A SURVEY OF NON-SMOOTH OPTIMISATION METHODS
 AND AN EVALUATION OF A METHOD FOR MINIMAX OPTIMISATION

By
ROSEMARY FERNANDES
Bachelor of Technology
Indian Institute of Technology Madras, India 1977
Master of Engineering Asian Institute of Technology Bangkok, Thailand 1979

```
Submitted to the Faculty of the
    Graduate College of the
    Oklahoma State University
    in partial fulfillment of
        the requirements
        for the Degree of
        MASTER OF SCIENCE
            December 1985
```


A SURVEY OF NONSMOOTH OPTIMISATION TECHNIQUES AND AN EVALUATION OF A METHOD FOR MINIMA OPTIMISATION

Thesis Approved:

PREFACE

This thesis surveys the recent developments in nondifferentiable optimisation and examines the performance of a two-stage method suggested by Hald and Madsen. A modification is suggested for the second stage and a comparison is presented.

I would like to express my deep appreciation and thanks to my adviser, Dr. J. P. Chandler, for his intelligent guidance, thoughtfulness and encouragement.

I am also thankful to my other committee members, Dr. Thoreson and Dr. Grace for their advice and support.

Very special thanks are due to my friend, Mei-Hui Chen, for her continued support and help in typing the thesis.

I am very grateful to my parents, Mr. and Mrs. Thomas and to my Parents-in-law, Dr. and Mrs. Fernandes for their encourgement and understanding.

I wish to dedicate this thesis to my husband Gerard, and my son, Shane, who have made everything seem so good and worthwhile.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. SURVEY 5
III. A MINIMAX METHOD 16
Details of Hald and Madsen Method 17
Methods Used for Stagel and Stage2 24
Termination Criteria 28
IV. TESTING AND DISCUSSION 29
Test Problems 29
V. SUMMARY 43
VI. SUGGESTIONS FOR FURTHER STUDY 46
BI BLIOGRAPHY 47
APPENDIX A - DEFINITIONS 55
APPENDIX B - THE SUMMARY OF DIFFERENT METHODS 59
APPENDIX C - PROGRAM LISTING 62
Table Page
I. Comparison of number of iterations to solve problem 1 30
II. Comparison of stagel and stage2 convergence rate 31
III. Comparison of convergence rate using different \wedge 32
IV. Comparison of convergence rates for different \wedge using line search 33
V. Comparison of number of iterations to solve problem 2 34
VI. Comparison of convergence rates using different \wedge. 35
VII. Comparison of convergence rates for different \wedge using line search 36
VIII. Comparison of number of iterations to solve problem 3 37
IX. Comparison of convergence rates using different \wedge. 38
X. Comparison of convergence rates for different \wedge. using line search 38
XI. Comparison of number of iterations to solve problem 4 40
XII. Comparison of convergence rates using differentへ. 40
XIII. Comparison of number of iterations used to solve problem 5 42
XIV. Comparison of convergence rates using different \wedge. 42
XV. Number of iterations for different methods 60
XVI. Number of iterations for different Λ 61

LIST OF FIGURES

Figure Page

1. Supporting Hyperplanes to Non-Differentiable Convex Function 6
2. The Contours of Problem 6 39
3. The Contours of Problem 7 41

CHAPTER I

INTRODUCTION

Abstract

Nonsmooth optimisation or nondifferentiable optimisation (NDO), as opposed to smooth optimisation, refers to problems where the objective function to be minimised is not necessarily differentiable everywhere. This phenomenon occurs frequently in mathematics and optimisation. Furthermore, nondifferentiable functions are, in general, more difficult to minimise than smooth functions. Hence there is a need to find efficient and practical methods to solve the NDO problem.

In recent years there has been a growing interest in developing techniques to solve nonsmooth optimisation problems [27]. Various approaches have been suggested, many of them are based on methods already available for smooth optimisation. There is an enormous amount of literature available on smooth optimisation, the methods of steepest descent and conjugate gradients, and also quasi-Newton methods have reasonable extensions to non-smooth optimisation problems.

At present there is a considerable interest in this area and it is not possible to say yet what the best approaches are [27]. A survey of the recent developments in

this field is presented in chapter II.
Problems in NDO can [31], in general, be treated as problems with random discontinuities in the objective function or as problems in which a great deal of information is available about the nature of the discontinuities. Most nondifferentiable optimisation problems can be formulated as composite functions [27]. However, in practice this may be complicated or may require too much storage. There are various algorithms to solve such composite functions. A common kind of composite function studied is the Minimax problem, which can be defined as the minimisation of a function $F(x)$ where

$$
F(x)=\max \left\{f_{j}(x)\right\}, \quad j=1, \ldots, m
$$

and $f(x)$ are smooth functions.
When the only information available at any point x is $f(x)$ and a normal vector g to a supporting hyperplane, the problem is more difficult to solve. If the function f is nondifferentiable at x, g is referred to as the subgradient at x . The subdifferential of is defined as the set of all subgradients at x. This class of problem is called the basic NDO. Fewer methods are available for basic NDO. Algorithms for basic NDO have not progressed far because of the limited availability of information.

Some simple examples of problems [12] that occur in NDO are described below. The first example is that of finding the best solution to an overdetermined system ($m>n$) such as
occurs in data fitting applications. Given a set of data points, the problem of finding the best linear fit so that the error is minimised is a non-differentiable problem.

$$
\sum_{i=0}^{n} e \quad \text { where } e=\mid m x+b-y \quad \text { i is }
$$

nondifferentiable as a function of m and b.
Consider a simple problem in elasticity. An elastic band whose upper end is fixed and lower end is tied to a unit point mass. When the band is stretched by a positive amount x, it exerts an upward (restoring) force propotional to x. When unstretched no force is exerted. When the mass is oscillating vertically the force, f is given by

$$
\begin{array}{cl}
f(x)=g-k x & \text { if } x>=0 \\
g & \text { if } x<=0 .
\end{array}
$$

where g is the acceleration due to gravity and k is the propotionality constant for Hooke's law. The function is continuous but may not be differentiable at 0 .

Another example is when the constraints are themselves dependent on parameters.

$$
\operatorname{Min} \quad f(x)
$$

$$
\text { subject to } \quad g(x)+p<=0
$$

$$
h(x)+q=0
$$

The solution $v(p, q)$ depends upon p and q and is not differentiable everywhere, e.g. where $g(x)+p=0$.

One of the most important applications of NDO is in the area of nonlinear programming through the use of exact penalty functions [28]. By reformulating some difficult
problems in linear and nonlinear programming as NDO problems, we can increase the ability to handle such problems.

A study of a method for minimax problems by Hald and Madsen [34] and modification of this method following Fletcher's [28] guidelines is described in chapter III. The performance of the modified method is tested using the test problems described in chapter IV, and by comparison to similar methods. Some mathematical definitions are given in appendix A. A large bibliography is also included. Appendix B contains the program listing.

CHAPTER II

A SURVEY

The interest in developing techniques to solve NDO problems has been recent. Until 1964, the method most investigated [9] for the minimisation of nondifferentiable functions was the so called "cutting plane method", discovered by Cheney and Goldstein [10] and independently by Kelley [47]. Cutting plane methods have been used widely in constrained optimisation.

Cutting plane algorithms are elementary in principle. A series of improving approximate linear programs, whose solutions converge to the solution of the original problem, are developed. Cutting plane algorithms determine the hyperplane that separates a current point x from the constraint set. Algorithms differ in the manner in which the hyperplane is selected. This selection is an important aspect of the algorithm, since it is the distance of the hyperplane from the current point that determines the rate of convergence of the method [56]. Nondifferentiable convex functions allow the possibility of a number of supporting hyperplanes as illustrated in figure 1.

Figure 1. Supporting hyperplanes to nondifferentiable convex function

A description of cutting plane methods is given by Leunberger [56] and Zangwill [94]. The convergence of the cutting plane methods does not depend upon the differentiability of the objective function. As observed by Wolfe [88] the rate of convergence of cutting plane algorithms seems better for non-smooth functions than it is for smooth functions. A refinement of the cutting plane method is given by Hogan [45]. Some results on the convergence rates of cutting plane algorithms are given by Eaves and Zangwill [21] and Wolfe [89].

In 1964, Shor [81] pioneered the subgradient algorithm. Since that time the method has been highly developed in the Sovient Union. Subgradient (SG) optimisation is a technique that attempts to solve the problem of minimising a general nondifferentiable convex function, and is about the simplest
possible general method for solving basic NDO problems. Shor's method is applicable to any convex function. A good survey of Soviet research in this field is given by Poljak [73]. It reviews the research efforts by Soviet authors in developing subgradient methods for NDO.

The minimisation method using space dilation in the direction of the difference of two successive gradients due to Shor [82] has been found [9] to be a very effective method for difficult non-differentiable problems. It has been observed [51] that good results are obtained by using Shor's method of space dilation and quasi-Newton methods. For certain structured LP programming problems whose size makes any known version of the simplex method impractical, the simple algorithm due to Shor has proved to be effective [45]. But that it does not converge as fast as even the steepest descent methods when the function is differentiable.

A convex function $f(x)$ allows the possibility of a number of supporting hyperplanes at a nondifferentiable point x as was shown in figure l. For each hyperplane we can define

$$
f(x+h)>=f(x)+h^{\top} g
$$

where g is a normal vector to a hyperplane at x. Such a vector is referred to as the subgradient at x. The set of all subgradients at x is referred to as the subdifferential at x and is defined by

$$
f(x)=\left\{g \mid f(x+h)>=f(x)+h^{\top} g\right\}
$$

To solve the basic nondifferentiable problem Lemarechal [51] considers also an extension of the powerful method of conjugate gradients which has been widely used in unconstrained optimisation of smooth functions. In [53] Lemarechal tries to synthesize conjugate subgradient methods and to extend them to a wider class of bundle methods. The method is based on "bundling" subgradients. The objective function is required to be regular. [see appendix A]

A similar method based on bundling subgradients is described by Wolfe[88]. This method is reasonably effective for both differentiable and nondifferentiable convex objective functions. When f is quadratic this method is exactly that of Hestenes and Stiefel [45].

The bundle methods try to accumulate information locally about the subdifferential of the objective function. A bundle method is a line search method which solves subproblems to define the step direction. The subgradients are used to find the step direction, and are added to the bundle B on sucessive iterations. The method continues this way until $o \in B$. Then the bundle is reset, for instance, to the current subgradient and the iteration is continued. With careful manipulation of B [27], a convergence result can be proved and a suitable termination test obtained. In these methods a sequence $\left\{x_{k}\right\}$ is generated where

$$
x_{k+1}=x_{k}+h_{k} p_{k}
$$

where h_{k} is stepsize and p_{k} is the direction.

Mifflin's algorithm [66] is a modification of the algorithm by Lemarechal [53]. This version differs from that of Lemarechal because of its rules for line search termination and the associated updating of the search direction. Mifflin's method can be used on a wider class of optimisation problems with only minimal restrictions on the allowable type of constraints or objective function [66].

Subgradient methods have been used to solve large scale problems. Generalisations of the SG methods beyond convex objective functions have been attempted by Nurminskii [69] [70] with partial success.

The application and extension of the relaxation method, referred to as subgradient relaxation methods, to certain dual problems in network scheduling is discussed by Fisher et al [24]. Chaney and Goldstein [9] present an extension of the subgradient method to max families and quasidifferentiable functions. An algorithm for solving ordinary nonlinear programming problems in a NDO context is described by Pshenichnyi [75]. The rate of convergence of this method is also investigated. A good bibliography can be found a book by Lemarechal and Mifflin [54].

A class of algorithms for minimising any convex, not necessarily differentiable, function f of several variables is described by Kiwiel [48]. The methods require only the calculation of f and one subgradient of f at designated points. These methods generalise Lemarechal's bundle method [53]. Instead of using all previously computed
subgradients, the method uses an aggregate subgradient which is recursively updated as the algorithms proceed. The algorithms can be viewed as an extension of Pshenichnyi's linearisation method [75]. The concept of aggregation has also been applied in [49] [50], to a modified algorithm due to Mifflin [66].

Application of a boxstep method to column generation problems and a variety of scheduling problems is described by Marsten [62]. The performance of the boxstep method is compared to that of subgradient optimisation methods.

Application of some versions of steepest descent methods to NDO have been considered by Demjanov [17] and Bertsekas and Mitter [6]. A survey of the area and an . extensive bibliography may be found in [6]. Most of these methods are restricted in its application to nondifferentiable problems, and do not seem to have a straight foward implementation in the general case. A procedure by Cullum et al to certain solve nondifferentiable sums of eigenvalues of symmetric matrices based on steepest descent is given in [14].

Function comparison methods (also known as direct search methods), a class of general methods for minimising smooth functions, have also been applied to NDO problems. The only advantage of these methods is that they are in general simple. The major disadvantage is that few guarantees can be made regarding convergence; moreover, they
are often slow. In these methods, successive estimates x of the minimiser x^{*} is made by comparing the values of the objective function at a general set of points including x. Examples of direct search methods are the simplex method of Nelder and Mead [61], and methods of Rosenbrock [78], Hooke and Jeeves [46], Spendley, Hext and Hemsworth [83] and Davies, Swann and Campey. Although the method of Powell [74] is in principle a conjugate direction method, the computation of partial derivatives is not required. A similar method is that of Zangwill [93].

The simplex method is used more often than the other direct search methods, and the general principles are described below. A simplex in R may be thought of as a polyhedron with $n+1$ distinct vertices, denoted by $v_{i}, i=1$, $n+1$. Hence by replacing any point v_{i} by w, we obtain a new simplex. Given a set of rules for changing the current simplex and by requiring that each vertex of the simplex is a value of the function $F(x)$, we can generate a sequence of simplices so that the final simplex may have the minimiser x* as one of the vertices. The precision of the estimate depends upon the size of the final simplex.

Spendley, Hext, and Hemsworth [83] appear to have been the first authors to propose a simplex method, but their strategy was too rigid to permit rapid convergence in most cases. An efficient simplex method is that described by Nelder and Mead [61].

It has been suggested by Wright et al [31] that direct search methods may be used to solve the non-differentiable optimisation problem, when the function or its gradient is discontinuous at its solution or when the gradient has many discontinuties or when the discontinuties have no special structure.

Variable metric methods, also known as quasi-Newton methods, are effective for minimising smooth functions. An application of quasi-Newton methods to NDO problems is suggested by Han [40]. He developed a class of methods for minimising a nondifferentiable function which is the maximum of a finite number of smooth functions. The method proceeds by solving iteratively quadratic programming subproblems to generate search directions. The combined Hessian matrices B in the quadratic programming problems are updated in a variable metric way. The stepsize procedure does not use an exact line search. However, as pointed out by Fletcher [29], the combined Hessian matrix B is updated by differences in the qradient of a Lagrangian function and hence depends upon Lagrange multiplier estimates. If the estimates become unbounded then B is likely to become unbounded.

