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CHAPTER I 

INTRODUCTION 

General Background 

Cauliflower mosaic virus CCaMV> is the type member of 

the caulimoviruses, the only known taxonomic group of plant 

viruses whose genetic material is double-stranded DNA. This 

characteri•tic genome has caused CaMV to be studied not only 

as a potential vector for introducing foreign DNA into plants 

for crop improvement, but also as a model system for studying 

the genetic interactions occurring within plant cells (as 

reviewed by Hull and Covey, 1983). 

CaMV systemically infects members of the Crucifer 

family, such as broccoli, cauliflower, and turnip. Both the 

virus particles and purified DNA are infectious to these 

plants when inoculated mechanically. Typical symptoms 

elicited by the plants include mottling of the leaves 

(mosaic), vein clearing, stunted growth, and rugosity of the 

leaves (Covey, 1985). 

CaMV is an icosahedral virus with an outer diameter 

cf 50 nm, and an inner diameter of 20 nm. The virion's 

molecular weight was calculated to be 22.8 x 106 daltons, and 

it is 17% DNA by weight (Covey, 1985). 

1 
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Structure of CaMV DNA and RNA 

The DNA of CaMV is approximately 8 kilobase pairs (kbp>, 

with one strand defined as the "plus" strand and the other as 

the "minus" strand <Figure 1>. The plus-strand contains the 

open reading frames <ORFs> and the minus-strand is that which 

is transcribed into RNA. CaMV DNA is unusual in that it 

contains small regions of triple-strandedness. This triple-

strandedness creates gaps, or discontinuities, with one gap 

occurring in the minus-strand and depending on the isolate, 

one or two occurring in the plus-strand. At each discon-

tinuity the 5' nucleotide is in a fixed position, while the 

3' nucleotide overlaps the 5'end, and this overlapping can 

vary, from ten to twenty bases at gaps 1 and 2 (81 and 82, 

respectively>, to forty bases at gap 3 CG3> <Richards, et 

al . , 1981 > • 

Eight long open reading frames have been found by 

nucleotide sequencing. These ORFs are all located on only 

one of the two strands of DNA (the plus strand>, and could 

encode for polypetides with molecular weights greater than 10 

kilodaltons Ckd} <Franck, et al., 1980}. The functions of 

ORFs I and III have not yet been elucidated, but deletions in 

these regions have suggested that they are essential for pro­

pagation of the virus in plants <Howell, et al., 1981 and 

Gardne1~, 1983}. Xiong, et al. <"1984> showed that ORF III is 

expressed in vivo and codes for a 15 kd protein CP15). 

Giband, et al. (1986} found that the ORF III product asscci-



Figure 1. Map of the cauliflower mosaic virus genome. 
<From D. L. Steffen's Ph.D. dissertation.) 
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ates with viral particles, probably at the capsid surface, 

and that it also exhibits DNA-binding activity. ORF II has 

been shown to be involved as a "helper component" in 

transmission of the infection to plants by aphids via the 

synthesis of an 18,000 molecular weight polypeptide <Armour 

et al., 1983; Daubert et al., 1983; Woolston et al., 1983). 

The 58,000 molecular weight protein coat precursor is encoded 

by ORF IV·and processed into the 42,000 molecular weight 

capsid protein <Franck, et al., 1980; Hahn and Shepherd, 

1982; and Burger and DuPles~is, 1983). That the coat protein 

is found only in the inclusion bodies of infected plant cells 

led to speculations that encapsidation is closely linked to 

replication (Giband, et al., 1984>. ORF VI codes for the 

inclusion body matrix protein <Odell and Howell, 1980 and 

Covey and Hull, 1981). This protein has also been shown to 

play a role in the type of local symptom produced by the 

plant in response to infection <Schoelz, et al., 1986). 

Evidence is mounting that ORF V (79,000 IJ:!Olecular 

weight) is the gene coding for the viral reverse transcript-

ase. Computer analysis has shown it shares amino acid sequ-

ence homology with retroviral reverse transcriptase, and it 

is the most highly conserved coding region among the CaMV 

isolates <Volovitch, et al., 1984; Toh, et al., 1983). 

TakatsL\ji, et al.· ( 1r;>86), obtained reverse t1ranscriptase 

activity from yeast expressing a cloned ORF V gene, while .. 
Laquel, et al. <1986), demonstrated that the enzyme activity 



associated with viral replication complexes could be 

inhibited with antibodies raised against a synthetic peptide 

corresponding to a portion of the gene V protein. Its role 

in replication will be discussed later. 

6 

Two major polyadenylated RNAs, the 198 and 358 trans­

cripts, have been isolated from infected plants. Both are 

transcribed from the minus-strand of DNA. The 198 transcript 

has its 5" and 3' ends at nucleotides 5765 and 7615, respec­

tively <numbering system is that of Franck et al., 1980). 

The 198 t~anscript is the messenger RNA CmRNA> for ORF VI's 

inclusion body protein. The 358 species is a longer-than­

genome-length transcript of the entire DNA minus-strand, 

having its 5' end at nucleotide 7470 and its 3' end at 

nucleotide 7615 <Covey, et al, 1981, and Guilley, et al., 

1982). This transcript is 180 nucleotides longer than the 

minus-strand and is considered to be the primary template 

for DNA synthesis by reverse transcription <Olszewski, et 

al., 1982; Pfeiffer and Hohn, 1983>. 

CaMV Replication Model 

The mode of replication for CaMV currently being 

investigated involves a viral reverse transcriptase. A viral 

reverse transcriptase has not been previously reported to 

occur in plants and would therefore be a unique system for 

plants. The reverse transcription step is similar to that of 

retroviral and hepadn~viral reverse transcriptions. The 

similarities include a tRNA primer for the synthesis of 
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minus-strand DNA on an RNA template, the forma~ion of strong­

stop DNA with accompanying template switch, the presence of 

purine-rich regions associated with plus-strand priming, and 

a second template switch at the minus-strand priming site. 

Little is known about how the virus enters the initially 

infected cells. That protoplast infection in vitro required 

polycations which promote adsorption of viral particles onto 

the cell surface prompted speculations that viral factors may 

promote adsorption of viral particles onto subcellular 

structures in vivo <Furusawa, et al., 1980; Howell and Hull, 

1978). Little is known of the initial uncoating of the 

virions. Since proteases are required for releasing DNA in 

vitro perhaps they are also required in vivo (as reviewed by 

Hull and Covey, 1985). 

Features of CaMV replication have been summarized by 

several groups <Hull and Covey, 1983; Pfeiffer and Hohn, 

1983). The model of replication by reverse transcription is 

depicted in Figure 2. At an early stage in the infection, 

the DNA must enter the nucleus. After association with host 

proteins, the gaps will be repaired and the molecule 

supercoiled. Transcription of this supercoiled DNA occurs 

via the host cell RNA polymerase II. After transcription, 

the polyadenylated RNA moves to the cytoplasm for reverse 

transcription. This genome-length RNA contains terminal 

direct repeats of 180 nucleotides ("r" in Figure B>. 

Initiation of reverse transcription occurs with the 3' end of 

a host-cell tRNAm•• primer binding to 14 nucleotides 



Figure 2. A model for the replication cycle of CaMV 
DNA. <Adapted from Hull and Covey, 1983.) 
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immediately to the right of Gl as depicted in C of Figure B. 

Reverse transcriptase copies the RNA to its 5' end at 

nucleotide 7435, resulting in a small minus-strand DNA 

molecule of approximately 600 nucleotides that contains the 

terminally repeated sequence, which is considered equivalent 

to the "strong stop'' DNA of retroviruses <Din Figure B>. 

The repeated sequence in the minus-st~and DNA <"R 11 ) base­

pairs with the repeated sequence at the 3' end of the same 

358 RNA or of a different one <E in Figure B>. Here, the 

reverse transcriptase switches templates, creating the first 

template "jump''. Minus-strand synthesis continues, and the 

copied template RNA is degraded, probably by RNase H 

activity. The minus-strand synthesis continues past 

nucleotides 4218 and 1632 <Gaps 2 and 3, respectively>, which 

are purine-rich regions that serve as plus-strand primer-

binding sites. It has been suggested that primers at these 

sites may be residual RNA that was not degraded due to the 

resistance of the rG:dC base pairs to RNase H attack, or may 

be some unidentified RNA with the consensus sequence 

<Pfeiffer and Hohn, 1983). From these positions, synthesis 

of DNA plus-strands is initiated CF and G of Figure B>. The 

tRNA primer sequence is copied into the the plus-strand, and 

the tRNA primer complementary sequence is copied into the the 

minus strand. These tRNA sequences base pair, allowing the 

reverse transcriptase its second template switch. Minus- and 

plus-strand synthesis continue CH in Figure 2>, producing a 
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double-stranded gapped CaMV DNA molecule CI in Figure 2>. 

Some important variations between the reverse trans-

cription system of retroviruses and hepatitis B virus <HBV> 

and that of CaMV also exist (as reviewed by Hohn et al., 

1985). CaMV's reverse transcription occurs in the cyto-

plasmic inclusion bodies while the same for retroviruses 

occurs in the pre-virus particles~ ~lthuugh pre-virions may 

be present in the inclusion bodies; CaMV uses between one and 

three plus-strand primer sites while HBV and retroviruses use 

only one; retroviruses form DNA with long terminal repeats 

that can integrate into the host cell chromosomes while CaMV 

forms relaxed and supercoiled circular DNA and has not yet 

been shown to integrate. Each of these three systems also 

differ in their viral genetic materal: HBV particles contain 
. 

incomplete double-stranded DNA (containing regions of single-

~trandedness>; retroviruses contain RNA; and CaMV particles 

contain a complete double-stranded genome with single-

stranded overhangs <the gaps> <Hohn, et al., 1985). 

Recombination in CaMV 

Recombination is defined as "any set of pathways in 

which elements of nucleic acid interact with a resultant 

change of 1 in kage of genes or· parts of genes" (Cl ark, 1971) • 

Several recombination events have been observed to occur 

between CaMV DNAs. Lebeurier, et al. <1980) had dem6nstra-

ted that the infectivity of cloned CaMV DNA was dependant 

upon its being excised from the vector DNA at the restriction 
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enzyme site used in cloning. Homologous, intergenomic 

recombination events, by yielding infectious progeny, 

"rescued" coinoculated non-infectious CaMV DNAs that 

contained non-overlapping mutations <Howell, et al., 1981; 

Lebeurier, et al., 1982; Daubert, et al., 1983; and Choe, et 

al., 1985). Analysis of the resulting progeny virions 

revealed that they contained wild-type <w.t.> DNA, and 

therefore most likely resulted from recombination as opposed 

to complementation. 

Walden and Howell (1982> proposed two general mechanisms 

for homologous recombination observed in CaMV. In the ·first, 

infectious progeny are produced from coinoculated linear DNA 

molecules with complementary overhanging ends (ie., "st.icky 

ends"). This type of recombination could occur by the 

formation of mixed dimers, or even higher multimers, that can 

result in wild-type genomes via single cross-over events. 

The other recombination mechanism involves viral DNAs that 

do not have complementary sticky ends. Infectious DNAs are 

produced via a double cross-over or internal gene conversion 

between the mutant DNAs. Recombinants of this type arise 

readily <Walden and Howell, 1982 and Choe et al., 1985). 

Intragenomic recombination has also been shown to occur 

in CaMV. Lebeurier et al. (1982), used circular plasmid DNAs 

containing cloned, partially deleted tandem dimers CaMV DNA 

to infect plants; while Walden and Howell (1983) obtained 

infectious virions with intact recombinant plasmids contain­

ing complete CaMV genomes flanked by homologous viral DNA 



arms. The frequency of infection increased with increasing 

length of the flanking homologous DNA arms <Walden and 

Howe l l , 1 983 > • 

Evidence is accumulating that some CaMV recombinants 

result from the mechanisms of reverse transcription. 

Replicative recombination could result if, while undergoing 

an intramolecular template switch during the viral 

replication cycle, the reverse transcriptase actually 

"jumped" onto a second RNA template, thus creating an 

intermolecular template switch. A plasmid containing, in 

13 

tandem, one complete genom~ Of the CaMV CM4-184 isolate and a 

3.3 kbp fragment of a different CaMV isolate ( 11 8 11 >, was used 

with the transforming DNA of Agrobacterium tumefaciens to 

obtain infectious CaMV virions <Grimsley et al., 1986). 

Analysis of the progeny revealed the majority probably arose 

by means of the mechanisms of reverse transcription, i.e., 

template switching. DNA sequencing of the naturally 

occurring deletion mutant, CM4-184, believed to be a clonal 

derivative of CM1841, revealed that it contained regions 

similar to the CM1841 isolate and also to the CaMV Cabbage S 

CCabb S> isolate (Dixon et al., 1986). The regions of 

recombination between the two parental isolates could be 

explained by the switching of templates during reverse 

transcription. Recombinant CaMV DNAs resulting from the co­

inoculation of two mutant DNAs contained regions from both 

parental DNAs <Choe et al., 1985). Nucleotide sequencing of 

the regions surrounding Gap I of the CaMV genome revealed 
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unique nucleotides from one parent upstream of Gap I and 

unique nucleotides from the other parent downstream of Gap I 

<Melcher, unpublished). These findings are consistent with 

recombination by reverse transcription as' in accordance with 

the CaMV model for replication, Gap I arises as a result of 

template switching. Geldreich et al., <1986) reported 

recombinant genomes that possibly resulted from in vivo 

dimerization of two genomes, one defective, that were 

restricted at the same site. The subsequent production of a 

hybrid 358 RNA could have given rise to the recombinant 

progeny. 



CHAPTER II 

MATERIALS AND METHODS 

Cleavage of DNAs by Restriction Enzymes 

Restriction enzymes were used to digest CaMV DNAs for 

three purposes: one, to free the CaMV DNA from its plasmid 

vector to use in inoculation of turnip plants; two, to 

provide the desired CaMV DNA fragments to sequence; and 

three, as a means of producing DNA fragments having charac­

teristic banding patterns on agarose or polyacrylamide gels 

in analysis of the recombinant CaMV DNAs. 

The restriction enzymes and buffers used are shown in 

Table 1. Most were used in analysis of the recombinant DNAs, 

with the exceptions of Sal I, which was used to cl~ave DNAs 

from their plasmid vector, and BamHI and XbaI, which were 

used in producing fragments to sequence. 

in this study are shown in Table 2. 

The plasmids used 

Phenol Extraction and Ethanol 

Precipitation of DNA 

A standard procedure often used in the preparatipn of 

DNA was the removal of protein by extracting an aqueous 

solution of DNA with water saturated phenol. The phenol 

15 



Table I. Restriction enzymes and buffers used in study. 
All reaction mixtures contained 100 ug/rnl 
bovine serum albumin and wer~ incubated for 2 
hours or more at 37°C, except for TaqI 
reaction mixtures, which were incubated under 
paraffin oil at 60QC. 



Enzyme 

Ace I 

Alu I 

BamHI 

BglI 

ClaI 

EcoRI 

HaeIII 

HindIII 

HinfI 

MspI 

PstI 

Sall 

T<aqI 

XbaI 

TABLE I 

RESTRICTION ENZYMES AND BUFFERS 

Buffer 

60 mM NaCl, 6 mM Tris <pH 7.5), 
6 mM MgCl2, 6 mM 2-mercapto-ethanol 

50 mM NaCl, 6 mM Tris <pH 7. 6) , 
6 mM MgC1 2 , 6 mM 2-mercapto-ethanol 

50 mM NaCl, 50 mM Tris <pH 8. 0) , 
10 mM MgCl2, 1 mM dithiothreitol 

60 mM N~Cl, 10 mM Tris <pH 7. 4) ' 
10 mM MgCl2, 1 mM 2-mercapto-ethanol 

50 mM NaCl, 6 mM Tris <pH 7.9>, 
6 mM MgCl2, 6 mM 2~mercapto-ethanol 

50 mM NaCl, 100 mM Tris <pH 7.2), 
5 mM MgCl2, 2 mM 2-mercapto-ethanol · 

6 mM NaCl, 6 mM Tris CpH 7.4>, 
6.6 mM MgCl2, 6 mM 2-mercapto-ethanol 

50 mM NaCl, 50 mM Tris CpH 8.0), 
10 mM MgCl2, 1 mM dithiothreitol 

100 mM NaCl, 6 mM Tris (pH 7.5>, 
6 mM MgCl2, 6 mM 2-mercapto-ethanol 

6 mM KCl, 10 mM Tris <pH 7.4), 
10 mM MgCl2, 1 mM dithiothreitol 

50 mM NaCl, 50 mM Tris CpH 8.0), 
10 mM MgCl:z, 1 mM dithiothreitol 

150 mM NaCl, 6 mM Tris <pH 7.9), 
6 mM MgCl2, 6 mM 2-mercapto-ethanol 

6 mM NaCl, 6 mM Tris CpH 7.4>, 
6 mM MgCl2, 6 mM 2-mercapto-ethanol 

100 mM NaCl, 6 mM Tris CpH 7.4), 
6 mM MgCl:z 

-.. ·----------··-------·---------· 



Table II. Plasmids used in study. All CaMV DNAs are 
cloned into the Sal! site of pBR322 except W 
DNA, which is cloned into the XhoI site of 
pACYC177 <see text). 



