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PREFACE
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CHAPTER |

INTRODUCT ION

This thesis project investigated the possibility of
using a computer to evaluate responses to (rather special)
questions associated with writing program segments. |If a
general statements evaluation system (SES) could be
developed, then a computer could be used to conduct computer
based learning exercise at a much higher intellectual level
than is currently possible. A problem statement might be

"Construct a program segment to compute the payment

of mortgage loan"

The loan payment could be computed in several different
formats and still be correct; furthermore arbitrary
intermediate substitutions, if correct, should be allowed

and evaluated as correct by such SES. The idea is to supply
the SES with a template, regafded correct, to be used to
determine whether the user's response is functionally
equivalent to the template. It is the ability to determine

functionally equivalence or non-equivalence that provides

the increased capability of this system over systems which
can only determine whether a single response is an exact
match of a given answer. The implemented model could be

developed into a computer assisted instruction (CAl) system,



which is a useful tool in helping students in programming,
debugging, and for retraining technical people in industry.
The CAl system is in tutorial format, asking students to
compose statements for particular tasks, beginning with the
simple single statement and proceeding to compound multiple
statements. The CAl system generates responses to student's
input, replies include error messages and the correct answer
to the problem.

The statements evaluation system (SES) is implemented
to respond to the mini-language by Ledgard and Marcotty
(1981), and it can be modified to adopt an appropriate
subset of any other similar high level language like C
(Kernighan and Ritchie 1978), Pascal (Jensen and Wirth 1975)
or Fortran (1966). In the mini-language there are basically
four types of statements:

(1) declaration statement;

(2) assignment statement;

(3) conditional statement (if then else);

(4) loop statement (while loop).

The system evaluates on declaration statement, assignment

statement and one level conditional statement. Because of
different complexity and structure of each type of
statement, each has a separate evaluation method. For

example, some of the many possible ways to declare variables
X, Yy and z are
(1) declare x,y,2;

(2) declare y,x,z;



(3) declare x,y;
declare z;
(4) declare z,Yy;
declare x;
(5) declare x;
declare y;
declare z;
Above are not all the variations, there are a total of 18
different formats just to declare the three variables x, y
and z. The template answer provided to the system is one of
the 18 formats, and the system must be able to recognize the
other 17 formats are functionally equivalent to the template
answer. There is only one variable type (integer) in the
Ledgard mini-language, therefore the system does not do any
type checking on the variable types.
The different priorities of operators (+, -, X), levels
of parenthesis and substitution of variables increase the
difficulties and complexities of evaluation of assignment

gstatement. To be able to determine the template’s assignment

statements and the input's assignment statements are
functionally equivalent, the system translated all
assignment statements into standard format with all the
parenthesis removed and all variables are substituted with

their latest assigned value. For example the statement
X := 8;

x X(C 2 + 3) - (8 + 9);

<
"

is translated into



x = 8;

1}

y 8 X2 + 8 x 3 - 8 - 9;
The system uses tables to represent assignment statements,
which is more easy to implement the translation and keep
track of the recent assigned value of every variable.
Chapter five has a detailed description of the method and
implementation of the table translation.

Because of its various formats and complexities of
expression in assignment statement, therefore, this study
emphasizes on the evaluation of the sequential assignment
statements. Below is an example which shows that a simple
assignment statement can be transformed into different

formats with different complexities, which <complicate the

evaluation process.

(1) x := a - bXe + cXe + dXe;
(2) x := a - bXe + eX(c + d);
(3) x := a -(b - ¢ -d) * e;
(4) x := a =-(b - ( ¢ + d) ) Xe;
(5) u := ¢ + d;

t := (b - u) X e;

X = a - t;
(6) u := ¢cx (e + d -b);

X = U + a;

Above are only some of the possible formats, the variations
are almost unlimited by using parenthesis and substitution
with multiple assignment statements.

The conditional and loop statements are the most



unpredictable, especially with the nested if-then-else and
while loop statements. To restrict the problem, this study
concentrates on one format of if-then-else statement and its
variations, which is a one level if-then-else with the
condition in this format,
(variable conditional operator variable)
Below is an example of if-then-else statement, and its
variations.
(1) if Ca >b) then
a := a -b - ¢;
else
a := a + bj;
end if;

(2) if Ca > b) then

u := b + c;

a := a - u;
else

a := a + b;
end if;

(3) if (a < b) then

a := a + b

else

end if;



(4) if (a < b) then

a = a + b;
e!se

a := a - (b + c¢J);
end if;

Chapter | is a discussion on computer assisted
instruction (CAL)D, it's history and development. The
evolution of parsing and translation are also given in this
chapter. Chapter [ gives an introduction of formal

language theory. Chapter IV gives an overview of the design

of the system. The structure of the system (lexical
analyzer, parser and translator), the implementation
methods, and program <codes are discussed in Chapter V.

Examples of different statements and responses are given in
Chapter VI. Chapter VI!| is the summary of this project, and

future study and development are suggested.



CHAPTER 1|

LITERATURE REVIEW

CAl Overview

The Requirement

There are three basic educational requirements that
make CA|l inevitable (Loughary 1967):
(1) the trend to individualized instruction;
(2) the growth in information to be acquired;

(3) the shortage of qualified teachers.

Since 1950's, computer assisted instruction (CAl) has been

developed and applied to these three problems in education

from elementary school to professional training (Suppes,
1978). I'n training environments such as industry and the
military, students are also paid. For this reason, in

'training environments the relationship between time and

costs is a direct one --- costs can be reduced to the extent
that reductions in instructional time can be achieved. A
major advantage of CAl systems is that they <c¢an reduce
instruction time while maintaining equivalent levels of

performance when compared to the traditional type of lecture

~ discussion techniques.



History

The first use of computers for "educational purpose was
started at the end of the 1950’s. One such research
application was the PLATO »project at the University of
lilinois (Alpert and Bitzer, 1970), which began in 1960 with
the goal of designing a large computer-based system for
instruction. Soon after, IBM introduced COURSEWRITER, a
programming language designed for preparing instructional
materials oﬁ I1BM's mainframe computer. At Stanford
University and Pennsylvania State University, there were
projects by Atkinson and Hansen (1966),Suppes, Jerman and
Brian (1968), and Suppes and Morningstar (1972).

In the early 1970's the PLATO project introduced PLATO

v, a large time-shared instructional system. Students
studied on individual terminals, hundreds of which were
connected to a large computer on which all lessons and
student data were stored. PLATO IV now allows up to 600

students to use the computer simultaneously.

In the mid-1970's, a few small companies began to
experiment with microcomputers, including Radio Shack,
Commodore Business Machines, and the Apple computer. With
the success of microcomputers, it became possible for the
individual university researcher, and public schools to
possess a microcomputer and use it for educational purposes.
From 1977 to today we have seen phenomenal growth in the

educational uses of computers, and computer instructional



system became affordable to public school or family.

State of the Art Assessments

The state of the art assessments are an idealized
computer assisted instructional system, including hardware-
software, courseware, learning strategies, management and
development.

Baker (1971) provides the background of idealized CAl
systems. A system is documented in the form of a systems
concept document. The document has three main goals:

1) provide a conceptual frame work for the CAl
system;

(2) serve as the guidance document for the design
and implementation of the CAl system;

(3) act as a baseline document for evaluation

purpose.
Bushnell (1964) describes, briefly, developments in computer
based teaching machines and rapid information retrieval

systems, and the advances in computer technology for aiding
teachers in the diagnosis of student learning needs and
selection of appropriate teaching strategies. The most
common teaching strategies used in courseware are:

1) drill and practice;

(2) tutorial instruction;

(3) simulation;

(4) games .



