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HEATS OF MEXING FOR BINARI SYSTEMS AMD FOR SOME CONCENTRATION 

LINES IN THE CCI4 - RICH REGIONS OF THE TERNAEÏ SYSTEMS 

FORMED BY MIXTURES OF TRIFLUOROAGETIC ACID,

ACETIC ACID AND CCI4

CHAPTER I 

INTRODUCTION

Our present knowledge of the theoiy of solutions is  not 

sufficient to enable us to calculate the thermodynamic properties of 

mixtures of polar liquids, ftom the properties of the pure components. 

Attempts have been made try Barker ( l) , (2) and others (3) and (Ij.) to 

treat polar liquids Ty means of a quasi-lattice model, where the lattice 

points are occupied try atoms or groups of atoms, and where intermolecular 

contact energies of various magnitudes are assumed to exist between the 

different atomic groups which are not connected ty chemical bonds. This 

model makes necessary a complicated evaluation of the parameters (the 

energies of the different intermolecular contacts). I t  has been partially 

successful when applied to alcoholic systems, but unsuccessful when 

applied to mixtures of water with polar organic compounds (l5). In mixt 

tures where strong intermolecular attraction leads to the formation of 

stable aggregates of molecules, present theories are inadequate.

In the case of ^sterns where strong hydrogen bonds are formed,

1
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i t  is necessaiy that reliable experimental measurements of thermo^namic 

constants be obtained before further improvements can be made on our 

current theories of solutions. Solutions of carboxylic acids are of part­

icular interest because of the existence of strong hydrogen bonds and the 

tendency toward formation of dimers, as opposed to higher polymers, in 

dilute solutions. Self-association occuring via predominantly electro­

static iype of interaction { $ )  of carboxylic acids and solutions of 

carboxylic acids in non-pblar solvents has been ifidely investigated. 

Christian (6) has shown, from liquid-vapor equilibrium data, that the 

gystem propionic acid - acetic acid behaves ideally. Tendency' to form 

hetsrc*dimers rather than the homo-dimers has been observed by Hansen 

and Christian (?) for the ^stems acetic acid - trifluoroacetic acid, 

propionic acid - penfcafluoropropionic acid and n-butyric acid - hepta - 

fluoro-n-butyric acid, from liquid-vapor equilibrium studies. Added evid­

ence for cross-dimer formation has been provided by an infra-red study 

of the system acetic acid - trichloroacetic acid in CCI4 (8)* As far as 

is  known no calorimetric measurements have been reported for mixtures in 

which cross-association of the simple carboxylic acids would be expected 

to occur.

I t  is  generally agreed (lO),(ll) and (12) that concentrated sol­

utions of carboxylic acids and their halogen-substituted acids (and thus 

also the pure liquids) contain some polar aggregates larger than the 

dimer. There is  no general agreement as to whether the individual 

hydrogen bonds of these aggregates are on the average wealcer or stronger 

than those in the dimer (ll),(l2 ) and (13). Harris and Alder (1I4) advance 

the theoiy that there exists a zwitterion structure (in which the carbo-
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3grllc acid homo-dimer forms an ion pair by transfer of a proton from 

one monomer unit to the other) in equilibrium with the non-polar dimer. 

This self-ionised model of the dimer has recently (lO) been used in a 

dielectric stu^y of the carboxylic acid dimers to account for larger 

dielectric constants of pure carboxylic acids than can be explained on 

the basis of a symmetric dimer and also to account for the significant 

increase in the dielectric constants with rising temperature. In aiy 

event, i f  the proposed zwitterion structure exists in the homo-dimer, 

then as suggested by Kohler ( l5) the zwitterion structure would be muck 

more important in the hetero-dimer. In fact, the foimation of a zwitter­

ion structure may be one of the factors inducing the preferential form­

ation of hetero-dimers.

The calorimetric investigations described here were undertaken 

to provide additional information on the associative behaviour of acetic 

acid and trifluoroacetic acid. Systems to be investigated were binary 

and ternary mixtures (in the CCI4 - rich regions) containing trifluoro­

acetic acid, acetic acid and CGI*. For the three binary systems to be 

investigated, the only calorimetric data which have been reported are 

heats of dilution of acetic acid in CCI4 (9).

Since, in the present study sufficient quantities of a ll  chem­

icals were available, i t  was not necessary to measure small heat effects 

with high precision in a simple calorimeter. Instead, i t  was proposed 

that a method be devised in which heat effects of the same order of mag­

nitude would be measured in  each experiment, so that errors due to heat 

exchange with the surroundings would be minimized. Further, i t  was essent­

ia l that falsification of results by corrosion of the calorimeter material
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or by the presence of moisture be carefully avoided. In addition, i t  

was required that errors due to volatilization of components and incom­

plete mixing be minimized.



CHAPTER II 

OBJECTIVES

The primary object of this stucjy was to determine heat of mixing 

values calorimetrically for binaiy a-d ternaiy mixtures involving the 

three compounds trifluoroacetic acid, acetic acid and CCI4, Specifically, 

the following regions were to be investigated^ a) a ll  three binaiy sys­

tems over the entire concentration range; b) the ternaiy system obtained 

by adding pure acetic acid to 1:? molar mixtures of trifluoroacetic acid- 

CCI4Î c) the ternary eystera obtained by adding pure trifluoroacetic acid 

to H 9 molar mixtures of acetic acid - CCI4; d) the temaiy %rstem 

obtained by adding increasing quantities of 1:9 molar mixtures of t r i ­

fluoroacetic acid - CCI4 to 1:9 molar mixtures of acetic acid - GCI4,

The second major goal of the investigation was to interpret heat 

data in terns of interactions between functional groups present in the 

molecules. Of particular interest was the relation between formation 

of the hetero-dimer and the tendency toward exothermic mixii^.

A third objective was to construct a suitable calorimeter and 

to develop an accurate method for investigating heat effects in the a- 

bove systems, in which corrosive, hygroscopic and volatile mixtures 

would be involved.



CHAPTER i n  

EXPERIMENTAL 

Materials

Except for the components of two test %rstems, distillation of 

a ll confounds was carried out in a It foot long vacuum-jacketed column, 

built here, packed with glass beads and employing a %itmore-Lux type 

head. The middle fractions oiJy of small samples of each component were 

collected in diy flasks and used as soon as possible after distillation. 

The distilled materials were stored away from light in small glass stop­

pered flasks over anhydrous calcium chloride in desiccators. Idoxan and 

chloroform were stored in flasks provided with a long capillaiy (to keep 

out moisture) and topped with standard glass stoppers.

