considered, and nonlinear effects can be included. 

The major disadvantage to a discrete model is that the information is 

lost in neglecting the higher modes of vibration of the web. 

A discrete model for the system is shown in Figure 8. The web is 

represented by its elastic properties only. From Newton•s Second Law, 

the governing equation of motion is 

where f(t) is the displacement input expressed by Equation (2.1). The 

natural frequency ·of the model as predicted by Equation (3.59) is 

(3.60) 

At the nominal conditions which are discussed in Chapter I I I, the 

-1 
first nonzero solution of Equation (3.20) is w1 = 17.89 s and evaluat-

-1 
ing Equation (3.60) with the nominal values yields w1 = 17.70 s . This 

is approximately a 1 percent difference between the fundamental frequen-

cies predicted by the two models. 

Correlation of the first natural frequencies is not sufficient 

cause to abandon the continuous model in favor of the discrete one. 
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K ps 

M f ( t) 
EA 

EA -c;-
Ll 

Figure 8. Discrete Model of Web and 
Dancer System 
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However, this agreement does encourage further investigation of the dis-

crete model. Since the motion of the dancer is related to the longitudi-

nal tension, the deciding comparison should be the amplitude of the dan-

cer motion. 

Equations (3.55), (3.56), and (3.58) can be solved analytically for 

the first mode if f(t) is a well-behaved function. Equation (2.1) does 

not lend itself easily to analytical solution. For comparison purposes, 

f(t) can simply be a single sinusoid, such as 

f(t) = F cos ~t 
0 

(3.61) 

Again using nominal values for the parameters and setting F = 1.0, 
0 

the maximum amplitude predicted by the continuous model was X 0.39 max 

and the maximum amplitude computed from the discrete model was X = 
max 

0.35. This is a 10 percent difference in amplitudes. 

Since it would be substantially more difficult to include non! ine-

arities or damping in the continuous model and the difference in the re-

sponses is fairly uniform and predictable for the range of variation of 

the input parameter vectors, it seems reasonable to adopt the discrete 

model. Neglecting the nonlinear effects and damping would most I ikely 

account for more error than neglecting the higher modes of vibration. 

3.4 Non! inearities and Damping 

So that a comparison could be made with the continuous model, the 

discrete model has been idealized in two important ways--nonlinearities 

and damping. The dancer is supported by a pneumatic spring whose stiff-

ness is highly non! inear. The supports of the dancer also contain 
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friction. Damping is intentionally introduced to 1 imit high frequency 

asci llat ions. 

The stiffness of an air spring is treated in Thomson [11] and can 

be developed from the thermodynamic laws describing an isentropic pro-

cess of an ideal gas. The stiffness of the pneumatic spring is deter-

mined to be 

K ps 

nP A2 ( )-(n+l) 
--:-a.;:__ 1 _ Ax 

v v (3.62) 

where 

0 0 

K air spring constant; ps 

n =specific heat ratio (1 .4 for air); 

P = gas pressure at x = 0; 
0 

V volume at x = 0; 
0 

A piston area; and 

x = displacement of the piston rod. 

Friction and viscous damping are included in the dancer supports to 

reduce the motion and eliminate high speed chatter. The exact type of 

damping will vary from machine to machine. In an effort to generalize 

the frictional characteristics of the dancer supports, both linear and 

nonlinear damping are included. The nonlinear damping appears as a func-

tion of the dancer speed cubed. The frictional force is assumed to be 

where b1 is the linear damping, b2 accounts for the nonlinear effects, 

and x is the dancer velocity. 
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3.5 The Feedback System 

The dancer•s ability to accurately control the longitudinal tension 

as a passive device is severely limited by its own dynamics. Thus, the 

most effective use of the dancer is to use -it as a tension sensing trans

ducer in a control system. The dancer is an unusual transducer because 

it significantly influences the phenomenon which it measures. 

The dancer can act as a transducer by moving about its equilibrium 

position in response to fluctuations in longitudinal web tension. As the 

web becomes slack or too taut, the dancer displaces accordingly to bal

ance the spring and web forces acting on it. A signal, indicating the 

magnitude and direction of the dancer movement, is sent to the drive 

motor. The motor will increase or decrease the torque on the mill roll, 

and thus the web tension, until the dancer has moved back to its equili

brium position. At this point the machine should be operating at design 

conditions. For trim control, the ability of the dancer to change the 

speed of the web is 1 imited to a certain percentage of the nominal value. 

