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PREFACE 

A method for the construction of free lattice-ordered 

algebras was developed in the setting of a variety of abstract 

algebras in which subdirectly irreducible algebras are totally 

ordered. The method developed simplified the problem of 

construction of free t-algebras in that the free unordered 

algebra, which is in general easier to find, is used. 

Various examples of varieties of algebras for which this 

method of construction is valid were presented and noted as 

the motivating factors for this paper. One particular 

construction, that of a Boolean algebra, led me to be able to 

characterize the cardinality of finite free Boolean 

algebras. This characterization in turn led to a result that 

described the order of a free t-algebra in a somewhat more 

general setting. 

I wish to express my appreciation and thanks to the 

members of my graduate committee and especially to my advisor, 

Dr. Wayne B. Powell, for their help to me and perserverance 

with me. 
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CHAPTER I 

INTRODUCTION 

Free algebraic structures have long been studied in the 

specific cases of free groups, free rings and free modules 

and, in the recent past, in a more generalized setting. 

Birkhoff initiated a push toward mathematical abstraction in 

the 1930's and 1940's trying to universalize mathematical 

concepts from areas that at the time were considered 

diverse. The concept of abstract algebras was spawned by this 

shift in mathematical thought. The study of lattice-ordered 

abstract algebras is a logical progression of this shift in 

mathematics, due to the importance of lattice theory in 

mathematics, and it is in this setting that our study of free 

algebras takes place. 

Working primarily with Birkhoff's Abstract Algebra [3] to 

define the general mathematical setting in which this paper 

deals and with Bernau [1] and Powell [7] for concrete 

examples, this paper develops a general method for giving 

explicit constructions of free lattice-ordered algebras. 

Chapter II presents the preliminaries needed to develop 

the study. Generalized definitions of algebras, morphisms and 

free algebras are given. 
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Chapter III develops a method for constructing free 

algebras in the general setting described in Chapter II. 

Chapter IV presents the reader how to use the strategy 

developed in Chapter III to create actual examples of free 

i-algebras. Free abelian i-groups, free f-modules and free 

Boolean algebras are discussed. 

Chapter V discusses the cardinality of finite free 

i-algebras. The order of finite free Boolean algebras is 

characterized. 

2 

Chapter VI concludes with questions for further research. 



CHAPTER II 

PRELIMINARIES 

An (abstract) algebra is a pair [S,F] with S a non-empty 

set and F a collection of functions, each 

fa€ {fa}a€A= F mapping N~a) S to S, where each N(a) is a 

non-negative integer. Famiiiar algebraic structures are 

encompassed by this definition. For instance, consider an 

additive group (G,+). We may represent this group in terms of 

the above definition as [G,{+, -, 0}] where +maps GxG to G 

and is called a binary operation, - maps G to G and is refered 

to as unary, and 0 is the empty function mapping 6 to G and is 

called nullary. Similarly, we may represent the field 

( s ' + ' • ) by [ s ' { + ' - ' 0 ' 
-1 1 } J • . ' 

If [S,F] is an algebra, T~ S and F"' C'F, then [T,F"'] is 

and F"'-subalgebra of [S,F] provided T is closed under the 

operations of F"' 
' i.e. T is F"'-closed. If T 1:: S and F"' ~ F, the 

F"'-subalgebra of [S,F] generated by T is the intersection of 

all F"'-subalgebras of [S,F] which contain T. This 

intersection is easily shown to be an F"'-subalgebra of [S,F] 

and will be called the F"'-closure of T in S. 

Let {[S,F]} be a collection of algebras with variable S 

and constant F, i.e. the operations for each 

3 
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[S 1 ,FJ & {[S,F]} correspond to those of each [S 2 ,FJ & {[S,F]} 

and so we use the same symbols for both. Such a collection is 

said to be a collection of similar algebras. Note that the 

collection of F'-subalgebras of an algebra [S,F] forms a 

collection of similar algebras. The collection of all rings 

forms a collection of similar algebras. 

Consider [S,F') and [T,F] to be algebras with F' SF and • 

a function mapping S to T. If • has the property 

for all fa& F' and s 1 , ••• , sN(a) & S, the • is said to be an 

F'-homomorphism. If • is injective it is said to be an F'­

monomorphism, if surjective an F'-epimorphism and, if both, 

and F'-isomorphism. If there exists an F-isomorphism from 

[S,F] to [T,F], [S,F] and [T,F] are said to be isomorphic, 

denoted [S,F] s [T,F] The homomorphic image of [S,F'] under 

the F'-homomorphism • is defined as [•[S], F'] where 

•(s) = {•(S) I seS}. £•(S),F'] is easily shown to be an 

F'-subalgebra of [T,F]. 

Define a relation, =, on a set S to be a subset R of SxS; 

if sl' s 2 &S then s 1 is related to sl' s 1 - s 2 , if and only if 

(s 1 , s 2 )&R • An equivalence relation is a relation on a set S 

which is reflexive, symmetric and transitive. That is, for 

all s 1 , s 2 , s-J&S 



i) s 1 - s 1 (reflexive) 

ii) s 1 _ s 2 implies s 2 _ s 1 (symmetric) 

iii) 

An equivalence relation forms a partition of the set. Denote 

the disjoint elements of this partition as {[si] I SiES} and 

call these elements equivalence classes. It is generally 

known that s 1 ~ s 2 if and only if s 1 , s 2 E[si] for some i. 

Symmetry of the equivalence relation and the above result 

provide that the representation of equivalence classes we use 

is well-defined. 

An equivalence relation, ~, on the set S of the algebra 

[S,F] is a congruence relation provided, for each 

I < i < N(a) we have 

f EF and 
a 

5 

(2) 

If $ is a homomorphism of [S,F] to [T,F] we may construct a 

congruence on [S,F] using $ and the following theorem. 

