
A FRAME BASED ON-LINE REFERENCE PACKAGE

By

TERRY JAY JOHNSON
II

Bachelor of Arts
University of Michigan

Ann Arbor, Michigan
1970

Master of Library Science
Louisiana State University

Baton Rouge, Louisiana
1979

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1985

A FRAME BASED ON-LINE REFERENCE PACKAGE

Thesis Approved:

Dean of the Graduate College

ii

PREFACE

This paper is a discription of a frame based on-line

reference package applied to computer program debugging. It

includes an authoring program, descriptions of the program

modules, and user's guides to both the reference package and

the authoring program.

I would like to express sincere gratitude to my major

adviser, Dr. Michael J. Folk, for his guidance, motivation,

and invaluable help. I am also thankful to Dr. Donald D.

Fisher and Dr. Sharilyn A. Thoreson for their insightful

suggestions and encouragement during the course of this

work. An extra thank you must go to Dr. Kelvin L. Davis for

agreeing to serve on my committee as a last minute

substitute.

My deepest gratitude to my family, Cora, John, and

Kimberley for their encouragement, for their love, and for

just being there.

lll

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

1
10

II.

I I I.

Development of the Concept
Application • • • • • • •

Review of Literature •••••• . . . 13

Computer Assisted Instruction • . • • • 14
Frame Oriented Systems • • • • • • • • 15
Debugging • • • • • • • • • • • • • • • • • 16
Computer Aided Debugging • . • • • • . • • 21
System Supplied Aids • • • • • • • 25

Methods and Procedures • •
Design Criteria ••••••
Implementation • • •

Environment • • • • • • • •
Concurrency • • • • • •
Menu Strategy • • • • • • • • •
Reference Package Structure

Program Description • • • • ••
Frame Reference Package.
Frame Authoring System •
Debugging Application

27

27
28
28
28
30
32
40
40
46
49

IV. Summary and Future Work 52

On-Line Reference Package Synopsis 52
Limitations of On-Line Reference
Package • • • • • • • • • • • • • • . • • • 53
Future Project Considerations • • • . • 54
Portabi 1 i ty • • • • • • • 56

SELECTED BIBLIOGRAPHY • • • • • • • • • • • 57

APPENDIX A - FRAME BASED REFERENCE PACKAGE
MODULE SCHEMATICS • • • • • •

APPENDIX B - FRAME BASED REFERENCE PACKAGE
MODULE CATALOG • • • • • • • •

APPENDIX C - USER'S GUIDE TO THE FRAME BASED
REFERENCE PACKAGE • • • • • • •

iv

60

64

101

Chapter

APPENDIX D - AUTHORING GUIDE TO THE FRAME
BASED ON-LINE REFERENCE PACKAGE

v

Page

128

LIST OF FIGURES

Figure

1. Typical Menu Display

2. Connecting Framework of Reference Package

3. Full Frame Set • • . • • • • •••

4.

5.

6.

7.

8.

9.

Abbreviated Frame Set

Major Modules for User Package • • • • •

Display Modules • • • • • • •

Execution Modules

Task Modules • • •

New Destination Modules • • ••••••

Authoring System Modules • • • • • •

Introductory Frame .•

Compiler Summary Frame •

10.

11.

12.

13.

14.

Explanation Frame for Compiler Summary Frame •

Further Explanation Frame

15. Return to Summary Frame

16.

17.

18.

19.

Summary Frame

Summary Frame • • • • • • •

Summary Frame With g Command ••••••

Return to Marked Frame

. .,

20. Index Frame

21.

22.

Summary Frame Visited From the Index Frame .

Frame Showing Result of Locate Command ••

vi

Page

31

36

37

37

60

60

61

61

62

63

113

114

115

116

117

118

119

120

121

122

123

124

Figure Page

23. Return to Previous Frame After Locat~ Command. • . 125
24.

25.

26.

27.

28.

29.

Error Frame . • . • • • . • • . . • . • . . .

Final Frame As User Leaves Package • . • .

Next Frames for End of Sets

Portion of Prompts for Authoring System

Finish Qf Authoring Prompts . . • • •

Contents of Toy.exm

vii

126

127

131

135

136

137

CHAPTER I

INTRODUCTION

Development of the Concept

One of the most valuable utilities most operating sys

tems provide is an on-line command reference manual. When

the UNIX user invokes this by the command, man, followed by

the name of the command requested, the system will display a

brief description of the requested command's format and

function. UNIX also provides a computer assisted instruc

tion package(CAI) invoked by the command, learn, that is

supposed to aid the user in understanding system commands

and protocols. Considered as reference tools, each of these

has weaknesses and strengths, and to some degree, the

strengths and weaknesses are complementary. The strengths

of one may compensate for the weaknesses of the other. This

project intends to present a model of a reference tool that

will combine aspects of computer assisted instruction with

those of on-line reference manuals to produce a product that

has many of the advantages of the two methods and hopefully

few of the disadvantages. A C language debugging package

will be developed to demonstrate this tool in practical ap

plication.

1

2

Before examining this reference tool in greater detail,

the strengths and weaknesses of the individual components

will be examined more closely starting with computer assist

ed instruction henceforth referred to as CAI. As the name

implies, computers are used as either a supplement or as an

alternative to conventional classroom instruction. To a de

gree, it may be unfair to note the weaknesses of this method

as a reference tool since its purpose is not reference but

instruction. However, it is the view of the author that a

good reference tool should involve more teaching than most

existing tools do now, and most instructional tools should

also be more useful as references than they are now. With

this as background, CAI will be examined as a teaching tool.

Since classroom instruction usually involves lecture,

CAI has most often been compared with lecture (Steinberg,

1984). Its advantages in this respect have been noted as:

1) CAI can require a response from every user instead

of the usual articulate few who make most classroom

responses.

2) The answers and mistakes are private--no one need

fear public embarrassment.

3) The presentation speed is controlled by the student

and can thus be individually paced and not set by the in

structor or the rest of the class.

4) Statistics of individual performance can be moni

tored by the instructor who then has an idea of the progress

of the class.

5) The lessons are available when the equipment is

available, not just when the instructor and classroom are.

Disadvantages of CAI when compared to classroom lecture:

3

1) CAI implementation usually have limited power to

answer questions. CAI will either not answer questions or

do so in the most rudimentary fashion. This is probably due

to the complexity of natural language processing for in

terpretation of questions. Typically, such courses refer

the student to a human instructor whenever they feel the

need for extra help.

2) No group discussion is possible. This can be a

valuable teaching aid. A peer can often express things in a

manner more comprehendable than an instructor simply because

the levels of experience are closer. Group discussion may

suggest alternative methods of viewing topics that might not

occur to the student or an instructor, be that instructor

man or machine.

3) Normally, only visual presentation of material is

used. While this is not intrinsic to the CAI method, audio

presentations are rare.

4) There are no visual cues possible between student

and instructor. In the classroom, these can provide valu

able feedback to the instructor in pacing the presentation

and discovering what may need further explanation.

Although not often mentioned, CAI can be compared with

another visual student paced medium, the textbook. In some

sense, it seems strange that the textbook is so seldom men-

4

tioned because it and CAI share so many characteristics. In

another sense, it may not seem unusual at all since CAI as

usually implemented is more similar to an on line lecture

interspersed with exercises than it is to an on line text

book.

It is now time to examine in more detail the advantages

and disadvantages of currently practiced CAI compared with

the textbook.

CAI Advantages Over the Textbook:

1) CAI can force a response.

2) The computer can provide feedback and reinforcement

that a textbook can not.

3) CAI is present whenever the computer is operating,

and so is available when a text may not be.

4) Depending upon the implementation, CAI has the po

tential of easier modification to add or delete text.

CAI Disadvantages Compared to a Textbook:

1) Presentation is generally sequential. There is no

opportunity to skip around and look ahead.

2) Presentation is unidirectional. Usually there is no

way to review a previous section under user control. Learn,

for instance, enables a student to indicate a previous

checkpoint and repeat from there, but fine control is not

possible.

3) Usually, nothing equivalent to a table of contents

or index is available to allow direct access only to a par

ticular topic.

4) While a textbook can be used for future reference

5

after course work is completed, CAI implementations are spe

cialized to one purpose: teaching.

5) A student may copy especially relevant sections of a
.

text for future reference, whereas one may only take notes

in a CAI session. This is another similarity between CAI

and lecture.

6) A book may be browsed, but CAI, by forcing

responses, compels a particular behavior pattern. Questions

must be answered to progress through the course; the user is

unable to take a relaxed view of the material, pausing where

his interests or needs require.

At this point, a picture of this "ideal" reference tool

is beginning to form. Clearly, CAI has a role in providing

explanation in depth. Most of CAI 's deficiencies with re

gard to lecture can be resolved by providing some means of

communication between users. This reference tool, there-

fore, should provide an integral means of communication.

This tool should also be very book-like in that the control

of direction and manner of use of the reference tool should

be under the user's control. To guide him in the exercise

of this control, he should be provided with an index. The

user now decides what will be studied and to what degree; he

has the capability to browse and skip around in many direc-

6

tions. However, by giving the user this power, the imple

mentation strays far from traditional CAI. Responses are no

longer required before progressing and so it is not possible

to monitor a student's progress. Since monitoring and pack

age control of user actions have been noted as advantages of

CAI, perhaps an explanation is requi~ed as to why they have

been dropped from the reference tool. The answer is simple:

those are instructional advantages. In a reference environ

ment, they conflict with the freedom desired in this tool.

Since the author believes that exercises are valuable for

the practice and reinforcement of concepts, they will be in

cluded, but performance of them is optional.

On-line reference aids such as ~ or help are not in

tended to instruct; they exist for reference only with the

implicit assumption that the user is somewhat familiar with

the material being presented. Therefore, text is usually

condensed and difficult to comprehend. Additionally, exam

ples are seldom present and the format relatively rigid.

Occasionally, a user may try to access a topic that is

a subtopic under another heading. If the user is unaware of

this, he is puzzled and frustrated. He has no index or list

of topics available on-line with which to search for related

topics.

The modifications to CAI that been have mentioned pre

viously provide a tool that already addresses the flaws just

noted. What is not yet available, though, is a tool that

provides the normal function of the on-line reference manu-

al: providing a brief summary of function and format. Yet

this is all that some users require. Meeting this demand

implies that the tool should be multi-level with one level

equivalent to the on-line manual and another level similar

to a CAI presentation.

7

Now that requirements for this tool have been defined,

the implementation method can be made more concrete. The

text is stored in individual files: each of which contain,

at most, the amount of text that may be displayed upon a

terminal screen. A terminal screen contains twenty-four

lines although only about twenty lines are available for

text with the other four being used for menu and prompt

display. Each file of twenty lines must connected with simi

lar files so that a presentation sequence may be followed.

This linking to other files is accomplished by includeing

within each file references to other connecting files.

These connection references are known as links and the whole

structure of linked files is a linked list. Because of the

multilevel aspect of this tool, the files or nodes of the

major linked list may, in turn, head other linked lists.

This overall structure can be summarized by saying that the

text is stored in a linked list of lists. In the terminolo

gy used henceforth in this paper, one of these nodes or

files will be referred to as a "frame" and will contain

linking information as well as the text that would be

representable upon a terminal screen.

8

Presentation of the data is accomplished by a driver

program that operates by traversing this framework of linked

frames. As the driver program traverses, it presents the

textual information of each frame upon the terminal screen.

The path of frame traversal is determined by the user en

tered commands given at each frame.

There are several types of frames. The types of frames

used for storing text depend upon the type of text they

store. These types are as follows:

1) Summary frames provide a brief description of a to

pic with the textual style and purpose similar to that of an

on-line manual.

2) Explantion frames contain in depth explanations of

the topics presented in the summary frame, and can be ac

cessed by traversing from a summary frame. The text is of

the level of CAI, providing explanation to someone who is

relatively unfamiliar with the topic.

3) Example frames contain examples taken from the con

text of actual applications and can be reached from explana

tion frames. Examples are not included within the instruc

tion frame in order to keep frame sizes of approximately

screen size and not to interfere with the flow of concentra

tion developed within the instruction frame.

4) Exercise frames contain simple examples intended to

reinforce concepts mentioned in the instruction frame. Like

the example frame, the exercise frame is considered subsidi

ary to the explanation frame and is reached from the expla-

nation frame.

5) Communication frames allow on-line interaction

between the user and the people who control the package's

operation and contents.

9

6) Index frames contain an alphapbetical listing of the

topics in the package and allow the user direct access to

the frame of his choice.

In addressing the previously noted requirements, the

following features represent the approach taken in this

package:

1) Multilevel presentations: The user may stay at the

summary level, browsing or reviewing, or he may go to the

instruction level on a particular topic. Exploration of ex

ample and exercise frames is optional. The user may go to

whatever level suffices for his needs.

2) Modular design: By using linked list design, nodes

may be inserted or modified with little difficulty.

3) Indexing: The user may access any topic directly

through the index without having to proceed sequentially

through extraneous information.

4) Examples: Examples illustrate implementations of the

topic under discussion. Viewing of examples is optional,

allowing the hurried user to bypass any of them that may be

irrelevant to his needs.

5) Exercises: This is a feature whose performance is

optional but whose presence allows reinforcement of concepts

through practice.

10

6) Copying: Each frame will allow the option of copying

the frame into the student's directory.

7) Multidirectional traversal: The user may traverse

the frames forward, backward and in some cases laterally.

Review is possible with the user controlling the extent.

8) Communication: A bulletin board frame allows com

munication between users and the tool designer and between

instructors and students. Complaints, examples, sugges

tions, and information may all be passed along. Feedback,

communication, and group discussion are now possible without

having to learn the mechanisms of phone, msg, or mail.

9) Bookmark: By invoking the bookmark feature, a user

can save the location of the particular frame of interest

and can return there without having to remember a location

identifier to be invoked at a future time.

10) Application independent: The driver may be applied

to any set of properly constructed files. This allows this

reference package to be used for any subject.

Application

The example application chosen for the on-line refer

ence tool is that of a debugging reference package. This

application can illustrate the tool and at the same time

provide a much needed utility. Bugs are errors in computer

programs that interfere with the proper execution of the

program. The process of detecting and correcting bugs is

known as debugging. Lukey (1982) views the debugging pro-

11

cess as a problem solving process where the user attempts to

define a hypothesis about the error from clues given. The

user tries to find the bug that supports his hypothesis.