Since the reftactive indices of small batches of each material 

were measured at slightly differing temperatures, these were checked 

TTith the inteipolated or extrapolated values, between two or more temp­

eratures, of the best recently published data. The determined refractive 

indices (reduced to a single temperature for each component) and freez­

ing points, together with the literature values are given in Table 1Î

Technical grade m-cresol and quinoline were each distilled once 

under reduced pressure. Dioxan (l:l|. dioxan) and chloroform (both techni­

cal grades) were purified according to the method of Vogel (l6). Analar

6
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Table 1. Refractive Indices (see text) and Freezing Points

component Refractive Index 
determined literature

F.P. 
1 determined

(OG)
literature

quinoline - -21.6 ±0.2 - 19.2

m-cresol (l8®C) 1.5il25 +0.0002 -

dioxan (23°C) I.L222 II l , k 22k -

CHGI3 (23°C) l«Wi2 II l.W ll -

GH3COOH (2Q0G) 1.371^ II 1.371̂ +16.6 +0.2 +16,6

GGI4 (20°G) 1.Ü601; II 1,14.601}. -

CF3COOH ; +0.2 -15.2^

Table 2. Comparision of experimental and interpolated literature (2l )  
Q values fc ? heats of solution of KOI at

H3O
(moles)

KGl
(moles)

h
HgO(mole8)/kGl(moles)

Q - Q 
(calories) (calories) 

(experiraental)(literature)

$  ,66^6 0 125.1515 +1914.6 +189.14

5.8735 0 U 2.14751 +223,5 +218.0

5.72la 0,05653 50.6379 +232.2 +227.0
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potassium chloride which had been dried for 1̂8 hours at 150®C and had 

been stored over anhgrdrous calcium chloride in a desiccator and double 

distilled  water were used in the heats of solution studies of KCl,

Analar glacial acetic acid was dried by reflwdng over PgOg (l? ) and 

fractionally distilled once over PgOg. Trifluoroacetic acid, from Mathe- 

son Coleman and Bell Co., was f irs t rapicQy distilled to remove suspen­

ded impurities, and after diying over P2O5 (18) was fractionally d istil­

led once over PgOg. Carbon tetrachloride (Analar) was purified by the 

method of Williams and Krchraa (19) and then fractionally distilled once 

in a diy atmosphere.

Calorimeter

A cross section of the calorimeter , Hgure 1, and a cross sec­

tion of the mixing vessel, cover and i ts  accessories, at right angles 

to Figure 1, is  shown in Figure 2. The round bottom mixing vessel H, 

made of monel metal (O.05 cm thickness) has an effective volume of app­

roximately 129 ml. Since the volume of the liquid in the mixing vessel 

has been slightly over 100 ml (see page 1^) a vapor space of less than 

30 ml existed in each set of experiments.

A carefully machined molded polyethylene stopper Q, peimanently 

screwed to a wooden cover, f i ts  both the mixing vessel and the commer­

cial Deifar vessel M. To prevent accidental slipping of the mixing vessel, 

in the course of an experiment, small removable pins are inserted through 

holes drilled near i ts  rim. Through the polyethylene stopper passes a 

monel metal shaft, fitted with two four-bladed coaxial monel metal stii^ 

rers. A constant speed electric motor, coupled to a long flexible drive 

shaft, rotates the stirrer at a moderate speed. The direction of rotat-



: 1
J

û o Ocm

E (Plan)

Fig, 1, press section of calorimeterî A, heater leads; B, screws; 
C, aluminum tubes; D, polyethylene tubing; E, aluminum plate; F, neoprene 
gasket; G, styrofoam packing; H, mixing vessel; I , glass ampoule; J, fe lt 
padding; K,woodeh box; L, calorimeter heater; M, Dewar vessel; M, 
machined groove; 0, steel pins; P, urethane foam; Q, polyethylene cover; 
R, teflon bearings; S, s tirre r  connection
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2:1 .

1 cm

ÜiU

A
B
E

H

Figo 2. Mixing vessel, cover and accessories: cross section 
at right angles to Fig, 1, A, heater leads; B, screws; E, aluminum 
plate; F, neoprene gasket; H, mixing vessel; L, caloriJneter heater; 
T, teflon posts; 0, steel pins; P, urethane foam; Q, polyethylene 
cover; U, constantan wire; V, teflon brace
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ion is  arranged to induce a downward flow of liquid. The stirrer shaft, 

which rides on two narrow teflon bearings B., has a machined constrict­

ion N to reduce heat flow along the stirrer shaft, either into or out 

of the mixing vessel.

On a serrated and grooved teflon brace V, Figui'e 2, held up by 

two teflon posts T, is  wound non-inductively Ho, 21; B and S gage constan- 

tan wire having a resistance of approximately 0.^ ohms. This constitutes 

the calorimeter heater. Enamelled copper wires (No. 16 B and S) were 

silver soldered to the ends of the calorimeter heater and acted as cur­

rent and voltage leads. The leads pass out of the calorimeter through 

the center of the teflon posts.

Sealed glass ar^oules, I , containing 3 to 15 ml of accurately 

weighed liquid samples, were stored in darkness. VJhile filling  ampoules, 

using a hypodeimic syringe and needle, the a ir space in the ampoule was 

kept to a minimum (l5). All filling  operations were conducted in the 

diy box. The loaded glass ampoules, in an experimental determination, 

are held in position in the calorimeter by the small amount of friction 

between the smooth polyethylene sleeve D (placed along the length of 

the aluminum tube C) and the glass rod fused to the ampoule. To mix the 

. liquids the ançoule is  crushed against the bottom of the mixing vessel 

by pushing down on the glass irod.

Auxillaiy Apparatus 

In the electrical diagram. Figure 3? S3 is  a specially made 

spring loaded mercuiy-pool type switch. This switch, in addition to 

being rapid, also ensures good electrical contacts. The sodium silicate 

coated resistors, B ,̂ Eg and Bg (each of No. 2h  B ahd S gage constantan)
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*T-

Bl
-AA/VVVV\/-

«2 
i'WvV>l

“3
a/>^Mi

Fig, 3, The electrical circuit 
P, Potentiometer; auxiliary resistor; Eg, standard resistor; 
ballast resistor; R4, calorimeter heater; S^, switch; Sg, mercury 
pool switch; S3, spring loaded mercury pool switch
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are wound non-inductively on shoit length glass tubings and immersed in 

an oil-bath, whose temperature is  maintained as close as possible to that 

existing in the mixing vessel. Hx is  the auxillaiy resisto r (approximately 

1 ohm), % the standard resistor (approximately 0 ,^ ohm) and % the ballast 

resistor (approximately 0,^ olim). No. 16 B and S gage enamelled copper 

wires silver soldered to the ends of the resistors serves gs current and 

voltage leads. Current is  provided two 6-volt accumulators connected 

in parallel and operating at about 70^ efficiency!. The accumulators are 

discharged for nearly an hour through the ballast resistor before switching 

on to the calorimeter heater . The voltage in the potentiometer circuit 

is  provided by two 2-volt accumulators connected in paralle l. Potential 

and resistance standards consist of a Weston ce ll and a Gray Institute 

and Co. 10 ohm resisto r, respectively.

A Leeds and Norbhrup Eg Type Potentiometer is  used to measuire the 

potential to +0,0001 v, across the two approximately 0,5 ohm resistors,

Eg and E4, during the heating period. The mean of peri.odically checked 

resistances of Eg was, 0„lj.l68 ±0,0008 ohm. With the calculated resistance 

(see equation 8) of E4, the electrical energy passed during the heating 

period, for a specific length of time (deteimined by a calibrated stop­

watch) is  readily calculated. Correction for dissipation of electrical : 

energy in the leads of Eg and E4 is  negligible since the leads had approx­

imately equal lengths. Temperatures are read to +0,002°C with a 22- 33°G 

calorimetric thermometer graduated to O.Ol^C,



Procedures for Measurement and for Preparing 

Mixtures for the Various Systems

Since the volume of the ampoule was restricted, and since the 

heat effect should not exceed a certain lim it, the content of the amp­

oule was added either to a pure component or to a mixture of suitable 

concentration. For binaiy systems, measurements were begun at one end 

of the mole fraction scale and were carried out to about 0»̂  mole fract­

ion. Between two and five replicate determinations were made when add­

itions to a pure component were involved. Measurements were then made 

( i .e . ,  when adding to mixtures) so that in a given determination the con­

centration before mixing was within, and then outside of, the final con­

centration range of the preceding determination. Similar measurements 

were repeated starting from the other end of the mole fraction scale. 

