```
    This dissertation has been 64-5172
microfilmed exactly as received
WADDELL, Dwight Ernest, 1927-
    STATISTICAL ANALYSIS OF THE FUSULINID
    GENERA FUSULINELLA, FUSULINA, WEDEKIN-
    DELLINA?, AND TRITICITES IN THE ARDMORE
    BASIN, OKLAHOMA.
    The University of Oklahoma, Ph.D., 1964
    Geology
    University Microfilms, Inc., Ånn Arbor, Michigan
```

STATISTICAL ANALYSIS OF THE FUSULINID GENERA FUSULINELLA FUSULINA, WEDEKINDELLINA?, AND TRITICITES
IN THE ARDMORE BASIN, OKLAHOMA

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY
DWIGHT E WADDELL
Norman, Oklahoma

1964

STATISTICAL ANALYSIS OF THE FUSULINID CENERA FUSULINELLA, FUSULINA, WEDEKINDELLINA?, AND TRITTCITES

IN THE ARDMORE BASIN, OKLAHOMA

DISSERTATION

Abstract

STATISTICAL ANALYSIS OF THE FUSULINID GENERA FUSULINELLA,

 FUSULINA, WEDEKINDELLINA?, AND TRITICITES I.NTHE ARDMORE BASIN, OKLAHOMA

A total of 17 fusulinid species from the Pennsylvanian System in the Ardmore Basin, Oklahoma, are described, of these four are new. In connection with the investigation a multivariate method is presented for treatment of the principal morphological features of fusulinids. The statistical presentation is based upon the dimensions of half lengths, radius vector, protheca thickness, septal count, tunnel width, and proloculus. The texonomic, and evolutionary investigations are supported by both univariate and multivariate statistical methods. Hotelling's T^{2} and the linear discriminant function are presented in detail to facilitate biomatric analysis. Confidence intervals are given which provide a means of precisely stating what is meant by the range of some measurement when the range is based upon sample data. It is postulated that in comparing the many variables it is possible to test the statistical significance of the observational data.

Most of the existing confusion in the Ardmore Basin stratigraphy is the result of confusing lithostratigraphic units and biostratgraphic zones. Those formations which are not lithologic entities but are bio-zones are rejected. Formations thus rejected include the Golf Course, Lake Murray, and Big Branch.

The lithology and stratigraphy of the Pennsylvanian Dornick Hills, Deese, and Hoxbar Groups is presented. The Dornick Hills Group includes rocks of Morrowan, "Atokan", and Desmoinesian Age and is characterized by the fusulinid genera Fusulinella, Fusulina, and Wedekindellina. The Deese Group is Desmoinesian in age and contains the genera Fusulina, and Wedekindellina. The Hoxbar Group is considered Missourian in age and possesses the fusulinid genera Wedekindellina ?, and Triticites. Fusulinid evidence indicates that conglomerates on the so-called west limb of the Overbrook anticline are Desmoinesian in age and not "Atokan" as generally considered.

The identification and correlation of the fusulinids of the Ardmore Basin with those of adjacent areas will increase the usefulness of existing valid stratigraphic names in this structurally isolated provence.

This study is submitted as partial fulfillment for the degree of Doctor of Philosopiny．Portions of the study were supported by The Southern Fellowship Fund，Okiahoma Geological Survey，and the Oklahoma Chapter of The Society of The Sigma Xi．To these organizations the writer is grateful．

The problem was directed by Dr ．E．A．Frederickson whose council and supervision are gratefully acknowledged．

Members of the writer：s doctorial committee who read the manu－ script and made availabie their advice and guidance are：Dr。D．B．Kitts， Dr。C．A．Merritt，and Dr。B。C。Branson．To these men the writer is grateful．

To Mr．Charles Maudilin for advice in programming methodology and to Dr．Raymond L．Roth，St．Bonaventure College for critical review of the statistical portion of the dissertation the writer offers grateful acknowiedgment．

Particularly the writer is grateful to Mr．William Bellis， graduste student，for photographic assistance and Mr．I＇om Rowiand， Oklahoma Geologicai Survey，for drafting the columnar sections．

This study couid not have been completed without the encourage－ ment and moral support provided by my wife＂Jerry＂S．Waddell．

Lastly to the Fellows of F．E．S．A．，I gratefully acknowledge intangible benefits from constant encouragement to maintain rationality．

TABLE OF CONTENTS

PageLIST OF ILLUSTRATIONS vii
List of Figures vii
List of Tables vii
INTRODUCTION. 1
Purpose of Investigation 1
Previous Investigations 2
Location of Area 6
Method of Investigation 6
LITHOSTRATIGRAPHY 8
Stratigraphic Philosophy 8
General Description 11
Dornick Hills Group 12
Deese Group 22
Hoxbar Group 27
STATISTICAL METHOD 30
Characters and Measurements 30
The Population 34
The Sample 35
Univariate Statistics. 36
Multivariate Statistics and Application. 38
The Linear Discriminant Function 47
SYSTEMATIC PALEONTOLOGY 53
Fusulinella dakotensis 53
Fusulinella vacua 55
Fusulina insolita 59
Fusulina mutabilis 62
Fusulina pumila. 65
Fusulina plattensis. 67
Fusulina cf. F. novamexicana 70
Fusulina euryteines. 72
Fusulina erugata 77
Fusulina haworthi 79
Fusuling aff. F. whitakeri 83
Fusulina acme 84
Wedekindellina ? ardmorensis 87
Triticites tomlinsoni 90
Triticites irregularis 92
Triticites primarius 95
Triticites newelli 98
STRATIGRAPHIC CONCLUSIONS 101
SELECTED REFERENCES 104
EXPLANATION OF PLATE I. 111
EXPLANATION OF PLATE II 113
EXPLANATION OF PLATE III 115
EXPLANATION OF PLATE IV 117
EXPLANATION OF PLATE V 119
EXPLANATION OF PLATE VI 121
EXPLANATION OF PLATE VII. 123
EXPLANATION OF PLATE VIII 125
EXPLANATION OF PLATE IX 127
EXPLANATION OF PLATE X 129
EXPLANATION OF PLATE XI 131
APPENDIX I 132
APPENDIX II 198

LIST OF ILLUSTRATTONS

Figure Page

1. Composite Columnar Section 9
2. General Mature Shape of Fusulinids 32
3. Chomata Development 33
4. Shape of Polar Extremities 33
5. Degree of Septal Fluting. 34
Table
6. Measurements of Six Characters on 17 Specimens of Fusulina cf. F. novamexicana and 16 Specimens of Fusulina euryteines 41
7. Values of d_{i}. 42
8. Values of d_{i}. 49
9. Index Values R, of Specimens Possessing Six Volutions, of F . cf. F 。 novamexicana and F . euryteines 50
1

STATISTICAL ANALYSIS OF THE FUSULINID GENERA FUSILINELLA, FUSULINA, WEDEKINDELLINA?, AND TRITICITES
 IN THE ARDMORE BASIN, OKLAHOMA

INTRODUCTION

Burma (1948) indicated that of the invertebrate fossils, fusulinids have been studied under a quantitative guise more consistently than other groups. The word quantitative should read quasiquantitative, because the practice of tabulation of raw data and computing the average of the \underline{k} th variable of a sample do not constitute a quantitative method.

Such workers as Thompson, Dunbar, Condra, Henbest, and many others have made significant contributions to fusulinid morphology, phylogeny, and stratigraphy. However, methods of comparison of samples which have been largely ignored in the past are available and should be utilized.

Purpose of Investigation

The purpose of this investigation was two-fold: (1) to consider the application of the statistical method and the computer to the morphology and distribution of characters of fusulinids both geographically and in time, and (2) to characterize and describe the genera

Fusulina, Fusulinella, Wedekindeilina? and Iriticites in the Ardmore Basin of Oklahoma.

Previous Investigations

A brief chronologic history and development of the terminology applied in the Ardmore Basin above the Jolliff Limestone Member is presented below.

1903: J. A. Taff (p. 5) first mapped and described the rocks cropping out south of the Arbuckle Mountains. He assigned the name Glenn Formation to the sedimentary section overlying the Caney Shale and below the "Franks" Conglomerate and recognized an early Pennsyivanian age for the fossils present.

1922: W. L. Goldston (p.7-13) recognized the conformable nature of the Caney-Glenn contact and subdivided the Glenn formation into five members (ascending): Springer, Otterviile, Cup Coral, Deese, and Hoxbar.

1923: G。H.Girty, and P. V. Roundy (p. 331-341) disagreed with Goldston on the selection of the lower and upper limits of the Glenn Formation and suggested that his Hoxbar member was stratigraphically above the Glenn as recognized by Taff, and the Springer and Otterville Members were below. The mapping of the Springer Formation about the Criner Hills by Goldston ($p, 7$) was shown to be wrong and they suggested that these rocks are as young as Hoxbar.

1926: H. D. Miser mapped the Glenn Formation as defined by

Goldston in the Ardmore Basin with the exception of excluding the Springer Member.

1929: C.W. Tomlinson (p, 11) raised the Springer and Hoxbar Members of Goldston to formation rank and subdivided the remaining sedimentary units into a lower Dornick Hills Formation and an upper Deese Formation.

1933: W. Mo Guthrey, and C. A. Milner mapped the area south and southeast of Ardmore, Oklahoma. Three new member names were suggested on this map, the Rockpoint Conglomerate, Williams Member, and the "Hollis" Sandstone-Limestone, all in the upper Deese Formation. The map also showed that Tomlinson's Confederate Member and Westheimer Member were the same unit. The map is unpublished, but Tomlinson (1937) who first published the names Williams and "Hollis" gave Guthrey and Milner credit as the authors of the names. The name Rocky Point (replaces Rockpoint on map) was apparently first published by Dott (1941) aithough Tomlinson (1937) showed the unit in his outcrop map of the Ardmore Basin.

1934: C.W. Tomiinson (p. 1085) acknowledged the corrections resulting from Guthrey and Milner's mapping, and made a further correction by indicating trat the Union Dairy and Crinerville Members were one and the same and he suppressed the name Union Dairy。

1934: F. W. Floyd and D. C. Nufer (p. 10-11) proposed the name Big Branch for rocks of the interval from the top of the

Lester Member to the top of the Pumpkin Creek Member. 1936: J. Westheimer (p. 5) removed the "basal, nodular, white, dense limestone" of Tomlinson (1929, p. 34) from the Pumpkin Creek and applied the name Frensley Member.

1937: C. W. Tomlinson (p.1) proposed the name Natsy for rocks with the preoccupied name "Hollis."

1941: R. H. Dott (p. 1664-1668) presented a general discussion on the Ardmore Basin stratigraphic elements. 1945: M. G. Cheney et al. (p. 143) employed the name Goddard for the first time in the literature although the name was first used by J. Westheimer.

1954: A. P. Bennison (p. 913) proposed the name Target Limestone Member for a limestone which he mapped in secs. 2, 3, T. 3 S., R. 2 E., 60 feet below the Lake Ardmore Sandstone of the Springer Formation.

1954: H. D. Miser, on the latest edition of the Geologic Map of Oklahoma, mapped the Goddard Shale as the basal member of the Springer Formation. The Dornick Hills, Deese, and Hoxbar were mapped as formations.

1956: B. H. Harlton (p. 139-142) proposed the name Lake Murray Formation to include the rock strata from the top of the Otterville Member to the top of the Frensley Member. The new name Golf Course Formation was proposed for strata from the base of the Primrose Member through the Otterville Member. He also modified the Big Branch Formation by raising
the base from the top of the Lester Member to the top of the Frensley Member, and subordinated the name Lester to the rank of bed in the Frensley Member.

1956: I. C. Hicks et \&i. (p. 4 footnote 1, forward) elevated the Springer, Dornick Hills, Deese, and Hoxbar Formations to Group rank.

1956: J. Mo Westheimer, and F。P. Schweers (p. 146-147) proposed the name Dolman Formation for beds in the subsurface which occur between the Anadarche Limestone and the Crinerville Limestone. (This name is preempted by the Dolman Gneiss, Devonian, Newfoundland, 1954).

1957: C. L. Ramay (p. 45) formalized the name Camp Ground Member by publication although it was proposed informally by I. C. Hicks in 953 after consuitation with the Board of Geoiogic Names.

1959: C.W. Tomlinson, and W. McBee, Jr. (p. 461-499) have a revision of their 1959 article in The Pennsylvanian System in the United States with editorial corrections by C.C.Branson ($p .479$-480). These corrections were based upon an unpublished Master of Science thesis (1959) concerning the "Atokan"Desmoinesian boundary in the Ardmore Basin.

1962: E.A. Frederickson (p. 295-296) described the surface extent of the type section of the "Dolman" Formation. (Name preempted).

Location of Area

The area studied includes the outcropping Pennsylvanian strata above the Golf Course Formation in Carter and Love Counties, Oklahoma. Most of the field work was confined to the area south of the city of Ardmore because of the structurally uncomplicated nature of the southeast limb of the Overbrook anticline. In addition, formations of the Brock anticline and Pleasant Hill syncline were sampled for correlation purposes with the standard of the Overbrook anticline.

Metnod of Investigation

Approximately 2,000 thin-sections of fusulinids from various strata were prepared and examined. Measurements, explained later in the text, were taken from both the sagittal and axial sections.

In keeping with the practice of other fusulinid workers, the mean of each volution was computed. Also the standard deviation, and a 99 percent confidence limit about the mean was computed for all the volutions. These are presented in the tables in Appendix II.

It was considered that genera are purely subjective entities, therefore generic differertiation was based upon the broad aspects of general morphology utilized by most workers in the field. Because it is believed that species differentiation in the fusulinids is primarily based upon degree of character difference, a statistical test which would consider many characters simultaneously was utilized. Hotelling's T^{2}, a multivariate generalization of Studertis-t, was programmed for the IBM 1620 computer . This test was applied when there was doubt as to the
affinities of samples from different stratigraphic or geographic locations.

A linear discriminant function was utilized to place a small sample of individuals into their most probable population on the basis of a standard discriminating formula.

Although discrimination among fusulinids within the Ardmore Basin is handled in a generai statistical manner, the final disposition to species is subjectiveiy handled for obvious reasons. It is felt that future species assignment based upon actual measurements from populations is not impossible or improbable for a statistical-computer program.

Eighteen measured sections are described in the appendix. Columnar sections of these described sections are also presented.

LITHOSTRATIGRAPHY

Stratigraphic Philosophy

The nomenclature of rock-stratigraphic units in the Ardmore Basin is in a confused state, primarily because of the conflict between two opposing philosophies. Arbitrary manipulation of member and formation boundaries to "better" fit an imposed time designation has added nothing but confusion to this structurally and sedimentary complex area. Series and systemic boundaries are not mappable units and do not necessarily conform to mappable litnologic units. Therefore, when a time-stratigraphic boundary is raised or lowered (such as the lowering of the Desmoinesian boundary from above the Frensley Limestone to below the Lester Limestone in Tomlinson and McBee, 1962, footnote 10, p. 4'79) based upon new paleontologic evidence, the lithostratigraphic units involved should remain unhindered by redefinition.

The first thorough treatment of the Ardmore Basin rocks was presented by C. W. Tomlinson (1929). Formations and members assigned by Tomlinson were based upon the underlying principle that rock-stratigraphic units are lithologic entities and are divorced from any formal time connotation. Later formations proposed by Floyd and Nufer (1934, p. 10), Westheimer (1936, p. 5), Harlton (1956, p. 138-140), and others

FIGURE I

COMPOSITE COLUMNAR SECTION
modified from
Tomlinson a McBee, 1959
have been based upon an entirely different philosophy. This philosophy allows definition of rock-stratigraphic units based upon rather illdefined biostratigraphic criteria. It is acceptable to use fossils as physical criteria in definition of a formation, but units defined solely on the basis of fossils become biostratigraphic zones and not formations.

In 1956 (in Petroleum Geology of Southern Oklahoma, vol. II) existing formations of the Ardmore Basin were elevated to group rank Without first proposing new formation names. Hicks (1956, footnote 1 to table II, p. 4) indicated that a study on recommending new formation names was in progress. Nothing has been recommended to date and it is extremely unlikely that anything will soon develop. The formations proposed by Harlton (1956, p. 138-140) and the older Big Branch Formation are not distinguishable lithologically but are poorly defined biostratigraphic zones and are for trat reason unacceptable as formations under the code of stratigraphic nomenclature (1961, p. 650). This presents the dilemna of groups not composed of formations and members not assigned to formations.

The preceding discussion is one view on a significant stratigraphic problem, and it is hoped it will serve as food for thought against continued aimless nomenclatorial designation. It is not intended as justification to the presentation of new formation names because an useful formational classification should be a joint effort of the geologists regionally involved with the problem.

General Description

The Ardmore Easin is located adjacent to two major Oklahoma uplifts; the Arbuckle Mountains to the north and the Criner Hills to the southwest. It is an area of apparently uninterrupted depositional history throughout late Mississippian and part of Pennsylvanian time. The above depositional history began with the deposition of the late Mississippian--eariy Pennsyivanian Springer Group, which is characterized by dark gray limonitic shales, and rather extensive sandstones. The Dornick Hills Group contains largely shale, thin but important limestones, and minor but important conglomerates. The Deese Group is represented by a great development of sandstones and shale, and some conglomerate. Tine Hoxbar Group is essentiaily a shale and thin limestone sequence, aithough sandstone and conglomerate become increasingly important in late Hoxbar time. The proportion of each lithology within a particuiar group varies depending upon position within the basin; however, the groups are readily identifiable.

Pennsylvanian rocks in the Ardmore Basin are predominantly clastic with a few associated Iimestones. Coal has been reported from above the Frensley Limestone (Tomlinson and McBee, 1959, p. 30) in sec. 17, 1.4 So, R. $4 E_{0}$, the Daube Coal in sec. $8, T, 5 S_{0,} R$. 2 E. is well known, and another lignite-coal, with peculiar book-leaf structure, was found by the writer in $N E \frac{1}{4} N W \frac{1}{4}$ sec. $17, T_{0} 5 S_{0}, R_{0} 2$ E. above the Confederate Limestone. In spite of the coal, it is considered that the Pennsylvanian rocks are largely marine in origin, with coals representing restricted areas of local importance. A maximum thickness of 17,000 to

18,000 feet of Pennsylvanian rocks occurs in the basin. Such thicknesses and the clastic nature of the section indicate accelerated subsidence. Jacobsen (1959, p. 108) considers the rate of sedimentation for Pennsylvanian rocks to range from 333 to 750 feet per million years, with a mean value of 500 feet per million years, which is rapid accumulation.

Dornick Hills Group

The Dornick Hills Group (Harlton, 1956, p. 138) consists mainly of shales, thin limestones, lenticular conglomerates and some sandstone. Limestones are largely medium- to coarse-crystalline with fragmental fossil debris and at some places some fine sand (sandy biosparrudites of Folk). The only noteworthy exceptions are the fine-crystalline limestones (micrites) in the upper part of the Bostwick Member and the reef Iimestones in the Pumpkin Creek Member. Conglomerates contain limestone pebbles as old as upper Arbuckie (Ordovician). Cementing material in the conglomerates is most commonly sandstone and carbonate. Conglomarates are lenticular fanglomerate-like deposits, thickest near the Criner Hills. Jacobsen (1959, p. 58-65) indicated that the sandstones are quartzose greywackes, composed of angular to subangular quartz grains with up to 32 percent rock fragments.

The Goif Course Formation was proposed by Harlton (1956, p. 138). In discussing his basis for proposing this new formation Harlton stated:

The Golf Course. . . is segregated upon the basis of its stratigraphic position, its diastrophic record, its fauna, and its areal distribution.... The entire sequence carries a large and varied Morrow fauna. It
includes ail the rocks generally recognized as of Morrow age in the Ardmore basin. . . .

Not a single criterion quoted as basis of delimiting this formation is acceptable, and it becomes apparent after reading the article that the only criterion used was paleontologic. Not once is the fundamental standard of formational characterization, lithology, mentioned. The Golf Course Formation is considered unacceptable and the term is therefore not used in this paper.

A much more logical and useful grouping would be to consider the Jolliff, Otterville, and Bostwick Members as a unit. Each is characterized on the surface by iimestone conglomerates and limestones. Shales and sandstones necessarily comprise a majority of the rock type of this grouping. However, it is the limestones and limestone conglomerates that afford character. This grouping is also in part genetic as the source for the conglomerates in each member is the Criner Hill complex.

Primrose Member. The Primrose Sandstone was described and proposed by Tomlinson (1929, p. 19). It is a thin-bedded sandstone with thin lenticular intraclasts of dark shaie. This unit can be confidently mapped only about the Caddo anticline. Tomlinson and McBee (1959, p. 18) indicated that the absence of the Primrose south of Ardmore is due to pre-Jolliff erosion.

Unnamed Unit. Approximately 1,200 feet of black to dark gray shales overlie the Primrose, and have been assigned to the Morrowan seríes.

Jolliff Member. The Jolliff limestones and conglomerates (Tomlinson, 1929, p. 29) crop out southwest of Ardmore where the most persistent element is the conglomerate. Conglomerates are lenticular and disappear but many grade into thin limestones. Colonial rugose corals have been taken from the Jolliff, and are considered Morrowan in age.

Unnamed Units. From 500 to 800 feet of shales overlie the Jolliff. These shales are dark with ferruginous layers common.

Otterville Member. The Otterville Limestone (Tomlinson and McBee, 1959, footnote 7, p. 20) is commonly about 10-20 feet in thickness and is composed of fragmental fossil debris set in a clear sparry calcite matrix. Ooliths are common in the upper 2 to 3 feet. In the area south of Ardmore along the Carter County-Love County line, conglomeratic beds are deveioped. The Otterville is correlated with the Wapanucka.

The Lake Murray Formation was proposed by Hariton (1956, p. 139) to include rocks from the top of the Otterville Member to the top of the Frensley Member. In proposing the new name, Lake Murray Formations, Harliton stated:

It has long been recognized that this section between the top of the Ottervilie and the top of the Lester [Frensley?] contains derivatives of Morrow brachiopods, gastropods, and bryozoa. But it is the advent of a host of Fusilinella, entirely unknown in true Morrow rocks, that stamp the Lake Murray as a separate unit in geologic history.

Here, as with the Golf Course Formation, no criterion has been presented which wouid warrant formational standing. As proposed by Harlton, the

Lake Murray Formation is a nebulous, ill-defined, biostratigraphic zone, defined solely on fossil content, with an incorrect time connotation. The Lake Murray Formation is not employed in this paper.

A logical lithologic entity would be to group the Lester, including the shales which underlie it, Frensley, and Pumpkin Creek Members into a lithic unit. This grouping is mainly a shale sequence with important thin limestones and minor sandstones. Such a union is suggested for consideration, but is not proposed for reasons earlier indicated.

Unnamed Unit. South of Ardmore approximately 475 feet of light yellow-tan shales overlie the Otterville.

Bostwick Member. The Bostwick Member (Tominson, 1929, p. 30) is the most conspicuous natural topographic feature of any extent south of Ardmore and can be traced continuously along the northeast flank of the Overbrook anticline for approximately fifteen miles. A lithologic description of a measured section can be found in section 5, appendix I. The most conspicuous lithologic element comprising the approximately 380 feet of Bostwick south of Ardmore is the abundant limestone conglomerate in the lower 175 feet. The conglomerate contains pebbles of limestone as old as upper Arbuckle (Ordovician) in a matrix of sandstone and calcite. Fine-crystalline, dark gray to black limestone constitutes the top of the Bostwick as measured. Such finecrystalline (micritic) limestones are not common in the Dornick Hills Group. The conglomerate lenses are thickest in the vicinity of the Criner Hills and decrease in thickness and size in three directions
away from their source, indicating fan-like deposits.
Adjacent to the Criner Hills in sec. $36, \mathrm{~T} .5 \mathrm{So}, \mathrm{R} .1$ E。, a thick limestore conglomerate section (appendix I, section 11) occurs with a brown fine-grained (micrite) limestone at the base. This limestone grades upward into a brown limestone conglomerate. Rocks of this interval have been considered as the west limb of the Overbrook anticline and indicated as of probable Bostwick equivalence by Tomlinson and McBee (1959, p. 26, and 1962, p. 480), Jacobsen (1959, p. 33), Ardmore Geological Society (Guidebook, 1948, p. III), and Tomlinson (1929, p. 32): however, Frederickson (1957) indicated this conglomerate to be in the Deese Group. I have obtained fusulinids from the lower finpcrystalline brown limestone, of the genus Fusulina, which are at least as young as Pumpkin Creek fusulinids and probably as young or younger than Devils Kitchen forms. I was unable to obtain fusulinids in sec. 7, T. 6 S., R. 2 E.; however, I am inclined to believe that much of the so-called Bostwick on the southwest flank of the Overbrook anticline \ddagger s in reality much younger.

The Bostwick Member contains fusulinids of the genus
Fusulinella, which are of "Atokan" equivalence. These fusulinids occur in shales and limestone zones which are associated in the upper 100 feet of the member.

Unnamed Unit. A maximum of 750 feet of beds was measured between the Bostwick and the overiying Lester Member in sec. 22, T. 6 S., R. 2 E. Tomlinson (1929, p. 33) indicated this unit to be approximately 400 feet thick north of Ardmore, Within the unit south of

Ardmore occur several tens of feet of variegated shales, thin sandstone beds, and concretionary limonitic zones. Three distinct sandy limestones, or calcareous sandstones, occur in the upper 200 feet and are mappable for approximately two miles along strike in secs. 22 and 23, T. $6 S_{0}, R_{0} 2 E_{0}$

Lester Member. The Lester Limestone (Tomlinson, 1929, p. 32) at its type locality in sec. 13, T. 4 So, R. 1 E. is an oolitic, sparry calcite-cemented limestone containing large quantities of fossil debris, especially bryozoan. Approximately 90 feet below the Lester Member, as defined by Tomlinson, is a deeply weathered sandy limestone containing an abundant primitive species of Fusulina. South of Ardmore in NE $\frac{1}{4}$ spc. 22, and $N W \frac{1}{4}$ sec. $23, T_{0} 6 S_{0}, R_{n} 2 E_{0}$, the Lester Member is represented by a coarse-crystalline, brown, sparry calcite-cemented limestone with only a few ooliths. Approximately 150 feet below the Lester, south of Ardmore, occurs a sandy, non-oolitic, sparry calcite-cemented limestone which contains primitive Fusulina specimens identifiable with those below the type Lester north of Ardmore. The "oolitic" Lester south of Ardmore contains fusulinids; the type Lester does not contain fusulinids. However, on the basis of the primitive fusulinids found within the "oolitic" Lester south of Ardmore, it was suggested (Waddefl, 1959, p. 72) that the rocks of the Dornick Hills Group stratigraphically as low as Lester are of Desmoinesian age. In view of the discovery of the genus Fusuling below the Lester Member, both north and south of Ardmore, the formal lowering of the Desmoinesian lower time-stratigraphic boundary to include the Lester Member does not seem radical.

This proposal was formalized in the revision of Tomlinson and McBee's manuscript when presented for publication in The Pennsylvanian System of the United States, by C.C.Branson.

In the restriction of the Lake Murray Formation (Tomlinson and McBee revised, 1962, footnote $10, \mathrm{p} .479$) it is stated that:

The downward shift of the Atokan-Desmoinesian boundary also shifts the corresponding boundary between the Lake Murray and Big Branch formations, and constitutes a re-definition of those formations.

As thus restricted, the Lake Murray Formation contains the Bostwick Member and approximately 300 to 400 feet of shales which overlie it. This redefinition is as objectional as Harlton's original proposal because it is an attempt to forse-fit lithostratigraphic and time-stratigraphic boundaries.

The Big Branch Formation was proposed by Floyd and Nufer in a paper given before the Tulsa Geological Society in November, 1934. The succeeding description is quoted from a letter to Harlton from Nufer:

The type iocality was given as exposures along the Big Branch of the Washita River in $N W \frac{1}{4} \mathrm{Sec} .11$, T . $3 S_{0}, R_{0} 2 E_{0}$ Here complete exposures were found of the upper part of the formation and included the limestones characterized by the Marginifera sp. and the Campophyllum sp. The lithology of the Big Branch was described as 800 feet of section, lower part gray shale with one thin sand bed near the middle, the upper 400 feet mainly shale with sandstones, a chert conglomerate, and several limestones near the top of the section. The Big Branch formation was placed in the geologic column as that unit from the top of the Pumpkin Creek Limestone down to the top of the Lester Limestone. The fauna of this unit is Des Moines in age and has no Morrow characteristics, and should be removed from the Dornick Hills as described by Dr, Tomlinson.

Although Floyd and Nufer were correct in recognizing a
Desmoinesian age for these rocks, such paleontological evidence is no criterion for proposing formations. Harlton modified the original description by raising the base of the Big Branch to the top of the Frensley because of a belief of the latter's "Atokan" age. Tomlinson and McBee (1962, footnote 10, p. 479) shifted the boundary down to include about 200 feet of shales below the Lester Member.

The Big Branch Formation has created confusion from the time of its proposal because it is not a lithologically distinguishable unit, but a biostratigraphic zone. It is not used in this paper.

Unnamed Unit. Between the redesignated Frensley Member
(Tonlinson, 1959, p. 317) and the Lester Member in secs. 22, 23, T. 6 S., R. 2 E., occurs approximately 225 feet of sandy shale with two welldeveloped sandstones. The upper of these sandstones is the more persistent and is the sandstone commonly between the Lester and Frensley toward the northwest along strike.

Frensley Member. The Frensley Member was proposed by J. M. Westheimer (1936, p. 5). In proposing this new member, Westheimer stated:

> The Pumpkin Creek, as described by C. W. Tomlinson, contains south of Ardmore some 1,000 feet of sediments. At the base is a nodular, white, dense, limestone varying in thickness from one to ten feet or more. This limestone contains an undescribed species of Fusulina which also occurs 50 feet below the top of the Atoka in $\mathrm{T}_{0} 1 \mathrm{~N}_{0}, \mathrm{R}_{0} 8$ E., in the so-called Red Oak member. Because of the marked difference in the Fusulinid and other fauna in this bed and the limestone at the top of the Pumpkin Creek, which has more of a Deese fauna, the name Frensley limestone is here proposed for this
limestone and the shale overlying it and beneath the overlying prominent sandstone. This section is well exposed on the Frensley farm in the SE $\frac{1}{4} \mathrm{Sec} .30, \mathrm{~T}$. 3 S., R. 2 E.

It is apparent from the above statement that Westheimer's evidence for removing the Frensley Limestone from the Pumpkin Creek came from the chalky limestone described by Tomlinson as occurring four or five hundred feet below the main Pumpkin Creek ledge south of Ardmore in the Overbrook anticline. Unfortunately, Westheimer chose as his type section an outcrop of rocks that are better exposed north of Ardmore in the Caddo anticline. The type section of the Frensley Member proposed by Westheimer was found to be Pumpkin Creek (Waddell, 1959, p. 20-22) and a new type section was proposed (Waddell, p. 21) and formerly presented by C. W. Tomlinson (1959, p. 317).

At the redesignated Frensley locality in $N E \frac{1}{4} \mathrm{NE}_{\frac{1}{4}} \mathrm{sec}, 22$, and SE $\frac{1}{4}$ SEE $\frac{1}{4}$ sec. 15, T. 6 S., R. 2 E., six limestones occur in approximataly 165 feet of section (1-8 through 1-11, appendix I, measured section 1). These limestones are yellow-brown, fine- to coarse-crystalline and are fossiliferous. Fusulinids are common in units 1-8 and 1-11. Unit 1-8 of measured section 1 marks the lowest occurrence, of which I am aware, of the genus Wedekindellina in the Ardmore Basin.

Unnamed Unit. Approximately 630 feet of yellow-gray to tan shales with yellow-brown sandstone beds overlie the Frensley Member. Within the upper 200 feet of this shale unit occurs three sandy limestones which range in thickness from 2 to 6 feet in $N E \frac{1}{4} N W \frac{1}{4} \mathrm{sec} .15$, T. 6 S., R. 2 E. These limestones thicken toward the southeast and in SWI sec. $14, \mathrm{SE}_{\frac{1}{4}} \mathrm{sec} .15$, and $\mathrm{NW}_{4} \frac{1}{4} \mathrm{sec} .23$ range in thickness up to 16 feet.

The upper and thickest of these sandy limestones carries a fusulinid fauna identical to that of the overlying Pumpkin Creek.

Pumpkin Creek Member. The Pumpkin Creek Member (Tomlinson, 1929, p. 33) comprises from 40 to 60 feet of medium- to coarse-crystalline, locally sandy, sparry calcite-cemented, fossiliferous limestone. The lower part of the limestone contains blue and black chert pebbles and is at many places cross-bedded. Approximately 16 feet above the base in $\mathrm{NE}_{\frac{1}{4}} \mathrm{NW}_{\mathrm{L}}^{\frac{1}{4}} \sec .15, \mathrm{~T} .6 \mathrm{~S}_{0}, \mathrm{R}_{0} 2$ E., occurs a poorly cemented zone composed of the broken fragments of a multitude of fossils, Along strike at this same horizon, reefing occurs (description Appendix I, measured section 2). The unconsolidated fragmental zone is found southeast along strike in secs.:4, 15, and 23; however, no reef development was observed. The reef structures, small domal bodies up to 2 feet high and 6 feet long, possess fenestrate bryozoans, large amplexizaphrentid horn corals, and the colonial coral Michelinia, in a very finecrystalline (micrite) matrix.

The Pumpkin Creek on the southwest limb of the Caddo anticline is traced only in sec. $13, T_{0} 4 . S_{0}, R_{0}: E_{0}$, and then with extreme difficulty, and one cannot be certairi that beds have not been crossed. However, on the northeast limb, Pumpkin Creek beds are traceable into sec. 9, To $3 S_{0}, R_{u} 2 E_{0}$

Deese Group

The Deese Group is identical with the Deese Formation originaliy proposed by Tomlinson (1929, p. 35) and is limited at its lower boundary by the top of the Pumpkin Creek Member of the Dornick

Hills Group and the base of the Confederate Member of the Hoxbar Group above. In the thickest section, south of Ardmore, the Deese reaches a maximum of nearly 8,000 feet. The rocks of this interval are mainly sandy shales, with considerable sandstone, some conglomerate, and minor amounts of limestone.

Unnamed Unit. Between the Pumpkin Creek and overlying Devils Kitchen is approximately 700 feet of shale and sandstone. Shales are very sandy and sandstones, all fine-grained, are thin- to thick-bedded.

Devils Kitchen Member. The Devils Kitchen Member (Tomlinson, 1929, p. 35) is divisible into a lower sandstone ranging up to 200 feet thick, a middle shale ranging up to 225 feet thick with approximately 15 to 20 feet of limestone at the upper limit, and an upper urit, of thin-bedded sandstone either overlain by very thick-bedded sandstone or conglomerate, which attains a thickness of approximately 200 feet.

The conglomeratic phase of the Devils Kitchen is limited to the Overbrook anticline, It begins in about the center of sec. 4, T. $6 S_{0}, R_{0} 2 E_{0}$, and becomes thicker southeastward to the last surface exposure in sec. 29, T. $6 \mathrm{Sa}_{\mathrm{a}}, \mathrm{R}_{\mathrm{u}} 3 \mathrm{E}$. The composition of the pebbles and cobbles is wholly chert. The matrix is sandstone and silica.

Most Devils Kitchen outcrops include the middle shale and overlying sandstones which commonly contain smail weathered chert grains. The chert becomes less important as a constituent in the sandstone, or as a distinct phase, both toward the Criner Hills and the Arbuckle Mountains. Schacht (1947, po 27-29) indicated a probable source somewhere in the Ouachitas for the Devils Kitchen conglomerate. Jacobsen
(1959, p. 115-16) stated that:
. . .the apparent coarsening and thickening of the Devils Kitchen conglomerate toward the southeast is only a two dimensional component of the true relationship. . . . The direction of maximum increase in thickness and coarseness could well be to the east rather than to the southeast. . . . The absence of limestone pebbles may be due. . .to the absence of limestone in the source; but. . .it would be highly unexpected to find any limestone pebble capable of surviving the degree of weathering shown by the chert. . . . Without more detailed study, it is not possible to trace the Devils Kitchen chert pebbles to a definite source. However, none of the distinctive chert lithologies of the Ouachita Mountains were recognized in the Devils Kitchen pebbles.

Unnamed Unit. Above the Devils Kitchen and below the Arnold is approximately 1,750 feet of shales with interbedded sandstones. Although no limestones were found in this unit south of Ardmore, as Tominson (1959, p. 314) indicated, seven limestones occur within this unit on the northeast limb of the Caddo anticline. Fusulinids occur in the upper and middle limestones.

Arnold Member. The Arnold Member (Tomlinson, 1929, p. 38)
was described at its type section north of Ardmore on the southwest flank of the Caddo anticline. On the northeast limb of the Overbrook anticline, the Arnold is approximately 75 feet thick in $\mathbb{N W}^{\frac{1}{4}} \mathrm{NE}_{4} \frac{1}{4}$ sec. 4 , T. 6 S., R. 2 E., and carries an abundent fauna including two genera of fusulinids.

Unnamed Unit. Above the Arnold Member is approximately 1,400 feet of red and gray shale with thick beds of sandstone. Two one-foot limestones occur north of Ardmore in secs. 4 and 9, T. 4 S.4. R. 2 E. (Tomlinson, 1959, p. 313). On the northeast limb of the

Overbrook anticline, Guthrey and MiIner (1933, map) mapped two sandy limestones intermittently for a distance of approximately three miles. In both areas however, shales with sandstone beds are the dominant 1ithologies.

Rocky Point Member. The Rocky Point Member (Guthrey and Milner, 1933 map) is well exposed on the northeast limb of the Overbrook anticline. Chert pebble conglomerates are prominent at several horizons in a 200 to 300 feet thick sequence of very thick-bedded sandstone and red-brown shale.

Unnamed Unit. Approximately 2,000 feet of yellow-brown to red-brown shales and sandstones occur above the highest mappable conglomerate of the Rocky Point Member. In SW $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec. 20, T. 5 S. , R. 2 E., are three limestones in approximately the middle of this unit. The upper of these, a red-brown, clay-intraclast, fine-crystalline limestone, contains abundant fusulinids.

Camp Ground Member. The name Camp Ground Member was first used formally in the literature by Ramay (1957, p. 45). A measured section of this unit in approximately the area indicated by Hicks (personal communication, Tomlinson, 1959) as his "type" locality is presented in appendix I, measured section 9. Ramay (1957, p. 15-17) indicated that the Camp Ground occurs in the Pleasant Hill syncline and is composed of approximately 65 feet of coarse-grained sandstones, unconsolidated coquinoid limestone, and shale. Within the sandstones and shales of the Camp Ground on the west edge of Lake Murray occur two thin-bedded, deeply weathered limestones containing fusulinids.

Unnamed Unit. South of Ardmore, the rocks that overlie the Camp Ground are reddish-brown to yellow-tan sheles with thin-bedded to thick-bedded sandstones and are approximately 575 feet thick. North of Ardmore equivalent rocks are found in a part of the Warren Ranch Member (Tomlinson and McBee, 1959, p. 33-34) which is postulated to extend from the Camp Ground to the shales above the Natsy. Equivalent conglomerates are not found in the Overbrook anticline.

West Arm Formation

The West Arm Formation was proposed by HarIton (1960, p. 220221). In describing the new formation Harlton stated:

The West Arm Formation approximates 900 feet in thickness and underlies the Confederate limestone (Tomlinson, 1929) of bassil Hoxbar age. It includes the Natsy Member (Tomiinson, 1937) which lies about 450 feet below the top of the Deese. The Wilifam Member (Guthrey and Milner, 1933) marks the base of the West Arm Formation.

The West Arm Formation as described is a lithologically discrete entity. Fossils are present within the formation which indicate its age. However, they correctly play no part in definition or the rock-stratigraphic unit. The West Arm Formation is considered valid and is employed in this paper.

Williams Member. The Williams Member (Guthrey and Milner, 1933) in $\mathbb{N W}_{4}^{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}}$ sec. $17, \mathrm{~T} .5 \mathrm{Sog}$ R. $2 \mathrm{E}_{\mathrm{o}}$ is composed of 2 feet of medium-bedded sendy, Myalina-rich limestone overlain by 25 feet of limonitic, thin- to medium-bedded, fine-grained sandstone (appendix I, measured section 10). In the Pieasant Hill syncline in sec, 23, T. 5 S., R. 1 E., Ramay (1957 , p. 18) mapped 20 feet of thin-bedded coarsely
crystalline limestone as the Williams. In sec, 14, T. 5 S., R. 1 E., a local limestone conglomerate occurs below the Williams. Nyalina is also common in the Williams Member as traced in the Pleasant Hill syncline. Unnamed Unit. Rocks of this interval have a maximum thickness of approximately 375 feet on the northeast limb of the Overbrook anticline. Here the rocks are composed of gray-tan to yellow-tan; sandy, clay shales with abundant limonite nodules and a few thin-bedded, finegrained sandstones. Above the Williams, approximately 50 feet, are two or three thin brachiopod fragmental zones (only the genus Juresania was identifiable). In the Pleasant Hill syncline, rocks of this interval range in thickness from 100 to 175 feet.

Natsy Member. The Natsy Member (Tomlinson, 1937, p. 1) in sec. 17, T. 5 S., R. 2 E., was measured (appendix I, measured section 10, unit 2) to be 15 to 17 feet of thin- to medium-bedded, gray-tan to yellow-brown, fine-crystalline limestone overlying 32 feet of thickbedded, fine-grained sandstone. Guthrey and Milner (1033) indicated that a conglomeratic phase develops to the southeast. Chert conglomerate occurs in the Natsy, as correlated by Tomlinson, north of Ardmore. In the Pleasant Hill syncline, Ramay (1957, p. 19) mapped 20 feet of pink crinoidal limestone as the Natsy in sec. 23. T. 5 S., R. 1 E. Unnamed Unit. The unnamed rocks above the Natsy and below the Confederate are approximately 400 to 450 feet thick in the Overbrook anticline and the Pleasant Hill syncline, and consist of gray-tan shales with thin sandstone layers cemented with carbonate.

Hoxbar Group
Confederate Member. This lowest member of the Hoxbar Group (Tomlinson, 1929, p. 39-40) in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 17, T. 5 S., R. 2 E., is composed of approximately 15 feet of thin-bedded to nodular, yellowbrown fine-crystailine limestone; 16 feet of mostly covered tan shales; and 2 feet of very coarse-crystalline fragmental limestone which becomes conglomeratic along strike. Within the next 10 feet above the fragmental limestone urit occurs approximately 4.5 feet of carbonaceous shale (lignite?) with veins of coal up to $\frac{1}{2}$ inch in thickness throughout. L. R. Wilson (1962, oral communication) has indicated that spores obtained from this carbonaceous unit show affinities to both Desmoinesian and Missourian spores. Associated with the book-like leaves are thin perfectly formed crystals of selenite gypsum.

In the Pleasant Hill syncline, the Confederate Member consists of approximately 10 feet of caicareous fine-grained sandstone; 6 to 8 feet of medium- to thick-bedded, coarse-crystalline Iimestone; and approximately 5 feet of conglomeratic limestone above a 5-foot covered interval. Fusulinids from shales below this locality are correlative with those from the locality in the Overbrook anticline. In the Brock anticline, the Confederate crops out in sec. 34, 35, T. 5 S., R. 1 E., and consists of 10 feet or more of brown, sandy limestone.

Unnamed Unit. Approximately 450 feet of gray-tan shales with associated thin sandstones occur above the Confederate Member.
 the Crinerville Member (Tomlinson, 1929, p. 42-43) consists of approxi-
mately 20 feet of thin- to medium-bedded, fine-crystalline limestone. Southeast along strike in sec. 8, T. 5 S., R. 2 E., a lower sandstone approximately 30 feet thick occurs 20 to 30 feet below a limestone conglomerate phase. The limestone is absent at this locality but it is suggested that the limestone conglomerate may represent it.

In the Pleasant Hill syncline, the Crinerville is represented by approximately 20 feet of gray-white to tan, fine- to medium-crystalline limestone in $\mathrm{SE}_{\frac{1}{4}} \mathrm{NW} \frac{1}{4} \mathrm{SW} \frac{1}{4}$ sec. 14, T. 5 S., R. 1 E. In the Brock anticline, the Crinerville consists of approximately 20 feet of sandstone, shale, and gray fine-crystalline limestone. The fusulinid Triticites is common in all three areas.

Unnamed Unit. Approximately 650 feet of shale and calcareous cemented thin sandstones overlie the Crinerville.

Anadarche Member. In SWI $\operatorname{SE} \frac{1}{4} \sec .8$, T. 5 S., R. 2 E., the Anadarche Member (Tomlinson, 1929, p. 36) consists of a single graywhite, medium-bedded limestone approximately 12 feet in thickness. The fusulinid Triticites, the brachiopod Echinoconchus and the foraminifern Climacammina are commoniy present. In the $S_{W} \frac{1}{4} S_{1}^{\frac{1}{4}} \sec .35, T .5 \mathrm{~S} ., \mathrm{R}$. 2 E., a sandy zone is developed approximately 20 feet below the limestone between T. 5 S., and T. 6 S., and all units of the Anadarche as described by Tomlinson are present. The Anadarche is indicated by Frederickson (1957, map) to be the highest Hoxbar Member recognized in the axis of the Pleasant Hill syncline. The Anadarche is well defined in the Brock anticline where a fusulinid fauna occurs in approximately 10 feet of brown, shaly, fine-crystalline limestone.

Unnamed Unit. Overlying the Anadarche are approximately 475 feet of shales with occasional zones of nodular limestones.

Daube Member. The Daube Member (Tomlinson, 1929, p. 44-45) was measured in SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec. 16, T. 5 S., R. 2 E. Here it is thin and consists of approximately 10 feet of highly calcareous shale with limestone nodules overlain by 2 feet of dull brown, sandy, fine-crystalline limestone. Although the typical limestone of sec. 8, T. 5 S., R. 2 E., is not developed at this locality, it is considered the best fossil collecting locality for Daube fauna on the Overbrook anticline.

On the Brock anticline, the Daube Member crops out on the west limb in a series of faulted outcrops in secs. 19, 20, 29, T. 5 S., R. 1 E. In $W \frac{1}{2} S E \frac{1}{4} N W \frac{1}{4} \sec .19$, the Daube consists of approximately 20 feet of thin- to medium-bedded, gray-brown limestone with abundant fusulinids. The Daube is the highest mapped unit in the Brock anticline of Hoxbar age.

Zuckermann Member. Approximately 430 feet above the Daube in SW $\frac{1}{4}$ sec. 15, T. 5 S., R. $2 \mathrm{E}_{\mathrm{o}}$ is a ridge of calcareous sandstones and conglomerates called Zuckermann by Tomlinson (1929, p. 46).

STATISTICAL METHOD

Characters and Measurements

Burma (1948, p. 758) pointed out that the characters currently measured and the methods of measuring these characters are in general adequate for the fusulinids. The following characters were measured and their data recorded herein.

Half length - measured from the center of the proloculus to
the tectum of the polar extremities of each volution, parallel to the axis of coiling.

Radius vector - measured from the center of the proloculus to the tectum at the equator of each volution perpendicular to the axis of coiling.

Protheca - consists of the thickness of the tectum and diaphanotheca/keriotheca per volution measured as near the center of tunnel as practicable.

Tunnel width - the linear width of the tunnel in millimeters measured from bisected angle of slope crest of adjacent chomata. It is recognized that this measurement is limited as is the more commonly used tunnel angle when singularly employed. However, interdependent expression in terms of a regression line or reduced major axis is possible with tunnel
width and impossible with the tunnel angle. Average tunnel angles may be obtained from this data by plotting tunnel width against corresponding radius vector and measuring the angle.

Chomata height - as used, this measurement is the height of the chomata above the tectum. The chomata is a secondary deposit and may be controlled by environment as well as genetic factors. Therefore its significance is probably questionable in part, but it does yield data concerning the chomata which are useful. Because this measurement is questionable, it rightly played no part in the multivariate test or following discriminant test.

Septa count - is the number of septa counted per volution as illustrated by Dunbar and Henbest (1942, p. 63). Proloculus - is the measure of the outside diameter of the initial chamber. In most cases the maximum and minimum outside diameter values are recorded.

