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CHAPTER I 

INTRODUCTION 

Nonsmooth optimisation or nondifferentiable 

optimisation (NDO), as opposed to smooth optimisation, 

refers to problems where the objective function to be 

minimised is not necessarily differentiable everywhere. 

This phenomenon occurs frequently in mathematics and 

optimisation. Furthermore, nondifferentiable functions are, 

in general, more difficult to minimise than smooth 

functions. Hence there is a need to find efficient and 

practical methods to solve the NDO problem. 

In recent years there has been a growing interest in 

developing techniques to solve nonsmooth optimisation 

problems [27]. Various approaches have been suggested, many 

of them are based on methods already available for smooth 

optimisation. There is an enormous amount of literature 

available on smooth optimisation, the methods of steepest 

descent and conjugate gradients, and also quasi-Newton 

methods have reasonable extensions to non-smooth 

optimisation problems •. 

At present there is a considerable interest in this 

area and it is not possible to say yet what the best 

approaches are [27]. A survey of the recent developments in 
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this field is presented in chapter II. 

Problems in NDO can [31], in general, be treated as 

problems with random discontinuities in the objective 

function or as problems in which a great deal of information 

is available about the nature of the discontinuities. Most 

nondifferentiable optimisation problems can be formulated as 

composite functions [27]. However, in practice this may be 

complicated or may require too much storage. There are 

various algorithms to solve such composite functions. A 

common kind of composite function studied is the Minimax 

problem, which can be defined as the minimisation of a 

function F(x) where 

F(x) =max { fj(x} }, 

and fj (x) are smooth functions. 

j = 1, ...• , m 

When the only information available at any point x is 

f(x) and a normal vector g to a supporting hyperplane, the 

problem is more difficult to solve. If the function f is 

nondifferentiable at x, 9 is referred to as the subgradient 

at x. The subdifferential ~f is defined as the set of all 

subgradients at x. This class of problem is called the 

basic NDO. Fewer methods are available for basic NDO. 

Algorithms for basic NDO have not progressed far because of 

the limited availability of information. 

Some simple examples of problems [12] that occur in NDO 

are described below. The first example is that of finding 

the best solution to an overdetermined system (m>n) such as 



occurs in data fitting applications. Given a set of data 

points, the problem of finding the best linear fit so that 

the error is minimised is a non-differentiable problem. 

n 
~ e 
i=O 

where e = 1 mx + b - y t is 

nondifferentiable as a function of m and b. 

Consider a simple problem in elasticity. An elastic 

band whose upper end is fixed and lower end is tied to a 

unit point mass. When the band is stretched by a positive 

amount x, it exerts an upward (restoring) force propotional 

to x. When unstretched no force is exerted. When the mass 

is oscillating vertically the force, f is given by 

f(x) = g - kx if X >= 0 

g if X <= 0. 

where g is the acceleration due to gravity and k is the 

propotionality constant for Hooke's law. The function is 

continuous but may not be differentiable at 0. 

Another example is when the constraints are themselves 

dependent on parameters. 

Min 

subject to 

f(x) 

g(x) + p <= 0 

h(x) + q = 0 

The solution v(p,q) depends upon p and q and is not 

differentiable everywhere, e.g. where g(x) + p = 0. 

3 

One of the most important applications of NDO is in the 

area of nonlinear programming through the use of exact 

penalty functions [28]. By reformulating some difficult 



problems in linear and nonlinear programming as NDO 

problems, we can increase the ability to handle such 

problems. 

4 

A study of a method for minimax problems by Hald and 

Madsen [34] and modification of this method following 

Fletcher's [28] guidelines is described in chapter III. The 

performance of the modified method is tested using the test 

problems described in chapter IV, and by comparison to 

similar methods. Some mathematical definitions are given in 

appendix A. A large bibliography is also included. 

Appendix B contains the program listing. 



CHAPTER II 

A SURVEY 

The interest in developing techniques to solve NDO 

problems has been recent. Until 1964, the method most 

investigated [9] for the minimisation of nondifferentiable 

functions was the so called "cutting plane method", 

discovered by Cheney and Goldstein [10] and independently by 

Kelley [47]. Cutting plane methods have been used widely in 

constrained optimisation. 

Cutting plane algorithms are elementary in principle. 

A series of improving approximate linear programs, whose 

solutions converge to the solution of the original problem, 

are developed. Cutting plane algorithms determine the 

hyperplane that separates a current point x from the 

constraint set. Algorithms differ in the manner in which 

the hyperplane is selected. This selection is an important 

aspect of the algorithm, since it is the distance of the 

hyperplane from the current point that determines the rate 

of convergence of the method [56]. Nondifferentiable convex 

functions allow the possibility of a number of supporting 

hyperplanes as illustrated in figure 1. 

5 



f(x) 

..... 

x* 

Figure 1. Supporting hyperplanes to non
differentiable convex function 
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X 

A description of cutting plane methods is given by 

Leunberger [56] and Zangwill [94]. The convergence of the 

cutting plane methods does not depend upon the 

differentiability of the objective function. As observed by 

Wolfe [88) the rate of convergence of cutting plane 

algorithms seems better for non-smooth functions than it is 

for smooth functions. A refinement of the cutting plane 

method is given by Hogan [45]. Some results on the 

convergence rates of cutting plane algorithms are given by 

Eaves and Zangwill [21] and Wolfe [89]. 

In 1964, Shor [81] pioneered the subgradient algorithm. 

Since that time the method has been highly developed in the 

Sovient Union. Subgradient (SG) optimisation is a technique 

that attempts to solve the problem of minimising a general 

nondifferentiable convex function, and is about the simplest 



possible general method for solving basic NDO problems. 

Shor's method is applicable to any convex function. A good 

survey of Soviet research in this field is given by Poljak 

[73]. It reviews the research efforts by Soviet authors in 

developing subgradient methods for NDO. 

The minimisation method using space dilation in the 

direction of the difference of two successive gradients due 

to Shor [82] has been found [9] to be a very effective 

method for difficult non-differentiable problems. It has 

been observed [51] that good results are obtained by using 

Shor's method of space dilation and quasi-Newton methods. 

For certain structured LP programming problems whose size 

makes any known version of the simplex method impractical, 

the simple algorithm due to Shor has proved to be effective 

[45]. But that it does not converge as fast as even the 

steepest descent methods when the function is 

differentiable. 

A convex function f(x) allows the possibility of a 

number of supporting hyperplanes at a nondifferentiable 

point x as was shown in figure 1. For each hyperplane we 

can define 

f(x+h) >= f(x) + hTg 

where g is a normal vector to a hyperplane at x. Such a 

vector is referred to as the subgradient at x. The set of 

all subgradients at x is referred to as the subdifferential 

at x and is defined by 

7 



T 
f(x) = { g t f(x+h) >= f(x) + h g } 
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To solve the basic nondifferentiable problem Lemarechal 

[51] considers also an extension of the powerful method of 

conjugate gradients which has been widely used in · 

unconstrained optimisation of smooth functions. In [53] 

Lemarechal tries to synthesize conjugate subgradient methods 

and to extend them to a wider class of bundle methods. The 

method is based on "bundling" subgradients. The objective 

function is required to be regular. [ see appendix A ] 

A similar method based on bundling subgradients is 

described by Wolfe[BB]. This method is reasonably effective 

for both differentiable and nondifferentiable convex 

objective functions. When f is quadratic this method is 

exactly that of Hestenes and Stiefel [45]. 

The bundle methods try to accumulate information 

locally about the subdifferential of the objective function. 

A bundle method is a line search method which solves 

subproblems to define the step direction. The subgradients 

are used to find the step direction, and are added to the 

bundle B on sucessive iterations. The method continues this 

way until o E B. Then the bundle is reset, for instance, to 

the current subgradient and the iteration is continued. 

With careful manipulation of B [27], a convergence result 

can be proved and a suitable termination test obtained. In 

these methods a sequence {xK} is generated where 

where h~ is stepsize and p~ is the direction. 
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Mifflin's algorithm [66] is a modification of the 

algorithm by Lemarechal [53]. This version differs from 

that of Lemarechal because of its rules for line search 

termination and the associated updating of the search 

direction. Mifflin's method can be used on a wider class of 

optimisation problems with only minimal restrictions on the 

allowable type of constraints or objective function [66]. 

Subgradient methods have been used to solve large scale 

problems. Generalisations of the SG methods beyond convex 

objective functions have been attempted by Nurminskii [69] 

[70] with partial success. 

The application and extension of the relaxation method, 

referred to as subgradient relaxation methods, to certain 

dual problems in network scheduling is discussed by Fisher 

et al [24]. Chaney and Goldstein [9] present an extension 

of the subgradient method to max families and quasi

differentiable functions. An algorithm for solving ordinary 

nonlinear programming problems in a NDO context is described 

by Pshenichnyi [75]. The rate of convergence of this method 

is also investigated. A good bibliography can be found a 

book by Lemarechal and Mifflin [54]. 

A class of algorithms for minimising any convex, not 

necessarily differentiable, function f of several variables 

is described by Kiwiel [48]. The methods require only the 

calculation of f and one subgradient of f at designated 

points. These methods generalise Lemarechal's bundle method 

[53]. Instead of using all previously computed 
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subgradients, the method uses an aggregate subgradient which 

is recursively updated as the algorithms proceed. The 

algorithms can be viewed as an extension of Pshenichnyi's 

linearisation method [75]. The concept of aggregation has 

also been applied in [49] [50], to a modified algorithm due 

to Mifflin [66]. 

Application of a boxstep method to column generation 

problems and a variety of scheduling problems is described 

by Marsten [62]. The performance of the boxstep method is 

compared to that of subgradient optimisation methods. 

Application of some versions of steepest descent 

methods to NDO have been considered by Demjanov [17] and 

Bertsekas and Mitter [6]. A survey of the area and an. 

extensive bibliography may be found in [6]. Most of these 

methods are restricted in its application to non

differentiable problems, and do not seem to have a straight 

foward implementation in the general case. A procedure by 

Cullum et al to certain solve nondifferentiable sums of 

eigenvalues of symmetric matrices based on steepest descent 

is given in [14]. 

Function comparison methods (also known as direct 

search methods), a class of general methods for minimising 

smooth functions, have also been applied to NDO problems. 

The only advantage of these methods is that they are in 

general simple. The major disadvantage is that few 

guarantees can be made regarding convergence~ moreover, they 



11 

are often slow. In these methods, successive estimates x 

of the minimiser x* is made by comparing the values of the 

objective function at a general set of points including x. 

Examples of direct search methods are the simplex method of 

Nelder and Mead [61], and methods of Rosenbrock [78], Hooke 

and Jeeves [46], Spendley, Hext and Hemsworth [83] and 

Davies, Swann and Campey. Although the method of Powell 

[74] is in principle a conjugate direction method, the 

computation of partial derivatives is not required. A 

similar method is that of Zangwill [93]. 

The simplex method is used more often than the other 

direct search methods, and the general principles are 

described below. A simplex in R may be thought of as a 

polyhedron with n+l distinct vertices, denoted by vi, i = 1, 

••• , n+l. Hence by replacing any point vi by w, we obtain a 

new simplex. Given a set of rules for changing the current 

simplex and by requiring that each vertex of the simplex is 

a value of the function F(x), we can generate a sequence of 

simplices so that the final simplex may have the minimiser 

x* as one of the vertices. The precision of the estimate 

depends upon the size of the final simplex. 

Spendley, Hext, and Hemsworth [83] appear to have been 

the first authors to propose a simplex method, but their 

strategy was too rigid to permit rapid convergence in most 

cases. An efficient simplex method is that described by 

Nelder and Mead [61]. 
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It has been suggested by Wright et al [31] that direct 

search methods may be used to solve the non-differentiable 

optimisation problem, when the function or its gradient is 

discontinuous at its solution or when the gradient has many 

discontinuties or when the discontinuties have no special 

structure. 

Variable metric methods, also known as quasi-Newton 

methods, are effective for minimising smooth functions. An 

application of quasi-Newton methods to NDO problems is 

suggested by Han [40]. He developed a class of methods for 

minimising a nondifferentiable function which is the maximum 

of a finite number of smooth functions. The method proceeds 

by solving iteratively quadratic programming subproblems to 

generate search directions. The combined Hessian matrices B 

in the quadratic programming problems are updated in a 

variable metric way. The stepsize procedure does not use an 

exact line search. However, as pointed out by Fletcher 

[29], the combined Hessian matrix B is updated by 

differences in the qradient of a Lagrangian function and 

hence depends upon Lagrange multiplier estimates. If the 

estimates become unbounded then B is likely to become 

unbounded. 

Various other methods have been developed for 

nondifferentiable functions. The most general class of NDO 

composite functions is the minimax problem as defined by 

(1.1). Most of the methods surveyed here are applicable to 
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the minimax problem. 

