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NOMENCLATURE 

English Letter Symbols 

A - dummy variable 

Ac - cross sectional area between parallel plates, defined by 

Equation (4.10) 

a - coupling coefficient, Chapter II 

a half-width between parallel plates, defined in Figure 4.9 

B - dummy variable 

cf - friction factor 

Cp - specific heat at constant pressure 

d - hydraulic diameter, d=4a 

h - local heat transfer coefficient 

J - total flux through interfaces 

k - thermal conductivity 

L length of parallel plates in streamwise direction, defined in 

Figure 4.9 

L - fully developed length .., 

LO - logical function, referring to J:..arger .Q.f A or B 

m - mass flow across interface 

Nux - local Nusselt number, defined by Equations (4.11) and (4.13) 

Nu 10 - local Nusselt number, defined by Equation (4.12) 

n - exponent used in Equation (3.1) 

P - cell Peclet number, defined by Equation (2.13) 
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P - pressure 

Pr - Prandtl number, Pr = ~ Cp/k 

Pre - entrance Prandtl number . 
q" - wall heat flux, defined by Equation (4.8) w 
R non-dimensional radial distance, R = r/d · 

Red Reynolds number based on hydraulic diameter, Red= pud/~ 

Rede - Entrance Reynolds number 

r - radial coordinate direction, defined in Figure 3 

r - rectilinear coordinate normal to streamwise coordinate, 

defined in Figure 9 

Sc - constant source in linearized source, used in Equation (2.7) 

Sp - slope coefficient for linearized source, used in Equation 

( 2. 7) 

Sr general source term for temperature, used in Equation (2.4) 

St - Stanton number 

Su general source term for u-velocity, used in Equation (2.2) 

Sr general source term for v-velocity, used in Equation (2.3) 

T - local temperature 

Te - inlet temperature 

Tm - mixed mean temperature, defined by Equation (4.9) 

Tw - wall temperature 

Ue - uniform inlet velocity 

u - local streamwise velocity 

V - average velocity, defined by Equation (4.10) 

v - local radial velocity, Chapter II 

v - local velocity normal to streamwise direction, Chapter IV 

x - streamwise coordinate direction, defined in Figures 3 and 9 

ix 



X - non-dimensional streamwise coordinate, X = 4(x/a)/(Red Pr) 

Y - non-dimensional coordinate, used in Equation (4.12) 

Greek Letter Symbols 

a - constant source, a = Sc (rp ~x~r) 

~ - grid spacing with coordinate direction x or r 

r - diffusion coefficient 

p - fluid density 

~ - fluid viscosity 

~ - general dependent variable, ~ = u, v, P, T 

Subscripts 

b - evaluated at boundary 

CP - constant property 

E - evaluated at eastern grid point 

e - evaluated at eastern interface 

F - evaluated at a fixed grid point 

N - evaluated at northern grid point 

n - evaluated at northern interface 

P - evaluated at P grid point 

S - evaluated at southern grid point 

s - evaluated at southern interface 

W - evaluated at western grid point 

w - evaluated at western interface 

wall - evaluated at wall 

s for the dependent variable in question 

X 



Superscripts 

g - guessed values 

c - corrected values 

Abbreviations 

2-D - Two-dimensional 
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CHAPTER I 

INTRODUCTION 

Several numerical studies of laminar forced convection heat 

transfer for internal flows have appeared in the literature [1-25]. The 

motivation for such studies has been sparked by a growing interest in 

the application of compact heat-exchangers where equivalent diameters 

are small and densities are low (laminar flow). The majority of these 

studies assume that temperature changes in the thermally de vel oping 

region are small, and thus the physical properties remain constant 

throughout this region. In applications such as air cooled nuclear 

reactors, where parallel plates are used as the medium through which 

heat is transferred, large temperature differences occur in the entrance 

region between the plates. These large variations in temperature will 

affect the physical properties of the fluid, which will in turn affect 

the development of the inlet velocity and temperature profiles. 

Because Prandtl numbers for most gases are near unity, both the 

velocity and temperature profiles will develop simultaneously when small 

temperature variations are assumed (i.e., constant physical 

properties). Regretfully though, when substantial temperature 

differences occur the variation of properties cause the development of 

the velocity and temperature profiles to become somewhat irregular. 

Shumway and McEligot [1] have shown that the physical-property 

variations associ a ted with most gases wi 11 cause reductions in 1 oca 1 

1 
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heat-transfer coefficients when large temperature gradients are present 

for air in tube annuli. Therefore, when modeling internal, forced 

convective heat transfer of gases (Pr ~ 1) subjected to large 

temperature gradients the changes in physical properties of the fluid 

must be accounted for. 

1.1 Objectives 

The objectives of this study are: 

1. To use an existing code (TEACH (Teaching !_lliptic Axisymmetric 

.f_haracteristics .!!_euristically) [2]) as an instrument to study 

two-dimensional laminar forced convective heat transfer in the 

entrance region of a flat duct (see Chapter II). 

2. To check the validity of the constant-property model results 

with those numerical results obtained by [3] and [4] (see 

Section 4.1). 

3. To incorporate temperature-dependent physical-property 

relations into the TEACH code to obtain a variable-property 

model (see Chapter III). 

4. To check the validity of the variable-property model with 

available experimental data (see Section 4.2). 

5. To show the effects of individual property variations on local 

non-dimensionalized heat-transfer coefficients (see Section 

4 0 3) 0 

1.2 Instrument of Study 

Similar to an experimental apparatus that an engineer might use to 

carry out some type of investigation, the TEACH code is used in this 
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study to investigate internal forced convection in the entrance region 

of a flat duct. The finite difference theory used in constructing such 

a code is well presented by Patankar [5]. However, due to a lack of 

information in the literature on implementation of boundary conditions, 

Chapter II will be devoted to developing the necessary information to 

understand how boundary conditions are incorporated in the TEACH 

computer program. A generalized flow chart may be found in Appendix 

A. The FORTRAN code used to model the variable-property model presented 

in Chapter IV is listed in Appendix B. 

1.3 Review of Previous Investigations 

As mentioned previously, many investigators have reported their 

findings on laminar forced convective heat transfer for internal 

flows. Kays [6], who began his research in this field in 1955, employed 

Langhaar's [7] velocity profiles, neglecting the effects of the radial 

component of velocity, to solve the combined entry length problem for a 

Prandtl number, Pr, of 0.7 in a circular duct. This neglect of the 

radial velocity overestimates the local Nusselt numbers, Nux, for 

simultaneously developing velocity and temperature profiles. Goldberg 

[8] extended Kays work by solving the energy equation for Pr in the 

range of 0.50 to 5.0. 

Ulrichson and Schmidt [9] obtained velocity and temperature 

profiles for laminar flow in the entrance region of a circular tube for 

Pr = 0.7. The radial velocity component was obtained by using the 

continuity equation and Langhaar's axial velocity profiles. 

Further refinement of the entry length problem came from Hornbeck 

[10]. Hornbeck employed a finite difference method for constant wall 
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and constant heat flux boundary conditions with Pr == 0. 7, 2, and 5. 
.. .. 

Manohar [11], Kakac and Ozgu [12] give results from their studies of the 

nonlinear equations for laminar flow of viscous incompressible fluids. 

Their velocity profile solutions are used to obtain temperature profiles 

from the energy equation, under constant wall temperature and also under 

constant heat flux at the wall. 

Approximately the same time that Kays began his investigations of 

heat transfer in circular pipes, Sparrow [13] was investigating the 

simultaneous development of velocity and temper~ture profiles for 

parallel plate flow. Hawang and Fan [14] solved the combined entrance 

parallel plate problem by a finite difference analysis of the refined 

momentum and energy equations in rectilinear coordinates. Mercer et al. 

[4] also based their analysis on the same refined momentum and energy 

equations but used the stream function definition to obtain a 

solution. In addition, Mercer et al. supplemented their analysis with 

experimental work and showed comparisons of their theoretical and 

experimental results. Nagrang and Hussain [3] took Hawang and Fan•s 

[14] work one step further by including the effects of transverse 

momentum and axial conduction. 

In 1970 Bankston and McEligot [15] introduced a finite difference 

solution which included property variations for the combined entrance 

region of a circular duct. Shumway and McEligot [1] extended the 

previous work to show significant variations in the properties of air 

for high heating rates through a tube annuli. The combined entry 

profiles were found by a finite difference solution of the conservation 

equations neglecting radial momentum. Variations in properties of [1] 

were based on an inlet Mach number of 0.01 and are described by the 



following equations: 

~: = (~ .) 0.095 

e 

K = K e 

0 t0805 

e . 
L = 
~e 

5 

(i.) 0.670 • 

(1.1) 

where variables subscripted e are evaluated at the inlet of the tube 

annuli. 

From this review of the literature, it is evident that the combined 

entry length problem is a fundamental problem in heat transfer and fluid 

flow. With higher heating rates being imposed in the combined entrance 

region, in such application as the convective heat transfer from 

parallel plates in gas cooled nuclear reactors, it is important to 

properly model property variations of the fluid between the plates. In 

this study a method for accurately predicting velocity and temperature 

profiles (which have a direct bearing on local heat transfer 

coefficients) is developed for forced convective heat transfer flows of 

variable-property gases in the inlet of a straight channel. 



CHAPTER II 

DEVELOPMENT OF DISCRETIZED EQUATIONS 

AND BOUNDARY CONDITIONS 

In this chapter the governing two-dimensional axisymmetric 

equations for heat transfer and fluid flow are presented in Section 

2.1. In Section 2.2 the general discretized equation is developed by 

integration of the general differential equation over a control volume 

with piecewise functional variations of the dependent variables defined 

by the Hybrid scheme. 

The main u-, and v-grid systems are presented in Section 2.3 to 

reinforce the development of the specific discretized equations for the 

dependent variables u, v, P, and T. Sections 2.1 through 2.4 are 

presented so that the reader wi 11 have a better understanding of the 

boundary condition formulation presented in Section 2.6. Knowledge of 

how these boundary conditions are applied in the TEACH computer code is 

necessary if one is to obtain realistic field solutions to the governing 

differential equation. 

2.1 Conservation Equations 

The main purpose of the TEACH computer code is to solve two

dimensional axisymmetric laminar flow of Newtonian fluids where viscous 

dissipation and flow work are negligible. The conservation equations 

which conform to such flow situations are the: 

6 



Continuity Equation 

:x ( pru) + :r ( prv) = 0, (2.1) 

x-Momentum Equation 

1 [a (puru) + 1... (pvru) - ...L (rll 1!! ) - .L (rll 1!! )]= - lf. + S r ax ar ax ax ar ar ax u' 

{2.2) 

r-Momentum Equation 

~ [ tx (purv) + ~r (pvrv) - ~x (rll fx-) - ~r (rll ~ ) ] -~ 
= aP + s - Tr v' (2 .3) 

Energy Equation 

~ [ ~x (purT) + ;r (pvrT) - ;x (r ~P * ) -;r (r ~P t} )] = ST • 

(2.4) 

Su, Sv, and ST are the generalized source terms. 

7 

The implementation of the conservation equations into the TEACH 

code is done by generating finite difference equations which in the 

1 imit (as the grid mesh is refined) are an excellent representation of 

the conservation equations. The accuracy of such finite difference 

schemes are discussed by Patankar [5] and Roache [16]. The finite 

difference equations may be developed by many dllferent methods. The 

control-volume approach is the simplest to understand and lends itself 

to a direct physical interpretation. 

For the control-volume formulation to work the domain of interest 
' 

must be subdivided into a number of non-overlapping control volumes. 

The control volumes, sometimes referred to as cells, surround grid 
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points which also occupy the domain of interest. The differential 

Equations {2.1) through (2.4} are integrated over the aforementioned 

ce 11 s, while piecewise continuous functions define how the dependent 

variables u, v, P, and T vary betw.een the grid points. 

The piecewise 11 profil es 11 , as referred to by Patankar [5], are used 

to evaluate the integral relations over a designated control volume. 

The resulting discretized equations contain the dependent variables for 

all grid points within the region being considered. The discretized 

equations are then solved to obtain the grid-point values of the 

dependent variables. The resulting grid-point values represent the 

solution to the differential equations, without explicit reference as to 

the piecewise functional variation of the dependent variables between 

grid points. The concept of dependent variable variations between grid 

points will be discussed in Section 2.2 of this chapter. 

2.2 General Discretized Equation 

The governing differential equations may be represented by a common 

form given as 

1 [ a a ] - - (r Jx) +- (r Jr) = S 
r ax ar ~ • {2.5} 

Jx and Jr are the total (convection plus diffusion) fluxes defined by 

J ~ . x ~ pu~ - r~ ax 

Jr = pv~ - r ~ 
~ ar 

{2.6a} 

(2.6b) 

For ~ = 1 and S = 0, Equation (2.5) reduces to the Continuity Equation r; 

(2.1). With r; equal to u or v, s~ = -aP/ax + su or s~ = ~v/r2 - aP/ar 

+ Sv where Su = Sv = 0, and r ~ set to ~' Equation (2. 5) reduces to the 
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u- or v-Momentum Equations (2.2) or (2.3) respectively. Also, to obtain 

the Energy Equation (2.4) z; is set equal toT and r may be represented 
I;; 

by ll/Pr or k/Cp. By representing the governing differential equations 

in this common form a common discretized formula may be developed and 

implemented into a computer code. 

The integration of Equation (2.5) over the control volume shown in 

Figure 1 would give 

where the source term has been linearized; Sc represents the constant 

part of Sz;' while Sp is the coefficient of /;p· The total flux through 

the interface at point e is given as 

J rp~r[(pu~;)e - (rz; 5] = ax ) e e (2.8a) 

Simi 1 arly for the other interfaces, 

J = rp~r [ ( pu l;)w - (r fx )w]' w z; (2.8b) 

J = rnM [(pvl;)n (r fr: )n]' n z; (2.8c) 

J = r ~x [ ( pV r;) - ( r ~a r ) s J. s s s I; 
(2.8d) 

Similarly, we can integrate Equation (2.5), with z; = 1 in Equations 

(2.6a) and (2.6b), (Continuity Equation) over the control volume and 

obtain 

m + m w n m = 0 s (2.9) 

where me, mw, mn, and ms are the mass flow rates through the faces of 

the control volume. If pu at the point e is taken to prevail over the 
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Figure 1. Control Volume for the Two-Dimensional Axisymmetric 
Domain. 
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whole interface e, me may be represented by 

Simi 1 arly, 

ms = ( pv) r t:.x. . s s 

11 

(2.10a) 

(2.10b) 

(2.10c) 

(2.10d} 

By multiplying Equation (2.9} by tp and subtracting it from 

Equation (2.7), the following relation is obtained: 

(J - m tp) - (J - m tp) + (J - m tp) e e w w n n 

- (Js - m5 tp) = (Sc + SP tp) rp t:.x t:.r • (2.11) 

Expanding the first term in Equation (2.11) gives 

(2.12) 

From Equation (2.12) it can be seen that the discretization of Equation 

(2.11) may only come about by knowing how r,; varies from point P to point 

E. 