Plasmid 

pDLS19 

pUM124 

pIC23 

pUM24 

pLW414 

pLW214 

pLl.1J76 

pIC141 

pIC143 

pIC148 

TABLE II 

PLASMIDS USED IN STUDY 

Isolate 

NY8153 

Cabb S 

w 

Cabb S 

CM4-184 

CM4-184 

CM4·-184 

Recombinant 

F!ec.ombi nant 

l~ecombi nant 

Mutation 

deletion 3233-
3427 

deletion 886-
1032 

deletion 6317-
6664 

deletion 6299-
6338, SmaI linker 

EcoRI linker at 
:L285 

deletion 777-
1208 

19 

Reference 

Melcher et al. , 
( 1986) 

Choe et al , 
( 1985) 

Choe et al , 
( 1985) 

Choe et al , 
( 1985) 

Howell, et al. , 
( 1980) 

Howell, et al. , 
( 1981) 

Holi'Jel 1 , et al. , 
( 1981) 

Choe et al , 
( 1985) 

Choe et al , 
( 1985) 

Choe et al , 
( l. 985) 
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denatures proteins and removes them from the nuclei~ acids. 

An amount of 1 M Tris-HCl, pH 8.0, that was equal to 

one-tenth the sample volume was added to the sample. Also 

added were one-fiftieth volume of 5 M NaCl and one volume of 

water-saturated phenol. These combined volumes were mixed by 

vortexing and then centrifuged for 5 minutes in either a 

Beckman model B microfuge, an Eppendorf model 5415 microfuge 

at 10-12,000 rpm, or at 10,000 rpm for 15 minutes in a 

Beckman J-21 centrifuge. The upper aqueous layer was 

transferred to a new Eppendorf microfuge tube, avoiding 

transferring the interphase and lower phenol layer. To 

remove any traces of phenol, three to five volumes of ether 

were added, followed by vortexing. The upper ether layer and 

any interphase were removed. To precipitate the DNA, two and 

one-half volumes of cold 95% ethanol were added, then the 

contents of the tube were mixed by inversion. The DNA preci-

pitate was allowed to form at either -20°C overnight or at 

-70°C for approximately 1 hour. This precipitate was 

recovered by centrifugation as described above. After 

decanting the liquid, a wash of 0.5 ml of cold 70% ethanol 

aided in removing any solutes that may have been trapped in 

the precipitate. The pellet and wash was centrifuged and the 

ethanol decanted. The DNA pellet was dried by vacuum aspira­

tion in a dessicator and then dissolved in the desired amount 

of DNA dissolving buffer (10 mM~Tris-HCl, pH 8.0, 1 mM EDTA, 

10 mM NaCl) or, depending on the fate of the DNA, water. 
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Care and Maintainance of Turnip Plants 

The host plants used in this study were turnips 

CBrassica rapa, cv. Just Right>. Seeds were planted and the 

seedlings transplanted in Jiffy Mix Brand potting soil and 

transplanted at age 2 weeks. The plants were fertilized 

twice weekly. 9 to 12 days after transplanting, the plants 

were inoculated with the plasmid and viral DNAs as described 

below. 

Growth conditions included daily waterings, 12 h of 

light with temperature of 21QC, and 12 h dark with temper­

ature of 19°C. 

Inoculation With Mutant CaMV DNAs 

Recombinant CaMV DNAs were obtained from turnip plants 

infected as the result of various coinoculations of turnip 

plants with two mutant viral DNAs. These mutant CaMV DNAs 

were first released from their plasmid vector by digestion 

with SalI or XhoI as described previously. Completion of 

digestion was confirmed by electrophoresing 0.2-0.3 ug of DNA 

en 0.8 or 1% agarose slab gels. The vector DNA, pBR322, was 

not separated from the inoculation mixture prior to inocula­

tion. 

Until inoculation, the enzyme-DNA mixture was stored at 

-20QC. The inoculum consisted of the two mixtures of the 

mutant CaMV DNAs, 9.2% (v/v) 20x SSC (3.0 M NaCl, 0.3 M 

sodium citrate>, and 200 ug celite. After removing the two 



primary leaves of the turnip plants, 20 ul of inoculum were 

applied to three leaves and gently rubbed into the leaves 
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with gloved fingers. The DNA concentrations in the mixtures 

were such that each plant was inoculated with 1 ug of DNA. 

Examinations for symptoms of mottling, chlorotic lesions, 

and stunting were performed for ten to thirty days after 

inoculation. 

Inoculation With Virally Infected Leaf Tissue 

To either maintain or increase the supply of recom­

binant viral DNAs, turnip plants were inoculated with 

homogenates of infected turnip leaves. The infected leaves 

were first ground in a mortar with 3 ml of 1% K2HP04 and 

acid-washed sea sand. The mixture was passed through cheese 

cloth to filter out the larger particles. This method 

provided approximately 2 ml of inocula. 10 mg of celite were 

added to the mixture and then the plants were inoculated as 

previously described. 

CaMV DNA Isolation From Infected Leaves 

Virus was isolated from systemically infected turnip 

leaves using a modified procedure of Gardner and Shepherd 

(1980). 2 g of leaf tissue were quick frozen with liquid 

nitrogen and ground ta a fine powder. 10 ml of TEU solution 

(0.2 M Tris-HCl, pH 7.5., 0.02 M EDTA, and 1.5 M urea) were 

stirred into the powder. After pouring the mixture into a 30 

ml Corex tube kept on ice, 2 ml of 10% Triton X-100 were used 
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as a rinse for the mortar, then poured into the Corex tube. 

The crude homogenate was pelleted by centrifugation at 10,000 

rpm in a Beckman Type JA-20 rotor for 15 minutes. Decanting 

the supernatant through Miracloth caught any floating debris. 

At this point, the samples were either stored at -20°C or 

processed further. 2 ml of TEU-sucrose solution <15% w/v 

sucrose, 2% v/v Triton X-100, to volume with TEU solution) 

were pipetted into a 17mm plastic Oak Ridge centrifuge tube 

to serve as a sucrose cushion through which to pellet the 

virus. The leaf supernatant was gently pipetted onto this 

sucrose pad and centrifuged at 34,000 rpm for 2.5 hr at 4°C 

in either a Beckman Type Ti 65 or Ti 75 rotor. 

After centrifugation, the liquid was carefully aspirated 

out of the Oak Ridge tube with a pasteur pipet attached to a 

vacuum aspirator, and 2.0 ml of viral resuspension buffer 

(0.1 M Tris-HCl, pH 7.5, 2.5 mM ~gCl2) were added to the 

pellet. The pellet and buffer were transferred to 1.5 ml 

Eppendorf microfuge tubes, to which 2 ul of 1 mg/ml DNAse I 

(from bovine pancreas> was added. After incubation at 37cc 

for 10 minutes, 4 ul of 0.5 M EDTA, 50 ul of 2.5 mg/ml 

proteinase K, and 12.5 ul of 20% SDS were added. This was 

also followed by an incubation for 10 minutes or longer, but 

The proteins were removed and DNA concentrated by 

phenol e>: traction and ethanol prec:i pi ta ti on as previ 01.1sl y 

described. The dried DNA pellet was then dissolved in 30 ul 

of Df\H:!i dh:;solving buffer. , 
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Sticky-End Ligation 

The isolated, recombinant CaMV DNAs were cloned into the 

bacterial plasmid pBR322 <Bolivar, et al., 1977). This 

vector is a molecule of double-stranded DNA with 4,363 base 

pairs containing genes conferring resistance to ampicillin 

(ampr) and tetracycline (tetr). Both CaMV and pBR322 

contain a single Sal! restriction enzyme site, which was 

utilized for ligation purposes. This site in pBR322 lies 

within the tetracycline resistance gene and insertion of DNA 

into this site renders the plasmid unable to confer tetr on 

tet• bacterial host cells. 

Each 20 ul of ligation mixture consisted of 0.37 ug of 

alkaline-phosphatase treated pBR322 DNA, 7.5 ul of SalI­

digested recombinant CaMV DNA isolated from turnip leaves, 2 

ul of 10x ligation buffer (0.66 M Tris-HCl, pH 7.6, 50 mM 

MgCl2, 50 mM DTT, 10 mM ATP), and 200 U/ul T4 DNA ligase. 

These mixtures were incubated at 15°C overnight, with the 

ligation of CaMV inserts confirmed by electrophoresing 13.5 

ul of the ligation mixture on 0.8-1.0% agarose gels. 

Transformation and Screening 

The ligation mixtures were used to transform competent 

cells <HB101). The mixtures were first diluted ten-fold with· 

sterile dH20. The competent bacteria were thawed 10 minutes 

in ice water and then a volume twice the diluted ligation 

mixture was added and mixed by vortexing. After incubating 
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on ice for 10 -minutes, the tubes were frozen for 100 seconds 

in an ethanol-dry ice bath. The tubes were thawed at room 

temperature and incubated on ice for 5 more minutes. Upon 

completion of incubations at 42ac for 1 minute and on ice for 

2 minutes, 200 ul of nutrient broth (10 g tryptone, 5 g yeast 

extract, 5 g NaCl, pH 7.5, to 1 L with dH20) were added. The 

tubes were incubated at 37°C; their contents spread on 

nutrient agar pla~es containing 20 ug/ml ampicillin, and 

incubated at 37°C overnight. 

The colonies that arose were replica-plated onto nutri­

ent agar (nutrient broth plus 15 g agar/L} plates containing 

10 ug/ml tetracycline and onto ampicillin-containing plates. 

Any amp~ and tet• colonies were further analyzed by isolation 

of the plasmid via the small-scale alkaline-SOS procedure of 

Ish-Horowicz and Burke (1981} (described below). 

Plasmid DNA Isolation---Small Scale 

To confirm the successful ligation of the recombinant 

viral DNA into the pBR322 vector, the tetu colonies were 

increased in number by inoculating 5 mls of nutrient broth 

plus 50 ul of 2 mg/ml ampicillin with these colonies. P1fter 

shaking overnight at 37QC, 1 ml was used in isolating the 

plasmid via the procedure of Ish-Horowicz and Burke (1981). 

The 1 ml was microfuged for l minute in a 1.5 ml Eppendorf 

tube. The pelleted cells were resuspended in 100 ul of 

Solution I (50 mM glucose? 25 mM Tris-HCl, 10 mM EDTA, pH 

8.0) by vortexing and then incubated at room temperature for 
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5 minutes. 200 ul of Solution II C0.2 M NaOH, 1X SDS> were 

added and the tubes mixed by inversion. After incubating 

these on ice for 5 minutes, 150 ul of cold 5 M KOAc <Solution 

III> were added. Gentle inversion and another incubation on 

ice followed. Next, the tubes were microfuged for 2 minutes 

and the supernatant transferred to a new microfuge tube. 

250 ul of isopropanol were then added, followed by mixing 

by inversion and an incubation at room temperature for at 

least 15 minutes. 

Plasmid DNA Isolation---Large Scale 

To produce stock quantities of plasmid DNA, the proce­

dure of Maniatis, et al. (1982) was used. A loopful of 

bacteria from frozen-storage was streaked onto ampicillin 

plates so as to obtain isolated colonies and incubated 

overnight at 37ac. An isolated colony from the plate was 

used to inoculate 5 ml of nutrient broth containing 50 ul of 

2 mg/ml ampicillin. The 5 ml nutrient broth tubes were 

shaken overnight at 37°C and then used to inoculate 250 ml 

of nutrient broth containing 2.5 ml of 2 mg/ml ampicillin. 

The 250 ml nutrient broth flasks were shaken at 250 to 300 

rpm overnight at 37°C. 

The resulting bacteria were pelleted in 250 ml centri­

fuge bottles by centrifugation in a Beckman Type JA-14 rotor 

at 8,000 rpm for 10 minutes. The supernatant was decanted 

and the bacterial pellet resuspended in 5 ml of Solution I. 

The resuspended bacteria were transferred to a 50 ml centri-
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fug~ tube. After sitting at room temperature for 10 minutes, 

the tubes were put in ice and 10 ml of Solution II were 

added. Upon mixing by inversion, the tubes were further 

incubated on ice for 10 minutes. 7.5 ml of solution III were 

added and the tubes were again mixed by inversion. This was 

followed by another incubation on ice for 10 minutes. After 

centrifugation_ in a Beckman Type JA-20 rotor at 12,000 rpm 

for 15 minutes, 18 ml of the supernatant were pipeted into 12 

ml of isopropanol in 30 ml centrifuge tubes. The tube's 

contents were mixed by inversion and allowed to sit at room 

temperature for 15 minutes or longer. After this precipita-

tion incubation, the tubes were centrifuged in the Type JA-20 

rotor at 12,000 rpm for 10 minutes and the supernatant decan-

ted. The pellet was washed with 10 ml of 70% ethanol by 

centrifuging again, followed by decanting the supernatant and 

drying in a vacuum dessicator. Upon dissolving in 1 ml TE 

buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA> the pellet was 

transferred to an Eppendorf microfuge tube and microfuged for 

5 minutes. The supernatant was decanted into a new microfuge 

tube and stored at 4QC until further purification by cesium 

chloride and ethidium bromide density gradient centrifugation. 

Cesium Chloride and Ethidium Bromide 

Purification of Plasmid DNA 

Further purification of the plasmids from RNA and/or 

proteins was accomplished by centrifugation in a density 

gradient of cesium clcride <CsCl> with the DNA intercalating 
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agent ethidium bromide <EthBr>. Covalently closed, circular 

DNA bands at a higher density in cesium chloride gradients 

than does linear DNA as it binds less EthBr. EthBr also 

makes the DNA bands visible in ultraviolet light. 

Into each Beckman "Qui ck Seal" 13>:51 mm pol yal 1 omer 

centrifuge tube 4.95 g dry CsCl, 4.5 ml plasmid sample plus 

distilled water (dH20>, and 450 ul 10 mg/ml EthBr was added. 

The tubes were balanced, heat sealed, and centrifuged in a 

Beckman VTi65.2 ultracentrifuge rotor at 20°C for either 48 

hours at 34K rpm or 24 hours at 50-55K rpm. The plasmids 

were removed in semi-darkness by illuminating the tubes with 

UV light, puncturing them with a size 188 hypodermic needle, 

and withdrawing the plasmid band into a 1 cc syringe. This 

band was located near the middle of the tube, with the band 

of linear or relaxed DNA 1-2 cm above it, and the RNA band 

stuck vertically along one wall of the tube. 

The plasmid DNA-EthBr complex was separated from the 

CsCl by ethanol precipitation. Phenol extraction removed the 

EthBr from the DNA. After ethanol precipitating the plasmids 

and redissolving same in 200 ul of DNA dissolving buffer, the 

concentrations of the plasmid preparations were determined by 

measuring the absorbance at 260 and 280 nm using a Hitachi 

Model 100-BOA spectrophotometer. 

Storage of Bacteria 

The plasmid-containing £. coli were stored frozen until 

n<'!:!eded. Bacteria were grown overnight by shaking an isolated 



colony in 5 ml of nutrient broth. To freeze the bacteria, 

0.85 ml of the bacteria/nutrient broth mixture was added to 

0.15 ml sterile glycerol. The bacteria and glycerol were 

placed in 1.5 ml cryovial tubes, mixed, and placed in a 

-70QC freezer. 

3' End Labeling of DNA 
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The 3' end of the DNA fragments to be sequenced were 

labeled with alpha-32P-dCTP. These fragments resulted from a 

BamHI digest, in which the enzyme cleaved the DNA at the 

sequence G'GATCC. 