A Zeiss petrographic microscope was employed for all measurement. Those measurabie data are presented in Appendix II. Mean values (averages) are denoted in this paper in the form $123 / 40$. The . 123 represents the mean value of the character under consideration and the integer following the slash mark represents the number of specimens yielding the associated mean,

Semple statistics are presented in Appendix II and consist of the mean ($\overline{\mathrm{x}}$), the variance (s^{2}) and the standard deviation (s). Confidence
limits for the inferred population mean are also indicated for each character.

Certain morphologic characters of fusulinids have not been validly quantified and will probably never be expressed in numerical terms. These features include over-all shape, shape and size of chomata, axial filling, fluting of septa, and polar shapes. The terminology here used to describe such features is presented below.

Figure 2.

General Mature Shape of Fusulinids

Figure 3.

Chomata Development

Figure 40
Shape of Polar Extremities

Figure 5.
Degree of Septal Fluting

The Population
Population as used in this paper carries two connotations as follows:

1. Paleontologic population is a natural group of individuals which possess identical morphological features (within a range of variation) that set them apart from other groups of individuals. Implicit in this definition is a correlation between reproductive isolation and morphologic deviation.
2. Statistical population, as used by Miller and Kahn (1962, p. 445), indicates a statistical population as an abstraction represented by the group of numbers which are tabulated from measuring the same morphological character from a number of individuals of the same species. In the multivariate case, an extension is made to include the set of numbers formed by measuring all characteristics from all individuals.

The Sampie

The paleontologic sample would be ideally represented by a collection of randomly chosen specimens which would represent the range of variation of morphologic characters of a population unaffected by the selectivity applied by nature due to chemical and physical conditions associated with transfer (erosion, transportation and deposition) and diagenesis. Randomness in sampling theoretically implies that an element drawn from a population is selected in such a manner that each of the N elements of the population has the same probability, $p=\frac{1}{N}$, of being drawn. It is difficult to obtain a random sample and haphazard selection is not sufficient.

Paleontologic samples are generally small in number and, particularly in the mega:'ossil groups, represent those specimens that are available for collection at a particular outcrop. Bias is fundamental to any sample, becsuse of conditions which tend to preserve one individual rather than another, and because as indicated by Kermack (1956), all ages of the population are not subject to the same death rate. A discussion on this subject is presented by Miller and Kahn (1962, p. 447-450). Forced to accept these inadequacies in sampling, the paleontologist should select no element over another, study not one or two but many individual elements, and study both large and small forms in order to keep from adding personal bias to uncontrolled preservation bias. The paleontologist should also keep in mind that sample statistics are only estimators of population parameters and that no two samples, even if taken from the same locality and from the same lithic unit are
identical. It is reasonable to assume however that the mean of any single character will not differ significantly among these samples.

When two paleontologic samples are considered during taxonomic study, the following questions must be answered. What is the probability that the two samples under consideration differ as much a.s they do by chance? Is the apparent difference due to sampling error or does it represent a morphologic difference and have genetic implications? Such questions may be intuitively answered with experience or may be answered statistically by tests which are based upon such features of samples as size, variance, and covariance.

Regardless of the approach to the final solution paleontologists are all faced with the problem of whether two samples belong to the same species (population). Methods of statistical analysis and rapid methods of computation although no panacea, are valuable objective tools to the solution of this problem and should be afforded greater use than at present.

Univariate Statistics

The initial step in the application of statistical methods to paleontologic data is the calculation of certain statistics which characterize the various morphologic features of a sample.

Such a statistic is the mean or average of a series of observations. If an indefinite number, n, of observations are made on a character, \underline{X}, indicated by the values $X_{1}, X_{2}, \ldots X_{n}$; then the mean, $\overline{\mathrm{X}}$, is defined as

$$
\vec{X}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}\right) .
$$

The mean yields information only on the magnitude of observations. It is desirable to define the scattering about the mean to gather some concept as to how closely the individual values are grouped. From the \underline{n} observations above, calculate the variance, $\underline{\underline{s}}^{2}$, by

then the standard deviation, \underline{s}, which is the positive value of the square root of the variance is calculated by

$$
s=\sqrt{s^{2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}}
$$

Imbre (1956, p. 224) pointed out that the relationship between size and variance is direct and as the size of a character increases, the variance or dispersion about the mean becomes greater. This fact is readily observable, for example, in a graph of radius vector against volution number.

A convenient statistic that estimates the limits of population means and is readily displayed graphically or understood visually is the confidence limit. If the sample is from a normal population (sufficient data has been studied to indicate that this is a valid assumption in most cases concerning paleontological measurements) and if $\overline{\mathbb{X}}$ and \underline{s} are sample mean and sample standard deviation, then

$$
t=\frac{(\bar{x}-u) \sqrt{n-1}}{s} \quad \text { (where } \underline{u} \text { is the population mean) }
$$

has a Student's t-distribution with ($\mathrm{n}-1$) degrees of freedom. Degrees of freedom may be defined as the number of quantities minus the number of linear relations between them.

It is desirable now to determine two numbers, $\underline{\mathrm{k}}$ and $\underline{\underline{1}}$, such that one can be 99% confident that the value of t lies between these two numbers. In probability notation this is expressed as

$$
P\{l \leq t \leq k\}=0.99
$$

In general \underline{k} and \underline{l} are chosen so that $1=-k$. Substituting for t and solving the inequality for \underline{u}.

$$
\begin{gathered}
P\left\{-k \leq \frac{(\bar{x}-u) \sqrt{n-1}}{5} \leq k\right\}=0.99 \\
P\left\{\bar{x}-\frac{s k}{\sqrt{n-1}} \leq u \leq \bar{x}+\frac{s k}{\sqrt{n-1}}\right\}=0.99 \\
\text { and } \hat{u}=\bar{x} \pm \sqrt{\sqrt{n-1}}
\end{gathered}
$$

determines the confidence interval for the population mean of the character under consideration. The above univariate sample statistics are given in the tables of data on the various species.

Multivariate Statistics and Application

Suppose that instead of considering a sample from a univariate normal population, as is the case when the preceding statistics are appropriate, we sample from a multivariate normal population in which
we desire to test all components involved and the hypotheses specifying their mean values. A statistic to test the above hypothesis was proposed by Hotelling (1931, p. 360-378) and termed T^{2}.

General assumptions basic to biometric methods of distinguishing between samples, and to some extent the qualitative method, are as follows: (1) paleontologic samples are made up of specimens possessing several identifying characteristics whose measurements are normally, or nearly normally, distributed; that is, the samples are taken from multivariate normal populations; (2) the most basic and yet most tenuous assumption is that the initial assignment of individual specimens into groups is correct; (3) correlation among pairs of measurements are stable within a population; (4) the variance and covariance of samples are equal; and (5) that samples from different geographic locations (if the time differential is small) should be similar.

Under the above assumptions, T^{2} is here used to test the null hypothesis that two multivariate samples were taken from the same population, against the alternative hypothesis that the samples are from different populations.

Five characters (half length, radius vector, septal count, tunnel width, and protheca thickness) each of which is composed of from 5 to 12 variables are considered as multivariate systems. It is recognized that greater discrimination would be attained considering all characters simultaneously which would result in a 35 by 35 or greater matrix inversion problem. This problem is beyond the capacity of the available computer. Although greater discrimination is possible
using all characters simultaneously, the exact position of the difference would remain unknown unless later tests were performed. The method used in this paper necessitates no later tests. In this method if the \mathbb{T}^{2} test indicates a significant difference, then the character under consideration differs between the two samples and cannot be attributed to sample error, within the probability determined.

The \mathbb{T}^{2} test presented next is largely taken from Hodges (1955, p. 27-34), but is modified slightly to allow working with arrays with missing data.

Consider the linear distance from the center of the proloculus to the tectum of volution 1 of a fusulinid sagittal section as a variable, also the linear distance from the center of the proloculus to the tectum of volution 2 as a variable, and \ldots through \underline{p} volutions giving \underline{p} variabies for \underline{n} samples. Let $\underline{X}_{\text {rik }}$ express the value of the $\underline{\underline{i}}^{\text {th }}$ variable measured on the $\underline{\underline{k}}^{\text {th }}$ specimen from the $\underline{\underline{r}}^{\text {th }}$ sample, where $\underline{\underline{r}}=$ $a, b, \underline{k}=1,2, \cdots \underline{n}$, and $\underline{i}=1,2, \cdots \underline{p}$. Then $\bar{X}_{a i}$ and $\underline{\bar{X}_{b i}}$ are the arithmetic means for the $\underline{\underline{i}}^{\text {th }}$ trait in samples \underline{a} and \underline{b} derived from

$$
\bar{x}_{2 i}=\frac{1}{n} \sum_{k=1}^{n}\left(x_{a i k}\right) \text { and } \bar{x}_{b i}=\frac{1}{n} \sum_{n=1}^{n}\left(x_{b i k}\right) \text {. }
$$

The mean values of the columns in table 1 are calculated by the above formula.

Table 1

Measurements of Six Characters on 17 Specimens of
Fusulina cf. F. novamexicana and 16 Specimens of Fusulina euryteinas

(a)						(b)					
$\mathrm{X}_{\mathrm{a}, 1}$	$\mathrm{X}_{\mathrm{a} 2}$	X_{23}	$\mathrm{X}_{\text {a }}$	$X_{\text {a }}$	X_{ab}	$\mathrm{X}_{\mathrm{b} 1}$	$\mathrm{x}_{\mathrm{t}, 2}$	$\mathrm{X}_{\mathrm{b} 3}$	$\mathrm{X}_{\mathrm{b} 4}$	$\mathrm{X}_{\mathrm{b} 5}$	$X_{b 6}$
. 129	. 203	. 315	. 473	. 676	. 000	. 145	. 242	. 393	. 602	. 847	1.110
. 196	. 286	. 393	. 547	. 750	. 976	. 155	. 251	. 393	. 583	. 805	1.000
. 148	. 209	. 316	. 448	. 621	. 844	. 180	. 299	. 415	. 576	. 818	1.110
. 161	. 264	. 422	. 628	. 000	. 000	. 171	. 270	. 444	. 692	. 950	. 000
. 200	. 296	. 425	. 621	. 824	. 000	. 203	. 325	. 473	. 673	. 873	1.120
. 145	. 235	. 341	. 506	. 721	. 966	. 155	. 264	. 409	. 605	. 831	. 000
. 110	. 180	. 287	. 425	. 611	. 000	. 200	. 335	. 509	. 683	. 914	1.180
. 123	. 258	. 386	. 564	. 000	. 000	. 219	. 303	. 457	. 644	. 847	. 000
. 180	. 268	. 393	. 528	. 725	. 914	. 174	. 280	. 467	. 673	. 940	1.190
. 158	. 254	. 374	. 570	. 799	1.030	. 171	. 277	. 454	. 663	. 000	. 000
. 200	. 303	. 457	. 663	. 000	. 000	. 158	. 270	. 451	. 615	. 902	. 000
. 142	. 219	. 345	. 512	. 744	. 000	. 177	. 267	. 405	. 586	. 805	. 000
. 138	. 222	. 345	. 493	. 699	. 940	. 171	. 306	. 480	. 702	. 966	1.230
. 145	. 219	. 338	. 493	. 686	. 966	. 171	. 254	. 393	. 560	. 773	. 000
. 161	. 242	. 357	. 483	. 679	. 000	. 196	. 325	. 511	. 728	. 943	. 000
. 219	. 306	. 451	. 618	. 873	. 000	. 171	. 325	. 483	. 689	. 921	. 000
. 190	. 296	. 448	. 644	. 917	. 000						
$\overline{\mathrm{X}}_{\mathrm{a}}$	$\overline{\mathrm{X}}_{\mathrm{a} 2}$	$\overline{\mathrm{X}}_{3}$	$\bar{x}_{\text {a }}$	$\bar{X}_{a 5}$	$\bar{X}_{a 6}$	$\overline{\mathrm{x}}_{\mathrm{b} 1}$	$\overline{\mathrm{X}}_{\mathrm{b} 2}$	$\bar{X}_{\text {b }}$	$\overline{\mathrm{X}}_{\mathrm{b} 4}$	$\overline{\mathrm{x}}_{\mathrm{b} 5}$	$\bar{X}_{\text {b } 6}$
. 161	. 251	. 376	. 542	. 738	. 948	. 176	.28'7	. 446	. 642	. 876	1.134

Now compute the quantity $d_{i}=\frac{\bar{X}_{a i}-\overline{\mathrm{X}}_{\mathrm{bi}}}{1}$ where $n_{a i}$ equals the number of specimens from sampie \underline{a} possessing the $\underline{i}^{\text {th }}$ trait, and $\underline{n}_{\mathrm{bi}}$ the number of specimens from sample \underline{b} with the $\underline{i}^{\text {th }}$ trait. If no missing data are present $\underline{n_{\text {ai }}}$ will be identical for all values of \underline{i} and $n_{b i}$ will be identical for all values of \underline{i}. This does not necessarily mean $n_{\text {ai }}$ equals $\underline{n_{b i}}$. The value of d_{i} is computed below for
$\underline{i}=1$. Other values for $\underline{i}=2,3, \ldots 6$ are calculated similarly.

$$
d_{i}=\frac{.161-.176}{\sqrt{\frac{1}{17}+\frac{1}{16}}}=\frac{-.015}{\sqrt{\frac{16+17}{272}}}=-.043
$$

The values d_{i} in Table 2 are computer output information and have greater accuracy than the slide rule method above.

Table 2
Values of $d_{i} \quad i=1-6$
$d_{1}=-.042$
$d_{2}=-.105$
$d_{3}=-.201$
$d_{4}=-.287$
$d_{5}=-.372$
$d_{6}=-.349$

The next step is to define
$N_{i j} S_{i j}=\sum_{k=1}^{n_{a i}}\left(X_{a L k}-\bar{X}_{a i}\right)\left(x_{a j k}-\bar{X}_{a j}\right)+\sum_{k=1}^{n_{b i}}\left(x_{b i k}-\bar{X}_{b i}\right)\left(X_{b j k}-\bar{X}_{k j}\right)$
If $\mathrm{SP}_{\text {ai,j }}$ is the sum of the pairs from sample a possessing characters \underline{i} and i and $\underline{S P}_{b i, j}$ is the sum of the pairs from sample \underline{b} possessing characters \underline{i} and i then

$$
N_{i j}=S P_{a i j}+S P_{b i j}-2 .
$$

If all data are present within each array, it is unnecessary to compute each $N_{i j}$ as all values are equal to the total number of specimens minus 2.

Compute the element S_{11} as follows:

$(.129-.161)$	$(.129-.161)$.001024	$(.145-.176)$	$(.145-.176)$.000961
$(.196-.161)$	$(.196-.161)$.001245	$(.155-.176)$	$(.155-.176)$.000441
$(.148-.161)$	$(.148-.161)$.000169	$(.180-.176)$	$(.180-.176)$.00016
$(.161-.161)$	$(.161-.161)$.000000	$(.171-.176)$	$(.171-.176)$.000025
$(.200-.161)$	$(.200-.161)$.001521	$(.203-.176)$	$(.203-.176)$.000729
$(.145-.161)$	$(.145-.161)$.000256	$(.155-.176)$	$(.15-.176)$.000441
$(.110-.161)$	$(.110-.161)$.002601	$(.200-.176)$	$(.200-.176)$.000576
$(.123-.161)$	$(.123-.161)$.001444	$(.219-.176)$	$(.219-.176)$.001849
$(.180-.161)$	$(.180-.161)$.000361	$(.174-.176)$	$(.174-.176)$.000004
$(.158-.161)$	$(.158-.161)$.000009	$(.171-.176)$	$(.171-.176)$.000025
$(.200-.161)$	$(.200-.161)$.001521	$(.158-.176)$	$(.158-.176)$.000324
$(.142-.161)$	$(.142-.161)$.000361	$(.177-.176)$	$(.177-.176)$.000001
$(.138-.161)$	$(.138-.161)$.000529	$(.171-.176)$	$(.171-.176)$.000025
$(.145-.161)$	$(.145-.161)$.000256	$(.171-.176)$	$(.171-.176)$.000025
$(.161-.161)$	$(.161-.161)$.000000	$(.196-.176)$	$(.196-.176)$.000400
$(.219-.161)$	$(.219-.161)$.003364	$(.171-.176)$	$(.171-.176)$.000025
$(.190-.161)$	$(.190-.161)$.000841			
	Total	.015482		$T o t a 1$.005867

$$
\begin{array}{r}
N_{11} S_{11}=.015482+.005867=.021349 \\
N_{11}=17+16-2=31 \\
S_{11}=\frac{.021349}{31}=.00069
\end{array}
$$

Compute the element S_{56} as follows:

$(.750-.738)$	$(.976-.948)$.000336	$(.847-.876)$	$(1.11-1.13)$.000580
$(.621-.738)$	$(.844-.948)$.012168	$(.805-.876)$	$(1.00-1.13)$.009230
$(.721-.738)$	$(.966-.948)$.000306	$(.818-.876)$	$(1.11-1.13)$.001160
$(.725-.738)$	$(.914-.948)$.000442	$(.873-.876)$	$(1.12-1.13)$.000030
$(.799-.738)$	$(1.03-.948)$.005002	$(.914-.876)$	$(1.18-1.13)$.001900
$(.699-.738)$	$(.940-.948)$.000312	$(.940-.876)$	$(1.19-1.13)$.003840
$(.686-.738)$	$(.966-.948)$	-.000936	$(.966-.876)$	$(1.23-1.13)$.009000
	Total	.017018		Total	.025740

$\mathrm{N}_{56} \mathrm{~S}_{56}=.017018+.025740=.042758$

$$
\begin{aligned}
& N_{56}=7+7-2=12 \\
& S_{56}=\frac{.042758}{12}=.00356
\end{aligned}
$$

Now form the matrix A of the quantities $S_{i j}$.
$A=\left|\begin{array}{cccccc}.0006^{*} & .0007 & .0009 & .0010 & .0611 & .0003 \\ 8855 & 7172 & 3298 & 6822 & 5072 & 8710 \\ 0007 & .0012 & .0015 & .0018 & .0020 & .0010 \\ 7172 & 0371 & 0788 & 3538 & 0341 & 9164 \\ .0009 & .0015 & .0021 & .0027 & .0030 & .0017 \\ 3298 & 0788 & 7109 & 8502 & 8780 & 4864 \\ .0010 & .0018 & .0027 & .0040 & .0043 & .0025 \\ 6822 & 3538 & 8502 & 2773 & 9182 & 7905 \\ .0011 & .0020 & .0030 & .0043 & .0058 & .0035 \\ 5072 & 0341 & 8780 & 9182 & 3188 & 5210 \\ .0003 & .0010 & .0017 & .0025 & .0035 & .0044 \\ 8710 & 9164 & 4864 & 7905 & 5210 & 9695\end{array}\right|$

Now the matrix \underline{A} is inverted to form the matrix \underline{A}^{-1} composed of elements $\underline{S}^{i j}$, where each element $\underline{S}^{i j}$ is the inverse of the element $S_{j j}$. Any one of several methods may be used. The method of pivoting on the diagonal elements of the matrix was used in my program. For practical reasons, the variables probably should not exceed four or five if this type of test is to be used utilizing a desk calculator. The results of the inversion of matrix A are shown in matrix \underline{A}^{-1}.

```
*.0006 = .00068855
8855
```

$A^{-1}=\left|\begin{array}{cccccc}6173 . & -4269 . & -590.2 & 662.9 & -296.8 & 588.7 \\ 8180 & 4331 & 2362 & 0056 & 3937 & 7195 \\ -4269 . & 1049 & -6985 . & 848.1 & 515.6 & -356.5 \\ 4331 & 0.190 & 2691 & 7793 & 5168 & 2163 \\ -590.2 & -6985 . & 1146 & -3979 . & -569.2 & 20.91 \\ 2362 & 2691 & 3.037 & 2993 & 7790 & 6766 \\ 662.9 & 848.1 & -3979 . & 3363 . & -878.2 & 48.93 \\ 0056 & 7793 & 2993 & 8070 & 4746 & 5558 \\ -296.8 & 515.6 & -569.2 & -878.2 & 1223 . & -340.8 \\ 3937 & 5168 & 7790 & 4746 & 3065 & 5256 \\ 588.7 & -356.5 & 20.91 & 48.93 & -340.8 & 491.2 \\ 7195 & 2163 & 6766 & 5558 & 5256 & 7519\end{array}\right|$

Hotelling's statistic is then defined as

The hypothesis of equal means is rejected if T^{2} is too large. Hotelling proved that $\left(\frac{N+1-p}{N^{\circ} p}\right) \mathrm{T}^{2}$ has an F-distribution with p and $n+1-p$ degrees of freedom. The critical value of F may therefore be taken from the tables of the F-distribution.

$$
\text { In this example } \mathrm{T}^{2}=35.126071, \mathrm{~N}=24, \mathrm{p}=6
$$

then $\left(\frac{N+1-p}{N \cdot p}\right) T^{2}=\left(\frac{24+1-6}{24 \cdot 6}\right) \quad 35.126071=4.63469$
The final step is to look up in any book of statistical tables the critical value of F. This value is obtained by looking in column $6(p=6)$ and row $24(N=24)$. Here one finds the critical value of F at the 1% level to be 3.67 . Thus the computed value of 4.63 is
considerably larger than the critical value of 3.67 , and the samples would be expected to differ as much as they do by chance alone less than once in a hundred times. One may conclude in this case that the samples are significantly different and, since the difference cannot be attributed to sample error, attribute the difference to a true morphologic difference.

The example presented is not peculiar in paleontology and significant application could be made to most of the coiled fossil invertebrates. It is true that most coiled invertebrates tend to have some form of logarithmic expansion of the shell. The question may well be asked why not then use logarithms of the measured values rather than the original measurements? The answer is that although logarithmic values were used for half length, radius vector (sagittal), and radius vector (axial) comparisons on the computer, the original values were used for simplicity during presentation of the computations. Both logs $(F=8.101)$ and original measurements $(F=4.63)$ yield significant values for F.

Now that samples \underline{a} and \underline{b} have been shown to differ significantly, is this all that can be done? This depends upon the individual and his particular problem. If his problem is satisfied by the knowledge of significant or insignificant difference, then Hotelling's T^{2} is a logical terminus. However, if he desires the relation of other samples to the populations which he has just determined significantly different, then the linear discriminant functions should logically follow.

The Linear Discriminant Function

There are two samples, \underline{a} and \underline{b}, from paleontoiogic populations A and B. From each sample p characters are measured and recorded for each of \underline{n} individuals. It is known, a priori, that populations A and B differ significantly, A third sample \subseteq is collected separated in time or space or both from samples \underline{a} and \underline{b} but study of the data indicates that sample \underline{c} belongs to either population A or population B. The problem is to assign sample \subseteq to its most probable population based upon the information at hand.

If two populations are different then it is possible to choose coefficients for the several variables of

$$
R=h_{1} X_{1}+h_{2} X_{2}+\cdots+h_{p} X_{p}
$$

such that a maximum separation is attained between populations. If the two populations are not different it is apparent that it is impossible to choose values of the coefficients which will give any separation because none exist. Samples were first subjected to Hotelling's T^{2} test in this paper to test for significant difference. If there was a significant difference, then the linear discriminant function was employed.

A detailed statement on the problem of discrimination and formal solution may be found in Hodges (1955, p. 35-45). The presentation here is only to indicate how the discriminating index values of R are obtained and what they are interpreted to mean in relation to fusulinid populations.

The general form of the solution for the values of h_{p} is a set of p simultaneous linear equations

$$
\begin{aligned}
& S_{11}^{\prime} h_{1}+S_{12}^{\prime} h_{2}+\cdots+S_{1 p}^{\prime} h_{p}=d_{1} \\
& S_{21}^{:} h_{1}+S_{22}^{\prime} h_{2}+\cdots+S_{2 p}^{\prime} h_{p}=d_{2} \\
& S_{p 1}^{i} h_{1}+S_{p 2}^{\prime} h_{2}+\cdots+S_{p p}^{\prime} h_{p}=d_{p}
\end{aligned}
$$

where the elements $S_{i j}^{1}$ are computed from
$S_{i j}^{\prime}=\sum_{k=1}^{n_{a i}}\left(x_{a k k}-\bar{x}_{a i}\right)^{\prime}\left(x_{a j k}-\bar{x}_{a j}\right)+\sum_{h, 1}^{n_{a i}}\left(x_{b i k}-\bar{x}_{b \lambda}\right)\left(x_{b j k}-\bar{x}_{b j}\right)$
and elements \underline{d}_{i} are computed from

$$
d_{i}=\bar{X}_{a i}-\bar{x}_{b i}, \text { for } i=1,2 \cdots p
$$

As an example the linear discriminant function will be applied to the same samples on which Hotelling's T^{2} test was previously applied.

First compute the value of d_{i}. The value of d_{i} is computed below for $\underline{\underline{i}}=1$. Other values for $\underline{\underline{i}}=2,3 \cdots 6$ are calculated similarly and shown in Table 3.

$$
d_{i}=.161-.176=-.015
$$

Table 3
Values of $d_{i} \quad i=1,2, \cdots 6$
$\mathrm{d}_{1}=-.015$
$\mathrm{~d}_{2}=-.036$
$\mathrm{~d}_{3}=-.070$
$\mathrm{~d}_{4}=-.100$
$\mathrm{~d}_{5}=-.138$
$\mathrm{~d}_{6}=-.186$

Elements $S_{i j}^{\prime}$ are identical to elements $N_{i j} S_{i j}$ computed in the previous example. Thus the form of the final discriminant matrix is:

$$
\begin{aligned}
& .0213 h_{1}+.0239 h_{2}+.0289 h_{3}+.0331 h_{4}+.0311 h_{5}+.0046 h_{6}=-.015 \\
& .0239 h_{1}+.0373 h_{2}+.0467 h_{3}+.0569 h_{4}+.0541 h_{5}+.0131 h_{6}=-.036 \\
& .0289 h_{1}+.0467 h_{2}+.0673 h_{3}+.0863 h_{4}+.0834 h_{5}+.0210 h_{6}=-.070 \\
& .0331 h_{1}+.0569 h_{2}+.0863 h_{3}+.1249 h_{4}+.1186 h_{5}+.0309 h_{6}=-.100 \\
& .0311 h_{1}+.0541 h_{2}+.0834 h_{3}+.1186 h_{4}+.1575 h_{5}+.0426 h_{6}=-.138 \\
& .0046 h_{1}+.0131 h_{2}+.0210 h_{3}+.0309 h_{4}+.0426 h_{5}+.0540 h_{6}=-.186
\end{aligned}
$$

Solving the determinant matrix for values of h_{i},

$$
\begin{array}{ll}
h_{1}=-0.7641 & h_{4}=+0.4922 \\
h_{2}=+2.4503 & h_{5}=+0.1408 \\
h_{3}=-2.1114 & h_{6}=-3.5536
\end{array}
$$

Substituting for h_{i} in the linear discriminant function

$$
R=-.7641 X_{1}+2.4503 X_{2}-2.1114 X_{3}+.4922 X_{4}+.1408 X_{5}-3.5536 X_{6} .
$$

The values of h_{i} above are those values which maximize the separation between samples and minimize the dispersion within samples.

Applying the above equation to the data from each specimen
an index value is obtained for that specimen. This process is repeated for each individual of sample \underline{a} and \underline{b}. In Table 4 index values are presented for the specimens of sample \underline{a} and \underline{b} which possess six volutions.

Table 4	
Index Values R , of Specimens Possessing Six Volutions, of \underline{F}.cf. \underline{F}_{0} novamexicana and \underline{F}. euryteines	
Fusulina of. F. novamexicana	Fusuling euryteines
-3.555	-4.284
-3.381	-4.198
-3.372	-4.135
-3.337	-3.883
-3.289	-3.877
-3.197	-3.827
-2.959	-3.486

There is very little overlapping of index values between the two species. Therefore no great difficulty should arise in assigning specimens from sample c to either Fusulina cf. F. novamexicana or Fusulina ourytaines. Specimens from sample \mathfrak{c} yield index values of $-2.7762,-2.8423$, and -3.2799 . These values are all within the range of index values of F. cf. F. novamexicana. The probability is that these few specimens from sample c belong to the population called F. of. F. novamexicana rather than to $\mathrm{F}_{\text {. euryteines. Note }}$ that it is not stated that this assignment of sample C to F . cf. $\underline{\mathrm{F}}$. novamexicana is absolute or even correct. It is simply stated that according to the presently available information, the probability is greatest that sample \mathfrak{c} was taken from the same population as sample
a (\underline{F}. cf. \underline{F}_{6} novamexicane). This fits the geologic picture quite nicely because although sample \underline{c} was collected from an outcrop which is offset from the main Pumpkin Creek leage the faulted outcrop was considered as Pumpkin Creek on lithologic grounds.

The linear discriminant function is given in the discussion of individual species for significantly different characters of similar species. This discriminating index is considered valid only for the vicinity of the Ardmore Basin because as previously indicated, although differentiation in the Ardmore Basin is largely statistical, the designation of species nemes is subjective. If samples are measured as indicated previously, then index values should be attained which will allow assignment of a new sample to one of two populations (species). The worker must first be able to limit the new sample to one of two, either population A or B, This, in the majority of cases (in the Ardmore Basin), is not too difficult.

The paleontologist never knows the absolute limits of character variation within the population sampled. He knows only that certain limits are exhibited by his sample. How this sample information is interpreted and the final inferences concerning the population made is critical to both phylogeny and stratigraphy. To the writer, a method based upon probability is superior to one based upon the speculative nature of qualitative interpretation. An estimate of reliability is explicit in statistical inference; it is not in qualitative inference.

Although the methods appiied in this paper may appear lengthy
it is a rather simple problem to program for the computer. Once programmed, for the general case, time consumed in comparing and discriminating samples is less than that generally required for nonstatistical comparison and discrimination.

SYSTEMATIC PALEONTOLOGY

Order FORAMINIFERA D'Orbigny, 1826

Family FUSULINIDAE M81ler, 1878

Subfamily FUSULININAE Rhumbler, 1895

Genus FUSULINELLA MO゙11er, 1877

FUSULINELLA DAKOTENSIS Thompson, 1936

Plate I, figs. $1-4$

Fusulinella dakotensis Thompson, 1936, Jour. Paleontology, vol. 10, p. 99-100. pl. 13, fig. 8-10.

Diagnosis:
Shape. Fusiform with bluntly pointed polar extremities. Axis of coiling slightly curved.

Size. Specimens which are considered mature range in length from 4.2 to 5.7 mm and in width from 1.4 to 1.9 mm .

Number of volutions. Generally 7 with only 4 of 22 specimens possessing 8 volutions.

Protheca. Not of sufficient thickness to be measured reliably
in first volution. Mean thicknesses of second through seventh
volution are: $6.8 / 22,9.1 / 37,11.4 / 37,13.7 / 37,16.6 / 37$, and 19.0/37 microns.

Half length. Mean lengths are: .150/22, .295/22, .484/22, $.779 / 22,1.21 / 22,1.79 / 22$, and $2.40 / 20 \mathrm{~mm}$ for the first through the seventh volutions.

Radius vector. Mean radius vector values of the first through the seventh volutions are: .106/37, .160/37, .232/37, .326/37, $.449 / 37, .608 / 37$, and $.793 / 37 \mathrm{~mm}$.

Wall. The protheca is thin with well-developed tectum* and diaphanotheca. Epitheca thick in inner volutions but becomes thin in outer volutions.

Chomata. Chomata are strongly developed in the first few volutions and appear continuous with the epitheca, but develop into distinct asymmetrical deposits in outer volutions. Chomata height yields mean values of $28 / 22,36 / 22,46 / 22,59 / 22,63 / 21$, and $69 / 18$ microns for the first through sixth volutions. Tunnel width. Tunnel outline is concave toward the poles. Mean widths of the first through the sixth volutions are: $57 / 22,87 / 22,129 / 22,207 / 22,363 / 22$, and $632 / 18$ microns.

Septa. Fluting is confined to the poleward extremities and is well developed there. The mean septal counts of the first
*These terms are used as defined by Henbest (1937). The tectum is a thin, discontinuous discoloration and is probably not a separate layer. The diaphanotheca is a clear finely granular layer possessing keriothecal structure.
through the seventh volutions are: $10.7 / 15,16.6 / 15,18.6 / 15$, $20.1 / 15,22.7 / 15,24.6 / 15$, and $26.8 / 15$.

Proloculus. Maximum and minimum mean values of the outside diameter of the proloculus are: $111 / 37$, and $127 / 37$ microns. Discussion: Fusulinella dakotensis Thompson, differs considerably from other species of the genus described from Oklahoma. Fusulinella prolifica Thompson differs by possessing a smaller proloculus, less intensely fluted septa and in general being smaller. Fusulinella juncea Thompson is similar to \underline{F}. dakotensis but differs principally in its tighter coiling and smaller radius vector values. Fusulinella vacua, new species, is closely similar to F. dakotensis. Discrimination of these two species is discussed under F . vacua.

Occurrence: Fusulinella dakotensis occurs abundantly in unit 6 (Appendix I, section 5, unit 6) of the Bostwick Member center north line NW NWW $\frac{1}{4}$ sec. 5, T. 6 S., R. 2 E., and SWW $W_{4} \frac{1}{4} S W \frac{1}{4}$ sec. 32, T. 5 S., R. 2 E., Carter and Love Counties, Oklahoma, respectively.

FUSULINELLA VACUA, new species

```
Plate I, figs. 5-8
```


Diagnosis:

Size. Specimens which are considered mature range in length from 4.7 to 6.2 mm and in width from 1.6 to 1.9 mm .

Number of volutions. The majority of specimens possessed 6 volutions with a few having 7 .

Protheca. The mean thicknesses of the tectum and diaphanotheca of the second through the sixth volutions are: 6.7/39, 9.5/39, 12.3/39, 14.7/39, and 17.2/38 microns.

Wall. The wall is thick relative to that of Fusulinella dakotensis, with well-developed epitheca in the interior volutions. The epitheca thins outward from the proloculus but remains quite distinct.

Half length. The mean lengths for the first through the seventh volutions are: . 194/24, .364/24, .604/24, .974/24, $1.45 / 24,2.07 / 23$, and $2.52 / 10 \mathrm{~mm}$.

Radius vector. Mean widths of the first through the seventh volutions are: . $121 / 39, .189 / 39, .275 / 39, .396 / 39, .549 / 39$, $.723 / 34$, and $.920 / 15 \mathrm{~mm}$.

Chomata. Mean chomata heights of the first through the sixth volutions are: $35 / 24,43 / 24,57 / 24,70 / 24,80 / 24$, and 80/15 microns. Chomata are coincident with the upper tectorium in inner volutions but discrete asymmetrical chomata develop in the outer volutions.

Tunnel width. The trace of the tunnel is slightly concave toward the poles. Mean tunnel widths of the first through sixth volutions are: $69 / 24,101 / 24,152 / 24,259 / 24,415 / 24$, and 616/13 microns.

Septa. Septa are severely fluted in the polar regions in the same manner as Fusulinella dakotensis, however, some midplane fluting has been developed. The mean septal counts of the
first through seventh volutions are: $10.6 / 15,16.8 / 15,20.2 / 15$, $22.6 / 15,26.0 / 14,28.2 / 12$, and 27.5/8.

Proloculus. The maximum and minimum mean outside diameters of the proloculus are: $146 / 15$, and $123 / 15$ microns for the sagittal sections and $156 / 24$, and $138 / 24$ microns for the axial sections. Discussion: Fusulinella vacua, new species, descended directly from F. dakotensis in the Ardmore Basin. F. vacua has reached a more advanced stage of septal fluting than F. dakotensis and is larger in the interior volutions.

It was believed after studying the data from each sample that a real difference existed, in half length and radius vector in particular. The previously mentioned characters plus the septal count, tunnel width, and proloculus diameter were determined as significantly different. The results from application of the T^{2} test were interpreted as differences of morphologic character of an organism due to evolution and not attributable to sampling error. For half length, radius vector, tunrel width, and septal count a vaiue of \underline{R} was computed from the inear discriminant function. Values of R were obtained by considering volutions 1 through 6. This was the maximum possible as forms from measured section 5, unit 7 are somewhat weathered. The entry of vaiues for randomly selected individual specimens are given below.

Half Length

$$
\mathrm{R}=+.3278 \mathrm{X}_{1}-.2018 \mathrm{X}_{2}+.3945 \mathrm{X}_{3}+.2942 \mathrm{X}_{4}-.0331 \mathrm{X}_{5}-.3215 \mathrm{X}_{6}
$$

Fusulinella dakotensis Fusulinella vacua

-.2476	-.3101
-.2388	-.2694
-.2351	-.2607
-.1828	-.2513
-.1798	-.2097
-.1770	-.2023
-.1742	-.2002
-.1641	-.1798

$\mathrm{R}=+.5052 \mathrm{X}_{1}-1.1281 \mathrm{X}_{2}+.5927 \mathrm{X}_{3}+1.1377 \mathrm{X}_{4}-1.6974 \mathrm{X}_{5}-.3089 \mathrm{X}_{6}$
Fusulinella dakotensis Fusulinella vacua

-.6441	-.5860	-.7605	-.6792
-.6333	-.5718	-.7480	-.6708
-.6256	-.5595	-.7442	-.6608
-.6122	-.5350	-.7368	-.6238
-.5896	-.5274	-.7345	-.5947

Tunnel Width
$\mathrm{R}=+3.783 \mathrm{X}_{1}+1.314 \mathrm{X}_{2}+.1714 \mathrm{X}_{3}+.3183 \mathrm{X}_{4}+.0237 \mathrm{X}_{5}-.1500 \mathrm{X}_{6}$

Fusulinella dakotensis

.4886	.3776	.6499	.5240
.4651	.3664	.6132	.5157
.4441	.3657	.6081	.5049
.4325	.3637	.5468	.4945
.4274	.2842	.5455	.4920
.3824	.1778	.5298	.4017

Septal Count

$$
R=-30.99 x_{1}-39.47 x_{2}+24.99 x_{3}+5.246 x_{4}+17.11 x_{5}+16.60 x_{6}
$$

Fusulinella dakotensis

.5103	.3824	.6499	.5240
.4885	.3776	.6132	.5157
.4651	.3657	.6081	.5047
.4441	.3653	.5467	.4945
.4325	.3636	.5455	.4920

Although \underline{F}_{0} dakotensis and \underline{F}_{0} vacua are closely related, it has been demonstrated above that an unbiased separation is possible. There is little overlap of \underline{R} values for any morphologic character. Thus the process of classifying a new sample population in its most probable paleontological population is facilitated.

The species is named from Latin vacuus, -a , -um, meaning empty. Occurrence. Fusulinella vacua occurs abundantly in the shales separating the nodular limestone beds of the upper Bostwick Member in SW $\frac{1}{4}$ SWW $\frac{1}{4}$ SW $\frac{1}{4}$ sec. 32, T. 5 So, R. 2 E., Carter County, Oklahoma. Sparingly fossiliferous upper limestones occur along strike for several miles. The fossiliferous horizon is unit 7 of measured section 5 (see Appendix I).

FUSULINA INSOLITA Thompson, 1948
Plate II, figs. 8-11

Fusulina ? insolita Thompson, 1948, Kansas Univ., Paleont. Contr., Protozoa, art. 1, p. 96-97, pl. 32, fig. 7, pl. 38, figs. 9-13.

Diagnosis:

Size, Mature specimens of 6 volutions range in length from 3 to 4 mm and in width from 1.6 to 1.8 mm 。

Shape. The form is inflated fusiform with rather bluntly pointed or broadly rounded poles.

Number of volutions. Most specimens have 5 to 6 volutions; however these specimens have been weathered so it is possible that another volution may be present on non-eroded forms.

Protheca. The mean thicknesses of the second through the sixth volution are: $7.1 / 34,9.3 / 35,12.1 / 35,14.6 / 34$, and $16.8 / 10$ microns.

Wall. Epithecal deposits about the primary layers makes the wall thick, and ailhough the thickness of the secondary deposit decreases in the outer volutions, the wall is still quite thick. Mean vaiues of wall thickness of the first through the sixth volutions are: $15.0 / 33,22.2 / 35,30.4 / 35$, 37.4/35, 40.5/34, and 42.5/9 microns.

Half length. The mean values of the half length of the first through the sixth voiutions are: . $147 / 20, .311 / 20, .562 / 20$, $.882 / 20,1.31 / 20$, and $!.68 / 10 \mathrm{~mm}$.

Radius vector. The mean values of the radius vector of the first througn the sixth voiutions are: . $110 / 35, .187 / 35$, $.302 / 35, .458 / 35, .659 / 33$, and $.808 / 14 \mathrm{~mm}$ 。

Chomata. Chomata are wider than high in the interior 2-3
volutions, but in outer volutions they become approximately equal in height to width. These deposits are very strongly developed throughout the test. Mean chomata heights of the first through the fifth volutions are: $37 / 20,57 / 20,76 / 20$, 103/20, and 105/12 microns.

Tunnel width. Mean tunnel widths of the first through the fifth volutions are: $59 / 20,99 / 20,152 / 20,246 / 20$, and 348/13 microns.

Septa. Fluting in the polar regions is slightly more extreme than that developed across the midplane. Midplane fluting is low and rather broad giving indication of its overall weak development. The mean septal counts of the first through the sixth volutions are: $9.1 / 15,13.2 / 15,15.5 / 15,18.4 / 15$, $21.4 / 13$, and $24.2 / 4$.

Proloculus. The proloculus is a variable character in Fusulina insolita. The minimum and maximum mean outside diameters are: $112 / 35$ and $124 / 35$ microns. Values range from approximately 80 to 180 microns.

Discussion: Fusulina insolita in the Ardmore Basin is one of the early forms of the genus Fusuiina. As indicated by Thompson, it possesses characters of both Fusulina and Fusulinella. Although my specimens appear to have better developed midplane fluting than those studied by Thompson, this one variable characteristic is not considered as grounds for a new species. Fusulina insolita is more primitive than F. mutabilis from the upper part of the same formation in that the septa of E. inso-
lita are not so highly fluted, the shell is inflated where Fo mutabilis is elliptical to rhomboidal, and the spirotheca is much thicker. Values of \underline{R} from the linear discriminant function that should allow placement of new samples to either F. insolita or F. mutabilis are given in discussion of F . mutabilis.

Occurrence: Fusulina insolita occurs sparingly in measured section 1, unit 4 (Appendix I, measured section 1). This sandy limestone is thinto medium-bedded, and crops out in the northeast corner of NW $\frac{1}{4} N E \frac{1}{4}$ sec. 22, $T_{0} 6 S_{0}, R_{0} 2$ Eu, Love County, Oklahoma. The unit is approximately 150 feet below the "oolitic" Lester Member as mapped in the Overbrook anticline.

FUSULINA MUTABILIS, new specioes

Plate II, figs. 1-5

Diagnosis:

Size. Mature specimens of $6 \frac{1}{2}$ to 7 volutions range in length from 2.2 to 4.2 mm and in width from 1.2 to 1.5 mm 。

Shape. The general shape is fusiform with some forms inflated and some approaching elongate fusiform.

Number of volutions. Most specimens posses 6 volutions;
however 7 is not uncommon and if the preservation were better, as many as 8 might be present.

Protheca. The mean thicknesses of the second through the sixth volutions are: $6.9 / 40,9.1 / 40,11.7 / 40,13.8 / 39$ and 16.1/21 microns.

Wall. The wail is thick with well-developed epitheca. Mean thicknesses of the first through the sixth volutions are: 17.3/40, 23.3/40, 29.4/40, 35.1/40, and 38.3/40 microns. Half length. Mean values of the haif lengths of the first through the severth rolutions are: . $137 / 36, .296 / 36, .514 / 36$, $.822 / 36,1.28 / 36,1.75 / 27$, and $2.11 / 4 \mathrm{~mm}$. Radius vector. Mesin values of the first through the sixth volutions are: $.095 / 40, .155 / 40, .237 / 40, .360 / 40, .521 / 39$, and $.696 / 26 \mathrm{~mm}$ 。

Chomata. Chomata are strongly developed and are continuous with the epitheca in the inner volutions as in Fusulinella. In the outer volutions, the chomata range from prominent asymmetrical to almost symmetrical ridges. Heights of chomata above underlying tectum of the first through the sixth volutions are: $32 / 36,47 / 36,68 / 36,88 / 36,92 / 32$, and $92 / 10$ microns.

Tunnel width. Mean velues of the first through sixth volutions are: $54 / 36,80 / 36,130 / 36,210 / 36,323 / 33$, and $457 / 11$ microns.

Septa. The septa show considerable variation among specimens, ranging from forms which appear similar to Fusulinella to those that have weli developed midplane septal fluting. This is a common feature associated with fusuininds of this stratigraphic position. The mean septel counts for volutions 1 through 6 are: $8.7 / 22,12.7 / 22,15.2 / 22,17.6 / 22,20.9 / 22$, and $24.9 / 13$.

Proloculus. The minimum and maximum mean value of the outside diameter of the proloculus is $95 / 40$, and 105/40 microns. Discussion: Fusulina mutabilis, new species, is one of the several primitive fusulinids of the Ardmore Basin assignable to the genus Fusuiina. F_{0} mutabilis differs from $\underline{F}_{\text {insolita }}$ in tunnel width, proloculus width, and possesses a higher degree of midplane septal fluting. Values of \underline{R} for the tunnel to allow future samples from this general stratigraphic position to be assigned to E insolita or $\underline{F}^{\text {o mutabilis }}$ are given below.

Tunnel Width

$\mathrm{R}=+.7297 \mathrm{X}_{1}-2.8331 \mathrm{X}_{2}-.4212 \mathrm{X}_{3}+.1952 \mathrm{X}_{4}+.0509 \mathrm{X}_{5}$

Fusulina	nsolita	Fusulina mutabilis	
. 3033	. 2390	. 2261	. 1895
. 2750	. 2314	. 2212	. 1768
. 2521	.2258	. 2091	. 1731
. 2453	. 2150	. 2017	. 1606
. 2406	. 1976	-1942	. 1539
. 2396	.1914	. 1912	-. 507

Fo mutabilis is similar to $\underline{F}^{\text {kayi }}$ Thompson but differs markedly in septal count. Topotypes of F. ieei Skinner from the Inola Limestone differ from $\mathrm{F}_{\text {. mutabilis }}$ in possessing a larger septal count and being longer.

The species is named from the Latin mutabilis, e, meaning changeable and refers to the variable degree of fluting of these forms. Occurrence: Fusulina mutabilis, new species, is common in the "oolit-
 Oklahoma. The Lester Member at this locality consists of approximately

8 to 9 feet of brown, thin- to mediun-beaded, oolitic, sparry caiciter cemented limestone with numerous fusuiinids and abundant other fossils. See measured section t, unit 6 of Appendix I. Fusulina mutabilis also occurs approximately 90 feet below the type Lester Member in the $\mathrm{NE}_{4}^{\frac{1}{4}} \mathrm{NE}$ 库 NE $\frac{1}{4}$ sec. $13, \mathrm{~T} .4 \mathrm{~S}_{\mathrm{n}}$, R. 1 En. Carter County, Oklahoma, in a deeplyweathered yellow-tan, thin- to medium-bedded, sparry calcite-cemented, sandy limestone.

FUSULINA PUMILA Thompson, 1934
Plate III, figs. 10-13

Fusulina pumila Thompson, 1934, Iowa Univ. Studies Nat. History, vol. !6., no. 248, p. 3:3-3:4, pl。22, figs. 6, 8, 10, 11.
[?] Fusulina pumila Thompson, Dunbar and Henbest, 1942, Illinois State Geoi. Survey, Buil. 67, p. 107-:09, figs. 9-21.

Diagnosis:

Size. Specimers which are considered mature range in iength from 2.5 to 3.8 mm and in width from 1.2 to 1.5 mm in the seventh volution.

Shape. The general shape of this form is inflated with rather broadly pointed polar extremities.

Number of volutions. There are generally 6 to 7 volutions present on these forms, but a volution or two is missing due to abrasion or solution.

Protheca, The protheca is thin throughout the test.

