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CHAPTER I

INTRODUCTION

Variable Forward Sweep

The reemerging forward sweep wing is generating a growing interest
in the aerospace community. One can see from a brief survey of the
current aerospace research literature, the advantages and disadvantages
of forward sweep are being throughly investigated for future
applications. Research indicates forward sweep is feasible and will he
used in future aircraft designs.

A conceivable variation of forward sweep is the merging of forward
sweep with variable sweep. Both forward sweep and variable sweep offer
significant gains in performance by themselves. The coupling of forward
sweep and variable sweep could possibly offer even higher performance
levels.

A conventional variable sweep aircraft with backward sweep, or
positive sweep angles, is typically designed with minimum longitudinal
stability when minimum sweep and subsonic speeds occur. The aircraft's
aerodynamic center is at its most forward location in this flight
condition. The aerodynamic center and center of gravity both move
backward as the sweep is increased, with the aerodynamic center
typically moving farther back than the center of gravity. Excessive
longitudinal stability which degrades performance and maneuverability

can occur at the maximum sweep angle. Supersonic speeds increase the



stability even more by the characteristic backward shift of the
aerodynamic center. Elevator control effectiveness reductions can
also occur at the maximum sweep angle due to large longitudinal wing
moment arms.

The variable forward sweep wing aircraft would logically be
designed with minimum longitudinal stability when maximum sweep and
supersonic speeds occur. As the sweep decreases or becomes less
negative, the aerodynamic center and center of gravity are expected to
both move backward, with the aerodynamic center typically moving farther
back than the center of gravity. The longitudinal stability will
increase with decreasing sweep until subsonic speeds occur. At that
time, the stability will decrease due to the characteristic forward
shift of the aerodynamic center. If this reduction in stability is
significant, the forward variable sweep aircraft will not be hampered as
much by the excess stability and control shortage problems that occur
with backward variable sweep aircraft.

The lateral-directional characteristics will alsoc be affected by
the wing sweep angle. The roll characteristics can be expected to
experience the predominate change among the lateral-directional
characteristics. For the variable forward sweep wing aircraft, the wing
mean aerodynamic chord and aileron moment arm both move inboard as the
sweep increases or becomes more negative; consequently, the roll damping
and roll response should be reduced, respectively. The inboard movement
of the mean aerodynamic chord with increasing sweep should also be
expected to reduce the yaw damping.

The longitudinal and lateral-directional characteristics will also
be affected through changes in the moments of inertia due to variable

sweep. For the variable forward sweep wing aircraft, increasing or more



negative wing sweep should result in pitching and rolling moment of
inertia reductions. These reductions should tend to improwve the
pitching and rolling responses.

A variable forward sweep wing aircraft is an interesting and
formidable concept to analyze. For the reasons discussed in this
section, the analysis of the flight dynamics of a variable forward sweep

wing aircraft was selected as the Master Of Science thesis topic.

Research Scope

The level of complexity of the research is a classical aircraft
stability and control analysis such as presented by Roskam (1).
Assumptions include rigid body., linearized dynamics and aerodynamics,
ideal control surface actuators and no automatic flight control system.
The flexibility, linearization, actuator dynamics and automatic flight
control system assumptions are introduced because 1) the research is
intended to analyze the effects on an aircraft's flight dynamics
resulting solely from the variable forward sweep concept and 2) to
simplify the analysis.

The equations of motion are uncoupled into a longitudinal set and a
lateral-directional set. Laplace transformation and partial fraction
expansion theory are used to manipulate and solve the equations of
motion. Numerical calculations are performed by programming the
equations of motion into a digital computer. Numerical results consist
of the characteristic equation root loci, mode shapes and time responses
at various wing sweep angles and dynamic pressures. The Intermational

System of metric units (SI).is used exclusively throughout this thesis.



Areas to be addressed in the research include aerodynamic center
movement, center of gravity movement, characteristic equation root loci
behavior, mode shape behavior, time response behavior and dynamic
pressure and Mach number effects. The overall goal is to 1) relate the
flight dynamics results and trends with the physics of the variable
forward sweep concept and 2) indicate any significant advantages or

disadvantages associated with the variable forward sweep concept.



CHAPTER II
LITERATURE SURVEY
Variable Sweep

Variable sweep is a design which allows an aircraft's wing sweep
angle to be varied during flight and is used to achieve acceptable
performance levels throughout the flight envelope. Low and moderate
subsonic séeeds demand a high aspect ratio, lowly swept wing. High
aspect ratio, lowly swept wings result in efficient lift curve slopes
and low takeoff and landing speeds. High subsonic speeds and transonic
speeds demand a moderate aspect ratio, moderately swept wing to achieve
acceptable lift to drag ratios for cruising flight and to delay
compressibility drag. Supersonic speeds demand a low aspect ;atio,
highly swept wing. Low aspect ratio, highly swept wings result in
weaker obligque shock waves rather than stronger normal shock waves.
Variable sweep is a unique and proven technique which satisfies the
diversified wing characteristics required over an aircraft's flight
enve lope.

A complete history of variable sweep can be found in the papers by
Polhamus and Toll (2) and Kress (3). The National Advisory Committee
for Aeronautics (NACA) conducted the first extensive research o
variable sweep for the purpose of achieving suitable performance levels

throughout an aircraft's flight envelope (2). Early wind tunnel

research indicated a fixed wing pivot located inboard the aircraft's



fuselage forced extreme wing aerodynamic center travel as the sweep
angle varied. With backward sweep, excessive static margins and
longitudinal stability resulted. Supersonic speeds aggravated the
problem even more by the characteristic backward shift of the
aerodynamic center.

The X-5 was the first variable sweep aircraft to fly (2). The X-5
employed variable backward sweep varying from 20° to 60° with an
inboard, translating wing pivot to alleviate the excessive stability
problem. Flight tests indicated no significant improvements existed
over fixed wing aircraft which was later found to result from a poor
design. The XF10F-1 was the next variable sweep aircraft to fly (3).
The XF10F-1 also employed variable backward sweep varying from 12.5° to
42,5° with an inboard translating wing pivot. Flight tests indicated
significant improvements in landing speeds, range and maximum speeds
relative to similar fixed wing aircraft.

NACA continued research on variable sweep and discovered in the
late 1950's that a fixed forewing and a fixed wing pivot located within
the forewing would solve the problem of excessiwve stability without the
complexity of a translating wing pivot (2). Many aircraft usinc. this
technique have been produced including the Grumman F-14, General
Dynamics F-111 and Rockwell B-1.

All variable sweep aircraft produced to date have employed backward
sweep. No research could be found on variable forward sweep except for
the mentioning by Polhamus and Toll (2) that variable forward sweep is

an wmestablished design option.



Forward Sweep

Forward sweep is a design where wings ave swept forward to counter
certain high speed aerodynamic characteristics. Backward sweep also
counters these characteristics. Swéep is used to delay compressibility
drag associated with high subsonic and transonic speeds. Sweep also
reduces drag at supersonic speeds by causing the formation of weaker
oblique shock waves rather than stronger normal shock waves.

The advantages of wing sweep were first realized by Germany in the
1930's (2). The first swept wing aircraft, including both forward and
backward sweep, were flown by Germany during World War II. Research
from NACA by Diederick and Budiansky (4) in the late 1940's showed the
divergence dynamic pressure of forward sweep wipgs are drastically low
compared to the divergence dynamic pressure of backward sweep wings.,
Consequently, all feasible swept wing designs throughout the mid 1970's
employed backward sweep. The forward sweep concept was ignored up to
this time until Krone (5) revealed aeroelastic tailoring with composite
materials can increase the low divergence limit of forward sweep wings
without experiencing the weight penalties associated with the use of
conventional metal materials. The solution to the divergence problem
has led to the development of the forward sweep X-29 research aircraft
which is currently undergoing flight tests conducted by the Defense
Advanced Research Projects Agency, National Aeronautics and Space
Administration and United States Air Force (USAF). Moore and Frei (6)
give a description of the X-29 and its purpose.

The increased interest in using forward sweep once the structural

feasibility is verified is due to certain advantages forward sweep has



over backward sweep. Increased lift, reduced drag, improved handling

qualities and increased design freedom are some of the major advantages
listed by Krone (7). The advantages are difficult to quantify without
comparison to a backward sweep wing with certain parameters constrained

to equal the forward sweep wing's corresponding parameters.