10

We all are familiar with drill and practice in one form
or another: work-books, flash cards, spelling bees. In a
drill-and-practice system, a selection of questions or
problems is presented repeatedly wuntil the student answers
or solves them atll at some predetermined level of

proficiency. Computer programs can enhance the effectiveness
and efficiency of drill-and-practice. One of the latest
drilli-and-practice programming tool is Drillshell (Alessi,
S. M. and Schwaegher, D. G. 1984) which allows CAl
developers to produce drills without programming all the
details of queuing and data storage.

Tutorial instructions are computer programs that teach
by carrying on a dialogue with the student. They present
information ask the student questions and make decisions
based on the student’'s comprehension whether to move on to
the next ins{ruction or to engage in review and remediation.
Tutorial instruction is the most basic and common form of
CAl. The SOPHIE system developed by Brown (19751 is an

example of a CAIl tutorial program.

Simulation systems provide the student with the
illusion of experiencing a real life occurrence. They have
the advantages of convenience, safety, and controllability
over real experiments, and are useful for giving students

experiences that would not otherwise be possible. AIR SIM is
an air flow simulation program by Fortner (1979). Lagowski
(1970) and Gelder (n.d.) also have written several good

examples of laboratory simulation programs which are very
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helpful for chemistry students to experience a dangerous

experiment in a simulated environment.

Parsing

The two most common forms of parsers are bottom-up, and
top-down. Floyd (1963) was the first one to come up with the
operator-precedence idea and the use of precedence
functions. Since then there have been a variety of other
bottom-up parsing strategies developed, such as the Wirth-
Weber precedence by Wirth and Weber (1966), bounded-context
parsing (Floyd 1964 and Graham 1964), LL parsers as defined
by Lewis and Stearns (1968), and the LR parsers by Knuth
(1965).

Bottom-up parsing traverses the tree from the leaves
(bottom) to the root (top). Top-down parsing does the
reverse, i.e., it starts from the root of the parse tree and
works its way down to the leaves. There are basically two
types of top-down parser, one involves backtracking and the
other does not (recursive descent parsing). META (Schorre

1964) and TMG (McClure 1965) are some of the compiler

writing systems which used top-down parsing with
backtracking. The parser of the statements evaluation
system (SES) in this project is implemented in recursive

descent parsing. Conway (1963) and Lucas (1961) were the
ones who introduced this recursive descent parsing
technique. In Chapter 3, there is a basic background of

formal language theory which is essential for defining the



grammar of the ©programming languages. Chapter 4 has the
detailed description of recursive descent prasing and an
implementation of the parser for mini-language (Ledgard and

Marcotty, 1981) is given.

Translation

Syntax directed translation was first used by Irons
(1961) as a method in compiler design. Aho and Ullman (1977)
gave a basic diagram for syntax directed translations in

their book, to explain the process of the translation.

input ----> parse -————) dependency ----> evaluation
string . tree graph for semantic
rules
Figure 1. Process of Translation

A parse tree is generated during the parsing process of the
input string, and it is traversed to generate the semantic
actions during the traslation process. The semantic actions
may be the computations of values of variables, generation
of intermediate codes, printing messages or storing some
values into a particular table for future reference.

The idea of a parser calling for semantic actions was
first discussed by Samelson and Bauer (1960), and later by
Brooker and Morris (1962). In the mid 60's, Eickel, Paul,
Bauer and Samelson (1963), Cheatham and Sattley (1964),
Ingerman(1966) and Feldman (1966) contributed a great amount

of work to syntax-directed translations, which led to the

12
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development of the early theory of syntax-directed
translation by Lewis and Stearns (1968). A more detailed
description of syntax directed translation is given in

Chapter 5.



CHAPTER |11

FORMAL LANGUAGE THEORY

Formal! Grammar

The Need

When we say about grammar, we all know English grammar.
An English grammar is a set of rules either for constructing

English sentences or for determining whether an English

sentence is syntactically correct. Thus the sentence " I am
working very hard." obeys and follows the grammatical rules,
whereas the sentence " ! working am hard very " fails
miserably. The grammar is concerned with the form of the
sentence but not the meaning, therefore the meaningless
sentence like "Books are working very hard." is quite
acceptable grammatically. The grammar of a programming

language is very similar to the grammar of spoken language,

but more constricted. It either provides a set of rules for
writing a program in that programming language or it
determines whether a program is syntactically correct (but

not necessarily meaningfull. A program can be syntactically
correct with no error but does not do anything meaningful at
all. Grammars for programming languages are exact and

precise, and they can be described in a formal mathematical

14



notation, i.e., a formal grammar.

Different Classes of Grammars

A phrase-structure grammar (PSG) is

quadruple,

G = {N, L, P, S) where

15

an ordered

(1) N is a finite set of nonterminal symbols

(sometimes called variables

categories);

syntactic

(2) L is a finite set of terminal symbols, disjoint
from N;
(3) P is a finite subset of

\d * *
(N UZ)YNCNUZEZ)Y X (NUTZI)

where an element (a,b) in P is written a ---> Db

and is called a production;

(4) S is a distinguished symbol in N called the

start symbol .

Below are some examples of PSG’s and non-PSG’s

1) G =({S,A}, 0,13, P, S) where P consists of
S ---=-> 0A1
0A ----> 00A1
0Al -=~-> 01

(2) G =(tA,B}, 10,13, P, S) where P consists of
S --==> 0A1
01 --=-=> 00A1

1 ----> ABC
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Example (1) is a PSG, and it generates strings of the form
01, 0011, 000111, .... and so on indefinitely. Example (2}
is not a PSG, for it violates rules 3 and 4 in the grammar.
The terminal strings 01 and 1 are not in the set (N U EJ' N
(N U Z; , and S8 (starting symbol) is not an element in N.
Example (13} is an unrestricted grammar which means the
productions of the grammar with the form A ----> B, where A
and B are in (N U ) are allowed.

The definition of phrase-structure grammars describes
much too large a class of grammars to deal with in the
process of translation and evaluation. However, it is
possible to add some more restrictions to form a restrictive
grammar, which is less flexible but easier to translate

because of the restricted properties of the grammar. The

restrictions are often placed on the format of the
productions. A context-free grammar is a restrictive type
grammar .

A grammar G = (N, I, P, 8) is a context-free grammar

(CFG) if and only if it is a PSG and the roots of all
productions in P are single nonterminal symboits. Single
productions with this property are referred to as context-
free productions. Below is an example of context-free
grammar
G = ({E}, {+,%x,(,),id}, P, E) where P consists of
E ----> E + E
E ----> E X E

E ---=-> (E)
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E ----> id

This context-free grammar defines the arithmetic expressions

with operators "t and "X and operands represented by
symbol id. Here E is the only variable which represents
expression, and the terminals are "+", "x* u(", 6 ")¥ anpnd id.

The first two productions say that an expression can be

composed of two expressions connected by addition or
multiplication sign. The third production says that an
expression may be another expression surrounded by
parenthesis. The last says a single operand is an

expression. By appliying productions repeatedly we can obtain

more and more compiicated expressions. For example,

E -=—-> E X E (2)
----> E x (E) (3)
--=-=> E x (E + E) (1
----> (E) X (E + E) (33
-—--> (E + E) * (E + E) 1)
-—-=> (id + E)Y X (E + E) €4)
-=-==> (id + id) x (E + E) (4)
~===> (id + id) X (id + E) (4)
-===> (id + id) X (id + id) (4)
The symbol R denotes the act of deriving, that is,

replacing a variable by the right-hand side of a production
for that variable. The numbers appearing on the right-hand

side of the derivations are the production numbers wused by
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the derivations.
A grammar G = (N, L, P, S) is a context-sensitive

grammar (CSG) if and only if it is a PSG and each production

in P is of the following form

(1) a ----> b, where a and b are in (N U £ and
the length of a is less than or equal to the
length of b (i1al <= ibiJ.

(2) § ----> e, where S is the start symbol and e is
the empty string.

