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CHAPTER I 

INTRODUCTION 

In general, design criteria for wastewater treatment processes with 

municipal and most industrial applications are satisfied using any of a variety of 

process configurations. A well-run pilot or treatability study should give the 

design engineer sufficient information to properly select and size a given 

treatment process. Flow and/or waste concentration (organic load) variability is 

highly predictable through statistical information accumulated with respect to 

municipal and industrial wastes, at a specific location, and is typically 

compensated for in the design criteria, such that, in most systems, anticipated 

shocking is effectively controlled with operational flexibility. 

Problems are encountered when attempting to utilize these same design 

concepts in unconventional settings. Examples of unconventional applications 

might include recreational sites, resort areas, and other areas which experience 

drastic and irregular population variations. 

The possibilities for process upsets as considered herein may be common to 

most if not all treatment systems. However, it is the degree or magnitude of 

their existence which is of importance when discussing the effects of highly 

variable loading conditions in a particular design. 

The availability of water at a recreational site leads to the generation of 

wastewater. The type of facilities available at a site will dictate how closely the 

site waste resembles a domestic waste. For instance, overnight campsites may 

have limited, if any, bathing facilities. Treatment concerns when processing this 
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waste might include toxic shocks as expected with waste from self-contained 

vehicles and septage. Whereas; t~e treatment concerns for a private resort area 

with complete modern conveniences might include organic, hydraulic, and 

temperature shocking. 

It has been cited that the dominant design for wastewater treatment 

installations in recreational areas has been extended aeration activated sludge 

systems. Information gathered by the United States Department of Interior, 

National Park Service Division will be presented in the following chapter, 

illustrating typical loadings experienced during the off seasons as well as during 

periods of heavy visitation at several park facilities, park design situations, 'and 

problems and concerns associated with engineering a park wastewater treatment 

facility. 

The objective of this study was to determine the feasibility of operating a 

biological tower using solids recycle for maintenance of biomass during low flow 

intervals. The approach taken for establishing a method of evaluating the tower 

was to simulate anticipated flow conditions, collect data associated with system 

response to stress (recovery time) and determine whether solids recycle is a 

probable solution to the stress created on the system. 



CHAPTER II 

LITERATURE REVIEW 

In this chapter fixed-film processes, specifically fixed-bed biological 

reactors, will be briefly addressed. A summarization, of a previous study on the 

contribution of recirculation of biological solids to the performance of an 

experimental fixed-bed reactor, will be presented. The activated biofilter (ABF) 

will be discussed in brief as a related process. Finally, data from engineering 

reports regarding waste and flow characteristics at several recreation areas will 

be presented. 

Fixed-Film and Fixed-Bed Reactors 

As pointed out in the introduction of this paper, extended aeration activated 

sludge is the most common process design for treatment facilities in park areas. 

With activated sludge processes the microbial concentration in the aeration tank 

is increased to match the incoming organic waste concentration by recirculating 

the settled microbial mass from the secondary clarifier. Although the procedure 

is very effective in hastening the biochemical reaction to degrade the organic 

wastes, the process has unstable characteristics if the influent quality and 

quantity fluctuate drastically. The activated sludge tends to bulk due to nutrient 

deficiency, shock loads, changes in pH, and changes in the operating environ

ment. If the dissolved oxygen is insufficient, the sludge will turn septic and rise 

due to denitrification and trapped gases in the sludge. Very long sludge aeration 

will result in the formation of very fine sludge particles. Bulking, rising, and fine 

3 
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sludge lower the secondary clarifier efficiency in concentrating the microbial 

sludge. The activated sludge process thus requires skilled operators for the 

process to function efficiently (1) (5). 

The microbial concentration in the reaction tank may also be increased by 

providing surface area inside the tank for the microbial organisms to attach and 

form slime layers (biomass). The microorganisms form a fixed-film waiting for 

the organic wastes to pass along its surfaces. The fixed-film microbial population 

is highly diversified and stratified through the depth of the attachment medium. 

Since the microbial population is already in excess inside the reaction tank and is 

waiting for the organic wastes, the process is more stable and does not require 

stringent process control to match the microbial population and the influent waste 

flow. The organic wastes are adsorbed and later absorbed by the microbial 

slimes. Dissolved oxygen and essential nutrients are adsorbed and absorbed 

simultaneously with the organic wastes. Biofilm production is the combined 

effect of cellular reproduction and extracellular polymer production. The rate of 

biofilm production depends on the diffusion of nutrients into the biofilm followed 

by synthesis into the attached biomass. As the slime layer matures, it becomes 

thicker until cohesive forces between the contact surface and the slime layer 

become insufficient to support the total weight of the slime layer. At this or any 

point in the development of the biofilm, portions of the accumulated mass detach 

and are re-entrained in the fluid. Detachment is the result of either sloughing 

and/or hydrodynamic conditions (shearing due to force of passing waste stream). 