For modeling purposes, this percentage is assumed to be 10 percent. 

Figure 9 shows a block diagram illustrating the feedback system. 

The system consists of a gain amplifier to proportion the dancer signal, 

a field DC controlled motor, the dancer, and the gearing system. In the 

previous sections, the equations of motion for the dancer and web were 

derived. Dorf [12] derives the transfer function for a field driven mo

tor relating the rotational speed to the field voltage as two cascaded 

first-order systems. One system consists of the mechanical elements of 

the motor and the second consists of the electrical field characteris

tics. Typically, the mechanical time constant is much larger than the 
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electrical time constant. Thus, the transfer function for the electric 

motor is 

where 

K 
m 

J + F s· 

RS rotational speed of the motor; 

vf = field voltage; 

K motor constant; m 

J effective inertia; and 

F viscous friction. 

(3.64) 

The inertia used in Equation (3.64) is the effective inertia of the 

system, which includes the inertia of the mill roll. The inertia of the 

mill roll can be related to the inertia of the motor through the gear ra-

tio. The mill rol 1 can be approximated as a homogeneous circular cylin-

der. The inertia and gear ratio are expressed as follows: 

gr 

J 
M. R. 

~ motor 
~ 

M. R. 

1 2 
2 mr 

J J + motor 

J M.R. 
2 

gr 

(3.65) 

(3. 66) 

( 3. 6 7) 

where m is the mass of the mill roll, r is the radius of the mill roll, 

and gr is the gear ratio. 

All of the equations are written relative to nominal values of dan-

cer position, web tension, field voltage, and rotational speed. The posi-

tion of the dancer is related to the field voltage by a proportionality 
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constant which couples the equations of motion. This coupling makes con-

trol possible. The system is described by the subsequent equations: 

f(t) = r - /r2 + e2 + 2er cos wt - Ncos nwt 

K ps 

ex 

·2 · ( EA EA) Mx + (bl + b2 x )x + Kps + -s- + t; X 

. 
~ 

~A f ( t) 
2 

(3. 68) 

(3. 69) 

( 3. 70) 

(3.71) 

Jrl + FQ = Km Vf (3.72) 

[I = [I + gr(~) (3. 73) 
0 

3.6 Numerical Values 

The model of the rewind portion of a web handling machine is pre-

sented in the previous section. This model contains many parameters 

which are unique to each web and winding machine. These quantities will 

make up the input parameter vector, discussed in more detail in Chapter 

IV, which are subject to the sensitivity analysis. Table I shows the 

parameters and their respective nominal values. 

Much of the data in Table I was supplied by a local chemical com-

pany which operates machines handl i~g polypropylene webs and through 

private communications with Dr. John J. Shelton, P.E. Items 2 through 

14 are measured or estimated quantities from a winding machine handling 

a polypropylene web. The elastic information for polypropylene was lo-

cated in Plastics Materials [13]. An approximate stress-strain curve 



No. 

2 

3 

4 

5 

6 

7 
8 

9 

10 

1 1 

12 

13 

14 

15 

16 

17 

TABLE I 

NOMINAL VALUES OF THE UNCERTAIN PARAMETERS 

Parameter · 

Modulus of Elasticity 

Distance Between the Dancer and Mill Roll 

Distance Between the Dancer and Chill Roll 

Width 

Thickness 

Dancer Mass 

Pneumatic Spring Rate 

Linear Dancer Damping 

Core Eccentricity 

Number of Nodes 

Nodal Amplitude 

Line Speed 

Radius 

Cubic Dancer Damping 

Motor Inertia 

Motor Damping 

Feedback Gain 
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Nominal Value 

170,000 psi 

110 in. 

270 in. 

120 in. 

0.00075 in. 

275 lbm 

27.5 lbf/in. 

15 lbf s/in. 

1.75 in. 

6 

0.75 in. 

250 in./s 

8.5 in. 

0.1 lbf s 3/in. 3 

0.025 lbf in. s2 

l. 75 1 bf in. s 

0.50 V/in. 
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indicated that the material is almost Hookian in its behavior until the 

yield strength is reached. The motor parameters are compliments of the 

Kollmorgen Corporation, Industrial Drives Division. 