The following is an example of context-sensitive grammar,

G = ({S,A}, (0,13, P, 8) where P consists of
S -===> A
S -===> 0A1
0A1 --==> 00A11

This grammar generates strings of form 01, 0011, 000111 as

the PSG's example before. The PFG, CFG, and CSG are some of
the most common formal grammars which are discussed in
formal language theory. There are also some other types of
restricted grammars with more restricted rules like the
Chomsky normal form and Greibach normal form, but they will

not be discussed in this study.

Recognizers

Introduction

The other way to specify a language is in a recognitive

manner, that means defining a tool to recognize it. We



define a recognizer which accepts all the possible output

strings of the language.

Different Classes of Recognizers

A turing machine is the most general class of
recognizer. |1t recognizes the <class of languages definable
by an unrestricted grammar. The basic model of a turing
machine, illustrated in Fig. 2, has a finite control, an

input tape that is divided into cells, and a tape head that

scans one cell of the tape at a time.
Input tape
ralia2iad; ian)
/\
i Finite :
i control :
Figure 2. Basic Turing Machine
The input tape has a leftmost cell but is infinite to the
right. Each cell may hold exactly one of a finite number of
tape symbols (tokens). The current symbol is scanned by the
tape head to determine what to do next, i.e., whether to

change state or to reposition the tape head. The tape head
can be repositioned to the left or right, one cell at a
time.

A pushdown automaton is a recognizer with a read-only

19



input tape, a finite state control, and a push-down stack or
"first in - last out" list. That is, symbols may be entered
or removed at tge top of the list. Fig. 3 is an example of
the stack, the number "1" s the first one input into the
stack and then "2", "3" and "4", but the number "1" will be
the last one to get out from the stack. A nondeterministic
pushdown automaton recognizes the class of context-free

languages.

- W
- W ea

Figure 3. Stack

A pushdown automaton uses the current input symbol on

the tape, the contents of the top element of the stack, and

the current state of the finite state control to determine
an appropriate move. A language is said to be accepted by
the pushdown automaton when some input symbol causes the

push down automaton to enter a final state or when the

20



21

pushdown automaton has emptied its stack after some sequence

of moves.

The last recognizer to be discussed is the finite
state automaton. |t is equivalent to the pushdown automaton
without the pushdown stack. For determining the next move,

it uses only the current input symbol and the current state
of the finite state control. A finite state machine is
always described by the transition diagram. Fig. 4 is a
transition diagram of a finite state machine, which accepts
all the strings beginning with one or more a's and ending

with one or more b's.

LN
4

v

Figure 4. Finite State Machine

In Fig. 4, S is the starting state, and F is the final state
Each label arc defines a transition between the states

caused by the symbol shown on the arc.



CHAPTER 1V

AN OVERVIEW OF THE STATEMENTS

EVALUATION SYSTEM

The purpose of the statements evaluation system (SES)
is to evaluate the syntactic and semantic correctness of
user's input program segments by comparing them with the
template answer provided to the system. The program segment
can include a combination of declaration statements,
assignement statements and if-then-else statements. The
system responses include a lexical analysis report, error
messages and the correct answer to the problem. For example,
with the template answer,
template : declare x,y;

X 1=y + Z;

if Ca > b) then

a := ¢ X (b + 1);
else
a := ¢ X (b - 1);
end if;
the system is able to determine that these two program
segments,
1. declare x;

declare y;

22



X

1=z 4+

Y

if (a > b) then

On the other hand,

a := (b + 1) X ¢;
else
a := bXc - 1Xc¢;
end if;
2. declare y,x;
X =y + 2z
if (a <=b) then
a := ¢ X (b - 1);
else
a := (b + 1) X ¢;
end if;
are equivalent to the template answer.
the system recognizes that the program segment,
3. declare x,y.
X =y + 2;
if (a > b) then
a := ¢ X (b + 1);
else
a := ¢ X (b - 1);
end if;

is not equivalen

output

are printed as a

t to the template answer,

declare x, 2. XX syntax

syntax error "," or ";"

response to the incorrect

SO error messages

error Xx
expected

input.

23



24

Program segment number 4 has no syntactical error, but it is
not performing the same function as the template answer,
therefore, the system responds with an error message and the

correct answer.

4. declare x,Yy:
X =y + 2Z;

if Ca > b) then

a := ¢ X (b - 1);
else
a := ¢ X (b + 1);
end if;
output : incorrect if-then-else statement
The SES bascially has 3 phases, namely, the lexical

analyzer, the parser, and the transiator (see Fig. 5).

tables of
declarations
input text stream assignments
of tokens parse tree expressions
for evaluation

--->,Lexical {----> (Parser |------ > iTranslatori---=---- >
‘Analyzer: H H H :
Figure 5. Structure of Statements Evaluation System
The lexical analyzer divides the input text into separate

tokens ( variables, keywords, labels, constants and



operators).

synta

generated by the lexical analyzer. The translator

the statements

The purpose of the parser is

25

to performs

ctic <checking on the input token stream which is

translates

into standard table formats, s0o they can be

easily evaluated. Consider the statements

The t

kinds

table

1. declare x,y;

X 1T Yy + Z X w;

2. declare y;

declare x;

X 1= w X z + y;

ranslator

translates these statements into

of tables, namely, declaration table,

, and expression table (see Fig. 6 and Fig.

Declaratin table

As

X iinteger:
y tinteger.

signment table Expression table
b | m————- } mmmmmmmm e m -

Figure 6.

-—1 Yy Voza +/ X
- : " '
0 0 sign bit

Translation of "declare x,y; X

3 different
assignment

7)
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Declaration table

iy iinteger:
P x i1integer:
Assignment table Expression table
I fm————— ) mmmmmmmmm -
: ----------- : : w 1 yt +/x:
___________ - H H
0 0 sign bit
Figure 7. Translation of "declare y;declare x; x :=

wXz + y"

The first row of the expression table represents addition
and each column represents multiplication . The last row is
the sign bit for each column, it is set to O if the column

is positive and set to 1 if the column is negative.

How do the tables help in the wevaluation? Two
declaration tables are equivalent if they have the same
variables in the table regardliess of their order. Two
expression tables are equivalent if they have the same

elements regardless of the order of the columns and the
order of the rows of each individual column. Therfore, we
can determine that the tables in Fig. 6 and Fig. 7 are
equivalent. That means the program segment "declare x,y; x
1=y o+ ZXw;" is equivalent to program segment '"declare y;
declare x; X := wXz + y;",

This chapter only gives a brief description of the
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design of the statements evaluation system. A detail
description of the design and implementation is in the

follwing chapter.



CHAPTER V

DESIGN AND IMPLEMENTATION

Lexical Analyzer

The Role of Lexical Analyzer

The purpose of the lexical analyzer is to read the
input, character by <character, and to group individual
characters into tokens (variable names, keywords, labels,

constants, and operators).

input -=-=---- >: Lexical | m——————- > stream of
stream i Analyzer : tokens
Figure 8. General Description of

Lexical Analyzer

To be able to return a token, the lexical analyzer must
isolate the next sequence of characters in the input stream
which designate a valid token. The lexicai analyzer must be
able to ignore blanks, and it is responsibile for

differentiating between different terminal symbols in a

28



grammar . Appendix B contains a table of all the terminal and
non-terminal symbols of the context-free grammar for the
Ledgard mini-language. Each terminal and non-terminal has
its own symbol number which is an internal representation
number for that symbol . The lexical analyzer produces a
token and the number associated with each token, Each
(token,number) tuple is fed to the parser for syntactic
analysis.
For example, with the input statements
a := b + ¢ ;

if a > b then a := ¢; end if

the lexical analyzer returns the following items

Token symbol # description
identifier

1 assignment operator
identifier

5 addition operator
identifier
semicolon

reserved word
identifier

greater than
identifier

reserved word
identifier
assignment operator
identifier
semicolon

reserved word
reserved word

WNOMDMDPDODDNDBEBNND=PNPNDLONN=2DMDION
— >

29
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The Need for a Lexical Analyzer

The statements evaluation system (SES) has 3 phases to
analyze the source text, namely, the lexical analyzer, the
parser, and the tanslator. The lexical analyzer performs
lexical analysis and the parser performs syntactic analysis.
By separating the lexical and the syntactic analysis
processes, the system is easier ‘to implement and we can
construct a more specialized and effecienct recognizer for
tokens. Furthermore, this separation simplifies the design

of the parser.

