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CHAPTER I 

INTRODUCTION 

Variable Forward Sweep 

The reemerging forward sweep wing is generating a growing interest 

in the aerospace community. cne can see from a brief survey of the 

current aerospace research literature, the advantages and di sad vantages 

of forward sweep are being throughly investigated for future 

applications. Research indicates forward sweep is feasible and will he 

used in future aircraft designs. 

A conceivable variation of forward sweep is the merging of forward 

sweep with variable sweep. Both forward sweep and variable sweep offer 

significant gains in performance by themselves. The coupling of forward 

sweep and variable sweep could possibly offer even higher performance 

levels. 

A conventional variable sweep aircraft with backward sweep, or 

positive sweep angles, is typically designed with minimum longitudinal 

stability when minimum sweep and subsonic speeds occur. The aircraft's 

aerodynamic center is at its most forward .location in this flight 

con di ti on. The aerodynamic center and center of gravity both move 

backward as the sweep is increased, with the aerodynamic center 

typically moving farther back than the center of gravity. Excessive 

longitudinal stability which degrades performance and maneuverability 

can occur at the maximum sweep angle. Supersonic speeds increase the 

1 



stability even more by the characteristic backward shift of the 

aerodynamic center. Elevator control effectiveness reductions can 

also occur at the maximum sweep angle due to large longitudinal wing 

moment arms. 

2 

The variable forward sweep wing aircraft would logically be 

designed with minimum longitudinal stability when maximum sweep and 

supersonic speeds occur.. As the sweep decreases or becomes less 

negative, the aerodynamic center and center of gravity are expected to 

both move backward, with the aerodynamic center typically moving farther 

back than the center of gravity. The longitudinal stability will 

increase with decreasing sweep until subsonic speeds occur. At that 

time, the stability will decrease due to the characteristic forward 

shift of the aerodynamic center. If this reduction in stability is 

significant, the forward variable sweep aircraft will not be hampered as 

much by the excess stability and control shortage problems that occur 

with backward variable sweep aircraft. 

The lateral-directional characteristics will also be affected by 

the wing sweep angle. The roll characteristics can be expected to 

experience the predominate change among the lateral-directional 

characteristics. For the variable forward sweep wing aircraft, the wing 

mean aerodynamic chord and aileron moment arm both move inboard as the 

sweep in creases or becomes more negative; consequently, the roll damping 

and roll response should be reduced, respectively. The inboard movement 

of the mean aerodynamic chord with increasing sweep should also be 

expected to reduce the yaw damping. 

The longitudinal and lateral-directional characteristics will also 

be affected through changes in the moments of inertia due to variable 

sweep. For the variable forward sweep wing aircraft, increasing or more 



negative wing sweep should result in pitching and rolling moment of 

inertia reductions. These reductions should tend to improve the 

pitching and rolling responses. 

3 

A variable forward sweep wing aircraft is an interesting and 

formidable concept to analyze. For the reasons discussed in this 

section, the analysis of the flight dynamics of a variable forward sweep 

wing aircraft was selected as the Master Of Science thesis topic. 

Research Scope 

The level of complexity of the research is a classical aircraft 

stability and control analysis such as pre sen ted by Roskam ( 1 ) • 

Assumptions include rigid body, linearized dynamics and aerodynamics, 

ideal control surface actuators and no automatic flight c'ontiol system. 

The flexibility, linearization, actuator dynamics and automatic flight 

control system assumptions are introduced because 1) the research is 

in tended to analyze the effects <n an aircraft's flight dynamics 

resulting solely from the variable forward sweep concept and 2) to 

simplify the analysis. 

The equations of motion are uncoupled into a longitudinal set and a 

lateral-directional set. Laplace transformation and partial fraction 

expansi<n theory are used to manipulate and solve the equations of 

motion. Numerical calculations are performed by programming the 

equations of moti<n in to a digital computer. Numerical results consist 

of the characteristic equation root loci, mode shapes and time responses 

at various wing sweep angles and dynamic pressures. The International 

System of metric units (SI) .is used exclusively throughout this thesis. 



Areas to be addressed in the research include aerodynamic center 

movement, center of gravity movement, characteristic equatioo root loci 

behavior, mode shape behavior, time response behavior and dynamic 

pressure and Mach number effects. The overall goal is to 1) relate the 

flight dynamics results and trends with the physics of the variable 

forward sweep concept and 2) indicate any significant advantages or 

disadvantages associated with the variable forward sweep concept. 
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CHAPTER II 

LITERATURE SURVEY 

Variable Sweep 

Variable sweep is a design which allows an aircraft's wing sweep 

angle to be varied during flight and is used to achieve acceptable 

performance levels throughout the flight envelope. Low and moderate 

subsonic speeds demand a high aspect ratio, lowly swept wing. High 

aspect ratio, lowly swept wings result in efficient lift curve slopes 

and low takeoff and landing speeds. High subsonic speeds and transonic 

speeds demand a moderate aspect ratio, moderately swept wing to achi~ve 

acceptable lift to drag ratios for cruising flight and to delay 

compressibility drag. Supersonic speeds demand a low aspect ratio, 

highly swept wing. Low aspect ratio, highly swept wings result in 

weaker oblique shock waves rather than stronger normal shock waves. 

variable sweep is a unique and proven technique which satisfies th~ 

diversified wing characteristics required over an aircraft's flight 

envelope. 

A complete history of variable sweep can be found in the papers by 

Polhamus and Toll (2) and Kress (3). The National Advisory Committee 

for Aeronautics (NACA) conducted the first extensive research an 

variable sweep for the purpose of achieving sui table performance levels 

throughout an aircraft's flight envelope ( 2). Early wind tunnel 

research indicated a fixed wing pivot located inboard the aircraft's 
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fuselage forced extreme wing aerodynamic center travel as the sweep 

angle varied. With backward sweep, excessive static margins and 

longitudinal stability resulted. Supersonic speeds aggravated the 

problem even more by the characteristic backward shift of the 

aerodynamic center. 

The X-5 was the first variable sweep aircraft to fly ( 2). The X-5 

employed variable backward sweep varying from 20° to 60° with an 

inboard, translating wing pivot to alleviate the excessive stability 

problem. Flight tests indicated no significant improvements existed 

over fixed wing aircraft which was later found to result from a poor 

design. The XF10F-1 was the next variable sweep aircraft to fly (3). 

The XF10F-1 also employed variable backward sweep varying from 12.5° to 

42.5° with an inboard translating wing pivot. Flight tests indicated 

significant improvements in landing speeds, range and maximum speeds 

relative to similar fixed wing aircraft. 

NACA continued research on variable sweep and discovered in the 

late 1950's that a fixed forewing and a fixed wing pivot located within 

the forewing would solve the problem of excessive stability without the 

complexity of a translating wing pivot (2). Many aircraft usinc; this 

technique have been produced including the Grumman F-14, General. 

Dynamics F-111 and Rockwell B-1. 

6 

All variable sweep aircraft produced to date have employed backward 

sweep. No research could be found an variable forward sweep except for 

the mentioning by Polhamus and Toll (2) that variable forward sweep is 

an unestablished design option. 
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Forward Sweep 

Forward sweep is a design where wings a:.:·e swept forward to counter 

certain high speed aerodynamic characteristics. Backward sweep also 

counters these characteristics. Sweep is used to delay compressibility 

drag associated with high subsonic and transonic speeds. Sweep also 

reduces drag at supersonic speeds by causing the formaticn of weaker 

oblique shock waves rather than stronger normal shock waves. 

The advantages of wing sweep were first realized by Germany in the 

1930's (2). The first swept wing aircraft, including both forward and 

backward sweep, were flown by Germany during World War II. Research 

from NACA by Diederick and Budiansky (4) in the late 1940's showed the 

divergence dynamic pressure of forward sweep wings are drastically low 

compared to the divergence dynamic pressure of backward sweep wings. 

Consequently, all feasible swept wing designs throughout the mid 1970's 

employed backward sweep. The forward sweep concept was ignored up to 

this time until Krone (5) revealed aeroelastic tailoring with composite 

rna terials can increase the low divergence limit of forward sweep wings 

without experiencing the weight penalties associated with the use of 

conventional metal materials. The solution to the divergence problem 

has led to the development of the forward sweep X-29 research aircraft 

which is currently undergoing flight tests conducted by the Defense 

Advanced Research Projects Agency, National Aeronautics and Space 

Administration and United States Air Force (USAF). Moore and Frei ( 6) 

give a descripticn of the X-29 and its purpose. 

The increased interest in using forward sweep cnce the structural 

feasibility is verified is due to certain advantages forward sweep has 



over ba.ckward sweep. Increased lift, reduced drag, improved handling 

qualities and increased design freedom are some of the major advantages 

listed by Krone (7). The advantages are difficult to quantify without 

compariscn to a backward sweep wing with certain parameters constrained 

to equal the forward sweep wing's corresponding parameters. 
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CHAPTER III 

CONFIGURATION DEVELOPMENT 

General Description 

Figure 1 shows the variable forward sweep wing aircraft studied 

throughout this research effort. The aircraft incorporates a variable 

forward sweep wing with sweep angles ranging from -42° to -15°. The 

wing is pivoted about a fixed pivot located directly above the body 

centerline. This vertical offset from the body centerline was required 

due to the intemal spacing requirements of the engine. The horizontal 

stabilizer is a canard while the vertical stabilizer is a single, 

con ven ticnal vertical fin. Coo ven tianal aerodynamic can trol surfaces 

were selected: elevators on the horizontal stabilizer, rudder on the 

vertical stabilizer and flaps and ailerons en the wing. The propulsion 

system consists of a single turbofan er gine located in temal to the body 

and exhausting out the base of the body. In take for the propulsion 

system consists of a single scoop located on the body underside. 