Added to each dried DNA pellet were: 12 ul triply-

distilled H20; 1 ul each of 20 mM dATP, 20 mM dGTP, and 20 

mM dTTP; 2 ul 10x reverse transcriptase buffer (0.5 M KCl, 

0.4 M Tris-HCl, pH 8.0, 50 mM MgCl2, 50 mM DTT>; 2.5 ul 10 

mCi/ml alpha-32P-dCTP; and 0.5 ul 20 U/ul reverse transcrip­

tase. This mixture was vortexed lightly and incubated for 30 

minutes at 37QC. The enzyme was removed by phenol 

extraction, with the addition of phenol only; i.e., no salt 

or Tris buffer was added. Upon ethanol precipitation, the 

doubly-end-labeled DNA fragments were digested by XbaI, 

which, with the exception of one fragment, produced singly­

end labeled fragments containing the regions to be sequenced. 

Removal of proteins was by phenol extraction with Tris bL~fer 

and phenol only, followed by ethanol precipitation. 

The dried pellet was dissolved in 20 ul triply-distilled 

H20 and 5 ul 5x TBE stop solution [50% 10x TBE C0.89 M Tris, 
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0.89 M boric acid, 20 mM EDTA>, 50% glycerol, and a few 

crystals of xylene cyanol and bromphenol blueJ. The sample 

was electrophoresed through a 10/. polyacrylamide Cacryla­

mide:bis-acrylamide C30:1>J gel overnight at 3 ma, then at 15 

ma the next morning, until the xylene cyanol marker was 

approximately three-quarters down the length of the gel. The 

power supplies used were either a BioRad Model 1420 A, a 

Buchler Model No. 3-1155, or two Gelmans, models unknown. 

Exposure of Kodak X-Omat AR x-ray film to the parafilm­

covered gel and subsequent development of the film allowed 

the desired DNA fragments in the gel to be excised from the 

rest of the gel. To aid in the elution of the DNA from the 

gel, the clumps of gel were smashed through 1 cc sterile 

syringes <without needles). The fragments ·were eluted from 

the gel matrix by shaking the gel/DNA mixture in 1.5 ml DNA 

fragment elution butter C0.2 M NaCl, 0.2 M Tris-HCl, pH 8.0, 

2 mM EDTA) overnight at 37°C. Separation of the gel from the 

DNA solution was accomplished by filtering the mixture 

through a 3 cc syringe with its end screened by a circular 

filter of Whatman 3MM paper. Further purification of the 

fragments occurred on DEAE cellulose columns. 

Purification of End-Labeled DNA 

Fragments by DEAE Cellulose Columns 

Preparation of the DEAE cellulose columns consisted of 

poking a small amount of glass wool into the end of a short 

pasteur pipette and adding approximately 1 cm DE-52 cellulose 
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powder <suspended in DNA fragment elution buffer>. The 

columns were rinsed 2-3 times with more fragment elution 

buffer. The DNA fragments were passed through the column 

twice. Then the columns were rinsed twice by filling them 

with DNA fragment elution buffer before eluting with 400 ul 

hot (90°C) DNA column elution buffer (1.5 M NaCl, 0.2 M Tris­

HCl, pH 8.0, 2 mM Na-EDTA>. The fragments were eluted into 

new 1.5 ml Eppendorf microfuge tubes that contained 1 ul of 

10 mg/ml yeast RNA to aid in precipitating the DNA. 1.0 ml 

of cold 95/. ethanol was added and the fragments were precipi-

tated at -20°C overnight. After washing with 70/. ethanol, 

200 ul triply-distilled H20, 100 ul 0.3 M sodium acetate,and 

750 ul 95/. ethanol were added, and precipitation followed as 

previously. 

Maxam and Gilbert Sequencing Reactions 

In Maxam and Gilbert sequencing reactions <Maxam and 

Gilbert, 1980), the DNA is partially cleaved at each of the 

four bases in four reactions. The procedures used are shown 

in Table 3. 

Prior to the Maxam and Gilbert sequencing reactions~ the 

DNA in ethanol was pelleted, washed with 70% ethanol, dried, 

and dissolved in 21 ul triply-distilled H20. Into four 

Eppendorf microfuge tubes the following were added: 13 ul G+A 

buffer (0.71 mg/ml calf thymus DNA> and 7 ul DNA, 200 ul G 

buffer <0.01 mg sonicated calf thymus DNA, 50 mM sodium 



Table III. Maxam and Gilbert DNA sequencing reactions. 
•Buffers are described in text. 



TABLE III 

PROCEDURE FOLLOWED FOR CLEAVAGE OF DNA 
BY MAXAM AND GILBERT SEQUENCING REACTIONS 

G+A 

13 ul G+A 
buffer 

7 ul DNA 

G 

200 ul G 
buffer 

3. 5 Ltl DNA 

C+T 

7 ul C+T 
buffer 

7 ul DNA 

c 

10.5 ul C 
buffer 

3. 5 Ltl DNA 

2 ul pyridine 1 ul DMS• 
formate 

21 ul hydra­
zine 

21 ul hydra­
zine 

20""C 20°C 20e::>C 
4 minutes 

20°C 
10 minutes 60 minutes 

Freeze in 
liquid N:z 

Lyophi l ize 
1 hour 

10 ul triply­
disti l led 
1-1:..~o 

Freeze in 
liquid N:z 

Lyophilize 
1 hour 

50 ul DMS 
stop 

10 minutes 

200 ul hydra- 200 ul hydra-
zine stop zine stop 

750 ul 95/. ethanol 

-70""C, 5 minutes 

Centrifuge: 10K rpm, 
10 minutes 

250 ul 0.3 M sodium 
acetate, 750 ul 

95/. ethanol 

-70°C, 5 minutes 

Centrifuge: 10K rpm, 
10 minutes 

750 ul 95/. ethanol 

-70""C, 5 minutes 

Centrifuge: 10K rpm, 
10 minutes 

100 ul 1.0 M piperidine 

90c::>C, 30 minutes 

Freeze in liquid N2 
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G+A 

TABLE III <Continued) 

G C+T 

Lyophilize 

100 ul triply-distilled H20 

Freeze in liquid N2 

Lyophilize 

50 ul triply-distilled H20 

Freeze in liquid N2 

Lyophilize 

34 
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cacodylate, pH 8.0, 10 mM MgCl2, 1 mM EDTA> and 3.5 ul DNA, 7 

ul C+T buffer <1.25 mg/ml sonicated calf thymus DNA> and 7 ul 

DNA, and 10.5 ul C buffer <4.73 M NaCl and 0.121 mg/ml 

sonicated calf thymus DNA> and 3.5 ul DNA. These reaction 

tubes were kept on ice. The reactions to disrupt the ring 

structure of the DNA base were performed by the following: 

into the G+A tube, 2 ul of pyridine formate were added and 

incubated at 20°~ for 60 minutes; into the G tube, 1 ul of 

dimethyl sulfate CDMS> was added and incubated at 20QC for 4 

minutes; and into both the C+T and C tubes, 21 ul of 

hydrazine were added, and both tubes were incubated at 20°C 

for 10 minutes. These reactions were stopped by adding 50 ul 

OMS stop (1.5 M Na-acetate, pH7.0, 1.0 M 2-mercaptoethanol, 

100 ug/ml yeast RNA> to the G tube and 200 ul hydrazine stop 

C0.3 M Na-acetate, 0.1 mM EDTA, 25 ug/ml yeast RNA> to both 

the C+T and C tubes. · The G+A reaction was stopped by quick-

freezing the tubes in liquid nitrogen. At this point 1 the G, 

C+T, and C tubes were treated alike by adding 750 ul 95% 

ethanol, precipitating at approximately -70°C in a dry-ice 

and ethanol bath for 5 minutes, and centrifuging in either a 

Beckman Type JA 18.1 or a Sorvall model SM-24 at 10K rpm for 

10 minutes. After decanting the supernatant, 250 ul 0.3 M 

sodium acetate and 750 ul 95% ethanol were added. These were 

then precipitated and centrifuged as previously. Again, the 
D 

supernatent was decanted, followed by another addition of 

ethanol, and another precipitation and centrifugation as 
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previously. These tubes were then dried in a vacuum 

dessicator. Meanwhile, the G+A tube was lyophilized for 1 

hour until the pyridine formate was removed. Then 10 ul 

triply~distilled H20 were added, and the tube was again 

frozen in liquid nitrogen and lyophilized for another hour. 

After these steps, the tubes were treated alike. To each, 

100 ul 1.0 M piperidine were added, followed by incubation at 

90°C for 30 minutes. The piperidine reaction catalyzed the 

beta-elimination of phosphates from the sugars, thus 

breaking the DNA strand. Following the incubation, the tubes 

were quick-frozen in liquid nitrogen and lyophilized until 

the piperidine was removed. Next, 100 ul triply-distilled 

H20 were added, followed by freezing and lyophilizing as 

above. This was repeated once more, except only 50 ul 

triply-distilled H20 were added. Upon completion of these 

reactions, the samples were stored at -20°C until use. 

Several differences exist between the above-described 

procedure and that of Maxam and Gilbert (1980). While Maxam 

and Gilbert (1980> used 10 ul of DNA for the G+A and C+T 

tubes and 5 ul of DNA for the G and C tubes, 7 ul and 3.5 ul 

respectively, were used here. Also, Maxam and Gilbert (1980) 

did not utilize a C+T buffer and their C buffer was made of 

cmly 5 M NaCl. As described above, 21 ul hydrazine were 

used, whereas Maxam and Gilbert (1980} added 30 ul. While 

pyridine formate was utilized in the G+A reactions, Maxam and 

Gilber-t (198(!) r-i;.~po1~ted using piperidine f1::irm.:ite. 

Immediately prior to separation by size via electro-
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phoresis on a slab gel, the fragments were dissolved in 5 ul 

sequencing buffer charge C80 ul formamide, 20 ul 5x sequencing 

stop solution <5x TBE and a few crystals of xylene cyanol and 

bromphenol blue>J incubated at 90-C for l minute, trans­

ferred to ice, and loaded onto the sequencing gel. The gels 

used were either 8% or 20X acrylamide-urea <Maxam and 

Gilbert~ 1980) and electrophoresis occurred at 1500-2000v. 



CHAPTER III 

RESULTS 

Analysis of Existing Recombinants 

§JFquencinq of Junctions in Recombinants IC143 and IC148 

Recombinants pIC141, pIC143, and pIC148 resulted from 

the coinoculation of turnip plants with the mutant plasmids 

pIC11 and pUM41, which were both unable to individually 

infect turnip plants. pUM41 is a Cabb S-derived plasmid with 

a 4bp deletion in ORF III, nucleotides Cnts.) 2041 to 2044, 

and an Bbp Smar linker inserted at this position <Choe et 

al • , 1985) . pIC11 is derived from the plasmid pLW303X, with 

a deletion in ORF VI at nts. 6261 to 6420 <Choe et al., 

1985). The nucleotide numbering system used is that of 

Franck et al., ( 1980). 

pLW303X had been reported to be the ligation product 

of Xho I-digested Cabb B-JI CaMV DNA and Xho I-digested 

pACYC177 <Walden and Howell, 1982; and Chang and Cohen, 

1978). Restriction mapping of pLW303X produced inconsisten­

cies i-Jith thl~ published map of Cabb B-JI (Hull, 1980; and 

Choe et al., 1985). Due to the uncertainty as to the 

identity of the viral DNA cloned in pLW303X, the DNA was 

de~:;iqn<ated as isolat<:: "W" (Chc:ie et al., 1985). 
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Recombinants pIC141, pIC143, and pIC148, were analyzed 

by restriction mapping and found to contain restriction 

enzyme sites unique to each parent <Choe et al., 1985). 

Among the three recombinants, 8 junctions between parental 
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alleles were detected <Figure 3>. To determine the junctions 

between the parental alleles at the nucleotide level, and 

perhaps any previously undetected junctions, sequencing of 

specific restriction fragments was performed. The 3' ends of 

fragments resulting from the BamHI digestion of the 3 

plasmids and pLW303S were labeled with 32P-dCTP. A second 

digestion by XbaI produced three fragments for each plasmid 

near junction 2 <see Figure 3). These three fragments 

extended from nts. 1702 to 1925, 1926 to 2147, and 2148 to 

2548, and were 225, 222, and 397 bp in length, respectively 

<Table 4). 

Sequencing of the three fragments revealed junctions 

between W and Cabb S alleles for two of the three recombi­

nants CpIC143 and pIC148). All the regions sequenced in the 

recombinants and in W that were different from the known 

sequence of Cabb S were identical to the known sequence of 

Cabb B-JI (J. Stanley, personal communication). pIC141 had 

no Cabb S-derived nucleotides in the regions 1720 to 1883, 

1949 to 1999, and 2163 to 2321; all were like W and Cabb B-JI 

sequences (Table 5). 

The nucleotides sequenced in pIC143 were from 1720 to 

1883, 1927 to 2148, and 2164 to 2340 <Table 4>. A nucleotide 



Figure 3. Restriction sites in cloned forms of redom­
bined CaMV DNAs. Top line: linear repre­
sentation of allelic restriction site 
location. Bars above the line are sites 
cleaved by the indicated enzymes in Cabb S, 
but not in W DNA, while bars below the line 
are sites cleaved in W, but not in Cabb S 
DNA. Symbols used are: HF, HinfI; T, TaqI; 
K, KpnI; M, MspI; HH, HhaI; PS, PstI; X, 
XbaI; AL, Alu!; HD, HindIII; E, EcoRI; PV, 
PvuII; HP, HpaI, HG, HgaI; HA, HaeIII; B, 
BglI; AC, AccI. The remaining lines depict 
the distribution of alleles in three CaMV 
DNA recombinants. Bars above the line indi­
cate resistance or susceptibility to 
restriction characteristic of Cabb S DNA, 
while bars below the line identify W char­
acteristic restriction. Apparent Cabb S-W 
sequence junctions are designated Ji, J2, 
J3, and J4. <Taken from Choe et. al., 
1985.) 
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Table IV. Sequenced regions of viral DNAs. Numbering 
used is that of Franck et al., <1980). 
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TABLE IV 

SEQUENCED REGIONS OF VIRAL DNAS 

DNA 

pIC141 

pIC148 

pLW303S 

Sequences Read 
Between Nucleo­
tides 1701 and 

. 1926 

1720-1883 

1720-1883 

1720-1883 

1720-1883 

-<Melcher, unpublished) 

0 

Sequences Read 
Bet ween NLtc 1 eo­
t id es 1927 and 
2148 

1949-1999 

1927-2148 

1987-2106 

1927-2148* 

Sequences Read 
Bet ween NLtc 1 eo­
t id es 2149 and 
2545 

2163-2321 

2164·-2'.3:40 

2180-2321 

2266--2380 



Table V. Unique parental nucleotides detected in recom­
binant DNAs. Nucleotides not sequenced are so 
indicated by 11_11 
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TABLE v 

UNIQUE PARENTAL. NUCLEOTIDES DETECTED 
IN RECOMBINANT DNAS 

Nucleo- Cabb Cabb S Recombinants 
tide B-JI pIC141 plC143 plC148 

1729 c A c c c 

1762 A G A A A 

1777 T A T T T 

1847 A G A A A 

1920 c T 

1959 G A G G 

1961 T c T T 

1970 G A G G 

1990 G c G G G 

2009 c T c c c 

2012 c T c i: c 

2042 c T c c c 

2044 A c A A A 

2045 T c T T T 

2048 G A G G G 

2081 G A G G G 

2087 c T c c c 

2099 T c T T T 

2233 c T c T T 

2239 c T c T T 

2281 T c T c c 

2284 c T c T T 

2296 G A G A A 

2299 A G A G G 



difference between the parental DNAs occurs at nt. 2111, in 

which W and Cabb B-JI have the purine adenine, while Cabb S 

has the pyrimidine cytosine. Op to, and including the 
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difference at 2111, the region of pIC143 sequences is identi­

to W and Cabb B-JI. There are no further nucleotide differ­

ences between the parental DNAs until nt. 2224. At this 

position, W and Cabb B-JI have a guanine, while Cabb S has an 

adenine. At 2224, pIC143's sequence was found to have an 

adenine like Cabb S. Likewise, from 2224 to the end of the 

region sequenced <nt. 2340>, IC143 exhibits nucleotides like 

those of Cabb S. 

The nucleotides sequenced in pIC148 were from 1720 to 

1883, 1987 to 2086, and 2180 to 2321 Table 4). Up to and 

including nt. 2224, pIC148'~ sequences were found to be 

identical to W and Cabb B-JI. The next nucleotide difference 

occurs at nt. 2233, at which W and Cabb BJI have a cytosine, 

while Cabb S has a thymine. At nt. 2233, pIC148 also has a 

thymine, and continues to show nucleotides like Cabb S at 

positions of parental differences to the end of the sequenced 

region. 