The more clues a user has, the more effectively he can de

bug. One major purpose of the the application is to provide

as many clues as possible.

This application will provide the following benefits

for students and instructors:

1) Error interpretation: The C compiler diagnostic mes

sages and the run time messages can be cryptic and mislead

ing.

2) Instructor aid: Instructors and student assistants

who are seeing the same type errors in a programming assign

ment may indicate the problem and solution in the bulletin

board. This may allow office hours to be used for other

concerns.

3) Student scheduling: The student no longer has to

match his schedule with that of the instructor. The bul

letin board is not time dependent and communication may flow

in both directions.

4) Interstudent communication: Class "experts" need not

be hounded whenever they appear in the terminal room and may

attend to their own assignments instead of solving everyone

else's.

5) System communication: The student does not have to

recall all the various communication protocols for system

messages.

6} Availability: Expert help is on line and available

to all.

Major Modules for the Debugging Application:

12

1) Aid for the interpretation of common C compiler er-

ror messages.

2}

3)

4}

5}

Introduction to

Introduction to

Lore - knowledge

Bulletin board

a} General

b) Class

lint.

the run time

gained from

1) Instructor's notes

debugging tool,

past experience

2) Student to instructor messages

a db

CHAPTER II

REVIEW OF LITERATURE

The subject matter of this paper covers

several areas of study. The following areas are most

relevant to this study: CAI, frame oriented systems, debug

ging in general, active computer aided debugging, system

supplied aids. CAI is a common acronym for "computer as

sisted instruction" or using the computer to assist in in

struction. This acronym will be used in the rest to this

paper when referring to this topic. The method of presenta

tion used for this project most closely resembles the frame

oriented interface structures under study in some quarters

which is discussed more fully later. Since the application

of this system is debugging, a survey was made of past stu

dies in this area. More directly relevant, though, are the

attempts to use the computer as an active aid in debugging.

The computer goes beyond the traditional role of giving com

piler and run time error messages and actually tries to in

terpret the errors. System supplied aids include the vari

ous debuggers and other aids such as lint (in UNIX). The

rest of this survey will examine each of these topics in

more detail.

13

14

Computer Assisted Instruction

Since CAI is one of the major influences upon this pro

ject, research findings from this field can be a valuable

design aid. One cornerstone of CAI research concerns feed

back. Education research has shown that the feedback to the

user after a response is a key factor in the efficacy of re

tention. What form should this feedback take? Current

research(Hartley and Lovell, 1984) has overturned some trad

itional theories in the field. At one time, it was felt

that the mere acknowledgement that an answer was correct

answer was sufficient feedback if the material was presented

in small steps. More recent research indicates that this

approach is inadequate. A more effective approach is to use

information as feedback. Information about answers is more

effective in increasing performance than feedback that only

indicates that an answ~r ~as correct.

Another relevant question is: who controls the learning

environment -- the student or the computer? The weight of

evidence indicates that users feel better when they control

but that they do not make effective decisions regarding

their abilities and needs.

Gaines(l984) recommends that CAI systems be constructed

so that users may learn about a system by using it. In

terestingly enough, and in contradiction to the previous

paragraph, he considers that at the present state of the

art, the user should dominate the computer. In accordance

with good programming practice, he recommends that all

15

presentations and response requirements be as uniform as

possible. Also, the user should be able to query in depth.

Simpson(l984) recommends that programs present menus of

command choices in order to lessen the demands upon the

user's memory. In addition, he feels that menus help the

user orient himself with regard to the system. The major

drawback is that of the extra resources required for the

storage and presentation of these menus. This sort of over

head is also the reason that Friend et al.(l984) recommend

that graphics be used very sparingly.

Frame Oriented Systems

Frame oriented systems rely upon the presentation of

pages of text or in the terminology of the field, "frames"

to the user for operation. The prime example of this is ZOG

(McCormick and Alkscyn, 1984)(Alkscyn and McCormick, 1984)

which is a general purpose shell whose operation depends

upon the use of menus. ZOG is considered frame based which

means that the user is presented information a page at a

time and each page is considered a single unit. Nothing is

to be scrolled and every attempt to keep units of informa

tion limited to a single page. ZOG was originally developed

to be an interface between several different computer sys

tems. The user, instead of having to learn the unique

characteristics of several different operating systems with

the inevitable resulting confusion, only had to learn one

which was kept deliberately simple. One application of the

16

ZOG approach has been that of a distributed database spread

across several different machines.

To the user, working with ZOG appears to be traversing

a set of frames. Each frame includes a menu with the set of

operations that can be performed and also the possible

frames that can reached from the present one. This can pro

mote exploration and browsing. Akscyn and McCormick compare

conventional database usage to fishing with a pole and line

and ZOG to swimming around among the fish. The user goes to

the data and not vice versa. The use of paging versus

scrolling has received other support in the literature.

Barry et al. (1982) and Schwarz et al. (1983) found that

users much preferred paging or windowing to scrolling.

Debugging

The cost of programming errors or "bugs" is high. It

has been estimated that "debugging" a program takes three

times longer than writing it (Gould, 1975). Despite this,

the level of research is still somewhat rudimentary. The

problem appears to be that no one can quite get a good grasp

of a worthwhile approach. It is a problem that all program

mers wish would get solved, but no one is certain how. Typ

ically, bugs are classified into two broad categories, syn

tactic and non syntactic. Syntactical errors are usually

defined as those detected by a compiler. After Boies and

Gould (1974) studied syntactical errors, the subject has not

received a great deal of attention. Boies and Gould did a

17

statistical analysis of programs submitted for compilation

at the Thomas Watson Research Center to study the frequency

of syntax errors. The results indicated that only about one

sixth of the programs contained syntax errors on first com

pilation. Boies and Gould felt that this result was probably

typical and since then, this type of error has received re

latively little attention. It has been felt that efforts

would be more productive if directed elsewhere. Miller and

Thomas (1977) in reviewing studies of syntax errors conclud

ed that developing more comprehensive syntax checkers may

not be cost effective since many checking facilities already

available are unused. One has to wonder how much of this

lack of use is related to ignorance, to complicated checking

aids, or to ineffective tools.

Gannon(l978) classified errors somewhat differently

with more emphasis upon the types of errors that occur. Us

ing a subset of ALGOL (ST), Gannon found the following types

of errors most frequent:

1) Declaring variables in one procedure and requesting

them in another.

2) Redeclaring a global variable.

3) Using a global variable when a local variable was

wanted.

4) Misspelling variable names.

5) Not initializing variables.

6) Exceeding array limits.

7) Incorrectly performing a case statement.

8) Passing parameters in incorrect order.

9) Passing the wrong number of parameters.

10) Becoming confused with embedded structures.

11) Not initializing control variables in an iterative

structure.

12) Not modifying control variables in an iterative

structure.

13) Mismatching parentheses.

14) Not matching variable usage to declaration.

18

Clearly, these are common errors, but again there has

been little work replicating or expanding upon these, so one

can make few judgements about how typical these are in other

situations.

Brooke (1982) extends the nonsyntactic error classifi

cation into two parts:

1) Incorrect formulation of algorithms so that they

will never work.

2) Inadequate formulation of algorithms so that they

will work within certain limits but fail when these limits

are exceeded.

Brooke does not give any information about how this new

formulation may be applied nor what it may gain, but it does

indicate a possible new direction in debugging research.

Experimental studies of program debugging have been

around for quite a while, but consistent interpretations and

applications are not so common. Gould and Drongowski (1974)

19

have made one of the more complete studies of the subject.

Gould and Drongowski gave thirty experienced programmers

twelve one page FORTRAN listings, each with one of three

types of bugs (array bugs, bugs in loops, and bugs in as

signment statements). In addition, the programmers were di

vided into five groups based upon the amount of extra infor

mation they were given along with the listings. One group,

to be used as a baseline, was given no information, another

group was given the I/O for their listings, another group

was given the I/0 plus the I/O that should be produced if

the program ran correctly; another group was told" the class

of error that was present, and the last group was given the

line number of the error.

The subjects were to find the bug and identify its na

ture. The results showed that experience helped tremendous

ly. Subjects found errors up to three times faster when

given a different bug in a program that they had previously

debugged. It was also found ·that assignment bugs were the

most difficult to detect. The experimenters felt that

detection of an assignment bug required a more thorough

knowledge of a program than the other two and thus was more

difficult under these conditions.

The effects of the different sorts of aids upon debug

ging time was unexpected. The time required to find bugs

for the two groups with I/0 hints was greater than the time

for the group with no aid at all. This result was inter

preted as demonstrating the adaptability of programmers to

20

various conditions. However, the no aid group detected er

roneous bugs sixty percent more often than the other groups.

The final two groups were able to use their hints to selec

tively examine their listings. Not surprisingly, the group

given the line number was about twice as fast as the other

groups. Given the magnitude of the hint, the authors specu

lated as to whether a twofold increase represents some sort

of upper limit on possible speedup.

Gould (1975) replicated the experiment apparently only

giving I/O to the group and provided interactive aids. His

results were similar to the results previously obtained. One

surprise was that even when interactive aids were available

for use in the experiment, they were not used. Unfortunate

ly, the nature of these interactive aids was never specified

so it is difficult to attempt explanation of this fact.

Gould believes that the debugging process follows a particu

lar pattern. First, programmers use whatever clues they

have available to develop a hypothesis and then try to veri

fy their hypothesis from the program. Wanting to find the

bug with the least effort, programmers tend to ease into

their programs trying to find the bug at the highest levels

and in the easier portions of the program. It is only

later, and with reluctance, that they will study the program

in depth for understanding.

In his study of the debugging process, Weiser (1982)

developed the concept of program "slices". By using clues

to generate hypotheses, programmers subsequently attend

21

only to those portions of their programs relevant to their

hypothesis. They "slice" away the non-essentials. He be

lieves that it is possible to tailor debugging aids to fol

low these concepts better than has been done previously.

Computer Aided Debugging

Using the computer to aid in debugging is not new.

Traditionally, there have been interactive debugging tools

to step through programs. These applications are relatively

passive and will be discussed in the following section. The

present section concerns the computer as a more active par

ticipant in the debugging process. Many self-study on-line

tutorials of languages require the student to write code and

then let the tutorial evaluate the result in some fashion.

One sophisticated example of such a system is the Stanford

BIP (BASIC Instruction Project) (Barr, Beard, and Atkinson,

1976), intended to teach the BASIC language. Since the pro

gram is intended to be used without the presence and aid of

an instructor, thorough error detecting capabilities were

required. Error detecting capabilities cover "syntax and

execution time errors, program structure errors detectable

before execution but involving more than the syntax of one

line." Additionally, they have "added clarifying messages

for each error, including examples of correct and incorrect

statements, which the student receives upon request." This

can easily be seen to be a built-in version of what is

presently being proposed in this project as an add-on aid.

22

It must be noted that BIP is atypical in its sophistication.

Most such systems give very little aid with messages being

terse or nonexistent.

Another approach that has attracted attention is the

use of some form of artificial intelligence. The GPSI

(Laursen, 1981) project devel?ped at the University of Illi

nois at Urbana uses an expert system to aid students in the

debugging of FORTRAN program syntax errora. Expert systems

attempt to emulate experts by applying "rules" to detect

pattern matches between a request and information held in a

rule base. Succinctly, one might think of an expert system

as an intelligent database (Stefik et al. 1982). It is

"intelligent" in the sense that it must in some fashion

manipulate its request parameters in order to apply them to

its rule base to generate a response to the user.

A typical GPSI session requires that the student bring

a listing of the program with the error messages so that

GPSI may be used to help interpret these messages. The er

ror message consists of an error number with a short message

(usually vague in meaning) and a pointer to a section of the

line that supposedly caused the error. GPSI presents the

user with a list of error numbers with messages and a list

of pointer positions. The user types in the combination of

these that his program exhibits for a particular line. GPSI

then interprets this pattern and attempts to generate a di

agnostic message appropriate for this error pattern. The

user is presented with with this message and prompted to

23

agree or disagree with its relevance. If the user agrees,

the same process is repeated with the next error. If not,

GPSI attempts to generate another possible message if it has

one in its repertoire and the process begins anew. If there

are no more messages, GPSI repeats what it has already

presented until the user gives up querying for more informa

tion. Such a system has certain prerequisite~ that limit

its application. The compiler must not produce error mes

sages derived from previous errors; otherwise the patterns

become much more difficult to detect. A related requirement

is that messages be accurate and consistent, again to facil

itate consistent pattern generation. All too often, this is

not the case.

The error diagnostic capabilities of GPSI and BIP have

limitations. GPSI has only twenty-two rules and BIP's re

pertoire focuses upon the errors typically generated by its

lessons. The answer in each case is simply to build up the

capabilities and here lies a major weakness. Modifying BIP

means modifying the compiler which is usually no small task.

Changing GPSI requires that more rules be added. Laursen

confesses " A major problem with GPSI is that it is very

tedious to generate the rules •.• " One advantage of GPSI is

that the human being is involved at least to the extent of

judging the relevance of responses and possibly triggering

other responses. This is not true of BIP although the depth

of explanation may provide more clues to the user in under

standing possible causes of error.

24

An approach that has elements of both of the above is

the Bug Finder (Bonar et al., 1982) which is part of the

Meno II language tutoring system. Used alone, it assists in

batch grading of programming assignments or it can directly

aid individuals with error detection. Like BIP, it works

directly upon programs but it does so in a manner somewhat

like GPSI, attempting to derive patterns that trigger furth

er action. The process consists of four steps. First, the

program is parsed to generate an abstract representation.

In the second step, the abstract representation is inter

preted as much as possible to try to determine what is sup

posed to happen and this purpose is annotated to the

relevant section. An example annotation is "running total."

In the third step, the information thus far generated is

compared with "plans" or patterns stored in the Bug Finder

to determine how well the program does what is intended.

For instance, the "running total" program section might be

compared with a "running total " plan that checks for ini

tialization, misapplication of running variables, "off by

one errors", and so forth. Finally, discrepancies between

student programs and the plans are interpreted as bugs and

appropriate messages are generated. Again, the power of

this scheme depends upon the library of plans and bugs

available. The generality of this kind of scheme depends

upon how easily new plans can be added.

