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PREFACE 

This study of the structure of hypolattices, join endomorphisms 

and the complementary order which may be applied to a hypolattice was 

a vehicle used to extend my own knowledge of a specific area of 

mathematics. However, it was also a means of gaining some knowledge 

of some of the fundamental approaches to research in mathematics. 

Therefore, the knowledge gained was twofold, one part being concerned 

with the actual mathematics and the other my growth as a student. 

I would like to extend my sincere thanks to my major adviser, 

Dr. Wayne Powell, for his guidance throughout this project. 

I would also like to thank the Math Department at Oklahoma State 

University for the research assistantship which made it possible for 

me to have the time to complete the research for this project. 

A special thanks is due to Elaine Murray for all her invaluable 

help in typing this thesis. 
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supremum of two elements, or the join 

infimum of two elements, or the meet 

supremum of a set of elements, or the join 

infimum of a set of elements, or the meet 

the set of join endomorphisms for a hypolattice, L 

the hypolattice L considered under the complementary order 

the join of two elements under the complementary order 

the meet of two elements under the complementary order 
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CHAPTER I 

INTRODUCTION 

A hypolattice, while like a lattice many ways, is a much more 

general structure. Therefore it is possible to obtain in format ion 

about this more general structure through the extension of material 

concerning lattices. Facts obtained in this manner may then be 

combined with present information in order to gain more knowledge of 

the structure. This paper deals with the definition of and general 

facts concerning hypolattices and explores material presented by 

Gratzer and Schmidt [2] on lattices and join endormorphisms for the 

more general structure of the hypolattice. Finally, this paper 

considers results obtained by combining the material derived from 

Gratzer and Schmidt [2] with a suborder presented by Powell [4] which 

is defined and explained as applicable. 

In order to form a basis for discussion some concepts concerning 

hypolattices are defined and clarified in this chapter. These include 

a formal definition of a hypolattice, several classifications of 

hypolattices based on certain properties they possess, and definitions 

of meet and join endormorphisms in terms of their action on a 

hypo lattice. 

The starting point is the definition of a hypolattice. A 

hypolattice L is a poset such that every closed interval [k, .e ] £. L 1.s 

a lattice where if x, y E [k1, .e 1 ] and x, y E [k 2, .e 21 then x v y exists 
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and is the same in each interval and dually. This last condition will 

periodically be referred to as the property of intervals. Figure l(a) 

is an example of a poset which is a hypolattice while Figure l(b) is a 

poset which is not since in this case x, y E [0, a] and x, y E [0, b] 

but xvy =a in [0, a] and xvy =bin [0, b]. 

aQb 
X y 

0 
Figure 1. Po sets 

A structure like this in which each closed interval is a lattice is 

said to be a weak hypolattice. One should note that a poset which 

satisfies the definition of a lattice will automatically satisfy the 

definition of a hypolattice while a hypolattice will satisfy the 

definition of a weak hypolattice. The definition of a hypolattice 

indicates that a distinction exists between the types of meets and 

joins which can occur. Specifically, there are some meets and joins 

which must exist because they are contained in a closed interval which 

is by definition a lattice. These types of meets and joins are said 

to be de jure. However, it is also possible for a meet or join to 

exist when x andy are not contained in a common closed interval; i.e., 

this meet or join does not exist as a result of the definition of the 

hypolattice. Meets and joins which occur in this manner are said to 

be de facto. The implications of these meets and joins will be 
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discussed more fully later, but the distinction allows for the 

definition of a subhypolattice. A ~ypolattice L is said to be a 

subhypolattice of another hypolattice K provided any meet or join 

which exists de jure in L exists in K and is the same in L as it is in 

K. So, for example Figure 2(a) is a subhypolattice of Figure 2(b), 

but not a subhypolattice of Figure 2(c) since a v b = 1 in Figure 2 (a) 

and a v b = c in Figure 2(c). 

d e 1 

a b a b 

Figure 2. Hypolattices and Subhypolattices 

As with many structures, it is possible to classify a 

hypolattice based on the properties it displays. One such 

classification is that of a star. A~ is a hypolattice L with the 

property that for every x and y in L such that x, y > 0, x 1. y. 

Another classification is based on the concept of completeness of a 

lattice from which it is possible to define the concept of relative 

completeness in a hypolattice. A hypolattice is said to be relatively 
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complete provided every closed interval is a complete lattice. 

Similarly, a hypolattice is said to be relatively complemented or 

relatively distributive provided that every closed interval is a 

complemented or distributive lattice, respectively. From this a 

Boolean hypolattice is one which is relatively distributive and 

relatively complemented. 