Mean thicknesses of the first through the sixth volutions are: $4.3 / 41,6.0 / 41,7.7 / 41,10.0 / 41,12.1 / 41$, and $13.9 / 40$ microns. Half length. The length of the specimens is quite short. Mean half length values of the first through the seventh volutions are: $.075 / 28, .168 / 28, .302 / 28, .509 / 28, .807 / 28,1.22 / 27$, and $1.59 / 11 \mathrm{~mm}$.

Radius vector. The mean values of the radius vector of the first through sixth volutions are: .069/41, .113/41, .175/41, $.264 / 41, .390 / 41$, and $.548 / 40 \mathrm{~mm}$.

Wall. The wall is thick in comparison to the size of the shell. The mean thicknesses of the first through sixth volutions are: $11 / 41,15.4 / 41,20.2 / 41,26.5 / 41,30.3 / 41$, and 32.0/40 microns.

Chomata. The shape of the chomata is generally symmetrical in inner volutions. The chomata are very strongly developed and are comparatively high. The mean heights of the chomata of the first through sixth volutions are: $22 / 28,34 / 28$, $50 / 28,71 / 28,85 / 28$, and $86 / 22$ microns.

Punnel width. The high massive chomata are closely set to form a narrow tunnel that is well defined. The mean width of the first tinrough the sixth volutions are: $37 / 28,59 / 28$, 86/28, 131/28, 186/27, and 264/20 microns.

Septa. The septa are fluted from the poles across the midplane to the chomata. The degree of fluting is moderate to strong with some looping occurring near the chomata. The mean
septal counts of the first through sixth volutions are: 9.0/13, $13.8 / 13,16.3 / 13,19.5 / 13,22.4 / 13$, and $26 / 13$.

Proloculus. The proloculus is small possessing mean values of $63 / 41$ and $71 / 41$ microns for the minimum and maximum outside diameter.

Discussion: The forms which are assigned to Fusulina pumila Thompson from the Ardmore Basin agree in all characters save septal count. The septal count of the Ardmore Basin forms is less per volution than designated on the Iowa forms.

Associated with Fusulina pumila are small forms of the genus Wedekindellina of which several are illustrated. Occurrence: Fusulina pumila occurs in abundance in the lower part of the Frensley Limestone Member (Appendix I, measured section 1, unit 8) center west line $N E_{\frac{1}{4}} N E \frac{1}{4} N E \frac{1}{4} N E \frac{1}{4}$ sec. 22, T. 6 S., R. 2 E., Love County, Oklahoma.

FUSULINA PLATTENSIS Thompson, 1936

Plate III, figs. 5-9

Fusulina plattensis Thompson, 1936, Jour. Paleontology, vol. 10, p. 109-111, pl. 14, figs. 12-17.

Fusulina sp. Thompson, 1936, Ibid., p. 11, pl. 14, figs. 23, 24. Fusulina plattensis Thompson, Thompson and Thomas, 1953, Wyoming Geol. Survey, Bull. 46, p. 24-26, pl. 1, figs. 12-14, 16-18.

Diagnosis:

Size. Mature specimens of 6 to $6 \frac{1}{2}$ volutions range in length from 2.6 to 4.0 mm and in width from 1.0 to 1.5 mm .

Shape. The shell is fusiform in general outline with some specimens appearing rather elongate.

Number of volutions. Mature specimens contain 6 to 7 volutions.

Protheca. The tectum and diaphanotheca are thin. Mean thicknesses of the second through the sixth volutions are: 6.3/30, 8.9/30, 10.8/29, 12.8/29, and 14.5/17 microns.

Half length. Mean values of the first through s:ixth volutions are: $.093 / 20, .218 / 20, .414 / 20, .732 / 20,1.15 / 20$, and $1.56 / 17$ m.

Radius vector. Mean values of the first through sixth volutions are: $.079 / 31, .128 / 31, .203 / 31, .307 / 31,449 / 31$, and $.605 / 22 \mathrm{~mm}$ 。

Wall. The mean thicknesses of the spirotheca of the first through the sixth volutions are: $12.7 / 30,17.8 / 30,22.3 / 30$, $27.6 / 29,30.2 / 29$, and 30.517 microns.

Chomata. The chomata are asymmetrical throughout the shell. In the inner volutions, asymmetry is due to tapering-off of the chomata toward the poles. In the outer two volutions, this asymmetry is due to overhang of the turnel side of the chomata. Mean chomata heights of the first through the sixth volutions are: $26 / 20,40 / 20,60 / 20,73 / 20,80 / 18$, and $83 / 6$ microns. Tunnel width. The tunnel appears narrow in comparison to
length of shell. Mean widths of the first through sixth volutions are: $46 / 20,72 / 20,107 / 20,178 / 20,243 / 18$, and 329/3 microns.

Septa. Septa are fluted throughout the shell. The flutes form closed chamberlets across the midplane that do not touch the upper part of the chamber. Fluting intensity is moderate. The mean values of the septal counts of the first through sixth volutions are: $8.6 / 11,14.1 / 11,16.8 / 11,18.9 / 10$, $22.6 / 11$, and $24.5 / 4$.

Proloculus. The diameter of the proloculus is small. The mean minimum and maximum outside diameters are 78/31 and 87/31 microns.

Discussion: Fusulina plattensis Thompson is one of several small primitive fusulines in the Ardmore Basin which belong to the genus Fusulina. Topotype material from the Inola Limestone indicates Fusulina leei is similar but differs from ${ }^{\text {F. plattensis }}$ in more severely fluted septa, larger septal count per volution, and in being larger.

Occurring in association with Fusulina plattensis are occasional specimens of Wedekindellina. The wedekindellinas are so rare that only two were found in approximately ten pounds of sample. Occurrence: Fusulina plattensis Thompson occurs in the upper thinbedded limestone of the Frensley Member in SW $\frac{1}{4}$ SE $_{\frac{1}{4}}$ SE $_{\frac{1}{4}}$ sec. 15, T. 6 S., R. 2 E., Love County, Oklahoma. See Appendix I, measured section 1, unit 11.

FUSULINA cf. F. NOVAMEXICANA Needham, 1937

Plate III, figs. 1-4

Fusulina murrayensis Devonshire [nomen nudem], 1954, Shale Shaker, vol. 5, no. 1, p. 10.

Diagnosis:

Size. The test is of medium size. Specimens which are considered mature range from 4.0 to 5.0 mm in length and from 1.7 to 2.2 mm in width.

Shape. The shell is inflated and has rounded polar extremities.

Number of volutions. Weathering has caused some loss of volutions so that only 6 volutions normally are found on the forms studied.

Protheca. The protheca is rather thin for a form as large as those studied. The mean thicknesses of the first through the sixth volutions are: $6.3 / 48,8.6 / 48,10.5 / 48,12.3 / 48$, $14.5 / 44$, and $16.4 / 25$ microns.

Half length. The inflated shape is reflected in the rather short, half length values. The mean lengths of the first through the sixth volutions are: .198/31, .360/31, .585/31, $.889 / 31,1.27 / 30$, and $1.73 / 20 \mathrm{~mm}$.

Radius vector. The mean values of the radius vector measures of the first through sixth volutions are: .147/48, .234/48, .354/48, .519/48, .717/44, and .936/25 mm.

Wall. The wall is thick and varies little in thickness from mid-tunnel to polar extremes. The epitheca is the thickest deposit and is well-developed both above and below the protheca.

Chomate. The chomata are very strongly developed. They are asymmetrical in the inner volutions but are symmetrical in the outer 2 or 3 volutions. They are high and define a rather narrow tunnel. The mean heights of the chomata of the first through the sixth volutions are: $51 / 31,75 / 31,96 / 31,111 / 31$, $119 / 25$, and $113 / 6$ microns.

Tunnel width. The tunnel appears rather narrow. The mean values of the tunnel widths of the first through the sixtli volutions are: $61 / 31,89 / 31,139 / 31,208 / 31,293 / 24$, and 368/6 microns.

Septa. The septa are fluted throughout the shell and form closed chamberlets which generally are rather broad at their tops. The mean septal counts of the first through the sixth volutions are: $10.9 / 17,17.2 / 17,21.0 / 17,24.2 / 17,27.3 / 14$, and 32.5/7. The values range from 9-14, 15-20, 17-25, 21-31, 21-34, and 30-39 for the same volutions. Proloculus. The proloculus is variable in size ranging between 100 and 229 microns for maximum outside diameter. The mean values of the minimum and maximum outside diameters are $154 / 48$ and $168 / 48$ microns.

Discussion: Fusulina cf. F. novamexicana is somewhat similar to F. euryteines Thompson. Hotelling's \mathbb{T}^{2} indicates that significant differences occur in half length, radius vector, and tunnel width. Each character that was shown to differ significantly and the linear discriminant set up to distinguish these forms in the Ardmore Basin is fully discussed urder F. ouryteines. Numerous specimens of Wedekindellina sp. occur with F. of. F. novamexicana at all localities sampled.

Preservation of the fusulines from the Pumpkin Creek Member tentatively identified as Fusulina cf. F. novamexicana is very poor. Many specimens possess only four volutions. Occurrence: Fusulina cf. Fo novamexicana Needham, is common in the Pumpkin Creek Limestone. The species was identified in SW $\frac{1}{4}$ SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec. 14, NNW $N=\frac{1}{4} N W \frac{1}{4} \sec .23$, $N E \frac{1}{4} N W \frac{1}{4} \sec .15$, and near center $N W \frac{1}{4} N E_{\frac{1}{4}}$ sec. 9, T. 6 S., R. 2 E., Love County, Oklahoma.

FUSUINA EURYTEINES Thompson, 1934

Plate IV, figs. 1-5

Fusuline meeki White, 1932, Texas Univ., Bull. 3211, p. 27-30, pl. 1, figs. 7-12.

Fusuling euryteines Thompson, 1954, Iowa Univ. Studies Nat. History, vol. 16, no. 248, p. 310-313, pl. 22, figs. 4, 13, 14, 18.

Fusulina euryteines Thompson, Needham, 1937, New Mexico School of
Mine:, Bull. 14, p. 22, 23, pl. 2, figs. 6-10.

Diagnosis:

Size. Mature specimens of 6 to $6 \frac{1}{2}$ volutions range in length from 4.0 to 5.6 mm and in width from 2.0 to 2.4 mm .

Shape. The outline of the mature shell is inflated fusiform with bluntly pointed poles.

Protheca. The primary layers are thin. Mean thicknesses of the first through the sixth volutions are: $6.4 / 36,8.5 / 36$, $10.5 / 36,12.4 / 36,14.3 / 36$, and $16.4 / 24$ microns.

Half length. The mean half lengths of the first through sixth volutions are: . $257 / 20, .476 / 20, .763 / 20,1.15 / 20$, $1.68 / 20$, and $2.25 / 14 \mathrm{~mm}$.

Radius vector. The mean values of the radius vector of the first through the sixth volutions are: .168/36, . $276 / 36$, $.427 / 36, .619 / 36, .846 / 35$, and $1.08 / 21 \mathrm{~mm}$.

Chomata. The chomata are very strongly developed. The heights of these deposits average $59 / 20,81 / 20,102 / 20$, 111/20, 110/16, and 108/5 microns in volutions 1 through 6. Iunnel width. Mean tunnel widths of the first through the sixth volutions are: .080/20, .122/20, .188/20, .289/20, $.398 / 16$, and $.422 / 2 \mathrm{~mm}$ 。

Septa. The septa are folded from midplane of the shell to the poles. The mean septal counts of the first through the sixth volutions are: 11.0/16, 17.8/16, 22.0/16, 26.1/16, $30.0 / 15$, and $31.7 / 8$.

Proloculus. The proloculus is rather large, yielding mean
values of $168 / 36$ and $186 / 36$ microns for the minimum and maximum outside diameter.

Discussion. Fusulina euryteines Thompson, differs from F. cf. F. novamexicana Needham, in that F. euryteines is more highly fluted, longer, wider, and has a wider tunnel. Index values of \underline{R} are given below for half length, radius vector, and tunnel width which should serve to help differentiate these forms in the Ardmore Basin.

Half length
$\mathrm{R}=+.0556 \mathrm{X}_{1}-.1012 \mathrm{X}_{2}-.6277 \mathrm{X}_{3}+.5327 \mathrm{X}_{4}+.0785 \mathrm{X}_{5}-1.2870 \mathrm{X}_{6}$

Fusulina of. F. novamexicana

-2.373	-2.009
-2.274	-1.976
-2.272	-1.912
-2.231	-1.907
-2.123	-1.866
-2.089	-1.863
-2.026	-1.716

Fusulina euryteines

$$
\begin{array}{ll}
-2.998 & -2.717 \\
-2.844 & -2.666 \\
-2.843 & -2.568 \\
-2.819 & -2.539 \\
-2.799 & -2.483 \\
-2.761 & -2.342 \\
-2.745 & -2.333
\end{array}
$$

(sagittal sections only)

$$
R=-.2606 x_{1}+1.112 x_{2}-2.464 x_{3}+1.404 x_{4}+.5963 x_{5}-7.043 x_{6}
$$

Fusulina cf. F. novamexicana Fusulina euryteines

-6.658	-7.988
-6.360	-7.760
-6.329	-7.741
-6.280	-7.280
-6.151	-7.258
-5.981	-7.205
-5.530	-6.471

Tunnel Width

$$
\begin{aligned}
& \mathrm{R}=-3.9022 \mathrm{X}_{1}-.5185 \mathrm{X}_{2}+.1287 \mathrm{X}_{3}-.0086 \mathrm{X}_{4}-1.0695 \mathrm{X}_{5} \\
& \text { Fusulina cf. F. novamexicana } \\
& \text { Fusulina euryteines }
\end{aligned}
$$

-.6913	-.5595	-.8779	-.7570
-.6087	-.5478	-.8498	-.7465
-.5943	-.5375	-.8419	-.7395
-.5901	-.5371	-.8266	-.7344
-.5828	-.5252	-.8036	-.7325
-.5805	-.4708	-.7897	-.6814
-.5668	-.4611	-.7581	-.6722

Fusulina euryteines differs from Fusulina haworthi by having longer half length and wider radius vector measurements at any given volution. F. haworthi also differs by having a significantly smaller proloculus and more narrow fluting. Index values of \underline{R} are given below for half length, radius vector, and tunnel width of randomly chosen specimens.

$$
\begin{aligned}
& \text { Half Length } \\
& R=-.5142 X_{1}+.1020 X_{2}-.8945 X_{3}+.5306 X_{4}-.1385 X_{5}-.1561 X_{6} \\
& \text { Fusulina euryteines }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Radius Vector } \\
& R=-.0033 X_{1}+.1088 X_{2}-.3734 X_{3}-.2091 X_{4}+.2230 X_{5}-.4566 X_{6} \\
& \text { Fusulina euryteines Fusuling haworthi } \\
& \text { Tunnel Width } \\
& R=-3.5552 X_{1}-.9014 X_{2}-2.7206 X_{3}+.5388 X_{4}-1.4324 X_{5} \\
& \text { Fusuline euryteines } \\
& -1.518 \quad-i .281 \\
& -1.509 \quad-1.280 \\
& -1.429 \quad-1.272 \\
& -1.372 \quad-1.248 \\
& -1.345-1.229 \\
& -1.310 \quad-1.204 \\
& -1.297 \quad-1.199 \\
& -1.289 \quad-1.143 \\
& \text { Fusulina haworth1 } \\
& -.9866-.8495 \\
& -.9716-.8439 \\
& -.9466-.8234 \\
& -.9363-.8052 \\
& -.8902-.7930 \\
& -.8781-.7882 \\
& -.8694-.7793 \\
& -.8514-.6640
\end{aligned}
$$

Fusulina euryteines was associated with abundant forms of the genus Wedekindellina at all outcrops in which it was found.

Occurrence: Fusulina euryteines occurs commonly in the Devils Kitchen Member at section 3, unit 1 (c, e, and f) NE $\frac{1}{4} N E \frac{1}{4} \operatorname{SW} \frac{1}{4} \sec .4, T .6$ S., R. 2 E., Love County, Oklahoma; and section 4, unit 2 (b, d, and e) SE $\frac{1}{4}$ SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec. $32, T .5$ So, R. 2 E., Carter County, Oklahoma.

FUSULINA ERUGATA, new species

Plate VI, figs. 8-12

Diagnosis:

Shape. The mature shell is fusiform to elongate fusiform.
Size. Specimens range in length from near 2.4 to 4.2 mm , and in width from 0.9 to 1.4 mm in the sixth volution.

Number of volutions. Mature specimens possess 6 to $6 \frac{1}{2}$ volutions.

Protheca. The primary layers are thin. The mean thicknesses of the protheca of the second through the sixth volutions are: $8.0 / 46,10.0 / 46,11.7 / 46,13.8 / 45$, and $15.1 / 26$ microns. Half length. The mean values of the half lengths of the first through the sixth volutions are: .108/33, .225/33, . $425 / 33$, $.753 / 33,1.22 / 33$, and $1.678 / 23 \mathrm{~mm}$ 。

Radius vector. Mean radius vector values of the first through the sixth volutions are: $071 / 46, .120 / 46, .187 / 46, .289 / 46$, $.428 / 46$, and $.559 / 32 \mathrm{~mm}$.

Wall. The wall is moderately thick and rather peculiarly formed. The protheca is the upper-most wall layer or if uppar secondary deposits are present, they are extremely thin. The lower wall layer is a thick deposit of secondary material at midplane but thins poleward rapidy so that polar areas are generally composed of only protheca.

Chomata. The chomata are discrete secondary deposits of shell
material that range from weakly developed to strongly developed. They are, in general, symmetrical with overhangs on both the tunnel and polar sides. Some, however, are slightly asymmetrical and taper toward the poles. Mean heights of the chomata of the first through the sixth volutions are: 22/33, $38 / 33,60 / 33,80 / 33,87 / 27$, and $80 / 5$ microns.

Tunnel width. The tunnel is wide and well outlined by the chomata. Mean tunnel widths of the first through the sixth volutions are: $50 / 33,86 / 33,145 / 33,243 / 33,391 / 33$, and 531/6 microns.

Septa. The septa are delicately fluted throughout the shell. Fluting decreases in intensity toward the midplane and in most specimens is not developed across the central one-half of the shell. Foids present are very tight and high. The mean septal counts of the first through the sixth volutions are: 9.0/13, $13.0 / 13,15.4 / 13,17.6 / 13,20.4 / 13$, and 22.7/4. Proloculus. The minimum and maximum mean values of the outside diameter of the proloculus are $85 / 46$ and $96 / 46$ microns. Discussion. Fusulina erugata, new species, is similar in all measurements with F. plattensis Thompson, from the Frensley Member with the exception of tunnel width. The tunnel of F_{0} erugata is wider. However the main difference is that the septa of F. erugata are considerably less highly fiuted than F. plattensis.

Tunnel Width

Higher Desmoinesian Fusulina with little fluting have been described as E. ? $^{\text {arenaria Thompson, and F. rickerensis Thompson. }}$ Although \underline{F}. erugata is not as devoid of fluting as F. rickerensis $^{\text {r }}$ it possesses weak fluting. Fusulina erugata occurs approximately 60 feet below $\underset{F}{ }$. haworthi in the Arnold Member.

The species is named from Latin erugatus, a, um, meaning clear of wrinkles and refers to the poor septal fluting. Occurrence: Fusulina erugata, new species, occurs abundantly in the lower part of the Arnold Member (measured section 7, unit 2) NE $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec. 4, T. 6 S., R. 2 E., Love County, Oklahoma.

> FUSULINA HAWORTHI (Beede), 1916, emend.
> Dunbar and Henbest, 1942

```
Plate V, figs. 1-5
```

Girtyina haworthi Beede, 1916, Indiana Univ. Studies, vol. 3, no. 29, p. 14. (Not Fusulinella haworthi of Dunbar and Condra, 1927, Nebraska Geol. Survey, ser. 2, Bull. 2, p. 62, pl. 2, figs. 6-11).

Fusulina haworthi (Beede), White, 1932, Texas Univ. Bull. 3211, p. 2627, pl. 1, figs. 4-6.

Fusulina stookeyi Thompson, 1934, Univ. of Iowa Studies in Nat. History, vol. 16, no. 4 (new series no. 284) p. 316-318, pl. 22, figs. $3,15,16$, and 21.

Fusulina haworthi (Beede), Dunbar and Henbest, 1942, Illinois State Geol. Survey, Bull. 67, p. 119-121, pl. 12, fig. 1, pl. 14, figs. 1-18.

Fusulina haworthi (Beede), Alexander, 1954, Oklahoma Geol. Survey, Circ. 31, p. 30-32, pl. 2, figs. 11-12.

Diagnosis:

Size. Mature specimens of 6 to $6 \frac{1}{2}$ volutions range in length from 4.2 to 5.6 mm and in width from 1.6 to 2.1 mm .

Shape. The shell is fusiform in shape with bluntly pointed polar extremes.

Protheca. The protheca is thin with mean thickness values of 6.4/38, $8.7 / 38,10.8 / 38,12.6 / 38,14.4 / 38$, and $16.9 / 36$ microns for the first through sixth volutions.

Half length. The mean half lengths of the first through the seventh volutions are: . $172 / 25, .317 / 25, .522 / 25, .818 / 25$, $1.23 / 25,1.76 / 25$, and $2.36 / 18 \mathrm{~mm}$.

Radius vector. The mean values of the radius vectors of the first through the sixth volutions are: .118/38, . $184 / 38$, $.280 / 38, .411 / 38, .588 / 38$, and $.802 / 37 \mathrm{~mm}$ 。

Wall. The wall is thin and is composed principally of tectum
and diaphanotheca. The lower tectorium is the thicker of the secondary layers and in the outer volution is the only secondary layer.

Chomata. The chomata appear to be thickenings of the septa adjacent to the tunnel rather than discrete deposits. The mean chomata heights of the first through the sixth volutions are: $35 / 25,53 / 25,77 / 25,99 / 25,110 / 25$, and $112 / 24$ microns. Tunnel width. The tunnel is narrow and its path rather irregular. The mean widths of the tunnel of the first through the sixth volutions are: $54 / 25,81 / 25,118 / 25,187 / 25,279 / 24$, and 402/24 microns.

Septa. The septa are tightly fluted from pole to midplane. The mean septal counts of the first through the sixth volutions are: $11.0 / 13,17.1 / 13,20.3 / 13,24.0 / 13,27.3 / 13$ and $30.0 / 13$.

Proloculus. The minimum and maximum mean values of the outside diameter of the proloculus are: $130 / 35$ and $143 / 35$ microns. Discussion. Fusulina haworthi (Beede) emend. Dunbar and Henbest, is similar in some respects to $\underline{F}_{\text {. expedita }}$ Alexander, but may be distinguished from the latter by its larger proloculus, longer text, and more Intense septal fluting.

Fusulina haworthi is readily distinguished from E. ouryteines as indicated in the discussion of the latter species. Fusulina haworthi may be distinguished from F. aff. F. whitakeri in the Ardmore Basin by the longer half length, thicker protheca, and degree of fluting of the latter. Index values from the linear discriminent are given below for
those characters determined significantly different by Hotelling's test.

Half Length

Fusulina haworthi Fusulina aff. F. whitakeri

-.6250	-.5039	-.8140	-.7078
-.6145	-.5024	-.8054	-.6851
-.5946	-.4956	-.7931	-.6837
-.5715	-.4837	-.7759	-.6246
-.5169	-.4771	-.7299	-.5783
-.5094	-.4591	-.7289	-.5780

Protheca Thickness

$$
R=18.198 X_{1}+3.059 X_{2}+8.819 X_{3}+1.112 X_{4}+12.121 X_{5}+15.332 X_{6}
$$

Fusulina haworthi

.7794	.7145	.8887	.8061
.7605	.6885	.8874	.7936
.7443	.6793	.8511	.7737
.7302	.6662	.8509	.7638
.7281	.6655	.8124	.7579
.7171	.6368	.8113	.7455

Fusulina haworthi is associated with abundant fusulinids of the genus Wedekindellina. The occurrence in the upper part of the Arnold Member of Wedekindellina marks the last occurrence of the genus in the Ardmore Basin to the writer's knowledge.

Occurrence: Fusulina haworthi occurs abundantly in the upper part of the Arnold Member (Appendix I, measured section 6, 12 feet below unit 4) in NE $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4} \sec .33, T .5$ S., R. 2 E., Carter County, and (measured section 7, unit 5a) NE $\frac{1}{4} \operatorname{NW} \frac{1}{4} N E \frac{1}{4}$ sec. 4, T. 6 So, R. 2 E., Love County, Oklahoma.

FUSUINA aff. Fo WHITAKERI Stewart, 1958

```
Plate VII, figs. 1-3, }
```

Discussion: Several rather badly weathered forms were found in measured section 8, unit 3 which are similar to Fusulina acme from the overlying Camp Ground except in tunnel width and proloculus diameter. These specimens are without doubt of Marmaton age. Values of the index R from the linear discriminant function are given below for the tunnel width.

$$
\begin{aligned}
& \text { Tunnel Width } \\
& R=2.641 X_{1}+1.2444 X_{2}-.5588 X_{3}+.0043 X_{4}-.1544 X_{5}+.3422 X_{6}
\end{aligned}
$$

Occurrence: Fusulina aff. \underline{F}_{0} whitakeri occurs in an unnamed limestone (Appendix I, measured section 8, unit 3) whicn is very deeply weathered that is stratigraphically between the Rocky Point Conglomerate and the Camp Ground Member. The locality is SWh ${ }^{\frac{1}{4}} \mathrm{NE}_{\frac{1}{4}}$ SE ${ }^{\frac{1}{4}} \sec .20$, T. 5 S., R. 2 E., Carter County, Oklahoma.

FUSULINA ACME Dunbar and Henbest, 1942

Plate VII, figs. 4, 6-7; Plate VIII, figs. 1-2

Fusulinella haworthi Dunbar and Condra [not Fusulina haworthi (Beede)], 1927, Nebraska Geol. Survey, Bull. 2, 2nd series, p. 82-84, pl. 2, figs. 6-11.

Fusulina acme Dunbar and Henbest, 1942, Illinois State Geol. Survey, Bull. 67, p. i22-123, p. 15, figs. 1-18, pl. 16, fig. 14.

Fusulina acme Dunbar and Henbest, Stewart, 1958, Jour. Paleontology, vol. 32 , p. 1058-1059, pl. 134, figs. 1-4.

Diagnosis:

Size. Specimens from the Ardmore Basin are rather badly weathered and all rolutions are not present. Specimens of $6 \frac{1}{2}$ to 7 volutions are 6 to 6.8 mm long and 1.5 to 2.1 mm wide. Shape. Most specimens are fusiform in shape with a few becoming slightly extended.

Half length. Mear half length values are: . $221 / 30, .416 / 30$, $.732 / 30,1.16 / 30,1.77 / 30,2.44 / 30$, and $3.13 / 16 \mathrm{~mm}$ for volutions one through seven.

Radius vector. The means of the radius vectors of the first through sixth volutions are: $143 / 36, .218 / 36,323 / 36$, $.469 / 36, .656 / 36$, and $.865 / 34 \mathrm{~mm}$.

Protheca. The primary wall layers are thin averaging 8.6/36, $11.1 / 36,13.6 / 36,16.3 / 36,19.7 / 36$, and $23.7 / 34$ microns for volutions one through six.

Chomata. Chomata are thickenings of the septa adjacent to the tunnel or actual deposits in the inner volutions, but become rather obscure in outer volutions. Mean chomata heights of the first tinrough the sixth volutions are: $38 / 30$, $57 / 30, \varepsilon 4 / 30,100 / 30,109 / 27$, and $113 / 20$ microns.

Tunnel width. The tunnel is narrow and its path straight to slightly irregular. Mean tunnel widths of the first through the sixth volutions are: $65 / 30,98 / 30,157 / 30,307 / 30$, $400 / 30$ and $614 / 2!$ microns.

Septa. Septa are intensely fluted throughout the shell. The mean septal counts of the first through the sixth volutions are: $10.7 / 16,38.2 / 16,21.0 / 16,24.3 / 16,28.8 / 15$ and $31.5 / 11$. Proloculus. The proloculus is of moderate size, possessing a minimum and maximum outside diameter of $164 / 36$ and $178 / 36$ microns. whitakeri in the Ardmore Basin. Hotelling:s T^{2} indicates that they differ significantly only in tunnel width with F . aff. F. whitakeri having the wider tunnel. A simple t-test on the proloculus sizes indicates a significant deviation in this character with \underline{F}. acme possessing the larger. See discussion of $\underline{F}_{\text {. aff }}$. F whitakeri. $^{\text {. }}$

Index values beiow from the linear discriminant differentiate Fusulina acme from $\underline{F}_{\text {. haworthi }}$ for half length, radius vector, tunnel, and protheca thickness.

Half Length

Radius Vector			
$R=-.0570 X_{1}+.0162$ Fusulina acme		+.0087X	-. $0130 \mathrm{X}_{6}$
		Fusulina haworthi	
. 0454	. 0389	. 0406	. 0311
. 0454	. 0374	. 0390	. 0367
. 0426	. 0367	. 0365	. 0299
. 0417	. 0361	. 0360	. 0293
. 0404	. 0349	. 0336	. 0283
. 0390	. 0333	. 0314	. 0280

Tunnel Width
$\mathrm{R}=2.9074 \mathrm{X}_{1}+.2634 \mathrm{X}_{2}+.8838 \mathrm{X}_{3}+.0336 \mathrm{X}_{4}-.1585 \mathrm{X}_{5}+.2903 \mathrm{X}_{6}$

Fusulina acme

.5309	.4815
.4948	.4419
.4924	.4351
.4897	.4093
.4844	.3983

$\begin{array}{ll}.5309 & .4811 \\ .4948 & .4419 \\ .4924 & .4351 \\ .4897 & .4093 \\ .4844 & .3983\end{array}$

Fusulina haworthi
.3963 . 3590
.3824 . 3354
.3813 .3322
.3728 . 3281
.3650 . 2983

Protheca

$$
\left.\begin{array}{cc}
\mathrm{R}=- & -57.20 \mathrm{X}_{1}-40.86 \mathrm{X}_{2}-8.39 \mathrm{X}_{3}-9.035 \mathrm{X}_{4}-1.600 \mathrm{X}_{5}-18.37 \mathrm{X}_{6} \\
\text { Fusulina acme } & \text { Fusulina haworthi } \\
& -1.361
\end{array}\right)
$$

Occurrence. Fusulina acme Dunber and Herbest, occurs sparingly in the sandy, sparry calcite-cemented limestore in the Camp Ground Member in center west line $N W \frac{1}{4} \operatorname{SW} \frac{1}{4} \sec , 21, T_{0} 5 S_{0}, R .2$ E., Carter County, Oklahoma. See measured section 9, unit 1d.

WEDEKINDELLINA ? ARDMORENSIS Thompson, Verville, and Lokke, 1956

Plate VI, figs. $1-7$

Wedekindellina ardmorensis Thompson, Verville and Lokke, 1956, Jour. Paleontology, vol. 30, p. 803-807, pl. 92, figs. 1-12.

Diagnosis:
Shape. The sheli is fusiform to only slightly elongate fusiform with rather bluntly pointed poiar extremes. The axis of coiling is nearly straight.

Size. Mature specimens range in length from 3.6 to 4.6 mm and in width from 1.3 to 1.6 mm in the seventh volution. Number of volutions. Mature specimens possess from $6 \frac{1}{2}$ to $7 \frac{1}{2}$ volutions.

Protheca. Structures are present within the primary layer
which cause reservation as to the assignment of this form to Wedekindellina. The primary layer is a primitive keriotheca. Secondary deposits in the form of tectoria do not exist in many forms and as only a trace in others.

Half lengtin. Mean half lengths of the first through the seventh volutions are: $.133 / 30, .273 / 30, .468 / 30, .759 / 30$, $1.17 / 30,1.69 / 30$, and $2.17 / 22 \mathrm{~mm}$ 。

Redius vector. Mean values of the radius vectors of the first through the seventh volutions are: $.079 / 46, .126 / 46, .189 / 46$, $.278 / 46, .399 / 46, .556 / 46$, and $.725 / 37 \mathrm{~mm}$.

Wall. The wall is thin and is composed of the protheca in almost all cases. Nothing which could be interpreted as axial filling was observed in any of the 60 specimens studied. Occasionaily a section was cut parallel to a septum which falsely appeared as filling,

Chomata. Chomata are weakly developed in most specimens. Mean chomata heights of the first through the sixth volutions are: $21 / 30,28 / 30,45 / 30,62 / 30,74 / 29$, and $66 / 15$ microns. Tunnel width. The tunnel path is straight in most specimens. The mean tumei widths of the first through the sixth volutions are: $47 / 30,68 / 30,118 / 30,187 / 30,312 / 30$, and $420 / 19$ microns.

Septa. Septa are unfolded throughout the test. Oniy in the extreme polar ends does any bending occur and this is due to twisting during the coiling process and is not true fluting.

The mean septal count of the first through the seventh volutions are: $8.3 /: 6,12.8 / 16,15.2 / 16,16.0 / 16,18.3 / 16,20.0 / 16$, and 19.7/14。

Proloculus. The proloculus is small. The mean maximum outside diameter is $90 / 46$ microns.

Discussion. Wedekindellina ? ardmorensis Thompson, Verville, and Lokke, occurs abundantly in the Confederate Limestone in the Ardmore Basin. The shape of the specimens from the Confederate Member is more similar to an elongate Fusulinella or early Triticites than to Wedekindellina, Axial filling, which is nonexistent in specimens from my collection, is one of the principal criteria for definition of Desmofnesian Wedekindellina. Specimens studied from the Confederate Member (60 specimens) are assigned with reservation to the genus Wedekindellina. Occurrence. Wedekindellina ? ardmorensis occurs abundantly in the Confederate Member in \& fine-crystalline, yellow-tan to brown limestone in NE $\frac{1}{4} N W \frac{1}{4} N E \frac{1}{4} N W \frac{1}{4} \sec .17$, T. 5 S., R 2 E., Carter County, Oklahoma. This is locality 0-68 of Thompson, Verville, and Lokke.

Subfamily SCHWAGERININAE Dunbar and Henbest, 1930

Genus TRITICITES Girty, 1904

TRITICITES TOMLINSONI, new species

Plate VIII, figs. 3-7; Plate IX, fig. 9; Plate X, fig. 4

Diagnosis:

Size. Those forms which are considered mature range in length from 5.2 to 7.0 mm and in width from 1.7 to 2.3 mm at 6 to $6 \frac{1}{2}$ volutions.

Shape. The shape of the test is fusiform, however, the central part of the shell is inflated on many specimens.

Protheca. The protheca consists of tectum and rather thick keriotheca. The outer volutions show well the keriothecal structure of the wall; however: the inner volutions do not show distinct keriothecal development. This form may represent the genus Protriticites in North America. The mean thicknesses of the protheca of the first through the sixth volutions are: $10.7 / 57,17.3 / 57,27.3 / 57,41.5 / 57,52.5 / 57$, and 56.6/42 microns.

Half length The mean haif lengths of the first through the sixth volutions are: . 179/38, .361/38, .669/38, 1.20/38, $2.02 / 38$, and $2.81 / 29 \mathrm{~mm}$ 。

Radius vector. The mean radius vector values of the first through the sixth volutions are: .121/57, .198/57, .318/57,
$.502 / 57, .758 / 57$, and $1.01 / 42 \mathrm{~mm}$.
Chomata. Chomata are weakly developed in the interior volutions and usually not developed at all in the outer three volutions. When present, the chomata are small mound-like deposits of secondary material which are low and symmetrical. Mean chomata heights of the first through the fifth volutions are: $36 / 38,55 / 38,80 / 38,85 / 33$, and $61 / 14$ microns. Tunnel width. The tunnel is poorly developed except in the first three or four volutions and is narrow. The mean tunnel widths of the first through the fifth volutions are: 68/38, 121/38, 248/38, 523/35, and 781/15 microns.

Septa. The septa are only weakly fluted in the polar extremities and are not fluted at all across the midplane of the test. The septal fluting is similar to that expressed by \underline{T}. hobblensis Thompson, Vervilie, and Bissell and \mathbb{T}. moorei Dunbar and Condra. The mean septal counts of the first through the sixth volutions are: $9.6 / 19,14.3 / 19,16.4 / 19,19.2 / 19$, 21.4/19, and 22.2/17.

Proloculus. The maximum mean outside diameter of the prolocuIus is $133 / 57$ microns.

Discussion. Triticites tomlinsoni is unlike any of the early Missourian forms of the genus thus far described. Its weak septal fluting, weakly developed chomata, short length and thick wall set it apart from other described lower Missourian Triticites. There is a possibility that the interior volutions possess a"diaphanotheca with poorly developed pores.

In several specimens the lower tectorium, which was porous, was separated from the upper secondary layer by a less dense (apparently non-porous) layer in the interior volutions. No assignment of specimens to the genus Protriticites was attempted as the writer does not possess topotypes.

Occurrence. Triticites tomlinsoni, new species, occurs abundantly in the Crinerville Member both in the Overbrook anticline and the Pleasant Hill syncline. Within the Overbrook anticline, it occurs in a yellowtan, thin- to medium-bedded, fine-crystalline limestone (micrite) in NW $\frac{1}{4}$ NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec. 6, T. 5 S.g R. 2 E., Carter County, Oklahoma, in a railroad cut on the Gulf, Colorado and Santa Fe railroad right of way. In the Pleasant Hill syncline, the species occurs in $\mathrm{SE}_{\frac{1}{4}}$ NW $\frac{1}{4}$ SW䨝 sec. 14, T. 5 S., R. 1 E., Carter County, Oklahoma, in the Crinerville Member. The Overbrook anticline locality is designated as type locality of the species.

TRITICITES IRREGULARIS (Staff), emend. Dunbar and Condra, 1927

Plate IX, figs. 1-7

Fusulina centralis Var irreguiaris Staff (part), 1912, Palaeontographica, vol. 59, p. 178-179, pl. 17, fig. 10.

Triticites irregularis (Staff) Dunbar and Condra, 1927, Nebraska Geol. Survey, Bull. 2, ser. 2, p. 108-11, pl. 8, figs. 7-10, pl. 9, figs. 1-3.

Triticites irregularis (Staff) Newell, 1934, Jour. Paleontology, vol. 8, pl. 52, fig. 1.

Triticites irregularis (Staff) Merchant and Keroher, 1939, Jour. Paleontology, vol. 13, p. 600-603, pl. 69, figs. 4-6.

Triticites irregularis (Staff) Burma, 1942, Jour. Paieontology, vol. 16, p. 743.

Triticites irreguiaris (Staff) Thompson, Verville, and Bissell, 1950, p. 446, pi. 58, figs. 14-15, 19-21.

Diagnosis.

Size. Specimens which possess 6 volutions range in length from 4.5 to 6.5 mm and in width from 1.2 to 1.7 mm .

Shape. The shape of the test is elongate fusiform to subcylindrical with rather bluntly rounded poles in the outer volutions.

Protheca. The wall is almost entirely composed of tectum and keriotheca with little secondary deposits. Mean thicknesses of the tectum and keriotheca of the first through the sixth volutions are: $8.1 / 47,12.2 / 47,20.1 / 47,30.2 / 47$, 41.5/47, and 49.9/36 microns.

Half length. Mean half length of the first through the sixth volutions are: . 136/31, .273/31, .508/31, .959/31, 1.74/31 and $2.68 / 26 \mathrm{~mm}$ 。

Radius vector. Mean radius vectors of the first through the sixth volutions are: $0087 / 47, .143 / 47, .228 / 47, .346 / 47$, $.522 / 47$, and $.729 / 37 \mathrm{~mm}$.

Chomata. The chomata are weakly developed and do not occur in the outer volutions of the shell. The shape of the chomata
ranges from broad and asymmetrical to short and symmetrical. The mean thicknesses of the chomata of the first through the fifth volutions are: $22.3 / 31,35 / 31,56 / 31,72 / 29$, and $70 / 23$ microns.

Tunnel width. The tunnel is rather broad and rather irregular in its development. The mean tunnel widths of the first through the fifth volutions are: $56 / 31,93 / 31,167 / 31$, 338/3it, and 594/24 microns.

Septa. The septa are fluted in the polar ends and to some extent up the slope, however this is weak fluting. The septal counts of the first through the sixth volutions are: $9.1 / 16,13.3 / 16,16.3 / 16,19.0 / 16,21.0 / 16$, and $20.4 / 11$. Proloculus. The maximum mean outside diameter of the proloculus is $93 / 47$ microns.

Discussion. Triticites irregularis (Staff) emend. as identified in the Ardmore Basin is the same type recognized by Dunbar as typical from the Winterset Limestone. Forms which were given me from the Winterset (NWh NE $\frac{1}{4}$ sec. $12, T_{0} 75 \mathrm{~N}_{0}, \mathrm{R}_{0} 28 \mathrm{~W}$, , Madison County, Iowa) agree with the forms witnin the Ardmore Basin. There is some lesser degree of septal fluting on the forms in the Anadarche Limestone of the Overbrook anticline compared to forms from the same formation in the Brock anticline. Those within the Orerbrook anticline may well find affinity to forms from the Brownwood Shale of Texas (Myers, 1960, pl. 16, figs. 9-17). For all measurable characters, Hotelling's T^{2} indicates that the forms from the two Ardmore Basin localities are drawn from the same population,

Occurrence. Triticites irregularis (Staff) emend. occurs sparingly in the Anadarche Member in north one-half of NWW $\operatorname{SW} \frac{1}{4}$ SE $\frac{1}{4}$ sec. 8, T. 5 So, R. 2 E., Carter County, Oklahome, in a gray-white, fossiliferous, thin- to medium-bedaed, micritic limestone. In the Brock anticline, this species is found in the Anadarche Member in SE $\frac{1}{4}$ SW $_{\frac{1}{4}}$ SE $_{4}^{\frac{1}{4}}$ sec. 17, T. 5 S., R. 1 E., Carter County, Oklahoma.

TRIPICITES PRIMARIUS Merchant and Keroher, 1939

```
Plate IX, fig. 8; Plate XI, figs. 1-5
```

Triticites secalicus var. primarius Merchant and Keroher, 1939, Jour. Paleontology, vol. 13, p. 61i-614, pl. 69, figs. 10-12.

Triticites primarius Merchant and Keroher, Burma, 1942, Jour. Paleontology, voì. 16, p. 748-749, text figs. 5-13, pl. 118, figs. $1,8$.

Diagnosis.
Shape. The shape of the adult form is fusiform with bluntly pointed to broadly rounded polar ends.

Size. Specimens which are considered mature average 6.6 mm in length and 1.9 mm in width in the sixth volution, Protheca. The protheca is thick. Mean values of the thicknesses of the tectum and keriotheca of the first through the sixth volutions are: $10.4 / 35,16.5 / 36,27.2 / 36,43.3 / 36$, $55.9 / 36$, and $61.1 / 11$ microns.

Half length. Mean values of the half length of the first
through the sixth volutions are: .176/19, .403/19, .781/19, $1.59 / 19,2.66 / 19$, and $3.37 / 5 \mathrm{~mm}$.

Radius vector. Mean values of the radius vectors of the first through the sixth volutions are: .112/35, .199/35, $.338 / 35, .543 / 35, .790 / 33$, and $.973 / 10 \mathrm{~mm}$.

Chomata. Chomata are strongly developed and tend to be irregular in shape. Mean chomata heights of the first through the fifth volutions are: $38.5 / 20,60.1 / 20,94.6 / 19,103.4 / 18$, and $96.6 / 5$ microns.

Tunnel width. The tunnel is wide and its path straight to slightly irregular. Mean tunnel widths of the first through the fifth volutions are: $.084 / 20, .151 / 20, .309 / 19, .712 / 18$, and $1.03 / 6 \mathrm{~mm}$.

Septa. Septal fluting is well developed in the polar areas but is lacking or only weakly developed across midplane of the shell. Mean septal counts of the first through the sixth volutions are: $9.0 / 15,14.8 / 15,17.4 / 15,20.1 / 15$, $22.4 / 15$, and $20.8 / 5$.

Proloculus. The mean value of the proloculus maximum outside diameter is $127 / 35$ microns.

Discussion. Triticites primarius Merchant and Keroher, differs from Triticites newelli Burma, in half length, protheca thickness, tunnel width, and septal count. Index values of \underline{R} from the linear discriminant are given below for the above significantly different characters.

Half Length

$$
\begin{array}{cc}
R=-.2830 X_{1}+.2: 84 X_{2}-.2991 X_{3}+.2168 X_{4}+.2448 X_{5}+.6075 X_{6} \\
\text { Triticites primarius } & \text { Triticites newelli } \\
.3079 & .2551 \\
.2616 & .2466 \\
.2609 & .2285 \\
.2545 & .2269 \\
.2400 & .1921
\end{array}
$$

Protheca
$R=+23.47 \mathrm{X}_{1}-6.557 \mathrm{X}_{2}-4.967 \mathrm{X}_{3}+6.789 \mathrm{X}_{4}+5.519 \mathrm{X}_{5}-4.811 \mathrm{X}_{6}$
Triticites primarius Triticites newelli

.3850	.2960	.2731	.1789
.3232	.2923	.2509	.1749
.3194	.2887	.2397	.1664
.3176	.2806	.2318	.1656
.3074	.2787	.1809	.1510

Septa

$R=+2.152 X_{1}+13.48 X_{2}-39.43 X_{3}+57.05 X_{4}-9.90 X_{5}-165.59 X_{6}$

Triticites primarius

-3.179	-4.118
-3.140	-4.104
-3.087	-3.917
-3.034	-3.820
-2.508	-3.245

-3.179
相
-3.034
-2.508
-4.118
-4.104
-3.917
-3.820
-3.245

Tunnel Width			
$R=-3.315 \mathrm{X}_{1}-.9077 \mathrm{X}_{2}-.1279 \mathrm{X}_{3}+.6547 \mathrm{X}_{4}+1.332 \mathrm{X}_{5}$			
Triticites primarius			
1.489			
1.389			
1.387			
1.340			
1.330			
1.200		$\quad 1.134$	Triticites newelli
:---			

Occurrence. Triticites primarius occurs abundantly in the Daube Member in the Overbrook anticline in the $S W_{\frac{1}{4}} S E_{\frac{1}{4}} S E \frac{1}{4}$ sec. 16, T. 5 S., R. 2 E., Carter County, Oklahoma.

TRITICITES NEWELLI Burma, 1942

```
Plate X, figs. 1-3
```

Triticites newelli Burma, 1942, Jour. Paleontology, vol. 16, p. 749-751, text figs. 5-13, pl. 118, figs. 7, 10.

Diagnosis.
Shape. The shell is fusiform to rhomboidal with bluntly pointed poles.

Size, Mature specimens of six volutions average 5.4 mm in length and 2.0 mm in width.

Protheca. The primary layers of the wall are thick. The mean thicknesses of the first through the sixth volutions are: $8.9 / 23,15.8 / 23,24.3 / 23,36.5 / 23,49.9 / 23$, and $60.5 / 22$ microns.

Half length. Mean half lengths of the first through the seventh volutions are: . $161 / 15, .331 / 15, .577 / 15,1.00 / 15$, $1.75 / 15,2.72 / 15$, and $3.67 / 8 \mathrm{~mm}$.

Radius vector. Mean radius vector values of the first through the sixth volutions are: .118/23, .199/23, .323/23, $.496 / 23, .736 / 23$, and $1.02 / 21 \mathrm{~mm}$. Chomata. Chomata range from weakly developed to strongly developed. Mean chomata heights of the first through the fifth volutions are: $37.8 / 15,58.3 / 15,77.9 / 15,93.4 / 15$, and $94.2 / 12$ microns.

Tunnel width. The tunnel is narrow in comparison to the tunnel of T . primarius. The mean tunnel widths of the first through fifth volutions are: . $067 / 15, .114 / 15, .196 / 15$, $.383 / 15$, and $.718 / 14 \mathrm{~mm}$.

Septa. The septa are tightly folded in the polar extremes and extend up the sides toward the chomata in early volutions, decreasing in intensity. The mean septal counts of the first through the sixth volutions are: $9.1 / 8,16.0 / 8,18.7 / 8$, $21.2 / 8,24.5 / 8$, and $26.1 / 7$.

