THE PETROGRAPHY, DIAGENESIS AND DEPOSITIONAL SETTING OF THE PENNSYLVANIAN COTTAGE GROVE SANDSTONE IN DEWEY, ELLIS, ROGER MILLS, AND WOODWARD COUNTIES, OKLAHOMA

By

BRUCE JEROME WADE N Bachelor of Science in Arts and Sciences Oklahoma State University

Stillwater, Oklahoma

1984

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1987

THE PETROGRAPHY, DIAGENESIS AND DEPOSITIONAL SETTING OF THE PENNSYLVANIAN COTTAGE GROVE SANDSTONE IN DEWEY, ELLIS, ROGER MILLS, AND WOODWARD COUNTIES, OKLAHOMA

Thesis Approved:

-cho Thesis Advisor Arthur W. Cleaves Carry 7. Serie

Dean of the Graduate College

ACKNOWLEDGMENTS

My sincere thanks and gratitude are extended to the following individuals for their direct and indirect support of this study; Dr. Zuhair Al-Shaieb, my thesis advisor, who during the study gave me abundant support, direction, and insight. Dr. Gary Stewart who provided invaluable assistance throughout the investigation, in addition to editing the thesis, and reviewing the cross section and maps. Dr. Arthur Cleaves who served as an advisor on my thesis committee, reviewed the manuscript and graciously allowed me to reside at his home during the completion of this work.

I also thank the University Center of Energy Research (U.C.E.R.), Oklahoma State Research Consortium for Enhancement of Well Log Data Via Signal Processing, and Chevron Oil Company for providing thesis funding. Thanks is given to Sabine Oil Company for furnishing core-laboratory reports incorporated in this study. Appreciation is extended to the Oklahoma City Geologic Library for allowing free access to geophysical logs and associated data, and to the Oklahoma Geological Survey Core and Sample Library for unimpeded access to cores. Gratitude is due the Oklahoma State Department of Geology for granting financial assistance throughout my graduate studies. Brian Waller of Ramsey Property Management, Oklahoma City, is given special thanks

iii

for contributing ideas, knowledgeable insight, and geologic data which were instrumental in the initiation of this study.

Earnest appreciation is given to my colleagues and friends who afforded me with invaluable support and advice; in particular, Jim Kovach for experienced counsel and insight, Kelly Mish for helpful suggestions and editing of text, Judy Ausmus-Marfakhrai for compiling x-ray diffraction data, and Diana Schaefer for drafting cross sections. Special thanks are given to Sherry Peck who provided constant encouragement and patient assistance throughout this study.

Most of all, I wish to thank my family, who have always displayed confidence in my abilities, and who offered continued support of my work.

TABLE OF CONTENTS

Chapter	r	Page
I.	INTRODUCTION	. 1
	Objectives	• 1 • 2 • 2
II.	STRUCTURAL FRAMEWORK	. 8
	Regional Setting	• 8 • 8
	Local Structure	. 15
III.	STRATIGRAPHIC FRAMEWORK	. 17
	Introduction	. 17 . 21 . 21
	Paleostructure and Sand Distribution	. 23
	Cross Section A-A'	. 24
	Interval	. 24
	Stratigraphic Position of the Cottage Grove Sandstone	. 25
	Slope Changes	. 25
	Sandstone Thickness	. 26
	Cross Sections	 27 28 28
IV.	PETROLOGY	. 29
	Introduction	 29 34 34 34 37

•

Chapter

	Chert	37 39 39 41 41 45 45 45 45 48 51 51
v.	DESCRIPTIONS OF CORES	54
	Descriptions Sarkey's Inc., Gillispie No. 3-2 Sarkey's Inc., Gillispie No. 1-3 Petroleum Inc., Valentine No. 1 Odessa Natural Corp., Wreath No. 1 Ran Ricks Jr., Cole No. 28-A Summary	54 55 60 64 67 74 82
VI.	DIAGENESIS AND POROSITY	84
	Introduction Paragenesis	84 85 88 89 92 95 96 98 99 101 101
VII.	DEPOSITIONAL ENVIRONMENT	109
	Sedimentary Structures in the Cottage Grove Sandstone (Ridge Facies)	110

Chapter

Page	
------	--

Tides	•	•	110
Waves	•	•	115
Currents	•	•	116
Models of Deposition	•	•	119
Ridge Facies	•	•	119
Marine Channel Facies	•		120
Summary	•		122
Shallow Marine Ridge Sandstones	•		122
Shallow Marine Channel Sandstone	•	•	123
VIII. LOG SIGNATURE EVALUATION	•	•	124
Introduction	•	•	124
Methodology	•	•	125
Classification of Well-Log Signatures	•	•	125
Rock-to-Log Correlations	•	•	129
Response of Gamma Ray Log	•	•	129
Log-to-Log Relationships	•	•	135
Bulk Density (and Density Porosity			
Vs. Deep Induction	•	•	135
Bulk Density Vs. Medium Induction .	•	•	137
Degistivity			120
RESISLIVILY	•	•	тро
Buik Density VS. The Difference			
Latorolog Pogistivity			120
Lateroiog Resistivity	•	•	122
IX. CONCLUSIONS	•	•	141
REFERENCES CITED	•	•	147
APPENDICES	•	•	152
APPENDIX A - WELL-LOG DATA SHEETS	•	•	152
APPENDIX B - THIN SECTION ANALYSIS DATA SHEETS	•		169

LIST OF TABLES

Table								P	age
I.	Net Thin S	Section	Constituent	Averages	•	•		•	30

LIST OF PLATES

Plate

I.	Structural Contour Map, Avant "Hot" Shale Marker In Pocket
II.	Regional North-South Stratigraphic Cross Section A-A' In Pocket
III.	Local North-South Stratigraphic Cross Section B-B' In Pocket
IV.	Local East-West Stratigraphic Cross Section C-C' In Pocket
v.	Net-sandstone Isolith Map, Cottage Grove Sandstone In Pocket

LIST OF FIGURES

Figu	re	Pa	ge
1.	Location Map of Study Area	•	3
2.	Basement Structure of the Mid-Continent and Location of Study Area	•	9
3.	Paleogeographic Map of the Mid-Continent During Missourian Time	•	13
4.	General Geologic Section Illustrating Stratigraphic Nomenclature in Northern Oklahoma	•	18
5.	Type Log of Study Area Illustrating Desmoinesian Through Missourian Stratigraphy	•	20
6.	Well-Log Correlation Markers Used in Local Cross Sections	•	22
7.	QRF Plot of Thin-section Compositions from the Sarkey's, Gillispie No. 1-3 Core	•	31
8.	QRF Plot of Thin-section Compositions from the Sarkey's, Gillispie No. 3-2 Core	•	31
9.	QRF Plot of Thin-section Compositions from the Odessa Nat. Corp., Wreath No. 1 Core	•	32
10.	QRF Plot of Thin-section Compositions from the Petroleum Inc., Valentine No. 1 Core	•	32
11.	QRF Plot of Thin-section Compositions from the Ran Ricks Jr., Cole No. 28-A Core	•	33
12.	Photomicrograph of Quartz Grains and Syntaxial Silica Overgrowths with Crenulated Boundaries	•	35
13.	Photomicrograph of Characteristic Albite Grain in the Cottage Grove	•	36
14.	Photomicrograph of Representative Low- and High-rank Metamorphic Rock Fragments	•	38
15.	Photomicrograph of Typical Granitic Rock Fragment in the Cottage Grove Sandstone	•	40

16.	Photomicrograph of Glauconite Grain Encased in Poikilotopic Carbonate Cement 4	2
17.	Photomicrograph of Muscovite Flakes Concentrated Near Stylolites 4	3
18.	Photomicrograph of Bioclastic Deposit Fossil Assemblage	6
19.	Photomicrograph of Mud-filled Pelecypod 4	6
20.	Photomicrograph of Recrystallized Detrital Illite and Chlorite Clay 4	7
21.	Photomicrograph of Calcite and Ferroan Dolomite- Cemented Sandstone 4	9
22.	Photomicrograph of Feldspar Overgrowth in the Cottage Grove Sandstone 5	50
23.	SEM Photomicrograph of Barite 5	52
24.	Associated EDAX Readings for Barite Sample 5	52
25.	Photomicrograph of Pore-bridging Illite in Cottage Grove Sandstone 5	53
26.	Petrolog of Sarkey's, Gillispie No. 3-2 Core 5	56
27.	Photo of Sarkey's, Gillispie No. 3-2 Core 5	57
28.	Inclined Planar-bedding Containing Shale Clasts, Sarkey's, Gillispie No. 3-2 Core 5	58
29.	Interbedded Siltstone and Shale with Horizontal Burrows, Sarkey's, Gillispie No. 3-2 Core 5	59
30.	Petrolog of Sarkey's, Gillispie No. 1-3 Core 6	51
31.	Photo of Sarkey's, Gillispie No. 1-3 Core 6	52
32.	Graded Bioclastic Deposit Near the Base of Sandstone Facies, Sarkey's, Gillispie No. 1-3 Core	53
33.	Petrolog of Petroleum Inc., Valentine No. 1-3 Core	55
34.	Small Scale Cross-bedding, Petroleum Inc., Valentine No. 1-3 Core	56

35.	Petrolog of Odessa Natural Corp., Wreath No. 1 Core	•	•	68
36.	Photo of Odessa Natural Corp., Wreath No. 1 Core	•	•	69
37.	Soft-sediment Deformation in the Cottage Grove Sandstone, Odessa Natural Corp., Wreath No. 1 Core	•	•	70
38.	Sandstone Color Variations Due to Changes in Diagenetic Cements, Odessa Natural Corp., Wreath No. 1 Core	•	•	71
39.	Erosional Contact and Graded Sequence with Marine Fossil Material, Odessa Natural Corp., Wreath No. 1 Core	•	•	73
40.	Petrolog of Ran Ricks Jr., Cole No. 28-A Core	•	•	75
41.	Photo of Ran Ricks Jr., Cole No. 28-A Core	•	•	76
42.	Reworked Shale Deposit, Ran Ricks Jr., Cole No. 28-A Core	•	•	78
43.	Sedimentary Structures in the Cottage Grove, Ran Ricks Jr., Cole No. 28-A Core	•	•	79
44.	Sharp Diagenetic Contact Between Rock Cemented by Ferroan Dolomite and Calcite, Ran Ricks Jr., Cole No. 28-A Core	•	•	80
45.	Diagenetic Contact Between Rock Cemented by Ferroan Dolomite and Calcite, Ran Ricks Jr., Cole No. 28-A Core	•	•	81
46.	Outline of Characteristics, Cottage Grove Sandstone	•	•	83
47.	Cottage Grove Sandstone Paragenetic Sequence	•	•	86
48.	Photomicrograph of Crisscrossing Barite Cement Partially Replaced by Ferroan Dolomite Cement.	•	•	90
49.	Photomicrograph of Bladed Group of Barite Crystals Partially Replaced by Late Calcite Cement	•	•	90
50.	Photomicrograph of a Euhedral Ferroan Dolomite Crystal Surrounded by Late Calcite Cement	•	•	93

51.	Photomicrograph of Ferroan Dolomite that has Partially Replaced Early Calcite and Nonferroan Dolomite (Plane Polorized Light)	94
52.	Photomicrograph of Ferroan Dolomite that has Partially Replaced Early Calcite and Nonferroan Dolomite (Crossed Polarized Light)	94
53.	Carbonate Rich Deposit Completely Cemented by Interlocking Calcite Crystals	97
54.	Photomicrograph of Dissolution Pore Space Lined With Authigenic Mixed Illite and Chlorite and Filled With Kaolinite	100
55.	Plot of Porosity vs. Ferroan Dolomite Cement	103
56.	Plot of Porosity vs. Calcite Cement	103
57.	Photomicrograph of Porosity Textures in the Cottage Grove Sandstone	105
58.	Photomicrograph of Grain-dissolution Porosity Textures	106
59.	Photomicrograph of Dissolution Textures	106
60.	Photomicrograph of Dissolution Pore Space Filled by Kaolinite, Forming Microporosity	107
61.	Photomicrograph of Hybrid Secondary Porosity Developed Along a Stylolite	108
62.	Schematic Diagram of the Morphology and Currents of a Large Sand Wave in the North Sea	112
63.	Huthnance Model of Flow-oblique Sand Ridge Formation	113
64.	Schematic Diagram Illustrating Storm Wind Coastal Set-up and Cyclic Loading of the Substrate by Storm Waves	118
65.	Typical Gamma-ray Log Signatures of Ridge Facies	127
66.	Typical Channel-fill Well-log Signatures	128
67.	Interridge/Interchannel Well-log Signatures	130

Page

68.	Gamma-ray Log Signatures of Stacked Sandstone Sequences	•	•	131
69.	Graph of Total Illite vs. Gamma Ray	•	•	133
70.	Graph of Total Mica vs. Gamma Ray	•	•	133
71.	Graph of Average Grain Size vs. Gamma Ray	•	•	134
72.	Graph of Bulk Density vs. Deep Induction	•	•	136
73.	Graph of Density Porosity vs. Deep Induction	•	•	136
74.	Graph of Bulk Density vs. Medium Induction	•	•	138
75.	Graph of Bulk Density vs. Laterolog Resistivity.	•	•	139
76.	Graph of Bulk Density vs. Deep - Laterolog Resistivity	•	•	140

Page

CHAPTER I

INTRODUCTION

The subject of this investigation is the Cottage Grove Sandstone (Ochelata Group, Missourian Series, Pennsylvanian System) in west central Oklahoma. In the study area, the Cottage Grove produces oil and gas from a series of linear sandstone trends in the East Harmon, West Sharon, and North Ioland fields.

Objectives

This study focuses on the depositional environments, lithology, diagenesis, and well-log signatures of the Cottage Grove. Specifically, the objectives of this investigation were to:

1. determine the structural and stratigraphic settings of the Cottage Grove Sandstone,

2. explicate the lithologic, petrographic, and sedimentary attributes of the Cottage Grove Sandstone,

3. characterize the depositional environments associated with the deposition of the Cottage Grove Sandstone,

4. determine the diagenetic character and nature of porosity in the Cottage Grove Sandstone, and

5. delineate relationships that exist among the

petrology, diagenesis, and well-log surveys of the Cottage Grove Sandstone.

Location

The study area consists of 15 townships, 3 east-west by 5 north-south. Included are T17N through T21N, and R20W through R22W, in portions of Dewey, Ellis, Roger Mills, and Woodward counties, Oklahoma (Figure 1). Elevations below sea level to the top of the Cottage Grove interval in the study area range from -4850 feet in the north to -6650 feet in the south.

Methods of Study

To accomplish the objectives of this study a spectrum of investigative techniques were employed. A summary of these methods includes:

 <u>Literature</u> <u>review</u> - Review of literature included topics in diagenesis, depositional environments, stratigraphy and structural geology.

2. <u>Core evaluations</u> - Five cores of the Cottage Grove from the study area were studied and a petrolog prepared for each; petrologs include graphic summaries of lithology, sedimentary structures, color, grain size, and various constituents.

3. <u>Thin section evaluation</u> - Thin sections, drawn from the five cores, were evaluated quantitatively; X-ray diffraction and scanning electron microscopy were used in

conjunction with thin-section point count data to identify petrologic and diagenetic attributes of the Cottage Grove Sandstone.

4. <u>Cross-section preparation</u> - Regional and local welllog cross-sections were constructed to evaluate rockstratigraphic relationships of the Cottage Grove Sandstone.

5. <u>Subsurface-map preparation</u> - Subsurface maps incorporating more than 660 suites of well surveys were prepared, to determine the geometric configuration and structural setting of the Cottage Grove Sandstone. Well-log data were entered into a mapping system spreadsheet using an IBM XT personal computer; base maps were prepared using an Houston Instruments DMP-29 plotter. Well-log data sheets are contained in Appendix A.

6. <u>Well-log signature evaluation</u> - An integrated study of log-survey, core-lab and petrographic data were made to characterize various well-log responses in the Cottage Grove.

7. Data preparation - Graphs, plots, and figures were prepared to aid in the interpretation of various aspects of the study. Thin-section, core-lab, and well-log data were entered into a Lotus 1-2-3 spreadsheet to facilitate manageability of data, and to generate the statistics, tables, and graphs presented in this work.

Previous Investigations

Relative to other Pennsylvanian sandstones in the Anadarko Basin the Cottage Grove has received little

attention in print. Although a large number of publications make reference to the Cottage Grove, only a few discuss it in detail. Therefore, the following paragraphs contain highlights only of those articles deemed appropriate to this study.

The Cottage Grove Sandstone was named by Norman Newell after the Cottage Grove township in southern Allen County, Kansas (Moore, 1932). From an exposure in Washington County, Oklahoma, Oakes (1940) described the Cottage Grove as a buffcolored, fine-grained, massive to thin-bedded sandstone. Pate (1959) evaluated the Cottage Grove Sandstone in his study of stratigraphic traps on the northern shelf of the Anadarko Basin. He determined that many stratigraphic trap possibilities exist within the sequence of Paleozoic rocks because of onlap, interruption in deposition of sands and reef limestones, and convergence due to truncation.

Capps (1959) included the Cottage Grove in his assessment of Missourian and early Virgilian stratigraphy in northwest Oklahoma. From well samples, subsurface maps, and cross-sections he concluded that the Cottage Grove was deposited on a shallow marine shelf and that the source direction predominantly was to the south. Gibbons (1960) determined that the Cottage Grove was the western extension of strata east of the Nemaha ridge. He reported that the Cottage Grove interval of Woods County contained lenses of sandstone enclosed in siltstone and shale. He noted that these sandstones were isolated from larger sheet sands to the south. Rascoe (1962) described the distribution of the Cottage Grove in the Anadarko Basin; he considered its development to be related to the union of the Anadarko and McAlester basins, which formed a sedimentary trough across Oklahoma during Missourian time.

Holmes' (1966) study of the Cedardale Field in portions of Woodward and Major Counties, Oklahoma included the Cottage Grove. He interpreted the Cottage Grove as a series of submarine bars trending northeastward. He concluded that oil and gas accumulations occurred where bar sands wedged out updip into shales. Swanson (1967) described hydrocarbon accumulations that occur commonly as the result of marked facies changes along hinge zones. He used the Cottage Grove as an example, for it shows evidence of this type of entrapment along the northern hinge zone of the Anadarko Basin.

Lalla (1975) made a stratigraphic study of the Osage-Layton Sandstone (Cottage Grove equivalent) in north-central Oklahoma and determined that east of the Nemaha ridge, the Cottage Grove was deposited in a deltaic complex. Similar to Lalla's findings, Rascoe (1978) proposed that Missourian sandstones in central Oklahoma are the record of fluvialdeltaic conditions, but he added that equivalent sandstones in western Oklahoma formed under marine influences. Rascoe (1978) and Rascoe and Adler (1983) suggested that the source of Missourian clastics (including the Cottage Grove) was from the Ouachita foldbelt. This inference was based on the

evidence that Missourian sandstones grade from deltaic to marine east-to-west, that the sandstone content of this interval increases from west to east, and that clastic input from the south would account for the general confinement of equivalent carbonate deposits (Kansas-Lansing Group) to the north. However, this work introduces petrographic evidence suggesting that an additional or alternative source area may have existed.

In the last decade, Towns (1978) and Fruit (1986) reported similar depositional environments for the Cottage Grove in two areas of northwestern Oklahoma. Towns (1978) described the Cottage Grove Sandstone in the South Gage Field, Ellis County as an offshore shallow-marine bar. In a region approximately 12 miles east of the present study area, Fruit (1986) interpreted the Cottage Grove as an openmarine shelf deposit consisting of linear sand ridges encased in shale.

CHAPTER II

STRUCTURAL FRAMEWORK

Regional Setting

The study area is located on the northern flank of the Anadarko Basin (Figure 2). The basin is an elongate, westnorthwest trending, asymmetric feature that encompasses roughly 35,000 square miles in western Oklahoma, the northern Texas Panhandle and southwestern Kansas (Kennedy, 1982).

Major tectonic elements adjacent to the Anadarko Basin include the Nemaha Ridge, which separates the basin from the Central Oklahoma Platform to the east, and the paralleltrending Amarillo-Wichita Mountains, which bluntly mark its southern border. The basin is bounded on the northeast by the Central Kansas Uplift, on the northwest by the Las Animas Arch, and on the west by the Cimarron Arch-Keys Dome (Figure 2), (Moore, 1979).

Regional Geologic History

Before the Anadarko Basin developed as a distinct cratonic feature, most of southern Oklahoma was a geosynclinal area. The geosyncline had formed on the Pre-Cambrian basement rocks of southern Oklahoma and northern Texas. This area was described first by Schatski (1946) as

Figure 2. Basement Structure of the Mid-Continent and Location of Study Area (After Rascoe and Adler, 1983).

an example of an aulacogen. A study by Burke and Dewey (1973) explained the origin of aulacogens using the idea of a mantle plume or hot spot in conjunction with plate tectonics.

Aulacogens are formed in the later stages of an "evolutionary sequence" from uplift, through rifting and uplift generated triple-junction formation, to continental breakup (Burke and Dewey, 1973). In the initial stages the crust of the earth is upwelled due to a convective plume within the mantle. As upwelling continues, three rift arms developed into a "rrr" (ridge, ridge, ridge) triple junction. In general, this type of junction results in arms or rifts that are oriented at angles of approximately 120 degrees to each other. In subsequent stages, two of the rift arms form a single accretionary plate margin (ridge), and continental separation ensues, leaving the third rift arm (failed arm) as a graben. The graben extends into the continent and it develops as a mechanically weak zone in the lithosphere. Rifting stages usually are accompanied by igneous activity. As the aulacogen moves away from the hot spot it cools and The resultant low area is then the site of subsides. extensive sedimentation. Next, the ocean area that forms due to the spreading of the two active rifts may develop a subduction zone and begin to close. With closing, two plates converge, resulting in the "deformation stage". The tectonically weak aulacogen selectively is the site of major amounts of tectonism (Burke and Dewey, 1973).

The concept of aulacogens and their evolution has been applied directly to the formation of the Anadarko Basin (Rascoe and Adler, 1983). In Middle Cambrian, during the rifting stages, sediments filled this failed-arm graben. The Pre-Cambrian Tillman Group, deposited in the pre-aulacogenic basin, were metamorphosed during igneous events of the early rifting stages (Ham et al., 1964). In early phases of rifting, bi-modal igneous rocks were emplaced in southern Oklahoma. These rock-stratigraphic units are the Raggedy Mountain Gabbro and the Navaho Mountain Basalt. During the next phase, acidic rocks were emplaced, which include the Wichita Granite, and the Carlton Rhyolite.

Evidence of the subsident stage of the aulacogen is seen in Late Cambrian Reagan sandstone. The overlying stratigraphic sequence is predominantly carbonates, which were deposited during the Ordovician, Silurian and Devonian, culminating with the Devonian Hunton Group. Unconformities in Mississippian carbonates may represent epiorogenic activity (Al-Shaieb, 1986). These pulses of early uplift were precursors of the continental collision that closed the "Proto-Atlantic" ocean during the Pennsylvanian.

The deformational stage is recorded by siliceous clastic rock of Pennsylvanian age. The collision that culminated during the Atokan marked the beginning of clastic-dominated sedimentation in the basin. The uplifts that formed in direct relationship with the compressional tectonism included the Amarillo-Wichitas, the Arbuckles, and the Ouachitas. Their formation was largely controlled by the fault lines of the failed arm.

Granite washes from the uplifted Wichita Mountains were deposited into the rapidly subsiding Anadarko Basin, while Pennsylvanian marine clastics interfingered predominantly from the north and east (Moore, 1979). In Late Pennsylvanian time compression caused the thrusting of flysch-type sediments onto the Arkoma foreland basin. The uplift (Ouachita Mountains) of this large sedimentary pile of recycled continental-margin sediments provided a major source of clastic material for Oklahoma basins (Krumme, 1975).

The Anadarko Basin continued to fill with sediment as the basin subsided. Deposition in the southern Mid-Continent was coextensive with widespread shallow marine, deltaic, evaporite, and redbed deposits of the northern shelf of the Midland and Delaware Basins. Permian rock-stratagraphic units mark the final withdrawal of the Paleozoic seas from the Southern Mid-Continent (Moore, 1979).

Regional Paleogeography and Source Areas

Most authors, including Rascoe (1978), Towns (1978), Waller (1985), Moore (1979), Adler (1971), Gibbons (1960), and Capps (1959), have hypothesized or alluded to evidence suggesting that the source for the Cottage Grove Sandstone was the Ouachita mountains. The paleogeography of the area, together with known stratigraphic relationships of Missourian rocks, tend to support this interpretation.

Missourian paleogeography (Figure 3) illustrates the geomorphic configuration of tectonic features in Oklahoma and general thickness of Missourian rocks. In this interpretation, carbonate rocks of the Kansas-Lansing Group separate the clastic-rock terrain of the study area from the clastic wedges that were deposited in front of the Ancestral Rockies (Apishapa-Sierra Grande uplift). In addition, coarse-grained sediments that were shed northward from the Amarillo-Wichita are segregated from the study area by the axial trough of the Anadarko Basin. Apparently, a distant

Figure 3. Paleogeographic Map of the Mid-Continent during Missourian time (After Rascoe and Adler, 1983).

continental interior source of the Cottage Grove sediments is not likely, a judgment based on the types of Missourian rocks in southeastern Kansas and northeastern Oklahoma (the area over which clastics would have prograded to reach the Anadarko shelf).

Based on evidence cited by the aforementioned authors, I tend to agree that the Ouachita Mountains were the primary source of sediments in Cottage Grove. However, a petrographic study done in this work (see Chapter IV) reveals occasional granitic rock fragments in the Cottage Grove Sandstone. These rock fragments are inconsistent with the theory that the Ouachita Mountains were the only source area. The Ouachitas are composed mostly by metamorphic and siliceous rocks, but plutonic rocks have not been recorded.

As previously mentioned, this author asserts that the Ouachita Mountains are the principal source area for Cottage Grove sediments. I concur with the consensus of other the presence of granitic rock fragments. The position of the secondary source requires investigation beyond the limits of this study. However, I believe that the Ancestral Rockies or the Wichita Mountains are the most likely terrain because they were the closest plutonic entities during Missourian time.

Local Structure

Structural features in the study area are illustrated by a structural contour map of the base of the Avant limestone (Plate I). The Avant was used as a reference because at its base is a "hot shale" marker bed which is present throughout the study area (See Figure 5, Chapter III).

No significant closure or faults are exhibited by the Avant structural contour map. The map reveals a relatively constant, southerly dipping, homoclinal surface. The average regional dip of this surface is approximately 57 feet per mile; however, dip locally is as much as 110 feet per mile. Structural sub-sea-level elevations range from approximately -4850 feet in the north to -6650 feet in the south.

Superimposed upon the homocline are anticlinal noses, synclinal noses and a few local anticlines.

A regional anticlinal nose is expressed in the eastern third of the mapped area in R2OW., from T18N. through T2ON.. Apparently, this positive feature existed through deposition of the Tonkawa, and was present as far back in time as deposition of the Oswego Limestone (Evans, 1979). This anticlinal nose seems to have partially controlled the deposition of the Cottage Grove Sandstone.

A local synclinal feature is expressed in the NE quadrant of T18N., R22W. Assuming that paleostructure was partially preserved or even enhanced by compaction, contours suggest that this depression represents a ravine that was carved out or already existed during the deposition of sands found immediately to the south in the North Ioland Field. This interpretation is supported by a southerly inversion of the structural contour lines from a syncline in the north to an anticline the south; the syncline may represent an area of sediment bypass, and the anticline an area of structural draping and differential compaction across the sand deposit.

Local anticlinal noses are also in Township 17 North and Ranges 20 through 21 West. These noses coincide with thick sand accumulations in the Cottage Grove interval. They, like the anticline described above, are attributed to draping and differential compaction of sediments during dewatering and subsidence of the basin.

There is a notable, relatively consistent relationship between the anticlinal noses along the monocline and the presence of the Cottage Grove Sandstone. However, this relationship seems to be dependent on the orientation and thickness of the sand body with respect to structural strike. Hence, if the sand body were thin and/or roughly parallel to strike then it became masked or otherwise scarcely manifest; the more dip oriented and/or thicker the sand body, the more likely it was to have been expressed as a anticlinal nose.

CHAPTER III

STRATIGRAPHIC FRAMEWORK

Introduction

The Cottage Grove Formation is in the lower part of the Ochelata Group of the Missourian Series, Pennsylvanian System (Figure 4). The Missourian Series includes the rocks from the top of the Marmaton Group to the base of the Virgilian Series (Capps, 1959). Missourian rocks consist of granite wash and carbonate wash along the Wichita Mountain front, whereas northward onto the shelf the sequence consists of shales, siltstones, sandstones and carbonates. These rocks grade northward into the carbonates of the Lansing-Kansas City Group in Beaver, Harper and Woods Counties (Gibbons, 1960).

The Missourian Series is divided into the Ochelata Group above and Skiatook Group below (Lukert, 1949). The Hoxbar Group of southern Oklahoma is a rock-stratigraphic unit regarded as being equivalent to both the Ochelata and the Skiatook Groups. In the study area the Cottage Grove Sandstone is contained within a "package" of interbedded sandstone and shale; the package is bounded by limestone. The upper bounding unit contains the Avant Limestone of the Ochelata Group; whereas the lower bounding unit contains the

			1			
SERIES	GROUP			NORTHWEST OKLAHOMA	NORTH CENTRAL OKLAHOMA	NORTHEAST OKLAHOMA
мионти	Cites	Wabaunsee	Wabnunaee	Brownville im Graphore Bionobroketing Cryptozoan Neppy Kollew Noward Topska im Dear Creek im Bacer Creek im Haberer ad Novard Koreek Dear Creek im Berwitzek im Creek im Novard Koreek Novard Koreek Dear Creek im Haberer ad Novard Koreek Creed im Englectt Englect		
		termine a	Shewnee		Topeka Im Perrinaka Im (Deer Creek) Hoover ad Eigin ad Creed Im Endicott ad	Pawhuska km Eigin (Carmichael) Oraed im Wynone ed Lovell im
		Dougles	Dougles	Torento Amazonia Upper Tonkawa ad Haskeil Im Lower Tonkawa ad	Lovel of Lovel of Tonkows of (Stainsker)	Zigheert Fourmile
NYIMOSSIW	Hoxber	Ocheleta	Enional	Avant Im Cottage Grove ad (Mussellom)	Wildhores Im ("Avent") Perry Ges ed. Avent Im Osege Layton	Wildhorse Im Okesa ad Torpado ad Ciem Creek ad Avant im Mussellem ad Peoples ad
		8klatook	Kanses City	Dewey Im Hogahooler Im Layten ed Checkerboard Im Cleveland ed	Dewey (Belle City) im Hogshoolar im Layton ad Checkerboard im Cleveland (Jones) ad	Dewey Im Nollie Bly ah Hogshooter Im Cotteyville ah Checkerboard Im Seminole Im (Cleanant at)
		Mermaton	Marmeton	Big Lime Peru sd Oswege im	Big Lime Otwege im	Lanapah im Nowata sh Wayaida ad Cologah im Labatte sh-Peru sd Gourgo im (Fort Scott im Wheeler ad) Prot (Soutret) ad
DESMOINESIAN	Deese	Charokee	Z Charokee	Verdigrie im Pink im Red Fork ed (Cherekee ed) Incin im Barticevitie ed	Prue ad Verdigirle im Bikione ad Pink im Red Park ad Earlsbore ad Bartleeville ad	Veragers in Skinner ad Cholose ad Pink im Red Fark ad (Burbank ad) Barisentile (Gient, Satt) Savanne Brown im Tanaha ad Warner ad
ATOKAN	Upper Demist Hille		Aloka S	Thirlisen Finger in		Gilonesso- Dutcher ede
MCRROWAN		Lewer Dernick Hills Upper	Мотом	Morrew sh Purdy ad Morrow ads (Kayes ad, Mocane ad)		Lyone ada

Figure 4. General Geologic Section Illustrating Stratigraphic Nomenclature in Northern Oklahoma (After Chenoweth, 1979).

and a

Hogshooter Limestone of the Skiatook Group. These limestones are regarded as being equivalent to shelf cyclothem members of the Lansing-Kansas City Group, which were deposited during maximal transgression (Rascoe and Adler, 1983). The boundary between the Ochelata and Skiatook Groups, as defined by Capps (1959), is at the base of the Cottage Grove Sandstone. In Kansas and eastern Oklahoma the Cottage Grove Sandstone has been referred to in the subsurface as the Osage-Layton, Broyles-Layton, Peoples-Layton, and Musselem sandstones (Jordan, 1957). In outcrop, the term Nellie Bly has been applied to the stratigraphic equivalent of the Cottage Grove Sandstone (Lalla, 1975).