A very thin layer of the biofilm is aerobic while the main bulk of the biomass is 

anoxic. The anaerobic reactions involve degradation of the organic wastes and 

stabilization of the microbial sludge. The symbiotic reaction between the aerobic 

and anaerobic organisms recycles the limited nutrients in the wastewater. This 

improves the stability of the process to treat nutrient deficient wastes (1) (2). 
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The fixed-bed reactor is filled with a solid media (rocks, wood, plastic) on 

which microbial slime attaches and grows and over which wastewater flows. The 

biological reactions are exothermic (releasing heat) which maintains the unit at a 

temperature higher than ambient conditions. Aside from maintaining the stability 

of the filter to diurnal variations in temperature, the temperature difference 

induces air circulation (1). 

The presence of fixed-film/fixed-bed reactors existed long before activated 

sludge processes were. developed. Construction savings and the simplicity of 

common wall construction caused an increase in the popularity of activated sludge 

in the early 1900's. More recently, the development of plastic media allowed the 

construction of very tall towers with very low structural cost. Compared to 

activated sludge, fixed film processes have advantages in lower operating costs 

and less skilled operations are required, which are kept in balance by the 

disadvantages of higher capital costs and the lack of operational control or 

flexibility. 

Solids Recycle - In Experimentation and in Practice 

A number of studies, pilot and full-scale, have been conducted regarding the 

effects of recirculation on fixed-film processes. Most of the information 

available is related to recirculation of either the filter effluent or of a clarified 

effluent. As pointed out by Lingenfelter, there is much contradictory evidence as 

to the relevance of recirculation to the performance of the trickling filtration 

process. Furthermore, when recirculation was found to be complementary, there 

were divergent opinions as to which factor(s) brought about the additional 

treatment capacity. The most plausible factors being: 1) the presence of dissolved 

oxygen in the recirculent, 2) the provision of a greater vehicle for carrying 

dissolved oxygen while concurrently decreasing the impurity concentration, 3) the 
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continual seeding of the bed with aerobic organisms and beneficial enzymes, and 

4) the advantageous effects of greater hydraulic loadi~g, i.e., a) increased 

mechanical flushing, b) better distribution of waste and microorganisms over 

media surfaces, and c) extending the biochemical oxidation zone further into the 

bed (which has been suggested to be of considerable importance) (4) (6). 

A variety of flow patterns and recycle combinations have been examined by 

various workers. With recirculation of activated sludge, secondary (biological 

filter) settled solids, or combinations of settled solids and filter effluent, it was 

thought that the higher levels of active microorganisms in the filter influent could 

improve settleability of solids in the filter underflow. Thus, it was felt that the 

option of solids recycle offered the hybrid system a greater flexibility, since the 

filter could be used with or without solids recycle depending on seasonal waste 

strength and effluent standards (4) (7). 

Improvements in plant performance have been documented using the 

Trickling Filter/Solids Contact (TF /SC) process. This design concept was 

originally used as a low cost approach for modification and upgrade of a trickling 

filtration plant for improved performance to meet stricter effluent criteria. By 

recirculating secondary settled solids to a small aerated contact zone (located 

intermediate to the trickling filter and the secondary clarifier, being much 

smaller in size than a conventional activated sludge basin, and having detention 

times of less than 20 minutes), using tapered aeration and a flocculating center 

well in the secondary clarifier - it was discovered that the period of gentle 

agitation prior to sedimentation improved flocculation and removed the finer or 

smaller poor settling suspended solids, thereby improving the quality of the 

effluent sufficient to exceed the permit criteria. (10) (11) (12) (13). 

Neptune Microfloc's - Activated Biofilter (ABF) is a fixed film process 

where the settled secondary solids are recirculated and mixed with the influent 
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waste prior to distribution to the attached biomass. System components in the 

ABF process include primary clarification or screening, wet well/Bio-Cell pump 

station, ABF Bio-Cell, flow control and splitting, short term aeration, secondary 

clarification, and return sludge facilities. These, coincidentally, are common 

components of the vast majority of wastewater treatment facilities with the 

exception of the Bio-Cell. Process configuration and media design and 

construction are proprietary with the ABF /Bio-Cell process, where sections of 

horizontal redwood slats overlapped and overlain (stacked) in a reactor 

compartment. It was found that recycling sludge through the fixed film biocell 

significantly improved overall process efficiency and stability. This improved 

performance was attributable to higher organic removals and bioadsorption within 

the tower (8) (9) (13) (14) (15) (16). A study was conducted on a combined 

industrial (food processing)/domestic waste where, plastic media (60 degree 

crossflow and 45 degree crossflow) and pure oxygen systems were compared to the 

redwood biocell design. The results indicated a very moderate deviation between 

the performance of the 60 degree crossflow and the redwood biofilter in 

performance characteristics (29), both of which were superior to the other tested 

processes. 