Theorem II. 1: Let [S,F] and [T,F] be algebras and $ an 

F-homomorphism from [S,F] to [T,F]. The relation on S defined 

is a 

congruence relation on s. 
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Proof: Let s 1 , s 2 , s 3 €s. Since ~(s 1 ) = ~(s 1 ) , s 1 : s 1 

hence : is reflexive. Since ~(s 1 ) = ~(s 2 ) implies 

~(s 2 ) =- ~(s 1 ), if s 1 = s 2 then s 2 : s 1 hence : is 

symmetric. Since ~(s 1 ) = ~(s 2 ) and ~(s 2 ) = ~(s 3 ) imply 

~(s 1 ) = ~(s 2 ) , if s 1 - s 3 and s 2 = s 3 then s 1 : s 3 hence _ 

is transitive. Thus : is an equivalence relation on s. Let 

fa.€F and x 1 , ••• ,xN(a.)'y 1 , ••• yN(a.) 

1 < i < N(a.) • 

s such that xi : yi for 

Then 

~(fa.(x 1 , ••• ,xN(a.))) =fa. (~(x 1 ), ••• , ~(xN(a.))) 

= fa.(~(y1), ••• , ~(yN(a.))) = ~(fa.(y1, ••• ,yN(a.))) ( 3) 

(4) 

Given an algebra and a homomorphism from it we may define 

a similar algebra on the congruence classes of the relation 

defined in Theorem II 1. The next theorem is proved in 

[2,p.136]. 

Theorem II. 2: Let [S,F] be an algebra and ~ an F-

homomorphism from [S,F]. Let S/~ denote the set of congruence 

classes of S determined by~ as in Theorem II. 1. Then 

[S/~,F} forms an algebra with operations on S/~ defined by the 

formula 

fa.([s 1 ], ••• ,[sN(a.)J) = [f(s 1 , ••• , sN(a.))} 

for each fa.€F and [s 1 }, ••• ,[sN(a.)]€S/~. 

(5) 



The following corollary to the above two theorems is a 

generalization of the Fundamental Theorem of Group 

Homomorphisms [6,p.233] and the Fundamental Theorem of Ring 

Homomorphisms [6,p.243]. 
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Corollary II. 3: If [S,F] is an algebra there exists a 

one-to-one corresondence between congruence relations on [S,F] 

and F-epimorphic images of [S,F]. Moreover, if [T,F] is an 

epimorphic image of [S,F] under ~ then [T,F] ~ [S/~,F] under ~ 

defined by 

(6) 

for all [ s 1 ] £ S I~ • 

Throughout this paper homomorphisms and their associated 

congruence relations will be denoted by the same greek letter. 

Let {[Sa,F]} aeB be a collection of similar algebras and 

define the direct product of tbis collection of algebras to be 

the set a~B Sa with faeF defined on this set by 

fa(b 1 , ••• , bN(a)) = b (7) 

where b 1 , ••• , bN ( a ) , b £ a h S a wi t h 

b(a) = fa(b 1 (a), ••• , bN(a)(a)) for aeB. (8) 

Note that the formation of a product algebra produces an 

algebra similar to each of its component algebras. It can 

easily be seen that if [Ta,F'] is an F'-subalgebra of 

[ S a , F ), a ~B [ T a , F' ] is an F' sub a 1 g e bra of a ~ [ S a , F ] • 
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Such a subalgebra is said to be a subdirect product of the 

algebras {[S 8 ,F]} 8 €B provided for each s 8 €s 8 there exists 

b€ 8 ~ [T 8 ,F"'] such that b(S) = s 8 • That is, if for each S€B 

we define a project map 

each 8€B. The next theorem is easily verified. 

Theorem II. 4: If ~ 8 is a projection map from the 

direct product of algebras 

liB [T ,F"'] 
8€ s 

F"'-homomorphism. If this product is a subdirect product then 

~ 8 is an F"'-epimorphism. 

Monomorphisms into products of algebras can be characterized 

as follows: 

The o r em I I • 5 : I f <1> : [ S , F ] + B ~B [ S S , F ] i s an 

F-homomorphism and <j>(s) is a subdirect product of 

then <1> is a F-monomorphism if and only if for each collection 

{ s 8 I s 8 €S 8 , S €B} we have that the cardinality of 

n -1 
S€B <1> 8 (s 8 ) is 0 or 1, where 

(9) 
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Proof: Suppose $ is injective and there exists a set 

{sa I sae:Sa, ae:B} such that the cardinality of 

is greater than 1. Let x and y be elements of this 

intersection such that x fo y. Then $(x) = $(y) yet x FY 

hence $ is not injective. 

Conversely suppose x,ye:S such that $(x) = $(y). Then 

-1 -1 
$ a ( $ a ( X ) ) = $ a ( $ a ( Y ) ) f 0 r a 11 a e:B i m p 1 y i n g 

-1 -1 
$a ($a(x)) =$a ($a(y)) for all ae:B. Since 

n -1 n -1 
x e: a e:B $ a < $ a < x ) ) ' Y e: a e:B $ a < $ a< Y) ) ' 
n -1 n -1 

ae:B $ a ($a(x)) = ae:B $a (y)) and each of these 

intersections has cardinality less than or equal to 1, x = y. 

Hence $ is injective hence a monomorphism. 

An algebra is said to be subdirectly irreducible provided 

for each isomorphism from the algebra to a subdirect product 

of algebras at least one of the associated projections out of 

the product back to the algebra is an isomorphism itself. 

Simply, if an algebra is subdirectly irreducible, no 

information can be gained by representing the algebra as a 

subdirect product of algebras since the algebra is isomorphic 

to one of the components of the product. Recalling the 

Fundamental Theorem of Finitely Generated Abelian Groups 

[8,p.131] we may readily see that finite abelian groups of 

prime order are subdirectly irreducible. 