The variation of r,; between any two ·grid points wi 11 depend on the 

local flow conditions. The grid Peclet number defined by 

(2.13} 

shows the relative strengths of convection and diffusion. With 

reference to Figure 1, the Peclet number evaluated at e is given by 

(2.13a} 
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For limiting values of the grid Peclet number local evaluations of the 

flow field may be used to show how 1; is influenced by its neighboring 

points. Table I gives the evaluation of the local flow field and the 

influence of the neighboring dependent variables (~;E and ~;p) on ~;e. 

TABLE I 

LOCAL FLOW EVALUATION AND NEIGHBORING INFLUENCE FOR 
LIMITING VALUES OF Pe 

LIMITING LOCAL FLOW NEIGHBORS 
CASE EVALUATION INFLUENCE 

p = 0 me =(pu ~r)e rp = 0 Total diffusion (or e conduction); no convection 

Pe = + 00 High convection from ~:; largely influenced 
West to East eby upstream (or ~;p) 

pe = - 00 High convection from ~:; largely influenced 
East to West eby upstream (or ~;E) 

For local Peclet numbers near zero a central differencing scheme 

represents the local functional variation of 1; quite well. But, for 

IPI >> 0 the central differencing scheme does not satisfactorily predict 

the influence of neighboring ~;•s. The functional V1ariation of the 

dependent va ri ab 1 e must be ab 1 e to account for influences of 

neighboring ~;•s for near zero Peclet numbers and also eliminate 

influences of downwind ~;•s for IPI >> 0. 
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The Hybrid scheme developed by Spalding [17] is a piecewise linear 

functional variation of ~ between two consecutive grid points. The term 

piecewise is used because one of three linear functions are chosen to 

represent the variation of ~ depending upon the value of the local 

Peclet number. Because the proper linear function is chosen based on 

the value of the local Peclet number some logic must be implemented into 

the function. 

In the Hybrid scheme the logic is introduced to the linear function 

vi a coup 1 i ng coefficients. The coup 1 i ng coefficients come about by 

substituting the fo11 owing expressions for the terms on the left of 

Equation {2.11): 

(J - m ~p) = a ( ~p - ~ ) (2.14a) e e E E 

(J - mw ~p) = aw ( ~w ~p) (2.14b) w 

(Jn m ~p) = aN ( l;p ~N) {2.14c) n ' 

(J s - m 'P) = as (~s - ~P) ' {2.14d) s 

where aE, aw, aN, and as are the coupling coefficients 

for l;p and r;E' l;p and r;W' l;p and r;N, and r;P and r;5 respectively. The 

coupling coefficients may be represented by the following logic 

functions: 

r 
r;e 

a =- rpflr [LO (0, 1-0.51Pel )] + LO (-me,O) , {2.15a) 
E Me 

a -- r'w 
rpllr [LO (0, 1-0.51Pwl)] + LO (mw,O) W flXW 

(2.15b) 
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r 
z;n 

r ~x [LO (0, 1-0.5jP j)] + LO (-m, 0) (2.15c) aN =-
~X n n n n 

r 
z;s 

rs~x [LO (0, 1-0.51Psi)J + LO (ms, 0) (2.15d) as =-
Axs 

The logic statement LO(A,B) refers to the J:..arger Q.f the two terms 

(A,B). For example L0(7, 5) = 7 or L0(-32.75, 1.598) = 1.598. 

As a verification that Equations (2.12) and (2.14a) are equivalent, 

Equation (2.12) will be expanded using central differencing and compared 

to Equation (2.14a) with P + 0 (central e 

Equation (2.12) here for convenience. 

differencing). Repeating 

For the convection term (puz;)e the natural choice for z;e would be 

(2.16) 

The factor 1/2 arises from the assumption of the interfaces being 

midway; some other factor would have appeared for differently located 

interfaces. The differentia 1 (a z;/ ax) e may be written in a centra 1 

difference form as 

(2.17) 

Upon combining (2.16) and (2.17) with (2.12) the fo 11 owing discretized 

form of (J - m z;p) results: e e 
r 

(J - m z; ) = z;e 1 
( t;p - z;E) • (2.18) rpM --- (pu) e e P Axe 2 e 

When Equation (2.18) is compared to Equation (2.14a) the coupling 

coefficient aE becomes 
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(2.19) 

A similar central difference analysis may be carried out 

for (J - m ~p) to give the following relations: w w 

( J w - mw 'P ) • r P Ar [ :~ + ~ ( pu ) w l ( 'w - 'P ) ' (2.20) 

and the coupling coefficient aw may be written as 

a = r h.r [ r ~ + l ( pu) ] 
W P h.xw 2 w (2.21) 

As mentioned previously the central differencing scheme is 

equivalent to a local Peclet number near zero. Upon substitution of the 

near zero local Peclet numbers (IPI<2) into Equations (2.15) and (2.16) 

respectively the following coupling coefficients are obtained 

and 

] 

+ LO [- (pu)e h.r, 0] 

(2.22a) 

+ LO [- (pu) h.r, 0] e 

< 2. (2.22b) 
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Equations {2.12) and 2.14a) may also be shown to be equivalent for 

IPI > 2 (upwind differencing). Also, similar expressions for the 

coupling coefficients aN and as may be shown to follow the same rules as 

aE and aw adhere to respectively. Knowing this, the final form of the 

discretization equation may be written. 

The final discretized equation is obtained by substitution of the 

appropriate terms into Equation {2.11). Upon substitution Equation 

( 2 .11 ) becomes 

aE ( ~;P - ~;E ) • aw ( r;w - ~;P ) + aN ( l;p - r;N ) 

- a5 (r;s - ~;p) = (Sc- Sp r;p) rp ~x ~r 

or rearranging terms, an equivalent expression results 

where 

ap = aE + aw - aN + as - sp (rp ~x ~r) 

8 = Sc (rp ~x ~r) 

(2.23a) 

(2.23b) 

(2.24a) 

(2.24b) 

By now it can be appreciated that the physical significance of the 

various coupling coefficients in Equation (2.23b) is easy to 

understand. The neighboring coefficients aE, aW' aN, and as represent 

the convection and diffusion influence at the four faces of the control 

volume. 
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2.3 Grid Systems and Dependent Variable Locations 

Before the boundary conditions may be imposed on the discretized 

equations, a grid system or systems must be imposed upon the domain of 

interest. Three independent grid systems were chosen to represent the 

locations of various dependent variables. The three grid systems are 

displaced or 11 Staggered 11 • The 11 Staggered 11 grid was first employed by 

Harlow and Welch [18] in their MAC method to overcome instabilities due 

to the placement of all the dependent variables on one grid system. 

The grid systems used must conform to the two-dimension a 1 

axisymmetric differential equation presented in Section 2.1 of this 

Chapter. A 2-D axisymmetric non-uniform grid system may be represented 

by the planar system shown in Figure 2. Figure 2 is a cut-away view of 

the 2-D a xi symmetric grid system. A perspective view of the P-CELL is 

shown in Figure 3 which exemplifies the 2-D axisymmetric property of 

angular independence. The grid system presented in Figure 2 will be 

referrea to as the 11 main 11 grid system, where the dependent variables P 

and T are evaluated at the intersection of the grid lines. 

The displaced grid systems, referred to as the u- and v-grid 

system, are represented by the dashed lines in Figures 4 and 5, 

respectively. The main grid is also presented in Figures 4 and 5; it is 

represented by the solid lines. The u- and v- cells are associated with 

the grid point P. The dependent variables u and v are evaluated at the 

intersection of the dashed and solid lines in their respective grid 

system. 

With the general discretized equation established, the grid systems 

defined, and the evaluation points of the dependent variables located, 

the specific discretized equations may now be presented. 
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2.4 Specific Discretized Equations 

Since the u-CELL is associated with the point P the neighboring u-

velocities will be defined as in Figure 6. The v-velocities are defined 

in a similar fashion. The specific discretized equations may now be 

written as follows: 

u-Momentum 

{2.25) 

where 

ap = aE + aw + aN + as -
u u u u 

{2.25a) 

(sp + ~ ) (rp t:,.xw t:,.r) 

~ = S ( rp t:,.x t:,.r) c w (2.25b) 

The coupling coefficients are determined from Equations {2.15a), 

(2.15b), (2.15c), and (2.15d) with appropriate ~·s chosen for r •s and 
r; 

proper distances substituted for the r:,.•s. 

v-Momentum 

(2.26) 

where 

ap = aE + aw + aN + as 
v v v v v 

(Sp 
~s 

(r - t:,.x t:,.r ) +-
rs s s 

(2.26a) 
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are determined in a similar manner as the u-Momentum. Note that the 

pressure gradient term rst1x (P5 - Pp) has been pulled out of the source 

terms in both momentum equations. Because the. pressure field is 

ultimately calculated, it would be inconvenient to bury the pressures in 

the momentum source terms. 

Energy 

(2 .27} 

where 

(2.27a) 

(2.27b) 

The coupling coefficients are found by substituting ~/Pr or k/Cp 

for r in Equations (2.15a-d) •. 
T;e 

The pressure-update equation is obtained through the continuity 

equation. Since the velocity and pressure fields are unknown boundary 

conditions and an initial guess of the field variables are necessary. 

The guessed pressure field denoted by Pg, must be updated or improved so 

that the resulting guessed velocity fields u9 and vg satisfy the 

continuity equation at all grid locations. Once the guessed field 

variables have been updated the updated field variables are then used as 

a modified guess of the field variables (i.e., after updating u, u9 = 

u). 

The velocity-update equations may be written as 
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Velocity-Update Equation 

where the superscript c refers to correction terms. If P = Pg + pC, 

then as the correction term pC approaches zero Pg approaches the correct 

pressure field P. The same may be said about Equations (2.28a) and 

(2.28b); as pC approaches zero u~ and v~ approach the correct velocity 

fields up and Vp respectively. The correct velocity fields must satisfy 

the continuity. 

To insure that the velocity fields satisfy the Continuity Equation 

the pressure correction pC must also conform to the Continuity 

Equation. This may be done be integrating the Continuity Equation about 

the P-CELL and substituting the appropriate velocity correction formulas 

(2.28a) or (2.28b) for the velocity components obtained from the P-CELL 

integration. The resulting discretized Pressure-Update Equation is 

given as 

Pressure-Update Equation 

c c c c c 
aPPP = aEPE + aWPW + aNPN + aSPS + 13 (2.29) 

where 

aE = Pe ( rp ilr 2 )/ap (2.29a} 
u 

aw = Pw ( rp ilr2 )/ap (2.29b) 
u 

aN = P ( r ilx 2 )/ap n n v 
(2.29c) 
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(2.29d) 

(2.29e) 

(2.29f) 

The guessed mass flow, into the eastern face of the P-CELL is given by 

(2.30) 

8 in Equation (2.29f) is the total mass flux through the P-CELL. As 

successive updates are made on the velocity fields 8 will tend to 

zero. For 8 = 0 the Continuity Equation is exactly satisfied and no 

pressure correction is needed. This would indicate the solution for the 

flow field is complete. The sequence of operations required to 

determine the field variables is illustrated in the flow chart in 

Appendix A. 

The implementation of the boundary conditions to the discretized 

equations is the only concept lacking in determining the field solution 

to the governing differential equations. This will be discussed in the 

upcoming Section 2.5. 

2.5 Implementation of Boundary Conditions 

The control-volume method is ~xtremely useful when considering 

boundary conditions. This method will be employed here to derive the 

discretized boundary conditions. 

Figure 7 shows how a northern boundary would be placed midway 

between two consecutive horizontal gridlines. Southern, eastern, and 

western boundaries are handled in a similar fashion. The location of 

the P, u, and v-CELLS are also presented in Figure 7. 
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There are essentially two types of boundary conditions. The first 

is the impervious boundary where convection is zero; this may be a wall 

where no flow is allowed to cross. The second is an inlet or outlet 

boundary where fluid is allowed to enter or exit the domain of interest 

across the boundary. 

It must be noted that for a specification of a known normal 

ve 1 ocity on a boundary it is not necessary to specify the boundary 

pressure. Conversely if a boundary pressure is specified the normal 

velocity need not be spec.ifi ed. This stems from the fact that for a 

known normal wall velocity v = vg the correcting pressure gradient of 

Equation {2.28a) or (2.28b) is not used. Thus, {P~- P~) will not 

appear, or aN will be zero in the Pressure-Update Equation (2.29). This 

means that no information is needed about P~. 

To correctly specify boundary conditions the discretized equation 

must be modified for the near boundary points. The northern boundary 

and near boundary P-CELL will be used to construct the general modified 

discretized boundary equations as depicted in Figure 8. 

For an impervious or non-convective boundary the influence of the 

northern dependent vari ab 1 e r;N must be eliminated and a new influence 

inserted vi a the source terms. The convective influence of z;N may be 

eliminated by setting the total z;fl ux through the northern boundary aN 

to zero. Because this also eliminates the diffusive flux term r ¥it 
l; ar 

must be transferred to the right hand side of Equation (2.23). Equation 

(2.23b) is repeated here for convenience. 

(2.23b) 
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If the diffusion term is known on the northern boundary then 

(2.31) 

(2.32) 

Sp = 0 • (2.33) 

Equation (2.23b) becomes 

(2.34) 

This type of boundary condition cou 1 d rep resent a given heat flux on the 
outer wall of a duct where r~ if= r~ ~~ =- q~/Cp in Equation (2.32). 

For an impervious boundary where <; is specified <;N must again be 
eliminated by setting the coupling coefficient aN to zero. The 
influence of the wall ~ is incorporated into the discretized equation by 
creating a representative coupling coefficient given by 

a = r {).X r wall (2.35) wall ~ ( l llr) 
2 

and inserting awall into the linear.ized source term. The coefficients 
of the linearized source term become 

(2.36a) 

(2.36b) 

The resulting discretized equation is given as: 

(2.37) 
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In effect an approximation to the wall gradient o?;;/ar has been made. 

This can be seen by transferring the awall ?;;p term to the right hand 

side of Equation {2.37} forming the term awall(i';;wall - ?;;p) which may be 

expanded to give 

where (?;;wall - ?;;p) I {l/2 t.r) is nothing more than an approximation of 

the wall gradient o?;;/ar. Boundary conditions of this type would be used 

for specifying T, u, v, or P on impervious boundaries. 