Various other methods have been developed for nondifferentiable functions. The most general class of NDO composite functions is the minimax problem as defined by (1.1). Most of the methods surveyed here are applicable to
the minimax problem.
For such problems, an algorithm with second order convergence can be obtained by linearising the individual functions over which the max is taken. Studies of this type of method has been conducted by Osborne and Watson [72] and Charalambous and Conn [8]. As with Gauss-Newton methods, convergence is not guaranteed. This can be solved by using a restricted step type of method. Application of a restricted step type method to overdetermined systems (m>n) of nonlinear equation has been investigated by Madsen [57]. The functions are assumed to be continuous. The algorithm is based on successive linear approximations to these functions. The resulting linear systems are solved subject to bounds. The convergence of this algorithm is guaranteed and the rate of convergence on regular functions is quadratic. However, on singular functions [see appendix A], the convergence is only linear. In order to obtain a better rate of convergence Hald and Madsen [34] have proposed a two-stage algorithm. The stagel algorithm is the same as the one described by Madsen [57]; a switch to stage2 is made when irregularity is detected. The stage 2 algorithm uses a quasi-Newton method. Another method to solve the problem of singular functions is suggested by Madsen and Schjaer-Jacobsen [59].

General nonlinear minimax approximation problems [1] involving a finite point set have been reformulated and
solved by well-established methods such as the barrier function method of Fiacco and McCormick [23]. Application of NDO in the area of nonlinear programming through the use of penalty functions is described by Fletcher [27]. Another approach is to use an algorithm for nonlinear programming as a means of generating a direction of search, and to use the exact penalty function as the criterion function to be minimised approximately. This approach is described by Han [38], Coleman and Conn [13], and Mayne [64].

A general algorithm for composite nondifferentiable optimisation problems has been presented by Fletcher. In [28] Fletcher considers the minimisation of composite functions from a nonlinear optimisation viewpoint. This class of composite functions is quite general since it includes exact penalty function, nonlinear minimax functions and best approximations. Using both linear approximations of the constraints and quadratic approximation to F , Fletcher proves that the method has second order rate of convergence. He also shows that his method converges globally if a trust region is incorporated on the stepsize. The method is called the $Q L$ method, since it makes both quadratic and linear approximations.

Rockafellar [76] and Womersley [92] both deal with optimality conditions. Wormersley derives second order necessary and sufficient conditions for problems involving piecewise smooth functions. Rockafellar derives first order
conditions for problems whose constraints and objective function are locally lipschitz. Optimality conditions have also been described by Fletcher [27].

Currently, research is being carried out in many of these areas. Because of its simplicity, the subgradient method has received much attention, but it is at best linearly convergent. The Bundle methods are also being investigated. The possibility of using quasi-Newton methods to update the matrix B in the quadratic programming subproblems is being studied. The modified BFGS formula given by Powell [74] is expected to work well.

A MINIMAX METHOD

The method descrbed in this chapter is the method proposed by Hald and Madsen [33]. It combines linear programming and quasi-Newton methods for minimax optimisation, and consists of two stages. The algorithm used in stage l is based on successive linearisations of the objective function. The resulting linear subproblems are solved subject to bounds. The bounds are adjusted depending on how good the approximation is to the objective function. It was proved [33] that the stiage 1 algorithm has quadratic convergence when there are $n+1$ active functions at $x *$, that is, when the function is regular. In other words, the problem satisfies the Haar condition. [see Appendix A] The stage 2 quasi-Newton algorithm is used only if an irregular solution is detected. In this case, second order derivative information may be needed in order to obtain a fast final rate of convergence. If stage 2 iteration is unsuccessful, then a switch is made back to stage 1 . Several switches may be necessary before the solution is found.

It has been proved [36] that the algorithm will always converge to a stationary point of the problem.

Details of Hald and Madsen Method

The minimax problem can be defined as the minimisation of a maximum function $F(x)$, where the maximum is taken over a finite set.
$F(x)=\max \left\{f_{1}(x), f_{2}(x), \ldots . . f_{m}(x)\right\}$,
$f_{j}(x), j=1, m$ are smooth functions,
$x=\left\{x_{1}, x_{2}, \ldots . ., x_{n}\right\}$.
The objective function is, in general, a non-
differentiable function having discontinuous first partial derivatives at the minimum. The minimum is normally situated at a point where two or more functions are equal. When the minimum is well determined, only first order information is required, and the convergence is quadratic. However, if the minimum lies in a smooth valley, a quasiNewton method is used to obtain a fast final rate of convergence.

The method consists of four parts:
(i) STAGE 1 ITERATION
(ii) CONDITIONS FOR SWITCHING TO STAGE 2
(iii) STAGE 2 ITERATION
(iv) CONDITIONS FOR SWITCHING BACK TO STAGE 1
(i) STAGE 1 ITERATION

The minimiser x^{*} for the objective function $F(x)$
defined by (1) is determined by sucessive iterations.
Suppose an approximate feasible estimate of the minimiser at the k th iteration is x_{k}. The increment h_{k} is determined
as a vector that minimises $F\left(x_{k}, h_{k}\right)$, which is linearly approximated by $\overline{\mathrm{F}}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{h}_{\mathbf{k}}\right)$, using Taylor's series.

$$
\begin{gather*}
\bar{F}\left(x_{k}, h_{k}\right)=\max \left\{f_{j}\left(x_{k}\right)+\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}}\left(x_{k}\right) \cdot h_{i}\right\} \tag{2}\\
j=1, \ldots m
\end{gather*}
$$

subject to the constraint
|| h i| = max $\left|h_{1}, h_{2}, \ldots . h_{n}\right|<=\Lambda_{k}, \Lambda_{k}>0$.
Since (2) is valid only for small values of h, the value of II h ll is forced to be small enough by using the restriction (2a).

The value of \wedge depends on how good the linear approximation is to the objective function, and is chosen as large as possible subject to a certain measure of agreement being maintained between each f_{j} and its linearisation.

The above problem can be transformed into the following linear program by introducing an extra variable p

$$
\text { Minimise } \quad p
$$

$$
\mathrm{h}, \mathrm{p}
$$

Subject to

$$
\begin{align*}
& f_{j}\left(x_{k}\right)+\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}}\left(x_{k}\right) h_{i}<=p \tag{3}\\
& -\Lambda_{k}<=h<=\Lambda_{k}
\end{align*}
$$

This problem can be solved by a standard linear programming method. We have used the method for quadratic and linear programming by Lemke. The formulation of (3) for Lemke's algorithm is described in a later section.

The point $x_{k+1}=x_{k}+h_{k}$ can be accepted as the next point in the iteration if the function $F\left(x_{k+1}\right)$ decreases. However, as pointed out by Fletcher [28], this condition is not sufficient to guarantee convergence. The following condition is used

$$
\begin{equation*}
F\left(x_{k}\right)-\bar{F}\left(x_{k}+h_{k}\right)>=C_{1}\left[F\left(x_{k}\right)-\bar{F}\left(x_{k}, h_{k}\right)\right] \tag{4}
\end{equation*}
$$

where
C_{1} is a small positive number.
That is, if the decrease in the objective function exceeds a small multiple of the decrease predicted by linear approximation it implies there is adequate agreement between objective function and its approximation.

If the condition (4) is satisfied, then

$$
\begin{aligned}
& x_{k+1}=x_{k}+h_{k} \text { otherwise, } \\
& x_{k+1}=x_{k}
\end{aligned}
$$

There is no line search involved.

Determination of \wedge_{k+1}
The value of \wedge_{k+1} depends upon how well the iteration approximates the linear function to the actual, and is determined so as to try and provide the inequality

$$
F\left(x_{k}, h_{k}\right)<F\left(x_{k}\right) .
$$

If the decrease in the objective function

$$
\begin{align*}
& F\left(x_{k}\right)-F\left(x_{k+1} ; h_{k}\right) \text { is }<=C_{2}\left[F\left(x_{k}\right)-F\left(x_{k}, h_{k}\right)\right], \tag{5}\\
& C_{1}<C_{2}<1 .
\end{align*}
$$

then the decrease in F is rather poor. Hence we use a smaller bound

$$
\begin{gather*}
\wedge_{k+1}=C_{3}\left\|h_{k}\right\|, \quad C_{3}<1 . \tag{6}\\
\text { If } F\left(x_{k}\right)-F\left(x_{k}+h_{k}\right)<=C_{4}\left[F\left(x_{k}\right)-\bar{F}\left(x_{k}, h_{k}\right)\right], \tag{7}\\
C_{2}<C_{4}<1 .
\end{gather*}
$$

Then the decrease in F is close to the decrease predicted by linear approximation, hence the bound is increased

$$
\begin{equation*}
\wedge_{k+1}=C_{5}\left\|h_{k}\right\| \tag{8}
\end{equation*}
$$

In all other cases,

$$
\begin{equation*}
=c_{6}\left\|h_{k}\right\| \tag{9}
\end{equation*}
$$

The parameters $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ and C_{6} are arbitrary and are not very sensitive. The values generally used are 0.01, $0.25,0.75,2.0,1.0$ or 0.5 , respectively.

Determination of active set
An important concept is that of an active set. For each iteration in stage 1 , the active set A is determined. It is defined by the index set,

$$
\begin{equation*}
A_{k}=A\left(x_{k}\right)=\left\{j \mid F\left(x_{k}\right)-f_{j}\left(x_{k}\right)<=\epsilon_{1}\right\} \tag{10}
\end{equation*}
$$

where ϵ_{I} is a small positive number defined by the user. We have used $\epsilon_{1}=.01 F(x)$. This defines the functions that are "active" at $x . A^{*}$ is defined as follows,

$$
\begin{equation*}
A^{*}=A\left(x^{*}\right)=\left\{j \mid F\left(x^{*}\right)=f_{j}\left(x^{*}\right)\right\}, \tag{11}
\end{equation*}
$$

and contains the index set of the functions that are active at the solution.
(ii) CONDITIONS FOR SWITCHING TO STAGE 2

A switch is made to stage 2 when a smooth valley is detected through the solution. In general, at the minimum (x^{*}) some functions are equal. Suppose that the number of such functions is S and the functions are f_{j}, such that,

$$
\begin{equation*}
F\left(x^{*}\right)=F\left(x^{*}\right)>f_{j}\left(x^{*}\right) \tag{12}
\end{equation*}
$$

for $\quad j \in A\left(x^{*}\right)$
i $\notin A\left(x^{*}\right)$.
Then, the following must hold in the valley and at the solution

$$
\begin{aligned}
& f_{j 0}(x)-f_{j}(x)=0, \quad(j \neg=j) \\
& j \in A\left(x^{*}\right) \text { and } j_{0} \in A\left(x^{*}\right) \text { is fixed. }
\end{aligned}
$$

If $s>=n+1$, then the Haar condition is satisfied.
This implies that the Jacobian $\left\{f^{\prime}\left(x^{*}\right) \mid f_{j}\left(x^{*}\right)=F\left(x^{*}\right)\right\}$ has a rank n. Then the minimum is well determined and there is no smooth valley. However, if $s<=n$, then the Jacobian has rank $<n$, and we require more information to obtain a fast convergence.

Suppose the latest three iterates x_{k}, x_{k-1}, x_{k-2} have been calculated in stage 1 then a switch to stage 2 is made if the following conditions (14), (15), and (16) are satisfied.

$$
\text { If } \lambda_{j}>=0 \quad j \in A,
$$

and

$$
\sum \lambda_{j}=1
$$

then,

$$
\begin{equation*}
\left\|h_{k}\right\|=\wedge_{k} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
A_{K-1}=A_{K-2}=A_{K} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\sum_{j \in A} \lambda_{j} f^{\prime} j\left(x_{k}\right)\right\|<=\epsilon_{2} \tag{16}
\end{equation*}
$$

where $\quad \epsilon_{2}>0$.
Note: Condition (16) is tested only if (14) and (15) are
satisfied, and is true when x_{k} is close to a solution x^{*} with $A^{*}=A_{k}$.

These conditions ensure that unnecessary iterations are avoided in stage 2. If the quasi-Newton iteration is started with the wrong active set, a switch would be made back to stage l after a few iterations.
(iii) Stage 2 Iteration

Stage 2 is used only when the curvature effects are not negligible and the value of x is close to the minimum x.

Suppose the functions that are equal at the minimum be defined as in (13). Then for a local minimum the following conditions must hold:

$$
\begin{align*}
& \sum_{j \in A} \lambda_{j} f^{\prime} j(x)=0, \tag{17}\\
& \left(\sum_{j \in A} \lambda_{j}\right)-1=0, \tag{18}
\end{align*}
$$

$\lambda_{j}>=0$
and

$$
\begin{equation*}
f_{j 0}(x)-f_{j}(x)=0 \tag{19}
\end{equation*}
$$

where, jof A,
$j \in A$,
jo $7=j$
The unknowns are λ and x. A quasi-Newton method is used at this stage. The quasi-Newton method used at this stage should be locally and linearly convergent.

Instead of using the quasi-Newton iteration as suggested by Hald and Madsen, I have used a method similar to one described by Fletcher [30] for the stage 2 iteration.

It has been proven that this method has quadratic convergence and hence is an improvement over the one suggested by Hald and Madsen. A comparison is presented in the next chapter.

The conditions (17) and (18) become the Kuhn-Tucker conditions when (1) is put into the following form Min v
subject to $\quad f_{j}(x)<=v$
By using the following quadratic approximation for f $f(x+h)=f(x)+f^{\prime}(x) * h+h^{\top} f(x) * h$.

We can determine h, at the k th iteration from

$$
\begin{array}{ll}
\operatorname{Min} & v+1 / 2 h^{\top} B h \\
\text { subject to } & f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right) * h<=v
\end{array}
$$

where, B is defined by

$$
B=\sum_{j} \lambda_{j} f_{j}, \quad j \in A
$$

As described before, the restricted stepsize condition
(22) is introduced to ensure convergence,
$\|\mathrm{h}\|<=\wedge_{k}$
Hence problem (2la) can be written as

$$
\begin{array}{ll}
\operatorname{Min} \\
h, v \\
\text { subject to } & v+1 / 2 h^{\top} B h \tag{23}\\
& v-f^{\prime}\left(x_{k}\right) * h>=f\left(x_{k}\right) \\
& h+\Lambda>=0 \\
& -h+\Lambda>=0
\end{array}
$$

This is a quadratic programming problem, and is solved using Lemke's algorithm.

(iv) CONDITIONS FOR SWITCHING BACK

to Stage l
A switch is made back to stage 1 if any of the following conditions (24), (25) or (26) fail to hold. Suppose $r(x, \lambda)$ denotes the vector of the left hand side of (17), (18) and (19). In order to continue the quasi-Newton iteration, the length of the vector r should decrease.

$$
\begin{equation*}
\left\|r\left(x_{k+1}, \lambda_{k+1}\right)\right\|<=\eta\left\|r\left(x_{k}, \lambda_{k}\right)\right\| \tag{24}
\end{equation*}
$$

where $0<\eta<1$. (we use $\eta=.999$.)
A test that no function with an index from outside the active set becomes dominating is made

$$
\begin{equation*}
F\left(x_{k+1}\right)=\max \left\{f_{j}\left(x_{k+1}\right)\right\}, j \in A \tag{25}
\end{equation*}
$$

The multipliers corresponding to the active set should be non-negative

$$
\begin{equation*}
\lambda_{j}>=0, \quad j \in A . \tag{26}
\end{equation*}
$$

These conditions ensure that convergence is maintained in stage 2.