The aircraft is a representative of the light weight fighter 

category similar to the Northrop F-5 or F-20. The general shape and 

size of the aircraft is quite similar to the X-29 research aircraft. 

This similarity is deliberate because the X-29 is the cnly existing high 

speed aircraft using a forward sweep angle more negative than -15°. The 

X-29's basic airframe is unstable; however, by careful selection of the 

horizontal stabilizer and wing locations relative to the center of 

9 
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Figure 1. Variable Forward Sweep Wing 
Aircraft at -3r:f Sweep 
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gravity the basic airframe shown in Figure 1 is stable. 

The aircraft was designed with a static margin of -0.25 for a sweep 

angle of -30°, Mach number of 0. 75 and altitude of 6000 m. No design 

iterations or alterations to improve the aircraft's characteristics for 

other flight conditions were performed after the off design results were 

obtained. Instead, the changes in the aircraft's characteristics 

resulting from changes in the flight condition are the results to be 

analyzed for this research effort. The aircraft is capable of obtaining 

low supersonic Mach numbers in level flight. The aircraft's aerodynamic 

performance such as range, endurance, takeoff and landing speeds, rate 

of climb, ceiling and maximum speed were not considered in the design. 

Appendix A contains the specifications for the aircraft. 

Design Method 

The teclmique of "design extrapolation" is used to determine the 

aircraft's basic size and geometry. The size and geometry were 

extrapolated from the X-29, F-5 and F-20 aircraft. Size and geometry 

includes the lifting surface and stabilizer planform areas, taper 

ratios, spans and sweep angles. Body length and diameter, mass, moments 

of inertia and propulsicn are also included in the size and geometry. 

The flight condition of -30° sweep angle, Mach number of 0. 75, and 

altitude of 6000 m was selected as the design flight condition. This 

flight condition represents a high subsonic cruise condition where an 

aircraft of this category will typically spend the majority of it's 

flight time. References (6), (8), (9) and (10) were used in the "design 

extrapolaticn" calculations. 

The fundamental design consisted of locating the longitudinal 
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position of the wing and horizontal stabilizer relative to the center of 

gravity so that certain design constraints were satisfied. Consider the 

variable forward sweep wing aircraft shown in Figure 2. The aircraft is 

in a wing's level steady state rectilinear flight condition. Assuming a 

small angle of attack 'i/1 , neglecting the moments due to the drag and 

thrust forces and using the derivative and trim results from Chapter 

IV, the steady trim equations are approximated by equations (1) through 

( 3). 

n.""' { Co: i- cO: (V1 -+- Iw- £~)} 

SB 6 v s 1/ v 
E T 

T"'"'~ fj. I 0 ( I ) 
+ - Co + h sw Coe> 

~I SW S"" o 

1-1 H l::.E 1 
sa B 

n_Wc.: ( V, + Iw- E~) ;- ~"" {c .. : ( v, +1 11 ) -t Ct. bE + s,w CLot. IJI 
I 

-~= 0 (d.) 
'!rt sw 

- H H -H H 
6.E + ""'' el-l c 17, + I H) w w ( w w) ~ { ~wCm~& l\: C. 0< v, T I - E I + I =-w '""' S"" XAc. xA, 

-H -13 H 
~~ 1 sB 8 

+ XJ.\c. c~. ~I:' + XAc. CL<X v, 0 ( 3) :::-;J S."" =w 
XA'- X:Ac. 

As mentioned in the discussion of the trim calculations in Chapter 

F 
IV, the three unknowns B,) IJ. 1 and q 1 are specified to reduce the total 

. . e ~~~= number of unkn· -ms to three. Spec1f1cally, 1 and u. 1 have been selected 

as zero and q 1 is calculated from a Mach number of 0.75 at an altitude 

of 6000 m. The wing and stabilizer airfoil sections have been selected 

as symmetric airfoils. Downwash from the horizontal stabilizer onto the 

wing and wing and vertical stabilizer dynamic pressure reductions from 

the horizontal stabilizer and body, respectively, have been included in 

the trim equations (1) through (3). Equations (1) through (3) contain 

the three unknowns V,J /J.~ and /:1~. Equations (1) through (3) are used 

in the fundamental design. 



n.ox:i:z.ontal 

:z. :z. 

Figure 2· variable Forward s~eeP Wing Aircraft 
in a Wing'S Level SteadY state 
Rectilinea.X: Flight condition 
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Taking the partial derivative of equation (3) with respect to \l1 

and expressing the moment arms in the ~Y~ coordinate system results in 

the P-xpression for the aerodynamic center location given by equation 

( 4). The static margin is given by equaticn ( 5). 

W -W SH tl .=: H ~ cs = 8 
vJ - + XI\'-s"" c~...Cl(, xA, + 

xAc = 
n.. CL.O( XAc. sw '-oc. 

('f) n.w c/; s.., H sa B -t- sw c~..« + S"' c~..o( 

SM (5) 

Equations (4) and (5) are used in the ftmdamental design. 

The center of gravity calculaticn is performed by dividing the 

aircraft up in to the following seven elements: body, wing, horizon tal 

stabilizer, vertical stabilizer, engine, fuel and payload. Constraining 

the fuel and payload center of gravities to coincide with the aircraft's 

center of gravity results in the center of gravity locaticn as equation 

( 6). 

s=S 
m Xcc; 

w It v=v c=E w = H ~ + rn X cG + m X e.G t m XcG + fYI ACG 

Equaticn (6) is also used in the ftmdamental design. 

The ftmdamental design is now stated. For the flight condition and 

~xtrapolated size and geometry mentioned previously, equations ( 4) and 

( 5) are used to locate the longitudinal position of the wing and 

horizontal stabilizer relative to an assumed center of gravity location 

so that a static margin of -0.25 is attained. Next, equations ( 1) 

E AT 
through ( 3) are used to solve for the trim tmknowns 'i/1 > /J.1 and J.J. 1 for a 

specified wing incidence 1"" and horizon tal stabilizer incidence I H • 

Finally, equaticn ( 6) is used to calculate the center of gravity 

location. 



The fundamental design is iterated until the following design 

constraints are met: 'i/1 is in the linear angle of attack range, D.~ is 

reasonably close to zero, A~ is between 0 and 1, II+ is larger than Iw 

and the assumed and calculated center of gravity locations are 

approximately the same. I"" is constrained to be larger than Iw so that 

the horizontal stabilizer will stall before the wing stalls. This 

constraint is a passive safety factor against stalling for a canard 

configuration. 

Wing Description 

15 

Figure 3 shows an enlarged view of the right variable forward sweep 

wing. At the design flight condi ticn mentioned previously, the wing 

root geometry and pivot location relative to the wing structural 

planform were selected to allow approximately the same amount of sweep 

on either side of -30°. The pivot is selected at the 1/2 root chord 

location in the -30° sweep condition. Note from Figure 3 that the right 

aerodynamic planform changes shape as the sweep changes but the right 

structural planform remains the same shape as the sweep changes. 

The wing airfoil sections were selected as the NACA 64A01 0 

airfoil. This airfoil is a thin symmetric airfoil with a thickness to 

chord ratio of 0.1 0. This airfoil selection allows supersonic flight to 

be feasible. A more realistic airfoil selecticn would be a new 

supercritical airfoil but limited data en these airfoils prevented this 

selection. The stabilizer airfoil sections are also the NACA 64A01 0 

airfoi 1. 

At -30° sweep, the tip chord is aligned with the longitudinal 

direction. For sweep less negative than -30°, the tip chord becomes a . 



Body 
Centerline 
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Wing 
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Aw =-42° 
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Figure 3. Right Variable Forward Sweep Wing 
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trailing edge and is not directly facing the aerodynamic flow. For 

sweep more negative than -30°, the tip chord becomes a leading edge and 

is directly facing the aerodynamic flow. At these off design sweep 

angles, the wing span is approximated as the average of the leading edge 

tip chord span and the trailing edge tip chord span. Any adverse 

aerodynamic flow patterns resulting from the tip chord becoming a 

leading edqe has been neglected in this research effort. 

At -30° sweep, the wing airfoil sections and the aileroo and flap 

inboard and outboard chords are aligned with the longitudinal 

direction. At off design sweep angles, the airfoils and control surface 

chords will be skewed to the longitudinal direction. Any resulting 

adverse aerodynamic effects have been neglected. The structural 

f~asibi li ty of the wing root geometry and pi vat is also questionable but 

is left unspecified at this time. Finally, some type of closure 

mechanism for the wing slot will be required but is unspecified. These 

unaddressed areas are felt to be unimportant considerations when 

regarding the intent and purpose of this research effort. 



CHAPTER IV 

ANALYSIS METHOD 

Equations of Motion Solution 

A rigorous application of vectorial Newtonian mechanics leads to 

the uncoupled longitudinal and lateral-directional sets of small 

perturbation, scalar, differential equations (7) through (15). ~ 

complete derivaticn is given by Roskam (1 ). 

Longitudinal Set: 

( 7) 

( g ) 

• 
MAy t-tnry = Tyy Wy ( '1 ) 

• 
(I 0) 

Lateral-directional Set: 

( I I ) 

< 1 a) 

( ( 3) 

• 
+ ¢ ( ltf) 
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(I 5) 

Equations (7) through (15) are the linearized equations of moticn for 

small perturbations about a wing's level steady state rectilinear 

flight conditicn written in the stability axes coordinate system. The 

xyz coordinate system shown in Figure 4 is the stability axes. The 

stability axes are denoted by the x axis coinciding with the aircraft's 

steady state velocity and the origin coinciding with the aircraft's 

center of gravity. The stability axes are attached to the aircraft and 

rotate with the aircraft. 