Proloculus. The mean maximum and minimum outside diameters of the proloculus are 135/23, and 121/23 microns.

Discussion. Triticites newelli Burma, is similar to \mathbb{T}. primarius Merchant and Keroher, but may be distinguished in the Ardmore Basin as indicated in the discussion of T . primarius.

Occurrence. Triticites newelli occurs abundantly in the Daube Member as mapped in the Brock anticline in measured section 14 in the center of the $\operatorname{NW} \frac{1}{4} \operatorname{SE} \frac{1}{4} \operatorname{NE} \frac{1}{4} \sec .19$, T. 5 S., R. 1 E., Carter County, Oklahoma,

STRATIGRAPHIC CONCLUSIONS

Fusulinids are among the more abundant, and show the greatest morphological diversity, of any common fossil group in rocks of Pennsylvanian age. Thus when present, they are a most useful biological tool in the detection or formulation of time-stratigraphic boundaries, and are exceedingly helpful in the solution of problems of correlation within this interval of geological time.

The lower Middle Pennsylvanian rocks ("Atokan" series) of the Ardmore Basin contain representatives of the genus Fusulinelle. Both Fusulinella dakotensis Thompson and Fusulinella vacua, new species, occur in the Bostwick Member and their presence is interpreted to indicate an "Atokan" age for the Bostwick.

The time-stratigraphic boundary between the "Atokan" and the Desmoinesian Series' is considered to be contained within the approximately 600 feet of unnamed shale overlying the Bostwick Member. For convenience however this boundary is placed at the base of the Lester Limestone which has the first indisputable occurrence of the genus Fusulina in the Ardmore Basin (see Figure 1).

Within the Ardmore Basin the genus Fusulina occurs for the first time in the Lester Limestone. The genus persists through the Camp Ground Member and probably considerably higher. Fusulina insolita

Thompson, F. mutabilis, new species, F. pumila Thompson, and F. plattensis Thompson are all primitive forms of the genus and indicate an early Desmoinesian age for the Lester and Frensley Members in which they are found. The Lester and Frensley Members are considered the equivalents of the McAlester Formation in east-central Oklahoma and are of Krebs age. Wedekindellina sp., associated with F. pumila in the middle Fransley Member, is the first representative of the genus to occur in the Ardmore Basin.

The Pumpkin Creek Member contains Fusulina cf. F. novamexicana and Wedekindellina sp. The Pumpkin Creek is considered to be the probable equivalent of the Inola Limestone of northeastern Oklahoma, in which similar representatives of Fusulina occur in association with Wedekindellina henbesti (Skinner).

The Devils Kitchen Member contains Fusulina euryteines Thompson and Wedekindellina sp. The Devils Kitchen is considered to be of early Cabaniss age.

The Arnold Limestone contains the youngest Wedekindellina fauna in the Ardmore Basin that is known to the writer. Two species of Fusulina are also present. The Arnold is considered to be of late Cabaniss age.

Fusulina aff. F. whitakeri, which is found in an unnamed limestone between the Rocky Point Conglomerate and the Camp Ground Member, is the first species in the Ardmore Basin which is identifiable with those commonly found in the Marmaton Group of northeastern Oklahoma. Because of the similarity of fusulinids this unnamed limestone
is considered to be of early Marmaton age.
Fusulina acme is found in the Camp Ground Member and is the youngest representative of the genus found in the Ardmore Basin by the writer. The Camp Ground is of Marmaton age.

The time-stratigraphic boundary between the Desmoinesian and Missourian Series is placed for the sake of convenience at the base of the Confederate Member. The Confederate Member contains Wedekindellina ? ardmorensis, which is similar to fusulinids from the Swope Formation of Kansas.

The Crinerville Member contains Triticites tomlinsoni, new species, and is probably equivalent to the lower part of the Kansas City Group of Kansas. The Anadarche Member contains fusulinids of the type commonly referred to as Triticites irregularis. These forms from the Anadarche are similar to those in the Brownwood Shale. For this reason the Anadarche Member is considered equivalent to the limestone lentils in the upper part of the Brownwood Shale of Texas. The Daube Member contains Triticites primarius and Triticites newelli, which are associated in the Stanton Formation in Kansas. The Daube Member is considered the approximate equivalent of the Captain Creek - Stoner Members of the Stanton Formation of Kansas and the Placid Shale - Ranger Limestone Members of the Brad Formation of Texas.

SELECTED REFERENCES

Alexander, R. D., 1954, Desmoinesian fusulinids of northeastern Oklahoma: Oklahoma Geol. Survey, Circ. 31, 67 p., 4 pls .

American Commission of Stratigraphic Nomenclature, 1956, Nature, usage, and nomenclature of Rock-Stratigraphic units: Amer. Assoc. Petroleum Geologists, Bull., vol. 40, p. 2003-2014.
, 1961, Code of stratigraphic nomenclature: Amer. Assoc. Petroleum Geologists, Bull., vol. 45, p. 645-665.

Beede, J. W., 1916, New species of fossils from the Pennsylvanian and Permian rocks of Kansas and Okiahoma: Indiana Univ. Studies, vol. 11, p. 118-125, pl. 22.

Bennison, A. P., 1954, Target Limestone, new member of Springer Formation, Carter County, Oklahoma: Amer. Assoc. Petroleum Geologists, Bull., vol. 38, p. 913-914.

Burnk, H. D., 1960, An introduction to mathematical statistics: Ginn and Company, New York, 403 p.

Burma, B. H., 1948, Studies in quantitative paleontology, I: Jour. Paleontology, vol. 22, p. 725-760.

Cheney, M. G., et al., 1940, Geology of north-central Texas: Amer. Assoc. Petroleum Geologists, Bull., vol. 24, p. 81-90.

Colman, H. L., Smallwood, C., and Brown, G. W., 1962, Computer language: McGraw-Hill, New York, 196 p.

Devonshire, P. F. P. C., 1954, A faunal study of the Pumpkin Creek Limestone Member of the Big Branch Formation in the Ardmore area: Shale Shaker, vol. 5, no. 1, p. 10.

Dott, R. H., 1941, Regional stratigraphy of Mid-Continent: Amer. Assoc. Petroleum Geologists, Bull., vol. 25, p. 1664-1668.

Dunbar, C. O., and Condra, G. E., 1927, The Fusulinidae of the Pennsylvanian

System of Nebraska: Nebraska Geol. Survey, Bull. 2, 135 p. 15 pls.
, and Skinner, J. W., 1937, Permian Fusulinidae of Texas: Texas Univ., Bull. 3701, p. 523-828, pls. 42-81.
, and Henbest, L. G., 1942, Pennsylvanian Fusulinidae of Illinois: Illinois Geol. Survey, Bull. 67, 218 p., 23 pls.

Floyd, F. W., and Jufer, D. C., 1934, Stratigraphy in the Ardmore area: Tulsa Geol. Soc., Digest, vol. 3, p. 10-11.

Folk, R. L., 1959, Petrology of sedimentary rocks: Univ. of Texas Press.

Frederickson, E. A., 1957, Geologic map of the Criner Hills area: Oklahoma Geol. Survey, Map GM-4.
___ 1962, Extent of the Dolman Member of the Hoxbar Formation: Oklahoma Geological Survey, Okla. Geology Notes, vol. 22, p. 295-296.

Galler, B. A., 1962, The language of computers: McGraw-Hiil Book Company, Inc., New York, 244 p.

Girty, G. H., and Roundy, P. V., 1923, Notes on the Glenn Formation of Oklahoma with consideration of new paleontological evidences: Amer. Assoc. Petroleum Geologists, Bull., vol. 7, p. 331-349.

Goldston, W. L., Jr., 1922, Differentiation and structure of the Glenn Formation: Amer. Assoc. Petroleum Ceologists, Bull., vol. 6, p. 5-23.

Guthrey, W. M., and Milner, C.A., 1933, Unpublished preliminary map of the Hoxbar, Deese and a portion of the upper Dornick Hills Formations, southeast of Ardmore, Oklahoma.

Hald, A., 1960, Statistical tables and formulas: John Wiley and Sons, Inc., New York, 79 p.
\qquad , 1960, Statistical theory with engineering applications: John Wiley and Sons, Inc., New York, 783 p .

Harlton, B. H., 1956, The Harrisburg Trough Stephens and Carter Counties, Oklahoma: Amer, Assoc. Petroleum Geologists, Symposium. Petroleum Geology of Southern Oklahoma, vol. 1, p. 135-143.
\qquad 1960, Stratigraphy of Cement Pool and adjacent areas, Caddo and Grady Gounties, Oklahoma: Amer. Assoc. Petroleum Geologists, Bull., vol. 44, p. 216-223.

Henbest, L. G., 1928, Fusulinids from the Stonefort Limestone Member of the Tradewater Formation: Jour. Paleontology, vol. 2, p. 7085, pls. 8-10.
_ 1937, Keriothecal wall-structure in Fusulina: Jour. Paleontology, vol. 11, p. 212-229.

Hicks, I. C., et al., 1956, Editorial footnote: Amer. Assoc. Petroleum Geologists, Symposium. Petroleum Geology of Southern Oklahoma. vol. 1, p. 4.

Hodges, J. L., Jr., 1955, Survey of discriminatory analysis: U. S. Air Force School of Aviation Medicine, Project no. 21-49-004, Report no. 1.

Hoel, P. G., 1960, Introduction to mathematical statistics: John Wiley and Sons, Inc., New York, 331 p.

Hotelling, H., 1931, The generalization of Student's ratio: Annals of Math. Statistics, vol. 2, p. 360-378.

Imbre, J., 1956, Biometric methods in the study of invertebrate fossils: Amer. Mus. Natural History Bull., vol. 108, art. 2, p. 217-252.

Ingram, R. L., 1954, Terminology in sedimentary rocks: Geol. Soc. America; Bull., vol. 65, p. 938.

Jacobsen, La, 1959, Petrology of Pennsyivanian sandstones and conglomerates of the Ardmore Basin: Oklahoma Geol. Survey, Bull. 79. 144 p.

Kerns, R. L., 1963, Personal communication.
Merchant, F. E., and Keroher, R. P., 1939, Some fusulinids from the Missouri series of Kansas: Jour. Paleontclogy, vol. 13, p. 549614, pl. 69.

Miller, R. L., and Kahn, J. S., 1962, Statistical analysis in the geological sciences: John Wiley and Sons, Inc., New York, 483 p.

Miser, H. D., 1926, Geological Map of Oklahoma: U. S. Geol. Survey.
___ 1954, Geological Map of Oklahoma: U. S. Geol. Survey and Oklahoma Ceol. Survey.

McKee, E, D., and Weir, G. W., 1953, Terminology for stratification and cross-stratification in sedimentary rocks: Geol. Soc. America, Bull., vol. 64, p. 382-388.

Needham, C. E., 1937, Some New Mexico Fusulinidae: New Mexico School of Mines, Bull. 14, 88 p, 12 pls.

Newell, N. D., 1934, Some Mid-Pennsylvanian invertebrates from Kansas and Oklahoma: Jour. Paleontology, vol. 8, p. 422-432, pl. 5255.
, and Keroher, R. P., 1937, The fusulinid Wedekindellina, in Mid-Pennsylvanian formations: Amer. Assoc. Petroleum Geologists, Bull., vol. 14, p. 698-705, pl. 93.

Ramay, C. L., 1957a, Clarification of Desmoinesian stratigraphy in the Pleasant Hill syncline of the Criner Hills: Unpublished Master of Science thesis, University of Oklahoma.
___ 1957b, Clarification of Desmoinesian stratigraphy in the Pleasant Hill syncline: Ardmore Geol. Soc., Guidebook, Criner Hills Fleld Conference, p. 45.

Roth, R., and Skinner, J. W., 1930, The fauna of the McCoy Formation, Pennsylvanian, of Colorado: Jour. Paleontology, vol. 4, p. 332-352, pls. 28-31.

Schacht, D. W., 1947, Lithologic variations in the Devils Kitchen Member of the Deese Formation in the Ardmore Basin: Unpublished Master of Science thesis, University of Oklahoma.

Skinner, J. W., 1931, Primitive fusulinids of the Mid-Continent region: Jour. Paleontology, vol. 5, 253-259, p1. 30.

Stewart, W. J., 1958, Some fusulinids from the upper Strawn, Pennsylvanian, of Texas: Jour. Paleontology, vol. 32, p. 1051-1070, pls. 132-137.

Taff, J. A., 1903, Description of the Tishomingo quadrangle: U. S. Geol. Survey, Geol. Atlas, Folio 98.

Thompson, M. L., 1934, The fusulinids of the Des Moines series of Iowa: Iowa Univ. Studies in Nat. History, vol. 16, no. 284, p. 277-332, pls. 20-23.
, 1935, Fusulinids from the Lower Pennsylvanian Atoka and Boggy Formations of Oklahoma: Jour. Paleontology, vol. 9, p. 298-303, pl. 26.
\qquad , 1936a, Fusulinids from the Black Hills and adjacent areas in Wyoming: Jour. Paleontology, vol. 10, p. 95-113, pls. 13-16.
_ _ 1936b, Pennsylvanian fusulinids from Ohio: Jour. Paleontology, vol. 10, p. 673-683, pls. 90-91.
\qquad , 1945, Pennsylvanian rocks and fusulinids of east Utah and northwest Colorado correlated with Kansas section: Kansas State Geol. Survey, Bull., 60, pt. 2, 84 p., 5 pls.
, 1948, Studies of American fusulinids: Kansas Univ. Paleont. Contr., Protozoa, art. 1, 184 p., 38 pls.
, Verville, G. J., and Bissell, H. J., 1950, Pennsylvanian fusulinids of the south-central Wasatch Mountains, Utah: Jour. Paleontology, vol. 24, p. 430-465, pls. 57-64.
, and Thomas, H. Do, 1953, Systematic paleontology of fusulinids from the Casper Formation: Wyoming Geol. Survey, Bull. 46, p. 15-56, pls. 108.
, Verville, Go Jo, and Lokke, D. H., 1956, Fusulinids of the Desmoinesian - Missourian contact: Jour. Paleontology, vol. 30, p. 793-810, pls. 89-93.

Tomlinson, C. W., 1929, The Pennsylvanian System in the Ardmore Basin: Oklahoma Geol. Survey, Bull. 46, 79 p.
, 1934, Correction to stratigraphy of Hoxbar Formation, Oklahoma: Amer. Assoc. Petroleum Geologists, Bull., vol. 28, p. 1083-1085.
, 1937, Hoxbar and upper Deese Formations south of Ardmore: Ardmore Geol. Soc., Guidebook, March 3, 7 p.
\qquad , 1959, Best exposures of various strata in Ardmore Basin, 1957: Amer. Assoc. Petroleum Geologists, Symposium. Petroleum Geology of Southern Oklahoma, vol. 2, p. 302-334.
, and McBee, W., J., 1959, Pennsylvanian sediments and orogenies of Ardmore district, Oklahoma: Amer. Assoc. Petroleum Geologists, Symposium. Petroleum Geology of Southern Oklahoma, vol. 2, p. 3-51.
, \qquad , 1962, Pernsylvanian sediments and orogenies of Ardmore district, Oklahoma: Amer. Assoc. Petroleum Geologists, Symposium. Pennsylvanian System in the United States, p. 479-483.

Waddell, D. E., 1959, The Atokan-Desmoinesian contact in the Ardmore Basin, as defined by fusulinids: Unpublished Master of Science thesis, University of Oklahoma, $94 \mathrm{po}, 8 \mathrm{pls}$.

Westheimer, Ja, 1936, Correlation of Pennsylvanian sediments of the Ardmore Basin with the Franks Graben: Conference on Pennsylvanian of Oklahoma, Kansas, and north Texas, sponsored by Sigma Gamma Epsilon. Norman, Oklahoma.
___ and Schweers, Fo P., 1956, Southwest Lone Grove Field, Carter County, Oklahoma: Amer. Assoc. Petroleum Geologists, Symposium. Petroleum Geology of Southern Oklahoma, vol. 1, p. 144-153.

White, M. Po, 1932, Some Texas Fusulinidae: Texas Univ., Bull. 3211, 105 p., 10 pls.

Wilson, L. R., 1962, Personal communication.

PLATE 1

PLATE I

Figures Page
1-4 Fusulinelia dakotensis Thompson, 1936 53
Measured section 1, unit 6, upper part of BostwickMember SW $\frac{1}{4}$ SW㱑 sec. 32, T. 5 So, R. 2 E., CarterCounty, Oklahoma.
5-8 Fusulinella vacua, new species 55
Measured section 1, unit 7, upper part of Bost-wick Member $\mathrm{SW}_{\frac{1}{4}} \mathrm{SW} \frac{1}{4} \mathrm{sec} .32$, T. $5 \mathrm{So}_{0}$ R. 2 E.,Carter County, Oklahoma.Figure 6 is designated name bearer (holotype).
All figures are unretouched photographs, X15.

Plate II

PLATE II

Figures

Page
1-5 Fusulina mutabilis, new species 62
1,4-90 feet beiow the oolitic Lester Member, measured section 15 , unit 1 , NE $\frac{1}{4} \mathrm{NE} \frac{1}{4} \mathrm{NE} \frac{1}{4}$ sec. 13, T. 4 S., Ro 1 E., Carter County, Oklahoma. 2,3,5 - Oolitic Lester Member measured section
 E_{0}, Love County, Oklahoma.

Figure 1 is designated name bearer (holotype).
6-7 Wedekindellina sp 66
Lower part of Frensiey Member, measured section 1, unit 8, center of west line $\mathrm{NE}_{\frac{1}{4}} \mathrm{NE}_{4}^{\frac{1}{4}} \mathrm{NE}_{\frac{1}{4}} \mathrm{NE}_{4}^{\frac{1}{4}} \sec$.

22, T. $6 S_{0}, R_{n} 2$ E., Carter County, Oklahoma.
8-11 Fusulina insolita Thompson, 1948 59
150 feet below the oolitic Lester Member, measured section 1 , unit 4 a , NE corner $N W \frac{1}{4} N \mathrm{~N}_{\frac{1}{4}}$ sec. 22 , T. 6 So, Ro $2 \mathrm{E}_{0}$, Love County, Oklahoma

All figures are unretouched photographs, X15.

Plate III

PLATE III

Figure Page
1-4 Fusulina cf. F. novamexicana Needham, 1937 70Pumpkin Creek Member, measured section 1, unit16, NW $\frac{1}{4} \operatorname{NE} \frac{1}{4} \operatorname{NW} \frac{1}{4} \sec .23, T .6$ S., R. 2 E., LoveCounty, Oklahoma.
5-9 Fusulina plattensis Thompson, 1936 67
Upper part of Frensley Member, measured section 1,
unit 11, SW $\frac{1}{4}$ SE $_{\frac{1}{4}}$ SE $_{\frac{1}{4}} \sec .15$, T. 6 S., R. 2 E.,Love County, Oklahoma.
10-13 Fusulina pumila Thompson, 1934 65Lower part of Frensley Member, maasured section 1,unit 8, $\mathbb{N E}_{\frac{1}{4}} \mathrm{NE}_{\frac{1}{4}} \mathrm{~N}=\frac{1}{4} \mathrm{sec}, 22$, T. 6 S., R. 2 E.,Love County, Oklahoma.
All figures are unretouched photographs, X15.

Plate IV

PLATE IV

Figure Page
1-5 Fusulina euryteines Thompson, 1934 72
Devils Kitchen Member, measured section 3, unit
1 (c, e, and f), NE $\frac{1}{4} \mathrm{NE}_{4}^{\frac{1}{4}} \operatorname{SW} \frac{1}{4} \mathrm{sec} .4, \mathrm{~T} .6 \mathrm{S}$. ,
R. 2 E., Love County, Oklahoma.
6-7 Wedekindellina sp. 73
Same formation and same locality as above.
All figures are unretouched photographs, X15.

Plate ∇

PLATE V

Figure Page
1-5 Fusulina haworthi (Beede), 1916 emend. 79Upper part of Arnold Member, measured section 6,12 feet below unit 4, NE $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4} \sec .33$, T. 5S., R. 2 E., Carter County, Oklahoma.
6-9 Wedekindellina sp.
6-7 Upper part of Arnold Member, same locality and same unit as above. 82
8-9 Pumpkin Creek Member, measured section 2,unit 10, NE $\frac{1}{4}$ NW $\frac{1}{4} \sec .15$, T. $6 S_{0}$, R. 2 E., LoveCounty, Oklahoma. 70

All figures are unretouched photographs, X15.

$$
\frac{\operatorname{lin}}{\operatorname{lin}}
$$

PLATE VI

Figure Page
1-7 Wedekindellina ? ardmorensis Thompson, Verville, 87
and Lokke, 19561-3, 5-个 Confederate Member, measured section 10,Carter County, Oklahoma.4 Confederate Member, measured section 17, unit1, $\mathrm{E}_{2}^{\frac{1}{2}} \mathrm{SE}_{\frac{1}{4}} \mathrm{SW}_{4}^{\frac{1}{4}} \sec .14$, T. 5 S., R. 1 E., CarterCounty, Oklahoma.
8-12 Fusulina erugata, new species 77
Lower part of Arnold Member, measured section 7,Carter County, Oklahomá.Figure 9 is designated name bearer (holotype).
All figures are unretouched photographs, X15.

Plate VII

Figure Page
1-3,5 Fusulina aff. F. whitakeri Stewart, 1958. 83
Unnamed limestone between Rocky Point Conglom-erate and "type" $\mathrm{C}_{\text {amp }}$ Ground Member, measuredsection 8, unit 3, SW $\frac{1}{4} \mathrm{NE}_{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}} \sec .20, \mathrm{~T} .5 \mathrm{S}$. ,R. 2 E., Carter County, Oklahoma.
4,6-7 Fusulina acme Dunbar and Henbest, 9942 84Limestone in lower part of Camp Ground Member,measured section 9, unit 1, center of west lineNW $\frac{1}{4} \operatorname{SW} \frac{1}{4} \sec .21, ~ T .5$ S., R. 2 E., Carter County,Oklahoma

All figures are unretouched photographs, X15.

Plate VIII

Figure Page
1-2 Fusulina acme Dunbar and Henbest, 1942 84Limestone in lower part of Camp Ground Member,measured section 9, unit 1, center of west lineNW $\frac{1}{4}$ SW $\frac{1}{4}$ sec. 21, T. 5 S., R. 2 E., Carter County,Oklahoma.
3-7 Triticites tomlinsoni, new species 90

3-4, 6-7 Crinerville Member, measured section 10 , unit 4, NW $\frac{1}{4} \operatorname{NE}_{4}^{\frac{1}{4}} \mathrm{SW}_{\frac{1}{4}} \sec .6$, T. 5 S., R. 2 E., Carter County, Okiahoma.

5 Crinerville Member, measured section 18, unit
1, $\mathrm{SE}_{\frac{1}{4}} \mathrm{NW}^{\frac{1}{4}} \mathrm{SW}^{\frac{1}{4}} \sec , 14, \mathrm{I}$ 。 5 Sn, Ro 1 E., Carter
County, Oklahoma.
Figure 7 is designated name bearer (holotype).

A11 figures are unretouched photographs, X:5.

Plate IX

PLATE IX

FigurePage
1-7 Triticites irregularis (Staff) emend. Dunbar and
Condra, 1927 96
1,6 Anadarche Member, measured section 13, uni.t
1, SE $\frac{1}{4} \operatorname{SWW}_{\frac{1}{4}} \mathrm{SE}_{4}^{\frac{1}{4}} \mathrm{sec} .17, \mathrm{~T} .5 \mathrm{So}, \mathrm{R} .1$ E., Carter
County, Oklahoma.
2-5,7 Anadarche Member, measured section 10,

Carter County, Oklahoma.
8 Triticites primarius Merchant and Keroher, 1939. 95
Daube Member, measured section io, unit 6,
County, Oklahoma.
9 Triticites tomlinsoni, new species 90Crinerville Member, measured section 10, unit 4,Oklahoma.
All figures are unretouched photographs, X15. 127

Plate X

PLATE X

Flgure Page
1-3 Triticites newelli Burma, i942 98
Daube Member, measured section 14, unit 1,
center of NW $\frac{1}{4} S_{1} \frac{1}{4}$ NE $\frac{1}{4}$ sec. 19, T. 5 S., R.
1 E., Carter County, Oklahoma.
4 Triticites tomlinsoni, new species
90
Crinerviile Member, measured section 10 ,
unit 4, NW $\frac{1}{4} \operatorname{Ne} \frac{1}{4} \operatorname{SW} \frac{1}{4} \sec .6$, T. 5 Sos Ro 2 Eq,
Carter County, Oklahoma.

All figures are unretouched photographs, X15.

Plate II

PLATE XI

FigurePage1-5 Triticites primarius Merchant and Keroher, 1939. 95
Daube Member, measured section 10, unit 6, SW $\frac{1}{4}$SE $\frac{1}{4}$ SE $\frac{1}{4} \cdot \sec .16, T .5$ S., R. 2 E., Carter County,0klahoma。
All figures are unretouched photographs, X15.

APPENDIX I

STRATIGRAPHIC SECTIONS

Sections ! through 18 were measured during the summer and fall of 1962. Outcrop measurements were made with Brunton compass, and Jacob Staff. All descriptions are field descriptions and in a general manner emulate the following format, which is a composite from several sources.

Description Format

Lithologic name. Common nomenclatorial terms such as
sandstone and limestone were used in order to create least
confusion in terminology.
Golor. Both fresh and weathered appearance in qualitative terms are given.

Bedding. Terminology for the thickness of stratigraphic units followed that of Ingram (1954, p. 938) as follows:

Thickness	Terms for thickness of
of unit	Stratigraphic units

Coherence or hardness. The terminology of H. B. Stenzel was employed here as follows:

Hard or dense, rings when hit by hammer
Indurated, thuds when hit by hammer
Tough, difficult to pull apart with the pick
Plastic, easily molded in hand
Friable, poorly cemented sand or other clastic easily rubbed or broken free into loose particles

Loose, uncemented clastic particles.

Cement. Term used as defined by Folk (1954, p. 135).
Refers to the agent binding adjacent grains.
Sorting. As used, this was an observational phenomenon made with ! OX lens and should be understood to convey only a relative connotation.

Grain Size. Prii (\varnothing) units were used to designate grain size range. Values were obtained by comparison to a standard set of sieved grains. For limestone, the crystallinity scale of Folk (1959, p. 147) was used with a simple modification of round-off.

MEASURED SECTION I

Location. NE $\frac{1}{4} \operatorname{NE}^{\frac{1}{4}} \sec .22, \operatorname{SE}_{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}} \mathrm{sec} .15$, and $\mathrm{NW}_{\frac{1}{4}} \mathrm{sec} .23$, T. 6 S., R. 2 E., Love County, Oklahoma. Section 1 is 0.5 mile south of Lake Murray Park on State Scenic 77, and on the strike of the outcropping beds southeast along the north border of the meadow approximately 400 yards. The section is painted, with the numbers below 1-11 to the immediate southwest, and numbers above 1-i1 offset another 250 to 275 yards southeast along strike and to the northeast. Section 1 is presented beginning at the top. Unit Thickness

16 Pumpkin Creek Member
Strike No $60^{\circ} \mathrm{W}$ o, $\operatorname{dip} 36^{\circ} \mathrm{NE}$.
e Limestore; yellow-gray weathering gray with dark yellow biotches, medium- to thick-bedded, hard, sparry calcite-cemented, fine- to medium-crystalline. Skeletal framework is fragmental fossil debris, lower contact sharp but upper contact is mostly covered.
d Limestone; brown weathering gray-brown, thin-bedded, hard, sparry calcite-cemented, moderately good sorting on the fragmental material, fine- to mediumcrystalline. Upper 2 feet of this unit is sandy. 10
c Limestone; yellow-brown weathering gray-brown, thin-bedded, hard, sparry calcite-cemented, fineto medium-crystalline.
b Limestone; yellow-brown weathering gray-brown,

Section 1

$$
\begin{aligned}
& \text { thin- to medium-bedded, hard, sparry calcite- } \\
& \text { cemented, fragmental material poorly sorted, } \\
& \text { fine- to medium-crystalline, clay intraclasts. } \\
& \text { Middle } 10 \text { feet shaly }
\end{aligned}
$$

a Limestone; brown weathering gray-brown, mediumbedued, hard, sparry calcite-cemented, fine- to medium-crystalline. Fusulinids common. Upper 2 feet poorly cemented and contains much clay.

Covered.
Strike No $60^{\circ} \mathrm{W}$, dip $38^{\circ} \mathrm{NE}$.
Limestone; yellow-brown weathering dark graybrown, thick-bedded to very thick-bedded, hard, fine-crystaliine, contains quartz sand grains, subangular, of between 2 and $3 \varnothing$.

Covered. 28
Strike N. $58^{\circ} \mathrm{W}$ o, dip $40^{\circ} \mathrm{NE}$ 。
Limestone; red-brown weathering yellow-brown, medium- to thick-bedded, indurated, poorly sorted fragmental material, clay intraclasts, argillaceous, sparry calcite-cemented, coarse- to very coarse-crystalline. Rare fusulinids.

Limestone; red-brown weathering yellow-brown, medium-bedded, hard, moderate sorting on fragmental materiai, clay- and calcite-cemented, sandy (2 to $3 \varnothing$), fine- to medium-crystalline.

Sqndstone; red-brown weathering yellow-brown, thin- to medium-bedded, hard to friable, clayand calcite-cemented, rather poorly sorted, generally fine-grained (2 to 30) but ranging on some of the chert flakes up to Oめ. Clay intraclasts are common.

Covered --probably shale 32
Strike N. 63° W., $\operatorname{dip} 38^{\circ} \mathrm{NE}$.
Limestone; yellow-brown weathering to dirty yellowtan, medium-bedded, hard, sparry calcite-cemented, sandy (2 to 3ϕ), coarse-crystalline at bottom grading to medium-crystalline at top.

Section 1

Shale; yellow-brown weathering tan, thinly-laminated, silty. Few thin sandstone beds, yellow to yellowtan, thin-bedded, friable, poorly cemented, finegrained (3 to 4ϕ).

Covered--probably shale. 64
Strike N. 70° W., dip $58^{\circ} \mathrm{NE}$.
Sandstone; light tan-brown weathering brown, medium-bedded, indurated, calcareous-cement with ferruginous mixture, moderately sorted, finegrained (2 to 30). Southeast along strike becomes a rear white calcareous sandstone in NW $\frac{1}{4} \mathrm{sec} .23$, but develops into a sendy limestone in NW $\frac{1}{2}$ sec. 22.3.5

Covered -- but observable areas show shale; yellowbrown, thinly-laminated, with thin-bedded, finegrained sandstone layers.

Offset approximately 275 yards to southeast along strike.

11-8 Frensley Member
11 Strike N. 50° W., dip overturned 800 SW due to hillside creep.

Limestone; brown weathering yellow-brown, thinto very thin-bedded, hard to friable, sparry calcite-cemented to loose, medium- to coarsecrystalline. Approximately 1.5 feet above base is 6 to 8 inch fragmental shell, uncemented bioclastic zone. Lower contact well defined but upper contact gradational. Fusulines. 4
Covered -- probably shale. 53

Strike N. 56° W., $\operatorname{dip} 58^{\circ} \mathrm{NE}$.
Siltstone; yellow-purple to tan, thin-bedded, with thin-parted, tan, calcareous shale.
a Limestone; brown weathering gray-brown, mediumbedded, hard, sparry calcite-cemented, coarsecrystalline. Upper 4 inches becoming bioclastic hash. Upper and lower contacts well defined. Abundant "Marginifera" type brachiopods.1
Covered -- probably shale. 45

$7 \quad$ Strike N. 53° W., dip 52° NE.
Sandstone; white to yellow-gray weathering graywhite, thin- to thickly-bedded, friable, poorly cemented, moderately well sorted, fine-grained, (2

to $3 \not{ }^{6}$), subangular. Thickness varies along strike
from 2 to 6 feet. 4
Covered. 54
6-4 Lester Member
6 Strike N. 53° W., dip 50° NE.b Limestone; brown weathering yellow-brown, thin-bedded, hard, oolitic, limonitic sparry calcite-cement, coarse-crystalline. As a unit $6 a$ and $6 b$show gradational upper and lower contacts. Slightridge formed.1
a Limestone; brown weathering brown-yellow, thinbedded, hard, limonitic sparry calcite-cement, coarse-crystalline.7
Shale; limonitic, silty toward bottom, calcareous toward top, yellow-tan, thinly-laminated. 118

Strike N. 57° W., $\operatorname{dip} 58^{\circ} \mathrm{NE}$.

Limestone; brown weathering yellow-brown, mediumto thick-bedded, hard, limonitic sparry calcitecemented, clay intraclasts, coarse-crystalline. In upper 1 foot 90% of all fossils and clay intraclasts covered by thick layers of Osagia? algae. Some clay clasts up to 4×1 inches.

Shale; yellow-tan, thinly-laminated, limonitic, silty, with sandstone; thin-bedded, siliceouscement, fine grained.

4 Strike $\mathrm{N} .55^{\circ} \mathrm{W}$., dip $60^{\circ} \mathrm{NE}$.
Limestone; brown weathering yellow-brown, ranges from thin- to thick-bedded, microcross-bedding lower 6 inches, hard, limonitic calcite-cemented, fine- to coarse-crystalline.
Covered -- probably shale because a strike valley is developed on this interval. 188

3 StrikeN. 60° W., dip $60^{\circ}-70^{\circ} \mathrm{NE}$.
Sandstone; tan weathering yellow-tan, thin- to thick-bedded, hard, calcareous limonitic claycement, moderate sorting, very fine-grained (3 to

4申). Upper and lower contacts sharp. Bottom of
beds show flow features.
Shale; sandy (3 to $4 \varnothing$), yellow-tan, limonitic
silt nodules, upper 6 inches develops into flaggy
sandstone about $\frac{1}{2}$ to 1 inch in thickness.
2 Strike N. 60° W., dip $60^{\circ}-700$ NE.
Sandstone; light-brown weathering yellow-tan, mediumto thick-bedded, hard, calcareous limonitic-cement, fairly good sorting, grain size between 2 and $3 \varnothing$.3

Shale; limonitic, sandy, yellow-tan, very thinly
laminated, soft. 13

1 Strike N. 60° W., dip $60^{\circ}-700$ NE.
Limestone; purple-brown weathering reddish-tan, medium- to thick-bedded, hard, fine-crystalline. Probably as much as 25% very fine-sand grains (3 to $4 \emptyset$) present.

MEASURED SECTION 2

Location. $N \frac{1}{2} N W \frac{1}{4} \mathrm{sec} .15 \mathrm{~T} .6 \mathrm{~S} ., \mathrm{R} .2$ Ev, Love County, Oklahoma. Section 2 is northwest of turn off to Tucker Tower on State Scenic 77 a distance of approximately 400 yards. The location is the quarry immediately to the north. The section is painted, with the higher numbers in the quarry and the lower numbers to the west southwest. Section 2 is presented beginning at the top.

Unit \begin{tabular}{c}

Thickness
in feet

\hline
\end{tabular}

10 Pumpkin Creek Member
Strike N。 $30^{\circ} \mathrm{W}, \operatorname{dip} 60^{\circ} \mathrm{NE}$.
j Sandstone; yellow-tan weathering tan, mediumbedded, moderately sorted, subanguiar, siliceous cement, friable to some extent, fine-grained
(2 to 3申).

2

Sandstone, yellow-gray weathering yellow-white, medium-bedded, siliceous cement, fine-grained (2 to 3ϕ). 1
Covered. 9
h Limestone; yellow-tan weathering yellow-gray, medium- to thick-bedded, hard, sparry calcitecemented, coarse-crystalline. Lower contact well defined. Occasional chert pebble (-2 to $-6 \varnothing$).8
g Shale; yellow-tan, sandy in lower part becoming calcareous in upper, sand (2 to 3ϕ), thin limestone nodules upper 6 inches.6

Section 2

f Limestone; light yeilow-tan weathering yellowwhite, medium- to thick-bedded, medium- to finecrystalline. Along strike unit changes to sandstone; yellow-tan weathering tan-white, calcareous cement, fine- to medium-grained (1 to 36), with beds of very thinly-laminated gray to gray-green, sandy shales. Top and bottom contacts well
defined.

Shale; yellow-tan, fossiliferous, upper 2.5 feet sandy (3 to $4 \emptyset$), bedding obscured by sand content. 4
d Limestone; fragmental shell, yellow-brown, thickbedded, friable, loose (not cemented), clay matrix, no sorting, bryozoan, brachiopod, fragmental hash. Patch reefing occurs in both directions along the strike. Reef limestone is fine-crystalline (micrite), containing large amplexizaphrentid horn corals, fenestrate bryozoans, and the colonial rugose coral Michelinia. Reef limestone is yellowtan, thick-bedded, hard, micrite-cemented.

6

Limestone; brown-gray weathering dark gray-tan, thick-bedded, hard, sparry calcite-cemented, coarse-crystalline, chert pebbles of .5 to 1.0 inches (-2 to $-6 \emptyset$). Bedding planes mass of crushed brachiopod shells belonging to hustedia and Composita.
b Shale; purple to yellow-tan, calcareous, soft, piastic, fossiliferous.
a Limestone; gray to brown weathering gray-tan, thin- to medium-bedded, hard, sparry calcitecemented, medium-crystalline. Bottom contact qbscured.

Shale; yellow-tan, sandy, thinly-laminated, soft, plastic, fossiliferous.

9 Strike N. 30° Wo, dip $60^{\circ} \mathrm{NE}$ 。
Limestone; brown to tan weathering brown, mediumto thick-bedded, hard, sandy (1 to 2ϕ), sparry calcite-cemented, coarse-crystalline. Rare fusulinids. Lower and upper contacts clearly defined.6
Covered. 42

8 Strike N. 30° Wo, dip 70° NE.

Limestone；brown weathering yellow－brown，thick－ bedded，hard，sandy，sparry calcite－cemented， coarse－crystalline． 3
Shale；yellow－tan，sandy，thinly－laminated． About the middle of the unit are a few very thin－ bedded，fine，limonite－cemented sandstones． 18
7 Strike N． 35° W．，dip $60^{\circ} \mathrm{NE}$ ．
Sandstone；brown westhering to tan－brown，medium－ bedded，hard，fairly well sorted，limonite－cemented， medium－grained（ 1 to $2 \emptyset$ ）．Sand grains appear to have some form of growth about them． 1.5
Covered． 275
6 Strike N． 35° Wo，dip ？NE．
Sandstone；tan weathering to raddish－black， thick－bedded，friable，limonitic－hematitic，fine－ grained（ 2 to 3ϕ ）。 Upper and lower contacts poorly defined． 8
Covered． 277
5－3 Frensiey Member
5 Strike N． 28° Wo，dip $50^{\circ} \mathrm{NE}$ ．
Limestone；brown weathering to yellow－tan，thick－ bedded，hard，sparry calcite－cemented，coarse－ crystalline．Upper 0.5 foot becoming marly． 1.5
Covered． 34
4 Strike N． 32° W．，dip $62^{\circ} \mathrm{NE}$ 。
b Limestone；gray splotched weathering to gray－white，thin－to medium－bedded，nodular，hard，micritic calcite－cement，very fine－crystalline．Conspicuous brachiopod snells．10
a Limestone；gray weathering to gray－white，thick－bedded，hard，sparry－cement，fine－crystalline，sandy．1
Covered． 11

Strike N． $30^{\circ} \mathrm{W}_{0}, \operatorname{dip} 68^{\circ} \mathrm{NE}$ 。

Limestone; gray weathering to gray-tan, mediumbedded, hard, micritic calcite-cemented, finecrystalline. Abundant fusulinids at lower contact with a calcareous, soft, pliable, yellow-gray shale. 1

Covered. 112
2 Sandstone; yellow-tan weathering gray-brown, thickbedded, friable, limonite-cemented, fine-grained (2 to $3 \varnothing$).

5
Covered. 66
1 Sandstone; yellow-tan, hematite streaked, weathering tan, thick-bedded, friable, subangular, well-sorted, fine-grained (2 to $3 \varnothing$)。

MEASURED SECTION 3

 T. 6 S., R. 2 E., Love County, Oklahoma. Section 3 is 0.52 mile southeast on State Scenic 77 from its junction with paved road leading to Lake Murray Lodge. Section 3 is exposed on both sides of the paved road southeast for a distance of approximately 0.25 mile. Section 3 is presented beginning at the top.

Unit \quad| Thickness |
| :---: |
| in feet |

Upper Devils Kitchen Member.
1 Strike N. 40° W., $\operatorname{dip} 60^{\circ} \mathrm{NE}$.
h Sandstone; yellow-tan weathering tan, thick-bedded, hard, chert pebbles, clay- and silica-cemented, poorly sorted, medium-grained (1 to $2 \emptyset$). Upper contact obscured by cover. Within 200 feet southeast along strike, this unit becomes a chert pebble conglomerate and remains such until it disappears beneath Cretaceous overlap in sec. 24, T. 6 S., R. 2 E.
g Sandstone; yellow-brown weathering red-brown, very thin- to thin-bedded, few if any chert pebbles, hematitic, iron-cemented, medium-grained (1 to $2 \emptyset$) friable.76
f Limestone; yellow-gray weathering gray-white, thinto medium-bedded, hard, nodular, micritic calcitecement, fine- to very fine-crystalline. Upper 2 feet is thick-bedded but identical in composition. 10
e Shale; calcareous, flaky, soft, gray-white, abundant Mesolobus and fusulinids.

$$
\stackrel{\circ}{\circ}
$$

0

UPPER DEVILS KITCHEN MEMBER
d Limestone; nodular, yellow-white weathering graywhite, thin-bedded, hard, micritic-cement, finecrystalline.
c Shale; yellow-tan weathering gray-tan, calcareous, soft, clay content high. Abundant fusulinids.5.5
b Limestone; gray-white weathering gray-tan, thinbedded, hard, micritic calcite-cement, finecrystalline.
0.8
a Shale; yellow-red weathering red-brown, sandy, occasional thin beds of sandstone, subangular grains, fine-grained (2 to $3 \varnothing^{\circ}$), with punky snowbalis of soft limestone in upper 50 feet.
225.

UPPER DEVILS KITCHEN MEMBER

UPPER DEVILS KITCHEN MEMBER

MEASURED SECTION 4

 County, Oklahoma. Section is 2 miles east on State Scenic 77 from its junction with U. S. 778 miles south of Ardmore, Oklahoma. Begin clocking mileage at U. S. 77 and U. S. 70 junction at west edge of Ardmore. Section 4 is presented beginning with the top.

Unit | Thickness |
| :--- |
| in feet |

1-3 Upper Devils Kitchen Member
3 Strike N. 35° W., dip $55^{\circ} \mathrm{NE}$.
b Sandstone; yellow-brown weathering yellow-tan, thick- to very thick-bedded, hard to friable, clay- and silica-cemented, rather well sorted, medium-grained (1 to 2ϕ), white and yellow chert pieces up to $\frac{1}{4}$ to $\frac{1}{2}$ inches.58
a Sandstone; red-brown weathering reddish, very thin-bedded to thin-bedded, hematite stained, iron-cemented, medium-grained (1 to $2 \not{ }^{\prime}$), friable. Contacts well defined.53

2 Strike N. 35° Wo, dip $60^{\circ} \mathrm{NE}$.
e Limestone; gray weathering to gray-white, nodular, thin-bedded, hard, micritic, fine-crystalline. Fusulinids abundant in shale partings. 15
d Shale; gray-tan, soft, calcareous, thinly-laminated, fossiliferous, common fusulinids.

2
c Limestone; nodular, gray weathering gray-white, thin-bedded, hard, micrite-cement, fine-crystalline. 0.3
b Shale; yellow-tan weathering gray-tan, soft, pliable with apparent high clay content, thinly-laminated, fossiliferous.
a Limestone; gray-tan weathering gray-white, thinbedded, nodular, hard, micritic, fine-crystalline. 1

1 Shale; yellow-tan, calcareous in upper part, sandy toward bottom, thinly-iaminated, poorly fossiliferous, contains limonitic nodules and calcareous nodules. Lower contact concealed.

Covered.

MEASURED SECTION 5

 north line of NWI $\frac{1}{4}$ NW $\frac{1}{4} \sec .5, T .6$ S．，R。 2 E．，Carter County，Okla－ homa．Section 5 is 1.1 miles east of U。S。77 and State Scenic 77 junction， 8 miles south of Ardmore，Oklahoma．Begin clocking mileage from U．S． 77 and U．S． 70 junction at west edge of Ardmore．Section 5 is presented beginning from the top．

Unit		Thickne in fee
1－7	Bostwick Member	
7	Strike No $15^{\circ} \mathrm{W}$, ，dip $74^{\circ} \mathrm{NE}$ 。	
d	Limestone；blue－black to dark gray，thin－bedded， nodular，hard，fine－crystalline．Thick－lami－ nated beds of shale between limestone beds are gray weathering gray－white，soft，highly cal－ careous，abundantly fossiliferous．	16

c Shale；yellow－tan weathering chalky－tan，soft， calcareous，many limonitic sandstone concretions．2
b Limestone；brown weathering yeilow－tan，hard， medium－bedded，sandy，sparry calcite－cement， medium－crystalline．8
a Shale；yellow－brown，very thiniy－laminated，soft， calcareous． 4 feet from top is a 2 foot thin－ bedded dark－gray，fine－crystalline iimestone． Shale is fossiliferous and has many punky，white， soft，limestone balls throughout．40

6 Limestone；thin－bedded to very thin－bedded，soft， punky，marly，light yellow－tan weathering white，

fine-crystaliine. Highly fossiliferous with cup
corals, syringoporid type corals, fusulinids,
bryozoans.

Shale; blue-tan, platy, weathering bluish-tan,
soft, punky caicareous concretions, fossiliferous. 25
5 Limestone; gray weathering gray-tan, mediumbedded, hard, fossiliferous, sandy, mediumcrystalline. Limestone is in three beds with brownish-gray, calcareous, fossiliferous shale about 4.5 feet thick separating each limestone. 16

Shale; gray-brown weathering gray-tan, calcareous, concretionary limestone upper 16 feet, limonitic, concretions in lower part. Shale is very thinlylaminated.

50

4 d Limestone; marly, shelly, uncemented, friable, thinly-laminated, poorly sorted fossil fragments, coquina hash.
c Conglomerate; limestone pebble, matrix sandstone and caicareous, pebbles up to 2 inches in diameter average about $\frac{1}{2}$ inch, some chert is present.0.8

b Shale; dark gray-tan, blocky, limonite leaching,
soft, pliable.
a Sandstone; conglomeratic, yellow-tan, mediumgrained, hard, medium-bedded, calcite-cemented, poorly sorted. Shale lenses, dark gray-tan, sandy, limonite stained, separate some of the sandstones. Usually conglomeratic in lower part of thicker sandstone beds.

3 Conglomerate; limestone and chert pebbles, limestone predominates, pebbles up to 3.5 inches in diameter, thick-bedded, cement is sandstone and calcite, size of pebbles decreases toward top.3.5

Shale; gray-tan, limonitic, calcareous punky snowballs, soft, very thinly-laminated. On south side of road the lower 10 feet is conglomeratic but on north side this conglomerate is not present.

2 Siltstone-Mudstone; very highly calcareous, blackto gray-black weathering dark gray, thin-bedded, hard, calcareous-cemented, very fine-grained.

Shale; gray-tan to light gray, calcareous snowbails, pilable, clay content hign, lower part becoming limonitic, silty in upper 20 feet.70

1 Congiomerate; limestone and chert pebbies with limestone predominating, pebbles angular to subangulars average diameter of pebbles about $\frac{1}{2}$ inch, matrix of sandstone, limonite, and calcite. About 3.5 feet of congiomeratic shale separate the two beds of conglomerate.11

Covered.

Section 5

(

MEASURED SECTION 6

Location. $\mathrm{NE}_{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}} \mathrm{SW}_{\frac{1}{4}}$ and center west line $\mathrm{SW}_{4} \frac{1}{4} \mathrm{SE}_{4}^{\frac{1}{4}}$ sec. 33, T. 5 S., R. 2 E., Carter County, Oklahoma, Section 6 may be found by traveling east 250 yards on paved road leading to Lake Murray Lodge from its junction with State Scenic 77. Turn north (left) on small dirt road fust east of water tower and proceed for approximately 125 yards. Small ground level water tank should be immediately to the north of dead-end road. Section 6 is presented beginning with the top.