25

System Supplied Aids

The term "system supplied aids" refers to the compiler

diagnostic messages, debuggers, and similar aids. Most sys

tems contain such aids. This discussion will concentrate

upon UNIX supplied utilities. UNIX supplies some help to

the user; the most basic aid, of course, is the C compiler

with its error messages. Of more interest is lint (Johnson,

1982) which checks for good programming practice and warns

of potential trouble areas. For run time error checking,

two tools are available from UNIX; adb and in more recent

versions sdb. Both are of the class known as debuggers which

means that users may set breakpoints in a program such that,

in execution, the program stops at these breakpoints and re

ports the values of variables. They have other capabilities

as well(Maranzano and Bourne, 1982), but, as with other

members of the class, they are considered "arcane, compli

cated, and indispensable," (Kernighan and Pike, 1984). Be

cause of complaints such as these, other debuggers have been

developed that are much easier to use. Unfortunately, they

are not readily available. Steffens (1984) discusses a C

debugging aid called CTRACE which allows an easy trace of

variables through a C program. Unfortunately, it is an in

house debugger at Bell Labs and not yet available to other

users. It should be noted that, by tracing only particular

variables, this type of aid most resembles that recommended

by Weiser in his previously mentioned concept of program

slicing. This is the same sort of concept advocated by El-

26

liot (1982) applied to other languages. Cargill (1984) men

tions a sophisticated debugging aid available on the Blit

terminal (Last price quoted was five thousand dollars each

for this kind of terminal.)

The final conclusion implied by the previous discussion

of debugging tools is that the debugging application of the

reference tool developed for this project has a definite

function that is not adequately addressed elsewhere. Exist

ing systems that might fulfill this purpose are difficult

and cumbersome to change. Other more conventional tools are

either difficult to understand, limited in scope, or not

readily available. The rest of this paper develops a method

that attempts to use a frame based textual presentation, in

fluenced by CAI, to develop an easily modifiable system ap

plied to debugging with potential application in many other

areas.

CHAPTER III

METHODS AND PROCEDURES

Design Criteria

The design criteria for this frame based on-line refer

ence package were that it be user controlled, simple to use,

and easily modified. The attempt was to provide a tool, not

a master. A tool is an instrument that the user controls;

something that controls the user is a master. Since this

reference tool is a frame based system that operates through

frame traversal, the application of the principle of user

control implies that the pattern of frame traversal is under

user control. This implementatibn follows this principle

faithfully by providing the user with a menu in each frame

and visiting the frame indicated by the command chosen.

The second design criteria was ease of usage. A tool

is not effective if no one feels comfortable using it. This

package was made to be used with a minimum of study and

direction; another reason that the frame based method of

presentation was used. As used in the ZOG system and in

this system, command menus are presented at the foot of each

frame in order to eliminate recall and format problems. The

presentations and responses were made as uniform as possi

ble. Almost all of the commands require only the entrance

27

28

of a single letter or number.

Another important requirement was simplicity of modifi

cation. As noted in the previous chapter, more sophisticated

systems exist that perform the same task as the application

of the package does, but all are difficult and tedious to

modify. This system is quite flexible with regard to modif

ication. The methodology of doing so will be explored in

the authoring section of this chapter.

Implementation

Environment

The on-line reference package was written in the C

language under the UNIX operating system that runs on a

Perkin-Elmer 3230 Computer. As implemented, the UNIX en

vironment is more that just a background; it is an integral

part of the package. Several of the programs interface with

system utility commands to accomplish their purposes. This

approach has the benefit of using previously written tools

rather than starting from nothing. Since this implementa

tion is file based and many utilities are designed to

operate upon files, many of the system file commands can be

directly applied.

Concurrency

Using system tools does have some risk. By using tools

that are not developed by the package author, one has the

risk of unanticipated and possibly damaging side effects.

One such side effect is concurrent file access. The UNIX

system does not normally provide exclusive file access.

29

This means that more than one person may be reading from or

writing to the same file simultaneously. Since reading does

not modify the file, more than one user may read without

danger. Writing is another situation altogether since there

is a real danger of blending the outputs from several

sources into the same output file. For this reason, write

access is severely limited in this implementation.

Writing is allowed under two circumstances: writing

done by a privileged user or writing done by a system utili

ty. The privileged users are those with access rights to

the source directory of the package. The tasks performed by

these people include writing text (discussed in the author

ing section), writing to the bulletin board (discussed in

the communications section), or modifying the underlying

program. Since only a limited number of people will have

directory access privileges, it is hoped and expected that

only one of them would be performing these tasks at once.

Practically, a particular person would be delegated to per

form these tasks. Thus, there would be little or no risk of

concurrent writing to a particular file.

The second writing situation uses system utilities to

allow the ordinary user to send messages to predesignated

people. The message facility of the package works as front

end to the UNIX system utility, mhmail, which in turn acts

as a front end to the sending utility, post. What these

30

utilities send are completed packets of information. The

system utility handles all scheduling and writing. The

utility avoids the blending of packages by sending serially

the completed packets.

There is also the problem of concurrently running pro

grams. What happens if more than one person is using this

p~ckage at the same time? Again, UNIX provides non

exclusive execution. "Procedural code in all programs pro

duced by the C compiler is reentrant and sharable."(Deitel,

1984). The user gets an image to use as if it were in the

user's directory. Since, as noted previously, writing is

handled separately, all other file handling in the program

involves reading, and reading presents no conflicts even

with multiple users.

Menu Strategy

The menu strategy follows the ZOG approach for the use

of menus. This means that each frame presents the user with

all the allowable choices permitted from that frame. The

major benefit is that users do not have to recall what to

do next: all the choices are before them. Presentation of

all options means that new users or those who have been away

from the system do not need to constantly refer to a manual

or scribbled notes from a previous session. Users are able

to use all the capabilities of the system, not merely those

that are more easily remembered through frequency of use.

31

The use of menus has several disadvantages. Making

available all options causes an appreciable amount of screen

space to be used for the menu. To minimize screen space

usage and also present the options requires a horizontal

presentation. While the nature of the situation compels this

approach, it may not be the ideal method. Heines (1984)

sets these requirements for the use of horizontal layouts:

1) The menu is not the major screen feature.
2) The overall screen image is to be preserved.
3) There are a small number of menu options.
4) Each menu option is limited to one or two words (p. 68).

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT please enter next command:

Figure 1. Typical Menu Display

As can be seen from the example in Figure 1, Heines'

item three is violated. The result is not aesthetically

pleasing, somewhat cluttered, and difficult to read. In

such cases, vertical layouts would be preferable: they are

more pleasing to the eye, easier to read, and possibly less

confusing. Although vertical menus would be preferable, use

of them in the present situation would restrict the screen

available for text far too much and cause text to be spread

between frames even more than is presently the case.

On many terminals it is possible to highlight text by

such means as underlining or reverse video. Where this ca-

pability has been defined for the terminal in use, it has

been used throughout the frames to highlight keywords.

Highlighting has been used to differentiate the menus from

the rest of the text and partially mitigate the disadvan

tages of using horizontal menus. The command descriptions

are highlighted and in capital letters. The commands are

not highlighted and are lower case letters.

Reference Package Structure

32

The basic unit for the reference tool package is the

frame. As has noted previously, a frame is the text that

fits in the space provided by a terminal screen. In opera

tion, this system presents the user with a series of frames,

the order and timing of presentation being under the user's

control. Each frame has a similar configuration. The upper

portion of the frame is text pertaining to a topic. The

lower portion of the frame presents a menu with the possible

command options for this frame. These commands allow the

user to perform certain functions or to travel to other

frames. A more detailed examination of these commands will

be presented in the frame command section later.

33

Frame Storage

Many alternatives exist for the storage of the frames

in the computer. One method that was considered (and re

jected) was to store the text in one large file from which

the driver program could have extracted the appropriate sec

tions for each frame. Indeed, this approach is used with

the package's index processing modules. The index is con

figured as one large file from which the index programs ex

tract the relevant portions for presentation as frames.

However, the index has certain special features that make it

more amenable to this approach. The index is serial and the

material is extracted in a forward or backward manner from

contiguous portions of the file. There is no need for the

elaborate record keeping that might be required for other

types of application that require jumping about the file.

The text material on the other hand may not be seen in

the order in which it has been stored. From any frame, a

user has a choice of any of several new frames. While this

requirement makes it more difficult to store the material in

one large file, it does not make it impossible. The basic

problem with this approach is that of complexity which

violates the design criteria of simplicity of modification.

This approach to storage requires the use of sophisticated

record keeping to keep track of offsets into the file for

particular frames. Insertion, deletion, and modifications

can change the length of a particular sections· and change

the offsets to the beginnings of particular frames. To ad-

just for all these changes can become difficult: there are

simply too many pieces of information to readily account

for.

34

The approach used by the package stores each frame's

text in a separate file. Since each file requires some

overhead for the system to maintain its location and main

tain various statistics, this approach may not be considered

economical in terms of system resources. On the other hand,

the system handles all retrieval and storage problems. Con

ceptually, this method of storage matches the frame concept

more closely. Modification becomes much less complex since

all frames are independent units. Insertion becomes a sim

ple matter of creating a new file and creating the appropri

ate links in the other files involved in this frame path.

Deletion becomes the simple matter of removing a file and

resetting links. The concept of the overall structure being

a list of lists becomes easier to grasp and manipulate when

all the nodes of the list are files and all links merely the

naming of appropriate files. Frame modification becomes a

simple matter of text editing; maintenance is straightfor

ward. Overall, the disadvantage of extra resource require

ments for the multifile text storage arrangement is more

than offset by the advantage of simpler maintenance.

35

Frame Set

Seen from the point of view of the package structure,

the basic unit is an entity known as a frame set which are

the frames devoted to a particular topic. A full or normal

frame set consists of four major frame types: a summary

frame, an explanation frame set, an example frame set, and

an exercise frame. The word, set, is used in the previous

sentence to denote the possibility of multiple frames of

these types in the frame set. Recall that a frame is limit

ed to the amount of information that may be presented upon

one display screen. To explain or give examples about a to

pic may require more information than can be displayed upon

a screen at one time. Conversely, the amount of material

that is available upon a topic may not require the full

frame set. In this case the "abbreviated" frame set may be

used. Abbreviated means that that all four frame types are

not present in a particular frame set. For instance, an ex

planation frame is not required if the topic can be covered

adequately in the summary frame. Exercises may not be ap

propriate if the topic is completely self evident. Indivi

dual variations depend upon individual situations. However,

a summary frame must be present to provide continuity and

connections to the rest of the framework.

A full frame set has a particular structure that ought

to be made more clear before proceeding any further. The

structure of this reference tool, with the exception of cer

tain special frames that will be mentioned later, is that of

36

a series of frame sets connected with each other through the

summary frames (Figure 2). The summary frame then forms an

"outer layer" with the other frame types forming "inner

layers". In a full frame set, the summary frame connects to

the first explanation frame of the explanation frame set.

Example frames connect to the explanation frame(s). Also

connected to the last explanation frame is the exercise~

frame. A pictorial representation of this is present in

Figure 3. An example of an abbreviated frame is present in

Figure 4.

summary
frame

summary
frame

summary
frame

Figure 2. Connecting Framework of Reference Package

summary
frame

explanat1on
frame

I
example

frame

exercise
frame

Figure 3. Full Frame Set

summary
frame

frame

Q~
I

----~---e--x_e_r_c~i-s-e----~

I
example

frame

Figure 4. Abbreviated Frame Set

Frame Types

37

Summary Frame: The user is presented with a summary of

the topic for this frame set. The intention is to limit

this summary to one frame. Greater detail is presented in

the explanation frame. The summary frame performs several

functions in this reference tool. The summary frame is a

very important component of the reference package and has

the following functions:

38

1) Synqpsis: Some use~s require only a summary of the

topic. Through previous experience with this tool or

through knowledge of the subject matter, a brief reminder is

all that is necessary. Further information is not needed.

2) Retention: Studies of learning retention (Mayer,

1981) show that subjects presented with some sort of concep

tual framework for new material had greater subsequent re

call of material. Indeed, it has been theorized that part

of the learning process is the construction of such struc

tures. Thus, the summary initially presented in this frame

is also intended to provide the beginning of a knowledge

structure to aid in the retention of the material.

3) Connection: Summary frames connect frame sets.

4) Foundation: Summary frames are the base from which

the rest of the frame set grows.

Explanation Frame: These frames explain the topic in

greater depth than the summary frame. The intent of this

frame type is to instruct those who may have little back

ground in the subject. Since the explanation may be

lengthy, a chain of explanation frames may be required.

Example Frame: These are intended to be used as an ad

junct to the explanation frame. They illustrate the points

39

alluded to in the explanation frames. Again, there may be

numerous examples relating to a particular point so there

may also be a set of these frames. Since there may be dif

ferent points relating to the topic, there may be more than

one set of examples deriving from the explanation set.

Exercise Frame: Passive reading of a topic is not

enough for many users. An application of a concept usually

aids substantially in it retention. Concept application

also tests whether the concept has been learned. Exercises

are provided as means of applying concepts just learned to

aid in retention and test the amount of learning that has

taken place.

Index Frame: This is a special frame type that does not

belong to the frame set structure. This frame presents the

topics of summary and explanation frame sets sorted alpha

betically and numbered. The user discovers the name of the

frame, enters the associated frame number and the package

invokes the indicated frame.

Error Frame: This frame is not part of the frame set

structure either. By mistake or mischief, some users will

use inappropriate commands when prompted. This will cause a

visit to the default or error frame. The user is then

presented an error message and given instructions about ex

iting the default frame.

40

Program Description

Frame Based Reference Package

Data Structure

If the files containing the frame materials are con

sidered as nodes with information about the nodes preceding

and succeeding, it can be seen that each frame is a member

of a linked list. Conceptually, the the linked list of sum

mary frames defines the framework. Each summary frame or

node can in turn head a list of explanation nodes each of

which, in turn, can head lists of examples and exercises.

Overall, the structure can be considered a linked list of

linked lists. All linked lists except the linked list of

summary frames are circular: that is, the node following the

last node is the beginning node for the list. And since

there are links in both directions, it is a doubly linked

list. Thus, in computer science terminology, the entire

structure can be considered close to a doubly circular

linked list of linked lists, although links to other members

of the frame set prevent this from being a pure form.

Operation

Operating the reference package involves the traversal

of nodes using various sources of information to determine

the next node. Each information frame begins with a table

containing the names of predecessor and successor nodes as

well as the names of other specified nodes in the frame set.