CHAPTER III
CONFIGURATION DEVELOPMENT
General Description

Figure 1 shows the variable forward sweep wing aircraft studied
throughout this research effort. The aircraft incorporates a variable
forward sweep wing with sweep angles ranging from -42° to -15°. The
wing i1s pivoted about a fixed pivot located directly abowve the body
centerline. This vertical offset from the body centerline was required
due to the internal spacing requirements of the engine. The horizontal
stabilizer is a canard while the wvertical stabilizer is a single,
conventional vertical fin. Conventional aerodynamic control surfaces
were selected: elevators on the horizontal stabilizer, rudder on the
vertical stabilizer and flaps and ailerons on the wing. The propulsion
system consists of a single turbofan er gine located intemal to the body
and exhausting out the base of the body. Intake for the propulsion
system consists of a single scoop located on the body wnderside.

The aircraft is a representative of the light weight fighter
category similar to the Northrop F-5 or F-20. The éeneral shape and
size of the aircraft is quite similar to the X-29 research aircraft.
This similarity is deliberate because the X-29 is the only existing high
speed aircraft using a forward sweep angle more negative than -15°. The
X-29's basic airframe is uwstable; however, by careful selection of the

horizontal stabilizer and wing locations relative to the center of
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gravity the basic airframe shown in Figure 1 is stable.

The aircraft was designed with a static margin of -0.25 for a sweep
angle of =-30°, Mach number of 0.75 and altitude of 6000 m. No design
iterations or alterations to improve the aircraft's characteristics for
other flight conditions were performed after the off design results were
obtained. Instead, the changes in the aircraft's characteristics
resulting from changes in the flight condition are the results to be
analyzed for this research effort. The aircraft is capable of obtaining
low supersonic Mach numbers ip level flight, The aircraft's aerodynamic
performance such as range, endurance, takeoff and landing speeds, rate
of climb, ceiling and maximum speed were not considered in the design.

Appendix A contains the specifications for the aircraft.
Design Method

The technique of "design extrapolation" is used to determine the
aircraft's basic size and geometry. The size and geometry were
extrapolated from the X-29, FP-5 and F-20 aircraft. Size and geometry
includes the lifting surface and stabilizer planform areas, taper
ratios, spans and sweep angles. Body length and diameter, mass, moments
of inertia and propulsion are also included in the size and geometry.
The flight condition of -30° sweep angle, Mach number of 0.75, and
altitude of 6000 m was selected as the design flight condition. This
flight condition represents a high subsonic cruise condition where an
aircraft of this category will typically spend the majority of it's
flight time. References (6), (8), (9) and (10) were used in the "design
extrapolation" calculations.

The fundamental design consisted of locating the longitudinal
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position of the wing and horizontal stabilizer relative to the center of
gravity so that certain design constraints were satisfied. Consider the
variable forward sweep wing aircraft shown in Figure 2. The aircraft is
in a wing's level steady state rectilinear flight condition. Assuming a
small angle of attack V‘ , neglecting the moments due to the drag and

thrust forces and using the derivative and trim results from Chapter

IV, the steady trim equations are approximated by equations (1) through

(3).
M H H H E
le{ Cov: + CDVZ((V, +I"% - EYV)} * gﬁ{coo * C°“(v‘+IH)+C°SE A‘

E T

+ 3mCo, v Wgnle, = s v = © "

w W SH H H £ é-BCBV
)'\_WCL“(V,‘*-I _E‘w) + .S—-'{CL«(V,-PIH) + CLSE Al } +Sw La Y
‘__ m = O ()

SW
w w%‘ W ew st et A5+X;c” (v +1")
RCLQ(V“FI —E') +-S—ﬁ{7.,: mek { -Y_A? Ly 0
YA o H 8 x2 .8
PEECLe AT} ¢+ E S QLT =0 (3)

As mentioned in the discussion of the trim calculations in Chapter
IV, the three unknowns O, AT and q, are specified to reduce the total
number of unkn- ms to three. Specifically, e, and AT have been selected
as zero and a, is calculated from a Mach number of 0.75 at an altitude
of 6000 m. The wing and stabilizer airfoil sections have been selected
as symmetric airfoils. Downwash from the horizontal stabilizer onto the
wing and wing and wvertical stabilizer dynamic pressure reductions from
the horizontal stabilizer and body, respectively, have been included in
the trim equations (1) through (3). Equations (1) through (3) contain
the three unknowns V,) AE; and AT, . Equations (1) through (3) are used

in the fundamental design.
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Taking the partial derivative of equation (3) with respect to ‘Z
and expressing the moment arms in the §§§ coordinate system results in
the expression for the aerodynamic center location given by equation

(4). The static margin is given by equation (5).

=w H 4 =H g B =8
T\,WCLM:( Xac + Séw C‘-q Xac + é;’ CLO& XP‘L
XAc"‘_" w w SH H €] B (L/‘)
Wlig + 3 G+ i_"’ e
?Ac‘ ?cc
Sm = v (5)

Equations (4) and (5) are used in the fundamental design.

The center of gravity calculation is performed by dividing the
aircraft up into the following seven elements: body, wing, horizontal
stabilizer, vertical stabilizer, engine, fuel and payload. Constraining
the fuel ahd payload center of gravities to coincide with the aircraft's
center of gravity results in the center of gravity location as equation

(6).

= =V =k
= =W H= H v £
~ me Xci + mwaG + m XCG + m XCG +m XCG
Xeg = m-—-mF —mP?P C‘;P(G>
i
S
Equation (6) is also used in the fundamental design. QQ

The fundamental design is now stated. For the flight condition and
extrapolated size and geomgtry mentioned previously, equations (4) and
(5) are used to locate the longitudinal position of the wing and
horizontal stabilizer relative to an assumed center of gravity location
so that a static margin of -0.25 is attained. Next, equations (1)
through (3) are used to solve for the trim unknowns V,,Afand Azlfor a
specified wing incidence vaand horizontal stabilizer incidence lfH.
Finally, equation (6) is used to calculate the center of gravity

location.
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The fundamental design is iterated until the following design

constraints are met: V| is in the linear angle of attack range, Aﬁ is

T ., H w
reasonably close to zero, A‘ is between 0 and 1, I is larger than I
and the assumed and calculated center of gravity locations are

Ho, .

approximately the same. I is constrained to be larger than IM’so that
the horizontal stabilizer will stall before the wing stalls. This
constraint is a passive safety factor against stalling for a canard

configuration.
Wing Description

Figure 3 shows an enlarged view of the right variable forward sweep
wing. At the design flight condition mentioned previously, the wing
root geometry and pivot location relative to the wing structural
planform were selected to allow approximately the same amount of sweep
on either side of -30°, The pivot is selected at the 1/2 root chord
location in the -30° sweep condition. Note from Figure 3 that the right
aerodynamic planform changes shape as the sweep changes but the right
structural planform remains the same shape as the sweep changes.

The wing airfoil sections were selected as the NACA 64A010
airfoil. This airfoil is a thin symmetric airfoil with a thickness to
chord ratio of 0.10. This airfoil selection allows supersonic flight to
be feasible. A more realistic airfoil selection would be a new
supercritical airfoil but limited data on these airfoils prevented this
selection. The stabilizer airfoil sections are also the NACA 64A010
airfoil.

At -30° sweep, the tip chord is aligned with the longitudinal

direction. For sweep less negative than -30°, the tip chord becomes a
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trailing edge and is not directly facing the aerodynamic flow. For
sweep more negative than -30°, the tip chord becomes a leading edge and
is directly facing the aerodynamic flow. At these off design sweep
angles, the wing span is approximated as the average of the leading edge
tip chord span and the trailing edge tip chord span. &any adverse
aerodynamic flow patterns resulting from the tip chord becoming a
leading edge has been neglected in this resegrch effort.

At -30° sweep, the wing airfoil sections and the aileron and flap
inboard and outboard chords are aligned with the longitudinal
direction. At off design sweep angles, the airfoils and control surface
chords will be skewed to the longitudinal direction. Any resulting
adverse aerodynamic effects have been neglected. The structural
feasibility of the wing root geometry and pivot is also questionable but
is left unspecified at this time. Finally, some type of closure
mechanism for the wing slot will be required but is unspecified. These
unaddressed areas are felt to be unimportant considerations when

regarding the intent and purpose of this research effort.



CHAPTER IV

ANALYSIS METHOD

Equations of Motion Solution

A rigorous application of wvectorial Newtonian mechanics leads to

the uncoupled longitudinal and lateral-directional sets of small

perturbation, scalar, differential equations (7) through (15).

p—

complete derivation is given by Roskam (1).