Unit | Thickness |
| :---: |
| in feet |

1-5 Arnold Member

5 Strike N. 33° W., dip 52° NE.
Sandstone; gray-white weathering gray-white, medium-bedded, indurated, calcareous-cement, friable, poorly sorted, subangular, finegrained (2 to 3ϕ).

3
Covered. 34
4 Sandstone; gray-white weathering gray, mediumbedded, indurated, calcareous-cement, finegrained (2 to $3 \varnothing$).

2
Covered, in general, but mostly shale, with possibly a thin limestone about 20 feet above base. At about 12 feet below top is a 2 foot zone of small, lumpy, micritic, limestone pebbles full of large fusulinas and wedekindellinas.70

3 Limestone; highly fragmental, yellow-tan, thin-bedded,
indurated, sparry calcite-cement, coarse-crystalline. With highly calcareous, fossiliferous shale partings. 3

2 Shale; some covered but largely calcareous, clayey, yellow-tan, with some nodular limestone lenses. 12

Limestone; bluish-white to yellow-brown weathering white to tan, medium- to thick-bedded, hard, sparry calcite-cement, coarse-crystalline.10

Covered.

MEASURED SECTION 7

 Oklahoma. Section 7 may be located by traveling east 75 yards on paved road leading to Lake Murray Lodge from its junction with State Scenic 77. Turn south (right) on small paved road leading among cabins, keep left, continue . 14 mile east. Turn south (right) on small poorly kept road and continue for about 165 yards. Section 7 is on the immediate left and right. Section 7 is presented beginning at the top.

Unit		Thickness in feet
1-5	Arnold Member	
	Strike N. $35^{\circ} \mathrm{W}, \mathrm{dip} 58^{\circ} \mathrm{NE}$ 。	
5b	Sandstone; yellow-white weathering gray-white, medium-bedded, friable, calcareous-cemented, sub-angular, fair sorting, fine-grained (2 to $3 \varnothing$)	4
a	Shale; principally covered, but about 20 feet above the base are 2 to 3 feet of nodular, micritic, hard, gray-white limestone pebbles with abundant Fusulina and Wedekindellina.	$\begin{array}{ll}\text { d, } \\ \text { d, } \\ \\ \\ & 38\end{array}$
4	Limestone; gray weathering gray-white, mediumbedded, hard, micritic-cement, fine-crystalline, Upper approximately 2 feet is fragmental, highly crinoidal, shell limestone with a sparry calcitecement.	12
	Covered, probably shale.	25
3 b	Limestone; yellow-gray weathering gray-white,	

thin- to medium-bedded, of ten nodular, very thin partings of shale, fossiliferous, sandy to marly, fine- to medium-crystalline, sparry calcitecemented and some places micritic-cemented. Productid brachiopods common, rare fusulinids.25
a Shale; yellow-gray, thinly-laminated, calcareous, in middle of shale are several very thin-laminated to nodular, yellow-gray, sandy, limestones. Fusulinids common.12
2 Limestone; yellow-gray weathering gray-white, thinbedded, hard, sparry calcite-cemented, medium- to coarse-crystalline. Fusuiinids abundant.1.5
Covered, probably shale. 22
1 Sandstone; yellow-gray weathering mottled gray, thin-bedded, friable, limonite-cemented, fine- grained (2 to $3 \varnothing$). 0.5

$\stackrel{\subsetneq}{\risingdotseq}$

$\stackrel{\substack{\bar{N} \\ \sim}}{ }$

Location. Center west line $\mathrm{NE}_{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}}$, and $\mathrm{NE}_{\frac{1}{4}} \mathrm{NW}_{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}} \sec$.
20, T. 5 S., R. 2 E., Carter County, Oklahoma. Section 8 may be reached by following State Scenic 77 north 3.1 miles from its junction with paved road leading to Lake Murray Lodge. Turn southeast (right) on poorly kept paved road for approximately 0.08 mile, bear south (right) at fork in road and follow dirt road south and southeast for 0.26 mile. Section 8 is exposed to the northeast with only unit 1 exposed in the clearing, other units are found in the dense growth of trees. Section 8 is presented beginning at the top.

Unit \quad| Thickness |
| :--- |
| in feet |

3-1 Unnamed Limestones Between Rocky Point Member and Camp Ground Member.

3 Strike N. $33^{\circ} \mathrm{W}, g \operatorname{dip} 60^{\circ} \mathrm{NE}$.
Limestone; reddish-brown weathering reddish-
brown, thick-bedded, hard, sparry calcite-
cemented, coarse-crystalline, green clay intra-
clasts.

Covered. 76

2 Strike N. $36^{\circ} \mathrm{Wog} \operatorname{dip} 60^{\circ}$ NE.

Limestone; yellow-brown weathering reddish-brown, gray clay intraclasts, soft due to weathering, micritic-cement, fine-crystalline, thin- to medium-bedded.
c Limestone; reddish-brown weathering reddish, thinbodded, clay intraçlasts, micritic-cement, sandy (2 to 4ϕ), fine-crystalline.0.5
b Shale; gray, sandy (3 to $4 \varnothing$), unfossiliferous, soft, thinly-laminated.3

Strike N. $33^{\circ} \mathrm{W}_{\mathrm{o}}$, dip $44^{\circ} \mathrm{NE}$.
a Limestone; reddish-brown weathering reddish-tan, thin-bedded, soft due to extreme weathering, clay intraclasts, micritic-cement, fine-crystalline?, fusulinids common but poorly preserved.

MEASURED SECTION 9

Location. Center west line NW $\frac{1}{4}$ SWl sec. 21, T. 5 S., R. 2 En. Carter County, OkIahoma. Section 9 may be reached by traveling 3.1 miles north on State Scenic 77 from its junction with paved road leading to Lake Murray Lodge. Turn southeast (right) on poorly kept paved road, keep left at fork (0.08 mile), continue past picnic and camp area (0.22 mile), take right fork (0.38 mile), at extreme southeast end of circle turn right (0,46 mile) and continue for approximately 300 yards. Total mileage after turning off Scenic 77 should be about 0.54 mile. Section 9 is presented beginning at the top.

Unit \quad| Thickness |
| :--- |
| in feet |

1 Gemp Ground Member
Strike N。 $34^{\circ} \mathrm{W}$ o, $\operatorname{dip} 40^{\circ} \mathrm{NE}$ 。
h Sandstone; yellow-tan weathering tan-white,
medium- to thick-bedded, friable, calcareous-
cemented, medium-grained (1 to 2ϕ).
Covered. 64
Mostly covered but road and glades show yellowred at base to yellow-tan at top, sandy, shale with thinly-bedded lenses of sandstone.

51
g Sandstone; yeliow-brown weathering yellow-tan, medium-bedded, firiable, limonitic-cemented, fine-grained (2 to 30). Rare fusulinids. 4

Covered. 10

Shale; yellow-tan, sandy, with very thin-bedded sandstone stringers.10
f Sandstone; yellow-tan weathering yellow-brown, medium-bedded to thick-bedded, clayey, subangular, fairly well sorted, medium-grained (1 to $2 \varnothing$). 15
e Shale; tininly-laminated, yellow-tan, soft, becoming sandy at base, calcareous. 5
d Limestone; yellow-orown weathering reddish-tan, thin-bedded, very badly weathered, sandy (1 to 2ϕ), hard to punky, where fresh apparently sparry cal-cite-cemented, coarse-crystailine. Rare fusulinids. 1
c Shale; yellow-brown, thinly-laminated, very sandy (2 to $3 \varnothing$). Contains in lower 1 foot a chonetid, crinoid stem, fusulinid zone.
b Limestone; brown-gray weathering red-brown, thinbedded, hard to punky, very deeply weathered, sandy (2 to 3ϕ), sparry calcite-cemented, mediumto coarse-crystalline.
a Shaie; yellow-tan, sandy, becoming more calcareous toward bottom, 2 fragmental shell zones in upper 20 feet. Wewokella and Mesolobus in upper 5 feet. 50

Covered.

MEASURED SECTION 10

Location. Units 10-1 through 10-3 are located in sec. 17, T . 5 S., R. 2 E., Carter County, Oklahoma. These units may be located by traveling 3.25 miles on State Scenic ' 77 from the south edge of Ardmore (section line between T. 4 S., and T. 5 S.). This should position you on 10-1 with 10-2 in the road cut approximately 230 yards northeast up State Scenic 77. Unit 10-3 and 10-5 may be reached by traveling 2.65 south of Ardmore on State Scenic 77 and walking 660 yards northwest. Unit 10-3 is 210 yards to southwest in deep ravine and unit 10-5 is to the north northeast approximately $\ddagger 80$ yards where a gully cuts through the soil cover of the pasture and exposes the limestone. Unit 10-4 (NW $\frac{1}{4}$ NE $\frac{1}{4} S_{W} \frac{1}{4} \sec .6, T_{0} 5 S_{0,} R_{0} 2$ E., Carter County, Oklanoma) may be located by traveling to the northwest corner of Rose Hill Cemetery at the south end of C Street $S E$ at southern edge of Ardmore. Unit is exposed north up railroad track approximateiy 320 yards. Unit $10-6$ may be located by traveling approximately 2.1 miles south on State Scenic 77 from south edge of Ardmore. Turn to southeast (left) and continue on asphalt road for 1.45 miles. Just before you crest hill, take small road south (right) over conglomerate ridge and continue to south and southwest for 0.5 mile. Unit 10-6 is locaten in SW $\frac{1}{4} S E-\frac{1}{4} S E \frac{1}{4} \sec .16, T .5$ S., R. 2 E. All units crop out in Carter County, Oklahoma. Section 10 is presented beginning at the top.

6 Daube Member
Strike N. $33^{\circ} \mathrm{W}_{0}, \operatorname{dip} 25^{\circ} \mathrm{NE}$.
c Limestone; brown weathering dull brown, mediumbedded, hard, micrite-cemented, fretted with brown curves of brachiopod shell, fine-crystalline.
b Shale; calcareous, many small concretionary limestone pebbles, ferruginous, abundant productid brachiopods, yellow-brown and the limestone white. This unit becomes an interbedded, thin, nodular, limestone-shale NW along strike.8
a Sandstone; red to chocolate-brown, conglomeratic with chert pebbles, hemetitic- and limoniticcement, thin-bedded, indurated, fine-grained.25
Covered. 477
5 Anadarche Member

Strike N. $38^{\circ} \mathrm{W}, \operatorname{dip} 33^{\circ} \mathrm{NE}$ 。
Limestone; blue-gray to gray, weathering graywhite, medium-bedded, hard, micritic-cemented, some encrusting algae, poorly fossiliferous with a few fusulinids and productid brachiopods. Spicules and large Echinoconchus present.

Strike $N_{0} 35^{\circ} W_{0}, \operatorname{dip} 63^{\circ} N E_{0}$
Limestone; yellow-brown to yellow-gray weathering gray-yellow, thin- to medium-bedded, hard, micri-tic-cement, abundant fusulinids, appears to have some sparry replacement in places, fine-crystalline. To southeast in sec. 18, this unit develops 30-40 feet of lower sandstone and limestone becomes a limestone conglomerate.21
Covered. 446

3 Confederate Member

c Carbonaceous Shale-Coal; peculiar leaf-like layers of carbonaceous material (lignite?), coal is in

vein－like bodies $\frac{i}{2}$ inch to feather edge associated throughout the leaf－like layers．Gray，soft， pliable clay beneath coal．X－ray analysis indi－ cates clay is Illite－Chlorite．
 4.5
 Covered．
 6

Strike N． 38° W．， $\operatorname{dip} 42^{\circ}$ NE．
b Limestone；fragmental，consolidated to unconsoli－ dated，friable to hard，medium－bedded，gray－white weathering light gray，very coarse－crystalline． In places it is conglomeratic composed of lime－ stone pebbles．NW across fault，cobbles are up to 6 inches in diameter．Thickness ranges from 2 to 4 feet．3
Covered． 16
a Limestone；yellow－brown weathering brown to tan， medium－bedded，hard，micrite cemented，abundant fusuiinids，fine－crystalline． 15
Covered． 450
Natsy MemberStrike No $40^{\circ} \mathrm{W}_{0}, \operatorname{dip} 36^{\circ} \mathrm{NE}$ 。b Limestone；yellow－brown weathering tan－brown，medium－bedded，hard，micrite－or fine sparry－cement，fine－to medium－crystalline．Interbedsof gray－brown，calcareous，shale．17a Sandstone；yellow－tan to off－white，weatheringgray－tan，thick－bedded，indurated，ripple marked，limonite－clay cemented，fine－grained（ 2 to 3ϕ ）。32
Covered，but is shale，gray－white with limonite concretions，and limonitic sandstones along road where exposed． 360
1 Williams Member

Strike No $40^{\circ} \mathrm{W}, \operatorname{dip} 42^{\circ} \mathrm{NE}$ 。
b Sandstone；limonitic，yellow－brown weathering yeliow－tan，indurated，thin－to medium－bedded， poorly sorted，limonite－cemented，fine－grained．

Where thin-bedded, there is a considerable amount of sandy, limonitic shale.25
a Limestone; medium-bedded, sandy, yellow-tan, hard abundant Myalina but very little other fossil material, sandy, fine-crystalline. 2

Covered.

Location. West $\frac{1}{2}$ of $S_{\frac{1}{4}} N W \frac{1}{4}$ sec. $36, T .5 S_{0}$, R. 1 E., Carter County, Oklahoma. Section 11-1 may be reached by traveling south 6.7 miles from junction of U. S. 70 (west) and U. S. 77 in west edge of Ardmore. Turn west (right) and continue 0.8 mile. Then north at entrance to cemetery, continue to gate in ferce line, continue through gate for approximately 200 yards. Lowest limestone conglomerate is exposed in small ravine approximateiy 100 yards to the southeast. Section is presented beginning at the top.

Unit \quad| Thickness |
| :---: |
| in feet |

Unnamed Conglomerate
1 Strike $\mathrm{N}_{\mathrm{o}} 10^{\circ} \mathrm{W}$, , dip $55^{\circ} \mathrm{SW}$.
g Conglomerate; zone composed of 3 or 4 thick-bedded units each 2 to 3 feet thick, pebbles and cobbles composed of limestone and chert, matrix of sandstone with calcareous-cement, hard and compact, poorly sorted, immature, grain size ranging from sand size to small cobbles. Beds separated by 1 to 2 foot covered areas. 12

Covered. 24
f Conglomerate; limestone and chert pebbles, grading into yellow-white weathering gray-white sandstone; fine-grained (1 to 2 \varnothing), friable, calcareous-cement. 5

Covered. 20
e Sandstone; yeilow-brown weathering reddish-brown, thick-bedded, friable, calcareous-cement, moderately sorted, subangular, fine-grained (2 to $3 \varnothing^{6}$). 8

Covered. 17
d Conglomerate; limestone and chert pebbles, grading into yellow-white weathering gray-white sandstone, fine-grained (1 to 2 \varnothing), friable, calcareous-cement. 5

Covered. 20
c Sandstone; yellow-brown weathering reddish-brown, thick-bedded, friable, calcareous-cement, moderately sorted, subangular, fine-grained (2 to 3申). 8

Covered. 17
b Conglomerate; chert and limestone pebbles, some up to 2.5 inches long, chert is principally Woodford, thick-bedded, matrix is sandstone; yellowbrow, calcareous-cemented. Upper few inches sandstone. 2

Covered. 35
a Limestone; yellow-brown weathering yellow-tan, highly limonitic, thick-bedded, hard, micriticcement, many badly weathered fusulinids, some very large horn corals of the amplexizaphrentid type. Upper contact obscured but appears to grade into limestone conglomerate of same color.

Section 12

Location． $\mathrm{SE}_{4}^{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}} \mathrm{SW} \frac{1}{4} \sec .28$ ，T． 5 S．，R． 1 E．，Carter County，Oklahoma．Section 12 may be reached by traveling 4.0 miles south on U．S． 77 from its junction with U．S． 70 （west）in west edge of Ardmore，turn west（right）and continue 2.0 miles，turn south（left） and continue 2.3 miles（ 2 sections，but road is crooked），turn west （right）and continue approximately 1.4 miles，road makes sharp turn north（right）．Locality is in creek bottom east of house about 40 yards north of sharp bend in road．Section is presented beginning at the top．

1 Crinerville Member
Strike N。 $32^{\circ} \mathrm{W}_{0}, \operatorname{dip} 170 \mathrm{SW}$.
e Sandstone；gray－tan weathering gray－tan，thick－ bedded，friable．calcareous－cement，subangular， fine－grained（ 2 to 3ϕ ）．

8
d Shale；yellow－tan to gray－tan，sandy，thinly， laminated．

2
c Sandstone；gray－tan weathering gray，medium－ to thick－bedded，fine－grained（2 to 3ϕ ）。 3
b Shale，dark gray－to gray－tan，sandy，soft，thin－ ly－laminated。1
a Limestone；gray－tan to brown weathering gray－brown， thin－bedded，hard，sandy，ripple marked in places， shaly interbeds，micritic－cement，fine－crystalline． Abundant fusulinids． 5

Covered；presumed to be shale．

MEASURED SECTION 13

Location. SE $\frac{1}{4} \mathrm{SW}_{\frac{1}{4}} \mathrm{SE}_{4}^{1} \mathrm{sec}$. 17, T. 5 S., R. 1 E., Carter
County, Oklahoma. Section 13 may be reached by traveling west on U. S. 70 for 5.0 miles from its junction with U. S. 77 on west edge of Ardmore. Turn south (left) onto dirt road and continue 4.0 miles, turn east (left)
0.7 mile and stop. Section 13 is small limestone ledge cropping out in pasture to the north. Section is presented beginning at the top.

Unit | Thickness |
| :--- |
| in feet |

1 Anadarche Member
Strike No $40^{\circ} \mathrm{W}$ o, dip $13^{\circ} \mathrm{NE}$.
b Limestone; brown to gray weathering gray-brown, thin- to medium-bedded, hard, micritic-cement. Brachiopods stand out upon weathering as brown stringers. Some fusulinids. Upper contact covered.
a Shale-Limestone; zone of nodular, tan-brown weathering brow, hard, micritic limestone with thin partings of calcareous, fossiliferous, shale. Shale has abundant bryozoans and common fusulines. Lower contact covered.2

MEASURED SECTION 14

Location. Center of NW $\frac{1}{4}$ SE $_{4}^{1}$ NE $_{4}^{\frac{1}{4}}$ sec. 19, T. 5 S., R. 1 E., Carter County, Oklahoma. Section 14 may be iocated by driving west 5.0 miles on U. S. 70 from its junction with U. S. 77 on west edge of Ardmore. Turn south (left) and continue for 4.25 miles. Last 0.25 mile is over an abandoned section line road. Unit crops out approximately 300 yards west of road. Section 14 is presented beginning at the top.

Thickness
 Unit
 in feet

1 Daube Member
Strike N. $6{ }^{\circ} \mathrm{W}$., dip $18^{\circ} \mathrm{SW}$.
1 Limestone; brown-gray to tan weathering graywhite to tan, thin- to medium-bedded, hard, micritic-cement, fretted with brown curves of etched brachiopod shells, fine-crystalline. Profuse fusuiinid fauna. Interbeds of shale, and thin nodular limestone, interbeds are thinto thick-parted and covered badly with rubble.

Covered.

Section 15

 County, Oklahoma. Section 15 may be located by driving north 2.9 miles on U. S. 77 from its junction with U_{0} S. 70 (west) on west edge of Ardmore. Section is presented beginning at the top.

Unit | Thickness |
| :---: |
| in feet |

2-1 Lester Member (Type)
Strike N. $70^{\circ} \mathrm{W}$, $\operatorname{dip} 60^{\circ} \mathrm{SW}$.
2 Limestone; gray-tan to yellow-tan weathering gray-white, thin- to medium-bedded, hard, sparry calcite-cement, oolitic, coarse-crystalline. Abundant bryozoans.17

Covered; however, that exposed is limonitic,
red-tan to gray-tan, calcareous shale.
90

Strike N. $70^{\circ} \mathrm{W}$, $\operatorname{dip} 57^{\circ} \mathrm{SW}$.
1 Limestone; gray-red to red-brown weathering red-tan, thin-bedded, hard to punky, sparry caicite cement, sandy (2 to 3ϕ), possibly oolitic. Fusulinids abundant.

Covered.

MEASURED SECTION 17

Location. Center of $E \frac{1}{2} \mathrm{SE}_{4}^{\frac{1}{4}} \mathrm{SW}_{4}^{\frac{1}{4}} \mathrm{sec} .14$, T. 5 S., R. 1 E., Carter County, Oklahoma. Section 17 may be located by traveling 3.0 miles south on U. S. 77 from its junction with U. S. 70 (west) on west edge of Armore. Turn west (right) and continue for 1.0 mile, take diagonal road to southwest 1.1 miles (to next section line), turn south (left) and continue 0.25 mile, turn into drive and continue to house. Unit is exposed approximately 440 yards southeast of house on east side of small farm pond. Section is presented beginning at the top.

Confederate Member

1 Strike N. $16^{\circ} \mathrm{W}$., dip overturned $78^{\circ} \mathrm{NE}$.
d Sandstone; brown weathering brown-tan, conglomeratic, pebbles are composed of clay, older sandstone and limestone, contorted, cross-bedded, cal-careous-cement, fine- to medium-grained (1 to 3ϕ). 5
c Shale; yellow-tan, thinly-laminated, calcareous, with several very thin-bedded limestone lenses.

5
b Limestone; medium- to thick-bedded, brown to gray-brown, hard, pitted weathered surface, fossiliferous, sparry calcite-cemented, medium- to coarse-crystalline.

6
a Sandstone; thin- to medium-bedded, gray-white weathering gray-white, hard, calcareous, very fine-grained (3 to 4ϕ)

Covered; however, approximately 50 to 60 feet below unit a, in a cow path, fusulinids were found.

Section 18

MEASURED SECTION 18

Location. SEE $\operatorname{NW}^{\frac{1}{4}} \operatorname{SW} \frac{1}{4} \mathrm{sec} .14, \mathrm{~T} .5 \mathrm{~S} ., \mathrm{R} .1$ E., Carter County, Oklahoma. Same directions as for section 17 on how to find locality. Locality is approximately 200 yards north northeast of farm house on poorly exposed ridge. Section 18 is presented beginning at the top.

Unit \quad| Thickness |
| :--- |
| in feet |

Crinerville Member
Strike N. 76° E., $\operatorname{dip} 13^{\circ} \mathrm{NNW}$ 。
1 Limestone; gray-white to tan-brown, weathering gray to gray-brown, hard, thin- to mediumbedded, sparry calcite-cemented, some beds sandy, upper brown beds tend to have finer matrix, medium- to coarse-crystalline. 20

Covered.

APPENDIX II

Measurements in mm of individual specimens
from samples as indicated.

FUSULINA INSOLITA Thompson
Radius Vector

1	.091	.150	.252	.424	.636	.843
2	.148	.270	.430	.650	.860	.000
3	.165	.257	.390	.551	.740	.000
4	.107	.199	.319	.473	.000	.000
5	.119	.202	.314	.474	.000	.000
6	.094	.158	.263	.394	.578	.760
7	.130	.207	.326	.484	.694	.000
8	.086	.138	.197	.293	.408	.588
9	.127	.244	.377	.572	.808	.000
10	.119	.210	.351	.547	.746	.000
11	.105	.174	.288	.432	.638	.000
12	.119	.202	.393	.519	.720	.000
13	.100	.168	.248	.345	.512	.701
14	.111	.189	.301	.458	.648	.000
15	.120	.188	.286	.432	.637	.844
16	.103	.182	.280	.435	.614	.832
17	.118	.200	.320	.518	.773	.000
18	.112	.118	.297	.454	.640	.830
19	.089	.151	.264	.396	.600	.840
20	.090	.147	.250	.400	.600	.858
21	.078	.140	.246	.400	.608	.836
22	.135	.240	.406	.622	.851	.000
23	.126	.210	.355	.535	.801	.000
24	.089	.151	.264	.396	.600	.800
25	.118	.202	.330	.495	.720	.000
26	.092	.153	.249	.400	.614	.811
27	.100	.175	.265	.382	.556	.000
28	.104	.174	.240	.355	.522	.690
29	.100	.170	.288	.446	.676	.000
30	.088	.171	.317	.482	.696	.827
31	.094	.168	.280	.442	.665	.852
32	.116	.180	.312	.488	.714	.000

Tectum ε Diaphanotheca

.004	.007	.010	.012	.016	.016
.004	.007	.010	.017	.000	.000
.006	.007	.010	.013	.017	.000
.005	.007	.010	.012	.016	.000
.005	.007	.009	.011	.015	.000
.004	.006	.008	.011	.012	.019
.004	.007	.009	.012	.016	.000
.004	.007	.008	.010	.014	.016
.004	.009	.010	.012	.017	.000
.004	.006	.010	.013	.014	.000
.004	.007	.009	.013	.015	.000
.000	.007	.009	.012	.015	.000
.004	.007	.010	.011	.012	.015
.005	.007	.008	.013	.015	.000
.004	.007	.008	.010	.013	.016
.005	.007	.009	.011	.015	.019
.005	.007	.010	.014	.015	.000
.000	.007	.009	.011	.014	.018
.005	.009	.009	.012	.013	.000
.004	.007	.008	.010	.013	.016
.004	.006	.009	.010	.013	.015
.005	.008	.011	.012	.014	.000
.005	.007	.009	.013	.014	.000
.004	.007	.010	.013	.017	.000
.005	.007	.010	.013	.014	.000
.005	.007	.010	.012	.013	.000
.005	.007	.010	.012	.015	.000
.005	.000	.008	.011	.013	.000
.005	.008	.009	.013	.018	.000
.005	.007	.009	.012	.016	.018
.004	.007	.009	.012	.014	.000
.005	.007	.010	.015	.017	.000
.001					

33	. 130	. 210	. 320	. 475	. 672	. 000		. 006	. 008	. 010		13	. 017	000
34	. 100	. 170	. 269	. 413	. 581	. 000		. 005	. 007	. 009		12	. 013	. 000
35	. 114	. 187	. 286	. 444	. 618	. 000		. 005	. 007	. 010		13	. 014	. 000
$\bar{\chi}$. 110	. 186	. 302	. 458	. 659	. 794		. 005	. 007	. 009		12	. 015	. 017
s	. 019	. 032	. 053	. 076	. 098	. 080		. 001	. 001	. 001		01	. 002	. 002
UCL	.118	. 201	.326	. 493	. 705	. 873		. 005	. 007	. 010		13	. 015	. 018
LCL.	.101	. 172	.278	. 423	.612	. 724		. 004	. 007	. 009		12	. 014	. 015
	Spirotheca Thickness						Prel.	Diam.	Septal Count					
1	010	. 022	. 030	. 045	. 044	. 000	$\frac{\min .}{.072}$	$\frac{\text { Max. }}{.079}$	10	11	12	15	21	26
2	.013	. 026	. 030	. 045	. 000	. 000	. 133	.153	8	13	13	18	23	00
3	. 015	. 022	. 037	. 037	. 040	. 000	. 182	. 190	10	16	20	19	25	00
4	. 015	. 022	. 037	. 037	. 048	. 000	.097	. 112	10	13	15	19	00	00
5	. 020	. 022	. 029	. 027	. 032	. 000	. 117	. 122	9	14	19	19	00	00
6	. 014	. 013	. 021	. 027	. 030	. 037	.091	.115	8	12	14	15	16	23
7	. 015	. 023	. 028	. 037	. 037	. 000	.123	. 140	8	14	16	18	20	00
8	. 012	. 019	.020	. 028	. 031	. 043	.078	. 097	7	14	15	19	19	23
9	. 019	. 027	. 031	. 041	. 042	. 000	.112	. 125	10	14	15	20	24	00
10	. 017	. 030	. 037	. 041	. 041	. 000	. 123	. 131	12	15	16	19	21	00
11	. 013	. 015	. 024	. 041	. 043	. 000	. 096	.117	8	12	12	16	20	00
12	. 000	. 022	. 037	. 048	. 039	. 000	.109	. 121	9	14	15	20	23	00
13	. 013	. 016	. 022	. 028	. 032	. 050	.091	.106	8	11	17	18	21	24
14	. 015	. 019	. 028	. 038	. 037	. 041	.101	. 119	9	12	17	24	25	00
15	.017	. 020	. 027	. 040	. 037	.000	.112	.131	11	13	17	18	21	24
									- 9	13	16	18	21	24
									s001	001	002	002	003	001
									UCL 10	14	17	20	24	27
									LCL 8	12	14	17	19	21
16	. 015	. 023	. 034	. 035	. 037	. 040	. 100	. 100						
17	. 018	. 025	. 036	. 034	. 055	. 000	. 142	. 160						
18	. 000	. 021	. 024	. 035	. 035	. 037	.102	. 123						
19	. 017	. 025	. 037	. 037	. 037	. 000	.111	. 118						
20	. 012	. 022	. 026	. 034	. 037	. 044	.116	. 128						
21	. 011	. 018	. 021	. 030	. 044	. 037	.096	. 100						
22	. 019	. 029	.040	. 032	. 052	.000	.154	. 156						

23	.012	.019	.028	.040	.034	.000	.148	. 156			Tunn	MRdt		
24	.016	. 024	. 030	. 037	.044	.000	.112	.120						
25	.013	. 022	. 029	. 039	.037	.000	.144	.160	16	. 066	.112	.172	.370	.000
26	. 015	.021	.032	. 055	.060	.000	.110	.120	17	.070	.134	.167	.268	. 000
27	. 020	.021	.031	.037	.044	.000	.098	.107	18	.065	.104	.145	.240	. 430
28	.017	.022	.027	.044	.037	.000	.100	.120	19	.056	.100	. 149	.198	. 280
29	. 016	.028	.035	.037	.052	.000	.114	.114	20	.048	.080	.140	.220	. 320
30	. 015	.021	.037	.041	.041	.054	.108	.108	21	. 056	.093	. 172	.267	. 336
31	. 014	. 025	. 035	. 044	. 040	.000	.106	.134	22	. 068	.104	.208	. 320	. 000
32	. 015	. 028	. 037	. 042	.050	.000	.086	.104	23	. 062	.080	.160	. 180	.000
33	.017	. 022	. 028	.037	.037	.000	.122	.127	24	.060	. 098	.160	.264	. 360
34	. 012	. 019	. 028	. 034	.037	.000	.106	.118	25	.050	.094	. 140	.240	.000
35	. 016	. 026	. 034	. 035	.037	.000	.096	.100	26	.051	.102	.120	.216	. 292
8	. 015	. 022	. 030	.037	. 041	. 043	.112	.124	27	.046	.070	.116	.160	. 280
8	. 004	. 004	. 005	.006	.007	.006	.022	.022	28	.056	.096	. 062	. 222	. 320
JCL	. 016	.042	. 033	.040	.044	.050	.122	.134	29	.066	.094	.195	.290	.000
LCL	.014	.020	.028	.035	.037	.035	.101	.114	30	.048	.094	.184	. 266	. 320
-									31	.070	.104	.160	.258	. 424
									32	. 058	.118	. 200	.260	. 436
									33	.064	.094	.112	.182	. 320
									34	. 062	.110	.138	.264	. 410
									35	. 062	.100	.144	.230	.000
									\boldsymbol{X}	. 059	. 099	. 152	.246	. 348
									\mathbf{S}	.008	$.014$	$.034$	$.049$	$.058$
									UCL	$.064$	$.109$	$.174$	$.278$	$.399$
										.054	.090	.130	$.214$. 297
		Half Lenath								Chomata Height				
16	.138	. 290	. 548	. 876	1.340	1.680				. 040	.052	. 080	.092	. 000
17	-161	. 293	.573	. 940	1.600	. 000				.043	. 066	.093	. 1118	. 000
18	- 142	- 277	. 464	. 808	1.220	1.780				.037	.056	. 074	.096	.096
19	. 119	. 286	. 502	. 857	1. 220	1.790				. 034	.064	. 080	.104	. 096
20	- 129	. 254	. 798	1.100	1.320	1.900				. 028	.048	. 056	. .088	. 096
21	- 122	. 274	. 506	. 795	1.220	1.690				.024	.056	. 070	. 067	. 072
22	- 184	.400	. 773	1.060	1.680	. 000				.044	.072	. 088	. 104	. 000
23	- 180	$\bigcirc 371$. 570	. 982	1.430	. 000				. 038	.064	. 080	.120	. 000
24	$\bigcirc 145$. 303	. 509	. 753	1.030	1.490				. 036	.064	. 080	. 1.108	. 120
25	$\bigcirc 135$. 290	.525	. 900	1.370	. 000				.035	.048	. 080	.104	.000
26	- 122	.274	.506	.911	1.230	1.600				. 038	.058	. 072	.118	. 136
27	.128	.283	. 470	.696	1.020	1.650				.044	.048	.064	. 1116	. .096

28	.171	.348	.522	.779	1.100	1.580
29	.184	.347	.541	.866	1.310	.000
30	.129	.291	.569	.933	1.250	.000
31	.138	.322	.621	.853	1.370	.000
32	.122	.296	.564	.966	1.350	.000
33	.193	.367	.580	.940	1.350	.000
34	.129	.302	.506	.921	1.370	1.810
35	.164	.348	.586	.827	1.320	.000
\bar{x}	.147	.311	.562	.888	1.305	1.730
S	.024	.039	.087	.112	.161	.124
UCL	.163	.337	.618	.961	1.411	1.887
LCL	.131	.285	.505	.815	1.200	1.572

.044	.040	.078	.098	.112
.035	.062	.080	.124	.000
.035	.052	.074	.112	.116
.029	.057	.072	.096	.110
.030	.062	.072	.102	.000
.048	.069	.088	.112	.000
.038	.048	.064	.088	.096
.042	.048	.080	.092	.116
.037	.057	.076	.103	.105
.006	.009	.009	.014	.017
.041	.062	.082	.112	.121
.033	.051	.070	.094	.090

Fusulina cf. E. novamexicana Needham
Radius Vector

1	.129	.203	.315	.473	.676	.000
2	.196	.286	.393	.547	.750	.976
3	.148	.209	.316	.448	.621	.844
4	.161	.264	.422	.628	.000	.000
5	.200	.296	.425	.621	.824	.000
6	.145	.235	.341	.506	.721	.966
7	.110	.180	.287	.425	.611	.000
8	.123	.257	.386	.564	.000	.000
9	.180	.268	.393	.528	.725	.914
10	.158	.254	.374	.570	.799	1.030
11	.200	.303	.457	.663	.000	.000
12	.142	.219	.345	.512	.744	.000
13	.138	.222	.345	.493	.699	.940
14	.145	.219	.338	.493	.686	.966
15	.161	.242	.357	.483	.679	.000
16	.219	.306	.451	.618	.873	.000
48	.190	.296	.448	.644	.917	.000
17	.126	.219	.312	.460	.638	.866
18	.128	.193	.302	.448	.644	.866

.006	.008	.009	.011	.016	.000
.007	.008	.010	.012	.015	.016
.005	.008	.010	.010	.013	.017
.006	.008	.009	.011	.000	.000
.006	.009	.011	.011	.012	.017
.006	.007	.009	.012	.014	.000
.007	.009	.010	.011	.013	.000
.006	.008	.010	.011	.000	.000
.006	.008	.011	.012	.015	.017
.006	.009	.010	.011	.013	.015
.006	.009	.011	.011	.005	.000
.005	.007	.010	.011	.014	.000
.006	.008	.009	.010	.012	.016
.006	.009	.010	.012	.013	.014
.006	.009	.010	.013	.015	.000
.006	.009	.011	.012	.016	.000
.006	.009	.011	.012	.015	.000
.006	.007	.009	.012	.014	.016
.006	.009	.011	.014	.013	.014

19	. 135	. 248	. 380	. 583	.811	1.110	.006	. 0008	.010	.012	.014	. 016
20	.138	. 235	.415	. 612	.000	. 000	.006	.009	.010	.012	${ }^{.} 000$. 000
21	. 154	. 232	. 342	. 496	. 689	.905	.007	.008	.011	.012	.014	.016
22	.119	. 196	. 312	. 476	.683	.886	. 007	${ }^{.} 0009$.011	.013	.013	.014
23	.151	.251	.341	.570	. 824	1.050	${ }_{.} 006$.008	.010	. 012	.014	. 017
24	- 135	. 229	. 367	.531	. 750	.000	.006	. 008	.010	.013	.015	. 000
25	.113	. 184	. 293	. 470	.676	.000	.007	.009	.011	.012	.014	.000
26	. 144	. 225	. 322	. 493	. 708	. 000	.007	.009	${ }^{.015}$.014	.016	${ }_{.} .000$
27	.173	.270	.380	.524	. 750	1.000	.007	. 0009	${ }^{\circ} 018$.OL5	.015	${ }_{.} .017$
28	.173	. 280	. 406	.576	. 805	. 0000	.006	. 0008	.010	.013	.016	.000
29	- 129	.893	. 296	. 444	. 602	. 834	.007	.010	. Oil	${ }^{\circ} 013$.015	. 018
30	. 135	. 216	. 342	. 512	. 737	1.010	.006	.008	.099	.011	.013	.014
31	. 129	- 225	- 322	. 483	. 692	. 000	.007	${ }_{.} 0009$	-0起	${ }_{.} 013$.017	.016
32	-113	- 217	. 309	. 486	. 699	. 000	.006	.009	. OS 1	${ }^{\circ} 013$	${ }_{.} 016$.000
33	. 132	. 21.9	. 322	. 489	. 673	. 927	.007	.010	$\bigcirc 013$.015	. 019	${ }^{\circ} 019$
34	-145	. 206	. 322	. 473	.673	.908	.006	.009	a0y	.014	.017	.020
35	- 129	.193	- 293	. 406	.567	.766	.007	.008	$.0 \times 0$.013	.016	.019
36	- 145	. 242	-380	. 547	.776	1.000	.007	.009	.010	.013	.015	.017
37	. 1.45	.225	. 338	. 509	.702	. .937	.007	.010	-011	.012	.014	${ }_{.}^{.016}$
38	- 148	. 254	. 377	. 538	.718	. 966	.006	. 009	.012	.014	${ }_{.} 014$.016
39	- 151	. 242	. 348	. 489	. 696	. 024	.007	${ }_{-} 0008$. Ol0	${ }_{.011}$	${ }_{.} 014$.015
40	. 161	. 245	. 357	.515	. 699	.887	.007	${ }_{.} 010$	- O10	.013	${ }^{\circ} 015$	${ }^{\circ} 000$
41	. 158	. 264	. 393	.560	.800	. 000	.006	$\stackrel{.009}{ }$	-012	. 013	${ }^{\circ} 016$. 000
42	. 146	. 238	. 341	. 483	. 667	.000	. 007	.009	.050	${ }_{-} 013$.016	. 0000
43	. 129	. 193	.312	-473	.670	.000	.006	.009	. 013	. 015	.085	${ }_{.} .000$
44	.129	- 209	. 332	.506	.728	.000	. 006	.009	. 080	-012	.015	${ }_{-} 0000$
45	- 129	. 232	. 36.1	. 525	. 718	. 000	- 006	$\stackrel{.009}{ }$	-OH2	$\bigcirc 0 \% 2$	${ }^{.} 015$. 0000
46	- 135	- 216	.357	. 522	. 725	. 000	${ }_{-} 0007$.009	${ }^{-} 012$.013	.014	. 0000
47	- 132	- 216	-348	. 506	. 697	. 915	. 0007	-009	${ }^{-} \mathrm{OH} \mathrm{H}$	-O14	.014	. 000
$\underset{\text { \% }}{ }$	- 147	- 234	-354	. 519	.717	. 936	-006	$\stackrel{.009}{ }$	- Ond	. 012	.015	.016
${ }^{5}$.024	. 033	. 043	. 053	.070	- 075	.001	.005	${ }^{\circ} 001$	${ }^{\circ} 001$	${ }_{.} 0001$.002
UCL	. 156	- 247	. 371	. 542	.745	- 983	.007	.009	${ }^{\circ} \mathrm{OL1}$.013	.015	.017
LCL	. 137	. 223	. 337	.497	.717	. 893	.006	${ }_{-} 0008$	${ }^{\circ} 010$.012	.O14	${ }_{.}^{.015}$

Half Lenath

17	. 219	. 393	. 605	281.1	1.580
18	. 158	. 319	. 541	.7661 .01	1. 430
19	. 248	. 441	. 686	.9661 .550	1.980
20	. 219	. 434	. 795	. 320.000	000
21	. 235	. 374	. 605	. 8961.150	690
22	. 151	. 290	. 586	9241.26	1.780
23	. 206	. 367	. 602	. 0101.520	2.090
24	. 248	. 418	. 644	1.0401 .430	000
25	. 155	. 287	. 473	. 7501.260	00
26	. 177	. 386	. 654	. 9981.370	000
27	. 241	. 438	. 641	. 940 1.26	690
28	. 219	. 386	. 596	. 8501.21	000
29	. 167	. 251	. 421	. 650.96	1.560
30	. 184	. 309	. 554	. 9401.28	1.830
31	. 209	. 361	. 538	. 8981.420	1.910
32	. 145	. 299	. 573	. 9661.550	000
33	. 187	. 345	. 573	. 8861.210	1.590
34	. 203	. 364	. 538	. 892 1.280	1.930
35	. 193	. 351	. 531	.7571 .130	1.590
36	. 225	. 380	. 596	. 8891.25	1.900
37	. 193	. 348	. 544	. 7331.09	1.670
38	. 193	. 367	. 544	. 8021.103	1.650
39	. 203	. 345	. 535	. 7531.110	1.640
40	. 238	. 393	. 631	.8951 .230	1.680
41	. 218	. 396	. 676	. 9791.550	000
42	. 184	. 364	. 605	. 8081.250	. 000
43	. 167	. 296	. 544	. 9501.450	. 000
44	. 174	. 345	. 528	. 7821.170	00
45	. 167	. 322	. 518	. 8051.160	1.660
46	. 219	. 419	. 670	. 0401.530	
47	. 193	. 361	. 596	. 8341.200	1.710
\underline{x}	. 198	. 360	. 585	. 8891.272	1.728
	. 029	. 047	. 071	.123 .163	164
OCL	. 212	. 383	. 620	. 9501.353	1.829
LCL	. 184	. 336	. 551	. 8281.191	1.627

Tunnel Width

.060	.080	.105	.148	.194	.374
.053	.067	.092	.164	.215	.348
.060	.080	.112	.178	.310	.000
.069	.104	.200	.272	.000	.000
.052	.072	.152	.172	.344	.000
.052	.064	.112	.212	.336	.000
.062	.097	.180	.220	.444	.000
.058	.096	.136	.174	.280	.000
.060	.080	.131	.211	.000	.000
.062	.106	.160	.201	.270	.000
.064	.090	.111	.160	.252	.000
.069	.18	.140	.254	.360	.000
.050	.008	.128	.252	.290	.400
.062	.080	.142	.160	.320	.440
.056	.115	.160	.240	.300	.000
.059	.096	.160	.268	.000	.000
.058	.080	.128	.194	.266	.000
.052	.080	.096	.160	.284	.348
.056	.080	.115	.187	.198	.300
.072	.118	.160	.170	.320	.000
.061	.080	.105	.172	.320	.000
.054	.100	.110	.198	.266	.000
.060	.080	.108	.170	.264	.000
.062	.080	.136	.240	.280	.000
.068	.098	.148	.216	.000	.000
.061	.098	.160	.220	.348	.000
.058	.096	.240	.320	.000	.000
.072	.080	.142	.223	.000	.000
.072	.114	.141	.188	.276	.000
.063	.099	.160	.254	.000	.000
.066	.089	.139	.240	.299	.000
.061	.089	.139	.207	.293	.368
.006	.015	.032	.041	.054	.048
.064	.096	.155	.228	.325	.455
.057	.082	.123	.187	.261	.281
.00					

Chomathandeiaht							Septal Count									
17	. 050	. 091	. 091	. 122	. 149	. 144			111	17	21	20	22	00		
18	. 046	. 085	. 100	.136	.108	. 104			214	20	21	27	32	34		
19	. 060	. 124	.131	.140	. 126	. 000			313	16	20	25	29	31		
20	. 062	.106	. 102	.115	. 000	. 000			49	15	20	21	00	00		
21	. 052	. 062	. 092	.109	.100	. 000		5	511	17	22	28	21	00		
22	. 048	. 080	. 108	. 096	. 112	. 000		6	610	15	17	23	23	00		
23	. 060	. 104	. 144	.144	. 136	. 000		7	79	15	19	23	29	31		
24	. 068	. 092	. 088	. 088	. 152	. 000		8	810	17	20	24	00	00		
25	. 036	. 064	.097	.116	.000	. 000		9	9. 12	18	25	20	29	39		
26	. 068	. 068	. 092	. 092	.106	. 000		19	912	18	21	25	27	30		
27	. 052	. 068	. 080	.094	. 112	. 000		18	8. 10	19	23	23	00	00		
28	. 064	. 092	.112	.128	. 096	. 000		12	2. 11	15	19	21	24	00		
29	. 042	. 067	. 091	.096	.130	. 069		13	310	17	22	25	29	31		
30	. 046	. 060	. 114	.100	. 140	. 115		14	411	20	23	27	29	32		
31	.040	. 070	. 098	.106	. 000	. 000		15	511	20	22	28	31	00		
32	. 044	. 072	. 098	.120	.104	. 000		16	613	18	24	31	34	00		
33	. 051	. 070	. 102	.098	.136	. 000		48	89	17	21	21	25	00		
34	. 044	. 066	. 098	.120	. 152	. 146		$\overline{\mathbf{x}}$	x 11	17	21	24	27	33		
35	. 039	. 055	. 068	.072	.100	.100		s	s . 001	. 002	. 002	. 003.	. 004	. 003		
36	. 056	. 080	. 092	.160	.108	. 000		UCL	[12	18	23	26	. 30	- 36		
37	. 059	. 072	. 080	.114	. 128	. 000		LCL	L 10	16	20	22	24	29		
38	. 050	. 062	. 074	. 098	. 108	. 000										
39	. 056	. 056	. 090	.106	.112	. 000	Proloculus Diameter									
40	. 048	. 076	. 102	. 088	.112	. 000		Min.	Max.		Min.	Max.			Min.	Max.
41	.051	. 072	. 093	.112	.000	. 000	1	. 133	.147	14	- 130	. 153		27	. 141	. 166
42	. 053	. 066	. 088	.099	. 102	. 000	2	.213	. 229	15	. 155	. 190		28	.154	\bigcirc
43	. 040	. 061	. 095	.092	. 000	. 000	3	-131	- 154	16	. 197	.209		29	.151	.154
44	. 048	. 064	. 080	.105	.110	. 000	4	$\bigcirc 155$	$\bigcirc 172$	48	- 195	.208		30	$\bigcirc 155$.182
45	. 054	. 072	.108	.160	. 128	. 000	5	. 187	- 205		.149	. 169		31	.155	. 182
46	. 054	. 090	. 080	.110	.000	. 000	6	. 126	. 134	18	.114	. 122		32	.138	.145
47	.045	. 066	. 086	- 100	. 120	. 000	7	.091	. 105	19	. 146	. 168		33	. 154	. 164
X	. 051	. 075	. 096	.111	. 119	. 113	8	.148	. 156	20	. 155	. 164		34	. 160	. 171
S	. 008	. 016	. 016	.021	.017	. 029	9	.141	. 170	21	. 196	. 198		35	. 138	. 160
UCL	. 055	. 083	. 104	. 121	-129	. 148	10	. 160	- 180	22	. 142	. 150		36	. 166	$\stackrel{.170}{ }$
LCL	.047	. 067	. 088	. 101	.110	.077	11	. 187	. 208	23	.172	. 206		37	.151	.168
							12	. 132	. 139	23	. 143	. 160		38	.148	.178
							13	. 124	.135	25	. 132	.146		39	. 170	$\stackrel{.179}{ }$