The non-impervious boundaries, those that may occur at an inlet or 

outlet, are treated by knowing either the boundary value ?;;b or the 

gradient at the boundary. For an impervious boundary where ?;;b is known 

no modifications to the discretized equations are needed. Since ?;;b lies 

on the boundary and convection occurs across the boundary, no 

modification to the coupling coefficients are necessary. Consequently, 

no modifications to the linearized source terms are necessary. 

A non-impervious boundary where the normal gradient is known at the 

boundary is handled in exactly the same manner as the impervious wall 

with the boundary diffusion term specified, only the coupling 

coefficient is not set to zero. This allows the proper convection to 

take place across the boundary. 

A special boundary condition which might be used to specify a 

moving boundary or blockage in the flow field would be the specification 

of a grid point to a value ?;;F. For this type of boundary 

condition ~F must be dominant in the general discretized equation. The 

domination of ?;;F is accomplished in the following manner: 



Set 

30 
Sc (rp ~r~x) = ~F (1 x 10 ) 

30 
Sp (rp ~r~x) = - (1 x 10 ) 

giving rise to the discretized equation 
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(2.39a) 

(2.39b) 

(2.40) 

It can be seen that (1 x 1030 ) ~p and (1 x 1030 ) z;F are the dominating 

terms of the discretized Equation (2.40) giving rise to the 

solution z;P = ~F· 

A final note concerning boundary conditions for the u- and v-grid 

systems must be conveyed. Because the u- and v-grid systems are shifted 

from the main grid it will be necessary to re-evaluate the linearized 

source terms in such a way that the discretized boundary equations 

reflect the integration of the governing differential equations over a 

partial cell. 

2.6 Summary 

In this Chapter the governing differential equations for two-

dimensional axisymmetric laminar flow were all reduced to one common 

differential equation. This general differential equation was 

integrated over a control volume (a subdomain of the region of interest) 

utilizing piecewise functional variations of the dependent· 

variable, r;, between grid points. This integrand and the Continuity 

Equation were amalgimated to form the general discretized Equation 
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(2.23b). The main-, u-, and v-grid systems were also presented, so that 

the specific discretized equations for u, v, T, and P could be 

formulated. 

The discretized equations and grid systems .of Sections 2.1 - 2.4 

were presented as background material for the implementation of boundary 

conditions presented in Section 2.5. The boundary conditions for 

various convective and non-convective boundaries were derived and the 

domination of fixed value boundaries were introduced into the general 

discretized equation. 



CHAPTER III 

VARIABLE-PROPERTY METHOD 

For internal convective flow heat transfer problems, where velocity 

and temperature profiles are simultaneously developing and the wall to 

inlet temperature ratios deviate from unity a variable-property 

technique should be employed to insure that a realistic solution is 

obtained. There are essentially two ways to correct temperature

dependent property solutions. One method is to solve for the constant 

property solution and use a reference temperature or property ratio 

scheme to correct for property variations. The other method is to use 

physical-property equations to update properties as a numerical solution 

converges. These two methods for so 1 vi ng the temperature-dependent

property solution will be discussed. Also, the reasons for choosing the 

thermo-physical-property update method when solving thermo-fluid 

problems by finite difference techniques will be made clear. 

3.1 Reference Temperature and Property Ratio Methods 

The reference temperature method utilizes a characteristic 

temperature where properties appearing in the non-dimensional groups 

(Re, Nu, Pr, etc.) may be evaluated so that the constant-property 

results at the characteristic temperature may be used in determining the 

variable-property behavior. Typically this reference temperature is the 

wall temperature or mixed mean temperature; there is no general rule. 

33 
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The property ratio method involves using viscosity ratios for 

liquids where viscosity variations are responsible for most of the 

variable-property effects and absolute temperature ratios for gases 

where viscosity, thermal conductivity, and density changes are 

responsible for the variable-property effects. For gases the absolute 

temperature dependence is similar for different gases; although, this 

similarity no longer holds true at extreme temperatures. The relation 

used to correct the constant-property model, (CP), for gases is given as 

Nu = St 
NuCP StCP = (~:) n (3.1) 

cf 
= -c-

fcp 
(~:) m (3.2) 

where the subscripts w and m refer to the wall and mixed mean 

temperatures, respectively. 

All properties in the non-dimensional groups are evaluated at mixed 

mean temperatures. The exponents m and n are functions of geometry and 

types of flow which are determined experimentally. Thus, for a given 

heating and flow situation m and n may be selected and used in Equations 

(3.1) and (3.2) to determine the variable-property solution. 

It is important to note that the reference temperature and property 

ratio methods have been applied to only a fraction of the geometries and 

boundary conditions for which constant property solutions are 

available. This is because the results must be correlated for a 

specific tube cross section, tube wall boundary condition, and flow 

orientation [19]. 
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3.2 Thermo-Physical-Property Update Method 

The thermo-phys i ca 1-property update method uses phys i ca 1-property 

equations for k, Jl, Cp and the ideal gas law for p when dealing with 

gases at low pressures. When new update temperatures are determined 

after a complete sweep of the grid system, the thermo-physical equations 

are app 1 i ed to each grid point so that new updates of the phys i ca 1 

properties may be made. This enables the property and thermo-fluid 

solutions to converge simultaneously, resulting in a realistic solution 

to the governing two-dimensional axisymmetric Equations, (2.1) through 

(2.4) with temperature-dependent properties. 

The physical-property equations used in the thermo-physical-

property update method may be found for most common fluids in general 

engineering handbooks. For example, the physical-property equations for 

air are: 

thermal conductivity [20] 

k = 4186 {6~325 X 10-7 (T1"5)) I (T + 245.4 X 10-( 121T)) 

viscosity [20] 

Jl = (1.458 X 10-6 (T1•5)) I (T + 110.4) 

specific heat [21] 

. 2 
Kgl(m-s ) 

Wl(m-K), 

{3.3) 

( 3.4) 

Cp = 4184 {0.244388 - 4.20419 x 10-5T + 9.61128 x 10-8T2 -

JI{Kg - K) ( 3 .5a) 



Cp = 4184 (0.208831 + 7.71027 x 10-5T - 8.56726 x 10-9T2 

density 

4.75772 x 10-12r3 ) J/(Kg - K) 

p = PI ( 2 8 7 *T) 3 
Kg/m 
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(3.5b) 

(3.6) 

where T is the absolute temperature in degrees Kelvin and Pressure, P, 

is specified in Pascals. 

It is important to note that the physical-property equations are 

not limited by tube geometry, boundary conditions, or flow 

orientation. The only limitation on the physical-property equations is 

their accuracy in reproducing experimental results. The equation were 

compared to tabulated data of Kays and Crawford [21]. The mean and 

maximum percent deviation are given in Table II for the temperature 

range 100°K < T < 1000°K. 

3.3 Summary 

Three variable-property techniques used in determining a solution 

for thermo-fluid property-varying prob 1 ems have been presented. The 

reference temperature and property ratio methods utilize the constant-

property solution to correct for property variations. The reference 

temperature method is awkward to use for internal flow problems and the 

property ratio method is limited to known n and m exponents reported for 

specific tube geometries, boundary conditions, and flow orientations. 

However, the thermo-physical-property update method is only limited by 

the accuracy of the physical-property equations. 



TABLE II 

MEAN AND MAXIMUM PERCENT DEVIATIONS FOR PROPERTY-EQUATION 
OF AIR EVALUATED AT STANDARD ATMOSPHERIC PRESSURE 

Property Mean Maximum 
Equation Deviation (%) Deviation (%) 

Thermal 0.934 2.32 
Conductivity 

Viscosity 0.481 0.60 

Specific Heat 0.060 0.295 

Density 0.049 0.212 
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The thermo-physi ca 1-property updated method is introduced in the 
; 

TEACH code when solving the thermo-fluid property-varying problem for 

channel flow. This will be presented in Section 4.2 as a study of how 

property-variations influence heat transfer in the entrance region 

between two semi-infinite parallel plates. 



CHAPTER IV 

NUMERICAL STUDY OF LAMINAR FORCED CONVECTION HEAT 

TRANSFER IN THE ENTRANCE REGION OF A fLAT DUCT 

The analysis of forced convective heat transfer in the entrance 

region of various two-dimensional axisymmetric geometries has been 

analyzed by many different techniques. These forced convective heat 

transfer problems do not easily lend themselves to an exact analytical 

solution because of their complex governing differential equations. The 

material presented in Chapter IV is primarily concerned with laminar 

forced convection heat transfer in the entrance region of a flat duct 

with uniform wall temperature. 

Sparrow [13] first investigated heat transfer between parallel 

plates using the Karman-Pohlhausen method to determine a solution for 

uniform wall temperature on both plates. Hawang and Fan [14] used the 

finite difference analysis developed by Bodoia and Osterle [23] to solve 

the two-dimensional continuity and momentum equations with the usual 

Prandtl boundary layer assumptions. The velocity profiles are then used 

to solve the two-dimensional energy equation with the absence of axial 

heat conduction. The results of Hawang and Fan [14] are in close 

agreement with those of Sparrow [13] for Pr greater than 0.1. An 

approximate analytical procedure developed by Bhatti and Savery [24] 

uses mechanical energy equations to determine an axial core velocity 

which is in turn used to solve for temperature profiles by the Karman-

39 
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Pohl au sen method. Their results predict lower local Nusselt numbers 

than those obtained by Hawang and Fan [14]. 

Mercer et al. [3] developed an analytical model for the simul

taneously developing region between parallel plates and supplemented 

this work by performing an experimental analysis for air. Mercer et al. 

compared their analytical and experimental results and reported a 5 

percent deviation between the two. Recently, Narang and Hussain [3] 

used an analytical solution of the linearized momentum equations 

developed by Narang and Krishnamoorthy [25] to solve the exact energy 

equation by a successive over-relaxation method. Their results will be 

compared to the constant property mode 1 of the present work in Section 

4.1. 

The above mentioned ana lyt i ca 1 methods [3, 4, 13, 14, 23, 24, and 

25] either assume the transverse momentum to be negligible compared to 

the axi a 1 momentum or the momentum equations have been 1 i neari zed by 

assuming that the inertia forces are most significant in the entry 

region. Also, in all the aforementioned models for the combined entry 

region the energy and momentum equations have been decoupled by assuming 

that the thermophysical properties of the fluid are constant. This 

allows the temperature solution to be solved once the velocity solution 

has been determined. 

In the present analysis the energy and momentum equations are first 

decoupled by assuming constant properties but no generality of the 

conservation equations are lost. Section 4.1 discusses the results of 

the constant-property model and compares the results with other 

ana lyt i ca 1 results. Section 4.2 discusses the results of the coup 1 ed 

variable-property mode 1 and comparisons are made with the experi menta 1 
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work of Mercer, Pearce and Hitchcock [4].\ The effects of varying 

properties on non-dimensional heat transfer coefficients will be 

referred to in Section 4.3. 

4.1 Results of Constant-Property Model 

The two-dimensional laminar flow between two semi-infinite parallel 

plates is shown in Figure 9. The fluid properties are assumed to remain 

constant throughout and the flow experiences no viscous dissi-pation. 

The governing differential equations which describe these conditions 

are: 

Continuity 

a a 
- ( pU) + - ( pV) = 0 ax ar (4.1) 

u-Momentum 

a a ax (upu) + ar (vpu) = aP + a ( au ) + a ( au ) --ax ax llax a;: llar (4.2) 

v-Momentum 

a a ax (upv) + ar (vpv) = aP + a ( av ) + a ( av ) -a;:- ax llax -ar llar (4.3) 

Energy 

a a a k aT a k aT 
a X ( pUT ) + ar ( p V T) = ax ( C p ax ) - ar ( C p ar ) ( 4 • 4 ) 

where the properties are left within the derivatives so as not to loose 

any generality when the variable-property model is discussed in Section 

4.2. The variable r is used here to describe the vertical distance 

rather than the conventional notation y; this is so that notational 

consistency is maintained throughout this report. 
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Figure 9. Geometry of Problem 
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The boundary conditions which describe the limits of the domain 

depicted in Figure 9 are: 

u(O,r) = Ue 

u{x,~a) = 0 or u(x,a) a 
= 0 , ar ( pU ( X, 0 ) ) = 0 

v{O,r) = 0 

v(L ,r) = 0 
00 

v(x,+a) = 0 or v(x,a) = 0, v(x,O) = 0 

T(O,r) = T e 

a -;;-- (T(L ,r)) = 0 
oX oo 

a T{x,:a) = Tw or T(x,a) = Tw, ar- (T(x,O)) = 0 • 

(4.5a) 

(4.5b) 

(4.5c) 

(4.6a) 

(4.6b) 

(4.6c) 

(4.7a) 

(4.7b) 

(4.7c) 

These boundary conditions were implemented in the TEACH code by the 

methods outlined in Section 2.4. 

The temperature and velocity fields were determined and the local 

Nusselt numbers were calculated. The local Nusselt numbers Nux may be 

determined by equating the 1 oca 1 heat flow at the channe 1' s wa 11; that 

is 

(4.8) 

where mixed mean fluid temperature, Tm is determined by 

1 
T = - JA ( uT) dAc m AcV c 

(4.9) 
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and the average velocity V is calculated as follows: 

v 1 ' 
fA ( u) dAc =-

Ac c 
(4.10) 

Nux is found from Equation (4.8) to be 

Nux 
hd -(4a} aT I =- = k (Tw - Tm) ar r=a • (4.11) 

Before the final results for both the constant- and variable-

property model . were determined to be acceptable, the expanding grid 

system was refined to a 20 by 21 grid system. With this grid 

arrangement the results did not produce significant deviations with an 

increase in the number of gridpoints. 

A comparison of the present results of the local Nusselt numbers 

with those determined by Narang and Hussain [3] for a Prandtl number of 

0.7 and Reynolds numbers of 20 and 1000 may be found in graphical form 

in Figures 10 and 11 respectively. For the near slug flow analysis (Red 

= 20) the present results are within 5 percent of those of Narang and 

Hussain [3]. The local Nusselt numbers of the present results also 

compare well with [3] for Red = 1000 and X > 0.02, but significant 

deviations occur for the near inlet region (X < 0.02). This deviation 

is attributed to the linearization of the inertia terms in [3]. 

The constant-property resu 1 ts of the present work de vi ate only 2 

percent from the values predicted by the numerical solution of Mercer, 

Pearce, and Hitchcock [4] for Red = 682 and Pr = 0.7. This case is 

presented in Section 4.2 where the constant- and variable-property 

models are compared to experimental results. The constant-property 

results of [4] would be overshadowed by the curve labeled CONSTANT

PROPERTY in Figure 12. 
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The present constant-property mode 1 a 1 so predicts the asymptotic 

local Nusselt value for constant wall temperature given by Kays and 

Crawford [22] as 7.54. 