The longitudinal unknowns are the perturbaticn variables 1/x) c< and B 

which are functions of time. The longitudinal perturbation control 

- F' :t 
variables are Sl:'J & andb. Before equations (7) through (10) can be 

solved, the aerodynamic and thrust forces and moments must be expressed 

as functions of V¥.;0<, e) ~E)~;:) hT and their derivatives with respect 

to time. Similarly, the lateral-directional unknowns are the 

perturbaticn variables ;3 1 If' and¢. The lateral-directional perturbation 

control variables are 
R 

and b. Before equations (11) through 

(15) can be solved, the aerodynamic and thrust forces and moments must 

be expressed as functions of /3, 4' .J ¢ .J bA, gR. and their derivatives 

with respect to time. 

For a linear analysis, the longitudinal and lateral-directional 

forces and moments can be sufficiently. represented 

and 
. . 

( 1). Note the use of Wx/'.Jy and u.J.'t inplace of o/ )8 

by the variables 

P. 
and ~ J respectively 

and ¢. The forces 

and moments can be expressed as functions of W_x1 wy and W~ much eas er 



X X 

X 

Figure 4. Body Coordinate Systems Used During 
the Research Effort 
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. . . 
than directly expressed as functions of C{J) El and¢. Equations (10), 

(14) and (15) are then used to transform from Wt.,wy and W1 to tV} Band fp. 

Perturbation theory and Taylor series expansion indicates that if 

F(X,Y), X, andY can be separated into constant values F(X 1,Y 1), x1 , and 

Y 1 and perturbation values f(x,y), x, and y, respectively, then the 

perturbaticn value f (x,y) is approximated by equaticn ( 16). 

f(X ) ::. ;;>F(CY) I X + ::iJF(f..,Y) I '/ 
J y -cl X I cl '/ I 

(!0) 

As x andy become smaller, the approximaticn to f(x,y) in equaticn (16) 

becomes more accurate. Equation (16) extends logically to functions of 

more than two variables. Applying equaticn ( 16) to the aerodynamic and 

thrust forces and moments with the notation Fx for and 

using dimensionless coefficients results in the following expressions. 

Longitudinal Set: 

fAr= 'f,Sw(CA~vx Vx -t- CA~«cx 

+ CAt ~F ~e + CA~[:.f:" ~F) 

mAt = j 1 Swcw{ KAy Vy.. + KA .:x. ' v,. y <.( 

+ f<Ay bE ?,E + KAy ~F 'DF ) 

.fTx = 'if~ Sw ( CTx 
"x Vx + CTx D<. c{ 

-r eTA sT ~r) 

fT-j! = <t-1 s"" ( CT~Vx Vx + CT-r o< 
0( 

+ CT:c~T ~r) 

i-

+ 

~~ Swcw( I<TYvx Vx + 1-<Tyo< 0( 

+ I<Ty:;r 2, r) 

+ 

CT • 
. c 0( + X ex Tx wywY 

CTr-. 
. 

CT2 uJy Wy 0( + 
0( 

+ 

(I 7) 

(I 8) 

( 19) 

(d.O) 
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Lateral-directional Set: 

+ 

(;13) 

calf) 

cas) 

. 
(;I S.,vbw ( KT.x(3 /3 + I<Tx;i /3 + kTx u.Jx Wx + l<rtw:r u.J~ ) en) 

Combining equations (7) through (10) and (17) throuqh (22), taking 

the Laplace transformation, and using matrix algebra results in the 

longitudinal matrix equation (29). Applying the same process to 

equations (11) through (15) and (23) through (28) results in the 

lateral-directional rna trix equation ( 30). The Vc ·iables in equation 

(29) and (30) are now functions of the Laplacian .rariable s rather than 

time. Also note the initial conditions are zero because the equations 

of moticn are for perturbations about a steady state rectilinear flight 

condition. Both the longitudinal and the lateral-directional matrix 

equations can be represented by equaticn (31) with the Laplacian 

solution given by equation ( 32). 

[AJ{x} ;[B]{s} ( 3 j) 

( 3 ~) 
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{IYI}s f-1 1 Sw( CAy..« + CT x~)} S 

+- { -tt, S""( ~t..v, t C,-J(vx) J +{-9-,Sw(cA~ -t-(yxo<) 1 

{ -1-t:j'( CAlvx + Cr~vx)} { mVx, -1, S~"'(cAt-« -tC-r~~)} S 

+{-~,::t·(cAz..oe -t·C-rrc<) 1 

{-'ft Swcw(kAy"x + K-ryv)} { -ft Swc~Yt::Ay~ + l<ryO:)} S 

-t· {-fr-' 5,-.vc.'"( Kkfrf.. + 1<-ry vt) 1 
.___ 
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A.s mentioned previously, the numerical results consist of the 

characteristic equaticn root loci, mode shapes and time responses. The 

-[ 
characteristic equation is the denominator of (A] and is given by the 

determinant of [A]. The longitudinal and lateral-directional 

characteristic root loci are obtained by solving for the characteristic 

equaticn roots at various flight coo.ditions. Applying partial fraction 

expansion to equation (32) and taking the inverse Laplace transformation 

leads to the time responses. The longitudinal time responses are for 

Vx}X and G due to the con tro l inputs The 

lateral-directional time responses are for !3, 4' and¢ due to the control 

inputs and ~R. Again, the time responses are obtained for 

various flight conditions. 

The mode shapes are calculated from equation (33) which is obtained 

from equaticn (31) by setting {S]equal to the zero vector,{o]. 

[A]{x} ={o} ( 33) 

Matrix equaticn ( 33) is three scalar homogeneous equations generally 

with a rank of two implying infinitely many solutions. In accordance 

with mode shape theory, only informaticn about the relative magnitudes 

of the elements of{X}car. be determined. Arbitrarily selectingBequal 

to 1 L 0° and using the longitudinal equations corresponding to 

equation (33), Vx andO(can be determined as functions of s. A-rbitrarily 

selecting !3 equal to 1 L 0° and using the lateral-directional equations 

corresponding to equation (33), !/' and ¢can be determined as functions 

of s. The mode shapes for a particular characteristic root are finally 

obtained by substituting the p:trticular characteristic root of interest 

in for s. Also the mode shapes are obtained for various flight 

conditions. 
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Aircraft Force and Moment Calculations 

Before equations (29) and (30) can be solved the aircraft stability 

and control derivatives must be calculated. To accomplish this the 

aircraft is divided up into the following five elements: wing, 

horizontal stabilizer, vertical stabilizer, body and propulsion intake 

and exhaust. The aircraft forces and moments are the summation of the 

element forces and moments. In this way, the aircraft stability and 

control derivatives are determined as functions of the element stability 

and control derivatives. As discussed in this chapter, reference (11) 

and simple theoretical principles are used to calculate the element 

stability and control derivatives. 

Figure 5 is used to calculate the aircraft longitudinal stability 

and control derivatives in terms of the element stability and control 

derivatives. This calculation consists of expressinq the aircraft 

forces and moments in terms of the element forces and moments. Next, 

Taylor series expansion is used to express each force and moment in 

terms of the longitudinal variables. Finally, the aircraft stability 

and control deri va ti ves are obtained by factoring with respect to the 

longitudinal vari< bles. Applying the same process to Figure 6 results 

in the aircraft lateral-directional stability and control derivatives. 

Appendix B lists the results. 

The aircraft stability and control derivatives appearing in 

equations (29) and (30) correspond to the stability axes. However, the 

aircraft stability and control derivatives resulting from Figures 5 and 
, 'Al(J 

6 do not corresp~d 'to th~:;,~s~bi li ty axes. This result occurs because 

reference ( 11) and the simple theoretical principles used to calculate 

the element stability and control derivatives do not correspond to the 
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stability axes. Therefore, a transformation to the stability axes is 

required. Figure 7 is used for the longitudinal transformation and 

Figure 8 is used for the lateral-directional transformation. The 

transformations are given by equations (34) through (45). Computing the 

partial derivatives of the perturbation forces and moments and using 

equations (34) through (45) ·lead to the stability and control derivative 

transformations which are also listed in Appendix B. There is no 

standard notaticn for the thrust derivatives like there is for the 

aerodynamic deri va ti ves c0 , c,_ 1 C111 1 Cy 1 c i and cfl • Therefore, the 

subscript notaticn xlyl and z is used to denote the thrust derivatives 

as determined in the xyz coordinate system. 

(34) 

( 3 5) 

( 3 0) 

( 3 7) 

( 3 8) 

( 3 9) 

(Lj0) 

C y. I) 

( Lf d) 

( 4-3) 

( '-1-4-) 

(LJ-5) 

As mentioned in the previous section the longitudinal forces and 

moments can be sufficiently represented by the longitudinal variables 

' E ~ T Yy. 1 cJ..JC(,J Wy 1 ~ 1 ~ and S • Also, the lateral-directional forces and 

moments can be sufficiently represented by the lateral-directional 

variables 13,~ rJ; W;t., Ull; ~A and S 1\ • Note the forces and moments do 

not depend upcn the variable derivatives except for~ and ;i . If the 



Figure 7- LOngitudinal Transfor~ation To the 

stabilitY Axes 
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. 
downwash lag theory (1) is used to calculate~~ an<.L(.J, the derivative 

independence implies the same forces and moments are obtained for the 

same state no matter how the state was arrived at. The aerodynamic and 

thrust pressures change instantaneously whenever the state changes. 

This assumption which is used exclusively in the force and moment model 

is called quasi steady flow (1 ). 

In order to make the aerodynamic force and moment model more 

realistic, four interference effects are incorporated in to the stability 

and control derivative calculations. Downwash from the horizontal 

stabilizer m the wing, dynamic pressure reductim from the horizontal 

stabilizer m the wing, sidewash from the body m the vertical 

stabilizer and dynamic pressure reductim from the body m the vertical 

stabilizer are included in Figures 5 and 6. 