26	.169	.171	45	.149	.160
40	.146	.146	46	.166	.174
41	.172	.178	47	.162	.173
42	.145	.160	\bar{x}	.154	.168
43	.162	.167	s	.023	.024
44	.150	.152	UCL	163	177

FUSULINA EURYTEINES Thompson
Levils Kitchen Member
Tectum \mathcal{E} Diaphanotheca

1	.145	.242	.393	.602	.847	1.110
2	.155	.251	.393	.583	.805	1.000
3	.180	.299	.415	.576	.818	1.110
4	.171	.270	.444	.692	.950	.000
5	.203	.325	.473	.673	.873	1.120
6	.155	.264	.409	.605	.831	.000
7	.200	.335	.509	.683	.914	1.180
8	.219	.303	.457	.644	.847	.000
9	.174	.280	.467	.673	.940	1.190
10	.171	.277	.454	.663	.000	.000
11	.158	.270	.451	.615	.902	.000
12	.177	.267	.405	.586	.805	.000
13	.171	.306	.480	.702	.966	1.230
14	.171	.254	.393	.560	.773	.000
15	.196	.325	.511	.728	.943	.000
16	.171	.325	.483	.689	.921	.000
17	.222	.345	.464	.625	.815	1.020
18	.177	.283	.428	.612	.815	1.060
19	.148	.248	.406	.605	.805	1.050
20	.177	.264	.390	.567	.808	1.050
21	.151	.270	.431	.644	.921	.000
22	.135	.232	.377	.551	.801	1.050
23	.138	.245	.386	.554	.766	1.050
24	.177	.274	.425	.596	.799	.000
25	.126	.209	.354	.493	.656	.895
26	.183	.283	.399	.554	.757	.966

27	. 151	. 280	. 454	. 647	.8761 .130	.007	. 009	.011	.013	. 015	.017
28	. 157	. 283	. 464	. 689	.908 .000	.007	.009	.010	.013	.016	.000
29	. 164	. 270	. 406	. 573	.7991 .100	.007	.009	.011	.013	.015	.016
30	. 187	. 293	. 441	. 676	. 892 . 000	.007	.009	.011	. 014	.014	.017
31	.180	. 293	. 444	. 663	.901 .000	.008	.009	. 012	.013	.015	.000
32	- 142	. 242	- 403	. 589	$.849 \% .110$. 008	.009	. 012	.012	. 016	. 018
33	- 171	. 270	.419	. 628	.886 .000	. 006	.009	.011	. 012	.016	.019
34	.1267	. 278	. 396	. 570	. 801 \$. 080	.007	.009	.012	.013	. 015	.019
35	- 129	. 242	. 396	. 634	.8761 .130	.006	.009	.010	.013	.016	.020
36	.1 .32	. 222	. 345	. 535	.740 .976	.007	.009	O13	.013	.014	.016
\bar{x}	- 188	. 276	. 427	. 649	.846 K. 077	. 006	.009	.011	. 012	.014	.016
S	. 023	. 031	. 040	. 055	.069 .079	. 001	. 005	.001	.001	. 001	.002
UCE	- 178	. 290	. 445	. 644	. 877 i. 124	.007	.009	. Onl	.013	.015	.017
LCE	. 557	. 261	.409	. 594	.8141 .029	.006	.008	.010	.012	.034	.015

Half Lenqth

17	. 283	. 477	. 747	1.080	1.670	2.350
18	. 277	. 483	. 815	1. 180	1.680	2.300
19	. 264	. 444	. 631	. 972	1.540	2.310
20	. 248	. 434	. 702	. 982	1.410	2.100
21	. 261	. 534	. 885	1. 260	1. 840	. 000
22	. 232	. 474	. 718	1.070	I. 560	2.000
2	. 238	.470	. 815	1.1. 10	3. 720	2. 350
24	. 264	. 547	. 834	I = 290	\%.700	. 000
25	. 235	- 448	.696	. .070	1.680	2.390
20	. 290	. $5: 9$	- 776	i. $\lambda 30$). 540	2.330
27	. 274	. $44 i$. 550	1.380	1.770	2.620
28	- 254	. 502	. 840	1. 290	1.930	- 000
29	. 277	. 506	$\therefore 741$	1.120	1. 550	2.100
30	- 270	- 541	.895	$1.4 \geq 0$	2. 030	.000
35	- 290	. 580	. 873	1.220	1.790	. 000
32	. 248	. 464	. 802	i. 270	1. 8.800	2.390
33	.277	. 502	. 831	1.310	1.930	- 000
34	- 248	. 406	. 592	. 886	1.310	2. 950
35	.180	- 348	. 712	1. 1.20	1.730	2.330
39	. 232	- 393	. 596	. 524	j. 320	$\therefore .930$
\because	.257	.476	. 763	H. ${ }^{\text {d }} 50$	1.675	2. 250

.080	.148	.208	.235	.480
.080	.108	.160	.234	.358
.076	.109	.166	.278	.426
.092	.119	.240	.297	.406
.080	.148	.186	.260	.000
.070	.104	.188	.240	.352
.076	.112	.192	.280	.376
.080	.130	.189	.288	.000
.061	.094	.180	.254	.380
.091	.160	.208	.330	.400
.091	.114	.160	.320	.424
.120	.171	.266	.480	.000
.080	.128	.183	.256	.418
.084	.116	.176	.410	.000
.086	.112	.176	.240	.360
.068	.112	.190	.309	.416
.072	.128	.196	.280	.388
.062	.112	.188	.240	.448
.080	.112	.153	.288	.420
.080	.108	.150	.196	.320
.080	.122	.188	.289	.398

0
OH N
0
0
 No O 20
$\mathrm{~N}=2=1$

0 | $M 0 M$ |
| :---: |
| 000 |
| 0 |

FUSUL INELLA DAKOTENS IS Thompson
Radius Vector

1	. 099	. 149	. 216	.314	. 422	. 577	. 742	. 005	.006	.009	.010	.010	.015	.021
2	. 128	. 182	. 259	. 347	.477	.645	. 828	.004	.007	.008	.009	.010	.015	.017
3	. 111	. 156	. 230	. 236	.455	.614	. 784	.004	.006	. 009	.011	.013	.016	.018
4	. 089	. 013	. 188	. 260	. 350	. 494	. 650	.004	.006	.008	.010	.013	.014	.019
5	.096	. 455	. 234	. 347	. 478	.673	.878	.005	.007	.009	.010	.014	.019	.017
6	- 118	. 176	. 246	. 338	. 462	. 637	. 845	.005	.007	.009	. 018	.012	.016	.016
7	- 188	- ET7	.247	.347	. 454	. 615	. 811	.005	.006	.009	. 01 且	.013	.015	.017
8	. 103	.160	.247	. 363	. 495	. 644	.844	.005	.007	.009	. 012	.O15	.016	. 016
9	. $\$ 20$.177	. 254	. 382	.520	.672	.878	.005	.007	.009	.010	.014	.015	.019
10	.080	.126	.186	. 270	. 380	. 532	. 708	.004	.006	.007	. 015	. 013	.017	.021
11	.111	.167	- 240	. 338	. 450	.606	.798	.005	.007	.009	.010	.012	.017	.019
12	. 114	.180	.246	. 359	. 496	. 648	.840	.005	.007	.010	.012	.011	.017	.017
13	- 124	.190	. 272	. 368	.500	. 664	.877	.004	.006	. 008	.013	.013	.017	. 021
14	. 118	.171	.250	. 336	. 452	. 592	.768	.005	.007	.009	.009	.013	.014	.018
15	. 114	.168	. 246	. 326	. 435	. 587	.760	.004	.007	.008	. 011	.013	.017	.020
16	. 208	.173	- 24i	. 336	.477	. 620	. 796	.005	.007	.009	.011	.015	.016	.020
17	- 141	. 166	. 243	. 346	. 484	. 662	.888	.005	.007	.010	.013	.016	.019	. 020
18	. 088	.126	.187	. 280	. 382	. 518	. 722	.005	.006	.007	.013	.012	.015	.019
19	- 108	. 1.66	.246	. 342	. 480	. 655	. 838	.005	.006	.011	. 011	.014	.014	.017
20	.097	. 100	- 227	. 298	.402	. 526	.660	.005	.007	.009	. 011	.013	.014	.016
21	.090	. 148	. 221	. 302	. 414	. 552	. 728	.005	.006	.009	. 011	. O82	. 015	.019
22	- E10	. 168	- 234	.327	. 452	. 612	. 798	.005	.006	.010	.013	.015	.016	.020
23	. 089	. 134	.194	. 268	.377	. 526	. 691	.005	.007	.009	. OE1	. O13	.015	.019
24	.097	. 140	. 210	-30?	. 405	. 553	.725	.005	.006	.009	. 013	.014	.017	.020
25	.103	.155	. 230	. 336	. 474	. 651	.850	.005	.007	.009	.014	.014	.019	.019
26	- 306	.103	.234	. 330	. 455	. 638	.810	.004	.007	.010	.012	.014	.017	.015
27	- 1 E	.172	. 247	. 348	. 505	. 677	.828	.004	.007	.010	.014	.016	.020	. 022
28	-1.7	.182	. 268	. 365	.516	. 098	.928	.005	.007	.009	.013	.017	.019	. 022
29	. 098	.138	- 200	. 280	. 393	.539	. 712	.005	.007	.009	.011	.015	.016	. 019
30	. 104	.172	. 240	. 350	.474	. 624	. 828	.006	.008	. 012	. 012	.015	. 018	. 020
31	.110	. 172	. 240	. 336	. 485	. 622	.794	.004	. 007	. 009	.013	-013	. 016	.017
32	- 506	.154	. 226	. 314	.408	. 560	. 712	. 005	. 007	.010	. 012	.014	. 016	. 019
33	- 205	.157	. 226	. 338	.473	. 638	. 826	. 005	.007	. 009	. 012	.015	.019	.022
34	. 100	.148	.218	.286	.390	. .540	. .718	$\stackrel{.004}{ }$.007	. 009	A 02	.013	.015	.021

35	.101	. 152	.211	.294	.396	. 538	. 694	. 004	. 006	. 008	.012	.013	.016	. 018
36	.124	.180	$.254{ }^{\circ}$. 344	. 476	. 616	. 780	.005	. 008	. 010	.011	. 013	. 020	. 022
37	. 124	.161	. 274	. 372	. 494	. 633	.810	. 004	.007	. 011	.014	.016	.022	. 000
$\overline{\mathbf{x}}$.106	.161	. 233	. 327	. 450	. 605	. 788	. 005	. 007	. 009	.012	.014	. 017	. 019
s	.012	. 017	. 023	.031	. 045	. 054	. 069	. 001	.001	. 001	.001	.002	.002	. 002
UCL	.112	. 168	. 243	. 341	.470	. 629	.818	. 005	.007	. 010	.012	. 014	.017	. 020
LCL	. 201	.154	. 223	.313	.430	.581	.757	.004	.006	. 0009	. 011	. 013	.016	.018
	Tunnel Width						Chomata Height							
16	. 052	. 104	.138	. 200	. 528	- 840		. 030	. 030	.046	. 073	. 056	. 074	
17	.062	. 094	. 134	. 240	. 374	. 640.		. 026	.030	. 060	. 067	. 062	.093	
18	. 060	. 094	. 160	. 256	. 520	.000		.028	. 034	. 046	.050	.070	.000	
19	. 062	. 080	. 148	. 220	. 400	.000		. 029	.033	. 054	. 070	. 080	.000	
20	. 048	. 080	. 096	. 140	. 220	. 400		.030	.034	. 038	.046	. 058	.072	
21	.057	. 072	.086	.140	.204	. $400{ }^{\circ}$. 030	. 036	. 032	.040	.064	.068	
22	. 058	. 080	.132	- 186	. 444	. 600		. 026	. 038	. 060	. 051	. 060	.072	
23	. 062	.091	.112	. 208	. 345	. 680		. 024	.029.	. 053	. 069	.057	.080	
24	. 068	.072	- 128	- 274	. 424	. 600	-	. 025	.04r	. 050	. 060	.046	.045	
25	. 054	.080	. 118	- 198	. 420	.800		. 025	.030	. 042	. 073	. 069	. 036	
26	. 057	.100	. 160	. 264	. 360	.000		.027	. 035	. 058	. 066	.000	. 000	
27	. 062	. 094	. 140	. 228	. 436	1.000		.033	. 048	. 050	. 062	.072	. 068	
28	. 064	. 093	. 524	. 198	. 360	. 680		.038	.047	. 052	. 082	. 074	.104	
29	. 046	. 074	.116	- 194	. 456	.516		.026	. 032	. 038	. 061	. 080	. 080	
30	. 064	. 084	. 1.46	. 226	. 360	. 840		. 036	.036	.040	. 066	. 030	. 064	
31	. 056	. 080	. 138	. 199	- 320	- 520		. 027	. 034	. 049	. 058	. 054	. 064	
32	. 058	.096	-126	. 264	-372	. 528		. 030	. 030	. 044	. 062	.069	. 060	
33	. 048	.076	-128	. 146	. 272	. 640		.028	. 032	. 048	. 047	. 072	. 080	
34	. 052	.086	. 094	. 138	. 240	. 440		.029	. 044	.044	.052	. 076	.070	
35	. 054	.120	- 120	. 190	. 320	. 512		.024	. 032	. 040	.044	. 052	. 059	
36	. 066	.066	. 114	.197	. 292	. 640		. 032	. 040	. 040	.054	. 062	. 056	
37	. 052	-104	- 175	. 258	- 320	. 000		. 026	. 038	. 041	. 033	. 056	. 000	
${ }^{8}$. 057	. 087	-129	. 207	. 363	. 632		. 029	. 036	. 046	. 059	. 063	. 069	
5	. 006	. 013	. 022	. 042	. 088	. 161		. 004	.006	.007	.012	. 012	. 016	
UCL	. 061	. 095	- 142	. 233	. 417	.745		.031	. 039	.051	. 066	. 070	. 080	
LCL	. 054	.079	.115	. 182	. 309	.519		. 026	. 032	. 042	.05i	.051	. 058	

Sgixotheca Thickness
Septal Count

上

 кя

16	. 066	. 103	. 160	. 270	. 516	. 000		. 034	. 042	. 052	. 066	. 090	. 000
17	. 080	. 108	. 160	. 218	. 358	. 560		. 041	. 048	. 054	. 080	. 080	. 000
18	. 056	. 102	. 129	. 204	. 344	. 400		. 030	. 033	. 046	. 070	. 090	. 067
19	. 066	. 080	. 136	. 176	. 296	. 320		. 036	. 043	. 043	. 074	. 096	. 112
20	. 069	. 088	. 120	. 200	. 260	. 300		. 030	. 032	. 051	. 072	. 084	. 088
21	. 074	. 094	. 184	. 240	. 520	. 000		. 032	. 044	. 048	. 080	. 060	. 000
22	. 080	. 116	. 182	. 240	. 506	. 880		. 042	. 054	. 068	. 068	. 088	. 090
23	.05\%	. 104	. 160	. 240	. 348	. 800		. 033	. 060	. 074	. 064	. 100	. 088
24	. 080	. 112	. 140	. 254	. 440	. 000		. 035	. 038	. 062	. 090	. 100	. 000
25	. 080	. 126	. 205	. 320	. 560	. 000		. 037	. 043	. 066	. 080	. 092	. 000
26	. 060	. 080	. 152	. 240	. 440	. 000		. 036	. 044	. 040	. 056	. 072	. 000
27	. 070	.123	.131	. 288	. 592	. 904		. 033	. 043	. 064	. 053	. 066	. 100
28	. 080	. 098	.160	. 266	. 480	. 720		. 030	. 046	. 080	. 091	. 072	. 000
29	. 059	. 120	. 140	. 256	. 386	$\because 000$. 032	. 046	. 062	. 070	. 089	. 070
30	. 064	. 080	. 148	. 240	. 433	. 000		. 036	. 044	. 059	. 068	. 072	. 000
31	. 059	. 080	. 102	. 240	. 305	. 560		. 022	. 038	. 054	. 068	. 060	. 068
32	. 069	. 094	.148	. 272	. 420	. 000		. 034	. 048	. 056	. 072	. 094	. 072
33	. 070	. 102	. 136	. 240	. 254	. 800		. 038	. 053	. 068	. 040	. 056	. 072
34	. 076	.120	. 178	. 355	355	. 000		. 034	. 038	. 062	. 089	. 096	. 000
35	. 072	. 098	. 184	. 400	. 580	. 000		. 038	. 038	. 038	. 058	. 090	. 080
36	. 080	. 096	. 182	. 226	. 437	. 770		. 034	. 042	. 054	. 089	. 104	. 090
37	. 080	. 090	.130	. 240	. 277	. 418		. 035	. 042	. 070	. 053	. 074	. 075
38	. 060	. 093	. 131	. 302	. 382	. 578		. 044	. 044	. 050	. 067	. 053	. 067
39	. 056	. 108	. 148	. 282	. 480	. 000		. 032	. 038	. 058	. 070	.062	. 066
X	. 067	.101	. 152	. 259	. 415	. 616		. 035	. 043	. 057	. 070	. 081	. 081
s	. 009	. 014	. 025	. 049	. 101	. 211		. 005	. 006	. 011	. 013	. 015	. 014
UCL	. 074	. 109	. 166	. 287	. 474	. 803		. 037	. 047	. 064	. 078	. 090	. 091
LCL	. 064	. 092	. 138	. 230	. 356	. 430		. 032	. 040	. $05{ }^{i}$. 063	. 072	. 069
	Spirotheca Thickness						Septal Count						
1	. 013	. 018	. 022	. 030	. 028	. 033	10	15	18	23	27	25	29
2	. 019	. 022	. 022	. 025	. 027	. 029	10	17	21	24	27	29	27
3	. 014	. 017	. 023	. 023	. 033	. 029	12	16	18	24	27	29	30
4	. 014	. 019	. 026	. 031	. 033	. 033	10	17	20	23	28	32	00
5	. 014	. 019	. 023	. 031	. 034	. 037	10	14	21	21	21	25	00
6	. 013	. 018	. 024	. 037	. 028	. 037	12	17	20	24	25	29	28
7	. 018	. 024	. 027	. 030	. 032	. 033	10	17	2.1	22	31	00	00

39	. 016	. 021	. 018	. 030	. 035	. 037	. 167	. 335	. 576	. 821	1.420	1.890	000
r	. 016	. 020	. 025	. 029	. 033	. 034	194	. 364	. 604	. 974	1.454	2.067	2.517
5	. 002	. 003	. 004	. 004	. 005	. 005	$n 22$. 045	. 056	. 128	. 193	. 280	. 330
UCL	. 017	. 021	. 027	. 031	. 035	. 036	207	, 391	. 637	1.049	1.567	2. 236	2.890
LCL	. 015	. 019	. 023	. 028	. 030	. 032	. 181	. 338	. 571	. 899	1.341	1.899	2.160
		Proloculus			Diameter								
1	. 091	. 127	10	. 144	. 162	19	. 128	. 160	28	.142	. 170	37	. 148
2	. 123	. 135	11	. 121	. 149	20	. 131	. 152	29	. 138	. 152	38	.137
3	. 112	.122	12	.139	. 168	21	. 134	. 160	30	. 233	. 160	39	. 132
4	. 109	. 124	13	.123	. 149	22	.136	.140	31	. 152	. 174	\%	. 132
5	. 135	. 164	14	. 119	. 135	23	. 108	. 109	32	c 140	. 154	s	. 014
6	. 106	. 130	15	.134	. 156	24	. 136	. 154	33	. 154	-186	UCL	.141
7	. 153	.190	16	.136	. 160	25	. 154	.180	34	. 150	. 172	LCL	. 120
8	. 122	.147	17	.120	. 134	26	. 160	.169	35	.153	. 166		
9	. 119	. 132	18	.112	.120	27	.148	. 169	36	. 140	. 152		
FUSUL INA		mutabilis new species					- belo	w "Type	Le	er Men	mber.	addo A	Antincil
		Radiug Vector						Tectum Ef Disphanotheca					
\cdots	. 090	.250	- 216	. 326	. 469	. 640		. 004	. 006	.007	. 0.2	. $0: 0$. 000
2	. 080	- 123	. 206	. 334	. 491	. 662		.004	. 007	- 008	.010	- 015	.0:6
3	. 095	. 170	. 246	. 368	. 520	. 678		. 005	. 007	. 009	. 0.3	. 013	. 015
4	- 099	.160	. 243	. 382	. 524	. 688		. 005	007	. 009	. 012	. 014	516
5	. 206	. 173	. 284	- 467	. 648	. 000		. 005	. 007	.010	- 010	. 010	000
ó	. 087	-147	. 222	. 351	. 536	. 000		. 005	. 007	. 010	c 012	. 013	. 000
7	. 000	. 150	. 233	. 347	. 540	. 000		. 005	. 006	. 010	. 010	. 000	. 000
8	. 080	- 121	. 190	. 308	. 482	. 713		. 005	. 007	. 009	-011	\bigcirc	. 015
9	. 102	. 166	. 248	.364	. 533	- 716		. 004	. 00%	. 008	-011	. 013	. 000
15	. 086	- 147	. 214	. 302	. 470	. 673		. 004	. 006	-009	. 010	. 013	. 015
2	. 098	- 152	. 223	. 349	. 510	. 720		. 005	. 0007	. 010	-0\$2	. 013	. 017
13	. 108	- 170	.240	.360	. 52 .	. 000		. 005	. 006	. 009	$\bigcirc 0.012$.013	.000
14	. 032	- 142	. 246	. 346	- 542	. 718		. 005	. 006	. 009	. 011	. 014	. 015
15	. 094	- 152	. 232	. 372	. 554	. 000		. 005	. 006	. 009	.010	-013	${ }_{-} 000$
10	. 515	ci 76	c 234	. 354	. 509	. 678		. 005	. 007	. 008	.010	. 013	${ }_{-} 017$

17	. 083	. 130	. 194	. 303	. 437	. 640	. 005	. 006	. 009	.011	. 013	. 014
18	. 092	. 140	. 218	. 326	. 475	. 645	. 005	. 006	. 008	.012	. 013	. 000
19	. 094	. 154	. 234	. 360	. 498	. 000	. 005	. 007	. 009	.010	. 013	. 000
20	. 097	.156	. 250	. 385	. 553	. 000	. 004	. 007	.010	.011	. 014	. 000
21	.112	.172	. 250	. 372	. 547	. 720	. 005	. 007	. 010	. 012	.013	. 014
22	. 090	.152	. 218	. 336	. 494	. 650	. 005	. 007	. 009	. 012	. 014	. 017
23	. 094	.162	. 245	. 386	. 546	. 000	. 006	. 007	. 009	.011	. 015	. 000
24	. 096	.164	.240	. 347	. 490	. 656	. 006	.008	. 009	. 012	. 0.13	.015
25	. 096	. 173	. 232	. 338	. 544	. 750	. 005	.007	. 011	.013	.015	. 016
26	. 090	.156	. 248	. 396	. 566	. 748	. 006	. 007	. 009	.011	. 014	.016
27	. 074	. 128	. 209	. 309	. 485	. 692	. 005	. 008	. 010	.010	.011	. 014
28	. 080	. 132	. 202	. 322	. 472	. 656	. 006	.007	.009	. 010	. 013	. 016
29	. 090	. 015	. 243	. 380	. 531	. 693	. 005	. 007	.009	.013	. 013	. 015
30	. 078	. 132	. 211	. 355	. 524	. 688	. 005	. 007	.011	.013	. 013	.014
8	. 092	- 152	- 230	. 353	.518	. 687	. 005	. 007	.009	.011	-013	${ }_{.} 015$
s	.010	. 016	- 020	. 034	. 041	. 034	. 001	.001	.001	. 001	. 001	. 001
UCL	.097	.160	. 240	. 370	. 538	. 707	. 005	. 007	.010	. 012	. 014	. 016
LCL	.087	.144	. 220	. 336	. 497	. 667	. 004	.006	. 008	. 011	. 012	.014
Tunnel Width Chomata Heigh												
11	. 046	. 080	.106	. 123	. 196	. 366	. 046	. 054	. 088	. 098	. 088	. 000
12	. 060	. 089	.141	. 220	. 372	. 560	. 034	. 039	. 062	. 086	. 090	. 077
13	. 052	. 080	. 136	. 206	. 320	. 000	. 030	. 038	. 072	.080	. 064	.000
14	. 046	.070	. 096	. 184	. 258	. 480	. 030	. 053	. 066	${ }_{-} 108$. 080	.000
15	. 048	. 066	.106	. 213	. 400	. 000	. 030	. 046	. 072	.100	. 100	. 000
16	.046	. 080	.126	.211	. 302	. 000	. 038	. 042	. 067	.065	. 074	. 000
17	. 064	. 080	.112	. 208	. 288	. 400	. 030	. 035	. 052	. 096	.096	. 104
18	. 060	. 064	. 128	. 146	. 240	. 000	. 032	. 036	. 056	. 068	. 080	.000
19	. 062	. 096	. 108	. 240	. 320	. 000	. 026	. 042	. 064	. 088	.080	.000
20	. 051	.080	. 112	. 248	.344	. 000	. 034	. 052	. 080	.104	. 000	.000
21	. 060	.086	. 143	. 216	. 320	. 000	. 034	.038	. 072	. 092	.070	.000
22	. 052	.070	.116	. 160	. 320	. 000	.04)	.040	. 061	.090	. 094	. 088
23	. 048	. 092	. 168	. 360	. 000	. 000	. 030	.058	. 065	. 080	. 000	.000
24	. 055	. 094	.120	. 200	- 240	. 000	. 034	. 049	. 066	. 085	. 093	. 000
25	. 058	. 080	.096	.173	. 278	. 640	. 038	. 038	. 064	. 080	. 108	. 092
26	. 049	. 080	-133	. 222	. 320	. 000	. 034	. 054	. 066	. 120	- 120	.000
27	.051	.073	.120	.176	.250	. 000	. 030	.040	.062	.078	. 120	.000

23	. 016	. 024	. 037	. 034	. 037	. 000		. 148	. 348	. 698	1.120	1.560			
24	. 023	. 033	. 037	. 039	. 039	. 042		. 135	. 300	. 508	. 789	1.170	1.6		
25	. 016	. 026	. 031	. 045	. 044	.040		. 154	. 309	. 547	. 866	1.430	1.8		
26	. 018	. 026	. 033	. 039	. 046	. 037		. 145	. 338	. 595	.991	1.610	2.2		
27	. 018	. 024	. 033	. 037	. 041	. 041		. 103	. 287	. 441	.744	1.200	1.6		
28	. 019	. 035	. 032	. 034	. 043	. 045		. 122	. 283	. 486	. 831	1.120	1.5		
29	. 018	. 025	. 034	. 037	. 032	. 042		.154	. 354	. 618	.951	1.440	1.9		
30	. 020	. 028	. 028	. 033	. 037	. 039		. 119	. 274	. 444	. 679	. 966	1.4		
$\overline{\mathbf{x}}$. 018	. 024	. 030	. 036	. 039	. 040		.137	. 303	. 530	. 823	1.239	1.7		
5	. 003	. 004	. 004	. 004	. 005	. 005		. 013	. 031	. 069	.106	. 175	. 2		
UCL	. 020	. 027	. 032	. 038	. 042	. 043		. 146	. 322	. 573	. 888	1.346	1.8		
LCL	. 017	. 023	. 029	. 034	. 037	. 037		. 129	. 284	. 487	. 758	1.131	1.5		
		Proloculus				Diameter									
1	. 088	. 098	8	. 066	. 082	15	. 088	. 103	23	. 118	. 126	30	. 080	. 096	
2	. 063	. 075	9	. 096	. 119	16	. 080	. 096	24	. 106	.106	$\widetilde{\mathrm{x}}$. 092	. 102	
3	. 076	. 087	11	. 106	. 120	17	. 106	.110	25	. 120	. 122	s	. 015	. 013	
4	. 083	. 094	12	.116	. 116	18	. 080	. 090	26	. 094	. 097	UCL	. 099	. 108	N0
5	. 100	. 102	13	. 080	. 098	19	. 108	. 117	27	. 086	. 086	LCL	. 084	. 095	
6	. 085	. 098	14	.098	.110	20	. 090	.100	28	. 069	. 080				
7	. 087	. 098	21	. 102	.114	22	. 078	. 090	29	.108	. 116				
FUSULINA		MUTABILIS, new species				"oolitic" Lester Member. Overbroof Anticline									
		Radius Vector				Tectum E Diaphonotheca									
1	. 118	. 182	. 306	. 470	. 660	. 000		. 004	. 007	.010	. 013	. 021	. 0		
2	. 104	. 161	. 245	. 393	. 547	. 774		. 005	. 007	. 010	. 012	. 015	. 0		
3	. 093	. 154	. 226	. 339	. 484	. 658		. 006	. 007	. 009	. 012	. 015	. 0		
4	. 091	. 138	. 217	. 318	. 470	. 735		. 005	. 007	. 009	. 012	. 014	. 0		
6	. 102	. 170	. 288	. 446	. 650	. 000		. 005	. 007	. 009	. 012	. 014	. 0		
7	. 116	. 181	. 269	. 403	. 553	. 000		. 006	. 007	. 008	. 011	. 014	. 0		
8	. 098	. 173	. 274	. 394	. 536	. 000		. 005	. 007	. 009	. 014	. 017	. 0		
9	. 104	. 158	. 250	. 370	. 540	. 000		. 005	. 007	. 008	. 013	. 015			
10	. 095	. 152	. 246	. 361	. 530	. 000		. 005	. 007	. 010	. 012	. 015	. 0		
11	. 096	. 154	. 232	. 340	. 476	. 680		. 005	. 007	. 009	. 010	. 013	. 0		

12	. 106	. 186	. 292	. 442	. 590	. 000	. 005	. 007	. 010	. 012	. 017	. 000
13	. 094	. 155	. 229	. 348	. 508	. 720	. 004	. 007	. 009	. 013	. 015	. 014
14	. 090	. 156	. 276	. 454	. 000	. 000	. 005	. 007	. 010	. 013	. 000	. 000
16	. 080	. 013	. 207	. 318	. 494	. 689	. 005	. 006	. 009	. 013	. 016	. 017
17	. 076	. 130	. 216	. 331	. 487	. 674	. 004	. 007	. 009	. 011	. 014	. 016
19	. 109	. 169	. 268	. 418	. 000	. 000	. 005	. 009	.010	. 013	. 015	. 000
20	. 095	. 170	. 264	. 416	. 570	. 730	. 005	. 007	. 010	. 014	. 015	. 000
21	. 083	. 136	. 235	. 346	. 533	. 720	. 005	. 0007	. 009	. 011	. 016	. 015
22	. 102	. 154	. 224	. 331	. 472	. 690	. 005	. 007	. 009	. 009	. 014	. 015
24	. 088	. 141	. 234	. 393	. 613	. 000	. 005	. 007	. 009	. 012	. 014	. 000
25	. 087	. 142	. 234	. 346	. 508	. 682	. 005	. 007	. 009	. 015	. 015	. 017
28	. 107	.170	. 253	. 378	. 550	. 000	. 006	. 007	. 009	. 012	. 014	. 000
29	.108	. 168	. 264	. 390	. 555	. 766	. 005	. 007	. 012	. 012	. 017	. 000
30	. 088	. 146	. 226	. 350	. 516	. 702	. 005	. 007	. 010	. 012	. 013	. 019
31	. 113	. 172	. 246	. 364	. 533	. 708	. 005	. 007	. 010	. 015	. 015	. 000
32	. 080	. 124	. 207	. 350	. 475	. 622	. 004	. 007	. 009	. 012	. 014	. 017
33	. 085	. 140	. 214	. 326	. 490	. 000	. 006	. 008	. 009	. 013	. 014	. 000
34	. 114	.169	. 240	. 362	. 530	. 695	. 005	. 007	. 009	. 013	. 012	. 018
35	.101	.160	. 240	. 358	. 510	. 728	. 005	. 007	. 011	. 012	. 014	. 017
\bar{x}^{-}	. 087	. 157	. 246	. 374	. 533	. 704	. 005	. 007	. 009	. 012	. 015	. 017
s	. 011	. 017	. 026	. 042	. 051	. 038	. 001	. 001	. 001	. 001	. 002	. 002
DCL	.103	. 165	. 259	. 396	. 559	. 730	. 005	. 007	. 010	. 013	. 016	. 018
LCL	. 092	.148	. 232	. 353	. 506	. 679	. 004	. 006	.009	. 012	. 014	. 016
16	. 042	. 066	. 146	. 160	. 262		. 024	. 045	. 074	. 096	. 000	
17	. 045	. 080	. 104	. 149	. 280		. 038	. 048	. 062	. 080	. 088	
19	. 080	.100	. 204	. 400	. 640		. 030	. 048	. 096	. 088	. 116	
20	. 069	. 104	.172	. 304	. 456		. 034	. 049	. 076	. 084	. 108	
21	. 060	. 072	. 112	. 184	. 320		. 029	. 048	. 062	. 088	. 074	
22	. 048	. 070	. 100	. 160	. 266		. 030	. 048	. 052	. 100	. 100	
24	. 060	. 085	.160	. 236	. 400		. 030	. 051	. 068	.104	.104	
25	. 052	. 068	. 165	. 240	. 400		. 028	. 052	. 061	. 070	. 080	
28	. 058	. 080	. 168	. 308	. 000		. 038	. 046	. 080	. 096	. 077	
29	. 054	. 092	. 160	. 216	. 320		. 036	. 054	. 064	. 100	. 108	
30	. 061	. 092	. 138	. 188	. 320		. 032	. 060	. 067	. 088	. 096	
31	. 055	. 080	.124	.160	. 320		. 030	. 052	. 063	. 088	. 088	

28	. 018	. 024	. 026	. 037	. 035	. 000		. 180	. 383	. 677	. 956	1.610	. 00		
29	. 019	. 022	. 034	. 034	. 037	. 000		.161	. 300	. 589	. 892	1.290	. 00		
30	. 019	. 023	. 034	. 037	. 037	. 050		. 132	. 280	. 486	. 750	1. 240	. 00		
31	. 019	. 022	. 032	. 039	. 037	. 000		. 161	. 312	. 493	. 809	1.400	. 00		
32	. 014	. 021	. 025	. 032	. 036	. 045		.106	. 235	. 431	. 821	1.210	1.81		
33	. 018	. 025	. 028	. 037	${ }_{\text {. }} 045$. 000		.119	. 300	- 435	. 676	1.110	.		
34	. 016	. 021	.031	. 035	. 042	. 046		$\bigcirc 148$. 296	. 464	. 805	1.250	*.900		
35	. 018	. 024	. 033	. 034	. 037	. 040		. 138	. 274	. 460	. 786	H. 560	2.09		
x	.017	. 021	. 028	. 035	. 038	. 039		. 136	. 287	. 495	. 820	1.304	1.77		
s	. 002	. 003	. 005	. 006	. 005	. 008		. 021	. 041	. 067	. 101	. 185	. 17		
UCL	. 018	. 023	.031	. 038	. 040	. 045		.150	. 315	. 541	. 890	H. 432	2.43		
LCL	. 016	.019	. 026	. 032	. 035	. 033		$\bigcirc 121$. 258	. 449	. 750	i. 175	1.60		
	Proloculus					Diameter									
1	. 101	.1117	9	. 086	. 095	47	. 080	. 098	28	. 110	128	35	. 108	.117	
2	. 085	. 100	10	. 078	. 087	19	. 096	.112	29	.100	109		$\stackrel{.095}{ }$	$\bigcirc .107$	
3	. 089	.105	11	. 094	- 105	20	. 106	. 106	30	. 101	114		. 011	.011	
4	. 082	. 092	12	.111	- 122	21	-102	. 102	3 I	.106	120	UCL	. 101	.113	N
6	. 089	. 097	13	.091	. 101	22	. 118	. 126		. 101	107	LCL	. 089	.101	
7	. 104	. 116	14	.070	. 086	24	. 088	.111	33	.100	106				
8	. 091	. 124	16	${ }_{.} 094$. 106	25	. 080	$\stackrel{.094}{ }$	34	\bigcirc	100				
		FUSULINA PUAIRA			Thompson			Lower Frensley Limestone Member							
1	. 074	- 122	. 170	. 250	. 339	. 485		. 004	. 005	. 006	. 009	. 010	. 01		
2	- 080	. 138	. 209	. 31.1	. 470	,000		. 004	. 006	. 008	. 0009	- 018	. 01		
3	. 056	. 098	. 1.67	. 273	. 428	. 578		.004	. 007	.007	. 009	$\bigcirc 0.3$. 01		
4	. 065	- 109	. 170	. 252	. 350	- 472		. 004	. 006	. 006	. 007	-012	. 01		
5	. 078	. 1.24	.199	. 295	. 405	- 563		. 005	. 006	. 007	. 012	.083	. 01		
6	. 077	.131	. 216	. 318	. 464	-641		. 004	. 006	. 008	. 010	. 011	. 01		
7	. 085	. 156	. 234	- 320	. 468	. 652		. 004	. 006	. 009	. 010	. 013	. 01		
8	. 063	. 107	. 172	. 272	. 390	. 538		. 004	. 007	. 007	.010	. 013	.01		
9	. 074	.124	.198	. 297	. 422	. 560		. 004	. 006	. 007	. 010	. 011	.01		
10	. 059	. 101	.160	- 247	- 350	. 502		.005	. 006	. 006	. 009	. 012	. 01		
11	. 060	. 108	. 165	- 246	. 378	. 517		. 003	. 006	. 008	.009	.011	. 01		
12	. 074	.119	.198	. 282	. 419	. 610		. 003	. 005	. 008	. 010	. 014	. 01		

13	.065	.099	.147	.215	.318	. 468	. 005	. 006	. 007	.009	. 013	. 014
14	. 072	.118	.176	. 266	.380	.544	.004	.006	.007	. 008	.008	. 012
15	. 072	.118	.196	. 299	. 417	. 624	. 004	.005	.008	. 010	. 014	.014
16	. 088	.133	.189	. 274	.391	. 568	. 004	.006	.008	.009	. 012	.014
17	. 070	.111	.170	. 252	.400	. 530	.005	.007	.009	.009	.014	.014
18	.076	.121	.187	.277	. 414	. 590	.005	.006	.008	.011	.013	.015
19	.078	.118	.177	. 265	. 425	. 610	. 005	.007	.008	. 012	.013	. 018
20	. 082	.144	. 209	. 315	. 457	. 608	.006	.008	.009	. 010	.012	.013
21	. 065	.121	.204	. 303	. 465	. 674	.004	.006	.008	.009	.014	.014
22	.066	.109	.179	. 266	.379	.530	. 004	. 005	.007	.008	.011	.013
23	. 080	.128	.196	. 282	. 412	. 546	.005	.008	.010	.014	. 014	.014
24	. 054	.093	.156	. 262	. 414	.572	.005	.007	.008	.011	.011	.000
25	. 056	.100	. 168	. 252	. 359	. 534	. 005	.006	.008	.010	. 012	. 013
26	. 074	.110	. 166	. 244	. 384	. 560	. 004	.006	.007	.010	.011	. 014
27	. 069	.104	. 160	. 245	. 374	.523	.005	.006	.010	. 010	.014	. 014
28	. 066	.102	.156	. 235	. 338	.520	.004	.007	.008	.013	. 014	. 016
29	. 066	.098	.152	. 239	. 357	. 514	.004	.006	.008	.010	. 011	.014
30	. 066	.111	.160	. 258	. 420	. 623	. 005	. 006	.008	.011	.012	.013
31	. 063	.098	. 160	.243	.354	. 491	.004	. 005	.007	.010	.013	. 012
32	. 074	. 125	.188	. 299	. 440	.642	.004	.006	.008	.010	. 012	.014
33	. 058	. 090	.143	. 218	. 320	. 474	.005	.006	.008	. 010	.013	.013
34	. 061	.090	. 136	. 208	. 308	. 412	.005	. 006	.007	. 009	.010	.011
. 35	. 080	.124	.191	. 283	. 422	. 573	.003	. 006	. 008	.013	.012	.014
36	. 072	.109	.160	. 243	. 362	. 522	.005	.006	.007	. 012	.012	.015
37.	$\because 006$.113	- 160	.234	. 367	. 538	.004	. 006	.007	. 009	.010	.014
38	. 065	.102	.170	. 262	.377	.521	.005	. 006	.007	.009	.012	.015
39	. 063	.104	.172	.284	. 433	. 584	.005	.006	.008	.010	.011	.014
40	. 054	.092	.147	.217	. 323	. 464	. 004	.005	. 008	.009	.012	.013
41	. 072	.111	.157	.230	. 310	. 426	.005	. 006	.009	. 011	.013	.016
\boldsymbol{X}	. 069	.113	. 175	. 264	.390	. 548	.004	. 006	.007	. 010	. 012	.014
s	. 009	.015	. 022	.030	. 046	.061	.001	.001	.001	.001	.001	.001
UCL	. 073	.120	.185	.277	. 410	.574	.005	.006	.008	.011	. 013	.015
LCL	. 066	.107	. 166	.252	.371	.521	.004	.005	.007	. 010	. 012	.013

Tunnel Width

14	. 032	.050	. 086	.146	.168	. 000
15	. 037	. 058	. 030	.126	. 192	. 000
16	. 039	. 067	. 080	.142	.160	. 000
17	. 036	. 068	. 160	. 240	.000	. 000
18	. 040	. 068	. 104	.100	. 240	. 360
19	. 040	. 080	. 080	.152	. 188	. 376
20	. 066	. 070	. 098	.136	.189	. 000
21	. 040	. 062	. 092	.146	. 224	.000
22	. 042	. 050	. 080	.124	.184	. 320
23	. 035	. 058	. 039	. 152	.124	211
24	. 036	. 065	. 092	.148	. 256	. 000
25	. 030	. 060	. 090	.130	.183	268
26	. 040	. 066	. 080	.120	.176	320
27	. 029	. 046	. 072	.080	.136	.176
28	.030	.054	.108	.120	.205	. 272
29	. 030	. 052	. 070	.112	.147	200
30	. 032	. 058	. 080	.116	.147	253
31	. 040	. 048	. 066	$\bigcirc 110$.150	200
32	. 034	. 050	. 090	.178	. 256	268
33	. 029	. 056	. 071	.110	.160	200
34	. 029	. 056	. 071	. 106	160	278
35	. 038	. 062	. 080	.136	. 184	288
36	. 036	. 060	. 088	.126	. 216	260
37	. 030	. 058	. 099	.124	. 224	360
38	. 044	. 056	. 080	.120	.160	229
39	. 048	. 064	. 082	.146	. 240	000
40	.040	. 060	.080	. 142	.176	220
41	. 034	. 054	. 067	. 106	.184	. 220
$\overrightarrow{\mathbf{x}}$. 037	. 059	. 086	. 131	.186	. 264
s	.007	. 008	. 018	. 029	. 036	. 059
UCL	.041	. 063	. 095	.146	.205	. 300
LCL	.033	.055	.077	.116	.167	.228

Chomata Heiaht

.021	.035	.048	.069	.067	.000
.028	.047	.068	.080	.104	.000
.026	.037	.048	.067	.091	.078
.024	.032	.056	.072	.084	.000
.020	.034	.043	.053	.084	.078
.020	.030	.064	.080	.094	.106
.032	.040	.061	.080	.076	.068
.026	.036	.064	.074	.104	.000
.024	.052	.052	.064	.080	.068
.020	.034	.042	.072	.080	.076
.027	.034	.048	.088	.072	.000
.029	.034	.053	.062	.078	.096
.020	.036	.048	.090	.088	.096
.024	.031	.052	.072	.080	.086
.015	.038	.042	.068	.080	.080
.018	.027	.047	.066	.088	.080
.022	.031	.054	.080	.088	.104
.020	.036	.052	.077	.072	.088
.022	.034	.051	.074	.096	.096
.016	.036	.054	.080	.112	.080
.020	.024	.038	.067	.092	.104
.026	.040	.061	.071	.090	.096
.016	.024	.032	.068	.096	.080
.028	.034	.043	.074	.092	.088
.024	.031	.054	.060	.071	.080
.016	.036	.051	.088	.080	.000
.019	.026	.042	.068	.080	.080
.014	.020	.036	.047	.063	.080
.022	.034	.050	.071	.085	.086
.005	.007	.009	.010	.012	.011
.024	.037	.055	.076	.091	.092
.020	.031	.046	.067	.079	.079
.060					

Spirotheca Thickness

1	.009	.012	.014	.017	.024	.028
2	.012	.019	.019	.034	.034	.030
3	.010	.019	.027	.032	.037	.032
4	.009	.012	.018	.020	.023	.029
5	.013	.016	.022	.028	.029	.033
6	.015	.020	.027	.027	.027	.038
7	.011	.019	.024	.035	.037	.020
8	.012	.016	.020	.025	.036	.034
9	.010	.015	.020	.023	.032	.041
10	.009	.013	.026	.027	.036	.030
11	.009	.015	.018	.036	.025	.026
12	.011	.015	.019	.028	.029	.026
13	.010	.014	.018	.026	.031	.031

continued

14	.010	.015	.018	.030	.026	.033
15	.009	.014	.019	.032	.028	.041
16	.013	.014	.018	.021	.027	.020
17	.012	.018	.020	.027	.026	.033
18	.013	.018	.018	.022	.028	.028
19	.011	.022	.025	.034	.028	.018
20	.016	.013	.018	.028	.028	.030
21	.012	.014	.021	.036	.031	.043
22	.009	.014	.017	.019	.028	.034
23	.014	.018	.021	.032	.036	.032
24	.011	.017	.030	.031	.029	.000
25	.010	.014	.015	.022	.034	.023
26	.010	.019	.018	.022	.031	.035
27	.010	.015	.025	.031	.036	.032
28	.009	.013	.021	.025	.025	.044
29	.010	.012	.016	.018	.027	.035

Septal Count

8	13	16	20	20	25
11	17	21	23	26	27
8	12	12	14	17	22
9	16	16	20	22	28
9	15	20	18	23	32
9	13	15	20	24	29
10	17	20	25	27	32
9	10	13	19	18	23
10	16	17	18	26	25
9	14	19	22	24	26
8	11	14	18	23	24
8	12	16	20	21	23
9	13	14	17	21	23
$\bar{x} 9$	14	16	20	22	26
s01	02	03	03	03	03
UCL10	16	19	22	25	29
LCL 8	12	14	17	20	23

16	. 040	. 068	. 080	. 176	. 320	. 000	. 020	. 026	. 072	. 074	. 074	. 000
17	. 052	. 080	. 096	. 160	. 240	. 000	. 025	. 029	. 070	. 073	. 076	. 000
18	. 050	. 068	. 128	. 196	. 355	. 000	. 020	. 040	. 059	. 074	. 000	. 000
19	. 048	. 080	. 124	. 176	. 000	. 000	. 024	. 038	. 053	. 072	. 000	. 000
20	. 048	. 066	. 080	. 120	. 226	. 286	. 024	. 034	. 052	. 080	. 090	. 080
21	. 035	. 066	.100	. 184	. 240	. 000	. 022	. 039	. 050	. 059	. 066	. 000
22	. 039	. 069	. 080	. 179	. 226	. 000	. 030	. 045	. 068	. 076	. 088	.000
23	. 040	. 070	. 146	. 208	. 240	. 000	. 022	. 054	. 056	. 080	. 090	. 000
24	. 037	. 066	. 100	. 160	. 216	. 000	.030	. 041	. 068	. 064	. 080	. 000
25	. 062	. 080	. 120	. 256	. 256	. 000	. 022	. 046	. 070	. 080	. 080	. 000
26	. 051	. 080	. 147	. 172	. 320	. 000	. 025	. 060	. 080	. 092	. 072	. 068
27	. 035	. 054	. 080	. 116	. 192	. 000	. 032	. 044	. 069	. 076	. 072	. 000
28	. 046	. 096	. 120	.288	. 000	. 000	. 040	. 050	.058	. 087	. 080	. 000
29	. 052	. 080	. 132	. 208	. 200	. 400	. 030	. 042	. 067	. 080	. 088	. 108
30	. 064	. 064	. 100	.180	. 211	. 301	.021	. 030	. 046	. 062	. 068	. 088
31	. 054	. 080	. 094	.128	. 194	. 000	. 022	. 031	. 046	. 055	. 066	. 080
X	. 046	. 072	. 107	.178	. 243	. 329	. 026	. 040	. 060	. 073	. 080	. 083
s	. 007	. 009	. 022	. 042	. 046	. 061	. 055	. 099	. 010	. 010	. 010	. 014
UCL	. 050	.077	. 120	. 204	. 274	. 446	. 029	. 046	. 066	. 079	. 086	.100
LCL	. 041	. 066	. 094	.153	. 215	. 212	. 022	. 035	. 054	. 066	. 073	.067
Spirotheca Thickness Septal Count												
1	. 011	.013	. 024	. 029	. 029	. 037	9	13	16	19	19	23
2	. 009	.016	. 025	. 031	. 032	. 000	10	16	18	21	28	00
3	. 006	.012	. 018	. 026	. 026	. 000	7	14	16	17	20	25
4	. 012	. 014	. 022	. 000	. 022	. 000	10	13	19	00	27	00
5	. 010	.015	. 012	. 019	. 019	. 025	8	13	17	20	24	25
6	. 009	. 014	. 026	. 037	. 043	. 037	10	14	17	18	21	00
7	. 014	. 016	. 021	. 022	. 024	. 000	9	18	21	21	25	00
8	. 009	. 017	. 022	. 021	. 027	. 000	8	12	14	17	23	00
9	. 009	. 016	. 022	. 030	. 034	. 000	8	15	16	19	20	00
10	.010	. 015	. 020	. 017	. 020	. 000	8	14	15	19	20	25
							$\times 9$	14	17	19	23	25
							s001	002	002	002	003	001
continued							UCL 10.	16	18	20	25	26
							LCL 8	13	15	18	20	23