10 

Define a variety to be a collection of similar algebras 

which is closed with respect to the formation homomorphic 

images, subalgebras and direct products of algebras. For 

instance, if {G} is the collection of all abelian groups then 

{G} is a variety since homomorphic images of abelian groups 

are abelian groups, subgroups of abelian groups are abelian 

groups and direct products of abelian groups are abelian 

groups. The following classic theorem of Birkhoff [2,p.92] is 

crucial to the development of this paper. 

Theorem II. 6: Let n be a variety of algebras and 

[S,F]en. Then [S,F] has an isomorphic representation as a 

subdirect product of subdirectly irreducible algebras in n. 

This theorem in essence says that in a variety, each 

algebra can be broken down as a subdirect product of algebras 

each of which can be reduced no further, much the same way 

that an algebraic number can be factored into a product of 

irreducibles in a given field. 

Consider a collection of similar algebras n={[S,F]}, 

[S,F]en and a set X. [S,F] is said to be the free algebra 

generated by X in n provided that if there exists and 

injection a:X + [S,F] such that the F-closure of a(X) is 

[S,F], for any [T,F]en and function b; X+ [T,F] there exists 

a unique F-homomorphism ~: [S,F] + [T,F] such that b = ~oa. 

That is, the following diagram commutes. 
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Figure 1: Commutative Diagram of a Free Algebra 

Perhaps the most common example of a free algebraic structure 

is a vector space generated by its basis in the class of all 

vector spaces over a given field. In this instance the basis 

serves as the set X with unique homomorphisms between vector 

spaces being determined merely be defining functions, b, 

between basis sets. 

A generalization of the above definition is that of the 

free extension of an algebra. Let n' = {[T,F']} and 

n = {[S,F]} be collections of similar algebras with F' F. If 

[T,F']&n', [S,F]&n and ~is an F-monomorphism from [T,F'] to 

[S,F] such that the F-closure of ~(T) in S is S, then [S,F] is 

called the free extension of the algebra [T,F'] in n provided 

for each [R,F] &n and F'-homomorphism e: [T,F'] + [R,F] there 

exists a unique F-homomorphism 1jl : [S,F] + [R,F] such that 

e = 1jl o ~. That is, the following diagram commutes. 
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CT,F'J~ ... r:S,FJ 

. e ""' ! 3-_l 'Y 
CR.FJ 

Figure 2: Commutative Diagram of a Free Algebraic 

Extension 

This is a generalization of the previous definition in which X 

= T and F = 6. The next two theorems on the existence and 

uniqueness of free algebras can be found in Birkhoff 

[2,p.143]. 
) 

Theorem II. 7: If n is a variety of algebras and X is a 

set then the free algebra generated by X in n exists. 

Theorem II. 8: If n is a collection of similar algebras 

and X is a set and [S,F] is the free algebra generated by X in 

n, then [S,F] is the unique such algebra in n. 

Lastly, recall that a relation on a set S is a subset of 

the product S x S and define a partial order relation, ~' on S 

to be a relation that is reflexive, antisymmetric and 
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i) s 1 < s 1 (refexive) 

ii) s 1 < s 2 and s 2 < s 1 imply s 1 = s 2 (antisymmetric) 

iii) s 1 < s 2 and s 2 < s 3 imply s 1 < s 3 (transitive). 

A partial order, i, on a set S is called a total order 

provided it has the comparability property, either s 1 < s 2 or 

s 2 i s 1 for all s 1 , s 2 es. Sets with total orders are often 

referred to as chains. 

If < is a partial order on set S define for each x,yeS 

the least upper bound of x and y, x V y or 'x join y', to be 

the element z of S which satisfies the two following criteria 

if such an element exists: 

i) x i z and y i z, and 

ii) if weS such that y i w and y i w, then z < w. 

Similarly, z is the greatest lower bound of x and y, x A y 

or 'x meet y', provided: 

i) z < x and z < y, and 

ii) if weS such that w < x and w i y, then w i z. 

Note that x A y and x V y may not exist for all x,yeS if S is 

partially ordered. If, however, x A y and x V y exists for 

all x and y in a partially ordered set S this set is said to 

form a lattice. Note that a totally ordered set is 

necessarily a lattice. 

Consider an algebra [S,F]. 

algebra, t-algebra, provided 

[S,F] is a lattice-ordered 
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i) there exists a partial order ~ on S, 

ii) {A,V} E F where A and V are considered binary 

functions on S, and 

iii) if fa&F then for any N( a) K 
{Sij} i=1 j=1N(a) we have 

fa ( S * 
11 

= fa (t 1 , ••• , 

... ' s * N(a) 1 
• • . * s 

N(a)K 

* ..• * fa (t 1 
l 

J • • • , 

N(a) 

where each occurrence of * can be either A or V and 

{t11' ••• ' • • • ' t 1 ' 
l 

. . . , 

) 

( 10) 

K .N{a) • 
J =1 

Condition iii is required in order to tie the order relation 

of the set S into the algebraic structure of [S,F]. For 

instance in a lattice ordered group G we will see that for all 

a, b, CEG the following hold: 

i) a(b A c) ... ab A ac 

ii) a(b v c) ... ab v ac 

iii) (b v c)-1 b-1 A -1 = c 

iv) (b A c)-1 b-1 v -1 = c 



CHAI'TER III 

CONSTRUCTION OF FREE LATTICE-ORDERED ALGEBRA 

In this chapter we will develop a method for the 

construction of free t-algebras using the definitions 

discussed in Chapter II. The construction will follow 

directly from the following four lemmas. 