Reqular Grammar

As described in the previous section, the main purpose

of the lexical analyzer is to return the next input token to

the parser. To be able to return a token, the lexical
analyzer must be able to isolate the next sequence of
characters in the source text which designates a valid

token. To do this, the lexical analyzer must recognize every
valid token, while ignoring "noise" symbol strings such as
comments, blanks, line boundaries, and whatever =else is not
important to the parsing process.

Tokens can be described in several ways. One way of
describing tokens is by using a regular grammar. Using this
method of specificiation, generative rules are given for
producing the desired tokens. For example, the regular

grammar,
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<identifier> ---> aibici....izi0:i1:....:19:
a<identifier>ib<identifier>i....
..2<identifier>

contains the rules for generating the set of identifiers in
the mini-Language.

The other way to describe tokens is in recognitive
manner . Describing tokens by means of how they can be
recognized (or accepted) is often done in terms of a

mathematical model called a finite state machine (or finite

automaton).

Finite State Machine

The output of the lexical analyzer is a function of the
input, and there are only a finite number of actions which
the lexical analyzer can take for any input. Thus, the
lexical analyzer can be discribed by a finite state machine.
A finite state machine can be thought of as a machine
consisting of a read head and a finite state control box.
The machine reads a tape one character at a time (from left
to right), as shown in Fig. 9. At any instant a FSM can be
in only one of a finite number of different states. A change
in state occurs in the machine whenever the next character
is read. Whenever an FSM begins reading a tape, it is always
in a certain state designated as the starting state. Another
type of state is a final state, and if the FSM attempts to
read beyond the end of the tape while in a final state, the

string which was on the tape is said to be accepted by the
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FSM. In other words, the string belongs to the language

which is accepted by the FSM.

tape viavdieinitiidfliiterry o0 0
/\ Read
: i Head

iFinite State
iControl Box H

Figure 9. A Tape Reading Description
of Finite State Machine

Finite state diagrams or transition diagrams are often
used to represent an FSM pictorially. An example of such is
illustrated in Fig. 10. The FSM represented in the diagram
accepts identifier in the mini-language. The first character
in the identifier must be a letter and follow by letters or
digits. The nodes of the finite state diagram represent the
states of the FSM, and in Fig. 10, the states are named S
(starting state) and A (final state). The arcs leading from
one state to another indicate the state transitions, with
the characters immediately above or beside the arcs denoting
the input characters which cause this state transition. The
arrow and the word "START" signify which state of the FSM is
the starting state. In Fig. 10, the starting state is S. The
nodes that consist of a pair of concentric circles are final
states. In Fig. 10, only state A is a final state. Fig. 11

is a transition diagram for an integer number.



START

{a/b/c/. ./2/0/1...9/}

{a/v/c/.../2/] @
7/

Figure 10. A Finite State Diagram for ldentifier

START

\ {/0/1/2.../9/}

{1/2/3.../9/} @

Figure 11. A Finite State Diagram for Integer
Number .
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The operation of the lexical analyzer for the mini-
language is shown in the state transition diagram in Fig.
12. The arcs of the diagram are labelled with the input
symbol which causes the transition. If the input symbol is
such that it corresponds to no arc leaving the state, the
symbol is invalid and the scanner prints an error message.
The actions are labelled on the arc when a transition is
made. The action

RETURN(Ctoken,symbol #)
signifies that token with corresponding symbol number should
be returned to the parser as the input token. With the
finite-state machine description of the lexical analyzer, a
procedure can be implemented which emulates the actions of

the state diagram in Fig. 12.



A ~
/

" SKIP BLANK

3)
N(KEYWORD, KEYWORD NUMBER)

(id,2)

8 s
,\/"
! 2 "non
>Q—-—) RETURN(",",5)
: @ y RETURN(";",6)
( @ S RETURN("(",9)
) }@-——-—) RETURN(")",10)
= 5/6\ » RETURN("=",11)
7
<2 @ > RETURN("<>",12)
< %___, RETURN("<",13)
>
/\9 —> RETURN(">",14)
+
A 10 —> RETURH("+",15)
—N\ 11 RETURN("-",16)
b3
— —) RETURN("*",17)
= _%@_)RETURN(":",ZI)
[0,1,2...9]
[1,2,3...9] 16 ¥ SRETURN(CONSTANT,
a..zA..2,0.9RETUR
[a,b,c,..Zz,A..Z] (CHECK - T
15 :
FOR  NE
RESERVED WORDSREIUR
(16 )
__/  REPORT ERROR
Figure 12. State Transition Diagram for the

Mini-Language
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Implementation

The algorithm for the lexica

in a top-down manner, with

performing individual functions.

| analyzer can be described

five

structure of the lexical analyzer.

H Read_input

Figure 13. Structure of

Fig.

different routines

13 iltlustrates the

the Lexical Analyzer

The Read_input routine is used to

return characters, and store

called buffer, see Fig. 14.

them

read the source text,

in an array structure

36
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procedure Read_input;

var
buffer : stream; {buffer is for storing input
charactersi}
charnum : integer;
i : integer;
¢ch : char;
begin
for i := 1 to 100 do
bufferlil := " ';
ch := ' '3
charnum := 0;
while (not eoin(trm)) and (ch <> '@') do
begin
charnum := charnum + 1;
read(trm,ch);
if ch <> @' then {'e’ is the end marker of
templatel
bufferlcharnuml := ch
else
tem := false;
end;
end;
Figure 14. Procedure Read_input
The heart of the lexical analyzer is the Scanner

procedure which is implemented to emulate the actions of the
finite state machine diagram in Fig. 12. I1ts function is to
group individual characters into tokens and it must be able
to isolate the next sequence of characters in the input
buffer which designates a valid token. The Scanner marks the
beginning and the end of the token in the input buffer, send
the token and its symbo! number to the Get_token routine for
linking all the tokens together to form a token's stream.

See Fig. 15 for the procedure Scanner.



procedure Scanner(buffer:stream;

charnum

integer);

..'9"1);

var
i jok integer;
begin
i = 1;
while i <= charnum do
begin
case bufferlil of
R A R A {skip blanks!
'A'..'Z2',a’ rz’ tidentifierl
begin
jor=
repeat
ior= 0+ 1
until not(bufferl(il in
[lA'..Izl.lal.-lzl'lol
k == i = 1;
get__token(buffer,j,k,2);
end;
'0'..'9° {finteger}
begin
I
repeat
o= 0+ 1
until not (bufferl[il
['0"..'9"1);
k == i = 1;

get__token(buffer,j,k,18);

end;

Figure 15.

Procedure Scanner

38
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begin
get_token(buffer
o= 0+ 1
end;

begin
get_token(Cbuffer
o= 0+ 1
end;

begin
get_token(buffer
P 0o+ 1
end;

begin
get__token(buffer
o= 0+ 1
end;

begin
get_token(buffer
i o= 0+ 1

end;

begin
get_token(buffer
i == i + 1;
end;

begin
get_token(buffer
o= 0+ 1,

end;

(Continued)

’

i,158);

i,186);

1,173

i+53;

i.63;

i,14);

39



end;

end;

l(l

'('

else begin

begin

jos= 0o+ 1y

if sl[jl <> ">° then

begin
get__token(buffer,i,i,13); ¢}
o= 0+ 1

end

else

begin

get__token(buffer,i,j,12);8<>1}
i o= 0 o+ 2;

end;

end;

begin

jo= i
o= 0+ 1

if slil = "=' then

begin
get__token(buffer,j,i,21);(:=1}
o= 0+ 1;

end;

end;

begin
get__token(buffer,i,i,9);
itz 0o+ 1

end;

begin
get_token(buffer,i,i,10);
o= 0+ 1

end;

get_token(buffer,i,i,0); finvalid input}

i =
end;
end;

Figure

15.