For such problems, an algorithm with second order 

convergence can be obtained by linearising the individual 

functions over which the max is taken. Studies of this type 

of method has been conducted by Osborne and Watson [72] and 

Charalambous and Conn [8]. As with Gauss-Newton methods, 

convergence is not guaranteed. This can be solved by using 

a restricted step type of method. Application of a 

restricted step type method to overdetermined systems (m>n) 

of nonlinear equation has been investigated by Madsen [57]. 

The functions are assumed to be continuous. The algorithm 

is based on successive linear approximations to these 

functions. The resulting linear systems are solved subject 

to bounds. The convergence of this algorithm is guaranteed 

and the rate of convergence on regular functions is 

quadratic. However, on singular functions [ see appendix A 

], the convergence is only linear. In order to obtain a 

better rate of convergence Hald and Madsen [34] have 

proposed a two-stage algorithm. The stagel algorithm is the 

same as the one described by Madsen [57]; a switch to stage2 

is made when irregularity is detected. The stage2 algorithm 

uses a quasi-Newton method. Another method to solve the 

problem of singular functions is suggested by Madsen and 

Schjaer-Jacobsen [59]. 

General nonlinear minimax approximation problems [1] 

involving a finite point set have been reformulated and 
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solved by well-established methods such as the barrier 

function method of Fiacco and McCormick [23]. Application 

of NDO in the area of nonlinear programming through the use 

of penalty functions is described by Fletcher [27]. Another 

approach is to use an algorithm for nonlinear programming as 

a means of generating a direction of search, and to use the 

exact penalty function as the criterion function to be 

minimised approximately. This approach is described by Han 

[38], Coleman and Conn [13], and Mayne [64]. 

A general algorithm for composite nondifferentiable 

optimisation problems has been presented by Fletcher. In 

[28] Fletcher considers the minimisation of composite 

functions from a nonlinear optimisation viewpoint. This 

class of composite functions is quite general since it 

includes exact penalty function, nonlinear minimax functions 

and best approximations. Using both linear approximations 

of the constraints and quadratic approximation to F, 

Fletcher proves that the method has second order rate of 

convergence. He also shows that his method converges 

globally if a trust region is incorporated on the stepsize. 

The method is called the QL method, since it makes both 

quadratic and linear approximations. 

Rockafellar [76] and Womersley [92] both deal with 

optimality conditions. Wormersley derives second order 

necessary and sufficient conditions for problems involving 

piecewise smooth functions. Rockafellar deri~es first order 
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conditions for problems whose constraints and objective 

function are locally lipschitz. Optimality conditions have 

also been described by Fletcher [27]. 

Currently, research is being carried out in many of 

these areas. Because of its simplicity, the subgradient 

method has received much attention, but it is at best 

linearly convergent. The Bundle methods are also being 

investigated. The possibility of using quasi-Newton methods 

to update the matrix B in the quadratic programming 

subproblems is being studied. The modified BFGS formula 

given by Powell [74] is expected to work well. 



CHAPTER III 

A MINIMAX METHOD 

The method descrbed in this chapter is the method 

proposed by Hald and Madsen [33]. It combines linear 

programming and quasi-Newton methods for minimax 

optimisation, and consists of two stages. The algorithm 

used in stage 1 is based on successive linearisations of the 

objective function. The resulting linear subproblems are 

solved subject to bounds. The bounds are adjusted depending 

on how good the approximation is to the objective function. 

It was proved [33] that the st~ge 1 algorithm has quadratic 

convergence when there are n+l active functions at x*, that 

is, when the function is regular. In other words, the 

problem satisfies the Haar condition. [ see Appendix A ] 

The stage 2 quasi-Newton algorithm is used only if an 

irregular solution is detected. In this case, second order 

derivative information may be needed in order to obtain a 

fast final rate of convergence. If stage 2 iteration is 

unsuccessful, then a switch is made back to stage 1. 

Several switches may be necessary before the solution is 

found. 

It has been proved [36] that the algorithm will always 

converge to a stationary point of the problem. 

16 
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Details of Hald and Madsen Method 

The minimax problem can be defined as the minimisation 

of a maximum function F(x), where the maximum is taken over 

a finite set. 

F(x) =max {f 1 (x), f 2 (x), ••••• , ~x) }, 

fj(x), j = 1, mare smooth functions, 

x = {x~, x 2 , ••••• , x., }. 

(1) 

The objective function is, in general, a non

differentiable function having discontinuous first partial 

derivatives at the minimum. The minimum is normally 

situated at a point where two or more functions are equal. 

When the minimum is well determined, only first order 

information is required, and the convergence is quadratic. 

However, if the minimum lies in a smooth valley, a quasi

Newton method is used to obtain a fast final rate of 

convergence. 

The method consists of four parts: 

(i) STAGE 1 ITERATION 

(ii) CONDITIONS FOR SWITCHING TO STAGE 2 

(iii) STAGE 2 ITERATION 

(iv) CONDITIONS FOR SWITCHING BACK TO STAGE 1 

(i) STAGE 1 ITERATION 

The minimiser x* for the objective function F(x) 

defined by (1) is determined by sucessive iterations. 

Suppose an approximate feasible estimate of the minimiser at 

the kth iteration is x~. The increment h~ is determined 



as a vector that minimises F(x~, hk), which is linearly 

approximated by F(xK, h~), using Taylor's series. 

n of. 
F ( x" , h") = max { fJ ( x ") + ~ _.::._ ( x k.) • hi } 

i=l ~X,i 

j = 1 , ... m 

subject to the constraint 

18 

( 2) 

t t h I t = max I h1 , h2 , •••• h.,. I <= J\.k , /\k> 0. ( 2a) 

Since (2) is valid only for small values of h, the value of 

1\ h ll is forced to be small enough by using the 

restriction (2a). 

The value of A depends on how good the linear 

approximation is to the objective function, and is chosen 

as large as possible subject to a certain measure of 

agreement being maintained between each fj and its 

linearisation. 

The above problem can be transformed into the following 

linear program by introducing an extra variable p 

Minimise p 
h, p 

Subject to n d f · 
fj(x"-) + ~ :.J (x~) hi<= p 

i=l c}X=z: 

( 3) 

- !\" <= h <= 1\ ... 

This problem can be solved by a standard linear 

programming method. We have used the method for quadratic 

and linear programming by Lemke. The formulation of (3) for 

Lemke's algorithm is described in a later section. 
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The point xK• 1 = x~ + h" can be accepted as the next 

point in the iteration if the function F(xKtl) decreases. 

However, as pointed out by Fletcher [28], this condition is 

not sufficient to guarantee convergence. The following 

condition is used 

F(xlt.) - F(xtc+h~c.) >= C1 [ F(xlc.) - F(xiC, hK.) ] (4) 

where 

C 1 is a small positive number. 

That is, if the decrease in the objective function exceeds a 

small multiple of the decrease predicted by linear 

approximation it implies there is adequate agreement between 

objective function and its approximation. 

If the condition (4) is satisfied, then 

x K+l = xlc. + h" otherwise, 

There is no line search involved. 

Determination of -"'tc+I. 

The value of /\~e -+1. depends upon how well the iteration 

approximates the linear function to the actual, and is 

determined so as to try and provide the inequality 

F(xk , h"-) < F(x"). 

If the decrease in the objective function 

F(xJC.) - F(x".,.1 ~ h 1J is<= C1 [ F(xK.) - F(x", htc) ], (5) 

C 1 <C 2 <1. 

then the decrease in F is rather poor. Hence we use a 

smaller bound 
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;\ki'l = c 3 t ' h IC II , c.3 < 1. 

If F(x"') - F(x~ + htc) <= c4 [ F(x") - F(x", h") ], 

c2 < c4 < 1. 

(6) 

( 7) 

Then the decrease in F is close to the decrease predicted by 

linear approximation, hence the bound is increased 

Ak•"l = c s t l h 14 f I · 
In all other cases, 

(8) 

( 9) 

The parameters C~, C2 , C~, C4 , c5 and C6 are arbitrary and 

are not very sensitive. The values generally used are 0.01, 

0.25, 0.75, 2.0, 1.0 or 0.5, respectively. 

Determination of active set 

An important concept is that of an active set. For 

each iteration in stage 1, the active set A is determined. 

It is defined by the index set, 

A " = A ( X " ) = { j I F ( X " ) - f j ( X 1(. ) < = E-1} ( 1 0 ) 

where E~ is a small positive number defined by the user. We 

have used E~ = .OlF(x ). This defines the functions that 

are "active" at x. A* is defined as follows, 

A*= A(x*) = { j 1 F(x*) = fj (x*) }, - ( 11) 

and contains the index set of the functions that are active 

at the solution. 

(ii) CONDITIONS FOR SWITCHING TO STAGE 2 

A switch is made to stage 2 when a smooth valley is 

detected through the solution. In general, at the minimum 

(x*) some functions are equal. Suppose that the number of 

such functions is S and the functions are fj, such that, 



for 

F(x*) = F (x*) > f·(x*) 
j 

j E A(x*) 

i rt A(x*). 

Then, the following must hold in the valley and at the 

solution 

fjo (x) - fj (x) = 0, (j "'= j 

j E- A(x*) and j 0 E- A(x*) is fixed. 

If s >= n+l, then the Haar condition is satisfied. 

21 

(12) 

(13) 

This implies that the Jacobian { f' (x*) f·(x*) = F(x*) } J 

has a rank n. Then the minimum is well determined and there 

is no smooth valley. However, if s <= n, then the Jacobian 

has rank < n, and we require more information to obtain a 

fast convergence. 

Suppose the latest three iterates x~, x~_ 1 , xk-~ 

have been calculated in stage 1 then a switch to stage 2 is 

made if the following conditions (14), (15), and (16) are 

satisfied. 

then, 

where 

If .Aj >= 0 j E- A, 

A J<-1 = A 1'-2 = A 1<-

tl .'i:..Ajf 'i (X f.>t I <= E- 2 
]fA 

E.2 > o. 
·Note: Condition (16) is tested only if (14) and (15) are 

(14) 

(15) 

(16) 



satisfied, and is true when x~ is close to a solution x* 

with A* = A~~:.. 

22 

These conditions ensure that unnecessary iterations are 

avoided in stage 2. If the quasi-Newton iteration is started 

with the wrong active set, a switch would be made back to 

stage 1 after a few iterations. 

(iii) STAGE 2 ITERATION 

Stage 2 is used only when the curvature effects are not 

negligible and the value of x is close to the minimum x*. 

Suppose the functions that are equal at the minimum be 

defined as in (13). Then for a local minimum the following 

conditions must hold: 

and 

~ A•f'·(x) = 0, 
j~A :.J J 

(~ .A·) - 1 = 0, 
jfA J 

)..j >= 0 

fj0( X) - f j (X) =0 

where, jo C: A, 

j E:' A, 

j 0 ""'= j 

(17) 

(18) 

(19) 

The unknowns are A and x. A quasi-Newton method is 

used at this stage. The quasi-Newton method used at this 

stage should be locally and linearly convergent. 

Instead of using the quasi-Newton iteration as 

suggested by Hald and Madsen, I have used a method similar 

to one described by Fletcher [30] for the stage 2 iteration. 
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It has been proven that this method has quadratic 

convergence and hence is an improvement over the one 

suggested by Hald and Madsen. A comparison is presented in 

the next chapter. 

The conditions (17) and (18) become the Kuhn-Tucker 

conditions when (1) is put into the following form 

Min v 

subject to fj(X) <= V 

By using the following quadratic approximation for f 

f(x+h) = f(x) + f'(x) * h + hTf"(x) *h. 

We can determine h , at the kth iteration from 

Min v + 1 I 2 h"1'B h 
h, v 

subject to f (X 1(.) + f' (xJ() * h <= v 

where, B is defined by 

B = ~ A• f· jEA . J J , 
J 

(20) 

(21) 

As described before, the restricted stepsize condition 

(22) is introduced to ensure convergence, 

\ l h ! \ <= 1\k 

Hence problem (21a) can be written as 

Min 
h, v 

subject to 

v + 1 I 2 h~ B h 

v - f' (x~) * h >= f(xk) 

h +A>= 0 

-h +f\>= 0 

(22) 

(23) 

This is a quadratic programming problem, and is solved using 

Lemke's algorithm. 



(iv) CONDITIONS FOR SWITCHING BACK 

TO STAGE 1 
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A switch is made back to stage 1 if any of the 

following conditions (24), (25) or (26) fail to hold. 

Suppose r(x,A) denotes the vector of the left hand side of 

(17), (18) and (19). In order to continue the quasi-Newton 

iteration, the length of the vector r should decrease. 

11 r(x"+1' ;\IC'tl.) tt <=~II r(x~,;\")U 

where 0 < ~ < 1. (We use~= .999.) 

(24) 

A test that no function with an index from outside the active 

set becomes dominating is made 

F ( X IC ,. 1 ) = maX { f j ( X I' ·tl ) } , j E- A (25) 

The multipliers corresponding to the active set should be 

non-negative 

A j >= 0, j f A. (26) 

These conditions ensure that convergence is maintained in 

stage 2. 