Several determinations were made around the mid-point of the mole fract­

ion scale. For two ternaiy ^sterns, where the mole ratio of two compon­

ents was kept constant, measurements were made ty adding a pure compon­

ent in itia lly  to the standard binaiy mixture and subsequently to ternary 

mixtures consisting of the standard binaiy mixture and increasing amounts 

of the component contained in  the ampoule. At least two measurements 

were made when tw  components only were present. Measurements were then 

made so that in a determination, the concentration before mixing was 

within, and then outside of, the final concentration range of the prece­

ding measurement. The heats of mixing and derived heat values were plot­

ted against the mole fraction of the component contained in the ampoule.

For one ternaiy system, system 8, (see Appendix I) where the 

mole fraction of one the components was kept constant, measurements were
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made starting ftom one end of the mole fraction scale of the deficient 

component (trifluoroacetic acid), ly adding one standard binary mixture 

initially  to the other standard binary mixture, and subsequently to mix­

tures of varying quantities of the two standard binary mixtures. Measure­

ments were repeated starting firom the other end of the same mole fract­

ion scale.

Liquid mixtures were prepared by weight, to within +0,C002 g, 

in  100 ml volumetric flasks whose standard ground glass stoppers and 

sockets were replaced ty  S 1^/3$ ground glass stoppers and sockets. Each 

mixture was prepared with a minimum of vapor space in the volumetric 

flask, immediately prior to an actual measurement. The very small quant­

ity  of liquid remaining in the volumetric flask, after being emptied as 

quickly as possible into the calorimeter, was always weighed. Stock sol­

utions of standard binary mixtures (for ternary systems) were prepared 

ly weight. All mixture preparations and pouring operations were conduct­

ed in a àiy box.

Actual Measurement

After loading the calorimeter, having ascertained that no liquid 

adhered in the capillary part of the ampoule, the mixing vessel and i t s  

contents were cooled below room temperature and assembled in the cooled 

and dried Dewar vessel (see Figure l)« The temperature of the contents 

in the mixing vessel was adjusted so that, in  exothermic reactions aft­

er mixing and in endothermie reactions before mixing, the temperature 

would always be a few degrees (3- 8%) below room temperature yet in  the 

vicinity of 2̂ °C.

After a thermal equilibrium period lasting one to one and one-
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half hours, time temperature readings were made eveiy half minute for 5 

minutes, and during the mixing period every 15 seconds for 1 minute and 

then at 1/2 minute intervals for about 10 minutes. Stirring was continous, 

starting from the beginning of the thermal equilibrium period and ending 

T-rith the la s t temperature of the after period. In the calibration experi­

ment, which immediately followed, the entire procedure followed in the mix­

ing period was repeated, except that the mixing period was replaced by the 

electrical heating period. The length of the heating period was adjusted 

so that the absolute magnitude of the temperature change and the tempera­

ture range closely approximated conditions in the mixing experiment. The 

time of the heating period and the potentials across Rg and R4 were meas­

ured.

Treatment of Temperature- Time Readings

In two of the te s t systems investigated, the temperature differen­

ces were obtained from time- temperature plots by extrapolation of the aft­

er period temperatures to the time of mixingj while for the remaining systems 

;the temperature differences were calculated ty  the Roth (20) method. The 

theory of the method is  given in Chapter IV and a sample calculation (for 

exothermic mixing) in Appendix I I I .

The difficulty of graphical extrapolation is  that the exact time 

to which the extrapolation should be carried out depends on the "conver­

gence temperature" in a complicated way. On the other hand, the Roth meth­

od avoids the necessity of selecting arbitrarily  a time to which tempera­

ture- time curves must be extrapolated. Thus in the graphical extrapolation 

an unknown error is  introduced; the relative importance of which varies 

with the magnitude of the correction for heat leakage.
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The smaller the heat effect, the smaUer the specific heat of the cal­

orimeter and the poorer the insulation of the calorimeter the more sig­

nificant th is error becomes.



CtlAPÜER 1 7

CAICUMTION PROCEDURES

Calculation of Temperature Changes ty Roth (20) Method 

The theoiy of the Roth method for calculating the magnitude of 

the temperature change in a calorimetric experiment is  given helow. (An 

example of the application of the method appears in Appendix I I I ) .

According to Newton, the rate of cooling (best for l/2  minute 

temperature intervals) i s  given by

dO/dt = k(e - e«o) (1)

where k i s  designated as "cooling constant" of the calorimeter and 0o« 

the "convergence temperature" i .e . ,  the temperature the calorimeter would 

attain  at in fin ite  time. I f  ^  and 6g represent mean temperatures and 

and Gg the rates of cooling for the fore and after periods, respectively, 

then,

G i »  k ( 6 i  -  6 0 » )

Gg = k(6g -  6co) 

and upon eliminating Goo from the two equations, one obtains 

Gĵ  •• Gg o  k ( ^  “  G g )

or.

i k = “^ — —  (
ê, -  ëg

Substituting Geo = 8̂  -  G /̂k and for k, equation 1 becomes

18

)
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Gj_ -  Gg _
dG/dt = r— "" + Gi (3)

% - ëg

For the sake of clarity , Kohler (l5 ) has suggested the foHowing two 

steps! according to the heat exchange with the surroundings, the tempera­

ture a t the end of the reaction period appears to be

ft
V  " ® t o e V  «Here 13 tto(hypotta-

0 u t
tica l)  temperature i f  no heat exchange would occur and t  i s  the interval 

of the reaction period. Therefore,

-t
6 o 0 » y  àQ ^
true end ~ d t

(Uend
where the summation extends over a l l  time steps of the reaction period, 

and where 6 i s  the mean temperature during each, temperature interval.

G]_ and Gg are taken as properly weighted averages of the te# e ra -  

ture differences per time interval. I f  n (n being an even integer) temp­

erature readings are made, then

(n-'l)(j^^-l) + (n-3)(J^_i -  J\g) + , . .  .|n-(n-li{jiji/2+j^ “ \ / 2 )  

^  ° (n-l)2 * („-3)2 * ............................. [ n - ( n - lp  ‘

(n-l) (^-A]_)+(n-3 ) )+(n-5)(-^„2"'^3^'^* * • * ’
“ ------------------  — - ________ (5)

n(n+l)(n-l)/l.2,3

where Aj. and are the f ir s t  and last temperature readings respectively.
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Determination of Integral Molar Heats of Mixing 

For binaiy systems, for the f i r s t  points, the (see Appendix 

I I  for symbols used) values were obtained by using the expression 

Q = (which is  inserted in the plot a t Xĵ , final)x(n^+n^ ) (6)

where Q is  given by

(7)

r4 LlBLO Æg

Here, (volts) is  the potential across R4, t  (seconds) is  the electrical 

heating time and r 4 (ohms) is  the resistance of R4 and is  calculated l?y 

?4 " V4 0.1̂267/72 (8)

For the next points

Q + (read from a plot at x^, in itia l)  x (n^ + nj) = (which 

is  inserted in the plot a t Xj|_, final) x (nj_+n '̂4ip (9)

Thus a plot of versus (xj^)^j, starting from (xj )̂^  ̂ = 0, is  construct­

ed, An identical procedure gives a plot of versus (2̂ )^^» starting 

from (x^)ij = 1,

For ternaiy systems 6 and ? (see Appendix I for abbreviations 

used) the expression

Q + (which is  read off the plot at x^, in it ia l)  x (nĵ +Uj+n )̂

" ZîMĵ jk (^hich is  inserted in the plot at x^,final) x (n^^+r̂ +n̂ +njj) (lO).

has been used to determine the ternaiy integral molar heats of mixing.

An identical procedure as that followed for systems 6 and 7 has been 

applied to system 8 for determining Z^i2>23(0, 0) and Z!!Hi2j23.