Lemma III. 1: Let n be a variety of t-algebras in which 

subdirectly irreducibles are totally ordered, n = {[S,F]}, and 

define n' = {[S',F'] I F' = F\ {A,V} , S'~ S for some 

[S,F]En and S' is F'-closed }. Let X be a set and a an 

injection from X to [S,F]En such that the F-closure of a(X) is 

S. Then the F'-closure of S' in S is S and is given by 

Proof: It will suffice to show [ { v A s':.},F] is an F-
i j 

l.J 

subalgebra of [S,F] since a( X) " {V A sfj} and s is the F-
i j 

closure of a(X). 

Clearly {V A sfj} is closed under V and A. Consider 

Then, 

i j 
f n-ary, and 

f(V A 
i j 

s.... • , ••• ' 
i 'J ' 

, , } <.. 
SN ' ••• ' SNK 7 

1 N 
S' • 

< r < N , we have 

15 
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= f(y11' ••• ' YN) 
1 

* ...• * f(y1 ' . . . , ( 11) 

where {y 11'"""' yN} 
R. 

Since S' is F'-closed, 

S', hence {V A slj } 
i j 

s = {V A sljeS'}. 
i j 

{ s ... 1 1 ' • • • ' sNK } 
n 

each f(y1 , ••• , 
r 

is F'-closed. 

.t 

and * is either A or 

YN ) ' 1 < r < R. ' is in 
r 

Thus 

Lemma III. 1 gives us a method to generate and represent 

the elements of an p-algebra using the elements of a simpler 

underlying unordered algebraic system. 

Lemma I I I. 2: Ifn, n', [ S' F' 1 , [ S, F 1 , X and a are as in 

Lemma III. 1 there exists a collection of nontrivial 

congruence relations r' "" {41'} 
y 

on [S',F'1 such that 

i) [S',F']/41' can be totally ordered as an algebra in y 

ii) 

n for each 41' Yer', and 

for any collection {[ s ... ] 
y 

each 41' er'} we have y 

[s' ]e[S' F']/"'' y ' '¥ y for 

1nr... [ s... 1 1 < 1 • y -

Proof: By Theorem II. 6 there exists an isomorphism 

[S,F1 + li [S ,F1, 41 = li 41y' 
r Y r 

with each [ S ,F 1 
y 

subdirectly irreducible hence totally ordered. Define a 

partition of S' by 41' "" {S' y [s 1 I [s 1e[S,F]/41 } y y y for each 

41 er • Note that each 41' is a congruence on [ S', F'] since y y 
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F' ~F. Let r' = {<P'yl <P/:r} • Since [S,F]/ <Py ~ [Sy,F], 

[S,F]/<Py is totally ordered. The order defined on [S',F']/<Py 

given by S' n [s 1 J ~ S'n [s 2 ] if and only if [s 1 ] ( [s 2 J in 

[S,F]/<Py gives a total order on [S',F']/<P'y. Since <Pis an 

isomorphism it is an injection, we have 1n [s 11 < 1 for any T y -

collection {[s ] I [s ]dS,F]/<P } • Since S' n [s ] ~ [s 1 for y y y y y 

ally, we have I p (S'n [sy]) I= 1 for any collection 

{s'n [s 11 S'n [s ]e:[S',F']/<P'}. Hence r' satisfies y y y 

conditions i) and ii) above. 

Lemma III. 3: Let Tit n', [S,F], [S' ,F'], X and a be as 

in L em rna I I I • 1 • Let [ T , F ] be an e 1 em e n t o f n , a a fun c t i on 

from X to [T,F] and T' the F'-closure of a(X) in T. If a' is 

an F'-homomorphism from [S',F'] to [T',F'] such that a= a' o 

a, then a' can be uniquely extended to an F-homomorphism a 

from [S,F1 to [T,F] such that a = a o a • 

Proof: Let r' be a collection of congruence relations on 

[S',F'] maximal with respect to conditions i) and ii) of Lemma 

III. 2. Denote r' = {<P' } • 
y 

Let <P' denote the canonical 

F'-monomorphism from [S',F'] to IT, [S',F'1/<P'y• 
r 

i.e. 

<P'(s) = n .. 
r 

[S',F']/<P'y 

[ s ] 
y 

where [ s Y 1 = [ s ] d S' , F .. 1 I <P' Y. Since each 

can be totally ordered as an algebra we can define 

A and V on n .. [S',F']/<P'y 
r 

and hence consider it as an 1-

algebra inn. Recall that S = {V ~ sfj I s' 1 je:S'} by 
i J 

II. 1 hence we can embed [S,F1 in II .. [S',F']/<P'Y by 
r 

Lemma 



18 

v A s .... + v A ~j>'(s'ij). Represent [ T, F] by II [T,F]/Ijlt 
i j 1] i j T 

with each [T,F]/ \jlt subdirectly irreducible hence totally 

ordered. It will suffice to show that if 9' is a homomorphism 

from ~j>'(S') to ¥ [T',F']/~j>'t 
{ V A ~j>(s' .. ) I s'iJ.e:S'} 

then we may extend e' to e from 

i j 1J to II [T,F]/Ijl • 
T t 

Note that since r' contains all congruences on [S',F'] 

such that [S',F']/~j>' Y can be totally ordered and since 

[S',F']/Ijlt o 9' is a totally ordered !-algebra, \jlt o 9' is an 

element of r' for each t. That is, for each \jlt' there exist 

IP'y(t)e:r' 

Define 

by 

Let us 

\jlt 0 e ( v 
i 

= 

= 

such that ~j>' y(t) = \jlt 0 e' . 

v 
i 

v r 

e: {V A lj>' (s'ij)} + II (T',F')/Ijlt 
i j T 

e (V A ~j>' ( s .. ij ) ) = v A e'(~P'(s' ij)). 
i j i j 

show e is well defined. Suppose 

A 
j 

A 
j 

A s 

s' e:S' rs Let 

~j>'(s' )) = \jlt (V A e'(s' 1j)) ij 
i j 

(ljlt 0 e'(s' .. )) = v A (~j>' y(t) 1J i j 

(~j>'y(t) (s' )) = v A (ljlt 0 e( rs r s 

(s'ij)) 

v A e' r s 

(I 2) 

Then 

(s' )) rs 
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Hence 1J!t o e (V A cp' (s' .. )) = 111t o e (VA cp'(s' )) . 1J r s rs 
J 

for 
i 

all 111t implying e(V A cp' (s' .. )) = e ( V A<P' (s' )) • Thus 
i j 1J r s rs 

e is well defined. 