Methods Used for Stage 1 and Stage 2 

The algorithms used for the stage 1 and stage 2 

iterations are described in this section. 

(i) ALGORITHM USED TO SOLVE THE LINEAR 

PROGRAM OF STAGE 1 

The method used to solve the linear program of stage 1 

and the quadratic program of stage 2 is the Lemke's 

algorithm for quadratic and linear programming. Lemke's 

algorithm is an extension of the Simplex method to solve 
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minimise l/2xTGx + gTx where G is positive definite 

subject to AT x >= b ( 27) 

X >= 0 

Using Wolfe's dual, this can be restated using 

Lagrangian multipliers y for the constraints A~x >= b, and u 

for bounds x >= 0. 

The associated Lagrangian function L(x, y, u) is then 

expressed as, 

L(x,y,u) = l/2xTGx + gTx- yT(ATx- b)- T u x. 

Define slack variables 

v = ATX- b. 

The first order necessary conditions (or the Kuhn-Tucker 

(KT) conditions: see appendix A) for (28) are then 

u - Gx + Ay = g 

V - AT X = -b 

U, y 1 V, X >= 0 

The linear complementarity problem then be expressed as 

w - Mz = q 

w >= 0, z >= 0 

where, 

w = I~ I, z = G 
A 

-A I 0 , q = '-6l. 

(28) 

(29) 

(30) 

(31) 
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FORMULATION FOR STAGE 1 

The stage 1 linear problem to be solved may be written 

as, 

Minimise 

Subject to 

p 

p- F(x~, h~) >• 0 

h + 1\ >= 0 

~h + 1\ >= 0 

Introduce non-negative variables r and s, defined by 

i = 1, ••• , n 

(32) 

(33) 

The Lagrangian function for the stage 1 linear problem 

can be expressed as 

L(x, y, u ) = gTx- y~(Ax-b) - uT(xK) 

where, 

X = [ rl , ... , rn•l 51, ... , s., ... 1 ] (34) 

b = fj(xK), -A , -1\ j ::: 1, ... , m 

1\ = 1\ em 

e~"'~ = [ 1, 1, ... , 1] n-vector 

em = [ 1, 1, ... , 1] m-vector 

g = [ 0, ... , 0 , 1, o, ... , -1 ] 

J = ~f~(xl') ()f1 (x") ... 
dX:L d X n 

. . 
~f.,. (X k) o fm (xt) 

2J xl d x., 



A = -J 
m*n 

I 
n*l 

J 
m*n 

-I 
n*l 

I 0 -I 0 
(n+l)*n (n+l)*l (n+l)*n (n+l)*l 

-I 0 I 0 
(n+l)*n (n+l)*l (n+l)*n (n+l)*l 

I = m*m unit matrix 

I = n*n unit matrix 

J is an m*n matrix 

A is an (m+2(n+l))*(2(n+l)) matrix 

The Kuhn-Tucker conditions are the same as equations (30). 
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The linear complementarity problem (32) is solved using 

(iv) ALGORITHM USED FOR THE QUADRATIC 

PROGRAM OF STAGE 2 

The quadratic programming problem (26) can be solved 

using the same algorithm of stage 1: Lemke's algorithm for 

quadratic and linear programming. 

The variables are as described in (35). The only 

addition is the matrix G which can be formulated as shown 

below 

w 0 -w 0 
n*n n*l n*n n*l 

G = 0 0 0 0 
l*n 1*1 1*n 1*1 

-w 0 0 0 
n*n n*l n*n n*l 

0 0 w 0 
l*n 1*1 l*n 1*1 
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Termination Criteria 

It has been proved in [19] that the method converges to 

a stationary point. The kth iteration is terminated when 

the following is true 

xiC~ 1 - xi<. <= s. 

The value of s used is .5d-5. t 2 in equation (16) is 

determined as follows 

El. ( x ") = 0 . 5 min t I f ' ( x ) 1 1 , s > 1 
jfA 

= .01 F(x") , s = 1. 



CHAPTER IV 

TESTING AND DISCUSSION 

The performance of the modified algorithm is examined 

by comparing the number of iterations required to obtain a 

convergence using the same termination criteria as used by 

Hald and Madsen. The method is also compared to the method 

of Charalambous and Conn [8] using the test problems 

described in their paper. 

The number of iterations required by stagel and stage2 

independently is also evaluated and a comparison is 

presented. It was observed that the method is sensitive to 

the initial value of A. For each test problem, different 

values of A 

tabulated. 

were given and the rate of ·convergence 

A line search was also used to improve the 

convergence of slowly converging iterations. 

The iterations are counted for each linear or quadratic 

subproblem solved. The test problems used are described 

below. 

Test Problems 

Example 1. 

This is the example 2 of Madsen [56]. 

29 
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2 2 
f 1 (x) = xl. + X l + x1 x 2 

f 2 (x) = sin xl 

f 3 (x) = cos x2 

Starting point (3,1), A= 1.2 

x* = [ -.4533, .90659 ], F* = [ .61643, .43793, .61643] 

The table below is a comparison of the number of 

iterations required by stage1, stage2, and the combined 

method to the method by Madsen [57]. The maximum stepsize 

is also indicated. 

TABLE I 

COMPARISON OF NUMBER OF ITERAIONS TO SOLVE PROBLEM 1 

No. of iterations Function value li h II 

Stage 1 27 .61643d0 .Sd-5 

Stage 2 9 .61643d0 .Sd-5 

combined 9 .61643d0 .Sd-5 

Madsen 20 .61643d0 .67d-4 
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The stagel method is essientially the method of Madsen. 

The convergence of stagel is linear as second order 

information is not considered as shown in table II. The 

effect of 1\ is shown in table III. The algorithm is very 

sensitive to the underflow criteria used in Lemke algorithm. 

Using l.Od-15 we do not get a solution for problem 1. We 

need to use 1.0d-16. 

TABLE II 

COMPARISON OF STAGEl AND STAGE2 CONVERGENCE RATE 

Stage 1 Stage 2 
Iteration No. 

F I h r F 
' h 

I 

1 .13d2 .12d1 .13d2 .12dl 

2 .399dl .11dl .399dl .1098dl 

3 .1788dl .55d0 .2244dl .1098dl 

4 .85ld0 .55d0 .129ldl .1098dl 

5 .851d0 .14d0 .796d0 .350d0 

6 .743d0 .14d0 .635d0 .19ld0 

7 .644d0 .27d0 .61659d0 .14d-l 

8 .644d0 .68d-l .61643d0 (<=).5d-5 

9 .627d0 .68d-l 

10 .619d0 .68d-l 

27 .61643d0 (<=).5d-5 
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TABLE III 

COMPARISON OF CONVERGENCE RATES USING DIFFERENT A 

No. of iterations F 

.5 15 .61643d0 

.75 slow convergence 

1.0 13 .71249d0* 

1.2 8 .61643d0 

1.5 slow convergence 

As can be seen the value of the initial restriction on 

stepsize is important. Using an inaccurate quadratic line 

search only when the function value increases improves the 

convergence properties considerably as shown in table IV. 

This is especially true when the convergence is very slow. 

In table IV convergence is obtained in a smaller number of 

iterations than in table III. However, the value of A is 

still important. This is because the function that is 

"active" initially may not be the same for different initial 

conditions. Using a line search for this problem has 

improved the rate of convergence for all the values ofA. 



TABLE IV 

COMPARISON OF CONVERGENCE RATES FOR 
DIFFFERENTA USING LINE SEARCH 

Example 2. 

• 5 

.75 

1.0 

1.2 

1.5 

No. of iterations F 

15 

14 

9 

8 

8 

.61643d0 

.61643d0 

.61643d0 

.61643d0 

.61643d0 

The following nonlinear programming problem is 

considered by Hald and Madsen [33] and by Charalambous 

and Conn [ 8] • 

2 2 4 2 
Minimise f(x} = (x~-10) +5(x~-12) +x 3+3(x+ -11} + 

6 2 4 
10x 5 +7x 0 +x 7 -4 x6 J<.rlOx6 -8x.r+l000. 

2 4 2 
subject to g~(x) = -2x1 -3x 2 -x 3-4x4 -5x5 +127 >0 

3 
g 3 ( X ) = -7 X l - 3 X 2 -1 0 X .3- X 4- + x5 + 2 8 2 > 0 

2 2 
g4 (x} = -23x -x -6x +8x +196 >0 

1 2 ~ 7 
--

33 
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2 2 
g (x) = -4x -x +3x x -2x -5x +llx >0 

5 ~ 2 ~2 3 0 7 

This transformed to the minmax problem as follows 

Minimise fj (X) j = 1, ... , 5 

where f . = f - lOg(j) j = 2, ... , 5 
J 

and fl = f 

Note that a large constant (1000) is introduced so that the 

convergence is to the maximum positive value of F. Using 

X = 3, 3, 0, 5, 1, 3, 0 ) 

and A = 0. 5 

We make the following comparison. 

TABLE V 

COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 2 

No. of Iterations F II h II 

Stage 1 16 .69864d3 .5d-3 

Stage 2 14 .68063d3 .5d-5 

Combined 15 .68063d3 .5d-5 

Hald & M. 23 .68063d3 .5d-5 

Char.& Conn 150 .68063d3 .5d-5 



The solution is x = [2.33050, 1.95137, -0.47754, 4.36573, 

-.62449, 1.03813, 1.59423] 

F = [680.63, 680.63, -1844.987, -728.1519, 680.63] 

The effect of A is as shown in table VI. The number of 

iterations obtained using a line search is shown in table 

VII. 

TABLE VI 

COMPARISON OF CONVERGENCE 
RATES USING DIFFERENT A 

No. of iterations F 

.5 14 .68063d3 

.75 very slow convergence 

1.0 5 .691898d3 

1.2 very slow convergence· 
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.5 

.75 

1.0 

1.2 

1.5 

TABLE VII 

COMPARISON OF CONVERGENCE RATES FOR 
DIFFERENT A USING LINE SEARCH 

No. of iterations F 

8 .68063d3 

very slow convergence· .159ld4 

very slow convergence .68998d3 

·very slow convergence .91460d3 

very slow convergence .68755d3 
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Using the line search improved the convergence for A = 

0.5. However, the line search did not greatly improve the 

convergence in other cases because the function that is 

"active" initially is not an "active" function in the final 

convergence. Also only a slow decrease in the active 

function was noticed. Hence improving the initial active 

function does not improve the rate of convergence rapidly. 

Use of a cubic interpolation in the line search improved the 

convergence rate. 
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Example 3. The Rosen-Suzuki problem [77] is considered • 

Minimise 
.l. l. . ~ :3. 

f(x) = x~+xl+2x,+x4 -5x,_-5x~-2lx3 +7x4 +100. 

subject to g 1 (X) = -x2 -xl-xl-x~-x +x -x +x +8 >0 
.t l. ~ 4 :1 2. ~ 4 

= -x 2-2x2 -x 2-2x~+x +x +10 >0 1 .l 3 414-

The same transformation described in example 3 is used. 

The initial value of x = (0, 0, 0, 0), and t\ = 0.5. The 

solution is x = (0, 1, 2, -1) and F = (44, 44, 54, 44). 

Table shown below shows the effect of A • The results 

obtained by using a line search when the function value 

increases is shown in table X. Using line search greatly 

improved the convergence rate in this problem. 

TABLE VIII 

COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 3 

No. of iterations Function value ll h II 
' 

Stage 1 45 .5600372d2 .Sd-4 

Stage 2 9 .56d2 .Sd-5 

combined 11 .56d2 .Sd-5 

H. & M. 16 .56d2 .Sd-5 

c. & c. 37 .56d2 .Sd-5 

·' 



TABLE IX 

COMPARISON OF CONVERGENCE RATES USING DIFFERENT A 

• 5 

• 75 

1.0 

1.2 

No. of iterations 

9 

not conv. in 35 iter • 

not conv. in 40 iter. 

not conv. in 29 iter. 

TABLE X 

F 

.44d2 

COMPARISON OF CONVERGENCE RATES FOR 
DIFFERENT A USING LINE SEARCH 

.5 

.75 

1.0 

1.2 

No. of It. 

9 

11 

35 

8 

F 

.44d2 

.44d2 

.43997d2 

.44d2 

38 
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Example 4. 

The problem used by Charalambous and Conn [8] is 

considered. 

2 2 
f)(x) = (2- x

1
) + (2- x 2 ) 

f 3 ( x ) = 2 exp (- x
1 

+ x) 

x* = [1.13903, .89956], F* = [1.95222, 1.95222, 1.57409]. 

The initial value of x ~ (1, -0.1) and A used ~ 1.2. The 

contours of the problem are shown in figure 2. 

ts-
1 

l.o-

I 

o.s-
\ \\ ! 

\ \ 
2_j \ 

' ' ' I 
'! 