Longitudinal Set:

Mg cosG 8+ "oy

>
-+
“+-
-
kS
l

X

fa, + 1z = ms}siﬂeiG + "ﬂ\/xl& —’Y‘\/x‘wy

MA\/ +-m-r\/ - IY}/ (.I.JY
UJ\/ = e

Lateral-directional Set:

‘CAY +-FTY = —M%CO59,¢ + mVx,/§ + ml/x‘ Wz

May + M1y = T, Wy = Tyz Wz

Mpaz + M7z = =Ty, Wy +T,5 U,
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(7)

(9)

(10)

(1)

(1a)

(13)

(1Y)



19

Ww; = €coS 9,4:‘ (15)

Equations (7) through (15) are the linearized equations of motion for
small perturbations about a wing's level steady state rectilinear
flight condition written in the stability axes coordinate system. The
Xyz coordinate system shown in Figure 4 is the stability axes. The
stability axes are denoted by the x axis coinciding with the aircraft's
steady state velocity and the origin coinciding with the aircraft's
center of gravity. The stability axes are attached to the aircraft and
rotate with the aircraft.

The longitudinal unknowns are the perturbation variables Vy, X and O
which are functions of time. The longitudinal perturbation control
variables are SEJ SF andgr. Before equations (7) through (10) can be
solved, the aerodynamic and thrust forces and moments must be expressed
as functions of Vx,‘x, @/ SE; SF, ST and their derivatives with respect
to time. Similarly, the lateral-directional unlmowng are the
perturbation variables /3, i d and¢>. The lateral-directional perturbation
control variables are SA and SR. Before equations (11) through
(15) can be solved, the aerodynamic and thrust‘ forces and moments must
be expressed as functions of /3 ¢, ¢, SA, 5R and their derivatives
with respect to time.

For a linear analysis, the longitudinal and lateral-directional
P

5

forces and moments can be sufficiently represented by the variables

. : - R ,
Vi, O(,U)yJSE, g‘:, ST and /52/5), Wy, Wg, SA and S,respectlvely
(1). Note the use of Wy wy and Wy inplace of ¥ ,0 and @. The forces

and moments can be expressed as functions of Wy Wy and W3 much easer
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Figure 4. Body Coordinate Systems Used During
the Research Effort

20



21

than directly expressed as functions of "“’, 9 andQS. Equations (10),
(14) and (15) are then used to transform from Wx Wy and w,to ‘V,e andé).

Perturbation theory and Taylorlseries expansion indicates that if
F(X,Y), X, and Y can be separated into constanf values F(x,,Y,), X,, and
Y, and perturbation values f(x,y), X, and y, respectively, then the

perturbation value f(x,y) is approximated by equation (16).

F(X,Y QF(X,Y
o = 2D |y LD (e

As x and y become smaller, the approximation to f(x,y) in equation (16)

becomes more accurate. Equation (16) extends logically to functions of

more than two variables. Applying equation (16) to the aerodynamic and
. : AF(X,Y)

thrust forces and moments with the notation Fy for YR | and

using dimensionless coefficients results in the following expressions.

Longitudinal Set:
- w . .
'FAX - %l S (CA](VX Vx + C’\Xo( «X + CA)(& < + CAXuJy LA_-'),
+ Cayge 8¢+ Caxgr g’:) (17)

+ CAZSEQE + CAZSF'SF) (18)
My, = W=w .
Ay = §157C (KAM Vi o Kay &t Kay, &+ Kay o w,
+ KAYSE 5& + KA)' SF SF) (lC{)
£~ = s¥W(c .
X %l ( Txvx Vx  + CTX:X X+ CTXO'( o+ CTX wy w)’
+ CTK §T ST> (AO)

— W .
frg =% S (CTZVX Vx + CT%Q(O( + C—rz& x  t CTZwyw}’

+ CT?:ST ST) (1)

+ Kry o sT) (3d)
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Lateral-directional Set:

- w 1
{'Ay =S (CAYA/S * Cayg AT C"\)’u)x Wy CA)’LUZ e

+ Cayga A+ Caysr $*) a3)
May = %,S""bw( Raxs73 + KA,%,-/J" + K"‘wa Wy + KAx\wsz

+ KAxéA sA 4 KAXSR SR> ()
Maz = G B ( Kag, B + Kag g A+ KAZwX Wy + KAZQJ%U-Z

t Kazea §7 + 1<A28R%R) (35)
$3y = G SV (Cry, B + Cry5 A+ Gy, W+ Ty e, wy ) (36)
My = G SR (Kr B+ Kry g3 A+ Kigy, wy + Kty Wz ) (7]

(Y]TZ = ?/ waw( KT’g/gﬂ -+ KTz,ﬂ'ﬁ. + KTEUJX wy T KTZ(AJ.Z UJZ) (18>

Combining equations (7) through (10) and (17) through (22), taking
the Laplace transformation, and using matrix algebra results in the
longitudinal matrix equation (29). Applying the same process to
equations (11) through (15) and (23) through (28) results in the
lateral-directional matrix equation (30). The w ‘iables in equation
(29) and (30) are now functions of the Laplacian variable s rather than
time. Also note the initial conditions are zero because the equations
of motion are for perturbations about a steady state rectilinear flight
condition. Both the longitudinal and the lateral-directional matrix
equations can be represented by equation (31) with the Laplacian

solution given by equation (32).

[AT{x} =[B]{s} (31)

{x}=[A1"[87{s}
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As mentioned previously, the numerical results consist of the
characteristic equation root loci, mode shapes and time responses. The
characteristic equation is the denominator of []\jﬂahd is given by the
determinant of [A]. The longitudinal and lateral-directional
characteristic root loci are obtained by solving for the characteristic
equation roots at various flight conditions. Applying partial fraction
expansion to equation (32) and taking the inverse Laplace transformation
leads to the time responses. The longitudinal time responses are for
Vx,¥ and 6 due to the control inputs SE,SF and ST. The
lateral-directional time responses are for 3 Y and ¢due to the control
inputs SA and SR. Again, the time responses are obtained for
various flight conditions.

The mode shapes are calculated from equation (33) which is obtained
from equation (31) by setting {6} equal to the zero vector,{o}.

[Al§x} ={0} (33)
Matrix equation (33) is three scalar homogeneous equations generally
with a rank of two implying infinitely many solutions. In accordance
with mode shape theory, only information about the relative magnitudes
of the elements of {X}can be determined. Arbitrarily selecting 8 equal
to 14.0°‘and using the longitudinal equations corresponding to
equation (33), Vx and& can be determined as functions of s. Arbitrarily
selecting /3equal to 1 4£0° and using the lateral-directional equations
corresponding to equation (33), ¥ and ¢ can be determined as functions
of s. The mode shapes for a particular characteristic root are finally
obtained by substituting the particular characteristic root of interest
in for s. Also the mode shapes are obtained for various flight

conditions.
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Aircraft Force and Moment Calculations

Before equations (29) and (30) can be solved the aircraft stability
and control derivatives must be calculated. To accomplish this the
aircraft is divided up into the following five elements: wing,
horizontal stabilizer, vertical stabilizer, body and propulsion intake
and exhaust. The aircraft forces and moments are the summation of the
element forces and moments. In this way, the aircraft stability and
control derivatives are determined as functions of the element stability
and control derivatives. As discussed in this chapter, reference (11)
and simple theoretical principles are used to calculate the element
stability and control derivatives.

Figure 5 is used to calculate the aircraft longitudinal stability
and control derivatives in terms of the element stability and control
derivatives. This calculation consists of expressing the aircraft
forces and moments in terms of the element forces and moments. WNext,
Taylor series expansion is used to express each force and moment in
terms of the longitudinal variables. Finally, the aircraft stability
and control derivatives are obtained by factoring with respect to the
longitudinal variebles. Applying the same process to Figure 6 results
in the aircraft lateral-directional stability and control derivatives.
Appendix B lists the results.

The aircraft stability and control derivatives appearing in
equations (29) and (30) correspond to the stablllty axes. However, the

aircraft stablllty and control derivatives resulting from Figures 5 and

£ el n A0

6 do not correspond to the stablllty axes. This result occurs because

B

reference (11) and the simple theoretical principles used to calculate

the element stability and control derivatives do not correspond to the
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stability axes. Therefore, a transformation to the stability axes is
required. Figure 7 is used for the longitudinal transformation and
Figure 8 is used for the lateral-directional transformation. The
transformations are given by equation§ (34? through (45)f Computing the
partial derivatives of the perturbation forces and moments and using
equations (34) through (45) lead to the stability and control derivative
transformations which are also listed in Apgggq;x B. There is no
standard notation for the thrust derivatives like there is for the
aerodynamic derivatives Cpr CL, qn’ Cy, Cp and C, . Therefore, the

subscript notation %X,¥, and Z is used to denote the thrust derivatives

as determined in the X¥Z coordinate system.