41

Since the user may leave the current frame set and go to

other destinations and then want to return, the names of the

present and previously visited nodes are also retained in

the global file. The global file also maintains a stack of

the names of marked frames that support the mark command

(defined in the next section). From any of these sources,

the name of the next frame to be presented may be obtained.

In addition, there is one more source, the index file. The

index file keeps the operation of the package from becoming

purely sequential in nature. By invoking the index routine,

the user is able to get the names of summary and explanation

files and directly access them without traversing an inter

mediate path.

A broad description of package commands follows. A more

detailed description of using the package is given in Appen

dix c.

Frame Instruction Set

The set of frame instructions or commands can most ef

fectively be examined if they are divided into categories.

One convenient categorization labels commands as being ei

ther universal or context dependent. Universal commands are

those available from any of the basic frame set type frames.

Context dependent commands are those which are legal for ex

ecution only in particular situations or "contexts." Some of

context dependent commands are valid only in full frame sets

and not in some abbreviated sets. The detailed examination

of the commands given below should make the distinction

between the two types very clear.

42

The universal commands may be further subdivided into

those that perform a function or task and those that cause a

new frame to be visited. All of the context dependent com

mands involve visiting a different frame.

Universal Task Commands. These commands, .executable

from all frames, do not involve changing frames.

h - Gives a brief explanation of each package command.

This is the help command for the package.

1 - Shows the frame path from the beginning frame to

the user's present frame. The intention is that the user

will be able to orient himself.

t - Shows the table of contents. A list of all frame

set topics is displayed. The topic of the user's current

frame set will be highlighted if the terminal has these

capabilities. Again the user is able to orient himself in a

different and possibly more useful manner than that afforded

by the "1" command.

m - Invokes the message sending routine that sends a

message to the instructor or other designated person.

c - Copies the text of the present frame into the

user's directory under the name frame.copy.

k - Marks the present frame to enable future direct re

turn to the marked frame. A user may have up to nine marked

frames at any one time. These frames are revisited in re

verse order of marking; that is, the last frame marked is

43

the first revisited.

Universal Frame Switching Commands. These commands are

executable from all frames and result in changing f~ames.

q - Causes on-line reference package to stop execution.

b - Visits the frame on the list that precedes the

present frame.
' g - Returns to the marked frame on top of the marked

stack.

p - Revisits the most recently visited frame. The dis-

tinction between this command and "b" defined previously may

a bit subtle at first. The command "b" visits the predeces

sor of the frame as defined by the way the list is con-

structed. If a frame has been accessed in some manner other

tan traversing the list in a forward direction, "p" will not

access the same frame as "b." Additionally, with this in

struction the user may easily move from the error frame.

i - Visits the index node. The index frame enables the

user to discover the name of and directly visit particular

topic frames.

Frame Dependent Commands. These commands depend upon

the situation and may not be present in all frames. Their

legality for a particular frame is shown by their presence

in the menu. The distinction is simple: if the command is

present in the menu, it is legal from that frame.

e - Visits the explanation frame of a frame set. This

command is not allowed from an explanation frame nor is it

permitted from an abbreviated frame set which does not in

clude an explanation frame.

44

s - Visits the summary frame. This is not allowed from

a summary frame.

x - Visits the exercise frame. Except in an abbreviat

ed frame set, this is possible only from the explanation

frame. Many abbreviated frame sets visit this frame direct

ly from the summary frame.

<number> - Visits the first member of the indicated ex

ample set. Typically, whenever a section of a topic is

covered, there may be an example set for that topic. Within

the set of explanation frames for the frame set, there may

be several topics, each with its own set of example frames.

The on-line reference system presently allows nine example

sets for any frame set. This means nine sets of examples not

merely nine examples. These frames are accessible from the

explanation frames or summary frames in the case of an ab

breviated frame set. The user accesses an example set by

entering the appropriate number for the particular set

desired. The text mentions these numbers in its presenta

tion of the topic.

Frame Communications Facilities

As noted in the first chapter, communication facilities

are very desirable in a tool such as this one. The ability

to query an instructor about a topic, the ability to com

plain, and the ability to make constructive suggestions

45

depend upon communications. The UNIX operating system has

efficient communication methods available which include

several message sending utilities: msg, send, mail, and

write • All have two major drawbacks. First, a user must

know how to use them, and more importantly, they are not

available within the reference package. To use them, the

user must leave the package even though the topic may be in

timately concerned with what is happening within the pack

age.

To get around these difficulties, a facility is avail

able within the package invoked by the command "m". Once

invoked, the user is put into a frame with two choices, to

read a bulletin board or to transmit a message. The read

component is quite simple. Once invoked, the bulletin board

is presented. Writing to the bulletin board is restricted

to those who have directory privileges in the package's home

directory in order to avoid concurrency problems, but read

ing is open to all. The bulletin board provides a quick

method for the instructor of a course to communicate with

all the students with reference to a particular problem re

lated to the reference package's topics.

The danger of concurrent writing during the use of the

transmit facility has be~n avoided by using the system util

ity mhmail. The transmit facility acts as a front end set

ting up the parameters for mhmail. The destinations are

preset and limited to the instructor, teaching assistant,

and research package designer. The user is prompted with

these and chooses one. Names can be added or changed as

desired since the values are in global storage.

46

The next prompt gives instructions for entering a mes

sage. After the message has been entered, the user must de

cide whether he wishes to append a file to this message.

The user has the capability to to send files or programs

that illustrate particular points pertinent to the topics of

this package. Since the present application of this tool

involves debugging of programs, the file sending facility

would appear to be potentially very useful in this context.

Any named files are appended to the previous message which

may well be explanatory in nature.

Once this is completed, the information is incorporated

into the mhmail command and sent. The user is returned to

the main program. It should be noted that since the receiver

has bulletin board writing privileges, there is the possi

bility of developing a moderated on-line discussion among

the user population.

Frame Authoring System

Someone must write the materials that make up the

frames for this package. Each frame has two sections that

must be completed. The first section contains the informa

tion about the "links" to other frames. The second section

contains the text for the frame; the material that appears

on the screen to the user.

47

There are certain protocols to be followed for each

section. A tool called "author" handles many of these de

tails. (Henceforth, in order to avoid confusion, the word

"author" refers to the program that helps build the frame.

The human who is building the frame will be referenced as

"the writer.") Author prompts the writer for all necessary

information; all the writer must do is respond. The initial

prompts concern the frame type and name. From the answers

received, author constructs a frame name derived from the

user given name and a particular suffix which depends upon

the frame type.

Suffixes are important to an index making program which

includes only those files with suffixes indicating that they

are explanation or summary files. These files are processed

to extract the subject, name, and type of frame from this

file and enter this information into the index. The suf

fixes of the example and exercise files exclude them from

being processed. Since example and exercise frames branch

from particular summary or explanation frames, exclusion of

them from the index results in very little loss of practical

information. However, their inclusion in the index has the

potential of making the index larger, more unwieldy, and ul

timately less useful.

As noted in the initial paragraph of this section, the

beginning portion of the frame defines the frame's position

with regard to other frames. In other words, this section

contains the links to other frames. During execution of the

48

reference tool, this information is extracted and stored in

a global table accessible to other programs of the package.

Each frame, therefore, must contain all necessary values.

Again, author handles the details querying the user for any

information that is not readily available from other

sources. The writer responds either with the relevant in

formation or the default response. The default response

signals that there is no relevant value for this link, and

author responds by filling in the name of the error frame.

Once the preliminary section of setting links is fin

ished, the text can be entered. The writer has two options

in doing so: text may be entered at the terminal through au

thor, or an existing file may be appended by author. The

option chosen depends upon the situation. Very likely, ex

ample or exercise material will be appended, and explanation

and summary material will be written in. Regardless of en

try method, because of screen limitations, the material

should not exceed twenty lines. As an aid in keeping text

within the line limit, author provides line number prompts

for those entering text from the terminal. No such aids are

possible for appended file, so the user must edit these

files accordingly.

A more detailed explanation of authoring with operating

instructions is present in Appendix D, "AUTHORING GUIDE FOR

THE ON-LINE REFERENCE PACKAGE."

49

Debugging Application: Methodology of Error Selection

The demonstration application of this program has been

that of a debugging tool. The strategy has been to provide

additional information concerning selected compiler error

messages that can serve as extra clues to aid the user in

debugging. Part of the problem in building this application

is that of selection. What errors should be chosen and what

information' should be given about them?

The obvious approach is to find those errors which are

the most common and whose messages are the least informa

tive. Finding the most common errors may not be an easy

task. The types of programming problems and assignments

have a great deal to do with the types of errors seen. Obvi

ously, students working on problems involving the use of

data structures will see a different spectrum of errors than

a class doing input and output problems. Because of the

difference in error producing situations, representative er

rors may be difficult to define.

For the present study, error messages were generated by

two approaches. The first approach used relatively simple

programs that were initially correct, and errors of dif

ferent types were systematically introduced into them. It

was felt that most errors in actual practice were of the

simple mistyping type. These include misspelling and omis

sion of punctuation in vital areas. Some support for the

frequent occurrence of these types of errors comes from

Pierson and Horn(l984) where the majority of their reported

50

COBOL errors were of this type. Compiler error messages

were produced using a black box approach. Errors were in

troduced into the programs, and ±he programs were fed into

the compiler to see what error messages would be produced.

The resulting error messages were then analyzed for underly

ing principles from which it would be possible to write ex

planations for the reference package.

Laursen(l982) used a similar approach to generate er

rors in the GPSI project. He notes two major weaknesses in

this method. First, there is no way to obtain all the er

rors in an error class. Secondly, it is possible that er

rors generated in this fashion may be highly unlikely to oc

cur in actual situations. But in fact, GPSI does relatively

well handling the errors brought to it despite being based

on error messages generated in this fashion. Similarly, the

present project seems to have the more common messages

represented in the output received.

Recognizing that the previous method was limited by the

imagination of the error generator, another more realistic

method was used to generate other error messages. The au

thor collected errors made in his own programming assign

ments and solicited from others some of their unusual er

rors. Although not exhaustive, this method seemed to add

significantly to the variety of errors in the model.

Two other methods for suggesting errors are worthy of

note. One method is to look at the results of researchers.

Pierson and Horn(l984) have been mentioned: another study is

51

that of Gannon (1978). Some of the errors that he mentioned

have already been generated, and others are not detectable

by the C compiler. Some of the remaining errors remain to

be tested and provide the basis for further research.

The other method is to obtain an accurate measure of

possible errors and t~eir frequency hy collecting and sta

tistically analyzing incorrect programs. This remains a

fruitful area for future research.

As a substitute for the statistical approach, it is

hoped that the users will take advantage of the built-in

communication facilities of the package to send information

to the system maintainers. Feedback from users could enable

the system to grow and change, reflecting their new informa

tion. Since the system is so simple to modify, new informa

tion could easily be incorporated into it and eventually it

might account for a high proportion of the error situations

presented to it.

CHAPTER IV

SUMMARY AND FUTURE WORK

On-Line Reference Package Synopsis

On-line references often are difficult for the novice

to comprehend. Many features could be added to make the con

cepts more understandable. As it is, even experienced users

are somewhat confused and often read only to get a starting

idea. From there, they experiment until they finally

comprehend what was intended initially. CAI, with its rich

background, can aid in making reference entries more under

standable as much through its philosophy as techniques.

However, CAI suffers from shortcomings as well, especially

with regard to communication with instructors and the

designing of courses. The present on-line package solves

the shortcomings of both by using a multilevel presentation

with communication facilities built in. The sophisticated

user can see summaries and not be overwhelmed with extrane

ous detail. The more inexperienced user can receive deeper

explanation with ~xercises and examples. Rather than forc

ing the user into the lock step method of instruction, the

user is given, as with a book, freedom to roam and browse.

In addition, the user is 9iven direct access capabilities of

the traditional on-line reference system. A communication

52

53

system was added to allow communication between the user po

pulation and those who design and maintain the package and

its text.

The application was that of an on-line debugging aid

for debugging student C language programs. Numerous exam

ples were added to illustrate the topics.

Limitations of On-Line Reference Package

Some of the limitations of the application of this

study arise from the specificity of its implementation.

Although it uses standard C commands, the UNIX operating

system is an integral part of the package. Use of system

features is a two edged sword: it has the benefit of using

existing, proven tools, but the disadvantage of requiring a

particular operating system. This package must be run on

systems that use a UNIX operating system.

A related limitation is that the application deals with

the error messages of a particular compiler on a particular

machine. Obviously, to transfer this package to another

machine with another compiler will involve some adaptation.

The relevance and wording of particular messages may differ

from computer to computer.

Another limitation is the standard one that applies to

developing any learning or reference package: the develop

ment process is very labor intensive for an expert. The

writing of text, examples, and exercises can take an appre

ciable amount of effort.

54

The package has not yet been applied to a user popula

tion. The limitations and deficiencies that practical usage

inevitably reveal about any computer program will remain un

discovered until that time.

Future Project Considerations

The present application is that of a debugging aid.

There are two separate elements here, the implementation and

the application. Each has implications for further work.

The complete application as envisioned in the first

chapter remains incomplete. Each module could be expanded.

At present the module concerning compiler error messages is

the most complete. The section on the C debugging aid,

lint, contains primarily introductory material. The modules

on the C debuggers and "lore" are minimal. To make this

tool complete for its intended purpose, these sections

should be expanded in the future.

There remains the problem of whether there is some size

of subject matter beyond which this application should not

venture. The limiting factor is the size of the screen and

the amount of material that can be presented at one time.

The limit is approximately twenty lines of text more or

less. A large amount of material would take an appreciable

amount of time to work through although mitigating this as

pect considerably is the fact that as a reference text, it

is unlikely that a user would go through it from front to

back. This brings a related problem to the fore: the more

55

topics there are, the larger the index will be. At twenty

lines per screen, there is probably some limit as to the

number of topics that ought to be dealt with in one package.

There is some point, possibly around ten or more pages of an

index that might justify a split of material or an automated

index.

The implementation is suitable for uses other than the

present application. For instance, many of the less obvious

system utility commands could be cast in this format with

gain in clarity. Clearly, many of these would benefit from

more explanation and more examples.

The menu has possibilities for improvement. For in

stance, if all available terminals had the capabilities of

reverse video, the letter of the command could be highlight

ed and all extraneous spaces and dashes could be removed.

There is the possibility of allowing the removal of the menu

altogether for advanced users who may find it a hindrance

rather than a help.