12	. 012	. 016	. 017	. 024	. 028	. 034		. 061	. 177	. 386	. 6		1.		
13	. 014	. 021	. 026	. 028	. 031	. 024		. 132	. 296	. 589	. 9	71.25	01.5		
14	. 014	. 018	. 022	. 018	. 031	. 000		. 097	. 225	. 403	. 7	1.25	01.7		
15	. 017	. 021	. 026	. 032	. 034	. 015		. 090	. 193	. 377	. 7	71.230	01.76		
16	. 010	. 014	. 025	. 029	. 031	. 024		. 077	. 174	. 335	. 5	1.26	01.610		
17	. 016	. 016	. 016	. 024	. 034	. 037		. 119	. 228	. 403	. 65	$6 . .99$	51.400		
18	. 011	. 017	. 024	. 028	. 032	. 027		. 097	. 235	. 403	. 7	1.31	01.9		
19	. 016	. 021	. 027	. 034	. 000	. 000		. 099	. 235	. 476	. 83	71.29	01.75		
20	. 016	. 021	. 020	. 028	. 034	. 030		. 084	. 177	. 390	. 6	41.09	01.43		
21	. 009	. 010	. 015	. 015	. 026	. 012		. 090	. 187	. 412	. 6	1.100	01.53		
22	. 015	. 024	. 030	. 032	. 037	. 000		. 084	. 177	. 386	. 62	11.05	0.000		
23	. 014	. 024	. 027	. 027	. 028	. 000		. 077	. 257	. 457	. 9	1.33	0.00		
24	. 013	. 019	. 019	. 032	. 030	. 037		. 077	. 228	. 377	. 6	3.94	71.5		
25	. 015	. 024	. 022	. 037	. 022	. 000		. 116	. 225	. 393	. 78	1.26	01.69		
26	. 015	. 022	. 025	. 031	. 026	. 037		. 087	. 264	. 522	. 81	1.14	O 1.50		
27	. 016	. 021	. 031	. 037	. 037	. 037		. 106	. 241	. 380	. 6	4.91	81.36		
28	. 023	. 023	. 023	. 037	. 044	. 000		. 097	. 200	. 393	. 79	21.37	0.000		
29	. 015	. 026	. 031	. 029	. 036	. 037		. 103	. 248	. 444	. 80	21.29	O 1.68		
30	. 010	. 013	. 015	. 027	. 031	. 033		. 061	. 145	. 312	. 5	O . 940	01.31		\bigcirc
31	. 013	. 016	. 017	. 022	. 030	. 037		. 099	. 242	. 444	. 7	1.09	01.43		
$\overline{\mathbf{x}}$. 012	. 018	. 022	. 028	. 030	. 031		. 093	. 218	. 414	. 73	1.15	51.56		
s	. 003	. 004	. 005	. 006	. 006	. 008		. 018	. 038	. 062	. 10	5.146	6 . 171		
UCL	. 015	. 020	. 025	. 031	. 033	. 036		. 104	. 241	. 452	. 79	1.24	51.6		
LCL	. 011	. 016	. 020	. 024	. 027	. 025		. 082	. 195	. 376	. 66	1.06	51.4		
		Proloculus				Diameter									
1	. 058	. 072	8	. 067	. 080	16	. 074	. 085	23	. 089	. 098	30	. 073	. 074	
2	. 090	.103	9	. 052	. 062	17	. 080	.100	24	. 078	. 080	31	. 065	. 067	
3	. 053	. 061	10	. 065	. 080	18	. 080	. 096	25	. 096	. 106	$\overline{\mathrm{x}}$. 078	. 087	
4	. 078	. 089	12	. 066	. 080	19	. 078	. 078	26	. 089	. 098	s	. 014	. 014	
5	. 065	. 075	13	. 114	. 116	20	. 064	. 076	27	. 085	. 088	UCL	. 085	. 095	
6	. 075	. 097	14	. 080	. 080	21	. 082	. 082	28	. 091	. 103	LCL	. 071	. 080	
7	. 082	. 097	15	. 074	. 080	22	. 098	. 098	29	. 106	. 110				

	Half Length					
33	.119	. 222	. 399	.799	1.360	1.740
34	.129	. 309	. 518	. 892	1.480	2.220
35	.148	. 248	.428	. 779	1.370	1.850
36	. 097	. 158	. 334	.618	. 966	1.710
37	.100	.184	. 328	.644	. 972	1.720
38	.129	. 280	. 525	.895	1.430	. 000
39	.106	. 222	. 457	.889	1.490	. 000
40	.090	. 158	. 316	.611	. 940	1.540
41	. 081	.187	. 390	.683	1.040	1.660
42	.116	. 254	. 383	. 628	1.030	1.660
43	.126	. 254	. 554	. 921	1.510	. 000
44	.109	. 228	. 457	. 779	1.260	1.790
45	. 087	.177	. 289	. 428	. 734	1.110
46	.116	. 258	. 493	.879	1.530	2.100
47	. 081	. 206	. 435	. 708	1.060	1.410
48	.113	. 225	. 344	.553	. 811	1.200
49	. 100	. 184	. 380	. 795	1.230	. 000
50	.113	. 203	. 370	.689	1.250	2.080
51	.135	. 303	. 515	.857	1.350	. 000
52	.103	. 213	. 464	.947	1.670	. 000
53	. 080	. 213	. 393	.757	1.230	1.810
54	. 084	. 189	.412	.811	1.190	1.630
55	.113	. 225	.383	.650	.966	1.560
56	.132	. 258	. 451	. 715	1.120	1.600
57	.106	. 225	. 383	. 609	1.020	1.360
58	. 097	.187	. 348	.596	1.110	1.930
59a	. 071	.225	. 390	. 644	.966	1.490
$59 b$. 113	. 232	. 483	.831	1.460	. 000
60	. 122	. 229	. 409	. 782	1.240	1.760
61	.106	. 264	. 564	1.050	1.580	. 000
62	.106	. 264	. 515	.917	1.450	.000
63	.100	.187	.422	.750	1.180	1.670
64	.138	. 258	.486	.731	1.250	.000

Tunnel Width

.046	.072	.118	.201	.376
.049	.121	.203	.311	.000
.048	.075	.107	.194	.426
.036	.054	.102	.137	.289
.055	.081	.172	.274	.457
.058	.093	.206	.320	.000
.050	.103	.170	.226	.301
.048	.081	.114	.160	.294
.049	.110	.171	.340	.460
.048	.066	.113	.178	.400
.056	.108	.200	.364	.000
.057	.094	.184	.272	.370
.039	.062	.097	.140	.251
.056	.098	.160	.358	.560
.040	.080	.134	.278	.288
.043	.074	.098	.172	.240
.050	.088	.138	.252	.540
.048	.094	.136	.211	.540
.058	.091	.171	.252	.000
.050	.096	.240	.320	.720
.050	.076	.124	.189	.440
.053	.068	.148	.256	.496
.050	.073	.098	.152	.240
.048	.080	.140	.286	.240
.052	.076	.106	.160	.240
.052	.090	.129	.209	.344
.040	.080	.112	.192	.256
.056	.080	.131	.260	.540
.044	.096	.123	.226	.290
.080	.108	.206	.373	.000
.054	.102	.184	.266	.300
.052	.080	.130	.200	.437
.046	.090	.126	.300	.418
.040	.10			

\bar{x}	. 108	.225	.425	.753	1.220	1.678		.050	. 086	.145	.243	.391		
s	.019	.038	.071	.134	.235	. 267		. 008	.015	.039	. 068	.121		
UCI	.117	.243	. 459	.816	1.331	1.831		.054	.093	.163	.275	.454		
LCL	.099	. 207	.391	.689	1.108	1.525		.047	.079	. 127	.211	. 328		
		Rad	us Ve	tor				Tec	um \&	iaphan	otheca			
1	. 046	.101	.163	.268	.405	. 608		. 006	. 008	. 009	.013	. 016	.000	
2	. 034	.073	.112	. 160	.231	. 362		. 006	. 008	. 009	.010	. 013	. 015	
3	.049	.107	.186	.298	.454	. 621		- 007	. 009	. 011	.014	. 018	.000	
4	. 053	. 702	.149	. 209	. 298	. 394		. 005	.007	. 009	.010	. 010	.012	
5	.038	.101	. 172	.265	. 392	. 556		.007	.008	.010	.013	.016	.015	
6	.050	. 102	.174	.276	.439	. 632		.007	.007	.010	.011	.015	.000	
7	. 038	.086	.132	. 186	. 286	.417		.006	.007	. 009	.012	. 016	.000	
8	.054	.094	. 141	.234	. 360	. 000		. 006	. 008	.011	.014	. 000	. 000	
9	. 042	. 080	.131	.187	. 288	. 396		. 006	. 008	.009	. 010	. 013	.014	
10	.034	.089	.154	. 235	. 363	. 509		.006	.010	. 012	. 013	. 015	.000	
11	. 046	.106	.160	.218	. 288	.418		. 007	.010	.010	.014	. 013	.017	
12	. 046	.096	.146	.248	. 394	. 566		.006	.009	.013	.014	. 016	.000	
13	.041	.102	.149	. 232	.351	. 495		. 006	. 008	. 012	.014	. 015	.000	N
33	.084	.134	.217	. 328	.472	.624		.006	. 008	. 009	. 011	.013	.017	
34	. 088	.145	.227	.356	.518	. 000		.007	.009	.009	. 011	. 014	. 000	
35	. 097	.140	.204	.291	.427	.611		. 006	.007	. 009	. 012	. 014	. 018	
36	. 054	.096	.156	. 250	- 380	.510		. 006	. 007	. 008	. 010	. 013	.013	
37	. 086	.144	.223	. 338	. 534	. 000	t	. 006	.007	. 008	.010	. 015	. 000	
38	. 094	.155	. 254	. 393	. 566	. 000		.006	.007	. 0009	.010	. 012	. 016	
39	.076	. .130	.200	. 322	. 513	.695		. 007	. 009	. 011	. 012	. 014	.015	
40	.062	.098	.146	.243	. 360	.480		.006	. 008	.009	.011	. 012	.015	
41	.070	.118	.194	. 304	.456	.640		.007	. 0009	. 009	.011	. 015	.014	
42	. 088	.127	.186	.294	. 434	.000		. .007	. 009	.010	. 011	. 013	.000	
43	.096	.155	.245	. 359	.515	.000		. 006	. 009	. 012	. 014	. 014	. 000	
44	.074	.119	. 186	. 296	.453	. 614		. 006	. 008	.010	.011	. 013	. 015	
45	.071	.106	.146	. 232	. 355	. 502		. 006	. 007	.010	. 010	. 012	.015	
46	.078	. 132	. 222	. 364	. 510	. 688		. 005	. 008	. 009	.011	. 013	. 015	
47	.061	.106	. 174	.281	. 368	.537		.006	.008	.010	.010	.011	.015	

48	.078	.118	.176	.260	. 366	.503	. 006	.007	. 010	. 012	. 012	. 014	
49	. 080	.138	.216	- 312	.486	. 000	.005	.007	. 010	. 010	. 012	.000	
50	.077	.118	.182	.274	. 426	. 608	.006	. 008	.010	.013	. 014	.015	
51	. 099	.154	. 240	. 362	. 531	. 000	.007	. 011	.010	. 012	. 015	.000	
52	. 082	.126	.213	. 340	. 502	. 000	.007	. 008	. 009	. 012	.014	.000	
53	. 076	.125	.145	. 287	. 404	. 592	.005	.007	. 009	. 010	.012	.014	
54	.077	.121	.189	. 294	. 428	. 579	. 005	.007	.010	. 013	.013	. 016	
55	. 082	.118	.167	.260	. 389	. 542	.005	. 006	.007	. 009	.013	. 014	
56	. 098	.147	. 217	. 320	.486	. 649	. 006	. 008	.010	. 012	.016	.016	
57	. 090	. 134	. 202	. 310	.447	. 632	. 006	. 008	. 011	. 012	.013	.016	
58	.084	.131	. 194	. 302	. 466	.665	. 005	. 008	.010	. 013	. 015	. 018	
59a	. 072	.130	.198	. 294	. 408	. 000	.005	. 007	.009	.012	.013	. 000	
59 b	. 080	. 124	.209	.325	.514	. 000	. 006	.008	.010	. 011	. 014	. 000	
60	. 086	. 147	. 224	. 338	. 487	. 666	.006	. 009	. 014	.014	. 015	. 016	
61	. 094	.150	.266	. .418	.585	. 000	.007	. 009	. 013	. 014	.016	.000	
62	. 091	.140	.214	. 332	. 502	. 000	.006	. 008	. 010	. 012	.014	.000	
63	.075	. 120	.797	. 304	. 443	. 000	.007	.009	. 011	. 012	.015	. 000	
64	.077	.126	.190	.287	. 426	. 592	.006	.009	. 011	.012	.013	.015	
$\overline{\text { x }}$.071	. 120	.187	.289	. 428	. 559	. 006	. 008	.010	. 012	. 014	. 015	
s	.020	. 021	.035	.055	.080	. 091	. 001	. 001.	.001	.001	.002	.001	N
UCL	.078	.128	.201	.311	.460	.604	.006	. 008	. 017	.012	.014	.016	N
LC.L	.063	.111	.173	.267	.397	.515	.005	.007	. 009	.011	.013	.014	
	Septal Count						Proloculus Diameter						
1	. 009	.011	.015	. 019	.026	. 000			.085	.105			
2	.010	. 014	.015	. 016	. 019	. 016			.077	.087			
3	. 008	. 012	. 016	. 016	.018	. 000			. 096	.115			
4	. 010	. 014	.015	. 019	.023	. 023			. 098	.116			
5	. 009	. 013	.015	. 017	. 024	. 000			.079	.091			
6	. 009	.013	.017	. 018	.018	.000			.101	.111			
7	. 010	.015	.019	. 020	. 020	.000			. 088	. 098			
8	. 009	.013	.013	-015	.019	.000			. 093	.113			
9	. 008	. 013	.016	.021	.024	. 029			.083	.095			
10	. 008	.012	.015	.017	.021	.000			. 065	.086			

11	. 010	. 013	. 014	. 017	. 016	. 023	. 085	. 098
12	. 009	. 012	. 016	. 019	. 108	. 000	. 079	. 096
13	. 009	. 015	.015	.016	. 020	. 000	. 089	. 093
$\overline{\mathrm{x}}$	9	13	15	18	20	23		
s	001	001	001	002	003	005		
UCL	10	14	17	19	23	31		
LCL	8	12	14	16	18	15		
Chomata Height								
33	. 030	. 045	. 066	. 096	. 067		. 096	.111
34	.033	. 044	. 074	. 116	. 000		. 097	. 108
35	. 076	. 032	. 051	. 074	. 090		. 084	.103
36	.024	. 034	. 054	. 077	. 052		.066	. 080
37	. 028	. 043	. 078	.074	. 106		. 075	. 086
38	. 026	. 066	. 062	. 093	. 000		. 078	. 080
39	. 021	. 030	. 074	. 096	. 092		. 083	. 090
40	. 020	. 026	. 052	. 062	. 089		. 075	. 080
41	. 016	. 026	. 064	.070	. 068		. 085	. 085
42	.021	. 033	. 053	. 086	. 070		. 084	. 098
43	. 022	. 048	. 069	. 094	. 000		. 084	. 098
44	. 021	. 040	. 072	. 096	. 000		. 080	. 093
45	.016	. 026	. 050	. 077	. 070		. 081	. 092
46	. 020	. 050	. 070	. 076	. 090		. 075	. 085
47	. 021	. 035	. 052	. 042	. 062		. 082	. 091
48	. 021	. 030	.045	. 054	. 064		.100	. 112
49	. 020	. 048	. 066	. 083	.117		. 075	. 083
50	. 022	. 024	. 057	. 092	. 077		. 096	. 098
51	. 025	. 037	. 064	. 088	. 000		.109	.109
52	. 018	. 040	. 052	. 081	. 093		. 102	. 112
53	. 022	. 030	.041	. 081	. 094		. 091	. 101
54	. 020	. 030	. 056	. 072	. 104		. 095	. 101
55	. 018	. 026	. 050	. 080	. 101		. 070	. 083
56	. 026	. 040	. 058	. 096	. 112		.101	. 114
57	. 022	. 041	. 056	. 096	. 108		. 089	. 093

58	.019	.035	.052	.074	.092
$59 a$.021	.040	.058	.070	.062
$59 b$.028	.038	.060	.096	.120
60	.026	.043	.054	.054	.080
61	.022	.068	.074	.075	.000
62	.017	.038	.088	.076	.098
63	.019	.042	.046	.067	.080
64	.022	.040	.057	.065	.106
\bar{x}	.022	.038	.060	.070	.088
\mathbf{s}	.004	.010	.011	.015	.019
UCL	.024	.043	.065	.087	.098
LCL	.020	.034	.055	.072	.078
FUSULINA HAWORTHI					

.069	.078
.080	.084
.075	.088
.078	.083
.079	.087
.075	.098
.095	.100
.099	.108
.085	.096
.011	.011
.089	.100
.081	.092

Radius Vector

1	.112	.167	.251	.351	.486	.676
2	.151	.231	.360	.522	.728	.934
3	.151	.235	.341	.489	.650	.853
4	.116	.180	.274	.393	.563	.795
5	.122	.213	.322	.483	.667	.924
6	.106	.171	.242	.364	.525	.708
7	.113	.151	.222	.332	.515	.702
8	.122	.180	.290	.448	.705	.917
9	.126	.196	.299	.454	.720	1.000
10	.106	.161	.248	.383	.560	.750
11	.138	.222	.320	.454	.644	.911
12	.109	.177	.283	.434	.612	.844
13	.132	.193	.290	.448	.605	.818
14	.103	.158	.250	.377	.554	.776
15	.097	.164	.261	.396	.547	.744
16	.090	.138	.235	.364	.531	.747
17	.116	.187	.280	.435	.618	.821

18	.113	.167	.234	.364	.518	. 728	. 006	, 009	. 011	. 012	.014	. 017		
19	.119	.184	.274	.406	.583	.795	. 006	.010	.011	.013	. 014	.015		
20	.097	.151	. 225	.332	.480	.654	. 006	. 009	. 011	.015	.017	.017		
21	.113	.171	.283	.428	.612	.831	.007	. 009	.011	. 012	.013	.017		
22	.101	.167	.264	. 393	.541	.747	.007	.009	.011	. 014	.015	.015		
23	.113	.174	.254	.367	. 538	.744	.008	.009	. 010	.012	.014	.018		
24	.109	.171	.261	.364	.528	.712	.007	.009	.011	. 012	.013	.014		
25	.135	.202	. 293	.406	. 596	. 802	.006	.010	.010	.013	.014	.015		
26	.132	.228	. 335	.480	.673	.895	.006	.009	.012	.014	.014	.017		
27	.116	.184	.277	.386	.538	.000	. 006	. 008	. 009	, 012	. 012	.000		
28	.122	.180	.261	. 364	.509	.689	. 006	. 009	.010	.011	.016	.017		
29	.142	.200	. 296	.409	. 592	. 824	. 007	.009	.012	.013	.016	.019		
30	.113	.177	. 280	.441	. 618	.844	. 008	. 008	.010	.011	.012	.014		
31	.119	.187	.277	.419	.602	. 824	.006	. 008	. 009	.010	.011	.014		
32	.119	.193	.287	.406	. 570	. 750	.007	.007	.012	.016	.015	. 018		
33	.129	.200	. 296	.405	.609	.799	.007	. 009	.011	.014	.014	.018		
34	.087	.155	. 242	.361	.515	.721	. 006	. 009	.010	.011	. 014	.015		
35	. 122	.193	.306	. 441	.631	.834	.007	. 009	.011	. 013	.016	.000		
36	. 129	. 209	. 303	.425	. 596	.821	. 006	. 009	.011	. 012	.014	. 018		
37	.145	.222	- 320	.493	.696	.911	. 007	. 009	.012	. 013	.016	.016		
38	.103	.164	.289	.399	.576	.821	. 006	. 009	.011	.013	.014	.017		N
$\overline{\mathbf{x}}$.118	.184	.280	.411	.588	.802	.006	. 009	.011	. 013	. 014	. 017		
s	.016	.024	.032	.047	. 065	. 081	. 001	. 001	. 001	. 001	. 002	.002		
UCL	.125	.195	. 294	.431	. 617	. 838	. 007	. 009	.011	.013	.015	.018		
LCL	. 111	.174	.265	.390	. 560	. 766	.006	.008	.010	.012	.014	.016		
		Tunne	Widt							f Len				
14	.044	.080	.120	.174	.222	. 480	.181	. 338	.467	.692	1.070	1.460	2.000	
15	. 060	.072	.116	.160	. 240	. 302	.183	. 309	.473	. 759	1.130	1.630	2.170	
16	. 050	.075	.117	.140	. 320	. 364	.145	.283	.454	.696	1.040	1.540	2.400	
17	. 049	. 084	.132	.212	. 340	. 400	.190	. 312	. 564	.998	1.440	2.020	2.790	
18	. .056	. 080	.126	.194	. 320	. 408	.206	.338	.579	.886	1.310	1.980	2.760	
19	. 062	. 088	.128	.172	. 266	.400	.164	. 316	.605	.837	1.150	1.770	. 000	
20	.057	. 080	.102	.182	. 286	.416	. 132	. 229	.435	.673	1.170	1.620	2.370	
21	.040	.072	.126	.167	.272	. 424	.190	. 325	.470	.821	1.260	2.820	2.450	

22	. 046	. 085	.118	. 160	. 222	. 246	. 158	. 300	.496	. 789	1.150	1.590	2.180	
23	. 057	. 083	.087	.172	. 256	. 480	.158	. 312	. 515	. 734	1.150	1.660	2.190	
24	. 056	. 080	.120	.240	.280	.440	.161	. 296	. 467	.686	1.150	1.550	2.080	
25	. 060	. 080	.112	.155	.275	. 356	. 174	. 306	. 540	.831	1.290	2.090	. 0.000	
26	. 065	. 080	.112	.200	. 240	. 280	.231	. 405	.621	.979	1.440	1.930	2.580	
27	. 058	.070	.109	.160	. 240	. 000	.187	. 287	.457	. 776	1.160	1.630	.000	
28	. 040	.0770	.100	.164	. 192	. 274	.177	. 296	.470	.753	1.140	1.670	2.000	
29	. 062	. 080	. 130	.175	.293	. 368	.183	. 367	. 570	.847	1.340	1.830	. 000	
30	.060	. 098	. 124	.254	.000	. 600	.190	. 354	.570	. 914	1.490	2.150	. 000	
31	. 064	. 080	. 134	. 202	. 303	. 440	. 174	. 312	. 493	.766	1.250	1.830	. 000	
32	. 048	. 080	.118	. 190	. 240	. 352	.164	. 338	. 528	. 805	1.160	1.590	2.120	
33	. 062	. 090	. 134	.256	- 320	.600	. 184	. 341	. 56%	. 940	1.370	1.990	. 000	
34	. 048	.080	. 098	. 144	. 320	. 334	. 132	.293	. 506	.757	1.050	1.400	2.0770	
35	. 053	. 084	.116	. 164	.270	. 338	. 161	. 303	. 531	. 917	1.290	1.700	2.670	
36	. $0 \div 3$. 090	.126	.190	- 340	.452	.177	. 364	. 592	. 924	1.290	1.790	2.530	
37	.045	. 089	.120	.230	. 280	.416	.155	. 300	. 53.1	.866	1.270	1.850	2.450	
38	.062	.076	.116	. 220	.354	.480	.142	. 290	. 54%	.802	1.350	1.980	2.670	
$\overline{\mathbf{x}}$. 054	. 08 !	.118	. 187	. 279	. 402	. 172	. 317	. 522	. 818	1.234	1.760	2.360	
s	. 008	. 007	.012	. 033	. 043	. 090	.023	. 035	. 052	. 092	. .126	. 203	. 267	
UCL	. 058	. 085	. 124	. 205	. 303	.452	.184	. 336	.551	.869	1.303	1.872	2.533	N
LCL	. 050	. 077	. 719	.169	.255	. 352	.160	. 298	.493	.767	1.165	1.649	2.187	O
		Sept	1 Cou							Prol.	Diam.			
1	.011	.017	. 022	. 024	.027	. 029				.112	. 120			
2	. 012	. 018	. 021	. 026	.030	. 029				.149	.187			
3	. 012	. 019	. 024	.027	. 029	.030				.155	. 178			
4	. 013	.017	.019	.024	. 028	. 032				.120	.140			
5	. 010	. 016	.023	. 026	. 030	. 036				.112	.116			
6	.011	. 016	. 017	.019	. 023	.027				.110	.116			
7	. 010	. 018	. 018	. 023	.023	. 028				.112	.134			
8	. 009	. 017	. 019	. 025	.028	.026				. 098	.102			
9	. 011	. 016	. 021	.025	.031	. 032				.179	.137			
10	.011	. 015	. 018	.022	. 025	.027				.104	.112			
11	.011	. 018	. 020	. 024	. 029	. 033				.134	.149			
12	. 012	. 018	. 022	. 022	. 026	.031				. 108	.118			
13	.011	. 018	. 021	.026	.026	.031				.124	.145			

$\overline{\mathbf{x}}$	11	17	20	24	27	30		
s	001	001	002	002	003	003		
UCL	12	18	22	26	29	32		
LCI	10	76	19	22	26	28		
Chomata Hejght								
14	.026	.054	.090	. 078	.104	. 080	.9 .30	-143
15	. 037	.051	. 093	.093	.090	.124	.745	.148
16	.032	.050	.075	.090	- 124	. 092	.102	.117
4	.032	.048	.084	-102	-112	- 112	.147	.142
18	. 034	. 050	.080	. 084	$0: 20$	0.40	.742	-. 154
19	. 030	.048	. 088	.104	- -2	.089	. 158	- .70
20	. 029	.043	. 0 É6	.076	.086	.086	. 120	-! $!30$
21	.030	. 053	. 072	.094	.108	.120	.147	. 168
22	.037	. 049	.093	.094	.707	-194	- 120	. 130
23	.038	. 050	.066	.104	$\therefore \therefore 34$.100	$\because 34$	0.142
24	.027	.043	. 0175	.102	. 090	. 106	. 118	- 28
25	.034	.046	.083	. 123	.120	-: 24	. 138	-142
26	.048	.073	.097	.122	.088	. 108	-160	.165
27	. 036	.056	. 068	. 098	.140	.000	. 137	. 152
28	.030	.047	. 062	.080	.100	-120	.110	.134
29	. 035	. 059	- 0¢	- 4.24	. 098	.106	. 186	- 186
30	. 032	. 065	.088	. 0.3	.144	.136	.139	. 160
31	. 036	.040	.048	. 080	. 100	.100	.1!7	.130
32	. 038	.059	. 059	. 088	.104	. $\because 00$	0.117	. $!30$
33	. 034	.054	.070	. 122	.104	.108	.152	.152
34	.036	.050	.077	-10?	. 132	.109	.118	. 1.26
35	. 044	. 060	.084	.091	-104	.1 .22	.153	. 1774
36	.040	. 058	.072	.100	-! 112	-1!2	. 129	- 147
37	.040	.060	.080	.124	-128	.120	.128	.150
38	.030	.055	.090	.104	.080	.096	.140	.152
$\overline{\mathbf{x}}$. 035	.053	.077	. 099	.110	.112	.130	.143
\mathbf{s}	. 005	.007	.012	.015	.017	.018	. 019	.021
UCL	.037	.057	. 084	.107	.119	. 122	.139	.152
LCL	. 032	. 049	.070	.091	.100	.102	.122	.134

FUSULINA aff. F. WHITAKERI Stewart

Half Length							
16	. 225	. 422	. 628	1.180	1.780	2.510	. 000
17	. 209	. 364	. 538	. 892	1.460	2.120	2.980
18	.248	. 477	. 737	1.070	1.610	2.250	. 000
19	. 174	. 296	. 589	. 908	7.370	2.110	. 000
20	. 177	. 386	. 605	. 947	1.710	2.610	. 000
21	. 229	. 45	. 856	1.200	1.870	2.700	. 000
22	.? 61	. 348	. 544	. 866	1.240	1.890	. 000
23	. 2176	. 534	. 875	1.610	2.250	2.860	. 000
24	. 174	. 338	. 586	. 953	1.430	1.990	. 000
25	. 164	. 313	. 544	. 976	1.540	2.110	2.940
26	.158	. 309	. 660	. 940	1.490	2.280	2.870
27	. 184	. 364	. 711	1.120	1.610	2.430	3.030
28	. 247	. 434	. 779	1.230	1.970	2.440	. 000
29	. 194	. 390	. 631	. 844	1.180	1.490	1.930
30	. 257	. 531	. 756	1.220	1.700	2.140	. 000
31	. 167	. 370	. 721	1.140	1.700	2.360	3.120
32	. 206	. 406	. 689	1.210	1.860	2.500	. 000
33	. 209	. 390.	. 602	. 976	1.590	2.230	. 000
34	. 164	. 370	. 612	1.040	1.580	2.130	2.670
35	. 238	. 518	. 891	1.260	1.870	2.370	. 000
36	. 193	. 377	. 538	. 940	1.540	2.310	. 000
37	. 209	. 431	. 782	1.300	1.960	2.690	. 000
38	. 235	. 431	. 702	1.160	1.950	. 000	. 000
39	. 193	. 383	. 580	. 818	1.260	1.770	2.250
$\overline{\mathrm{x}}$. 204	. 401	. 673	1.075	1.647	2.273	2.724
s	. 034	. 066	. 108	. 185	. 262	. 316	. 421
UCL	. 223	. 438	. 734	1.178	1.793	2.454	3.151
LCL	. 185	. 365	. 612	. 972	1.500	2.093	2.297

Limestone between Rocky Point Member and Camp Ground Member Tunnel Width

Iunnel					
Width					
.068	.080	.142	.320	.420	.522
.064	.080	.146	.200	.240	.440
.064	.090	.160	.246	.360	.000
.054	.072	.108	.160	.240	.480
.062	.092	.124	.186	.320	.000
.066	.089	.160	.248	.336	.000
.067	.080	.128	.240	.301	.000
.069	.108	.192	.374	.437	.000
.058	.072	.104	.198	.320	.524
.048	.058	.088	.139	.260	.338
.056	.064	.102	.205	.320	.400
.064	.080	.144	.216	.260	.432
.060	.103	.184	.192	.298	.530
.052	.102	.106	.165	.302	.344
.060	.092	.121	.176	.292	.340
.052	.080	.142	.224	.444	.760
.068	.098	.186	.240	.296	.352
.059	.098	.132	.261	.467	.000
.044	.080	.123	.194	.307	.480
.080	.112	.232	.320	.600	.000
.052	.070	.118	.200	.347	.496
.062	.098	.178	.227	.312	.560
.054	.102	.176	.304	.000	.000
.060	.080	.128	.240	.320	.360
.060	.087	.143	.228	.339	.460
.008	.014	.035	.056	.084	.111
.065	.095	.162	.260	.387	.537
.056	.079	.123	.197	.291	.383

Radius Vector

1	.122	.180	.287	.419	.602	.845
2	.126	.196	.296	.441	.628	.847
3	.145	.212	.320	.480	.660	.869
4	.158	.254	.396	.567	.782	.000
5	.119	.193	.287	.403	.573	.802
$6 a$.167	.248	.367	.531	.760	.972
$6 b$.103	.167	.242	.354	.518	.000
7	.093	.161	.245	.341	.457	.627
8	.113	.180	.293	.470	.650	.805
9	.129	.213	.322	.440	.618	.000
10	.119	.187	.283	.419	.644	.000
11	.151	.245	.367	.528	.730	.000
12	.145	.235	.341	.483	.689	.918
13	. .135	.200	.296	.412	.551	.718
14	.129	.184	.280	.403	.586	.000
15	.126	.196	.316	.441	.644	.889
16	.161	.242	.348	.499	.708	.953
17	.116	.180	.270	.397	.576	.792
18	.138	.216	.335	.489	.676	.869
19	.093	.142	.213	.322	.493	.728
20	.103	.177	.261	.370	.522	.705
21	.148	.232	.351	.506	.702	.950
22	.106	.164	.258	.380	.563	.766
23	.161	.254	.361	.518	.725	.937
24	.100	.161	.261	.393	.583	.789
25	.103	.145	.232	.367	.531	.692
26	.097	.155	.232	.354	.541	.731
27	.116	.167	.258	.386	.573	.732
28	.148	.229	.341	.502	.728	.982
29	.113	.187	.299	.409	.564	.763
30	.151	.219	.322	.444	.644	.886
31	.074	.144	.248	.373	.544	.734
32	.125	.200	.312	.470	.692	.911
33	.119	.193	.296	.480	.673	.870
34	.093	.151	.225	.357	.506	.708
17						

Tectum \& Diaphanotheca

.007	.008	.011	.011	.017	.021
.007	.010	.011	.013	.015	.020
.007	.009	.013	.014	.018	.021
.006	.009	.012	.017	.019	.000
.007	.009	.011	.013	.017	.019
.007	.011	.012	.016	.018	.000
.004	.0071	.011	.013	.024	.024
.007	.009	.012	.014	.017	.019
.006	.009	.012	.016	.017	.019
.007	.009	.012	.016	.018	.000
.008	.008	.011	.014	.017	.000
.007	.010	.011	.015	.019	.000
.006	.012	.013	.016	.020	.024
.007	.010	.012	.013	.019	.022
.007	.010	.013	.014	.021	.000
.006	.010	.013	.015	.018	.021
.007	.011	.013	.014	.016	.021
.006	.009	.013	.018	.020	.022
.007	.010	.014	.016	.017	.019
.007	.008	.011	.015	.017	.021
.007	.009	.011	.014	.020	.021
.007	.010	.011	.014	.018	.026
.006	.008	.012	.016	.018	.022
.006	.009	.010	.012	.017	.020
.007	.008	.011	.013	.018	.022
.007	.009	.012	.013	.015	.021
.006	.009	.011	.013	.017	.019
.007	.010	.012	.016	.018	.021
.006	.009	.013	.016	.019	.020
.006	.010	.013	.016	.018	.021
.007	.013	.013	.018	.020	.020
.008	.010	.013	.015	.019	.022
.007	.010	.012	.016	.018	.021
.007	.009	.012	.016	.020	.024
.009	.011	.015	.019	.021	

35	.151	. 216	. 380	. 512	. 676	. 000
36	.100	.158	. 245	. 360	. 528	$.731=$
37	.119	. 174	. 264	.416	. 621	. 000
38	. 122	. 209	. 322	.480	. 728	. 000
39	.119	.177	. 267	.403	. 592	.786
$\overline{\mathbf{x}}$. 724	. 194	. 296	. 433	. 620	.818
5	. 023	. 032	. 047	. 062	. 081	. 094
UCL	. 134	. 207	.316	. 459	. 654	. 864
LCL	. 114	.780	.276	.406	. 585	. 772
	Septal Count					
1	.011	.018	. 022	. 024	. 030	. 029
2	. 009	. 018	. 023	. 025	. 029	. 034
3	.010	. 020	. 022	. 025	. 028	. 030
4	. 014	.020	. 026	. 029	.033	.000
5	. 010	. 016	. 018	. 025	. 029	. 031
6 a	. 0!0	. 022	. 022	. 028	. 029	. 030
6 b	. 010	.017	. 022	. 023	. 025	. 000
7	. 011	.018	. 021	. 021	. 030	. 032
8	. 009	.017	. 021	. 025	. 000	. 034
9	.013	.021	.019	. 022	. 030	. 000
10	. 009	.017	. 021	. 024	. 027	. 000
11	.012	.018	. 023	.023	. 026	. 031
12	.011	. 020	. 020	.025	. 030	. 031
13	.011	. 018	.021	. 025	. 030	. 033
14	.012	. 014	.017	. 021	. 027	. 000
15	.010	.018	. 018	. 024	. 029	. 032
$\overline{\mathbf{x}}$	11	18	21	24	29	32
s	001	002	002	002	002	002
UCL	12	20	23	26	30	33
LCL	10	17	19	23	27	30

.007	.010	.012	.015	.017	.000
.007	.010	.012	.014	.019	.022
.006	.008	.012	.013	.018	.020
.007	.009	.012	.014	.017	.000
.007	.009	.013	.015	.017	.019
.007	.009	.012	.015	.018	.021
.001	.001	.001	.002	.002	.002
.007	.010	.012	.015	.019	.022
.006	.009	.011	.014	.017	.020

Prol. Diam.

.123	.131
.119	.140
.126	.155
.149	.193
.106	.117
.165	.173
.112	.125
.100	.123
.098	.112
.120	.135
.135	.142
.151	.166
.153	.156
.134	.147
.121	.146
.120	.129

Chomata Height

16	.046	.070	.054	.088	.136	. 078	. 162	.172
17	.045	. 068	. 120	.104	. 128	. 126	.117	.146
18	.044	. 064	.072	. 124	.115	.000	.147	. 172
19	.021	.048	. 080	.102	.123	.160	. 126	.143
20	.048	.056	.090	. 086	. 118	.000	. 122	. 142
21	.052	. 080	. 090	.123	. 133	. 000	. 146	. 166
22	. 024	.050	. 080	. 108	-124	.000	. 138	. 148
23	.056	. 066	. 080	.093	.136	.000	- 160	$.17!$
24	. 044	. 058	. 092	.098	. 144	.140	.142	.156
25	.036	.050	. 096	.104	. 098	.142	.142	. 154
26	.028	.048	.080	.128	.092	.138	.120	. 120
27	.029	.050	.092	.112	.700	. 124	.150	. 158
28	. 046	.076	.112	. 144	.132	.112	.150	. 150
29	. 048	. 058	.074	.094	.108	. 1.18	-. 154	. 168
30	.036	. 054	. 080	. 120	.152	-! 32	.142	. 165
$3 \cdot 1$. 032	. 052	.090	.104	. 080	. 11.10	.094	.118
32	.043	.052	. 080	. 104	.126	.110	. 124	. 148
33	. 044	. 044	. 120	.132	.108	.000	.132	.139
34	. 032	.049	. 092	.092	. 080	.075	.115	. 122
35	. 038	.084	. 098	. 064	. 062	.000	.146	. 168
36.	. 036	.048	.060	. 080	.120	.172	.134	- +52
37	.034	.048	.078	.112	.076	.105	. 149	. 150
38	. 060	.060	. 088	.112	.000	.000	.123	.138
39	.042	. 055	.080	.112	.128	.080	.134	.148
$\overline{\mathbf{x}}$.038	.057	.084	.100	.109	.113	.133	.148
\mathbf{s}	. 008	. 010	. 019	.023	.026	.024	. 018	. 018
UCL	.042	. 062	.094	.111	. 123	. 128	. 140	.156
LCL	.035	.052	.074	.088	.095	.097	.125	.140

FUSULINA ACME Dunbar and Henbest
Camp Ground Member

Half Length				
Lent				
.844	1.340	2.170	3.130	.000
.689	1.180	1.780	2.490	3.250
.644	1.230	1.770	2.610	3.360
.876	1.350	2.140	3.220	.000
.644	1.010	1.5 .10	2.230	2.980
.723	1.060	1.880	2.560	3.220
.560	.867	1.520	2.240	.000
.879	1.260	2.090	2.780	.000
.708	1.090	1.590	2.390	3.140
.676	.998	1.880	2.050	.000
.805	1.350	1.930	2.530	.000
.605	1.020	1.590	2.250	3.020
.644	1.020	1.550	2.260	.000
.551	.943	1.420	1.970	2.640
.609	1.150	1.760	2.500	3.170
.773	1.060	1.570	2.150	3.040
.773	1.210	1.810	2.470	3.320
.934	1.40	2.090	2.990	.000
.644	1.050	1.680	2.390	.000
.741	1.160	1.610	2.300	3.320
.734	1.030	1.550	2.230	2.900
.683	1.050	1.450	1.840	.000
.705	1.050	1.630	2.230	3.030
1.060	1.610	2.100	.000	.000
.702	1.160	1.780	2.380	3.150
.847	1.440	2.080	.000	.000
.718	1.280	1.890	2.760	3.400
.750	1.100	1.580	2.220	.000
.628	1.050	1.660	2.280	3.040
.824	1.220	1.960	2.840	.000
.732	1.159	1.767	2.439	3.124
.114	.165	.224	.332	.196
.789	1.241	1.879	2.611	3.259
.675	1.076	1.655	2.267	2.988
.80				

.070	.106	.206	.400	.680	1.040
.068	.094	.134	.240	.340	.604
.053	.088	.134	.240	.344	.800
.068	.124	.186	.360	.620	.000
.062	.091	.110	.218	.336	.540
.067	.116	.160	.234	.361	.736
.058	.100	.130	.196	.268	.520
.062	.086	.165	.270	.000	.000
.064	.094	.110	.240	.328	.500
.060	.086	.160	.230	.352	.450
.080	.144	.192	.384	.680	.000
.064	.096	.136	.170	.275	.560
.062	.092	.144	.204	.374	.560
.058	.080	.136	.148	.250	.424
.056	.068	.148	.218	.400	.720
.070	.092	.147	.246	.388	.620
.068	.096	.160	.216	.400	.560
.066	.103	.183	.270	.440	.000
.060	.102	.171	.262	.444	.000
.064	.088	.142	.278	.440	.742
.070	.080	.107	1.780	.320	.574
.067	.090	.176	.302	.380	.800
.070	.104	.131	.220	.320	.454
.070	.132	.228	.380	.000	.000
.056	.090	.160	.222	.274	.480
.070	.132	.186	.280	.000	.000
.068	.080	.188	.280	.480	.600
.064	.080	.120	.188	.360	.600
.060	.088	.154	.236	.400	.000
.080	.114	.193	.300	.520	.000
.065	.098	.157	.307	.399	.6144
.006	.018	.030	.284	.114	.148
.068	.107	.171	.449	.459	.702
.062	.089	.142	.166	.339	.525
.00	.00				

Radius Vector

1	.191	.272	.370	.498	.682	.870
2	. 209	. 322	.441	. 566	. 792	1.010
3	.182	.274	. 375	. $5: 6$.698	. 880
4	.165	. 228	. 348	. 500	. 708	.981
5	.123	.178	. 282	.390	. 549	.755
6	.1 .38	.212	. 320	.494	. 654	. 885
17	. 164	.25?	. 380	.547	.750	.966
18	. 148	.213	. 316	.477	.683	.911
19	.097	.151	. 251	. 396	. 615	.847
20	.164	.251	. 386	. 547	. 766	.992
21	.106	.971	. 245	.361	.524	.708
22	.180	.261	. 351	.496	.650	.850
23	.119	.196	. 290	.412	.570	. 831
24	.135	. 209	. 302	$.45 \%$. 683	.934
25	. 138	. 222	. 322	.473	. 644	. 882
26	.135	. 209	. $3 \cdot 2$. 464	. 663	. 892
27	.167	.250	.367	. 547	. 718	.940
28	.103	.164	.261	. 386	. 557	.782
29	.097	.151	.242	. 35.1	. 583	.786
30	. 090	. 155	.248	. 377	.538	.750
31	.103	.164	.242	. 341	. 496	.657
32	.106	. 1.67	. 26 !	.396	.589	.786
33	. 15 !	. 232	. 320	.499	.718	.980
34	. 16%	. 248	.377	. 547	. 760	1.000
35	.113	.184	. 280	. 436	.621	.886
36	.145	.225	.341	. 502	.670	.879
37	.145	.213	. 300	.419	.573	.799
38	.135	.203	. 325	.477	. 631	.850
39	. 745	. 225	. 322	.457	.573	. 760
40	.174	.273	. 396	. 586	. 776	. 000
41	.167	. 242	. 345	. 493	. 644	.856
42	.154	.267	. 415	. 586	. 828	. 000
43	.132	. 200	. 316	.477	.712	.937
44	. 132	.200	. 290	.419	. 576	. 773
45	.135	.219	. 322	.487	. 683	.911
46	.180	. 258	.367	. 528		91

Tectum \& Diaphanotheca

.009	.012	.013	.017	.019	.023
.008	.011	.012	.014	.018	.022
.009	.010	.014	.015	.018	.026
.010	.012	.015	.016	.018	.024
.010	.011	.014	.016	.018	.025
.008	.011	.014	.014	.019	.023
.009	.010	.014	.016	.019	.024
.010	.011	.014	.016	.021	.028
.008	.011	.014	.017	.022	.025
.008	.012	.014	.016	.021	.026
.009	.012	.012	.016	.020	.023
.008	.010	.015	.016	.020	.022
.008	.012	.014	.018	.020	.023
.008	.011	.014	.017	.018	.025
.008	.011	.014	.017	.018	.025
.009	.011	.016	.020	.023	.026
.009	.012	.014	.017	.022	.023
.008	.012	.015	.016	.024	.025
.008	.011	.014	.018	.020	.024
.008	.010	.013	.014	.017	.020
.009	.010	.012	.013	.017	.021
.008	.010	.012	.016	.020	.028
.008	.010	.014	.016	.018	.022
.009	.012	.014	.016	.021	.025
.008	.012	.016	.016	.021	.024
.009	.010	.013	.016	.020	.026
.008	.010	.012	.0177	.020	.024
.009	.011	.013	.016	.019	.022
.008	.0112	.013	.015	.018	.021
.010	.013	.014	.019	.022	.000
.008	.0112	.013	.016	.019	.022
.008	.012	.014	.019	.021	.000
.009	.010	.014	.017	.018	.022
.010	.010	.0111	.016	.016	.020
.008	.012	.014	.016	.020	.022
.010	.013	.016	.016	.022	.028
.010					

34	. 048	. 067	. 080	.120	.740	.000	.148	.164
35	. 040	.050	.076	.106	.112	. 000	.152	.171
36	.041	.070	. 092	.112	. 121	. 104	. 134	.144
37	.024	.045	. 072	. 090	.115	.160	. 151	.151
38	.030	. 050	. 098	. 094	.090	. 000	.166	.17 C
39	.040	. 052	. 062	. 096	$\because \mathrm{OO}$.100	.154	.160
40	. 048	. 052	. 068	. 066	.000	. 000	.198	. 206
41	. 045	.067	.100	. 094	.112	-!09	. 236	. 240
42	. 054	. 056	.120	.160	. 000	. 000	.210	.228
4.3	.045	. 060	. 080	.112	.123	.132	. 160	. 176
44	. 040	. 058	.091	.048	. 102	-128	. 60	.173
45	. 042	. 056	. 060	. 120	. 120	. 000	.192	. 204
46	. 030	. 037	. 054	. 088	. 100	-1:0	.148	.209
-	. 038	.057	. 084	.? 00	-!09	- 1.3	min	max .179
s	. 008	. 010	.019	. 023	.026	. 0224	. 033	. 032
UCL	.042	.062	. 094	. 117	.123	- 28	.179	.193
LCL	. 035	. 052	.074	. 088	. 095	. 097	. 149	164