.-
; 

Or-
; 

-0.1,-·----
\ol (),< :.o 

Figure 2. The contours of problem 6 
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TABLE XI 

COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 4 

No. of iterations Function value II h 
r ' 

Stage 1 19 .19522dl .Sd-5 

Stage 2 B .l9522dl .Sd-5 

Combined 9 .l9522dl .Sd-5 

c. & c. 21 .19522dl .Sd-5 

Table below showns the effect of A . A line search was 

not used as the convergence was quite fast in this problem. 

TABLE XI I 

COMPARSION OF CONVERGENCE RATES USING DIFFERENT A 

. 5 

.75 

1.0 

1.2 

No. of ite!."'ations 

B 

9 

9 

8 

F 

.l9522dl 

. .:..9522dl 

.l9522dl 

.19522dl 



f 1(x) 
1 . ... .. xl + x2 

2 2 
f 2 (x) .. (2 - ~) + (2 - xi . 
x* = [1, 1), F.* = [ 2, 2, 2]. 

The initial value of X "" ( 1, -0.1) and 1\ = 1. 2. The 

contours of the problem are shown in figure 3. Table XIV 

shows the effect of ~ . No line search is necessary as 

the convergence was rapid. 

i 

~ 
1.0 ~ 

1.. 

.1 
' L 
; ... 
I 

-l.o 

I 

I 
I 
I 

I 
------__J 

----------~---------------------------~ 
0.5 1.0 ~... l.S 

Figure 3. The contours o f · probl em 7 
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TABLE XIII 

COMPARISON OF NUMBER OF ITERATIONS USED TO SOLVE PROBLEM 5 

No. of iterations F ll h II 

Stage 1 6 .200000dl .5d-5 

Stage 2 5 .200000dl .5d-5 

Combined 5 .200000d1 .5d-5 

c. & c. 8 .2d0000d1 .5d-5 

TABLE XIV 

COMPARISON OF CONVERGENCE RATES USING DIFFERENT~ 

• 5 

.75 

1.0 

1.2 

1.5 

No. of iterations 

6 

6 

6 

6 

6 

.200000d1 

.200000d1 

.200000d1 

.200000d1 

.200000d1 



CHAPTER V 

SUMMARY 

There is considerable interest in the development of 

algorithms for NDO problems, but it is not possible to say 

yet what the best approaches are. Most of the algorithms 

surveyed in chapter II have some common features. 

Many methods are line search methods in which on each 

iteration a direction of search is determined and 

xK-+ 1 = x 14 + ol"hK is obtained by choosing ex'" to minimise the 

objective functions along a Line. A typical line search 

algorithm uses a combination of sectioning and 

interpolation. An aspect to be considered is when the line 

search minimum is non-smooth. In this case it is not 

appropriate to try to make the stepsize small, since such a 

point may not exist. Fletcher [26] recommends a different 

test, that a line search is terminated when the predicted 

reduction is sufficiently small. This test has been used by 

Hald and Madsen for stagel iteration. 

Most methods for NDO can be considered as extensions of 

methods available for smooth optimisation. The simplest 

method for basic NDO, the subgradient method, is an analogue 

of the steepest descent method. The method is at best 

linearly convergent. Similar algorithms using conjugate 

43 
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gradients are the bundle methods. The use of approximations 

to form linear and quadratic subprograms is another class of 

methods. Quasi-Newton methods have been used in conjuction 

with some of these methods to obtain faster convergence when 

the curvature effects cannot be neglected. 

There is at present considerable interest in developing 

methods for NDO problems. The applications of NDO methods 

to practical problems in linear and nonlinear programming is 

being studied. 

The method of Hald and Madsen [33] is an effective 

method for solving NDO problems. A modification of the 

method is studied in this thesis. The method as described 

by Fletcher [28] is used for stage 2 instead of a quasi

Newton method as suggested by Hald and Madsen. An 

inaccurate quadratic line search is used when the predicted 

value of the function increases. This increases the 

efficiency of the algorithm in most cases. 

From the numerical evidence presented it can be seen 

that the choice of initial restriction A is very important. 

As noted before, the efficiency of the algorithm also 

depends upon the efficiency of the linear and quadratic 

programming method used. Using a line search improves the 

convergence properties in general. However when the initial 

active function is not a final active function, a line 

search for that function does not improve the rate of 

convergence rapidly. 
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The modified method has good convergence properties and 

may have wide application. It has proved to have equal or 

faster rate of convergence than the method of Hald and 

Madsen or that of Charalambous and Conn, for the problems 

considered in chapter IV. 



CHAPTER VI 

SUGGESTIONS FOR FURTHER STUDY 

There is one feature of the method of Fletcher [26] 

that is different from similar methods for smooth 

optimisation, known as the Maratos effect. For smooth 

unconstrained optimisation when x~ is close to x*, the basic 

method reduces the objective function and second order rate 

of the basic method is observed. However, as observed by 

Maratos [62], this does not happen in NDO. In some NDO 

problems, in which second order effects are significant at 

the solution, xK can be arbitrarily close to x* and the unit 

step of the basic algorithm can fail to reduce the function 

F(x). This effect is most likely to occur when the 

discontinuity in derivative is large. Further studies in 

this area may greatly improve the application of the method 

to a general problem. 

A further modification to the above algorithm is to use 

an updating procedure to obtain the next combined Hessian 

matrix. 
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Definition 1 

The Lipschitz Condition 

Let Y be a subset of X. A function f: Y -- R is said 

to satisfy a Lipschitz condition ( on y ) provided that, for 

some nonnegative scalar K, one has 

' f ( y) - f ( y I ) I <= K II y - y I II 

for all points y, Y1 in Y; that is also referred to as a 

Lipschitz condition of rank K. 

Definition 2 

The Kuhn-Tucker Conditions 

The Kuhn Tucker conditions for the nonlinear 

programming problem, 

minimise f(x) 

subject to 

is described below. 

Ci,(X) = 0 

C l (X) >= 0 

i E E 

1 E- I 

If x* is a local minimiser of the above problem, then 

there exist Lagrange multipliers A* such that x*, A* satisfy 

the following system. 
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L(x, A) = 0 

C :i (X) = 0 iE- E 

Ci_(X) >= 0 i ~ I 

~i >= 0 i E- I 

t.·C·(x) i. ~ = 0 't;/i 

The above conditions are valid when the vectors ai*, if 

A are independent, where a i =a C.,:. The final condition 1\*C 

* = 0 is referred to as the complementarity condition and 

states that both Ai and Ci cannot be nonzero, or 

equivalently that inactive constraints have a zero 

multiplier. If there is no i such that Ai.* = Cs.* = 0 then 

strict complementarity is said to hold. The case Ai* = Ci* 

= 0 is an intermediate state between a constraint being 

strongly active and being inactive. 

Definition 3 

Regular and Singular Minimax Problem 

The minimax problem is singular with respect to the 

solution x* if the matrix 

D = { dfj/;:}xi(x*) } j ~ A 

i = l, ... ,n 

has rank less than n. Otherwise the problem is regular. 

Note : "A" denotes the acture set which consists 

of the index of the functions that attain 
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the maximum value at x*. 

Definition 4 

Haar Condition 

Haar Condition is satisfied when any subset of the set 

{ f' (x*) I f (x*) = F(x*) } 

has maximal rank. This ensures that no smooth valley passes 

through the solution. 
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TABLE XV 

NUMBER OF ITERATIONS FOR DIFFERENT METHODS 

Prob. 1 Prob. 2 Prob 3. Prob. 4 Prob. 5 

Stage 1 27 16 45 19 6 

Stage 2 9 14 9 8 5 

Stage 9 15 11 9 5 

H. & M. 20* 23 16 - -
c. & c. - 150 37 21 8 

* Line search did not improve the rate of convergence. 
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TABLE XVI 

NUMBER OF ITERATIONS FOR DIFFERENT A 

· Prob. 1 Prob. 2 Prob. 3 Prob. 4. Prob. 5 
using using using using using 
LS LS LS LS LS 

' 

. 5 15 15 14 8 9 9 8 * 6 * 

.75 slow 14 slow slow slow 11 9 * 6 * 
1.0 13 9 5 slow slow 35 9 * 6 * 
1.2 8 8 slow slow slow 8 8 * 6 * 
1.5 slow 8 - - - - - - - -

* Line search did not improve the rate of convergence. 
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$JOB 
c MODIFIED HALO AND MADSEN ALGORITHM 

FOR c 
c MINIMAX OPTIMISATION 
c 
c 
C********************* REFERENCES ************************ 
C 1. HALO, J AND MADSEN ,K "COMBINED LP AND ~UASI NEWTON 
C METHODS FOR MINIMAX OPTIMIZATION' MATH. PROG. 
c 20, (1981). 
C 2. FLETCHER, R. "A MODEL ALGORITHM FOR COMPOSITE NDO 
C PROBLEM" M.UH. PROG. STUDY 17 (1982). 
C*************************'*********************'********** 
c 
c 
c 
c 

THIS IS A PROGRAM FOR SOLVING MINIMAX PROBLEMS USING 
LINEAR AND QUADRATIC APPROXIMATIONS 

c•'n': , . .,., •'<*>'ddddd: in'<>'<>'<,..,.,,., V AR lAB LE REFERENCE ;,;:;, >'<>'<>'<>': ,., ;, ,., >b'<>'<>'< >'dnb': ,., 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

FAPR 
F (.,.') 
G (''' ''') 
GLM ('~<) 
H (>'') 
K1 
K2 
XJ ('''' ''') 
XLAMDA 

APPROXIMATE FUNCTION VALUE 
FUNCTION VALUE 
HESSIAN MATRIX 
LAGRANGE MULTIPLIERS ASSOCIATED WITH EACH FUNCTION 
STEP SIZE 
NUMBER OF ITERATIONS IN STAGE 1 
NUMBER OF ITERATIONS IN STAGE 2 
JACOBIAN FOR DERIVATIVES 
RESTRICTION ON STEPSIZE H 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION X(20) 
COMMON /STAGE/ISTAGE,Kl,K2,NBUG 
COMMON /STG/HMAX,PREFOB 

C READ IN THE NUMBER OF PROBLEMS TO BE SOLVED 
c 

c 

c 
c 
c 
c 

IOUT=6 
IN=5 

N0=6 
NBUG=O 
WRITE(IOUT,20) NO 

20 FORMAT(1H0,10X,17H NO OF PROBLEMS= ,!2) 

OBTAIN INITIAL VALUES FOR X AND LAMDA AND 
CALL STAGE!. 

DO 30 NOPROB=l,NO 
WRITE(IOUT,25) NOPROB 

25 FORMAT (1H1, 14H''<1'PROBLEM NO: , !2) 
CALL INITIL (NOPROB,X,N,XLAMDA) 
K1=0 
K2=0 
ISTAGE=2 
CALL STAGEl(NOPROB,X,N,XLAMDA) 

30 CONTINUE 
STOP 
END 

63 



c 
c 
C SUBROUTINE INITIALISES THE X VALUES 
c 
c 
c 
c 

c 

c 

SUBROUTINE INITIL(NOPROB,X,N,XLAMDA) 

IMPLICIT REAL'''8 (A-H, 0-Z) 
DIMENSION X(20) 
GOTO (10,20,30,40,20,60,70),NOPROB 

10 N=2 
X (1) =3.DO 
X (2) =l.DO 
XLAMDA=1.2D0 
GOTO 1000 

20 N=2 
X (1) =-1. 2DO 
X (2) =l.DO 
XLAMDA=.5DO 
GO TO 1000 

30 N=7 
X 1 =3.DO 
X 2 =3.DO 
X 3 =O.DO 
X 4 =5.DO 
X 5 =l.DO 
X 6 =3.DO 
X 7 =O.DO 
XLAMDA=0.50DO 
GO TO 1000 

40 ~=lil :g 
X 3 =0 
X 4 =0 
XLAMDA=0.50DO 

GO TO 1000 
60 M=3 

N=2 

~g5:~0.1 
XLAMDA=0.750DO 
GO TO 1000 

70 GO TO 1000 
c 

1000 RETURN 
END 
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c 
c 
C SUBROUTINE CARRIES OUT THE STAGE1 AND STAGE2 ITERATIONS 
c 
c 
c 
c 

c 

c 

c 

SUBROUTINE STAGE1(NOPROB,X,N,XLAMDA) 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION XNXT(20)~X(20)~F(20),FNXT(20),H(20),GLM(20),GLA(20) 
DIMENSION XJ(20,20J,SUM(~O) 

COMMON /SWTH/RESDUL(20)~RPRE(20),R(20),SUM,SUMLGM 
COMMON /ACTIV/ AS(3,20J,NPTR,NXTPTR,NS(3) 
COMMON /STAGE/ ISTAGE,K1,K2,NBUG 
COMMON /STG/HMAX,PREFOB 

ECONV=0.5D-3 
HCONV=0.5D-5 
NPTR=1 
NXTPTR=1 
C1=1. OD-2 
C2=2.5D-1 
C3=7 .5D-1 
C4=2.5D-1 
C5=2.DO 
C6=1.DO 
JO=O 

C DETERMINE ITERATION NO. K, THE FUNCTION VALUES AND JACOBIAN. 
c 

c 

DO 2 I=1,20 
GLM(I)=O.DO 

2 CONTINUE 
CALL FUNCTN(NOPROB,X,N,F,M,JO) 
CALL MAX(F,M,FMAX) 
FOBJ=FMAX 
CALL DERIV(NOPROB,X,N,XJ,M) 

C DETERMINE THE ACTIVE SET OF FUNCTIONS. 
c 

c 
c 
c 

c 
c 
c 
c 

PREFOB=O.DO 
5 K1=K1+1 

IF(K1.GT.35) GOTO 1000 
IF (ISTAGE.EQ.2)K2=K2+1 
WRITE(IOUT 3) K1 K2 

3 FORMAT(/// I ' , '>'<?nb'<ITERATION NUMBER=' , I3, I3, 1 1<>'nh'<') 
CALL ACTIVE(FOBJ,F,M) 

DETERMINE THE COEFFICIENTS AM AND Q FOR LEMKE'S ALGORITHM. 