Discussion of Variable Flow and Loading Conditions 

In the case of larger wastewater treatment plants serving metropolitan 

areas, the sewage reaches the plant at a fairly constant rate because of the 

variety of distances and velocities it travels from the source to the plant. In the 

case of a smaller treatment unit, these distances are usually much smaller, and 

therefore the variability in rate of flow at the plant is much greater. Heavy 

surges of flow, which might be damped out in a city sewer system, will result in 

hydraulic or organic surcharges on the plant in the case of the smaller units. 
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Other problems such as lack of supervision and maintenance exist at small 

plants. Also, the release of large volumes of taxies may pass relatively 

undetected in large plants due to dilution, but would present serious problems in 

medium to small size plants. Important considerations for small plants are as 

follows: a) It must operate reliably without continuous skilled supervision. b) It 

must operate efficiently under a variety of flow conditions, including organic and 

hydraulic shocks. c) It should not be unsightly. d) It should not generate large 

volumes of solids for subsequent disposal. e) It should not generate odors (24). 

These guidelines, as spelled out for treatment facilities in rural areas, are 

probably the minimum considerations which should be applied to any plant. Design 

of small treatment plants is an area that has not received the attention from 

engineers that it requires or deserves. Many times, large firms will pass up the 

design of small plants or assign them to a young, inexperienced engineer. In other 

cases, small firms with little or no experience have undertaken the design of these 

plants. Consequently, many of them have now proved to be inadequate, especially 

in meeting the more stringent discharge requirements established by various 

federal and state agencies. Clearly, the design of small plants that work is the 

responsibility of the engineer and not the operator or contractor (25). 

Wastewater studies conducted at several Texas State Parks revealed that 

the maximum flow rate at a plant usually occurs on summer weekends (Figures 1 

and 2) (18) and is generally about five times the average flow to the plant (18). 

However, some of the national parks report greater than ten times average flow 

during periods of heavy visitation (19) (20) (21). The characteristics of wastewater 

from overnight areas are typical of municipal wastewater in terms of the 

biochemical oxygen demand (BOD = 372 mg/L) and the total suspended solids (SS = 

242 mg/L). However, in day use areas, the wastewater is much more dilute (BOD 

= 86 mg/L and SS = 10 mg/L). On the other hand, the concentration of organic 
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material (BOD) in trailer dump stations is much higher than that found in 

municipal waste - as trailer waste contains zinc and formaldehyde, which may be 

potentially inhibitory or toxic to biological processes (18). 

Summary 

Since literature pertinent to the topic of this thesis was extremely scarce 

(the majority of literature being published in foreign journals), the following 

approach was used to supply support information. General details were presented 

concerning fixed~film reactors in order to provide a very basic understanding 

behind the principals of the process. Several process configurations related to the 

mode of treatment used in this study were discussed to illustrate that solids 

recycle has been shown to improve plant effluent quality when operating at 

typical design loading conditions. Finally, a brief discussion of engineering 

concerns regarding treatment facility design for small rural communities and 

recreational areas was included to indicate the present need for alteration in 

design concepts being used for small facility design. Low cost, simple to operate, 

and reliable forms of treatment are required. The scope of this study was simply 

to ascertain whether a biological tower could reliably maintain a biomass 

(microbial population) under variable flow conditions using biological solids 

recycle as the vehicle of subsistence. 



CHAPTER Ill 

MATERIALS AND METHODS 

Apparatus and Flow Configuration 

A fixed-film reaction vessel of steel construction was as specified and 

fabricated by Enviroquip, Inc. of Austin, Texas. The reactor dimensions were 4' 

square by 20' high with 2' of open height above the media for flow distribution and 

2' of open height below the media to allow for undisturbed underdraining and 

collection of tower effluent and to allow passage of air. The volume occupied by 

the attachment medium was 4' square by 16' high with four (4) sampling ports (one 

located every 4' of media height beginning 4' from the top of the media. The 

plastic attachment media (tower packing) used for this study was built in bundles, 

and consisted of corrugated polyethylene sheets thermal-welded together for 

strength. The manufacturers information indicated that the media used herein has 

38.6 square feet of surface area per cubic foot of volume (approximately 94% 

open area). Bundles were factory installed such that corrugations or flow channels 

were 60 degrees from the horizontal, creating a 60° cross flow configuration 

(Figure 3) 

Process flow was diverted from one of the primary clarifiers through a 

suction manifold with strainers (located in the interstice between the scum baffle 

and weir plate), into the biological tower using a 3/4 horsepower centrifugal 

pump. A ball valve on the discharge side of the influent pump was installed to 

regulate the amount of raw sewage inflow. The flow distribution network 

consisted of three (3) lateral PVC headers with drilled orifices every 3" of pipe 