For the purpose of computing moments due to the element forces, the 

element forces are assumed to lie along the axes of the xyz coordinate 

system. This assumptim is reasonable because 17; and the perturbation 

variables have been assumed small. Roskam ( 1 ) also makes this 

assumption. 

Lacking propulsion data, the thrust force at the exhaust location 

is considered to be solely a functim of b.T". This assumptim implies 

the inlet conditions do not affect the exhaust thrust force. The thrust 

force of the in let loca tim is calculated from the fluid mechanics 

momentum principle given approximately by equation (46) 

where V is determined as a function of the perturbation variables. The 

assumptim that the inlet thrust force occurs in the xyz coordinate 

system is taken. Note that equation (46) is applied three times for 

each axis of the xyz coordinate system. 



Element Force and Moment Calculations 

The fundamental aerodynamic stability derivatives and all 

aerodynamic control derivatives are calculated from the USAF Stability 

and Control DATCOM ( 11 ) • The remaining aerodynamic stability 

derivatives are calculated from the fundamental aerodynamic stability 

deri va ti ves using simple theoretical principles. The fundamental 

aerodynamic stability derivatives include the wing and stabilizer 

Coo ) Co"( (supersonic)' c'-01. ) Cmo and the body cOo ) CoO( ) CL.oi.J c""o and 
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aerodynamic center location. The body aerodynamic center loca ticn is 

where the body Cmcx. is zero and is therefore considered indirectly as a 

stability derivative. All thrust stability and control derivatives are 

calculated from simple theoretical principles. Appendix C lists the 

results. 

Reference ( 11) is an extremely extensive handbook for calculating 

the stability and control derivatives of rigid aircraft. CKl.ly the 

simplest methods of reference ( 11) are selected for the derivative 

calculations. Many of the empirical correcticn factors for interference 

effects between the aircraft elements are neglected. However, the major 

interference effects of downwash and dynamic pressure reductions have 

been included as mentioned previously. Roskam (1) states that for a 

linear analysis this simplificaticn is a reasonable selection. For a 

single person using reference ( 11) with hand calculations, this 

simplificaticn is also the only practical selecticn possible. 

Reference ( 11) was originally developed for aircraft employing 

backward sweep. The applicability of reference (11) to forward sweep 

questionable. Consequently, USAF is conducting research to determine 

the applicability of reference (11) to forward sweep and to develop any 
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necessary modifications for this application to forward sweep (12). 

Reference (12) states that CLrx is estimated quite accurately from the 

existing methods. The methods for C o0 J Co ex (supersonic), Cm 0 and the 

aerodynamic control derivatives with regard to forward sweep are not 

mentioned in reference (12). For this research effort, the existing 

methods for these derivatives are applied to the forward sweep wing with 

the question of applicability still mspecified. 

The simple theoretical principles used to calculate the element 

stability derivatives are discussed below. The wing, horizontal 

stabilizer and vertical stabilizer aerodynamic centers are assumed to be 

at the l/4 mean aerodynamic chord for subsonic Mach numbers and at the 

l/2 mean aerodynamic chord for supersonic Mach numbers. The velocity 

derivatives are estimated from the well known Prandtl-Glauert 

transformaticn for subsonic Mach numbers ( 1). Using the theoretical 

lift curve slope for a flat plate at supersonic Mach numbers, Etk.in ( 13) 

shows the structure of the Prandtl-Glauert transformaticn also applies 

to supersonic Mach numbers. As mentioned previously, the inlet thrust 

force is calculated from the fluid mechanics momentum principle. 

The angular velocity derivatives are calculated by determinin an 

induced perturbational velocity, angle of attack or sideslip angle due 

to the angular velocity perturbation. The velocity, angle of attack or 

sideslip angle derivatives are combined with these induced perturbations 

to form the angular velocity derivatives. For the angular velocity 

derivative calculations, the angular velocities WxJ Wy and Wi are 

assumed to lie along the axes of the xyz coordinate system since V1 and 

the perturbation variables are assumed to be small. Roskam ( 1) has a 

complete development of this computational method for the angular 

velocity derivatives. 
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The «and ;j derivatives are calculated from the downwash lag theory 

( 1). This theory implies there is a finite time delay between the time 

the downwash distribution changes and the time this new downwash 

distribution is propagated downstream and sensed or felt elsewhere. The 

downwash and sidewash are given by equations (47) through (50). 

£w= c,w + 1~woc-J!wtX tE 

1/ " d c) 11f3 - d a-_" ;3 t d' ()" = (J" I + J/3 d /3 

-t E. = 
- H -w 
XAc. - XAc. 

Vx, 
-S -V 
XAc. - X Ac. 

Vx1 

As mentioned in reference (11), the vertical stabilizer and body 

v B v B 
derivatives Cyp, and Cy13 are approximated by - C(./3 and - c~..13 , 

( 47) 

<'+8) 

c so) 

respectively. Che final paint is reference ( 11) does not have a method 

B B B 
to predict C;13 and C111J • These derivatives are approximated by Crn« 

referenced to the body aerodynamic center location. 

Trim Calculations 

Equations (29) and (30) correspond to small perturbations about a 

wing's level steady state rectilinear flight condition • .3efore thes~ 

equations can be solved the wing's level steady state rectilinear flight ----- --- ----· -~--- --- ~------. 

condition or trim condition must be determined. Consider Figure 2 again 
-----~ 
which depicts a variable forward sweep wing aircraft in a wing's level 

steady state rectilinear flight condition. The corresponding trim 

equations are given by equations (51) through (53). 

( 5 I) 

-mea cos e, ( 5~) 
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0 (53) 

The trim equations (51) through (53) are longitudinal equations. For a 

steady state rectilinear flight condition, symmetric aircraft and no 

lateral-directional ccn trol surface deflecticns, the terms in the 

lateral-directional trim equations are identically zero. 

Using the stability and control derivative results of this chapter 

and the canfiguratioo. results discussed in Chapter III the trim 

equations are expanded in terms of the aircraft elements and the trim 

unknowns Vx I l ell v,) .6 ~ J /j~) /J. ~ and f' . With an ly three trim 

equations, four of the unknowns must be specified. v~., Jel J .b.: and/) 

are specified and the trim equations are used to solve for \/1 > ./).~ and~~· 

The trim calcula tian is quite similar to how an aircraft is flown. For 

up and away flight with zero flap deflection (~~), the pilot desires a 

given altitude (j)). The certain speed and direction ( Vx,) e I ) for a 

At T eleva tor and throttle can trols ( o 1 J fJ. 1 ) are adjusted with the resulting 

angle of attack ( '\/1) until the desired conditions are attained. 

F 
Specifically for this research effort, e, and /:J. 1 are selected as zero 

and Vx, and /) are selected to result in a desirel.. Mach number and 

dynamic pressure. The expanded trim equations are given by equaticns 

(54) through (56). 

(5LJ.) 

{ ""(IN ~/~ H n: L + - c,_ « S""' .x 

-~ 
- 9.. w + 

15 I S 
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+ 

-"" w -H H -H 
CD~s)}~~)+ { -I<T- } lA ';\ = _ Jl { XAc Cw E, XAc::. C'-SE + :ZAc -w Lo< 

c"" c"" Y sT ·. i c 
\,.. . / 

wl -H -tt 
(. H vJ 1 ~{ XAc.. C H IH - ZAc. { 

lAc.. (Co"';, ~ E~)} + Lot.. Do 
+ i" TTAwe.,J S"" c"" c"" 

c"" 

v - v II 
< lAc::. h.v ~ C 
S"" c"" Do 

( S<'o) 

Equations (54) through (56) correspond to a subsonic trim speed. For a 

supersonic trim speed the corresponding wing and horizontal stabilizer 

derivative must be used. 

The trim calculatiro is a nonlinear calculatim due to the terms Vj1. 

and 'iJ, ll-r; appearing in equations (54) through (56). Even though 

linearized aerodynamics are used, the inclusim of the non linear terms 

is essential in obtaining the correct trim solution because of their 

magnitude relative to the other terms. The use of linearized 

aerodynamics implies \/1 is in the linea:t. angle of attack range. The 

1.. 
nonlinear term i71 appears from the wing and horizontal stabilizer LD~ • 

CoO( is a function of Cr_ which is a function of VI ; consequently, V, 2 

T 
appears. The nonlinear term V,!::., appears from equatim (37) and (38). 

Again for the moment considerations, the element forces are assumed to 

lie along the xyz coordinate system. 



CHAPTER V 

RESULTS AND DISCUSSION 

Preliminary Discussion 

Three different dynamic pressures are selected for the research 

effort. Each dynamic pressure is separated by approximately 10,000 

'l.. 
N/m • These three dynamic pressures correspond to a mid subsonic speed, 

high subsonic speed and low supersonic speed. Table I lists h J (), \Is J 

Vx M, and Cl 1 for these three speed and altitude conditions. 
I) .1. 

TABLE I 
SPEED AND ALTITUDE CONDITIONS INVESTIGATED 

IN THE RESEARCH 

h (m) 
3 

V S (m/s) (m/s) 
2 p (kg/m ) v Ml q 1 (N/m ) 

xl 

6000 0.6597 316.4 158.2 0.5 8255 

6000 0.6597 316.4 237.3 0.75 18570 

12500 0.2873 442.7 295.1 1.5 28150 

At each of the dynamic pressures listed in Table I, the sweep angle 

is varied through its full range of -42° to -15°. For each sweep angle 

the aerodynamic center location, center of gravity location, 

characteristic roots, mode shapes and time responses are calculated and 

graphed. Appendix D contains these graphs. The scale of each graph in 

Appendix D must be carefully noted when viewing the graphs. Some scales 

38 



have been increased or decreased so that the information can be seen 

clearly. Only the mode shape and time response graphs corresponding to 

the sweep angles of -42°, -30° and -15° are contained in Appendix D. 