CALL COEFF(F,M,XJ,N,XLAMDA,MN,GLM,X,NOPROB) 
IFLAG=O 
IF (NBUG.EQ.1) WRITE(IOUT,6 (X(I),I=1,N) 

6 FORMAT(1H0,1X 2HX=,10(E12.5) 
IF (NBUG.EQ.1J WRITE(IOUT,8 (F(I),I=1,M) 

8 FORMAT(1H0,1X 2HF=,10(E12.5) 
IF (NBUG.EQ.1J WRITE(IOUT~9 (GLM(I) ,I=1,M) 

9 FORMAT(1H0,4HLGM=,10(E12.~) 

CALL LEMKE 

CALL LEMKE(MN,IFLAG) 

C DETERMINE FUNCTION VALUE PREDICTED BY LP(FARP), INCREMENT(H) 
C AND LAGRANGE MULTIPLIERS(LMG) K 
c 

CALL HVAL(H,N GLA,FAPR,F,M XJ) 
IF (NBUG.EQ.1J WRITE(IOUT,J) FAPR 

7 FORMAT(/1X, 'FAPR=' ,E15.5) 
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c 
C DETERMINE FUNCTION VALUE AT X +H 
C K K 
c 

INT=O 
IHFLG=O 
DO 10 I=1,N 
IF ~DABS (H (I)) . LT. (2. DO>''XLAMDA) . OR. DABS (H (I)). LT .l.D1) GOTO 11 
IF H ~I~ . LT. 0. DO) H (I) =-2. DO'''XLAMDA 
IF H I . GT. 0. DO) H (I) =2. DO'''XLAMDA 

11 XNXT I =X(I)+H(I) 
10 CONTINUE 

IF(IHFLG.EQ.1) GO TO 44 
CALL FUNCTN(NOPROB,XNXT,N,FNXT,M,JO) 
CALL MAX(FNXT,M,FMAX) 
FOBNXT=FMAX 
IF (NBUG.EQ.1) WRITE(IOUT~21)FOBNXT 

21 FORMAT(/1X, 'FOBNXT=' ,E15.J) 
IF (NBUG.EQ.1) WRITE(IOUT,22)FOBJ 

22 FORMAT(/1X, 'FOBJ=' ,E15.5) 
CALL ACTIVE(FOBJ,F,M) 

c 
C DETERMINE F F(X )-F(X ,H ) 
C R R K 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

DIFFK=FOBJ-FOBNXT 
IF(DIFFK.GE.O.DO) GO TO 15 
IF(K1.GT.3) GO TO 890 
JO=K1 
GO TO 891 

890 JO=NS (1) 
891 CALL LINSCH(NOPROB,JO,FOBJ,FOBNXT,X,H,N) 

DO 990 I=1,N 
XNXT(I)=X(I)+H(I) 

990 CONTINUE 
10=0 
CALL FUNCTN(NOPROB,XNXT,N,FNXT,M,JO) 
CALL MAX(FNXT,M,FMAX) 
FOBNXT=FMAX 
DIFFK=FOBJ-FOBNXT 

15 IF (NBUG.EQ.1) WRITE(IOUTJ23) DIFFK 
23 FORMAT(' ', 'DIFFK1' ,E15.5 

TEST FOR CONVERGENCE. 

DO 14 I=1 ,N 
H (I) IF (NBUG.EQ.1) WRITE(IOUT,991) 

991 FORMAT(' I' 'NEW H',E15.5) 
H (I) =DABS (H (I)) 

14 CONTINUE 
CALL MAX(H,N,HMAX1) 
HMAX=HMAX1 
IF~HMAX.LE.HCONV~ GOTO 1000 
IF HMAX.GT.HCONV GOTO 30 
GOTO 1000 

DETERMINE F(X )=FAPRX 
K 

30 DIFAPR=FOBJ-FAPR 
RATIO=DIFFK/DIFAPR 
IF (NBUG.EQ.1) WRITE (IOUT,32) RATIO 

32 FORMAT(/1X, 'RATIO=' ,E15.5) 

CHANGE X,F,LGM IF LINEARISATION IS GOOD. 

IF~RATIO.LE.1.DO)GO TO 31 
IF RATIO.GT.1.99DO) GO TO 38 

31 IF RATIO.LT.C1) GOTO 38 
DO 35 I=1 ,M 
F (I) =FNXT (I) 
GLM (I) =GLA (I) 

35 CONTINUE 
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c 

PREFOB=FOBJ 
FOBJ=FOBNXT 
DO 40 I=l,N 
X (I) =XNXT (I) 

40 CONTINUE 
CALL DERIV(NOPROB,X,N,XJ,M) 

C CALL SWITCH IF ACTIVE SET IS LT N+l 
c 

38 IF(Kl.LT.3) GO TO 41 
IF (NBUG.EQ.l) WRITE(IOUT,llll) NS(NPTR),N 

1111 FORMAT (I I 5 INS (NPTR) 'N I !214) 
IF(NS(NPTR .GT.N)GO TO ~1 

C CALL SWITCH(XLAMDA,GLM,HMAX,N,F,XJ,FOBJ,M) 
c 
C ELSE X REMAINS UNCHANGED. DETERMINE NEXT LAMDA. 
c 
c 

41 EDIF=. OlDO'''XLAMDA 

IF(RATIO.GT.C2) GOTO 42 
IF (RATIO.LT.1.75DO) GO TO 42 
XLAMDA=C4 ~'HMAX 
IF (NBUG.EQ.l) WRITE(IOUT~999) XLAMDA 

999 FORMAT(' I' 'XLAMDA',El5.5) 
GOTO 5 

42 IF(RATIO.LT.C3) GOTO 50 
IF(RATIO.GT.1.25) GO TO 50 
DIFHL= (RATI0-1) 
IF(DIFHL.GT.ECONV) GO TO 50 
XLAMDA=4'''XLAMDA 
GO TO 5 
IF(HMAX.NE.XLAMDA) GO TO 50 

44 XLAMDA=C5 ~'XLAMDA 
IF (NBUG.EQ.l) WRITE(IOUT)43) DIFFK 

43 FORMAT(' I' 'DIFFK2' ,El5.5 
IF (DIFFK. LT. 0. DO) XLAMDA=C4'"HMAX 
GOTO 5 

50 XLAMDA=C6''<HMAX 
IF (NBUG.EQ.l) WRITE(IOUT,51) HMAX 

51 FORMAT(' ', 'HMAX-XLAMDA' ,E15.5) 
GOTO 5 

1000 WRITE~IOUT,6) (X(I) ,I=l,N) 
WRITE IOUT,8) (F(I) ,I=l,M) 
WRITE lOUT, 300) 

300 FORMAT(/ 15X, 1 ~<>'<>'<CONVERGENCE 1<>'<>'< 1 ) 

RETURN 
END 
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c 
c 
C THIS SUBROUTINE SWITCHES THE STAGES DEPENDING ON THE 
C EXISTING CONDITIONS 
c 
c 
c 
c 

c 

c 
c 

SUBROUTINE SWITCH(XLAMDA,GLM,HMAX,N,F,XJ,FOBJ,M) 

IMPLICIT REAL'~8 (A-H, O-Z) 
DIMENSION GLM(20),F(20) 0XJ(20,20)JXJM(20) 
DIMENSION XJL(20),SUM(2 ),XJMX(20 

COMMON /SWTH/RESDUL(20),RPRE(20),R(20),SUM,SUMLGM 
COMMON /STAGE/ISTAGE,K1 K2,NBUG 
COMMON /ACTIV/ AS(3,20J,NPTR,NXTPTR,NS(3) 

NUM=NS(NPTR) 
INDX=AS(NPTR,1) 
R (1) =F (INDX) 
IF(NUM.LE.1) GO TO 8 
DO 15 I=2,NUM 
Il=I-1 
R(I1)=F(INDX)-F(I) 

15 CONTINUE 
C IF STAGE=1 TEST CONDITIONS TO SWITCH TO STAGE 2 
c 
C A) TEST IF LAMDA-1>=0,LAMDA>=O 
c 

8 GO TO (10,100),ISTAGE 
10 SUMLGM=O.DO 

DO 20 I=1,NUM 
INDX=AS(NPTR I) 
IF (GLM(INDXJ.LT.O.DO) GO TO 1000 
SUMLGM=SUMLGM+GLM(INDX) 
IF (ISTAGE.EQ.2) GO TO 31 

20 CONTINUE 
SUMDIF=SUMLGM-1.DO 
EDIF=.1D-2 
IF (SUMDIF.GT.EDIF) GO TO 1000 

CC GO TO 31 
c 
c B) TEST IF IIHII=LAMDA 
c 

DIFHL=HMAX-XLAMDA 
IF (DIFHL.GT.EDIF) GO TO 1000 

c 
C C) TEST IF A(1,S1)=A(2,S2)=A(3,S3) 
c 

c 

25 IF (NS(1).NE.NS(2)) GO TO 1000 
IF (NS(2).NE.NS(3)) GO TO 1000 
DO 30 I=2,3 
DO 30 J=1 ,NUM 
IF (AS(I,J).NE.AS(1,J)) GO TO 1000 

30 CONTINUE 

C D) TEST IF LAMDA.J<=E2 
c 

31 DO 32 J=1,N 
SUM(J)=O.DO 

32 CONTINUE 
DO 40 I=1 ,NUM 
NI=AS(NPTR,I) 
DO 35 J=1,N 
XJM!Jl =XJ (NI, J) XJL J =GLM (NI) '''XJM (J) 
SUM J =SUM(J)+XJL(J) 
XJM J =DABS(XJM(J)) 

35 CONTINUE 
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c 

IF(ISTAGE.EQ.2) GO TO 200 
GO TO 71 
CALL MAX(XJM,N,XJMAX) 
XJMX(I)=-XJMAX 

40 CONTINUE 
SQSUM=O.DO 
DO 50 J=1,N 
SQSUM=SQSUM+SUM(J)*SUM(J) 

50 CONTINUE 
SQRTS=DSQRT(SQSUM) 

C DETERMINE E2 
MXLMDA= 1. DO 

c 

IF (NUM.GT.1) GO TO 60 
E2=. 0 1D0''<FOBJ /MXLMDA 
GO TO 70 

60 CALL MAX(XJMX,NUM,XMIN) 
E2=. 5DO~<XMIN 

70 IF(SQRTS.GT.E2) GO TO 1000 
71 ISTAGE=2 

GO TO 1200 

C IF STAGE=2 TEST CONDITIONS TO SWITCH TO STAGE 1 
c 
C DETERMINE THE RESIDUAL 
c 

c 
c 

100 NO=N+NUM 
K2=K2+1 
WRITE (IOUT,101) K2 

101 FORMAT(/1HO, 'STAGE 2 ITERATION NO: ',I2) 
DO 105 I=1 NO 
IF (K2.LT.2) RESDUL(I)=O 
RPRE (I) =DABS (RESDUL (I))>'<. 999DO 

105 CONTINUE 

C DETERMINE THE NEW ACTIVE SET 
c 

125 CALL ACTIVE(FOBJ,F,M) 
RESDUL((N+2))=R(1) 
GO TO 10 

200 RESDUL(1)=SUMDIF 
DO 110 J=1,N 
JJ=J+1 
RESDUL(JJ)=SUM(J) 

110 CONTINUE 
IF (NUM.EQ.1) GO TO 121 
NUM1=NUM-1 
DO 120 I=1,NUM1 
RESDUL((N+1+I))=R(I) 

120 CONTINUE 
121 IF (K2.LT.3) GO TO 1200 

DO 210 I=1,NO 
RESDUL(I)=DABS(RESDUL(I)) 
IF (NBUG.EQ.1) WRITE(IOUT~130)RPRE(I) ,RESDUL(I) 