Let us show e is a homomorphism. Suppose f€F, f N-ary, 

and V A cp' (s'i j ), ••• , V A cp' (s' .. )dV A cp' (s'i.)} • 
i 1 j 1 1 1 iN j N 1 NJ N i j J 

From Lemma III. 1 we have 

f(V A cp' (sf j ), ••• , V A cp' (s'i . )) 
i 1 j 1 1 1 iN j N NJ N 

= V A cp' ( s' ) 
r s rs 

for some {s' }€8' • Then rs 

= f( 

1J!to a (f (V A <P' 
i 1 j 1 

= ·" o e ( v A ... .. ( s.. ) ) = 111 ( v A e' ( s.. ) ) '~'t r s '~" rs t r s rs 

= f ( v A <P' y(t) ( s .. i . ) ' ... , v A <Py(t) ( s .. i . ) ) 
i1 j 1 1 J 1 iNjN NJN 

= f(V A "'t 0 
e' (s'i . )), ••• , v A "'t 0 

e' (s'i . )) 
i1 j 1 1 J 1 iN jN NJ N 

=f(1!1 (V A e' (s'i . )), ••• , "'t (V A e' (s'i . ))) t 
i 1 j 1 1 J 1 iN jN NJ N 

"'t oe (V A cp' ( s .. i j ) ) ' • • • ' "'t 0 e (V A <P' ( s i . ) H 14) 
i 1 j 1 1 1 iNj N NJn 
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Hence 

for all ~t implying 

Thus e is a homomorphism. 

Clearly a = e o a since a = e'o a. Let us show e is 

unique. Suppose w is another homomorphism from 

II, [S',F']/cp' 
r Y 

to ¥ (T,F)/~t such that w agrees with e' 

on cp'(S') and a = 

w( V A <1>' 
i j 

(s'ij)) 

= v A 
i j 

w o a. Consider V A w o 
i j 

= v 
i 

e 0 

A 
j 
<I>' 

w o cp' (s'ij) 

(s' 1 j) = e ( 

and hence e is unique. 

<I>' (s' .. ) • 
~J 

Then 

( 17) 

Lemma III. 4: Let n be a variety of i-algebras in which 

subdirectly irreducibles are totally ordered. Define n' as in 

Lemma III. 1 and let X be a set. Then the free algebra 

generated by X in n' exists. 
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Proof: Let [M,F] be the free £-algebra over X in n, its 

existence following from Theorem II. 7. Let a be an injection 

from X to M such that the F-closure of a(X) is M. Let M' be 

the F'-closure of a(X) in M where F' = F\ { V, A}. Then 

[M',F'] is the free algebra over X inn: 

Let [T',F']e:n' and [T,F]e:n such that [T',F'] is an 

F'subalgebra of [T,F]. Let B be a function X toT' whence 

from X to T. Recall that a(X) generates M' under F'. Since 

[M,F] is free over X in n there exists a unique F-homomorphism 

e from M to T such that B = e o a. Let e' be the restriction 

of e toM' and note 9' is an F'-homomorphism from M' to T'; 

since F'(F. The uniqueness of e' follows from Lemma III. 3. 

Hence [M' ,F'] is the free algebra over X in n'. 

Figure 3: Commutative Diagram of the Free Ordered and 

Unordered Algebras over a Set X 
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Theorem III. 5: Let n be a variety of i-algebras in 

which subdirectly irreducible i-algebras are totally 

ordered. Define n' = {(S',F'] I S'ES for some [S,F]En and S' 

is F'-closed where F' = F' { V, A}}. Let X be a set and 

(M',F'] the free algebra over X in n'. Let r' be a collection 

of congruence relations on (M',F'] such that r' is maximal 

with respect to the following two conditions: 

i) [M',F']/ <P' 
y 

can be totally ordered as an algebra 

in n for all <P' Er', and 
y 

ii) For any collection {[Sy] 

[S 1 ]E[M',F~]/<P' y' <P' 1 Er'} we have 

I p, [Sy]l ~ 1. 

Define FM, = { V A <P' (m' ij) 
i j 

[FM,,F] is the free i-algebra 

I <P' 

over 
r 

<jl' y' m' ij EM'} • .. II, 

X in n. 

Proof: (Consider Figure 4.) Let (T,F]En and a a 

Then 

function from X to T. Let T' be the F'-closure of a(X) in 

T. Let a be an injection from X to (M' ,F'] such that a( X) 

generates M' under F'. Since (M',F'] is free over X inn 

there exists and F'-homomorphism 9' such that a = 9' o a. 

Consider now the function e' o a from X to FM' • 

<P' o a(X) generated FM' under F by the definition of FM' and 

since a(X) generates M' under F'. We may extend e' to a 

homomorphism e f~om [Fm',F] to [T,F] by Lemma III. 3 such that 
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e = e o ,, o a. The uniqueness of e follows from the 

uniqueness of e'and the uniqueness of the extension of e'. 

Hence [FM',F] is the free t-algebra over X inn. 