Also, the time response to ~T and ~Fare not included because an 

aircraft is typically flown longitudinally with the elevator. All the 

time responses are for step inputs with each plot indicating the 

corresponding control surface and the magnitude of the step. 

Before any discussioo. of the graphical results is undertaken, 

realize the following paint. Each graph in Appendix D is for me 
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specific Mach number and dynamic pressure. It would be highly irregular 

to fly at a subsonic speed at maximum sweep or at a supersonic speed at 

minimum sweep. The graphs are generated in this way simply to indicate 

the variable forward sweep wing aircraft characteristics as a function 

of sweep, Mach number and dynamic pressure. 

Aerodynamic Center and Center of Gravity 

The aerodynamic center and center of gravity location versus sweep 

angle graphs verify the expected trends. As the sweep is increased or 

becomes more negative, bt.:th the aerodynamic center and center of gravity 

move forward with the aerodynamic center movement larger than the center 

of gravity movement. In other words, the static margin is decreasing. 

~ 4 ~ 
At the dynamic pressures 8,255 N/m , 18,570 N/m , and 28,150 N/m , 

the static margins range from -0.5830 to 0.01083, -0.6138 to 0.01747 and 

-0.6926 to -0.2460, respectively. Both subsonic aerodynamic center 

location curves are approximately the same while the supersonic 

aerodynamic center location curve is shifted backward due to the 



characteristic shift of the aerodynamic center at supersonic speeds. 

Note the center of gravity locations are independent of the Mach number 

and dynamic pressure. 
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Consider a variable forward sweep design with a static margin of 

approximately zero at the most forward aerodynamic center location and a 

subsonic Mach number and dynamic pressure of 0. 75 and 18,570 N/m 2 , 

respectively. If sweep less negative than -30° is used for subsonic 

speeds and sweep more negative than -30° is used for supersonic speeds, 

the aerodynamic center and center of gravity location versus sweep angle 

would look similar to Figure 9. 

If the reduction of the static margins denoted by JlSm1 and ASm3 

are much larger than the increase in the static margin denoted by ~Sm~ , 

Figure 9 a applies. The characteristic backward shift of the 

aerodynamic center will not significantly change the stability. If ~SM2 

is approximately equal to .ll.St"'t and ~s,.., 3 , Figure 9 b applies. The 

characteristic backward shift of the aerodynamic center wi 11 

significantly change the stability. Consequently, the latter case will 

reduce the excessive stability problems for a variable forward sweep 

design. Figure 1 C illustrates the similar graph for a variable backward 

sweep design. Clearly, the aerodynamic center movement caused by 

variable sweep and the characteristic shift are in the same direction 

causing excessive stability. 

Using the graphical results, lls~. and t.S1113 are approximately 0. 35 

and o. 23, respectively, while L\Sft'1 2 is approximately -0. 23. Because 

these static margin changes are approximately the same size, the 

characteristic shift of the aerodynamic center will indeed be 

significant. Consequently, a variable forward sweep design 
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should not experience excessive stability problems caused by variable 

sweep. 

Characteristic Root Locus 

At the design condition of -30° sweep, Mach number of 0. 75 and 

2 
dynamic pressure of 18,570 N/m , the variable forward sweep wing 

aircraft in Figure 1 has the classical longitudinal and 

lateral-directional characteristic modes. These modes are the 
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longitudinal short period and phugoid modes and the lateral-directional 

dutch-roll, roll and spiral modes. Note the spiral mode is stable for 

this aircraft. The damping ratios, natural frequencies and time 

constants at the design condi ticn are listed below. 

Longitudinal: 

Latera 1-di rectiona 1: 

~sp= 0.1<1?.9 

~P = o.aa1o 

~ OR. :::. 0 . I 'l 4 CD 

u.Jsp = 3.55i:f ra.dfs 

Wp = 0.0~1?80 r-~cl/s 

u.J0 ~ .::: I .l 5 I raJjs 

These values yield level 2 handling qualities for this aircraft 

according to Roskam ( 1). Note the longitudinal and lateral-directional 

characteristic equations are 4th and 5th order, respectively. One 

lateral-directional root is identically zero and corresponds to yaw 

angle neutral stability. 

The short period roots remain stable for each sweep angle and 

dynamic pressure; however, significant changes in the roots do occur. 

At the dynamic pressures 8,255 Njm4 and 18,570 N/m~, increasing or more 

negative sweep causes the short period roots to approach the real axis 

en an almost vertical path and upcn reaching the real axis split in to 
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'2. 
two real roots. At the dynamic pressure 28,150 N/m , the same trend 

appears but the roots do not reach the real axis. 

"2. 
The phugoid root loci at the dynamic pressures 8,255 N/m and 

18,570 Njm4 are quite similar. As sweep increases or becomes more 

negative, the roots move en an almost vertical path away from the origin 

which gradually changes to a nearly clockwise arc about the origin. 

Starting from a stable location, the roots travel a significant distance 

'2. 
in to the unstable regioo.. At the dynamic pressure 28,150 N/m , the 

phugoid roots consist of one real stable root and one real unstable 

root, each moving away from the origin as sweep increases. Note the 

instability is quite small though. Also, if low sweep is used for 

subsonic speeds and high sweep for supersonic speeds, the significant 

'2. 2 
phugoid instability at the dynamic pressures 8,255 N/m and 18,570 N/m 

can probably be avoided. 

4 '2. 
For the dynamic pressures 8, 255 N/m and 18,570 N/m , the phugoid 

roots become unstable at approximately the same sweep where the 

aerodynamic center moves forward of the center of gravity. This is also 

noted by the well known stability derivative KAyat or CmO( changing from 

negative to positive values. Obviously, the aerodynamic center forward 

of the center of gravity is causing the instability. Some other 

2 
occurrence is causing the instability at the dynamic pressure 28,150 N/m 

because the aerodynamic center is always behind the center of gravity. 

A closer examination of the stability derivative I<Ay reveals the 
VK 

reascn for the instability. 

Positive values for I<Ay are desired because a forward speed 
Vx 

perturbaticn will cause a pitch up moment. With a negative value for Ct-lxw ) 
y 

the pitch up will cause a force along the negative x axis countering the 
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initial forward speed perturbation. 2 
At the dynamic pressures 8, 255 N/m 

and 18,570 N/m'2. I<Ay11x is positive, but at 28,150 N/m4 KAYvx is 

negative. The Prandtl-Glauert .transformation is used exclusively for 

calculating the perturbational velocity aerodynamic stability 

derivatives. This transformation changes sign tetween subsonic and 

supersonic speeds and causes the sign change of KArvx • Therefore, the 

'2 
phugoid instability at the dynamic pressure 28,150 N/m is due to the 

characteristics of supersonic flow. 

The dutch-roll root loci do not indicate any significant changes 

with respect to sweep or dynamic pressure. Increasing or more negative 

sweep does lead to a slight movement of the roots an an almost vertical 

path away from the origin. The dutch-roll mode consists predominately 

of sideslip motions. The wing contribution to the sideslip stability 

derivatives is quite small; consequently, the dutch-roll mode is a 

relatively weak function of wing sweep. 

The roll and spiral roots remain stable for each sweep angle and 

dynamic pressure; however, significant changes are indicated. As sweep 

in creases or becomes more negative, the roll root moves toward the 

origin and the stable spiral root moves away from the origin. At the 

'2. 
dynamic pressure 8,255 N/m and very high sweep angles, the roll and 

spiral roots have moved enough to eventually meet and combine to form a 

pair of complex conjugate roots. The roll and spiral modes are then 

coupled in to a decaying, oscillatory mode. Again, if low sweep is used 

at subsonic speeds and high sweep is used at supersonic speeds, this 

coupled roll-spiral mode can te avoided. 

The wing con tributian to roll damping is a major portion. Wing 

roll damping decreases as sweep increases or tecomes more negative due 
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to the mean aerodynamic chord moving inboard; consequently, the roll 

stability is reduced and the roll root moves toward the origin. As 

expected, the wing subsonic and supersonic yaw damping decreases and 

increases, respectively, as the sweep increases because of the inboard 

movement of the mean aerodynamic chord and the sign of the 

Prandtl-Glauert transformaticn at subsonic and supersonic speeds. 

However, the numerical results indicated the aircraft yaw damping 

increases with increasing sweep regardless of the Mach number. This 

result is a little unexpected but there is a reason. As sweep 

increases, the wing and hence the aircraft center of gravity moves 

forward. Consequently, the vertical stabilizer's yaw moment arm 

increases. The vertical stabilizer's increase in yaw damping apparently 

masks any change in the wing or body yaw damping as sweep increases. 

The aircraft yaw stability increase causes the spiral stability to 

increase and the stable spiral root moves away from the origin. 

Mode Shape and Time Response 

2. 
The longitudinal mode shapes at the dynamic pressures 8,255 N/m 

and 18,570 N/m2 indicate the phugoid mode is the dominate mode in the Vx 

motions for -15° and -30° sweep. The short period mode is the dominate 

mode in the 0{ motions and the short period and phugoid modes both 

contribute to the G moticns for -15° and -30° sweep. At -42° sweep, 

both the phugoid and short period modes con tribute to the Vx ct and e 
J 

motions. The time responses indicate these same results. 

The V'l. responses to the ~/ step for -15° and -30° sweep are slow 

oscillatory responses (phugoid). The« responses to the ~£step for 

-15° and -30° sweep are fast oscillatory responses (short period). 
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The$ responses to the f:/ step for -15° and -30° sweep are a combination 

of slow and fast oscillatory responses (phugoid, short period). At -42° 

sweep, the v)(J 0( and e responses to the ~€ step are a combination of 

oscillatory and exponential responses (phugoid, short period) even 

though the time responses look like purely exponential responses for the 

first 5 seconds. Realize the short period roots at -42° sweep and 

'2 
dynamic pressures 8,255 N/m 

J. 
and 18,570 N/m are two real roots leading 

to two exponential modes. Also note at -15° and -30° sweep the time 

responses are stable, but at -42° sweep the responses are significantly 

unstable because of the significant phugoid instability discussed 

previously. 