Methods Used for Stage 1 and Stage 2

The algorithms used for the stage 1 and stage 2 iterations are described in this section.
(i) ALGORITHM USED TO SOLVE THE LINEAR

PROGRAM OF STAGE I
The method used to solve the linear program of stage 1 and the quadratic program of stage 2 is the Lemke's algorithm for quadratic and linear programming. Lemke's algorithm is an extension of the Simplex method to solve

$$
\begin{align*}
& \text { minimise } 1 / 2 x^{\top} G x+g^{\top} x \text { where } G \text { is positive definite } \\
& \text { subject to } A^{\top} x>=b \tag{27}\\
& x>=0
\end{align*}
$$

Using Wolfe's dual, this can be restated using Lagrangian multipliers y for the constraints $A^{\top} x>=b$, and u for bounds $x>=0$.

The associated Lagrangian function $L(x, y, u)$ is then expressed as,

$$
\begin{equation*}
L(x, y, u)=1 / 2 x^{\top} G x+g^{\top} x-y^{\top}\left(A^{\top} x-b\right)-u^{\top} x \tag{28}
\end{equation*}
$$

Define slack variables

$$
\begin{equation*}
v=A^{\top} x-b \tag{29}
\end{equation*}
$$

The first order necessary conditions (or the Kuhn-Tucker (KT) conditions: see appendix A) for (28) are then

$$
\begin{align*}
& u-G x+A y=g \\
& v-A^{\top} x=-b \\
& u, y, v, x>=0 \tag{30}\\
& y^{\top} v=0 \\
& x^{\top} u=0
\end{align*}
$$

The linear complementarity problem then be expressed as

$$
\begin{align*}
& w-M z=q \\
& w^{\top} z=0 \tag{31}\\
& w>=0, z>=0
\end{align*}
$$

where,

$$
w=\left|\begin{array}{l}
u \\
v
\end{array}\right|, \quad z=\left|\begin{array}{l}
x \\
y
\end{array}\right|, \quad M=\left|\begin{array}{rr}
G & -A \\
A & 0
\end{array}\right|, \quad q=\left|\begin{array}{c}
g \\
-b
\end{array}\right| .
$$

FORMULATION FOR STAGE 1
The stage 1 linear problem to be solved may be written as,

$$
\begin{array}{ll}
\text { Minimise } & p \\
\text { Subject to } & p-\bar{F}\left(x_{k}, h_{k}\right)>=0 \tag{32}\\
& h+\Lambda>=0 \\
& -h+\Lambda>=0
\end{array}
$$

Introduce non-negative variables r and s, defined by

$$
\begin{align*}
& r_{i}-s_{i}=h \quad i=1, \ldots, n \tag{33}\\
& r_{n+1}-s_{n+1}=p
\end{align*}
$$

The Lagrangian function for the stage 1 linear problem can be expressed as

$$
L(x, y, u)=g^{\top} x-y^{\top}(A x-b)-u^{\top}\left(x_{k}\right)
$$

where,

$$
\begin{align*}
& x=\left[r_{1}, \ldots, r_{n+1}, s_{1}, \ldots, s_{n+1}\right] \tag{34}\\
& b=\left[f_{j}\left(x_{k}\right),-\wedge,-\wedge\right] \quad j=1, \ldots, m \\
& \wedge=\Lambda e_{m} \\
& e_{n}=[1,1, \ldots, 1] \quad \text { n-vector } \\
& e_{m}=[1, l, \ldots, 1] \quad \text { m-vector } \\
& g=[0, \ldots, 0,1,0, \ldots,-1]
\end{align*}
$$

$$
J=\left|\begin{array}{ccc}
\frac{\partial f_{I}\left(x_{k}\right)}{} & \cdots & \frac{\partial f_{z}\left(x_{k}\right)}{\partial x_{1}} \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{}\left(x_{k}\right) & & \partial f_{m}\left(\dot{x}_{k}\right) \\
\frac{\partial x_{1}}{\partial x_{n}}
\end{array}\right|
$$

$$
\begin{aligned}
& A=\left|\begin{array}{cccc}
-J & I & J & -I \\
m \star n & n * 1 & m * n & n * 1 \\
I & 0 & -I & 0 \\
(n+1) * n & (n+1) * I & (n+1) * n & (n+1) * 1 \\
-I & 0 & I & 0 \\
(n+1) * n & (n+1) * 1 & (n+1) * n & (n+1) * 1
\end{array}\right| \\
& I=\mathbb{m}^{*} m \text { unit matrix } \\
& I=\Pi^{*} n \text { unit matrix } \\
& J \text { is an } m^{*} n_{n} \text { matrix } \\
& A \text { is an }(m+2(n+1)) *(2(n+1)) \text { matrix }
\end{aligned}
$$

The Kuhn-Tucker conditions are the same as equations (30).
The linear complementarity problem (32) is solved using

$$
\mathbf{w}=\left|\begin{array}{l}
u \\
v
\end{array}\right|, \quad \mathbf{z}=\left|\begin{array}{l}
x \\
y
\end{array}\right|, \quad M=\left|\begin{array}{cc}
0 & -A \\
A & 0
\end{array}\right|, \quad q=\left|\begin{array}{c}
g \\
-b
\end{array}\right| .
$$

(iv) ALGORITHM USED FOR THE QUADRATIC

PROGRAM OF STAGE 2
The quadratic programming problem (26) can be solved using the same algoritho of stage l: Lemke's algorithm for quadratic and linear programming.

The variables are as described in (35). The only addition is the matrix G which can be formulated as shown below

Termination Criteria

It has been proved in [19] that the method converges to a stationary point. The kth iteration is terminated when the following is true

$$
x_{k+1}-x_{k}<=s .
$$

The value of s used is $.5 d-5 . \epsilon_{2}$ in equation (16) is determined as follows

$$
\begin{array}{rlrl}
\epsilon_{2}\left(x_{k}\right) & =0.5 \min _{j \in \mathbb{A}} \| f^{\prime}(x) 1!, s>1 \\
& =.01 F\left(x_{k}\right) & & s=1
\end{array}
$$

CHAPTER IV

TESTING AND DISCUSSION

The performance of the modified algorithm is examined by comparing the number of iterations required to obtain a convergence using the same termination criteria as used by Hald and Madsen. The method is also compared to the method of Charalambous and Conn [8] using the test problems described in their paper.

The number of iterations required by stagel and stage 2 independently is also evaluated and a comparison is presented. It was observed that the method is sensitive to the initial value of Λ. For each test problem, different values of Λ were given and the rate of convergence tabulated. A line search was also used to improve the convergence of slowly converging iterations.

The iterations are counted for each linear or quadratic subproblem solved. The test problems used are described below.

Test Problems

Example 1.
This is the example 2 of Madsen [56].

$$
\begin{aligned}
& f_{1}(x)=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2} \\
& f_{2}(x)=\sin x_{1} \\
& f_{3}(x)=\cos x_{2}
\end{aligned}
$$

Starting point (3,1), $\Lambda=1.2$
$x^{*}=[-.4533, .90659], F^{*}=[.61643, .43793, .61643]$
The table below is a comparison of the number of iterations required by stagel, stage2, and the combined method to the method by Madsen [57]. The maximum stepsize is also indicated.

TABLE I
COMPARISON OF NUMBER OF ITERAIONS TO SOLVE PROBLEM 1

	No. of iterations	Function value	\\| h \\|
Stage 1	27	.61643 d 0	$.5 \mathrm{~d}-5$
Stage 2	9	.61643 do	$.5 \mathrm{~d}-5$
combined	9	.61643 d 0	$.5 \mathrm{~d}-5$
Madsen	20	.61643 d 0	$.67 \mathrm{~d}-4$

The stagel method is essientially the method of Madsen. The convergence of stagel is linear as second order information is not considered as shown in table II. The effect of Λ is shown in table III. The algorithm is very sensitive to the underflow criteria used in Lemke algorithm. Using l.0d-15 we do not get a solution for problem l. We need to use $1.0 \mathrm{~d}-16$.

TABLE II
COMPARISON OF STAGEI AND STAGE2 CONVERGENCE RATE

Iteration No.	Stage 1		Stage 2	
	F	1 hr	F	$1 \mathrm{~h} \mid$
1	. 13 d 2	. 12 dl	. 13 d 2	.12d1
2	.399d1	.11dl	.399d1	.1098d1
3	.1788d1	. 55do	. 2244 dl	.1098d1
4	.851d0	. 55d0	.1291di	.1098d1
5	.851d0	. 14 do	.796d0	. 350 do
6	. 743 do	. 14 do	.635d0	. 191 do
7	. 644 do	. 27 do	.61659d0	.14d-1
8	. 644 do	. 68d-1	.61643d0	(<=) . 5d-5
9	.627do	. 68 d-1		
10	.619d0	.68d-1		
27	.61643d0	(<=) . 5d-5		

TABLE III
COMPARISON OF CONVERGENCE RATES USING DIFFERENT \wedge

	No. of iterations	F
.5	15	.61643 do
1.0	slow convergence	
1.2	13	$.71249 \mathrm{do*}$
1.5	slow convergence	.61643 do

As can be seen the value of the initial restriction on stepsize is important. Using an inaccurate quadratic line search only when the function value increases improves the convergence properties considerably as shown in table IV. This is especially true when the convergence is very slow. In table IV convergence is obtained in a smaller number of iterations than in table III. However, the value of \wedge is still important. This is because the function that is "active" initially may not be the same for different initial conditions. Using a line search for this problem has improved the rate of convergence for all the values of \wedge.

TABLE IV

COMPARISON OF CONVERGENCE RATES FOR DIFFERENT \wedge USING LINE SEARCH

	No. of iterations	F
.5	15	.61643 do
.75	14	.61643 d 0
1.0	9	.61643 d 0
1.2	8	.61643 d 0
1.5	8	.61643 d 0

Example 2.
The following nonlinear programming problem is considered by Hald and Madsen [33] and by Charalambous and Conn [8].

Minimise

$$
\begin{aligned}
f(x)= & \left(x_{1}-10\right)^{2}+5\left(x_{2}-12\right)^{2}+x_{3}+3\left(x_{4}-11\right)^{2}+ \\
& 10 x_{5}^{6}+7 x_{6}^{2}+x_{7}^{4}-4 x_{6} x_{7}-10 x_{6}-8 x_{7}+1000 .
\end{aligned}
$$

subject to

$$
\begin{aligned}
& g_{2}(x)=-2 x_{1}^{2}-3 x_{2}^{4}-x_{3}-4 x_{4}^{2}-5 x_{5}+127>0 \\
& g_{3}(x)=-7 x_{1}-3 x_{2}-10 x_{3}^{3}-x_{4}+x_{5}+282>0 \\
& g_{4}(x)=-23 x_{1}-x_{2}^{2}-6 x_{6}^{2}+8 x_{7}+196>0
\end{aligned}
$$

$$
g_{5}(x)=-4 x_{1}^{2}-x_{2}^{2}+3 x_{1} x_{2}-2 x_{3}-5 x_{6}+11 x_{7}>0
$$

This transformed to the minmax problem as follows
Minimise $\quad f_{j}(x) \quad j=1, \ldots, 5$
where $\quad f_{j}=f-\log (j) \quad j=2, \ldots, 5$
and $\quad f_{1}=f$
Note that a large constant (1000) is introduced so that the convergence is to the maximum positive value of F. Using

$$
\mathbf{x}=(3,3,0,5,1,3,0)
$$

and $\Lambda=0.5$
We make the following comparison.

TABLE V
COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 2

	No. of Iterations	F	$\\|\mathrm{~h}\\|$
Stage 1	16	.69864 d 3	$.5 \mathrm{~d}-3$
Stage 2	14	.68063 d 3	$.5 \mathrm{~d}-5$
Combined	15	.68063 d 3	$.5 \mathrm{~d}-5$
Hald\&M.	23	.68063 d 3	$.5 \mathrm{~d}-5$
Char.\& Conn	150	.68063 d 3	$.5 \mathrm{~d}-5$

The solution is $x=[2.33050,1.95137,-0.47754,4.36573$, -. 62449, 1.03813, 1.59423]
$F=[680.63,680.63,-1844.987,-728.1519,680.63]$
The effect of Λ is as shown in table VI. The number of iterations obtained using a line search is shown in table VII.

TABLE VI
COMPARISON OF CONVERGENCE RATES USING DIFFERENT \wedge

	No. of iterations	F
.5	14	.68063 d 3
1.0	very slow convergence	
1.2	very slow convergence	

TABLE VII

COMPARISON OF CONVERGENCE RATES FOR DIFFERENT \wedge USING LINE SEARCH

	No. of iterations	F
.5	8	.68063 d 3
1.0	very slow convergence	.68998 d 3
1.2	very slow convergence	.91460 d 3
1.5	very slow convergence	.68755 d 3

Using the line search improved the convergence for $\Lambda=$ 0.5. However, the line search did not greatly improve the convergence in other cases because the function that is "active" initially is not an "active" function in the final convergence. Also only a slow decrease in the active function was noticed. Hence improving the initial active function does not improve the rate of convergence rapidly. Use of a cubic interpolation in the line search improved the convergence rate.

Example 3. The Rosen-Suzuki problem [77] is considered.

$$
\begin{array}{ll}
\text { Minimise } & f(x)=x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}+x_{4}^{2}-5 x_{1}-5 x_{2}-2 l x_{3}+7 x_{4}+100 . \\
\text { subject to } & g_{1}(x)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-x_{4}^{2}-x_{1}+x_{2}-x_{3}+x_{4}+8>0 \\
& g_{2}(x)=-x_{1}^{2}-2 x_{2}^{2}-x_{3}^{2}-2 x_{4}^{2}+x_{1}+x_{4}+10>0 \\
& g_{3}(x)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-2 x_{1}+x_{2}+x_{4}+5>0
\end{array}
$$

The same transformation described in example 3 is used. The initial value of $x=(0,0,0,0)$, and $\lambda=0.5$. The solution is $\mathbf{x}=(0,1,2,-1)$ and $F=(44,44,54,44)$. Table shown below shows the effect of \wedge. The results obtained by using a line search when the function value increases is shown in table X. Using line search greatly improved the convergence rate in this problem.

TABLE VIII
COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 3

	No. of iterations	Function value	$\\|\mathrm{h}\\|$
Stage 1	45	.5600372 d 2	$.5 \mathrm{~d}-4$
Stage 2	9	.56 d 2	$.5 \mathrm{~d}-5$
combined	11	.56 d 2	$.5 \mathrm{~d}-5$
H. \& M.	16	.56 d 2	$.5 \mathrm{~d}-5$
C. \& C.	37	.56 d 2	$.5 \mathrm{~d}-5$

TABLE IX
COMPARISON OF CONVERGENCE RATES USING DIFFERENT \wedge

	No. of iterations	F
.5	9	.44 d 2
.75	not conv. in 35 iter.	
1.0	not conv. in 40 iter.	

TABLE X
COMPARISON OF CONVERGENCE RATES FOR DIFFERENT \wedge USING LINE SEARCH

	No. of It.	F
.5	9	.44 d 2
.75	11	.44 d 2
1.0	35	.43997 d 2
1.2	8	.44 d 2

Example 4.