CHAPTER IV 

SENSITIVITY ANALYSIS 

The mathematical model developed in the previous chapter contains 

several uncertain parameters which 1 imit the reliance that can be placed 

on the outcome of a single simulation. As a way of dealing with this 

problem, these quantities can be assigned statistical distributions 

which reflect their degree of parametric uncertainty. The outcome, now 

a function of random variables, is subject to statistical manipulation. 

4.1 Classification of Hodel 

The equations of the mathematical model can be rewritten as a set 

of first-order differential equations of the form 

~(t) = f(~(t)' 2_, !:!_(t)) ( 4. 1 ) 

where ~(t) is the state vector, s is the vector of parameters, and !:!_(t) 

is the set of time-dependent function which include input or forcing func

tions. 

The vectors consists of the inherent system parameters, initial 

state, and input variables which are uncertain. For specified~' !:!_(t), 

and ~(o), ~(t) is the solution of the system of equations and is a deter

ministic or a stochastic function of time as determined by the nature of 

~(t). Parameters from s are included in the forcing function !:!_(t). 

41 
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Each element of the vector s is defined as a random variable, the 

distribution of which is a measure of the uncertainty in the 11 real' 1 but 

unknown value of the parameter. Thus, all the uncertainty is contained 

in the vector s. Every sample of s taken from the a priori distribu-

tions results in a unique state trajectory, ~(t). 

A set of observed variables, y(t), calculated from the state vector 

is computed. Thus, for each randomly selected parameter set~· there 

corresponds a unique observation vector~ defining the behavior of the 

system. This behavior can be classified as an occurrence or nonoccur-

renee of some system behavior such as web tension. The behavior can now 

be thought of in a binary sense; either it occurs or it does not for a 

given parameter set~· 

4.2 Sensitivity Analysis 

For a given behavior and set of parameter distributions~· it is pos-

sible to explore the properties of the ensemble via computer simulation 

studies. In particular, a random choice of the parameter vector~ from 

the predefined distributions leads to a state trajectory ~(t), an observ-

at ion vector y(t), and via the behavior-defining algorithm, to a deter-

mination of the occurrence or nonoccurrence of the behavior. A repeti-

tion of this process for many sets of randomly chosen parameters results 

in a set of sample parameter vectors for which the behavior was observed 

and a set for which the behavior was not observed. The basic ideas under-

lying the sensitivity analysis concern the degree to which the distribu-

tions of the observed behaviors and nonbehaviors separate. 

Given a behavior Band parameter elements., if an individual dis
' 

tribution does not separate--that is, the cumulative distributions for 
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the occurrence and nonoccurrence behaviors are statistically identical--

and if the induced covariance is small, then the parameters., taken 
I 

alone, appears to have no effect on the occurrence or nonoccurrence of 

the behavior. The behavior is insensitive to s over the multidimension-

al region of the parameter space defined by the a priori distributions. 

A sensitivity ranking is based on a direct measure of the separa-

tion of the unknown continuous distributions for behaviors and nonbehav-

iors, F(s. ,B) and F(s.,B), respectively, by employing the Kolmogorov-
1 I 

Smirnov two-sample test statistic 

D m,n = sup I S (x) - S (x) I m n 
(4.2) 

X 

where S and S are the sample distribution functions corresponding to 
m n 

F(s. ,B) and F(s.,B) form behaviors and n nonbehaviors. Since the num-
1 I 

ber of samples from the parameter space is finite, S and S are esti-
m n 

mates of the unknown continuous distributions F(s.,B) and F(s.,B), re-
I I 

spectively. The statistic, D , is the maximum vertical distance be-m,n 

tween the occurrence and nonoccurrence distribution functions. Large 

values of D indicate that the parameter is important in obtaining the 
m,n 

behavior. 

The Kolmogorov-Smirnov test statistic is nonparametric, so it is pos-

sible to assign a confidence measure to the estimate of the true distri-

bution given only that it is continuous. Values of D , for which to m,n 

accept the hypothesis that the two distributions are statistically iden-

tical, are presented in Table I I. 