12 



13 

2' 

Figure 3 · 
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length on alternating sides of the bottom vertical centerline). The orifices were 

tapped in the event that insertion of plugs might be required to obtain even flow 

distribution. Splash boards were also installed to help attain maximum fluid 

coverage at the top surface area of the media (coverage after adjustment of 

header and boards was approximately 12 sq ft or 75%). Sample collection tubes 

(2" diameter steel pipes) were bolted in place horizontally across the center 

section of the tower at the locations previously described, with the top half of 

each pipe being dished out to accept a representative aliquot of the passing flow. 

The steel tower structure had openings below the underbracing to allow for 

upward passage of air through the media and for biological filtrate to pass for 

flow measurement and sedimentation. The tower was placed in a 6' square by 2' 

deep collection trough, and the collection trough was piped to a flow measurement 

box containing a V-notch weir with two (2) separate upstream gauging devices. 

Flow would pass the weir into a sump compartment which was piped to a 1/2 

horsepower centrifugal pump for transfer of measured filtrate to the 

sedimentation basin. A series of valves were used to control the rate of transfer 

to the clarifier or the rate of bypass to the treatment plant sewer piping, 

depending on the operational scheme at the time. The clarifier was 4' diameter by 

8' high (volume = 61.6 6 cu. ft. = 460. 75 gallons, surface area = 12.6 sq. ft.), with 

outboard effluent troughs, conical bottom and a mechanical sludge scraper. 

Return sludge was recycled from the bottom of the clarifier into the biological 

tower using a 3/4 horsepower centrifugal pump. A ball valve was installed on the 

discharge side of the recycle pump to regulate the amount of sludge returned to 

the system. The sludge recycle line was tied to the flow distribution header near 

the connection for raw waste influent, thus return settled biological solids and raw 

waste would combine and pass through several bends, thereby creating a homo

genous blend of nutrients for equal and even distribution to the biological tower. 
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Table I identifies the flow rates and origin of flow at each of the four flow 

conditions. Figure 4 is a simplified schematic of the equipment as well as a flow 

diagram. 

TABLE I 

VARIABLE FLOW CONDITIONS 

Condition II Date 5 Day Flow 2 Day Flow 
%Raw (gpm) % Recycle (gpm) %Raw (gpm) 

1 5/10 to 6/14 100 (25) 0 ( 0) 100 (25) 

2 6/15 to 6/28 0 ( 0) 100 (20) 100 (25) 

3 7/1 to 7/12 25 (5) 75 (15) 100 (25) 

4 7/13 to 7/26 50 (10) 50 (10) 100 (25) 

Approach and Analytical Procedures 

Evaluation of an alternative approach to processing wastewater in 

recreational areas was to be performed by operating a biological tower pilot unit 

under a variety of flow situations, each situation designed to represent a different 

variable flow condition. Acclimation of the tower at each flow condition was 

required prior to measurement of performance characteristics. Substrate removal 

rate and substrate removal efficiency were used as measurements of performance 

during normal and stress conditions. 

The first case or condition to analyze was the performance of the bio-tower 

without recirculation of biological solids, in other words, observe the performance 
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under a conventional mode of operation (i.e., low-rate trickling filter process). In 

the second through fourth conditions, the tower was pumped recycled solids at 

100%, 75%, and 50% in combination with raw primary effluent at 0%, 25%, and 

50% of the respective flow for five consecutive days followed by two days of feed 

with 100% raw primary effluent. 

The performance of the tower was observed at each condition for a period of 

at least three weeks. Each week consisted of four consecutive sampling (data 

collection) days. The first sampling day being at the end of a five-day recycle 

period, its purpose was to observe if any degradation or improvement in 

performance had resulted from a transformation in nutrients during recycle. The 

objective of feeding strictly raw waste for a two-day period (sample days 112 and 

113) was to simulate heavy visitation or a weekend situation and create stress to 

the system. Days 112 and 113 were the most critical sampling times. The final 

sampling day (day 114) in each week was the first day of recycle following the 

stress load, the function of this day was to observe recovery in performance 

(percent) from applied biological stress. 

Accurate flow measurement was easily attained when operating with a 

single flow scheme (either raw or recycle). Flow setting was slightly more 

difficult, however, when working with a combined flow. First, the greater of the 

two flows would be set, then the second flow would be added to it and balanced to 

the desired flow rate. 