Regionally correlative "hot" shale beds are associated with both the Avant and Hogshooter Limestone intervals. Figure 5 shows a type log from the study area that illustrates partial Pennsylvanian stratigraphy and the relative positions of the Avant and Hogshooter "hot" shale markers. Logs of both limestone intervals include two pronounced rightward deflections of the gamma-ray curve ("hot" shale markers). The lowermost shale deflections of the Avant and Hogshooter intervals were used as markers for correlations and mapping.

The Cottage Grove interval is defined as the stratigraphic section above the Hogshooter "hot" shale marker and below the Avant "hot" shale marker. The Cottage Grove proper is defined as only that portion of the Cottage Grove interval characterized by course clastics, which is

Figure 5. Type Log of Study Area Illustrating Partial Pennsylvanian Stratigraphy; •: Positions of Gamma Ray "Hot Shale" Markers.

recognized by a gamma-ray deflection of magnitude distinctively larger than that of the shales both above and below the unit.

Correlations

One regional and two local stratigraphic cross sections (Plates II, III, and IV) were constructed to show characteristics of the Cottage Grove Sandstone and its relationships to adjacent units. Markers used in the regional north-south cross section include (1) the "hot" shale markers at the Avant and Hogshooter intervals, (2) the base of the Checkerboard Limestone below, and (3) the base of the Tonkawa Sandstone above. Markers used in the more detailed local north-south and east-west cross sections include (1) the Avant "hot" shale marker (2) non porous, "tight" deflections exhibited by porosity curves (neutrondensity, sonic, or density) within the Cottage Grove Sandstone and (3) gamma-ray and porosity curve log signature "shoulders" or "stair-steps" which express variations in the shale content of the upper Cottage Grove Sandstone (Figure 6).

Cottage Grove Net Sandstone Isolith Map

The Cottage Grove Isolith map (Plate V) illustrates a series of sand bodies that with only one exception trend east north-eastward. The exception is a sand trend in T18N and R22W that is oriented northward. The depositional

Figure 6. Well-log Coorelation Markers used in Local Cross Sections.

environment of the north trending sand deposit is considered to have been different than that of the east-west trending sands.

In the northern half of the study area, sand isolith thicknesses rarely exceed 35 feet, whereas, in the southern half are as much as 96 feet. Sand deposits in the north measure from 1 to 1 and 1/2 miles wide by 2 to 7 miles long. In the south log signature evidence suggests that several sands are stacked. The dimensions of the individual sand deposits in this area cannot be assessed due to the merging effect of the isolith map.

Delineation of individual sand deposits in areas of stacking is rather complicated. In the author's opinion, the gamma-ray and neutron-density curves, are best suited for correlations of this type, because in the study area, resistivity curves tended to be less responsive to lithologic variations in the Cottage Grove than neutron-density curves. Also, the SP curve commonly is suppressed in instances where the gamma-ray curve indicates a well developed sand.

Paleostructure and Sand Distribution

Paleostructural geology may have influenced distribution of the Cottage Grove Sandstone in the study area. The Avant structural contour map (Plate I) exhibits a broad anticlinal feature that extends from T18N to T21N of R20W. This area is devoid of Cottage Grove sands, as shown by Plate V. Evans (1979) indicated that an anticline existed in this
approximate area in the time-interval from deposition of the Oswego to deposition of the Tonkawa. He added that carbonate banks intermittently were superimposed upon this anticline. Assuming that relief on the sea floor was generated by the anticline, clastic sediments should have been closer to sea level, and could have been in realm of wave reworking. If this were the case, then wave action could have prevented sands from accumulating in this area. Sand ridges could have formed selectively in deeper water, off the crest of this feature.

North-South Regional Cross Section A-A'

The north-south regional cross-section A-A' was constructed to (1) evaluate variations in the Cottage Grove interval, (2) determine the position of the sandstone within the interval, (3) examine lateral variations of the sandstone facies, and (4) depict, if present, any changes in paleodepositional slope.

Variations in the Cottage Grove Interval

Cross section A-A' (Plate II) indicates that the Cottage Grove interval increases in thickness southward. Along the path of this section, the interval varies in thickness from approximately 235 feet in the north to 390 feet in the south. The rate of interval thickening is relatively constant from T21N to the central part of T18N at approximately 2 feet per mile; however, from the middle part T18N through T17N the rate increases to approximately 14 feet per mile.

Stratigraphic Position of the

Cottage Grove Sandstone

The stratigraphic position of the Cottage Grove Sandstone varies within the Cottage Grove interval from north to south. In the northern part of the study area, the top of the Cottage Grove Sandstone is 35 feet below the Avant "hot" shale marker, whereas to the south it is as much as 150 feet below the marker.

The variation in position of the sand may be explained by a marine transgression. Presumably, a brief regressive phase during an overall Missourian transgression brought course clastics (Cottage Grove Sandstone) from the eastsoutheast to the shelf. During early transgression following the regression, sand deposition may have migrated higher and northward onto the shelf.

Lateral Variations and Slope Changes

Increase in the Cottage Grove interval described previously seems not to indicate a significant change in paleodepositional slope -- ie. a shelf/slope hingeline. The "transition zone" or area were the Cottage Grove interval begins to increase represents a change in dip of 0.13 degrees, from 0.02 in the north to 0.15 degrees in the south (based on differences measured between the Avant and Hogshooter hot shale markers). Typical shelf to slope breaks are marked by dip changes of 3.0 degrees or more; from shelves with mean inclinations of 0.07 degrees to slopes with average dips of 4 degrees or more (Davis, 1983). Furthermore, the Avant Structure Map does not indicate a change in slope suggestive of a hingeline.

Based on this evidence it appears as though an actual shelf break or hingeline is not within the 30-mile northsouth dimension of the study area.

Interval Thickness Compared to Sandstone

<u>Thickness</u>

Thickening of the Cottage Grove interval in the southern part of the study area coincides with a marked increase in sandstone thickness. North of central T18N, sand thicknesses do not exceed 30 feet; south of this point thicknesses range up to 90 feet. Two hypothesis have been developed to explain the relationship between sandstone thickness and interval thickness. One hypothesis is related to differential compaction and the other to basin subsidence.

In the first explanation, thinning of the Cottage Grove interval is attributed to differential compaction of the section in the presence of thicker sandstone deposits. This process would have led to the illusion of local thickening of section. Towns (1978) and Fruit (1986) documented examples of interval thickening associated with the presence of sandstone in the section. However, the interval thickness in well 11 of cross section A-A', at least in part appears to be

independent of the sandstone thickness. In this well, the Cottage Grove interval is thickened but rather than a thick sandstone unit as might be expected, a relatively thin sand body is present instead. This suggests that one or more other mechanisms may be involved in the interval-thickening of this area.

In the second explanation, thickening is attributed to subtle downwarping associated with basin deepening. This downwarping, if associated with more-or-less continual deposition, would result in vertical stacking of sediments over time. Several log signatures in the southern area have indicated the presence of stacked sand bodies. This working hypothesis differs from the first in that interval thickness is a function of basin subsidence and not necessarily of sandstone thickness.

Local East-West and North-South Cross Sections

North-south (B-B') and a east-west (C-C') cross sections (Plates III and IV) were prepared to examine the lateral and vertical stratigraphic relationships of the Cottage Grove Sandstone in the southwest part of the study area. Two separate sand facies are delineated; designated facies "A" and facies "B". Facies A represents an east-trending sandstone unit that is interpreted as a marine bar sequence, and facies B represents a north-trending sandstone unit that is interpreted as a marine channel. Criteria used to interpret the depositional environments of these sands are listed in Chapter VII.

Cross-section B-B'

Facies A and B overlap in the vicinity of the border between Townships 17 and 18 North of Range 22 West. South of T18N facies B grades to shale. Facies A is present only in the area depicted in the southern half of cross section B-B'. In terrain where the facies overlap, facies B is best delineated from facies A as shown in well 12 of cross-section B-B' (well 8 of C-C'). In this well 10 feet of shale separates facies A from facies B. The shale break wedges out along B-B' and C-C' cross-sections, resulting in facies B overlying facies A directly.

Cross-Section C-C'

Cross section C-C' illustrates how facies A and B vary from east to west. This cross section is strike-oriented with respect to facies B and approximately dip-oriented with respect to facies A.

As shown by this cross-section, sand development in facies B is separated laterally into two units. Sands of facies B sands are developed in wells 1 through 3 and wells 7 though 10. Presumably, the separate sands are evidence of the bifurcation of the north-trending channel of T18N, R22W.

CHAPTER IV

PETROLOGY

Introduction

Five cores were logged and evaluated petrographically by analysis of 60 selected thin sections in order to provide a detailed lithologic appraisal of the Cottage Grove Sandstone. Thin-section examination consisted of at least three sets of 100 point counts each; each set was averaged to attain an estimated percentage of detrital and diagenetic constituents. Net constituent averages for each core are reported in Table 1. Results from individual thin-section analysis are contained in Appendix B.

Compositional percentages of detrital constituents are relatively uniform. However, diagenetic constituents vary so much as to produce major compositional differences in the cores. Ternary diagrams (Figures 7 through 11), normalized for quartz, rock fragments, and feldspar (standard Folkian plots), provide visual representation of the individual thin-section compositions from each core. Fourtyfive of the thin-section samples plot as litharenites and 14 plot as sublitharenites. Lithic-constituent grains are subrounded to rounded, well sorted, and have moderate to high sphericity. Overall, grain size averages in the very-fine

	S AVG. (%)	G AVG. (%)	W AVG. (%)	V AVE (%)	R AVG. (%)	NET AVERAGE (%)
DETRITAL CONSTITUENTS	65.3	70.8	65.4	61.7	69.3	66.5
QUARTZ MONOCRYSTALLINE POLYCRYSTALLINE	45.6 43.9 1.7	51.5 48.6 2.9	40.7 39.2 1.5	43.3 40.8 2.4	47.1 43.9 3.3	45.6 43.3 2.4
FELDSPAR MICROCLINE PLAGIOCLASE	3.5 1.4 2.2	3.6 0.9 2.7	3.5 0.4 3.0	2.9 0.5 2.5	3.8 0.4 3.4	3.5 0.7 2.8
ROCK FRAGMENTS SHALE CHERT CARBONATE SILTSTONE METAMORPHIC PLUTONIC	7.3 0.8 0.6 0.6 0.4 5.4 0.0	8.5 0.4 2.1 0.5 0.1 5.6 0.2	8.5 0.7 1.6 0.3 0.1 6.0 0.1	6.3 0.5 1.0 0.6 0.3 4.1 0.0	8.4 0.8 1.4 0.6 0.0 5.7 0.1	7.8 0.6 1.4 0.5 0.2 5.4 0.1
OTHER GRAINS DETR. CHLORITE GLAUCONITE PHOSPHATE MUSCOVITE BIOTITE ZIRCON TOURMALINE LEUCOXENE FOSSIL FRACS	8.8 0.6 0.5 0.6 2.0 0.6 0.5 0.5	7.1 0.9 0.4 0.2 2.8 0.8 0.5 0.6 0.7	12.7 1.2 0.5 0.3 4.8 0.9 0.7 0.6 0.8	9.3 0.9 0.4 0.3 4.5 0.9 0.5 0.5 0.5	10.0 1.4 0.3 4.6 0.6 0.6 0.5 1.1	9.6 1.0 0.4 0.3 3.7 0.8 0.6 0.5 0.5
DETRITAL MATRIX	2.2	2.4	2.0	5.0	2.9	2.9
ILLITE CHLORITE	1.7	2.1 0.3	1.6 0.4	4.3 0.8	2.4	2.4 0.5
DIAGENETIC CONSTS.	32.5	26.8	32.5	33.3	27.8	30.6
CEMENTS QUARTZ FELDSPAR CALCITE DOLOMITE FE DOLOMITE BARITE	25.0 4.4 10.2 1.1 13.3	21.2 3.1 0.5 6.9 2.8 8.4 0.0	23.2 2.1 0.0 7.2 1.5 10.8 1.9	28.5 1.8 0.0 3.7 0.5 21.8 1.4	18.6 0.8 0.0 9.1 0.1 8.4 1.0	23.3 2.4 0.1 7.4 1.2 12.5 0.9
AUTHIGENIC CLAYS KAOLINITE ILLITE CHLORITE	2.0 1.4 0.7	1.8 0.7 0.7	1.8 0.6 1.0 0.3	1.7 0.7 0.8 0.3	1.8 0.3 1.1 0.5	1.8 0.7 0.9 0.4
HYDROCARBON	0.5	0.3	0.5	0.4	0.4	0.4
POROSITY PRIMARY SECONDARY	5.3 0.0 6.4	3.5 0.4 3.3	7.1 0.3 6.9	2.7 0.5 2.6	7.0 0.4 6.8	5.1 0.3 5.2
AVE. GRAIN SIZE (MM) ***********************************	0.12	0.13	0.1	0.08	0.1	0.l ********
QUARTZ ROCK FRAGMENTS FELDSPAR	69.33 25.26 5.41	72.0 22.6 5.4	61.8 32.9 5.3	70.0 25.2 4.8	68.0 26.5 5.5	68.2 26.5 5.3
	S AVG. (%)	G AVG. (%)	W AVG. (%)	V AVE (%)	R AVG. (%)	NET AVERAGE (%)
S = SARKEY'S GILLISPIE NO. 1-3 G = SARKEY'S GILLISPIE NO. 3-2						

Net Thin Sections Constituent Averages

GILLISPIE NO. 3-2 W = ODESSA NAT. CORP. WREATH NO. 1 V = PETROLEUM INC. VALINTINE NO. 1 R = RAN RICKS JR. COLE NO. 28-A

. .

igure 8. QRF Diagram Plot of Thin-section Compositions from the Sarkey's, Gillispie No. 3-2 Core.

Figure 11. QRF Diagram Plot of Thin-section Compositions from the Ran Ricks Jr., Cole No. 28-A Core.

sand range (.063-.13mm).

Detrital Constituents

<u>Quartz</u>

Quartz is the dominant framework grain of the Cottage Grove Sandstone. Monocrystalline quartz comprises an average of 43 percent of the rock volume whereas polycrystalline varieties constitute only slightly more than 2 percent overall. Quartz grains range in size from course silt to fine sand (.05-.17mm), are subrounded to rounded, and have moderate to high sphericity. Syntaxial quartz overgrowths (Figure 12) constitute trace amounts to 8 percent of the rock. Most quartz grains display slightly undulose extinction and only a fraction contain mineral inclusions.

<u>Feldspar</u>

Feldspars occur in small percentages within every thin section. The most abundant variety is albite (Figure 13) which averaged 3 percent and was identified by albite twinning. Microcline constitutes trace amounts to slightly more than 1 percent of the rock. Microcline grains are characterized by cross-hatch or "tartan" twinning.

Grains of feldspar show effects of dissolution that range from slight corrosion to complete eradication. Grain sizes of feldspars average as very-fine sand (.063-.13mm).

Figure 12. Quartz Grains and Syntaxial Silica Overgrowths with Crenulated Boundaries; Cross Polarized (100X).

Figure 13. Characteristic Albite Grain in the Cottage Grove Sandstone; Cross Polarized (100X).

Metamorphic Rock Fragments

Low grade metamorphic grains are the most common type of metamorphic rock fragment (MRF) noted in thin-sections. Low-rank fragments of the Cottage Grove display moderately high birefringence in thin-section and have elongate micaceous crystal habits. These grains are probably phyllites or low-grade schist. Other, less abundant metamorphic rock fragments display numerous, elongate, crenulated crystals that are typical of high grade varieties. Figure 14 shows examples of the low- and high-rank fragments in the Cottage Grove. On the average, metamorphic fragments are 5 percent of the total rock volume, but in some instances they constitute as much as 9 percent.

<u>Chert</u>

Chert is typified by a microcrystalline quartz fabric and "salt and pepper" appearance under cross nicols. Chert was found in almost every sample and averaged 1.4 percent overall.

Shale Rock Fragments

Rock fragments appearing very similar to low grade metamorphic rock fragments but possessing a "duller" appearance, and lacking a lineated fabric, were categorized as shale clasts. On the average, shale clasts are slightly larger than the mean grain size; they are associated with higher-energy bedforms. Shale clasts occur in trace amounts.

Figure 14. Representative Low Grade (L) and High Grade (H) Metamorphic Rock Fragments in the Cottage Grove Sandstone; Cross Polarized (100X).

Carbonate Rock Fragments

Carbonate-rock fragments generally are found in bioclastic deposits. Carbonate fragments in the Cottage Grove are composed of micrite. Carbonate-rock fragments constitute as much as 2 percent of the rock in bioclastic deposits; in other rocks carbonate fragments rarely are more than trace amounts.

<u>Siltstone</u>

Siltstone fragments are generally larger in diameter than the average framework grain. Siltstone was camouflaged in fine grain sediments of similar composition, especially where siltstone grain boundaries were squeezed. Siltstone fragments constitute trace amounts in approximately one-third of the thin sections.

Plutonic Rock Fragments

Plutonic or granitic rock fragments (Figure 15) in several thin sections range from trace amounts to 2 percent of total sample. As discussed in Chapter II, plutonic rock fragments are not consistent with the theory that the Ouachita Mountains were the source area for these sediments. Granitic rock fragments in the Cottage Grove are characterized by siliceous grains containing laths of plagioclase minerals. Dimensions of granitic rock fragments are generally equivalent to those of other framework grains.

Figure 15. Typical Granitic Rock Fragment (G) in the Cottage Grove Sandstone; Cross Polarized (100X).

<u>Glauconite</u>

Glauconite constitutes trace percentages in nearly every thin-section. Typically it occurs as well rounded, green grains (Figure 16) as observed in ordinary and polarized light. A ductile mineral, glauconite commonly is squeezed into pseudomatrix morphologies. Glauconite grains range from 0.06 to 0.10 mm in diameter.

<u>Mica</u>

The most common mica in the Cottage Grove is muscovite. Muscovite averages 4 percent of the rock volume overall, but constitutes as much as 13 percent of some very-fine-grained samples. Detrital chlorite (a phyllosilicate) and biotite also are present in compositional averages of 1 and 0.8 percent respectively. Muscovite and biotite appear in thinsection as elongate, highly birefringent flakes; detrital chlorite displays more of a "book-like" morphology and is green to "ultra blue" under cross nicols.

Mica grains are commonly concentrated in stylolites where the mica exhibits elastic deformation due to compaction (Figure 17). Mica grains range from 0.04 to 0.30 mm in length.

Fossil Fragments

The diversity of fossil fragments in the Cottage Grove is best expressed by basal bioclastic deposit of the Sarkey's Gillispie No. 1-3 core. A thin-section from this deposit

Figure 16. Glauconite Grain Encased in Poikilotopic Carbonate Cement; Cross Polarized (100X).

Figure 17. Muscovite Flakes Concentrated near Stylolite and Exhibiting Elastic Deformation due to Compaction; Cross Polarized (20X).

reveals a variety of marine fossil fragments, intraclasts, pelloids and ooids. Together these constituents comprise 45 percent of the sample. Fossil fragments include echinoderms, brachiopods, crinoids, bryozoans, pelecypods, gastropods, and foraminifera. Figure 18 displays a typical assemblage of fossil fragments from this deposit.

Fossil fragments obviously have been transported and redeposited with the sands. The graded bioclastic deposits appear to have been transported by turbidity currents (see discussion in Chapter VII). The allochthonous nature of the fossils is supported by a micrite filled pelecypod (Figure 19) that was incorporated in the bioclastic deposit. This is a strong indication that the pelecypod had been deposited first in a relatively quiet, muddy shelf setting. Excluding bioclastic deposits, fossil fragments constitute trace percentages in approximately two-thirds of the thinsections.

Detrital Matrix

Detrital matrix in the Cottage Grove sandstone consists of illite and chlorite. An attempt was made to delineate the detrital clay from authigenic clay based on morphology and diagenetic relationships. In actuality, all clays deemed to be detrital appeared to be recrystallized (technically diagenetic) in thin-section. Clay recrystallization was also indicated by x-ray diffraction analysis (i.e., high crystallinity reflected by sharp diffraction peaks).

Detrital illite averages 2.5 percent overall, and detrital chlorite 0.5 percent. Illite and chlorite commonly are mixed (Figure 20). Detrital clay percentages range from trace amounts to 20 percent of the rock.

Detrital carbonaceous material is very uncommon in samples, but where present, was grouped with detrital illite for classification purposes. Carbonaceous material occurs in minute trace amounts and is concentrated near some of the stylolites.

Accessory Minerals

The majority of thin sections contain trace amounts of zircon, tourmaline, and leucoxene. Only rare occurrences of phosphate, sphene and garnet were noted, also in trace amounts. Sphene and garnet were grouped with tourmaline. Accessory minerals range in diameter from 0.05 to 0.13 mm and generally are 0.02 to 0.04 mm smaller than the average framework grain size.

Diagenetic Constituents

<u>Silica</u>

Syntaxial quartz overgrowths constitute percentages that range from 0 to 8 percent of the rock, and average 2.4 percent overall. The precipitation of silica cement took place early, shortly after burial. Quartz overgrowths are present in nearly every thin-section except those with

Figure 18. Bioclastic Deposit Fossil Assemblage Including a Foraminifer (F), Bryozoan (B), and an Echinoderm (E); Plane Polarized (20X).

Figure 19. Mud-filled Pelecypod (P); An Echinoderm (E) and Several Ooids are also Pictured; Cross Polarized (20X).

Figure 20. Recrystallized Detrital Illite and Chlorite Clay Matrix (M); Also note Authigenic Kaolinite (K) Which fills the Void lined by the Clays; Cross Polarized (40X).

large percentages of detrital matrix. In these samples detrital matrix inhibited silica cementation. The presence of sparse dust rims kept areas with abundant silica overgrowths from appearing as mosaics of interlocking crystals with no apparent nuclei (refer to Figure 12).

Carbonate Cements

Three types of carbonate cement are present in the Cottage Grove Sandstone: ferroan-dolomite, dolomite, and calcite. The most abundant variety is ferroan-dolomite followed by calcite then dolomite. Figure 21 illustrates a sandstone, the cement of which is divided between poikilotopic calcite and ferroan-dolomite cements. Ferroandolomite, calcite and non-ferroan dolomite cements constitute net compositional averages of 12.5, 7.4, and 1.2 percent respectively. Both ferroan dolomite and calcite are porefilling cements and grain replacements. Nonferroan dolomite commonly occurs encased in ferroan-dolomite.

<u>Feldspar</u>

Feldspar overgrowths constitute minute trace amounts; they were recorded in only a few thin sections. In these rare instances, the syntaxial feldspar overgrowth formed in optical continuity with a partly altered feldspar grain (Figure 22). Overgrowths largely are inclusion-free and unaltered. They were judged to be authigenic because of their interlocking contacts with adjacent grains.

Figure 21. Calcite and Ferroan dolomite-cemented Sandstone. The Calcite has been Stained Red by Alizarine Red and the Ferroan dolomite Stained Blue by Potassium Ferricyanide; Plane Polarized (20X).

Figure 22. Feldspar Overgrowth in the Cottage Grove Sandstone; Cross Polarized (100X).

Barite

Barite cement occurs in 3 of the 5 cores; it averages 1.5 percent of the net rock volume. Barite precipitated in scattered clusters of crystals as a pore filling, replacive and displacive cement (Figures 23 and 24).

<u>Clays</u>

Three authigenic clays are noted in the Cottage Grove Sandstone. Overall, kaolinite, illite, and chlorite, compose 0.7, 0.9, and 0.4 percent of the total rock respectively.

Kaolinite precipitated in "booklet" fashion as a pore filling clay. Illite precipitated as a pore filling, pore bridging (Figure 25), and pore-lining clay. Chlorite precipitated as a pore-filling clay mixed with illite.

<u>Porosity</u>

In thin-section, porosity values range from 0 to 16 percent, and averaged 6 percent. The porosity is almost exclusively secondary, owing primarily to dissolution of authigenic carbonate cements. A detailed discussion of porosity is found in Chapter VI.

Figure 23. SEM Photomicrograph of Barite (B) in the Cottage Grove Sandstone; (1000X).

Figure 24. Associated EDAX Readings for Barite Sample Above.

Figure 25. Pore-bridging Illite in Cottage Grove Sandstone; Cross Polarized (100X).

CHAPTER V

DESCRIPTIONS OF CORES

This chapter deals with the descriptive analysis of five Cottage Grove cores. The wells are located in the western half of the study area in Ellis and Woodward Counties, Oklahoma. Two cores are from T17N, R22W, one from T19N, R22W, one from T20N, R21W, and one from T21N, R21W (Refer to Figure 1). In order to be in concordance with the events of depositional history, the lowermost unit of each core is described first, and discussions of progressively younger units follow.

Descriptions

The Sarkey's Inc., Gillispie No. 3-2 core was evaluated in conjunction with the Sarkey's Inc., Gillispie No. 1-3 core. These cores were taken from wells located approximately 1 mile apart in sections 2 and 3 of T17N, R22W. Well-log correlations and curve shapes from these wells indicate that the two wells penetrate the same sandstone body. However, neither core contains a complete sequence of the sandstone facies. The Gillispie No. 3-2 core contains the upper portion of the sandstone and a portion of an overlying shaly facies. The Gillispie No. 1-3 core contains the lower portion of the sandstone and the basal sandstone-

shale contact. Hence, both cores were logged to define better the complete sandstone interval.

Sarkey's Inc., Gillispie No. 3-2

The Sarkey's No. 3-2 well is located at SE NW SE NW, Sec. 2, T17N, R22W, in the Ioland Field, Ellis Co., Oklahoma. The core from this well is approximately 42 feet long, from 8540' to 8581.5' core depths (-6443' to -6484.5' subsea) (Figures 26 and 27). Two facies are delineated, a lower sandstone facies (8552'-8582'), and an upper interbedded, very-fine sandstone and shale facies (8540'-8552').

The lower portion of the core (8552'-8574') exhibits a variety of sedimentary structures. These include horizontal plane bedding, inclined-plane bedding, small scale trough cross-bedding, and stylolites. Inclined-plane bedding (regarded as medium-scale tabular-planar cross-bedding) often contains shale clasts and fossil fragments (Figure 28). Grain sizes associated with inclined-planar sediment generally are slightly larger than that with other sedimentary structures.

Carbonate cements are distinguishable in hand specimen by differences in color. Sandstone cemented by calcite appears yellow; sandstone cemented by ferroan dolomite appears brown. Contacts between calcite and ferroan dolomite cements are displayed at 8578' and 8558' (See Figure 27).

Beginning at 8552' is an upward gradational change from the underlying sandstone facies to an interbedded thin shale

Figure 26. Petrolog of Sarkey's, Gillispie No. 3-2 Core.

Figure 28. Inclined Planar-bedding containing Shale Clasts; Sarkey's, Gillispie No. 3-2 (8559').

and silty, very-fine sandstone facies. Common sedimentary structures in the interbedded interval include soft sediment deformation, ripple laminae, horizontal laminae and bioturbated rock. Figure 29 shows an example of the bioturbated material that is common in this interval.

Figure 29. Interbedded Siltstone and Shale with Horizontal Burrows; Sarkey's, Gillispie No. 3-2 (8550.2').
Sarkey's Inc., Gillispie No. 1-3

The Gillispie 1-3 well is located at E2 NE SE, Sec. 1, T17N, R22W, in the Ioland Field, Ellis Co., Oklahoma. The cored interval is approximately 19 feet long, from 8560' to 8578.9' core depths (-6520' to -6538.9' subsea) (Figure 30 and 31). A sandstone facies overlies a shale facies in the core. The lower facies is characterized by black, fissile marine shale. No evidence of sediment reworking is present in this facies.

The sandstone facies is punctuated by an abrupt contact at 7578.6'. Directly above the contact is a 2-inch layer of siltstone that contains a moderate amount of fossil-debris. This deposit grades upward abruptly (within 2 inches) to clay laminations that are overlain by 6 inches of siltstone. The siltstone is truncated at an erosive upper contact with graded "bioclastic" material at 8578'. The bioclastic fines upward to siltstone. Three additional, similarly graded deposits are present between 8577.6' and 8576'. Constituents in the graded deposits include shale clasts, ooids, pelloids, intraclasts and fossil-fragments (Figure 32). Fossils include brachiopods, pelecypods, echinoderms, foraminifera, gastropods, and bryozoans.

Above 8576' the sandstone facies is almost devoid of observable sedimentary structures. It is mostly massive, except for clay laminae at 8572'.

Figure 30. Petrolog of Sarkey's, Gillispie No. 1-3 Core.

Figure 31. Sarkey's Inc., Gillispie No. 1-3 Core.

Figure 32. Graded Bioclastic Deposit near the Base of the Sandstone Facies; Sarkey's, Gillispie No. 1-3 (8578').

Petroleum Inc., Valentine No. 1

The Valentine No. 1 well (Figure 33) is located at SE NE, Sec. 1, T19N, R22W, in the East Harmon Field, Ellis Co, Oklahoma. The cored interval is approximately 44 feet long, from 7920' to 7965' core depths (-5595' to -5640' subsea). It is divisible into three units, a basal shale, in turn overlain by sandstone, and a bioturbated siltstone and shale.

The lowermost 10 feet of core (7954'-7964') predominantly are black shale with interbedded, thin lenses of very-fine grained sandstone and siltstone. Brachiopods, crinoids, and shale clasts are in chaotic layers within the shale.

The central portion of the core (7939.5' to 7954') is characterized by micaceous, tan to light gray, very-fine grained sandstone with a few thin interbedded shales. Sedimentary structures in this interval include small scale cross-bedding, horizontal laminae, inclined laminae, and massive bedding. Characteristic small scale, trough crossbedding is at 7449' core depth (Figure 34).

The lower contact of the sandstone facies with the shale facies (at 7954') is distinct. The top of the sandstone facies abruptly fines upward from very-fine grained sandstone (at 7939') to interbedded siltstone and shale.

The uppermost facies (7920'-7939') is composed of interbedded, light gray siltstone and black shale. Bioturbated rock is common in this interval and most abundant in places with high proportions of relatively coarser clastics.

Figure 33. Petrolog of Petroleum Inc., Valentine No. 1 Core.

Other sedimentary structures include horizontal laminae, microfaults and ripple laminae.

Figure 34. Small Scale Cross-bedding (sample marred by saw marks); Petroleum Inc., Valentine No. 1, (7449').