One important property to notice about D is that the number of m,n 

samples required to estimate the separation of F(s.,B) and F(s.,B) is 
I I 

virtually independent of the number of parameters in the vector~· since 



TABLE I I 

VALUES OF THE KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST 
STATISTIC AT WHICH TO ACCEPT THE HYPOTHESIS 

OF HOMOGENEITY BETWEEN SAMPLE DISTRIBU
TIONS FORM BEHAVIORS AND N NON

BEHAVIORS FOR VARIOUS 
CONFIDENCE LEVELS 

Confidence Level Accept Homogeneity 
(%) If 

80 D ::; l .07 ~ m,n m n 

90 D s 1.22 ~ m,n m n 

95 D s l. 36 ~ m,n m n 

99 D s ~ 1.63 -m,n m n 

44 
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D is a function only of the number of samples, m, leading to behaviors m,n 

and the number of samples, n, leading to nonbehaviors. For more informa-

tion concerning the uses and 1 imitations of this method, the reader is 

referred to Young and Auslander [14]. 

4.3 Application of Methodology 

The model defined by Equations (3.68) through (3.73) contains 17 

system parameters as shown in Table I. The behavior for the model is de-

fined in terms of dancer motion and the resulting tension in the web. 

The motion of the dancer is obtained from the solution of the dif-

ferential equations of motion. The critical span of the web occurs be-

tween the dancer and the rewind roll. Thus, the strain in the web is 

calculated by observing the relative motion of the ends of that span or, 

simply, the difference between the dancer motion and the displacement in-

put. The resulting web stress is 

!J 
w ~ [f(t) - x(t}] + cr0 

where 0 is the stress due to the nominal longitudinal tension. 
0 

(4. 3) 

Because of the assumption concerning the stress distributions in the 

web and other factors not included in the model, such as temperature ef-

fects, permanent deformations will occur in the web before the stress 

reaches the yield strength. Thus, the behavior for the system is defin-

ed such that the stress in the web must not exceed 85 percent of the 

yield strength. This incorporates a modest but reasonable factor of 

safety to help guard against damage to the medium. 

Examination of Equation (4.3) indicates that it is possible for the 

stress in the web to become negative, or compressive. Clearly, it does 
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not make sense to attempt to longitudinally compress a web. Also, the 

equations derived earlier were based on the assumption that the web does 

not become slack. The dynamics involved in dealing with a slack web, 

such as the whipping effect, are substantially more complex. For both 

simplicity and practical consideration, all negative stresses are consid-

ered to be nonacceptable system behaviors. 

The dancer moves about its equilibrium position in response to the 

web and spring forces acting on it. However, the motion of the dancer 

is constrained by stops on the winding machine. This makes it possible 

for the dancer to 11 bottom out•• on the stops. When this occurs, the dan-

cer is no longer able to send accurate signals to the drive motor or pro-

vide adequate tension control. Since the dancer cannot operate as de-

signed at this state, the bottom out condition is also defined as a non-

behavior. It is assumed that the dancer will bottom out at an amplitude 

of two inches. 

In summary, for the output of the system to be classified as a be-

havior, the following equations must be true: 

X < 2.0 
max 

(J 

0 ::: sw < 0.85 
y 

where S is the yield strength of the web. 
y 

4.4 Results of Application 

( 4. 4) 

(4. 5) 

Using Equations (4.4) and (4.5), a classification algorithm was 

written which categorized the output of each simulation as acceptable 

system behavior or not acceptable system behavior. The system was 
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simulated 500 times with randomly selected parameters. The classified 

result and corresponding parameter vector was stored. Of the 500 simula-

tions conducted, 226 fell in the behavior category and 274 fell in the 

nonbehavior category. The Kolmogorov-Smirnov statistic, D 
m,n 0.122, 

indicates that F(s.,B) # F(s.,B) at the 95 percent level of confidence. 
I I 

Table I I I contains the Kolmogorov-Smirnov test statistic for each para-

meter. 

A ranking of the individual parameters on the basis of the test sta-

tistic classified 12 of the 17 parameters as unimportant for obtaining 

acceptable system behavior. It is essential to note that this result is 

only significant for the ranges of values in which the individual para-

meters were allowed to vary. For example, the radius of the mill roll 

may vary from 4 to 16 inches during the course of a run. However, per-

mitting the corresponding parameter to vary 400 percent would necessi-

tate a dramatic increase in the number of simulations needed to accurate-

ly investigate the region of uncertainty. Conversely, some parameters, 

such as the width, do not vary to a significant degree at any portion of 

a run. In an effort to not bias the statistical study for or against 

any parameter, nominal values (Jable I) were chosen for each parameter 

and the interval 1 imits were set at approximately 15 percent above and 

below this nominal value. 