In the discussion of hypolattices, the definitions of join and 

meet endomorphisms and join and meet irreducible elements differ only 

slightly from those for lattices. In each case the difference arises 

because of the distinction between de jure and de facto joins and 

meets. A join (meet) endomorphism is defined exactly as for lattices 

with the exception that it need only preserve de jure joins (meets); 

i.e., it need not preserve de facto joins (meets). This will be 

discussed in Chapter II. Similarly, an element ~s join (meet) 

irreducible provided it is so in the usual sense with respect to de 

jure joins (meets). For example in Figure l(a), the element z is meet 

irreducible even though x 1\ y = z since x /\ y exists de facto. 



CHAPTER II 

GENERAL PROPERTIES OF HYPOLATTICES AND JOIN ENDOMORPHISMS 

Later discussions in this paper are dependent upon fundamental 

ideas concerning the existence of meets and joins in a hypolattice and 

the action of join endomorphisms on these operations. These ideas are 

presented in this chapter in order to form a basis for those 

discussions. Facts concerning the structure of a hypolattice are 

presented in the format of statement followed by justification or in 

some cases examples are used to illustrate a particular property. 

As a starting point, one should note that if two elements in a 

hypolattice have a common upper bound and a common lower bound then 

their meet and join must exist because the elements are contained in 

the closed interval from that common lower bound to common upper 

bound. If two elements have a common lower bound and the hypolattice 

is finite then this property is a little stronger. 

PROPOSITION 2.1. If L is a finite hypolattice and x and y have 

common lower bound then x A y wi 11 exist. 

Proof. The justification of this is a little more involved 

although the concept is relatively simple. Let x, y E L and suppose 

a~x, y. If one considers the closed intervals [a, x) and [a, y) then 

K = [a, x) n [a, y) contains all lower bounds for X and y which are 

greater than or equal to a. Now K is nonempty so K = { x1 , x2' . .. X } 
n 

for some x. E L, 1::: i :::n. Then x1 v x2v • • • V X E K since X < x, y for 
l. n i-

5 
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every i based on earlier comments. Also xis x1 v x2 v •.. v xn for every 

i and therefore X/1. y exists and is in fact x1 v x2 v 

that this is dually true for x v y. 

vx 
n 

Note 

Based on these facts it is possible to construct examples of the 

four ways in which de jure and de facto meets and joins can occur in a 

hypolattice. 

(i) If both x /1. y and x v y exist then they are de jure by 

definition. For example 

X y 

0 

Figure 3. De Jure Meets and Joins 

(ii) If x /1. y exists but x and y have no common upper bound then 

x /1. y is de facto. For example 

X y 

0 

Figure 4. De Facto Meet 
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(iii) If xv y exists but x and y have no common upper bound then 

x v y is de facto. For example 

X y 

Figure 5. De Facto Join 

( iv) If x 1\ y and x v y do not exist then x and y are not 

contained in a common interval. For example 

Figure 6. The Meet and Join of x and y Do Not Exist 

If L is an infinite hypolattice, it is possible for x and y to 

have either a common upper or lower bound, but not both, and for x 1\ y 

and xvy not to exist. For example let L ={aE!R. I O:::a<l}U(x, y} 

where a:::x, y for every a E [0, 1). This situation is depicted in 

Figure 7. Note that 0 is a· common lower bound but that x 1\ y does not 

exist. However, if L is finite this cannot occur based on the results 

above. 



X y 

0 

Figure 7. The Meet of x andy Does Not Exist but They Have 
a Common Lower Bound 

8 

Another interesting result concerns the application of join 

endomorphisms to hypolattices. The definition of a join endomorphism 

requires only that de jure joins be preserved, therefore the question 

arises as to whether or not de facto joins will also be preserved. 

This is not the case in general as can be seen in the following 

example. Consider the hypolattice 

c 
a 

Figure 8. A Join Endomorphism and De Facto Join 

with the join endomorphism ~(x) ={~ x# c 
x= c 

Now a V c = 1 is a 

de facto join but ~(a v c) = 1 # b ~(a) v ~(c). So as stated a join 

endomorphism need not preserve de facto joins. 



CHAPTER III 

THE HYPOLATTICE OF JOIN ENDOMORPHISMS 

Through study of material presented by Gratzer and Schmidt [2] 

concerning the lattice formed by the join endomorphisms of a lattice 

one finds that similar results hold for hypolattices under like 

conditions. Essentially, Gritzer and Schmidt [2] showed that for 

lattices there are specific conditions under which the join 

endomorphisms will form a lattice and, based on this, that a lattice 

is distributive if and only if the lattice of join endomorphisms is 

distributive. This chapter will show that these results do indeed 

hold for hypolattices under similar conditions. 