An independent calculation has been made which involves the exp­

erimental quantities in  each measurement and the partial molar heats of 

the corresponding binaiy systems, for each system 6 and 7» For system 8,
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the integral molar heats of mixing were similarly obtained, due account 

being taken of the partia l molar heats of the coirqponents in the ampoule 

(l^ ). The results obtained by th is  method, for the three ternaiy systems, 

are in  substantial agreement with the results obtained by the above graphi­

cal method.



CHAPTER V 

RESULTS ON TEST SYSTEMS

Table 2 lis ts  results of test deteniD.mtions of the heat of sol­

ution of KOI in HgO at 2^°C, The observed experimental Q values (obtain­

ed using Roth (20) method to calculate temperature changes) are a ll 

within 3̂  of the interpolated literature values (2l), The reaction and 

heating periods in each experiment were arranged to be the longest poss­

ible. Calculations indicated that corrections for enthalpy effects (22) 

in the. vapor on mixing and for reducing the experimental Q values to 

a standard temperature (25°C) were negligible.

In Table 3 are represented the experimental heats of mixing value- 

s for the quinoline - m-cresol system, the f i r s t  system investigated, and 

in Figure the experimental and literature values of the heat of mix­

ing have been plotted. The deviation from literature values is  explained 

by the fact that in  th is  te s t system each successive measurement, start­

ing from either end of the mole fraction scale, was made by adding a pure 

component to the mixture of the preceding experiment. In a ll subsequent; 

experiments the method was modified (see page lli) so that fresh mixtures 

were prepared for each measurement. In th is  way several independent det- 

eiminations could be cairied out for each concentration interval. The 

method of measuring potentials in  the calibration experiments gave

22
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Table 3 • Experimental integral molar heats of mixing for system 
quinoline - m-cresol

quinoline
(moles)

m-cresol
(moles)

^quinoline Q
(calories) (cal/mole)

- - 0 - 0

0 0.9356 0.0201 -108.3k -U 3.5

0.0192 II O.Olt22 -118.87 - 232.6

0.0ltl2 II 0.0636 -U8.55 r3k6.1

0.063k It 0.08k8 -118.29 -k53.9

0.0867 II 0.1051 -117.01 -555*8

0.1100 II 0.12k3 -108.96 -6k5 «8

0.1328 II 0.1k3k -U 2 .i l -73k.k

0.9092 0.1756 0.8187 -  88.52 -675.5
II 0.1507 0,8381 -  88.35 - 610.0

It 0.1265 0.8579 -  85.36 -5kl.O

0.97W 0.1101 ■ 0.882k -  69.67 -kkl.7

II 0.0867 0.8985 - 8k«28 -385.6

II O.O63? 0.9183 - 83.k8 -31k.7
II O.OkOO 0.9385 - 88.5k -2kl.2

II 0.0177 0.9606 - 8l.k6 -159.6

II 0 0.9822 -  80.55 - 81.1

- - 1.0000 - 0
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quinoline
Fig. L, Integral molar heats of mixing for system quinoline - m-cresol. 
Circles with dots, experimental; crosses, Tschamler and Krischai (23)
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Table it. Experimental integral molar heats of mixing for i^stem dicxanr 
chloroform

dioxan
(moles)

chloroform
(moles)

%LOxan Q ■ 
(calories) (cal/kole)

- - 0 - 0

0 1 .53701* 0.0271 - 109.78 - 69 «5

0 1.22721* 0.0281 - 93.1*6 -  7l*.0

0 0.92209 0.0371 -  86.79 -  90.6

0.07995 1.11*273 0.091,1 -  72.81 - 216.9

0.21280 0.99627 0.1986 - 56.09 -375.8

0.32318 0,8811*9 0.2918 -  1*1.03 -l*61*o3

0.1*6288 0.73137 0.1*037 - 18.39 -1*99.6

0.71*368 0.1*3211 0.601*8 -  1*7.77 -1*22.7

0.93650 0.231*28 0.7717 -  1*7.38 - 272.8

0.99697 0.12861* 0.8532 - 1*9.91* -178.6

1.16263 0 0.9670 - 1*8 .91* -  1*0.7

1.16209 0 0.9737 -  37.1*1 - 31.3

1
- 1.0000 - 0
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Fig. 3'. Integral molar heats of mixing for system dioxan - 
chloroform. Circles with dots, experimentalj crosses, Osipov, 
Panina and Tagulyan (2lt)



27

sÉLightüy low values for the electrical energy* This small source of 

error was remedied (see equation 8),

Use of equati.ons 6 and 9 for determining graphically the heat of 

mixing - composition curves have been demonstrated for gystem dioxan - 

chloroform. As Hgure 5 shows, the general agreement between eacperijnent 

(Table It) and litera tu re  (2);) i s  satisfactory, except for some details 

in  the concentration interv,al between x̂ jĵ Qxan “ 0,6 and = 0,8,



CHAPTER n  

RESüIirS

The results of the heat of mixing experiments for each of the 

binaiy systems trifluoroacetic acid - acetic acid, acetic acid - CCI4 

and trifluoroacetic acid - CCI4 are given in the respective Tables ^-7 

and are plotted in the corresponding Figures 6- 8 , All the deteimined 

values, for each binaiy ^stera, have been represented ty  the equation

= Xĵ (l-Xĵ ) (A+Bxĵ +Gx̂ +Dx̂  ) (u)

The constants (values given in Table 8) in equation 11 for the binaiy 

systems, computed by a least square plot of Z5I^j/xj_(l-x^) versus Xĵ , 

were used to obtain the calculated values.

The values were calculated as follows:

differentiating equation 11 with respect to x^, the relation 

dAH ĵ/dx  ̂B Xj^(l-x^)(B+2Cxĵ +3lbc|) + (A+Bx̂ +Gî +Bx̂ )( l-2Xĵ ) (l2)

is  obtained. Substituting for AĤ  ̂ and dAHĵ j/dXj[ in the relation

= AHĵ j + (l-3fi)dAHj_ydx^ (13)

and arranging in powers of x^ finally yields

(A%)ij = A +2(B-A)xi +(A-ltB+3C)x  ̂+2(B-3C+2D)x| +(3C-8D)x  ̂ +̂ Bx̂  (U+)

For the other component, J, substituting again for AHĵ j and 

for dùHĵ j/dXĵ  in  the relation

28
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and arranging in powers of one obtains

(AHj)ij = (iUB)x| +2(B-C):^ +3(C-D)x  ̂ + i l ^  (l6)

The calculated values, at integral mole fractions, of (equ­

ation n ) ,  (equation lit), (AHj)^j (equation 1$) and of the funct­

ion (utilizing calculated from equation l l )  for each binaiy

^stem are given in  the respective Tables 9-11, and the plots of these 

quantities, for each binaiy system, in  the corresponding Figures 6-8. I t  

may be pointed out that from accurately known (AH^)ij and (^ j) j[ j values 

and ly  use of the relation

(17)

values may be readily calculated.