_, I J <P' I I ~ - -r-M ,F J t'A' F JI/ ..0.. -&- --'---l ........ f~ 5 Tf', In, i' ~~ 

~ ~e' !e r 
CT• F1J r-T I E '- I FJ 

Figure 4. Commutative Diagram of the Construction of a 

Free t-Algebra 



CHAPTER IV 

SPECIFIC EXAMPLES OF FREE i-ALGEBRAS 

In this chapter we apply the results of Chapter III to 

give constructions for specific examples of i-algebras. If n 

is a variety of i-algebras then n' as defined earlier is a 

difficult object to work with, difficult in the sense that we 

are not assured of n' being a variety and that we do not have 

a firm idea of what is contained in n'. It is much easier to 

work instead with a variety of F'-algebras since varieties are 

closed under the formation of subalgebras, direct products and 

homomorphic images; n' may have none of these properties. 

The strategy then for constructing actual examles of 

i-algebras will be as follows: starting with a set X and 

variety of i-algebras n={[S,F] } in which subdirectly 

irreducibles are totally ordered we will let n' be the variety 

of all F'-algebras where F'=F\{V, A}. Then, letting [M',F'] 

be the free algebra over X in n', if there exists a collection 

r' of congruences on [M',F'] that is maximal with respect to 

the conditions of Lemma III. 2. then FM' as defined in Theorem 

II. 5 is the free i-algebra over X in n. This method leaves 

two things to construct - [M',F'] and r'. 

24 
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Consider the case of lattice ordered abelian groups 

(abelian ~-groups). An abelian ~-group is an abelian group 

(G,~) such that for all a, b, CEG, a(b A c) = (ab) A (ac) and 

a(bVc) = (ab) V (ac). (Earlier in Chapter II conditions were 

given for an abelian group to be an abelian ~-group. These 

are an equivalence to the above definition.) Familiar 

examples include: 

i) (R, +, ~) with < the natural order of the reals, 

and 

ii) (p(X), 4, ~) with X a nonempty set, 4 the symmetric 

difference of sets and ~ being set inclusion. 

If n is the collection of all abelian ~-groups then n is a 

variety of ~-algebras in which subdirectly irreducibles are 

totally ordered. Since n satisfies the hypothesis of Theorem 

III. 5 the method described above can be used to construct 

free abelian ~-groups. Theorems similar to those in Chapter 

III but specific to abelian ~-groups can be found in Bernau 

[O,p.48] and were used as motivation for this paper. Let us 

explicitly construct the free ~-group over X = {a} in n, the 

variety of all ~-groups. 

Let n' be the variety of all abelian groups and clearly 

M' = Z, the free group on one generator in n'• If G is an 

abelian ~-group it is easily shown that for o, a E G with 

o < a, then a < a + a. Hence if G is nontrivial and totally 

ordered, G is not finite. The only congruence ~ then on Z for 

which Z/~ can 
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be totally ordered as a group and is infinite is the trivial 

congruence, i.e. ~ = {{x} jxEZ}, with Z/~ ~ z. Since Z can be 

totally ordered as a group in only two ways, the usual order 

and the inverse order given by a ~ b if and only if b < a in 

the usual order, there exist only two congruences in r', each 

trivial. Then FM' S Z x z. It is easy to see that 

Fm' = Z x Z since (1,-1), (0,0) € FM'• 

on one generator is Z x z. 
Consider now the case of f-modules. 

Hence the free £-group 

Define the positive 

cone of an abelian £-group (G,., ~) to be all gEG such that 

g ~ 1. A lattice ordered ring, 1-ring, (R, +,. ~) is a ring 

(R, +, .) with a lattice order < such that (R, +, ~) is an 

abelian £-group and, if a, b, C€R with a~ b and CER+ then 

ac < be and ca < cb. An F-ring is an t-ring such that if a, 

b€R with a A b = 0 and rER+ then (ra) A b = 0. Define a 

lattice ordered module, £-module, (M,R, +, ., ~) to be a 

module with (M, +, ~) an abelian t-group, (R, +, ., ~) an t­

ring and if a, bEM such that a < b and cER+ then ca < cb 

and ac < be. Define an f-module to be an t-module such that 

if a,bEM such that a A b = 0 and rER+, then (ra) A b = 0. 

Examples of f-modules are: 

i) abelian t-groups as modules over the integers Z, 

and 

ii) any vector space which satisfies the conditions of 

being an £-module is also an f-module. 
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The collection of all f-modules over a given f-ring forms a 

variety in which subdirectly irreducibles are totally ordered, 

hence the method for construction of free 1-algebras we have 

developed can be used for free f-modules. Theorems similar to 

those found in Chapter III for the specific case of f-modules 

may be found in Powell [7,p29]. These also served as 

motivation for this paper. Let us explicitly construct the 

free f-module over one generator, X= {a}, in the variety n of 

all f-modules over the totally ordered f-ring of reals, R. 

Let n' be the variety of all modules over R and clearly 

M' = R, the free module over X in n'• Since R has no proper 

nontrivial submodules and can only be ordered in two ways, the 

usual order and the inverse order, r' has only two elements, 

both trivial. Hence FM' £ R x Rand, again, it is easily seen 

that FM' = R x R. 

Consider, as a last example, Boolean algebras. A lattice 

L is said to be complemented provided there exists elements 0 

and 1 in L such that, for all iEL, 0 ~ i and i ( 1 and there 

exists iEL such that i A 1' = 0 and i V 1' = 1. L is said to 

be distributive provided a A (b V c) = (a A b) V (a A c) and 

a V (b A c) = (a V b) A (a V c) for all a,b,cEL. If L is both 

complemented and distributive then L is said to be a Boolean 

algebra. Examples are: 



28 

i) the power set of a nonempty set X, P(X), forms a 

Boolean algebra with A < B if and only if A B for 

A,B eP(X), and 

ii) Any totally ordered set with two elements is a 

Boolean algebra. In fact a Boolean algebra is 

subdirectly irreclucible if and only if B is a two 

element chain [2,p.162]. 