+

1;

(Continued)

40



Before describing the function of Get_token, we must
understand how the token is represented and stored. The
internal representation of the token is a record which
contains the symbol, its symbo! number, and a pointer to the

next input token (see Fig. 16).

string = packed arrayf{1..7]1 of char;
token_1ist = record

sym : string;

sym_num : integer;

link : tokenptr;

end;

i Symbol Lo
: Vol e >
R TN
i Symbol number: k |
Figure 16. Internal Representation of Token
Fig. 17 is the ©procedure Get_token, the routine is used to
receive tokens from the Scanner procedure, linking all

tokens together to form a stream of tokens, and build symbol

table for tokens.

41
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procedure Get_token(buffer:stream; j,i,des : integer);
var
k,l : integer;

token : tokenptr;

begin
new{token);
initptr(token); tinitialize pointer}

I == 0;
for k := j to i do
begin
o= 1+ 1
token~.syml1] := bufferlkl;
end;

token™_.sym_num := des;
if des = 2 then
checkres(token,restablel); {check for reserve

words}
if tem = true then
buildtable(token,temphead,templast) {build
symbol table for templates!?
else

buildtable(token,inputhead,inputlast);
fbuild symbol table for inputl

end;
Figure 17. Procedure Get_token
The Check_reserve routine is used to compare all
identifiers with entries in the reserved word table

(declare, if, then, end, else, while, loopl). Fig. 18 is the

procedure Check_reserve.



input

symbol, its symbo!l number and description are printed,

example

Input

procedure Check_reserve(var token: tokenptr;
reserve_table : tablel;
var
i : integer;
begin
for i := 1 to 7 do
begin
if reserve_tablelil~.sym = token~.sym then
begin

token~.sym_num :=
restablel i .sym_num;
end;
end;
end;

Figure 18. Procedure Check_reserve

The last procedure Print_table is used to print all

43

the

tokens recognized by the lexical analyzer. The token

statements

while (a > b) loop

x ¥ 1;

x
]

a := a + 1;

end loop;

listing generated by the lexical analyzer follows.

An



Output

listing

end

loop

from the

14

10

20

21

21

15

18

20

lexical

analyzer

Description

reserved word
left parenthesis
identifier
greater than
identifier

right parenthesis
reserved word
identifier
assignment operator
identifier

invalid token
constant
semicolon
identifier
assignment operator
identifier

addition operator
constant

semicolon

reserved word

reserved word

semicolon

44
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Parser
The Role of the Parser
The parser performs syntactic checking in the
evaluation system, see Fig. 19. The parser input is a token

stream generated by the lexical analyzer, and the output is

a parse tree generated for the input statement.

check syntax

iLexical 1=-=-===--- >) Parser fmm——— >
1Analyzer: stream . H generate error
-------- of —————————- messages
tokens create parse trees
Figure 19. The Role of Parser in the Evaluation
System
The parse tree produced by the parser is not created

physically, the parse tree only exists abstractly as a
sequence of actions made by stepping through the tree
construction process. There are two common forms of parsers
---- operator precedence and recursive descent. The parsing
algorithm used in the implementation of the parser in the
statements evaluation system (SES) is the recursive descent.
A recursive descent parser is constructed by a set of

recursive procedures to recognize its input with no
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backtracking. This method of parsing is more effecient

(though less general) than most top~down parsing method that

allow backup. It should be noted, however, that this highly
recursive technique does not work on all context-free
grammars. That is, certain grammars require backup in order

for sucessful parsing to occur.

In the recursive-descent method of parsing, a sequence
of production applications is realized in a sequence of
function or procedures calls. Iln particular, functions or
procedures are written for each non-terminal symbol. Each

procedure recognizes substrings which are expansions of the
non-terminal. Error signals and error messages should result

when an unexpected terminal is recognized.

Basic Design for Recursive-Descent Parser

Appendix A contains a context free grammar for the
mini-language <consisting of 20 non-terminals. Each non-
terminal of the language has a parsing procedure associated
with it that is used to determine if that nonterminal may

generate an initial substring of the tokens remaining in the

input. Within a parsing procedure, both nonterminals and
terminals can be "matched". To match a non-terminal "A", we
call the parsing procedure corresponding to "A"™ (there may
be recursive calls). To match a terminal symbol "t", we call

a procedure Match(ptr,x,y); ptr is the pointer which points
to the current position in the input tokens stream, x is the

symbol number associated with the token "t" to be matched, vy
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is the message number associated with the error message to

be printed if the token is not in the input stream. For
example to match the token "declare", the symbol number
associated with the terminal "declare" is 1, therefore the
procedure call is

match(ptr,1,1);
Match calls the scanner to get the next token. If this token
is "declare", everything is as expected, and the token is
consumed. Otherwise, a syntax error is detected which
results in an error message followed by termination of the

parsing process. The procedure Match is in Fig. 20.

procedure Match(var ptr : tokenptr;num : integer; messcode
integerl;
begin
if error = false then fno syntax error occured beforel
begin
if next(ptr) = num then {fmatched next token}
{function Next will returns the lookahead token?
ptr := ptr~.link
else {next input token is error}
begin
error := true;
ptr == ptr~.link; {fskip the error
tokenl
end; ‘
{print error message}
if error = true then syntaxerror(messcode);
end;
end;
Figure 20. Procedure Match for Matching Input

Token



To be able to look ahead
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and not to consume the next

input token, a function called "Next"

function Next returns the

symbol number

token. It is different from Match in that

is defined.

The
of the lookahead

Next just "peeks"

at the next token, whereas Match tries to match and consume

it. Fig. 21 is the function Next.

function Next(var ptr : tokenptr)
var
temp : tokenptr;
begin
temp := ptrAa.link;
next = temp~.descrip;
end;
Figure 21. Function Next that Returns

Token

integer;

the Lookahead
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The parsing procedure for each non-terminal is very
easy to implement: If the production for A is
A --—-- > X1 X2 ... Xm
then procedure "A" is simply X1; X2;... Xm, see Fig. 22; C(if
some Xi is a terminal, then we call match(;tr,a.b), where a
is the symbol number associated with Xi, and b is the

message number associated with the =error message to be

printed if Xi is not in the input stream).

procedure A;
begin
X1; fcall procedure X1}

X2 fcall procedure X213}

match(ptr,a,b) {imatch the terminal Xi with

symbol number equal a}l

Xm; {call procedure Xml
end;

Figure 22. Parsing Procedure A
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Parsing Procedures for the Mini-lLanquage

The parsing procedure A in the last section seems very

easy to implement. But how are we going to define the
parsing procedure if A has more than one production, for
example,

A —==== > X1 X2 X3 ... Xm

A -=--= > Y1 Y2 Y3 ... ¥Yn

We must decide what production to try to match,
therefore we need to lookahead and use the lookahead token
to decide what production to choose. Appendix C has a brief
description on LLC1) grammar and generation of the predict
set of production.