—Cp +AC, (34)
~C, ~«Cyp N (35)
Cm - (3!6)
Crg + V, Cyg (37)
> g X .
Crz - v, C7~f ! (38)
Ry (39)
Cy (40)
Cry (43
’ _ i :
Ktz + V, Krz Py s (+4)
LKTe = Krz =V, Kry (45)

As mentioned in the previous section the longitudinal forces and

moments can be sufficiently represented by the longitudinal variables

Vﬂﬁxl&l u)y] gE, SF and ST . Also, the lateral-directional forces and

moments can be sufficiently represented by the lateral-directional

variables /3//3, UJx,LUz) g“ and SR . Note the forces and moments do

not depend upon the variable derivatives except for & and /3. If the
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downwash lag theory (1) is used to calculateléfan§”£3, the derivative
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independence implies the same forces and moments are obtained for the
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same state{no matter how the state was arrived at. The aerodynamic and
thrust pressures change instantaneously whenever the state changes.
This assumption which is used exclusively in the force and moment model
is called quasi steady flow (1).

In order to make the aerodynamic force and moment model more
realistic, four interference effects are incorporated into the stability
and control derivative calculations. Downwash from the horizontal
stabilizer on the wing, dynamic pressure reduction from the horizontal
stabilizer on the wing, sidewash from the body on the wertical
stabilizer and dynamic pressure reduction from the body on the vertical
stabilizer are included in Figures 5 and 6.

For the purpose of computing moments due to the element forces, the
element forces are assumed to lie along the axes of the Xyz coordinate
system. This assumption is reasonable because V, and the perturbation
variables have been assumed small. Roskam (1) also makes this
assumption.

L

Lacking propulsion data, the thrust force at the exhaust location
is considered to be solely a function of Ar. This assumption implies
the inlet conditions do not affect the exhaust thrust force. The thrust
force of the inlet location is calculated from the fluid mechanics
momentum principle given approximately by equation (46)

F= (PWAT)v (46)
where V 1is determined as a function of the perturbation variables. The
assumption that the inlet thrust force occurs in the XyZ coordinate

system is taken. Note that equation (46) is applied three times for

each axis of the Xyz coordinate system.
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Element Force and Moment Calculations

The fundamental aerodynamic stability derivatives and all
aerodynamic control derivatives are calculated from the USAF Stability
and Control DATCOM (11). The remaining aerodynamic stability
derivatives are calculated from the fundamental aerodynamic stability
derivatives using simple theoretical principles. The fundamental
aerodynamic stability derivatives include the wing and stabilizer

Cop , Cn

" (supersonic), Cl_“ )C""a and the body Coo ) Co,,( ) chJCmo and

aerodynamic center location. The body aerodynamic center location is
where the body Chn“ is zero and is therefore considered indirectly as a
stability derivative. All thrust stability and control derivatives are

calculated from simple theoretical principles. Appendix C lists the

Rrray,
- %mxw&mmammﬂ -

results.

Reference (11) is an extremely extensive handbook for calculating
the stability and control derivatives of rigid aircraft. Only the
simplest methods of reference (11) are selected for the derivative
calculations. Many of the empirical correction factors for interference
effects between the aircraft elements are neglected. However, the major
interference effects of downwash and dynamic pressure reductions have
been included as mentioned previously. Roskam (1) states that for a
linear analysis this simplification is a reasonable selection. For a
single person using reference (11) with hand calculations, this
simplification is also the only practical selection possible,

Reference (11) was originally developed for aircraft employing
backward sweep. The applicability of reference (11) to forward sweep is
questionable. Consequently, USAF is conducting research to determine

the applicability of reference (11) to forward sweep and to develop any
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necessary modifications for this application to forward sweep (12).
Reference (12) states that C’-a is estimated quite accurately from the
existing methods. The methods for Cp, | Co, (supersonic), Cm,and the
aerodynamic control derivatives with regard to forward sweep are not
mentioned in reference (12). For this research effort, the existing
methods for these derivatives are applied to the forward sweep wing with
the question of applicability still uwnspecified.

The simple theoretical principles used to calculate the element
stability derivatives are discussed below. The wing, horizontal
stabilizer and vertical stabilizer aerodynamic centers are assumed to be
at the 1/4 mean aerodynamic chord for subsonic Mach numbers and at the
1/2 mean aerodynamic chord for supersonic Mach numbers. The velocity
derivatives are estimated from the well known Prandtl-Glauert
transformation for subsonic Mach numbers (1). Using the theoretical
1lift curve slope for a flat plate at supersonic Mach numbers, Etkin (13)
shows the structure of the Prandtl-Glauert transformation also applies
to supersonic Mach numbers. As mentioned previously, the inlet thrust
force is calculated from the fluid mechanics momentum principle.

The angular wvelocity derivatives are calculated by determinin an
induced perturbational velocity, angle of attack or sideslip angle due
to the angular wvelocity perturbation. The welocity, angle of attack or
sideslip angle derivatives are combined with these induced perturbations
to form the angqular wvelocity derivatives. For the angular wvelocity
derivative calculations, the angular velocities “JX, uJy and UJZ are
assumed to lie along the axes of the XyZ coordinate system since V, and
the perturbation variables are assumed to be small. Roskam (1) has a
complete development of this computational method for the angular

velocity derivatives.
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The & and ﬁ.derivatives are calculated from the downwash lag theory
(1). This theory implies there is a finite time delay between the time
the downwash distribution changes and the time this new downwash
distribution is propagated downstream and sensed or felt elsewhere. The

downwash and sidewash are given by equations (47) through (50).

W eW o dev — éiw g ¢ (
v v v 2 o
U‘/:O',i—dzﬁ—g—q‘ﬂé (42)
- - W
L€ - T = Xa (49)
Vx, ‘
T =~ Tae
& = <~ TAc 0
t \&‘ | (5 )
As mentioned in reference (11), the wvertical stabilizer and body

, _ v 8 , v B
derivatives Cys and CYB are approximated by - CL/3 and - ¢ 5,

respectively. One final point is reference (11) does not have a method
8 B
to predict C]/)a and Cn/’» . These derivatives are approximated by Cmrx

referenced to the body aerodynamic center location.
Trim Calculations

Equations (29) and (30) correspond to small perturbations about a
wing's level steady state rectilinear flight condition. 3efore these

equations can be solved the wing's level steady state rectilinear flight

P .

e e,

condition or trim condition must be determined. Consider Figure 2 again

P

which depicts a variable forward sweep wing aircraft in a wing's level
steady state rectilinear flight condition. The corresponding trim

equations are given by equations (51) through (53).
F1SVCar + 4,8%Cr, = Masin§ (51)

3, 8Ca, + §,87Cry, = —mgcos B, (53)
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%,SWEWKAY + g SWEWRTY = 0 (53)

The trim equations (51) through (53) are longitudinal equations. For a
steady state rectilinear flight condition, symmetric aircraft and no
lateral-directional control surface deflections, the terms in the
lateral-directional trim equations are identically zero.

Using the stability and control derivative results of this chapter
and the configuration results discussed in Chapter III the trim
equations are expanded in terms of the aircraft elements and the trim
uknowns Vx, ,9,,7,) Af) AT) A‘: and /7. With only three trim
equations, four of the unknowns must be specified. Vﬁ ,éi 3 zﬁf and /?
are specified and the trim equations are used to solve for V,)AEl andAT.
The trim calculation is quite similar to how an aircraft is flown. For
up and away flight with zero flap deflection (A:), the pilot desires a
certain speed and direction (V&“ 8,) for a given altitude (7). The
elevator and throttle controls ([ﬁ? AT) are adjusted with the resulting
angle of attack (Vl) until the desired conditions are attained.
Specifically for this research effort, 65, and [gjare selected as zero
and V&‘and /7 are selected to result in a desireu Mach number and
dynamic pressure. The expanded trim equations are given by equations

(54) through (56).
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Equations (54) through (56) correspond to a subsonic trim speed. For a

supersonic trim speed the corresponding wing and horizontal stabilizer
derivative must be used.

The trim calculation is a nonlinear calculation due to the terms V,Z
and Y, AT appearing in equations (54) through (56). Even though
linearized aerodynamics are used, the inclusion of the nonlinear terms
is essential in obtaining the correct trim solution because of their
magnitude relative to the other terms. The use of linearized
aerodynamics implies V| is in the linea:r angle of attack range. The
nonlinear term V,l appears from the wing and horizontal stabilizer CDO( .
CD,,( is a function of {, which is a function of V, ; consequently, V,Z
appears. The nonlinear term v, A-': appears from equation (37) and (38).
Again for the moment considerations,

the element forces are assumed to

lie along the Xyz coordinate system.