Of the regions sequenced, nts. 1720 to 1830, 1949 to 

1999, 2078 to 2132, and 2163 to 2321, no junction between 

parental DNAs was detected for ·pIC141 <Table 5); all the 

sequences were identical to the Cabb B-JI sequences. 

However, a junction has been detected occurring between the 

parental nucleotide differences that occur at nts. 2578 and 
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2623 <Melcher, unpublished>. The possible mechanisms that 

gave rise to this junction and the above-mentioned junctions 

will be discussed later. 

Creation and Analysis of New Recombinants 

Creation of New Recombinants 

New recombinant CaMV DNAs were produced by coinoculating 

turnip plants with pairs of mutant CaMV DNAs. The pairs were 

chosen so that their mutations were not less than 2500 bp 

apart <see Table 6). With the exception of the combination 

of pDLS19 and pLW76, each coinoculation included one partner 

that had previously been characterized as having the ability 

to recombine readily with most other mutants <Choe at al., 

1985). These high-frequency reco~bining <Hfr> partners were 

pUM124, pUM41, and pUM24. The combinations of mutant plasmids 

used are shown in Table 6. 

As a positive control, pUM24 and pUM41 were coinoculated 

onto a total of 8 plants. This combination had previously 

produced 5/5 infected plants <Choe, et al., 1985>, however, 

these control inoculations produced no infected plants. Yet 

the fact that infected plants were produced from mutant 

combinations revealed that recombinations could occur. It 

should be noted that all of the combinations involving pUM41 

as a mutant partner <pUM41 +pHL3H, pIC21, and pUM24) produced 

no infected plants. For each of these combinations, the . 



Table VI. Mutant combinations for recombinational 
rescue. Each Hfr partner is of the isolate 
Cabb S, with the exception of pDLS19, which 
is not a known Hfr and is from the NY8153 
isolate. Negative and positive control inoc­
ulations are described in the text. 

D 
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TABLE VI 

MUTANT COMBINATIONS FOR RECOMBINATIONAL RESCUE 

No. Infected 
Hfr ORF Other ORF Plants/Total 

Partner Modified Partner Isolate Modified Plants Inoc:u-
lated 

pUM124 I pDLS19 NY8153 IV 1/6 

pUM124 I pHL3H CM4-184 v 0/12 

pUM124 I pIC21 w VI 1/46 

pUM124 I pIC23 w VI 1/16 

pUM41 I I I pHL3H CM4-184 v 0/10 

pUM41 III pIC21 w VI 0/11 

pUM24 VI pLW214 CM4-184 I 2/6 

pUM24 VI pLW76 CM4-184 I 1/11 

pUM24 VI pCMS34 NY8153 III 0/11 

pDLS19 IV pLW76 CM4-184 I 3/12 
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pUM41 plasmid was not CsCl-purified, but only obtained via a 

large-scale alkaline-SOS preparation. It had previously been 

found that plasmids prepared in this manner could recombine 

to produce infectious recombinants <Melcher, unpublished), so 

no steps were taken to further purify the plasmid. 

For each combination of mutants inoculated, negative 

control inoculations were also conducted. These consisted of 

turnip plants inoculated with only one of the two mutant 

partners which, alone, should not be able to infect the 

plants. Indeed, no plants inoculated with a single mutant 

plasmid became diseased. 

Of the coinoculations shown in Table 6, the following 

combinations did not give rise to any. infected plants: 

pUM124 + pHL3H, pUM41 + pHL3H, pUM41 + pIC21, and pUM24 + 

pCMS34. While six mutant combinations produced infectious 

recombinants, the recombinant DNAs resulting from the coinoc­

ulations of pUM124 + pIC21 and pDLS19 + pLW76 were not suc­

cessfully cloned into the E. coli plasmid pBR322. 

The coinoculations of pUM124 +pDLS19, pUM124 + pIC23, 

pUM24 +pLW76, and pUM24 + pLW214 produced infectious recombi­

nants, were successfully ligated into pBR322, used to trans­

form HB101, and screened for plasmids with viral DNA inserts. 

The plasmids from a chosen colony were isolated and CsCl 

p~rifie~. The newly-cloned recombinants, pVR1243, pVR244-A, 

pVR244-B, and pVR246 were found to be infectious, while 

another recombinant, pVR1249, was not infectious. pVR1249's 



inability to infect host plants is most likely due to the 

presence of a large deletion of approximately 800-900 bp in 

the viral DNA. This deletion will be discussed later. 

Before restriction mapping data will be discussed, a 

summary of the recombinants and their junctions will be 

presented. Possible mechanisms giving rise to the juntions 

will be discussed later. 
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VR246 rssulted from the coinoculation of pUM24 + pLW76. 

UM24, a Cabb S-derived mutant, contains a Smar linker insert 

at 6299 and a 40 bp deletion from 6299 to 6338 <Choe, et al~, 

1985). The other parental DNA used, pLW76, is derived from 

isolate CM4-184 and has a 433 bp deletion from nts. 777 to 

1208 <Howell, et al., 1981). 

Four junctions have been detected in VR246 <Table 7). 

Those detected are between nts. 1784 and 2236, 4149 and 

4660, 5943 and 6045, and 7724 and 197. From nts. 197 to 1784 

and 4660 to 5943, either only Cabb S unique sites or the 

absence of sites unique to CM4-184 were detected. Likewise, 

from nts. 2236 to 4149 and 6045 to 7224, either sites unique 

to CM4-184 or the absence of Cabb S unique sites were 

detected. 

VR244-A and VR244-B resulted from the coinoculation of 

pUM24 and pLW214 onto the same plant. The mutation in pUM24 

is described above, and pLW214, a CM4-184-derived plasmid, 

has an 8 bp EcoRI linker inserted at nt. 1285, rendering 



Table VII. Diagnostic restriction sites detected in 
pVR246. 



Enzyme 

Alu! 
Hi.nf I 
Ace! 
Hae III 
HinfI 
HindIII 
Hinf I 
TaqI 
Hinf I 
Cl a I 
TaqI 
MspI 
TaqI 
Cl a I 
TaqI 
F'stI 
MspI 
F'stI 
Hind III 
EcoRI 
Hinf I 
MspI 
MspI 
HaeIII 
Hinf I 
TaqI 
HaeIII 
EcoF:I 
Hae I I I 
MspI 
HaeIII 
BglI 
MspI 
HaeIII 

TABLE VII 

DIAGNOSTIC RESTIRCTION SITES 
DETECTED IN pVR246 

Site Source pVR246 

197 CM4-184 
830 Cabb s + 
904 Cabb s + 

1170 Cabb s + 
1218 Cabb s + 
1513 Cabb s + 
1571 Cabb s + 
1643 Cabb s + 
1781 Cabb s + 
1783 Cabb s + 
1.784 Cabb s + 
2236 CM4-184 + 
2367 CM4-184 + 
2680 CM4-184 + 
2967 CM4-184 + 
3231 CM4-184 + 
3360 CM4-18.4 + 
3426 CM4-184 + 
3772 CM4-184 + 
3928 Ca.bb s 
4133 CM4-184 + 
4149 CM4-184 + 
4660 CM4-184 
4752 CM4-184 
4921 CM4-184 
5541 Cabb s + 
5943 CM4-184 
6045 Cabb s 
6068 Cabb s .,... 

6509 CM4-184 + 
6654 CM4-184 + 
6655 CM4-184 + 
7118 Cabb s 
7224 Cabb s 

-.. --.. ·------------· 
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Result 

Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
CM4-184 
CM4-184 
CM4-184 
CM4-1.84 
CM4-184 
CM4-·184 
CM4-184 
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it non-infectious <Howell, et al., 1981 and Melcher, 

unpublished). While two junctions have been detected in 

VR244-A, four have been detected for VR244-B (see Tables 8 

and 9, respectively). The two in VR244-A, between nts. 5541 

and 5943, and 7224 and 197, are also found in VR244-B. The 

other two junctions occurring in VR244-B are found between 

nts. 1784 and 2236, and 2680 and 3231. Both recombinants 

exhibit sites unique to CM4-184 between nts. 5943 and 7224. 

VR244-A appears to be derived from Cabb S from at least nt. 

197 to 5541. VR244-B exhibits Cabb S unique sites (or lack 

CM4-184 unique site> from nts. 197 to 2091 and from 3231 to 

5541. CM4-184 unique sites were detected·in VR244-B from nts. 

2236 to 2680. 

VR244-B also differed from VR244-A in that it contained 

a small deletion (80-200 bp) between nts. 3960 and ~4310. 

VR1249 arose from the coinoculation of pUM124 and 

pDLS19. pUM124, a Cabb S-derived plasmid, has a 147 bp dele-

tion between nts. 886 and 1032 <Choe et al., 1985). DLS19 is 

derived from the NY8153 isolate and has a 195 bp deletion 

between the PstI sites at 3233 and 3427 (Melcher et al., 

1986). No junction was detected fer VR1249 by restriction 

analysis <Table 10). Only sites unique to Cabb S (or the 

absence of sites unique to NY8153) were detected. VR1249 has 

been found to be a recombinant of its parerital DNAs as 

sequenced regions from nts. 7945 to 87 have revealed that 



Table VIII. Diagnostic restriction sites detected in 
pVR244-A. 

I) 
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Enzyme 

Al uI 
Hinf I 
HaeIII 
Hinf I 
HindIII 
HinfI 
TaqI 
HinfI 
Cl a I 
TaqI 
MspI 
TaqI 
Cl a I 
PstI 
MspI 
Pst·I 
HindIII 
EcoRI 
Hinf I 

· MspI 
MspI 
HaeIII 
Alu I 
HinfI 
TaqI 
Hae III 
EcoRI 
HaeIII 
MspI 
HaeIII 
BglI 
MspI 
HaeIII 

TABLE VIII 

DIAGNOSTIC RESTRICTION SITES 
DETECTED IN pVR244-A 

Site Source pVR244-A 

197 CM4-184 
830 Cabb s + 

1170 Cabb s + 
1218 Cabb s + 
1513 Cabb s + 
1571 Cabb s + 
1643 Cabb s ..... 
1781 Cabb s + 
1783 Cabb s + 
1784 Cabb s + 
2236 CM4-184 
2367 CM4-184 
2680 CM4-184 
3231 CM4-184 
3360 CM4-184 
3426 CM4-184 
3772 CM4-184 
3928 Cabb s + 
4133 CM4-184 
4149 CM4-184 
4660 CM4-184 
4752 CM4-184 
4766 Ca.bb s + 
4921 CM4-184 
5541 Cabb s ..... 
5943 CM4-184 + 
6045 Ca.bb ("' 

;:i 

6068" Ca.bb s 
6509 CM4-184 + 
6654 CM4-184 + 
6655 CM4-184 + 
7l.H3 Cabb s 
7224 Cabb s 

-·-----.. --·--·· .. ---·-···----.. -------·---
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Result 

Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Ca.bb s 
Cabb s 
Ca.bb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Ca.bb s 
Cabb s 
Ca.bb s 
Cabb s 
Cabb s 
Cabb s 
CM4--184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-184 
CM4-.184 
CM4-184 

-----



Table IX. Diagnostic restriction sites detected in 
pVR244-B. 



Enzyme 

AlLlI 
HinfI 
HaeIII 
Hinf I 
HindIII 
HinfI 
TaqI 
HinfI 
ClaI 
TaqI 
Msp I 
TaqI 
Cl a I 
F'stI 
MspI 
PstI 
Hind I I I 
EcoF:I 
Hinf I 
MspI 
MspI 
HaeIII 
Al Ll I 
Hinf I 
TaqI 
HaeIII 
Ec:oRI 
Hae III 
MspI 
HaeIII 
Bc;i l I 
Mspl 
HaeIII 

TABLE IX 

DIAGNOSTIC RESTRICTION SITES 
DETECTED IN pVR244-B 

Site SoLlrc:e pVR244-B 

197 CM4-184 
830 Cabb s + 

1170 Cabb s + 
1218 Cabb s + 
1513 Cabb s + 
1571 Cabb s + 
1643 Cabb s + 

· 1781 Cabb s + 
1783 Cabb s + 
1784 Cabb s + 
2236 CM4-184 + 
2367 CM4-184 + 
2680 CM4-184 + 
3231 CM4-184 
3360 CM4-184 
3426 CM4-184 
3772 CM4-184 
3928 Cabb s + 
4133 CM4-184 
4149 CM4-184 
4660 CM4-184 
4752 CM4-184 
4766 Cabb s + 
4921 CM4-184 
5~541 Cabb s + 
5943 CM4-184 + 
6045 Cabb s 
6068 C.:."ibb s 
650'7 CM4-1 f:34 + 
6654 CM4·-184 + 
6655 CM4-184 + 
7:tH3 C1abb s 
7224 Cat.Jb c~ 

;::> 

ResLtlt 

Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
CM4-184 
CM4-184 
CM4-184 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
CM4-184 
CM4-184 
CM4-184 
CM4·-1\34 
CM4--l.84 
CM4·-184 
CM4-184 
CM4-184 

-·----------··--·---·--·-·--.. ·--···--.. ---··--·-·--··-·----.. --.-· .... _,_ .... _____ ... _., ........ __ ,_ .. , _____ 



Table X. Diagnostic restriction sites detected in 
pVR1249. 



Enzyme 

ClaI 
Hind III 
BglI 
PstI 
HindIII 
EcoRI 
MspI 
MspI 
EcoFU 
Ace! 
MspI 
HinfI 

TABLE X 

DIAGNOSTIC RESTRICTION SITES 
DETECTED IN pVR1249 

Site Source pVR1249 

2636 NY8153 
3249 Cabb s + 
3414 Cabb s + 
3427 NY8153 
3772 NY8153 
3928 Cabb s + 
4149 NY8153 
4660 NY8153 
6045 Cabb s + 
6330 Cabb s + 
7118 Cabb s + 
7794 Cabb s + 

60 

Result 

Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
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VR1249's DNA is like Cabb S from nts. 7945 to the last nt. 

before Gap I, 8024, and VR1249's DNA shares homology with 

NY8153 from nts. 1 to 87 <Melcher, unpublished>. The impli-

cations of this junction will be discussed later. The most 

probable reason for there being no NY8153 sites detected is 

the presence of a large deletion of 800 to 900 bp between nts. 

124 and 1514. This deletion rendered pVR1249 non-infectjous. 

VR1243 arose from the coinoculations of pUM124 

(described above) and pIC23. pIC23 is derived from pLW303X, 

which contains the DNA referred to as "W" (described above>. 

IC23 has a 348 bp deletion from nts. 6317 to 6664. Two 

junctions were detected in VR1243, between nts. 1218 and 2236 

and between nts. 7118 and 7224 <Table 11>. The region that 

exhibited Cabb S unique sites and the absence of W sites 

extends from nts. 2236 to 7118. Likewise, the region 

indistinguishable from W DNA extends from nts. 7224 to 1218. 

The above conclusions as to the posi~ions of junctions 

between parental DNAs were base on analyses by restriction 

mapping using the following restriction enzymes: AccI, AluI, 

BglI, ClaI, EcoRI, HaeIII, HindIII, HinfI, MspI, PstI, and 

TaqI. 

f.'..2.li· The recombinants and either their parental DNAs 

or DNAs very similar to their parents were digested with PstI 

0 



Table XI. Diagnostic restriction sites detected in 
pVR1243. 

• 



Enzyme 

Ace I 
Hinf I 
MspI 
PstI 
MspI 
PstI 
Hind III 
EcoRI 
Hae I I I 
HaeIII 
Hinf I 
EcoRI 
Hae III 
HaeIII 
Ace I 
HaeIII 
MspI 
HaeIII 
Cl a I 

TABLE XI 

DIAGNOSTIC RESTRICTION SITES 
DETECTED IN pVR1243 

Site Source pVR1243 

904 w + 
1218 Cabb s 
2236 w· 
3231 w 
3360 w 
3427 w 
3773 w 
3928 Cabb s + 
4752 w 
5939 w 
6001 Cabb s + 
6045 Ca.bb s + 
6068 Cabb s + 
6411 Cabb s + 
6630 Ca.bb s + 
6655 w 
7118 .......... '"' \..rt.."-·· s + 
7224 Cabb s 
7980 Cabb s 
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Result 

w 
w 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
Cabb s 
w 
w 
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and electrophoresed through a lX agarose gel. The resulting 

gels are shown in Figures 4 and 5. The parental DNAs' wild 

type P=tI restriction maps are shown in Figure 6. The PstI 

results were used to determine orientation of the recombinant 

DNA in the pBR~22 vector. 