The five parameters found to be most significant to obtaining accep-

table system response for the winding process are: modulus of elastic-

ity, span length between the dancer and mill roll, thickness, core eccen-

tricity, and number of nodes or bumps on the mill roll. The sample dis-

-
tribution functions under B and B for the important parameters are shown 

in Figures 10 through 14. The separation between the distribution 
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9 
10 

11 

12 

13 

14 

15 

16 
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TABLE Ill 

VALUES OF THE KOLMOGOROV-SMIRNOV 
TWO-SAMPLE TEST STATISTIC FOR 

EACH UNCERTAIN PARAMETER 

Parameter 

Modulus of Elasticity 

Distance Between the Dancer and Mi 11 Ro 11 

Distance Between the Dancer and Chi 11 Ro 11 

Hidth 

Thickness 

Dancer Mass 

Pneumatic Spring Rate 

Linear Dancer Damping 

Core Eccentricity 

Number of Nodes 

Nodal Amplitude 

Line Speed 

Radius 

Cubic Dancer Damping 

Motor Inertia 

Motor Damping 

Feedback Gain 
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Dm,n 

0.242 

0.140 

0.060 

0.060 

0.183 

0.099 

0.064 

0.064 

0.146 

0.200 

0.078 

0.071 

0.041 

0.083 

0.058 

0.058 

0.072 
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functions, that is, the vertical distance between the curves, is the mea-

sure of the sensitivity of the model to the parameter in question. 

For comparison purposes, the distribution functions for the motor 

inertia, D = 0.058, are presented in Figure 15. The small separation 
m,n 

between the curves indicates that the motor inertia is not important to 

obtaining acceptable system response. This result is easily explained 

by examining the system. The motor inertia is unimportant because it is 

relatively small when compared to the large inertia of the mill roll. 

Thus, even a large change in the motor inertia will have 1 ittle effect 

on the effective inertia used in the equations of motion. 



z 
0 -I-
:::> 
co -cc 
I-
Cf) -0 

1. 00 
------

0.75 

0.50 

0.25 

r--,. 
lf 0.00 

0.0200 

----~ ------- --------- ----- --·--- ---·- -~--- --- ----- --~- ------ ----- ---- --- --- -------- ----

-- -

~ 
1 ~ 

r 
ld p_ 

~ 
.r-v 

r.V'',.I 
/ 

_,lj ~ 
,.,r' v 

/ -.J 
v v 

I ~~ 
lifl 

,.£r-

r 

0.0225 0.0250 0.0275 
MOTOR INERTIR fLBF-IN-SA2l 

Figure 15. Sample Distributions for the Inertia of the Motor 

------ -7 ~ 

b¢ 
-':J. 

-i 

J 
I 

0.0300 

1.11 
1.11 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Based on the values of the Kolmogorov-Smirnov test statistic and 

shapes of the distribution functions, the importance of the parameters 

can be established. It is possible that the distributions of certain 

parameters will not separate under behavioral mapping and yet this para

meter could be crucial to a successful simulation. This situation can 

occur when there exists a strong correlation among the parameters. Thus, 

the correlation coefficients must be computed for each parameter. These 

coefficients are a measure of the linear interaction between any two 

parameters. 

It is important to note that the conclusions which follow are based 

on the ran9es of the uncertainty for the parameters as shown in Table IV. 

It is likely that many of the parameters which are classified as insigni

ficant could exercise greater influence on the outcome of a simulation if 

the limits of uncertainty were changed. The methodology of the sensitiv

ity approach could be easily adapted to design work by defining ranges in 

which acceptable system behavior is assured. Hopefully, the conclusions 

of this thesis can provide direction to experimenters in the future. The 

parameters found insignificant should not be the subject of expensive or 

complicated testing procedures because they have little influence on the 

behavior of the system. 
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No. 