First, in order to discuss the hypolattice of join endomorphisms, 

the ordering of the join endomorphisms must be clearly understood and 

notation agreed upon for the purpose of simplification. The order, 

< will be defined for join endormorphisms ~ and e as follows, 

~::: 6 provided for every x E L, a hypolattice, ~ (x)::: 6 (x) in the 

order on L. For notational purposes L will denote a hypolattice and LV 

will denote the set of join endomorphisms of L. 

According to Gratzer and Schmidt [2], the join endomorphisms of an 

arbitrary lattice do not form a lattice, and this is also true for 

hypo lattices. The counter example given by Gr.atzer and Schmidt [ 2] is 

found by considering the lattice [O,l]X[O,l] with the exception of 

the point (0,1). Let this lattice beL and note that L is a 

9 
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sublattice of the lattice [0, 1))< [0, 1). Now consider the following: 

( ) = [(1, 1) (x, y) = (1, y); y;tO d 
9 X' y ( 0' 0) X # 1 ' an 

( ) = { (0, 0) (x, y) = (x, O); x # 1 
<P x, y (1, y) y;tO 

which are both join endomorphisms. If e 1\ <P does not exist then 1y 

is not a lattice while if e and <P are contained in some closed 

interval then LV will not be a hypolattice either. If one considers 

every "'¥ E LV such that "'¥ ::: e, <P 

iTr( ) ={(0, 0) 

then each "'¥ will be of the form 

I x, y (a, 0) 
X ;t 1 
y;tO 

Note that each "'¥ is a join endomorphism and also that of these there 

is no greatest one because a ;t 1 as the point (0, 1) t L. Therefore, 

9 1\ <P does not exist and L is not a lattice. v If 0 and I are 

defined by O(x, y) = (0, 0) and I(x, y) = (1, 1) then OS 9, <PSI; 

i.e. , 8, <P E[O, I]. But from above9/\<P does not exist. 

Therefore, this closed interval is not a lattice which implies LV is 

not a hypolattice either. Recalling that any lattice is a 

hypolattice, this shows that for an arbitrary hypolattice L, LV need 

not be a hypolattice. 

According to Gratzer and Schmidt [2] a sufficient condition for LV 

to be a lattice is that L be a complete lattice in which case LV is 

also complete. In reality this condition is both necessary and 

sufficient the proof of which is similar to the following 

generalization to relatively complete hypolattices. 

THEOREM 3.1 The join endomorphisms of a hypolattice L form a 

relatively complete hypolattice if and only if L is relatively 

complete. 

Proof. Let L be a relatively complete hypolattice. Further, let 

L be the set of join endomorphisms of L. Now L will be a relatively v v 
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complete hypolattice if the interval [ ~' e] is a complete lattice and 

the property of intervals holds for all ~' 8 E LV such that ~ ::: 8 • To 

I 
show this, suppose !1' I2 E[~ 8] which implies ~ (x):::I1(x), I 2(x):::e (x) 

for every x EL. For any x E L it is clear that I 1(x) v I 2(x) and 

! 1 (x) 1\ ! 2 (x) exist in [ ~(x), 8(x)] since I 1 , I 2 E Lv and Lis a 

relatively complete hypolattice. So let I (x) = ! 1 (x) V ! 2 (x) and 

r (x) = ! 1 (x) 1\ I 2(x) for each x E L. A primary concern at this 

point is that I and r be join endomorph isms. In the case of ! this 

is relatively clear since 

= 

= 

= 

! 1 (xvy) v I 2 (xvy) 

! 1 (x) v ! 1 (y) v ! 2 (x) v I 2(y) 

! 1 (x) V I 1(x) v I 2 (y) V I 2(y) 

I(x) v ! (y) 

For r, however, the process is a little more complicated. Begin by 

considering H = {f 1 I ~=== f 1 ::: I 1, ! 2}. Then by the relative completeness 

of L the supremum of H must exist and is in fact r by definition; 

i.e.' r \ / r' . = V f 1 E H Based on this relationship consider 

r ( x " Y) = V r I E H r I (x " Y) 

= V r~ E H( f 1(x)" r' (y)) 

= V r'E H r~(x) " Vr~E Hr1 (y) 

= f(x) 1\ r (y) 

Therefore, f is indeed an element of 1v which shows that [ .P, 8 ] is a 

lattice. To show that [ ~' e ] is complete one must consider an 

arbitrary set H (;. [ ~' e]. Now the supremum of H exists and is a join 

endomorphism in the same manner as above. So the interval [ ~, e ] is 

complete. Finally, if the property of intervals holds then LV will 

indeed be a relatively complete hypolattice as desired. To 
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demonstrate this, let '¥ 1, Y2E [ <P 1, e 1 J n [<P2, e2 J. Now, for any x E L 