The design of the parser is a hierarchial structure of
parsing procedures, which call each other recursively. There
are a total of twenty parsing procedures, each for every
non-terminal in the context-free grammar. The basic
structure of the parser follows the production rules of the
grammar. Fig. 23 is the hierarchial structure of the parser,
which also shows the execution flow of the parsing
procedures. The alphabets on the arcs are the choices of
execution flow and the numbers on the arcs are the sequence

steps of the execution flow. For example, the parsing

procedure "dec_seq", it has two <choices of A and B
determined by the input token. | f the token is not an
identifier, "if" or "while, it calls the parsing procedures

"declaration" and “dec_tail" in that order, otherwise, it
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stops and the execution begins at stmt_seq".
For the mini-language we start with the non-terminal
"start", the production for "start"

¢start> ----> <dec_seq> <stmt_seq>

The procedure "start" is very simple, calling two other

parsing procedures "dec_seq" and "stmt_seq" (see Fig. 24).

procedure start(var ptr : tokenptr);
begin
error := false; fterror is a flag which
sets to true Iif syntax
error occurs}
dec_seq(ptr);
stmt_seq(ptrd;
end;

Figure 24. Parsing Procedure for <start>

As we have seen in Appendix C, the parsing procedure of
<dec__seq> is more complicated, for <dec_seq> has 2
productions in the grammar. To construct the parsing
procedure for <dec_seq>, we need to have the predict sets to
make the decision which production to choose. To obtain the
predict sets of non-terminal <dec_seq>, we need to get
first(<dec_seq>) and follow(<dec_seq>), since <dec_seqg> can

produce epsilon.
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Production
<dec_seq> ----> <declaration> <dec_tail>
<dec_seq> ----> epsilon

We can obtain the predict sets of <dec_seq> by the following

steps
predict(<dec_seq> ----> <declaration> <dec_tail>») =
first(<declaration>)
first(<declaration>) = f{declarel
predict(<dec_seq> ----> epsilon) = follow(dec_seq)
To obtain the follow(dec_seq), we need to search for all the

productions in the grammar with <dec_seq> at the right hand

side of the production. There is only one production,

<start> ----> <dec_seq> <stmt_seq>

with <dec_seq> at the right hand side of the production (see

Appendix A).

follow(dec_seq) = first(<stmt_seq>)
first(<stmt__seq>) = first(<statement>)
first(<statement>») = {id, if, whilel

Therefore, the predict sets for <dec_seq> are {declarel and
t{id, if, whilel}l. That is, if the lookahead token is in one
of the predict sets of the productions, in this case, we
choose the predicted production according to whatever the

lookahead token is; otherwise, if the lookahead token is not
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in any predict set, the lookahead token occurs in an illegal
position and we have a syntax error. See Fig. 25 for the

procedrue dec_seq.

procedure dec_seq;

begin
if error = false then
case next(ptr) of {next(ptr) returns
lookahead token}
2,3,19 : ; {id, if, whilel

else begin
declaration(ptr);
dec_taillptr);
end;
end;
end;

Figure 25. Parsing Procedure for <dec_seq>

The predict set of <declaration> is much simpler than

<dec_seq>, for it has only one production.

predict(<declaration> ---->declare <id_list>») =

{declare}

<declaration> has only one predict set and only one element
in the set, that makes the parsing procedure fairly simple,

see Fig. 26.
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procedure declaration;

begin
if error = false then
begin
match(ptr,1,1); fdeclare}
id_listCptr);
end;
end;
Figure 26. Parsing Procedure for <declaration>
predict(<dec_tail> ----> ; <dec_seq>) = {;1}

procedure dec_tail;

begin
if error = false then
begin
match(ptr,6,6); ;13
dec_seq(ptrd;
end;
end;

Figure 27. Parsing Procedure for <dec_tail>»
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predict(<id_list> ====> <id> <id_list_tail>») = {id3}
procedure id_list;
begin
if error = false then
begin
match(ptr,2,2); {id}
id_list_tailCptr);
end;
end;
Figure 28. Parsing Procedure for<id_list>
predict(<id_list_tail>» ===-=> , <id_list>») = {,3}
predict(<id__list_tail> ----> epsilon) =
follow(<id_list_tail>)
To compute follow(<id_list_tail»>»), we check all
occurences of <id_list_tail> on various right hand sides of

all the productions. Since it appears only in

<id_listy ====> <id> <id_list_tail>
follow(<id_list_tail>») = follow(<id_list>)
Inspecting all occurences of <id_list> on the right hand

sides of all productions, we conclude that
follow(<id_list>) = follow(<declaration>)
since <declaration>» -———=)> declare <id_list> is the only

production with <id_list> at the right hand side.
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follow(<declaration>) = first(<dec_tail>») = §;} =

follow(<id_list__tail>») =

predict(<id_list_tail> ----> epsilon)
Therefore, the predict sets for <id_list_tail> are {,} and
{;}, the parsing procedure for <id_list_tail> is in Fig. 29.

procedure id_list_tail;

begin
if error = false then
case next(ptrl of
6: ; ;3
else begin
match(ptr,5,26); t,1
id_list(ptrd;
end;
end;
end;
Figure 29. Parsing Procedure for <id_list_tail>
We have finished all the parsing procedures for the
declarations part of the mini-language, and are ready for
the statements sequence procedure. The start symbol for

statements sequence is <stmt_seq> with production
<stmt_seq> ----> <statement> ; <stmt__tail>
The procedure <stmt_seq> is very simple, call <statement>,

match ';’', and call <stmt_tail>, see Fig. 30.

1



procedure stmt_seq;

begin
if error =
begin

faise then
statement(ptr);
match(ptr,6,6);
stmt_taitlptr);

end;
end;

Figure 30. Parsing Procedure for

The non-terminal <statement>

<statement> ----> <assgn_stmt>
<statement> ----> <if_stmt>
<statement> ----> <loop_stmt>

————>

predict(<statement>

first(<assgn_stmt>) =

———=>

predict(<statement>

first(<cif_stmt>)

I

predict(<statement>

first(<toop_stmt> =
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<stmt_seq>

has 3 productions,

<assgn_stmt>) =

¢Cif_stmt>) =

<loop_stmt>) =

fid}
= tifl
{whilel



procedure statement;

begin
case next(ptr) of

2 : assgn_stmt(ptr); tidl}
3 : if_stmt(ptrd; tifl
19 : loop_stmt(ptr); {fwhilel
else syntaxerror(25);
end;
end;
Figure 31. Parsing Procedure for <statement>

<stmt_tail> has 2 productions in the grammar,

The

<stmt_tail>» ----> <statement> ; <stmt_tail>
<stmt_tail> ----> epsilon

predict(<stmt_tail> -=--=-> <statement> ; <stmt_tail>) =
first(<statement>) = {id, if, whilel
predict(<stmt_tail>» ----> epsilon) =

follow(<stmt__tail>) =
follow(<stmt_seq>) = fend}, f{elsel}, and [end of inputl.

<stmt_tail> procedure is in Fig. 32.
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procedure stmt_tail;

begin
if error = false then
if ptroa.link <> nil then fnot end of input?}
case next(ptr) of
7 : fend}
8 : ; felsel
else begin
statement(ptr);
match(ptr,6,6); ;1
stmt__tail(ptrl;
end;
end;
end;
Figure 32. Parsing Procedure for <stmt_tail>

Fig. 33 to Fig. 36 are the parsing procedures for

<assgn_stmt>, <if_stmt>, <endif_else>, and <loop_stmt>.