The CaMV DNAs in pDLS19, pUM124, pLW414, and pUM24 and 

pLW76 <Figure 4, lanes A, C, and I, and Figure 5, lanes C and 

A, respectively> are inserted in pBR322 in the same 

orientation as is the CaMV DNA in pCSlOl. The Cabb S parents 

CpUM124 and pUM24> have only one PstI site in the viral DNA 

Cat nt. 5386) (Figure 6) and one in the pBR322 DNA <at nt. 

3609 of the pBR322 map). This results in two fragments of 

1955 bp and 10,285 bp for pUM124 or 1955 bp and 10,400 bp for 

pUM24. If their recombinants were to contain only the one 

Cabb S site, but be inserted in .opposite orientation, the 

resulting fragments would be 3506 bp and 8879 bp. The three 

recombinants displaying these fragments, <and therefore their 

CaMV DNAs are in opposite orientation>, are pVR1249 <Figure 

4, lane B, and pVR244-A, and pVR244-B <Figure 5, lane G and 

H respectively). These lanes also reveal that these three 

recombinants did not contain any extra PstI sites from the 

other parent involved in the coinoculations: the site at nt 

3427 in DLS19 and the two sites at 2811 C3232> and 3006 

(3427) in pLW414. <The restriction sites for the CM4-184 

parents are listed first and the approximate equivalent nt. 



Figure 4. Agarose gel electrophoresis of PstI-dig•sted 
plasmids <First gel). A> pDLS19, B> pVR1249, 
C) pUM124~ D> pVR1243, E> pIC23, F) pUM24, 
G) pVR244-A, H> pVR244-B, I> pLW414 
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Figure 5. Agarose gel electrophoresis of PstI-digested 
plasmids <Second gel). A) pLW76, B) pVR246, 
C) pUM24 
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Figure 6. PstI restriction maps for wild-type parental 
CaMV DNAs. Numbers indicate kbp. 
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number as if in the other parents is given in parenthesis.> 

The 800 to 900 bp deletion in VR1249 produced a fragment of 

approximately 8000 bp instead of the expected 8879 bp. 

The two plasmids with their recombinant DNAs inserted in 

the same orientation as the parents are pVR1243 <Figure 4, 

lane D and pVR246 (Figure 5, lane B>. This is shown by the 

presence of the 1955 bp fragment in both lanes. pIC23 (lane 

F of Figure 4) most likely contains the PstI sites found in 

Cabb 8-JI, i.e., the sites at nts. 3232, 3427, and 5386, 

which produce fragments of 195 bp and 1956 bp <Figure 6). 

The other fragment of 5870 bp is interrupted by the pACYC177 

vector, and cannot be deduced because a restriction map is 

unavailable. If pVR1243 contained the two sites at 3232 and 

3427, the expected bands would be 4366 bp, 195 bp, and 5870 

bp, plus the 1955 bp fragment. Instead, the bands of 10,432 

bp and 1955 bp are present, indicating only the site at 5386 

is present in the viral DNA. 

pLW76 <Figure 5, lane A) contains fragments of 5026 bp, 

195 bp, 4363 bp, and 1955 bp due to the sites at nts. 4962 

(5386), 2811 (3232), 3006 (3426), and the pBR322's site at 

3609 <Figure 6). As shown in lane B, VR246 also exhibits a 

fragment of 1955 bp which indicates a site is present at nt. 

5386. If pVR246 were to contain the PstI site at 3232, which 

produces a fragment of 5026 in pLW76, and if pVR246 were to 
~ 

not contain the deletion of 421 bp characteristic of CM4-184 

and not contain the pLW76 deletion of 433 bp, a 5869 bp 
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fragment would result. As can be seen in lane B of Figure 5, 

pVR246 contains a fragment that has migrated less distance 

than the 5026 bp fragment of pLW76. 

AccI. Fragments electrophoresed through either 0.8% or 

1/. agarose gels after digestion with AccI are shown in 

Figures 7 and 8. The parental DNAs' wild-type restriction 

map is shown in Figure 9. Ace! cleaves at nucleotide 

sequences very similar to those recognized by the restriction 

enzyme Sall, so Ace! not only cleaves at the site of ligation 

<nt. 4836>, but also at several other AccI sites throughout 

the recombinant plasmids. Since cleavage occurs at nt. 4836, 

viral DNA fragments appear separate from the vector DNA. 

Only one site difference occurs between pUM24 and pLW76 

<Figure 7, lanes J and L, respectively>. The AccI site at 

nt. 904 is deleted in pLW76, yielding a 3895 bp fragment. 

pUM24 has the site at 904, yielding 2858 and 1886 bp frag­

ments. pVR246 (lane L> also had the 2858 and 1886 bp frag­

ments, indicating it has the AccI site at 904. 

Although pUM24 and pLW414 share the same Ace! sites, the 

presence of the 421 bp natural deletion in pLW414 <Figure 8, 

lane D> gives a fragment of 2434 bp, instead of the 2858 bp 

fragment in pUM24 <Figure 8, lane A>. This 2858 bp fragment 

<Figure 8, lane A> appears as a band of double intensity·, as 

it co-migrates with a 2768 bp fragment of pBR322. The 2768 

bp fragment appears as a band of single intensity in pLW414. 



Figure 7. Agarose gel electrophoresis of AccI-digested 
plasmids <First gel). A> pDLS19, B> pVR1249, 
C> pVR1243, 0) pUM124, E> pIC23 F> pUM24, G> 
pVR244-A, H> pVR 244-B, I> pLW214, J) pUM24, 
K> pVR246, L> pLW76 
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Figure 8. Agar6se gel electrophoresis of AccI-digested 
plasmids <Second gel). A> pUM24, B> pVR244-A, 
C> pVR244-B, D> pLW414 
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Figure 9. Ace! restriction map~ for wild-type parental 
CaMV DNAS. Numbers indicate kbp. 
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As can be seen from lanes B and C of Figure 8, both pVR244-A 

and pVR244-B <respectively> had a band of double intensity, 

indicating the presence of the 2858 bp fragment. No 2434 

bp fragment is present. Therefore, pVR244-A and B do not 

contain the 421 bp natural deletion that is characteristic of 

CM4-184. This is also true for pVR246 <Figure 7, lane K> as 

it displayed the doubly-intense bands indicating the presence 

of the 2858 bp fragment, and did not display the 2434 bp 

fragment. 

As can be seen in Figure 8, lane c, the fr~gment that 

migrated the farthest through the gel migrated slightly 

further down the gel than the corresponding bands in the 

other lanes. These bands in lanes A, B, and D represent 

fragments of 1074 bp, resulting from cleavage at the AccI 

sites at nts. 3762 and 4836 which are common to both Cabb S 

and CM4-184. Therefore, in pVR244-B, the fragment between 

the sites at 3762 and 4836 contains a deletion. As there is 

no vector DNA included in this fragment, and as the vector 

fragments have migrated equivalent distances, the deletion in 

pVR244-B is only in the viral DNA. This deletion was 

calculated to be between 80 and 200 bp in length (data not 

shown>. 

The site at nt. 904 is present in both NY8153 and 

Cabb S but is not present in pUM124 as it is deleted due to 

the pUM124 mutation <Figure 9 and Figure 7, lanes A and D,>. 

pDLS19's site at 904 produces a 2660 bp fragment which 



includes the 195 bp deletion in pDLS19 and also produces an 

1894 bp fragment. The deleted 904 site in pUM124 causes a 

4597 bp fragment to result. A site at 6330 is unique to 

80 

pUM124 and yields fragments of 1492 bp and 712 bp. As can be 

seen in lane B, pVR1249 also exhibits the 1492 and 712 bp 

fragments, indicating it contains the site at nt. 6330. The 

site at 904 is not present in pVR1249 and its absence can 

most likely be attributed to the 800 to 900 bp deletion based 

upon evidence to be presented. If the site at 904 was 

missing and no deletion was present, a 4744 bp fragment would 

result. Instead, as shown in Figure 7, lane B, the fragment 

migrates approximately the same distance as does the 3895 bp 

fr~gment of pLW76 (lane L). 

The site differences between pUM124 and pIC23 (Figu~e 7, 

lanes D and E, respectively) are 6330 in pUM124 and 904 in 

pIC23 (see also Figure 9). The site at 904 in pIC23 yields a 

fragment of 1895 bp while the site at 6330 in pUM124 yields 

two fragments of 1494 bp and 712 bp. As seen in lane C, 

pVR1243 has the 1895 bp fragment, indicating the presence of 

the W site at 904. The 712 bp and 1494 bp fragments are also 

present and therefore the Cabb S site at 6330 is present in 

pVf.:1249. 

g~.gl_J.._!!._ Fi gun:s 10 and 11 show the di st1··i bu ti c:in of the 

fragments of the Bgl I-digested plasmids through a 0.8% 

The parental DNAs' wild-type restriction maps 



Figure 10. Agarose gel elec~rophoresis of BglI-digested 
plasmids <Second gel). A> pUM24, B> pUM24, 
C> pLW76 
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Figure 11. Agarose gel electrophoresis of BglI-digested 
plasmids <First gel). A> pDLS19, B> pVR1249, 
C> pUM124, D> pVR1243, E> pIC23, F> pUM24, 
G) pVR244-A, H> pVR244-B, I> pLW214 



.. 

kbp 

7.4 

4.7 
4.;3 
3.3 
2.9 
2.3 
2.1 
1. 7 



85 

are shown in Figure 12. The site at nt. 6235 (6655> in pLW76 

is the only unique site between pLW76 and pUM24 <Figure 10, 

lanes C and A, respectively and Figure 12>· The site at 6655 

in pLW76 gives fragments of 3351 bp and 3928 bp, while its 

absence produces a 7450 bp fragments in pUM24. The 3928 bp 

fr•gment is a 4782 bp fragment with the CM4-184 natural 

deletion and the pLW76 mutation. Lane B shows that pVR246 

did not have the 7450 bp fragment of Cabb S, suggesting the 

site at 6655 is present in pVR246. Indeed, the 3351 bp 

fragment was present, as was a fragment 
larger than 3928 bp. 

This larger fragment is most likely the 4782 bp fragment that 

would result from the absence of the 421 bp CM4-184 deletion 

and the absence of the pLW76 mutation. 

The diagnostic fragments between pUM24 and pLW214 (Fig­

ure 11, lanes F and I, respectively) are essentially the same 

as they were for pUM24 and pLW76 above, with the exception of 

,pLW214 having a 4369 bp fragment instead of pLW76's 3928 bp 

fragment. Both pVR244-A and pVR244-B (lanes G and H, respec-

tively) had the 4790 bp fragment that is characteristic of 

the CM4-184 site at 6655. Due to these two plasmids' op-

posite orientation in the vector DNA, the other fragment 

resulting from cleavage at the site at 6655 is not 3351 as it 

was above, but is 2095 bp. 

While Cabb S CpUM24> and NY8153 have a single BglI site 

in the viral DNA at nt. 3414, pDLS19 does not as this site is 



Figure 12. BglI restriction maps for wild-type parental 
DNAs. Numbers indicate kbp. 
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deleted due to the DLS19 mutation. Therefore, no BglI sites 

are in DLS19 and a fragment of 9644 bp results <Figure 11, 

lane A>. pUM124's site at 3414 yields fragments of 1699 bp 

and 7335 bp. If pVR1249 were to have the site at 3414, the 

resulting fragments would be 2954 bp and 6878 bp due to 

pVR1249's opposite orientation. While the 2954 bp fragment 

is present, the other fragment is actually less than 6878 bp 

due to pVR1249's deletion of approximately 800 to 900 bp. 

pUM124 and pIC23 <Figure 11, lanes C and E, respec­

tively) both have only one BglI site, at nt. 3407. W actu­

ally has another, at 6656, but this site is deleted in IC23's 

mutation. Therefore, pVR1243 should only have one site pt 

3407, and should therefore have fragments of 1699 bp and 7482 

bp. These fragments can be seen in Figure 11, lane D. 

~~al...!... The agarose gel with the ClaI-digested fragments 

electrophoresed through it is shown in Figure 13. The 

restriction maps for the wild-type parental DNAs are shown in 

Figure 14. The diagnostic sites between CM4-184 and Cabb S 

include the site at nt. 2260 (2680) in pLW76 and the sites at 

nts. 820? 1783, and 2855 in pUM24. The CM4-184 site at 820 

<Figure 14> is deleted due to the pLW76 mutation, so the site 

at nt. 2680 yields fragments of 1871 bp and 1276 bp <Figure 

13, lane K>, whereas the presence of the site at nt. 820 in 

CM4-184 yields two fragments of 864 bp and 1440 bp <Figure 

14). pUM24's site at 820 and the site at 7980 (common to 



Figure 13. Agarose gel electrophoresis of ClaI-digested 
plasmids. A> pDLS19, B> pVR1249, C> pUM124, 
D) pVR1243, E> pIC23, F> 11 pLW414", G> 
pVR244-A, H> pVR244-B, I> pUM24, J> pVR24~ 

I<> pLW76 
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Figure 14. ClaI restriction maps for wild-type parental 
CaMV DNAs. Numbers indicate kbp. 
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both parents yields a fragment of 3739 bp while the site at 

820 and another Cabb S-unique site at 1783 yields a fragment 

of 963 bp <Figure 13, lane I>. Cleavage at nt. 2855 does not 

occur, as this is a DNA-adenine-methylating (dam) site 

<Marinus and Morris, 1973); instead of the expected fragments 

of 1072 bp and 1105 bp, a 2177 bp fr.:\gment results. The site 

at nt. 1783 also aids in producing the 2177 bp fragment. 

pVR246 had the CM4-184 site at nt. 2680 since the 1276 bp 

fragment was present <shown in lane J). The 963 bp fragment 

was also present, indicating the Cabb S sites at 820 and 1783 

were present, while the 864 bp fragment indicates the 820 

site was present. 

While pLW414 was originally supposed to be the DNA in 

lane F, examination of this lane suggests that its plasmid is 

similar to, if not actually, pUM24. Therefore, to interpret the 

restriction pattern for pVR244-A and pVR244-B, pLW76's frag-

ments (lane K> were used. pLW76 is expected to differ from 

pLW414 only in the absence of the 1871 bp fragment from pLW76 

since the site at 820 is present in pLW414. pVR244-P1 (lane 

G> had the 2177 bp fragment of pUM24, indicating the CM4-184 

site at 2680 is not present, as corroboroated by the absence 

of the 1276 bp fragment. The 1276 bp fragment did show for 

pVR244-B (lane H> indicating the site at 2680 was present in 

pVR244-B. The 963 bp fragment in both pVR244-A and -B 

indicates both contain the site at 1783. The si tE? at nt. 

1783 could only have come from Cabb S~ as this site is not 



present in CM4-184 due to the 421 bp deletion that is 

characteristic of CM4-184. 
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In pVR244-A and -B, the viral DNA site at 3960 and the 

pBR322 site at 23 give a fragment of 1504 bp, which is pre­

sent in both pVR244-A and -B. But as can be seen in lane H, 

the 1504 bp fragment is actually smaller for pVR244-B than 

the same fragment is for pVR244-A (lane G>. The shorter 

fragment is the result of the 80 to 200 bp deletion in 

pVR244-B. 

One site between NY8153 and Cabb S can be used 

diagnostically: the site at nt. 2636 in NY8153, which yields 

a 1276 bp fragment (which is 1081 bp in pDLS19) and an 898 bp 

fragment (Figure 13, lane A and Figure 14). Neither of these 

fragments appear for pVR1249 <Figure 13, lane B), therefore 

the NY8153 site at 2636 is not present in VR1249. Although 

an approximately 963 bp fragment occurs in pVR1249, it is 

unlikely that it has resulted from cleavage at the site at 

nt. 820, as this site has most likely been deleted in pVR1249 

and since no fragment of 864 bp or 817 bp (depending on 

parental source) appears. The 6877 bp fragment of pVR1249 

(lane B> appears to be the equivalent size as the 6877 bp 

fragments of pVR244-A and -B (lanes G and H, respectively>; 

i.e., pVR1249's 6877 bp fragment does not appear to contain 

the 800-900 bp deletion. Therefore, the site at 7980 is most 

likely present and the site at 820 deleted. 

The only diagnostic site between pUM124 and pIC23 is the 

inaccessibility of 7980 in W due to dam methylation <Figure 
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14). The dam site yields a 4636 bp fragment <which is 4546 

in pIC23) between the sites at 3960 and 820 <Figure 13, lane 

E>. The fragment resulting from cleavage at the sit~c ~t 620 

and 1783 cannot be resolved in pIC23, as the fragment is 

interrupted by the pACYC177 vector. This fragment would be 

963 bp in Cabb s, but is 817 bp in pUM124. Since VR1243 is 

inserted into the pBR322 vector, it would have either 

fragments of 3771 bp and 864 bp if the Cabb S site at 7980 

were present, or it would have a fragment of 4636 bp if the 

site at 7980 were absent. As shown in lane D, pVR1243 has 

neither the 3771 bp fragment nor the 864 bp fragment. 