2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

TABLE IV 

RANGES OF UNCERTAIN PARAMETERS 

Parameter 

Modulus of Elasticity 

Distance Between the Dancer and Mill Roll 

Distance Between the Dancer and Chill Roll 

Width 

Thickness 

Dancer Mass 

Pneumatic Spring Rate 

Linear Dancer Damping 

Core Eccentricity 

Number of Nodes 

Noda 1 Amp 1 i tude 

Line Speed 

Radius 

Cubic Dancer Damping 

Motor Inertia 

Motor Damping 

Feedback Gain 
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Range 

140000.0-200000.0 

100.0-120.0 

245.0-295.0 

110.0-130.0 

0.0006-0.0009 

250.0-300.0 

25.0-30.0 

10.0-20.0 

1.50-2.00 

1.0-11.0 

0.60-0.80 

225.0-275.0 

7.5-9.5 

0.0-0.20 

0.02-0.03 

1. 60-1.90 

0.00-1.00 
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5.1 Web Stiffness 

Using the Kolmogorov-Smirnov test statistic, the modulus of elastic-

ity, the free span length, and the web thickness are all classified as 

significant parameters (see Table I 1). Since the web is modeled as a 

longitudinal rod, the above parameters are directly related to the stiff-

ness of the web, EA/L. 

The distribution functions for the modulus of elasticity, Figure 10, 

show that the outcome of a simulation is more likely to be a behavior if 

the modulus is slightly less than nominal. This is determined by the 

slope of S , the sample distribution function corresponding to F(s. ,B). 
m 1 

The curves shown in Figures 10 through 15 are the integrals of the prob-

ability density functions. Thus, the greater the slope of the distribu-

tion function, S , the higher the probability of an occurrence. The con
m 

verse is true for S , the sample distribution function corresponding to 
n 

F(s. ,B), and nonoccurrences. Since the slope of the S curve is great-
' m 

est just below the nominal value of the elastic modulus while the S 
n 

curve is shallowest in that region, the likelihood of an occurrence is 

greatest for values ofthemodulus of elasticity which are slightly less 

than nomina 1. 

Examination of Figure 12 reveals that behaviors are more apt to oc-

cur at lower values of the thickness. Notice in both Figures 10 and 12 

that the behavior curve lies above the nonbehavior curve, or for a given 

cuf'llulative distribution, the corresponding values for behaviors are small-

er than those for nonbehaviors. 

The slopes for the behavior and nonbehavior curves in Figure ll are 

not as conclusive as those in the figures for the elastic modulus and the 

thickness. However, the curve for behaviors is below the curve for non-



59 

behaviors in Figure 11, which implies that slightly larger values of the 

free span length between the dancer and mill roll are more favorable to 

obtain an acceptable system response. 

The observations for the modulus of elasticity, thickness, and free 

span length lead to a similar conclusion. The distributions suggest that 

a simulation is most likely to result in a behavior when the spring rate 

of the web, EA/L, is slightly less than nominal. This should not imply 

that continually lowering the web stiffness will continually increase the 

probability of behavioral response. It only means that for the ranges 

of the elastic modulus, thickness, and span length used in the simula

tions, acceptable system behavior occurred more often at stiffnesses 

less than nominal. 

5.2 Frequency Ratio 

The number of nodes on the mill roll determines the frequency of 

one component of the forcing function. The behavior curve in Figure 14 

is above the nonbehavior curve, indicating that a higher input frequency 

will increase the probability of an occurrence. The nominal driving fre

quency, V/R, is approximately 1.7 times greater than the nominal natural 

frequency of the system. The ranges of the parameters involved in deter

mining both the driving and natural frequencies cannot combine in such a 

way that the system is being driven at the resonant frequency. 

The system could loosely be viewed as a mass-spring-damper system 

with base excitation. Thomson [11] indicates for systems with s = 0.5 

and the input frequency is 1.41 times greater than the natural frequency, 

the amplitude ratio is less than one, and the phase angle is less than 

90 degrees. An increase in the frequency ratio, accomplished by lowering 
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the web stiffness or increasing the number of nodes on the mill roll, will 

reduce the amplitude ratio. The phase angle is important because if the 

motions of the ends of the web are out of phase, then f(t) and x(t) be

come additive. When this occurs, it is possible for a small input and 

small dancer motion to combine to sufficient magnitude to induce yield

ing in the web. 

A limit exists on the amount that the stiffness and input frequency 

can be changed relative to one another. When the frequency ratio de

creases, resonant behavior is observed. The resulting large values of 

strain will yield the web. On the other hand, as the frequency ratio in

creases, so does the phase angle. As the frequency ratio increases with

out bound, the phase angle tends toward 180 degrees and yielding of the 

web could occur. 