CHAPTER V
RESULTS AND DISCUSSION
Preliminary Discussion

Three different dynamic pressures are selected for the research
effort. Each dynamic pressure is separated by approximately 10,000
N/ml. These three dynamic pressures correspond to a mid subsonic speed,
high subsonic speed and low supersonic speed. Table I lists !'\, ’, \/S)

M, and ' for these three speed and altitude conditions.
X, N 1

TABLE I
SPEED AND ALTITUDE CONDITIONS INVESTIGATED
IN THE RESEARCH

3 2
h (m) p (kg/m”) V. (m/s) v (m/s) M g, (N/m")
S xl 1 1
6000 0.6597 316.4 158.2 0.5 |8255
6000 0.6597 316.4 237.3 0.75]/18570
12500 | 0.2873 442.7 295.1 1.5 {28150

At each of the dynamic pressures listed in Table I, the sweep angle
is varied through its full range of -42° to -15°., For each sweep angle
the aerodynamic center location, center of gravity location,
characteristic roots, mode shapes and time responses are calculated and
graphed. Appendix D contains these graphs. The scale of each graph in

Appendix D must be carefully noted when viewing the graphs. Some scales
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have been increased or decreased so that the information can be seen
clearly. Only the mode shape and time response graphs corresponding to
the sweep angles of -42°, -30° and -15° are contained in Appendix D.
Also, the time response to ST and SFare not included because an
aircraft is typically flown longitudinally with the elevator. All the
time responses are for step inputs with each plot indicating the
corresponding control surface and the magnitude of the step.

Before any discussion of the graphical results is undertaken,
realize the following point. Each graph in Appendix D is for one
specific Mach number and dynamic pressure. It would be highly irregqular
to fly at a subsonic speed at maximum sweep or at a supersonic speed at
minimum sweep. The graphs are generated in this way simply to indicate
the variable forward sweep wing aircraft characteristics as a function

of sweep, Mach number and dynamic pressure.
Aerodynamic Center and Center of Gravity

The aerodynamic center and center of gravity location versus sweep
angle graphs verify the expected trends. As the sweep is increased or
becomes more negative, buth the aerodynamic center and center of gravity
move forward with the aerodynamic center movement larger than the center
of gravity movement. In other words, the static margin is decreasing.

At the dynamic pressures 8,255 N/mz, 18,570 N/mz, and 28,150 N/ml,
the static margins range from -0.5830 to 0.01083, -0.6138 to 0.01747 and
-0.6926 to -0.2460, respectively. Both subsonic aerodynamic center
location curves are approximately the same while the supersonic

aerodynamic center location curve is shifted backward due to the
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characteristic shift of the aerodynamic center at supersonic speeds.
Note the center of gravity locations are independent of the Mach number
and dynamic pressure.

Consider a variable forward sweep design with a static margin of
approximately zero at the most forward aerodynamic center location and a
subsonic Mach number and dynamic pressure of 0.75 and 18,570 N/ml,
respectively. If sweep less negative than -30° is used for subsonic
speeds and sweep more negative than -30° is used for supersonic speeds,
the aerodynamic center and center of gravity location wersus sweep angle
would look similar to Figure 9.

If the reduction of the static margins denoted by AS™ and ASM3
are much larger than the increase in the static margin denoted by ASmi p
Figure 9 a applies. The characteristic backward shift of the
aerodynamic center will not significantly change the stability. If AsSm,
is approximately equal to ASM, and 05M3 , Figure 9 b applies. The
characteristic backward shift of the aerodynamic center will
significantly change the stability. Consequently, the latter case will
reduce the excessive stability problems for a variable forward sweep
design. Figure 1{ illustrates the similar graph for a variable backward
sweep design. Clearly, the aerodynamic center movement caused by
variable sweep and the characteristic shift are in the same direction
causing excessive stability.

Using the graphical results, ASM, and Asm3 are approximately 0.35
and 0.23, respectively, while ASm, is approximately -0.23. Because
these static margin changes are approximately the same size, the
characteristic shift of the aerodynamic center will indeed be

significant. Consequently, a variable forward sweep design
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should not experience excessive stability problems caused by variable

sweep.
Characteristic Root Locus

At the design condition of -30° sweep, Mach number of 0.75 and
dynamic pressure of 18,570 N/mz, the variable forward sweep wing
aircraft in Figure 1 has the classical longitudinal and
lateral-directional characteristic modes. These modes are the
longitudinal short period and phugoid modes and the lateral-directional
dutch-roll, roll and spiral modes. Note the spiral mode is stable for
this aircraft. The damping ratios, natural frequencies and time

constants at the design condition are listed below.

- d
Longi tudinal: ‘QSP = 0.19329 Wgp = 3.559 rad/s
{1, = 0.2270 Wp = 0.06880 "*Y/s
Lateral-directional: Cor = O. A4 6 Wor = 1.751 rad/s
TR = &.637 s Ts = 36-03 S

These values yield level 2 handling qualities fér this aircraft
according to Roskam (1). Note the longitudinal and lateral-directional
characteristic equations are 4th and 5th order, respectively. One
lateral-directional root is identically zero and corresponds to yaw
angle neutral stability.

The short period roots remain stable for each sweep angle and
dynamic pressure; however, significant changes in the roots do occur.
At the dynamic pressures 8,255 N/mz and 18,570 N/mz, increasing or more
negative sweep causes the short period roots to approach the real axis

on an almost vertical path and upon reaching the real axis split into
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two real roots. At the dynamic pressure 28,150 N/mz, the same trend
appears but the roots do not reach the real axis.

The phugoid root loci at the dynamic pressures 8,255 N/m2 and
18,570 N/mz are quite similar. As sweep increases or becomes more
negative, the roots move on an almost vertical path away from the origin
which gradually changes to a nearly clockwise arc about the origin.
Starting from a stable location, the roots travel a significant distance
into the unstable region. At the dynamic pressure 28,150 N/mz, the
phugoid roots consist of one real stable root and one real unstable
root, each moving away from the origin as sweep increases. Note the
instability is quite small though. Also, if low sweep is used for
subsonic speeds and high sweep for supersonic speeds, the significant
phugoid instability at the dynamic pressures 8,255 N/mz and 18,570 N/m2
can probably be avoided.

For the dynamic pressures 8,255 N/mz and 18,570 N/ﬁz, the phugoid
roots become unstable at approximately the same sweep where the
aerodynamic center moves forward of the center of gravity. This is also
noted by the well known stability derivative KAY“ or CM« changing from
negative to positive values. Obviously, the aerodynamic center forward
of the center of gravity is causing the instability. Some other
occurrence is causing the instability at the dynamic pressure 28,150 N/mz
because the aerodynamic center is always behind the center of gravity.
A closer examination of the stability derivative KAYV,‘ reveals the
reason for the instability.

Positive values for KAYVX are desired because a forward speed
perturbation will cause a pitch up moment. With a negative value for CAxwy>

the pitch up will cause a force along the negative x axis countering the
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initial forward speed perturbation. At the dynamic pressures 8,255 N/m2
and 18,570 N/n~ Kay, is positive, but at 28,150 N/n Kay, is
negative. The Prandtl-Glaue;t‘transformation is used exclusively for
calculating the perturbational velocity aerodynamic étability
derivatives. This transformation changes sign between subsonic and
supersonic speeds and causes the sign change of KAy” . Therefore, the
phugoid instability at the dynamic pressure 28,150 N/m2 is due to the
characteristics of supersonic flow.

The dutch-roll root loci do not indicate any significant changes
with respect to sweep or dynamic pressure. Increasing or more negative
sweep does lead to a slight movement of the roots on an almost vertical
path away from fhe origin. The dutch-roll mode consists predominately
of sideslip motions. The wing contribution to the sideslip stability
derivatives is quite small; consequently, the dutch-roll mode is a
relatively weak function of wing sweep.

The roll and spiral roots remain stable for each sweep angle and
dynamic pressure; however, significant changes are indicated. As sweep
increases or becomes more negative, the roll root moves toward the
origin and the stable spiral root moves away from the origin. At the
dynamic pressure 8,255 N/mz and very high sweep angles, .the roll and
spiral roots have moved enough to eventually meet and combine to form a
pair of complex conjugate roots. The roll and spiral modes are then
coupled into a decaying, oscillatory mode. Again, if low sweep is used
at subsonic speeds and high sweep is used at supersonic speeds, this
coupled roll-spiral mode can be avoided.