The authoring system could be modified to be more au

tomated and limit the amount of knowledge that the writer

must be familiar with. At present, many of the repetitive

and obvious prompts have been eliminated with the authoring

system itself deriving the requisite information. Clearly,

more progress can be made in this regard to require even

less knowledge about the package from the writer.

56

Portability

With a view toward portability, most constants and im

plementation features have been put into the global file

"frames.h". Other applications would require that this be

modified for their own usage. Certainly, such things as the

start frame, full-path names, and the name of the index
' will change in another application; most of the other glo~

bals would probably remain constant.

SELECTED BIBLIOGRAPHY

Akscyn, R. M. and McCracken, D. L. "The ZOG Approach to Da
tabase Management." Pittsburgh, PA: Carnegie-Mellon
Un1versity, 1984.

Barr, A., Beard, M., and Atkinson, R.C. "The Computer as a
Tutorial Laboratory: the Stanford BIP Project." Inter
national Journal of Man-Machine Studies 8, 5 (1976),
567-596. - --

Boies, S. J. and Gould, J. D. "Syntactic Errors in Computer
Programming." Human Factors 16, 3 (1974), 253-257.

Bonar, J., Ehrlich, K., Soloway, E., and Rubin, E. "Collect
ing and Analyzing On-line Protocols From Novice Pro
grammers." Computer Research Methods and Instrumenta-
tion 14, 2 (1982), 203-209. -

Brooke, J. B. "Tools for Debugging Computer Programs - How
Much Do They Help?" in J. Rasmussen and w. B. Rouse
(e?s.), Human Detection and Diagnosis of System
Fa1lures. New York and London: Plenum Press, 1982,
87-109.

Bury, K., Boyle, J., Every, R., and Neal, A. "Windowing
versus Scrolling on a Visual Display Terminal." Human
Factors 24, 4 (1982}, 385-394.

Cargill, J. A. "Debugging C Programs With the Blit." AT&T
Bell Laboratories Technical Journal 63, 8 (1984)-,--
1633-1645.

Deitel, H. An Introduction to Operating Systems.
Reading~assachusetts: Addison-Wesley Publishing Com
pany, 1984.

Elliot, B., "A High-level Debugger for PL/I, Fortran, and
Basic." Software-Practice and Experience 12, 4(1982),
331-340.

Friend, J. and Milojkovic, J. "Designing Interactions
Between Student and Computer." in Walker, D. F. and
Hess ~· Instructional Software : Principles and Per
spectlves for Des1gn and Use. Belmont, CA: Wordsworth
Publishing Co.,l984, 143-150.

57

58

Gaines, B. "Technology of Interaction - Dialogue of Program
ming Rules." in Walker, D. F. and Hess R. Instruction
al Software : Principles and Perspectives for Des1gn
and Use. Belmont, CA: Wadwworth Publishing Co. ,1984
115-121.

Gannon, J. D. "Characteristic Errors in Programming
Languages." Proceedings of the 1978 Annual Conference
of the ACM. Washington D:c:-: ACM, 1978, 570-575.

Gould, J. D. "Some Psychological Evidence on How People
Debug Computer Programs." International Journal of
Man-Machine Studies 7,1, (1975), 151-182. --

Gould, J.D., and Drongowski, P. "An Exploratory Study of
Computer Program Debugging." Human Factors 16, 3
(1974), 258-277.

Hartley, J. R. and Lovell, R. "The Psychological Principles
Underlying the Design of Computer Based Instruction
Syste~s. " Instructional Software Principles and Per
spectlves for Des1gn and Use. Belmont, CA: Wadsworth
Publishing Co.,l984, 38-5~

Heines, J. M. Screen Design Strategies for Computer
Assisted Instruction. Bedford,MA: Digital Press, 1984.

Johnson, S. C. "Lint, A C Program Checker." in Wollongong
Group Edition VII Workbench : Programmer's Manual
Volume 2. Oceanport, NJ: Perkin-Elmer Corporat1on,
1982, 1=11.

Kernighan, B. W. and Lesk M. E. "Learn - Computer-Aided In
struction on UNI~." User'~ Manual Unix Operating System
Vol 2. Murray H1ll, NJ: Bell Laboratories,l980, 108-
120.-

Kernighan, B. W., and Pike, R. The Unix Programming Environ
ment. Englewood Cliffs, NJ: Prentice-Hall, 1984.

Laursen, A. L. "GPSI : An Expert System to Aid in Program
Debugging." M.S. Thesis, University of Illinois, Urba
na, Il. 1981.

Lukey, F. J. "Understanding and Debugging Programs."
International Journal of Man-Machine Studies 12,2,
(1980), 189-202.

Maranzano, J. F. and Bourne S. R. "A Tutorial Introduction
to ADB " in Wollongong Group Edition VII Workbench :
Programmer'~ Manual Volume 2. Oceanport, NJ: Perkin-

59

Elmer Corporation, 1982 1-28.

Mayer, R. E. "The Psychology of How Novices Learn Computer
Programming." Computing Surveys 13, 1 (1981}, 121-141.

Me Cracken D. L. and Akscyn R. M. Experience with the ZOG
Human-Computer Interface System. Pittsburgh, PA:
Carnegie-Mellon Un1vers1ty, 1984.

Pierson, J. K. and Horn J. A. AEDS Journal 3, 17 (1984},
53-60.

Schwarz, E., Beldie I., Pastoor, S. "A Comparasion of Paging
and Scrolling for Changing Screen Contents by Inexperi
enced Users." Human Factors 25, 3 (1983} 279-282.

Simpson, H. " Style Guide for Program Design." in Walker, D.
F. and Hess, R. Instructional Software : Principles
and Perspectives for Des1gn and Use Belmont, CA: Wads
worth Publishing Co.,l984, 130-142.

Steffen, J. L. "Experience with a Portable Debugging Tool."
Software-Practice and Experience 14, 4 (1984) 323-334.

Stefik, M., Aikens, J., Balzer, R., Benoit, J., Birnbaum,
L., Hayes-Roth, F., and Sacerdoti, E. "The Organization
of Expert Systems, A Tutorial. " Artificial Intelli
gence 18, 2(1982} 135-173.

Steinberg, E. L. Teaching Computers to Teach. Hillsdale,
NJ: Lawrence Erlbaum Associates, 1984.

Weiser, M. "Programmers Use Slices When Debugging." Communi
cations of The ACM 25, 7 (1982} 446-452.

APPENDIX A

FRAME BASED REFERENCE PACKAGE MODULE SCHEMATICS

ref

I
v

I I I v v v
in it drive getnxt

Figure 5. Major Modules·for User Package

drive

I
v

I I I I I v v v v v
pathmkr setlstone bldtbl

I
displtxt menu

v
assignval

I
v

example

Figure 6. Display Modules

60

61

getnxt

I
v

I I I I v v v v
getcmd task example newdest

Figure 7. Execution Modules

task

I
v

I I I I I v v v v v
locate toe help message cpy mark

I v I I v summary v v

I I I I
setfptr

v v v v
assign locdisplay rd xmit

Figure 8. Task Modules

I
v

v
getmark

I
v

ndxmenu ndxcpy

newdest

I
v

I
v

getnxtcmd

I
v

v
ndxrdr

I
v

I
v

showpage getdest

Figure 9. New Destination Modules

62

63

author

I v

I I I I I v v v v v v
gettype getname full name fldvalues

I
flmk indxmkr

I_
v

I I I I I I v v v v v v
fldsumm fldexpl fldexer fldclass fldexam put val

I I I I I v v v
~ I I putval

put val put val

v v
p putvalgetval v v

writefl apndfl v
get val v

I I v v
set nob lank

Figure 10. Authoring System Modules

APPENDIX B

FRAME BASED REFERENCE PACKAGE MODULE CATALOG

Major Sections of the User Code

The user code breaks into three parts: the initializa

tion section to set up the beginning frame, the display sec-

tion, and the execution section to execute user entered com-

mands and return the next destination.

CONCEPTUAL ORGANIZATION

MAIN
I. INITIALIZATION

II. DISPLAY
III. EXECUTION

MODULE EQUIVALENT

reference
I. init

II. drive
III. getnxt

64

PROGRAM NAME: ref

PURPOSE: main routine for reference package

CALLED FROM: NA

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: init - initialize
drive - process frame
getnxt - next frame

VALUES RETURNED: none

LOGIC OVERVIEW: Get initial frame name (init)
While (frame name not NULL)

display frame (drive)

65

get the next frame name (getnxt)

66

I. Initialization

The initialization section does all the required set up

to start the reference package.

PROGRAM NAME: init

PURPOSE: 1) Set ·up global table locations
2) Get initial location
3) Return location value

SUB PROGRAMS CALLED: none

CALLED FROM: ref

PARAMETERS PASSED: none

VALUES RETURNED: frstr - pointer to name of first frame

LOGIC OVERVIEW:
Get starting frame name
Return it to calling routine

II. DISPLAY SECTION

The display section has two major functions. First it

must build a table that specifies all the frames's connec

tions to adjacent frames and members of the frame set. It

also displays the frame and,the appropriate menu.

DISPLAY SECTION MODULES
II. drive

A. pathmkr
B. setlstone
c. bldtbl

1. assignval
2. example

D. displtxt
E. menu

67

PROGRAM NAME: drive

PURPOSE: 1) set up table for this frame
2) present text

SUB PROGRAMS CALLED: bldtbl - build table
displtxt - displ frame
setlstone - set

CALLED FROM: ref

last frame name
menu - display menu
pathmkr - full path

name for file

PARAMETERS PASSED: name - of frame to be processed

VALUES RETURNED: name - of frame or NULL

LOGIC OVERVIEW:
make a full pathname for passed parameter name
open file
if valid

record name of this and past frame (setlstone)
build table of connecting frames (bldtbl)
display text of this frame (displtxt)

else
abort for bad data

return validity check

PROGRAM NAME: pathmkr

·PURPOSE: convert a local name to full path

CALLED FROM: drive,cpy,locate,ndxmkr,rd

PARAMETERS PASSED: ptr - pointer to name

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW:
construct and return complete pathname
for given file name

68

69

PROGRAM NAME: setlstone

PURPOSE: To reset lastone and thisone, the present and last
visited frames.

CALLED FROM: drive

PARAMETERS PASSED: name - pointer to present frame name

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: Store last frame visited
Store the present frame

PROGRAM NAME: bldtbl - build table

PURPOSE: extract field values from file header
and assign them to global table

CALLED FROM: drive

PARAMETERS PASSED: fp - file pointer

SUB PROGRAMS CALLED: assignval - assign values for field

VALUES RETURNED: good - flag of good data

LOGIC OVERVIEW:
while(the end of table marker and end of file not found)

if line has a field
extract value
assign to global field variable (assignval)

get next line
if there was no end of table marker

signal error
return validity signal

PROGRAM NAME: assignval

PURPOSE: to assign value to a field of
the frame table

CALLED FROM: bldtabl

PARAMETERS PASSED: cln - location of colon
diff - length of string
flg - value for switch
clssnm - class name

SUB PROGRAMS CALLED: example - extract number
and get right example

VALUES RETURNED: none

LOGIC OVERVIEW:
switch(field name)

assign value to field
concatenate end of string marker to value
case example:

extract number of example set (example.c)
access that member of example array
assign value to field
concatenate end of string to value string

PROGRAM NAME: example

PURPOSE: given a number, find appropriate example pointer

CALLED FROM: assignval, getnxt

PARAMETERS PASSED: commnd - a number

SUB PROGRAMS CALLED: none

VALUES RETURNED: pointer to example field

LOGIC OVERVIEW: convert example set number to integer
set a pointer to the this location
return this pointer

70

PROGRAM NAME: displtxt

PURPOSE: display frame text on standard output

CALLED FROM: drive

PARAMETERS PASSED: flptr - pointer to file

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: clear screen
while (not end of frame)

print line of text
increment line counter

while (line counter less than menu start)
print blank lines

PROGRAM NAME: menu

PURPOSE: present a frame based menu

CALLED FROM: drive

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW:
print all menu items that are in every frame
for other commands

if (command is valid for frame)
print menu corresponding menu item

71

72

III. EXECUTION SECTION

The execution section captures, interprets, and exe-

cutes user entered commands. The commands fall into two rna-

jor categories: those that do not result in a new frame be

ing visited and those that do.

III. EXECUTION SECTION
A. CAPTURE COMMAND
B. EXECUTE TASKS NOT GENERATING A NEW FRAME
C. EXECUTE TASKS GENERATING A NEW FRAME

MODULE EQUIVALENT

III. getnxt
A. getcmd
B. task
c.

1. example
2. newdest

PROGRAM NAME: getnxt

PURPOSE: 1) interpret the next commands
2) invoke server routines
3) invoke new destination commands

SUB PROGRAMS CALLED: example - process esample
newdest - new destination
getcmd - get command
task - handle utilities

CALLED FROM: ref

VALUES RETURNED: return next destination

LOGIC OVERVIEW:
while (no new destinations are generated)

get the command (getcmd)
if (command is default command)

destination = name of next frame
else if (command is quit)

destination = NULL
else if (command invokes a service routine)

call service module (task)
if (appropriate)

destination = name of present frame

73

else if (command refers to example frames)
destination = name of example frame (example)

else
destination = new destination handler (newdest)

A. CAPTURE COMMAND

PROGRAM NAME: getcmd

PURPOSE: get command from terminal

CALLED FROM: getnxt,locate,rd,xmit,message

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: none

VALUES RETURNED: command

LOGIC OVERVIEW:
prompt for command
if (command not default command)

process until the command line is complete
return command

74

75

B. TASKS THAT DO NOT GENERATE A NEW FRAME
The functions that do not involve a change in presenta-

tion frame of the frame set locate the frame set with

respect to the whole, send or receive messages, copy frames,

mark frames for future reference, present the table of con

tents, and present explanations for the commands.

MODULAR EQUIVALENT

B. task
1. locate

a. assign
2.message

a. rd
b. xmi t

3. cpy
a. setfptr

4. mark
5. toe
6. help

PROGRAM NAME: task

PURPOSE: perform tasks that do not require a new frame

CALLED FROM: getnxt

PARAMETERS PASSED: command - to be interpreted

SUB PROGRAMS CALLED:
1) locate
2) message
3) cpy
4) mark
5) toc(table of contents)
6) help

VALUES RETURNED: none

LOGIC OVERVIEW:
switch(command)

case locate command
call (locate) to show present location

case message command
call (message) to send or read a message

case copy command
call (cpy) to copy present frame

case mark command
call (mark) to put present frame on mark stack

case toe command
call (toe) to present table of contents

case help command

76

call (help) to present explanations of menu commands
default

print error message

PROGRAM NAME: locate

PURPOSE: To provide the path from the present frame
to the beginning.