If n is the collection of all Boolean algebras then n is a 

variety in which subdirectly irreducibles are totally 

ordered. Hence the construction of Chapter III is valid for 

the construction of free Boolean algebras. Let us explicitly 

construct the free Boolean algebra over two generators. 

Let X • {a,b} and define M' = {a,a', b, b' , 0, 1} ordered 

as follows: 0 < a, a', b, b' < 1. Define V and A on M' as 

follows: a V a' = b V b' = 1 and a A a' = b A b' = 0. M' 

may be realized in conventional lattice representation as 

Figure 5. 

Figure 5: The Free Complemented Set with 0 and 1 over 

Two Generators 
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We may denote the set of operations in a Boolean algebra 

as F={ V, A,', 0, 1}. IfF'= F\ { V, A} then [M',F'J is 

the free algebra over two generatiors (X= {a,b}) in the 

collection of all F'-algebras (see Lemma V. 2.). Note A and V 

are still defined for some pairs of elements in M' yet are not 

elements of F' since they are not defined for all pairs. Let 

us find all congruences f'y on [M',F'J such that (m',F'l/f' . y 

can be totally ordered as a Boolean algebra. Since totally 

ordered Boolean algebras have order 2 we must only find 

congruences on [M',F'J such that j[M',F'J/, .. I= 2. 
y 

Visually inspecting [M',F'] we see there are four: 

, .... 
1 

{ { 1 t a, b } t {0, a' 
' 

b' } } t 

'2 = { { 1' a', b' } ' { 0, a, b}}, 

'3 .. { { 1 t a', b}, {0, a, b .. }} t and , .. 
4 = { { 1 ' a, b'}, {0, a', b}}. 

Order these using the order induced by that of M', i.e. 

{1, a t b } > {0, a', b '} in [M',F'}/fl t 

{1, a', b'} > {0, a t b } in [M',F']/f' 2 , 

{1, a', b } > {0, a ' b'} in [M',F']/f3 t and 

{1, a t b '} ~ {0, a', b"'} in [M',F]/f{. • 

( 18) 

(19) 

(20) 

( 21) 



c = cp'ca) v c~>'cb') -~ -

d = cp'Ca) v lf>1Cb) = ~ 
e = cp•ca') y q,•c b') - r.-: 
f = 4>'ca') v Q>'(.b) - :-:----:\ 
3 == q,'ca) A cp·c~> -~ -

h = <P'ca') A ~ci:!) -~ 
= <P•ca) ·A cptb) = ~ 

. = cp'Ca') A ~(b) ~ J = 

. 
k=CJ\f =~ • • 

:__r. == g v j ·-
• • 

Figure 8. Elements of FM' Generated by 

~'(M') in inl (M',F']/$'i 
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If r' = { ~l } i~l then r' satisfies the hypothesis of 

Theorem III. 5. Denote for simplicity the larger element of 

~,i as li and the smaller element as Oi. We may then 

represent i!l [M',F']/~'i as in Figure 6 and, if ~is the 

cononical embedding of r' into i! 1 [M',F']/~'i we have the 

elements depicted in Figure 7. 

12. 
• 1 .... • 

Figure 6. The Direct Product of Quotients of [M' ,F'] 

over r' 

• • • • • • • • 
cp(1) - cp(o) = -

• • • • • • • • 

~ ~ ¢Ca) - <f>C.b) ::: -
• • 

~ ~ 4><a') - <P(Jd) - • • 

30 

Figure 7: The Embedding of [M' ,F'] into i~l[M',F']/~'i 



Letting FM' = {VA $' (Mi.) I MiJ. M'} as in Theorem III. 5 
i j J 

we generated the rest of the elements of 

Figure 8. By Theorem III. 5 we have F , 
M 

i~l (M',F']/$'i ' 

= iil [M',F']/$'i 

is the free Boolean algebra over two generators. Figure 9 

gives a conventional lattice representation of FM'• 

1 

0 

Figure 9 - Conventional Lattice Representation of the 

Free Boolean Algebra over Two Generators 
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CHAPTER V 

THE CARDINALITY OF FINITE FREE R.-ALGEBRAS: 

A Special Case 

Consider the following special case: 

Theorem v. 1: Let n = {[S,F]} be a variety of 

R.-algebras in which subdirectly irreducibles are totally 

ordered and have cardinality N < ~. Then if [FM',F] is a 

finite free algebra inn over a set X, then IFM'I = Nm for 

some positive integer m < ~. 

Proof: Construct FM' over X as in Theorem III. 5, 

F 'c IT [M' F']/~' M - , ' '+' ' r Y 
with each [M',F']/ct~' Y having 

cardinality N. Let us argue that the cardinality of r' is 

finite. Since FM' is finite and [M',F'] can be embedded in 

[FM',F], [M',F'] is finite. Since [M',F'] is finite it has 

only a finite number of congruences hence r' must be finite. 

Let jr'l = m, then FM' 1! 1 [M',F']/ct~' 1 • 

suffice to show that ct~'(M) generates all of 

i!1 [M',F']/ct~' 1 under V and A. 

It will 

For simplicity denote [M',F']/ct~' 1 by the set 

{0 1 , 11 , ••• , m1 } ordered as the integers; do not forget, 

however, that each rs for 1 i r < N and 1 < S < m is a subset 

33 
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(congruence class) of M'. Using this notation it will suffice 

to show that for each 1 < r < N and 1 < s < M, the element 

[M',F']/$'. given by 
l. 

b (x) 
r s =f r s ' 

0 ' X 

X = S 

1 ( X ( m , x = s 

is in FM'' since these elements clearly generate 

under V and A. 