130 FORMAT(' ', 'RPRE,RESDUL' .~E15.5) 
IF(RPRE(I).LT.RESDUL(I)) GO TO 1000 

210 CONTINUE 
GO TO 1200 

1000 ISTAGE=1 
K2=0 

1200 RETURN 
END 
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c 
c 
c 
c 

c 
c 

c 

SUBROUTINE LINSCH (NOPROB,JO,FOBJ,FOBNXT,X,H,N) 

IMPLICIT REAL*8(A-H O-Z) 
DIMENSION X(20),H(26),XL(20),FNXT(20) 

STEP=.SDO 
AO=O.DO 
FA=FOBJ 
FB=FOBNXT 
DO 5 I=l,N 
XL (I) =X (I) 

5 CONTINUE 
IF (FB.LE.FA) GO TO 50 
S=-STEP 
DO 10 I=l,N 
XL(I)=XL(I)+H(I)*S 

10 CONTINUE 
CALL FUNCTN(NOPROB,XL,N,FNXT,M,JO) 
FC=FNXT (JO) 
IF (FC.LE.FA) GO TO 40 

C BRACKET C A B 
c 

Al=AO+S 
A2=AO 
A3=AO-S 
Pl=FC 
P2=FA 
P3=FB 
GO TO 100 

40 FB=FC 
GO TO 51 

50 S=STEP 
51 A=AO 

B=A+S 
52 S=S'''2 

IF (DABS(S).LE.l.DO) GO TO 60 
WRITE(IOUT,53) 

53 FORMAT(' ', 'STEPSIZE TOO LARGE') 
S=S/2 
GO TO 1000 

60 C=B+S 
DO 61 I=l,N 
XL(I)=XL(I)+H(I)*C 
IF (NBUG.EQ.l) WRITE(IOUT~555) XL(I),H(I),C 

555 FORMAT (I I ' I XL-H-C I '3El5. :>) 
61 CONTINUE 

CALL FUNCTN(NOPROB,XL,N,FNXT,M,JO) 
FC=FNXT (JO) 
IF (FC.GT.FB) GO TO 65 
A=B 
B=C 
FA=FB 
FB=FC 
GO TO 52 

65 D=. 5 ,., (B+C) 
DO 69 I=l,N 
XL(I)=XL(I)+H(I)*D 

69 CONTINUE 
CALL FUNCTN(NOPROB,XL,N,FNXT,M,JO) 
FD=FNXT (JO) 
IF (S.GE.O.DO) GO TO 80 
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c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 

BRACKET C D B 

IF (FD.GE.FB) 
A1=C 
A2=D 
A3=B 
P1=FC 
P2=FD 
P3=FB 
GO TO 100 

BRACKET DB A 

75 A1=D 
A2=B 
A3=A 
P1=FD 
P2=FB 
P3=FA 
GO TO 100 

BRACKET BDC 

80 IF(FD.GE.FB) 
A1=B 
A2=D 
A3=C 
P1=FB 
P2=FD 
P3=FC 
GO TO 

85 A1=A 
A2=B 
A3=D 
P1=FA 
P2=FB 
P3=FD 

100 

GO TO 75 

GO TO 85 

C QUAD INTERPOLATION 
c 

100 H1=A2-A1 
H2=A3-A2 
DEN=H2*(P1-P2)+H1*(P3-P2) 
A4=A2+.5DO*(H2**2*(P1-P2)-H1**2*(P3-P2))/DEN 
IF (NBUG.EQ.1) WRITE(IOUT,99) A4 

99 FORMAT ( I I ' I A4 I ' E 15 . 5) 
DO 110 I=l,N 
H (I) =A4>'<H (I) 

110 CONTINUE 
1000 RETURN 

END 
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c 
c 
c 
c 
c 
c 
c 

c 
c 

c 

c 

c 

THIS SUBROUTINE DETERMINES THE FUNCTION VALUES 

SUBROUTINE FUNCTN(NOPROB,X,N,F,M,JO) 

IMPLICIT REAL*8(A-H6o-z) 
DIMENSION F(20),X(2) 

GO TO (10,20,30,40,50,60,70),NOPROB 
10 M=3 

IF(JO.EQ.O) GO TO 11 
GO TO (11 12, 13) ,JO 

11 F (1) =X (1) ~'X (1) +X (2) "'X (2) +X (1) '''X (2) 
IF(JO.GT.O) GO TO 1000 

12 F(2)=DSIN(X(1)) 
IF(JO.GT.O) GO TO 1000 

13 F(3)=DCOS(X(2)) 
GO TO 1000 

20 M=2 
IF (JO.EQ.O~ GO TO 21 
GOTO (21,22 JO 

21 IF(DABS(X(1 5.LT.1.D-15) X(1)=0.DO 
F(1)= (10.DO*(X(2)-X(1)*X(1))) 
IF(JO.GT.O) GOTO 1000 

22 F(2)= (1.DO-X(1)) 
GO TO 1000 

30 M=5 
IF(JO.EQ.O) GO TO 31 

31 ~~1J~ f~t~?~~~~5~2~~~~,t~(2)-12)**2+X(3)**4+3*(X(4)-11)**2 
¢+10*X(5)**6+7*X(6)**2+X(7)**4-4*X(6)*X(7)-10*X(6)-8*X(7)+1000 

IF (JO.GT.O) GO TO 110 
32 F(2)=(-2)*X(1)**2-3*X(2)**4-X(3)-4*X(4)**2-5*X(5)+127 

IF (JO.GT.O) GO TO 110 
33 F(3)=(-7)*X(1)-3*X(2)-10*X(3)**2-X(4)+X(5)+282 

IF (JO.GT.O) GO TO 110 
34 F(4)=(-23)*X(1)-X(2)**2-6*X(6)**2+8*X(7)+196 

IF(JO.GT.O) GO TO 110 
35 F(5)=(-4)*X(1)**2-X(2)**2+3*X(1)*X(2)-2*X(3)**2-5*X(6)+11*X(7) 

110 DO 112 I=2,5 
F(I)=(F(1)-10*F(I)) 

112 CONTINUE 
F(l)=(F(l)) 
GO TO 1000 

40 M=4 
IF(JO.EQ.O) GO TO 41 
GO TO (41 42 43,44) JO 

41 F(1)=X(1),X(i)+X(2)iX(2)+2*X(3)*X(3)+X(4)*X(4)-5*X(1)-5*X(2) 
C-21*X(3)+7*X(4)+100 

IF(JO.GT.O) GO TO 140 
42 F(2)=-X(1)*X(1)-X(2)*X(2)-X(3)*X(3)-X(4)*X(4)-X(1)+X(2)-X(3)+8+ 

CX(4) 
IF(JO.GT.O) GO TO 140 

43 F(3)=F(2)-X(2)*X(2)-X(4)*X(4)+2*X(1)-X(2)+X(3)+2 
IF(JO.GT.O) GO TO 140 

44 F(4)=F(2)+X(4)*X(4)-X(1)+X(3)-3 
140 ~~IS~~ ci)~ ib'''F (I) 

F(I)=(F(I)) 
142 CONTINUE 

F(l)=(F(l)) 
GO TO 1000 
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c 
50 F(1)=100*(X(2)-X(1)**2)**2 

F (2)- (1-x (1)) •'d<2 
M=2 
N=2 
GO TO 1000 

60 M=3 
IF (JO.EQ.O) GO TO 61 

61 ~~1f~x~Ys*~Z+~~~1l~2 
C2 61 F(1)=X~2)**4+X(1)**2 

IF (JO.GT.O) GO TO 1000 

c 

62 F(2)=(2-X(1))**2+(2-X(2))**2 
IF(JO.GT.O) GO TO 1000 

63 F(3)=2*DEXP(-X(1)+X(2)) 
GO TO 1000 

70 GO TO 1000 
1000 RETURN 

END 
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74 

c 
c 
c THIS SUBROUTINE DETERMINES THE DERIVATIVES 
c 
c 

SUBROUTINE DERIV(NOPROB,X,N,XJ,M) 
c 
c 

IMPLICIT REAL.,.'8 (A-H 0-Z) 
DIMENSION F(20),X(26),XJ(20,20) 

c 
c 

GO TO (10,20,30,40,50,60,70),NOPROB 
c 

10 XJ 1' 1 '"'2. DO.,.•x (1) +x ~2~ 
XJ 1,2 '"'X (1) +2 .DO'''X 2 
XJ 2,1 '"'DCOS (X (1)) 
XJ 2,2 '"'O.DO 
XJ 3,1 '"'O.DO 
XJ 3,2 :-DSIN(X(2)) 
M=3 
GO TO 1000 

c 
XJ 1,2 :10.DO 

20 XJ!l,ll~ (-20.DO*X(l)) 
XJ 2,1 :-l.DO 
XJ 2,2 ==O.DO 
M=2 
GO TO 1000 

c 
30 DO 15 I'"'1t5 

XJ I, 1 =2"X (1) -20 
XJ 1,2 :10*X(2)-120 
XJ I,3 =4·:·xpr~*3 
XJ 1,4 '"'6"X 4 -66 
XJ I. s =6o···x ~sr.,.·s 
XJ 1,6 =14*X 6 -4*X(7)-10 
XJ I,7 =4*X(7)**3-4*X(6)-8 

15 CONTINUE 
XJ 2,1 :XJ 2,1 +40*X(1) 
XJ 2,2 =XJ 2,2 + 120-~·x (2) ,h'•3 
XJ 2,3 =XJ 2,3 +10 
XJ 2,4 :XJ 2,4 +80*X(4) 
XJ 2,5 =XJ 2,5 +50 
XJ 3,1 =XJ 3,1 +70 
XJ 3,2 =XJ 3,2 +30 
XJ 3,3 =XJ 3,3 +200*X (3) 
XJ 3,4 =XJ 3,4 +10 
XJ 3,5 =XJ 3,5 -10 
XJ 4' 1 =XJ 4,1 +230 
XJ 4,2 =XJ 4,2 +2o.,.•x (2) 
XJ 4,6 =XJ 4,6 +120''<X (6) 
XJ 4,7 =XJ 4,7 -80 
XJ 5,1 =XJ 5,1 +80*X~1~-30*X~2~ XJ 5,2 =XJ 5,2 +20*X 2 -30*X 1 
XJ 5,3 =XJ 5,3 +40*X 3 
XJ 5,6 =XJ 5,6 +50 
XJ 5.7 =XJ 5. 7 -110 

c DO 100 I=l ,M 
c DO 100 J=1,N 
c XJ(I,J)=DABS(XJ(I,J)) 
c 100 CONTINUE 
c 

GO TO 1000 



c 

c 

40 N=A 

~} i J :~:.~ !il =~ XJ 1,3 =4*X 3 -21 
XJ 1,4 =2*X 4 +7 
XJ 2,1 =XJ 1,1 +20*X11l+10 
XJ 2,2 =XJ 1,2 +20*X 2 -10 
XJ 2,3 =XJ 1,3 +20*X 3 +10 
XJ 2,4 =XJ 1,4 +20*X 4 -10 
XJ 3,1 •XJ 2,1 -20 
XJ 3,2 =XJ 2,2 +20*X(2)+10 
XJ 3,3 =XJ 2,3 -10 
XJ 3,4 =XJ 2,4 +20*X(4) 
XJ 4,1 =XJ 2,1 +10 
XJ 4,2 =XJ 2,2 
XJ 4,3 =XJ 2,3 -10 
XJ 4,4 =XJ 1,4 -10 
GO TO 1000 

50 XJ11,1l=-400*X~1~*(X(2)-X(1)**2) XJ 1,2 =200*(X 2 -X(1)**2) 
XJ 2,1 =-2+2*X 1 
XJ 2,2 =0 
GO TO 1000 

60 XJ 1,1 =4*X11l**3 C2 60 XJ 1,2 =4*X 2 **3 
C2 XJ 1,1 =2*X 1 

xJ 1,2 =2···x 2 
XJ 2,1 =-4+2:x(1) 
XJ 2, 2 =-4+2--x (2) 

c 
c 

XJ 3,1 =-2'~DEXP(-X(l)+X(2)) 
XJ 3,2 =-XJ(3,1) 
GO TO 1000 

70 GO TO 1000 

1000 RETURN 
END 
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c 
c 
c 
c 
C THIS SUBROUTINE DETERMINES THE HESSIAN 
c 
c 
c 
c 

c 

c 
c 

c 

c 
c 
c 

SUBROUTINE HESIAN(NOPROB,X,N,G,M) 

IMPLICIT REAL*8(A-H O-Z) 
DIMENSION X(20),G(46,20),GG(20) 
COMMON /STAGE/ ISTAGE,K1,K2,NBUG 

GO TO (10,20,30,40~50,60,70),NOPROB 
10 IF (K2.GT.1)GOTO 1~ 

G~1,1l:2.DO G 1, 2 -l.DO 
G 2,1 =l.DO 
G 2i2 =2.DO 
DO 2 I=3,6 
DO 12 J=1, 2 
G(I,J)=O.DO 

12 CONTINUE 
IF (NBUG.EQ.1) WRITE(6~13) (X(I),I=l,2) 

13 FORMAT(1H0,2HX=i2(E15.~)) 
15 G(3,1)=-DSIN(X( )) 

G(6,2)=-DCOS(X(2)) 