WEDEKINDELLINA? ARDMORENSIS Thompsons Vervilles and Lokke

Half Length

17	.196	.366	.589	.883	.1 .390	1.850	.000	.046	.078	.141	.227	.373	.000
18	.131	.251	.415	.621	1.010	1.530	2.020	.038	.075	.104	.138	.190	.359
19	.156	.304	.484	.778	1.200	1.570	2.030	.043	.067	. .128	.259	.406	.000
20	.1 .31	.294	.474	.821	1.150	1.690	2.230	.050	.055	.088	.149	.266	.359
2.1	.147	.268	.458	.687	1.180	1.670	2.360	.043	.066	.095	.163	.260	.428
22	.144	.268	.441	.719	1.020	1.500	2.120	.049	.057	.081	.125	.215	.289
23	.114	.268	.503	.677	1.140	1.580	.000	.040	.060	.113	.189	.293	.000
24	.111	.239	.455	.746	1.260	1.650	2.120	.050	.081	.142	.197	.325	.000
25	.157	.307	.523	.771	1.210	1.880	2.230	.045	.073	.127	.179	.285	.439
26	.156	.301	.562	.906	1.330	2.110	.000	.046	.081	.153	.280	.394	.000
27	.124	.301	.546	.853	1.310	1.850	.000	.044	.077	. .163	.238	.424	.000
28	.121	.268	.497	.759	1.190	1.830	2.360	.045	.076	.117	.157	.293	.373

Tunnel Width
.117 . $157 \quad .293 \quad .373$

29	. 118	. 258	- 392	.670	1.170	1.850	2.230	.041	. 062	.106	. 162	.248	. 520		
30	.141	. 317	. 553	. 869	1.430	1.960	0.000	. 050	. 081	.128	. 222	. 309	. 528		
31	.163	. 301	. 484	.909	1.300	1.850	2.350	. 058	. 068	.145	.215	. 373	.443		
32	.141	. 301	.497	. 853	1.280	1.890	. 000	. 046	. 072	. 124	. 234	. 372	. 000		
33	. 124	.255	.487	. 860	1.260	1.810	2.230	. 049	. 072	. 126	.183	. 346	. 378		
34	. 128	. 245	. 428	. 687	. 9.964	1.370	1.980	. 050	. 065	. 096	.163	. 315	.386		
35	.111	.242	.383	. 567	. 903	1.310	1.880	. 045	.061	.081	.163	. 244	.441		
36	.118	. 222	. 425	.726	1.150	1.610	2.140	. 036	.057	.102	.163	. 305	. 000		
37	.134	.271	. 428	.706	1.100	1.620	2.090	. 051	. 07%	.126	. 159	. 292	. 359		
38	.157	.311	. 474	.785	1.270	?.600	2.290	. 055	.072	.147	. 230	. 407	. 610		
39	.111	.275	.458	.716	1.090	$? .530$	2.060	. 049	. 064	.103	.133	. 208	.311		
40	.114	.261	.451	.795	1.140	1.520	. 000	.044	. 069	. 125	.215	. 348	.000		
41	.128	. 245	. 425	.778	1.260	1.750	2.290	.044	. 065	.103	.191	. 281	.407		
42	.127	. 268	. 428	.765	1.080	1.520	2.020	.041	. 068	.128	.163	. 290	.447		
43	.124	.278	. 477	.746	1.100	1.640	2.060	.047	. 063	.103	.187	. 334	. 000		
44	. 124	.252	.468	.687	1.130	1.640	2.320	. 047	.073	.171	.177	.298	.407		
45	. 131	.264	. 464	. 804	1.240	1.810	. 000	. 055	. 075	.130	.187	. 350	.000		
46	.114	.229	. 379	. 624	. 981	1.610	2.270	. 049	.045	.107	.163	. 303	.488		
$\overline{\mathbf{x}}$.133	.273	.468	.759	1.175	1.687	2.167	. 047	. 068	.118	.187	.312	.420		
s	. 020	. 033	. 052	. 098	. 126	. 179	. 138	.005	. 009	.021	. 038	. 060	. 078		$\stackrel{N}{\sim}$
UCL	.143	. 289	. 494	. 802	1.237	1.776	2.248	.049	. 073	.129	. 206	. 342	. 469		O.
LCL	.123	.257	.443	.716	1.112	1.597	2.086	. 044	. 064	.108	. 168	. 282	.370		
			Radiu	Vect					Te	m \&	phan	theca			
1	. 065	. 098	. 141	.213	. 319	.435	.615	. 006	. 007	. 009	.010	. 013	. 015	.021	
2	. 069	.114	.183	. 268	. 383	. 540	. 710	. 006	. 007	.010	. 012	. 016	. 019	. 021	
3	. 065	.105	.160	. 242	. 347	. 513	.697	.007	. 008	. 009	.010	. 014	. 020	. 022	
4	. 056	. 092	.141	. 216	. 327	.451	.631	. 006	. 007	. 010	. 011	.014	. 018	. 021	
5	. 072	.118	.167	. 252	.373	. 549	.745	. 006	. 007	. 009	.012	. 014	.017	.022	
6	. 085	.134	. 209	.311	. 448	. 598	. 000	.007	. 008	. 012	. 014	. 018	. 020	. 000	
7	. 082	. 134	. 206	. 327	. 438	. 578	. 762	. 006	. 008	.010	. 013	. 016	. 020	. 022	
8	. 082	.147	.206	. 304	. 428	. 598	. 759	. 006	. 008	. 010	. 014	. 016	. 018	. 022	
9	.085	.131	. 186	. 268	.373	.497	.676	. 006	. 007	. 010	. 013	. 015	. 019	. 020	
10	. 075	.128	.196	. 298	. 448	. 660	.876	. 005	.006	. 009	. 013	.015	. 017	. 020	
11	.072	.118	. 196	. 291	. 402	.582	.765	. 006	. 007	. 009	.012	.012	. 016	. 019	

Aff

 が,

$\circ O$
$N O$
$N O$
A

24	. 021	. 025	. 023	. 052	. 060	. 057	. 094
25	. 018	. 025	. 054	. 063	.101	. 039	.113
26	. 021	.109	.044	. 055	.100	.000	.108
27	. 020	. 030	. 050	. 049	.000	.000	. 102
28	. 021	. 038	.047	. 077	.102	.122	.077
29	. 025	. 023	. 045	. 067	.077	.041	. 081
30	. 020	. 030	. 059	. 059	.063	.000	. 118
31	. 028	. 036	. 050	.063	. 044	. 061	. 120
32	. 026	. 026	. 031	.050	. 054	. 000	.079
33	. 024	. 035	. 053	. 057	.067	.050	.092
34	. 020	. 028	. 056	.073	.079	.067	. 090
35	.020	.020	. 029	.061	.065	.073	.079
36	.021	.029	. 065	. 081	. 053	.000	.084
37	. 025	. 024	. 033	. 063	. 054	.043	.096
38	. 022	.024	.047	. 033	. 083	.037	$=122$
39	.018	. 038	.048	. 036	.048	. 084	. 078
40	. 019	.027	.043	. 071	. 058	. 000	. 098
41	.017	.024	. 054	. 081	. 054	.000	.106
42	. 020	.031	. 063	. 072	.087	.000	. 094
43	. 020	. 025	.047	. 081	.073	.000	. 098
44	. 019	. 030	.047	.075	. 120	.000	.081
45	. 02.2	.030	.041	.081	.073	.000	.110
46	.014	.026	.033	.063	.095	.077	.097
$\overline{\mathbf{x}}$. 021	.028	.045	. 062	.074	. 066	.090
S	.003	. 006	.013	.015	.021	.025	.014
UCL	. 023	.030	.051	. 069	. 084	.084	.096
LCL	. 020	. 025	. 038	. 054	.063	.047	.084

WEDEKINDELLINA? ARDMORENSIS Thompson, Verville, and Lokke

Radius Vector						
1	.077	.121	.174	.246	.345	.454
2	.078	.124	.199	.287	.400	.000
3	.096	.157	.240	.350	.000	.000

Confederate Member,
Pleasant Hill Syncline
Tectum \& Keriotheca

.007	.009	.010	.012	.015	.017
.007	.009	.011	.014	.020	.022
.008	.010	.013	.013	.015	.000

5	. 080	. 123	.196	.279	.405	.000		. 006	.009	. 010	.013	.017	.000
6	.078	.133	. 209	. 305	.450	.573		.007	. 008	. 010	.013	. 015	. 017
7	.070	.114	. 172	. 232	. 323	.444		. 006	. 009	. 010	. 012	. 017	.021
8	.064	.104	.162	. 246	. 360	. 488		. 006	. 008	.010	. 013	. 018	. 000
9	.066	.106	. 162	.237	. 344	. 500		. 006	. 008	.010	.013	.017	.022
10	. 080	.118	.180	. 270	. 382	. 530		.007	.009	.011	.011	. 016	. 020
11	. 068	.126	.187	. 262	. 373	. 514		.007	. 008	.010	.013	. 016	.021
12	. 072	. 111	.168	. 249	. 354	. 504		. 006	. 007	.0011	.013	.017	. 019
13	. 062	.096	.148	. 230	- 324	. 469		. 006	.008	.010	.013	.015	. 018
14	.080	.127	.180	.254	.355	. 494		.006	.007	.009	.012	.015	.021
$\overline{\mathbf{x}}$.075	.120	.183	.265	. 368	. 497		.007	.008	.070	.013	.016	.020
s	. 009	.015	. 024	. 034	. 037	.038		.001	. 001	. 001	. 001	.001	. 002
UCL	. 083	. 133	. 204	. 295	. 402	. 538		.007	. 009	.011	.013	.078	. 022
LCL	.067	, 107	. 162	.235	. 334	.456		. 006	.008	.010	.012	.015	.018
	Half Length			Lengt.h				Chomata Heigit					
6	.113	. 309	. 580	1.060	1.540	2.1		. 026	.032	. 048	.058	. 068	
7	. 084	. 242	. 441	. 747	1.180	1.6		. 020	. 029	.048	. 054	. 064	
8	.084	. 222	. 370	. 666	1.060	1.		.028	. 038	.049	. 056	. 066	
9	. 077	. 177	. 320	- 580	. 998	7.5		.018	. 029	. 044	. 060	. 000	
10	. 103	. 222	. 412	. 676	-. 100	-1. 5		. 025	.034	. 043	. 059	. 055	
11	.119	. 251	. 379	. 644	1.060	1.5		.021	. 027	. 042	. 056	. 064	
12	.087	. 228	. 405	.730	!. 280	1.7		. 020	.035	. 040	. 056	.060	
13	.084	.193	. 322	.576	1.060	1.6		.017	.032	.058	. 058	.068	
$\overline{\mathrm{x}}$.093	.228	. 398	.703	1. 136	1. 6		. 021	.031	.047	. 058	.064	
s	.015	.038	. 079	. 146	. 180			.004	.004	.005	. 002	.005	
UCL	.107	. 264	. 473	. 841	1.307	1.8		. 026	. 036	.053	. 061	.071	
LCL	.080	.193	. 324	. 565	.966	1.4		.017	.027	. 040	. 055	.058	
	Septal Count							Prol. Diam.					
1	.009	. 013	. 016	. 019	. 021	.023	. 029			.072	.079		
2	. 009	.015	. 016	. 018	. 020	. 026	.000			.075	. 086		
3	. 008	.011	. 014	. 015	. 018	. 020	. 026			. 098	. 100		
5	.009	.013	. 016	. 018	. 019	.023	. 000			. 079	. 09		

$\overline{\mathbf{x}}$	9	13	16	18	20	23	28
s	001	001	. 001	002	001	002	002
UCL	10	16	17	20	21	27	33
LCL	8	10	14	15	18	19	22
Tunnel Width							
6	. 035	. 053	. 098	.160	.260		
7	.046	. 056	. 076	- -141	. 264		
8	. 034	.054	. 080	.140	. 240		
9	. 039	. 045	.080	.138	.248		
10	.040	. 062	. 089	. 0880	. 240		
11	.044	, 080	. 080	.160	. 227		
12	. 046	.055	. 093	. 176	. 276		
13	.044	.052	. 080	. 132	. 228		
14	. 044	.067	.080	. 122	. 240		
$\overline{\mathbf{x}}$.041	. 058	.084	.139	. 246		
s	.005	. 010	.007	. 028	.078		
UCL	. 047	.070	.093	.171	.267		
LCL	.036	.046	. 075	.106	. 225		

.090	.090
.056	.062
.074	.080
.073	.083
.073	.080
.072	.080
.068	.074
.074	.078
.072	.102
min.	max.
.075	.084
.010	.011
.084	.093
.066	.074

TRITICITES TOMLINSONI, new species

Crinerville Member, Overbrook Anticline

Half Length

19	.189	.379	.631	1.180	2.120	.000
20	.160	.389	.772	1.410	2.040	.000
21	.199	.399	.876	1.400	2.330	3.650
22	.206	.389	.732	1.190	2.270	2.850
24	.206	.491	.883	1.440	2.260	.000
25	.196	.389	.680	1.230	2.030	.000
26	.199	.386	.755	1.410	2.420	.000
27	.154	.307	.638	1.080	1.960	2.550
28	.206	.383	.811	1.570	2.500	3.340
29	.150	.294	.464	.925	1.690	2.490

Tunnel Width

.051	.100	.205	.596	.000
.083	.144	.272	.599	.000
.072	.112	.275	.494	.972
.067	.104	.255	.529	.000
.082	.173	.390	.000	.000
.059	.143	.298	.658	.000
.056	.125	.281	.544	.000
.060	.132	.275	.429	.860
.069	.143	.319	.780	.000
.041	.072	.175	.330	.797

3	.009	. 013	.016	.022	.023	.022	.109
4	. 009	.013	. 014	. 018	.019	.022	.128
5	.010	.015	.015	.018	.023	.025	.151
6	. 009	.013	. 018	.023	.026	.026	. 132
7	.010	.016	. 018	.020	.023	.020	.148
8	.011	.017	.019	. 018	. 022	.023	.178
9	.008	.015	. 018	.018	, 019	. 022	- 141
10	. 010	.015	. 018	.020	.020	, 020	. 136
11	.010	. 014	.017	.020	.019	.019	. 163
12	. 009	.013	.014	.017	.017	. 020	. 119
13	.009	.013	.0 .15	.017	. 022	, 022	. 116
14	. 011	. 014	.016	.019	. 019	.000	- 125
15	. 009	.015	.017	.020	. 022	.000	e 154
16	.010	. 014	. 017	.018	.020	.022	.130
17	. 010	.013	. 015	, 020	, 02 1	. 022	. 099
18	. 009	.015	.017	. 019	.021	. 023	. 098
23	.009	.015	.017	.020	.023	. 021	. 120
$\overline{\bar{x}}$	10	14	16	19	21	22	
s	001	001	00%	002	003	002	
UCL.	10	15	17	20	23	24	
LCI	9	14	15	18	20	21	
Chomata Height							
19	.048	.048	.060	.109	. 000		.131
20	. 038	.070	. 091	. 066	.000		. 106
21	. 049	.054	. 083	. 080	.072		. 156
22	. 035	$.06 i$.076	.090	.000		. 134
24	. 051	.045	. 05 !	. 072	.000		.147
25	. 022	. 050	. 083	.092	.000		.117
26	.050	. 056	. 090	.100	.000		.145
27	. 044	.055	. 056	. 080	. 042		.115
28	. 030	. 066	. 097	. 052	. 000		.148
29	. 035	. 046	.051	. 059	.077		. 080
30	. 030	. 056	.113	. 000	.000		.135
31	.042	.041	. 067	.100	.000		. 128
32	.026	.056	.093	.093	.000		. 120

33	.035	. 057	. 094	.000	.000		.118					
34	.041	. 069	.110	.124	.000		. 094					
35	. 030	. 052	. 088	.091	. 000		. 147					
36	. 038	. 053	. 033	. 079	. 000		.167					
37	. 020	.046	. 076	. 091	.059		. 124					
38	.045	.061	.090	. 096	. 000		.166					
39	. 039	. 040	.071	.037	.000		.176					
40	. 036	.065	.111	. 069	. 040		. 124					
41	. 036	.040	. 072	. 088	.058		. 131					
42	. 033	.047	. 065	. 000	. 000		. 159					
43	. 039	.070	. 12.1	. 000	.000		c! 30					
44	. 028	. 053	.041	.085	. 000		-1.30					
45	.034	. 045	. 066	.109	. 08 !		. 132					
46	.024	.056	. 077	.000	.000		. 098					
47	. 038	. 049	.090	- 113	. 000		. 150					
48	.041	. 043	.078	. 089	.000		.163					
49	. 037	. 057	. 124	. 098	. 024		.091					
50	.033	.057	. 068	.097	.046		. 146					
51	. 029	. 049	. 096	. 104	. 096		. 111					
52	. 039	. 053	.073	. 058	.057		.163					
53	.033	.062	. 089	. 076	.000		. 179					
54	.048	.091	. 098	. 073	. 000		.163					
55	.018	.043	.063	.067	. 096		- 111					
56	. 044	. 055	. 073	.091	.067		. 134					
57	.034	.067	.065	.104	, 044		. 137					
\bar{x}	.036	. 055	. 080	. 086	.061		.133					
s	. 008	.011	.021	.019	. 021		. 022					
UCL	. 040	. 059	.089	.095	. 079		. 141					
LCL	.032	.050	.071	.0177	.043		.125					
Radius Vector Tectum \& Keriotheca												
1	.131	.209	. 337	.549	.765	1.050	.010	. 018	.034	. 041	.041	. 057
2	.127	.206	. 330	.497	. 746	. 981	. 010	. 018	. 026	. 041	. 047	.057
3	. 104	. 177	. 268	.409	. 634	.893	.010	.014	. 021	. 033	.047	.071
4	.111	.203	.334	. .517	. 778	1.070	. 012	.017	.026	.037	.046	.057

gro

42	.108	.170	.304	.507	.755	1.040
43	.131	.203	.327	.500	.736	1.060
44	.137	.209	.327	.523	.762	1.040
45	.088	.157	.245	.392	.628	.916
46	.114	.180	.294	.451	.634	.899
47	.118	.203	.320	.504	.772	. .090
48	.134	.222	.337	.510	.7775	.000
49	.118	.193	.314	.533	.798	1.120
50	.134	.206	.320	.491	.713	1.030
51	.118	.196	.304	.477	.729	.968
52	.141	.226	.350	.559	.755	1.050
53	.179	.262	.412	.625	.909	.000
54	.178	.193	.337	.520	.798	1.090
55	.092	.147	.245	.399	.615	.883
56	.111	.180	.275	.461	.680	.935
57	.111	.196	.314	.513	.759	1.030
$\overline{\mathrm{x}}$.121	.198	.318	.502	.758	1.007
s	.018	.025	.041	.063	.088	.086
UCI	.127	.207	.333	.524	.789	1.043
LCL	.115	.189	.304	.479	.727	.971

T'RITICITES TOMLINSONI, new species
Radius Vector

1	.118	.188	.294	.485	.741	.000
2	.144	.234	.367	.572	.812	.000
3	.103	.164	.257	.412	.620	.864
4	.093	.166	.281	.480	.716	.984
5	.144	.219	.330	.525	.772	.952
6	.097	.160	.265	.414	.646	.898
7	.093	.167	.277	.467	.747	1.050
8	.084	.145	.235	.393	.628	.886
9	.109	.190	.322	.528	.857	.000
10	.071	.126	.216	.341	.564	1.180
11	.097	.171	.270	.457	.708	1.020

.011	.022	.031	.056	.068	.061
.011	.018	.033	.040	.042	.040
.012	.015	.029	.044	.059	.067
.011	.016	.023	.031	.054	.054
.013	.021	.040	.051	.063	.061
.011	.019	.024	.031	.048	.057
.016	.023	.031	.046	.047	.000
.010	.019	.022	.049	.049	.047
.009	.016	.018	.035	.049	.000
.011	.020	.025	.052	.051	.057
.008	.016	.025	.037	.051	.060
.008	.017	.041	.050	.057	.000
.010	.016	.030	.042	.060	.071
.011	.016	.028	.033	.046	.061
.008	.012	.028	.036	.049	.054
.013	.016	.031	.047	.050	.050
.011	.017	.027	.042	.053	.057
.002	.003	.006	.009	.007	.007
.011	.018	.029	.045	.055	.059
.010	.016	.025	.038	.050	.054

Crinerville Member, Pleasant Hill Syncline
Tectum \& Keriotheca

.010	.011	.019	.037	.051	.000
.010	.015	.028	.037	.043	.000
.008	.016	.018	.028	.037	.058
.008	.013	.022	.034	.041	.049
.010	.016	.021	.032	.037	.054
.009	.014	.023	.035	.050	.054
.010	.013	.025	.033	.048	.059
.007	.011	.018	.028	.039	.052
.006	.012	.019	.034	.055	.052
.007	.010	.020	.025	.037	.057
.007	.010	.020	.025	.037	.057

28	.141	.268	.451	.847	1.530	2.480	. 052	. 089	.163	.244	. 500		
29	.128	. 226	.441	.893	1.510	2.420	. 038	. 065	.091	.203	. 325		
30	.114	. 222	.419	.654	1.350	2.430	.037	. 081	.120	.215	.407		
31	. 134	. 262	. 458	.893	1.600	2.250	. 061	. 091	. 163	.267	. 000		
32	.141	. 268	. 533	1.030	1.690	2.660	. 062	.114	.209	.386	. 754		
33	.134	. 252	.481	. 899	1.720	2.500	.048	.098	.145	.277	. 521		
34	.131	. 245	.409	.765	1.530	2.540	.049	. 081	. 128	. 244	.407		
35	.118	. 255	. 458	. 853	1.600	2.830	.060	. 091	.163	. 358	. 650		
36	.121	. 245	. 468	1.030	1.720	2.600	.050	.079	. 157	.305	. 386		
37	. 1.41	. 271	. 435	. 932	1.620	2.720	.054	.081	.163	. 325	. 650		
38	.137	. 301	. 556	.997	2.090	.000	. 061	.112	.182	.439	. 732		
39	.137	.281	. 464	.974	1.710	2.960	. 060	.110	.151	.280	. 569		
40	.131	. 294	. 507	1.010	1.870	3.050	. 069	. 095	.234	.465	.853		
41	.170	. 288	.697	1.290	2.390	2.640	. 069	. 098	.210	.439	. 714		
42	.137	. 268	. 549	1.110	1.980	. 000	. 066	.098	. 237	.455	.000		
43	.137	. 262	. 468	. 965	2.150	3.120	. 053	. 098	.142	. 338	. 700		
44	. 124	.281	. 487	. 968	1.760	2.780	.067	. 089	.154	.366	. 593		
45	. 153	.311	. 624	1.090	1.710	2.740	. 068	.096	. 259	. 520	.000		
46	.150	. 291	.608	1.020	1.960	2.840	.070	. 115	. 201	.374	. 000		
47	.127	.265	.474	.942	1.590	2.780	.049	.702	.163	.285	.691		
$\overline{\mathbf{x}}$.136	.273	. 508	.959	1.735	2.676	.056	. 093	.167	.338	. 594		O
s	.019	. 030	.072	.137	. 272	. 329	. 009	. 012	. 036	. 084	.133		
UCL	.146	.287	.543	1.026	1.869	2.852	.061	.099	.184	.379	. 669		
LCL	.127	.258	.473	.892	1.602	2.500	. 052	.087	. 149	.296	. 520		
			dius	Vector				Tect	m \&	rioth	ca		
1	. 092	.157	.262	.416	.655	.900	. 008	. 012	. 023	. 032	. 045	.046	
2	. 097	.177	. 301	. 468	.713	.000	.007	. 012	.023	. 032	. 045	. 000	
3	.107	. 164	. 252	. 382	.600	.000	. 008	. 013	. 020	. 030	. 040	. 000	
4	.085	.140	. 212	. 327	. 508	.761	.007	. 010	. 018	.024	.040	.046	
5	.110	.190	. 289	.409	.638	.000	.007	.013	. 018	.030	.043	. 000	
6	.107	.190	. 294	. 458	.671	. 949	. 007	. 014	. 026	. 033	.043	. 054	
7	. 062	.198	.186	.294	. 428	. 589	.007	.009	. 017	. 028	. 034	. 039	
8	. 082	.131	. 199	. 294	.422	. 602	. 008	.011	.018	. 022	. 040	.042	
9	.088	.157	.255	.383	.569	.811	. 007	.011	.020	.030	.041	. 054	

今AtA

 o

23	.019	. 042	. 050	. 054	.063	. 000	. 089
24	.021	.037	.053	. 081	. 069	.000	. 098
25	. 024	.028	. 060	.081	.000	. 000	.116
26	. 024	. 028	. 062	.074	.061	. 000	.089
27	. 020	. 033	. 073	.067	. 092	. 000	. 075
28	. 028	. 056	.056	.071	. 091	. 000	.092
29	. 019	. 030	. 067	.100	. 065	. 000	.071
30	.017	. 033	. 059	.107	. 000	. 000	.076
31	. 019	.021	.061	.101	. 000	. 000	. 102
32	.030	. 039	. 065	. 060	. 065	.000	. 098
33	. 024	. 030	. 039	. 049	. 054	.000	,090
34	. 020	. 023	. 049	. 063	. 054	. 000	. 087
35	.020	. 033	.073	. 069	.047	. 000	. 095
36	. 020	. 033	. 039	.093	. 058	. 000	. 093
37	.026	. 036	. 059	. 073	. 039	. 000	. 076
38	.022	. 050	. 060	. 096	.046	.000	.101
39	. 021	.037	. 053	. 063	. 094	.000	.099
40	.020	. 026	. 057	. 097	.065	.000	. 108
41	.020	. 042	. 065	- 101	.109	. 000	.104
42	.017	. 033	. 039	. 060	.000	.000	. 098
43	. 016	. 034	.073	. 085	.077	. 000	.107
44	- 020	. 027	. 061	. 041	.054	.000	. 072
45	. 033	. 053	. 063	. 058	.000	.000	.094
46	.017	.046	. 065	. 000	.000	.000	. 092
47	.014	. 045	. 052	. 059	. 071	.000	.097
$\bar{\chi}$.021	. 035	.056	.072	.070	. 000	.093
S	.005	. 009	. 012	. 019	.019	.000	.015
JCL	. 024	. 039	. 062	. 082	. 080	.000	. 098
LCL	.019	.030	.050	. 063	.059	. 000	. 087

TRITICITES IRREGULARIS (Staff) einend.
Tectum \& Keriotheca

1	.007	.009	.013	.026	.024	.000
2	.009	.011	.014	.023	.037	.037
3	.008	.010	.013	.019	.031	.040
4	.009	.011	.014	.022	.035	.046
5	.007	.011	.017	.024	.034	.000
6	.009	.011	.014	.018	.028	.000
7	.007	.010	.018	.028	.037	.000
8	.006	.008	.019	.025	.033	.037
9	.010	.015	.018	.024	.037	.041
10	.010	.012	.020	.026	.033	.042
11	.011	.014	.019	.023	.031	.037
12	.008	.016	.021	.026	.037	.000
13	.011	.017	.020	.023	.026	.037
14	.007	.011	.029	.023	.035	.043
$\overline{\mathrm{x}}$.009	.012	.017	.024	.033	.040
s	.016	.027	.029	.027	.043	.033
UCI	.010	.014	.019	.026	.036	.043
LCL	.007	.010	.015	.022	.030	.037

Chomata Height.

8	.016	.037	.041	.062	.102	.067
9	.016	.030	.054	.066	.074	.000
10	.022	.034	.044	.054	.063	.075
17	.023	.036	.060	.060	.067	.000
12	.019	.033	.047	.049	.000	.000
13	.019	.024	.037	.062	.086	.086
14	.026	.033	.050	.074	.082	.000
$\overline{\mathbf{x}}$.020	.032	.048	.061	.079	.076
\mathbf{s}	.004	.004	.008	.008	.014	.010
UCL	.024	.037	.056	.070	.096	.094
LCL	.016	.028	.039	.052	.062	.058

Anadarche Member, Brock Anticline
Radius Vector

.086	.139	.212	.334	.480	.672
.086	.142	.203	.329	.493	.674
.102	.1 .54	.226	.334	.488	.692
.099	.162	.257	.374	.570	.000
.086	.144	.235	.374	.556	.000
.074	.118	.186	.272	.418	.000
.090	.160	.263	.409	.581	.000
.076	.115	.194	.198	.459	.667
.092	.160	.250	.377	.560	.784
.172	.160	.238	.367	.533	.728
.094	.138	.212	.305	.449	.608
.100	.156	.232	.337	.506	.000
.080	.125	.188	.274	.441	.640
.075	.110	.186	.286	.461	.658
.089	.142	.220	.334	.499	.680
.011	.018	.027	.043	.053	.051
.098	.155	.240	.365	.549	.729
.081	.128	.200	.302	.461	.632

Tunnel Width

.032	.055	.100	.180	.400	.720
.045	.080	.135	.282	.499	.576
.036	.064	.128	.292	.600	.000
.052	.080	.102	.192	.560	.000
.048	.104	.260	.520	.000	.000
.027	.059	.104	.196	.360	.640
.028	.066	.101	.220	.440	.000
.038	.073	.133	.269	.476	.645
.010	.017	.058	.119	.092	.071
.049	.091	.196	.399	.588	.782
.027	.054	.070	.138	.365	.509

Septal Count

1	.009	.014	.019	.021	.023	.025
2	.009	.015	.019	.021	.024	.025
3	.010	.016	.017	.022	.024	.027
4	.010	.015	.017	.022	.025	.028
5	.009	.013	.017	.021	.024	.000
6	.010	.013	.015	.020	.020	.025
7	.010	.014	.016	.018	.024	.023
\mathbf{x}	10	14	17	21	23	26
s	001	001	001	001	002	002
UCL	10	16	19	22	25	28
LCL	9	13	16	19	22	23

8	.122	.232	.470	.863	.610	2.240
9	.132	.305	.518	.911	1.630	2.680
10	.161	.344	.595	.844	1.680	3.160
11	.154	.273	.460	.837	1.450	2.600
12	.129	.258	.531	.837	1.670	2.610
13	.113	.267	.403	.789	1.370	2.020
14	.145	.267	.435	.779	1.810	2.620
$\overline{\mathbf{x}}$.137	.278	.487	.837	1.603	2.581
S	.017	.036	.065	.045	.148	.360
UCL	.156	.318	.559	.886	1.765	2.955
LCL	.118	.238	.416	.788	1.440	2.168

TRITICITES PRIMARIUS Merchant and Keroher

Half Length

17	.227	.507	1.020	2.140	3.530	.000
18	.216	.466	1.060	2.200	3.600	.000
19	.147	.376	.791	1.880	3.330	.000

Prol. Diam.

.091
.101
.114
.101
.089
.085
.093
.101
.100
. 109
.104
.084
.087
.085
. 096
.009
. 103
.089
Daube Members Overbrook Anticline
Tunnel Width

.081	.175	.309	.813	.000
.110	.215	.407	.000	.000
.081	.163	.376	.754	.000

20	.157	.385	. 719	1.340	2.190	. 000	.081	.130	.276	. 569	1.080	
21	.239	. 460	. 740	1.350	2.450	3.910	. 081	.138	. 220	. 620	1.130	
22	. 134	. 303	. 583	1.040	1.820	3.430	. 061	. 110	.203	. 545	1.020	
23	.167	- 379	. 661	1.330	2.330	3.160	.081	.163	.271	. 691	. 000	
24	. 140	. 292	. 548	1.060	1.840	3.300	. 067	.100	. 198	. 488	1.020	
25	.192	. 367	- 659	1.610	3.180	. 000	. 081	. 133	. 244	. 731	. 000	
26	.170	. 327	. 598	1.190	2.370	. 000	. 067	.108	. 220	- 407	1.060	
27	. 147	. 360	. 625	1.210	2.210	. 000	.070	. 120	. 225	- 589	. 000	
28	.215	. 523	1.010	2.220	3.370	. 000	.130	. 138	. 541	1,090	. 000	
30	. 167	.441	!.060	1.840	3.040	. 000	. 081	.198	. 609	. 976	. 000	
31	. 177	. 552	1.090	1.980	2.880	. 000	.093	.187	. 299	. 748	. 000	
32	.111	. 278	. 513	1.020	1.800	1.060	.067	. 088	. 207	. 516	. 894	
33	. 134	. 340	. 687	1.650	2.360	. 000	. 081	.163	. 295	. 894	. 000	
34	. 215	. 455	. 958	1.940	2.760	. 000	.081	. 162	. 33.3	. 975	. 000	
35	. 239	. 458	. 857	1.770	2.980	. 000	.109	.105	. 382	. 000	. 000	
36	.157	.386	.654	1.430	2.510	.000	.069	.126	. 244	.691	.000	
$\overline{\mathbf{x}}$.176	. 403	.781	1.589	2.661	3.372	.084	.151	. 309	. 712	1.034	
s	. 039	. 080	- 194	. 403	. 580	.337	. 017	.038	. 170	. 185	. 080	
UCL	. 201	. 453	. 904	1.846	3.027	3.817	. 094	. 174	. 377	. 832	1.130	
LCL	.158	.352	.657	1.333	2.294	2.927	.073	. 128	.241	. 591	. 938	
		Radius Vector					Tectum \& Keriotheca					
1	. 108	.190	. 304	. 497	.716	938	. 012	.015	. 024	.043	. 057	.073
2	.128	.219	. 389	. 638	.9481.	230	. 013	. 018	.029	.044	. 061	.061
3	.137	. 222	. 383	. 638	. 961	000	.012	.019	. 031	.051	. 060	. 000
4	. 124	. 229	. 402	. 602	. 860	000	.011	. 1119	.030	.049	. 062	.000
5	.144	. 235	.402	. 631	. 952	000	. 012	. 018	. 028	.041	. 059	. 000
6	. 098	. 160	. 271	.428	.647	000	. 009	. 013	. 020	.037	. 051	.000
7	.111	.213	. 370	. 611	. 827	000	. 011	. 018	. 028	.045	. 057	. 000
8	.101	.170	. 320	. 507	.736 .	000	. 009	.015	. 023	. 042	. 060	.000
9	. 118	.206	.350	. 556	.804 .	000	.010	.017	. 026	. 039	. 053	.000
10	. 095	.177	. 294	. 468	.697 .	000	. 009	. 013	. 018	. 035	. 049	. 000
11	.108	.199	. 304	. 468	.700 .	000	. 011	. 016	.021	. 036	, 946	. 053
12	.105	.196	. 340	. 546	.791 .	000	. 010	. 016	. 024	.040	. 050	.056
13	. 114	. 203	. 337	. 513	.746 .	000	.011	. 015	. 022	.040	. 000	.000

14	.111	.206	.350	. 592	. 889	. 000	.009	.015	. 024	.041	. 054	. 062	
15	.118	.196	- 320	. 540	.820	.000	.013	.016	. 024	.041	. 058	.000	
16	.147	. 262	. 428	. 641	. 918	.000	. 013	.019	.028	.043	. 056	.000	
17	.114	. 203	. 373	.612	. 909	.000	. 009	.017	.032	.051	. 063	.000	
18	.156	. 268	.447	.683	. 932	.000	.010	.016	. 030	.046	. 059	. 000	
19	.098	. 196	. 350	. 572	. 000	.000	. 009	.016	. 024	. 048	. 000	. 000	
20	. 088	. 164	.291	.477	: 697	.916	.000	. 012	. 020	. 035	.053	. 000	
21	- 124	.213	- 311	.448	.706	1.010	.010	.015	.021	. 033	.055	.058	
22	. 092	. 154	. 268	. 432	. 644	. 948	.010	.012	. 029	. 044	. 050	. 064	
23	.092	.150	, 258	.441	. 661	.000	.011	.017	: 0.24	. 048	. 052	. 000	
24	. 114	.180	. 28 ?	. 484	. 683	. 945	. 008	.013	.021	.050	. 060	.073	
25	.098	. 186	- 311	. 542	. 831	. 000	.010	.016	. 034	.049	. 058	.000	
26	.088	. 163	. 281	- 461	. 687	.961	.010	. 020	.023	. 048	. 057	.067	
27	. 092	. 167	. 281	. 438	.687	.916	.010	.016	. 024	. 033	. 052	. 000	
28	.143	. 249	. 419	. 680	. 000	.000	.011	.021	.038	. 048	. 000	. 000	
30	.108	. 222	.405	.654	. 948	.000	.0 .10	. 020	.042	.050	. 068	.000	
31	.108	.212	. 356	. 546	.778	1.000	.009	. 016	.027	.045	.053	.057	
32	. 082	. 150	. 242	. 399	, 618	.867	.010	.014	.024	. 039	. 049	. 049	
33	.088	.190	. 337	. 546	. 768	. 000	.011	.015	. 032	.049	.055	.000	
34	. 137	.245	. 405	. 654.	. 958	.000	. 010	. 022	. 039	.052	. 060	.000	
35	. 131	.213	- 343	. 543	.775	.000	.010	.018	. 039	.052	.065	.000	or
36	.092	.164	. 291	. 513	.768	.000	.008	.015	.022	. 033	. 054	.000	
$\overline{\mathbf{x}}$.112	.199	. 338	.543	.790	.973	.010	.017	. 027	.043	.056	.061	
5	.019	.031	. 053	. 081	.107	. 099	. 002	.003	. 006	. 006	. 006	. 008	
UCL	. 121	.214	. 362	. 580	.841	1.062	.011	. 018	. 030	.046	. 058	. 068	
LCL	- 103	.185	.313	. 506	.7 .40	.884	.010	.015	.024	.041	.053	.055	
	Septal Count						Prol. Diam.						
1	.009	. 016	.017	.019	. 024	.021	.114						
2	. 008	. 014	. 018	.021	.021	. 022	. 133						
3	.011	.017	.020	.021	. 024	. 000	.157						
4	. 009	. 015	.018	.020	. 019	. 021	$.125$						
5	. 010	. 018	.018	.021	.024	.000	.146						
6	. 008	. 012	.016	. 020	. 020	. 018	. 108						
7	. 008	.012	. 016	. 020	. 020	. 018	.098						

8	. 008	.015	.016	. 020	.024	.000		.112
9	.010	.016	.018	. 021	.023	.000		. 129
10	.008	.014	.017	. 018	.023	. 000		.097
$\cdot 11$. 008	.015	. 020	.023	. 022	. 022		.115
12	. 008	.014	.015	.019	.019	. 000		. 104
13	.008	.015	.018	.021	.021	.000		.120
14	. 008	. 015	.0 .18	.021	. 02 ?	.000		- 120
15	.010	. 014	.017	.019	.021	.000		. 122
$\overline{\mathbf{x}}$	9	15	17	20	22	21		
s	001	002	001	001	002	002		
UCL	10	16	18	$2!$	24	23		
LCL	8	14	$: 6$	19	2!	:9		
Gromata Hejert								
17	. 048	. 0770	.107	.112	. 000			-:49
18	.046	. 077	.120	. 099	. 000			.163
19	.05!	.063	. 101	. 000	.000			. 127
20	. 039	. 058	.067	. 098	. 116			- 122
21	. 040	.033	.073	.093	.108			.138
22	.030	.047	.000	. 049	. 066			.120
23	. 020	. 037	.113	. 085	. 000			.114
24	.042	. 069	.121	.160	.000			. 108
25	.037	.060	.108	.160	. 000			.130
26	. 048	. 057	.105	. 114	. 136			. 122
27	. 029	. 050	.061	. 071	. 000			.122
28	. 045	.073	.104	.106	.000			. 188
30	. 039	.105	. 098	.000	. 000			$.14!$
31	. 038	.067	. 098	.114	. 000			.114
32	.027	. 035	. 065	.081	.057		-	.115
33	.034	. 068	. 081	. 089	.000			. 120
34	.044	. 049	.106	.120	.000			.135
35	. 042	.061	.081	. 120	. 000			.145
36	.037	. 064	.108	.126	. 000			.124

$\overline{\mathbf{x}}$.039	.060	.095	.103	.097
\mathbf{s}	.008	.016	.019	.029	.034
UCL	.043	.070	.107	.122	.142
LCL	.034	.050	.083	.084	.051

TRITICITES NEWELLI Burma

Tunnel Width

9	. 046	. 108	. 132	. 240	. 220	
10	. 062	. 100	. 196	. 420	. 880	
11	. 080	. 148	. 256	. 462	. 870	
12	. 066	. 128	. 190	. 438	. 600	
13	. 070	. 108	. 208	. 320	. 720	
14	. 061	. 080	. 128	. 250	. 640	
15	. 064	. 092	. 186	. 352	. 640	
16	. 080	. 102	. 196	. 360	. 760	
17	. 096	. 176	. 260	. 560	. 960	
18	. 062	. 160	. 260	. 480	. 000	
19	. 080	. 140	. 240	. 424	. 880	
20	. 056	. 104	. 176	. 400	. 620	
21	. 060	. 100	. 176	. 365	. 720	
22	. 062	. 088	. 178	. 349	. 600	
23	. 062	. 088	. 178	. 320	. 640	
$\overline{\mathbf{x}}$. 067	. 114	. 196	. 383	. 718	
s	. 012	. 029	. 042	. 086	. 133	
UCL	. 076	. 135	. 227	. 444	. 817	
LCL	. 058	. 093	. 166	. 321	. 619	
	Radius Vector					
1	. 157	. 283	. 451	. 705	. 992	. 000
2	. 116	. 213	. 345	. 509	. 750	1.060
3	. 138	. 241	. 393	. 576	. 811	1.130
4	. 116	. 187	. 322	.493	. 734	. 000
5	. 145	. 222	. 345	. 522	. 789	1.120
6	. 093	. 158	. 261	. 409	. 644	. 917

$$
\begin{array}{r}
.127 \\
.019 \\
.136 \\
.118
\end{array}
$$

Daube Member, Brock Anticline

Chomata Height

. 038	. 062	. 068	. 080	. 104	
. 038	. 064	. 086	. 094	. 054	
. 050	. 066	. 080	.112	. 112	.
. 040	. 060	. 080	. 096	.108	
. 050	. 062	. 080	. 096	.112	
.024	. 054	. 064	. 088	.110	
.041	.056	. 074	.106	.000	
. 044	. 070	. 080	. 082	. 000	
. 028	. 050	. 096	. 092	. 080	
. 036	. 060	. 084	. 102	. 074	
. 056	. 072	. 084	. 112	. 000	
. 031	. 053	. 086	. 086	. 096	
. 030	. 050	. 070	. 088	.100	
. 024	. 048	. 068	. 080	. 088	
.037	. 048	. 069	. 088	. 093	
. 038	. 058	. 078	. 093	. 094	
. 010	. 008	. 009	. 011	. 018	
.045	. 064	. 084	. 101	. 108	
.031	. 053	.071	.086	. 080	
Tectum \& Keriotheca					
. 009	. 016	. 524	. 038	. 044	. 000
. 008	. 020	.026	. 036	. 052	. 064
. 009	. 017	. 025	. 036	. 052	. 058
. 009	. 015	. 023	. 039	. 048	. 060
. 010	. 014	.023	. 034	.043	. 054
. 009	. 016	.024	. 034	.048	. 064

7	.097	.167	. 293	.464	.738	1.060	. 011	. 017	. 024	. 036	. 056	. 061
8	. 106	. 177	. 267	. 393	. 580	. 837	. 008	. 016	. 020	. 032	. 046	. 060
9	.106	.171	.267	. 396	. 564	.811	. 009	. 015	.021	. 030	. 048	. 062
10	.084	.142	. 264	.412	. 667	. 992	. 009	.018	. 022	.040	. 054	. 068
11	.148	. 241	. 357	. 531	. 750	1.020	. 009	. 015	.025	.040	. 049	. 058
12	.084	.164	. 303	. 500	. 779	1.100	. 008	. 016	.024	.044	. 060	. 072
13	.151	. 241	. 367	. 553	.811	1.130	. 009	. 020	. 028	. 038	. 056	. 068
14	. 087	. 145	. 242	. 380	. 586	. 863	. 010	. 014	. 020	. 032	. 044	. 052
15	.116	. 183	. 261	. 464	. 669	. 892	. 010	.017	.025	. 035	. 054	. 059
16	. 126	. 228	. 380	. 557	. 805	1.100	. 010	. 016	. 025	. 043	. 052	. 070
17	.161	. 258	. 396	. 580	. 828	1.140	. 009	. 015	.032	.044	. 056	. 060
18	.129	. 225	.361	. 560	. 821	1.090	. 008	. 016	. 028	. 044	. 053	. 061
19	.164	.270	. 444	. 653	.933	1.320	. 008	. 017	. 026	. 037	.050	. 064
20	.113	. 193	. 315	. 495	. 731	1.030	. 009	. 016	.024	. 036	.060	. 065
21	.093	.167	. 273	.422	. 654	. 944	.008	. 015	. 024	. 032	.044	. 050
22	. 074	. 138	. 238	. 396	- 602	. 866	. 008	. 012	. 020	. 028	. 040	. 053
23	.100	. 171	.274	.447	$=.699$	1.030	. 008	. 012	.023	. 032	. 039	.048
$\overline{\mathbf{x}}$.118	.199	. 323	.496	. 736	1.022	. 009	. 016	. 024	. 037	. 050	. 061
s	.027	. 043	. 063	. 087	. 109	. 126	. 001	. 002	. 003	. 005	. 006	. 006
UCL	. 134	. 225	. 360	. 548	. 802	1.102	. 009	.017	. 026	. 039	. 053	. 064
LCI	.101	. 174	. 285	. 445	.671	.904	. 008	.015	. 023	. 034	. 046	.057
	Septal Count						Prol. Diam.					
1	. 011	.021	.023	. 022	.025	. 000			.148	. 178		
2	.010	.016	. 018	. 022	.024	. 027			.116	. 128		
3	. 009	. 017	. 020	. 021	.024	. 022			.111	.119		
4	. 010	.013	. 017	.023	. 026	.027			.116	. 116		
5	. 009	.019	.020	. 026	. 026	. 029			. 128	. 150		
6	.009	.013	.015	. 017	. 023	. 025			. 080	. 094		
7	. 008	. 015	.021	. 019	. 025	. 026			. 080	. 102		
8	.007	.014	.016	.020	.023	. 027			.090	.100		

$\overline{\mathbf{x}}$	9	16	19	21	25	26
\mathbf{s}	001	003	003	003	001	002
UCL	10	19	21	24	26	29
LCL	8	13	16	19	23	24

Half Length

9	.135	.303	.480	.744	1.190	2.090	3.380
10	.103	.280	.598	1.000	1.780	2.930	.000
11	.210	.369	.643	1.100	1.790	2.720	3.560
12	.145	.393	.644	1.130	1.950	2.790	.000
13	.189	.370	.615	1.030	1.790	2.750	3.660
14	.145	.276	.456	.792	1.320	2.280	3.450
15	.161	.322	.557	.615	1.790	2.430	3.260
16	.180	.383	.621	1.010	1.650	2.700	.000
17	.219	.379	.644	1.290	2.080	3.010	.000
18	.167	.338	.692	1.300	2.090	3.050	.000
19	.231	.489	.779	1.310	2.230	3.330	.000
20	.155	.315	.592	1.090	1.650	2.680	3.680
21	.140	.281	.515	.918	1.960	3.330	5.030
22	.106	.216	.386	.759	1.420	2.380	3.300
23	.129	.258	.435	.911	1.610	2.370	.000
$\overline{\mathrm{x}}$.161	.331	.577	1.000	1.753	2.721	3.665
s	.039	.068	.106	.213	.292	.365	.573
UCL	.189	.380	.653	1.154	1.962	2.982	4.246
LCL	.133	.283	.501	.847	1.544	2.459	3.084

.140	.156
.088	.104
.148	.149
.100	.102
.146	.156
.096	.096
.154	.168
.152	.174
.174	.192
.140	.190
.184	.203
.132	.138
.100	.101
.090	.101
.076	.086
.121	.134
.032	.037
.140	.154
.102	.115