2 
At the dynamic pressure 28,150 N/m , the longitudinal mode shapes 

again indicate \/x motions are dominated by the phugoid mode, 0( motions 

are dominated by the short period mode and emotions are a combination 

of the phugoid and short period modes. This is true for all sweep 

angles. The time responses verify these same results. 

The Vx responses to the 'bE step are exponential responses 

(phugoid). The 0( responses to the ~£ step are fast oscillatory 

responses (short period). The e responses to the $/ step are a 

combination of exponential and fast oscillatory responses (phugoid, 

short period). Realize the phugoid roots at the dynamic pressure 28,150 

1.. 
N/m are two real roots leading to two exponential modes. Also note 

that even though the phugoid roots are slightly unstable at this dynamic 

pressure, the time responses are well behaved with regards to 

stability. lh other words, the phugoid instability is insignificant as 

discussed previously. This is a well known fact that when the 

characteristic roots become slightly unstable, there is not a sudden 

change from good flight dynamics to bad flight dynamics ( 1). 
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The 1a teral-directional mode shapes at all the dynamic pressures 

and sweep angles are all quite similar. The /3 motions are dominated by 

the dutch-roll mode while the r.p and ¢ motions are dominated by the roll 

and spiral modes. The time responses verify these same results. The A 

A R 
responses to the S and ~ steps are oscillatory responses 

(dutch-roll). The If responses to the ~A and ~R steps are a combination 

of exponential and linear responses (roll, spiral, tfl neutral 

stability). The wiggle in the If responses which look like an 

asci lla tory response is actually caused by the combination of the 

exponential and linear responses. The appearance of the linear terms is 

discussed later. The ¢ responses to the bA and ~R steps are exponential 

responses (roll, spiral). Note the coupled roll-spiral mode at the 

2.. 
dynamic pressure 8, 255 N/m and -42° sweep is insignificant or not 

visible in the 1/J and¢ responses. The /3 and ¢ responses are stable even 

though the¢ response looks unstable. The~ responses are unstable. 

This response stability is also discussed below. 

The v.,.., 0{ and e Laplace transform numerators are complete 

polynomials. Complete means that the zero power of s coefficient in the 

polynomial is not zero. The characteristic roots lead to the 

characteristic modes. The control step inputs (zero root) lead to a 

constant mode because the numerator polynomials are complete and no 

cancellation of the zero root occurs. The time response stability thus 

depends upon the characteristic roots. The /3 and¢ Laplace transform 

numerators are not complete polynomials. Remembering that one 

lateral-directional characteristic root is identically zero, 

cancellation occurs and the characteristic and constant modes appear 

just as in the longitudinal case. The 'I' Laplace transform numerator is 
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a complete polynomial. Cancellation does not occur, and the double zero 

root results in an extra linear mode. 

Since all the lateral-directional characteristic roots are stable, 

the /3 and ¢ responses are also stable even though the ¢ response looks 

like an unstable response. The 1/J response is an unstable response 

because of the linear mode. This means that an ai ler<n roll maneuver, 

?JA step, will result in a constant¢ after the transient response has 

decayed. This roll stability indicates a "rna thema tical" maneuver 

restriction occurs because the responses indicate the steady state 

ccnstant ¢is only 1.6 complete rolls at the dynamic pressure 8,255 N/m'2. 

and -42° sweep. At higher dynamic pressures and lower or less negative 

sweep the restricti<n is insignificant because the steady state 

constant ¢ is well over several or more complete rolls. Note that if 

the spiral root is unstable, the !3J Cf' and¢ responses would all diverge 

and this restriction would not occur. Realize a complete roll maneuver 

due to a ~A step can not be considered as a small perturbatiro motion, 

hence the steady state results discussed here are not valid. In fact, 

the small perturbatiro responses are cnly valid initially when the 

magnitude of the perturbation can still be considered as sitL 11. An 

impulse would be a more realistic input for the small perturbation 

lateral-directional analysis because this would result in the responses 

all returning asymptotically to zero and the small perturbation 

equations would then still be valid. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

A conceivable variation of the revived forward sweep concept is the 

merging of forward sweep and variable sweep. Both forward sweep and 

variable sweep offer significant performance gains over fixed backward 

sweep wing designs. The coupling of forward sweep and variable sweep 

might result in even higher performance levels. The goal of this 

research is to 1) study the flight dynamics of the variable forward 

sweep concept and 2) indicate any significant advantages or 

disadvantages associated with the variable forward sweep concept. Goal 

1 is accomplished by conducting and discussing this research. Goal 2 is 

accomplished by stating the following conclusions. 

1. Variable forward sweep designs should have "-ar fewer problems 

with excessive longitudinal stability and elevator cuntrol 

effectiveness reduction than variable backward sweep designs. 

2. Significant changes occur in the short period and phugoid modes 

over the variable forward sweep range and dynamic pressures. A fixed 

forewing and fixed wing pivot located in the forewing, artificial 

longitudinal stability or center of gravity control might be required to 

reduce these effects. 

3. The dutch-roll mode is affected very little by the variable 

forward sweep; however, the roll and spiral modes are significantly 
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affected by variable forwar~ sweep. Artificial lateral-directional 

stability might be required to reduce these effects. 
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4. A "mathematical" roll maneuver restriction occurs if all the 

lateral-directional modes are stable. However, this restricticn breaks 

down as the small perturbation assumption fails. An unstable spiral 

root may be advantageous to the "mathematical" roll performance. 

5. The flight dynamics of a variable forward sweep wing aircraft 

present no major difficulties for the variable forward sweep concept to 

become a feasible design option. 

Recommendations 

Many unaddressed areas of the variable forward sweep concept need 

to be studied further. These unaddressed areas include the effects of 

·flexibility, non linear dynamics and aerodynamics, nonideal control 

surface actuators and automatic flight control systems. The forward 

sweep wing is a flexible structure and its affects upoo. the linear 

dynamics and aerodynamics assumptions need to be analyzed. Any high 

performance aircraft that is designed today employs some type of 

automatic flight control system to squeeze ·.he maximum possible 

performance out of an aircraft. The variab.L.e forward sweep wing 

aircraft wi 11 not be excluded; hence, the incorporation of automatic 

flight control systems should be addressed. Finally, to insure the 

accuracy of the research, nonlinear dynamics and aerodynamics and 

nonideal control surface actuators should also be used. 
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APPENDIX A 

CONFIGURATION SPECIFICATIONS 

The specifications of the aircraft shown in Figure 1 are listed in 

this appendix. The appendix is divided into the following sections: 

body, wing, horizontal stabilizer, vertical stabilizer, propulsion, mass 

and center of gravity and moments of inertia. Some sections include a 

discussion of the methodology used in calculating the specifications. 

Figure 4 shows the body coordinate systems used in the research 

effort. The xyz stability axes were mentioned previously. The xyz 

coordinate system is attached to the aircraft's center of gravity, xy2 

coordinate system is attached to the aircraft's nose' xyz' coordinate 

system is attached to the wing pivot, 11£ coordinate system is attached 

to the wing's center of gravity and :.f/z"' coordinate system is attached to 

the aircraft minus the wing center of gravity. All the coordinate 

systems shown in Figure 4 with the exception of the stability axes have 

their x axis parallel to the body centerline. 

13 13 i.f.3~9 Body: 1 -== 1'+.~3 m J nose -== m 
d'3 = I. 8d.9 m sa a. eo a 7 ""-z. 

8 (Y'\1.. sa - 7~.0(o m2 .sb~se = a. G, ,;n wet -

vB I'Y\'3 
el(.b .. )ie 

:::- 3 3.31 

The volume is based on a conical nose shape with a nose length of 

20% of the body length. However, the nose length listed is 30% of the 

body length. These lengths were selected because the nose taper ratio 
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is only significant in the leading 20% of the nose. The volume is used 

in the body subsonic aerodynamic center calculation. The exact nose 

profile is unspecified but a parabolic profile is assumed when the 

methods of reference ( 11) are used. 

Wing: NACA t;,l.fAOIO airfoil 

xp = -ta. 5 s m 

~ F = - 0 . '+ Y.Y 5 M 

"" 0 
0(0 = 0 

e""(.subSot\lc.) = 0. 8 5 

E,w = 0.0° 

s"" = /8.5fi m 1 

cw = ~- 3'-+ I m 

C~oi = 3.o 10 fY\ 

Cpwjc"" = 0. a. 
w 

h. F1 = 0. 'j 
w 

hF2 - o.l 

.,u " 0 ex Stell! = I Ol 

)1_\/IJ = 0 . 9 

JEw;do( = 0.1 

S~e+ = ~8 .00 m "2. 

bw = 8.d30 m 

t.w = o.5 

ct/cw=o.a 
"" hA, = o.l 

)1~2 -::-0.~ 

The flaps and ailerons are plain flaps. There is no available 

w '/II w dE~'~ 
method to calculate lL , e , E, and dot. for a canard forward sweep wing 

configuration. Therefore, values for these variables were selected as 

reasonably conservative values compared to typical values for a 

ccnventional configuration. As a first degree estimate, ot:' and o<.~-IQII 

are set equal to the airfoil ct0 and otst~U· 

Horizon tal Stabilizer: 
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-H c = /.17/ m 

H 
C rooi = I. 5o 5 rn ]\1-1 = 0.5 

H/-H "' CE C. ::: 0. COl 

IH = ~0 

H H H 
The elevators are plain flaps. e , O(o and c< 5t~ll are estimated by 

the same method as stated in the wing section. 