The problem used by Charalambous and conn [8] is considered.

$$
\begin{aligned}
& E_{1}(x)=x_{1}^{4}+x_{2}^{2} \\
& E_{2}(x)=\left(2-x_{1}\right)^{2}+\left(2-x_{2}\right)^{2} \\
& E_{3}(x)=2 \exp \left(-x_{2}+x_{2}\right) \\
& x^{*}=[1.13903, .89956], F^{\star}=[1.95222,1.95222,1.57409] .
\end{aligned}
$$

The initial value of $x=(1,-0.1)$ and \wedge used $=1.2$. The contours of the problem are shown in figure 2 .

Figure 2. The contours of problem 6

TABLE XI
COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 4

	No. of iterations	Function value	$\\|\mathrm{h}\\|$
Stage 1	19	.19522 dl	$.5 \mathrm{~d}-5$
Stage 2	8	.19522 dl	$.5 \mathrm{~d}-5$
Combined	9	.19522 dl	$.5 \mathrm{~d}-5$
C. \& C.	21	.19522 dl	$.5 \mathrm{~d}-5$

Table below showns the effect of \wedge. A line search was not used as the convergence was quite fast in this problem.

TABLE XII
COMPARSION OF CONVERGENCE RATES USING DIFFERENT \wedge

	No. of iterations	F
.5	8	.19522 dl
1.0	9	.29522 dl
1.2	9	.19522 dl

Example 5

$$
\begin{aligned}
& f_{1}(x)=x_{1}^{2}+x_{2}^{4} \\
& f_{2}(x)=\left(2-x_{1}\right)^{2}+\left(2-x_{2}\right)^{2} \\
& x^{*}=[1,1], F^{*}=[2,2,2] .
\end{aligned}
$$

The initial value of $x=(1,-0.1)$ and $\hat{n}=1.2$. The contours of the problem are shown in figure 3. Table XIV shows the effect of \wedge. No line search is necessary as the convergence was rapid.

Figure 3. The contours of problem 7

TABLE XIII
COMPARISON OF NUMBER OF ITERATIONS USED TO SOLVE PROBLEM 5

	No. of iterations	F	$\\| \mathrm{h} \mathrm{II}$
Stage l	6	.200000 dl	$.5 \mathrm{~d}-5$
Stage 2	5	.200000 dl	$.5 \mathrm{~d}-5$
Combined	5	.200000 dl	$.5 \mathrm{~d}-5$
C. \& C.	8	$.2 d 0000 \mathrm{dl}$	$.5 \mathrm{~d}-5$

TABLE XIV
COMPARISON OF CONVERGENCE RATES USING DIFFERENT \wedge

	No. of iterations	F
.5	6	.200000 dl
.75	6	.200000 dl
1.0	6	.200000 dl
1.2	6	.200000 dl
1.5	6	.200000 dl

CHAPTER V

SUMMARY

There is considerable interest in the development of algorithms for $N D O$ problems, but it is not possible to say yet what the best approaches are. Most of the algorithms surveyed in chapter II have some common features.

Many methods are line search methods in which on each iteration a direction of search is determined and $x_{k+1}=x_{k}+\alpha_{k} h_{k}$ is obtained by choosing α_{k} to minimise the objective functions along a line. A typical line search algorithm uses a combination of sectioning and interpolation. An aspect to be considered is when the line search minimum is non-smooth. In this case it is not appropriate to try to make the stepsize small, since such a point may not exist. Fletcher [26] recommends a different test, that a line search is terminated when the predicted reduction is sufficiently small. This test has been used by Hald and Madsen for stagel iteration.

Most methods for NDO can be considered as extensions of methods available for smooth optimisation. The simplest method for basic $N D O$, the subgradient method, is an analogue of the steepest descent method. The method is at best linearly convergent. Similar algorithms using conjugate
gradients are the bundle methods. The use of approximations to form linear and quadratic subprograms is another class of methods. Quasi-Newton methods have been used in conjuction with some of these methods to obtain faster convergence when the curvature effects cannot be neglected.

There is at present considerable interest in developing methods for NDO problems. The applications of NDO methods to practical problems in linear and nonlinear programming is being studied.

The method of Hald and Madsen [33] is an effective method for solving NDO problems. A modification of the method is studied in this thesis. The method as described by Fletcher [28] is used for stage 2 instead of a quasiNewton method as suggested by Hald and Madsen. An inaccurate quadratic line search is used when the predicted value of the function increases. This increases the efficiency of the algorithm in most cases.

From the numerical evidence presented it can be seen that the choice of initial restriction \wedge is very important. As noted before, the efficiency of the algorithm also depends upon the efficiency of the linear and quadratic programming method used. Using a line search improves the convergence properties in general. However when the initial active function is not a final active function, a line search for that function does not improve the rate of convergence rapidly.

The modified method has good convergence properties and may have wide application. It has proved to have equal or faster rate of convergence than the method of Hald and Madsen or that of Charalambous and Conn, for the problems considered in chapter IV.

CHAPTER VI

SUGGESTIONS FOR FURTHER STUDY

There is one feature of the method of Fletcher [26] that is different from similar methods for smooth optimisation, known as the Maratos effect. For smooth unconstrained optimisation when x_{k} is close to x^{*}, the basic method reduces the objective function and second order rate of the basic method is observed. However, as observed by Maratos [62], this does not happen in NDO. In some NDO problems, in which second order effects are significant at the solution, x_{k} can be arbitrarily close to x^{*} and the unit step of the basic algorithm can fail to reduce the function F(x). This effect is most likely to occur when the discontinuity in derivative is large. Further studies in this area may greatly improve the application of the method to a general problem.

A further modification to the above algorithm is to use an updating procedure to obtain the next combined Hessian matrix.

BIBLIOGRAPHY

(1) Balinski, M.L. and Wolfe, P. Nondifferentiable Optimization, Math. Proq. Study 3 (1975), N.Holland, Amesterdam.
(2) Bandler, J.W. and Charalambous, C. "Nonlinear Programming Using Minimax Techniques." J. Opt. Th. and Appl., Vol. 13 (1974), 607-619.
(3) Bazaraa, M.S., Goode, J.F. and Shetty, C.M. "Optimality Criteria in Nonlinear Programming without Differentiability." Operations Res., Vol. 19 (1971), 77-86.
(4) Bazhenov, L.G. "On Convergence Conditions of a Minimization Method of almost Differentiable Functions." Cybernetics, Vol. 8 (1972), 607-609.
(5) Bertsekas, D.P. "Nondiffereentiable Optimization via Approximation." Nondifferentiable Optimization, Math. Prog., study 3 N.Holland, Amesterdam (1975)
(6) Bertsekas, D.P. and Mitter, S.K. "A Descent Algorithm for Optimization Problems with Nondifferentiable Cost Functionals." SIAM U. on Control, Vol. 11 (1973), 637-652.

Broyden, C.G., Dennis, J.E. and More, J.J. "On the Local and Superlinear Convergence of Quasi Newton Methods." Math. Comput., Vol. 12 (1973), 223246.
(8) Charalambous, C. and Conn, A.R. "An Efficient Method to Solve the Minimax Problem Directly." SIAM J. Nuin. Anal., Vol. 15 (1978), 162-187.
(9) Chaney, R. and Goldstein, A. "An Extension of the Method of Subgradients." Nonsmooth Optimization, Math. Proc., study 3 (1975), 31-50.
(10) Cheney, E.W. and Goldstein, A.A. "Newton's Method for Convex Programming and Chebyshev Approximation." Numerische Mathematik, (1959), 253-268.
(11) Clarke, F.H. ."Generlised Gradients and Applications." T.A.M.S, 205 (1975), 247-262.
(12) Clarke, F.H. Optimization and Nonsmooth Analysis, Wiley, Newyork (1983).
(13) Coleman, T. F. and Conn, A. R. "Nonlinear programming via an Exact Penalty Function: Flobal Analysis." Univ. of Waterloo, Tech. Report CS-80-31 (1980).
(14) Cullum, J., Donath, W.E. and Wolfe, P. "The Minimization of Certain Non-differentiable Sums of Eigenvalues of Symmetric Matrices." Math. Prog., Study 3 (1975), 35-55.
(15) Danskin, J.M. The Theory of Max-min, Springer, New York (1967).
(16) Demjanov, V.F. "Algorithms for Some Minimax Problems." J. Comp. Sys. Sci., Vol. 2 (1968),342-380.
(17) Demjanov, V.F. and Malozemov, V.N. Introduction to Minimax, John Wiley, New York (1974).
(18) Demjanov, V.F. and Rubinov, A.M. Approximation Methods in Optimization Problems, American Elsevier, New York (1970).
(19) Dennis, J.E. and More, J.J. "Quasi-Newton Methods and Theory." SIAM Review, Vol. 19 (1977), 46-89.
(20) De Angelis, V. "Minimization of a Separable Function Subject to Linear Constraints." Proc. Princeton Symposium on Math. Prog., (1970) 503-510.
(21) Eaves, B.C. and Zangwill, W.I. "Generalised Cutting Plane Algorithms." Working paper No. 274, Center for Research in MGT. SC., Univ. of Ca., Berkeley, (1969).
(22) Elzinga, J. and Moore, T.G. "A Generalized cutting plane algorithm." Working paper No. 274, Center for Research in MGT. SC., Univ. of Ca., Berkeley, (1969).
(23) Fiacco, A.V. and McCormick, G.P. "Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming." MGT. SC. Vol. 10, No. 4 (1964).
(24) Fisher, M.L., Northup, W.D and Shapiro, J.F. "Using Duality to Solve Discrete Optimization Problems: Theory and Computational Experience." Math. Prog. Study 3, Amesterdam, N. Holland (1975).

Fletcher, R. "Methods Related to Langrangian

Functions." Numerical Methods for Constrained Optimization, ed. Gill, P.E, Murray, W. (1974), 219-239.
(26) Fletcher, R. Pratical Methods of Optimization, Vol. I, Unconstrained Optimization, Wiley, New York (1980).
(27) Fletcher, R. Pratical Methods of Optimization, Vol. II, Unconstrained Optimization, Wiley, New York (1981).
(28) Fletcher, R. "A Model Algorithm for Composite Nondifferentiable Optimization Problems." Numerical Techniques in NDO, Math. Prog., study 17 (1982), N.Holland, Amesterdam.
(29) Fletcher, R. "A New Approach to Variable Metric Algorithms." Comp. J., Vol. 13 (1970).
(30) Fletcher, R. and Watson, G. A. "First and Second Order Conditions for a Class of NDO Problems." Math. proq., Vol. 18 (1980), 291-307.
(31) Gill, P.E., Murray, W. and Wright, M. Practical Optimization, Academic Press, New York.
(32) Goffin, J.L. "On Convergence Rates of Subgradient Optimization Methods." Math. Prog., Vol. 13 (1977), 329-347.
(33). Goffin, J.L. "Nondifferentiable Optimization and the Relaxation Method." N.S. Optimisation, Proc. IIASA Workshop (1977), 5-30.
(34) Hald, J. and Madsen, K. "Combined LP and Quasi Newton Methods for Minimax Optimization." Math. Prog., Vol. 20 (1981), 49-62.
(35) Hald, J. and Madsen, K. "A 2-stage Algorithm for Minimax Optimization." Lecture notes in Control and Inf. Science 14 (1978), 225-239.
(36) Hald, J. and Schjaer-Jacobsen, H. "Linearly Constrained Minimax Optimization." Math. Proq., Vol. 14 (1978), 208-223.
(37) Han, S.P. "Dual Variable Metric Methods for Constrained Optimisation." SIAM J. on Control and Optimization, Vol. 15 (1977), 546-565.
(38) Han, S.P. "A Globally Convergent Method for Nonlinear Programming." \underline{J}. of Opr. Theory and Appl., Vol.

22 (1977), 297-309.
(39) Han, S.P. "Superlinearly Convergent Variable Metric Algorithm for General Nonlinear Programming Problems." Math. Prog., Vol. 11 (1976), 263-282.
(40) Han, S.P. "Variable Metric Methods for Minimizing a Class of Nondifferentiable Functions." Math. Prog., Vol. 20 (1981), l-13.
(41) Han, S.P. "A Hybrid method of Nonlinear Programming." N. L. Prog., 3 (1977), 297-309.
(42) Held, M., Wolfe, P. and Crowder, H. "Validation of Subgradient Optimization." Math. Prog., Vol. 6 (1974), 62-88.
(43) Hestenes, M.R. "Multiplier and Gradient Methods." J. Opt. Theo. Applns., 4 (1969), 303-320.
(44) Hestenes, M.R. and Stiefel, E. "Methods of Conjugate Gradients for Solving Linear Systems." J. of Research of the National Bureau of Standards, 49 (1952), 409-436.
(45) Hogan, W.W., Marsten, R.E. and Blankenship, J.W. "Boxstep: a New Strategy for Large Scale Mathematic Programming." Discussion paper No. 46, N. W. Univ., Evanston, IU (l973).
(46) Hooke, R. and Jeeves J.A. "Direct Search Solution of Numerical and Statistical Problems." J. Assoc. Compt. Mach., Vol. 8 (1961), 212.
(47) Kelley, J.E. "The Cutting Plane Method for Solving Convex Programs." J. Soc. Ind. Appl. Math., Vol. 8 (1960), 703-712.
(48) Kiwiel, K.C. "An Aggregate Subgradient Method for Nonsmooth Convex Minimzation.", Math. Prog., Vol. 27 (1983), 320-341.
(49) Kiwiel, K.C. A "V.M.M. of Centers for Nonsmooth Minimization." CP-8l-23 Ins. of App. Syst. Anal., Laxemburg, Austria (1981).
(50) Kiwiel, K.C. "Efficient Algorithm for Nonsmooth Optimization and their Applications." Ph.D thesis, Dept. of Electronics, Univ. of Warsaw, Warsaw, Poland.
(51) Lemarechal, C. "An Extension of Davidon Methods to Nondifferentiable Problems. "Nondifferentiable

Optimization, Mathematical Programming Study 3, N. Holland, Amesterdam. (1975).

Lemarechal, C. "Bundle Methods in Nonsmooth Optimization." Nonsmooth Optimization, Proc. IIASA workshop (1977), Pergamon Press, Oxford.

Lemarechal, C. and Mifflin, R. Nonsmooth Optimization, Proc. IIASA workshop (1977), Pergamon Press, oxford.