Odessa Natural Corp., Wreath No. 1

The Wreath No. 1 well was drilled as a wildcat well just south of the SW Sharon field. It is located at C NW, Sec. 17, T20N, R21W, in Woodward Co., Oklahoma.

The cored interval is approximately 26 feet long, from 7774' to 7799.75' core depths (-5408' to -5433.75' subsea) (Figures 35 and 36). The core is divisible into three facies, a sandstone facies, a graded-sandstone facies, and a interbedded siltstone-and-shale facies. Although not logged, black, fissile marine shale was noted beneath the sandstone facies; the contact between the sandstone and shale was missing in the core.

The facies from 7799.75' to 7788' consists of fine to very-fine grained, tan to gray, well-sorted sandstone. Sedimentary structures in this interval include horizontal plane bedding, small scale cross-bedding, massive sandstone, and soft-sediment deformation. Figure 37 shows an example of the soft-sediment deformation observed at 7794'. Observable variations in cement range from brown (ferroan dolomite) to yellow (calcite). In this section of the core, calcite and ferroan dolomite appear to be mixed, as made evident by a "splotchy" appearance (Figure 38).

The graded-sandstone facies is present between the sandstone facies and the overlying interbedded siltstone-andshale facies. An erosional contact is seen at the base of the graded-sandstone facies. This facies is characterized by a fining-upward sequence of strongly mixed fossiliferous

Figure 35. Petrolog of Odessa Natural Corp., Wreath No. 1 Core.

Figure 36. Odessa Natural Corp., Wreath No. 1 Core.

Figure 38.

Sandstone Color Variations in Sandstone due to Changes in Diagenetic Cements (Ferroandolomite = Dark Gray, Calcite = Light Gray); Odessa Natural Corp., Wreath No. 1 (7791'). material, shale clasts and very-fine sandstone (Figure 39). This deposit is regarded as storm-washover deposit. The graded deposit fines upward to siltstone and clay laminae.

The upper facies (7774'-7787') is characterized by light gray siltstone interbedded with dark gray to black shale. Sedimentary structures include horizontal laminae, ripple laminae, and bioturbated rock.

Figure 39. Erosional Contact and Graded Sequence near top of Sandstone Interval with Marine Fossil Material (Storm Wash-Over Deposit); Odessa Natural Corp., Wreath No. 1 (7788').

Ran Ricks Jr., Cole No. 28-A

The Cole No. 28-A well is located at C W2 NW, Sec. 28, T21N, R21W, in the West Sharon Field, Woodward Co., Oklahoma.

The cored interval is approximately 35 feet long, from 7418' to 7453' core depths (-5175' to -5210' subsea) (Figures 40 and 41). Three facies are present in this core; a basal fossiliferous, black marine shale, a middle sandstone, and a upper interbedded siltstone-and-shale facies. The contact between the sandstone and the underlying shale facies is not seen in the core.

Several pieces of core are missing from the sandstone facies. In addition, from 7444' to 7447.9', seven pieces of core were unmarked for footage and could only be described lithologically and not by position in the interval.

The lower facies (7449.9'-7453') is slightly bioturbated, fissile and fossiliferous marine shale. Abundant crinoidal fragments, brachiopods and shale clasts are concentrated within this deposit at 7450' (Figure 42).

The middle facies (7438.2'-7449.9') predominantly is very fine grained, well sorted sandstone. Common sedimentary structures include horizontal plane bedding, inclined plane bedding, small scale trough cross-bedding, and massive bedding. Figure 43 shows a segment of core from the unmarked interval that contains typical bedding structures. The sandstone facies includes several distinct contacts between diagenetic cements. The most obvious contact is at 7449.5' which marks the diagenetic boundary between calcite and

Figure 40. Petrolog of Ran Ricks Jr., Cole No. 28-A Core.

Figure 41. Ran Ricks Jr., Cole No. 28-A Core.

ferroan-dolomite cements (Figure 44). The source of the calcite cement almost certainly was carbonate fossil debris at the base of the sandstone, whereas the ferroan-dolomite is attributed to deep burial migrating ground waters. A similar diagenetic contact is at 7439.6', near the top of the sandstone facies (Figure 45).

The upper facies (7430'-7438.1') is interbedded finegrained sandstone, siltstone and shale. Ripple laminae, small scale trough cross-bedding, horizontal laminae, evidence of soft-sediment deformation, and bioturbated rock are common. At the base of this interval, at 7438', is a concentration of fossil-fragments interbedded with siltstone and shale.

The upper facies fines upward to black shale. However, at 7434' to 7431.5' the overall fining sequence is interrupted by an interval of siltstone. This stratum probably represents the lateral extension of a sandstone deposit developed fully elsewhere in the study area.

77

Figure 42. Reworked Shale Deposit just below the Base of the Sandstone Facies; Ran Ricks Jr., Cole No. 28-A (7450').

Figure 43. Sedimentary Structures include (from top to bottom) Small Scale Trough Cross-Bedding, Inclined Planar (Medium Scale Cross-bedding), and Horizontal Planar Bedding; Ran Ricks Jr., Cole No. 28-A (7444').

Figure 44. Sharp Diagenetic Contact between Rock Cemented by Ferroan-dolomite (Dark Gray) and Calcite (Light Gray) Ran Ricks Jr., Cole No. 28-A (7449.5').

Figure 45. Diagenetic Contact between Rock Cemented by Ferroan-dolomite (Dark Gray) and Rock Cemented by Calcite (Light Gray), near the Top of the Cottage Grove Sandstone Facies, Note: White Specks in the Upper One-half of the Sample are Carbonate Fossil-fragments - the Probable Source of Calcite Cement; Ran Ricks Jr., Cole No. 28-A (7439.6).

Summary

Several sedimentologic and diagenetic similarities exist among the cores studied. Resemblance between cores indicates that sandstones are of like depositional origin and their diagenetic histories are strongly similar. The primary difference recorded among the cores was in the overall thickness of the sandstone facies. These differences are attributable to (1) variations in stacking of the sandstone units (functions of current duration, sea level fluctuation, and subsidence rates), (2) positions of where the wells penetrated the sandstone bodies, and (3) some combination of (1) and (2). An outline of general characteristics observed in the Cottage Grove cores is shown in Figure 46.

<u> 01</u>	utline of Characteristics of Cottage Grove Sandstone
I.	CONTACTS
	A. <u>Upper contacts</u> (gradational)
	 Sandstone facies grade upward to bioturbated and interbedded siltstone and shale deposits of marine origin.
	a. This sequence is interrupted at some localities by storm wash-over deposits, as exhibited by the Odessa Natural Corp, Wreath No. 1 core.
	B. <u>Basal contacts</u> (abrupt and tightly cemented)
	 Basal contact is abrupt with marine shales below.
	a. Marine shales immediately below the contact show evidence of reworking (fossil-fragments and shale clasts).
	 Tightly cemented marine bioclastic deposits are near the base of the sandstone.
	a. Deposits are tightly calcite-cemented.
	(Cores with missing lower contacts indicated presence of bioclastic deposits by notable calcite-cemented zones near the bases of sandstone units and by low porosity on well logs.)
II.	INTERNAL CHARACTERISTICS
	A. Fining-upward Sequences
	 Intervals display overall, slight fining- upward sequences. Grain sizes commonly range from fine-grained sandstone near the base of the interval to very-fine grained sandstone and siltstone near the top.
	 Some fining-upward sequences contain fining- upward sequences that are the records of influxes of slightly coarser sediment.
	a. Carbonate fossil-fragments and shale clasts commonly are associated with the coarser sediment.
	B. <u>Sedimentary</u> <u>Structures</u>
	 Sedimentary structures predominantly are small in scale.
	a. Sedimentary structures ordinarily noted in the cores include small scale trough, horizontal and ripple laminae, inclined planar cross-bedding, graded bedding, and massive bedding.
III.	VISIBLE DIAGENETIC IMPRINTS
	A. <u>Variations in Color</u> Ferroan-dolomite (tan) and Calcite (buff)
	 Abrupt contacts - are at bases and/or tops of the sandstones or near areas where fossil-material is concentrated.
	 Mixed contacts - occur mostly in the middle portions of the sandstone units. These contacts have a "splotchy" appearance.

Figure 46. Outline of Characteristics, Cottage Grove Sandstone.

CHAPTER VI

DIAGENESIS AND POROSITY

Introduction

Post-depositional diagenetic changes have significantly altered the lithologic character of the Cottage Grove Sandstone. Its burial history is marked by a complex sequence of diagenetic events that includes physical compaction, cementation by silica, sulfate, and carbonate, authigenic clay precipitation, alteration, and dissolution of detrital and diagenetic constituents.

Physical compaction processes have reduced the primary rock volume, primary porosity, and permeability of the Cottage Grove Sandstone. Most of compaction occurred early as a result of overburden of sediments after burial. Porosity reduction by mechanical compaction is made evident in analysis of thin sections by stylolites, crenulated grain boundaries, flexed mica, and pseudomatrix (ductile grains deformed into matrix morphologies).

Chemical processes in the Cottage Grove Sandstone involved various stages of precipitation, dissolution, alteration, and replacement. Syntaxial quartz overgrowths, calcite, dolomite, ferroan dolomite, barite, feldspar overgrowths, illite, chlorite, and kaolinite all have been

84

noted in thin-section as products of precipitation. The primary constituents affected by dissolution are carbonate cements and feldspars; however, metamorphic rock fragments, silica, and clay matrix also display signs of dissolution. Alteration is expressed by recrystallization of detrital matrix. Replacement occurred between ferroan dolomite and calcite cements. In addition, ferroan dolomite and calcite replaced quartz, feldspar, metamorphic rock fragments and detrital matrix.

Paragenesis

The following is an analysis of the diagenetic history of the Cottage Grove Sandstone. The paragenetic sequence (Figure 47) is an interpretation based on information gathered from the five cores in the study area. The cores show evidence of very similar diagenetic histories; however, certain phases of the paragenetic sequence are not characterized well, or at all, in some cores (examples are barite cement and feldspar overgrowths). Therefore, the paragenetic sequence is a composite interpretation, and should not be considered as wholly applicable to any particular core.

Interpretations regarding the paragenetic sequence were derived largely from cross-cutting or other relationships of authigenic nature observed in thin-section. Literature that provided information useful for the identification and interpretation of authigenic constituents includes articles

85

- = Time of Occurrence - - - - = Probable Occurrence * = Most Significant Occurrence

by Folk (1974) (detrital and authigenic minerals and cements), Wilson and Pittman (1977) (authigenic clay minerals), Land and Dutton (1978) (diagenesis), Schmidt and McDonald (1979), and Al-Shaieb and Shelton (1981) (secondary porosity and diagenesis).

The remainder of this section includes (1) a listing of individual diagenetic events, (2) a brief discussion of each constituent and related diagenesis, and (3) a series of photomicrographs showing typical paragenetic relationships. A section devoted to porosity development follows this section on paragenesis.

Although some overlap is inherent, the general order of diagenetic events in the Cottage Grove Sandstone is as follows:

1. Precipitation of calcite cement (early phase).

2. Dissolution (related to biodegradation and early carbonic acid formation).

3. Precipitation of syntaxial quartz overgrowths.

4. Precipitation of barite cement.

5. Precipitation of dolomite cement.

6. Precipitation of ferroan dolomite cement.

7. Precipitation of calcite (late phase) cement.

8. Dissolution of carbonate cements (calcite, ferroan dolomite, and dolomite), feldspars, rock fragments, and detrital matrix.

9. Precipitation of syntaxial feldspar overgrowths.

10. Precipitation of illite.

- 11. Precipitation of chlorite.
- 12. Precipitation of kaolinite.
- 13. Migration of hydrocarbons.

<u>Calcite (Early Phase)</u>

Calcite cement appears to have formed very early. It is commonly noted in intervals with detrital carbonate debris. Detrital carbonate material is most abundant in bioclastic deposits at or very near the bases of sandstone intervals. In these deposits, carbonate framework grains (skeletal grains, oolites, etc.) are regarded as having been the source for the calcite cement. Calcite cementation in bioclastic deposits is so complete that it seems to have partially isolated the sediments from the effects of subsequent diagenesis. The absence of later occurring diagenetic constituents in calcite cemented sediments (such as silica overgrowths) may help to distinguish the calcite as early. Early calcite occurs as interlocking mosaics of poikilotopic spar.

<u>Silica</u>

Precipitation of silica followed early calcite cementation. The formation of silicate minerals requires acidic ground water conditions. A shift in the pH of formation water from a kaline conditions (conducive to calcite precipitation) to acidic conditions (conducive to silica precipitation) is indicated by the precipitation of silica. Acidic conditions are generated when organic material in the sediment undergoes bacterial degradation. With biodegradation, CO₂ is released to solution, forming carbonic acid. Such a reaction may have been responsible for a pH shift in the Cottage Grove Sandstone. Quartz overgrowths commonly are surrounded and replaced by ferroan dolomite. Of course, this relationship indicates that precipitation of quartz was prior to dolomitization.

<u>Barite</u>

Precipitation of barite cement (BaSO₄) is timed as having been prior to formation of ferroan dolomite. This relationship is characterized by the replacement of barite by ferroan dolomite (Figure 48). A similar relationship exists between barite and late calcite (Figure 49).

Barite is observed as filling in voids of preserved or enhanced primary porosity. Presumably, these pores were not significantly affected during the precipitation of early calcite or silica. Some voids appeared to be enlarged, suggesting that an early phase of dissolution occurred prior to formation of barite. The barium needed to precipitate barite can originate from feldspar grains (Fuchtbauer, 1974). Sulfate probably was derived from migrating ground waters.

Dolomite

In most cases dolomite crystals are encased in ferroan dolomite cement; this indicates that a brief episode of non-

89

Figure 48. Crisscrossing Barite Cement (B) Partially Replaced by Ferroan Dolomite Cement (FD); Plane Polarized (40X).

Figure 49. A Bladed Group of Barite Crystals (B) Partially Replaced by Late Calcite Cement; (Barite crosses the Photomicrograph Diagonally from NW to SE and is Etched by Calcite near Center of Photo); Plane Polarized (40X).

ferroan dolomitization preceded precipitation of ferroan dolomite. The relationship between the nonferroan dolomite and the other diagenetic constituents is difficult to determine, due to presence of the surrounding ferroan dolomite. Therefore, the relative timing of nonferroan dolomite to other diagenetic constituents is based on the diagenetic relationships of ferroan dolomite cement.

The formation of naturally occurring dolomite requires specific geochemical conditions. In a carbonate-forming environment, the precipitation of dolomite instead of calcite requires a groundwater Mg^{++}/Ca^{++} ratio of at least 3 (Hanshaw, et al., 1971). According to Hardie (1987), at low temperatures (<50⁰C), the formation of replacement dolomite requires long reaction times (approx. 10⁴ yrs.), and direct precipitation requires special conditions of highly supersaturated waters with high Mg^{++}/Ca^{++} ratios and elevated CO_3 -HCO₃ concentrations. In contrast, ordered dolomite can be made in a laboratory in a matter of days at 100⁰C. Furthermore, at temperatures above 60⁰C, Ca-rich waters become dolomitizing fluids, which makes most natural subsurface waters capable of dolomitization (Hardie, 1987).

In light of this information, a shallow dolomitization model seems unlikely for the Cottage Grove, especially since diagenetic relationships indicate that dolomite precipitation occurred after other early diagenetic events. The dolomite in the Cottage Grove Sandstone is thought to have formed under deep burial conditions and under the influence of regionally migrating marine ground waters. In order to precipitate dolomite the ground waters necessarily had high Mg^{++}/Ca^{++} ratios.

Two mechanisms are believed to have been responsible for generation of favorable Mg^{++}/Ca^{++} ratios in the Cottage Grove. The first mechanism involved early calcite precipitation; this process drives the Mg^{++}/Ca^{++} ratio higher by removing Ca^{++} ions from solution. The second mechanism involves dissolution of detrital illite; dissolution of illite increases the Mg^{++}/Ca^{++} ratio by adding Mg^{++} ions to solution.

Dolomite is difficult to crystallize because of the precise ordering required to form the alternating sheets of Ca and Mg. Thus it forms best when crystallization is slow, precipitating from dilute solutions (Folk, 1974). Slow precipitation forms euhedral and limpid dolomite crystals. Several examples of euhedral dolomite crystals were noted in the Cottage Grove Sandstone (Figure 50).

<u>Ferroan</u> <u>Dolomite</u>

Formation of ferroan dolomite followed the precipitation of nonferroan dolomite and early calcite (Figures 51 and 52), and preceded the precipitation of late calcite (Figure 50).

Because in the dolomite crystal, Fe^{2+} ions occupy sites of Mg^{2+} , an increased $Fe^{2+}:Mg^{2+}$ ratio in the solution is required in order to form ferroan dolomite. Such an increase cannot be attributed to a significant decrease of the

Figure 50. Example of a Euhedral Ferroan Dolomite Crystal (FD), Nucleated on Dolomite (D), and Surrounded by Late Calcite Cement (Stained Red); Also note selective replacement of Ooids by Ferroan Dolomite; Plane Polarized (100X).

Figure 51. Ferroan Dolomite (lt. blue) has Partially Replaced Early Calcite (C) and Nonferroan Dolomite (D) in the Cottage Grove Sandstone; Plane Polarized (100X).

Figure 52. Same as Previous Photo; Cross Polarized (100X).

magnesium ion activity because this would prevent the formation of dolomite (Katz, 1971). Therefore, the increase in the $Fe^{2+}:Mg^{2+}$ ratio is attributed to increases of ferrous iron activity in solution. In the Cottage Grove Sandstone, Fe^{++} ions may have been added to the system through dissolution of illite. Precipitation of nonferroan dolomite presumably indicates that ground-water conditions were conducive to formation of dolomite; the additional ferrousions in solution (perhaps introduced as a result of illite dissolution) would have forced a change in precipitation from nonferroan to ferroan dolomite.

<u>Calcite (Late Phase)</u>

Two phases of calcite cementation are observable in the Cottage Grove Sandstone; an early phase (previously discussed) and a late phase that occurred just prior to the main development of secondary porosity. Presumably, alkaline conditions persisted after the precipitation of ferroan dolomite. The formation of dolomite and ferroan dolomite almost certainly reduced the magnesium-ion activity in solution by absorbing Mg++ for precipitation. This is would have lowered the Mg⁺⁺/Ca⁺⁺ ratio, resulting in conditions more favorable to the precipitation of late (deep burial) calcite. Late calcite probably formed closely following the precipitation of ferroan dolomite, but prior to significant maturation of hydrocarbons.

Late calcite is different than early calcite in that it

95
replaces ferroan dolomite and barite, rather than being replaced by these minerals. Texturally, late calcite appears similar to early calcite. Thus to distinguish late calcite in thin section requires examination for evidence suggesting that it is not early calcite. Sediments cemented by early calcite tend to be characterized by the absence of porosity, compaction features, or other, later-occurring authigenic constituents (such as silica overgrowths), that might otherwise be found in late calcite cemented zones (Figure 53).

Dissolution

A significant dissolution phase followed precipitation of late calcite. Most secondary porosity in the Cottage Grove was generated during this time. This dissolution phase is attributed to chemical changes in the ground water brought on by the maturation of hydrocarbons.

Dissolution is caused by the introduction of carbonic acids that form as a by-products during hydrocarbon generation (Schmidt and McDonald, 1979). When CO₂ is released to the system during the generation of hydrocarbons (known as decarboxylation) it reacts with formation water to form carbonic acid (equation 6-1). This acid may selectively leach out carbonates, feldspars, rock fragments and matrix. Carbonic-acid dissolution in the Cottage Grove involved mainly carbonate cements. Schmidt and McDonald (1979) refer to the dissolution of any textural and mineralogical type of

Figure 53. Carbonate Rich Deposit Completely Cemented by Interlocking (Early Phase) Calcite Crystals. Note: Lack of Quartz Overgrowths or Other Authigenic Constituents Indicating that Little Diagenesis has Influenced this Deposit Since Cementation; Cross Polarized (40X). carbonate from sandstone or other rock as decarbonatization.

Equations 6-2, and 6-3 express the general alteration and dissolution reactions of carbonic acid with calcite (decarbonatization), and feldspar (Al-Shaieb and Shelton, 1981).

$$CO_{2g} + H_2 O \longrightarrow H_2 CO_3^{-} aq$$
 (6-1)
(Carbonic acid)

$$CaCO_3 + H_2CO_3 aq \implies 2HCO_3 aq + Ca^{++} aq \qquad (6-2)$$
(Calcite)

Feldspar +
$$H_2CO_3^-aq$$
 + H_2O Clay + OH^-aq + M^+aq (6-3)
(Illite or (Free
Kaolinite) cation)

The premise behind these reactions is that CO_2 is increased as hydrocarbons mature; excess CO_2 results in formation of carbonic acid (equation 6-1) that must be utilized by the system in order to maintain equilibrium. This is accomplished through the dissolution of calcite (equation 6-2) and feldspar (equation 6-3).

Feldspar Overgrowths

Precipitation of feldspar overgrowths following dissolution is inferred. Due to the lack of other evidence, I hypothesize that feldspar ions and dissolved silica were made available through the dissolution of detrital feldspars. Logically, timing of this event would follow a major carbonic -acid dissolution phase. Once in solution the feldspar and silica ions could be redistributed; with a change to more basic conditions, they would precipitate as overgrowths.

<u>Authigenic</u> <u>Clays</u>

Illite, chlorite and kaolinite were the latest diagenetic precipitants to form in the Cottage Grove Sandstone. Authigenic clays in the Cottage Grove have formed in secondary pore spaces created by the dissolution of carbonate and feldspar. Petrographic evidence suggests that illite and chlorite precipitated prior to kaolinite. This relationship is characterized by pores lined with mixed illite and chlorite clay and filled by kaolinite (Figure 54).

Migration of Hydrocarbons

Migration of hydrocarbons was the final episode of the Cottage Grove's diagenetic history. Generation of the hydrocarbons extended as far back in time as the main development of secondary porosity. This type of scenario was discussed by Schmidt and McDonald (1979, p. 175)

Primary migration of hydrocarbons commonly follows closely after the secondary porosity has been formed, because in the maturation of organic matter, the main phase of hydrocarbon generation follows after the culmination of decarboxylation. This close association of source and reservoir in time and space favors the accumulation of hydrocarbons in secondary porosity.

Figure 54. Dissolution Pore Space Lined with Authigenic Mixed Illite and Chlorite and Filled with Kaolinite; Cross Polarized (100X).

Porosity

Porosity in the Cottage Grove Sandstone ranges from 0% to 16%, averages a modest 6%, and is almost entirely secondary. Primary porosity contributes as only an occasional trace amount.

The history of porosity development is marked by variety enhancement and reduction phases. Enhancement of porosity in the Cottage Grove occurred in two principle phases, a minor dissolution phase related to biodegradational release of CO₂, and a later, more significant phase associated with decarbonatization reactions and hydrocarbon maturation (Schmidt and McDonald, 1979). The carbonic acid that formed as product of biodegradational and hydrocarbon maturation reactions is thought to have controlled the development of secondary porosity in the Cottage Grove Sandstone. Reductions in porosity occurred as a result of compactional processes and from the replacement and precipitation of authigenic cements and clays.

Evolution of Porosity

Diagenetic events that affected the evolution of porosity in the Cottage Grove Sandstone:

1. Reduction of primary porosity by compaction during burial.

2. Reduction in primary porosity by early calcite cementation.

3. Creation of secondary porosity (related to biodegradational formation of carbonic acids).

4. Reduction in porosity from continued compaction and precipitation of syntaxial quartz overgrowths.

5. Reduction in porosity from replacement and precipitation of barite.

6. Reduction in porosity from replacement and precipitation of dolomite.

7. Reduction in porosity from replacement and precipitation of ferroan dolomite.

8. Reduction in porosity from replacement and precipitation of calcite.

9. Main development of secondary porosity from dissolution of carbonate cements, feldspar, and detrital matrix (related to decarboxylation and decarbonatization)

10. Reduction in porosity from precipitation of authigenic clays (illite, chlorite, and kaolinite).

Discussion

Dissolution of carbonate cement, particularly ferroan dolomite and calcite, was responsible for most of the secondary porosity in the Cottage Grove Sandstone. This is indicated in thin section by a variety of dissolution textures. Figures 55 and 56 show that when porosity percentages are high, calcite and ferroan dolomite percentages are low. Calcite and ferroan dolomite are replacive cements and dissolution of these cements may open

Figure 55. Plot of Porosity vs. Ferroan Dolomite Cement. Inverse Relationship Illustrates that when Porosity Percentages are High, Ferroan Dolomitization Percentages are Low.

Figure 56. Plot of Porosity vs. Calcite Cement. Inverse Relationship Illustrates that when Porosity Percentages are High, Calcite Cementation is Low.

or reopen a variety of primary and secondary porosity textures. Textures that resulted from carbonate dissolution in the Cottage Grove include elongate pores, corroded grains, floating grains, partial dissolution, and oversized pores (Figure 57). Textures related to grain dissolution include honeycombed grains, grain molds, and corroded grains (Figures 58 and 59). Precipitation of kaolinite reduced secondary porosity and resulted in development of microporosity (Figure 60).

Shrinkage of silt and organic material in stylolites results in a hybrid type of secondary porosity in the Cottage Grove Sandstone (Figure 61). Overall, this type of porosity contributes very little to secondary porosity of the unit; however, in two thin sections shrinkage porosity is the only type of porosity present.

Figure 57. Examples of Porosity Textures in the Cottage Grove Sandstone, Including Elongate Pores, Corroded Grains, Floating Grains, Partial Dissolution, and Oversized Pores; Plane Polarized (40X).

Figure 58. Grain-dissolution Textures, Including a Honeycombed Feldspar Grain (H) and Corroded Grains (arrowed); Plane Polarized (100X).

Figure 59. Dissolution Textures, Including Grain Molds (G), Corroded Grains (C), and Partial Dissolution (PD); Plane Polarized (100X).

Figure 60. Dissolution Pore Space Filled by Kaolinite, Forming Microporosity (M); Also Pictured are examples of Corroded Grains, Grain Molds and Carbonate Dissolution; Plane Polarized (100X).

Figure 61. Hybrid Secondary Porosity Developed Along a Stylolite in the Cottage Grove Sandstone; Plane Polarized (100X).

CHAPTER VII

DEPOSITIONAL ENVIRONMENT

The Cottage Grove Sandstone in the study area was deposited on an epeiric shallow marine shelf, during transgression, under the influence of storm and tide dominated conditions. Mapping and petrographic evidence suggest that the principal form of deposition was as sub-parallel, east-northeast trending, linear sand ridges. A second mode of deposition is indicated by a narrow, northtrending sandstone body. This sandstone is interpreted as a shallow marine channel; however, some lines of evidence suggest submarine or shelf edge deposition.

Conclusions in this chapter are based on various lines of evidence from cores and logs of the Cottage Grove Sandstone from the study area, and from reasoning by analogy with other ancient and modern shelf sandstones. This evidence strongly supports the interpretation of a shallow marine depositional environment. Such evidence is shown in the study area; it has been described in the surrounding region by Towns (1978), Fruit (1976), Holmes (1966) and Rascoe and Adler (1983). Distal-delta, barrier-bar, or submarine-fan environments of deposition were considered -as were other submarine geomorphic settings -- but these alternatives lack evidence sufficient to support their

acceptance in lieu of a shallow marine model. Hence, it is considered highly probable that the basic depositional framework of the Cottage Grove Sandstone in the study area was that of a shallow marine environment or a variant thereof.

> Shelf Processes and Significance of Sedimentary Structures in the Cottage Grove Sandstone (Ridge Facies)

Transport and modification of shelf sediment are dominated by tides, waves, and currents. In the following paragraphs, shelf processes and their related formational and sedimentary characteristics are discussed briefly and a qualitative comparison is made to characteristics of the Cottage Grove Sandstone in the study area.

<u>Tides</u>

Tidal currents have the capacity to transport shelf sediment and modify submarine landforms. Tidal influence on sediment transport is greatest on semi-enclosed and broad shallow shelves where tidal ranges tend to be amplified (Leeder, 1982). Missourian paleogeography suggests that the north-west limb of Anadarko basin was a broad shallow epicontinental shelf. Such a shelf may have had the characteristics conducive to formation of significant tidal ranges during deposition of the Cottage Grove Sandstone.

Two hypothesis that explain the relationship of tidal current flow direction to ridge orientation have been presented in the literature. In the first, tidal currents are proposed to maintain ridges that are parallel to current (Houboult, 1967). In the second, tidal currents are presumed to maintain linear sand bodies that are oriented sub-parallel to current flow (Huthnance, 1983). Both models were derived from studies of linear sand ridges in the North Sea. These ridges were described by Off (1963), and Swift et al., (1978). Since the conception of the Huthnance model, several authors have reconsidered interpretations of tidal bars. For example, Walker (1984) suggested that the Huthnance model be applied to the shoreface detached ridges in the Delaware-Maryland sector of the Middle Atlantic Bright, previously studied by Swift and Field (1981).

In the first hypothesis Houboult (1968) proposed that ridges of the North Sea form roughly parallel to tidalcurrent flow (Figure 62). Houboult described current patterns on the surface of the water which he interpreted as having arisen from spiral currents generated by differential velocities of tidal flows over ridges and swales of longitudinal sand ridges. The spiral flow of these currents presumedly pushes sand out of the swales and up the sides of the ridges. This would allow for maintenance of ridges parallel to flow. Houboult also notes that the sand ridges in the North Sea rest on a generally flat surface (as are sandstone bodies of the Cottage Grove (Fruit, 1986)).

Figure 62. Schematic Diagram of the Morphology and Currents of a Large Sand Wave in the North Sea. (After Houboult, 1968).

An alternative hypothesis was formulated mathematically by Huthnance (1982) (Figure 63). Regarding the Huthnance model Parker et al. (1982) stated that

... an oblique orientation with respect to flow is essential because ridges parallel to flow can have no sand carried to their tops ... ridges normal to flow must experience an acceleration across the crests in order to satisfy continuity, hence cannot deposit sand there ... when flow is oblique with respect to the ridge crest, the cross-ridge component of flow must similarly accelerate. However, the along ridge components experience frictional retardation and the ensuing deceleration over the crestal area results in sand deposition.

Figure 63. Huthnance Model of Flow-oblique Sand Ridge Formation. As Flow Moves Obliquely Up the Ridge Flank, the Cross-ridge Component of Velocity Accelerates Owing to Decreasing Crosssectional Area. Over the Crest, the Alongridge Component of Velocity is Reduced by Frictional Drag. The Cross-ridge Component Decreases to its Original Value. Changed Values for Two Flow Components Cause the Current to Veer as it Passes Over the Ridge. In essence, according to Huthnance, tidal flows will favor the growth and maintenance of those sea floor irregularities oriented sub-parallel to current direction.

With the sparse amount of data available, the orientation of tidal currents with respect to Cottage Grove sand bodies is difficult to determine; however, what is important to point out is that sandstone deposits of the study area appear to have been maintained by some sort of process that remained relatively uniform in occurrence, in time and space, that resulted in a series of linear, parallel-trending ridges. Such a pattern of deposition can be explained by, and is likely the result of, shallow shelf tidal currents. According to Off (1963), the most characteristic feature of tidal-current ridges is their rhythmic pattern and the tendency of one ridge to parallel another.