5.3 Core Eccentricity and Nodal Amplitude 

Figure 14 indicates the smaller core eccentricities will lead to more 

desired outcomes. The importance of the core eccentricity is a somewhat 

expected result. From Table I and Equation (2. 1), it is clear that the 

core eccentricity is the principal component of the forcing function. 

Thus, the displacement input and resulting dancer motion are sensitive to 

the core eccentricity. 

On the other hand, the sample distributions for the nodal amplitude 

failed to separate under behavioral mapping. Thus, the nodal amplitude 

was classified as insignificant in influencing the system response. There 

are two reasons why the nodal amplitude was categorized as insignificant. 

First, the excitation from the nodes occurs nominally at approximately 

ten times the natural frequency. Second, if the dancer is fixed, the 



deflection caused by the nominal nodal amplitude is not sufficient to 

cause yielding in the web. 

5.4 Influence of Other Parameters 
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The Kolmogorov-Smirnov statistic indicates that the dancer mass is 

not a significant parameter. The function of the dancer is twofold. Not 

only is it used to sense the web tension but also to help smooth out per

turbations in the web. As a tension transducer, the dancer should be of 

low mass for fast response. A heavy dancer would smooth out perturbations 

more effectively. Thus, a compromise exists in selecting the dancer mass. 

The nominal value of the dancer mass is too large for the dancer to accu

rately transduce the tension but is too small to effectively smooth web 

perturbations. Thus, the model is insensitive to the dancer mass for the 

range of parametric uncertainty assumed in the simulations. 

The mill roll radius and web line speed determine the input frequen

cy of the forcing function. As noted earlier, the driving frequency, 

V/R, is 1.7 times greater than the natural frequency. The parameter 

ranges do not allow for the system to be driven at resonance. Since the 

fore i ng freo,uency cannot equal the resonant frequency for the given ranges 

of uncertainty, the results of the sensitivity analysis declaring the 

radius and line speed insignificant seem reasonable. 

Assumptions were made in the development of the model that the dan

cer1s maximum amplitude was two inches and its ability to change or trim 

the web speed was limited to ±10 percent from the nominal value. Both of 

these assumptions were used in obtaining the magnitude of the feedback 

gain. The nominal value and range for the gain does not allow the feed

back system to adequately influence the winding operation. If the dancer 
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was allowed to trim more than 10 percent of the speed or if the control 

strategy was different, then the feedback system could be more influen

tial in the outcome of a system simulation. 

5.5 Cross Correlations 

The correlations among the parameters were computed and all values 

of Rand R2 were sufficiently small as to indicate no linear correlation. 

This means that the variables do not sufficiently interact enough to in

crease or decrease the likelihood of an occurrence or nonoccurrence. Al-

though the magnitude is small, it is interesting to note that the largest 

correlation occurred between the modulus of elasticity and the number of 

nodes. 

The value of the correlation coefficient between the elastic modulus 

and the number of nodes is -0.213. The correlation is small because the 

amount that the stiffness and input frequency can change relative to one 

another and still produce acceptable behavior is limited as discussed in 

section 5.2. The negative correlation implies that a decrease in the 

elastic modulus and an increase in the number of nodes will increase the 

probability of the outcome of a simulation being classified as accept

able system behavior. This correlation could also be interpreted to im

ply that acceptable system behavior is likely when the number of nodes 

decreases and the elastic modulus increases. However, the observations 

made from inspecting Figures 10, 11, 12, and 14 indicate that this is not 

the case. 

5.6 Recommendations for Future Work 

Based on the conclusions stated above, it seems that the area of 
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most importance involves the stiffness of the web. A thorough testing 

of the web material in question in the form of stress-strain curves and 

yield strength calculations would be beneficial to future research and 

modeling work. 

Another related area in which investigation would be invaluable is 

accurately defining the lateral stress profile across the web. Knowledge 

of the tension distribution would insure the validity of the one-dimen

sional representation of the-web and provide guidance for selection of 

the factor of safety used in the critical stress calculations. 

Further analytical and experimental investigation of the dynamics of 

a web would be significant. Two-dimensional dynamics and slack web dyna

mics were not discussed in this thesis but should be considered. Inves

tigation of these areas may identify the causes of many mill roll defects 

as well as provide insight into the causes of wrinkles. 

Further investigation into the types and applications of different 

control strategies would seem to be a worthy topic. The effect of in

creasing the dancer 1 s trimming ability could also be investigated. 
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