The wing contribution to roll damping is a major portion. Wing

roll damping decreases as sweep increases or becomes more negative due
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to the mean aerodynamic chord moving inboard; consequently, the roll
stability is reduced and the roll root moves toward the origin. As
expected, the wing subsonic and supersonic yaw damping decreases and
increases, respectively, as the sweep increases because of the inboard
movement of the mean aerodynamic chord and the sign of the
Prandtl-Glauert transformation at subsonic and supersonic speeds.
However, the numerical results indicated the aircraft yaw damping
increases with increasing sweep regardless of the Mach number. This
result is a little wmexpected but there is a reason. As sweep
increases, the wing and hence the aircraft center of gravity moves
forward. Consequently, the vertical stabilizer's yaw moment arm
increases. The vertical stabilizer's increase in yaw damping apparently
masks any change in the wing or body yaw damping as sweep increases.
The aircraft yaw stability increase causes the spiral stability to

increase and the stable spiral root moves away from the origin.
Mode Shape and Time Response

The longitudinal mode shapes at the dynamic pressures 8,255 I\I/m2
and 18,570 N/m2 indicate the phugoid mode is the dominate mode in the Vy
motions for -15° and -30° sweep. The short period mode is the dominate
mode in the X motions and the short period and phugoid modes both
contribute to the & motions for -15° and -30° sweep. At -42° sweep,
both the phugoid and short period modes contribute to the Vx, a4 and ©
motions. The time responses indicate these same results.

The Vy responses to the SE step for -15° and -30° sweep are slow
oscillatory responses (phugoid). The & responses to the s€ step for

-15° and -30° sweep are fast oscillatory responses (short period).
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The @ responses to the SE step for -15° and -30° sweep are a combination
of slow and fast oscillatory responses (phugoid, short period). At -42°
sweep, the Vx, X and © responses to the SE step are a combination of
oscillatory and exponential responses (phugoid, short period) even
though the time responses look like purely exponential responses for the
first 5 seconds. Realize tﬁe short period roots at -42° sweep and
dynamic pressures 8,255 Nﬂ: and 18,570 N/ﬁz are two real roots leading
to two exponential modes. Also note at -15° and -30° sweep the time
responses are stable, but at -42° sweep the responses are significantly
unstable because of the significant phugoid instability discussed
previously.

At the dynamic pressure 28,150 N/mz , the longitudinal mode shapes
again indicate Vy motions are dominated by the phugoid mode, & motions
are dominated by the short period mode and © motions are a combination
of the phugoid and short period modes. This is true for all sweep
angles. The time responses verify these same results.

The VX responses to the SE step are exponential responses
(phugoid). The X responses to the sE step are fast oscillatory
responses (short period). The © responses to the 5E.step are a
combination of exponential and fast oscillatory responses (phugoid,
short period). Realize the phugoid roots at the dynamic pressure 28,150
N/ml are two real roots leading to two exponential modes. Also note
that even though the phugoid roots are slightly unstable at this dynamic
pressure, the time responses are well behaved with regards to
stability. In other words, the phugoid instability is insignificant as
discussed previously.This is a well known fact that when the
characteristic roots become slightly unstable, there is not a sudden

change from good flight dynamics to bad flight dynamics (1).
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The lateral-directional mode shapes at all the dynamic pressures
and sweep angles are all quite similar. The /3 motions are dominated by
the dutch-roll mode while the ¥ and $ motions are dominated by the roll
and spiral modes. The time responses verify these same results. The A3
responses to the SA and SR steps are oscillatory responses
(dutch-roll). The ¥ responses to the SA and SR steps are a combination
of exponential and linear responses (roll, spiral, ¥ neutral
stability). The wiggle in the ¥ responses which loock like an
oscillatory response is actually caused by the combination of the
exponential and linear responses. The appearance of the linear terms is
discussed later. The @ responses to the SA and $R steps are exponential
responses (roll, spiral). Note the coupled roll-spiral mode at the
dynamic pressure 8,255 N/mz and -42° sweep is insignificant or not
visible in the ¥ and¢ responses. The 3 and ¢ responses are stable even
though the ¢ response looks unstable. The bt responses are unstable.
This response stability is also discussed below.

The W, X and © Laplace transform numerators are complete
polynomials. Complete means that the zero power of s coefficient in the
polynomial is not zero. The characteristic roots lead to the
characteristic modes. The control step inputs (zero root) lead to a
constant mode because the numerator polynomials are complete and no
cancellation of the zero root occurs. The time response stability thus
depends upon the characteristic roots. The A and ¢ Laplace transform
numerators are not complete polynomials. Remembering that one
lateral-directional characteristic root is identically zero,
cancellation occurs and the characteristic and constant modes appear

just as in the longitudinal case. The ¥ Laplace transform numerator is
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a complete polynomial. Cancellation does not occur, and the double zero
root results in an extra linear mode.

Since all the lateral-directional characteristic roots are stable,
the /A and @ responses are also stable even though the ¢ response looks
like an unstable response. The Y response is an unstable response
because of the linear mode. This means that an aileron roll maneuver,
5A step, will result in a constant ¢ after the transient response has
decayed. This roll stability indicates a "mathematical" maneuver
restriction occurs because the responses indicate the steady state
constant @ is only 1.6 complete rolls at the dynamic pressure 8,255 N/m2
and -42° sweep. At higher dynamic pressures and lower or less negative
sweep the restriction is insignificant because the steady state
constant @ is well over several or more complete rolls. Note that if
the spiral root is unstable, the By and ¢ responses would all diverge
and this restriction would not occur. Realize a complete roll maneuver
due to a SA step can not be considered as a small perturbation motion,
yhence the steady state results discussed here are not valid. In fact,
the small perturbation responses are only valid initially when the
magnitude of the perturbation can still be considered as sm. 1l. An
impulse would be a more realistic input for the small perturbation
lateral-directional analysis because this would result in the responses
all returning asymptotically to zero and the small perturbation

equations would then still be valid.



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS
Conclusions

A conceivable variation of the revived forward sweep concept is the
merging of forward sweep and variable sweep. Both‘forward sweep and
variable sweep offer significant performance gains over fixed backward
sweep wing designs. The coupling of forward sweep and variable sweep
might result in even higher performance levels. The goal of this
research is to 1) study the flight dynamics of the variable forward
sweep concept and 2) indicate any significant advantages or
disadvantages associated with the variable forward sweep concept. Goal
1 is accomplished by conducting and discussing this research. Goal 2 is
accomplished by stating the following conclusions.

1. Variable forward sweep designs should have “ar fewer problems
with excessive longitudinal stability and elevator cuntrol
effectiveness reduction than variable backward sweep designs.

2., Significant changes occur in the short period and phugoid modes
over the variable forward sweep range and dynamic pressures. A fixed
forewing and fixed wing pivot located in the forewing, artificial
longitudinal stability or center of gravity control might be required to
reduce these effects.

3. The dutch-roll mode is affected wvery little by the variable

forward sweep; however, the roll and spiral modes are significantly
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affected by variable forward sweep. Artificial lateral-directional
stability might be required to reduce these effects.

4. A "mathematical" roll maneuver restriction occurs if all the
lateral-directional modes are stable. However, this restriction breaks
down as the small perturbation assumption fails. An unstable spiral
root may be advantageous to the "mathematical" roll performance.

5. The flight dynamics of a variable forward sweep wing aircraft
present no major difficulties for the variable forward sweep concept to

become a feasible design option.

Recommendations

Many unaddressed areas of the variable forward sweep concept need
to be studied further. These unaddressed areas include the effects of
'flexibility, nonlinear dynamics and aerodynamics, nonideal control
surface actuators and automatic flight control systems. The forward
sweep wing is a flexible structure and its affects upon the 1linear
dynamics and aerodynamics assumptions need to be analyzed. Any high
performance aircraft that is designed today employs some type of
automatic flight control system to squeeze -he maximum possible
performance out of an aircraft. The va;iabie forward sweep wing
aircraft will not be excluded; hence, the incorporation of automatic
flight control systems should be addressed. Finally, to insure the
accuracy of the research, nonlinear dynamics and aerodynamics and

nonideal control surface actuators should also be used.
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APPENDIX A
CONFIGURATION SPECIFICATIONS

The specifications of the aircraft shown in Figure 1 are listed in
this appendix. The appendix is divided into the following sections:
body, wing, horizontal stabilizer, vertical stabilizer, propulsion, mass
and center of gravity and moments of inertia. Some sections include a
discussion of the methodology used in calculating the specifications.