The results presented thus far indicate that the present constant

property mode 1 is in good agreement with the more recently proposed 

models [3, 4]. But, upon comparison of the constant-property model with 

experimental results for air of Mercer et al. [4] a uniform over 

prediction of Nux was noticed. Further investigations were performed 

and the variable-property method outlined in Section 3.2 was proposed to 

eradicate this discrepancy. The results from this investigation are 

presented in Section 4.2. 

4.2 Results of the Variable-Property Model 

The geometry, governing equations, and boundary conditions are the 

same as those given in Section 4.1. The variable-property method of 

Section 3.2 was incorporated into TEACH using the physical property 

equations for air. Because the properties of air vary according to the 

physical-property equations the Prandtl number will also vary. Thus, 

the Prandtl number at the entrance of the channel, Pre' wi 11 be used 

when referring to a particular variable-property case. 

Temperature, velocity, pressure, and property fields were solved by 

under-relaxing the discretized equations of Section 2.2. The number of 

iterations to achieve a variable-property solution was found to be 

approximately 1.5 times that for the constant-property solution. The 

present results are compared with the experimentally determined Nusselt 

numbers of Mercer, Pearce, and Hitchcock [4] for air at an inlet 

Reynolds number of 682 and 1474. 
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The local Nusselt numbers based on the inlet fluid temperature Te 

of [4] are calculated from the following relation: 

ae"' Nu 10 = ( aY ) at Y = 0, or Y = 1 {4.12) 

where e"' = (Tw - T) I (Tw - Te) and Y = rl(2a). The local Nusselt 

number of the present work based on the mixed mean temperature, Tm, may 

be expressed in a similar form by 

ae Nu = ( --. ) at R = 0, or R = 1 
X aR ~ 

(4.13) 

where e = (Tw - T) I (Tw - Tm) and R = rl(2a). Upon equating Tw in 

Equations (4.12) and {4.13) the following local Nusselt conversion 

relation is obtained: 

{4.14) 

The mixed mean temperatures of Mercer, et al. were not avail~ble. 

However~ mixed mean temperatures of the present work were used to 

convert present Nux•s to equivalent Nu 10 •s. 

In the experimental analysis of [4] both uniform plate temperatures 

were reported to be 330.4°K and the inlet air temperature was reported 

to vary during the days of testing from 291.5 to 297.0°K. Substitution 

of the reported wall and inlet temperatures into Equation {4.14) 

requires a deviation in Nu 10 of 8 percent from the mean Nu 10 at Te = 

294.3°K. 

Nu 10 for the present variable-property and constant-property 

results are compared graphically in Figures 12 and 13 with the reported 

experimental values of Mercer et al. [4] at inlet Reynolds numbers of 

682 and 1474. The variable-property model is in excellent agreement 
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with those experimental results of [4] for air at Rede = 682 showing a 
maximum deviation of 1.4 percent near X = 0.065. Nu 1 0 differs by 
approximately 6 percent between the constant- and variable-property 

models. 

Though the variable-property results agree well with those of [4] 

at Rede = 682, there is an 8 percent deviation in reported values of 
Nu 10 for Rede = 1474. This suggests that either the variable-property 
model has failed to predict "correct•• local non-dimensional heat 

transfer coefficients or the experimental results of [4] at Rede = 1474 

may have been based on an in 1 et temperature other than the mean T e of 
the reported inlet temperatures. Figure 14 will be used to clarify this 
point. 

The continuous curves in Figure 4.6 are the results from the 

present variable-property model. Nux was obtained assuming a mean inlet 
temperature of 294.3°K. Nux was then converted to Nu 10 by using 
Equation (4.14) for the upper, lower, and mean inlet temperatures of 
Mercer, et al. [4]. The reported results of [4] also appear in Figure 
14. If the non-dimensional variables (Red, Pr, Nu 10 , Nux) are defined 
using fixed reference values (p , u , p , Cp , ke, he, or hm) the e e e e 
results of both the present work and Mercer, et al. [4] should appear as 
a continuous curve when the non-dimensional heat transfer coefficient is 
plotted versus a non-dimensional entrance length. 

Based on the previous discussion the deviations of [4] from a 
continuous curve of Nu10 vs X appears to be a result of inlet 

temperature variations between tests. If the tests for Rede were 
performed at Te approximately equal to 297.0°K the present results would 
be in excellent agreement with those of Mercer, et al. 
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As mentioned previously the constant-property model varies from the 

variable-property model by approximately 6 percent for a wall-to-inlet 

temperature ratio of 1.1. This is a noticeable but not a significant 

difference in local heat transfer coefficients. But, for larger wall"' 

to-inlet temperature ratios, sufficiently large (TwiTe > 1.1) deviations 

in the local heat transfer coefficients may warrant the need for a 

variable-property model. The effects of wall-to-inlet ratios and 

individual property variations on the local heat transfer coefficient 

will be discussed next. 

4.3 Variable Property Effects 

Property variations of air cause several different and opposing 

effects on the Nusselt number. Figures 15, 16, and 17 show the 

deviation from the constant-property solution that the variable-property 

model experiences for Tw = 330.4, 700 and 1000 K, respectively. The 

largest difference between constant- and variable-property Nux was 

located near the entrance. Table III shows the maximum and minimum 

percent difference between the constant- and vari ab 1 e-property mode 1 s 

for the various wall temperatures. 

Further investigations were performed to monitor the effects of 

individual property-variations on local heat transfer. This 

investigation was completed by holding all but one property constant for 

the same three wall temperatures used to produce Figures 15, 16, and 

17. The inlet temperature was held constant at 294.3 K. Figures 18, 

19, 20 and 21 show the effects of varying viscosity, density, thermal 
' 

conductivity, and specific, respectively, on Nux for the three wall 

temperatures 330.4, 700, and 1000 K. 
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TABLE III 

PERCENT DIFFERENCE IN Nux BETWEEN CONSTANT- AND 

VARIABLE-PROPERTY SOLUTIONS 

Tw (K) l:\Nux %max l:INux %min 

330.4 7 2 

700 34 9.5 

1000 44 10 
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Figures 18 and 19 show that the genera 1 effect of viscosity and 

density, respectively, is a net lowering of the heat transfer 

coefficient for an increase in the wall temperature. Figure 20 

indicates that the thermal conductivity also causes a net lowering of 

the heat transfer coefficient for an increase in the wall temperature. 

But this decrease is significantly larger than for the varying viscosity 

or density. The variable specific heat causes an increase in the local 

heat transfer coefficient as shown in Figure 21. The effect of the 

specific heat in increasing the local heat transfer coefficient is 

overcome by the tendencies of the other properties. Thus, a net 

lowering of the local heat transfer coefficient occurs when all 

properties are considered. 

In summary, it appears that the most significant parameter 

affecting the net heat transfer coefficient is the thermal conductivity, 
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while viscosity has little effect on altering the local heat transfer 

coefficient. Thus, it is important to correctly model the varying 

thermal conductivity when considering internal convective heat transfer 

for air. 

4.4 Summary 

The results of the present constant~property model have been shown 

to be in close agreement with other established constant-property 

models. The constant-property model also predicts the fully developed 

Nusselt number 7 .54. The constant-property model consistently deviated 

from experimental results and the variable-property model was introduced 

in an attempt to correct these deviations. 

The results of the variable-property model were in excellent 

agreement with experimental results of [4] for Rede = 682; Nux being 

within 1.5 percent. The deviation from [4] for Rede = 1474 was shown to 

be caused by varying inlet temperatures in the experiment of [4]. Thus, 

the results of the variable-property model exhibit 11 real 11 , internal, 

convective, heat-transfer principles. 

The variable-property effects were outlined in Section 4.3. There 

it was shown that for substantial temperature variations (i.e., TwiTe > 

1.1) the constant-property model gives erroneous results. Also, by 

allowing only one property to vary at a time the thermal conductivity 

was shown to be the major factor causing a lower local heat transfer 

coefficient, while the viscosity was shown to exhibit the least effect 

on lowering the local heat-transfer coefficient. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary and Conclusions 

The accomplishments of this study may be summarized as follows: 

1. The TEACH code was used as an instrument of investigation in 

forced convective heat transfer in the entrance region between 

two semi-infinite parallel 

temperatures. 

plates with uniform wall 

2. Upon investigation of the constant-property model for Pr = 0.7, 

it was determined that this model was in good agreement with 

other more recent constant-property models. But upon comparing 

constant-property results with the experimental results of [4], 

a uniform discrepancy was noted to exist and the variable

property mode 1 out 1 i ned in Section 3.2 was introduced in an 

attempt to eliminate this discrepancy. 

3. The variable-property model and the boundary conditions 

reported by [4] were implemented into the TEACH computer 

code. The results of the present work for Nux were converted 

by Equation (4.14) to Nu 10 • The results obtained using the 

mean inlet temperature reported by [4] for Rede = 682 were in 

excellent agreement with the experimental results of [4]. But 

when the mean inlet temperature was used again for Rede = 1474, 

the present results did not match as well as the previous 
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case. Upon further investigation, again using Equation (4.14), 

the discrepancies between the present Nu 10 and the 

experimentally determined Nu 1 0 were attributed to the 

temperature variations between tests which were reported by 

[4]. 

4. In Section 4.3 a sensitivity type analysis was completed to 

monitor the effect that each of the physical 

properties (JJ, p, Cp, and k) have on the local n.on-

dimensionalized heat transfer coefficient. It was found that 

while lJ and p cause some decrease in the local heat transfer 

coefficient the major contributor to this cause was found to be 

the thermal conductivity, k. Also, it was shown that though 

the specific heat does cause an increase in Nux, the combined 

effect of all the physical properties will cause a net decrease 

in Nux. 

In concluding it must be noted that larger temperature gradients in 

the entrance region between two semi-infinite parallel plates will cause 

a significant decrease in Nux from the constant-property Nux. To obtain 

a true measure of the velocity and temperature profiles as well as the 

local heat transfer coefficient, a numerical model which will accurately 

simulate property variations is necessary. 

5.2 Recommendations 

As stated in the beginning of Section 2.1, the TEACH code. is 

designed to model two-dimensional axisymmetric flow of Newtonian 

fluids. Because of this attribute the study of variable-property flow 
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for the following geometries are recommended as an extension to the 

present work: 

1. Simple circular tube geometry. 

2. Concentric tubes (annulis) geometry. 

3. Sudden and smooth inlet geometries. 

The app 1 i cation of constant wa 11 heat flux is a 1 so recommended as an 

extension to the present work. 
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The program listing given here is for the variable-property case. 
This has been accomplished by setting the logical FORTRAN symbol INPRO 
equal to TRUE (i.e., INPRO = • TRUE.) (see p. 75). To obtain the 
constant-property model, INPRO should be set equal to FALSE (i.e., INFRO 
= .FALSE.) 

The variable-property equations are executed in the SUBROUTINE 
PROPS (seep. 81). Again, to activate the SUBROUTINE PROPS the logical, 
function, INFRO, must be set equal to TRUE. 



C********************************************************************** 
C****** ****** 
C****** 
C****** 
C****** 
C****** 
C****** 
C****** 

. TEACH-LAMINAR 
CHANEL 

THIS IS A COMPUTER CODE THAT SIMULATES FLOW BETWEEN 
PARALLEL PLANES. THE FLUID IS ASSUMED TO BE VlSCOS 
AND HAV~ VARIBLE PROPERTIES. 

****** 
****** 
****** 
****** 
****** 
****** 

C********************************************************************** 
c 
c 
C A COMPUTER PROGRAM FOR THE CALCULATION OF PLANE OR AXISYMMETRIC 
C STEADY TWO-DIMENSIONAL RECIRCULATION FLOWS. 
c 
C 1984 VERSION FOR THESIS WORK MJM, OSU, STILLWATER OKLAHOMA 
c **************~************************************************** 
c 
C *** PRELIMINARIES 
c 

c 

DIMENSION PSI(40,40),SAMPL(10),SYMBOL(11),TM(40),UA(40),ZNU(1,32) 
CHARACTER*12 YAXES(10),XAXIS 
COMMON 

1/UVEL/ RESORU,NSWPU,URFU,DXEPU(32),DXPWU(32),SEWU(32) 
1/VVEL/ RESORV,NSWPV,URFV,DYNPV(32),DYPSV(32),SNSV(32),RCV(32) 
1/PCOR/ RESORM,NSWPP.URFP,DU(40,40),DV(40,40),IPREF,JPREF 
1/TEMP/ RESORT,NSWPT,URFT 
1/VAR/ U(40,40),V(40,40),P(40,40),T(40,40),PP(40,40) 
1/ALL/ IT,JT,NI,NJ,NIM1,NJM1,GREAT 
1/GEOM/ INDCOS,X(32),Y(32),DXEP(32),DXPW(32),DYNP(32),DYPS(32), 
1 SNS(32),SEW(32),XU(32),YV(32),R(32),RV(32) 
1/FLUPR/URFVIS,VISCDS,DENSIT,PRANDT,DEN(40,40),VIS(40,40), 
1 GAMH(40,40) 
1/KASE4/ISTEP,JSTEP,ISTP1,ISTM1,UIN,TIN, 
1 TWALL,SPH,TC,QWALL,JSTP1,JSTM1,FLOWIN 

C NAMING THE VARIBLES THAT ARE TO BE LOGICAL 
c 

LOGICAL INCALU,INCALV,INCALP,INCALT,INPRO,WRITEU,WRITEV,WRITEP, 
1 WRITET,PLOTER 

c 
C INPUT OF DATA NEEDED FOR LINE-PRINTER PLOTS 
c 

DATA SAMPL/1H*,1H%,1H=,1H-, 1HO, 1H@l, 1H#,1H$,1H?,1H!/ 
DATA YAXES(1),XAXIS/'NUSS ','X/R./(RE*PR)'/ 

c 
C THESE VARIBLES DEFINE CONSTANTS USED THROUGHOUT THE PROGRAM 
c 

GREAT"1.0E30 
NITER,.O 
LP=Ei 
IT•40 
JT.,40 



c 
C GEOMETRY PARAMETERS OF THE SPECIFIED PROBLEM 
c 
C *** RLARGE = RADIUS OF THE DUCT 
C *** DP HALF WIDTH DF PLATE DISTANCE 
c 

c 

DP = 0.0127 
ALTOT " 0.60 

C FLUID PROPERTIES AND BOUNDARY VALUES 
c 
C *** FLUID PROPERTIES 
c 

c 

VISCOS 
DENS IT 
PRANDT 
SPH 

1.81890373E-05 
1. 1996221 E+OO 
7.07515885E-01 
1004.339815 

C *** THERMAL CONDUCTIVITY :== TC 
c 

TC = 2.58251456E-02 

C *** BOUNDARY VALUES 
c 

c 

UIN = 0.2035569 
TIN = 294.3 
TWALL = 330.4 

C *** INLET MASS FLOW 
c 

FLOWIN = UIN*DENSIT*DP 

U*CP/PR 

c ***************************************************************** 
C CHAPTER 1 1 1 1 1 1 1 PARAMETERS AND CONTROL INDICES 1 1 1 1 1 1 · 
c ***************************************************************** 
c 
C INDCOS DEFINES POLAR OR RECTANGULAR COORDINATE SYSTEMS 
C (INDCOS=1; RECTANGULAR, INDCOS=2; POLAR) 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