CALLED FROM: task

PARAMETERS PASSED:none

SUB PROGRAMS CALLED: assign, locdisplay

VALUES RETURNED: none

LOGIC OVERVIEW: clear the screen
set name to present file
while (frame not prior to first frame)

open file name
extract values for frame name, subject,

type, and prior frame on path
store frame name subject and type
close frame name
set name to predecessor frame name

display stored frames(locdisplay)

PROGRAM NAME: assign

PURPOSE: extract value from string and assign to field

CALLED FROM: extr, locate

PARAMETERS PASSED: pointer - to receiving string
cln - pointer to colon in string

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: extract value from parameter cln
copy into pointer
add end of string marker

77

PROGRAM NAME: locdisplay

PURPOSE: display the location stack

CALLED FROM: locate

PARAMETERS PASSED: linestack - array of
offsets into stack

place - intial offset

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: open file of frames
while (not first one)

print frame data
print first in reverse video

PROGRAM NAME: toe - table of contents

PURPOSE: To indicate the contents of the
package at any one time.

CALLED FROM: task

PARAMETERS PASSED:none

SUB PROGRAMS CALLED: assign
pathmkr
summary

VALUES RETURNED: none

LOGIC OVERVIEW: start at first frame
while(not at end)

print topic of frame set
reverse video present

frame topic

78

PROGRAM NAME: summary

PURPOSE: To note the present summary
name for this frame set.

CALLED FROM: toe

PARAMETERS PASSED:none

SUB PROGRAMS CALLED: ·assign

VALUES RETURNED: present -·name of summary frame

LOGIC OVERVIEW: while (not found)
check for summary field
if (value = dummy)

set to present name
else

use field value

PROGRAM NAME: message

PURPOSE: send a message to predesignated party

CALLED FROM: task

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: xmit - send message
rd - read from bulletin board

VALUES RETURNED: none

LOGIC OVERVIEW: clear the screen
prompt for read or write (getcmd)
if (write)

call (xmit) to send message
else

call (rd) to read bulletin board

79

PROGRAM NAME: rd - read

PURPOSE: allow user to read bulletin board

CALLED FROM: message

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: open bulletin board file if it exists
while (not end of file)

PROGRAM NAME: xmit

CALLED FROM: message

PARAMETERS PASSED: none

print line

SUB PROGRAMS CALLED: getcmd

VALUES RETURNED: none

LOGIC OVERVIEW: prompt for destination
set destination
prompt for message
while (not end of message symbol)

write input line to message file
prompt if want to append file (getcmd)
if (yes)

append to message file

80

send message file by means of system utility
mhmail

remove intermediate files

PROGRAM NAME: cpy

PURPOSE: Copy from a frame to a user's
directory under the name frame.copy

CALLED FROM: task

PARAMETERS PASSED: pointer to frame

SUB PROGRAMS CALLED: flptr - pointer past table section
pathmkr - set full path name for file

LOGIC OVERVIEW:
set fullpath name (pathmkr)
open source frame file
open receiving file
if (both are valid)

move source pointer past table area (setflptr)
get line
while (not end of file)

append line to receiving file
get next line

PROGRAM NAME: setfptr -set file pointer

PURPOSE: to move beyond header to begin text.
Prevents copying of header

CALLED FROM: cpy

PARAMETERS PASSED: flptr - pointer to file

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: get line from file

81

while (end of table symbol not in line)
get line of file

return pointer to beginning of text

PROGRAM NAME: mark

PURPOSE: To add to the stack containing
the marked frame names

CALLED FROM: task

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: if {stack is full)

PROGRAM NAME: help

transmit error message
else

add present name to stack

PURPOSE: display explanations of commands

CALLED FROM: task

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: fullpath

VALUES RETURNED: none

LOGIC OVERVIEW: print explanation page

82

83

C. EXECUTE TASKS THAT GENERATE NEW FRAMES

The purpose of these modules is to generate a new frame

for display and execution. There are two major modules in

volved. One that handles determining example frames and

another that provides a catch all for other types. The new

destinations come from from the frame's global table with

two exceptions. The first involves recovering the name of a

marked frame. The second involves going throught the index

frame for direct access to the frame.

The index is really a small version of the main program

although its frames are stored in a different format. It

constitutes a set of frames by itself with its own menu

offering a copying utility, display, and going to the next

destination.

CONCEPTUAL PROGRAM

C. TASKS RETURNING A NEW DESTINATION
1. EXAMPLE HANDLER
2. OTHER COMMANDS

a. FROM GLOBAL TABLE
b. FROM MARKED STACK
c. THROUGH INDEX

1. INDEX MENU
2. INDEX COPY
3. GET NEXT COMMAND
4. DISPLAY AN INDEX PAGE
5. EXTRACT A FRAME FROM PAGE

MODULAR EQUIVALENT

c.
1. example
2. newdest

a.
b. getmark
c. ndxrdr

1. ndxmenu
2. ndxcpy
3. getnxtcmd
4. showpage
5. getdest

PROGRAM NAME: example

PURPOSE: given a number, find appropriate
example set pointer

CALLED FROM: assignval, getnxt

PARAMETERS PASSED: commnd - a number

SUB PROGRAMS CALLED: none

VALUES RETURNED: pointer to example field

LOGIC OVERVIEW: convert example set number to integer
use integer to reference global array
return address into array

84

PROGRAM NAME: newdest

PURPOSE: Given commands, will return
the pointer to name of new frame.

CALLED FROM: getnxt

PARAMETERS PASSED:cmd

SUB PROGRAMS CALLED: none

VALUES RETURNED: pointer to frame name

LOGIC OVERVIEW:
switch(command)

case backward
destination = global previous

case marked frame
destination = (getmark) from top of stack

case index
destination = name returned from (ndxrdr)

case previous frame
destination = name of previously visited frame

case summary
destination = name of summary for frame set

case explanation
destination = name of explanation frame

case exercise
destination = name of exercise frame

else
destination = destination

return desintation

85

PROGRAM NAME: getmark

PURPOSE: To retrieve from the top of the mark stack,
the name of its frame

CALLED FROM: task

PARAMETERS PASSED: none

SUB PROGRAMS CALLED:none

VALUES RETURNED: backward - a pointer
to the string on the top of the stack.

LOGIC OVERVIEW: if(mrked frame stack is empty)
signal error

else
pop name from stack

return name or NULL

PROGRAM NAME: ndxrdr

PURPOSE: To present the index frame with
its commands

CALLED FROM: drive

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: getnxtcmd
showpage
getdest
ndxmenu
ndxcpy

VALUES RETURNED: newdest-name of frame
as next destination

86

LOGIC OVERVIEW:
get name of index file
set full path name for it (pathmkr)
try to open
if (open)

while (no new destination)
display one page of index (showpage)

with lines numbered
set command choice to bad
while (choice is bad)

prompt for command (getnxtcmd)
switch (command)

case previous frame
new destination = previous frame

case quit
new destination = NULL

case copy
copy index (ndxcpy)

case back
display previous index page

case default
display next page of index

case number
new destination =
extract name from line of
this number (getdest)

default
signal bad input

87

88

MODULE SECTION FOR AUTHORING

These programs are used to write frames for use by the

user package. They operate very simply. They create a file

for writing and query the user for the table set up. The

user has the option of writing his own text or appending al

ready written text to the just created table data.

CONCEPTUAL REPRESENTATION

WRITE FRAME
A. GET TYPE OF FRAME
B. GET NAME OF FRAME
C. CONSTRUCT FULL NAME
D. GENERATE TABLE
E. PRODUCE TEXT

1. WRITE TEXT
2. APPEND TEXT

F. INCORPORATE NEW FRAME INTO INDEX

MODULAR REPRESENTATION

author
A. gettype
B. getname
C. fu11name
D. f1dva1ues

1. putva1
E. f1mk

1. writefl
2. apndfl

F. indxmkr

PROGRAM NAME: author

PURPOSE: construct a frame

CALLED FROM: NA

PARAMETERS PASSED: NA

SUB PROGRAMS CALLED: gettype
full name
fldvalues
flmk
get name

VALUES RETURNED: none

LOGIC OVERVIEW: find frame type (gettype)
get frame name (getname)
add suffix to name (fullname)
fill table (fldvalues)
add text (flmk)

PROGRAM NAME: gettype

PURPOSE: find what type of frame is being
constructed

CALLED FROM: author

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: none

VALUES RETURNED: choice - type of frame

LOGIC OVERVIEW: prompt for choice of type
read choice
return choice

89

PROGRAM NAME: getname

PURPOSE: get name of frame being made

CALLED FROM: author

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: none

VALUES RETURNED: name - of frame

LOGIC OVERVIEW: prompt for name of frame
return it

PROGRAM NAME: fullname

PURPOSE: add proper suffix to name

CALLED FROM: author

PARAMETERS PASSED: name - of frame
kind - type of frame

SUB PROGRAMS CALLED: none

VALUES RETURNED: name - with suffix added

LOGIC OVERVIEW: check for type
add suffix to name
return new name

90

PROGRAM NAME: fldvalues

PURPOSE: fill in all field values for table
at initial part of frame

CALLED FROM: author

PARAMETERS PASSED: fp - pointer to file

SUB PROGRAMS CALLED: putval - fill in field

VALUES RETURNED: none

fldsumm - fill in summary field
fldexpl - fill in explanation field
fldexam - fill in example field
fldexer - fill in exercise field
fldclss - fill in class field

LOGIC OVERVIEW: for each field in table
fill in value

PROGRAM NAME: putval

PURPOSE: fill in field from frame's table

CALLED FROM: fldvalues

PARAMETERS PASSED: number - field number
flptr - pointer to file

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: read string into value
if (empty)

fill in default value
write value to file

91

PROGRAM NAME: fldsumm

PURPOSE: to fill the summary field in
frame table

CALLED FROM: fldvalue

PARAMETERS PASSED: type - of frame
number - of field label
flptr - pointer to file

SUB PROGRAMS CALLED: putval - in field
getval - from field

VALUES RETURNED: none

LOGIC OVERVIEW: if type is summary
enter dummy value
examine previous frame type
if{summary)

use its name
else

use name of summary in
its table

92

PROGRAM NAME: fldexpl

PURPOSE: to fill the explanation field in
frame table

CALLED FROM: fldvalue

PARAMETERS PASSED: type - of frame
number - of field label
flptr - pointer to file

SUB PROGRAMS CALLED: putval - in field
getval - of prev field

VALUES RETURNED: none

LOGIC OVERVIEW: switch(type of frame)
case summary

prompt for expl name
case explanation

enter dummy value
case example or exercise

examine previous frame
if(prev = summary)

expl = dummy
if (prev = expl)

expl = prev
if(other)

expl = ex~l(prev)

93

PROGRAM NAME: getval

PURPOSE: extract value from frme table and
put into location of pointer

CALLED FROM: fldsumm, fldexpl

PARAMETERS PASSED: number - of field name
flptr - pointer to frame
ptr - pointer to output

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW:
while(not done, get next line)

check line for field name
if (desired one)

extract value
save value at pntr
set done flag

PROGRAM NAME: fldexam

PURPOSE: to fill the example field in
frame table

CALLED FROM: fldvalue

PARAMETERS PASSED: type - of frame
number - of field label
flptr - pointer to file

SUB PROGRAMS CALLED: putval - in field

VALUES RETURNED: none

LOGIC OVERVIEW: if type is summary or
explanation

prompt for need for
examples

if OK for examples
invoke putval to put value
in field

else
invoke putval for dummy
values

94

PROGRAM NAME: fldexer

PURPOSE: to fill the exercise field in
frame table

CALLED FROM: fldvalue

PARAMETERS PASSED: type - of frame
-number - of field label
flptr - pointer to file

SUB PROGRAMS CALLED: putval - in field

VALUES RETURNED: none

LOGIC OVERVIEW: if type is summary or expl.
prompt for exercise field

invoke putval to put value
in field

PROGRAM NAME: fldclass

PURPOSE: to fill the class field in
frame table

CALLED FROM: fldvalue

PARAMETERS PASSED: type - of frame
number - of field label
flptr - pointer to file

SUB PROGRAMS CALLED: putval - in field

VALUES RETURNED: none

LOGIC OVERVIEW: switch on type
fill field with proper
label for type

95

PROGRAM NAME: flmk

PURPOSE: to add text to frame

CALLED FROM: author

PARAMETERS PASSED: flptr - pointer to file

SUB PROGRAMS CALLED: writefl - write to file
apndfl - append to file

VALUES RETURNED: none

LOGIC OVERVIEW: prompt for choice
if (choice = 1)

write own text (writefl)
else if (choice = 2)

append text (apndfl)
else

signal error

PROGRAM NAME: wr1tefl

PURPOSE: write text for new frame

CALLED FROM: flmk - file make

PARAMETERS PASSED: fp - pointer to file

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: prompt for text line
while (more lines)

write to file
prompt for next line

96

PROGRAM NAME: apndfl

PURPOSE: append existing file to passed
parameter filenm

CALLED FROM: flmk - file make

PARAMETERS PASSED: filenm - file name

SUB PROGRAMS CALLED: none

VALUES RETURNED: none

LOGIC OVERVIEW: prompt for name of file
to append

construct system command
line

do system command

97

PROGRAM NAME: indxmkr - index maker

PURPOSE: routine to automatically create
an index from all files ending in "txt"

CALLED FROM: NA

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: set - get title field

VALUES RETURNED: none

LOGIC OVERVIEW: Put all files ending in ".txt"
into a temporary file temp.jorp

open temporary file temp.jorp
open temporary file temp2.jorp
while (another line in temp.jorp)

get file name from temp.jorp
extract subject string (set)
separate string by comma into subjects
eliminate leading blanks (noblank)
write subjects and frame name and type

to temp2.jorp
sort file temp2.jorp into index file
remove temporary files

98

PROGRAM NAME: set

PURPOSE: extract field values from header

CALLED FROM: indxmkr - index maker

PARAMETERS PASSED: flptr - pointer to file
titlptr - array for title

SUB PROGRAMS CALLED: extr - extract title

VALUES RETURNED: none

LOGIC OVERVIEW: extract title values from string {extr)
store in global field "titl"

PROGRAM NAME: extr - extract

PURPOSE: find and assign from table the
title and class values to global fields

CALLED FROM: set

PARAMETERS PASSED: fp - pointer to file

SUB PROGRAMS CALLED: assign - assign values

VALUES RETURNED: none

LOGIC OVERVIEW:
get line from file of fp
while{ search not done and no end of table marker)

check for and extract title and type fields
asssign to global fields "titl" and "clss"

return

99

PROGRAM NAME: noblank

PURPOSE: remove leading blanks in string
pointed to by stringptr

CALLED FROM: indxmkr

100

PARAMETERS PASSED: stringptr - pointer to a character string

SUB PROGRAMS CALLED: none
~

VALUES RETURNED: none

LOGIC OVERVIEW: while(stringptr points at a blank)
increment stringptr

return stringptr

PROGRAM NAME: indexer

PURPOSE: to invoke indxmkr
independently

CALLED FROM: N A

PARAMETERS PASSED: none

SUB PROGRAMS CALLED: indxmkr

VALUES RETURNED: none

index maker

LOGIC OVERVIEW: invoke the index maker

APPENDIX C

USER'S GUIDE TO THE FRAME BASED REFERENCE PACKAGE

Getting Started

To get started in the system type

"/u/tjj/lthesis/.text/ref". You will be presented with an in

troduction frame with a menu at the bottom of the page. If

this is your first usage, you might use the "e" key to go

into some orientation frames that contain operating instruc

tions about this on-line reference package. Keep hitting the

return or enter key as you finish reading the text on that

page. Eventually, you will return to the introductory frame

from which you started. And now you are ready to go. What

follows is a fuller explanation and background that is pro

vided on-line and might be worth some study time.