Tidal currents typically produce herringbone crossstratification (Davis, 1983). Herringbone crossstratification was not identified in cores from the Cottage Grove in this study area. This missing evidence weakens the interpretation of deposition by tidal currents, but Houboult (1983) noted that in the offshore bars of the North Sea the dominant bedform is megaripples (Refer to Figure 62). Walker (1984) contends that megaripples may appear in the geological record as medium scale, angle-of-repose cross bedding. In Cottage Grove cores of the study area, inclined planar bedding (medium scale cross-bedding) is regarded as having originated as megaripples. Also, herringbone crossstratification was documented by Fruit (1986) as a commonly occurring structure in cores from approximately 20 miles east of the study area. If the paleogeographic interpretation presented earlier is true, then the ridges of Fruit's area would have been closer to the paleoshoreline; accordingly, they may have been subjected to more intense tidal action than ridges in the study area. This inferred circumstance may account for the difference in herringbone crossstratification between the two areas.

<u>Waves</u>

Waves generally do not transport sediment, but instead bring the sediment into the water column making it available for transport. Another function of waves is to rework sediment, such that even if no sediment is moved away by currents, the resettling of particles entrained by the wave may produce a texture or fabric different from the previous one. Under normal wave conditions the orbital motion of the passing wave will entrain sediment only to depths of about 10 meters or so. However, large storm waves may effect the entire shelf floor (This paragraph drawn from Davis, 1983).

As mentioned above, wave action may disrupt bedforms. Massive bedding may be the result of reworking by waves. In the Cottage Grove Sandstone indistinguishable bedding or massive bedding constitutes as much as 30% of the sedimentary column in some cores; this massive bedding may be the result

of reworking by waves.

<u>Currents</u>

Current types vary depending on the type of driving mechanism. Three general categories of currents have been described in the literature. These are wind-induced currents, oceanic currents, and density currents (Stanley and Swift, 1976; Leeder, 1982; Davis, 1983). Although stormgenerated currents are sometimes categorized as a fourth type, in effect they are amplified versions of wind induced currents.

Wind-forced currents drive water onshore, creating an elevation of the water surface referred to as "set up". A seaward pressure gradient results, which induces seaward bottom-water flow. On open shelves this flow may be deflected by Coriolis forces and evolve into a geostrophic flow that moves parallel to isobaths (Swift and Niedoroda, 1985).

Wind- and storm-induced currents are capable of transporting significant amounts of sediment transport on the shelf. Wind-driven currents can produce bottom flow velocities of as much as 60 cm/sec, as measured on the Atlantic shelf. Velocities of tens of cm/sec may result from storm generated currents (Swift and Field, 1981). Storminduced currents are cited more often than any other type of current to explain the transport of sediment to the shelf. Wind- and storm-induced currents may generate current ripples, megaripples, hummocky cross-stratification or graded bedding (Davis, 1983; Walker, 1984). Of these sedimentary structures, current ripples, megaripples and graded bedding have been identified in cores of the Cottage Grove from the study area. Hummocky cross stratification was not identified conclusively.

Current ripples are shown in the Cottage Grove as smallscale trough cross-bedding. This bedding probably is the result of waning storm flows. Megaripples, are manifest as inclined-planar bedding (medium scale cross-bedding) in the Cottage Grove. Turbidites are recorded in the Cottage Grove as graded bioclastic deposits near the bases of sandstone intervals (Refer to Figure 32). Walker (1984) proposed that turbidity currents occur as a result of storm-surge ebb flows that carry sediment below storm-wave base and deposit turbidites (graded bedding). Turbidites above storm-wave base may be reworked into hummocky cross-stratified sediment (Figure 64). Hummocky cross-stratification is difficult to identify in cores. Hummocky cross-stratification was not verified in any of the Cottage Grove cores from the study area. This bedform may not have been preserved, due to reworking by waves or to bioturbation. As previously mentioned, indistinguishable bedding or massive sandstone accounts for a large fraction of the sedimentary column in the Cottage Grove.

Figure 64. Schematic Diagram Illustrating Storm Wind Coastal Set up and Cyclic Loading of the Substrate by Storm Waves. The Liquefied Sediment may Flow and Accelerate Basinward, Transforming into a Turbidity Current. Above Storm Wave Base, Waves Feeling the Sea Floor may Rework the Turbidity Current Deposits into Hummocky Cross Stratification. After Walker (1984).

Models of Deposition

<u>Ridge</u> Facies

The conceptual model of deposition for Cottage Grove ridges is a variation of a model proposed by Fruit (1986). An outline of the model is as follows:

1. Coarse clastic sediment was brought to the shelf during a relatively sudden marine regression. Missourian tectonic activity and uplift of the Ouachita Mountains (probable main source of Cottage Grove sediments) may have spurred these events.

2. Wind- and storm-surge ebb currents episodically carried silt and sand from a deltaic complex to the east (mapped by Lalla, 1975). As currents moved across the shelf they entrained sediment, including ooids, shale clasts and skeletal carbonate material. This sediment was deposited in sand ridges on the shelf. Graded bedding, waning-flow current ripples and sharp-based sandstones record this event.

3. Tidal currents maintained and reworked sand ridges by scouring troughs, entraining sandy sediment from these areas, and by redepositing it on ridges in the form of megaripples and current ripples. These bedforms are recorded in cores by medium- and small-scale cross-bedding respectively.

4. Storm-induced waves reworked the outer layers of exposed ridges, resulting in destruction of bedforms. Evidence for wave-reworking is recorded in cores by massive or indistinguishable bedding. 5. Transgression followed and burial the ridges by shelf muds accelerated. The unburied portions of ridges were reworked by storm currents. Periodic influxes of silty sediment reached the ridges, marking the final input of coarse clastics. Silt and mud were bioturbated heavily as the ridges were inundated. Erosive-based, graded deposits (Refer to Figure 39) at the tops of sandstone intervals recorded storm deposits and interbedded siltstone and shale the reworking and inundation of the ridges.

This model accounts for a sharp based, overall slight fining upward sandstone that grades upward abruptly to interbedded siltstone and shale, then to shale as exhibited by the Cottage Grove.

Marine Channel Facies

More information, including at least one core, is needed to assess a detailed model of deposition for the channel facies. This facies trends northward, almost perpendicular to the ridge trends of the area. It appears to truncate and to be younger than a ridge complex in the North Ioland Field of T17N and T18N, R22W. It is separated from the bar facies in some areas by shale, and it appears to bifurcate above the ridge facies in cross-section. This arrangement of ridge and channel bears resemblance to two examples of ridge/channel couplets in the geologic record. The first is the Terry Sandstone Member, Pierre Shale in the Denver Basin, Colorado (Siemers and Ristow, 1986), and the second is the Cretaceous Sussex Sandstone of Wyoming (Brenner, 1978).

Siemers and Ristow (1986) described a shingled couplet of shallow marine sandstones that are separated by a shale "notch" (very similar to the one in the Cottage Grove). The lower sandstone was interpreted as an offshore shallow marine bar, and the upper as a channelized deposit composed of active channel-fill sand, overlying inactive channel-fill sandy mudstone. They pointed out that the channel-like deposit may have been influenced strongly by the older sandbar, as dip-oriented currents could have been diverted in a pattern along the side of the marine sandbar (a relationship also suggested by the Cottage Grove channel/ridge couplet).

A second example is the Cretaceous, Sussex Sandstone of Wyoming (Brenner, 1978). Brenner proposed that the Sussex Sandstone was deposited as part of muddy sheet that prograded basinward. Sand ridges within this sheet were created and shaped by storm-generated and tidal currents. Brenner observed that offshore ridges of the Sussex Sandstone were breached periodically by intense storm-generated currents, which formed channels. These channels are approximately perpendicular to the long axes of ridges. The Cottage Grove Sandstone couplet has similar orientation; it may have formed under similar conditions.

An alternative depositional interpretation for the north trending sandstone may be that of an incised shelf margin channel. The position of the sandstone coincides with an

increase of the Cottage Grove interval that may represent a slope break (see Plate II and discussion page 25).

Summary

The following two lists summarize evidence supporting the depositional environments interpreted in this chapter. The lists show data collected from all aspects of this investigation. A summary is given for the east-northeast trending ridge sandstones and the northward-trending channel sandstone facies, respectively.

Shallow Marine Ridge Sandstones

- Late Pennsylvanian paleogeography and tectonic setting.
- 2. Linear geometry of the sand bodies.
- Complete encasement of these sandstones by shallow marine shales.
- 4. Glauconite.
- Marine fauna, including ooids, pelecypods, foraminifera, crinoids, brachiopods, and echinoderms.
- Lateral rock-stratigraphic equivalence of ridges and carbonates.
- 7. Graded bedding, ripple cross-stratification, massive bedding, and inclined planar cross-bedding.
- Sub-parallel trending sand bodies, with average lateral spacing of 3.5 to 4 miles.

Shallow Marine Channel Sandstone

- 1. Missourian paleogeography.
- 2. Sharp base and cylindrical well log profile.
- 3. Narrow, elongate geometry in map view.
- 4. Bifurcating pattern expressed in cross section.
- 5. Similarity to ridge/channel couplets documented in the geologic record.
- 6. Evidence of a sediment-bypassed channel path leading northward from the terrain of channel-fill sandstone, as indicated by the Avant structural contour map (See p. 16, and Plate I)

The preponderance of available evidence is judged to substantiate the above interpretations, at the expense of other reasonable alternatives.

CHAPTER VIII

LOG SIGNATURE EVALUATION

Introduction

Well-log surveys in the study area were correlated to the various facies and vertical lithologic changes expressed by the Cottage Grove Sandstone. Instructive quantitative analyses were made of thin sections and well-log data from the core of Cottage Grove Sandstone in the Sarkey's, Gillispie No. 3-2 well, located in T17N, R22W, Ellis Co., Oklahoma.

Gamma-ray, compensated-density, spontaneous-potential and dual induction-laterlog well-log signatures were related to constituents of thin sections. From these analyses several generally dependable log-to-rock and log-to-log relationships were indicated.

Well-log signatures and certain associated lines of evidence can provide information useful for general assessments of depositional environments. Four categories of well-log signatures are described that characterize the major facies and combinations of facies recorded in the Cottage Grove.

Methodology

Well-log, thin-section, and core-analyses data were entered into a computer spreadsheet. Graphs were prepared using Lotus software on an IBM personal computer.

Correlations coefficients and best-fit trend lines were calculated using Microstat software and a HP 41C calculator equipped with a statistics packet.

In the Sarkey's No. 3-2 Gillispie, thin sections were made of samples taken at approximately 2-foot intervals throughout the cored strata; well-log values were recorded from locations correlated as near as possible to positions of thin sections. For use in log-to-log analysis, additional well-log values were taken from below the cored interval, at even, two-foot spacings throughout the sandstone (as indicated by the gamma ray curve).

Correlation of well-log responses to facies was accomplished through analyses of cores, strip-logs, subsurface maps and cross-sections. Log signatures described as being "characteristic" where chosen from areas with the most geologic control.

Classification of Well-log Signatures

Three basic facies are delineated in this study: ridge, channel, and interridge/interchannel facies. Three sets of characteristic gamma-ray log signatures have been chosen for each of these facies. In addition, log signatures of various stacked facies are included.

Characteristic log signatures of ridges are divided into sets typical of the northern and southern parts of the study This division is based on sizes of sandstone ridges. area. Ridges in the north tend to be composed of a thinner stratigraphic sequence than those in the south. However, the fundamental profile produced by ridges from the north and south is the same. Ridge sandstones of the Cottage Grove have sharp bases, fine upward slightly in grain size, and have upper contacts that grade abruptly to siltstone and This configuration of sandstone results in bellshale. shaped to cylindrical well-log profiles (Figure 65). Under classical thought, an abrupt-based and cylindrically shaped profile, normally might be interpreted as a channel-fill deposit. In the area under study here, such an inference could lead to strongly erroneous mapping. The "sharp" bases of log profiles resulted from sands having been deposited by storm-surge ebb currents. The bell-shaped well-log signature reflects the overall fining-upward grain-size trend (a function of the overall marine transgressive conditions under which these ridges formed).

Channel-fill well-log signatures are shown by logs of several wells in T17N and T18N, R22W. These sandstones have barrel-shaped profiles (Figure 66). Typical of these signatures are extremely sharp lower and upper contacts. Between contacts the gamma-ray curve generally displays a relatively smooth profile. The inference that this deposit originated as channel-fill material is supported not only by

Figure 65. Typical Gamma-ray Log Signatures of Ridge Facies. Bell-Shaped and Cylindrical Profiles with Blunt Bases and Abruptly Graded Upper Contacts Characterize These Sandstones. Signatures A - D are from Northern Ridges, Whereas, E - G are of Southern Ridges. Signatures Corresponding to Cores Used in this Study Include D (Ran Ricks, Cole 28-A) and G (Sarkey's, Gillispie 3-2). In General, Northern and Southern Ridges Vary Conspicuously in Stratigraphic Thickness, but Share Overall Gamma-Ray Profile Characteristics.

Figure 66. Typical Channel-Fill Well-Log Signatures. Profiles Tend to be Barrel-shaped with Very Abrupt Lower and Upper Contacts. Log Signature A Taken From Cross Section C-C' (Plate IV).

its log signature, but also by its narrow and elongate geometry in plan view and bifurcating pattern expressed in cross section. Additional evidence is cited in Chapter VII.

A third general type of log signature comes from regions between the tracts of sandstone facies in the Cottage Grove. In these areas strip-logs indicate the presence of thin, tightly carbonate-cemented sandstones and sandy limestones. These beds are at or very near the stratigraphic positions of adjacent sandstone facies. Gamma-ray profiles indicate that these carbonate units are composed of one or more thin beds separated by shales (Figure 67). Resistivity logs show invasion profiles suggestive of low-permeability rock. Cross-plots of nuetron-density logs indicate that the rock is limestone. Shaliness may affect the cross-plots somewhat.

Representative log-signatures of overlapping channelmargin/ridge and of stacked-ridge sequences are a fourth general type of log signature. The basic appearances of log signatures from zones where facies overlap or "stack" consists of two or more sandstone units separated by shale or interbedded siltstone and shale (Figure 68).

Rock-to-log Correlations

Response of Gamma Ray Log

The gamma ray log records the natural radioactivity of formations. In sedimentary rocks the gamma ray log generally reflects the amount of shale in the sequence of strata, because radioactive elements tend to be concentrated in

Figure 67. Interridge/Interchannel Well-Log Signatures. Gamma-ray Profiles May Delineate One or More Thin Units of Tightly Carbonate-Cemented Sandstone or Sandy Limestones Separated by Shale. Signature A is Correlated to a Strip-log Illustrating the Lithology Encountered within the Well.

Figure 68.

Gamma-ray Log Signatures of Stacked Sandstone Sequences. Sandstones may be Separated by Shale or Interbedded Siltstone and Shale. Signatures A and B (Taken from Cross-Section B-B' (Plate III)) are of Overlapping Channel and Ridge Sandstones. Signatures B and C are Interpreted as Stacked Ridge Sequences (Taken from T17N, R20W and R21W).
clays. However, sandstones with low shale content may be recorded by a large gamma-ray response if the sandstone contains potassium feldspars, micas, or glauconite (Asquith, 1982).

In general, the Cottage Grove Sandstone is fine to veryfine grained and contains potassium feldspar, glauconite, illite, muscovite and biotite. Samples from the Sarkey's 3-2 Gillispie provisionally were assumed to be representative of the Cottage Grove in the study area. (I recognize the likelihood of error, but this core is regarded as a reliable sample of the sandstone.) Data shown in Figures 69 through 76 were recorded from samples of the core of Sarkey's 3-2 Gillispie.

Plotted against the gamma-ray curve, samples comparatively rich in feldspar and glauconite failed to yield a distinguishable positive relationship. However, a linear relationship is suggested if total illite is plotted against the response of the gamma ray curve (Figure 69). As the percentage of total illite increases so does the gamma ray deflection in API units. A similar relationship is indicated by the plot of total mica verses the gamma ray curve (Figure 70). The loosely positive correlations set out in these plots suggest that the gamma ray curve dependably would indicate a "shalier" sandstone as the amounts of illite or mica increase. In the Cottage Grove, illite is chiefly of diagenetic origin. Thus, gamma-ray deflection might be useful as a criterion for mapping intensity of diagenetic

Figure 70. Graph of Total Mica versus Gamma Ray. As Total Mica Increases in Percent, the ʿGamma Ray Increases in API Units.

effects.

Gamma-ray deflection compared to average grain size shows negative correlation (Figure 71). As the average grain size of the sandstone decreases, the deflection of the gammaray increases. This arrangement is suggestive of the tendency of fine-grained sandstone to contain more detrital and/or authigenic clay.

Figure 71. Graph of Average Grain Size versus Gamma Ray. Inverse Relationship Indicates that as Average Grain Size Decreases, the Gamma Ray Response Increases in API Units. This Suggests that Finer Grain Sedimentary Rocks Contain More Authigenic and/or Detrital Clays and Mica.

In the strict sense the gamma-ray relationships shown above might be expected to be almost one-to-one. However, the disparity of sampling-volumes between gamma-ray tool and thin sections undoubtedly has introduced much scatter in the cross-plots. Vertical resolution of the gamma-ray tool is approximately 2.5 ft (Hilchie, 1978) but measurements of constituents come from thin sections that are only 0.03 mm thick (roughly 1/25,000 of the vertical interval recorded by the gamma-ray). With this small amount of control, unless the rock were of uniform composition, the "ideal" one-to-one correlation between the gamma ray curve and petrographic data is highly unlikely to occur.

Log-to-Log Relationships

Response of the bulk density curve (and related density porosity) was compared to responses of the laterolog, mediuminduction, and deep-induction curves in order to test hypotheses about response-relationships among these curves.

Bulk Density (and Density Porosity)

<u>Vs.</u> <u>Deep</u> <u>Induction</u>

Figures 72 and 73 suggest some fundamental relationships among porosity, pore-fluids and resistivity. Density porosity (calculated from bulk density using an assumed matrix density of 2.68 gm/cc), plotted against deep induction resistivity, illustrates negative correlation (Figure 73) (an expected circumstance since bulk density and density porosity are inversely related).

Deep induction resistivity presumedly is a measured property of the uncontaminated zone -- i.e., rock and fluid-

Figure 72. Bulk Density vs. Deep Induction. The Larger Amount of Scatter as Bulk Density Approaches 2.68 gm/cc Suggests that Porosity is More Variable in Finer Grained Rock and that Diagenetic Constituents Could be Relatively More Abundant.

Figure 73. Density Porosity vs. Deep Induction. As Porosity Approaches 0 (or as Bulk Density Approaches 2.68 gm/cc, Above), Low Resistivity Shown by Some Samples Suggests a Relatively Large Amount of Water-binding Constituents.

filled porosity (mostly a measurement of the fluids). If Sw = 1, then smaller bulk density implies a larger amount of porosity, a larger amount of stored electrolyte, and therefore smaller resistivity. Such a general association should hold, even if Sw is less than 1 but is almost constant.

Bulk Density Vs. Medium Induction

A positive slope of least-squares line results if bulk density is plotted against resistivity measured by the medium induction curve. In general, as medium-induction resistivity increases bulk density increases (Figure 74). This circumstance is to be expected, because decreased porosity (increased bulk density) implies decreased amount of electrolyte, and therefore overall larger resistivity of reservoir rock. In comparison to Figure 72, the trend line of Figure 74 is the steeper, which probably is evidence of the effect of mud filtrate in the invaded zone.

With respect to Figures 72, 73, and 74, some of the scatter in resistivity could be due to variation in amounts of oil and/or gas in the reservoir. Moreover, since the leftmost four points on Figures 72 and 74 (rightmost four points of Figure 73) are samples from the same strata, the strong similarity in bulk density (density porosity) and resistivity suggest that invasion was shallow -- so shallow as to have minimal effect on medium-induction tool.

Figure 74. Bulk Density vs. Medium Induction. Clustering of Leftmost Four Points About the Trend Line Suggests That as Porosity Increases, Variation in Resistivity Diminishes. Resistivity of Samples in the Range of 2.5 to 2.68 gm/cc Suggests that Invasion of Mud Filtrate was Deeper in Some Low-porosity Rocks, Thereby Increasing Resistivity of Rock Within Range of the Medium-induction Tool.

Bulk Density Vs. Laterolog Resistivity

No apparent meaningful correlation exists between the bulk density (or density porosity) and laterolog resistivity (Figure 75). The nearly horizontal position of the trend line (i.e., closeness of slope to zero) suggests that the laterolog measures strongly invaded rock, that pore-fluid exerts strong influence on resistivity, and that pore-fluid mostly is mud filtrate no matter how large or small the porosity. This circumstance is expectable, for these are the conditions for which the laterolog was designed.

Figure 75. Bulk Density vs. Laterolog Resistivity.

Bulk Density Vs. The Difference Between Deep-induction and Laterolog Resistivity

Bulk density, plotted against the difference between deep-induction and laterolog resistivity, shows a positive slope of the best-fit line (Figure 76). This suggest a strong association: the smaller the amount of porosity (larger the bulk density), the deeper the invasion of rock and the greater the spread between deep induction and laterolog curves. This conclusion and those mentioned above are neither new nor unique. Such relationships can be expressed qualitatively, as the product of general study of wireline logs. However, these data indicate the robustness of the relationships when the sampling-differences of data from logs and thin sections are taken into account.

Figure 76. Bulk Density vs. Deep - Laterolog Resistivity. Samples that Approach Zero Probably are from Strata that are Shaly and Almost Impermeable (Which Probably is the Case in the Range of Bulk Density = 2.54 gm/cc and Greater).

CHAPTER IX

CONCLUSIONS

The principal conclusions of this study are as follows:

1. Structural features in the study area, as illustrated by the contour map of Avant "Hot" shale marker, consist of anticlinal and synclinal noses that are superimposed upon a southerly dipping homoclinal surface.

2. Some local anticlinal noses along the homocline are associated with linear trends of Cottage Grove Sandstone. These anticlines likely are the result of differential compaction and draping across sandstones.

3. The Cottage Grove Interval is defined as the stratigraphic section above the lowermost Hogshooter "hot" shale marker and below the lowermost Avant "hot" shale marker.

4. Regional correlations of the Cottage Grove Interval are facilitated by "hot" shale markers associated with the Avant and Hogshooter Limestone intervals. Detailed correlations in stacked sandstone sequences can be made through use of correlation markers that include: a) the lower Avant "hot" shale marker, b) nonporous strata shown by porosity-log curves and c) "shoulder-like" well-log signatures in sections of interbedded siltstone and shale, owing to variation in amount of shale in the interval above

the Cottage Grove Sandstone.

5. In cross section the Cottage Grove Interval increases in thickness southward; near the central part of T18N the rate of thickening changes from approximately 2 to 14 feet per mile. This increase generally is associated with thicker intervals of sandstone.

6. In the study area, the Cottage Grove Sandstone is very-fine to fine grained, well sorted, subrounded to rounded, mature litharenite to sublitharenite.

7. Detrital constituents of the Cottage Grove Sandstone are monocrystalline and polycrystalline quartz, feldspars, metamorphic-, plutonic-, and sedimentary-rock fragments, chert, muscovite, biotite, chlorite, phosphate, glauconite, zircon, tourmaline, fossil fragments, and ooids.

8. Authigenic constituents are ferroan dolomite, calcite, dolomite, quartz overgrowths, barite, feldspar overgrowths, illite, kaolinite, and chlorite.

9. Paleogeography, stratigraphic information, and the majority of petrographic data suggest that the Ouachita Mountains were the primary source of Cottage Grove sediments. However, granitic rock fragments, documented in cores from this study, suggest that a secondary source existed. This source may have been in the Wichita Mountains or Ancestral Rockies, because plutonic rocks have not been recorded in the Ouachita region.

10. Evidence from previous investigations, distribution of sandstones as based on subsurface maps and stratigraphic cross sections constructed during this study, and internal sandstone features observed in cores, all indicate strongly that the Cottage Grove was deposited in a shallow marine setting.

11. The principal form of sandstone deposition in the study area was as sub-parallel, east-northeast-trending, linear ridges; a second mode of deposition is indicated by a narrow, north-trending sandstone that is interpreted as having been a shallow marine channel eroded by storm processes.

12. Dimensions of ridge sandstones are difficult to determine in the southern portion of the study area where the bodies of sandstones were stacked. However, in the north, sandstone ridges measure from 1 to 1.5 miles wide by 2 to 7 miles long. In the north, sandstone isolith thicknesses rarely exceed 35 feet; whereas, in the southern half thickness are as much as 96 feet. Maximal thickness recorded for the channel deposit is 45 ft.

13. Cottage Grove ridges were deposited under the influence of storm- and tide-dominated conditions during a marine transgression.

14. The "channel" sandstone overlies the ridge facies in T17N and T18N, R22W. In this region the sandstone appears to be within a channel that truncated the section above, and that bifurcated across the underlying ridge.

15. Several depositional characteristics exhibited by the channel/ridge couplet of the Cottage Grove resemble

characteristic shown by other channel/ridge couplets in the geologic record, including the Terry Sandstone Member, Pierre Shale in the Denver Basin, and the Cretaceous Sussex Sandstone of Wyoming.

16. Sedimentary structures apparent in cores of the Cottage Grove include massive bedding, medium-scale planar cross-bedding, small-scale trough cross-bedding, finingupward sequences, and soft-sediment deformation. Bioturbated rock is confined largely to the interbedded siltstones and shales that overlie the sandstone facies.

17. Strip-logs suggest that interridge/interchannel areas of the Cottage Grove interval consist of limestone and thin, "tightly" carbonate-cemented sandstones and siltstones.

18. Carbonate fossil fragments, ooids, and shale clasts within the Cottage Grove likely were entrained by storm-surge ebb flows that deposited sandstone as ridges on the shelf. Detrital carbonaceous material was deposited (a) in shales immediately below the sandstones, (b) at the bases of sandstone intervals in fining-upward deposits, (c) as trace amounts within the sandstones, and (d) in fining-upward sequences that truncate the upper sandstone facies.

19. Numerous sandstone intervals containing abundant carbonate material are cemented completely by calcite.

20. Ridge sandstones of the Cottage Grove have abrupt lower contacts with shale, fine upward in grain size overall, and have upper contacts that grade over short distances to interbedded siltstone and shale. Ridges are enclosed

laterally by marine shale.

21. Major diagenetic events recorded in the Cottage Grove Sandstone include the mechanical process of compaction and chemical processes of dissolution, precipitation, alteration, and replacement.

22. The general paragenetic sequence of the Cottage Grove Sandstone is summarized as follows: (a) precipitation of calcite, (b) biogenic decarbonatization (b) precipitation of (in relative order of occurrence) quartz overgrowths, barite, dolomite, ferroan dolomite, and calcite, (c) dissolution of carbonate cements, feldspars, rock fragments and detrital matrix, (d) precipitation of feldspar overgrowths, illite, chlorite, and kaolinite. Migration of hydrocarbons followed precipitation of clay, although maturation likely began prior to dissolution of carbonate cements (stage c).

23. Porosity in the Cottage Grove Sandstone ranges from 0% to 16%, averages 6%, and is predominantly secondary. Primary porosity contributes only an occasional trace amount. Effective porosity is owing largely to dissolution of calcite and ferroan dolomite cements. Textures of secondary porosity consist of elongate pores, corroded grains, floating grains, partially dissolved grains, oversized pores, honeycombed grains, grain molds, shrinkage, and microporosity (associated with kaolinite).

24. In the Sarkey's, Gillispie 3-2 core, increase in the deflection of the gamma-ray log (API units) indicates

increases of total illite and total mica due to the presence of radioactive potassium ions contained in the matrices of these minerals. As the average grain size of the sandstone decreases, the deflection of the gamma ray increases. This arrangement reflects the tendency of fine-grained sandstone to contain more clay minerals and mica.

25. In logs of the Sarkey's Gillispie 3-2 well, deepand medium-induction resistivity curves show positive correlation to the bulk density curve: increased bulk density implies decreased porosity, which implies a decreased amount of electrolyte; accordingly, this results in overall larger resistivity of the reservoir rock. Hence, a general assessments of reservoir porosity may be made from evaluation of deep- and medium-induction resistivity curves.

26. Gamma-ray well log signatures of the Cottage Grove can be categorized into sets "characteristic" of ridge, channel, interridge/interchannel, and stacked sandstone facies. This information should contribute to improved prediction of depositional environments from well logs.

REFERENCES CITED

- Adler, F. J., 1971, Future Petroleum Provinces of the Mid-Continent, in Future Petroleum Provinces of the United States, Their Geology and Potentials: Amer. Assoc. Petroleum Geologists Memoir no. 15, vol. 2, pp. 1061-1070.
- Al-Shaieb, Z., 1985, 1986, Personal Communication, Oklahoma State University, Stillwater, Oklahoma.
 - _____, and Shelton, J. W., 1981, Migration of Hydrocarbons and Secondary Porosity in Sandstones: Amer. Assoc. Petroleum Geologists Bull., v. 65, no. 11, pp. 2433-2436.
- Asquith, G., 1982, Basic Well Log Analysis for Geologists: Am. Assoc. Petroleum Geologists, 216 pp.
 - Brenner, R. L., 1978, Sussex Sandstone of Wyoming Example of Cretaceous Offshore Sedimentation: Am. Assoc. Petroleum Geologists Bull., v. 62, no. 2, pp. 181-200.
 - Burke, K. and Dewey, J. F., 1973, Plume-generated Triple Junctions: Key Indicators in Applying Plate Tectonics to Old Rocks: Jour. Geol. Soc. Spec. Publ., no. 1, pp. 406-433.
 - Capps, W. M., 1959, Stratigraphic analysis of the Missourian and Lower Virgilian series in northwestern Oklahoma: Oklahoma University Masters Thesis, 48 p.
 - Chenoweth, P. A., 1979, Geological Prospecting For Midcontinent Sandstones: Tulsa Geol. Soc. Spec. Publ. no. 1, pp. 13-33.
 - Davis, R. A., 1983, <u>Depositional Systems: A Genetic Approach</u> to <u>Sedimentary Geology</u>, Prentice-Hall, Inc., 669 pp.
 - Evans, J. L., 1979, Major Structural and Stratigraphic Features of the Anadarko Basin; Pennsylvanian Sandstones of the Mid-Continent: Tulsa Geol. Soc. Spec. Publ., no. 1, pp. 97-113.
 - Folk, R. L., 1974, <u>Petrology</u> of <u>Sedimentary</u> <u>Rocks</u>: University of Texas, Hemphill Publ. Co., 182 pp.

- Fruit, D. J., 1986, Tide and Storm Dominated Bars on a Distal Muddy Shelf: The Pennsylvanian Cottage Grove Sandstone, Northwestern Oklahoma: Oklahoma University Masters Thesis, 83 pp.
- Fuchtbauer, H., 1974, <u>Sediments</u> and <u>Sedimentary</u> <u>Rocks</u>, <u>I</u> (2nd ed.): New York, Halsted Press, 464 pp.
- Gibbons, K. E., 1960, Pennsylvanian of the north flank of the Anadarko basin: Oklahoma University Masters Thesis, 46 pp.
- Hanshaw, B. B., Back, W., and R. G. Deike, 1971, A Geochemical Hypothesis for Dolomitization by Ground Water: Economic Geology, vol. 66, pp. 710-724.
- Ham, W. E., Denison, R. E., and Merritt, C. A., 1964, Basement rocks and structural evolution of southern Oklahoma: Okla. Geol. Survey Bull., no. 95, 302 pp.
- Hardie, L. A., 1987, Dolomitization: A Critical View of Some Current Views: Jour. of Sed. Petr., v. 57, no. 1, pp. 166-183.
- Hilchie, D. W., 1978, <u>Applied</u> <u>Openhole</u> <u>Log</u> <u>Interpretation</u>: Golden, Colorado, D. W. Hilchie, Inc.
- Holmes, K. H., 1966, Stratigraphic traps in Cedardale -Northwest Quinlan area, Major and Woodward counties: Shale Shaker, v. 16, no. 8, p. 174-182.
- Houboult, J. J. H. C., 1968, Recent Sediments in the Southern Bright of the North Sea: Geol. Mijn., v. 47, 245-273.
- Huthnance, J. M., 1982, On One Mechanism Forming Linear Sand Banks: Esturarine, Coastal, Shelf Science v. 14, pp. 79-99.
- Jordan, L., 1957, Subsurface Stratigraphic Names of Oklahoma: Okla. Geol. Survey Guidebook, v. 1, 220 pp.
- Katz, A., 1971, Zoned dolomite crystals: Jour. of Geology, vol. 79, pp. 38-52.
- Kennedy, C. L., 1982, The Deep Anadarko Basin: Petroleum Information Corp., pp. 7-10.
- Krumme, G. W., 1975, Mid-Pennsylvanian Source Reversal on the Oklahoma Platform: Unpublished Ph.D Dissertation, University of Tulsa, 161 pp.
- Lalla, W., 1975, A Stratigraphic Study of the Osage-Layton Format in Northeastern Oklahoma: Shale Shaker, v. 26, no. 4, pp. 66-78.