Y 1 (x), Y2 (x) E [<P 1(x), e 2 (x)J n [<P1 (x), e 2(x)J and Y1(x) v Y2 (x) 

and Y1(x)/\Y2(x) exist and are the same in each interval by the fact 

that L is a hypolattice and satisfies the property of intervals. If 

Y (x) = Ylx) v Yz<x) and r (x) = ¥ 1(x)/\ Y z<x) for all xE L, then 

'¥, f ELV from above and satisfy the property of intervals by 

definition. So LV satisfies the property of intervals and as 

desired ~s a relatively complete hypolattice. 

To prove the converse suppose that L is not a relatively complete 

hypolattice and note that this can occur in two ways. In one case L 

is not a hypolattice while in the other L is a hypolattice but is not 

relatively complete. Suppose first that L is not a hypolattice. Then 

some interval [k, .e J ~ L is not a lattice or the property of intervals 

would not hold. Assume that [k, .e J is not a lattice. This implies 

that there exist a, bE [k, .e J such that a v b or a 1\ b do not exist. If 

a v b does not exist consider the join endomorphisms <P (x) = k, 8 (x) = .e, 

Y(x) =a and f(x) = b for all x ELand note that'¥, f E [<P, 8] but 

Y v r does not exist which implies that Iy is not a hypolattice. A 

similar argument holds if a/\ b does not exist. If the property of 

intervals does not hold in L then for some a, bE [kl' .e1J and [kz, .e2 J 

a v b or a 1\ b are not the same in [k1' .e 1 J and [k2, .e 2] • Once again 

consider the join endomorph isms q,1 (x) = k q,2(x) = k2, 81 (x) = .e 1 ' 1' 

e2(x) = .e2, y (x) = a and f(x) = b for all x E L. Then corresponding 

to the values of avb and a/\b in the respective intervals'Yvfor .Y/\f 

are not the same in [ q, 1 , e 1 ] and [ <P2 , e 21. In each case LV is not 

a hypolattice. In the second case suppose that L is a hypolattice 

which is not relatively complete. This implies that there is some 
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interval [k,t] cL which is not a complete lattice; i.e., there is a 

subset H of [k, t] such that VH or /\H does not exist. Suppose that 

V H does not exist and define <P and e as in the first case. Further 

let r (x) = h where h E H and a E A and note that r E [ <P, e ] for a a a a 

all a E A but that V a EAr a does not exist. This indicates that LV 

is not relatively complete either. Therefore, if L is a relatively 

complete hypolattice then Iyis a relatively complete hypolattice as 

desired. 

According to Gratzer and Schmidt [2] the lattice of join 

endomorphisms will necessarily have a smallest element 0. However, 

this is not true for a hypolattice simply because a relatively 

complete hypolattice need not have a least element (consider Figure 6, 

page 7). 

As a corollary to this, if L is a finite hypolattice LV will also 

be a hypolattice since a finite hypolattice is relatively complete. 

Because relatively complete hypolattices are the only hypolattices for 

which LV is also a hypolattice discussion will be limited to 

relatively complete hypolattices for the rest of this chapter. 

One goal of this chapter, as in Gratzer and Schmidt [2], is to 

describe when LV will be a relatively distributive hypolattice. This 

will be accomplished by a series of lemmas establishing criteria for 

embedding Lv in L based on the number of join irreducible elements 

contained in L. This leads to the statement that LV will be a 

relatively distributive hypolattice if and only if L is a relatively 

distributive hypolattice. 

Recall that in a hypolattice an element is considered to be join 

irreducible if it is join irreducible with respect to de jure joins in 
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the usual sense. Also, note that for a finite hypolattice a join 

endomorphism is determined by where it takes the jQin irreducible 

elements since every element is the join of join irreducible elements. 

Based on this Lemma 3.2 follows. 

LEMMA 3.2. If a 1, a 2 , .•• , ak are the join irreducible elements 

in a finite, relatively distributive hypolattice L with smallest 

element 0 and b 1, b 2 , ••. , bk are arbitrary in L, then a necessary and 

sufficient condition for the existence of a join endomorphism 8 with 

e (ai) =b. is that a. :::=a. implies that b.:::: b .• 
1. 1. J 1. J 

Proof. Let L, a 1, a 2 ' • •• ' ak and bl , b2, ... , bk be as 

described. Further let r(a) 

elements less than or equal to 

implies that a = V E ( ) a .. a. r a 1. 
1. 

and based on this define e (a) 

be the set of all join irreducible 

a, that is, r(a) = (a. I a.:::: a}. 
1. ' 1. 