The flow measurement channel (V-notch weir box) was positioned such that 

water was backed-up into the tower underdrain or collection trough. This created 

a situation where heavy solids settled in the tower collection trough instead of the 

sedimentation basin. Since this was to be a study to determine the effects of 

recycled solids during variable loading conditions, something had to be done. The 

problem could have been permanently resolved if the soil and rock under the flow 
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channel could have been broken and the weir box lowered. Since this could not be 

done, however, the problem was partially alleviated by hand mixing the collection 

trough contents every hour (with assistance from the treatment plant operators) 

to re-suspend the prematurely settled solids long enough to transport them to the 

sedimentation basin for collection and recirculation. 

Grab samples from each sampling location were collected four consecutive 

days each week, the samples were transported to the laboratory for immediate 

analysis. Parameters measured in the laboratory were pH, Total Suspended Solids 

(TSS). soluble Biochemical Oxygen Demand (sBOD), and total Biochemical Oxygen 

Demand (tBOD). All of the laboratory procedures and techniques used were in 

accordance and as outlined in The Standard Methods (30). 



CHAPTER IV 

RESULTS AND DISCUSSION 

This chapter begins with a discussion of difficulties encountered during the 

project. After which, data and graphical interpretations of the data will be 

presented, followed by a brief general discussion of physical observations. 

This evaluation was conducted at the City 'of Stillwater Wastewater 

Treatment Facility and was a cooperative effort between the University and the 

City, arranged by the Environmental Division of the Civil Engineering Department 

at Oklahoma State University. 

All of the materials and equipment were received by the middle of March, 

installation was complete and primary effluent was being pumped to the tower by 

the end of March. 

The first problem encountered was of a mechanical nature and was the 

result of improper pump performance. 

failing diaphram pump delayed the 

Time out of service due to a constantly 

project approximately eight weeks. 

Consequently, initiating biological growth and acclimation of the biological tower 

to an undisturbed and constant flow rate was difficult to maintain in the early 

phases of the study. Pumping problems were finally remedied by selecting a 

centrifugal pump to replace the diaphram pump. Originally, it was believed that 

the diaphram pump was uniquely suited as a low head - low shear pump, as it 

turned out, vibration caused rapid and complete failure of diaphrams, bearings, 

and pipe connections, thus causing maintenance headaches. Line surges and high 

discharge velocities from the diaphram pump caused operational problems with 

19 
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the sedimentation basin, the sludge blanket was disturbed by peaking and surging 

of the clarifier influent with each stroke of the pump. The centrifugal pump, 

opposed to initial thinking, did not significantly break up or damage the biological 

floc, and overall improved settling was observed in the clarifier which was the 

result of a constant inlet velocity. The trickling filter (biological tower) system 

includes both a fixed film reactor and a sedimentation basin (secondary clarifier). 

The clarifier is used for removal of the biological solids that are discharged from 

the filter. The clarifier used in this study was drastically undersized, i.e., at a 

design overflow rate of 1000-1200 GPO/sq. ft. the settling unit would be capable 

of accepting a flow of approximately 12,500-15,000 gallons per day and flow rates 

used throughout the term of this study varied with the average flow being 36,000 

gallons per day. The majority of solids are contributed by the filter instead of the 

filter influent, and filter efficiencies are generally computed on the basis of 

effluent quality from the clarifier. However, in this study, clarifier performance 

was not ciritical in terms of effluent quality, what was most important was to 

provide adequate storage and eliminate wash-out of solids. Regarding filter 

efficiency, concentration of soluble organic material was monitored through the 

depth of filter media. 

Of primary interest was the observation that the concentrations of soluble 

organic material at the Stillwater Wastewater Treatment Plant were much less in 

the summer than during the remainder of the academic year. The trend in student 

population exerts a noticeable influence at the treatment plant. As mentioned 

previously, this study was conducted during the summer session, thus influent 

soluble BOD's were extremely low ( 20 mg/L) as shown in Figure 5. Figures 5 and 

6 illustrate the differences in soluble organic loadings between the summer 

semester and the fall semester when student population has increased. The 35 

gpm and 17 gpm data was collected during the fall semester, while the 25 gpm 
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data was collected in the summer. Note that the 25 gpm line is out of the 

expected range, it should lie directly between the other two lines, thus indicating 

a definite difference in waste characteristics at these two times of the year. 

Probably the main reason contributing to low BOD's in the tower influent was the 

fact that the equalization basin removed approximately 30-60 percent (according 

to plant records) of the soluble organics which was the result of being operated as 

an activated sludge unit ahead of the primary clarifiers. This problem was 

partially avoided during the summer months by bypassing the equalization basin 

directly to the primary clarifiers. 

Concurrent to this study, a local consulting firm discovered that several 

industries were frequently in violation of releasing toxic materials into the city 

sewer system. The nature of the taxies has not been made available for discussion 

here, in that there may still be charges filed against the violators. Suffice it to 

say that these unexpected and heavy doses of taxies had detrimental effects on 

the City treatment process, therefore it is safe to assume that there were some 

negative effects also experienced by the pilot plant used for this study. 