- Land, L. S., and Dutton, S. P., 1978, Cementation of A Pennsylvanian Deltaic Sandstone: Isotopic Data: Jour. of Sed. Pet., v. 48, pp. 1167-1176.
- Leeder, M. R., 1982, <u>Sedimentology: Process</u> and <u>Product</u>: George Allen & Unwin (Publishers), Ltd., London, 344 pp.
- Lukert, L. H., 1949, Subsurface Cross Sections from Marion County, Kansas to Osage County, Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 33, no. 2, pp. 131-152.
- Moore, R. C., 1932, A Reclassification of the Pennsylvanian system in the northern Midcontinent region: Kansas Geol. Soc. Guidebook 6th Ann. Field conf., pp. 79-98.
- Moore, G. E., 1979, Pennsylvanian Paleogeography of the Southern Mid-Continent: Tulsa Geol. Soc. Spec. Publ. no. 1, pp. 2-12.
- Oakes, M. C., 1940, Geology an mineral resources of Washington County, Oklahoma: Okla. Geol. Survey Bull., v. 62, 208 pp.
- Off, T., 1963, Rhythmic Linear Sand Bodies Caused by Tidal Currents: Amer. Assoc. Petro. Geologists Bull., v. 47, p. 324-341.
- Parker, G., Lanfredi, N. W., and Swift, D. J. P., 1982, Seafloor response to Flow in a Southern Hemisphere Sandridge Field: Argintine Inner Shelf: Sedimentary Geology, v. 33, pp. 195-216.
- Pate, J. K., 1959, Stratigraphic traps along north shelf of Anadarko basin, Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 43, no. 1, pp. 39-59.
- Rascoe, B., 1962, Regional stratigraphic analysis of Pennsylvanian and Permian rocks in western midcontinent, Colorado, Kansas, Oklahoma, Texas: Am. Assoc. Petroleum Geologists Bull., v. 46, no. 8, pp. 1345-1370.
 - ______, 1978, Sedimentary cycles in the Virgilian Series (Upper Pennsylvanian) of the Anadarko basin: Shale Shaker, v. 28, no. 6 and 7, pp. 123-149.
- ______, and Adler, F. J., 1983, Permo-Carboniferous Hydrocarbon Accumulations, Mid-Continent, U.S.A.: Amer. Assoc. Petroleum Geologists Bull., v. 67, no. 6, pp. 979-1001.
- Schatski, N. S. 1946, The Great Doners Basin and Wichita System - Comparative Tectonics of Ancient Platforms: USSR, Akad. Navk. Isv. Geol. Serial No. 1., pp. 5-62.

- Schmidt, V., and D. A. McDonald, 1979, The Role of Secondary
 Porosity in the Course of Sandstone Diagenesis: in
 <u>Aspects of Diagenesis</u>, Soc. Econ. Paleon. and Min.,
 Spec. Publ. No. 26, pp. 175-207.
 - ______, and ______, 1979, Texture and Recognition of Secondary Porosity in Sandstones: in <u>Aspects of Diagenesis</u>, Soc. Econ. Paleon. and Min., Spec. Publ. No. 26, pp. 208-226.
- Siemers, C. T., and Ristow, J. H., 1986, Marine-Shelf Bar Sand/Channel Sand Shingled Couplet, Terry Sandstone Member of Pierre Shale, Denver Basin, Colorado. In <u>Modern and Ancient Shelf Clastics</u>, A Core Workshop; Ed. T. F. Moslow and E. G. Rhodes: Soc. Econ. Paleon. and Min., Core Workshop No. 9, Atlanta, pp. 269-323.
- Stanley, D. J., and Swift, D. J. P, (eds.), 1976, Marine
 Sediment Transport and Environmental Management, John
 Wiley, New York, 602 p.
- Swanson, D. C., 1967, Some major factors controlling the accumulation of hydrocarbons in the Anadarko basin: Shale Shaker, v. 17, no. 6, pp. 106-114.
- Swift, D. J. P., Parker, G., Lanfredi, N. W., Perillo, G., and Figge, K., 1978, Shoreface Connected Sand Ridges on American and European Shelves: A Comparison: Estuarine and Coastal Marine Science, v. 7, pp. 257-273.

_____, and Field, M. E., 1981, Evolution of a Classic Sand Ridge Field: Maryland Sector, North American Inner Shelf: Sedimentology, v. 28, pp. 461-481.

______, and Niedoroda, A., 1985, Fluid and Sediment Dynamics on Continental Shelves, In R.W. Tillman et al., Eds., Shelf Sands and Sandstone Reservoirs: Society of Economic Paleontologists and Mineralogists, Short Course 13, pp. 47-133.

- Towns, D. J., 1978, Distribution, Depositional Environment, and Reservoir Properties of the Pennsylvanian Cottage Grove Sandstone, South Gage Field, Oklahoma: Oklahoma State University Masters Theses, 97 pp.
- Walker, R. G., 1984, Shelf and Shallow Marine Sands, in <u>Facies Models</u>, 2nd Edition: Geoscience Canada Reprint, pp. 141-170.

- Waller, B. R., 1985, Depositional Environment, Petrology, Diagenesis, and Petroleum Geology of the Cottage Grove Sandstone, North Concho Field, Canadian County, Oklahoma: Oklahoma State University Masters Thesis, 128 pp.
- Wilson, M. D., and E. D. Pittman, 1977, Authigenic Clays in Sandstones: Recognition and Influence on Reservoir Properties and Paleonvironmental Analysis: Jour. of Sed. Petr., v. 47, no. 1, pp. 3-31.

APPENDIX A

WELL-LOG DATA SHEETS

LIST OF SYMBOLS

- SPOT Well location
- SEC Section
- NUMB Assigned well number per Township
- ELEV Elevation (KB, DF, etc.)
- AVANT Avant structural top (lowermost Avant "hot" shale marker) recorded as subsea
- HGSH Hogshooter Limestone structural top (lowermost Hogshooter "hot" shale marker) recorded as subsea
- CGNSS Cottage Grove Net Sandstone (represents net gamma-ray 2.5 chart divisions from shale base line) -- some values may record limestone
- CGPHI Cottage Grove Sandstone Net Porosity greater than 8 percent
- CGSS Cottage Grove Net Sandstone Isolith value (value represents only those CGNSS values with porosity (CGPHI))

							17N-20W					
SPOT	5	SEC	STAT			NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
2640E	1440N	1	LOC			37	1878	6278	6660	68	MS	68
3600E	330N	2	LOC			38	1919	6297	6681	68	MS	68
2980E	1980N	2	LOC			39	1923	6285	6663	56	MS	56
SW SW	SW	2	LOC			40	1996	6345	6724	48	MS	48
3300E	1400N	4	LOC			1	2094	6340	6726	70	56	70
С		6	LOC			36	2128	6361	6736	68	64	68
SE SE		8	LOC			2	2095	6407	6791	54	MS	54
S2 SE	NE	9	LOC			3	2055	6381	6751	68	MS	68
C SE	SW	9	LOC			4	2094	6398	6778	54	26	54
2230E	3300N	9	LOC			5	2030	6382	6770	50 50	34	50 50
L8/2E	2970N CF	9	LOC			0 / 1	2000	6300	6795	52	40 26	52
C SE	<u> de</u>	10	LOC			7	1997	6360	6748	55	20	55
C SE	NE	10	LOC			. 42	2057	6347	6733	80	MS	80
C SE	NW	10	LOC			45	2068	6362	6748	59	38	59
C NW	SE	10	LOC			46	2021	6364	6749	76	MS	76
S2 SW	SW	10	LOC			43	2078	6398	6784	58	20	58
C SE		11	LOC			8	1915	6358	6741	28	4	28
C SE	SW NE	11	LOC			9	1925	6343	6722	• 50	10	50
1650E	3180N	11	LOC			47	2024	6336	6721	68	MS	68
E2 NW	SE	12	LOC			10	1885	6329	6703	30	MS	30
C SE	NW	12	LOC			11	1887	6321	6698	56	44	56
SW NW		12	LOC			12	1889	6316	6691	60	34	60
4950E	1067N	12	LOC			13	1865	6300	6675	58	46	58
3520E	3520N	12	LOC		-	14	1880	6312	6690	60	48	60
C NE	SW	12	LOC			48	1885	6343	MS	34	MS	34
C NW	NW	13	LOC		•	15	1889	6391	6775	17	9	17
NW NW	NW	14	LOC			16	1966	6394	6/84	46	26	46
NW NW	NE MU	14	LOC			10	1935	6378	6700	33	4 MC	33 MG
EZ WZ	NE NW	10	LOC			10	2124	0408 MC	0/90 MC	MC	MS	MC
	IN LL	16	LOC			19	2122	MS	6786	66	MS	66
3300E	3710N	17	LOC			20	2069	6415	6799	MS	MS	MS
2970E	2210N	17	LOC			21	2070	6444	6820	MS	MS	MS
2121E	3111N	17	LOC			22	2044	6429	6816	MS	MS	MS
N2 NW	SW	17	LOC			50	2011	6437	6819	61	17	61
4570E	3460N	17	LOC			51	2127	6421	6805	68	MS	68
460E	3111N	18	LOC			23	2153	6447	6833	MS	MS	MS
C SE		18	LOC			24	2087	6459	6843	80	MS	MS
NW NW	NW	18	LOC			25	2122	6440	6820	MS	MS	MS
1980E	2280N	18	LOC			54	2084	MS	6826	64	MS	64
C N2	SW SW	18	LOC			55	2091	6469	6855	64	MS	64
C SW	NE	18	LOC			56	2040	6430	6812	66	MS	60
3230E	2300N	10	LOC			5/	2020	6438	6920	60	MC	66
21208	2980N	18	LOC			23	2000	6442	6024	21	13	00
11700	1320N	25	TOC			20	100/	6579	6070	MG	MG	MG
	T250M	20	LOC			27	2011	6599	7001	26	MS	MS
SE SW		27	LOC			58	2011	6587	6992	12	0	12
17701	3960N	28	LOC			29	2057	6571	6963	18	Ō	18
C SE	5500N	28	LOC			59	2007	6594	6987	16	0	12
SE		29	LOC			30	2149	6597	7005	16	4	16
NE NE		29	LOC			31	2115	6555	6955	18	0	18
CSE		33	LOC			33	2098	6654	7064	15	Ó	0
NW		34	LOC			3	2042	6616	7021	12	0	0
C NE		35	LOC			35	2043	656 9	6969	10	0	0

						17N-2	21W				
SPOT		SEC	STAT		NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
		_					60 7 0				
C N	WSE	3	LOC		3	2101	6379	6743	22	4	22
NW		3	LOC		32	2101	6319	6685	64	34	64
CW	2 SW	4	LOC		4	2078	6360	6737	58	MS	58
C S	E SE	5	LOC		5	2065	6355	6727	56	16	56
C N	E SW	5	LOC		6	2045	6343	6713	54	35	54
NW N	E SW	6	LOC		7	1922	6350	6723	76	17	76
2755	E 3300N	6	LOC		8	1938	6366	MS	38	20	38
SE N	W SE	7	LOC		11	2071	6411	6797	66	34	66
NE S	E ·	7	roc.		12	2043	6385	6776	74	35	74
SW N	E	8	LOC		13	2068	6346	6718	40	17	40
C N	N	9	LOC		16	2112	6383	6755	34	13	34
NW S	N	10	LOC		17	2137	6431	6834	80	18	80
4080	E 900N	10	LOC		33	2164	6432	6819	90	24	90
C S	2 SW	11	LOC		34	2160	6413	6796	96	42	96
S2 S	NW NW	13	LOC		18	2066	6448	6781	78	MS	78
SW S	N	13	LOC		19	2137	6455	6841	60	6	60
NE S	Ξ	13	LOC		20	2153	6453	MS	80	MS	80
C N	ESW	13	LOC		31	2098	6450	6834	66	MS	66
3300	E 1780N	13	LOC		36	2123	6456	6841	82	MS	82
C S	W SW NE	13	LOC		37	2113	6461	6842	58	43	58
SW S	F	14	LOC	-	21	2097	6437	6819	84	MS	84
SW SI		14	LOC		22	2104	6432	6818	82	8	82
S2 S	ENW	14	LOC		38	2107	6420	6801	75	56	75
E2 SI	NW NW	14	LOC		39	2141	6413	6793	82	22	82
C S	2 SW NW	15	LOC		23	2152	6467	6856	82	MS	82
C S	E NE	15	LOC		40	2166	6427	6807	75	16	75
NW D		17	LOC		24	2019	6471	6865	68	20	68
NF		10	LOC		25	2012	6490	6868	54	12	54
1320	7 3910N	10	LOC		41	2000	6522	6016	59	MG	59
C N	2 2010M	20	TOC		41 27	21/4	6515	6005	74	56	74
NF CI	1 NE.	20	LOC		40	2071	6515	6000	/4	11	14
6201	V NE	22	LOC		42	2102	6460	6052	42	10	42
NE CI	5 4090N 4 NE	23	LOC		43	2124	6409	6060	50	10	50
11201	NE 7 12201	20	TOC		20	2220	0000	0902	10	0	0
41301 E2 E4	TOSON	29	TOC		29	2230	0000	6047	14	0	0
с <u>с</u> Е.	2 IN W	29			50	2141 MC	6508	094/	14 MC	MC	MC
6		54	GNSC		JUC	ms	6600	/000	mS	пS	пъ

-

						17N-22W						
SPO	тс		SEC	STAT	NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS	
с	SE	NW	1	LOC	1	1959	6347	6718	89	40	89	
С	NW	NE	1	LOC	2	1968	6356	MS	46	11	46	
₩2	W2	NW	1	LOC	3	2079	6357	MS	10	0	10	
N2	NW	SE	2	LOC	4	2075	6373	MS	60	32	60	
С	SE	NW	2	LOC	5	2097	6343	MS	64	14	64	
N2	SE	SW	2	LOC	6	2071	6399	MS	59	26	59	
С	NE		2	LOC	7	2134	6329	6690	76	67	76	
С	E2	SE	2	LOC	8	2050	6377	6740	73	17	73	
90	60E	1980N	2	LOC	9	2081	6383	MS	59	40	59	
E2	NE	SE	3	LOC	12	2040	6377	MS	58	22	58	
S2	NW	SE	3	LOC	13	2040	6393	MS	MS	MS	MS	
NW	NW		3	LOC	14	2118	6336	6672	24	MS	24	
S2	SW	NE	4	LOC	16	2170	6366	MS	34	22	34	
W2	SW		4	LOC	17	2095	6361	MS	36	8	36	
N2	NE	SW	4	LOC	18	2162	6360	MS	38	22	38	
SW	NE		6	LOC	. 19	2144	6302	6614	20	8	20	
С			7	Ghst	502	MS	6300	6650	MS	MS	MS	
NE	NE	NE	10	LOC	21	2070	6440	MS	30	18	30	
С	NE	NW	11	LOC	22	2050	6420	MS	50	20	50	
SE	SE	SE	12	LOC	23	2063	6431	6821	68	MS	68	
S2	S2	NE	13	LOC	24	2149	6506	6889	46	25	46	
NE	NE		15	LOC	25	2008	6506	MS	29	12	29	
W2	SE		18	LOC	26	2147	6434	MS	10	0	10	
S2	SE	SW	18	LOC	28	2184	6450	MS	14	4	14	
SW	NE	SW	19	LOC	30	2314	6480	MS	6	0	6	
С	SE		23	LOC	31	2304	6542	6922	38	16	38	
С	NE		24	LOC	32	2156	6538	6928	63	24	63	
С			28	Ghst	503	MS	6550	6900	MS	MS	MS	
С			32	Ghst	504	0	6600	6950	MS	MS	MS	
353	30E	1470N	36	LOC	33	2064	6688	7078	14	0	14	

SPO	ЭT		5	SEC	STAT		NUMB	18N-2 ELEV	20W AVANT	HGSH	CGNSS	CGPHI	CGSS
c	សស			2	LOC		1	2134	5716	6028	13	0	0
e n	62	NIGT		2	TOC		- -	2110	5709	6020	13	ő	ñ
12	32	200	ON	ر ۸	LOC		2	2140	5761	6070	12	Ő	ň
134		500	ON	4	LOC		3	2005	5781	60079 6005	10	0	Ő
C	NE	014		5	LUC			19/2	5770	6085	12	0	0
SW	NE	SW		6	LOC		5	2126	5867	6184	13	0	0
N2	<u>S2</u>	SE		8	LOC		6	2096	5907	6234	1/	0	0
С	NE			8	LOC		18	2077	5863	6190	19	MS	MS
С	SE	NŴ	SE	9	LOC		19	1925	5850	6179	MS	MS	MS
С	NW			10	LOC		7	1975	5786	6111	13	0	0
С	S2	NE	SW	10	LOC		20	2004	5847	6255	12	0	0
NW				12	LOC	•	8	2044	5906	6234	12	0	0
С	₩2	NE		13	LOC		21	2073	5920	6272	84	70	84
С	NW			16	LOC	-	9	2071	5899	6258	8	0	0
W2	W2	W2	NE	16	LOC		22	1992	5882	6214	22	0	0
С	SE			17	LOC		10	1956	5954	6290	9	0	0
SE	NW			21	LOC	•	11	1890	6012	6357	34	0	0
С	NE			21	LOC		12	1896	6006	6354	52	12	12
С	NE	SW		22	LOC		13	1876	6056	6413	62	27	62
NW	SE			25	LOC		14	1867	6116	6481	50	28	50
C	NE			25	LOC		23	1931	6061	6429	54	42	54
125	508	279	ON	22	LOC		24	1996	6268	6640	29	24	29
NE	NE	270 CW	NE	21	LOC		15	1012	6215	6502	22	MC	22
2111	NE	211	IN L	24			16	1046	6201	6562	00	F/	00
2	NE			35	TOC		10	1000	6201	0003	63	54	60
C	NE			36	TOG		17	T858	6T18	6548	63	50	63

					18N-	21W				
SPOT	5	SEC	STAT	NUM	B ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
C NW		1	LOC	1	8 2080	5861	6173	16	Q	0
1930E	1700N	2	LOC	1	9 2156	5919	6229	14	0	0
SW SW	SW	2	LOC	2	0 2131	5951	6269	15	0	0
4280E	4280N	3	LOC		1 2157	5871	6179	20	0	0
SW		4	LOC	2	1 2150	5898	6234	12	0	0
C NE		5	LOC		2 2277	5883	6183	15	0	0
C NW	•	7	LOC		3 2249	5933	6243	12	0	0
C E2	SW	9	LOC		4 2140	5981	6314	16	0	0
S2 NE	NE	9	LOC	2	2 2144	5961	6282	10	0	0
4620E	1960N	9	LOC	2	3 2141	5982	6304	13	0	0
NE NE	SW NE	9	LOC	2	4 2127	5964	6286	12	0	0
3300E	4470N	10	LOC	2	5 2074	5960	6278	16	0	0
SE SE	NW	10	LOC	2	6 1985	5979	6301	14	0	0
E2 SW		10	LOC	2	7 2049	6007	6330	12	0	0
SE NW	SE	10	LOC	2	8 1993	5995	6320	14	0	0
C SE	SE	10	LOC	2	9 2011	6014	6341	16	0	0
NW SW		10	LOC	3	0 2133	5986	6310	12	0	0
SE NE		10	LOC	3	1 2105	5982	6301	12	• 0	0
W2 E2	NW	11	LOC	-	5 2085	5951	6269	14	0	0
C NW	NW	11	LOC	3	2 2114	5943	6260	14	0	0
C NW	SW	11	LOC	3	3 2023	5993	6313	14	0	0
NW SE		12	LOC		6 2029	5974	6298	15	0	0
C NE		14	LOC		7 1925	6025	6350	16	0	0
560E	4950N	14	LOC	3	4 1962	6012	6338	14	0	0
1955E	3790N	15	LOC	3	5 1980	6027	6354	15	0	0
C NE		16	LOC		8 2098	6028	6360	12	0	0
C NE		19	LOC		9 2098	6123	6466	9	0	0
C NE	NW	21	LOC	3	6 2172	6078	6411	6	0	0
N2 SW	SW	22	LOC	1	0 2122	6174	6515	14	0	0
2980E	3960N	22	LOC	1	1 2010	6090	6425	11	0	0
C SE		23	LOC	1	2 1967	6131	6474	9	0	0
1622E	3538N	30	LOC	1	4 2139	6225	6550	7	0	0
C SE	SW	32	LOC	1	5 1943	6301	6655	6	0	0
C SE		33	LOC	1	6 2080	6281	6635	5	0	0
SW		34	LOC	1	7 2047	6297	6654	34	17	34

	18N-22W											
SPO	ЭΤ	5	SEC	STAT		NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
С	N2	SW	2	LOC		1	2288	5951	6212	12	0	0
С	SW		3	LOC		2	2378	5992	6269	0	0	0
Ċ	SE		4	LOC		46	2380	6025	6307	4	0	0
С	SW		5	LOC		3	2407	6039	6308	0	0	0
Ċ	SW		6	LOC		3	2348	6054	6279	Ō	Ō	0
NE			7	LOC		4	2368	6074	6366	3	Ō	Ō
370	50E	1320N	Ŕ	LOC		5	2359	6081	6357	3	Ő	Ō
NW		102011	ğ	LOC		6	2390	6052	6322	12	MŠ	Ő
Ċ	รพ	NE	ă	LOC		7	2386	6051	6324	- 2		ñ
č	NW	SW	11	LOC		, , g	2300	6082	MG	32	0	32
č	NW	UN	16	TOC		ä	2320	6116	6201	52	0	52
č	GW	CF NW	17	LOC		10	2370	6123	6/01	0	MG	ŏ
č	SE	OL NW	10	LOC		11	2300	6134	6/1/	Q Q	MS	0
č	NF		10	LOC		12	2300	6115	6305	Q	115	0
č	NE		20	LOC		12	2333	6170	6/12	0	0	0
č	C T		20	LOC		1/	2301	6106	6170	0	MG	MC
č	NF		20	LOC		15	2204	6150	6410	0	113	113
C T	0 P		21	LOC		10	2302	6152	0440 MC	7	0	0
25	O L N L	CF	22	LOC		17	2323	6140	CAAC	10	MC	MC
č	NE	36	22	LOC		10	2299	6149	6440	10	- MS	ri5
เมา	SE MU	NILT	23	LOC		10	2210	6102	6472	20	12	20
WZ		INW CCON	23	LOC	-	19	2200	6128	0423 MC	30	13	11
- / C	NW	0001	23	LOC		20	2299	6141	FID CAAE	41	27	41
3W GW	NE	сw	23	LOC		21	2203	6145	0440 MC	40	15	40
51	NL	OW CF	23	LOC		22	2303	6145	CE A A	29	10	29
č	TA AA	26	25	LOC		23	2120	6221	6344	10	0	0
C W	NF		20	LOC		24	2091	6209	MC	12	0	0
5 M	NU		20	LOC		20	2143	6203	6402	27	15	27
NW	NE	CW	20	LOC		20	22/2	6102	0492 MC	15	10	15
CT.	NE	NE	20			27	21/0	6162	MC	T.)	0	10
OE CW	NW	CW NE	27			20	2204	6102	6100	10	0	0
NU	NW CE	OF NE	27	LOC		29	2240	6191	0400 MC	24	0	31
100	36 07	1220N	27	LOC		20	2147	6224	6526	11	4	54
エンム	20E	TJJON	23	LOC		27	2142	6232	6520	11	0	0
12	202	3760N	20	LOC		22	2100	6250	6551	16	0	16
122		2200N	22	LOC		24	2142	6230	6535	11	4	10
T34	NU	22001	27	LOC		24	2205	6257	6535	11	2	11
DZ NE	NE		24	LOC		30	2120	6204	0074 MC	25	10	25
CM NE	NE		24	LOC		20	2112	6250	MC	12	10	12
24	NE	CU	24	TOC		37	2151	6261	F13		o MC	LZ MC
U Mo	NE	SW	34	TOC		30	214/	6269	NC O	10	MS	12
WŻ	NE	SE	34	TOC		. 39	2090	6275	MC	10	0	1.0 1.0
SW CF	IN W	CM	22			40	2143	6270	PIS MC	22	9	22
SE NT	IN W	24	22	TOC		41	2052	6330	MC	22	17	13 13
NE	WW		35	LOC		42	2000	6220	MC MC	23	17	23
E2	SW	SW SE	35	TOC		43	2080	6303	ris 6626	48	, T	48
C	NW	SE GW	35	TOC		44	2104	6303	0030	10	0	0
SW	SW	SW	36	TOC.		45	2082	6352	MS	10	0	0

					19N-3	2.0W				
SPOT	1	SEC	STAT	NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
SW SW		1	LOC	24	2265	5471	5754	12	0	0
NE NW	-	2	LOC	1	2249	5429	5704	6	0	0
SE NW		3	LOC	2	2286	5414	5710	13	MS	MS
NW		5	LOC	25	2306	5455	5720	14	0	0
SE		6	LOC	27	2316	5502	MS	17	0	0
NE		7	LOC	28	2351	5528	5802	10	0	0
1320E	2825N	7	LOC	29	2332	5568	5842	20	0	0
NW		8	LOC	3	2322	5519	5798	24	0	0
SW NE		9	LOC	4	2245	5495	5771	10	0	0
SE		9	LOC	5	2251	5513	5793	8	MS	MS
NE		10	LOC	6	2209	5460	5741	25	0	0
SW		10	LOC	30	2220	5514	5796	16	0	0
NW SE		11	LOC	7	2251	5489	5777	12	0	0
SE SW	NE	11	LOC	31	2226	5502	5789	22	0	0
SE NW		12	LOC	8	2273	5497	5787	- 31	0	0
1380E	1920N	13	LOC	32	2188	5580	5881	12	0	0
SW SW	NE SW	14	LOC	33	2161	MS	MS	10	0	0
S2 N2	SE	15	LOC	34	2196	5522	5812	11	0	0
1220E	3960N	16	LOC	35	2276	5538	5822	15	0	0
N2 SE		17	LOC	9	2303	5584	5876	22	6	22
E2 NE	SW	17	LOC	- 36	2265	MS	5881	23	0	0
4570E	3630N	17	LOC	37	2296	5564	5848	17	0	0
4530E	4620N	18	LOC	38	2295	MS	5868	20	0	0
NE SW		18	LOC	39	2272	5613	5894	16	0	0
2970E	2560N	19	LOC	10	2209	5641	5929	8	0	0
SW		20	Ghst	11	2259	5610	5910	14	0	0
NW SW	SE	21	LOC	12	2185	5623	5915	10	0	0
SW NE	SW	22	LOC	15	2202	5589	5882	8	0	0
S2		23	LOC	40	. 2127	5621	5921	MS	MS	MS
E2 NW		26	LOC	16	2093	5661	5959	10	0	0
NW		27	LOC	41	2210	5594	5884	8	0	0
SW SW	NE	28	LOC	17	2173	5603	5899	6	MS	MS
SW		29	LOC	18	2052	5682	5984	5	MS	MS
NE		30	LOC	19	2203	5680	5978	10	0	0
NE NE		31	LOC	20	2099	5743	6047	7	0	0
E2 E2	W2 NE	32	LOC	21	2111	5697	6004	12	0	0
E2 W2	SW	33	LOC	22	2080	5706	6015	12	0	0
NW		33	LOC	23	2121	5671	5975	15	0	0
NW		34	LOC	42	2101	5640	5940	11	0	0
NW		35	LOC	43	2107	5761	607 3	MS	MS	MS

~

					19N-21W					
SPOT	5	SEC	STAT	NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
1420E	1320N	1	LOC	1	2358	5538	5797	20	0	0
S2 NE		1	LOC	2	2336	5510	5770	20	0	0
C SW		2	LOC	3	2328	5565	5804	20	0	0
NE NE		2	LOC	28	2300	5532	5772	20	0	0
SW		3	LOC	4	2333	5531	5775	16	0	0
1320E	1445N	4	LOC	. 5	2369	5537	5783	15	0	0
C SE		5	LOC	6	2357	5563	5807	MS	MS	MS
C NW	SW	6	LOC	7	2342	5568	5814	7	0	0
C SE	SE	6	LOC	8	2333	5603	MS	22	0	0
C NE		6	LOC	29	2373	5539	5785	18	0	0
3400E	3300N	8	LOC	30	2367	5620	5859	17	0	0
C NE		9	LOC	9	2363	5573	5817	15	0	0
NE SE	NW	10	LOC	10	2332	5568	5814	MS	MS	MS
SW SE	NW	11	LOC	11	2370	5594	5852	MS	MS	MS
1470E	1320N	11	LOC	31	2348	5599	5863	16	0	0
C NE		12	LOC	32	2373	5556	5822	18	0	0
NE SW	SE	13	LOC	13	2309	5620	5904	12	MS	MS
C NE		14	LOC	33	MS	MS	MS	16	0	0
3750E	3960N	15	LOC	34	2319	5643	5908	15	0	0
C NE		16	LOC	35	2347	5662	5920	20	0	0
SW NE		17	LOC	12	2280	5669	5920	14	0	0
1820E	1470N	17	LOC	36	2216	5684	5934	12	0	0
W2 W2	E2 SW	18	LOC	37	2315	5705	5947	14	0	0
C SW		19	LOC	14	2379	5759	6015	18	0	0
SW SW		20	LOC	38	2287	5741	6002	14	0	0
C SW		21	LOC	39	2168	5752	6012	16	0	0
4620E	TT32N	24	LOC	15	2248	5710	6002	18	0	0
NE		24	LOC	40	2319	5646	5931	MS	MS	MS
1673E	660N	24	LOC	41	2241	5699	5988	10	0	0
NE		25	LOC	16	2223	5722	6017	15	0	0
C SW		25	LOC	42	2195	5755	6050	10	0	0
C SE		20	LOC	43	2190	5/82	60/9	14	0	0
	NILT	28	LOC	1/	2221	5775	6047	14	0	0
NZ JZ	IN W	29	LOC	18	2200	5787	6050	17	· U	0
NF NF		30	LOC	19	2375	59/1	6107	, T	MG	MG
		32	LOC	20	2333	5858	6142	12	115	0
13205	3607N	32	LOC	45	2054	5863	6138	10	ő	ň
N2 N2	S2 NW	32	LOC	21	2255	5826	6113	- G	ő	Ő
C N2	S2 SW	33	LOC	46	2178	5856	6152	12	Ő	Ő
S2 N2	SE	34	LOC	22	2192	5845	6151	21	ŏ	õ
C NE		35	LOC	24	2143	5797	6103		Õ	õ
1550E	1550N	35	LOC	25	2155	5838	6141	17	Õ	Ō
C NE	NE SW	35	LOC	26	2104	5820	6125	21	Ŏ	Ō
C S2	NW	36	LOC	47	2147	5803	6105	12	Ō	Ō
			-							