GO TO 1000 

20 IF(K2.GT.1) GO TO 1000 
MN=M''<N 
DO 25 I=1 ,MN 
DO 25 J=1,N 
G(I,J)=O.DO 

25 CONTINUE 
G(l,1)=-20.DO 
GO TO 1000 

30 GG 1 =2.DO 
GG 2 =10.DO 
GG 3 =12''X(3)>'<*2 
GG 4 =6.DO 
GG 5 =300*X(5)**4 
GG 6 =14.DO 
GG 7 = 12''<X (7) >'<>'<2 
DO 32 I=1 ,M 
DO 32 K=1,N 
IK= (I-1) >'<N+K 
DO 32 J=l,N 
G(IK,J)=O.DO 
IF (K.EQ.J) G(IK,J)=GG(J) 
IF(J.EQ.6.AND.K.EQ.7) G(IK,J)::4.DO 
IF(J.EQ.7.AND.K.EQ.6) G(IK,J)- 4.DO 

32 CONTINUE 
G (8, 1) =42. DO 
G(9,2)=G(9,2)+360*X(2)**2 

G 11,4 =86.DO 
G 17,3 :G(1763)+200.DO 
G 23,2 -30.D -
G 27,6 =134.DO 
G 29,1 =82.DO 
G 29,2 =-30.DO 
G 30,1 =-30.DO 
G 30,2 =30.DO 
G 31,3 =G(31,3)+40.DO 
MTN=M''N 
DO 999 I=1,MTN 
DO 999 J=l ,N 

c 999 
G(I,J)=DABS(G(I,J)) 
CONTINUE 
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c 
c 

c 

GO TO 1000 
40 N=4 

MN=M*N 
DO 42 1=1 ,MN 
DO 42 J=1 ,N 
G(I,J)=O 

42 CONTINUE 
G 1,1 =2 
G 2,2 =2 
G 3,3 =4. 
G 4,4 =2 
G 5,1 =22 
G 6,2 =22 
G 7,3 =24 
G 8,4 =22 
G 9 1 =22 
G 16,2 =42 
G 11,3 =24 
G 12,4 =42 
G 13,1 =22 
G 14,2 =22 
G 15,3 =24 
G 16,4 =2 

GO TO 1000 

50 G 1,1 =-400~(X(2)-3*X(1)**2) 
G 1,2 =-4oo•x(1) 
G 2, 1 =G (1 , 2) 
G 2,2 =200 
G 3,1 =2 
G 3,2 =0 
G 4,1 =0 
G 4,2 "'0 
GO TO 1000 

C2 60 G(2,2)"'12*X(1)**2 
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c 
c 
c 
c 
C THIS SUBROUTINE DETERMINES THE SUM OF ACTIVE HESSIAN 
c 
c 
c 
c 

c 

c 

SUBROUTINE UPDATE(G,M,N,GLM,HG) 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION GLM(20),HG(20 20),G(40,20) 
COMMON /ACTIV/ AS(3,20),NPTR,NXTPTR,NS(3) 

DO 10 I=l ,N 
DO 10 J=l,N 
HG(I,J)=O.DO 

10 CONTINUE 

IK=O 
NAS=NS (NPTR) 
DO 30 I=l ,M 

CCC NI=AS(NPTR,I) 

c 
c 
c 

NI=I 
DO 20 K=l N 
Nil= (NI-l) '''N 
Nl=Nil+K 
DO 20 J=l,N 
HG(K,J)=GLM(NI)*G(Nl,J)+HG(K,J) 

20 CONTINUE 
IF(GLM(NI).EQ.O) IK=IK+l 

30 CONTINUE 

IF (IK.NE.NAS) GO TO 1000 
DO 35 I=l,N 

c 35 
c 

HG(I,I)=l.DO 
CONTINUE 

1000 RETURN 
END 
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c 
c 
c 
c 
c 
C DETERMINES THE MAX VALUE 
c 
c 
c 
c 

c 

c 

SUBROUTINE MAX(FUNC,NO,FMAX) 

IMPLICIT REAL~'8 (A-H, O-Z) 
DIMENSION FUNC(20) 

FMAX=DABS(FUNC(1)) 
DO 10 I=2,NO 
IF (FMAX.GE.DABS(FUNC(I))) GO TO 10 
FMAX=FUNC (I) 

10 CONTINUE 

RETURN 
END 
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c 
c 
c 
C DETERMINES THE ACTIVE FUNCTIONS 
c 
c 
c 
c 

c 
c 

c 

SUBROUTINE ACTIVE(FOBJ,F,M) 

IMPLICIT REAL 1<8(A-H,O-Z) 
DIMENSION F (20) 

COMMON /ACTIV/ AS(3,20),NPTR,NXTPTR,NS(3) 

NPTR=NXTPTR 
NXTPTR=MOD(NXTPTR,3)+1 
NS(NPTR)=O 
EDIFF=.01DO*FOBJ 
DO 10 I=1 ,M 
FDIFF=DABS(F(I)-FOBJ) 
IF (FDIFF.GT.EDIFF)GO TO 10 
NS(NPTR)=NS(NPTR)+1 
AS(NPTR,NS(NPTR))=I 

10 CONTINUE 

RETURN 
END 
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c 
c 
C DETERMINES THE MATRICES FOR THE LINEAR OR QUADRATIC 
C LINEAR PROGRAM 
c 
c 
c 
c 

c 

SUBROUTINE COEFF(F,M,XJ,N,XLAMDA,MN,GLM,X,NOPROB) 

IMPLICIT REAL1'8 (A-H O-Z) 
DIMENSION F(20),XJ(i0,20),XA(30 20),GLM(20),X(20) 
DIMENSION AM(40,40) 6Q(40),B(40{40),A(40),HG(20,20),G(40,20) 
DIMENSION W(40),Z(4 ),MBSIS(80J 
COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR 
COMMON /STAGE/ ISTAGE,K1,K2,NBUG 

C DETERMINE Q ('') 
c 

c 

c 

c 
c 
c 

c 
c 
c 

MN=M+N1'4+4 
MN1=1+N 
MN2=M+2'''N+2 
MN3=2+N 
MN4=MN3+N 
N1=N+1 

DO 10 I=1 ,N 
Q(I)=O.DO 
Il=MN-I+1 
Q (Il) =XLAMDA 
I2=I+MN1 
Q(I2)=0.DO 
I3=MN2+I 
Q(I3)=XLAMDA 

10 CONTINUE 
Q (MN1) =1. DO 
Q(MN4)=-1.DO 
DO 20 I=1 ,M 
IN3=MN4+I 
Q (IN3) =-F (I) 

20 CONTINUE 
Q!(MN-N-1))=XLAMDA 
Q (MN-N-l))=O.DO 
Q MN)=O.DO 
Q (MN-N))=XLAMDA 

INITIALIZE XA (1', ''') 

DO 25 I=1,MN2 
DO 25 J=1,MN4 
XA(I,J)=O.DO 

25 CONTINUE 

DETERMINE XA (''', ''') 

DO 40 J=1,N 
DO 30 I=1 ,M 
XA(I,J)=-XJ(I,J) 
JA1=MN1+J 
XA(I,JAl)=XJ(I,J) 

30 CONTINUE 
JA2=M+J 
XA (JA2:. J) =l.DO 
JA3=JA..::+N+1 
XA ~JA3, J) =-1. DO 
XA JA2,JA1)=-1.DO 
XA JA3,JA1)=1.D0 

40 ~~N~T~~!~!ij:~~fl:g 
XA JA2+1 ,MN4 =0 
XA JA3+1 ,MN4 =0 
DO 50 I=1 ,M 
XA (I , MN 1) = 1. DO 
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XA(I ,MN4) =-l.DO 
50 CONTINUE 

c 
C DETERMINE AM("',>'<) 
c 

c 

DO 55 I=l ,MN4 
DO 55 J=l ,MN4 
AM(I,J)=O.DO 

55 CONTINUE 
GO T0(56,5l),ISTAGE 

C DETERMINE HESSIAN IF CALL FROM STAGE 2 
c 

c 

c 

51 K2=K2 
CALL HESIAN(NOPROB,X,N,GJM) 
CALL UPDATE(G,M,N,GLM,HG 

DO 53 I=l,N 
I2=MN1+I 
DO 53 J=l ,N 
AM(I J)=HG(I,J) 
AM(I2,J)=-HG(I,J) 
J2=MNl+J 
AM(I2,J2)=HG(I,J) 
AM (I, 12) =-HG (I, J) 

53 CONTINUE 

C HESSIAN =0 IF CALL IS FROM STAGE 1 
c 

56 MN5=MN4+1 
DO 60 I=MN5,MN 
DO 60 J=MN5 MN 
AM(I,J)=O.D6 

60 CONTINUE 
II=O 
DO 75 I=MN5,MN 
II=II+l 
DO 75 J=l ,MN4 
AM(I,J)=XA(II,J) 
AM(J,I)=-XA(II,J) 

75 CONTINUE 
IF (NBUG.EQ.l) WRITE(6,61) 

61 FORMAT(//15X,8HVECTOR Q) 
IF (NBUG.EQ.l) WRITE(6,80) (Q(I),I=l,MN) 
DO 70 I=l,MN 
IF (NBUG.EQ.l) WRITE(6,80) (AM(I,J),J=l,MN) 

80 FORMAT(1H0,20(F6.2)) 
70 CONTINUE 

RETURN 
END 
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c 
c 
c 

c 
c 
c 

c 

SUBROUTINE HVAL(H,N,GLM,FAPR,F,M,XJ) 

IMPLICIT REAL'''8(A-H,O-Z) 
DIMENSION H(20),GLM(20) 0F(20) 0XJ(20,20)~FAPRX(20) DIMENSION AM(40,40) 0Q(4) ,B(4 ~40),A(40J 
DIMENSION W(40),Z(4 ),MBSIS(80J 
COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR 

MN=1 +N 

DO 10 I=1 ,N 
Il=MN+I 
H (I) =Z (I) -z (Il) 
WRITE(6 11) H(I) 

11 FORMAT( 1 I ,2HH=, 10(E12.4)) 
10 CONTINUE 

DO 20 I=1 ,M 
I2=2~'MN+I 
GLM (I) =Z (I2) 

20 CONTINUE 

C DETERMINE APPROX. VALUE OF FUNCTION PREDICTED BY LP. 
c 

DO 40 I=1 ,M 
DELTAF=O.DO 
DO 30 J=1,N 
DELTAF=XJ(I,J)*H(J)+DELTAF 

30 CONTINUE 
FAPRX(I)=F(I)+DELTAF 

40 CONTINUE 
CALL MAX(FAPRX,M,FMAX) 
FAPR=FMAX 
RETURN 
END 
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84 

SUBROUTINE LEMKE(N,IFLAG) 
C ALGORITHM 431 
c 
C A COMPUTER ROUTINE FOR QUADRATIC AND LINEAR PROGRAMMING PROBLEMS 
c 
C COMMUNICATIONS OF THE ACM 
c 
C VOL. 15 SEPT. 1972 PP. 818-820 
c 
C AUTHOR - ARUNACHALAM RAVINDRAN 
c 
C MODIFIED BY - PENSRI TEERAVARAPAUG 
c 
C LANGUAGE- A.N.S.I 
C STANDARD FORTRAN 
c 
C INSTALLATION - OKLAHOMA STATE UNIVERSITY 
c 
C DATE - DECEMBER 1974 
c 
C REMARKS 
C SINCE THIS PROGRAM IS COMPLETE IN ALL RESPECTS,IT CAN BE 
C RUN AS IT IS WITHOUT ANY ADDITIONAL MODIFICATION OR 
C INSTRUCTION.IN SUCH CASE FOLLOW THE INPUT FORMAT AS GIVEN 
c 
C PROGRAM FOR SOLVING LINEAR AND QUADRATIC PROGRAMMING 
C PROBLEMS IN THE FORM W=M'''Z+Q, Q. Z=O, W AND Z NONNEGATIVE 
C BY LEMKE/S ALGORITHM. 
c 
C MAIN PROGRAM WHICH CALLS THE SIX SUBROUTINES-MATRX, 
C INITL,NEWBS,SORT,PIVOT AND PRINT IN PROPER ORDER. 
c 

c 
c 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION AM(40,40)~Q(40),B(405 40),A(40) DIMENSION W(40),Z(4u),MBSIS(80 