INDCOS=1 

NI=21 
NJ=20 

NI AND NJ DEFINE THE NUMBER OF GRID POINTS 

NJ= 20 
19 
18 
17 

* * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * 

2 * * * * * * * * * * * * * * * * * * * * * 
1 * * * * * * * * * * * * * * * * * * * * * 

2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 0 1 
NI=21 
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c 
c 
c 
c 
c *** 
c *** 
c 

100 

101 
c 
c *** 
c *** 
c 

102 

103 

c 
c *** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

NIM1=NI-1 
NJM1"NJ-1 

THIS SECTION OF THE MAIN PROGRAM DEFINES THE GRID SYSTEM 
(ONLY EXPANSION ALLOWED IN THE X-DIRECTION) 

EXPR EXPANSION RATIO OF THE GRID CELLS 
EXPF EXPANSION FACTOR OF THE X-GRID CELLS 

EXPR = 0.9 
EXPF 1.0+(1.0-EXPR) 
FACTOR "' 0.50 
NIM2 = NIM1-1 
NIM3 "' NIM2-1 
DO 100 I:1 ,NIM3 
FACTOR • FACTOR + EXPF**FLOAT(I) 
FACTOR = FACTOR + (EXPF**FLOAT(NIM2))/2. 
OX ~ ALTOT/FACTOR 
X(1) :-0.50*DX 
DO 101 I = 2,NI 
II = I -2 
X(I) = X(I-1)+DX*(EXPF**FLOAT(II)) 

EYPR EXPANSION RATIO FOR THE Y-GIRO CELLS 
EYPF = EXPANSION FACTOR FOR THE Y-GRID CELLS 

EYPR = 1.0 
EYPF 1.0+(1.0-EYPR) 
FACTOR = 0.50 
NJM2 " NJM1-1 
NJM3 = NJM2-1 
DO 102 J = 1,NJM3 
FACTOR = FACTOR + EYPF**FLOAT(J) 
FACTOR • FACTOR + (EYPF**FLOAT(NJM2))/2. 
DY "' DP/FACTOR 
Y(NJ) = DP+0.50*DY 
DO 103 J = 2,NJ 
JJ = J-2 
J 1 = NJ - ( J -1 ) 
Y(J1) = Y(J1+1)-DY*(EYPF**FLOAT(JJ)) 
DP=.5*(Y(NJ)+Y(NJ-1)) 

PROGRAM CONTROL AND MONITOR 

MAXIT = MAXIMUM NUMBER OF ITERATIONS 
SORMAX = 1ST CONVERGIENCE CRITERIA 
SORMA2 = 20ND CONVERGIENCE CRITERIA 
IMON,JMON = I, J MONITORING LOCATIONS FOR CONVERGIENCE CRITERIA 
INDPRI = INTERMEDIATE PRINTING AFTER INDPRI NUMBER OF ITERATIONS 
URFU,URFV,URFP,URFT = UNDER-RELAXATION FACTORS fOR U, V, P, AND T 
URFVIS = UNDER-RELAXATION FACTOR FOR VISCOSITY TERMS 
NSWPU,NSWPV,NSWPP,AND NSWPT ~ NUMBER OF SWEEPS FOR THE U,V,P,AND T 

FIELDS WITH THE USE OF A TDMA. 
INCAL( ): DECISION TO COMPUTE U,V,P,OR T FIELDS. 
WRITE( ): DECISION TO WRITE U,V,P,OR T FIELDS. 
PLOTER: DECISION TO PLOT 
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C INPRO : DECISION TO UPDATE PROPERTIES 
c 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

200 

201 

202 
c 
c 
c 
c 

MAXIT " 250 
SORMAX=1.0E-05 
SORMA2=SORMAX*3. 
IMON=G 
JMON=G 
INOPRI=1000 
NUMPRI'"1 
URFU=0.39 
URFV"'0.39 
URFP:1.0 
URFT=0.9 
URFVIS=1.0 
NSWPU " 1 
NSWPV = 1 
NSWPP ,. 3 
NSWPT = 1 
INCALU .TRUE. 
INCALV .TRUE. 
INCALP . TRUE. 
INCALT = .TRUE. 
WRITEU . FALSE. 
WRITEV . FALSE. 
WR ITEP . FALSE. 
WRITET . FALSE. 
PLOTER . FALSE. 
INPRO = .TRUE. 

****************************.*********************************** 
CHAPTER 2 2 2 2 2 2 INITIAL OPERATIONS 2 2 2 2 2 2 2 2 2 2 2 2 2 
**************************************************************** 

CALCULATE GEOMETRICAL QUANTITIES AND SET VARIABLES TO ZERO 

CALL INITIAL 

INITIALIZE VARIABLE FIELDS 

THIS IS USED TO SETUP THE UNIFORM INLET VELOCITY. 

DO 200 J=2,NJM1 
U(2,J) = UIN 
T(1,J) =TIN 
DO 201 I = 2,NIM1 
T(I,NJ) = TWALL 
FACTOR = 1 .0 
DO 202 I "' 2,NI 
DO 202 J = 2,NJM1 
IF (I.NE.NI) T(I,J) = TWALL/2. 
IF (I.NE.2) U(I,J) = FACTOR*UIN 

PREF IS A REFERENCE PRESSURE USED TO INITIALIZE A GRID PRESSURE 
SINCE ALL BOUNDARY VELOCITIES ARE KNOWN. PROGRAM COMPUTES 
PRESSURE FIELD (ACTUALLY DELTA PIS THE ONLY IMPORTANT PARAMETER.) 
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c 
PREF ~ 101.325 
IPREF ~ 2 
JPREF = 5 
DO 2000 I = 1,NIM1 
DO 2000 u ~ 2,NJM1 

2000 P(l,u) = PREF 
c 
C CHANGE ANY FLUID PROPERTIES DUE TO NODE TEMPERATURE CHANGES 
c 

c 
c 
c 

203 

205 

206 

207 

208 

209 

211 

212 

210 

IF (INPRO)CALL PROPS 

INITIAL OUTPUT 

WRITE(LP,203) 
FORMAT(///1H ,120(1H*)///) 
WRITE(LP,204) 
WRITE(LP,205)UIN 
FORMAT(///1H ,15X,'AVRAGE INLET FLUID VELOCITY ' 

1T60,1H=,3X,1PE11.3) . 
RE : 4.*DP*UIN*DENSIT/VISCOS 
WRITE(LP,206)RE 
FORMAT(1H ,15X, 'REYNOLDS NUMBER' ,T60,1H•,3X, 1PE11.3) 
WRITE(LP,207)PRANDT 
FORMAT(1H ,15X, 'PRANDTL NUMBER ',T60,1H=,3X,1PE11.3) 
WRITE(LP,208)VISCOS 
FORMAT (1H ,15X, 'FLUID VISCOSITY',T60,1H=,3X,1PE11.3) 
WRITE(LP,209)DENSIT 
FORMAT(1H , 15X, 'FLUID DENSITY' ,T60,1H=,3X,1PE11.3) 
WRITE(LP,211) ALTOT 
FORMAT(1H ,15X, 'LENGTH OF DUCT' ,T60,1H=,3X,1PE11.3) 
WRITE(LP,212) DP,EXPF,EYPF 
FORMAT(1H , 15X, '1/2 WIDTH OF CHANNEL' ,T60, 1H=,3X, 1PE11.3/ 

11H ,15X, 'X-GRID EXPANSION FACTOR' ,T60,1H~,3X,1PE11.3/ 
11H ,15X,'Y-GRID EXPANSION FACTOR',T60,1H=,3X,1PE11.3) 
WRITE(LP,210)TIN,TWALL 
FORMAT (1H ,15X,'TEMPERATURE BOUNDARY CONDITIONS ARE'// 

11H ,25X, 'INLET TEMPERATURE' ,T60,1H=,3X,1PE11.3/ 
11H ,25X, 'WALL TEMPERATURE' ,T60,1H=,3X, 1PE11.3) 
WRITE(LP,203) 
IF (WRITEU) CALL PRINT(2,2,NI,NJ,IT,JT,XU,Y,U, 'UVEL') 
IF (WRITEV) CALL PRINT(2,2,NI,NJ,IT,JT,X,YV,V, 'VVEL') 
IF (WRITEP) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,P, 'PRES') 
IF (WRITET) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,T, 'TEMP') 

c ***************************************************************** 
C 3 3 3 3 3 3 3 3 CHAPTER 3 3 3 3 3 3 3 3 3 3 3 
c ***************************************************************** 

WRITE(LP,310) IMON,JMON 
300 NITER=NITER+1 

c 
C UPDATE MAIN DEPENDENT VARIABLES 
c 

IF (INCALU) CALL CALCU 
IF (INCALV) CALL CALCV 
IF (INCALP) CALL CALCP 
IF (INCALT) CALL CALCT 
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c 
C UPDATE FLUID PROPERTIES 
c 

c 

IF (INPRO) CALL PROPS 
WRITE(LP,311)NITER,RESORU,RES~RV,RESORM,RESORT,U(IMON,JMON), 

1 V(IMON,JMON),P(IMON,JMON),T(lMON,JMON) 
IF (MOD(NITER,INDPRI).NE.O) GOTO 301 
IF (WRITEU) CALL PRINT(2,2,NI,NJ,IT,JT,XU,V,U.'UVEL') 
IF (WRITEV) CALL PRINT(2,2,NI,NJ,IT,JT,X,VV,V, 'VVEL') 
IF (WRITEP) CALL PRINT(2,2,Nl,NJ,IT,JT,X,V,P,'P~ES') 
IF (WRITET) CALL PRINT(2,2,NI,NJ,IT,JT,X,V,T,'TEMP') 

C PRINTOUT THE MONITOR LOCATION 
c 

WRITE(LP,310)IMON,JMON 
301 CONTINUE 

c 
C TERMINATION TESTS 
c 

IF(NITER.EQ.MAXIT)GO TO 302 
IF(NITER.EQ.100.AND.RESORM.GT.1.0E4*SORMAX) GO TO 302 
IF (RESORT.GT.SORMAX) GOTO 300 

C IF (RESORU.GT.SORMA2.0R.RESORM.GT.SORMAX) GOTO 300 
302 CONTINUE 

c 
c ****************~******************************************** 
C CHAPTER 4 4 4 4 FINAL OPERATIONS AND OUTPUT 4 4 4 4 4 
c ************************************************************* 
c 

c 

IF (INCALU) CALL PRINT(2,2,NI,NJ,IT,JT,XU,V,U,'UVEL') 
IF (INCALV) CALL PRINT(2,2,Nl,NJ,IT,JT,X,VV,V, 'VVEL') 
IF (INCALP) CALL PRINT(2, 2, NI, NJ, IT, JT, X, V, P, 'PRES') 
IF (INCALT) CALL PRINT(2,2,NI,NJ,IT,JT,X,V,T,'TEMP') 
CALL PRINT(2,2,NI,NJ,IT,JT,X,V,VIS,'VISC') 

C COMPUTATIONS FOR SOME OF THE FINIAL OUTPUT PARAMETERS 
C (NUSSELT NUMBER, FRICTION COEFFICIENTS, ETC.) 
c 

c 

DUU=DENSIT*UIN*UIN 
DV = VV(NJ) - V(NJM1) 
ANI • 0.0 
X(1) = 4.*(X(1)/DP)/(RE*PRANDT) 
WRITE(LP,420) 
DO 410 1=2,NIM1 
X(I) = 4.*(X(I)/DP)/(RE*PRANDT) 
SUMT=O.O 
SAVG=O.O 
DTDX = (T(I+1,NJ)-T(I-1,NJ))/(SEW(I)*2.0) 
DO 411 J = 2,NJM1 
UAVG = (U(I,J)+U(I+1,J))/2. 

C THE INTEGRAL OF UTDV 
c 

SUMT = SUMT + T(I,J)*UAVG*SNS(J) 
c 
C THE INTEGRAL OF UDV 

77 



c 

c 

411 SAVG = SAVG + UAVG*SNS(J) 
UA (I ) = SAVGIDP 
TM(I) = SUMTI(UA(I)*DP) 
AN1 = (TWALL-T(I,NJM1))1DY 

C THE NUSSELT NUMBER, NUX z ANU 
c 

ANU 4.*DP*AN1I(TWALL-TM(I)) 
c 
C ANI THE SUM OF NUX*DX 
C ANM = NUX*DXI(X+) = THE MEAN NUSSELT NUMBER 
c 

c 

DELX = (X(I+1)-X(I-1))12. 
ANI = ANI + ANU*DELX 
ANM = ANIIX(I-1) 
SSC = VISCOS*(-U(I,NJM1))1(DY*DUU) 
DTDY "' AN1 
DUDY = U(I,NJM1)IDY 
WRITE(LP,430) I, X(I), ANU, ANM, TM(I), XU(I), SSC 

410 CONTINUE 
c 
C PLOT QUANTIES REQUIRED 
c 

IF(PLOTER) CALL PLOT(X,32,NIM2,XAXIS,ZNU,1,1,YAXES, 
1 SAMPL,LP,ID) 

c 
C THIS PART OF THE MAIN CODE MAKES SOME SUPPLEMENTARY PLOTS 
C OF THE NONDIMENSIONAL MEAN TEMPERATURE 
C THETA MEAN = (TO-TM)I(TO-TE) 
c 

DO 450 I = 2,NIM1 
450 ZNU(1,I-1) = (TWALL-TM(I))I(TWALL-TIN) 

YAXES(1) = 'THETA MEAN' 

c 
c 
c 

204 

c ---
310 

c 
311 

c ---
420 

IF(PLOTER) CALL PLOT(X,32,NIM2,XAXIS,ZNU,1,1,YAXES.SAMPL,LP,ID) 
STOP 

FORMAT STATEMENTS 

FORMAT(1H ,5X, '(CHANEL VARB1.F) LAMINAR 
1,' WITH CONSTANT TEMPERATURE BOUNDARIES 
21 I I!) 