•

	19N-22W										
SPOT	5	SEC	STAT		NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
SE NW		1	LOC		1	2238	5584	MS	18	0	18
SE NE		1	LOC		2	2325	5565	MS	19	MS	19
SW NE		1	LOC		3	2313	5565	5815	16	14	16
SE SW		1	LOC		4	2325	5617	MS	18	MS	MS
NW SW		1	LOC		5	2396	5606	MS	20	12	20
SE SE		2	LOC		6	2388	5623	MS	21	10	21
SE SW		2	LOC		7	2317	5635	MS	22	MS	22
SE NW		2	LOC		.8	2374	5613	MS	20	12	20
SE NE		2	LOC		9	2374	5597	MS	18	MS	18
NW SE		2	LOC		44	2323	5617	MS	22	18	22
C NW	SW	2	LOC		45	2346	5618	MS	24	18	24
SE NE		3	LOC		10	2400	5612	MS	21	14	21
SE NW		3	LOC		11	2300	5616	MS MC	10	ю МС	10
NW GW		2	TOC		12	2303	5630	MC MC	23	12	23
NW SE		7	LOC		1/	2330	5631	MC	16	12	16
N2 SW		5	LOC		15	2510	5587	5838	10	0	10
C SW		7	LOC		16	2520	5700	5978	25	MS	MS
W2 SE		7	LOC		. 17	2495	5715	MS	2.4	0	24
C NW		7	LOC		18	2521	5663	5923	12	MŠ	MS
NW SE		8	LOC		20	2442	5678	MS	24	16	24
NW NE		9	LOC		21	2473	5651	MS	30	7	30
NW SE		10	LOC		22	2435	5682	MS	33	8	33
NW NE		10	LOC		23	2358	5650	MS	24	14	24
NW NW		10	LOC	-	24	2448	5658	MS	25	13	25
NW NW		11	LOC		25	2348	5646	MS	24	12	24
NW NE		11	LOC		26	2318	5648	MS	43	15	43
SE NE		12	LOC		27	2263	5630	MS	16	3	16
3200E	1980N	12	LOC		28	2299	5685	MS	14	0	14
SE NW		12	LOC		29	2271	5655	5911	15	10	15
C NE		13	LOC		30	2428	5700	5938	12	0	12
SW NE		17	LOC		31	2378	5739	6012	20	5	20
C NW	NW	17	LOC		46	2422	5724	MS	36	24	36
NW NE		18	LOC		47	2456	5726	MS	37	32	37
C NW	CM	18	LOC		48	2510	5712	MS	45	36	45
29605	3W 1225M	10	LOC		49	2440	5733	£100	24	10	24
NW CF	TOODH	20	LOC		22	2452	5838	6008	13	4	13
NE NW		20	LOC		50	2367	5825	MS	10	мя	MS
NE SW		21	LOC		34	2364	5816	6066	õ	0	
E2 NW		21	LOC		51	2358	5798	6050	4	õ	õ
C NE		23	LOC		35	2424	5780	6028	2	Ō	Ō
C NE		25	LOC		36	2376	5822	6078	16	Ō	Ō
C NW		26	LOC		37	2373	5863	6110	6	Ō	Ō
SW SW		27	LOC		38	2308	5884	6142	4	0	0
C NE		28	LOC		52	2335	5873	6121	0	0	0
C SW		29	LOC		39	2399	5917	6143	14	0	0
C W2	NE	29	LOC		40	2413	5875	MS	MS	MS	MS
3960E	1520N	30	LOC		53	2419	5907	6166	4	0	0
C NE		31	LOC		41	2410	5954	6217	10	0	0
C SW		32	LOC		42	2402	5982	6250	13	0	0
1520E	1320N	33	LOC		43	2385	5953	6217	10	0	0
C NE		35	LOC		54	2346	5883	6140	12	0	0
C SW		36	TOC	•	55	2340	5942	6200	17	0	U

						20N-2	20W				
SPOT	2	SEC	STAT		NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
1461E	1461N	2	LOC		1	2060	5162	5379	12	0	0
3300E	3004N	2	LOC		21	2049	5159	5379	12	0	0
C SW		4	LOC		2	2106	5188	5401	MS	MS	MS
C NW		5	LOC		3	2185	5219	5427	MS	MS	MS
C SE	NW	6	LOC		22	2221	5221	5435	MS	MS	MS
C SE	NW	7	LOC		4	2182	5260	5482	MS	MS	MS
C NW	NW	7	LOC		23	2205	5249	5463	14	MS	MS
C NE		8	LOC		5	2142	5213	5430	MS	MS	MS
SE SW	NE	9	LOC		24	2083	5195	5415	16	0	0
C NE	SW	13	LOC		6	2107	5271	5513	MS	MS	MS
1020E	800N	14	LOC		7	2164	5207	5444	18	0	0
E2 E2	SW	15	LOC		8	2175	5220	5453	24	0	0
E2		15	LOC		25	2149	5190	5419	18	0	0
C SW	NW SE	17	LOC		9	2169	5255	5481	MS	MS	MS
C NW	NW	19	LOC		10	2159	5315	5550	MS	MS	MS
C SE		20	LOC		11	2216	5314	5558	MS	MS	MS
C SW	NE	21	LOC		12	2198	5264	5506	16	0	0
3301E	3300N	22	LOC		13	2164	5235	5484	MS	MS	MS
C SE	NW	23	LOC		14	2152	5231	5483	MS	MS	MS
C SW	NE	24	LOC		15	2089	5273	5529	17	0	0
NW SE		27	LOC		17	2180	5328	5588	15	0	0
E2 W2	SW	27	LOC	-	26	2200	MS	5597	13	0	0
2840E	2340N	28	LOC		18	2237	5331	5589	26	0	0
NW SE		29	LOC		19	2283	5350	5607	MS	MS	MS
C SW	NE SW	30	LOC	•	27	2317	5389	5629	16	0	0
1230E	1260N	31	LOC		28	2339	5455	5713	18	0	0
NE SW	NW	34	LOC		20	2221	5384	5652	' MS	MS	MS

•

163

•

anom		070			20N-	21W			CODIT	0000
SPOT		SEC	STAT	NUMB	ELEV	AVAN'I'	HGSH	CGNSS	CGPHI	CGSS
C NI	2	1	LOC	1	2187	5216	5418	16	0	0
SE NW	7	3	LOC	21	2250	5212	MS	16	0	0
NW NI	E SW	4	LOC	2	2249	5271	5489	32	MS	MS
C SV	7	5	LOC	22	2206	5299	5519	12	6	12
NW NV	1	5	LOC	23	2224	5250	5466	8	MS	MS
C S2		6	LOC	3	2280	5295	5514	MS	MS	MS
SE NV	1	6	LOC	24	2296	5270	5489	8	0	0
C NE	5	6	LOC	25	2288	5264	5484	20	14	20
SE G	-	7	LOC	4	2289	5319	5545	20	18	20
W2 SH		7	LOC	5	2272	5326	MS	26	12	26
SW NE	SW	, 8	LOC .	6	2319	5331	5553	MS	MS	MS
	I SE NV	/ 9	LOC	20	2280	5314	5538	20	0	0
	1	10	LOC	26	2290	5339	5559		U MC	MC
	r T	10	LOC	8	2284	5290	551U	MS 16	MS	MS
SW NE		13	LOC	27	2230	5297	551/	15	MC	MG
C NE	SW	13		20	2240	53294	5551	16	M3 0	113
		13	LOC	30	2237	5320	5532	16	MG	о мс
NW SF		14	LOC	9 10	2210	5344	5571	MG	MG	MS
C NF	NE	14	LOC	31	2272	5335	5555	16	10	0
C SF	SE	14	LOC	32	2261	5351	5575	18	0	0 0
C NW		15	LOC	10	2285	5351	5575	12	ő	ő
C SW	1	16	LOC	11	2328	5379	5600	-0	MS	MŠ
C NW	r	17	LOC	· 12	2366	5370	5588	13	4	13
C NW	NE	18	LOC	33	2274	5352	MS	18	8	18
3330E	1980N	18	LOC	34	2281	5387	5614	18	8	18
C NE	NE	18	LOC	35	2234	5358	5578	14	6	14
C SE		19	LOC	36	2392	5443	5676	MS	MS	MS
W2 SE		20	LOC	13	2359	5442	5659	MS	MS	MS
NE SW	1	21	LOC	14	2338	5408	5636	23	0	0
C SE		21	LOC	37	2318	5424	5650	20	0	0
C NW	SE	22	LOC	38	2326	5400	5624	16	0	0
C W2	SE	23	LOC	39	2221	5383	5612	11	MS	MS
E2 W2	W2 NE	24	LOC	40	2232	5351	5581	16	0	0
C SW		25	LOC	41	2248	5441	5680	4	. 0	0
E2 SW	NW SE	25	LOC	42	2173	5462	5695	18	0	0
1820E	1320N	126	LOC	15	2242	5462	5693	MS	MS	MS
C SW		27	LOC	43	2297	5488	5720	16	0	0
C E2		28	LOC	44	MS	MS	MS	16	0	0
1420E	14201	129	LOC	45	2371	5447	5684	14	0	0
C SE		30	LOC	16	2400	5444	5684	MS	MS	MS
NE NW	Ī	30	LOC	46	2427	5456	MS	23	0	23
NE SV	Ī	30	LOC	47	MS	MS	MS	18	MS	MS
NE		30	LOC	48	2415	5445	5685	22	13	22
C SE	2	31	LOC	17	2394	5491	5732	MS	MS	MS
C SE]	32	LOC	18	2358	5502	5746	18	0	0
13601	13601	1 33	LOC	19	2365	5507	5752	24	0	0
46201	15001	1 33	LOC	. 49	2347	5504	5748	16	MS	MS
1520E	1320	1 34	LOC	50	2301	5493	5733	MS	MS	MS
C W2	NW	34	LOC	51	2303	5484	5722	18	MS	MS
C SM		35	LOC	52	2295	5517	5755	MS	MS	MS
N2 SE	SE	35	LOC	53	2300	5508	5747	18	MS	MS
SW SK	1	36	LOC	20	2249	5503	5744		0	0

						20N-22W					
SPOT	2	SEC	STAT	NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS	
NE SW		1	LOC	1	2361	5264	5486	0	0	0	
C NW		ī	LOC	- 2	2364	5261	5476	6	Ō	0	
NW		2	LOC	3	2427	5266	5500	8	Ō	0	
NE NE		2	LOC	20	2388	MS	5480	8	1	8	
SE NW		3	LOC	4	2411	5290	5529	6	ō	Ō	
E2 NW	พพ	3	LOC	21	2408	5253	5488	11	2	11	
3347E	3347N	4	LOC	5	2370	5260	5509	MS	мs	MS	
S2 NE	NE	4	LOC	22	2423	5251	5482		2		
SW		6	LOC	23	2405	5250	5488	2	ō	Ō	
NW SE		7	LOC	6	2415	5301	5541	2	Ō	Ō	
SE		8	LOC	7	2394	5350	5592	4	Ō	Ō	
E2 SW		9	LOC	24	2400	5342	5581	4	Ō	Ō	
NW NW	SE NW	10	LOC	25	2428	5308	5546	7	0	0	
NE SW		11	LOC	8	2387	5346	5567	MS	MS	MS	
NE		12	LOC	26	2344	5308	5534	12	1	12	
SE SE		12	LOC	27	2230	5326	MS	21	12	21	
N2 SW	NE	13	LOC	28	2228	5390	MS	21	13	21	
NW NW		13	LOC	29	2254	5355	5591	21	14	21	
NE NE		14	LOC	30	2282	5362	5596	17	10	17	
1460E	1570N	15	LOC	31	2390	5385	MS	16	3	16	
SW NE		16	LOC	- 9	2408	5374	5603	4	0	0	
1875E	1320N	16	LOC	32	2458	5381	5619	9	0	0	
SE NW		16	LOC	33	2443	5356	5591	2	0	0	
3960E	3810N	17	LOC	10	2447	5349	5592	6	0	0	
SW		19	LOC	34	2484	5456	5708	0	0	0	
NE		20	LOC	35	2465	5425	5671	4	0	0	
E2 W2	NW	21	LOC	36	2380	5403	5648	15	0	0	
NW		22	LOC	11	2301	5407	5647	14	4	14	
3460E	1320N	23	LOC	37	2348	5423	5666	18	9	18	
1520E	3910N	23	LOC	38	2273	5418	5657	17	7	17	
SW		24	LOC	12	2248	5418	5657	19	7	19	
SW NE		24	LOC	13	2296	5422	5658	6	0	0	
SW		25	LOC	14	2281	5491	5735	MS	MS	MS	
NE		26	LOC	39	2263	5465	5705	MS	MS	MS	
C SW	NE	27	LOC	15	2306	5482	5751	14	6	14	
SW NE		28	LOC	16	2353	5482	5729	22	4	22	
E2 SW		29	LOC	40	2494	5518	5765	14	2	14	
SW		30	LOC	17	2501	5508	5749	MS	MS	MS	
NW		31	LOC	41	2501	5529	5779	7	0	0	
NW		32	LOC	18	2505	5500	5753	8	MS	MS	
NE SE	SW	35	LOC	19	2335	5578	5823	6	0	0	
NE		36	LOC	42	2383	5485	5723	13	0	0	

.

SPOT	5	SEC	STAT	NUMB	21N-2 ELEV	20W AVANT	HGSH	CGNSS	CGPHI	CGSS
SE NW		1	LOC	1	2004	4872	5057	22	2	0
NW SE		6	LOC	2	2112	4932	5122	15	0	0
1320E	1331N	7	LOC	3	2200	5000	5198	16	0	0
C NW		8	LOC	4	2149	4956	5151	22	0	0
3660E	1320N	10	LOC	5	2117	4979	5177	24	0	0
NE SW		10	LOC	6	2126	4962	5156	23	0	0
2310E	1420N	13	LOC	7	2050	4993	5198	16	0	0
SW SE	NW	14	LOC	8	2051	5037	5243	MS	MS	MS
C E2	SE	15	LOC	9	2109	5041	5247	30	4	0
NW SE		15	LOC	10	2117	5037	5249	MS	MS	MS
NW SE	NW	17	LOC	11	MS	MS	MS	MS	MS	MS
NE SW		18	LOC	12	2230	5035	5234	17	0	0
C E2	SW NW	19	LOC	13	2208	5056	5268	16	0	0
795E	2750N	20	LOC	14	2114	5052	5255	21	0	0
3960E	3860N	22	LOC	15	2105	5043	5249	8	0	0
1370E	3960N	23	LOC	16	2107	5019	5223	13	0	0
NW		24	LOC	17	2093	5002	5209	MS	MS	MS
NE SW	NE	25	LOC	18	1998	5054	5264	13	0	0
NE SW		26	LOC	19	2006	5080	5286	12	MS	MS
SE NW		29	LOC	20	2094	5100	5306	20	MS	MS
SW SW		29	LOC	- 21	2135	5128	5353	24	0	0
1332E	3948N	30	LOC	22	2094	5092	5297	20	MS	MS
SE SW		31	LOC	23	2186	5204	5414	16	MS	MS
NW SE		33	LOC	24	2113	5137	5341	14	0	0
C W2		35	LOC	25	2052	5107	5317	10	0	0