Background

You are now in the on-line reference package. It pro

vides a concept different from most on-line aids in that it

attempts to provide in depth explanation to whatever degree

required. The system presents materials by pages which in

the terminology of the system are referred to as frames. Let

us now examine the frame types that you could visit as you

operate the reference.

101

102

Summary: This frame type presents a brief overview of a

topic. If that provides you with adequate informa

tion, you need go no farther. When browsing or

traversing this package, you will be travelling

along summary frames as you go from topic to to

pic. The summary frames are the connections for

the whole package.

Explanation: If you feel that the information presented

in the explanation frame is incomplete and un

clear, you may visit the explanation frame(s) pro

vided with this topic. Be aware of the fact that

all topics do not have explanation frames. This is

true if the topic is simple, and more explanation

than that provided in the summary frame is not

deemed necessary. There may be more than one ex

planation frame provided for this topic. Remarks

in the text will lead you to the other explanation

frames provided with this topic. Often throughout

this presentation, we will use the term frame sets

to indicate the possibility of multiple frames of

a particular type concerning a particular topic.

Example: For every topic and many subtopics, examples

are present to illustrate concepts. If you wish

for more concrete information than that provided

by the textual information, you may visit example

frames that illustrate these concepts. Generally,

there are a set of example frames for one topic

rather than just one.

103

Exercise : If you are serious in knowing concepts, it

is suggested that you perform the exercises. In

format, the exercises are similar to the examples.

A situation is presented and you are asked to

analyze it and construct an answer. The next frame

presents an answer that you may compare to your

own. The exercises are not difficult and intended

for reinforcement rather than extending concepts.

Index : This special frame allows you to directly ac

cess explanation and summary frames. When you in

voke this frame, the topics of all explanation and

summary frames are presented in alphabetical order

and numbered. Entering the number associated with

the topic you desire will cause that frame to be

presented. Exercise and example frames must be

accessed from the associated explanation or sum

mary frame.

Message : It may often be advantageous to communicate

about the package. You may find that the presenta

tion leaves questions unanswered, the text may be

inaccurate, or you may have run across situations

that are not covered in the message package. Fine;

one of the design principles of this package was

that it be easy to modify and have the ability to

104

grow to handle new situations. The direction and

type of growth depend upon feedback from the user

population. To facilitate communication, a message

frame has been introduced that allows the user to

send messages to the people connected with the

content of the package. This topic will be covered

in greater detail with the message command later

in this manual.

Communication is a two way street. The writ

ers of the package may want to communicate with

the general population. You can read their mes

sages in the bulletin board accessed by using the

read command within the message frame. They may

even pass along user comments to the general popu

lation this way.

Dummy: This is the error frame. If you enter an inap

propriate command, you will enter this frame which

is instantly recognizable by containing an error

statement with directions on how to exit this

frame.

105

Operating Instructions

Operating the package is extremely simple. Once you get

on the system, you are presented with some text and a menu

near the bottom portion of the frame presentation. The menu

contains all the allowable command options available from

this frame. You simply choose one and type the appropriate

symbol or number followed by return or with the default op

tion, just type return by itself. The only thing you need to

is what the commands mean and that is what follows this sec

tion.

Commands

h - This is the help command and it may be used from

any of the information frames. It describes all

the commands in the package.

1 - This is the locate command and returns a picture of

where you are with regard to the beginning frame

of the package. This routine starts with the be

ginning frame in the package and works forward to

the frame you requested it from. It presents the

title, topic, and type of each frame along the

path. For terminals with the capability, the in

formation for the last frame (your present loca

tion) is highlighted.

t - This command presents the table of contents of all

the topics presently in the package. On terminals

106

so defined, the topic that originated this command

will be highlighted. For most purposes, this com-

mand may be more useful than the locate command

for general orientation within the package. What

must be noted here is that the table of contents

does not list all frames and their topics; it

lists only the topics of the summary frames.

m - This invokes the message routine. First, you are

presented with the choice of going into the read

or transmit mode. In the read mode, invoked by the

command "r" while in the message frame, the bul-

letin board is presented.

The transmit mode works somewhat differently.

It is invoked by the command "w" from the message

frame. You are then presented with a choice of re

cipients from the people who are involved with the

reference package. At present, these are the in

structor, teaching assistant, and system main-

tainer designated by the numbers "1", "2", or "3"

respectively. You then enter one of these numbers

and are then prompted to enter your message. You

write as much as you desire and end the message by

typing a period, " " . as the first character on the

following line. This will cause your message to be

stored.

The next prompt will ask whether you wish to

append a file to the message thus far produced.

107

Often you may have questions or suggestions relat

ing to a particular program. This is the point

where you include the name of this program which

will be appended to your previous message and

sent. At this point you are returned to the main

program.

c - This command appends a copy of the present frame to

a file in your directory called frame.copy. If

frame.copy does not exist, it will be created.

This command becomes a handy way of saving the

most relevant material you find during your usage

of the reference package and saves you from having

to take notes on the material as you study it.

k - During a session, you may wish to mark a frame for

future reference - one that you wish to return to

in the future after you have finished browsing.

The command "k" will allow you to do that by sim

ply using this command when prompted in a frame.

This command has limitations that you should be

aware of. Once a marked frame has been revisited,

it is no longer marked and cannot be called up in

this manner again unless it is remarked. Frames

are visited in the reverse order that they are

marked. The first frame marked cannot be visited

until all the other marked frames have been visit

ed. If this is unsatisfactory for your usage, then

108

consider using the index to visit frames directly

when desired. Up to nine frames may be marked at

one time. Once this point has been reached, some

frames must be removed from the stack of marked

frames by revisiting them.

g - This· command is the opposite of k and causes you to

restore marked frames in reverse order of marking.

This means that the most recently marked frame

will be the first one restored.

default - Default means that instead of entering a com

mand followed by a return or enter, you just enter

the return or enter alone. What is presented is

the next frame along the path. Except in the case

of the last item in a similar set, the next item

is of the same type as the present item. For in

stance, if a topic has several explanation frames,

then each time the default key is used, the next

explanation frame is visited. This holds for the

summary, example, and exercise frames as well. The

question becomes : what is the default for the

last frame in a set? This default is the frame

that invoked the initial member of this set. In

our example, the default destination for the last

explanation frame of the set is the invoking sum

mary frame. If our example were the last example

frame of an example set then the default would be

109

the explanation or summary frame which invoked it,

whichever is appropriate. The only exception to

this rule is the summary frame set. Going beyond

the last summary frame will cause you to find

yourself in the error frame. This is intentional

in order to signal the end of frame condition.

b - This command (back) presents the previous frame on

this frame path. It is identical to the default

command, but in the opposite direction. It fol

lows sets to their beginning point, to their in

voking frame, and ultimately to the beginning of

the package. At the summary level, exceeding the

limits will again enter the error frame.

p - This command visits the previously visited frame.

This command has several valuable uses. It is use

ful for departing the error frame and is very good

for flip - flopping back and forth between two

frames.

i - Invoking this command will cause the index frame to

be visited. From these frames, one may directly

visit any indexed frame.

You are presented with eighteen lines of the

index entries. Each line contains the topic, name,

and type of the frame. Only summary and explana

tion frames are included in the index. The user is

presented with a menu that allows the rest of the

110

index to be perused eighteen lines at a time (the

default command), or a backward traversal to pre

viously visited index pages (by means of the "b"

command), the index to be copied (the "c" com

mand), to quit with a "q", or return to the previ

ous non- index frame. You have one other option

that makes the index frame unique. By typing one

of the entry numbers, that frame is directly in

voked without any reference to an intermediate

frame or path.

q - This is the quit command and causes you to leave

the reference package.

s - This command is available in the explanation, exer

cise, and example frames. It restores the summary

frame for this topic. This command is illegal from

a summary frame though.

e - This command when displayed in a summary frame in

vokes the first explanation frame for that topic

(if such a frame exists for this topic). If in

voked in an example or exercise frame, it returns

to the invoking explanation frame. This command is

not valid when issued from an explanation frame.

x - This command causes the exercise frame associated

with the invoking frame to be visited.

number - Numbers invoke the first member of the num-

111

bered example set involved with the invoking

frame. The text of the invoking frame will mention

which numbers are appropriate for this frame. Us

ing the mentioned number will begin the frame set

that matches that number.

That concludes the instruction portion of the operating

manual; what follows is a step by step example that uses a

number of the commands in order to give a flavor of how the

package works. A further note might be in order concerning

the error frame. All roads lead nowhere except three. If "p"

is invoked as the first command, then you are returned to

the previous frame. If any erroneous commands are invoked,

there is a good chance that "p" will no longer work. You may

still have the option of going to the index frame, a previ

ously marked frame, or simply quit at this point.

As a summary and reference, here are the available commands:

b - back

c - copy

e - explanation frame

g - go to marked frame

i - index

k - mark

1 - location

m - message

p - previous

q - quit

s - summary frame

1 - example set 1

2 - example set 2

9 - example set 9

<return> - next frame

t - table of contents

x - exercise

112

113

A Sample Terminal Session

We will proceed step by step through a terminal ses

sion. We assume that the user has logged in and accessed .the

package .by whatever means is required. At present this is

"/u/tjj/lthesis/text/ref". The user will now see the intro

ductory frame illustrated in figure 11.

For an introduction and operating instructions, please
press an "e" followed by return. Otherwise, the standard
keys will move you on.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:

Figure 11. Introductory Frame

114

As may be seen, the user has entered the default com-

mand, "return", to proceed along the summary frame path.

Figure 12 shows the next frame with the command "e" entered.

Compiler Introduction
The following section deals with the interpretation of

compiler error
messages. To enter the section please follow the default,

otherwise
more information is available in the explanation section.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:e

Figure 12. Compiler Summary Frame

115

The use of the command "e" in the previous frame in-

vokes the the explanation frame for this topic, so the next

frame seen will be this explanation frame. You will notice

that no command can be seen in the command line. This means

that our user has used the default command and since he is

in an explanation frame, this means that he will either move

to the next explanation frame if there are any or return to

the summary frame if there are not.

Introduction
The purpose of the compiler is to convert your source

code into something that the computer can execute. In doing
so, it must make sure that your code follows the rules of
the language. It checks your code for correctness and when
it finds a discrepancy it generates a message. Unfortunate
ly, the condition that causes an error may not match the
message very well. The condition that causes the message may
be some distance away from the place that generates the mes
sage. Because of these situations, the error messages that
are produced may be misleading.

Often debugging involves finding clues about the er
rors. These error messages are one such clue. The purpose of
this section is to add to these clues.

cCOPYgGOhHELPiiNDXkMARKlLOCrnMSGpPREVqQUITtTOCsSUMreturnNEXT
please enter next command:

Figure 13. Explanation Frame for Compiler Summary Frame

116

Our example user has come into the next explanation

frame of this set. He has chosen to return to summary frame

with his choice of "s" to the command line prompt. You might

note how the menus change from frame to frame. Only the le

gal commands from any frame are presented.

TIPS FOR THE STUDENT
1. DON'T TAKE ALL COMPILER MESSAGES SERIOUSLY

The C compiler is very prone to produce "cascade" error
messages. Cascading means that one error may produce a
number of messages because of what the original error
produced.

2. LOOK FOR CLUSTERS OF ERROR MESSAGES
Because of cascading, one error may cause several cas
cade messages in the same line or the same line and one
or two following lines to form a cluster.

3. PAY MOST ATTENTION TO THE FIRST ERROR MESSAGE OF A CLUSTER
More than likely, the messages in a cluster are cascaded
and probably are erroneous. Correction of the first con
dition of a cluster will usually cause the rest to
disappear.

4. CHECK THE PRECEDING LINE IF AN ERROR IS NOT APPARENT.
Sometimes an error not caught on one line will cause
another error message to appear on the following line.
This is especially true of punctuation errors.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCsSUMreturnNEXT
please enter next command:s

Figure 14. Further Explanation Frame

117

The user is now back to the summary frame for this to

pic~ it is a frame that we have seen before. This time, the

default value is used and we move along the summary chain of

frames.

Compiler Introduction

The following section deals with the interpretation of
compiler error messages. To enter the section please follow
the default, otherwise more information is available in the
explanation section.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:

Figure 15. Return to Summary Frame

118

The student marks this frame for future reference by

using the "k" command. Then he moves to the next frame by

using the default key.

COMPILER ERROR

<identifier> undefined

Causes
1. identifier not declared this module by error
2. identifier declared in another module but not

"#include"d in this module.
3. identifier spelling in declaration and usage do

not match (one of them is misspelled).
4. Pointer defines variable and pointer is not

initialized.
5. Cascade error

a) initial quote is missing in a string
b) semi-colon of preceding line is missing.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:k
please enter next command:

Figure 16. Summary Frame

119

Here we have another frame visited by default with it

also exited by the default command.