Instead, pVR1243 has a band of double intensity at 4600, due 

to one fragment of 4610 from pBR322, and one fragment of 4636 

bp. 

EcoRI. The EcoRI-digested plasmids were electrophoresed 

through a 1% agarose gel, shown in Figure 15. The EcoRI 

restriction maps for the parental wild type DNAs are shown in 

Figure 16. While all the sites present in pLW76 (lane K> are 

also present in pUM24 (lane I>, UM24 contains two extra sites 

that are not found in LW76. The two extra sites are at 3928 

(which creates fragments of 4618 bp and 1415 bp) and at 6045 

<which creates fragments of 396 bp and 62 bp). The absence 

of these two sites in pLW76 produce fragments of 6068 bp and 

459 bp. pVR246 (lane J) shares these same two fragments,_ 

indicating it lacks the Cabb S sites at 3928 and 6045. 

pVR246 also does not exhibit the 1152 bp fragment that pLW76 



Figure 15. Agarose gel electrophoresis of EcoRI­
digested plasmids. A) pDLS19, B) pVR1249, 
C> pUM124, D> pVR1243, E> pIC23, F> 
"pLW414", G> pVi:;:244-A, H> pVR244-B, I> 
pUM24, J) pVR246, K> pLW76 





Figur~ 16. EcoRI restriction maps for wild-type parental 
CaMV DNAs. Numbers indicate kbp. 
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does, as this fragment contains the 421 bp deletion of CM4-

184 and the 433 bp deletion of pLW76. Instead, pVR246 has 

the 2009 bp fragment like pUM24, indicating the deletions in 

pLW76 are not present in VR246. 

As above, pLW414 appears to instead be pUM24. There-

fore, pLW76 will again be used to resolve the restriction 

pattern for pVR244-A and pVR244-B. The only expected 

difference between pLW76's fragments and pLW414's was that 

the 1152 bp fragment of pLW76 should instead be 1585 bp in 

pLW414. Both pVR244-A and pVR244-B had the similar EcoRI 

restriction patterns <lanes G and H, respectively>. The 459 

bp fragment was present in both recombinants, indicating the 

Cabb S site at 6045 is not present. With these plasmids' 

opposite orientation, a fragment of 3112 bp would result if 

no site at 3928 was present. This fragment was not found in 

either pVR244-A or -B. Instead, fragments of 1561 bp and 

1451 bp are seen, indicating both sites contain the Cabb S 

site at 3928. As the parent used in the inoculation was 

pLW214 and not pLW414, the pattern for pLW214 would show two 

fragments of 877 bp and 708 bp instead of the 1585 bp 

fragment of pLW414. The two fragments result from the 

insertion of an extra EcoRI site at nt. 1285. Neither 

pVR244-A or -B exhibit these fragments, indicating they do 

not contain the pLW214 mutation. 

• Three sites are distinct between pDLS19 and pUM124 

<Figure 15, lanes A and C, respectively>. While the sites 
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found in pDLS19 are common to pUM124, pUM124 has three extra 

EcoRI sites at 408, 3928, and 6045. These sites yield 

fragments of 2325 bp and 1862 bp, 1451 bp and 4618 bp, and 

396 and 62 bp, respectively. In pDLS19, the absence of a 

site at 408 yields a 4340 bp fragment, the absence of a site 

at 3928 yields a 5873 bp fragment, and the missing site at 

6045 results in a 459 bp fragment. pVR1249 (lane B> exhibits 

the 396 bp fragment, indicating a site occurs at nt. 6045. 

The 1561 and 1451 bp fragments, as found in pVR244-A and -B, 

indicate the presence of the Cabb S site at 3928 and are also 

indicative of pVR1249's opposite orientation. While the 

site at 408 is not detected in pVR1249, the resulting 

fragment is not 4402 bp as would be expected, but due to 

VR1249's deletion, is approxim~tely 3500 to 3600 bp. 

pIC23 <Figure 15, lane E> does not share the Cabb S 

sites at 3928 or 6045, yet it does have the site at 408. 

pVR1243 <lane 0) displayed the 1451 and 4618 bp fragments 

like pUM124 <lane C>, indicating the Cabb S site at 3928 is 

present. Likewise, the 396 bp fragment is present in 

pVR1243, indicating the site at 6045 is present in pVR1243. 

tiindJil~ The HindIII-digested plasmids were electro­

phoresed through a 1% agarose gel as shown in Figure 17. The 

HindIII restriction maps of the parental wild-type DNAs are 



Figure 17. Agarose gel electrophoresis of HindIII­
digested plasmids. A> pDLS19, B> pDLS19, 
C> pVR1249, D> pUM124, E> pVR1243, F> pIC23, 
G> "pLW414", H> pVR244-A, I> pVR244-B, J) 
pUM24, K> pVR246, L> pLW76 
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shown in Figure 18. 

Two site differences exist between pLW76 and pUM24. In 

pLW76 <Figure 17, lane L>, a HindIII site at 3352 (3773) 

gives rise to two fragments of 527 bp and 560. The site at 

3772 is not present in pUM24 <lane J) and a 1087 bp fragment 

is the result. Shown in lane K are bands of double intensity 

at 527 and 560, indicating the CM4-184 site at 3772 is 

present in pVR246. A Cabb S site at nt. 1513, producing a 

436 bp fragment and a 3687 bp fragment <3655 bp in pUM24> 

(Figure 18>, is not present in the CM4-184 plasmids, as this 

site was deleted in the CM4-184 natural deletion. Instead, 

in the CM4-184 plasmids, the two sites at nts. 1528 (1948> 

and 5427 (5847>, which are common to both CM4-184 and Cabb s, 

produce a fragment of 3710 bp <3277 bp in pLW76) (Figure 14>. 

Lane K of Figure 17 shows that pVR246 had the 436 bp fragment 

and a fragment of 3.6 kbp, indicating pVR246 had the HindIII 

site at nt. 1513. 

pLW414 <Figure 17, lane G) again appears to be pUM24 

instead. The HindIII banding patterns for pLW414 and pLW76 

are essentially the same except for minor differences due to 

the mutations which are contained within non-diagnostic frag­

ments. Therefore, pLW76 (lane L> can be used to analyze the 

gel patterns for pVR244-A and pVR244-B. The 436 bp fragment 

and the 3687 bp fragment were present in both pVR244-A and 

pVR244-B, indicating the Cabb S site at 1513 is present. 



·Figure 18. HindIII restriction maps for wild-type parental 
CaMV DNAs. Numbers indicate kbp. 
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The 3772 site is present in pDLS19 <Figure 17, lanes A 

and B> and, while the corresponding 564 bp fragment occurs, 

the DLS19 mutation deleted the site at 3249. The resulting 

fragment is 1410 bp in length due to cleavage at nt. 2168, a 

site that is found in both Cabb S and NY8153. The Cabb S 

site at 3249 is present in pUM24 and yields fragments of 1082 

bp and 1087 bp, which appeared as a band of double intensity 

in lane D. This band also appears in pVR1249 <lane C>, 

indicating the plasmid contains the Cabb S site at nt. 3249. 

Since the 564 bp fragment.is absent in pVR1249, the NY8153 

site at 3772 is not present. Also shown in lane C of Figure 

17 is a fragment that migrated further than the 3690 bp 

fragments that are common in the other recombinants. This 

fragment in pVR1249 contains the 800 to 900 bp deletion. 

The only site difference between pIC23 and pUM124 (Fig­

ure 17, lanes F and D, respectively> is the presence of the 

3772 site in pIC23, as shown by the characteristic double 

bands at 527 and 564. pUM124 does not have the HindIII site 

at nt. 3772 and the resulting fragment is 1087 bp, which is 

shown as a doubly-intense band in lane D. pVR1243 (lane E) 

does not exhibit the doubly-intense band at 0.53 and 0.56 

kbp 7 but instead exhibits the doubly-intense band at 

approximately 1.1 kbp. 

BJ., .. !:.\J_. The Al uI--di gested plasmids were el ectrophoresed 

through both a 1% agarose gel to resolve the larger fragments 
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and through a 6% acrylamide gel to resolve the smaller frag­

ments. These gels are shown in Figures 19 and 20. The AluI 

restriction maps for the parental wild-type DNAs are shown in 

Figure 21. 

Between pLW76 and pUM24, the only diagnostic frag~ents 

that were discerned on the gels are the 493 and 509 bp 

fragments that migrated as a triply-intense band in pLW76 

(lane Kin both Figures 19 and 20). The two fragments 

indicate a CM4-184 site at nt. 197. In pUM24, the absence of 

the site at 197 creates a fragment of 1002 bp. pVR246 (lane 

J of both Figures 19 and 20) only had a single-intensity band 

at 500, due to the 521 bp fragment in the vector DNA. The 

presence of a 1002 bp fragment in lanes J, G, and H, 

indicates the CM4-184 Alu! site at nt. 197 is absent in 

pVR246, pVR244-A, and in pVR244-B, respectively. 

Due to their opposite orientation, pVR244-A and -B would 

either have a 691 bp fragment if the Cabb S site at 4766 were 

present, or would have a 907 bp fragment if it were absent. 

Both pLW414 and pUM24 <Figure 19, lane F and I, respectively> 

display double-intensi~y bands at 900 (actual lengths are 903 

bp and 910 bp). Both of these fragments are due to viral and 

vector sites that are common to both parents. Using these as 

a guide for relatiye intensities, it can be seen that pVR244-

A and -B <Figure J, lanes G and H, respectively> only exhibit 

the single-intensity bands caused by the vector fragment of 

910 bp, and therefore do not have the 907 bp fragment that 



Figure 19. Agarose gel electrophoresis of AluI-digested 
plasmids. A> pDLS19, B> pVR1249, C) pUM124, 
D> pVR1243, E> pIC23, F> pLW414, G> 
pVR244-A, H> pVR244-B, I> pUM24, J) pVR246, 
I<) pLW76 . 
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Figure 20. Acrylamide gel electrophoresis of AluI­
digested plasmids. A> pDLS19, B> pVR1249, 
C> pUM124, D> pVR1243, E> pIC23, F> 
"pLl.iJ414", G) pVR244-A, H> pVl=<244·-B, I> 
pUM24, J) pVR246, K> pLW76 
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Figure 21. Alul restriction maps for wild-type parental 
CaMV DNAs. Numbers indicate kbp. 
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would indicate the absence of a Cabb S site at 4766. The 903 

bp fragment found in their parents is not expected in pVR244-

A and -B due to their opposite orientation. 

As the Alu! restriction ~attern for pDLS19 and pIC23 is 

unknown, there must be distinct differences in parental band­

ing patterns before any information can be learned about the 

recombinants' fragments and sites. For AluI, these differen­

ces are not apparent, and therefore no information was 

learned abo~t pVR1249 or pVR1243. 

HaeIII. The HaeIII-digested plasmids were electro­

phoresed through both 2% agarose and 6% acrylamide gels, 

shown in Figures 22 and 23, respectively. The HaeIII 

restriction maps of the parental wild-type DNAs are shown in 

Figure 24. 

Several diagnostic HaeIII fragments occur between Cabb 

S- and CM4-184-derived plasmids. A site present in CM4-184 

and absent in Cabb Sis the site at 4331 <4752) <Figure 24>, 

which yields 2 fragments of 1297 bp and 259 bp. The 259 bp 

fragment includes some vector DNA. In Cabb s, only one frag-

ment of 1554 is found, as seen in pUM24, lane I of Figure 22. 

pVR246 <Figure 22, lane J), also displayed.the 1554 bp frag­

ment, indicating the CM4-184 HaeIII site at nt. 4752 is not 

present in pVR246. With their opposite orientation, pVR244-A 

and pVR244-B (Figure 22, lanes G and H, respectively) would 



Figure 22. Agarose gel electrophoresis of HaeIII-digested 
plasmids. A> pDLS19, B> pVR1249, C> pUM124, 
D> pVR1243, E> pIC23, F> pLW414, G> 
pVR244-A, H> pVR244-B, I> pUM24, J) pVR246, 
K> pLW76 
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Figure 23. Acrylamide gel electrophoresis of HaeIII­
digested plasmids. A> pDLS19, B> pVR1249, 
C> pUM124, 0} pVR1243, E> pIC23, F> 
"pLW414", G> pVR244-A, H> pVR244-B, I> 
pUM24, J) pVR246, K> pLW76 
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Figure 24. ·HaeIII restriction maps for wild-type parental 
CaMV DNAs. Numbers indicate kbp. 
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have a 140 bp fragment if the CM4-184 site at 4752 were 

present, or they would have a 1430 bp fragment if this site 

were missing. As shown in lane G of Figure 22, pVR244-A has 

the 1430 bp fragment and therefore did not have the CM4-184 

site at 4752. pVR244-B (lane H> contained a.fragment that 

had migrated slightly further down the gel than the 1430 bp 

fragment of pVR244-A. pVR244-B's fragment is most likely the 

fragment corresponding to the 1430 bp fragment of pVR244-A, 

yet is less that 1430 bp due to the presence of the 80 to 200 

bp deletion in pVR244-B. The 1297 bp fragment is not present 

in either pVR244-A or -B, also indicating the site at nt. 

4752 is absent. 

CM4-184 plasmids have fragments of 1163 bp and 468 bp 

due to a site at nt. 5520 (5943). This 1163 bp fragment can 

be seen in pLW76 (lane K of Figure 22>. The 468 bp fragment 

appeared as a doubly-intense band, having migrated with a 458 

bp fragment of pBR322 DNA <Lane K of Figure 23). Cabb S does 

not have the site at 5943, but does have a site at nt. 6068 

that is not present in CM4-184 <see Figure 24). The site at 

nt. 6068 yields fragments of 1287 bp and 343 bp (375 bp in 

pUM24> (Lane I of Figures 22 and 23, respectively>. pVR246 

<Figure 22, lane J) has neither the 1163 bp fragment like 

pLW76 nor the 1287 bp fragment like pUM24. Instead, .pVR246 

had a band at 1.6 kbp. A 1630 bp fragment would result if 

the recombinant were missing both sites 5943 and 6068 and if 

cleavage occurred at the site at nt. 6411, which is common to 

both parents. Due to their opposite orientations, pVR244-A 
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and -B would have an 863 bp fragment and a 468 bp fragment if 

the CM4-184 site at nt. 5943 were present, or they would have 

a 1411 bp fragment and 343 bp fragment if the Cabb S site at 

6068 were present. In neither pVR244-A or pVR244-B is the 

Cabb S fragment of 343 bp present <Figure lanes G and H, 

respectively>, indicating the Cabb S site at 6068 is absent. 

If the 343 bp fragment is absent, then the 1411 bp fragment 

should also be absent. Indeed, the bands at 1.4 kbp are only 

of single intensity, due to the 1430 bp fragment described 

above. The fragments resulting from cleavage at the CM4-184 

site at 5943, 863 bp and 468 bp, cannot be differentiated 

between the 855 bp fragment (described below) and the 458 bp 

fragment of vector DNA. 

A Cabb S site a~ nt. 7224 yields two fragments of 318 bp 

and 529 bp, while the absence of this site in CM4-184 pro-

duces an 855 bp fragment. All three recombinants, pVR244-A, 

pVR244-B, and pVR246 (lanes G, H, and J,respectively,of both 

Figures 22 and 23>, did not have the 318 bp fragment and did 

display the 855 bp fragment, indicating a Cabb S site at nt. 

7224 is absent. 

While both Cabb S and CM4-184 have HaeIII sites at nts. 

1170 and 2091~ the resulting fragments are distict due to the 

421 bp deletion characteristic of CM4-184. In Cabb s, the 

fragment is 921 bp while it is 500 bp in CM4-184 <Figure 24). 

However, pLW76's extra deletion of 433 bp has deleted the 

site at nt. 1170 sc cleavage must occur at nt. 7456 (7871) 

a site common to both parents. Cleavage at 7871 produces a 



1046 bp fragment in pLW76 <Figure 22, lane K>. In recom-

binants pVR244-A, -B, and pVR246, the 921 bp fragment was 

present, indicating all three recombinants had the Cabb S 

site at nt. 1170. 
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Lane A of both Figures 22 and 23 reveal that the HaeIII 

digest of pDLS19 was contaminated with nucleases, and 

produced a smear. Since the sequence (and therefore restric­

tion pattern) of NY8153 is not completely known, and since 

the smeared pattern yields no bands distinct from pUM124 

<lane C of Figures 22 and 23), no information could be 

learned about the HaeIII pattern of pVR1249 (lane B of Fig-

ures 22 and 23>. 