The results for the two ternaiy systems 6 and 7 are given in the 

respective Tables 9 and 10, The results for ^stem 8 are given in Table 

lit and plotted in  Figure 11. ,
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Table Experimental and function AH31/X3XX for system 
trifluoroacetic acid - acetic acid

(moles)
n i

(moles)
X3 Q

(calories)
^ 3 1  - ^ 3i / x 3Xi

(cal/mole)(cal/mole)

0 0
0 1.72080 0,0183 -  78.32 - 1»!».7 -2!»92
0 1.76521» 0.0281» - 99.18 -  5!»»6 -1978
0 1.73267 0.0316 -12l».05 - 69.3 -2267
0 1.76106 O.O5O6 -15!».32 - 83.2 -1731
0 I . 752I43 0.0525 - 228.90 -123.8 -2l»88

O.II3W4 1.57109 0.08l»8 - 68.88 -182.0 - 23!»!»
O.Û7it70 1.65568 0.0888 -187.69 - 192.5 -2379
0,076148 I . 6I4O17 0.0901 -182.11 - 191.3 -2333
O.2261I4 I.I4O59O 0.151»1» - 55.61 -326.!» -2500
0.20857 I.I46I46O 0.1772 -173.1»!» -351.2 -2!»09
0.35659 I . 2I4O25 0.2379 - !»3.12 -l»6l.O -25!»2

0.32827 1 .27700' 0.2l»98 - 120.91 -1»62 »6 -2l»69
0.147336 , 1.06865 0.3l»l»8 - 90.1»8 -566.2 -2506
0.57123 0.91936 0.1»068 - 56.52 -59!».0 - 2l»62
0.60527 0.90237 0.1»360 - 62.22 -597.3 -2l»29
0.68371 0.81761» 0.1»671 - 22.80 - 601.6 -2l»3.7
O.67OI49 O.82I4I43 0.1»696 - 37.01 -600.0 -2!?.09

0.735U1 0.711»1»0 0.1»9G2 -  3l».29 -59!».9 -2381
O.7I4862 0.70133 0.!i9l5 - 51.21 -59!».5 -2379
0.69793 0.82031 0.1»9l»3 - 53.39 -593.7 -2375
O.81I4IO 0,65806 0 .5 0 7 7 -102.1»8 -590.2 -2361
0.7951»! 0.635L5 0.5398 -  3!».62 -579.3 -2332
0.9033!» Oo53 l»l»3 0.5772 -120.1»7 -560.2 -2296

I.IO6OI4 0.25538 0.7l»73 -101».83 -381.0 -2018
1.06989 0.27827 0.7658 - 67.78 - 388.2 -2161»
1 . 21091» 0.12092 0.8301 -197.85 - 292.7 -2075
1.2U22 O.II4725 0.83l»l -162.73 - 301.0 -2175
1 .22351» 0,08518 0.8716 -li»8.91 -22l»,l -2002
1.28753 0 0.9269 -189.18 -136.2 -2011

1.28817 0 0.9378 -167 .!»2 ' -121.6 -2088
1.27l»l46 0 0.9710 - 73.5!» -  56.0 -1991
I . 278I4I4 0 0.9717 - 58.38 -  !»!»«!» -1611»

1.0000 0
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Table 6, Experimental M3.2 and function Mig/xiXg for ^sbem 
acetic acid - CClj

n i
(moles)

n g
(moles)

X l Q
(calories)

^ 1 2
(cal/mole) (cal/mole)

- - 0 - 0 -

0 1.02116 0.0626 +2O.I46 +18.78 +320

0 l.Q193l( 0.0668 +2i;.58 +22,50 +361

0 1.020714 O.O73I; +27.68 +25.13 +370

0.05323 0.98958 O .I2 O I4 +17.37 +31.68 +299

0.121214 0.95039 0.1783 +20.21 +51.76 +353

O.25O9I4 0.86881 0,2806 +10.51; +61.58 +305

0,80185 ,0.147171; 0.6016 + 1;«77 +59.07 +2I46

1.16667 0.32681 O.752I; + 8.81 +i;5.17 +2I42

I.l|i4$l8 0.16715 0,8685 + 9.29 +27.12 +237

1.52691 0.12298 0.8927 +12.16 +23.08 +2I4I

1.59W2 0.08196 O.92I49 +10.35 +16 ,,814 +2I42

1.6655L 0.014151; 0.91;60 +11.86 +12,09 +237

1 .7 W 0 0.9719 +H.21 + 6,36 +233

I . 7266I4 0 0.9732 +11.75 + 6.62 +251;

1.72525 0 0.9750 +  6.614 + 3.75 +I5I;

1,7181(1 0 0.9755 + 9.71 +  5.51 +231

- “ 1.0000 - 0
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Table 7 • Experimental and function for eystem
trifluoroacetic acid - CCI4

(moles)
n3

(moles)
%3

(calories)(cal/4ole) ( ^ ^ o M

0 0
1.05022 0 0.0557 + 82.44 + 74.1 +nao
1.02071 0 0.0828 +116.52 +104.7 +1379

0.96561: 0 0,0922 +118.31 +D1.2 +1329
0.92717 0.08636 0,Hà7 + 63.59 +158.7 +1283
0.85297 0.15991 0,2178 + 55.71 +207.2 +1216

0.85259 0.22718 0.2590 + 44.82 +229.1 ' +1194
0.79973 0.2751:5 0.3220 + 41.41 +243.8 +1117
0.72773 0.36973 0,3821 + 44,24 +280.1 +1186

0.66827 0.1:3379 0.14:55 + 39.34 +286.1 +1158
0.621:35 0.50857 0,5046 + 41.61 +290.3 +U6I
0.58665 0.51a32 0,5237 + 30.48 +289.2 +U59

0.501:28 0,61:1:81: 0.5263 + 21,77 +289.7 +1162
0.1:0800 0,78238 0.6174 + 29.70 +284.8 +1206
0.3591$ 0.81:311 0.6687 + 26.62 +272.5 +1230

0,29226 0.90966 0,7135 + 40.35 +263.3 +1288
0.22800 0,98538 0,7505 + 61,38 +248.2 +1325
0.11:932 1.11276 0,8109 + 92.40 +200.4 +1307

O.O78O7 1.21765 0,8845 + 98.22 +141.9 +1389
0 1,2961:9 0,9198 +141.25 +100,2 +1358

1,0000 0
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Table 8, Constants for equations 11, ,llt and 16

system A B C D

GF3COOH .  GH3GOOH -2165 -2271 +Ü8L8 -2321

CH3COOH- CGI4 +363 -251 +168 -58

CF3GOOH- GGI4 +1516 -22k6 +1̂ 025 -l!3p

Table 9. Galcvdated integral and partia l molar heats of mixing and 
the function i^ 3i(calcd)/x3Xi for system trifluoroacetic acid acetic 
acid

Xa
(cal/moleJ

( ^ 3)31
(cal/molej (cal/molej

zSÎ3i{calcd)/x3Xx
(cal/mole)

0 0 -2165 0 -

0.10 "2U.1 -2011 -U -23k6

0.20 -391.0 . -I61il -79 - 2 i#

0.30 - 519.3 -12U -22it -2lj73

0.it0 -587.0 - 809 -W8 -2Wi6

0.50 -59Ü.8 -  It90 -700 -2379

0,60 -5W.2 - 265 -972 - 22QL

0.70 -ii.^6«8 -  125 -1228 -2175

0.80 - 330.7 -  w -llj.55 -2067

0.90 -177.7 -310 -I665 -3571

loOO 0 0 -1909 m
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Fig. 6 , Experimental AH31 (circles ifith dots); calculated 
(solid line); calculated (Æ3)ai (dot dashed line) and ( ^ 1)31 

(dashed line); functions /ÙH31/K3X1 (crosses) and Æ3i(calcd)/x3X]_ 
(dotted line) for system trifluoroacetic acid - acetic acid.
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Table 10, Calculated integral and partia l molar heats of mixing 
and function /^HigCcalcdVxiXg for system acetic acid -  GCI4

Xl
(cal/moleJ

( ^ 1)12
(cal/mole)

)l2
(cal/mole)

ZsHig(calcd)/xiX2
(cal/mole)