Vertical Stabilizer: 

N ACA ~4Ao 10 air-\ol\ 

S11 == 3.7/(o m' 

-v C :1.8Ji.fm 

1/ 
Croo-t :: d. 3 57 m 

" h.R-z ::: 0. ~ 

!3 IJ = 00 
0 

€ 11 (.sub.sonic) = 0. 8 5 

" 3 0 --1-L.E :: 0 

S~e+ = 7. Lf 3'J. f'Y) '2. 

b" = d..l34 fY'\ 

"A" :: o.L.f77Lf 

II "<> 
!3s-tQII =/d. 

hv' = 0.9 

dcJ''/ci/3 = o. 1 

The rudder is a plain flap. ·}\'r is selected so that the trailing 

1/ 'I v J~'l ~II l?ll 
edge sweep angle is zero. n: ... e ) 6, J cJ/3 .J /-:, and f.).S-h:&ll are 

estimated by the same method as stated in the wing section. Figure 11 

shows the defini tioo of s" and b" • 
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Figure 11~ Vertical Stabilizer Planform Definitions 



Propulsion: Gef\efal E led·,. i c. F'fOLf -Gi;- 4D0 +vrbot4t'\ 

t: 
N AL o. 5,., 2 

Tmax = 7/J/70 

j€ = 4.o'3CJ m dE = o. ggCJo m 

=I -7.3/5/')'\ 
=I 0 X y 

=I =E -1'1.~3fV1 r - J.4o a m J( 

=E =t= 0 y =- 0 e -

The engine centerline coincides with the body centerline and the 

engine base coincides with the body base. 

Mass and Center of Gravity: 

m/1'\11;<. = I a I ooc Kc:a 

tYl"" = ~ 5 ~ 5 /(, 

o ~ ( mP + m,:) ~ c.oc~ Kd 
--'tV 
\jc(!, = 0 

At 1\'E =-3o : x cell = - 8 • octo m 

icc& ::: - o • I rn 

m"';l\ = iDOOO K~ 

mE = 785 I<~ 

=-1/11 
- 7. '15CJ XcG = m 

=-""' .-o.o'J-14-'1 M ~e.G --

YcG:: 0 
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The aircraft•s center of gravity location will vary depending upon 

the sweep angle. Therefore, the analysis required a method to estimate 

the wing•s center of gravity location as a function of sweep. Combining 

this method with the stationary center of gravity for the remaining 

elements of the aircraft, the aircraft•s center of gravity location can 

be calculated as a functim of sweep. 

For this method, the wing is modeled as a solid homogeneous panel. 

Equatim (57) and the geometry shown in Figure 12 are used to calculate 



x' 

Figure 12. Wing Geo~etry for Center of Gravity 
and Moments of Inertia Calculations 
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the wing center of gravity location. 

x~ = "Xp + ~: ~\\ x'dV 
(57) 

The aircraft center of gravity location is then calculated from equation 

(58). 

-w -w= rn XcG -r 
(58) 

m 

- w = w 
Note Y CG and %,G and hence Y cG and lc.G do not vary with sweep. 

density in equation (57) is given by equation (59). The wing 

mw 
- s~ i.w 

(59) 

Assuming the wing to be thin' the z integrals with the limits of -{.WI a 

tol"/a_will cancel the-twin equaticn (59). Therefore, a value for-t.~~" 

is not required. After examining Nicolai's ( 8) weight estimations, the 

wing mass was selected as 30% of the aircraft's minimum mass excluding 

the engine mass. reG. was designed to be -0.1m because the wing and 

vertical stabilizer are located above the body centerline. 

~w "t -w 1 J<j IY\1.. Moments of Inertia: I ,, 111 -= 33.J '130 t<dm 1111111'::"4 ~70 
XX YY I 

-1{11 2 -vv J< 3 ,., 2 
T "'Ill ::::.I JJ, 310 I<~ m T 1n1;- -z og? 

n -Xl - :1 

A+£ ::-30° • Ixt. :+'J.JOOO t<d fYI2 Iyy ::::- (o Gj) DOC. l<d 11-\ 2 

LE 

14'1., 00 0 t< ~ fl12 Iii ::; 0 
I'ii 

Similar to the previous section, a method to estimate the wing 

moments of inertia as a function of sweep is required. Combining this 

method with the constant moments of inertia for the remaining elements 

of the aircraft, the aircraft's moments of inertia can be calculated as 

a functicn of sweep. The wing is again modeled as a solid homogeneous 

panel. 
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Equations (60) through (63) and the geome-trY of Figur~ 12 are used 

((.I ) 

( (., 3) 

The aircraft moments of inertia are then calculated from equations (64) 

through (67). 

I -w( = ;;-wj'2. -.L-w + mw( ;cG- icwG )"2. + I X~J" 
ii = m ~ c<a - z:cG + x"'x."' "' " 

-IN :- : -w '2. -w W = = W '2. VII 
Iii =m (x,G-Xc:G) + Il'i''' + m (x,G-XcG) + Iz"~" (G,,) 

Iii=- n1w(xC6-x;:)(2c15 -i;;') + I~~z"' +mw(x,G -x:)(~,G-i,';) +rx":i'' (G.7) 

The thin wing assumption is used again. 

As sho'Wl1. by Roskam ( 1 ) , equations ( 68) through ( 71 ) are finally 

used to transform the moments of inertia from the xyz coordinate system 

to the xyz coordinate system sho'W11. in Figure 4. 

Iyy = I -yy 

Ii~ =: 5t.,2 v, Ixx + cos'l.l71 Iii + J. ,os 17, stn 111 Ixi 

I x~ = cos 17, 5in 171 (Ixx. -I~.£) + (,os1 17,- s,t,'Z.17,) Iii 

This is required because the moments of inertia appearing in the 

equations of motion correspond to the xyz coordinate system. 

(G,8) 

((.,9) 

(70) 

( 7 I) 



APPENDIX B 

AIRCRAFT STABILITY AND 

CONTROL DERIVATIVES 

The aircraft stability and control derivatives in terms of the 

element stability and control derivatives as mentioned in Chapter IV are 

contained in this appendix. The stability and control derivative 

transformations to the stability axes as mentioned in Chapter ~V are also 

contained in this appendix. 
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Aircraft Aerodynamic Derivatives: 

""' w <)1·1 H sB B .S v 'I 
Co-= h: Co i- s,wCo + S"' c[) i- ~ SN Co 

c - l w "" s~-+ c ~ ~ B v sv v 
Dvx- 1_ Co"x +- s w Ovx t- 5"" Co"x + )l. s"" Covl( 

C w '"' <H It c B 8 
Do<. ::=. Jt Co<'< + Sw Co ll( +- t""' Coo< 

C w w 
Do( = h.: CoO( 

Cowt = Y~C~1 
C .s ~ 1-1 

o sc- = S"'" c. o ~ E" 

Co~~= = )LvJ c~F ------

I 
~' 

\ 

/ 

/j / 
. r/"' 

\ \\ 1k 
\ '~~· / 

"""')> 
\ . 

H - t-l 1-1 sB(_p8 [j 
+ XAc. C H - l!k C0 ) + 5w =w C .... 

c"' L. c"' c 
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v 
Cy -= 'h. 

c v s" " ss s 
'lwx == ll S"' Cywx -1 SW Cyt.>J( 

Cv....s_,._ - :h_v ~ C v +- .sB C B 
' -.:o - S"" y wr: s w 'I wr 
Cy~A =. 0 

5s( 1acB- l!cs) 
+ s"" b"" :i b"" Y 

B 1/.8 13 - B B 
+ 2-- {- c A - rA<. c1 ) 

S"" 6"" ~/.l b"" ;3 



Aerodynamic Derivative Transformations: 

CAt.wy ::- - Cowy 

CAx~~ ::: - Co 5f" 

-~~-,.,c:-._AxsF -= - Co:,F 

CAl; -::: - CL. 

CA 'lvx -:::- - CL. VI( - a c L 

Vxl 
CA:r ot ::- - C .. O(. - C.o 

CA~Oc :::-CL~ 

CA ~""t = - cl..uJy 

CAi;:;~r ::::- -CLSF 

----- ... ~Ai sF =- - CL.&F 
""" 
I<Ay = Crn 

l<Ay vx = ( M i" ~ (""\ 
vx y;;-

kAry d. ::- CmO( 

KAy.;_ :: C "1~ 

K;.'Ywy -= Cf)\L.Jy 

I<Ays£ = c,..,~E 

~<Ay'iJF = CtV\$F" 

CAy= Cy 

CAy;3 :=. Cy~ 

CAy;j = CyA 

CAy.vx = Cywx 

'\,, ./ ...... ) 

' / }""f / 
',.f / 

'•p ,,. ., 
'' 

' ~";': "'v"l. 

' '·,~'./ ~l.,f'r) 
>/ 

\,/ 



CAy~A = cfsA 

CAysR = CyDR 
---.. 