FLOW THROUGH A CHANNEL' 
(EXPANDING X-GRID SYSTEM)' 

FORMAT(III1H, 'ITER I-----------ABSOLUTE RESIDUAL SOURCE SUMS', 
1'----------I I-------FIELD VALUES AT MONITORING LOCATION', 
1 ' ( ' , I 2, ' , ' , I 2, ' ) ' , '-- ------I' I I2X, 'NO. ' , 3X, 'UMOM' , 6X, 'VMOM' , 6X, 
1 'MASS' ,6X, 'ENER' ,31X, 'U' ,9X, 'V' ,9X, 'P' ,9X, 'T' 
1 • ' ' . 9X. ' 'I) 

FORMAT(1H ,I3,3X,1P4E10.3,25X,1P4E10.3) 

FORMAT(/III1H ,'DISTRIBUTION OF NUSSELT NUMBER AND SHEAR-STRESS' 
1,'-COEFFICIENT ALONG THE WALL'II1H ,1X,1HI,10X,1HX,8X, 
2' NUX ',2X,' NUM ',4X, 'MEAN TEMP.',5X, 'XU', 
36X,'S.S. COEFF. 'I/) 
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c 
430 

c 
c 
c 
c 
c 
c 
c 
c 

FORMAT(I3,4(3X,1PE11.3),2(1X,1PE11.3)) 
END 

***************************************************************** ***************************************************************** ***** ENO OF THE MAINPROGRAM ***** ***************************************************************** ***************************************************************** 

SUBROUTINE PROMOD 
c ***************************************************************** C CHAPTER 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 c ***************************************************************** COMMON 

1/UVEL/ RESORU,NSWPU,URFU,DXEPU(32),DXPWU(32),SEWU(32) 1/VVEL/ RESORV,NSWPV,URFV,DYNPV(32),DYPSV(32),SNSV(32),RCV(32) 1/PCOR/ RESORM,NSWPP,URFP,DU(40,40),DV(40,40),IPREF,uPREF 1/TEMP/ RESORT,NSWPT,URFT 
1/VAR/ U(40,40),V(40,40),P(40,40),T(40,40),PP(40,40) 1/ALL/ IT,uT,NI,Nu,NIM1,NuM1,GREAT 
1/GEOM/ INDCOS,X(32),Y(32),DXEP(32),DXPW(32),DYNP(32),DYPS(32), 1 SNS(32),SEW(32),XU(32),YV(32),R(32),RV(32) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,40),VIS(40,40), 1 GAMH(40,40) 
1/KASE4/ISTEP,uSTEP,ISTP1,ISTM1,UIN,TIN, 
1 TWALL,SPH,TC,QWALL,uSTP1,uSTM1,FLOWIN 
1/COEF/ AP(40,40),AN(40,40),AS(40,40),AE(40,40),AW(40,40), 1 SU(40,40),SP(40,40) 

c 
c 
c 
c 

**************************************************************** CHAPTER PROPERTIES 
**************************************************************** 
ENTRY MODPRO 

c 
C NO MODIFICATION FOR THIS PROBLEM 
c 

RETURN 
c 
c 
c 
c 
c 

***************************************************************** CHAPTER 2 2 2 2 2 2 2 U MOMENTUM 2 2 2 2 2 ***************************************************************** 
ENTRY MODU 

c 
C LARGE DUCT WALL 
c 

DY = YV(Nu)-Y(NuM1) 
u=NJM1 
DO 202 I=3,NIM1 
AN(I,J)~o.o 

202 SP(I,u) = SP(I,J)-VIS(I,u)*SEWU(I)/DY c 
C ... OUTLET 
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c 

204 

205 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 

c 

20G 

302 

ARDEN*O.O 
FLOW=O.O 
00204 o.l=2,No.JM1 
DENAR=0.5*(DEN(NIM1,o.J)+DEN(NIM1-1,o.l))*SNS(o.l) 
ARDEN=ARDEN+DENAR 
FLOW•FLOW+DENAR*U(NIM1,o.l) 
UINC=(FLOWIN-FLOW)/ARDEN 
DO 205 o.l=2,No.JM1 
U(NI,o.l) ~ U(NIM1,o.l)+UINC 

SYMMETRY AXIS (DU/DY = 0.0) 

oJ • 2 
DO 20G I = 3,NIM1 
AS(I,o.J) = 0.0 
RETURN 

***************************************************************** 
CHAPTER 3 3 3 3 3 3 V MOMENTUM 3 3 3 3 3 3 3 3 3 
***************************************************************** 

ENTRY MODV 

SYMETRY AXIS 

DO 302 1=2,NI 
AS(I,3)=0.0 
RETURN 

***************************************************************** 
CHAPTER 4 4 4 4 4 PRESSURE CORRECTION 4 4 4 4 4 4 4 
***************************************************************** 

ENTRY MODP 

C NO MODIFICATIONS WITH VELOCITIES SPECIFIED AT BOUNDARIES. 
c 

RETURN 
c 
c 
c 
c 
c 

***************************************************************** 
CHAPTER 5 5 5 5 5 THERMAL ENERGY 5 5 5 !5 5 5 5 
************************************************~**************** 

ENTRY MOOT 
c 
C LARGE DUCT WALL 
c 

DY = YV(No.l) - Y(No.JM1) 
o.l=NuM1 
DO 502 1=2,NIM1 
AN(I,u) " 0.0 
TERM•GAMH(I,o.l)*SEW(I)/DY 
SU(I,u)•SU(I,o.J)+TERM*TWALL 

502 SP(I,o.J)•SP(I,o.l)-TERM 
c 
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c 
c 

503 
c 

SYMETRY AXIS 

DO 503 I•2,NIM1 
AS(I,2)=0.0 

c 
c 

c 

OUTLET CONDITIONS (NORMAL GRADIENT IS ZERO.) 

I = NIM1 
DO 504 v = 2,NuM1 

504 AE(I,u) ~ 0.0 
RETURN 

END 

c ***************************•************************************** 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

SUBROUTINE PROPS 
****************************************************************** 

****************************************************************** 
CHAPTER 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 
****************************************************************** 

COMMON 
1/VAR/ U(40,40),V(40,40),P(40,40),T(40,40),PP(40,40) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,40),VIS(40,40), 
1 GAMH(40,40) 
1/ALL/ IT,uT,NI,Nu,NIM1,NuM1,GREAT 
1/KASE4/ISTEP,uSTEP,ISTP1,1STM1,UIN,TIN, 
1 TWALL,SPH,TC,QWALL,uSTP1,uSTM1,FLOWIN 

****************************************************************** 
CHAPTER DENSITY, AND THERMAL EXCAHNGE COEFFICIENT 1 
****************************************************************** 

PROPERTIES WILL VARY WITH TEMPERATURE 

DO 100 I = 2,NIM1 
DO 100 J = 2,NJM1 
TPOW = T(I,J)**1.5 
CONST= 245.4*(10.**(-12./T(I,J))) 
VIS(I,J) = (1.458E-06*TPOW)/(T(I,J)+110.4) 
COND = 4186.*(6.325E-07*TPOW)/(T(I,J)+CONST) 
DEN(I,J) = P(I,J)*1000./(T(I,u)*287.0) 
IF (T(I,v).LT.600.) CP = 4184.*( .244388-4.20419E-05*T(I,J)+ 

*9.611283E-08*T(I,u)**2-1. 16383E-11*T(I,J)**3) 
IF (T(I,J).GE.600.) CP = 4184.*(.208831+7.71027E-05*T(I,J)

*8.56726E-09*T(I.~)**2-4.75772E-12*T(I,J)**3) 
100 GAMH(I,J) = COND/CP 

RETURN 
END 
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C START OF SF4.FOR 
c 

SUBROUTINE INITIAL 
c 
c ***************************************************************** 
C CHAPTER 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 
c ***************************************************************** c 

c 
c 
c 
c 

100 

101 

102 

103 

104 

COMMON 
1/UVEL/ RESORU,NSWPU,URFU,DXEPU(32),DXPWU(32),SEWU(32) 
1/VVEL/ RESORV,NSWPV,URFV,OYNPV(32),DYPSV(32),SNSV(32),RCV(32) 
1/PCOR/ RESORM,NSWPP,URFP,DU(40,40),DV(40,40),IPREF,JPREF 
1/TEMP/ RESORT,NSWPT,URFT 
1/VAR/ U(40,40),V(40,40),P(40,40),T(40,40),PP(40,40) 
1/ALL/ IT,JT,NI,NJ,NIM1,NJM1,GREAT 
1/GEOM/ INDCOS,X(32),Y(32),DXEP(32),DXPW(32),DYNP(32),DYPS(32), 
1 SNS(32),SEW(32),XU(32),YV(32),R(32),RV(32) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,40),VIS(40,40), 
1 GAMH(40,40) 
1/COEF/ AP(40,40),AN(40,40),AS(40,40),AE(40,40),AW(40,40), 
1 SU(40,40),SP(40,40) 
1/KASE4/ISTEP,JSTEP,ISTP1,ISTM1,UIN,TIN, 
1 TWALL,SPH,TC,QWALL,JSTP1,JSTM1,FLOWIN 
***************************************************************** 
CHAPTER 1 1 CALCULATE GEOMETRICAL QUANTITIES 1 
***************************************************************** 

NIM1aNI-1 
NJM1,.NJ-1 
DO 100 J=1 ,NJ 
R(J)"'Y(J) 
IF(INDCOS.EQ.1)R(J)=1.0 
DXPW(1)"0.0 
DXEP(NI)=O.O 
DO 10 1 I " 1 , N I M 1 
DXEP(I)=X(I+1)-X(I) 
DXPW(I+1)=DXEP(I) 
DYP$(1)=0.0 
DYNP(NJ)=O.O 
DO 102 J=1,NJM1 
DYNP(J)=Y(J+1)-Y(J) 
DYPS(J+1):DYNP(J) 
SEW(1)=0.0 
SEW(NI)~O.O 
DO 103 I=2,NIM1 
SEW(I)=0.5*(DXEP(I)+OXPW(I)) 
SNS(1)=0.0 
SNS(NJ)=O.O 
DO 104 J=2,NJM1 
SNS(J)=0.5*(DYNP(J)+OYPS(J)) 
XU(1)"0.0 
DO 105 l:2,NI 
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105 XU(I)•0.5*(X(I)+X(I-1)) 
DXPWU(1)•0.0 
DXPWU(2)*0.0 
DXEPU(1)ooO.O 
DXEPU(NI)cO.O 
DO 106 I•2,NIM1 
DXEPU(I)•XU(I+1)-XU(I) 

106 DXPWU(I+1)=DXEPU(I) 
SEWU(1)•0.0 
SEWU(2)"0.0 
SEWU(NI)"'O.O 
DO 107 I•3,NIM1 

107 SEWU(I)~0.5*(DXEPU(I)+DXPWU(I)) 

YV(1)ooO.O 
RV(1)=0.0 
D0"108 u"'2,NJ 
RV(J)•0.5*(R(J)+R(J-1)) 
RCV(J)=0.5*(RV(J)+RV(J-1)) 

108 YV(J)u0.5*(Y(J)+Y(J-1)) 
DYPSV(1)=0.0 
DYPSV(2)"'0.0 
DYNP(NI)"'O.O 
DO 109 J=2,NJM1 
DYNPV(J)=YV(J+1)-YV(J) 

109 DYPSV(J+1)=DYNPV(J) 
SNSV(1)=0.0 
SNSV(2)=0.0 
SNSV(Nu)"'O.O 
DO 110 J=3,NJM1 

110 SNSV(J)=0.5*(DYNPV(J)+DYPSV(J)) 
c 
c ***************************************************************** 
C CHAPTER 2 2 2 2 2 2 SET VARIABLES TO ZERO 2 2 2 2 2 2 
c ***************************************************************** 
c 

c 
c 

c 

DO 200 1=1,NI 
DO 200 u" 1, NJ 
U(I, u)=O.O 
V(I, J)=O. 0 
P(I,u)=O.O 
PP(I ,u)=O.O 
DEN( I, J)=DENSIT 
VIS(l,u)=VISCOS 
GAMH(I,J) " VISCOS/PRANDT 
DU(I ,J)=O.O 
DV(I,u)"O.O 
SU(I ,J):O.O 
SP(I, J)=O.O 

200 T_(I,J)=O.O 
RETURN 

END 

SUBROUTINE CALCU 

c **************************************************************** 
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C CHAPTER 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 0 
c **************************************************************** 
c 

c 
c 
c 
c 
c 

c 

COMMON 
1/UVEL/ RESORU,NSWPU,URFU,DXEPU(32),DXPWU(32),SEWU(32) 
1/PCOR/ RESORM,NSWPP,URFP,DU(40,40),DV(40,40),IPREF,vPREF 
1/VAR/ U(40,40),V(40,40),P(40,40),T(40,40),PP(40,40) 
1/ALL/ lT,vT,NI,Nv,NIM1,NuM1,GREAT 
1/GEOM/ INDCOS,X(32),Y(32),DXEP(32),DXPW(32),DVNP(32),DYPS(32), 
1 SNS(32),SEW(32),XU(32),YV(32),R(32),RV(32) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,40),VIS(40,40), 
1 GAMH(40,40) 
1/COEF/ AP(40,40),AN(40,40),AS(40,40),AE(40,40),AW(40,40), 
1 SU(40,40),SP(40,40) 

***************************************************************** 
CHAPTER ASSEMBLY OF COEFFICIENTS 
***************************************************************** 

DO 100 I•3,NIM1 
DO 101 u=2,NJM1 

C COMPUTE AREAS AND VOLUME 
c 

c 

AREAN•RV(v+1)*SEWU(I) 
AREAS=RV(u)*SEWU(I) 
AREAEW•R(v)*SNS(J) 
VOL~R(J)*SEWU(I)*SNS(u) 

C CALCULATE CONVECTION COEFFICIENT 
c 

c 

GN=O.S*(DEN(I,J+1)+DEN(l,J))*V(I,u+1) 
GNW~0.5*(DEN(I-1,J)+DEN(I-1,J+1))*V(I-1,v+1) 
GS•O.S*(DEN(I,J-1)+DEN(I,v))*V(I,v) 
GSW•O.S*(DEN(I-1,v)+DEN(I-1,v-1))*V(I-1,u) 
GE•O.S*(DEN(I+1,J)+DEN(I,J))*U(I+1,J) 
GP•O.S*(DEN(I,J)+DEN(I-1,J))*U(l,J) 
GW•0.5*(DEN(I-1,J)+DEN(I-2,J))*U(l-1,J) 
CN•O.S*(GN+GNW)*AREAN 
CSzO.S*(GS+GSW)*AREAS 
CE•0.5*(GE+GP)*AREAEW 
CW~O.S*(GP+GW)*AREAEW 