Data was collected over a four-month time period and under four different 

modes of operation. Within each of the last three modes or conditions, one week 

of data was represented by four consecutive sampling days. Each of these days is 

individually representative of a state of change to the system (i.e, either shock 

loading or recovery to shock) and are reflected as such in Tables II, III, IV and V, 

and associated figures. 

Example: 

Day of Week Mon. Tues. Wed. Thurs. Fri. Sat. Sun. 

Mode of Flow Feed Feed Feed Feed Feed Feed Feed 
and/or and/or and/or and/or and/or 
Recycle Recycle Recycle Recycle Recycle 

Sampling Day N.A. 1 2 3 4 N.A. N.A. 



TABLE II 

COLLECTED DATA: CONDITION 1 

Date Flow (Gpm pH TSS (m~/L) Soluble BOD (mg/L) t BOD 
lnf Hecy In Eff Inf Eff Recy lnf 4' 8' 12' Eff Recy lnf 

9/18 17 0 6.9 7.5 50 87 -- 19 16 18 15 12 -- 40 
9/19 17 0 7.0 7.5 68 40 -- 23 22 17 12 12 -- 54 
9/20 17 0 6.9 7.5 42 35 -- 18 14 13 13 8 -- 40 
9/23 17 0 7.0 7.2 62 48 -- 9 7 7 5 4 -- 23 
9/24 17 0 6.9 7.3 66 34 -- 12 10 8 7 7 -- 39 
9/25 17 0 6.8 7.2 268 25 -- 12 10 8 7 7 -- 39 
9/26 17 0 6.8 7.3 62 38 -- 15 15 10 9 8 -- 40 
9/27 17 0 6.9 7.2 85 46 -- 10 8 9 6 5 -- 31 
9/30 17 0 7.1 7.3 74 62 -- 15 13 12 10 8 -- 43 
5/24 25 0 7.8 7.8 41 22 -- 6 3.2 2.1 2.3 2.1 -- 24 
5/30 25 0 7.7 7.9 23 16 -- 9 6.6 4.0 4.7 2.0 -- 18 
6/J 25 0 7.5 7.7 24 21 1690 12 9.2 4.3 3.9 4.9 -- 23 
6/5 25 0 7.4 7.6 39 27 1995 2.6 2.1 1.8 1.4 1.4 -- 16 
6/7 25 0 7.5 7.7 52 67 4211 8.9 9.0 6.0 6.0 4.4 -- 18 
6/10 25 0 7.5 7.8 38 11 4101 5.8 1.9 1.7 1.1 1.0 -- 21 
6/12 25 0 7.5 7.6 31 6 -- 12 7.2 5.4 4.2 3.9 -- 35 
6/14 25 0 7.7 7.8 28 19 1105 7.5 4.6 4.5 1.9 1.5 -- 21 
8/26 35 0 6.0 7.2 39 42 -- 20 20 19 13 11 -- 45 
8/27 35 0 7.0 7.4 36 34 -- 23 21 18 17 17 -- 43 
8/28 35 0 7.0 7.3 39 31 -- 19 16 14 14 13 -- 42 
8/29 35 0 7.1 7.6 34 22 -- 20 20 18 15 15 -- 46 
8/30 35 0 7.1 7.5 56 37 -- 18 16 15 14 13 -- 44 
9/3 35 0 6.9 7.2 39 13 -- 14 11 10 9 19 -- 35 
9/4 35 0 5.6 7.2 53 34 -- 20 18 16 14 15 -- 42 
9/5 35 0 7.2 7.3 50 29 -- 21 17 17 16 16 -- 45 
9/6 35 0 7.2 7.2 27 17 -- 19 16 17 15 14 -- 39 
9/9 35 0 7.1 7.2 40 26 -- 14 13 11 9 11 -- 33 
9/10 35 0 7.0 7.2 36 33 -- 21 17 17 16 14 -- 44 
9/11 35 0 7.2 7.1 34 41 -- 20 17 14 14 13 -- 43 
9/12 35 0 7.1 7.0 40 29 -- 20 18 16 14 13 -- 42 
9/13 35 0 7.1 7.1 35 33 -- 18 15 12 13 12 -- 37 
9/16 35 0 7.2 7.2 50 37 -- 15 12 12 10 10 -- 39 
9/17 35 0 7.1 7.2 45 40 21 18 17 15 15 45 N -- -- ~ 



TABLE III 

COLLECTED DATA: CONDITION 2 

Date Flow (Gpm pH TSS (mg/L) 
Inf Recy In Eff Inf Eff Recy Inf 4' 