0 0 +363 0 -

0.10 +30,5 +297 +5 +339

0.20 +51.0 +180 +19 +319

0.30 +63.2 +123 +38 +301

O.LO +68,9 +82 +60 +285

O.SO +68.0 +52 +8I4 +272

0.60 +62.5 +31 +110 +260

0.70 +52.5 +16 +138 +250

0,80 +38,14 +7 +166 +2I4O

0.90 +20.8 +2 +I9I4 +231

loOO 0 0 +222 -
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+“!>■
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0.00 1.00

Fig.. 7. Experimental (circles with dots); calculated
(solid lin e );■ calculated (^x)i2 (dot dashed line) and (^k )ia 

(dashed line); functions (crosses) and Æi2(calcd)/xiX2
(dotted line) for system acetic acid - CCI4,



37

Table 11. Calculated Integral and partial molar heats of mixing and 
the function (calod)/xgX3 for system trifluoroacetic acid -  CGl̂

Xa
(cal/mole;

( ^ ) s 3
(cal/mole)

(^ 3 )2 3
(cal/mo].e)

^(calcd)/x2X3
(cal/mole)

0 0 0 +1516 -

0.10 +119.6 +27 +956 +1329

0.20 +193,9 +77 +666 +1212

0.30 +2I1I.7 +125 +512 +1151

0.1i0 +273.1 +178 +ltl7 +3138

0.50 +289.5 +2W +333 +1158

0.60 +288.1i +359 +2it2 +1202

0.70 +261t.2 +531 +151 +1258

0.80 +210.2 +773 + 69 +13ÜI

0.90 +122.3 +1072 + 18 +1359

1.00 0 +1381 0 -
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Table 12. /^i23(0,0) and along n^/nz = 0,10921 for system 
acetic acid - CCI4 -  trifluoroacetic acid (system 6)

ni
(moles) (moles)

%i ;  Q  ̂  ̂ ^ 123(0.0) 
(calories) (cal/mole)

^123
(cal/mole)

- - 0 - 0 +116.5

0 0,05091 0,01:68 -51*1:2 -1:7,2 + 63,8

0.03563 0.05029 0,0775 -1:0.1:3 - 68.2 + 37.7

0 0,09819 0,0852 -80,91 - 70.2 + 36.1:

0 0,10109 0.0869 -81&.01 -72.2 + 3l:,2

0.07389 O.O6O39 0,1186 -23.1:3 - 8O.5 + 21.8

0,07562 0.10707 0,151:7 - 26.62 -80.8 + 17.1:

0,11089 0,10085 0.1780 -ll:.03 -86.0 + H:.5

0.1561:5 0,10826 0.2181: - 7.51 - 82.7 + 11.5

0.22377 0,12061: 0.2739 - 1:«85 - 81.1: + 7.2

0.31:782 0.11081 0.31:72 -  1.67 . -71: .6 + 5.1
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0.30 0, 1̂0 0,200.200.100.00
Xi -»

Fig, 9. Experimental/!^i23(0,0) (circles vith dots), 
experimental ^1x23 (squares with dots) and calculated ^123 (solid 
line) for system acetic acid - CCI4 - trifluoroacetic acid, along
ng/n2 = 0,10321»
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Table 13# Experimental ZiHaigCOjO) and along ni/cg » 0,11317 
for sgrstem triflaoroacetic acid -  acutic acid - CCl  ̂ lestera 7)

na
(moles)

na
(moles)

Xa Q
(calories)

/^312(0>0)
(cal/mole)

^312
(cal/mole)

- “ 0 - 0 + 33.1

0 0,01̂ 029 0.0359 -10,00 “8.9 + 23.0

0 0,05698 0,0507 -11,29 -10.0 + 21,1:

0 0,1033$ 0.087U - 2.13 -1,8 + 28.1:

0.0ll078 0,07731 0.1021 +3.7.17 +6,5 + 35.9

0.09938 0.097li2 0.166!: +57.86 + # .0 + 76.9

0.26050 0.05978 0,2701 +28.95 +106.5 +131.6

0 .3 9 # 0.08873 0,391:0 +31.88 +158,2 +175.1

O.5126I& 0.0781̂ 0 0,1:909 +22.39 +185.0 +19l:.8

0,83008 O.IO3W: 0.7150 +11.90 +175.0 +189.0
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+250

+200+200

^312
cal/mole

+100+100

~  0

0.00 1.00
X3

Fig. 10, Experimental AHaigCOjO) (circles with dots), experimental 
^312 (squares with dots) and calculated M312 (solid line) for system 
trifluoroacetic acid - acetic acid - CGl* along ni/ng = 0,11317 (system ?)



Table lii, Sbcperimental ^ 3.2>23(0*0) and ^ i z , z 3  along ni/ug = 0,107551 
and along na/na = 0,10111 for ^stem acetic acid -  CCI4 -  trifluoroacetic 
acid (system 8)

(moles) (moles)
X3 Q

(calories)
^ 12,23(0*0 ) /%2>23 
(cal/mole) (cal/mole)

- - 0 - 0 + 32.8

0 0.10582 0,0036 -6,19 -5.5 + 30.5

0 O.IO32I: 0,001:7 -7.75 - 6.9 + 30.1

0.0053lt 0,09825 0,0100 -7.98 - Ik .l + 27.6

0,0l80li 0,081|16 0.0218 -6.85 -27 .k + 25.5

0,06351 0,03 m 0,0565 - 7.14k - 35.3 + k9.0

0,07613 0,02121: 0.0671: - 6,69 - 2k.5 + 68 ok

0,08732 0,0091:2 0.0782 -7 . à -i5 .k + 87,3

0,082li6 0 0.085k -7.27 " 7 .5 +101,7

0,051:87 0 0.0862 -7,05 -  6 ,k +103.5

- - O.O918 - 0 +115.0
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Fig, 11, Experimental ^12,23(0,0) (circles iri.th dots) and 
calculated /^i2»23(OfO) (dotted line); experimental ^12,33 (squares 
Tdth dots) and calculated -^12523 (solid line) for ^stem acetic 
acid - CCI4 - trifluoroacetic acid, along n%/n2 = 0.1075  ̂ and along 
na/n2 = 0.10111, (system 8),



CHAPTER n i  

DISGÜSSIPN

The positive and slightly aqynmietric heat of mixing - composition 

curves for systems acetic acid - CCI4 and trifluoroacetic acid - CCI4 are 

ascribed in part to  the breaking of hydrogen bonds between the self-associa­

ted acetic acid and trifluoroacetic acid molecules. The more positive heat 

of mixing values for %rstem trifluoroacetic acid - CCI4, as compared to 

the system acetic acid - CCI4 (at identical mole fractions of CCI4) is  

in accord with the fact that perfluoroalkane - alkane liquid mixtures show 

large deviations from ideality . I t  may be pointed out that the thermodyna­

mic quantities of perfluoroalkanes - alkanes can be obtained with remar­

kable accuracy i f  the interaction energy between unlike molecules is  cal­

culated (not by the geometric mean law, but) by a suitable approximation 

to the London theory of dispersion energy {2$) and (26).

For the system trafluoroacetic acid - acetic acid, the rather 

large negative heat effects and the nearly sy^e trica l heat of mixing - 

composition curve suggest the formation of a 1:1 hydrogen bonded complex 

and indicate that the interaction energy between trifluoroacetic acid - 

acetic acid is  the dominating factor. The penamenon of preferential 

hetero-dimerization (6), (?) and (8) may be due in  part to the formation 

of a zwitterion structure (l5 )

k$
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+ ^ O H  0 : ^ -
CPg-CC ^C-CHa

(see pages 2 and 3).