This 

Suppose that 8(a.) =b as specified 
1. i 

= V E ( ) 8 (a.). It is necessary to a. r a 1. 
1. 

show that e is a join endomorphism; i.e., that e (a v b) = e (a) v e (b) 

for a , b E L where a v b E L . Th is h o 1 d s if r ( a) U r ( b ) = r ( a v b ) • 

Clearly r(a) U r(b) ~ r(a v b) therefore all that remains is to show that 

r(aVb)~r(a)Ur(b). Suppose xEr(avb) but x~r(a) Ur(b). Note that 

xA a <x and x/\ b<x since xi. a, b by definition. Note x/\ a and X/\ b 

exist because x, a, b E [0, a vb]. Further, by the distributive law 

x = x 1\ (a V b) = (x 1\ a) V(x 1\ b) but this is not possible since x l.S join 

irreducible by definition. Therefore, x E r(a) U r(b). This implies 

r( a v b) = r(a) U r(b). Therefore e is a join endomorphism. 

Using this result it is possible to show that L may be embedded v 
1.n the direct product of copies of L based on the number of join 

irreducible elements in L. 
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LEMMA 3.3. Let k be the number of join irreducible elements in 

L, a finite, relatively distributive hypolattice with smallest element 

0. Then the hypolattice Ly can be embedded in the direct product of k 

copies of L. 

Proof. Let f: Lv-+liL be defined by f( 8) = (b 1 , b 2 , .•• bk) 

where 8(a1 , a 2, •.. , ak) = (b 1 , b 2 , ••• , bk) and a 1 , a 2 , ••• , ak are 

the join irreducible elements of L. 

e <a.l ; az, ~) = (bl' b2' ... ' 
<P ( al ' az' ... ' ak) = (cl' cz' 

e v <P = (b1 v c1 , b1 v c2 , ... , 
e 1\ <P = (bl 1\ cl ' bl " cz' ... ' 

whenever these meets and joins exist. 

If 8, <P E L such that v 
••• J bk)' and 

••• J ck)' then 

bk v ck), and 

bk 1\ ck) 

That is, b and c are contained 

in some common interval. Assuming this and that e /\<!> exists clearly 

implies that f is a monomorphism, and therefore f embeds L in k v 
copies of L as desired. 

Now consider a relatively distributive hypolattice L. The direct 

product of L k times is also relatively distributive and by Lemma 3.2 

LV is a subhypolattice of this product. Therefore the fact that L ~s 

relatively distributive implies the same for L • Conversely, if L is v v 
relatively distributive then L must be also since L can be embedded in 

This is done by defining f: L-+L by f(a) = 8 where 8 E L ~s v v 
such that e (x) = a for all x E L. This proves the following result 

which is the focus of this chapter. 

THEOREM 3.4. The join endomorphisms of a finite hypolattice L 

form a relatively distributive hypolattice if and only if L is 

relatively distributive. 



CHAPTER IV 

THE COMPLEMENTARY ORDER 

The partial order which defines a hypolattice describes a 

relationship between the elements of a set. If there are two partial 

orders < and < on the same set, then _< 1 will be called a suborder -1 -2 

of ::: 2 if a ::: 1 b implies that a::: 2 b for any a and b in the set. A 

suborder can be defined in any manner as long as this condition is 

satisfied. This section deals with a particular suborder, defined by 

Powell [4], which is determined by the original order on a relatively 

distributive hypolattice (L,:::) with smallest element 0. Under the 

order ::: ', a ::: 'b is equivalent to the existence of some c E L such that 

a Vc = b and a/\ c = 0. This is called the complementary order. For 

notational purposes (L,:::) will be denoted by L and (L, ::: ') will be 

denoted by L' The supremum and infimum of a, bEL will be denoted in 

the usual manner, a v b and a 1\ b, if they exist while the supremum and 

infimum of a, bEL' will be denoted a v' b and a /\ 1 b respectively if 

they exist. As noted by Powell [4], L' is a partially ordered set and 

:::'is a suborder of :::. A significant result upon which this 

section is dependent is Theorem 1 [4]. 

Let (L, :::) be a relatively distributive hypolattice with 0. Then 
L with the complementary order :::' is a Boolean hypolattice. If 
a, bEL then a /\ 1 b exists and whenever av 1 b exists av'b = ayb. 

An example of the complementary order is given below. 