,

SPOT	5	SEC	STAT	NUMB	21N-2 ELEV	1W AVANT	HGSH	CGNSS	CGPHI	CGSS		
C SE		1	LOC	1	2082	4944	5144	13	0	0		
NW NW	SE NW	1	LOC	42	2110	4908	5100	22	0	0		
E2 E2	SW	2	LOC	43	214/2114	4894	5085	21	0	0		
C SW	NE	3	LOC	2	2187	4875	5076	MS	MS	мŠ		
C SW	SW	3	LOC	45	2163	4935	5135	8	MS	MS		
NW		4	LOC	3	2274	4904	5116	10	0	0		
		5	LOC	4	2340	4890	5161	25	MS • O	MS		
C NW	SE	7	LOC	40	2344	4094	5206	25	0	0 0		
NE SW		8	LOC	5	2305	5003	5215	Ō	Ō	Ō		
N2 SE		8	LOC	48	2288	4999	5213	7	0	0		
SE		9	LOC	6	2260	4987	5196	MS	MS	MS		
	W2 SE	10	LOC	49	2190	4967	5206	11	0	0		
C NE	12 01	10	LOC	50	MS	MS	MS	3	ŏ	õ		
SW		11	LOC	9	2120	5007	5202	16	0	0		
W2 W2	NE NW	11	LOC	51	2150	4953	5149	33	0	0		
C SW	SW	11	LOC	52 53	2132	4975	5214	19	0	0		
C NE		12	LOC	10	2111	4963	5157	13	ō	ō		
NE SW		12	LOC	11	2147	4979	5179	MS	MS	MS		
E2 E2 NF SW	W2 SE	12	LOC	54	2133	4991	5187	11	0	0		
NW SE		14	LOC	13	2230	5035	5230	10	0	ő		
NW SE		15	LOC	14	2166	5046	5249	26	MS	MS		
SW SE	NE	16	LOC	15	2262	5040	5246	20	0	0		
NW SE		17	LOC	16	2245	5053	5266	2	.0	0		
C SW		19	LOC	55	2297	5044	5260	5	0	0		
NW NW		19	LOC	56	2323	5079	5301	3	Ö	Ő		
SW SE	SE	20	LOC	57	2301	5125	MS	10	0	0		
C S2	NW	20	LOC	18	2306	5086	5304	6	0	0		
SE NW	NE SE	21	LOC	58	2184	5081	5291 MG	MS 20	MS	20		
SE SE	01	21	LOC	60	2223	5123	MS	26	17	26		
SE SW	SE	21	LOC	61	2214	5120	MS	26	0	26		
SW SW		21	LOC	62	2241	5129	MS	15	7	15		
SW SE SW NW	SW	22	LOC	63	2272	5109	5326 Mg	20	2	20		
SW SW	SW	22	LOC	65	2264	5125	MS	20	14	20		
C SE	SW	22	LOC	66	2278	5130	5347	28	7	28		
C NE		22	LOC	19	2196	5065	5288	MS	MS	MS		
C NE SE		23	LOC	20	2241	5063	52/1	12	0	0		
SW NE		24	LOC	22	2172	5074	5281	20	ŏ	ŏ		
2790E	4490N	25	LOC	23	2118	5102	5308	11	0	0		
C SE	12701	25	LOC	68	2176	5117	5322	17	0	0		
C NE	13/01	25	LOC	24	2127	5145	5357	17	0	0		
C SE		26	LOC	70	2158	5136	5346	14	Ō	õ		
C NW	NW	27	LOC	25	2284	5126	MS	23	14	23		
	NE	27	LOC	41	2276	5120	MS	22	4	22		
E2 W2	SE NW	27	LOC	73	2288	5145	5360 MS	22	7	26		
C W2	NW	28	LOC	26	2243	5147	MS	27	7	27		
S2 SE	NE	28	LOC	27	2290	5130	MS	25	11	25		
C N2	NE SW	28	LOC	28	2282	5182	MS	24	2	24		
C SE	NW NW SW	28	LOC	29	2321	5169	MS	17	11	17		
C 52	NW NE	29	LOC	30	2263	5170	MS	17	5	17		
C N2	SE SW	29	LOC	31	2331	5175	MS	17	12	17		
C S2	NW SE	29	LOC	75	2281	5187	MS	20 MC	12 MC	20 MC		
CSE	SE NF	29	LOC	70	2310	5182	5410 MG	16	MS	16		
SE SE	NE	30	LOC .	78	2357	5146	MS	15	9	15		
C NW	SE	30	LOC	79	2360	5189	5416	7	0	0		
C NW	NE	31	LOC	32	2354	5197	MS	26	5	26		
SE NE	NE Gw	31 21	LOC	54 25	230/ 2770	5238 5231	MS MC	24	В Т 7	24 26		
NW NW	51	32	LOC	36	2329	5174	5401	20	0	0		
NW NW	NE	32	LOC	80	2289	5193	5422	8	1	8		
N2 NE	NE	32	LOC	81	2319	5201	MS	17	6	17		
NW NW C NW	NW NW	33	LOC	37	MS 2250	MS 5200	MS	25	8	25 24		
C NE	SW	34	LOC	39	2156	5216	5429	18	õ	0		
NE NE	SW NE	35	LOC	82	2140	5184	5396	18	0	0		
C E2	NW	36	LOC	40	2140	5170	5393	20	0	0		
C NE C NE	36	36	LOC	84	2214	5158	5366	MS	MS	MŠ		
SPOT SEC STAT NUMB ELEV AVANT HGSH CGNSS CGMSS												
--	--------	--------	---------	------	---	---------	------------	-------	------------	-------	---------	-----------
SFOT SEC STAT NUMB ELEV AVANT HGSH CGNSS CGPHI CGSS C NE 1 LOC 1 2330 4934 5138 20 1 2301 1320E 14951 1 LOC 32 2323 4909 5138 20 1 230 C NW 4 LOC 32 2227 4879 5117 MS 2 MS C SE 6 LOC 32 2227 4879 5117 MS 2 MS C SE MS MOC 5 2303 4925 5170 26 13 26 C NW 8 LOC 35 2302 4916 5187 18 10 18 C NW 8 LOC 35 2302 4916 5120 25 17 13 0 C 14 25 2530 39 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>21N-</th> <th>22W</th> <th></th> <th></th> <th></th> <th></th>							21N-	22W				
C NE 1 LOC 1 2327 4903 5137 22 9 22 1320E 1495N 1 LOC 31 2320 4934 5168 31 11 31 C NW 2 LOC 32 233 4909 5138 20 1 22 C SW 4 LOC 33 2295 4901 5138 0 0 0 C NW 5 LOC 2 2227 4879 5117 NS 2 MS C S2 NW 6 LOC 3 2192 4852 5100 7 4 7 C SE 6 LOC 4 2269 4867 5112 2 0 C S2 N2 NW 7 LOC 4 2191 4923 5164 0 0 0 C NE 8 LOC 5 2303 4925 5170 26 13 22 NE SW 8 LOC 6 2315 4945 5187 18 10 12 C NW 9 LOC 7 2313 4927 5171 48 28 48 C S2 SE SW 9 LOC 3 2224 4983 5218 MS MS MS C S2 SE SW 9 LOC 39 2271 4985 5303 39 17 35 16252 240N 10 LOC 39 2271 4985 5230 39 17 35 16252 240N 10 LOC 39 2271 4985 5230 39 17 35 16252 240N 10 LOC 39 2271 4985 5230 39 17 35 16252 240N 10 LOC 40 2375 5085 5271 3 0 C C SW SE 13 LOC 40 2375 5085 5271 3 0 C C SW 14 LOC 42 2350 5065 5295 0 C C SW 14 LOC 42 2350 5065 5295 0 C C SW 14 LOC 42 2350 5065 5275 0 C C SW 14 LOC 42 2350 5065 5274 2 C 22 NE NM 15 LOC 10 2317 5062 5291 13 0 C C SW 14 LOC 42 2350 5065 5295 0 C C SW 14 LOC 42 2350 5065 5295 0 C C SW 11 LOC 40 2317 5062 5291 13 0 C C SW 11 LOC 40 2317 5062 5291 13 0 C C SW 11 LOC 42 2348 5048 5275 0 C C NE NM 5 LOC 10 2317 5062 5295 0 C C SW 11 LOC 44 2332 5030 5265 28 7 22 NE SW 15 LOC 10 2317 5062 5295 0 C C NE NM 15 LOC 10 2317 5062 5295 0 C C NE NM 15 LOC 10 2317 5062 5295 0 C C NE NM 15 LOC 10 2317 5062 5295 0 C C NE NM 15 LOC 10 2317 5062 5295 0 C C NE NM 15 LOC 10 2317 5085 5277 0 C C NE NM 15 LOC 11 2317 5085 5277 0 C C NE NM 15 LOC 11 2317 5085 5277 0 C C NE NM 15 LOC 11 2317 5085 5288 MS MS MS MS C NZ 2 NE 18 LOC 14 2234 5018 5268 7 0 C C NE SE NW 21 LOC 12 2342 5038 5262 28 7 26 C NE SE NW 15 LOC 14 2234 5038 5262 28 1 7 26 SE NW 22 LOC 48 2332 5030 5258 MS MS MS MS C NW SE 21 LOC 16 2347 MS MS MS MS C NW SE 18 LOC 14 2243 4996 5227 0 C C NW SE 21 LOC 16 2347 MS MS MS MS MS MS MS MS MS MS C NW SE 21 LOC 17 2343 5075 5333 2 C C NW SE 21 LOC 19 2360 5115 5342 0 C C NW SE 21 LOC 19 2360 5115 5343 2 C C NW SE 31 LOC 52 217 593 5167 5333 1 C C NW SE 31 LOC 52 2185 S173 5106 0 C C NW SE 31 LOC 52 217 593 5	SPOT	5	SEC	STAT		NUMB	ELEV	AVANT	HGSH	CGNSS	CGPHI	CGSS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-										
1320E 1495N 1 LOC 31 2330 4994 5168 31 11 32 C NW 4 LOC 32 2235 4901 5138 0 0 0 C SW 4 LOC 32 2227 4879 5117 MS 2 MK C SZ NW 6 LOC 32 2122 4852 5100 7 7 4 7 C SZ NW 7 LOC 4 2181 4923 5164 0	C NE		1	LOC		1	2327	4903	5137	22	9	22
NW 2 LOC 32 2323 4909 5138 20 1 22 C NW 5 LOC 2 2227 4879 5117 MS 2 MS C SZ W 6 LOC 3 2295 4900 5138 0 0 C C SZ NW 5 LOC 3 2267 4870 5117 MS Z 0 C SZ NW W B LOC 5 2303 4925 5170 26 13 24 C NW W B LOC 35 2302 4916 5154 1 10 10 10 14 225 24 4933 5218 MS MS MS MS 14 20 15 121 10 0 0 11 11 11 11 11 11 11 11 11	1320E	1495N	1	LOC		31	2330	4934	5168	31	11	31
C SW 4 DOC 13 2295 4901 5138 0 0 C C SW 6 LOC 3 2297 4879 5117 MS 2 MS C SZ NW 6 LOC 3 2192 4852 5100 7 4 C SZ NW 7 LOC 3 2192 4852 5170 26 13 28 C NE B LOC 3 2302 4916 5151 1 0 0 C C NW B LOC 3 2305 5171 3 0 C C NE SW M LOC 3 2211 4985 5210 3 0 C C SW 13 LOC 40 2375 508 5271 3 0 C C SW 13 <td< td=""><td>C NW</td><td></td><td>2</td><td>LOC</td><td></td><td>32</td><td>2323</td><td>4909</td><td>5138</td><td>20</td><td>1</td><td>20</td></td<>	C NW		2	LOC		32	2323	4909	5138	20	1	20
C NW S DOC 2 2227 4879 5117 MS 2 MK C SZ NW 6 LOC 3 2269 4867 5112 2 0 0 C SZ NZ NW 7 LOC 4 2191 4923 5164 0	C SW		4	LOC		33	2295	4901	5138	0	0	0
C Size NW 6 LOC 34 2162 4867 5112 2 0 0 C Size NW 7 LOC 4 2191 4923 5112 2 0 0 C NE Si LOC 5 2303 4925 5170 26 13 26 C NW NW B LOC 35 2302 4916 5154 1 0 0 C C NW W B LOC 36 2330 5010 5249 3 0 0 C Size Size N N N Size Size N <t< td=""><td>C NW</td><td></td><td>5</td><td>LOC</td><td></td><td>2</td><td>2227</td><td>4879</td><td>5117</td><td>MŠ</td><td>2</td><td>MS</td></t<>	C NW		5	LOC		2	2227	4879	5117	MŠ	2	MS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C 52	NW	6	LOC		3	2192	4852	5100		4	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C SE		ĥ	LOC		34	2269	4867	5112	2	0	, O
Bar Name Partial Partia Partial Partial <t< td=""><td>C 010</td><td>NW</td><td>7</td><td>LOC</td><td></td><td>J4 1</td><td>2209</td><td>4007</td><td>5164</td><td>ñ</td><td>ő</td><td>õ</td></t<>	C 010	NW	7	LOC		J4 1	2209	4007	5164	ñ	ő	õ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C NF	1111	<u></u>	LOC			2303	4925	5170	26	13	26
NL NL Sec. Sec. <th< td=""><td></td><td></td><td>0</td><td>LOC</td><td></td><td>5</td><td>2315</td><td>4925</td><td>5197</td><td>19</td><td>10</td><td>18</td></th<>			0	LOC		5	2315	4925	5197	19	10	18
C NM NM DOC 73 2313 4927 5171 48 28 48 C SE SE SW 9 LOC 36 2330 5010 5249 3 0 C S2 SZ NE 10 LOC 37 2290 4983 5218 MS MS MS C NE 10 LOC 37 2290 4983 5218 MS MS MS I620E 2640N 10 LOC 492 2350 5085 5271 3 0 C C SW 13 LOC 41 2368 5048 5274 22 0 22 NE SW 15 LOC 10 2317 5062 5295 3 0 C SE NW 15 LOC 12 2342 5034 5266 7 0 C C NE <td></td> <td>NILT</td> <td>0</td> <td>LOC</td> <td></td> <td>25</td> <td>2313</td> <td>4945</td> <td>5154</td> <td>10</td> <td>10</td> <td>10</td>		NILT	0	LOC		25	2313	4945	5154	10	10	10
C M DOC J <thj< th=""> J J J</thj<>		14 14	å	LOC		35	2302	4910	5171	48	28	48
C S SL SL SL 10 LOC 8 2294 4983 5218 MS MS MS C NE 10 LOC 37 2290 4963 5212 25 14 25 1620E 2640N 10 LOC 37 2290 4963 5212 14 25 1620E 2640N 10 LOC 37 2290 4963 5212 10 0		CT CW	9	LOC		26	2330	5010	52/0		20	0
BZ BZ<	C 35	NE DU	10	LOC		50	2330	1093	5219	MG	MS	MS
C NL 10 LOC 37 2270 4985 5230 39 17 35 1475E 2390N 11 LOC 9 2321 4981 5219 10 0 0 C SW SW 13 LOC 40 2375 5085 5271 3 0 <td< td=""><td>C NE</td><td>1112</td><td>10</td><td>LOC</td><td></td><td>27</td><td>2224</td><td>1963</td><td>5202</td><td>25</td><td>14</td><td>25</td></td<>	C NE	1112	10	LOC		27	2224	1963	5202	25	14	25
102202 20400 10 LOC 39 2211 4303 5219 10 0 0 C SW SE 13 LOC 40 2375 5085 5211 3 0 0 C SW 14 LOC 42 2360 5065 5295 0 <td>16205</td> <td>26401</td> <td>10</td> <td>LOC</td> <td></td> <td>30</td> <td>2290</td> <td>4905</td> <td>5230</td> <td>20</td> <td>17</td> <td>20</td>	16205	26401	10	LOC		30	2290	4905	5230	20	17	20
14 752 23 90 11 LOC 9 2321 991 5219 10 0 0 C SW 13 LOC 41 2368 5048 5271 3 0 0 C SW 14 LOC 42 2360 5065 5295 0 0 0 768E 3849N 14 LOC 43 2336 5039 5274 22 0 22 NE SW 15 LOC 10 2317 5062 5291 13 0 0 0 SE NW 15 LOC 44 2332 5030 5265 28 7 26 SE 15 LOC 44 2331 5034 5266 0	14750	2040N	11	LOC		59	22/1	4905	5210	10	1,	55
C SW SE 13 LOC 40 2373 5063 5271 3 0 0 0 0 0 766E 3849N 14 LOC 42 2350 5065 5295 0 0 0 0 0 0 0 0 0 766E 3849N 14 LOC 43 2336 5039 5274 22 0 22 NE SW SW 15 LOC 10 2317 5062 5291 13 0 0 0 0 0 0 0 0 0 0 0 12 2312 5004 5274 MS MS MS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14/5E	23901	12	LOC		40	2321	4991	5219	10	0	0
C SW 13 LOC 41 2368 5046 5295 0 0 0 0 768E 3849N 14 LOC 43 2336 5039 5274 22 0 22 NE SW SW 15 LOC 10 2317 5062 5291 13 0 0 0 SE NW 15 LOC 11 2321 5004 5274 MS MS MS MS MS SE 15 LOC 44 2332 5030 5265 288 7 26 3 0 0 SE 15 LOC 44 2332 5030 5266 288 7 0 0 0 0 1990E 1320N 16 LOC 12 2342 5038 5268 7 0		SE	13	LOC		40	23/5	5085	5271	2	0	0
C SW 14 LOC 42 2350 5065 5295 0 0 0 0 0 0 22 766E 3849N 14 LOC 42 2350 5065 5291 13 0 0 0 25 NE SW SW 15 LOC 10 2317 5062 5291 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C SW		13	LOC		41	2368	5048	52/5	0	0	0
768E 3849N 14 LOC 43 2336 5039 5274 22 0 22 0 22 NE SW SW 15 LOC 10 2317 5062 5291 13 0 0 0 SE NW 15 LOC 11 2321 5004 5274 MS MS MS MS MS C W2 NE 15 LOC 44 2332 5030 5265 288 7 28 1990E 1320N 16 LOC 12 2342 5038 5266 0 0 0 C NE 16 LOC 46 2331 5034 5266 0 0 0 C NE 16 LOC 17 2271 4980 5210 6 0 0 C NE 20 LOC 15 2277 5030 5288 MS MS MS MS SE NW SE 18 LOC 15 2277 5030 5288 MS MS MS MS C NE 21 LOC 16 2347 MS MS MS MS MS MS MS MS C NW SE 21 LOC 16 2377 S103 5274 6 0 0 0 C SE SE 21 LOC 18 2338 5102 5332 2 0 0 0 0 C SW NE 24 LOC 18 2386 5115 5332 2 0	C SW		14	LOC		42	2350	5065	5295	0	0	0
NE SW SW 15 LOC 10 2317 5062 5291 13 0 0 0 C W2 NE 15 LOC 11 2321 5004 5274 MS MS MS MS C W2 NE 15 LOC 44 2332 5030 5265 28 7 28 SE N 16 LOC 44 2332 5030 5265 28 7 0 0 0 C NE 16 LOC 46 2331 5034 5266 0 0 0 0 0 C NE 16 LOC 46 2331 5034 5266 0 0 0 0	768E	3849N	14	LOC		43	2336	5039	5274	22	0	22
SE NW 15 LOC 11 2321 5004 5274 MS	NE SW	SW	15	LOC		10	2317	5062	5291	13	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SE NW		15	LOC		11	2321	5004	5274	MS	MS	MS
SE 15 LOC 45 2338 5062 5295 3 0 0 1990E 1320N 16 LOC 12 2342 5038 5268 7 0 0 C NE 16 LOC 13 2305 4998 5223 6 0	C W2	NE	15	LOC		44	2332	5030	5265	28	7	28
1990E 1320N 16 LOC 12 2342 5038 5268 7 0 0 C NE 16 LOC 46 2331 5034 5266 0 0 0 C NE 17 LOC 13 2305 4998 5223 6 0	SE		15	LOC		45	2338	5062	5295	3	0	0
C NE 16 LOC 46 2331 5034 5266 0 0 0 C SE 17 LOC 13 2305 4998 52210 6 0 0 0 C NZ SW 17 LOC 14 2243 4996 52210 6 0	1990E	1320N	16	LOC		12	2342	5038	5268	7	0	0
C SE 17 LOC 13 2305 4998 5223 6 0 0 C N2 SW 17 LOC 47 2271 4980 5223 6 0 0 0 SW SE 18 LOC 14 2243 4996 5227 0 0 0 0 SE NW SE 19 LOC 15 2277 5030 5258 MS MS <td< td=""><td>C NE</td><td></td><td>16</td><td>LOC</td><td></td><td>46</td><td>2331</td><td>5034</td><td>5266</td><td>0</td><td>0</td><td>0</td></td<>	C NE		16	LOC		46	2331	5034	5266	0	0	0
C NZ SW 17 LOC 47 2271 4980 5210 6 0 0 0 NW <sw< td=""> SE 18 LOC 14 2243 4996 5227 0</sw<>	C SE		17	LOC		13	2305	4998	5223	6	0	0
NW SW SE 18 LOC 14 2243 4996 5227 0 0 0 SE NW SE 19 LOC 15 2277 5030 5258 MS MS MS C NE 20 LOC 48 2282 5042 5274 6 0 0 0 C NW SE 21 LOC 16 2347 MS MS MS MS MS MS W2 E2 NE 21 LOC 17 2343 5075 5309 0 0 0 0 0 C SE SE 21 LOC 49 2353 5107 5339 2 0 0 0 0 SW NE SW 22 LOC 18 2338 5102 5332 2 0 0 0 0 0 0 SW NE SW 23 LOC 50 2373 5105 5333 2 0 <t< td=""><td>C N2</td><td>SW</td><td>17</td><td>LOC</td><td></td><td>47</td><td>2271</td><td>4980</td><td>5210</td><td>6</td><td>0</td><td>0</td></t<>	C N2	SW	17	LOC		47	2271	4980	5210	6	0	0
SE NW SE 19 LOC 15 2277 5030 5258 MS MS MS C NE 20 LOC 48 2282 5042 5274 6 0 0 C NW SE 21 LOC 16 2347 MS MS MS MS MS MS MS MS MS W2 E2 NE 21 LOC 17 2343 5075 5309 0 0 0 0 C SE SE 21 LOC 49 2353 5107 5339 2 0 0 0 C SW NE SW 22 LOC 18 2338 5102 5332 2 0 0 0 SW NE SW 23 LOC 51 2380 5115 5342 0 0 0 0 0 SE NW 24 LOC 51 2380 5115 5342 0 0 <td>NW SW</td> <td>SE</td> <td>18</td> <td>LOC</td> <td>-</td> <td>14</td> <td>2243</td> <td>4996</td> <td>5227</td> <td>Ō</td> <td>0</td> <td>0</td>	NW SW	SE	18	LOC	-	14	2243	4996	5227	Ō	0	0
C NE 20 LOC 48 2282 5042 5274 6 0 0 C NW SE 21 LOC 16 2347 MS	SE NW	SE	19	LOC		15	2277	5030	5258	MS	MS	MS
C NM 20 100C 10 2002 70 MS MS MS MS MS W2 E2 NE 21 LOC 17 2343 5075 5309 0 0 0 0 C SE SE 21 LOC 49 2353 5107 5339 2 0	C NF	01	20	LOC		48	2282	5042	5274	6		0
C NN D1		сF	21	LOC		16	2347	MS	MS	MŠ	MŠ	MS
N2 N2 N2 N2 N2 N3 N3 <td< td=""><td>WO FO</td><td>NF</td><td>21</td><td>LOC</td><td></td><td>17</td><td>2343</td><td>5075</td><td>5309</td><td></td><td></td><td>0</td></td<>	WO FO	NF	21	LOC		17	2343	5075	5309			0
C SE SE 21 LOC 19 2338 5102 5332 2 0 0 NE SW 23 LOC 50 2373 5105 5333 2 0 C SW NE 24 LOC 51 2380 5115 5342 0 0 (C SW NE 24 LOC 19 2362 5157 5385 6 2 (E SE SE 26 LOC 19 2362 5157 5385 6 2 (E SW 25 LOC 20 2385 5143 5373 10 (S E NW 26 LOC 21 2393 5167 5392 (S W SW 26 LOC 21 2393 5167 5392 (S W SE 27 LOC 22 2383 5147 5379 10 (S E SE 26 LOC 23 2330 5125 5362 19 (S E SE 30 LOC 23 2330 5125 5362 19 (S E SE 30 LOC 24 2302 5115 5350 6 (C SW SE 31 LOC 25 2351 5202 MS 3 (S E SE NW 31 LOC 25 2351 5202 MS 3 (S E SE 30 LOC 26 2346 5162 MS 14 (S E SE 33 LOC 26 2346 5162 MS 14 (S E SE 33 LOC 26 2346 5162 MS 14 (S E SE 33 LOC 27 2363 5219 5472 9 (S E SE 33 LOC 59 2342 5211 MS 9 (S E SE 33 LOC 59 2342 5211 MS 9 (S E SE 33 LOC 59 2342 5211 MS 9 (S E SE 33 LOC 59 2342 5211 MS 9 (S E SE 33 LOC 59 2342 5211 MS 9 (S E SE 33 LOC 59 2342 5211 MS 9 (S M	C CF	CF	21	LOC		10	2353	5107	5220	2	õ	Ő
NN NL SW 22 LOC 10 10 2100 502 3032 2 0 0 C SW NE 24 LOC 50 2373 5105 5333 2 0 0 0 3820E 3960N 25 LOC 19 2362 5157 5385 6 2 6 E SW 25 LOC 20 2385 5143 5373 10 MS MS SE NW 26 LOC 20 2385 5143 5373 10 MS MS C SW SW 26 LOC 21 2393 5167 5392 MS MS MS MS SE SE 26 LOC 23 2330 5125 5362 19 8 19 10 5 10 1980E 2130N 28 LOC 23 2330 5125 5362 19 8 19 19 28 10 5 10	CW NE	GW	21	LOC		19	2333	5102	5332	2	ő	õ
NE SW 23 LOC 50 2370 5103 5333 2 0 0 0 C SW NE 24 LOC 51 2380 5115 5342 0		311	22	LOC		50	2330	5105	5332	2	ő	Ő
C SW NE 24 LOC 51 23620 5117 5382 6 2 6 3820E 3960N 25 LOC 19 2362 5157 5385 6 2 6 SE NW 26 LOC 20 2385 5143 5373 10 MS MS C SW SW 26 LOC 21 2393 5167 5392 MS MS <td>C GW</td> <td>NE</td> <td>23</td> <td>LOC</td> <td></td> <td>50</td> <td>2373</td> <td>5115</td> <td>53/2</td> <td>0</td> <td>ŏ</td> <td>0 0</td>	C GW	NE	23	LOC		50	2373	5115	53/2	0	ŏ	0 0
3820E 3960N 25 LOC 19 2362 517 5383 0 2 0 E2 SW 25 LOC 52 MS MS 12 4 12 SE NW 26 LOC 20 2385 5143 5373 10 MS MS SE SW 26 LOC 21 2393 5167 5392 MS	202017	NE	24	LOC		10	2300	5157	5295	6	2	6
L2 SW 25 LOC 52 MS MS MS 12 4 12 SE NW 26 LOC 20 2385 5143 5373 10 MS MS C SW SW 26 LOC 21 2393 5167 5392 MS MS MS SE SE 26 LOC 23 2330 5125 5382 8 4 8 C NW SE 27 LOC 22 2383 5147 5379 10 5 10 1980E 2130N 28 LOC 23 2330 5125 5362 19 8 12 SE SW NW 29 LOC 24 2302 5115 5350 6 0 0 C SE SE 30 LOC 54 2317 5093 5331 10 1 10 C NW SE 31 LOC 25 2351 5202 MS 3 0 0 NW SE 32 LOC 56 2369 5176 5414 10 0 0	JOZOE	2900M	20	TOC		19	2302 MC	5157	5565 MC	10	2	10
SE NW 26 LOC 20 2385 5143 5373 10 MS MS MS C SW SW 26 LOC 21 2393 5167 5392 MS MS MS MS SE SE 26 LOC 53 2415 5153 5382 8 4 8 10	EZ SW		25	LOC		52	2205	M3	5272	12	4 MC	LC MC
C SW 26 LOC 21 2393 5167 5392 MS MS MS SE SE 26 LOC 53 2415 5153 5382 8 4 8 C NW SE 27 LOC 22 2383 5147 5379 10 5 10 1980E 2130N 28 LOC 23 2330 5125 5362 19 8 19 SE SW NW 29 LOC 24 2302 5115 5350 6 0 0 0 C SE SE 30 LOC 55 2317 5093 5331 10 1 10 C NW SE 31 LOC 26 2346 5162 MS 14 0 0 0 NW SE 32 LOC 26 2346 5162 MS 14 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>SE NW</td><td>~</td><td>26</td><td>LOC</td><td></td><td>20</td><td>2385</td><td>5143</td><td>53/3</td><td>10</td><td>MS</td><td>115 MC</td></t<>	SE NW	~	26	LOC		20	2385	5143	53/3	10	MS	115 MC
SE SE 26 LOC 53 2415 5153 5382 8 4 8 C NW SE 27 LOC 22 2383 5147 5379 10 5 10 1980E 2130N 28 LOC 23 2330 5125 5362 19 8 19 SE SW NW 29 LOC 24 2302 5115 5350 6 0 0 C NW SE 31 LOC 55 2317 5093 5331 10 1 10 3660E 3820N 30 LOC 55 2351 5202 MS 3 0 0 NW SE NW 31 LOC 25 2351 5202 MS 3 0 0 NE NW NE 32 LOC 26 2346 5162 MS 14 0 0 NE NW NE 32 LOC 57 2319 5189 MS 13 0 0 NE SE 33 LOC 57 2319 5189 MS 13 0 0 NE SE 33 LOC 59 2342 5211 MS 9 0 0 SE SE 33 LOC 59 2342 5211 MS 9 0 0 SE SE 33 LOC 59 2342 5211 MS 9 0 0 SE SE 33 LOC 26 2367 5173 5407 12 0 0 0 SE SE 33 LOC 27 2363 5219 5472 9 0 0 0 SE SE 33 LOC 28 2421 5191 5425 13	C SW	SW	26	LOC		21	2393	5167	5392	MS	MS	MS
C NW SE 27 LOC 22 2383 5147 5379 10 5 10 1980E 2130N 28 LOC 23 2330 5125 5362 19 8 19 SE SW NW 29 LOC 24 2302 5115 5350 6 0 0 C SE SE 30 LOC 54 2317 5147 MS 12 8 12 3660E 3820N 30 LOC 55 2317 5093 5331 10 1 10 C NW SE 31 LOC 25 2351 5202 MS 3 0 0 NW SE NW 31 LOC 26 2346 5162 MS 14 0 0 NE NW NE 32 LOC 57 2319 5189 MS 13 0 0 SE 32 LOC 57 2319 5189 5407 12 0	SE SE		26	LOC		53	2415	5153	5382	8	4	8
1980E 2130N 28 LOC 23 2330 5125 5362 19 8 19 SE SW NW 29 LOC 24 2302 5115 5350 6 0 0 C SE SE 30 LOC 54 2317 5147 MS 12 8 12 3660E 3820N 30 LOC 55 2317 5093 5331 10 1 10 C NW SE 31 LOC 25 2351 5202 MS 3 0 0 NW SE NI 1 LOC 56 2369 5176 5414 10 0 0 0 NE NE 32 LOC 57 2319 5189 MS 13 0	C NW	SE	27	LOC		22	2383	5147	5379	10	5	10
SE SW NW 29 LOC 24 2302 5115 5350 6 0 0 C SE SE 30 LOC 54 2317 5147 MS 12 8 12 3660E 3820N 30 LOC 55 2317 5093 5331 10 1 10 C NW SE 31 LOC 25 2351 5202 MS 3 0 0 NW SE NW 31 LOC 56 2369 5176 5414 10 0 0 NW SE NW 31 LOC 26 2346 5162 MS 14 0 0 NE NW NE 32 LOC 57 2319 5189 MS 13 0 0 1370E 3850N 32 LOC 58 2355 5173 5407 12 0 0 0 SE SE 33 LOC 59 2342 5211 MS 9 0 0 NW SE 33 LOC 59 2342 5211 MS 9 0 0 0 C NW 33 LOC 60 2317 5176 MS 11 5 11 2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW	1980E	2130N	28	LOC		23	2330	5125	5362	19	8	19
C SE SE 30 LOC 54 2317 5147 MS 12 8 12 3660E 3820N 30 LOC 55 2317 5093 5331 10 1 10 C NW SE 31 LOC 25 2351 5202 MS 3 0 0 NW SE NW 31 LOC 56 2369 5176 5414 10 0 0 NE NW NE 32 LOC 26 2346 5162 MS 14 0 0 NE SE 32 LOC 57 2319 5189 MS 13 0 0 1370E 3850N 32 LOC 58 2355 5173 5407 12 0 0 SE SE 33 LOC 59 2342 5211 MS 9 0 0 NW SE 33 LOC 59 2342 5211 MS 9 0 0 C NW 33 LOC 61 2360 5197 5434 16 10 16 C NW 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 13 NW NW 34 LOC 28 2421 5191 5425 13 3 3	SE SW	NW	29	LOC		24	2302	5115	5350	6	0	0
3660E 3820N 30 LOC 55 2317 5093 5331 10 1 10 C NW SE 31 LOC 25 2351 5202 MS 3 0 0 NW SE NW 31 LOC 56 2369 5176 5414 10 0 0 0 NE NW NE 32 LOC 26 2346 5162 MS 14 0 0 0 NE NE 32 LOC 57 2319 5189 MS 13 0 0 0 NE SE 32 LOC 58 2355 5173 5407 12 0 0 SE SE 33 LOC 59 2342 5211 MS 9 0 0 NW SE 33 LOC 59 2342 5211 MS 9 0 0 C NW 33 LOC 60 2317 5176 MS	C SE	SE	30	LOC		54	2317	5147	MS	12	8	12
C NW SE 31 LOC 25 2351 5202 MS 3 0 0 NW SE NW 31 LOC 56 2369 5176 5414 10 0 0 NE NW NE 32 LOC 26 2346 5162 MS 14 0 0 0 NE SE 32 LOC 57 2319 5189 MS 13 0 0 0 1370E 3850N 32 LOC 58 2355 5173 5407 12 0 0 0 SE SE 33 LOC 27 2363 5219 5472 9 0 0 0 SE SE 33 LOC 59 2342 5211 MS 9 0	3660E	3820N	30	LOC		55	2317	5093	5331	10	1	10
NW SE NW 31 LOC 56 2369 5176 5414 10 0 0 NE NW NE 32 LOC 26 2346 5162 MS 14 0 0 NE SE 32 LOC 57 2319 5189 MS 13 0 0 1370E 3850N 32 LOC 58 2355 5173 5407 12 0 0 SE SE 33 LOC 27 2363 5219 5472 9 0 0 NW SE 33 LOC 59 2342 5211 MS 9 0 0 C NW 33 LOC 60 2317 5176 MS 11 5 11 2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206	C NW	SE	31	LOC		25	2351	5202	MS	3	0	0
NE NW NE 32 LOC 26 2346 5162 MS 14 0 0 NE SE 32 LOC 57 2319 5189 MS 13 0 0 1370E 3850N 32 LOC 58 2355 5173 5407 12 0 0 SE SE 33 LOC 27 2363 5219 5472 9 0 0 NW SE 33 LOC 59 2342 5211 MS 9 0 0 C NW 33 LOC 60 2317 5176 MS 11 5 5 11 2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206 5429 MS MS MS MS	NW SE	NW	31	LOC		56	2369	5176	5414	10	0	0
NE SE 32 LOC 57 2319 5189 MS 13 0 0 1370E 3850N 32 LOC 58 2355 5173 5407 12 0 0 SE SE 33 LOC 27 2363 5219 5472 9 0 0 NW SE 33 LOC 59 2342 5211 MS 9 0 0 C NW 33 LOC 60 2317 5176 MS 11 5 11 2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206 5429 MS MS MS MS	NE NW	NE	32	LOC		26	2346	5162	MS	14	0	. 0
NIL SLI SIZ LOC 57 SIZ	NE SE		32	LOC		57	2319	5189	MS	13	0	0
SE 33 LOC 27 2363 5219 5472 9 0 0 NW SE 33 LOC 59 2342 5211 MS 9 0 0 NW SE 33 LOC 59 2342 5211 MS 9 0 0 C NW 33 LOC 60 2317 5176 MS 11 5 11 2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206 5429 MS MS MS	12708	2950N	32	LOC		58	2355	5173	5407	12	Ō	ō
SE 33 LOC 27 2363 5219 5472 5 6 NW SE 33 LOC 59 2342 5211 MS 9 0 0 C NW 33 LOC 60 2317 5176 MS 11 5 11 2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206 5429 MS MS MS	T2/OF	292014	22	LOC		27	2323	5210	5472		ő	ñ
NW SE 33 LOC 59 2342 5211 MS 9 0 0 C NW 33 LOC 60 2317 5176 MS 11 5 13 2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206 5429 MS MS	SE SE		22	LOC		27	2303	5215	3472		ů o	0
C NW 33 LOC 60 2317 5176 MS 11 5 13 2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206 5429 MS MS MS	NW SE		33	LOC		59	2342	5211	MS	9	0	0
2960E 3280N 33 LOC 61 2360 5197 5434 16 10 16 C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206 5429 MS MS MS	C NW		33	LOC		60	2317	5176	MS	11	5	11
C SW NE 34 LOC 28 2421 5191 5425 13 3 13 NW NW 34 LOC 62 2376 5175 MS 16 11 16 1320E 2460N 35 LOC 29 2396 5206 5429 MS MS MS	2960E	3280N	33	LOC		61	2360	5197	5434	16	10	16
NW NW34 LOC62 2376 5175MS1611161320E 2460N 35 LOC29 2396 5206 5429MSMSMS	C SW	NE	34	LOC		28	2421	5191	5425	13	3	13
1320E 2460N 35 LOC 29 2396 5206 5429 MS MS MS	NW NW		34	LOC		62	2376	5175	MS	16	11	16
	1320E	2460N	35	LOC		29	2396	5206	5429	MS	MS	MS
C SW 36 LOC 30 2410 5242 5473 12 6 12	C SW		36	LOC		30	2410	5242	5473	12	6	12
SE NW SE 36 LOC 63 2370 5230 MS 12 3 12	SE NW	SE	36	LOC		63	2370	5230	MS	12	3	12
NE SW NE 36 LOC 64 2382 5247 MS 18 9 18	NE SW	NE	36	LOC		64	2382	5247	MS	18	9	18
C NE NE 36 LOC 65 2375 5231 MS 19 6 19	C NE	NE	36	LOC		65	2375	5231	MS	19	6	19

.

APPENDIX B

خد

THIN SECTION ANALYSIS DATA SHEETS

SE-NW-SE-NW SEC 2 T17N R22W ELLIS CO., OKLA.				,		,	-		•	10	14	10	17	1/	15	16	17	
NUMBER TH. SECT. G (8500')-	50.5	52.5	54.1	56.1	58.0	59.3	62.5	64.2	66.5	68.5	70.5	72.5	74.3	76.4	78.1	80.5	81.9	WG. (%)
DETRITAL CONSTITUENTS	71.0	54.5	54.5	80.0	51.5	53.0	86.0	83.0	87.0	77.0	83.5	79.0	72.0	73.0	65.0	72.0	62.0	70.8
QUARTZ MONOCRYSTALLINE POLYCRYSTALLINE	43.0 39.0 4.0	39.0 35.0 4.0	31.0 28.0 3.0	61.0 58.0 3.0	30.0 27.0 3.0	37.5 35.0 2.5	66.5 65.0 1.5	64.0 62.0 2.0	69.0 65.0 4.0	59.0 56.0 3.0	60.0 56.0 4.0	62.0 58.0 4.0	53.0 50.0 3.0	58.0 55.0 3.0	49.0 47.0 2.0	48.0 47.0 1.0	46.0 44.0 2.0	51.5 48.6 2.9
FELDSPAR MICROCLINE PLAGIOCLASE	4.0 1.0 3.0	4.0 1.0 3.0	5.0 2.0 3.0	4.5 0.5 4.0	5.0 1.0 4.0	4.0 1.0 3.0	2.5 0.5 2.0	2.0 1.0 1.0	3.0 1.0 2.0	3.5 0.5 3.0	3.5 0.5 3.0	4.5 0.5 4.0	4.0 1.0 3.0	3.0 1.0 2.0	1.5 0.5 1.0	5.0 2.0 3.0	3.0 1.0 2.0	3.6 0.9 2.7
ROCK FRAGMENTS SHALE CHERT CARBONATE	9.0 0.5 2.0 0.5	6.5 0.5 2.0	11.5 0.5 3.0 0.5	8.0 2.0	10.0 0.5 3.0	7.0 2.0	8.5 1.5	7.5 0.5 3.0	8.0 0.5 0.5	8.0 1.0	10.0 0.5 2.5	6.0 0.5 1.5	9.5 0.5 3.0	6.5 0.5 2.0	9.0 0.5 2.0	12.5 1.0 2.0 0.5	7.5 1.0 2.0	8.5 0.4 2.1 0.5
SILTSTONE METAMORPHIC PLUTONIC	0.5 5.0 0.5	4.0	7.0 0.5	5.5 0.5	0.5 5.0 1.0	4.0 1.0	7.0	4.0	7.0	7.0	7.0	4.0	6.0	4.0	0.5 6.0	0.5 8.5	4.0	0.1 5.6 0.2
OTHER GRAINS DETR. CHLORITE GLAUCONITE	15.0 0.5	5.0 0.5	7.0 0.5	6.5 1.0 0.5	6.5 0.5	4.5 0.5	8.5 1.5 0.5	9.5 2.0 0.5	7.0 1.0 0.5	6.5 1.0 0.5	10.0 2.0 0.5	6.5 1.0 0.5	5.5 1.0 0.5	5.5 0.5 0.5	5.5 0.5 0.5	6.5 0.5 0.5	5 .5 0.5 0 .5	7.1 0.9 0.4
MUSCAVITE BIOTITE ZIRCON TOLRMALINE LEUCOKENE FOSSIL FRACS.	10.0 3.0 0.5 0.5 0.5	0.5 1.0 0.5 0.5 0.5 1.0	0.5 3.0 0.5 0.5 0.5 1.0	0.5 2.0 0.5 0.5 0.5 0.5	0.5 2.0 0.5 1.0 0.5 1.0	1.0 0.5 0.5 0.5 1.0	0.5 4.0 0.5 0.5 0.5 0.5	0.5 4.0 1.0 0.5 0.5 0.5	0.5 3.0 0.5 0.5 0.5 0.5	2.0 1.0 0.5 0.5	4.0 2.0 0.5 0.5 0.5	3.0 0.5 0.5 1.0	1.0 0.5 0.5 1.0 1.0	2.0 1.0 0.5 0.5	0.5 1.0 0.5 0.5 1.0 0.5	2.0 1.0 0.5 0.5 1.5	2.5 0.5 0.5 0.5 0.5	2.8 0.8 0.5 0.6 0.7 0.8
DETRITAL MATRIX	20.0	0.5	0.5	0.5	0.0	0.0	1.0	2.5	4.5	0.5	1.5	2.0	2.0	1.5	0.5	1.5	2.0	2.4
ILLITE CHLORITE	20.0	0.5	0.5	0.5			0.5 0.5	2.0 0.5	4.0 0.5	0.5	1.0 0.5	1.5 0.5	1.5 0.5	1.0 0.5	0.5	1.0 0.5	1.5 0.5	2.1 0.3
DIAGENETIC CONSTS.	9.0	45.0	45.0	19.5	48.5	47.0	13.0	14.5	8.5	22.5	15.0	19.0	26.0	25.5	34.5	26.5	36.0	26.8
CEMENTS QUARTZ FELDSPAR	3.0 0.5	44.5 0.5	44.0 0.5	18.0 6.0	48.0 0.5	45.5 0.5	11.0 6.0	11.5 6.0	7.0 2.0	10.0 5.0	12.5 7.0	7.0 4.0 0.5	15.0 3.0	12.5 5.0 0.5	29.0 1.0	13.0 3.0 0.5	29.0 3.0	21.2 3.1 0.5
CALCITE DOLOMITE FE DOLOMITE BARITE	1.5 1.0	5.0 1.0 38.0	0.5 39.0 4.0	7.5 0.5 4.0	43.0 0.5 4.0	42.0 0.5 2.5	1.0 4.0	1.5 4.0	1.0 4.0	2.0 3.0	2.5 0.5 2.5	0.5 2.0	3.0 9.0	1.0 0.5 5.5	1.0 1.0 26.0	0.5 0.5 8.5	4.0 2.0 20.0	6.9 2.8 8.4 0.0
AJTHIGENIC CLAYS KAOLINITE ILLITE CHLORITE	4.0 4.0	0.5 0.5	0.0	1.0 1.0	0.0	1.0 1.0	1.5 0.5 0.5 0.5	2.0 0.5 1.0 0.5	1.0 0.5 0.5	2.5 1.0 0.8 0.8	1.5 0.5 0.5 0.5	2.0 0.5 1.0 0.5	5.0 4.0 0.5 0.5	2.0 1.0 0.5 0.5	2.0 1.0 0.5 0.5	2.0 1.0 0.5 0.5	2.0 1.0 0.5 0.5	1.8 0.7 0.7 0.5
HYDROCARBON			0.5					0.5		0.5	0.5	0.5	0.5	1.0	0.5	0.5	0.5	0.3
POROSITY PRIMARY SECONDARY	2.0 2.0	0.0	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.5	9.5 0.5 9.0	0.5 0.5	9.5 0.5 9.0	5.5 0.5 5.0	10.0 10.0	3.0 0.5 2.5	11.0 11.0	4.5 0.5 4.0	3.5 0.4 3.3
AVE. GRAIN SIZE (MM)	0.06	0.16	0.18	0.18	0.20	0.20	0.06	0.10	0.05	0.08	0.09	0.11	0.17	0.12	0.13	0.16	0.18	0.13
QRF NORMALIZED (%) QUARTZ ROCK FRAGMENTS FELDSPAR	60.6 33.8 5.6	71.6 21.1 7.3	56.9 33.9 9.2	76.3 18.1 5.6	58.3 32.0 9.7	70.8 21.7 7.5	77.3 19.8 2.9	77.1 20.5 2.4	79.3 17.2 3.4	76.6 18.8 4.5	71.9 24.0 4.2	78.5 15.8 5.7	73.6 20.8 5.6	79.5 16.4 4.1	75.4 22.3 2.3	66.7 26.4 6.9	74.2 21.0 4.8	72.0 22.6 5.4
CORE LAB DATA:		3 5	0.1	0.1	5 /	0 1	3400 0	0.1	0 1	0 1		0 1	1 1	0.1	0 1	0.0	0 1	212 5
PERM. E-W PLUG PERM POROSITY	0.1 3.5	2.7	0.1	1.8	2.7	0.1	0.3 5.5	0.1	0.3 6.9	0.1 0.1 9.2	0.2 0.6 0.1 9.3	0.1 0.1 9.5	0.1 4.5	0.1 0.4 8.4	0.1 0.1 4.5	0.9 0.8 1.3 9.6	0.1 3.5	0.6 0.3 5.7
FLUID OIL WTR. SAT. GRAIN DEN.	9.1 60.1 2.70	6.0 67.9 2.71	6.4 68.4 2.71	9.7 59.2 2.71	6.7 67.6 2.72	8.7 61.4 2.71	11.3 54.5 2.68	12.4 52.5 2.67	12.6 52.8 2.67	11.1 41.7 2.67	11.3 40.7 2.67	14.0 40.3 2.66	9.6 52.2 2.66	13.2 45.3 2.66	9.4 53.6 2.73	13.9 41.3 2.66	8.5 57.4 2.66	10.2 53.9 2.7
LOG DATA: GAMMA RAY (API) SP (MV) LATEROLOG (OHM-H'S) MED RES (OHM-H'S) DEEP RES (OHM-H'S) DENS POR (%) BULK DENS. (GM/CC) DEEP - LAT (OHM-M'S)	63.0 10.0 40.0 40.0 13.7 2.45 0.0	60.0 11.0 40.0 55.0 55.0 13.7 2.45 15.0	52.0 12.0 42.0 100.0 80.0 4.8 2.60 38.0	42.0 13.0 51.0 400.0 150.0 4.8 2.60 99.0	42.0 14.0 42.0 300.0 150.0 3.0 2.63 108.0	47.0 15.0 39.0 275.0 150.0 6.5 2.57 111.0	45.0 16.0 49.0 250.0 180.0 0.6 2.67 131.0	58.0 17.0 35.0 98.0 95.0 3.6 2.62 60.0	60.0 18.0 32.0 55.0 6.5 2.57 23.0	64.0 19.0 25.0 90.0 62.0 7.1 2.56 37.0	60.0 20.0 30.0 65.0 65.0 7.7 2.55 35.0	58.0 20.0 32.0 70.0 70.0 14.9 2.43 38.0	56.0 20.0 32.0 80.0 70.0 13.7 2.45 38.0	52.0 20.0 30.0 95.0 95.0 11.9 2.48 65.0	52.0 20.0 30.0 150.0 150.0 8.9 2.53 120.0	47.0 19.0 55.0 380.0 380.0 6.0 2.58 325.0	47.0 19.0 40.0 350.0 350.0 1.8 2.65 310.0	53.2 16.6 37.9 167.8 129.2 7.6 2.6
TH. SECT. G (8500')-	50.5	52.5	54.1	56.1	58.0	59.3	62.5	64.2	66.5	68.5	70.5	72.5	74.3	76.4	78.1	80.5	81.97	AVG. (%)