C CALCULATE DIFFUSION COEFFICIENTS 
c 

c 

VISN•0.25*(VIS(I,J)+VIS(I,J+1)+VIS(I-1,J)+VIS(I-1,J+1)) 
VISS•0.25*(VIS(I,J)+VIS(I,J-1)+VIS(I-1,J)+VIS(I-1,J-1)) 
DN•VISN*AREAN/DVNP(J) 
DS•VISS*AREAS/DYPS(J) 
DE•VIS(I,J)*AREAEW/DXEPU(I) 
DW•VIS(I-1,J)*AREAEW/DXPWU(I) 

C CALCULATE COEFFICIENTS OF SOURCE TERMS 
c 

SMP•CN-CS+CE-CW 
CP•AMAX1(0.0,SMP) 
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c 
c 
c 

101 
100 

c 
c 
c 
c 
c 

c 

CPO•CP 

ASSEMBLE MAIN COEFFICIENTS 

AN(I.J)~AMAX1(ABS(0.5*CN),DN)-0.6*CN 
AS(I,J)~AMAX1(ABS(0.5*CS),DS)+0.5*CS 
AE(I,J)•AMAX1(ABS(0.5*CE),DE)-O.!;i*CE 
AW(I,J)•AMAX1(ABS(0.5*CW),DW)+O.S*CW 
DU(I,J),.AREAEW 
SU(I,J)•CPO*U(I,J)+DU(I,J)*(P(I-1;J)-P(I,J)) 
SP(I,J)•-CP 
CONTINUE 
CONTINUE 

**********************************************************~****** 
CHAPTER 2 2 2 2 PROBLEM MODIFICATION 2 2 2 2 2 2 2 
***************************************************************** 

CALL MODU 

C CHAPTER 3 FINIAL COEFF. ASSEMBLY & RESIDUAL SOURCE CALCULATION 
c 

c 

RESORU=O.O 
DO 300 I=3,NIM1 
DO 301 J=2,NJM1 
AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(I,J) 
DU(I,J)=DU(I,J)/AP(I,J) 
RESOR=AN(I,J)*U(I,J+1)+AS(I,J)*U(I,J-1)+AE(I,J)*U(I+1,J)+ 

1 AW(I,J)*U(I-1,J)-AP(I,J)*U(I,J)+SU(I,J) 
VOL=R(J)*SEW(I)*SNS(J) 
50RVOL=GREAT*VOL 
IF(-SP(I,J).GT.0.5*SORVOL)RESOR=RESOR/SORVOL 
RESORU•RESORU+ABS(RESOR) 

C UNDER RELAXATION 
c 

AP(I,J)=AP(I,J)/URFU 
SU(I,J)=SU(I,J)+(1.-URFU)*AP(I,J)*U(I,J) 
DU(I,J)=DU(I,J)*URFU 

301 CONTINUE 
300 CONTINUE 

c 
c ***************************************************************** 
C CHAPTER 4 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 
c ***************************************************************** 
c 

c 

c 

DO 400 N=1,NSWPU 
400 CALL LISOLV(3,2,NI,NJ,lT,JT,U) 

RETURN 
END 

SUBROUTINE CALCV 

COMMON 
1/VVEL/ RESORV,NSWPV,URFV,DYNPV(32),DYPSV(32),SNSV(32),RCV(32) 
1/PCOR/ RESORM,NSWPP,URFP,DU(40,40);DV(40,40),IPREF,JPREF 
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c 
c 
c 
c 

c 

1/VAR/ U(40,40),V(40,40),P(40,40),T(40,40),PP(40,40) 
1/ALL/ IT,JT,NI,NJ,NIM1,NJM1,GREAT 
1/GEOM/ INOCOS,X(32),Y(32),DXEP(32),DXPW(32),DYNP(32),DYPS(32), 
1 SNS(32),SEW(32),XU(32),YV(32),R(32),RV(32) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,40),VIS(40,40), 
1 GAMH(40,40) 
1/COEF/ AP(40,40),AN(40,40),AS(40,40),AE(40,40),AW(40,40), 
1 SU(40,40),SP(40,40) 
*************************************************************** 
CHAPTER ASSEMBLY OF COEFFICIENTS 
*************************************************************** 

DO 100 1=2,NIM1 
DO 101 J~3.NJM1 

C COMPUTE AREAS AND VOLUMES 
c 

c 

AREAN~RCV(J+1)*SEW(I) 
AREAS~RCV(u)*SEW(I) 
AREAEW 2 RV(J)*SNSV(J) 
VOL=RV(u)*SEW(I)*SNSV(J) 

C CALCULATE CONVECTION COEFFICIENTS 
c 

c 

GN~0.5*(DEN(I,J+1)+DEN(I,J))*V(I,u+1) 
GP=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J) 
GS=0.5*(DEN(I,J-1)+DEN(I,J-2))*V(l,J-1) 
GE=0.5*(0EN(I+1,J)+DEN(I,J))*U(I+1,J) 
GSE=0.5*(DEN(I,J-1)+DEN(I+1,u~1))*U(I+1,J-1) 
GW•0.5*(0EN(l,J-1)+DEN(I-1,J-1))*U(I,J-1) 
CN=O.S*(GN+GP)*AREAN 
CS=O.S*(GP+GS)*AREAS 
CE=O.S*(GE+GSE)*AREAEW 
cw~0.5*(GW+GSW)*AREAEW 

C CALCULATE DIFFUSION COE~FICIENTS 
c 

c 

VISE=0.25*(VIS(I,J)+VIS(I+1,J)+VIS(I,J-1)+VIS(I+1,J-1)) 
VISW•0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I;J-1)+VIS(I-1,J-1)) 
ON=VIS(I,u)*AREAN/DYNPV(J) 
DEzVISE*AREAEW/DXEP(I) 
DS=VIS(I,J-1)*AREAS/DYPSV(J) 
DW=VISW*AREAEW/DXPW(I) 

C COMPUTE COEFFICIENTS OF SOURCE TERMS 
c 

c 

SMP=CN-CS+CE-CW 
CP=AMAX1(0.0,SMP) 
CPO=CP 

C ASSEMBLE MAIN COEFFICIENTS 
c 

AN(I,J)•AMAX1(ABS(0.5*CN),DN)-0.5*CN 
AS(I,J)•AMAX1(ABS(0.5*CS),DS)+0.5*CS 
AE(I,J)sAMAX1(ABS(0.5*CE),DE)-0.5*CE 
AW(I,J)=AMAX1(ABS(0.5*CW),DW)+0.5*CW 
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101 
100 

c 

DV(I,J)=O.S*(AREAN+AREAS) 
SU(l,J)=CPO*V(l,J)+DV(I,J)*(P(I,J-1)-P(I,J)) 
SP(I,J)R-CP 
IF(INDCOS.EQ.2)SP(I,J)=SP(I,J)-VIS(I,J)*VDL/RV(J)~*2 
CONTINUE 
CONTINUE 

c ***************************************************************** c CHAPTER 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 c ***************************************************************** c 
CALL MODV 

c 
c *************************************************************** C CHAPTER 3 F1NAL COEFF. ASSEMBLY AND RESIDUAL SOURCE CALCULATION 
c *************************************************************** c 

c 

RESORV=O.O 
DO 300 I=2,NIM1 
DO 301 J=3,NJM1 
AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(I,J) 
DV(I,J)=DV(I,J)/AP(l,J) 
RESOR=AN(I,J)*V(I,J+1)+AS(I,J)*V(I,J-1)+AE(I,J)*V(I+1,J) 

1 +AW(I,J)*V(I-1,J)-AP(I,J)*V(I,J)+SU(I,J) 
VOL=R(u)*SEW(I)*SNS(J) 
SORVOL•GREAT*VOL 
IF(-SP(I,J).GT.0.5*SORVOL) RESOR:RESOR/SORVOL 
RESORV=RESORV+ABS(RESOR) 

C UNDER-RELAXATION PROCEDURES 
c 

c 

c 
c 

AP(I,J)=AP(I,J)/URFV 
SU(I,J)=SU(I,J)+(1.-URFV)*AP(I,J)*V(I.J) 
DV(I,J)=DV(I,J)*URFV 

301 CONTINUE 
300 CONTINUE 

DO 400 N=1,NSWPV 
400 CALL LISOLV(2,3,NI,NJ,IT,JT,V) 

RETURN 
END 

SUBROUTINE CALCP 

c ***************************************************************** C CHAPTER 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 
c ***************************************************************** c 

COMMON 
1/PCOR/ RESORM,NSWPP,URFP,DU(40,40),DV(40,40),IPREF,JPREF 
1/VAR/ U(40,40),V(40,40),P(40,40),T(40,40),PP(40,40) 
1/ALL/ IT,JT,NI,NJ,NIM1,NJM1,GREAT 
1/GEOM/ INDCOS,X(32),Y(32),DXEP(32),DXPW(32),DYNP(32),DYPS(32), 
1 SNS(32),SEW(32),XU(32),YV(32),R(32),RV(32) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,40),VIS(40,40), 
1 GAMH(40,40) 
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c 
c 
c 
c 
c 

c 

1/COEF/ AP(40,40),AN(40,40),AS(40,40),AE(40,40),AW(40,40), 
1 ·SU(40,40),SP(40,40) 

RESORM=O.O 

***************************************************************** 
CHAPTER ASSEMBLY OF COEFFICIENTS 
***************************************************************** 

DO 100 I=2,NIM1 
DO 101 o.I=2,No.IM1 

C CALCULATE AREAS AND VOLUMES 
c 

c 

AREAN=RV(o.I+1)*SEW(I) 
AREAS=RV(o.I)*SEW(I) 
AREAEWzR(o.I)*SNS(o.l) 
VOL=R(o.I)*SNS(J)*SEW(l) 

C CALCULATE COEFFICIENTS 
c 

c 

DENN=0.5*(DEN(I,o.I)+DEN(I:o.l+1)) 
DENS•O.S*(DEN(I,J)+DEN(I,J-1)) 
DENEm0.5*(DEN(I,o.I)+DEN(I+1,o.l)) 
DENW=0.5*(DEN(I,J)+DEN(I-1,J)) 
AN(I,J)=DENN*AREAN*DV(I,J+1) 
AS(I,J)=DENS*AREAS*DV(I,J) 
AE(I,J)=DENE*AREAEW*DU(I+1,J) 
AW(I,J)=DENW*AREAEW*DU(I,J) 

C CALCULATE SOURCE TERMS 
c 

c 
c 
c 

101 
100 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

CN=DENN*V(I,J+1)*AREAN 
CS=DENS*V(I,J)*AREAS 
CE=DENE*U(I+1,o.I)*AREAEW 
CW=DENW*U(I,J)*AREAEW 
SMP=CN-CS+CE-CW 
SP(I,o.I)=O.O 
SU(I,J)=-SMP 

COMPUTE SUM OF ABSOLUTE MASS SOURCES 

RESORM=RESORM+ABS(SMP) 
CONTINUE 
CONTINUE 

***************************************************************** 
CHAPTER 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 
***************************************************************** 

CALL MODP 

***************************************************************** 
CHAPTER 3 3 3 FINAL COEFFICIENT ASSEMBLY 3 3 3 3 3 
***************************************************************** 
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c 
c 

301 
300 

c 
c 
c 
c 
c 
c 

400 
c 
c 
c 
c 
c 
c 
c 
c 
c 

501 
500 

c 
c 
c 

c 

c 

503 
502 

DO 300 Iz2,NIM1 
DO 301 u•2,NJM1 
AP(l,J)zAN(I,u)+AS(l,u)+AE(l,u)+AW(I,J)-SP(I,u) 
CONTINUE 

***************************************************************** 
CHAPTER 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 
***************************************************************** 

DO 400 N~>1,NSWPP 
CALL LISOLV(2,2,NI,Nu,IT,uT,PP) 

***************************************************************** 
CHAPTER 5 5 5 5 CORRECT VELOCITIES AND PRESSURE 5 5 5 5 
***********************************************~***************** 

VELOCITIES 

DO 500 I=2,NIM1 
DO 501 Jz2,NuM1 
IF(l.NE.2)U(I,J)~U(I,u)+DU(I,u)*(PP(l-1,u)-PP(l,u)) 
IF(u.NE.2)V(I,u)zV(l,u)+DV(I,u)*(PP(I,u-1)-PP(l,u)) 
CONTINUE 
CONTINUE 

PRESSURES (WITH PROVISIONS FOR UNDER RELAXATION) 

PPREF:PP(IPREF,uPREF) 
DO 502 I=2,NIM1 
DO 503 u"2,NuM1 
P(I,u)•P(I,u)+URFP*(PP(I,u)-PPREF) 
PP(l,u)=O.O 
CONTINUE 
CONTINUE 

RETURN 
END 

SUBROUTINE CALCT 

c **************************************************************** 
C CHAPTER 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 0 
c **************************************************************** 
c 

COMMON 
1/TEMP/ RESORT,NSWPT,URFT 
1/VAR/ U(40,40),V(40,40),P(40,40),T(40,40),PP(40,40) 
1/ALL/ IT,uT,NI,Nu,NIM1,NuM1,GREAT 
1/GEOM/ INDCOS,X(32),Y(32),DXEP(32),DXPW(32),bYNP(32),DVPS(32), 
1 SNS(32),SEW(32),XU(32),VV(32),R(32),RV(32) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(40,40),VIS(40,40), 
1 GAMH(40,40) 
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c 
c 
c 
c 

c 

1/COEF/ AP(40,40),AN(40,40)~AS(40,40),AE(40,40),AW(40,40), 
1 SU(40,40),SP(40,40) 

***************************************************************** 
CHAPTER ASSEMBLY OF COEFFICIENTS 
***************************************************************** 

DO 100 I=2,NIM1 
DO 101 l.l=2,N.JM1 

C COMPUTE AREAS AND VOLUME 
c 

c 

A.REAN•RV(d+ 1) *SEW( I) 
AREAS=RV(I.l)*SEW(I) 
AREAEW•R(I.l)*SNS(I.l) 
VOL=R(.J)*SNS(I.l)*SEW(I) 

C CALCULATE CONVECTION COEFFICIENTS 
c 

c 

GN•0.5*(DEN(I,I.l)+DEN(I,I.l+1))*V(I,J+1) 
GS•0.5*(DEN(l,.J)+DEN(I,J-1))~V(l,l.l) 
GE=0.5*(DEN(I,J)+OEN(I+1,.J))*U(I+1,.J) 
GW•0.5*(DEN(I,I.l)+DEN(I-1,1.l))*U(I,J) 
CN=GN*AREAN 
CS•GS*AREAS 
CE=GE*AREAEW 
CW=GW*AREAEW 

C CALCULATE DIFFUSION COEFFICIENTS 
c 

c 

GAMN•0.5*(GAMH(I,J)+GAMH(I,I.l+1)) 
GAMS•O.S*(GAMH(I,J)+GAMH(I,J-1)) 
GAME=0.5*(GAMH(I.J)+GAMH(I+1,J)) 
GAMW=0.5*(GAMH(I,J)+GAMH(I-1,1.l)) 
DN=GAMN*AREAN/DYNP(J) 
DS=GAMS*AREAS/OYPS(J) 
DE•GAME*AREAEW/DXEP(I) 
DW•GAMW*AREAEW/DXPW(I) 

C SOURCE TERMS 
c 

c 

SMP,.CN-CS+CE-CW 
CP•AMAX1(0.0,SMP) 
CPO=CP 

C ASSEMBLE MAIN COEFFICIENTS 
c 

AN(I,J)=AMAX1(ABS(0.5*CN),DN)-0.5*CN 
AS(I,J)=AMAX1(ABS(0.5*CS),OS)+0.5*CS 
AE(I,J)•AMAX1(ABS(0.5*CE),OE)-0.5*CE 
AW(I,I.l)=AMAX1(ABS(0.5*CW),DW)+0.5*CW 
SU(l,J)•CPO*T(I,J) 
SP(I ,J)=-CP 

101 CONTINUE 
100 CONTINUE 

c 
c ***************************************************************** 
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c 
c 
c 

c 

CHAPTER :2 :2 :2 PROBLEM MODIFICATIONS 2 2 2 
***************************************************************** . 