Figure 4 shows the body coordinate systems used in the research
effort. The xyz stability axes were mentioned previously. The xyz
coordinate system is attached to the aircraft's center of gravity, xyZ
coordinate system is attached to the aircraft's nose, xyz coordinate
system is attached to the wing pivot, é/fz” coordinate system is attached
to the wing's center of gravity and ﬁz”’z’”coordinate system is attached to
the aircraft minus the wing center of gravity. All the coordinate
systems shown in Figure 4 with the exception of the stability axes have

their x axis parallel to the body centerline.

3
Body: 4= 14,63 m L5, = 4.389 m
d* = 1.829 m s8 = 2.6a7 ™
SEge =2.627 m? $8., = 76.06 m?
3 exX.base

vB =33.31 m

The volume is based on a conical nose shape with a nose length of
20% of the body length. However, the nose length listed is 30% of the

body length. These lengths were selected because the nose taper ratio
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is only significant in the leading 20% of the nose. The volume is used
in the body subsonic aerodynamic center calculation. The exact nose
profile is unspecified but a parabolic profile is assumed when the

methods of reference (11) are used.

Wing: NACA GY4AOI0 airfoil ~4r e NN, £-15°
¥o= -I12.55m jo= O
Fo= -0.4445 m | ™™W=0°
0(:/: 0° O(“S.,faﬂ =12°
@"(subsonic) = 0.85 W =0.9
&' = 0.6° 4% da = 0.1
At A =-30°:  SY = 18.58 m? Mo, = 38.00 m*
c¥ = 2.34Im BY = 8.230 m
chy = 3.0lom AW = 0.5
/v = 0. W = 0.2
nNr o= 0.3 N = 0.7
71;‘;:2 = 0.7 Na, = 0.4

The flaps and ailerons are plain flaps. There is no available
W W w de” .
me thod ‘to calculate N, € , 5, and gJx for a canard forward sweep wing
configuration. Therefore, values for these variables were selected as
reasonably conservative values compared to typical values for a
. . . , w w
conventional configuration. As a first degree estimate, &, and Xerall

are set equal to the airfoil &, and g ;.

Horizontal Stabilizer:

NACA c4Aolo airfoil A, = 30°
M= 4645 m? e = 4.39% m?



- H
=107 m b' =4.15 m
H -

1 s05m M= 0.5

H H H _O 5

H H _ o
N, = 0.9 " =2

o H °

eMtsubsonic) = 0.85

H H
The elevators are plain flaps. e” , % and 0(5,“‘“are estimated by

the same method as stated in the wing section.

Vertical Stabilizer:

NACA G4A010 airfail -AVLE = 30°
2
V= 3.71em? Sve = 7.432m
E\/:/.X[l-fm bv=2./3l-{m
Cloot =2.357m W= 0.4714
CZ/C":O.Q ‘ﬂ.‘é‘:O.a
n\ai = O.g IV - OO
Ao\l = Oo /35\{,4“ - /ao
e‘/(subwm“c) = 0.85% nY = 0.9
g/ =0 d6'/dR = o.|

The rudder is a plain flap. 7\V is selected so that the trailing
v
edge sweep angle is zero. n“,e" ) J-/Q’ P ﬁ and ﬁ are
estimated by the same method as stated in the wing section.

Figure 11

shows the definition of SV and bv

56



Figure 1l. Vertical Stabilizer Planform Definitions
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Propulsion: General Electric F404-GE-400 +urbofan
Trag= 71,176 N AT = 0.5 m*
4€ =4.039m df = o.8890m
T = -7.315m yI=o
5T - 1403 m Xf =-14.63m
7€ = o zf8 =0

The engine centerline coincides with the body centerline and the
engine base coincides with the body base.

Mass and Center of Gravity:

Mipax = 13,000 Kg Mmia = 6O00 Kg

m"™ = 1565 Ky mE = 785 K¢y

o¢ (mP+mF) 2 Looe Kq 7;:: -7.459 m

7(-:/ =0 Zee = -0.037749 m
AN =307 Xeo = -8.090 M Ves = O

The aircraft's center of gravity location will vary depending upon
the sweep angle. Therefore, the analysis required a method to estimate
the wing's center of gravity location as a function of sweep. Combining
this method with the stationary center of gravity for the remaining
elements of the aircraft, the aircraft's center of gravity location can
be calculated as a function of sweep.

For this method, the wing is modeled as a solid homogeneous panel.

Equation (57) and the geometry shown in Figure 12 are used to calculate



av

-f - - -£

Figure 12. Wing Geometry for Center of Gravity
and Moments of Inertia Calculations

A}
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the wing center of gravity location.
w
=w = /) { \/
=Xp ¥ mw S&& x'd

The aircraft center of gravity location is then calculated from equation

(57)

(58).
—=W = W
-w= W
= m Xco + m" Ko
Fee = (58)
m
=W = w = =
Note VY., and -2(6 and hence Y. and Z. do not vary with sweep.
The wing density in equation (57) is given by equation (59).
w
w m
P = = (59)
s ?

Assuming the wing to be thin, the z integrals with the limits of -v/a
to'fw/awill cancel the ¢V in equation (59). Therefore, a value for <%
is not required. After examining Nicolai's (8) weight estimations, the
wing mass was selected as 30% of the aircraft's minimum mass excluding
the engine mass. écg‘ was designed to be -0.1m because the wing and
vertical stabilizer are located above the body centerline.

~wW -w
Moments of Inertia: I = 33,930 I<3m1 I)’,”y”’:q‘f/ 870 Ky m?

-W 2

2
I-Z///z/// - [22/320 I(g m I

-w
Z

" — ‘24027 Kg m

= 69,000 Ky m*

~!

Y
IE"O

o= Ky m?
B =-30° 1 In = #3000 €Mt L

2

Similar to the previous section, a method to estimate the wing
moments of inertia as a function of sweep is required. Combining this
method with the constant moments of inertia for the remaining elements
of the aircraft, the aircraft's moments of inertia can be calculated as
a function of sweep. The wing is again modeled as a solid homogeneous

panel.
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Equations (60) through (63) and the geometry of Figure 12 are used

to calculate the wing moments of inertia.

= = ,2
zfaﬂ=-m“’(%p—z!§)1 + Py Tz ) Y (o)
Iy = - { G -R Y+ (Bem 2a)®} + AW Qe ®+ 279 dV o)
Iz"z“:‘mw(iF’-icV;)z + /’ng& (X'2+Y’Z)AV (62)
Ix” '/‘-"‘mw(;l’—;cg)(fp~§c:> + /JW&g& Xl?ldv (63)

The aircraft moments of inertia are then calculated from equations (64)

through (67).
= —-W = = W\ w
Iii = /)’\--Vv(‘g:c6 ¢6 )2 + thll wo mW( ZCG-ZCG ) + IX”X" (éq)
- z = -w = ==w -w \ - = w1 = =W\ w
Li7 = (e Red )+ (R 20 } ¥ Iy + e TV 4 (B3 o 50 8)
= -w
Iz; = (X(G XCG) + I m A + m (XCG XCG) + IZ” " (éé)
- =w = S w w
Ixz = m (x<6 xce )<Z<G 2<¢5 ) t I maym + M Y (Xco ~Xes )(Ece'zas) + Iyngn 7)

The thin wing assumption is used again.

As shown by Roskam (1), equations (68) through (71) are finally

used to transform the moments of inertia from the Xyz coordinate system

to the xyz coordinate system shown in Figure 4,

Ixx = CC>Sz VI Iff + Sl’nl V, I§§ - a cos V‘ sin V, T (08)
Lyy= Igy (69)
Iz = 5‘7\7 Iz * cos? V, I35 + 2 cos sinl/, Ixz (70)
Tyz = cosV sinl, (Iii -Ifi) + (cos? v,- 517\1]7:) Izs (71)

This is required because the moments of inertia appearing in the

equations of motion correspond to the xyz coordinate system.