16 



a b a 

L L 1 

Figure 9. A Relatively Distributive Hypolattice 
and the Complementary Order 

17 

Further, although the Theorem is not applicable to hypolattices which 

are not relatively distributive it is worth noting that for finite 

hypolattices it is possible to construct the hypolattice which results 

from the application of the complementary order simply by considering 

the relationships of the elements. For example, 

a 

b 

a c 

Figure 10. A Relatively Non-distributive Hypolattice 
and the Complementary Order 

c 
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While it is possible to apply the complementary order to any 

finite hypolattice from this point on only relatively distributive 

hypolattices will be considered. 

The desired result of this chapter ~s the classification of the 

hypolattices which arise from the application of the complementary 

order based on properties of the original hypolattice. There are 

three basic types of configurations which can occur when the 

hypolattice is considered under the complementary order. The 

complementary order may form a star, preserve the original 

hypolattice, or form a configuration which is a combination of these 

two. 

In the next theorem recall that a star is a hypolattice in which 

for every x, yEL such that x, y>O, xi.y. 

THEOREM 4.1. For L, a relatively distributive hypolattice with 

smallest element 0 the following are equivalent: 

(i) 1 1 is a star. 

(ii) 0 ~s meet irreducible ~n 1 1 • 

(iii) 0 ~s meet irreducible in L. 

Proof. The form of this proof ~s to show that (i) implies (ii) 

which implies (iii) which in turn implies (i). 

In the first case assume that L 1 ~s a star and suppose x 1\ 1 y = 0 

and that x V1 y exists. Note x /\ 1 y is de jure. Now x, y ::: x /\ 1 y by 

definition, but since L 1 is a star and x t: 0, x = x v 1 y which implies 

that x /\1 y = y or y = 0. Therefore 0, is meet irreducible in 1 1 • 

In the second case assume 0 ~s meet irreducible in 1 1 and 

consider x 1\y = 0 where x Vy = z for x, y, z E L. This implies that 

x, y:::;•z and that x v• y = z and x A• y = 0 by Theorem 1 from Powell [4]. 
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However, since 0 is meet irreducible 1n L', x or y must be 0, and 

therefore 0 is meet irreducible in L. 

Finally, assume 0 is meet irreducible 1n L and suppose x :::• z for 

x~O and zEL. Then there exists some yEL such that X/\y = 0 and 

also x v y = z. But 0 is meet irreducible in L and x ~ 0 which imp 1 ies 

that y = 0 so x = z. Therefore, by definition L' is a star. 

This theorem indicates the importance of the positioning of the 

zero element in relation to the other elements in the original order. 

Essentially, any time 0 is meet irreducible in the original 

hypolattice the complementary order reduces L to a star. 

There are also hypolattices which are completely preserved by the 

application of the complementary order. 

LEMMA 4.2. Let L be a relatively distributive hypolattice with 

smallest element 0. Then every interval [0, y] £ L is complemented if 

and only if L = L'. 

PrRof. Assume that L is a relatively distributive hypolattice 

with smallest element 0 such that every interval [0, y] S L is 

complemented. Suppose x::: y; i.e., x E [0, y]. Then because the 

interval is complemented there exists z E [0, y] such that xv z = y 

and x 1\ z = 0. This implies that x :::• y and so L is the same as L'. 

Suppose that L and L' are the same. Then if x E [0, y] c L, x::: y 

which implies that x :::•y. Therefore, there exists z E L with xv z = y 

and X/\ z = 0, and the interval is complemented by definition. 

While these are interesting results they are very limited 1n the 

types of hypolattices to which they apply, as there are many 

hypolattices which are actually a combination of subhypolattices which 

are of these types. Therefore, before discussing the manner in which 
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the complementary order effects these hypolattices one must consider 

the role that subhypolattices play in the formation of a hypolattice 

under the complementary order. First, for any hypolattice L which is 

relatively distributive with smallest element 0, L' will be a 

subhypolattice of L simply by definition. While this is helpful in 

the understanding of subhypolattices and the complementary order the 

following is more applicable. 

LEMMA 4.3. If L is a subhypolattice of K, a relatively 

distributive hypolattice with smallest element 0, such that 0 E L, then 

L' is a subhypolattice of K'. 

Proof. Let L and K be as described and let a, b E L such that 

a v' b and a A 1 b exist. By Theorem 1 from Powell [4] a V1 b = a v b and 

a A 1 b = a A b, but these are de jure :tn L and are therefore the same in 

K. Clearly aV 1 b and aA 1 b must exist inK' since they exist in L' 

and L is contained in K. 

subhypolattice of K'. 

Therefore, the values are equal and L' is a 

Based on this information about subhypolattices it is possible to 

describe the hypolattice which results from the application of the 

complementary order to an arbitrary relatively distributive 

hypolattice with smallest element 0. 