KAx ::: C;_ + V, Cn 

K.A:t:/3 = c'-/3 + ~ cf'\!3 

KAt;3 ::: C 1;3 -+ V, Cn;j 

1'-Af.wx ::: Cfl.wx -t V'l Cnwx 

f(A~<lJ -e = CQuJ't + V, Cf'\w.r 

,I(AJ(sA = C.e_':JA + v 1 c;'\ ~A 

KA,..sR ::: CQ~R + \/, C"~R 

I<Al =- C;'\ - V, C!l 

KA r/3 -;: cf'\.!3 - v, Cf._/3 

KA ZA = Cr.;J - 17r c1_;f 

KAl,..;J( ::: C"wx- V1 CL..Jx 

KAluJl = C(l.._..;r- 171 Ci.wl: 

kA taA = Cn sA - v, C,t?J A 

f(Al-$,R. ::: cl\~~ - v, c~ sR 
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Aircraft Thrust Derivatives: 

CT X lfx 
r 

-:: c,lvx 
c,- .. I 

X ex :::: L 7 xcx 

Crxc( -=Cix« 

Cr 1 t.>Jy :::: cfxwy 
( E 

~-~~X sr ;:: CT X ?JT 
E 

Crz ~ CT-z:'5r t.i~ 
-:r: 

CT::- = C-ri 
lvt.. Vx 

c.,~ 0( -= cTi "'< 

r 
Crio<:;; C7 i..:i( 

I 
Crlwy::: Cr~LL}y 

C £ 
T;! ~T :: CTj ~y 

£ 
t<ry = KTifsT 6.\ 

r 
l<'r:; :c k'T-, v;~ y <'x 

I 
Kry," ::: Kryoc 

KT-y • :: 1<::- . 
0( Jyoc 

l<ry Luy = K¥9 wy 

£ 
J<,y S' :: l<.r 'i ~~ 

Cry = c 
I 

Cry~.:: Cry13 

r 
Cryj3 ~ CryA 

I 
Cr- -- CT-

Ywf..- Ywx 
1: 

Cryt.ve::::: CTywi 

I<--- - c I K -
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:I: 
Krxij ::: I< I( ;i 

:r 
kTx wx = l<rJ wx 

r 
1<-rx wt = Krg w-e ..._,_ 
I<Tl :: C> 

"I: 
KTi_,1 = kri/3 

.X 
KTi;i-= I<TF,ri 

-r 
Krff wx :=. 1<-riwx 

:r 
KT~ w -r .:: I<Tl w-r. 
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. ative Transformations: Thrust Derl.v 

Crx Vx ::. Crx v;. + V1 CT~ "" 
c,xo(-= Cr;Q( -1- V1 Cr2 o< 

C r I(«. :::: C rx,;, +- V 1 Cr l ~ 

C T X wy ::= C.r/. • .:y + V1 ( T j uJ y 

, "~-Crl. 'ZJT :::: Cr; ?JT + VI Cr z ~ T 

CT;c :::: c,i - VI Cr-; 

Cr 211~,::: Cr~ltx - V1 Cri. vx 

Cr 2 <X == CrgO(- V1 Crxo< 

( T ~ d,. :: C T J 0< - f 1 C r X Ot; 

Cr'luJy = c.,.iwy- VI CTx wy 

.. C r :r ~ r ::: C r1. s r - V1 C r; '1?. 

l<ry = J<r; 

Kryvx = i<Tivx 

l<Ty,._ -= KTy.:x 

I<Ty ~ = k'ry~ 

I<TYwy -:::- l<Tywt 

Kry ~/ ::: KTy ?>T 

Cry .::. CTy 

CTyf3 ::: Cr:y/3 

Cry;3 ::: C7y;i 

CTfwx:::: CTYwx 

CTyw"t = CrYw-e ---
l<yl( :;: KTx +- Vl l<Ti 

l<-rtj3 = KTx13 + \11 l<y~f3 
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..... , ...... ...., 

t<T;<(3 ::: i<Tjfi +- )71 i<Tz
1
tj 

KTX uJx = t-<:rx wx +- \11 I-<.Ti w X 

l<rxwc; = l<rXuJl 1- 17, K-r2 w~f 

Kr~ = Kr~- V1 Krx 

J<rifi = l<r-ifi - V1 KTx;J 

K-r c;i:: krz_A - V, KTx ;1 

t<r:c '-""x = KT~ tt-' x - V1 I<Tx ICLIX 

KTz.w:: = KTiuJ:t - \/ 1 1<-rxw-z 
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APPENDIX C 

ELEMENT STABILITY AND 

CONTROL DERIVATIV~S 

The element stability and control derivatives as mentioned in 

Chapter IV are contained in this appendix. The notation of w, H, Band V 

before each equation indicates the equation is applicable to the 

corresponding element. Some derivatives are obtained from graphs 

contained in reference ( 11) rather than a closed form expression. For 

these derivatives, the notation "see reference (11 )" is used. The 

element aerodynamic derivatives are divided into a subsonic and 

supersonic category. If an element aerodynamic derivative does not 

appear in the supersonic category, the supersonic expression is 

identical to the subsonic expression. 
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Element Aerodynamic Subsonic Derivatives: 

C,.,H / ~~ .., = L.Oo 
If 1 H H) + CoO( c.. 17, - o<o + 1 

C ~ = Co! + Co! ( V1 ) 

v v 
Co = Ct~o 
W) H,B} V 

W; It; B I v 

w c ::: 
t.ot.. 

13 
CLo( --

w 
CL. = 

0( 

Cov = X 

re {eref\ce 

M,, Cp 

Vs ( 1-Mf) 

see re(er-eAce (It) 

see re..ferer1ce (I I) 

(If) 
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IN 

C .. ~F = 
H eLsE =see re.feve"'ce (LI) 

CMW .:: 1/oJ 

+ Cmo< (. \71 - rxt +- :r ""- E., w) 
CmH = 

c~ = 

W;H 

-+ Cn, ~ ( r;1 - o<} + r r1 ) 

B 
+ Lf\1 C( ( \J 1 ) 

A casL. ...t1_c14 

A -t dCos ..f\.cl'+ 

C- -'" "x -

vS 
CfYI csF :::- See re{e.rel'\c.e C. ll) 

H-
Cm~f == :)ee 

v) 13 Cy = o 

8 
Cy/3 

v 
Cy/3· = 

v) B 

~B 

v 
Cy~R. 

C.'lwx = 

C.yw:z =-

- see -

re-fe.rer~ ce.. ( ll) 

2Ac. Cy 
Vx 13 

I 

XAc... Cy 
Vx 1 13 

re-\= e r e V\ c e ( I J ) 

w,H)3 Cfl-:::: o 
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vJ_. H) B c~.13 -= o 

w) H c.R.wx. = -- YAcR YAcr< c_L~ 
b"" thl 13 

Cfl. =- B B 
-= - ~c u.Jx - {)!3 x, 

W)H Cf.~l. - YA<g YAc.R CLvx --
b""' 

8 -B B 
C_ow:c - X A<-

C.Q/3 -
v~.i 

w 

CJl.~A - S e'(. r e te r e '"' c e_ -

w)H I ~v c(\ =- o 

W1 H) 13 .IV C('l.fi :::- 0 
c" v dcJ-..- a 

(\A -= c"13 d/3 -t 

y - v· 

cf\wl. ::: xi-\L c 11 
- f\;3 Vx 

l 

13 -c B 
c(ju);;: = XJ\c C 

- "A vl(, 
w re. -\=e.revtce c ... ~A - see -
y 

( "&R - see. re +er-e.\c.e.. 

( l \) 

( 11) 

( tl) 
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Element Aerodynamic Supersonic Derivatives: 

w,H) 13, V Co -= a ~ee re terence (I I) 

W;l-l Coo< == see re fe re A(e ( II ) 

w 
re-\ereV\c.e ( I I) Co~~= = see 

Co~~; = 5ee re-\-erence (1[) 

Wli-IJ 6 c~... -- see re-fereV~c.. e (II) 
C( 

w 
CL&F - see. re. -\'e.r e ,'1 c e (I I ) -

H 
re{ere(\ce CL&E" - see (I l) -

w)H)B c""o::: See re.feren u:? ( ll) 
= 8 

re tere ,, r e. (II) XA<. = see 
IN 

c""?;F ::: See re .f e.l ... e-~~.c e ( ~ l J 
H 

re {:e 1 e " c -e c (Y\. ~£ -:-:: See... ( { I J 
'{ 

r e ter-e.,,-, c e Cy/3 :: see ( J I ) 

II 
re-f erer\c.e (I I ) Cy?JR :::: se.e 

w 
reference C_a_~:,A -= see. (!1) 

vV 
re-f'evenc.e c(\~A ::;:: .s.ee ( Ll) 

v 
re. -f erertc e (I L) C A~R :::: see.. 



Element Thrust Derivatives: 

:r f?AI Vt, c,_ = 
xvx t' sw 

I cT, - 0 
0( 

X 
Cr.x. - 0 -

0( 

I f?AI ~~~I 
CT- -::. 

Xwy Jl sw 
E E 

CTX~T - T IVIIAj, -
'jr yJ 

r 
Cr- 0 

:z vx 
- ~-2. 

I (J A..L. x., 
Cr-

g.-~ s"' l« 

E 
CT i <bT :: 0 

r 
Kr-

Y "x 

r 
Cr- . 

Y/3 

f?ArVx, ~r 
~( sv-~zw 

"2..-

('AT. Vx, Xr 
rg, 5 ,J c_w 

0 

0 
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I. j)AI Vx, ~I 77 
Cy- -

Ywx -
~I s w 

J. f?ArVx, XI CT- -y w:z. - tj, s~~'~ 
r I' A1 Vxa fi l<r- -X/3 - Jt S._vbw 

r 
Kr ..... - 0 

X,1.3 -
I ;:>AI Vx, Z za. 

J<.Tx = w.x g.,swbw 
r fJAL Vx XL ji 1<-r- -

Xwi! -
'jt S"'"' h vJ 

r fl A -r Vx~ xr. 
l<rl ,13 --

J,S~h,.., 

r 
l<T- • -::= 0 

2j3 

r f?AIVt., xr l1. Kr-
l w;e ff' SwbW 

T ,/)A r \lx, y:ra 
1<--

I fi W J-t s.u b v-i c 



APPENDIX D 

GRAPHICAL RESULTS 

The aerodynamic center and center of gravity location, root locus, 

mode shape and time response graphs for the various flight conditions 

mentioned in Chapter V are contained in this appendix. Each figure 

describes which variables are being graphed and the corresponding flight 

condition. 
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