6/19 0 20 6.5 6.4 32 59 133 1.1 0.9 

6.26 0 20 6.1 6.0 51 355 454 1.0 0.7 

6/20 25 0 7.5 7.6 31 10 2205 5.3 3.9 

6/27 25 0 7.5 7.8 31 15 4270 2.3 2.2 

6/21 25 0 6.6 6.7 22 7 965 3.4 2.8 

6/28 25 0 7.5 7.7 26 11 7970 5.4 5.0 

6/15 0 20 8.1 8.0 99 180 99 1.7 1.6 

6/22 0 20 7.6 7.5 3 3 2.0 3.3 1.7 1.6 

Soluble BOD (mg/L) 
8' 12' Eff 

0.9 0.8 0.9 

0.7 0.8 0.8 

3.9 2.3 1.8 

2.1 1.9 1.4 

2.1 2.2 1.2 

5.4 5.2 5.1 

1.5 1.3 1.4 

1.5 1.4 1.5 

Recy 

1.1 

1.0 

--

--

--

--

1.7 

1.7 

t BOD 
Inf 

19 

31 

20 

11 

6.6 

17 

Recy 

Recy 

N 
\J"l 



Date Flow (Gpm) pH 
Inf Recy In Eff Inf 

7/2 5 15 6.0 8.0 29 

7/10 5 15 7.9 0.0 36 

7/4 25 0 7.5 7.9 30 

7/11 25 0 7.5 7.8 23 

7/5 25 0 7.5 7.8 30 

7/12 25 0 7.5 7.8 30 

7/1 5 15 8.1 8.1 50 

7/6 5 15 8.1 8.0 24 

TABLE IV 

COLLECTED DATA: CONDITION 3 

TSS (mg/L) 
Eff Recy Inf 4' 

132 116 4.6 0.9 

25 116 8.9 1.9 

33 39075 11 12 

19 3690 6.4 6.6 

29 745 10 8.9 

15 178 5.2 4.5 

113 95 8.4 0.6 

85 62 7.9 0.6 

Soluble BOD (mg/L) 
8' 12' Eff 

0.9 1.1 1.2 

2.2 2.2 2.0 

11 12 13 

6.1 6.1 5.3 

9.8 10 10 

4.9 4.2 4.1 

0.6 0.7 0.8 

0.7 0.5 0.5 

Recy 

1.0 

2.4 

--

--

--
--
0.7 

0.7 

t BOD 
Inf 

9 

21 

23 

12 

25 

12 

18 

17 

N 
(j"\ 



Date Flow (Gpm) pH 
Inf Recy In Eff Inf 

7/17 10 10 7.4 7.4 26 

7/24 10 10 7.4 7.8 25 

7/18 25 0 7.4 7.8 25 

7/25 25 0 7.4 7.9 22 

7/19 25 0 7.4 7.8 26 

7/26 25 0 7.0 7.9 20 

7/13 10 10 7.8 7.8 27 

7/20 10 10 7.5 7.6 30 

TABLE V 

COLLECTED DATA: CONDITION 4 

TSS (mg/L) 
Eff Recy Inf 4' 

579 866 6.9 2.3 

238 264 6.6 3.7 

29 2235 3.1 3.9 

24 -- 2.6 4.9 

14 945 5.1 4.5 

29 -- 3.2 3.6 

14 71 5.6 2.4 

348 378 5.2 1.4 

Soluble BOD (mg/L) 
8' 12' Eff 

2.8 3.9 2.5 

4.2 5.6 4.7 

3.6 2.3 1.9 

4.9 4.5 4.4 

5.3 3.9 3.4 

3.2 3.8 4.8 

4.0 3.6 3.3 

1.3 1.1 1.2 

Recy 

1.7 

2.4 

--
--
--

--
1.5 

1.0 

tBOD 
Inf 

14 

14 

7.4 

8.9 

12 

10 

17 

10 

N 
-....,J 
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The performance of the tower, as mentioned in the previous chapter, was 

observed at each condition for a period of at least three weeks, with one week 

serving as an acclimation period. 

Before discussing each condition in detail, it should be emphasized that 

statistical significance cannot be attached to the results presented herein, nor was 

it the objective to do so. The system was constantly being upset due to changing 

conditions, making the possibility of overall linear relationships or kinetic 

descriptions unlikely. The primary concern, however, was to observe general 

trends in soluble organic removal and to determine if the adverse effects of 

variable loading to the tower could be dampened or controlled with the use of 

solids recycle. 

It is not certain what degree of association may be drawn between the 

conditions experienced during this study and conditions experienced in treatment 

of waste at a recreational site. It was interesting to note, for example, that the 

concentration of soluble organics going to the biological tower never exceeded 10 

mg/L, whereas the lowest concentration from the literature indicated 

concentrations at camp sites well in excess of five times this amount. 