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR 

C DESCRIPTION OF PARAMETERS IN COMMON 
C AM A TWO DIMENSIONAL ARRAY CONTAINING THE 
C ELEMENTS OF MATRX M. 
C Q A SINGLY SUBSCRIPTED ARRAY CONTAINING THE 
C ELEMENTS OF VECTOR Q. 
C L1 AN INTEGER VARIABLE INDICATING THE NUMBER OF 
C ITERATIONS TAKEN FOR EACH PROBLEM. 
C B A TWO DIMENSIONAL ARRAY CONTAINING THE 
C ELEMENTS OF THE INVERSE OF THE CURRENT BASIS. 
C W A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES 
C OF W VARIABLES IN EACH SOLUTION. 
C Z A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES 
C OF Z VARIABLES IN EACH SOLUTION. 
C NL1 AN INTEGER VARIABLE TAKING VALUE 1 OR 2 DEPEND-
C ING ON WHETHER VARIABLE W OR Z LEAVES THE BASIS 
C NE1 SIMILAR TO NL1 BUT INDICATES VARIABLE ENTERING 
C NL2 AN INTEGER VARIABLE INDICATING WHAT COMPONENT 
C OF W OR Z VARIABLE LEAVES THE BASIS. 
C NE2 SIMILAR TO NL2 BUT INDICATES VARIABLE ENTERING 
C A A SINGLY SUBSCRIPTED ARRAY CONTAINING THE 
C ELEMENTS OF THE TRANSFORMED COLUMN THAT IS 
C ENTERING THE BASIS. 
C IR AN INTEGER VARIABLE DENOTING THE PIVOT ROW AT 
C EACH ITERATION. ALSO USED TO INDICATE TERMINA-
C TION OF A PROBLEM BY GIVING IT A VALUE OF 1000. 
C MBSIS A SINGLY SUBSCRIPTED ARRAY-INDICATOR FOR THE 
C BASIC VARIABLES. TWO INDICATORS ARE USED FOR 
C EACH BASIC VARIABLE-ONE INDICATING WHETHER 
C IT IS A W OR Z AND ANOTHER INDICATING WHAT 
C COMPONENT OF W OR Z. 
c 

cc 
IOUT=6 
IN=S 

CCREAD IN THE VALUE OF VARIABLE IP INDICATING THE 



CCNUMBER OF PROBLEMS TO BE SOLVED. 
cc 
CC READ(IN,1030) IP 
cc 
CCVARIABLE NO INDICATES THE CURRENT PROBLEM BEING SOLVED 
cc 

IP=1 
NO=O 

1000 NO=N0+1 
IF(NO-IP)1010i1010,1070 

1010 WRITE(IOUT,10 0) 
1020 FORMAT (/1H0,10X,11HLEMKE CALL) 

cc 
CC READ IN THE SIZE OF THE MATRIX M 
cc 
CC READ(IN,1030)N 
CC WRITE(IOUT~1030)N 
CC 1030 FORMAT (I2J 
c 
C PROGRAM CALLING SEQUENCE 
c 

CALL MATRX (N) 
c 
C PARAMETER N INDICATES THE PROBLEM SIZE 
c 

CALL INITL (N) 
c 
C SINCE FOR ANY PROBLEM TERMINATION CAN OCCUR IN INITIA, 
C NEWBAS OR SORT SUBROUTINE,THE VALUE OF IR IS MATCHED WITH 
C 1000 TO CHECK WHETHER TO CONTINUE OR GO TO NEXT PROBLEM. 
c 

IF(IR-1000)1040,1000,1040 
1040 CALL NEWBS (N) 

IF(IR-1000)1050,1000,1050 
1050 CALL SORT (N IFLAG) 

IF(IR-1000)1660,1000,1060 
1060 CALL PIVOT (N) 

GO TO 1040 
1070 RETURN 

END 
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SUBROUTINE MATRX (N) 
c 
C PURPOSE - TO INITIALLIZE AND READ IN THE VARIOUS INPUT DATA 
c 

c 
c 

cc 

IMPLICIT REAL''<8 (A-H, O-Z) 
DIMENSION AM(40,40) 6Q(40),B(40~40) ,A(40) 
DIMENSION W(40) ,Z(4 ),MBSIS(80) 

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR 

IOUT=6 
IN=5 
RZERO=O.O 
RONE=l.O 

CC READ THE ELEMENTS OF M MATRX COLUMN BY COLUMN 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
c 

DO 2010 J=l N 
READ(IN,2600) (AM(I,J) ,I=1,N) 

2000 FORMAT (7F10.5) 
2010 WRITE(IOUT,2000) (AM(I,J),I=1,N) 

READ THE ELEMENTS OF Q VECTOR 

READ (IN, 2000) (Q (I) , I= 1, N) 
WRITE(IOUT,2000) (Q(I),I=l,N) 

C IN 
c 

ITERATION l,BASIS 

DO 2030 J=l ,N 

INVERSE IS AN IDENTITY MATRIX. 

DO 2020 I=l,N 
2020 B(J{I)=RZERO 
2030 B(J,J)=RONE 

RETURN 
END 
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SUBROUTINE INITL (N) 
c 
C PURPOSE TO FIND THE INITIAL ALMOST COMPLEMENTARY SOLUTION. 
C BY ADDING AN ARTIFICIAL VARIABLE ZO. 
c 

c 

c 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION AM(40,40) 6Q(40),B(40~40),A(40) DIMENSION W(40),Z(4 ),MBSIS(80J 

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR 
IOUT=6 
RZERO=O.O 
TNONE=-1.0 

C SET ZO EQUAL TO THE MOST NEGATIVE Q(I) 
c 

c 

I=1 
J=2 

3000 IF(Q(I)-Q(J))3010,3010,3020 
3010 GO TO 3030 
3020 I=J 
3030 J=J+1 

IF(J-N)3000,3000,3040 

C UPDATE Q VECTOR 
c 

c 

3040 IR=I 
Tl=-Q (IR) 
IF(T1)3120,3120,3050 

3050 DO 3060 I=1,N 
Q (I) =Q (I) +Tl 

3060 CONTINUE 
Q (IR) =Tl 

C UPDATE BASIS INVERSE AND INDICATOR VECTOR 
C OF BASIC VARIABLES. 
c 

c 

DO 3070 J=1,N 
B~J~IR)=TNONE w J =Q(J) 
Z J =RZERO 
MBSIS (J) =1 
L=N+J 
MBSIS(L)=J 

3070 CONTINUE 
NL1=1 
L=N+IR 
NL2=IR 
MBSIS(IR)=3 
MBSIS(L)=O 
W(IR)=RZERO 
ZO=Q (IR) 
L1=1 

C PRINT THE INITIAL ALMOST COMPLEMENTARY SOLUTION 
c 
C WRITE(IOUT,3080) 
C3080 FORMAT (3(/),5X,29HINITIAL ALMOST COMPLEMENTARY 
C * 8HSOLUTION) 
C DO 3100 I=1,N 
C WRITE(IOUT,3090)I,W(I) 
C3090 FORMAT (10X,2HW(,I4,2H)=,F15.5) 
C3100 CONTINUE 
C WRITE(IOUT,3110)ZO 
C3110 FORMAT (10X,3HZO=,F15.5) 

RETURN 
3120 WRITE(IOUT,3130) 
3130 FORMAT (///5X,36HPROBLEM HAS A TRIVIAL COMPLEMENTARY , 

* 23HSOLUTION WITH W=Q, Z=O.) 
CALL PRINT(N) 
IR=lOOO 
RETURN 
END 
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SUBROUTINE NEWBS (N) 
c 
C PURPOSE - TO FIND THE NEW BASIS COLUMN TO ENTER IN 
C TERMS OF THE CURRENT BASIS. 
c 

c 
c 

c 

IMPLICIT REAL'''8 (A-H, 0-Z) 
DIMENSION AM(40,40) 6Q(40),B(40~40),A(40) DIMENSION W(40),Z(4 ),MBSIS(80J 

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,Ll,NL1,NL2,NE1,NE2,IR 

IOUT=6 
RZERO=O.O 

C IF NL1 IS NEITHER 1 NOR 2 THEN THE VARIABLE ZO LEAVES THE 
C BASIS INDICATING TERMINATION WITH A COMPLEMENTARY SOLUTION 
c 

c 

IF(NL1-1)4000,4030,4000 
4000 IF(NL1-2)4010~4060,4010 
4010 WRITE(IOUT,40~0) 
4020 FORMAT (///5X,22HCOMPLEMENTARY SOLUTION) 

CALL PRINT(N) 
IR=1000 
RETURN 

4030 NE1=2 
NE2=NL2 

C UPDATE NEW BASIC COLUMN BY MULTIPLYING BY BASIS INVERSE. 
c 

4040 

4050 

4060 

DO 4050 I=1,N 
Tl=RZERO 
DO 4040 J=1, N 

IF (DABS(B~I,J)).LT.1.0D-15) B(I,J)=O.DO 
IF(DABS(AM J,NE2)).LT.1.D0-15) AM(J,NE2)=0.DO 

Tl=Tl-B I, J) '''AM (J, NE2) 
A (I) =Tl 
CONTINUE 

RETURN 
NE1=1 
NE2=NL2 
DO 4070 I=1,N 

A (I) =B (I, NE2) 
4070 CONTINUE 

RETURN 
END 
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SUBROUTINE SORT (N,IFLAG) 
c 
C PURPOSE - TO FIND THE PIVOT ROW FOR NEXT ITERATION BY THE 
C USE OF (SIMPLEX-TYPE) MINIMUM RATIO RULE. 
c 

c 
c 

IMPLICIT REAL''<8 (A-H, O-Z) 
DIMENSION AM(40,40) 6Q(40),B(40540),A(40) 
DIMENSION W(40),Z(4 ),MBSIS(80 

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR 

IOUT=6 
I=1 

5000 IF(A(I))5010,5010,5030 
5010 I=I+1 

IF(I-N)5020,5020,5100 
5020 GO TO 5000 
5030 T1=Q(I)/A(I) 

IR=I 
5040 I=I+1 

IF(I-N)5050 5050 5090 
5050 IF(A(I))5066,5066,5070 
5060 GO TO 5040 
5070 T2=Q(I)/A(I) 

IF(T2-T1)5080,5040,5040 
5080 IR=I 

Tl=T2 
GO TO 5040 

5090 RETURN 
c 
C FAILURE OF THE RATIO RULE INDICATES TERMINATION WITH 
C NO COMPLEMENTARY SOLUTION. 
c 

5100 WRITE(IOUT,5110) 
5110 FORMAT (///5X,37HPROBLEM HAS NO COMPLEMENTARY SOLUTION) 

CALL PRINT(N) 
IFLAG=1 
IR=1000 
RETURN 
END 
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SUBROUTINE PIVOT (N) 
c 
C PURPOSE - TO PERFORM THE PIVOT OPERATION BY UPDATING THE 
C INVERSE OF THE BASIS AND 0 VECTOR. 
c 

c 
c 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION AM(40,40) 0Q(40),B(40540),A(40) 
DIMENSION W(40),Z(4 ),MBSIS(80 

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR 

DO 6000 I=1,N 
6000 B(IR,I)=B(IR,I)/A(IR) 

Q(IR)=Q(IR)/A(IR) 
DO 6030 I=1 N 

IF(I-IR)6010,6030,6010 
6010 Q(I)=Q(I)-Q(IR)*A(I) 

6020 
6030 

c 

DO 6020 J=1,N 
B(I,J)=B(I,J)-B(IR,J)*A(I) 
CONTINUE 

CONTINUE 

C UPDATE THE INDICATOR VECTOR OF BASIC VARIABLES 
c 

NLl=MBSIS (IR) 
L=N+IR 
NL2=MBSIS(L) 
MBSIS(IR)=NE1 
MBSIS(L)=NE2 
Ll=Ll +1 
RETURN 
END 
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SUBROUTINE PRINT (N) 
c 
C PURPOSE - TO PRINT THE CURRENT SOLUTION TO COMPLEMENTARY 
C PROBLEM AND THE ITERATION NUMBER. 
c 

c 
c 

IMPLICIT REAL~'8 (A-H, O-Z) 
DIMENSION AM(40,40) 0Q(40),B(40~40),A(40) DIMENSION W(40),Z(4 ),MBSIS(80J 

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR 

IOUT=6 
RZERO=O.O 
WRITE(IOUT,7000)L1 

7000 FORMAT (10X,13HITERATION NO.,I4) 
I=N+1 
J=1 

7010 K1=MBSIS(I) 
K2=MBSIS(J) 
IF(Q(J))7020,7030,7030 

7020 Q(J)=RZERO 
7030 IF(K2-1)7040 7060,7040 

C7040 WRITE(IOUT,7050)K1 Q(J) 
C7050 FORMAT (10X,2HZ(,I402H)=,F15.5) 

7040 IF(K1.EQ.O) GO TO 7 80 
Z (K1) =Q (J) 
GO TO 7080 

C7060 WRITE(IOUT,7070)K1 Q(J) 
C7070 FORMAT (10X,2HW(,I402H)=,F15.5) 

7060 IF(Kl.EQ.O) GO TO 7 80 
W (Kl) =Q (J) 

7080 I=I+l 
J=J+1 
IF(J-N)7010,7010,7090 

7090 RETURN 
END 
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