Lemarechal, C. "Nondifferentiable Optimization: Subgradient and ϵ-subgradient Methods." Lecture Notes in Eco. and Math. Systems, No. 117 (1975).
(56) Leunberger, D.G. Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, Mas. (1974) .
(57) Madsen, K. "An Algorithm for Minimax Solution of Overdermined Systems of Nonlinear Equations." J. Inst. Math. Appl., Vol. 16 (1975), 321-328.
(58) Madsen, K. "Minimax Solution of Nonlinear Equations Without Calculating Derivatives." Nondifferentiable Optimization, Math. Prog., Study 3 (1975), llo-126.
(59) Madsen, K. and Schjaer-Jacobsen, H. "Linearly Constrained Minimax Optimization." Math. Prog., Vol. 14 (1978), 208-223.
(60) Madsen, K. and Schjaer-Jacobsen, H. "Singularities in Minimax Optimization of Networks." IEEE Trans. on Circuits and Systems (1976), 456-460.
(61) Nelder, J.A. and Mead, R. "A Simplex Method for Function Minimization." Compt. J., Vol. 7 (1965), 308-313.
(62) Marsten, R.E. "The Use of Boxstep Method in Discrete Optimization." M. P., study 3 (1975).
(63) Maratos N. "Exact Penalty Function Algorithms for Finite Dimensional and Control Optimization Problems." Ph.D thesis, Unvi. of London (1980).
(64) Mayne, B.Q. "On the Use of Exact Penalty Functions to Determine Step Length in Optimization

Algorithms." Numerical Analysis, Dundee, Lecture Notes in Mathmetic 773, Springer-Verlag, Berlin (1980) .
(65) Mifflin, R. "An Algorithm for Constrained Optimization with Semi-smooth Functions." Math. Oper. Res., Vol. 2 (1977), 191-207.
(66) Mifflin, R. "A Modification and an Extension of Lemarechal's Algorithm for Nonsmooth Minimization." Numerical Techniques for Nondifferentiable Optimization, Math. Prog., Study 17 (1982), 77-90.
(67) Mifflin, R. "Semismooth and Semiconvex Functions in Constrained Optimization." SIAM J. on Control and Optimization, Vol. 15 (1976), 959-972.
(68) Murtagh, B.A. and Soliman, F.I. "Subgradient Optimization Applied to a Discrete Nonlinear Program in Engineering Design." Math. Prog., Vol. 25 (1983), l-12.
(69) Nurminskii, E.A. "Minimization of Nondifferentiable Functions in Presence of Noise." Kiberntics, Vol. 10 (1974), 59-61.
(70) Nurminskii, E.A. "The Quasi-Gradient Method for Solving of the Nonlinear programming Problems." Cybernetics, Vol. 9 (1973), 145-150.
(71) Ortega, J.M. and Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York.
(72) Osborne, M.R. and Watson, G.A. "An Algorithm for Minimax Approximation in Nonlinear Case." Computer I., Vol. 12 (1969), 64-69.
(73) Poljak, B.T. "Subgradient Methods: A Survey of Soviet Research." Nonsmooth Optimisation, Proc. IIASA Workshop (1977), Pergamen Press, Oxford.
(74) Powell, M.J.D. "A Fast Algorithm for Nonlinear Constrained Optimization Calculations." Dundee Conference on Numerical Analysis, (1977).
(75) Pschenchinyi, B.N." Nonsmooth Optimization and Nonlinear Programming." Nonsmooth Optimization, Proc. IIASA Workshop (1977), 71-78.
(76) Rockafellar, R.T." Lagrange Multipliers and Subderivatives of Optimal Value Functions in

Nonlinear Programming." Math. Prog., Study 17 (1982), 28-66.
(77) Rosen J.B. and Suzuki, S. "Construction of Nonlinear Programming Test Problems." Comm. ACM, Vol. 8 (1965), ll3-120.
(78) Rosenbrock H.H. "An Automatic Method for Finding the Greatest or Least Value of a Function." Comp. J., Vol. 3 (1960), 175.
(79) Sachs, E. "Global Convergence of Quasi Newton Type Algorithm for some Nonsmooth Optimisation Problems." I. Optimisation Theory Appl., Vol. 40 (1983).
(80) Shor, N.Z. and Shabashova, L.P. "Solution of Minimax Problems by Generalized Gradient Method with Space Dilation." Kebernetika 8, l (1972), 82-88.
(81) Shor, N.z. "On the Structure of Algorithms for the Numerical Solution of Problems of Optimal Planning and Design." Dissertation, KIEU, USSR (1964). (in Russian).
(82) Shor, N.Z. and Zhurbenro, N.G. "A Minimization Method Using Space Dilation in the Direction of the Difference of Two Successive Gradients." Cybernetics, Vol. 7 (1971), 450-459.

Spendly, W., Hext, G.R., and Hemsworth, F.R. "Sequential Application of Simplex Designs in Optimization and Evaluationary Operation." Technimetrice, 4, 441-461.
(84) Tewarson, R.P. "On Minimax Solutions of Linear Equations." Comp. J., Vol. 15 (1972), 277-279.
(85) Watson, G.A. "The Minimax Solution of an Overdetermined System of Nonlinear Equations." J. Inst. Math. Appl., Vol. 23 (1979), 167-180.
(86) Wierzbicki, A.P. "Lagrangian Functions and Nondifferentiable Optimization." WP-78-63, International Inst. for App. Syst. Analysis, Laxemburg, Austria (1978).
(87) Wolfe, P. "Note on a Method of Conjugate Subgradients for Minimisation of Nondifferentiable Functions." Math. Proq., Vol 7 (1974), 380-383.
(88) Wolfe, P. "A Method of Conjugate Subgradients for Minimisation of Nondifferentiable Functions."

Math. Proq., Study 3, N. Holland, Amesterdam (1975).
(89) Wolfe, P. "Sufficient Minimization of Piecewise Linear Univariate Functions." N . S. Optimization Proc. of IIASA Workshop (1977), 103-126.
(90) Wolfe, P. "A Method of Conjugate Subgradients for Minimizing Nondifferentiable Functions." Math. Prog. Study 3 (1975), 145-173.
(91) Wolfe, P. "Convergence Theory in Nonlinear Programming." Integer and Nonlinear Programming, ed. Abadie, (1970).
(92) Womersley, R.S. "Optionality Conditions for Piecewise Smooth Functions." Math. Proq., Study 17 (1982), 13-27.
(93) Zangwill, W.I. "Nonlinear Programming via Penalty Functions." Mgt. Sci., Vol. 13 (1967), 344-358.
(94) Zangwill, W.I. Nonlinear Programming. A Unified Approach, Prentice Hall, New Jersey (1969).

APPENDIX A

DEFINITIONS

Definition 1

The Lipschitz Condition
Let Y be a subset of X. A function $f: Y--R$ is said to satisfy a Lipschitz condition (on y) provided that, for some nonnegative scalar K , one has

$$
\left|f(y)-f\left(y^{\prime}\right)\right|<=K\left\|y-y^{\prime}\right\|
$$

for all points y, Y^{\prime} in Y; that is also referred to as a Lipschitz condition of rank K.

```
Definition 2 .
```

The Kuhn-Tucker Conditions
The Kuhn Tucker conditions for the nonlinear programming problem,

$$
\begin{array}{lll}
\text { minimise } & f(x) & \\
\text { subject to } & C_{i}(x)=0 & i \in E \\
& C_{i}(x)>=0 & i \in I
\end{array}
$$

is described below.
If x^{*} is a local minimiser of the above problem, then there exist Lagrange multipliers λ^{*} such that x^{*}, λ^{*} satisfy the following system.

$$
\begin{array}{cc}
L(x, \lambda)=0 & \\
C_{i}(x)=0 & i \in E \\
C_{i}(x)>=0 & i \in I \\
\lambda_{i}>=0 & i \in I \\
\lambda_{i} C_{i}(x)=0 & \forall i
\end{array}
$$

The above conditions are valid when the vectors $a_{i} *$, if A are independent, where $a_{i}=\partial C_{i}$. The final condition $\lambda^{*} C$ * $=0$ is referred to as the complementarity condition and states that both λ_{i} and C_{i} cannot be nonzero, or equivalently that inactive constraints have a zero multiplier. If there is no i such that $\lambda_{i} *=C_{i} *=0$ then strict complementarity is said to hold. The case $\lambda_{i} *=C_{i} *$ $=0$ is an intermediate state between a constraint being strongly active and being inactive.

Definition 3

Regular and Singular Minimax Problem
The minimax problem is singular with respect to the solution x^{*} if the matrix

$$
\begin{array}{ll}
D=\left\{\partial f_{j} / \partial x_{i}(x *)\right\} & j \in A \\
& i=1, \ldots, n
\end{array}
$$

has rank less than n. Otherwise the problem is regular. Note : "A" denotes the acture set which consists of the index of the functions that attain
the maximum value at x *.

$$
\text { Definition } 4
$$

Haar Condition
Haar Condition is satisfied when any subset of the set

$$
\left\{f^{\prime}\left(x^{*}\right) \mid f\left(x^{*}\right)=F\left(x^{*}\right)\right\}
$$

has maximal rank. This ensures that no smooth valley passes through the solution.

APPENDIX B

THE SUMMARY OF DIFFERENT METHODS

TABLE XV
NUMBER OF ITERATIONS FOR DIFFERENT METHODS

	Prob. I	Prob. 2	Prob 3.	Prob. 4	Prob. 5
Stage 1	27	16	45	19	6
Stage 2	9	14	9	8	5
Stage	9	15	11	9	5
H.\&M.	$20 *$	23	16	-	-
C. \& C.	-	150	37	21	8

* Line search did not improve the rate of convergence.

TABLE XVI
NUMBER OF ITERATIONS FOR DIFFERENT \wedge

	$\begin{gathered} \text { Prob. } 1 \\ \text { using } \\ \text { LS } \end{gathered}$	Prob. 2 using LS	Prob. 3 using LS	Prob. 4. using LS	$\begin{gathered} \text { Prob. } 5 \\ \text { using } \\ \text { LS } \end{gathered}$
. 5	1515	148	$9 \quad 9$	8 *	6
. 75	slow 14	slow slow	slow 11	9	6
1.0	139	5 slow	slow 35	9 *	6 *
1.2	88	slow slow	slow 8	8 *	6 *
1.5	slow 8	- -	- -	- -	- -