Choose such an r and s and let msers 
m 

Define b = s 

M = iu i • s =r s Now, for 1 < x < m with x F s, 

define bx as follows: if ox n Ms F 6 then 

m eOn M; if 0 nM = 6, let 
X X S X S 

b = <P' (m ) A <P'(m ) 
X s X 

(22) 

b = <P'(ms) v 
X 

<P' (m ) 
X Then b = x~ 1 bx 

rs 
and we are done. 

From the last example of Chapter IV we recall that in the 

variety of all Boolean algebras, totally ordered elements have 

cardinality two. From the above theorem we see that finite 

free Boolean algebras have order 2m for some positive integer 

m. In this case m is determined by the cardinality of X as 

follows. 

Lemma V. 2: Let X be a set, X= {xi} iei' and define a 

partially ordered set (M', ~) by M' = XU X' U {0, 1}, 

X' = {x'i } iei' with 0 ~xi, x'i ~ 1 and xi A x'i = 0 and 

xiVx'i = 1 for all id. IfF'={', 0, 1} then [M',F'] is the 

free algebra over X in the collection of all F'-algebras, n'• 
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Proof: Let [T',F']En' and a an injection from X toM' 

given by a(Xi) = Xi for iEI. Note a(X) generates M' under 

F'. Let e be a function from X to [T',F']. Define 

9': M' + T' by 

a- (x) = l 1 ' 
0, 

e(x), 
e(x)', 

X = 1 
X = 0 
X € X 
X € X' 

Clearly e' preserves , 1 and 0 hence is an F'-

(23) 

homomorphism. Also, it is obvious that e = e' o a and that e' 

is unique. Hence [M',F'] is free over X inn'. 

Theorem v. 3: Let X and [M',F'] be as in Lemma v. 2 with 

X finite. Then [M',F;] has exactly 2X distinct congruence 

relations $' such that [M',F']/$' is a totally ordered Boolean 

algebra. 

Proof: Since a Boolean algebra is totally ordered if and 

only if it has cardinality 2, it will suffice to show that 

[M',F'] has exactly 2X congruences $'such that j[M',F']/$'1 = 2. 

By induction: 

if X= 1, X= {Xi}' M' = {x, x', 1, 0} has only two such 

congruences $' 1 = {{1,x}, {x', 0}} and $' 2 z {{1, x'}, 

{x,O}}. These are evident by inspection of Figure 10. 
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Assume now for m < N that if lXI = m, then M' has 2m such 

congruence relations. Suppose that lXI = N, X= {x 1 , ••• , 

XN} • Let X* = { X 1 , ••• , XN _ 1 } • Since I X* I < N 

M* = X U X* U { 0, 1} has zN- 1 such congruences. Denote these 

by , ... i = {li' Oi}, 1 iii zN- 1 • Let M' =XU X' U {0,1} • 

Then for each 1 < i < zN- 1 , the paritions of M' g~ven by 

, ... i = {1iU {xN}' OiU {xN'}} 
1 

and 

,... = { 1 U {x' } 
i 2 i N 

that I[M',F']/'i I 
1 

, 0 i U {xN}} are congruences on M' such 

= 2 and I[M',F']/'i I= 2. Hence 
2 

[M',F'] has at least 2N- 1 • 2 • zN such congruences. Let us 

show these are all the congruences , ... on [M',F] such that 

Let , ... i = {1i Oi} be a congruence on [M',F'] such that 
1 

I [ M' , F' 1 I '' I • 2 • Note that if xN e 1 i then x ... N i 0 i • 

Since , ... i has two elements there exists 

xeM' such that xe1i • Then x : x and 1 : 0 yet 

X V 0 = X I= 1 = X v 1 ' hence a contradiction. Similarly for 

xN'e oi ) Let * 
{li \ {xN}, oi \ {x'N}} if XNe1i XN' • 'i -

if xNeOi' '~ {li \ {x'N}, oi \ {xN}}. Then * is or, = 'i one 

Of the 2N-1 M* h "' i f h 2N congruences on , ence ~i s one o t e 

congruences on M' and we are done. 
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Figure 10 - The Free Complemented Poset with 0 and 1 over 

One Generator 

Corollary V. 4: If X is a set of cardinality N, then the 
N 

free Boolean algebra over X has order 2 2 • 



CHAPTER VI 

CONCLUSION 

The idea that a general method for the construction of 

free t-algebras arose when it was realized that a similar 

strategy had been used in at least two separate instances the 

construction of free abelian t-groups by Bernau [0] and the 

construction of free f-modules by Powell [7]. I adapted this 

construction to that of Boolean algebras and then to a general 

case of abstract algebras in Chapter III. The strategy 

developed simplifies the problem of construction in that the 

free unordered algebra is used to build the lattice-ordered 

algebra and useful methods of construction and 

characterizations of free unordered algebras have been 

developed in the past. 

Several questions have arisen since the initial work in 

this paper was completed. In the theorem and lemmas of 

Chapter III, how strongly is the fact used that the operations 

excluded from F' are A and V ? Can this method of 

construction be generalized even further to exclude operations 

other than A and V from F'? 

When considering the cardinality of certain cases of free 

t-algebras in Chapter V, Theorem v. 1 is far from 

38 



satisfactory. 

in general? 

39 

Can m in Theorem v. 1 be determined by n and X 

One of the greatest pleasures in doing mathematics is to 

abstract situations from specific cases, as in this paper, in 

order to develop theory to encompass as many of these specific 

cases as possible. The most difficult aspect of doing this, 

as I found, is trying to find the common threads which tie 

these cases together in order that a generalization can be 

made. 
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