That the exothermic interaction energy between trifluoroacetic 

acid and acetic acid predominates even in dilute solutions of either acid 

in  CCI4 may be noted from the in it ia l  portions of the heat of mixing - 

conçosition curves (figures 9 and 10) for the respective systems 6 and ?• 

Some support for the 1:1 lydrogen bonded complex is  given by the marked 

change of slope of these curves in the regions where the concentrations 

of the two acids (in each of the two ^sterns 6 and 7) are approximately 

equal.

The exothermic intercation between trifluoroacetic acid and acetic 

acid is  more pronounced even in veiy dilute solutions of the two acids in 

CCI4 (qystem 8) as has been shown^rom calculations of the partia l molar 

heats in the ternary systems from! the knovm partia l molar heats of the 

corresponding binary systems (27). The calculations are based on Kohler s 

assumption that the 1-2 interactions do not depend on the number of 3-mol­

ecules in the surrounding of the contact. These calculations reveal that 

the presence of the th ird  component makes the contacts more exothermicj 

more precisely, the values are more exothermic ( or less endother­

mie than the experimentally determined ones. Two possible reasons have 

been offered for th is behaviour. F irst -  due to cross-diraerisation. For 

i f  one adds a very small quantity of trifluoroacetic acid to the 1:9 

molar standard binary mixture acetic acid - CCa.4, most of the CF3COOH would 

go into the energetically favoured cross-dimers and one would not have to
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furnish the heat of dissociation for the homo-dimers as one would have 

to  furnish when trifluoroacetic acid is  mixed with pure CCI4, The second, 

possibility is  the foimation of some zwitterions which could polarize the 

F-atoms veiy effectively and prcivide ty  th is  inductive energy and exother­

mic contribution to the overall interaction energy (l$).

ÈR. alternate method of treating heat of mixing data in the CCI4 - 

rich regions is  to interpret heat effects in terms of the heterc- and 

homo-dimerlzation reactions of the acids. Although polymers higher than 

the dimer may form, i t  is  assumed that the data in the ternary system 8 

can be explained in terms of the reaction

(CF^COOHjg + (GHsCOOH)^ 2(CF3C00H.CH3C00H) 

in C 0 .4, Changes in solvation of the individual dimers resulting from 

variations in thé relative amounts of trifluoroacetic acid and aceti.c acid 

are neglected.

For system 8, le t  x = to ta l mole fraction of acetic acid, a-x  ̂

to ta l mole fraction of trifluoroacetic acid and 1-a = mole fraction of 

CCI4, where a = 0,0? and y = mole fraction of cross-dimers formed. Then, 

substituting in  the expression for the equilibrium constant^ K, for the 

above reaction one obtains

_ _ s ! ----------  = It Ü8)
U°y)U-x-yj 

2 2

Also, ^i2,23(0»0) = yW n) (19)
2

where AHg is  the enthalpy change for the above reaction. Eliminating y 

in  equations 18 and 19 and subs-bituting z = ^ i 2#2a(0, 0)/(^ j)) yields

■Tx i l f L » )  '  (20)



Rearranging and substituting for z, finally yields

x(a-x) - a = (lt/K-l)(l/ZSH;p) (2l)
23 2

The intercept of a plot of x(a-x.)/ZiHi2,33(0, 0) versus 33(0, 0) 

gives AHjj and from the slope and the known value of AHp, K may be cal­

culated. '

Equation 21 has been applied to the data in  Figure I t ,  yielding 

AHp = 2.5 kcal/mo].8 and K = 16. I t  is  observed (Figure 11 ) that the cal­

culated AHi3,33(0, 0) curve, from these values of AHp and K, jind experim­

ental values are in  good agreement.

In figures 9-H  are calculated values of AH133, AH313 and AHi3,33 

for each of the respective ^sterns 6,7 and 8, in  which the mole fraction 

of CGI4 is  greater than 0,$. There is  excellent agreement between the 

predicted and experimental integral molar heats of mixing in the regions 

where X3 is  greater than 0,9. At values of Xg less than 0.9, systematic 

deviations between theoiy and experiment occur. I t  is  interesting to note 

that in  system 6 a value of AHp 2^  grsater than the value chosen would 

bring the calculated and observed curves into close agreement at the higher 

values of Xi. On the other hand, a greater value of the parameter AHj) 

would lead to poorer agreement between the calculated and experimental 

curves for qystem 7.

I f  i t  is  assumed that the reaction

(GF3GOOH)g + (CH3G00H)3 2(GF3G00H.CH3G00H)

adequately accounts for the heat effects in  the two limiting regions of 

the binaiy system CF3COOH -  GH3GOOH, values of AHp may be calculated 

from the limiting values of the partia l molar enthalpies of the respect-
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ive species present as the minor component. In the trifluoroacetic acid - 

rich region the value AHg = 38OO cal/mole has been obtained and in the 

acetic acid - rich region the values calculated has been AHjj = ^3^0 cal/ 

mole. Thus the interaction betwen CF3COOH and CH3COOH appears to be more 

exotheimic when the pure acids are mixed than when the mixing occurs In 

the CCI4 -  rich region.

Errors in reported values of integral molar heats of mixing are 

believed not to exceed 3^ except in  mixtures where the integral heats 

are veiy small. In systems where heat effects were small i t  is  believed 

that the absolute error in  the integral heat of mixing did not exceed 

4 cal/mole. These estimates ai'e based on a) a comparision of literature 

and present results b) and examination of the discrepancies between exp­

erimental integral molar heats of mixing and values calculated from the 

computed least square polynomials representing heat data and c) an error 

analysis introduced in  the calculation of temperature differences from 

temperature - tjjne data. An internal check on the consistency of the pre­

sent results is  provided ty the values of integral heat of mixing obtained 

independently from data for the ternaiy systems 6 and 7 a t the point where 

the two acids are present in equal concentration. From the data for qystem 

6 the calculated integral heat of mixing for mixture at x% = 0 ,09, Xg = 

0,82 and X3 = 0,09 is  31 cal/molej from the data for system 7, the exp­

erimental integral molar heat of mixing a t identical concentrations as in 

system 6, is  31*7 cal/mole.

Results of the present investigation, in  addition to  providing 

quantative heat data for the binaiy and ternaiy ^sterns, indicate the imp­

ortance of hetero-dimerization in deteimining the conditions under which



5 0

exotheimic mixing occurs. In the binaiy system, trifluoroacetic acid - 

acetic acid, the tendency toward formation of hetero-aggregates is  great 

enough to overcome the expected endotheimic interaction between CF3T and 

CH 3- groups. For ternaiy solutions in which C C I4 is  the major component, 

the preferential formation of complexes between trifluoroacetic acid and 

acetic acid partially obscures the tendency toward endothermie mixing exp­

ected for contacts between CGI4 and the individual acids. I t  is  hoped that 

in  the near future further studies will be made of the heat effects and 

equilibrium properties relating to hetero-association reactions of carboxy- 

l ic  acids.



CHAPTER n i l  

SUMMiffir

The heats of mixing at approximately 2^°C have been determined 

for binaiy systems and for some concentration lines ija the CCI4 -  rich 

regions of the ternaiy systems, formed by mixtures of trifluoroacetic acid, 

acetic acid and CGI4, Small heat effects, of œ arly the same order of mag­

nitude, have been measuied for each ^stem so as to minimize errors due to  

heat exchange with the surroundings. Purtheimore, errors arising from cor­

rosion of the calorimeter material and from the presence of moisture have 

been veiy carefully avoided, Roth’s (20) method has been employed to  cal­

culate the magnitudes of the temperature changes.

The integral molar heats of mixing values have been obtained graph­

ically  and the partia l molar heats (for the three binaiy ^stems) have 

been calculated by an expression derived from an analytical equation rep­

resenting the integral molar heats of mixing. The temaiy integral molar 

heats of mixing have also been calculated u tilizing the knovm partia l 

molar heats of the corresponding binaiy systems (l^ ). The results are in 

substantial agreement with those determined graphically.