APPENDIX C

PROGRAM LISTING


```
nnona
    SUBROUTINE INITIALISES THE X valuES
    SUBROUTINE INITIL(NOPROB, X,N, XLAMDA)
C
C
    IMPLICIT REAL*8 (A-H,0-Z)
    DIMENSION X (20)
    GOTO ( \(10,20,30,40,20,60,70\) ) , NOPROB
    \(10 \mathrm{~N}=2\)
        \(\mathrm{X}(1)=3\). D 0
        \(\mathrm{X}(2)=1 . \mathrm{D} 0\)
        XLAMDA \(=1.2 \mathrm{DO}\)
        GOTO 1000
    \(20 \mathrm{~N}=2\)
        \(\mathrm{x}(1)=-1.2 \mathrm{D} 0\)
        \(\mathrm{X}(2)=1 . \mathrm{D} 0\)
        XLAMDA \(=.5 \mathrm{D} 0\)
        GO TO 1000
    \(30 \mathrm{~N}=7\)
        \(x(1)=3 . D 0\)
        \(\mathrm{x}(2)=3 . \mathrm{D} 0\)
        \(\mathrm{x}(3)=0 . \mathrm{D0}\)
        X 4 = \(=5\). D0
        \(\mathrm{x}(5)=1 . \mathrm{D} 0\)
        \(\mathrm{x}(6)=3 . \mathrm{D} 0\)
        \(\mathrm{X}(7)=0 . \mathrm{D} 0\)
        XLAMDA \(=0.50 \mathrm{D} 0\)
        GO TO 1000
    \(40 \mathrm{~N}=4\)
        \(x(1)=0\)
        \(x(2)=0\)
        \(x(3)=0\)
\(x(4)=0\)
C \(\quad\) XLAMDA \(=0.50 \mathrm{DO}\)
C
        \(60 \mathrm{M}=3\)
            \(\mathrm{N}=2\)
            \(\mathrm{X}(1)=1\)
            \(\mathrm{x}(2)=-0.1\)
            \(X_{\text {LAMDA }}=0.750 \mathrm{D} 0\)
            GO TO 1000
C 70 GO TO 1000
C 1000 RETURN
    END
```

```
๑กดกด
    SUBROUTINE CARRIES OUT THE STAGE1 AND STAGE2 ITERATIONS
    SUBROUTINE STAGE1(NOPROB,X,N,XLAMDA)
C
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION XNXT (20),X (20) F(20),FNXT (20),H(20),GLM(20),GLA(20)
    DIMENSION XNXT (20,20),SUM(20)
    COMMON /SWTH/RESDUL(20), RPRE(20),R(20),SUM,SUMLGM
    COMMON /STAGE/ ISTAGE,K1,K2,NBUG
    COMMON /STG/HMAX,PREFOB
    ECONV=0.5D-3
    NPTR=1
    NXTPTR=1
    C1=1.0D-2
    C2=2.5D-1
    C3=7.5D-1
    C4=2.5D-1
    C6=1.D0
    J0=0
C
    DETERMINE ITERATION NO. K, THE FUNCTION VALUES AND JACOBIAN.
    DO 2 I= 1,20
    GLM (I)=0.D0
    2 CONTINUE
    CALL FUNCTN(NOPROB,X,N , F,M,JO)
    CALL MAX (F,M, FMAX)
    FOBJ= FMAX
    CALL DERIV(NOPROB,X,N,XJ,M)
C DETERMINE THE ACTIVE SET OF FUNCTIONS.
    PREFOB=0.DO
        5 K1=K1+1
    IF(K1.GT.35) GOTO 1000
    IF (ISTAGE.EQ.2) K2=K2+1
    WRITE (IOUT, 3) K1,K2
    3 FORMAT(///,',
    CALL ACTIVE(FÓBJ,F,M)
C
    IFLAG=0
    IF (NBUG.EQ,1) WRITE (IOUT, 6) (X (I) , I=1,N)
        FORMAT (1H0,1X, 2HX=,10(E12.5))
    IF (NBUG.EQ,1) WRITE (IOUT,8)(F (I),I=1,M)
        8 FORMAT (1H0,1X, 2HF=,10(E12.5))
        IF (NBUG.EQ.1) WRITE (IOUT,9) (GLM (I), I=1,M)
        9FORMAT (1H0,4HLGM=,10(E12.5))
    C
    CALL LEMKE
    CALL LEMKE (MN, IFLAG)
C DETERMINE FUNCTION VALUE PREDICTED BY LP(FARP), INCREMENT (H )
    AND LAGRANGE MULTIPLIERS (LMG)
    CALL HVAL(H,N,GLA, FAPR,F,M,XJ)
    IF (NBUG.EQ;1) WRITE (IOUT, ') FAPR
    7 FORMAT(/iX, ; FAPR= , E15.5)
```

```
C C
    INT=0
    IHFLG=0
    DO 10 I=1,N
    IF (DABS (H'(I)).LT. (2.DO*XLAMDA).OR.DABS (H (I)).LT.1.D1)GOTO 11
    IF
    IF (H (I).GT.0.DO) H(I)=2.DO*XLAMDA
    XNXT (I) =X (I) +H(I)
    CONTINUE
    IF(IHFLG.EQ.1) GO TO 44
    CALL FUNCTN(NOPROB, XNXT,N,FNXT,M,JO)
    CALL MAX (FNXT,M, FMAX)
    FOBNXT=FMAX
    IF (NBUG.EQ 1) WRITE(IOUT 21) FOBNXT
    21 FORMAT (/iX,'FOBNXT=',E15.5)
    IF (NBUG.EQ, 1) WRITE'(IOUT, 22) FOBJ
    22 FORMAT(/iX,;FOBJ=',E15.5)
    CALL ACTIVE (FOBJ,F,M)
C
    DETERMINE F F
    DIFFK=FOBJ-FOBNXT
    IF (DIFFK.GE.O.DO) GO TO 15
    IF(K1.GT.3) GO TO }89
    J0=K1
    GO TO 891
    890
    891
    JO=NS (1)
    CALL LINSCH(NOPROB, JO, FOBJ, FOBNXT, X,H,N)
    DO 990 I=1,N
    XNXT(I) =X (I) +H(I)
    990
    J0=0
    CALL FUNCTN(NOPROB,XNXT,N,FNXT,M,JO)
    CALL MAX (FNXT,M, FMAX)
    FOBNXT=FMAX
    DIFFK=FOBJ-FOBNXT
    15 IF (NBUG.EQ;1) WRITE(IOUT, 23) DIFFK
    23 FORMAT(', ', DIFFK1,,E15.5)
C
    9 9 1
    DO 14 I=1,N
    IF (NBUG.EQ 1) WRITE (IOUT,991) H(I)
    FORMAT('`'NEW H',E15.5)
    H(I)=DABS (Hं(I))
    CALL MAX (H,N,HMAX1)
    HMAX = HMAX1
    IF(HMAX.LE.HCONV) GOTO 1000
    IF(HMAX.GT.HCONV) GOTO 30
    GOTO 1000
C
    30 DIFAPR=FOBJ-FAPR
    RATIO=DIFFK/DIFAPR
    IF (NBUG.EQ;1) WRITE (IOUT, 32) RATIO
    32 FORMAT(/ix,'RATIO=, ,E15.5)
C
    CHANGE X,F,LGM IF LINEARISATION IS GOOD.
    IF (RATIO.LE.1.DO)GO TO 31
    IF RATIO.GT.1.99D0) GO TO 38
    31 IF(RATIO.LT.Ci) GOTO 38
    DO 35 I=1,M
    F(I)=FNXT'(-I)
    GLM(I)=GLA (I)
    35 CONTINUE
```

```
        PREFOB=FOBJ
        FOBJ=FOBNXT
        DO 40 I=1,N
        X(I)=XNXT'(I)
    40 CONTINUE
    CALL DERIV (NOPROB,X,N,XJ,M)
C
    38 IF(K1.LT.3) GO TO 41
    IF (NBUG.EQ.1) WRITE(IOUT,1111) NS (NPTR),N
    1111 FORMAT(' ',NS(NPTR),N', 2I4)
C CALL SWITCH(XLAMDA,GLM,HMAX,N,F,XJ,FOBJ,M)
C ELSE X REMAINS UNCHANGED. DETERMINE NEXT LAMDA.
C 41 EDIF=.01D0*XLAMDA
    IF(RATIO.GT.C2) GOTO 42
    IF (RATIO.LT.1.75DO) GO TO 42
    XLAMDA=C4*HMAX
    IF (NBUG.EQ.1) WRITE(IOUT,999) XLAMDA
    999 FORMAT('','XLAMDA',E15.5)
    GOTO 5
    42 IF(RATIO.LT.C3) GOTO 50
            IF(RATIO.GT.1.25) GO TO 50
            DIFHL=(RATIO-1)
            IF(DIFHL.GT.ECONV) GO TO 50
            XLAMDA =4*XLAMDA
            GO TO 5
            IF (HMAX.NE. XLAMDA) GO TO 50
    44 XLAMDA=C5*XLAMDA
            IF (NBUG.EQ.1) WRITE(IOUT, 43) DIFFK
    4 3
            IF(DIFFK.LT.O.DO) XLAMDA=C4*HMAX
            GOTO 5
    50 XLAMDA=C6*HMAX
            IF (NBUG.EQ.1) WRITE (IOUT,51) HMAX
        51 FORMAT ('`,' 'HMAX-XLAMDA',E15.5)
            GOTO 5
1000
    WRITE (IOUT, 6) (X (I) , I=1,N N
    WRITE (IOUT, 8) (F (I), I=1,M)
    WRITE (IOUT, 300)
    300
    FORMAT (/15X, '***CONVERGENCE***')
    RETURN
    END
```

```
๑กดกกด
    THIS SUBROUTINE SWITCHES THE STAGES DEPENDING ON THE
    EXISTING CONDITIONS
    SUBROUTINE SWITCH(XLAMDA,GLM,HMAX,N,F,XJ,FOBJ,M)
C
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION GLM(20),F(20), XJ (20,20),XJM(20)
DIMENSION XJL(20),SUM(20),XJMX(20)
C COMMON /SWTH/RESDUL(20),RPRE (20),R(20),SUM,SUMLGM
    COMMON /STAGE/ISTAGE,K1,K2,NBUG
    COMMON /ACTIV/ AS (3,20),NPTR,NXTPTR,NS (3)
C
    NUM=NS (NPTR)
    INDX=AS (NPTR,1)
    R (1) =F (INDX)
    IF(NUM.LE.1) GO TO 8
    DO 15 I=2,NUM
    I = I-1
    INDX)-F(I)
    15 CONTINUE
    IF STAGE=1 TEST CONDITIONS TO SWITCH TO STAGE 2
C IF STAGE=1 TEST CONDITIONS TO 
    8 GO TO SMLGM=0.DO
    DO 20 I= i,NUM
    INDX=AS (NPTR,I)
    IF (GLM(INDX).LT.O.DO) GO TO 1000
    SUMLGM=SUMLGM+GLM (INDX)
    IF (ISTAGE.EQ.2) GO TO 31
    20 CONTINUE
    SUMDIF=SUMLGM-1.D0
    EDIF=.1D-2
    IF (SUMDIF.GT.EDIF) GO TO 1000
CC
    DIFHL=HMAX-XLAMDA
    IF (DIFHL.GT.EDIF) GO TO 1000
C C C) TEST IF A (1,S1) =A (2,S2) =A (3,S3)
    25 IF (NS (1).NE.NS(2)), GO TO 1000
    DO 30 I=2,3
    DO 30 J=1,NUM
    IF (AS (I,J).NE.AS (1,J)) GO TO 1000
    30 CONTINUE
C
    31 DO 32 J=1,N
    SUM (J)=0.D0
    32 CONTINUE
    DO 40 I=1,NUM
    NI=AS (NPTR
    DO 35 J=1,N
    XJM(J) =XJ'(NI, J)
    XJL (J) =GLM (NI) *XJM(J)
    SUM{J)=SUM (J) +XJL(J)
    XJM(J)=DABS (XJM (J))
35
    CONTINUE
```

```
        IF(ISTAGE.EQ.2) GO TO 200
        GO TO 71
        CALL MAX(XJM,N,XJMAX)
        XJMX (I) = -XJMAX
    40 CONTINUE
    SQSUM=0.D0
    DO 50 J=1,N
    SQSUM=SQSUM+SUM (J) *SUM (J)
    5 0 ~ C O N T I N U E
    SQRTS=DSQRT (SQSUM)
C
    DETERMINE E2
    IF (NUM.GT.1) GO TO 60
    E2=.01D0*FOBJ/MXLMDA
    GO TO 70
    60 CALL MAX (XJMX,NUM, XMIN)
    E2=.5D0*XMIN
    70 IF(SQRTS.GT.E2) GO TO 1000
    71 ISTAGE=2
    GO TO 1200
C IF STAGE=2 TEST CONDITIONS TO SWITCH TO STAGE 1
    DETERMINE THE RESIDUAL
    100 NO=N+NUM
    K2=K2+1
    WRITE (IOUT,101) K2
    101 FORMAT (/1HO,'STAGE 2 ITERATION NO: ',I2)
        DO 105 I=1,NO
        IF (K2.LT.2) RESDUL (I)=0
    RPRE (I) = DABS (RESDUL (I))*.999D0
    105 CONTINUE
C
    DETERMINE THE NEW ACTIVE SET
    125 CALL ACTIVE(FOBJ,F,M)
    RESDUL ((N+2))=R (1)
    GO TO 10
    200 RESDUL (1)=SUMDIF
        DO 110 J=1,N
        J J= J+1
        RESDUL (JJ)=SUM(J)
    110 CONTINUE
    IF (NUM.EQ.1) GO TO 121
    NUM1=NUM-1
    DO 120 I=1, NUM1
    RESDUL ( (N+1+I))=R (I)
    120 CONTINUE
    121 IF (K2.LT.3) GO TO 1200
    DO 210 I=1,NO
    RESDUL (I)=DABS (RESDUL (I))
    IF (NBUG.EQ.1) WRITE(IOUT, 130)RPRE(I),RESDUL (I)
    130 FORMAT (',',RPRE,RESDUL', 2E15.5)
    IF (RPRE (I).,LT.RESDDUL (I)) 'GO TO 1000
    210 CONTINUE
    GO TO 1200
1000 ISTAGE=1
    K2=0
1200 RETURN
    END
```

```
c
    SUBROUTINE LINSCH (NOPROB,JO,FOBJ,FOBNXT,X,H,N)
C
        IMPLICIT REAL*8(A-H,O-Z)
        DIMENSION X(20),H(20),XL(20),FNXT(20)
C
        STEP=.5D0
        A0=0.D0
        FA=FOBJ
        FB=FOBNXT
        DO 5 I =1,N
        XL(I)=X(I)
        5 CONTINUE
            IF (FB.LE.FA) GO TO 50
            S=-STEP
            DO 10 I= 1,N
            XL}(I)=XL(IN)+H(I)*
    10 CONTINUE
    CALL FUNCTN(NOPROB, XL,N,FNXT,M, JO)
    FC=FNXT (J0)
    IF (FC.LE.FA) GO TO 40
C
4 0
    Al=A0+S
    A2=A0
    A 3 =A0-S
    P1=FC
    P2=FA
    P3=FB
    GO TO 100
        FB=FC
        51
    GO TO
    S=STEP
    51 A=AO
    B=A+S
    2 S=S}\div
    IF (DABS(S).LE.1.DO) GO TO 60
    WRITE(IOUT,53)
    53 FORMAT(' ','STEPSIZE TOO LARGE')
    S=S/2
    60 C=B+S
    D0 61 I=1,N
    XL(I) = XL (I) +H(I) *C
    IF (NBUG.EQ; 1) WRITE (IOUT, 555) XL(I),H(I),C
    555 FORMAT (', ' XL-H-C',3E15.5)
    6 1 ~ C O N T I N U E ~
        CALL FUNCTN(NOPROB, XL,N, FNXT,M,JO)
        FC=FNXT (JO)
        IF (FC.GT.FB) GO TO 65
        A=B
        B=C
        FA=FB
        FB=FC
        GO TO 52
    6 5
        D=.5* (B+C)
        DO 69 I=1,N
        XL(I) =XL(I) +H(I)*D
    6 9 \text { CONTINUE}
        CALL FUNCTN(NOPROB, XL,N, FNXT,M,J0)
        FD=FNXT (JO)
        IF (S.GE.O.DO) GO TO }8
```

```
C
    IF (FD.GE.FB) GO TO 75
    A1=C
    A 3 = B
    P1=FC
    P2 =FD
    P3=FB
    GO TO 100
C
    75 A1=D
        A2=B
        A3=A
        P1=FD
        P2=FB
        P3=FA
        GO TO 100
C
    80 IF(FD.GE.FB) GO TO }8
    A1=B
        A2=D
        A3=C
        P1=FB
        P2=FD
        M3=FC
C
    85 A1=A
        A2=B
        A3=D
        P1=FA
        P2 =FB
        P3=FD
    C
    100 H1=A2-A1
    H2=A3-A2
        DEN=H2*(P1-P2)+H1* (P3-P2)
        A4=A2+.5D0*(H2**2*(P1-P2)-H1**2*(P3-P2))/DEN
        IF (NBUG.EQ;1) WRITE (IOUT,99) A4
    99 FORMAT(', ', A4',E15.5)
        DO 110 I=1,N
        H(I) =A 4**H(I)
    110 CONTINUE
1000 RETURN
    END
```

 GO TO (10, 20,30,40,50,60,70),NOPROB
 M=
11 F(1)=X(1)*X(1)+X'(2)*X(2)+X(1)*X (2)
GO TO
IF(JO.GT.0) GO TO 1000
12 F(2)=DSIN (X (1))
IF(JO.GT.0) GO TO 1000
13 F(3)=DCOS (X (2))
C
20 M=2
IF (JO.EQ.O) GO TO 21
21 IF (DABS (X (1)= (10.DT: (X.D-15) X (1) = = . DO
IF(JO.GT.0) GOTO 1000
22 F (2)= (1.DO-X (1))
GO TO 1000
C
30 M=5
IF(JO.EQ.0) GO TO 31
GO TO {(31,32,33,34,35) JO (2) - 12)**2+X(3)***4+3*(X(4)-11)**2

```

```

 32F(2)=(-2) *X (1)
 IF
 IF (JO.GT.0) GO TO 110
 4F(4)=(-23)*X(1)-X(2)**2-6*X (6)**2+8*X(7)+196
 IF(JO.GT.0) GO TO 110
 35 F (5)=(-4)*X(1)**2-X (2)**2+3*X(1)*X (2) -2*X (3)**2-5*X (6)+11*X (7)
 110
 DO 112 I=2,5
 112
 CONTINUE
 F(1)=(F(1))
 C
40 M=4
IF(JO.EQ.0) GO TO 4, 41

```

```

 C-21*X(3)+7*X(4)+100
    ```

```

 CX(4)
 IF(JO.GT.0) GO TO 140
 43 F (3)=F(2)-X(2)*X(2)-X(4)*X(4)+2*X(1)-X(2)+X(3)+2
 IF (JO.GT.0) GO TO 140
 44F(4)=\dot{F}(2)+X(4)*X(4)-X(1)+X(3)-3
 140 DO 142 I=2,4
 F (I) =F (1)-10*F(I)
 F(I) = (F(I))
 142
CONTINUE
GO TO 1000

```
```

C

```

```

 \(\underset{M=3}{G O}\) TO 1000
 60
 \(M=3\)
 $I F$
(JO.EQ.0) GO TO 61
GO TO $(61)=x(1): 62,63),{ }^{50}$

```

```

 IF (JO. GT.0) GO TO 1000
 \(62 \mathrm{~F}(2)=(2-\mathrm{X}(1)) \geqslant * 2+(2-\mathrm{X}(2)) \times * 2\)
 IF (JO.GT.0) GO TO 1000
 \(63 F(3)=2 \dot{\operatorname{DEXP}}(-\mathrm{X}(1)+X(2))\)
 C
70 GO TO 1000
000 RETURN
END