<assgn_stmt> ----> <id> := <expr>

procedure assgn_stmt;

begin
if error = false then
begin
match(ptr,2,2); {id}
match(ptr,21,21); {:=1
expr(ptrd;
end;
end;

Figure 33. Parsing Procedure for <assgn_stmt>
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<if_stmt> ----> if <comparison> then
<stmt_seq>
<endif_else>

procedure if_stmt;

begin
if error = false then
begin
match(ptr,3,3); {ifl
comparison(ptr);
match(ptr,4,4); fthenl
stmt_seq(ptrl;
endif_else(ptrl;
end;
end;

Figure 34. Parsing Procedure for <if_stmt>



<endif_else> ----> end if
<endif_else> ----> else
<stmt_seq>
end if

procedure endif_else;

begin
if error = false then
begin
case next(ptr) of
7 : begin {end}
match(ptr,7,7);
match(ptr,3,3); {if}
end;
8 : begin {elsel
match(ptr,8,8);
stmt_seq(ptr);
match(ptr,7,7); fend}
match(ptr,3,3) ; (ifl
end;
end;
end;
end;

Figure 35. Parsing Procedure for <endif_else>

63
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<{loop_stmt> ----> while <comparison> loop
<stmt__seq>
end loop

procedure loop_stmt;

begin
if error = false then
begin
match(ptr,19,19); {whilel
comparison(ptr);
match(ptr,20,20); {loopl
stmt_seq(ptr);
match(ptr,7,7); fend}
match(ptr,20,20); floopl
end;
end;
Figure 36. Parsing Procedure for <loop_stmt>
The "comparison" in the while statement is in the form
of
( a > b)
(count <> 10)
There are four relational operators in the mini-language
(n=n, ben, Hyn, MHM), the parser looksahead for the token
and returns an error signal if the token is not in the set
of relational operators. The following is the LL(C1) grammar

for <comparison>.
<comparison> =----> ( <factor> <comp_tail>)
<comp_tail> -—=-> = <factor> )

<comp_tail> -=~=-=> <> <factor> )



<comp_tail> =--=--> ¢« <factor> )

<comp_tail» =----> > <factor> )

procedure comparison;

begin
if error = false then
begin
match(ptr,9,9); {3
factor(ptr);
comp__taill(ptr);
end;

end;

procedure comp_tail;

begin
if error = false then

case next(ptr) of

11 : begin
match(ptr,11,11); {=1
factor(ptr);
matchCptr,10,10); €)1
end;
12 : begin
match(ptr,12,12); {<>3
factor(ptr);
match(ptr,10,10); {13
end;
13 : begin
match(ptr,13,13); <}
factor(ptr)d;
match(ptr,10,10); )1}
end;
14 : begin
match(Cptr,14,14); >3
factor(ptr);
match(ptr,10,10); {113
end;
else syntaxerror(28);
end;
end;
Figure 37. Parsing Procedures for <comparison>,

<comp_tail>
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Let's look at a simple arithematic expression,
X X a + b X ¢
this expression gives different results, depending on the
grammar for the expression. For example if the grammar for

the expression is

<expr> =----> <expr> + <expr>
<expr> =-—-=--=> <expr> X <expr>

<expr>» =---~> <expr> - <expr>

<expr> -~----> id | constant | (expr)

This grammar is ambiguous because there can be more than one

parse tree generated by the grammar, see Fig. 38.

A
AN VA
/\

X a

Figure 38. Parse Trees Generated by Ambiguous Grammar.
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We cannot use an ambiguous grammar in the parser, for

we cannot uniquely determine which parse tree to select for

a sentence. To make the grammar unambiguous, we have to
separate the multiplication part from the addition,
subtraction part. The modified grammar in which
multiplication has higher priority than addition and

subtraction is as follows,

<expr> -==—=> <term> <ferm_tail>
<term_tail> -=—==> + <expr>

<term_tail> —-——==> = (expr>

<term__tail> -=-=-=-> epsilon

<term> --=-=-> <factor> <factor_tail>
<factor_tail> -—===> X (term>

<factor_tail> -=-==> epsilon

<factor> -=-==> <constant>

<factor> -—-—=-> <jid>

<factor> -===> ( <expr> )

Fig. 39 gives the parsing procedures needed to parse
expression.

procedure expr;

begin
if error = false then
begin

term(ptr)d;
term_tail(ptrl;
end;
end;

Figure 39. Procedures for Parsing an Expression



predict(<term_tail> —-~-=-=> + <expr>) = {+}
predict(<term__tail> ----> - <expr>) = {-1}
predict(<term_tail> ----> epsilon) = follow(<term_tail>») =
follow(<expr>) = follow(<assgn_stmt>) = follow(<statement>)
= {;1

procedure term_tail;

begin
if error = false then
begin
case next{(ptrl) of
156 : begin
match(ptr,15,15); {+1
expr(ptr);
end;
16 : begin
match(ptr,16,16); {-1
expr(ptr);
end;
6 HE ;13
else ;
end;
end;
end;

Figure 39. (Continued)



procedure term;

begin
if error = false then
begin
factor(ptrd;
factor_tail(ptrld;
end;
end;
predict(<factor> ----> <constant>») = fconstant?}
predict(<factor> ==--=> <¢id>) = {id3}
predict(<factor>» —----=> ( <expr> ) ) = {(}

procedure factor;
begin
if error = false then

case next(ptr) of

18 : match(ptr,18,18); tconstantl
2 : match(ptr,2,2); fid}
9 : begin
match(ptr,9,9); {1}
expr(ptr);
match(ptr,10,103); {)1
end;
else match(ptr,0,27); {skip error
end;

end;

Figure 39. (Continued)

token?t



procedure factor_tail;

begin
if error = false then
begin
case next(ptr) of
1511616 L] {+1_1;}
17 : begin
match(ptr,17,17); {Xx}
term(ptr);
end;
6 : ;
end;
end;
end;

Figure 39. (Continued)

We have defined all the parsing procedures for each non-
terminal symbol in the Ledgard mini-language. Now jfet’'s look
at a simple example to see how the praser works. For

example, the input statement is,

id := id X constant + id ; [end of input]l

Step Procedure Calls Remaining Input

1 start id := id X constant + id ;[end]l

70
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dec_seq

stmt_seq

statement
match(";")
stmt_tail

assgn_stmt
match(";")
stmt_tail

match(id)
match(":=")
expr

match(";")
stmt_tail

match(":="

expr
match(";")
stmt_tail
expr

match(";")
stmt_tail

term
term_tail
match(";")
stmt_tail

factor
factor_tail
term_tail
match(";")
stmt_tail

match(id)
factor_tail
term_tail
match(";")
stmt__tail

id constant
id constant
id constant

:= id X constant

:= id X constant

id X constant +

X constant

X constant

X constant

X constant

71

+ id ; [endl
+ id; [endl
+ id; [end]l
+ id; [end]
+ id; [end]
id; [endl
[end]

[end]

[end]

[end]
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13

14

156

16

17

18

19

factor_tail X constant + id; [endl
term_tail

match(";")

stmt_tail

match("x") X constant + id; [end]
term

term_tail

match(";")

stmt_tail

term constant + id ; [end]
term__tail

match(";")

stmt_tail

factor constant + id ; [end]l
factor__tail

term_tail

match(";")

stmt__tail

match(constant) constant + id ; [end]
factor_tail

term_tail

match(";")

stmt_tail

factor_tail + id ; [(endl
term_tail

match(";")

stmt_tail

term_tail + id ; [end]
match(";")
stmt_tail

match("+") + id ; [endl
expr

match(";")

stmt_tail

72
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expr id ; [end]
match(¥;")
stmt_tail

term id ; [endl
term_tail

match(";")

stmt_tail

factor id ; [end]
factor_tail

term_tail

match(";")

stmt_tail

match(id) id 3 [endl

factor_tail

term_tail

match(";")

stmt_tail

factor__tail i [endl

term_tail {factor_tail will match epsilon?
matchi{";")

stmt_tail

term_tail ; [endl

match(";"); fterm_tail will match epsiliont

stmt__tail

match(';") ; [endl
stmt_tail

stmt_tail [endl

Done! {stmt_tail will match end of input}



74

Transtator

The Role of the Transiator

The best way to evaluate different statements is to
translate the statements into a standard format, and then
compare it to the template answer. The standard format can
be a symbol table, 3-address code, quadruples or tree
structure. The translator in this project translates
different statements into different structures, depending on
the statement structure and its complexity. Fig. 40 is the
structure of the statements evaluation system (SES)

including the translator.

tables of
stream declarations
input text of tokens parse tree assignments
expressions

for evaluation
-==>iLexical (-===~ >

iparseri----- itranslatori------ >
1Analyzer) R H H
Figure 40. Structure of Statements Evaluation System
The translation scheme used in this ©project is a

syntax-directed translation scheme, which allows a semantic
action (subroutine) to be attached to the production of the
context-free grammar. The subroutine is attached to the
parsing procedure of the recursive descent parser, which is

called at the appropriate time by the parser. The advantages
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of the syntax-directed translation scheme are its directed
transliation in terms of the syntactic structure of the
grammar and its easiness in modification without disturbing
the existing translations, which simplifies the design of

the translator and efficiently exploits the parser.