~

170

•

SARKEY'S INC. GILLISPIE #1-3 E/2 NE SE SEC 3 T17N R22W ELLIS CO., OKLA. NUMBER

•

ELLIS CO., OKLA.	1	2	٦	4	5	6	7	8	9	10	11	12	
THIN SECTION (S)-	60.5	62.5	64.5	.66.5	68.5	70.5	72.5	74.5	75.Ź	76.5	77.3	78.3	AVG. (%)
DETRITAL CONSTITUENTS	74.0	68.0	59.5	74.0	62.0	72.0	73.0	78.5	50.0	57.0	57.5	58.0	65.3
QUARTZ MONOCRYSTALLINE POLYCRYSTALLINE	56.0 53.0 3.0	50.0 48.0 2.0	44.0 42.0 2.0	55.0 54.0 1.0	45.0 44.0 1.0	51.0 49.0 2.0	56.0 54.0 2.0	57.0 56.0 1.0	40.0 39.0 1.0	44.0 43.0 1.0	7.0 5.0 2.0	42.0 40.0 2.0	45.6 43.9 1.7
FELDSPAR MICROCLINE PLAGIOCLASE	2.0 1.0 1.0	4.0 2.0 2.0	3.0 1.0 2.0	4.0 2.0 2.0	3.0 2.0 1.0	4.0 1.0 3.0	5.0 2.0 3.0	5.5 2.0 3.5	3.0 1.0 2.0	3.0 1.0 2.0	2.0 0.5 1.5	4.0 1.0 3.0	3.5 1.4 2.2
Rock Fragments Shale Chert Carbonate Siltstone Metamorphic	9.0 0.5 0.5	8.0 0.5 0.5	7.0 0.5 0.5	10.0 0.5 0.5	9.0 0.5 0.5	10.5 1.5 1.0	6.0 1.0 0.5 0.5	9.5 0.5 2.0 0.5 0.5	5.0 1.0 0.5 0.5	4.0 0.5 1.0 0.5	4.5 2.0 0.5 1.0 0.5	5.5 1.0 1.0 0.5	7.3 0.8 0.8 0.6 0.4 5.4
PLUTONIC	0.0	7.0	0.0	9.0	0.0	0.0	4.0	0.0	5.0	2.0	0.5	5.0	0.0
OTHER GRAINS DETR. CHLORITE GLAUCONITE PHOSPHATE MUSCOVITE BIOTITE ZIRCON TOURMALINE LEICOVENE	7.0 0.5 0.5 3.0 1.0 0.5 0.5	6.0 0.5 1.0 2.0 0.5 0.5	5.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5.0 0.5 2.0 0.5 0.5	5.0 0.5 1.5 0.5 0.5	6.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	6.0 0.5 0.5 3.0 0.5 0.5	6.5 1.0 0.5 3.0 0.5 1.0	2.0 0.5 0.5	6.0 0.5 1.0 0.5 0.5	44.0 0.5 0.5 0.5 0.5	6.5 0.5 0.5 1.0 1.0	8.8 0.6 0.5 0.6 0.5 0.5 0.5
FOSSIL FRAGS.	0.5	1.0	0.5	0.5	0.5	0.5	0.5	1.0	0.5	2.0	42.0	2.5	11.8
DETRITAL MATRIX	2.0	1.5	2.5	1.0	1.5	4.0	4.0	3.5	1.0	1.0	0.5	4.0	2.2
ILLITE CHLORITE	2.0	1.0 0.5	2.0 0.5	0.5 0.5	1.0 0 . 5	3.0 1.0	3.5 0.5	3.0 0.5	0.5 0.5	0.5 0.5	0.5	3.0 1.0	1.7 0.5
DIAGENETIC CONSTS.	24.0	30.5	38.0	-25.0	36.5	24.0	23.0	18.0	49.0	42.0	42.0	38.0	32.5
CEMENTS QUARTZ FELDSPAR CALCITE	21.5 3.0 0.5	16.0 4.0 0.5	27.5 4.0 0.5	13.0 5.0 0.5	24.0 4.0 1.0	9.5 6.0 0.5	9.5 6.0 0.5	12.0 8.0 2.0	47.0 3.0 3.0	41.5 3.0 36.0	42.0 42.0	37.0 2.0 35.0	25.0 4.4 ERR 10.2
DOLOMITE FE DOLOMITE BARITE	1.0 17.0	0.5 11.0	2.0 21.0	0.5 7.0	1.0 18.0	1.0 2.0	3.0	0.5 1.5	1.0 40.0	0.5 2.0			1.1 13.3 ERR
AUTHIGENIC CLAYS KAOLINITE ILLITE CHLORITE	1.5 1.0 0.5	2.0 1.0 0.5 0.5	2.0 1.0 0.5 0.5	2.0 1.0 0.5 0.5	3.5 2.0 1.0 0.5	4.5 3.0 1.0 0.5	4.5 3.0 1.0 0.5	2.0 1.0 0.5 0.5	1.5 0.5 0.5 0.5	0.0	0.0	1.0 0.5 0.5	2.0 1.4 0.7 0.5
HYDROCARBON	0.5	0.5	0.5										0.5
POROSITY	0.5	12.0	8.0	10.0	9.0	10.0	9.0	4.0	0.5	0.5	0.0	0.0	5.3
SECONDARY	0.5	12.0	8.0	10.0	9.0	10.0	9.0	4.0	0.5	0.5			6.4
AVE. GRAIN SIZE (MM)	0.10	0.12	0.11	0.12	0.12	0.10	0.10	0.11	0.11	0.18	0.15	0.13	0.12
QRF NORMALIZED (%)	75 7	73 5	77 0	7/ 3	72.6	70.8	76 7	70.6	80.0	77.2	12.2	70 /	60 77
ROCK FRAGMENTS FELDSPAR	21.6 2.7	20.6 5.9	21.0 5.0	20.3 5.4	22.6 4.8	23.6 5.6	16.4 6.8	20.4 7.0	14.0 6.0	17.5 5.3	84.3 3.5	20.7 6.9	25.26 5.41
CORE LAB DATA: PERM. N-S PERM. E-W POROSITY FLUID OIL WTR. SAT. GRAIN DENS.	0.1 0.1 8.5 10.2 37.3 2.70	1.7 2304.0 9.7 11.9 39.4 2.70	0.4 0.4 9.3 12.2 41.3 2.71	0.3 0.3 8.3 14.3 34.8 2.68	0.1 0.1 8.8 15.2 40.9 2.67	0.2 0.2 9.4 10.7 39.1 2.66	0.1 0.1 9.0 14.8 36.3 2.66	0.1 0.1 8.6 13.9 37.0 2.67	0.1 0.1 3.4 4.1 66.6 2.68	0.1 0.1 3.4 6.7 64.0 2.72	0.1 0.1 2.1 6.3 61.9 2.72	0.1 0.1 2.0 62.2 2.72	0.28 192.14 6.88 10.03 46.73 2.69
LOG DATA: GAMMA RAY (API) SP (MV) SHORT RES (OHM-M'S) MED. RES. (OHM-M'S) DEEP RES. (OHM-M'S) *DENSITY POR. (%) BULK DENS. (GM/CC)	37.0 43.0 45.0 800.0 1000.0 7.7 2.55	37.0 43.0 40.0 600.0 700.0 8.9 2.53	39.0 43.0 47.0 100.0 800.0 8.3 2.54	37.0 43.0 40.0 50.0 500.0 8.9 2.53	46.0 42.0 39.0 80.0 200.0 8.3 2.54	45.0 41.0 35.0 100.0 200.0 10.7 2.50	45.0 40.0 39.0 200.0 500.0 8.9 2.53	47.0 38.0 40.0 200.0 900.0 6.6 2.57	60.0 37.0 60.0 175.0 500.0 4.8 2.60	80.0 35.0 150.0 150.0 150.0 1.8 2.65	95.0 33.0 100.0 140.0 140.0 1.8 2.65	105.0 32.0 17.0 15.0 15.0 1.8 2.65	56.08 39.17 54.33 217.50 467.08 6.55 2.57
THIN SECTION (S)-	60.5	62.5	64.5	66.5	68.5	70.5	72.5	74.5	75.7	76.5	77.3	78.3	

PETROLEUM INC. VALENTINE #1													
SE NE SEC 1 19N 22W ELLIS CO., OKLA.	_	_	_		_	,	-			40	44	12	
NUMBER THIN SEC. (V) (7900')	24.5	39.3	40.0	42.5	44.5	45.5	47.1	48.5	50.3	51.1	52.5	54.0	AVE (%)
DETRITAL CONSTITUENTS	55.0	56.0	57.0	67.5	61.0	64.0	59.0	68.0	62.0	54.0	68.0	69.0	61.7
QUARTZ MONOCRYSTALLINE POLYCRYSTALLINE	42.0 41.0 1.0	35.0 34.0 1.0	40.0 39.0 1.0	48.0 47.0 1.0	43.0 42.0 1.0	45.0 42.0 3.0	38.0 35.0 3.0	42.0 39.0 3.0	46.0 42.0 4.0	36.0 33.0 3.0	50.0 46.0 4.0	54.0 50.0 4.0	43.3 40.8 2.4
FELDSPAR MICROCLINE PLAGIOCLASE	2.0 2.0	4.0 0.5 3.5	3.0 1.0 2.0	3.0 0.5 2.5	2.0 2.0	4.0 1.0 3.0	3.0 0.5 2.5	3.0 3.0	4.0 1.0 3.0	3.0 0.5 2.5	2.0 2.0	2.0 0.5 1.5	2.9 0.5 2.5
ROCK FRAGMENTS SHALE CHERT CARBONATE SILTSTONE METAMORPHIC	5.0 0.5 1.0	7.0 0.5 1.0 1.0	7.0 1.0 1.0 0.5 1.0	7.5 2.0 1.0 0.5	8.0 0.5 0.5 0.5 0.5	7.0 2.0 0.5 4 0	6.5 1.0 0.5	4.0 1.0 0.5 2 5	6.5 1.5 5.0	5.5 0.5 1.0	6.5 1.5 0.5 0.5	5.0 1.0 4.0	6.3 0.5 1.0 0.6 0.3 4 1
PLUTONIC	5.5	4.0	5.5	4.0	0.0	0.5	5.0	2.5	5.0	4.0	4.0	4.0	.0
OTHER GRAINS DETR. CHLORITE GLAUCONITE PHOSPHATE MUSCOVITE BIOTITE	6.0 1.0 3.5	10.0 1.0 0.5 6.0 0.5	7.0 0.5 0.5 2.5 0.5	9.0 0.5 0.5 5.0 1.0	8.0 1.0 0.5 4.0 1.0	8.0 0.5 0.5 4.0 1.0	11.5 1.0 0.5 1.0 4.0 1.0	19.0 2.0 0.5 12.0 2.0	5.5 0.5 0.5 1.5	9.5 1.0 0.5 4.0 2.0	9.5 1.0 0.5 4.0 1.0	8.0 1.0 0.5 4.0 0.5	9.3 0.9 0.4 0.3 4.5 0.9
ZIRCON TOLRMALINE LUECOXENE FOSSIL FRAGS. #	0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 1.5	0.5 0.5 0.5	0.5 0.5 0.5	0.5 0.5 0.5	0.5 0.5 1.0 2.0	0.5 1.0 1.0	0.5 0.5 1.0 0.5	0.5 0.5 0.5	0.5 0.5 1.0 1.0	0.5 0.5 0.5	0.5 0.5 0.8 1.0
DETRITAL MATRIX	16.0	6.0	1.0	4.5	4.0	4.5	1.5	8.0	2.0	2.5	4.0	6.0	5.0
ILLITE CHLORITE	15.0 1.0	5.0 1.0	1.0	4.0 0.5	3.5 0.5	4.0 0.5	1.0 0.5	6.0 2.0	1.5 0.5	2.0 0.5	3.0 1.0	5.0 1.0	4.3 0.8
DIAGENETIC CONST.'S	29.0	38.0	42.0	28.0	35.0	31.5	39.5	24.0	36.0	43.5	28.0	25.0	33.3
CEMENTS GLARTZ FELDSPAR CALCITE DOLCMITE FE DOLCMITE BARITE	28.5 1.0 27.5	35.0 0.5 7.0 1.5 26.0	41.5 0.5 22.0 1.0 18.0	12.5 2.0 0.5 7.0 3.0	31.0 1.5 0.5 28.5 0.5	21.5 1.5 6.0 0.5 10.5 3.0	36.5 0.5 1.0 35.0	19.5 2.0 0.5 1.0 16.0	29.5 1.5 0.5 27.0 0.5	42.0 1.0 4.5 36.0 0.5	21.5 4.0 0.5 15.0 2.0	23.5 6.0 0.5 2.0 14.5 0.5	28.5 1.8 0.0 3.7 0.5 21.8 1.4
AJTHEGENIC CLAYS KAOLINITE ILLITE CHLORITE	0.0 * *	2.5 0.5 2.0	0.5 0.5	2.0 0.5 1.0 0.5	3.0 0.5 2.0 0.5	4.5 3.0 1.0 0.5	2.0 1.5 0.5	0.0 * *	2.0 1.0 0.5 0.5	1.5 0.5 0.5 0.5	2.5 0.5 1.5 0.5	0.0 * *	1.7 0.7 0.8 0.3
HYDROCARBON		0.5		0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.4
POROSITY PRIMARY SECONDARY	0.5 0.5	0.0	0.0	13.0 13.0	0.5 0.5	5.0 5.0	0.5 0.5	4.0 4.0	4.0 4.0	0.0	3.5 0.5 3.0	1.0 1.0	2.7 0.5 2.6
AVE. GRAIN SIZE (MM)	0.05	0.05	0.11	0.07	0.09	0.18	0.14	0.04	0.10	******	80.0	0.07	0.08
QRF NORMALIZED (%) QUARTZ ROCK FRAGMENTS FELDSPAR	76.4 20.0 3.6	62.5 30.4 7.1	70.2 24.6 5.3	71.1 24.4 4.4	70.5 26.2 3.3	70.3 23.4 6.3	64.4 30.5 5.1	61.8 33.8 4.4	74.2 19.4 6.5	66.7 27.8 5.6	73.5 23.5 2.9	78.3 18.8 2.9	70.0 25.2 4.8
* = recrystallized detrital metrix # = commonly includes: echinoderms crinoids brachiopods pelecypods													

may also include: ooids intraclasts

.

ODESSA NATURAL CORP. WREATH #1 C NW SEC 17 20N 21W WOODWARD CO., OKLA.			A	В								
NUMBER THIN SEC. (W) (7700')	1 85.3	87.5	3 88.1	3 88.1	.4 .88.9	90.5	92.5	7 94.5	%.2	97.5	10 99.5	AVG. (%)
DETRITAL CONSTITUENTS	74.0	60.0	55.5	66.5	72.5	68.0	68.0	65.0	58.0	65.0	67.0	65.4
QUARTZ MONOCRYSTALLINE POLYCRYSTALLINE	40.0 38.0 2.0	34.0 32.0 2.0	17.0 16.0 1.0	46.0 44.0 2.0	50.0 49.0 1.0	46.0 45.0 1.0	44.0 43.0 1.0	45.0 44.0 1.0	37.0 35.0 2.0	43.0 41.0 2.0	46.0 44.0 2.0	40.7 39.2 1.5
FELDSPAR MICROCLINE PLAGIOCLASE	3.5 0.5 3.0	4.0 4.0	2.0 2.0	3.5 0.5 3.0	3.0 0.5 2.5	4.0 1.0 3.0	4.0 0.5 3.5	3.0 0.5 2.5	3.0 3.0	4.0 0.5 3.5	4.0 0.5 3.5	3.5 0.4 3.0
ROCK FRAGMENTS SHALE CHERT CARRONATE	7.5 0.5 2.0	10.5 2.0 3.0	6.0 0.5 1.0	9.0 1.0 2.0	7.5 0.5 1.0	9.5 0.5 2.0	9.5 1.0 1.0	7.5 1.0 2.0	8.0 2.0	9.5 0.5 1.0	9.5 0.5 1.0	8.5 0.7 1.6 0.3
SILTSTONE METAMORPHIC PLUTONIC	0.5 4.0 0.5	5.0 0.5	0.5 4.0	6.0	6.0	7.0	7.5	4.5	6.0	8.0	7.5	0.1 6.0 0.1
OTHER GRAINS DETR. CHLORITE GLAUCONITE PHOSPHATE	23.0 3.0 0.5	11.5 0.5 0.5	30.5 0.5 0.5	8.0 0.5 0.5	12.0 0.5 0.5	8.5 1.0 0.5	10.5 2.0 0.5	9.5 1.0 0.5	10.0 2.0 0.5	8.5 1.5 0.5 0.5	7.5 1.0 0.5	12.7 1.2 0.5 0.3
MUSCOVITE BIOTITE ZIRCON TOURMALINE LUECOXENE FOSSIL FRAGS. #	13.0 3.0 0.5 1.0 1.0	2.0 0.5 0.5 1.0 6.0	2.0 0.5 0.5 0.5 25.0	4.0 0.5 1.0 0.5 0.5	6.0 1.0 1.0 2.0	4.0 1.0 0.5 0.5	4.0 0.5 2.0 1.0 0.5	5.0 1.0 0.5 1.0	5.0 0.5 0.5 0.5 0.5	4.0 0.5 0.5 0.5	4.0 0.5 0.5 0.5	4.8 0.9 0.7 0.6 0.8 5.4
DETRITAL MATRIX	8.5	1.0	1.0	1.0	2.0	1.5	2.5	1.5	0.5	2.0	1.0	2.0
ILLITE CHLORITE	7.5 1.0	0.5 0.5	0.5 0.5	0.5 0.5	1.5 0.5	1.0 0.5	1.5 1.0	1.5	0.5	2.0	1.0	1.6 0.4
DIAGENETIC CONST.'S	17.5	39.0	43.5	32.5	25.5	30.5	29.5	33.5	41.5	33.0	32.0	32.5
Cements Quartz Feldspar	17.0 0.5	35.0 0.5	38.0 0.5	13.0 2.5	10.5 2.0	13.0 3.0	13.0 2.5	21.0 2.0	39.5 2.0	25.0 3.5	30.0 4.0	23.2 2.1 0.0
CALCITE DOLOMITE FE DOLOMITE BARITE	16.0 0.5	28.0 0.5 6.0	16.0 2.0 19.0 0.5	1.5 7.5 1.5	2.0 0.5 5.0 1.0	1.0 1.0 6.0 2.0	0.5 8.5 1.5	2.0 2.0 14.0 1.0	0.5 1.0 33.0 3.0	0.5 16.0 5.0	11.0 2.0 11.0 2.0	7.2 1.5 10.8 1.9
AUTHEGENIC CLAYS KAOLINITE ILLITE CHLORITE	0.0 * *	3.0 0.5 2.0 0.5	2.5 2.0 0.5	3.0 0.5 2.0 0.5	1.5 0.5 1.0	1.5 1.0 0.5	2.0 1.0 0.5 0.5	2.0 1.0 0.5 0.5	1.0 0.5 0.5	1.5 1.0 0.5	2.0 1.0 1.0	1.8 0.6 1.0 0.3
HYDROCARBON	0.5	0.5	0.5	1.0	0.5	0.5	0.5	0.5	0.5			0.5
POROSITY PRIMARY SECONDARY	0.0	0.5 0.5	2.5 0.5 2.0	15.5 0.5 15.0	13.0 13.0	15.5 0.5 15.0	14.0 14.0	10.0 10.0	0.5 0.5	6.5 0.5 6.0	0.0	7.1 0.3 6.9
AVE. GRAIN SIZE (MM)	0.04	0.14	0.15	0.08	0.10	0.09	0.10	0.11	0.13	0.10	0.11	0.1
QRF NORMALIZED (%) QUARTZ ROCK FRAGMENTS FELDSPAR * = recrystallized	54.1 41.2 4.7	56.7 36.7 6.7	30.6 65.8 3.6	69.2 25.6 5.3	69.0 26.9 4.1	67.6 26.5 5.9	64.7 29.4 5.9	69.2 26.2 4.6	63.8 31.0 5.2	66.2 27.7 6.2	68.7 25.4 6.0	61.8 32.9 5.3
detrital matrix												

= commonly includes: Echinoderms Crinoids Brachiopods Bryozoans Pelycepods may also include: ooids intraclasts

RAN RICKS JR. COLE #28-A C W/2 NW SEC 28 T21N R21W WOODWARD CO., CKLA.	1	2	7	4	5	6	7	
THIN SEC. (R) (7400')	38.5	39.6	40.5	42.1	44.2	47.9	49.5	AVG. (%)
DETRITAL CONSTITUENTS	63.0	70.0	75.5	73.5	68.5	66.0	68.5	69.3
QUARTZ MONOCRYSTALLINE POLYCRYSTALLINE	41.0 37.0 4.0	48.0 45.0 3.0	51.0 48.0 3.0	50.0 46.0 4.0	50.0 46.0 4.0	45.0 43.0 2.0	45.0 42.0 3.0	47.1 43.9 3.3
FELDSPAR MICROCLINE PLAGIOCLASE	4.0 0.5 3.5	3.0 0.5 2.5	3.0 3.0	3.5 0.5 3.0	4.5 0.5 4.0	4.0 4.0	4.5 0.5 4.0	3.8 0.4 3.4
ROCK FRAGMENTS SHALE CHERT CARBONATE STI ISTONE	10.0 0.5 2.0 0.5	9.0 1.0 2.0 1.0	5.5 0.5 1.0	7.0 0.5 1.0 0.5	7.0 1.0 1.0	10.5 1.0 1.5	9.5 2.0 1.0	8.4 0.8 1.4 0.6 0.0
METAMORPHIC	7.0	4.5 0.5	4.0	5.0	5.0	8.0	6.5	5.7 0.1
OTHER GRAINS DETR. CHLORITE GLAUCONITE PHOSPHATE	8.0 0.5 0.5 0.5	10.0 1.0 0.5	16.0 2.0 0.5 0.5	13.0 2.0 0.5 0.5	7.0 1.0 0.5 0.5	6.5 1.5 0.5	9.5 2.0	10.0 1.4 0.4 0.3
MUSCOVITE BIOTITE ZIRCON TOURMALINE LUECOXENE FOSSIL FRAGS. #	2.5 1.0 0.5 1.5 0.5	4.0 0.5 0.5 1.0 2.0	10.0 1.0 0.5 1.0	8.0 0.5 0.5 0.5 0.5	2.0 0.5 0.5 1.0 0.5	2.0 0.5 0.5 1.0	4.0 0.5 1.0 0.5 1.5	4.6 0.6 0.5 1.1 0.8
DETRITAL MATRIX	1.0	2.0	5.0	5.5	0.0	3.0	4.0	2.9
ILLITE CHLORITE	0.5 0.5	2.0	4.5 0.5	5.0 0.5		2.0 1.0	3.0 1.0	2.4 0.5
DIAGENETIC CONST.'S	36.0	28.0	19.5	21.0	31.5	31.0	27.5	27.8
Cements Quartz Feldspar	34.0 0.5	24.0 0.5	8.0 1.5	8.0 1.0	30.0	13.5 1.0	13.0 1.0	18.6 0.8 0.0
CALCITE	28.0	16.0	1.5	05	14.0	1.0	3.0	9.1
FE DOLOMITE BARITE	5.5	7.0 0.5	5.0	6.5	16.0	10.0 1.5	8.5	8.4 1.0
AUTHEGENIC CLAYS KAOLINITE	1.0	2.5	1.0 0.5	1.0 0.5	1.0 0.5	3.5 0.5	2.5	1.8 0.3
ILLITE CHLORITE	0.5 0.5	2.0 0.5	* 0.5	* 0.5	0.5	2.5 0.5	2.0 0.5	1.1 0.5
HYDROCARBON	0.5		0.5	0.5		0.5	0.5	0.4
POROSITY	0.5	1.5	10.0	11.5	0.5	13.5	11.5	7.0
SECONDARY	0.5	1.5	10.0	11.0	0.5	13.0	11.0	6.8
AVE. GRAIN SIZE (MM)	0.13	0.11	0.08	0.07	0.15	0.12	0.11	0.1
QRF NORMALIZED (%)	65 1	68.6	67 5	68 O	73.0	68.2	65.7	68.0
ROCK FRAGMENTS FELDSPAR	28.6 6.3	27.1	28.5 4.0	27.2	20.4 6.6	25.8 6.1	27.7	26.5
# = commonly includes: Echinoderms Crinoids			* = rec detrita	rystall l matri	ized x			

Echinoderms Crinoids Brachipods Bryozoans may also include: ooids intraclasts algae

•

VITA

Bruce Jerome Wade

Candidate for the Degree of

Master of Science

Thesis: THE PETROGRAPHY, DIAGENESIS, AND DEPOSITIONAL SETTING OF THE PENNSYLVANIAN COTTAGE GROVE SANDSTONE IN DEWEY, ELLIS, ROGER MILLS AND WOODWARD COUNTIES, OKLAHOMA

Major Field: Geology

Biographical:

Personal: Born in San Jose, California, July 16, 1962, the son of Guy A. and Aida L. Wade.

- Education: Graduated from Graham High School, near Weleetka, Oklahoma, in May, 1980; received Bachelor of Science degree in Arts and Sciences from Oklahoma State University in December, 1984; completed requirements for Master of Science degree at Oklahoma State University in December, 1987.
- Professional Experience: Summer Geologist, Hadson Exploration Company, Oklahoma City, Oklahoma, May to August, 1985; Summer Geophysicist, Exxon Company U.S.A., Houston, Texas, May to August 1986; Graduate Teaching Assistant, Geology Department, Oklahoma State University, January 1985 to May 1987.

2

à,

12

									С	
									1	2
									•	
22W					22₩	21₩		1	Bracken Expl. Co. Gerald Brown ≠3-4	Bracken Expl Brown #2-
•	5	4	3	• 2	1	6	5	4 N8	W/2- SW 4-17N-22W	N/2-NE-SV 4-17N-221
7	8	9 °	1Ø	11	12	• 7	8	9	Z Z	
18	• 17	•	15	B 14	13	18	17	16		
19	20	21	22	² 3 23	24	19	218	21		
30	 29	28	27	6 6 7	25	•3Ø	29			
 31	• 32	• 33		1035	36	31	32	33 T		
Б °	Ę	3	- - 3	7.12/	12 10 / C'	.6	• 5	4 Z		
	C			14				1	<u> </u>	
/ 					B WILLS	·				
18 	17 	16	15		4 13• 0 4 	18			$\sum_{i=1}^{n}$	
.19	210	21	22	27	24	19	2Ø	21		
3Ø	29	28	27.	26	 25 	ЗØ	29	28		
			J'I						$\left \right \leq$	100

SCALE: 1.5 MILES/INCH

	·	; ;;;;	•		i iti			• • • •	· · · ·	• • • 1	1 I.1		4 • T	• • • •	•	1	isti	
 · · · · · · · · · · · · · · · · · · ·		ELLIS CO	÷	•0			• 0	•0			•0	• D		DEWEY C	0	•	·	· · · · · · · ·
 ນ	•0	• 16	° 11 ° 23	• 24 • 22 • 22 • 22	· 10 · 10 / 1	ບ ບ ເ	5	4 • 0	د ٥•	• 2 •D	D:	1.] • D	•0	· · · · · · · · · ·	• 0_	*0 	1	с К
 7	•24	•30	•25 •24	•24 •	Ø15 • 14			0 •	1.2	•0	• p	•0 //	•0	.1 °D	0• ام ز 9	11°0 •0	•9.2	7
40 ⁴⁰ -24	• 38 	0	10	14		15 •0	17 ^{°D} °D	• D]ti	•D 1::	•p]4	15	15 •0	•0 •0	• ០]ប	۰ ۵	14	13	ls
е[13	• 0 21 • 0	22	/ ° 0	24	15	2 <i>1</i>] • 0	•0	<u></u>	23	• 0	ìeo			•0	2:3	24	19
ارد: 0•	و• ر_2 و	•D 25	-0	6 0	•0 25	• 0 11 <i>0</i>	0 2.3	 •g 28 	21	2t. •D	•D 22	• D Lizž	2.s	2 E 0	•0	•0 [21]	25	المد
•• 31	32 • D	53 • D	4ذ	•0 311	تد: •0	31	•0 2 •0	ت تان 0	:34 • 0	•0 •0	●D [31]		•0	• و دد و	•D _34	35	טב ו	
ប់ • ០	5	4 • D	د: ٥	Pn	1	ŭ	•0	4	0• ن	2 • D	°D]	ti •0	•0	• • 4	•0 •0 :5	2	1	ບ NO
• 0 7	• p © • p	• D	i d		12	•D 7	C	0°0° 9°0° 0°0	°0 *A) °0 *0 °0	• 0 • 0 • 0 • 0	12 •D	?	5	t: 0	و اير م	11	•0	
•0 ic •9	•0;7	•0 11:	1.: B		15	10	17	D J	•0	•D 34	13	1:	17	• 0 • 0		0 200 40 6	800	
 15	• 0 2.d	•0 21			<u> </u>	۵• د (20	• o 	• D	23 •D	24	وز			ee			
br: ₽	25 •0	25			.	0 الاد:	29			-t.		3.đ					•50	لاد
اب:	(\cdot)	دد ۵		15 • 13 • 72	in d	31	34	دن ا	0-		20			•39	•••	94	it	BN 1