THEOREM 4.4. If L is a relatively distributive hypolattice with 

smallest element 0, then L' will be the union of a star and those 

intervals [0, y] which are complemented and therefore preserved under 

the application of the complementary order. 

Proof. Let L be as specified and note that any complemented 

interval [0, y] is a subhypolattice of which L will be preserved under 

the complentary order. This follows from Lemma 4.2. 
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What remains to be shown is that K= { x E L 1 x t [ 0, y) for any y 

such that [0, y] is complemented} U {0} is a subhypolattice of L and 

that 0 is meet irreducible in K. To proceed let a, bE K such that 

a, bE [c, d] c; K. Now av bE [c, d] c;L because L is a hypolattice. 

Suppose a v b f/K. This would imply that a vb E [0, y], a complemented 

interval for some yEL. But then a, bE [aAb, avb]c[O, y] which is 

a contradiction of the choice of a and b. Therefore a v bE K. In the 

case of at\ b, if at\ b lK, then at\ b is in a complemented interval 

[0, y] for some y E L. Hence, c :::a A b E [0, y] or c E [0, y] in which 

case c = at\ b = y. Therefore, a AbE K and K is a subhypolattice of L. 

To show that 0 is meet irreducible in K let a, b, c E K with a v b = c, 

at\ b = 0 and a, b <C. Since a, b, c E K the interval [0, c] is not 

complemented so there exists some dE [0, c] such that there does not 

exist e E [0, c] with d v e = c and d A e = 0. Now, either d is not 

related to either a or b, d is related to exactly one of a and b, or d 

is related to both a and b. In the first and second case the interval 

[0, c] is not distributive which contradicts the hypothesis. In the 

third case if a::: d::: b then [0, c] is once again not distributive and 

if d!:a, bora, b::;d then aAb::;d or d::;aAb which is also a 

contradiction. Therefore, c = a or c = b. If c = a, then 0 = b which 

implies that 0 is meet irreducible in K. 

By Lemma 4.1 K1 will be a star and by Lemma 4.3 both the 

complemented intervals and K1 are subhypolattices of L 1 • In fact L 1 

is their union. 

A particular result of the preceding theorem is that L 1 is 

relatively distributive, and also that if L" is found by applying the 

complementary order to L 1 , then L" must always be ismomorphic to L 1 • 



CHAPTER V 

JOIN ENDOMORPHISMS AND THE COMPLEMENTARY ORDER 

Combining the information about join endomorphisms and the 

structure of the hypolattice L' leads to several questions concerning 

how these topics effect one another. These are basically extensions 

of ideas which were presented earlier but can now be explored in terms 

of the other information discussed. This section will deal with the 

possibility of embedding the hypolattice L'v in the hypolattice L, the 

correspondence between the join endomorphisms of L and those of L', 

and finally the implication of rv~ KV for hypolattices L and K. 

Lemma 3.3 in Chapter III states that the hypolattice of join 

endomorphisms can be embedded ink copies of the original hypolattice 

where k is the number of join irreducible elements in a finite 

hypolattice. This leads to the question of whether or not the 

hypolatice resulting from the application of the complementary order 

or its hypolattice of join endomorphisms may also be embedded in the 

original hypolattice. One should note that since the hypolattice 

obtained by application of the complementary order will retain the 

properties of the original hypolattice it is possible to embed L'v in 

L'. This is the key for embedding L'v in L. 

THEOREM 5.1. Let L be a finite, relatively distributive 

hypolattice with smallest element 0 then the hypolattice L'v can be 

embedded in k copies of L where k is the number of join irreducible 

elements in L'. 

22 
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Proof. This follows as a direct result of Lemma 3.3. 

This theorem reveals that the hypolattice of join endomorphisms 

of the complementary order is a structure which is contained in the 

direct product of copies of the original hypolattice. 

The second section of this chapter deals with the relationship 

between the join endomorphisms of the hypolattices L and L'. There ~s 

in fact some correspondence between the two sets, and the purpose of 

this section is to show that LV~ L'v for hypolattices where L f., L'. 

The fact that LV S L'v will be established by formal proof and an 

example will be given where LV <f L 'v • 

The proof of the containment of LV in L' is actually fairly 

straightforward. The results of Theorem 4.4 establish that L' is the 

union of a star and the complemented intervals of the form [o, 0 
contained ~n L which are preserved under the complementary order. 

This in turn implies that L' is a subhypolattice of L, and this is the 

basis for proving that LV S L' V. 