In W DNA, sites at nts. 5939 and 6407, 6407 and 6463, 

6463 and 6653, and 6653 and 6902 produce fragments of 468 bp, 

56 bp, 190 bp and 249 bp, respectively (see Figure 24). The 

pIC23 mutation has deleted the sites at nts. 6407, 6463, and 

6653, producing instead, a fragment of 615 bp <Figure 22, 

lane E>. The W site at nt. 5939 is not present in Cabb S, 

and the site at nt. 6902 is common to both parents. Cabb S 

contains one site <at nt. 6068) which is not present in W 

DNA. If the Cabb S site at 6068 were present in pVR1243, two 

fragments of 1284 bp and 343 bp would result. If the W site 

at 5939 were present in pVR1243, a fragment of 1157 bp would 

be present. pVR1243 displayed the 1284 bp and 343 bp 

fragments (lane D of Figures 22 and 23, respectively), 

indicating the recombinant had the Cabb S site at nts. 6068 

and 6411 and did not have the W site at nt. 5939. 
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pVR1243 did not contain the pUM124 deletion, as this 

mutation creates an 1176 bp fragment in pUM124. Instead, a 

1323 bp fragment (w~~hout the deletion) which is character-

istic of pIC23, was displayed by pVR1243 <Figure 22, lane D>. 

A W site at nt. 4752 gives 2 fragments of 1222 bp and 1188 bp 

that appeared as a doubly-intense band in lane E of Figure 

22. The site at 4752 is not present in pUM124, resulting in 

a 1554 bp fragment. This fragment contains some vector 

sequences. The 1554 bp fragment was displayed by pVR1243, 

indicating the recombinant does not contain the W site at nt. 

4752. 

Hi nf I. The Hi nf I-di ge.sted plasmids are shown 

electrophoresed through a 6% acrylamide gel in Figure 25. 

The HinfI restriction maps for the wild-type parental DNAs 

are shown in Figure 26. 

pUM24 contains HinfI sites at nts. 830, 1218, 1571, and 

1781 that produce fragments of bp, 388 bp, 353 bp, 210 

bp, and 426 bp (see Cabb S map in Figure 26). All of these 

sites are not present in CM4-184 plasmids, and the result is 

a fragment of 1189 bp <Figure 26). The 433 bp deletion in 

pLW76 further reduces this f~agment to 756 bp (lane K of Fig-

un~ 25). As can be seen in lane J of Figure pVR246 

displayed the 426 bp, 353 bp, and the 388 bp fragments, indi-

eating pVR246 cohtains the Cabb S sites at nts. 830, 1218, 

1571. and 1781. pVR244-A and pVR244-B (lanes G and H, . . 

respectively, of Figure 25) also displayed the same diagnos-



Figure 25. Acrylamide gel ~lectrophoresis of HinfI­
digested plasmids. A> pDLS19, B> pVR1249, 
C> pUM124, D> pVR1243, E> pIC23, F> 
"pLW414", G> pVR244-A, H> pVR244-B, I> 
pUM24, J) pVR246, K> pLW76 
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Figure 26. HinfI restriction maps for wild-type parental 
CaMV DNAs. Numbers indicate kbp. 



1 2 3 4 5 6 7 8 

Cabb S 

en """ CD ..- $! - - .. , 
__ - 11 - IU) I 

1 2 3 4 5 6 7 8 

CM4-184 

~ 
II 

~ ~ 
111 

1 2 3 4 5 6 7 8 

w 

129 



130 

tic fragments as did pVR246, and therefore also had the Cabb 

S HinfI sites at nts. 830, 1218, 1571, and 1781. 

The presence of a site at nt. 3211 (3635) in CM4-184 

produces an 1117 b~ fragment <Figure 26 and lane K of Figure 

25) while the absence of the site at 3635 produces an 1135 

bp fragment in Cabb S and pUM24 <Figure 26 and lane I of Fig­

ure 25, respectively>. The 1117 bp fragment was also 

displayed by pVR246 (lane J), while pVR244-A and -B <lanes G 

and H, respectively) had fragments that migrate with the 

Cabb S fragment of 1135. Therefore, pVR246 had the CM4-184 

site at nt. 3635 while pVR244-A and pVR244-B did not. 

Another site present in CM4-184 that is not present in 

Cabb Sis the site at nt. 3709 (413~). This site produces a 

530 bp fragment in CM4-184 and its absence produces a 553 bp 

fragment in Cabb S <Figure 25, lanes Kand I, respectively, 

and Figure 26). The CM4-184 fragment of 530 bp appeared as a 

band of double intensity in pLW76 (lane K> and also in lane J 

CpVR246>. Therefore, pVR246 had the CM4-184 site at nt. 

4133. pVR244-A displayed the Cabb S fragment of 553 bp, 

indicating the CM4-184 site at 4133 was not present in 

pVR244-A. Common ta both parents is a site at nt. 4110, 

which yields a 392 bp fragment. As can be seen in lane H of 

Figure 25, pVR244-B lacked the 392 bp fragment, indicating 

that the site at 4110 was missing. This site is most likelj 

deleted due to the 80 to 200 bp deletion in pVR244-8. If the 

site at nt. 4110 were indeed missing, the 553 or 530 bp frag-
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ment should also be absent. While there appeared to be a 

fragment migrating with the 553 bp fragments, there is 

further evidence to support the conclusion the site at 4110 

is deleted in pVR244-B. If this site were to be deleted, the 

392 bp fragment and either the 553 bp or 530 bp fragment 

would be combined as one fragment, and the result would be a 

fragment of approximately 900 bp. Indeed, a fragment of 

approximately 900 bp was displayed by pVR244-B in lane H of 

Figure 25. 

A Hinf I site present in CM4-184 but not in Cabb S is at 

nt. 4497 (4921>. In pLW76, the resulting fragment is 100 bp 

which could not be discerned. However, due to their oppo-

site orientatipns, the presence or absence of the site at 

4921 in pVR244-~ and -B could be deduced. If the site were 

absent in the recombinants, a 441 bp fragment would result. 

As shown in lanes G and H of Figure 25, both pVR244-A and -B 

displayed a 441 bp fragment, indicating they did not contain 

the CM4-184 site at nt. 4921. 

Since the sequence of pDLS19 is unknown, only obvious 

fragment differences from the gel could be used in diagno-

sing the restriction pattern for pVR1249. As can be seen in 

lane A of Figure 25, pDLS19 lacks the 661 bp fragment that 

was present in both pUM124 <lane C> and pVR1249 (lane B>, 

indicating a HinfI site was present at nt. 7794, which was 

apparently not present in pDLS19. If the site were missing 

in pDLS19, a 906 bp fragment would result due to cleavage at 

the sites at nts. 7133 and 15. Lane A did display a fragment 
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of approximately 900 bp, in support of the above conclusion. 

Cabb S DNA contains a Hinf I site at nt. 1218 that does 

not occur in W DNA <Figure 26). This site in Cabb S yields 

two fragments of 353 bp and 388 bp (241 bp in pUM124), while 

its absence in W produces a 742 bp fragment. Lanes D of 

Figure 25 displayed the 742 bp fragment, indicating pVR1243 

did not have the Cabb S site at nt. 1218. 

Msl21...::... The MspI-digested plasmids were electrophoresed 

through 2% agarose and 6% acrylamide gels <Figures 27, 28, 

and 29). The MspI restriction maps for the wild-type DNAs 

are shown in Figure 30. 

A Cabb S site at nt. 7118 is not present in CM4-184 

plasmids <Figure 30). Two fragments of 846 bp and 1030 bp 

result from the site in Cabb S plasmids (814 bp in pUM24, 

lane A of Figure 27 or lane F of Figure 28>. The absence of 

the site at 7118 in CM4-184 plus a CM4-184-unique site at 

6085 (6509) yields a 1648 bp fragment and a 236 bp fragment 

in CM4-184 plasmids CpLW76) (lane C of Figure 27 and lane K 

of Figure 29, respectively). All three recombinants, pVR246, 

pVR244-A, and pVR244~B, displayed the 1648 bp fragment 

<Figure 27, lane B, and Figure 28, lanes G and H, and the 

236 bp fragments <Figure 29, lanes G, H, and J), indicating 

they did not have the Cabb S site at nt. 7118 and they did 

have the CM4-184 site at 6509. 

~ 

A site present in CM4-184 and absent from Cabb S is at 



Figure 27. Agarose gel electrophoresis of MspI-digested 
plasmids <Second gel). A> pUM24 B) pVR246, 
C> pLW76 
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Figure 28. Agarose gel electrophoresis of MspI-digested 
plasmids <First gel). A> pDLS19, B> pVR1249, 
C) pUM124~ D) pVR1243, E> pIC23, F> pUM24, G) 
pVR244-A, H> pVR244-B 
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Figure 29. Acrylamide gel electrophoresis of MspI­
digested plasmids. A> pDLS19, B> pVR1249, 
C> pUM124, D> pVR1243, E> pIC23, F> pLW414, 
G> pVR244-A, H> pVR244-B, I> pUM24, J) 
pVR246, K> pLW76 
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Figure 30. MspI restriction maps for wild-type parental 
CaMV DNAs. Numbers indicat~ kbp. 
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nt. 1812 <2236) (Figure 30). This site produces fragments 

of 343 bp and 1688 bp <1255 bp in pLW76) <Figure 29, lane K 

and Figure 27, lane C, respectively). The absence of the 

site a~ 2236 in Cabb S produces a fragment of 2455 bp CpUM24, 

lane C of Figure 27 or lane F of Figure 28>. As can be seen 

in lane G of Figure 28, pVR244-A displayed the 2455 bp 

fragment, indicating it did not contain the CM4-184 site at 

nt. 2236. Further confirming this conclusion was the absence 

of the 343 bp fragment in pVR244-A (lane G of Figure 29). As 

can be seen in lanes H and J and Figure 29, pVR244-B and 

pVR246, respectively, did display the 343 bp fragment, 

indicating they had the CM4-184 site at nt. 2236. However, 

the expected 1688 bp or 1255 bp fragment was not displayed by 

pVR244-B or by pVR246 <Figure 28, lane H and Figure 27, lane 

B, respec-tively). But, if the site at 2236 were present, 

and if the recombinants did not contain the 421 bp deletiQn 

that is characteristic of CM4-184, a 2109 bp f~agment would 

result. As can be seen in lane H of Figure 28 and in lane B 

of Figure 27, pVR244-B and pVR246 (respecti~ely) did display 

bands at 2.1 kbp. 

Another site present in CM4-184 plasmids but absent in 

Cabb S plasmids is the Mspl site at nt. 2936 (3360) <Figure 

30). In pLW76, this site at 3360 produces two fragments of 

528 and 553 bp (doubly-intense band in lane K of Figure 29>. 

The absence of the site at 3360 in pUM24 yields a fragment of 

1081 bp (lane A of Figure 27>. pVR246 displayed the doubly-
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intense band characteristic of the two bands of 528 bp and 

553 bp <lane J of Figure 29) and did not display the 1081 bp 

fragment (lane B of Figure 27). Therefore, pVR246 had the 

CM4-184 site at 3360. Both pVR244-A and -B displayed the 

1081 bp fragment (lanes G and Hof Figure 28, respectively>, 

indicating they both did not have the CM4-184 site at nt. 

3360. 

Two sites present in CM4-184 but not in Cabb S are at 

nts. 3725 (4149) and 4236 (4660). Three characteristic frag-

ments result in CM4-184 plasmids: 236 bp, 511 bp, and 218 bp. 

<The 218 bp fragment contains some vector DNA>. The absence 

of the two sites in Cabb S yields one fragment of 965 bp. If 

pVR244-A and -B were not to have the two CM4-184 sites at 

nts. 4149 and 4660, a 1040 bp fragment would result due to 

their opposite orientation. This 1040 bp fragment can be 

seen in lanes G and H of Figure 29. Also, the 511 bp frag-

ment was not present in those lanes. While the 511 bp frag-

ment was not present in pVR246 (lane J of Figure 29>, the 236 

bp fragment was. If the site at 4149 were to be present in 

pVR246, but the site at 4460 were to be absent, two fragments 

of 236 bp and 729 bp would result. As stated above, the 236 

bp fragment was present, and it can be seen in lane J of Fig-

ure 29 that a fragment of 729 bp was present. 

Since the sequence of pDLS19 is unknown, only obvious 

fragment differences from the gels could be used in diagnc-

sing the restriction pattern for pVR1249. As can be seen in 

lane A of Figures 28 and 29, pDLS19 displayed a 1648 bp frag-
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ment and a 236 bp fragment, indicating NY8153 had MspI sites 

at nts. 6509 and 6273. As described above, Cabb S plasmids 

lack these sites and have a unique site at nt. 7118 which 

yields fragments of 1030 bp and 846 bp. The 846 bp fragment 

and the 1030 bp fragment were both present in pVR1249 (Fig-

ure 28, lane B> ' indicating the Cabb s site at nt. 7118 was 

present and also indicating the NY8153 site at nt. 6509 was 

not present in pVR1249. A fragment of 2455 bp is found in 

both parents due to the common sites at nts. 124 and 2579. 

This fragment was not seen for pVR1249 (lane B of Figure 28), 

instead, a fragment of approximately 1.6 kbp was observed. 

This fragment was most likely the fragment common to both 

parents but contained the 800 to 900 bp deletion that is 

present in pVR1249. 

The only other site differences between NY8153 and Cabb 

S that could be resolved from the gels is the presence of two 

sites at nts. 4149 and 4660 in pDLS19 th~t are not present in 

pUM124 <see Figure 30). These two sites produce three diag-

nostic fragments of 236 bp, 511 bp, and 218 bp in pDLS19, 

whereas a single fragment of 965 bp results in pUM124. Due 

to its opposite orientation, pVR1249 would have a fragment of 

1040 bp if it did not have the two NY8153 sites at nts. 4149 

and 4660. Lane B of Figure 28 did display such a fragment, 

indicating pVR1249 did not have the NY8153 sites at nts. 4149 

<::ind .ll-660. 

An MspI site present in W DNA but net in Cabb S is the 

site at nt. 2235 <see Figure 30). This site produces a 
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fragment of 340 bp in pIC23 and another fragment of unknown 

size due to the presence of pACYC177 <vector) DNA. Lane D of 

Figure 29 did not display the 340 bp fragment, indicating 

that pVR1243 did not have the W site at nt. 2235. 

A site at nt. 3356 is present in W and absent in Cabb S. 

This site yields two fragments of 528 and 553 bp in pIC23 

(lane E of Figure 29) while only one fragment of 1081 bp is 

present in pUM124 (lane C of Figure 28). pVR1243 <Lane D of 

Figure 28) displayed the 1081 bp fragment while lane D of 

Figure 29 did not display the triply-intense band that would 

have indicated the presence of the 528 bp and 553 bp frag-

ment. Instead, only the single-intesity band was present, 

which results from a v~ctor fragment of 527 bp. Therefore, 

pVR1243 does not have the W site at nt. 3356. 

The site at nt. 7118 which produces fragments of 846 and 

1030 bp in pUM124 is not present in pIC23. pIC23 has a frag-

ment of 1539 bp, which includes the pIC23 mutation. Lane D 

of Figure 28 revealed that pVR1243 had the 846 and 1030 bp 

fragments and therefore had the Cabb S site at nt. 7118. 

Ja_gJ_.!!... The TaqI-di gested plasmids vJere elec:trophoresed 

through a 6% acrylamide gel <Figure 31). The TaqI restric-

tion maps of the wild-type parental DNAs are shown in Figure 

-:?"r:'t 
·-• • .: .. a 

A TaqI site that is present in Cabb 8 but not in CM4-184 

is a site at nt. 1643 (see Figure 32). This site yields an 

822 bp fragment in Cabb S, but has been deleted in CM4-184 



Figure 31. Acrylamide gel electrophoresis of TaqI­
digested plasmids. A) pDLS19, B> pVR1249, 
C) pUM124, D> pVR1243, E> pIC23, F) 
"pLW414", G) pVR244-A, H) pVR244-B, I> 
pUM24, J) pVR246, K) pLW76 
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Figure 32. T~qI restriction maps for wild-type parental 
CaMV DNAs. Numbers indicate kbp. 
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due to the 421 bp deletion. Two sites present in CM4-184 but 

absent in Cabb Sare the sites at nts. 1075 and 1946 (2367). 