```
```

nกดกก
THIS SUBROUTINE DETERMINES THE DERIVATIVES
SUBROUTINE DERIV (NOPROB, X,N,XJ,M)
$\stackrel{C}{C}$
IMPLICIT REAL*8 $(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z})$
DIMENSION $\mathrm{F}(20), \mathrm{X}(20), \mathrm{XJ}(20,20)$
C
C
C
$10 \times J(1,1)=2 \cdot \mathrm{DO*X}(1)+X(2)$
$X J(1,2)=X(1)+2 . D 0 * X(2)$
XJ $2, \frac{1}{2}=\operatorname{DCOS}(X(1))$
$\mathrm{XJ}(2,2)=0$. D0
$\mathrm{XJ}(3,1)=0 . \mathrm{D} 0$
$\mathrm{XJ}(3,2)=-\mathrm{DSIN}(\mathrm{X}(2))$
$\mathrm{M}=3$
GO TO 1000
C
$20 \mathrm{XJ}_{\mathrm{XJ}}\left(\frac{1}{1}, \frac{1}{2}\right)=10 . \mathrm{DO}(-20 . \mathrm{DO} \mathrm{X}(1))$
$\mathrm{XJ}(1,2)=10 . \mathrm{DO}$
$X J(2,1)=-1 . D 0$
$X \mathrm{XJ}(2,2)=0$. D 0
$\mathrm{M}=2$
C
30 DO $15 \mathrm{I}=1,5$
$\mathrm{XJ}(\mathrm{I}, 1)=2^{*} \times \mathrm{X}(1)-20$
$\mathrm{XJ}(\mathrm{I}, 2)=10^{*} \times(2)-120$
$\mathrm{XJ}(\mathrm{I}, 3)=4 \div \mathrm{X}(3) \div \div 3$
$\mathrm{XJ}(\mathrm{I}, 4)=6 \times \mathrm{X}(4)-66$
XJ $(I, 5)=60 \div X(5) \div \div 5$
$X J(I, 6)=14^{*} \times(6)-4^{*} \times(7)-10$
$\mathrm{XJ}(\mathrm{I}, 7)=4 * \mathrm{X}(7) * * 3-4 * \mathrm{X}(6)-8$
15 CONTINUE
$X J(2,1)=X J(2,1)+40^{x} X(1)$
$\mathrm{XJ}(2,2)=\mathrm{XJ}(2,2)+120 * \mathrm{X}(2) * 2 \div 3$
$\mathrm{XJ}(2,3)=\mathrm{XJ}(2,3)+10$
$\mathrm{XJ}(2,4)=\mathrm{XJ}(2,4)+80^{*} \mathrm{X}$ (4)
$\mathrm{XJ}(2,5\}=\mathrm{XJ}\{2,5\}+50$
$\mathrm{XJ}(3,1)=\mathrm{XJ}(3,1)+70$
$\mathrm{XJ}(3,2)=\mathrm{XJ}(3,2)+30$
$\mathrm{XJ}(3,3)=\mathrm{XJ}(3,3)+200 * \mathrm{X}$ (3)
$\mathrm{XJ}(3,4)=\mathrm{XJ}(3,4\}+10$
$\mathrm{XJ}(3,5)=\mathrm{XJ}(3,5)-10$
$\mathrm{XJ}(4,1)=\mathrm{XJ}(4,1)+230$
$\mathrm{XJ}(4,2)=\mathrm{XJ}\left(4, \frac{2}{2}\right)+20^{\star} \mathrm{X}$ (2)
$\mathrm{XJ}(4,6)=\mathrm{XJ}(4,6+120 * \mathrm{X}(6)$
$\mathrm{XJ}(4,7)=\mathrm{XJ}(4,7)-80$
$\mathrm{XJ}(5,1)=\mathrm{XJ}\} 5,12+80 * \mathrm{X}(1)-30 * \mathrm{X}$ (2)
$\mathrm{XJ}(5,2)=\mathrm{XJ}(5,2)+20 * \mathrm{x}(2)-30^{* x}$ (1)
$\mathrm{XJ}(5,3)=\mathrm{XJ}(5,3)+40 * \mathrm{X}(3)$
$\mathrm{XJ}(5,6)=\mathrm{XJ}(5,6)+50$
$\mathrm{XJ}(5,7)=\mathrm{XJ}(5,7)-110$
$\begin{array}{lll}\mathrm{C} & \mathrm{DO} & 100 \\ \mathrm{C} & \mathrm{I}=1, \mathrm{M} \\ \mathrm{C} & \mathrm{DO} & 100 \\ \mathrm{~J}=1, \mathrm{~N}\end{array}$
100 CONTINUE
GO TO 1000

```
```

 40 N=4
 N=4
    ```

```

 XJ (1,4)=2*X(4)+7
    ```

```

 XJ (2, 3)=XJ = (1,3)+20** (
 XJ (2,4)=XJ (1,4)+20*X(4)-10
    ```

```

 XJJ
 XJ}}3,4)=XJJ(2,4)+20%X(4
 XJ }(4,1)=XJ (2,1)+1
 XJ 4, 2, 2 = XJ (2,'2
 XJ}(4,3)=XJ (2,3)-1
 XJ (4,4)=XJ (1,4)-10
 C
50 XJ (1, 1 < = = 400**X (1)*(X (2)-X(1) %**2)
XJ (1,2)=200*(X 2 - X (1)**2)
XJ (2,1)=-2+2*X(1)
XJ (2,2)=0
C
60 XJ XJ 1, 1)}=4=4\timesx (1)***
XJJ 1, 1)=2; \
XJ {2,1}=-4+2;X(1)
XJ (2,2)=-4+2*X(2)
XJ}3,1)=-2*DEXP(-X(1)+X(2)
XJ (3,2)=-X
C 70 GO TO 1000
C
1000 RETURN
END

```
```

C
C
C
C
C
C
C
THIS SUBROUTINE DETERMINES THE HESSIAN
C
C
C
10
IMPLICIT REAL*8 (A-H,O-Z
DIMENSION X (20) , G (40, 20) , GG (20)
COMMON /STAGE/ ISTAGE, K1, K2, NBUG
GO TO $(10,20,30,40,50,60,70)$, NOPROB
SUBROUTINE HESIAN (NOPROB, X,N, G, M)
$G(1,1)=2$. D 0
$G(1,2)=1$. D0
$G(2,1\}=1$. D0
$G(2,2)=2 . D 0$
DO $12 \mathrm{I}=3,6$
D0 $12 \mathrm{~J}=1,2$
$G(I, J)=0 . D 0$
12 CONTINUE
IF (NBUG.EQ.1) WRITE $(6,13)(X(I), I=1,2)$
13 FORMAT (1HO, $2 \mathrm{HX}=2$ (E15.5))
$\begin{aligned} 15 \mathrm{G}(3,1) & =-\operatorname{DSIN}(X(1)) \\ \mathrm{G}(6,2) & =-\operatorname{DCOS}(\mathrm{X}(2)\end{aligned}$
20 IF (K2.GT.1) GO TO 1000
$\mathrm{MN}=\mathrm{M}^{*} \mathrm{~N}$
DO $25 \mathrm{I}=1, \mathrm{MN}$
DO $25 \mathrm{~J}=1, \mathrm{~N}$
25 CONTINUE
$G(1,1)=-20 . D 0$
$G O T O \quad 1000$
C
$30 \mathrm{GG}(1)=2$. D0
$\mathrm{GG} 2=10 \cdot \mathrm{DO}$
GG 3$)=12^{\circ \times} X(3) \div \div 2$
GG $4=6 . \mathrm{DO}$
$G G(6)=14$. D
$\mathrm{GG}(7)=12 \div \mathrm{X}(7) \div 2$
DO $32 \mathrm{I}=1, \mathrm{M}$
DO $32 \mathrm{~K}=1, \mathrm{~N}$
IK $=(\mathrm{I}-1)^{\dot{x}} \mathrm{~N}+\mathrm{K}$
DO $32 \mathrm{~J}=1$, N
$\mathrm{G}(\mathrm{IK}, \mathrm{J})=0 . \mathrm{D} 0$
IF (K.EQ.J) G (IK, J) $=\mathrm{GG}(\mathrm{J})$
${ }_{\mathrm{IF}}^{\mathrm{IF}}(\mathrm{J} . \mathrm{EQ} \cdot 6 \cdot \mathrm{AND} \cdot \mathrm{K} \cdot \mathrm{EQ} \cdot 7) \mathrm{G}(\mathrm{IK}, \mathrm{J})=-4$. DO
32
$\mathrm{G}(8,1)=42$. D 0
$G(9,2)=G(9,2)+360 * X(2) * * 2$
$G(11,4)=86 . D 0$
$G(17,3)=G(17,3)+200 . D 0$
$\mathrm{G}(23,2)=30 . \mathrm{DO}$
$G(27,6)=134$. D0
$G(29,1)=82$. D0
$\mathrm{G}(29,2=-30 . \mathrm{DO}$
G $30,1=-30$. D0
$\mathrm{G}\{30,2\}=30 . \mathrm{D} 0$
$G(31,3)=G(31,3)+40 . D 0$
$\mathrm{MTN}=\mathrm{M}^{2} \mathrm{~N}$
$\begin{array}{lll}\mathrm{C} & \mathrm{DO} 999 \quad \mathrm{I}=1, \mathrm{MTN} \\ \mathrm{C} & \mathrm{DO} 999 \quad \mathrm{~J}=1, \mathrm{~N}\end{array}$
999 CONTINUE

```
\[
\begin{aligned}
& 40 \underset{N}{\mathrm{~N}=4} \mathrm{TO} 1000 \\
& M N=M^{*} N \\
& \begin{array}{ll}
\text { DO } 42 \quad I=1, M N \\
\text { DO } & \mathrm{M} \\
\mathrm{~J}=1, \mathrm{~N}
\end{array} \\
& 42 \\
& \mathrm{G}(\mathrm{I}, \mathrm{~J})=0 \\
& \mathrm{G}\left(\begin{array}{l}
1,1)=2 \\
2
\end{array}\right. \\
& \text { G }\{3,3\}= \\
& \text { ( } 4,4\}=2 \\
& \begin{array}{l}
\mathrm{G}(6,2)=22 \\
\mathrm{G}(7,3)=24
\end{array} \\
& \begin{array}{l}
\mathrm{G}(8,4)=22 \\
\mathrm{G}(9,1)=22
\end{array} \\
& \begin{array}{l}
G(9,1)=22 \\
G(10,2)=42
\end{array} \\
& \text { G }(11,3)=24 \\
& \begin{array}{l}
G \\
G
\end{array}(13,4\}=42 \\
& \begin{array}{l}
G \\
G
\end{array}(14,2\}=22 \\
& \begin{array}{l}
G(15,3)=24 \\
G(16,4)=2
\end{array} \\
& \text { C } \\
& \text { - GO TO } 1000 \\
& 50 \mathrm{G}(1,1)=-400 *\left(\mathrm{X}(2)-3^{*} \mathrm{X}(1) * * 2\right) \\
& \mathrm{G}\left\{\frac{1}{2}, \frac{1}{2}=-400^{\circ} \mathrm{X}(1)\right. \\
& \begin{aligned}
& \mathrm{G} . 2,1 \\
& \mathrm{G}\left(2, \frac{1}{2}\right\}=\mathrm{G}(1,2) \\
&=200
\end{aligned} \\
& \mathrm{G}(2,2\}=200 \\
& G(3,2)=0 \\
& \begin{array}{l}
G(4,1)=0 \\
G(4,2)=0
\end{array} \\
& \text { GO TO } 1000 \\
& \stackrel{\mathrm{C}}{\mathrm{C}} 260 \mathrm{G}(2,2)=12^{\%} \mathrm{X}(1) \% 2
\end{aligned}
\]

```

๑กกดกกดก
DETERMINES THE MAX VALUE
SUBROUTINE MAX(FUNC,NO,FMAX)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION FUNC(20)
FMAX=DABS (FUNC (1))
DO 10 I=2,NO
IF (FMAX.GE.DABS (FUNC(I))) GO TO 10
FMAX=FUNC (I)
10 CONTINUE
C
RETURN
END

```
```

ดกกดกด
C
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION F(20)
COMMON /ACTIV/ AS (3,20),NPTR,NXTPTR,NS(3)
NPTR=NXTPTR
NXTPTR=MOD(NXTPTR,3)+1
NS (NPTR)=0
EDIFF=.01D0%FOBJ
DO 10 I=1,M
FDIFF=DABS (F (I)-FOBJ)
IF (FDIFF.GT.EDIFF)GO TO 10
NS (NPTR) =NS(NPTR) +1
AS (NPTR,NS (NPTR))=I
10 CONTINUE
C
RETURN
END

```

```

 XA(I,MN4)=-1.D0
 50 CONTINUE
 55 CONTINUE
DO $55 \mathrm{~J}=1$, MN4
$\operatorname{AM}(I, J)=0, \mathrm{MN}$
GO TO $(56,51)$, ISTAGE
C
C
C
$51 \mathrm{~K} 2=\mathrm{K} 2$
CALL HESIAN (NOPROB, X,N, G, M)
CALL UPDATE ($G, M, N, G L M, H G$)
C
DO $53 \mathrm{I}=1$, N
$\mathrm{I} 2=\mathrm{MN} 1+\mathrm{I}$
DO $53 \mathrm{~J}=1$, N
AM $(I, J)=H G(I, J) ~(I, J)$
$\mathrm{J} 2=\mathrm{MN} 1+\mathrm{J}$
AM $(I 2, J 2)=H G(I, J)$
53 CONTINUE
C
C
C
HESSIAN $=0$ IF CALL IS FROM STAGE 1
56 MN5 $=$ MN4 41
DO $60 \mathrm{I}=\mathrm{MN} 5, \mathrm{MN}$
$\mathrm{DO} 60 \mathrm{~J}=\mathrm{MN} 5, \mathrm{MN}$
$\mathrm{AM}(\mathrm{I}, \mathrm{J})=0 . \mathrm{DO}$
60
CONTINUE
$I \mathrm{I}=0$
DO $75 \mathrm{I}=\mathrm{MN} 5, \mathrm{MN}$
$I I=I I+1$
DO $75 \mathrm{~J}=1$, MN 4
AM $\{I, J)=X A(I I, J)$
$\operatorname{AM}(J, I)=-X A(I I, J)$
75
IF (NBUG.EQ.1) $\operatorname{WRITE}(6,61)$
61 FORMAT ($/ / 15 \mathrm{X}, 8$ HVECTOR Q)
IF (NBUG.EQ.1) $\operatorname{WRITE}(6,80)(Q(I), I=1, M N)$
DO $70 \mathrm{I}=1, \mathrm{MN}$
IF (NBUG.EQ.1) $\operatorname{WRITE}(6,80)(A M(I, J), J=1, M N)$
80 FORMAT (1H0, 20 (F6.2))
70 CONTINUE
RETURN
END

```
C
C
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION H(20),GLM'(20),F(20),XJ (20, 20), FAPRX(20)
    DIMENSION AM(40,40),Q(40),B
    DIMENSION W(40),Z (40),MBSIS (80)
    COMMON/LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR
C
C}\quadMN=1+
    DO 10 I=1,N
    II=MN+I
    H(I) = Z(I) - Z (II)
    WRITE (6,11) H(I)
    11 FORMAT (1, 2HH=,10(E12.4))
    O CONTINUE
        DO 20 I=1,M
        I2 =2*
        GLM(I)=Z (I2)
    20 CONTINUE
C
    DETERMINE APPROX. VALUE OF FUNCTION PREDICTED BY LP.
    DO 40 I=1,M
    DELTAF=0.DO
    DO }30\textrm{J}=1,\textrm{N
    DELTAF=XJ'(I,J)*H(J) +DELTAF
    30 CONTINUE
    FAPRX (I) =F (I) +DELTAF
    40 CONTINUE
    CALL MAX(FAPRX,M,FMAX)
    FAPR=FMAX
    RETURN
    END
```

SUBROUTINE LEMKE (N, IFLAG) ALGORITHM 431

A COMPUTER ROUTINE FOR QUADRATIC AND LINEAR PROGRAMMING PROBLEMS
COMMUNICATIONS OF THE ACM
VOL. 15 SEPT. 1972 PP. 818-820
AUTHOR - ARUNACHALAM RAVINDRAN
MODIFIED BY - PENSRI TEERAVARAPAUG
LANGUAGE - A.N.S.I
STANDARD FORTRAN
INSTALLATION - OKLAHOMA STATE UNIVERSITY
DATE - DECEMBER 1974
REMARKS
SINCE THIS PROGRAM IS COMPLETE IN ALL RESPECTS,IT CAN BE
RUN AS IT IS WITHOUT ANY ADDITIONAL MODIFICATION OR
INSTRUCTION.IN SUCH CASE FOLLOW THE INPUT FORMAT AS GIVEN
PROGRAM FOR SOLVING LINEAR AND QUADRATIC PROGRAMMING PROBLEMS IN THE FORM $W=M^{*} Z+Q, Q . Z=0, W$ AND Z NONNEGATIVE BY LEMKE/S ALGORITHM.