APPENDIX B

AIRCRAFT STABILITY AND

CONTROL DERIVATIVES

The aircraft stability and control derivatives in terms of the
element stability and control derivatives as mentioned in Chapter IV are
contained in this appendix. The stability and control derivative

transformations to the stability axes as mentioned in Chapter XV are also

contained in this appendix.
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Aircraft Aerodynamic Derivatives:
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. . . . mw} ':”;.///
Aerodynamic Derivative Transformations: 7y
per xg
e R
s J e,
CA)( = ~Cp . 4’% Mt
e )
& e
- Q C 3 £ B
Chax w = ~Cow — 2 N <
X, J *‘«wﬁﬂ)
Iy e

CAxg = ~Coq * Cp
CA;(O; = ~Cpa . -
CA)(UJY = -C0wy - =

CAxse = -Cogr

o CaxgF = ~CogF

Caz = -C, A ,x :

i \-— QC A i o
C'Aztlx - _—C‘-\//( — L : ) {}

CA;O‘ :"CLDQ -Cp N " v

Cang = ~Co =
CAzwy = —CLwy
CAasg = —CLSE
*m_‘_‘E:*ESF = -CuLgF
K/—\y = Cm
KAYVX = CmVx T %/XEF\

/<Ayc( = Cmc(

KA)’O’( = Cm&

KA)’W‘)/ = C’“Ldy
KA‘/SF: = CMSF'

Cay = Cy

1N

Cays = Cyp

Cyj

Cay 3

CAY”-JX = C}’u_))(



Caywyg = CYws

Caygh = Cyga

 CaygR =Lyl

Kax = Cg * V,Cn

Kaxs = Clg + V,Cng

Kaxg = €44 + V,.Cnj

Khxusy = Cluwy + V,Cnhoy

Kakwz = Clwz + ¥, Cn Wz

Kaxga =Cisa+ T, Ca g A
KaxgR = CogR + V,CngR

.vKAz = &n = I €y

Kagg = Cng = V,Cyp

Kazg =Cnjg -1, Co/

Kaeoe = Cowy =V Chusy

Kazuys =Caweg = V,Clwy

Kazga = Cagh - ViClgh

Kazgr =CngR ~F CRgR
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Aircraft Thrust Derivatives:

Cry v, = CTJ;\/}(
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Thrust Derivative Transformations:

MCT;( sT = Cry 5T + 7, Crz 1
Cry, = Crz - v Crs
Tzy “rag -7, Criy
CTZ"‘ B CT??O( v, Crz o

CTEUJY = CT»}wy 7, CT)?uJy
'CT?ST =Crz st~ 7, CT,?S,T

Kry = Krg

KTyv = K17,

Kryq = Kryy

KTy = KTy

CT')/ = CT;
Crya = CTyp
CTys =S5
C-

Krup= K13 + T, Krz,
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KT/‘,G‘ =Kty g +, Kz 4
KTy wy = KTz +Y, RTF iy
M%KT'quE = Krzu)z FY KTiwz
KTz = Krz -7, Kry
KTgz = Krzg —V, KTX/,'
K'rz/;' = KTi,g' _ V, KT;/;
KT‘z.u;X = Krgwx -V, K_I.wa

(T2 = Kriwz =V, KTrwy
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APPENDIX C

ELEMENT STABILITY AND

CONTROL DERIVATIVES

The element stability and control derivatives as mentioned in
Chapter IV are contained in this appendix. The notation of W, H, B and V
before each equation indicates the equation is applicable to the
corresponding element. Some derivatives are obtained from graphs
contained in reference (11) rather than a closed form expression. For
these derivatives, the notation "see reference (11)" is used. The
element aerodynamic derivatives are divided into a subsonic and
supersonic category. If an element aerodynamic derivative does not
appear in the supersonic category, the supersonic expression is

identical to the subsonic expression.
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Element Aerodynamic Subsonic Derivatives:
w w w w

Cp = Cop * Cou (7, - 3 +1N‘Eu)
H H H M

Cd = Coy + Cop (T, -, +17)

CDB:CDE +Coi(vl>

Cov = C:o
W,H,8 V Cp, = see reference (re)
c
H,B V C - M Co
Wj )B/ DVX -—-—-———-VS(I_Mna)
W)H CD,x = aCLCLd
o rAe
Cog = O woW
Cou = TAe
W)VH,g CDwY’ = VX. Cpo( + Zac CDVX
CDQJY = ?AL COVX
Cocr = see ceference (I11)
CDHSE — see reference (i)

RN a —xr1¥-¢Y)
c/ :CL“:((V|~O(:)+IH)

C,_B :Cfd (V,)

WH,B Cl, = M

Ve (1-M3)
QT A
W ______,_._-—-——————"'—’—"‘__’—‘ |
¢ = (

24([/\»/ 2,32 (l+tan AC/L)_,,L)‘] 2

21 AH

H —
CLO( = 1+ [\H ﬁ (( tan* dc/1)+(—‘] !
8 A(Kq-1<) S, g ,(Ky—K) = see reference (1)
Coy = -—‘ST"“ o) 2
W &
CLV:-( = e ;l&

Ct—g‘ai“)

w,H, B Cl—wy = - )f/:\'c Co, Zac CLvX

de”

Tdu

)
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CL;F = see reference (11)

H
Coge = see refeyrence (1y)

w

_ w w
H _ H H
Cm = Cn\o + C’V\O((VI ‘O(OH-\‘-IH)

B 8 8
C.m = Co'Y\o + CMO( (V()

W, H Cm, = ACOSI-[.\.C/Q c
A-f QCUS AC/4 mg
C,ye,’o =0
WoH B Cm, = M Cm
Vx —
Vs(1-M2)
w,H, 8 Cmg = O
=8 _ B
KA¢ - _SVE —jB
Cn‘:ro‘( = CMWO( ;’{éwé €
X -
W,H,B Cmu;y = - ?%(:Cm“ t Zac Cm"x
w
Cmer = see reference (11)
CnI:\*SE = see reference (Il\
v,8 ¢, =0
\/ _A\/ Mv
C)//‘5 - A / ({ — TR )
Q+[—-ﬁ—xv7_ (;«n—’-L\__ﬂ“" z)+‘+] /2
8 B
C}’ﬁ = —CLo(
c.B sY
C;/j = Y/)’ 5/3 f
ey
V = Z,
V8 Cy.- X
Ywgz = Xac
Z Vx. Cy/})
cV
YsR = see reference (1))

wWH B Cp=0



W - yACR YC_

M C‘QUJ)( = = $ R CL“
o 58 8 g

Wy T — EAc(C

X VxA,- pﬂ

W Ve -

)H C,ﬂu.) - :A%/_ﬂ A(_R C’—Vx

8 —B
Co = Kac )

o v, ~4p
C.QSA - see creference (C11)

W,H,BY (C,=O

V\))H)B/\/ Cn/gzo

v 13 Vegl
Cl’\’é = CXA 3% ‘f
WJH C(\wx = YA(__g YAc_p\ CD
Y,
Cn = ZA‘:
wy = — C”A
C"w = Z
X — - /-\L
e Cn/g
WH (.. = _ -
g n“"é:’ - y‘—ﬁ;’i& \I’ACR CD\/)(
v —V
anz = &\—C-' CXA
1
8
ana = XV?: CB
()
C-K\V;A = see reference (1)

Cagr = see reference 1))
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Element Aerodynamic Supersonic Derivatives:

W,H,B8 YV (o = see refecence (I1)
J Os

WH (o, = see reference (i)

w
Cocr = see reference (1)

CD‘ZE

il

see reference (1l)

W,H, 8 ng: see refecence (1)
w

CLSF = see reference (11)

H

Clge = see reference (11)
W,H,R Cmoz see reference (i)
=8

Xae = see reference (ll)

w

CMS,_-: See Fegefence CH}

Cn’f\sgz see refecence (1)

v
C)% = see reference (| )
CYVSR = see reference (11)
CQ‘;A = see reference (i)

CAV'JSA = see refecence (1)

v
CngR = see reference (1)
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Element Thrust Derivatives:

¢i. = JLAhy
VX ?’ SW
I
CTX“ = 0O
T
C/I — /)AI u(( ZI
X“J/ ji sw
3 TE
C = max,
TRsT 2,5
CI =0
Tgvx -
CI /DAI Vx\
T‘i-ol - I Sw
Crg, = O
Zo( -1
T _ /)AX V)(l X
CT-E“")’ - ?l Sw
&
CTZ%T = O
P _ PAT VT
TYVX - ?I Sw ZW
z
J « w oTw
S a
z _ OEI
Krye = B
K PATV (X + 27 )
— - - s s ———
K']f: - = ?E Tmix
)’ 3’ ?l SVJELV
- N
C:—- _ /)AI \/)(l
'vA T T ““Z‘*S,,T
T
“Tis = O
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APPENDIX D
GRAPHICAL RESULTS

The aerodynamic center and center of gravity location, root locus.
mode shape and time response graphs for the various flight conditions
mentioned in Chapter V are contained in this appendix. Each figure
describes which variables are being graphed and the corresponding fligh£

condition.
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q]=l8,570 N/m2
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g.=8,255 N/m2

1
4
be -15
o
2 -30
[y [ )
-42——\ s —42
Im s(rad/s) 0 g L‘
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-4 T
-4 -2 G
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Short period root locus
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I
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-41

N

° -42°

Im s(rad/s) 0

_-25 -

o

1
-.25 0 .2
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Phugoid root locus
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Im s(rad/s) 0

[\
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W
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-42°
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Dutch-roll root locus
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