CALL MOOT 

c ***************************************************************** 
C CHAPTER 3 FINAL COEFF. ASSEMBLY AND RESIDUAL SOURCE CALCULATION 
c ***************************************************************** 
c 
c 

c 
c 
c 

301 
300 

c 
c 
c 
c 
c 
c 

c 
c 

c 
c 
c 
c 
c 
c 

c 

400 

RESORT•O.O 
DO 300 I=2,NIM1 
DO 301 J•2,NI1M1 
AP(l,J)=AN(I,ll)+AS(I,J)+AE(I,J)+AW(l,J)-SP(I,J) 
RESOR=AN(I,J)*T(I,J+1)+AS(l,J)*T(I,J-1)+AE(I,J)*T(I+1,J) 

1 +AW(I,J)*T(I-f,J)-AP(l,J)*T(I,J)+SU(l,J) 
VOL=R(J)*SEW(I)*SNS(J) 
SORVOLcQREAT*VOL 
IF(-SP(I,J).GT.0.5*SORVOL) RESOR=RESOR/SDRVOL 
RESORT•RESORT+ABS(RESOR) 

UNDER-RELAXATION 

AP(I,J)=AP(I,J)/URFT 
SU(I,J)=SU(I,J)+(1.-URFT)*AP(I,J)*T(I,J) 
CONTINUE 
CONTINUE 

***************************************************************** 
CHAPTER 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 
***************************************************************** 

DO 400 N=1,NSWPT 
CALL LISOLV(2,2,NI,NJ,IT,JT,T) 
REi URN 
END 

SUBROUTINE LlSOLV(ISTART,JSTART,NI,NJ,IT,JT,PHI) 

***************************************************************** 
CHAPTER 0 0 0 0 PRELIMINARIES 0 0 0 0 0 
***************************************************************** 

DIMENSION PHI(IT,JT),A(32),B(32),C(32),0(32) 
COMMON 

1/COEF/ AP(40,40),AN(40,40),AS(40,40),AE(40,40),AW(40,40), 
1 SU(40,40),SP(40,40) 
NIM1=NI-1 
NJM1=NJ-1 
JSTM1•JSTART-1 
A(JSTM1 )zO.O 

C THIS LOOP SETS UNDERFLOW VALUES TO ZERO 
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c 

c 

DO 1 I•ISTART,NIM1 
DO 1 ~=~START,N~M1 
IF(ABS(AE(I.~)).LT.1.E-10)AE(I,~)=O.O 
IF(ABS(AW(I.~)).LT.1.E-10)AW(I,~)•O.O 
IF(ABS(AN(I.~)).LT.1.E-10)AN(I.~)=O.O 
IF(ASS(AS(I.~)).LT.1.E-10)AS(I,~)=O.O 
IF(ABS(PHI(I.~)).LT.1.E-10)PHI(l,~)•O.O 

1 CONTINUE 

C COMMENCE W-E SWEEP 
c 

c 

DO 100 I•ISTART,NIM1 
C(~STM1)zPHI(I.~STM1) 

C COMMENCE S-N SWEEP 
c 

DO 101 ~~JSTART,NJM1 
c 
C ASSEMBLE TDMA COEFFICIENTS 
c 

c 

A(~)•AN(l,J) 
B(J)•AS(I,J) 
C(J)•AE(I,J)*PHI(I+1,J)+AW(I,J)*PHI(I-1,J)+SU(I,J) 
D(~)•AP(l,J) 

C CALCULATE COEFFICIENTS OF RECURRENCE FORMULA 
c 
C ? TERM•1.I(D(J)-B(~)*A(J-1)) 

TERM=O.O 
DMBMA•D(J)-B(J)*A(J-1) 
IF(ABS(DMBMA).GT.1.E-07) TERM=1.IDMBMA 
A(J)•A(J)*TERM 
IF(ABS(C(J-1)).LT.1.E-10) C(~-1)•0.0 

101 C(J)•(C(~)+B(~)*C(~-1))*TERM 
c 
C OBTAIN NEW PHI'S 
c 

c 

c 

DO 102 JJ=~START,N~M1 
~·N~+JSTM1-JJ 
IF(ABS(PHI(I.~+1)).LT.1.E-10) PHI(I,~+1)=0.0 

102 PHI(I,J)•A(J)*PHI(l,J+1)+C(J) 
100 CONTINUE 

RETURN 
END 

SUBROUTINE PRINT(ISTART,JSTART,NI,N~,IT,JT,X,Y,PHI,HEAD) 

DIMENSION PHI(IT.~T),X(IT),Y(JT),HEAD(6),STORE(50) 
DIMENSION F(7),F4(11) 
DATA FI4H(1H ,4H,A6, ,4HI3, ,4H11I ,4H10, ,4H7X, , 

14HA6) I 
DATA F414H 11 , 4H 2I ,4H 31 ,4H 41 ,4H 51 ,4H 6I , 

1 4H 7I ,4H 81 ,4H 91 ,4H10l ,4H111 I 
DATA HI,HYI4H I =, 4HY =I 
LP • 6 
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ISKIP~1 

uSKIP=1 
WRITE(LP,110)HEAD 
ISTA~ISTART-12 

100 CONTINUE 
c 

c 

c 

ISTA~ISTA+12 

IEND=ISTA+11 
IEND~MINO(NI,IEND) 
F(4)=F4(IEND-ISTA) 
WRITE(LP,F) HI, (I,I=ISTA,IEND,ISKIP), HY 
WRITE(LP,112) 
DO 101 uuzuSTART,Nu,uSKIP 
IF (X(I).LT.XMIN) XMIN = X(I) 
u=uSTART+NJ-uu 
DO 120 I=ISTA,IEND 
A=PHI(I,u) 
IF(ABS(A).LT. 1 .E-20)A=O.O 

120 STORE(I)xA 
101 WRITE(LP,113) u,(STORE(I),I=ISTA,IEND,ISKIP),Y(u) 

WRITE(LP,114)(X(I),I~ISTA,IEND,ISKIP) 
WRITE(LP,115) 

IF (IEND.LT.NI) GOTO 100 
RETURN 

110 FORMAT(//1H ,28(2H*-),7X,A5,7X,28(2H-*)) 
111 FORMAT(//1H ,GH I = ,I3,11110,7X,' Y = ') 
112 FORMAT(3H u) 
113 FORMAT(1H ,I3,1P12E10.2,0PF7.3) 
114 FORMAT(6H X= ,F7.3,11F10.3) 
115 FORMAT(//) 

END 

SUBROUTINE PLOT(X,IDIM,IMAX,XAXIS,Y,uDIM,uMAX,YAXES,SYMBOL,LP, 
1 ID) 

c 
COMMENT 
c 

******************************************************* COMMENT 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE FOR PLOTTING u CURVES OF Y(I,u) AGAINST X(l). C 
c 

X AND Y ARE ASSUMED TO BE IN ANY RANGE EXCEPT THAT NEGATIVE C 
NEGATIVE VALUES ARE PLOTTED AS ZERO. C 

c 
X ANDY ARE SCALED TO THE RANGE 0. TO 1. BY DIVISION BY THE C 

MAXIMUM, WHICH IS PRINTED AS WELL. C 
c 

!DIM IS THE VARIBLE DIMENSION FOR X. C 
c 

IMAX IS THE NUMBER OF X VALUES. C 
c 

XAXIS STORES THE NAME OF THE X-AXIS. C 
c 

uDIM IS THE VARIABLE DIMENSION FOR Y. C 
c 

uMAX IS THE NUMBER OF CURVES TO BE PLOTTED, (UP TO 10). C 
c 
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c THE ARRAY YAXIS(u) STORES THE NAMES OF THE CURVES. c 
c 
c 
c 

THl ARRAY SYMBOL(u) STORES THE SINGLE CHARACTERS USED FOR 
PLOTTING. 

c 
c 
c 

c 
COMMENT ******************************************************* 
c 
c 
c 

c 
c 
c 
c 
c 
c 

c 

DIMENSION NEEDED ARRAYS FOR PLOT SUBROUTINE 

DIMENSION X(IDIM),Y(uDIM,IDIM),A(101),SYMBOL(ID) 
CHARACTER*12 YAXES(uDIM),XAXIS 
DATA DOT,CROSS,BLANK/1H. ,1H+,1H / 

VARIABLES USED FOR 

SCALING X ARRAY 

XMIN ,. 1 .OE30 
XMAX" 1.E-30 
DO 1 I " 1,IMAX 

TO 

THE COORDINATE-AXISES 

THE RANGE 0 TO 50 

IF (X(I).GT.XMAX) XMAX X(I) 
IF (X(I).LT.XMIN) XMIN X X(I) 
CONTINUE 
XM • 100./(XMAX-XMIN) 
XN = -XMIN*XM 
DO 2 I " 1,IMAX 
X(I) = X(I)*XM+XN 
IF (X(I).LT.O.) X( I) X 0. 

2 CONTINUE 

C SCALING Y ARRAY TO THE RANGE 0 TO 100 
c 

c 

YMIN 1. OE30 
YMAX" 1.0E-30 
DO 3 u = 1,uMAX 
DO 3 I " 1,IMAX 
IF (Y(u,I).GT.YMAX) YMAX = Y(u,I) 
IF (Y(u,I).LT.YMIN) YMINxY(u,I) 

3 CONTINUE 
YM = 50./(YMAX-YMIN) 
YN " -YMIN*YM 
DO 4 u = 1,uMAX 
DO 4 I "' 1,IMAX 

C Y SCALING 
c 

Y(u,I) = Y(J,I)*YM+YN 
IF (Y(u,I).LT.O.) Y(u,I) = 0. 

4 CONTINUE 
c 
C IDENTIFYING THE VARIOUS CURVES TO BE PLOTTED 
c 

WRITE(LP,103) XAXIS 
WRITE(LP,100) (YAXES(I),I " 1,uMAX) 
WRITE(LP,106) (SYMBOL(I),I = 1,uMAX) 

c 
COMMENT 
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WRITE(LP, 102) (YMAX,I=1,JMAX) 
DO 5 I " 1,11 

5 A(I) ~ (XMAX-XMIN)*(I-1)/10. 
WRITE ( L P , 101 ) (A ( I) , I "' 1 , 11 ) 

c 
C MAIN LOOP. EACH PASS PRODUCES AN X-CONSTANT LINE. 
c 

c 
c 
c 

32 
30 

31 
c 
c .. . 
c .. . 
c 

33 

46 

47 

48 
c 
c 
c 
c 

44 

c 

DO 40 II " 1,51 
I = 51-Il+1 
IF (I.EO. 1.0R.I.EQ.51) GOTO 32 
GOTO 33 

ALLOCATE . OR + MARK ON THE Y-AXIS 

DO 30 K"' 1,101 
A(K) "' DOT 
DO 31 K ~ 11,101,10 
A(K) • CROSS 

ALLOCATE . OR + MARK ON THE X-AXIS, ALSO THE APPROPRIATE 
X VALUE. 

A(1) =DOT 
A(101) =DOT 
K = 11-1 
K = K-5 
IF (K) 48,47,46 
A( 1) = CROSS 
A( 101) " CROSS 
VL "' YMAX-0.02*(YMAX-YMIN)*(II-1) 

CHECK IF ANY Y(X(I)) VALUE LIES ON THIS X-CONSTANT LINE 
IF YES GOTO 41, OTHERWISE CHECK FO OTHERS ON ¥-CONSTANT LINE. 

DO 43 K " 1, IMAX 
DO 44 J = 1,JMAX 
!FIX= Y(J,K)+1.5 
IF(IFIX-I)44,41,44 
CONTINUE 
IF (J.EQ.JMAX+1) GOTO 43 

C ... LOCATE Y(X(I)) 
c 

41 

43 
c 

NY = X ( K) + 1 . 5 
A(NY) " SYMBOL(J) 
CONTINUE 

c PRINT X-CONSTANT LINE 
c 

WRITE(LP,105) YL,(A(K),K" 1,101),YL 
c 
C PUTTING BLANKS INTO X-CONSTANT LINE 
c 

DO 49 K = 1, 101 
49 A(K) * BLANK 
40 CONTINUE 
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c 
c 
c 

c 
c 
c 

c 
c 

50 

60 

100 
101 
102 
103 
104 
105 
106 

DO 50 I " 1,11 
A(I) = 0.1*(XMAX-XMIN)*(I-1) 
WRITE(LP,104) (A(I),I = {,11) 
DO 60 I = 1,IMAX 
X(I) ~ (X(I)-XN)/XM 
DO 60 ..J = 1,..JMAX 
Y(..J,I) = (Y(..J,I)-YN)/YM 
RETURN 

FORMAT STATEMENTS 

FORMAT(11H Y-AXES ARE,5X,10(1X,A12)) 
FORMAT(//,9X,11F10.6) 
FORMAT(15H MAXIMUM VALUES, 10E11.3) 
~ORMAT(///11H X-AXIS IS ,A12) 
FORMAT(9X,11~10.6) 
FORMAT(3H Y=.~6.2,3X,101A1,FG.2) 
FORMAT(7H SYMBOL,11X,10(1X,A10)) 

END OF SUBROUTINE PLOT 

END 

c ***************************************************************** 
C END OF THE TEACHL CODE 
c ***************************************************************** 
c 
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