MAIN PROGRAM WHICH CALLS THE SIX SUBROUTINES-MATRX, INITL,NEWBS,SORT,PIVOT AND PRINT IN PROPER ORDER.

IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION AM (40, 40) , Q (40) , B (40,40) , A (40)
DIMENSION W(40), Z (40), MBSIS (80)
COMMON /LEM/AM, B, Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR
C DESCRIPTION OF PARAMETERS IN COMMON
AM A TWO DIMENSIONAL ARRAY CONTAINING THE
ELEMENTS OF MATRX M.
Q A SINGLY SUBSCRIPTED ARRAY CONTAINING THE
1 ELEMENTS OF VECTOR Q.
L1 AN INTEGER VARIABLE INDICATING THE NUMBER OF ITERATIONS TAKEN FOR EACH PROBLEM.
B A TWO DIMENSIONAL ARRAY CONTAINING THE
ELEMENTS OF THE INVERSE OF THE CURRENT BASIS.
W A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES
OF W VARIABLES IN EACH SOLUTION.
A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES
OF Z VARIABLES IN EACH SOLUTION.
AN INTEGER VARIABLE TAKING VALUE 1 OR 2 DEPENDING ON WHETHER VARIABLE W OR Z LEAVES THE BASIS SIMILAR TO NLI BUT INDICATES VARIABLE ENTERING AN INTEGER VARIABLE INDICATING WHAT COMPONENT OF W OR Z VARIABLE LEAVES THE BASIS.
SIMILAR TO NL2 BUT INDICATES VARIABLE ENTERING A SINGLY SUBSCRIPTED ARRAY CONTAINING THE
ELEMENTS OF THE TRANSFORMED COLUMN THAT IS ENTERING THE BASIS.
IR AN INTEGER VARIABLE DENOTING THE PIVOT ROW AT EACH ITERATION. ALSO USED TO INDICATE TERMINATION OF A PROBLEM BY GIVING IT A VALUE OF 1000.
MBSIS A SINGLY SUBSCRIPTED ARRAY-INDICATOR FOR THE BASIC VARIABLES. TWO INDICATORS ARE USED FOR EACH BASIC VARIABLE-ONE INDICATING WHETHER IT IS A W OR Z AND ANOTHER INDICATING WHAT COMPONENT OF W OR Z.

IOUT=6
IN=5
CC
CCREAD IN THE VALUE OF VARIABLE IP INDICATING THE

```
CCNUMBER OF PROBLEMS TO BE SOLVED.
CC ( READ(IN,1030) IP
CC (
CCVARIABLE NO INDICATES THE CURRENT PROBLEM BEING SOLVED
CC
        IP=1
        NO=0
    1000 NO=NO+1
        IF(NO-IP) 1010,1010,1070
    1010 WRITE (IOUT,1020)
    1020 FORMAT (/1H0,10X,11HLEMKE CALL )
CC
CC READ IN THE SIZE OF THE MATRIX M
CC READ(IN,1030)N
CC WRITE(IOUT, 1030)N
CC }1030\mathrm{ FORMAT (I2)
PROGRAM CALLING SEQUENCE
    CALL MATRX (N)
C C
C CALL INITL (N)
SINCE FOR ANY PROBLEM TERMINATION CAN OCCUR IN INITIA,
C NEWBAS OR SORT SUBROUTINE,THE VALUE OF IR IS MATCHED WITH
C C}1000 TO CHECK WHETHER TO CONTINUE OR GO TO NEXT PROBLEM.
IF(IR-1000) 1040,1000,1040
    1040 CALL NEWBS (N)
    1050 CALL SORT (N IFLAG)
    1060 CALL PIVOT (N)
    GO TO 1040
    1070 RETURN
    END
```

```
    SUBROUTINE MATRX (N)
C C
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION AM (40,40),Q(40),B(40, 40),A(40)
    DIMENSION W(40),Z(40),MBSIS (80)
C COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR
C
    IOUT=6
    RZERO=0.0
    RONE=1.0
CC RE READ THE ELEMENTS OF M MATRX COLUMN BY COLUMN
    DO 2010 J=1,N
        READ (IN ,2000) (AM (I, J), I=1,N)
        2000 FORMAT WRITE(IOUT, 2000)(AM(I, J), I=1,N)
        READ THE ELEMENTS OF Q vECTOR
        READ(IN, 2000) (Q (I), I=1,N)
        WR ITE (IOUT, 2000) (Q (I) ,I=1,N)
    C IN ITERATION 1,BASIS INVERSE IS AN IDENTITY MATRIX.
        DO 2030 J=1,N
        DO 2020 I=1,N
    2020 B (J, I)=RZERO
    2030 B (J,J) =RONE
        RETURN
        END
```

```
    SUBROUTINE INITL (N)
    C C PURPOSE TO FIND THE INITIAL ALMOST COMPLEMENTARY SOLUTION.
    C PURPOSE TO FIND THE INITIAL ALMOST COMPLEMENT
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION AM(40,40),Q(40), B}(40,40),A(40
    DIMENSION W(40),Z (40),MBSISS(80)
C
    COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR
        IOUT=6
    RZERO=0.0
    TNONE=-1.0
C
    I=1
    3000 IF (Q (I)-Q(J)) 3010,3010,3020
    3010 GO TO 3030
    3020 I=J
    3030 J=J+1
    IF (J-N) 3000, 3000,3040
C
    3040 IR=I
        T1=-Q(IR)
        IF(T1) 3120,3120,3050
    3050 DO 3060 I= N,N
    3060 ( CONTINUE
C C
C OF BASIC VARIABLES.
    DO 3070 J=1,N
                W
                Z(J)=RZERO
                MBSIS (J)=1
                L=N+J
                MBSIS (L) = J
    3070 CONTINUE
        NL1=1
        L=N+IR
        NL2=IR
        MBSIS (IR) = 3
        MBSIS(L)=0
        W (IR)=RZERO
        ZO=Q(IR)
C
C
        8HSOLUTION)
        3100 I=1,N (IOUT,3090) I,W(I)
    C
C3100 CONTINUE
C WRITE (IOUT, 3110) Z0
C}3110 FORMAT (10X,3HZO=,F15.5
    RETURN
    3120 WRITE (IOUT, 3130)
    3130 FORMAT (//, 5X,36HPROBLEM HAS A TRIVIAL COMPLEMENTARY ,
        23HSOLUTION WITH W=Q, Z=0.)
        CALL PRINT (N)
        IR=1000
        RETURN
    END
```

```
    SUBROUTINE NEWBS (N)
C C
C TERMS OF THE CURRENT BASIS.
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION AM(40,40),Q(40),B(40, 40),A(40)
    DIMENSION W(40),Z (40),MBSIS (80)
COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR
C
    IOUT=6
    RZERO=0.0
C IF NL1 IS NEITHER 1 NOR 2 THEN THE VARIABLE ZO LEAVES THE
C BASIS INDICATING TERMINATION WITH A COMPLEMENTARY SOLUTION
    4000 IF IF (NLI-1) 4000, 4030,4000
    4010 WRITE (IOUT,4020)
    4020 FORMAT (///5X,22HCOMPLEMENTARY SOLUTION)
        CALL PRINT (N)
        IR=1000
        RETURN
    4 0 3 0
        NE1=2
        NE2=NL2
C C UPDATE NEW BASIC COLUMN BY MULTIPLYING BY BASIS INVERSE.
    DO 4050 I = 1,N
        T1=RZERO 
        IF (DABS (B (I,J)).LT.1.0D-15) B (I,J)=0.DO
    IF(DABS (AM (J,NE2)).LT.1.D0-15) AM (J,NE2) =0.D0
    4040 (T T =T1-B (I, J) *AM(J, NE 2 )
    4050 CONTINUE
    RETURN
4 0 6 0 ~ N E 1 = 1
    NE2=NL2
    DO 4070 I=1,N
        A(I) = B (I,NE2)
4070 CONTINUE
    RETURN
    END
```

SUBROUTINE SORT (N,IFLAG)

```
C PURPOSE - TO FIND THE PIVOT ROW FOR NEXT ITERATION BY THE
                    USE OF (SIMPLEX-TYPE) MINIMUM RATIO RULE.
                            IMPLICIT REAL*8 (A-H,O-Z)
                            DIMENSION AM (40, 40) , \(\mathrm{Q}(40), \mathrm{B}(40,40), \mathrm{A}(40)\)
                            DIMENSION W(40), Z (40), MBSIS (80)
C COMMON /LEM/AM, B, Q,A,W, Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR
C
    IOUT \(=6\)
    5000 IF (A (I) ) 5010, 5010, 5030
    \(5010 \mathrm{I}=\mathrm{I}+1\)
    IF (I-N) \(5020,5020,5100\)
    5020 GO TO 5000
    \(5030 \mathrm{~T}=\mathrm{Q}\) (I) \(/ \mathrm{A}\) (I)
    \(\mathrm{IR}=\mathrm{I}\)
    5040
    \(\mathrm{I}=\mathrm{I}+1\)
    IF (I-N) \(5050,5050,5090\)
    5050 IF (A (I) ) \(5060,5060,5070\)
    5060 GO TO 5040
    5070 T2=Q (I) \(/ \mathrm{A}\) (I)
    \(\mathrm{IF}(\mathrm{T} 2-\mathrm{T} 1) 5080,5040,5040\)
    5080
    \(\mathrm{IR}=\mathrm{I}\)
    \(T 1=T 2\)
    GO TO 5040
    5090 RETURN
C FAILURE OF THE RATIO RULE INDICATES TERMINATION WITH
C NO COMPLEMENTARY SOLUTION.
    5100 WRITE (IOUT, 5110)
    5110 FORMAT (// /5X,37HPROBLEM HAS NO COMPLEMENTARY SOLUTION)
        CALL PRINT(N)
        IFLAG=1
        IR \(=1000\)
        RETURN
        END
```

```
    SUBROUTINE PIVOT (N)
    C PURPOSE - TO PERFORM THE PIVOT OPERATION BY UPDATING THE
        INVERSE OF THE BASIS AND O VECTOR.
        IMPLICIT REAL*8(A-H,O-Z)
        DIMENSION AM(40,40),Q(40),B(40,40),A(40)
        DIMENSION W(40),Z (40),MBSİS (80)
C
C
    6000 DO 6000 I=1,N N (IR,I)=B (IR,I)/A (IR)
    Q(IR)=Q(IR)}/\textrm{A}(IR
    DO GO(I-IR) 60\10,6030,6010
    6010 Q(I)=Q(I)-Q(IR)*A(I)
        DO 6020 J=1,N
                B (I,J) =B (I,J) - B (IR,J) *A (I)
    6020 CONTINUE
C
C UPDATE THE INDICATOR VECTOR OF BASIC VARIABLES
    NL1=MBSIS (IR)
    L=N+IR
    NL2=MBSIS (L)
    MBSIS (IR)=NE1
    MBSIS (L)=NE2
    L1=L1+1
    RETURN
    END
```

C PURPOSE - TO PRINT THE CURRENT SOLUTION TO COMPLEMENTARY
IMPLICIT REAL $=8$ (A-H,0-Z)
DIMENSION AM (40,40), $(40), B(40,40), A(40)$
C DIMENSION W(40), Z (40), MBSIS (80)
C
COMMON /LEM/AM, B, Q, A, W, Z, MBSIS,L1,NL1,NL2,NE1,NE2,IR
IOUT=6
RZERO=0.0
WR ITE (IOUT, 7000) L1
7000 FORMAT (10X, 13HITERATION NO., I4)
$\mathrm{I}=\mathrm{N}+1$
$\mathrm{J}=1$
7010 K1=MBSIS (I)
K2=MBSIS (J)
IF (Q(J)) 7020, 7030, 7030
7020 Q $\mathrm{I}(\mathrm{J})=$ RZERO $7040,7060,7040$
C7040 WRITE (IOUT, 7050) K1 Q (J
C7050 FORMAT ($10 \mathrm{X}, 2 \mathrm{HZ}(, \mathrm{I} 4,2 \mathrm{H})=, \mathrm{F} 15.5$)
$7040 \mathrm{IF}(\mathrm{K1}$. EQ. 0) GO TO 7080
$Z(\mathrm{~K} 1)=0(\mathrm{~J})$
GO TO 7080
C7060 WRITE (IOUT, 7070) K1,$Q(\mathrm{~J})$
C7070 FORMAT (10X, $2 \mathrm{HW}(, \mathrm{I} 4,2 \mathrm{H})=, \mathrm{F} 15.5)$
7060 IF (K1.EQ.O) GO TO 7080
$\mathrm{W}(\mathrm{K} 1)=\mathrm{Q}(\mathrm{J})$
$\mathrm{J}=\mathrm{J}+1$
IF (J-N) 7010, 7010,7090
7090 RETURN
END

Rosemary Fernandes
Candidate for the Degree of
Master of Science

Thesis: A SURVEY OF NON-SMOOTH OPTIMISATION METHODS AND AN EVALUATION OF A METHOD FOR MINIMAX OPTIMISATION

Major Field: Computing and Information Science
Biographical:
Personal Data: Eorn in Ḱerela, India, August 6, 1955, the daughter of Mr and Mrs P. J. Thomas.

Education: Graduate from Convent of Good Shepherd July 1972; received Bachelor of Technology in Civil Engineering 1977 from Indian Institute of Tech nology, Madras, India; received Master of Engineering in Structure Engineering in 1979 from Asian Institute of Technology, Bangkok, Thailand; completed requirements for the Master of Science degree in Computer Science at Oklahoma State University Stillwater, Oklahoma in December 1985.

Professional Experience: Research Assistant, International Ferrocement Information Center, Asian Institute of Technology, September 1978, to April 1979; Assistant to Chief Structural Engineer, Binnie dan Rakaan, Malaysia, September 1980, to September 1981.