These sites yield a fragment of 871 bp. However, due to the 

pLW76 mutation, the site at 1075 is deleted, cleavage occurs 

at a site common to both parents <nt. 613), and a 900 bp 

fragment results (lane K of Figure 31>. Three more sites 

present in Cabb S but not in CM4-184 are the sites at nts. 

1784, 1793, and 2280, which should yield fragments of 9 bp 

and 487 bp. However, cleavage does not occur at the sites at 

1793 and 2280 as these are both dam sites. Instead, cleavage 

occurs at nts. 1784 and 2481 to produce one,fragment of 697 

bp _(=:.ee pUM24, lane I of Figure 31). · The site at 2481. is 

1-~~mu11 to both parents. pVR244-A displayed the 697 bp 

fragment (lane G of Figure 31), indicating the Cabb S site at 

nt. 1784 was present. The presence of the 697 bp fragment in 

pVR244-A also indicated that the CM4-184 site at 2367 was not 

present. pVR244-B and pVR246 (lanes Hand J of Figure 31, 

respectively> did not display the 697 bp fragment. They did, 

however, display a fragment of 583 bp that would result if 

the Cabb S site at nt. 1784 were present and the CM4-184 site 

2367 were present. 

A site that is found in Cabb S but not in CM4-184 is the 

site at nt. 5541. This site yields a fragment of 266 bp in 

pUM24 (lane I of Figure 31). The absence of this site in 

CM4-184 would produce a fragment of 554 bp~ but a dam site 

occurs at nt. 5405 (5828), and cleavage instead occurs at nt. 
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6137 (6929>. The result is a CM4-184-characteristic frag­

ment of 1286 bp. The 266 bp fragment was displayed for all 

three recombinants: pVR244-A, pVR244-B, and pVR246 <Figure 

31, lanes G, H, and J, respectively>, therefore indicating 

that the Cabb S site at nt. 5541 was present. 

Another site present in Cabb S but not in CM4-184 is the 

site at nt. 6560. This site yields fragments of 732 bp and 

1421 bp. 

No diagnostic fragments could be resolved between pDLS19 

and pUM124 or between pIC23 and pUM124, therefore no informa­

tion was learned about the TaqI restriction patterns for 

pVR1249 or pVR1243. 



CHAPTER IV 

SUMMARY AND DISCUSSION 

Deletions in Recombinants 

Deletions were detected in both recombinants pVR244-B 

and pVR1249. The deletion in pVR244-B was calculated to be 80 

to 200 bp in length and was resolved to occur between nts. 

3960 and 4663. The deletion in pVR1249 was calculated to be 

800 to 900 bp in length and was resolved to occur between 

nts. 124 and 1514. 

The deletion in pVR1249 currently appears similar to a 

frequent site-specific deletion reported occurring in the 

Japanese isolate CaMV-S <Hirochika et al., 1985). Analysis 

of the sequences around the deletion site revealed sequences 

similar to the donor and acceptor consensus sequences of RNA 

splicing. Point mutations of these sequences produced the 

activation of new (cryptic) donor sites. The deletion was 

found to be 856 bp in length and occurred between ORFs I and 

II, or more specifically, between nts. 652 and 1508. 

Hirochika et al., (1985) proposed that the site-specific 

deletion occurred by reverse transcription bf spliced viral 

RNA, that a mechanism to regulate the rate of splicing would 

be required in a virus which replicates by reverse trans-

151 
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cription, and that their S strain had a mutation in the 

regulatory mechanism. While the exact location of the 

deletion that occurs in pVR1249 has not yet been located and 

the sequences around the deletion site have not been 

examined, pVR1249, like the CaMV-S strain, contains a 

deletion of 800 to 900 bp between nts. 124 and 1514. 

~unction 1 

Some junctions in pIC141, pIC143,and pIC148 found by 

restriction mapping CChoe et al., 1985) occurred between nts. 

7228 and 14 (Jl in Figure 3). Nucleotide sequencing further 

resolved these junctions as occurring between nts. 8022 and 

19 <Melcher, unpublished>. The distance between these 

nucleotides is 22 bp, with gap 1 occurring between nts. 

8024 and 1. For each recombinant, nucleotides like Cabb S 

were detected up to nt. 8022, then nucleotides like Cabb B-JI 

were detected from nt. 19. Restriction mapping of three of 

six of this study's new recombinants CpVR246, pVR244-A, and 

pVR244-B> revealed similar junctions occurring between nts. 

7724 and 197. Nucleotide sequencing has further resolved the 

junction for pVR246, as well as revealing the presence of 

junctions in pVR1249 and pVR1243 <Melcher, unpublished), 

which had not been revealed by restriction mapping. Nucleo-

tide differences between each recombinants' parental DNAs 

were detected with the apparent junction again near gap 1. 

The presence of nucleotides from one parent and nucleo­

tides from the other parent occurring on each side of gap 1 
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provides supporting evidence for the model of replication of 

CaMV by reverse transcription (Pfeifer and Hohn, 1983; 

Guilley et al., 1983; and Hull and Covey, 1983). In the 

model, dap 1 arises as a result of the mecha-nisms of reverse 

transcription (see Figure 2>. Synthesis of the DNA minus-

strand is initiated when the host cell tRNAm•• initiator base 

pairs with the fourteen nucleotides immediately to the r~ght 

of gap 1 (as depicted in "C" of Figure 2). After reverse 

transcriptase has copied the 355 RNA to its 5' end, the 

enzyme switches templates by "jumping" to the 3' end of a 355 

RNA and minus-strand synthesis continues. If RNAs from two 

isolates were used, the resulting DNA would be chimeric with 

one junction occurring near the position of the 5' end of the 

358 RNA c~nt. 7435). Recombinants pVR244-A and pVR244-B 

contain a junction between nts. 7224 and 197. Sequencing 

data <Melcher, unpublished) has revealed that their junction 

does not occur at gap 1. It could be possible that the 

junction in these recombinants occurs near nt. 7435. For the 

above recombinants with junctions at gap 1, if no other, or 

an even number of subsequent template switches occurred, the 

resulting DNA would be chimeric with a junction also 

occurring at gap 1. 

pVR1243 contains a junction between nts. ·7118 

and 7224. If this junction arose as a result of template 

switching, it was most likely due trJ an "illegal" template 

switch (described below). 
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~uncticm 2 

Restriction mapping of recombinants pIC141, pIC143, and 

pIC148 revealed junctions between the parental alleles in 

four regions <Choe et al., 1985 and Figure 3). Regions 

considered to be near junction 2 CJ2 of Figure 3) were sequ-. 

enced to determine the junctioMs at the nucleotide level. Of 

the regions sequenced, junction 2 of the recombinants pIC143 

and pIC148 was found to be between nts. 2100-2224 and 2224-

2233, respectively (see Table 5). Junction 2 of pIC141 was 

found to be between nts. 2578 and 2623 <Melcher, unpub-

1 i shed) . Restriction analysis of new recombinants revealed 

junctions near the junction 2 region for three of the five 

recombinants. A junction between parental alleles occurred 

between nts. 1784 and 2236 in both pVR246 and pVR244-B, while 

a junction occurred in pVR1243 between nts. 1218 and 2236 

<Tables 7 and 9, respectively, and Table 12). 

Several possible mechanisms could have produced junction 

2 in the above-mentioned recombinants. In the general region 

encompassed, nts. 1218 through 2623, there could exist a 

region in the wild-type DNA sequences where recombination 

pr·eff2rent.i al 1 y occurs;; i.e. a "hot spot" ·'ror recombination. 

Another possibility for preferential recombination in 

the junction 2 region could be the result of the mechanisms 

of reverse transcription. Condit and Meagher (1983) detected 

several genome-length 358 CaMV RNA transcripts. One mi nor· 

transcript was characterized as having its 5' end lying with-



Table XII. Distances detected Junctions occur from 
parental mutations. 



TABLE XII 

DISTANCES DETECTED JUNCTIONS OCCUR 
FROM PARENTAL MUTATIONS 

Recombi- June- Parental 
nant ti on DNA 

pVR246 1784- pLW7l1 
22:::.t:> 

pVR244·-·B 1784·- pU..J214 
22::::;f.:; 

pVl::;:246 5943·- pUM24 
6045 

pVR2.c.'J.4-A 5541- pUM24 
594~.::; 

pVR244·-B 5541- pUM24 
591.1.:~:; 

pVl~124:::;; :l.21B- pUM124 
~~2:3;6 

pVFU243 7118·- p rc2::~ 
7224 

Position of 
Parental 
Mutation 

1::::;s2-
:1.802 

1:::::s2·-
:1.802 

6299·-· 
6338 

629(1-
63:;.'8 

6299-
6:338 

886-· 
l.031 

6~.:::17--

6664 

' 

Distance Between 
Junction and Paren­
tal Mutation (nts.) 

"'1-400 

"'1· .... 400 

"'300 

"'300-700 

"'"300·-700 

"'200-1 l. 00 

"'500·-600 
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in 50 nts. of the AUG codon for ORF IV Cnt. 2201). If tem-

plate switching were to occur from one parental· minor 358 RNA 

having its 5' end near the ORF IV AUG codon region onto the 

other parent's major 358 RNA, the detected junction CJ2> 

would result. 

The recombinants pIC141, pIC143, and pIC148 arose from 

the coinoculation of pUM41 and pIC11. pUM41's mutation is a 

SmaI linker between nts. 2041 and 2044 <Choe et al., 1985). 

The altered sequence of the mutant parental allele may have 

caused preferential recombination in the region 2200 to 2600. 

Likewise, the c:;...,q• ... tei u ... es resulting from the presence of the 

CM4-184 421 bp deletion in pLW214 and pLW76, as well as 

their respective mutations, may have caused preferential 

recombination in the region 1784 to 2236 in the recombinants 

pVR244-B and pVR246. 

A variation of the above-proposed mechanism of the 

mutated parental allele causing prefe~ential recombination 

could support the idea of "illegal" templ<:\te switching during 

reverse transcription, as postulated by Grimsley et. al., 

<1986). In support cif a "strong stop DNA" theory, G1rimsley 

et. al., (1986) reported an unpublished observation (of B. 

Gronenborn> of a DNA sequence that corresponded to within one 

nucleotide from the 5' end of the 358 RNA transcri~t linked 

to a region further upstream in the genome, and suggested 

that an "illegal" template switch occurred. The sequences 

resulting from the mutated parental DNAs used in this study 



could have created a sequence similar to the 5' end of the 

358 RNA and effected an "illegal" template switch. 
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Junction 2 occurs in pVR246 and pVR244-B, which is very 

near (from 1-400 bp> the position of the 421 bp deletion in 

the CM4-184-derived parental DNA <Table 12>. Junctions were 

detected near a region of parental mutation in these <Table 

12L Similarly, junctions were detected near c~200 to ~1100 

bp) regions of much smaller parental mutations in the above 

recombinants as well as others <see Table 12). It should be 

noted that the above-mentioned recombinant's junctions (near 

parental mutations> occurred distal to the parental mutation 

and gap 1; i.e., the parental mutation was between the 

junction and gap 1 as depicted in a circular genome <as in 

Figure 1). This observation provides evidence in support of 

a recently pro~osed model <Melcher, unpublished) to be 

discussed below. These results are also consistent with the 

proposed mechanism for recombination by DNA repair of 

mismatches in a heteroduplex region formed during general 

recombination between duplex DNAs <Choe et al., 1985). In 

these cases (Table 12>, the mismatches could have encompassed 

large deletions (~400 bp). Heteroduplex loops would have 

formed at these large mismatches (and the smaller 

mismatches>, and repair of the DNA would have ensued, using 

ei their th<~ mutant or wi 1 d·-·type allele as the template. CaMV 

DNA molecules that resulted from the use of the mutant 

template would not be detected, as these products would be 

non-infect i ciu!s. Therefore, the resulting infectious 



recombinants would possess junctions near the regions of 

parental alleles' mismatches. 

The CM4-184 421 bp deletion does not render the virus 

nor the excised recombinant pLW414 <CM4-184 cloned in the 

pBR322 vector> non-infectious <Howarth et al., 1981 and 

Howell et al., 1980). The model for heteroduplex repair 
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considers the use of either mutant or wild-type allele as a 

potential template in DNA repair (Choe et al., 1985). If so, 

then the naturally occurring 421 bp deletion of the CM4-184 

isolate could theoretically be incorporated into the recom­

binant's genome and result in an infectious recombinant. Yet 

no recombinant that arose from a coinoculation with a CM4-184 

derived-plasmid contained the CM4-i84 421 bp deletion (recom-

binants pVR246, pVR244-A, and pVR244-B). One possible 

explanation for this observation could involve the proximity 

of the CM4-184 deletion to the mutation of the parental 

allele. pLW76 contains a 433 bp deletion from nts. 777 to 

1208. The CM4-184 naturally-occurring deletion extends from 

nts. 1382 to 1802. Therefore, only 175 bp of the wild-type 

allele are present between nts. 776 and 1803 that are homolo­

gous with the 1026 wild-type nucleotides that are present 

between those positions in the other parent <pUM24). Like-

wise, the mutation in pLW214 is at nt. 1285, approximately 

100 bp from the CM4-184 deletion. Approximately 50 bp of 

homology are required for assimilation <Singer et al., 1981 

and Gonda and Radding, 1983). It could be possible that the 

region of homology in pLW76 and pLW214 wit~ the wild-type 
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allele of pUM24 is too small to effectively allow the cross-

over that would be required to incorporate the CM4-184 

natural deletion but not the mutation of pLW76 or pUM24. 

Although these crossovers may happen, they could occur less 

frequently than the recombinations that utilized the non-

mutated allele as the repair template across the entire 

region of DNA mismatch. 

Infectious recombinants have been reported arising from 

the coinoculations of mutant parental DNAs with complementary 

sticky ends via two possible mechanisms <Walden and Howell, 

1982 and Geldreich, 1986). One possible mechanism (Walden 

and Howell, 1982) would produce infectious recombinants by 

the formation of dimers (or concatamers) using complementary 

sticky ends which could be resolved into normal genomes by a 

single crossover event. The other mechanism produces 

infectious recombinants by dimerization of two heterologous 

CaMV DNA molecules, and subsequent transcription into a 

hybrid 358 RNA, which would be responsible for the 

replication of the recombinant genomes <Geldreich et al., 

1986). In either situation, a junction between the parental 

DNAs would be detected occurring at the site of dimerization. 

All the coinoculations that produced new recombinants in this 

study were freed from the pBR322 vector DNA at the Sall site, 

except the combination of pUM124 and pIC23, which were 

cleaved at the Sal I site and XhoI site. respectively. No 
~ . . . 

recombinants obtained from the coinoculations utilizing only 

Sall sites revealed junctions occurring near the Sall site 
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<nt. 4836). A junction did occur between nts. 4149 and 4660 

in pVR246 (see Table 7>, but from nt. 4660 to 5943, only Cabb 

S-derived sites were detected. 

Choe et al., (1985), reported the detection of allele 

interspersions near junction 2 of pIC141 and junction 4 of 

pIC143 <Figure 3). Junction 2's interspersion in pIC141 had 

been resolved as the presence of a HaeIII site, which was 

thought to be a Cabb S-unique site. However, sequencing data 

<Melcher, unpublished) has shown that the HaeIII site also 

exists in W DNA, and is therefore not different between the 

parents. Sequencing of the recombinants pIC143 and pIC148, 

as well as pIC141, also revealed the presence of the HaeIII 

site at nt. 2203. Therefore, no allele interspersions 

occurred at nt. 2203. 

A model recently proposed <Melcher, unpublished) could 

account for the junctions detected at gap 1 and also for the 

junctions detected near the parental mutations. In this 

model (see Figure 33), reverse transcription produces the DNA 

minus-strand off of the 358 RNA template and the plus-strand 

is subsequently synthesized, as predicted by the model for 

reverse transcription <see pp. 7-11, and Figure 2). Instead 

of base pairing with the 14 tRNAm-t nucleotides newly-



Figure 33. Proposed model that accounts for junctions near 
gap 1 and mutations in parental DNAs. <Melcher, 
unpublished.) 
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synthesized in the DNA minus-strand <which would normally 

cirularize the molecule>, the complementary sequences in the 

DNA plus-strand would base pair with the tRNAm•t nucleotides 

in another CaMV molecule, creating a DNA dimer molecule. At 

this point, i ntramol"ecul ar recombination, occLu~ri ng so as not 

to incorporate the regions of mismatches due to mutatioKs, 

could produce an infectious recombinant CaMV DNA molecule. 
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