Expression syntax
Possible causes

1. Punctuation error
2. Undefined variable within the expression
3. string errors
4. Incorrect format for expression

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:

Figure 17. Summary Frame

In this frame, we use the command "g" to recall the

previously marked frame.

Statement syntax

Possible Causes

120

1) statement syntax in error .i.e. missing semi-colon
2) an expression within the statement is in error

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:g

Figure 18. Summary Frame With g Command

121

The marked frame is now revisited. The command that is

entered in this frame is "i" which invokes the index frame

procedures.

COMPILER ERROR

<identifier> undefined

Causes
1. identifier not declared in this module by error
2. identifier declared in another module but not

"#include"d in this module.
3. identifier spelling in declaration and usage do

not match (one of them is misspelled).
4. Pointer defines variable and pointer is not

initialized.
5. Cascade error

a) initial quote is missing in a string
b) semi-colon of preceding line is missing.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:i

Figure 19. Return to Marked Frame

122

This is an index frame. Note how different it is in ap

pearance to the other frames even to the point that its menu

is different. The user takes advantage of the direct access

capabilities by deciding to visit item fourteen in the list.

1 Bad include syntax
2 Can't find include <file>
3 compiler intro
4 compiler intro
5 debugging tips
6 declaration syntax
7 expression syntax
8 expression syntax
9 external definition syntax
10 identifier undefined
11 illegal <pound sign>
12 illegal <symbol>
13 illegal indirection
14 illegal structure reference
15 intro
16 introduction
17 introduction
18 introduction

THE AVAILABLE COMMANDS ARE

include.txt
include.txt
comp.txt
comp2.txt
comp22.txt
del. txt
expl.txt
exp2.txt
xds.txt
undef.txt
illpd.txt
illegal. txt
illind.txt
illstr.txt
introl.txt
intro2l.txt
intro22.txt
intro23.txt

summary
summary
summary

expl
expl

summary
summary

expl
summary
summary
summary
summary
summary
summary
summary

expl
expl
expl

default - next index frame b - previous index frame
q - quit program p - previous non index frame
number - to numbered frame c - copy index

enter command choice:l4

Figure 20. Index Frame

123

This frame was accessed directly by means of the index

frame functions.

Illegal structure ref

Possible Cause

Either an attempt has been made incorrectly to declare
a structure or there exists a syntax situation where a
structure is indicated and none exists. An example of the
latter situation is when a pointer points to something
that ha~ not been declared.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:l

Figure 21. Summary Frame Visited From the Index Frame

124

This shows the result of using the locate command. The

starting or present frame is the top one. The next item is

the frame before this on the path to this frame. This con

tinues until the whole path back to the introduction frame

is revealed.

subject

illegal structure reference
illegal <pound sign>
non terminated string
illegal indirection
declaration syntax
statement syntax
expression syntax
identifier undefined
compiler intro
intro

code for type
summary = summary file
expl= explanation file
exm = example frame
exer = exercise frame

enter a return to exit this frame
please enter next command:

name

illstr.txt
illpd.txt
stringl.txt
illind.txt
dcl.txt
state.txt
expl.txt
undef.txt
comp.txt
introl.txt

type

summary
summary
summary
summary
summary
summary
summary
summary
summary
summary

Figure 22. Frame Showing Result of Locate Command

125

After entering a command in locate mode one returns to

the previous frame for a new command. Notice that the user

entered an "s", and s is not in the menu list of valid com-

mands. This means that the command is invalid.

Illegal structure ref

Possible Cause

Either an attempt has been made incorrectly to declare
a structure or there exists a syntax situation where a
structure is indicated and none exists. An example of the
latter situation is when a pointer points to something
that has not been declared.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
Figure 23. Return to Previous Frame After the Locate Command

~26

This frame is the error frame. It is reached by input

ting an inappropriate command. That is, the command is "le

gal" but is not valid for the particular frame in which it

is invoked. As the frame indicates, all one has to enter

is "p" and the user returns to the previous frame. The user

may also escape through the index or by invoking a marked

frame. A word of cautiqn, if the user enters another invalid

command then the "p" command will not work because the pre

vious frame is also the error or dummy frame. The other com-

mands are still valid though.

If you are reading this you have made an error. To return to
your previous file, please hit a "p" and a return.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOC

Figure 24. Error Frame

127

The user has left the error frame and returned to the

previous frame. He now enters a "q" to stop execution of

the package and leave it.

Illegal structure ref

Possible Cause

Either an attempt has been made incorrectly to declare
a structure or there exists a syntax situation where a
structure is indicated and none exists. An example of the
latter situation is when a pointer points to something
that has not been declared.

cCOPYgGOhHELPiiNDXkMARKlLOCmMSGpPREVqQUITtTOCeEXPreturnNEXT
please enter next command:q

Figure 25. Final Frame As User Leaves the Package

APPENDIX D

AUTHORING GUIDE FOR THE ON-LINE REFERENCE PACKAGE

The purpose of the writer is to write frames for a par

ticular reference package. An aid exists called "author"

that will aid the writer in performing all the steps neces

sary to generate the frame. All the writer has to do is

respond to the program's queries. The problem is that the

writer must understand what is being asked and how to

respond to each query. That is the purpose of this manual.

Included in this manual is a sample of a query sequence.

The first question concerns the type of frame. The

user must enter a number to indicate which type this frame

will be. A '1' indicates a summary frame, a '2' indicates

an explanation frame, a '3' indicates an example frame, and

a '4' indicates an exercise frame. The reason that type is

important is that the program generates a suffix for each

frame type that is appended to its name which will be the

next question asked. The importance of the appended suffix

has to do with the automatic index maker which is invoked

later in author. The index maker uses the suffix ending to

decide which files will be included in the index that will

be used by the reference package. For reasons of space,

128

129

only the information from summary and index files is includ

ed in the index.

Once the name has been generated, the file is opened

and the information is now written in. The first set of in

formation defines where the file is in the total framework.

This means that it must specify which frame precedes this

frame and which frame succeeds it~ which frames are accessi

ble from this frame and which are not. The initial text is

a table that defines all these things as well as information

about the file. The user is queried for this information

item by item. Following this paragraph, these items are ex

plained in detail. This task is not as daunting as it may

otherwise seem since most frames will require only a small

number of fields to be filled in. Author will automatically

fill in some of the information that is obvious. Other in

formation may not apply to this situation in which case for

the response, you merely enter a "return" without any data.

Author will fill in the default value, "dummy", for you.

When in the reference package, dummy as a frame name invokes

the error frame which informs the user that he has entered

an illegal command for that frame and lets him know how to

exit.

Frame Fields

titl: This contains the topics of this frame. More than one

topic may be appropriate for this frame. Multiple to

pics must be separated by commas. Leading blanks are

permissible for this field only since they will be

stripped off before being stored as a value.

clss: This denotes the type of frame presently processed.

130

You will not be prompted for this information directly.

Author prompts for the type in another context and use

the information here as well.

next: Next is the default frame destination invoked by a re

turn key being pressed. It contains the name of the

next file in this path. An important principle to keep

in mind here is the user is to be protected from get

ting into trouble by pressing the default key. That

is, when the user reaches the end of one frame type, he

defaults to the frame of the next higher type that

called this frame. To make this more concrete, consid

er each frame as a member of a chain of frames of simi

lar types. Summary frames are one chain type, the ex

planation frames within a frame set form another chain,

the example set another chain, and so forth. These

chains may consist of one or more members. The key

factor is what happens when the last member of the

chain is reached? The answer is that default next is

the next higher level chain. In the case of an expla

nation frame, the next higher level is the summary lev

el. In the case of an example chain, the next higher

level is the corresponding explanation frame that

started the chain. The explanation frame is the de-

131

fault for the exercise frame as well. The summary

frame is the exception to this rule. When the final

summary frame is reached, the default is dummy in order

to signal to the user that the end of framework has

been reached. Figure 26 is a pictorial representation

of how the next field works.

v <-- I
summaryT I expl 1- -1 expl Ep~<-

L L

l-ex~ r:x:J
L L

l-ex~- r:x:J-

Figure 26. Next Frames for End of Sets

prev: Previous is invoked by the command "b" and

denotes the previous

frame on the path. It performs the same as next only

in the opposite direction. It heads for the beginnings

of chains progressively. Its final frame is the intro

frame. Previous to this, it runs into the dummy frame

again.

summ: The value here is invoked by the "s" command and

132

denotes the summary frame for this frame set. This

field is filled in by author and need not trouble the

writer. For information purpose&, this value for a

summary frame is "dummy" since it is considered an er

ror to try to invoke the summary frame from the summary

frame. However, all other frames in the frame set will

contain a value for the summary frame.

expl: This frame is invoked by the command "e" and denotes

the explanation frame. For the summary frame, this

frame is the initial explanation frame in a chain if

there are more than one. Except for the summary frame,

the value for this field is generated and automatically

entered by author.

exm[n]: The first example frame in the chain is called by

[n]. [n] stands for a number. For instance the com

mand "1" will call up the value in "exml", "2" for

"exm2" and so forth. Since each example set represents

a particular topic, it is possible for a ·particular ex

planation frame to several example chains starting at

it. In fact, a capability of up to nine example sets

is possible from one explanation frame. This is a rem

inder that this means the possibility of nine sets of

examples, not just nine examples. Again, following

convention, the example frames themselves fill this

field with the value "dummy".

exer: The command "x" will invoke the exercise frame which

133

is reachable from an explanation frame or a summary

frame in an abbreviated frame set. The value for this

in an exercise frame is "dummy" as per convention.

This is typically coming from the last explanation in a

frame set after a topic has been completely explained.

At the end of filling in field values, author

asks which option you wish to use to create text. You may

write your own text or use text that already exists by ap

pending to the table from that text. You might consider the

use of appending for examples and exercises and of writing

your own text for summary and explanation frames.

If you choose to write your own text, you should be

aware of some guidelines. The text should be tailored to

fit within twenty lines. This is a challenge in itself

since the ideal to make the presentations modular. This

means that each frame should be whole by itself and not

depend upon any other frame. The idea here is to prevent

the need for constant flipping back and forth between frames

to catch the meaning. This will irritate the user and very

likely result in lower comprehension rates. There is noth

ing to present a topic over several frames, but each frame

should be a complete subsection of a larger whole. To aid

you in writing, you will note that line numbers have been

provided for each line of input.

You should be careful of one thing in writing though.

The end of input is signalled by inputting only a return on

a line. If you wish to skip lines, please put a blank on

each line or else the program will end before you do.

134

If you wish to append an existing file, the same qual

ifications exist as for the writing of text. It should fit

within twenty lines. The input file may have to be tailored

somewhat to meet this requirement_. All the program needs to

know is the name of the file and it will append it automati

cally.

Summary and explanation file types will automatically

invoke the the index maker to incorporate the new frame into

-the index. Errors anywhere may be remedied using one of the

editors available on the system as would be customary for

any file.

To illustrate the authoring system, a sample session

follows that adds an example frame to the package. Any un

certainty about any of the procedures should be answered by

a review of the pertinent textual reference. It should be

emphasized that when a frame is added, this is not the end

of the process. The preceding and following frames on the

path, if they exist must have their link fields modified to

reflect the new member. This is merely a process of using an

editor to change the links in these frame files.

Removal of a frame is a manual process. The user must

use the vi editor to change the links in the preceding

frames. Additionally, if the removed frame is a summary or

explanation frame, the index adjusting routine "indexer"

should be performed.

135

Sample Authoring Session

This shows some of the prompts that the authoring sys-

tern will use to define a frame. Here, the user wants to de-

fine an example frame so he enters "3" for type and "toy"

for name. The system prompts him for connecting frames which

are entered, shown below the prompting line.

enter the appropriate number for the correct frame type
a '1' for a summary frame
a '2' for an explanation frame
a '3' for an example frame
a '4' for an exercise frame
please enter next command:3

please enter the name you wish for the file
do not add a type suffix, this will be done automatically
toy

now enter the field values for the table
for any that do not have values enter a return only

enter the topic of the frame
separate multiple topics with commas
demonstration

enter the name of next frame on path
kwd.exm

Figure 27. Portion of Prompts for Authoring System

136

This is a continuation of the authoring system prompts.

Note that there are relatively few prompts. Actually author

is filling in a number of field values on its own. The au

thor writes some text; the numbers are supplied by the pro

gram as a guide. The first line that has nothing on it ter-

minates the input; such a line is line 2.

enter the name of previous frame
kywd2.txt

you have a choice of writing your own text
or appending another file of text
to write enter a 1 when prompted
to append, enter a 2
please enter next command: 1

enter text now
there is a limit of 18 lines
even a blank line must have one blank character
or else it is counted as the end of file
1 I hope this is a successful demonstration
2
%

Figure 28. Completion of Prompts for Authoring System

137

This is the result of using the authoring to create

text. Note all of the fields that not prompted for contain-

ing values. Under different circumstances the user would be

prompted for many of these other values. Under this situa

tion author filled in these values.

titl:demonstration
next:kwd.exm
prev:kywd2.txt
summ:kwd.txt
exer:dummy
clss:exam
expl:kywd2.txt
exml:dummy
exm2:dummy
exm3:dummy
exm4:dummy
exm5:dummy
exm6:dummy
exm7:dummy
exmB:dummy
exm9:dummy
end of table symbol
I hope this is a successful demonstration.

Figure 29. Contents of Toy.exm

. \
VITA

Terry Jay Johnson

Candidate for the Degree of

Master of Science

Thesis: A FRAME BASED ON-LINE REFERENCE PACKAGE

Major Field: Computing and Information Science
Biographical:

Personal Data: Born in Independence, Missouri, October 25, 1948, son of Donald L. and Marilyn J. Johnson. Married to Cora E.L. Fillers on June 29, 1972.
Education: Graduated from Ann Arbor High School, Ann Arbor, Michigan, in June, 1972; received Bachelor of Arts Degree in Sociology from University of Michigan in May, 1970; received Master of Library Science Degree in Library Science from Louisiana State University in July, 1978; completed requirements for the Master of Science degree at Oklahoma State University, in December, 1985.

Professional Experience: Medical Corpsman, U.S. Army, July, 1970 to May, 1979; Data Systems Intern, National Security Agency, August, 1979 to June, 1983; Teaching Assistant, Oklahoma State University, August, 1984 to May, 1985.