Figures 7 thru 12 illustrate the relationship (for conditions 2 thru 4) between 

organic material remaining versus relative position in the biological tower, for 

each of the sampling days. In each of the conditions which implemented a recycle 

flow scheme (2, 3, and 4) sample days 112 and f/3 were of primary interest, since 

they would indicate the success or failure of the concept under evaluation. As 

seen in Figures 7, 9, and 11, the biomass did not exhibit the ability to remove 

organic matter on the critical days, under any of the flow circumstances 

examined. Recovery response varied in each condition, in condition 112 recovery 

was gradual with an improvement in effluent quality at the end of each test period 

and in conditions f/3 and 114 recovery was rapid with a break down in effluent 
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quality being exhibited at the end of each recycle period. Again it must be 

emphasized that the tower influent BOD concentration was less than most 

treatment plant effluent discharge requirements. 

It has been shown that high carbohydrate concentrations in a waste influent 

may show repression in the protein, utilization rate, i.e., carbohydrates are more 

easily metabolized, therefore preferred by the microorganisms. The kinetic 

constants for carbohydrate removal are more or less the same as for BOD 

removal, as determined in a lab scale evaluation on fixed film biological towers 

performed at Oklahoma State University. Substrate utilization of a protein waste 

was found to be much more complex than with a carbohydrate waste, and could 

not be directly evaluated or generalized in terms of definite removal kinetics or 

mechanisms (31). 

Caution should be exercised when attempting to correlate the treatability 

results obtained here to situations (possibly more favorable) which exist 

elsewhere. Due to the difficult nature of the waste being treated (unidentified 

taxies from industrial wastes) and the low concentration of soluble organics fed to 

the tower in this study - it is conceivable that recirculation of settled biological 

solids may have a more positive impact when treating a more balanced waste. On 

the other hand, hypothetically, if the tower response at elevated organic loadings 

was similar to those witnessed in this study, the environmental impact would be 

much more dramatic, and the concept much less feasible. 

Some other general observations noted during the study were: (a) biological 

growth seemed to be healthy and well developed throughout the depth of the 

tower during all phases of the study (b) raw waste visually appeared to be a typical 

grey water with moderate turbidity (c) finished or filtered water was clear and 

relatively void of turbidity with the only visible suspended solids being the larger 

clusters of biomass stripped from the tower (d) visual appearance of solids 
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characteristics in the waste stream changed during recycle operations, the solids 

getting lighter in color and settling at a slower rate (e) heavy snail populations 

occurred during the warm summer months (f) it became obvious that the tower 

was evaporating a significant amount of water when operating on strictly recycle 

flow and nothing to supplement the loss of liquid. 

The liquid level in the clarifier was the indicator to loss of liquid in the 

system, with approximately a 2-1/2 ft. drop (250 gallons) in the clarifier water 

surface in 24 hours. Excessive evaporation was probably the most meaningful 

observation taken during the study, implying that sufficient stora13e capacity had 

to be designed into the clarifier or equalization basin to prevent the system from 

going dry. 



CHAPTER V 

CONCLUSIONS 

Examination of a biological tower, as described in this study, subjected to 

variable flow rates of a dilute waste, revealed the following: 

1) Attached biological growth did not visably deteriorate when solids recycle 

was used during periods of low flow. 

2) Satisfactory treatment was observed when treating low strength waste 

with the biological tower, and slightly improved performance was 

observed when waste was fed to the tower in combination with recycled 

solids. Thus, recirculation of solids should be implemented into design for 

improved performance. 

3) Performance in terms of soluble organics removal failed when the process 

was fed strictly raw waste on an intermittent basis regardless of the 

recycle flow condition. 

4) Design of sufficient water storage is required in sizing either the clarifier 

or equalization basin because of the ability of the tower to evaporate 

water. 

5) Flow equalization should be included in any process where the possibility 

of highly variable loading conditions exist, to act as a physical buffer for 

the biological treatment process. 
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CHAPTER VI 

RECOMMENDATIONS FOR FUTURE STUDY 

Economical justification for this type of study is lacking because, as 

mentioned earlier, other processes (extended aeration) are preferred for design 

and construction at low and variable flow facilities. These other processes have a 

number of shortcomings but apparently these shortcomings are not significant 

enough to promote interest in fixed film processes as an alternative. 

Provided any interest in solids recycle in biological towers is instituted in 

the future, the following recommendations are made: 

1) Select location based on strength of waste, i~e., study needs to be 

conducted on waste with higher organic strength. 

2) It would be preferable to conduct the study at a recreational area in a 

side- by-side comparison with an extended aeration plant. 

3 )All variability (flow, toxic waste inflow, temperature, etc.) should be 

monitored and, to some degree, controlled in order to effectively analyze 

the tower's performance. 
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