LEMMA 5.2. The join endomorphisms of a relatively distributive, 

finite hypolattice L with smallest element 0 are contained in the join 

endomorphisms of the corresponding hypolattice L'. 

Proof. Let L be a relatively distributive hypolattice with 

smallest element 0 and let 9 E Lv. By definition, in order for e to 

be a join endomorphism of L' it need only preserve de jure joins in 

L'. Let a, bEL' such that av•b is de jure in L' and 9 (a v'b) and 

9(a) v• 9(b) exist. Since a v' b is de jure a 1\ 1 b exists, and 

furthermore a V1 b = a vb and a A 1 b = a A b which implies that a v b is 

de jure in L also. Therefore, a vb is preserved by e; that is, 

9(aV 1 b) = e(avb) = e(a) v 9(b) = e(a) v'e(b) by [4]. 

and as desired Lv~ L'v· 

So e ELI 
v 
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The next thing to show is that L c L' for a relatively 
v + v 

distributive, finite hypolattice L where L~L'. This is done simply by 

considering an example. Let L be the hypolattice given and ~ the join 

endomorphism for the corresponding hypolattice L'. 

{; 
X f: d, f 

f ~(x) = x=f e 
x= d 

d 

a b 

L L' 

Figure 11. A Join Endomorphism of L' but not of L 

Considering the action of ~ on the hypolattice L yields that~ r/LV so 

Lv ~L~ since ~(d vf) = (d) f: (f) = ~(d) v ~(f) • 

This section demonstrates that with respect to join endomorphisms 

L' is in effect a simplification of L, that is if L and L' are not the 

same. 

The last point to consider is the implication of LV~ Kv for 

finite hypolattices L and K which are relatively distributive. From 

this L and K cannot be completely determined, however it is possible 
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to determine some of the characteristics they have in common which are 

direct consequences of theorems in Chapter III. The characteristics 

are that L and K are relatively complete and relatively distributive 

by Theorem 3.1 and Theorem 3.4, respectively. Recall this arises 

from the fact that L and K can be embedded in copies of themselves. 



CHAPTER VI 

SUMMARY 

The goal of this paper has been to extend one's knowledge of the 

structure of a hypolattice. To accomplish this goal early chapters 

dealt with basic facts concerning the properties of hypolattices and 

their structure. In Chapter III the emphasis shifted to extend these 

basic facts by patterning the discussion of hypolattices after that of 

lattices presented by Gratzer and Schmidt [2]. Chapter IV focused on 

describing the hypolattice which arises when the elements are 

considered under the complementary order defined by Powell [4]. 

Finally in Chapter V the ideas from Chapters III and IV were combined 

to consider questions that arose as a result of the study in the 

previous chapters. 

Chapter III followed the pattern of Gratzer and Schmidt [2]. They 

had shown through a series of lemmas and examples that the set of join 

endomorphisms of a finite, distributive lattice forms a complete, 

distributive lattice. With this guide to follow, while some steps 

may have varied slightly, it was possible to show that these same 

results hold for the more general structure of the hypolattice under 

similar conditions. This generalization from the more specific to the 

more general is important in mathematics and in this case yielded 

interesting results. 

The information obtained in Chapter IV focused on a basic problem 

in mathematics which is to classify structures in terms of the 

26 
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properties they possess or the manner in which they originate. In 

this case the goal was to describe the hypolattice L' which originates 

from the application of the complementary order described by Powell 

[4] to a relatively distributive hypolattice L with smallest element 

0. The result from this indicates that L' is in effect a 

simplification of L in that the only intervals which remain intact in 

L' are those of the form [0, y] which are complemented while the rest 

of L becomes a star which is a very simple hypolattice. 

The consideration in Chapter V of questions that arose as a 

result of the previous chapters showed that there are some 

implications which are direct results of the theorems proved 

throughout the paper. For example being able to embed L' into copies 

of the hypolattice L ~s based mainly on the fact that L' is a 

subhypolattice of L and that L'v can be embedded in copies of L' 

directly from Chapter III. The other question concerning the 

implications for hypolattices L and K when L·_. ~ K is basically a 
v v 

matter of considering the properties of L and K in light of Chapter 

III, in which most of the results were both necessary and sufficient. 

Therefore, L and K will have some of the same properties that L and K 

have which are both necessary and sufficient. 

This effort to more fully understand hypolattices, the 

hypolattice of join endomorphisms and the action of the complementary 

order has yielded several interesting results. However, it has also 

been a means for introducing a few methods of approaching research in 

mathematics. The generalization of the material from Gratzer and 

Schmidt [2] to the more general structure of a hypolattice is one such 

method. And exposure to these methods leads to a better understanding 

of the processes involved in research in mathematics. 
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