The maximum value of the heat of mixing - composition curve for 

system trifluoroacetic acid -  CCI4 has been found to be more endotheimic 

than that for the system acetic acid - ÔGI4 . She heat effects for system 

tilfluoroacetic acid -  acetic acid have been found to  be strongly exother^

51
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mic. Calculations of the ternary integral molar heats of mixing (based 

on Kohler^s assumption that the strength of the interaction along a 1-2 

contact is  independent of the number of 3-molecules (2?) have been made, 

Prom a comparison of the calculated with the experimentally determined 

tem aiy heats i t  follows that the exothermic interaction energy between 

trifluoroacetic acid and acetic acid predominates even in CGI4 - rich 

solutions and that the exothernic interaction energy between the two acids 

is  even more exothermic in the presence of lagre excesses of GCI4 than i f  

part of the GG],̂  were absent ( l5).

Predicted values of the ternaiy integral molar heats of mixing 

have been obtained by assuming that the reaction

(CF3CG0H)2 + (GHaCOOHjg t  aCCFaCOOH.CHaCOOH) 

predominates, insofar as the acid species are concerned, in the GGI4 - 

rich regions of the ternaiy systems. The ternaiy integral heats of mixing 

calculated by th is approach are in  good agreement with the experimentally 

determined values.
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ABBREVIATIOIJS FOR SÏSTE1©

System Abbreviation

quinoline - m-ere sol ................................................................. 1

dioxan - chloroform  ...........................................    2

trifluoroacetic acid - acetic acid ..................................   3

acetic acid - CCI4 ....................................................................  1|.

trifluoroacetic acid - CCI4 .....................................................  5

acetic acid - CCL4 -  trifluoroacetic acid along
na/n^ = O.IO32I  .............................................   6

trifluoroacetic acid -  acetic acid - CCI4 along
m/ng = 0.11317 .......................................................................... 7

acetic acid - CCI4 - trifluoroacetic acid along
ni/ng = 0,107^^ and along na/ng = 0,10111    .........................  8

heat of solution of KOI ...........................................................  $
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LIST OF SYMBOLS

n i,

na,

(ni+Dj),

“i»

n^,

ACc°C,

Q,

4 i j*

^12  3 > 

^312(0)0)^

^312»

moles of acetic acid 

moles of CCI4

moles of trifluoroacetic acid

standard binaiy mixture i .e . ,  = constant (for
temaiy ^stems)

moles of component i  in  the mixing vessel

moles of component i  in  the ampoule

mole fraction of component i  in the binaiy qystem i - j

tençerature change in the mixing experiment

temperature change in the calibration experiment

measured heat change

p artia l molar heat of mixing of conçonent i  in the binaiy 
system i - j .  " \ q} where %o ® enthalpy content
of pure component i)

integral molar heat of mixing, defined as cal/mole of 
mixture, when pure components are mixed

^123 less at (xs)23 “ 0.0936

integral molar heat of mixing along ns/n^ = 0.10321

AH312 less ^12  (x i)i2 “ O.IO17

integral molar heat of mixing along n^/na = 0,11317

56
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^ i 2>23(0»0)j ^ i 2>23 less the additive value of the binary integral
molar heats of mixing in the corresponding binaiy systems 
at (x i)i2 = 0,0971 and (x3)g3 '= O.O918

^X 2»23» integral molar heat of mixing along %/% = 0.10755 
and along na/ng = 0,10111

heat of hetero-dimerization

(+) signs represent endothermie and (-) signs exothermic quantities
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An Example of the Application of the Roth (20) Ifethod

The following is  a sample calculation of temperature change

(for exothermic mixing) ly the Roth method, (For the theoiy of the

method see Chapter 17).

Fore period 
temperatures (°C)

2L.3Ü9
2lt,365 2hJ6à -  2li.3l|9 = + 0.107 0.10? x 7 « 0.7l9
2li.380 2it.l4iO - 2ii.36g = + 0.0?$ 0.0?5 x 5 = 0.375
2k*39k 2li.it26 - 2L 38O = + 0.01)6 0.01)6 x 3 = O.138
21).1)10 21).1)10 - 2l).39l| = + 0.016 0.016 X 1 = 0.016
21).1)26 Sum = 1.278
2l).W)0 
2l).l)56

Since n = 8, n(n+l)(n-l)/l,2.3 ° 81)

Hence from equation 5« Oj, = 1.278/81) = +Û.O152

Multiplying ty  7 and adding to 2k,3k9°i 0% ty 6 and adding to 2l).365° 

and so forth, one gets

21).31)9 2i).365 2l).380 2l).39l) 2l).l)10 2l).l)26 2l).W)0 2i).l)56
+0.1061) +0.0912 +0.076 +0.0608 +0.01)56 +O.O3OI) +0.0152 +0.000
21).1)55 2l).l)56“ 21).1)56 2i).l)55 2l).l)56 2i).l)56 2l).l)55 2 ^ ^

The corrected last temperature and the mean temperature of the fore

period are ©i = 2l).l)56°C and = 2l).l)03°C, respectively.
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After period 
temperatures (°C)

2L.693
21+.710 2^.787 - 2Ü.693 = +0.0?k 0 .%  x 7 = 0.6$8
2L720 2it.773 - 2U.710 = +0.063 0.063 x 5 = 0.31$
2L.732 2L760 - 21&.720 = +0.01̂ 0 O.OljO x 3 = 0.120
2lt.7ii6 2l|.7li6 -  2L.732 = +0.011; O.Oli; x 1 = O.Ollt
21;.760 Sum = 1.107
21;.773 
2L.787

Since n= 8, ftom equation $, Gg = 1.107/81; = +0.0132 

Multiplying Gg Igr 0 and subtracting from 2l;.693°Oj Gg Tqy 1 and subtract­

ing from 2i;.710®C and so forth, one gets

21;.693 2l;.7lO 2l;.720 21;.732 2L.7L6 2l;.760 2i;.773 2l;.787
-0.000 -0.0132 -0.0261; - 0.0396 -0.0$28 -0.0660 -0.0792 -0.C921;
21;.693 2L.697 ‘'C W  2 ^ 6 ^ 2l;.693 2l;.6?l; 2l;.69l; 2l;.695

The corrected f ir s t  temperature and the mean temperature of the after

period are 6g = 2l;.69l;°C and 0g = 2l;.7l;0°C, respectively.

From equation 2, k = -0,00$9

Reaction period 
temperatures (°C)

e (e -  e j k(e - k(e -  ^ )  + Gi
2l;.l;$6
2l;.$70 24.$13 +0.U0 -0.0007 +0.014$
21; .$96 . 24.$83 +0.180 -0.0011 +0.0141
2L.612 24.604 +0.2(^ -0.0012 +0,0140
2L.630 24.621 +0.218 - 0.0013 +0.0139
2l;.6l;0 24.63$ +0.232 -o.coi4 +0.0138
2l;.6$6 24.648 +0,24$ - 0 .001$ +0.0137
2l;.670 24.663 +0.260 -0 .001$ +0.0137
24.680 24.67$ +0.272 -0.C016 +0.0136
24.693 24.687 +0.284 -0.0017 +0.013$

\ Sum = +0,12$

or, )|k(e - 0i) + g]  = 0.12$°

Substituting for Og ĵ = 0g -  ©j_ = +0.238° and for /{k(0 -  6i) + GiJ 

=+0.12$ in equation 1;, the value of Qj.j.yg or = 0.113 is  obtained.