Semantic Actions

The semantic action is to generate output when a
particular production is recognized from the input. For
example

U ----> ABC {called subroutine wi

is a production with semantic action w associated with it.

The semantic action (called subroutine w) is executed
whenever the parser recognizes in its input a substring x
which has a derivation of the form U ----> ABC --X--> x.

The semantic action can be the generation of intermediate
code (3-address code, quadruples), or the placement of data
into a symbol table, or the computation of values for
variables or the transfering of symbols into different

(standard) formats.

impilementation of Syntax-Directed Transliator

To design the syntax-directed tansiator for the mini-
language, we need to define semantic actions for the parsing
procedures in the recursive descent parser. After the
semantic actions are defined, subroutine codes are generated

corresponding to each semantic action. Subroutine calls are



added to the parsing procedure wherever

is required.

Translation Scheme for Declaration

76

the semantic action

(1) declare x,y,2;
(2) declare x, y;
declare z;
(3) declare x;
declare y;
declare z;
The 3 sets of declaration statements above have the same
effect (define the variables x,y,z). Since x,y and 2z can be
in any order, there are 3C2 = 6 variations in the first set,
6 variations in the second set and 6 in the third set, which
make up a total of 6 + 6 + 6 = 18 combinations of formats
for declaring just 3 variables Xx,y,and z. The statements
evaluation system should be able to recognize all these
different formats of declarations and determine the
equivalence of each statement.
The transliation scheme is to input the variables into a
symbol table (declaration table) when the variable is

recognized by the parser.

declartion part of the production grammar

<declaration»>

—_———

<dec_seq>

-_———

<dec_seq> epsilon

<declaration>» -=-=-=> declare <id_list>

-————)

<dec_tail> ; <dec_seq>

By adding semantic action to the

?

<dec_tail>



<id_list> -=-=> <id> {ACTION 1} <id_list_tail>
¢id_list_tail>» ====> , <id_list>
<id_list_tail> ---=> epsilon
ACTION 1 : input id into declaration table
the recognized variable is placed into the declaration

table, see Fig. 41.

variable name type
i X i integer |
' y i integer |
: z i integer
Figure 41. Declaration Table
The declaration table is implemented as a linked list,

which stores the name and the type of the variables (only
the single type integer occurs in the mini-language). Fig.
42 is the parsing procedure id_list for declaration with

semantic action added.

procedure id_list;
begin
if error = false then
begin
match(ptr,2,2); {id}

insert(dechead,dectail,ptrl; tsemantic actionl
id_list_tail(Cptr);
end;
end;

Figure 42, Parsing Procedure id_list

77
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The insert routine is the semantic action for inputing the
declared variables into the declaration table. The procedure

insert is in Fig. 43

procedure insert(var headptr, tailptr : varptr; ptr
tokenptr);

{insert element into the linked list with headptr and
tailptr point to the head and the tail of the list}

var
idrec : varptr;
begin
new(idrec);
initvar(Cidrec);
idrec~.id[1] := ptr~.sym;
idrec”r.len := 1;
if headptr~_.link <> nil then finsert at the end}
begin
tailptroa.link := idrec;
tailptr := idrec;
end
else
begin {first element}
headptr~.link := idrec;
tailptr := idrec;
end;
end;
Figure 43. Insert Procedure

The following is an example of how the system evaluates
declaration statements,
Template answer : declare u, w;
Input answer : declare w;

declare u;
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The template answer is first fed into the evaluation system.
When parsing the template answer, a template declaration
table is created for storing all the declared variables in
the template answer, which is used to compare with the input
statements later on in the evaluation process. Fig. 44 is

the declaration table for "declare u,w;".

variable name type
' u i integer |
H w i integer |

Figure 44, Declaration Table for "declare u,w;"

Fig. 45 is the declaration table generated for the input
statement when it is translated by the translator. The

evaluation system compares both declarations, they are

considered functionally identical if they all have the same
variables regardless of their order in the table. For
example, Fig. 44 and Fig. 45 have the same variables
although they are not located at the same locations inside
the tables. Therfore, we conclude that the input answer is
correct, which declares the variables "u" and "w" as in the

template answer.

79
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variable name type
‘ w v integer
] u v integer

Figure 45. Declaration Table for "declare w;"
"declare u"

Translation Scheme for Assignment Statement

The translation process for an assignment statement is
a more complicated process than the translation of a
declaration statement. Generally assignment statements can
be written in many different forms, which when combined with
different priorities and characteristics of operations like

multiplication, addition, subtraction and parenthesis, lead

to translation difficulties. For example, a simple
assignment statement I|ike

X = a + b x (2 + 3) - ¢;
can be written in these different forms, which are all

funtionally equivalent,

1. x := b X (2 + 3) -¢c + a;
2. x := a - ¢c + b X(2 + 3);
3. X = a + 2 Xb - ¢ + 3Xc;
4. x := bxX2 + bX3 -¢ + a;

5. x := a -c + 2Xb + b X 3;

6. x := (a - ¢) + bx (2 + 3);
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or in the following similar forms, which are not
functionally equivalent and do not produce the same result
when the statement is executed.
1 X = b + a X(2 + 3) -c;
2. X = a + bX2 + 3 - c¢;
3. x = (a + b) X (2 + 3) =-c;
Let us begin by looking at the production grammar for
the assignment statement.
<assgn_stmt> -===> <id> := <expr>
<expr> -===> <term> <term_tail>»
<term_tail> -===> + <expr>
Cterm__tail> -===> - <Kexpr>
<term_tail> ---=-> epsilon
<term> --=-=~> <factor>» <factor_tail>
<factor_tail> -——==> X Kterm>
<factor_tail> -=-=-=> epsilon
<factor> -=-==> <constant> | <id> | <expr>
The <context-free grammar above <can produce the following

statements :
1. x ==
2. x :=
Because of
the

operators,

execution.

the commutative characteristic of
two statements generate the same

When an operator

a X 3 + b + c;

3 X a + ¢ + b

the nan and nxn

result upon

is commutative |ike "X" and "+",

the order of the operands does not affect the function of
the statement. The =evaluation system should be able to
recognize that the two statements are functionally
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equivalent. To simplify the evaluation process, the
translation scheme translates the assignment statements into
table formats which eliminated the parenthesis in the
assignment statement. Using the table approach made the
internal represenation of the assignment statement easy to
implement and it also simplifies the task of keeping track
the latest assigned value of each variable for substitution.
The assigned identifier is placed into the assignment table;
the expressi;n table which holds all the variablies in the
expression is linked to the assigned identifier, see Fig. 46

and Fig. 47.

Assignment table

_________________ ! Expression table

: X e e e
e e i oa: bi ¢ : i /XY
S E bar oo E
o 0 o signbit
Figure 46. Table Representation of x := a%X3 + b + ¢

The first row of the expression table represents addition,
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and each column represents multiplication. The last row is
the sign bit for each column, it is set to 0O if the column

is positive and set to 1 if the column is negative.

Assignment table

Expression table

: X e i
Py : b 3 el bi RS
S E Car ot ;
o 0 o
Figure 47. Table Representation of x := 3%Xa + ¢ + b

Because of the commutative <characteristic of addition
and multiplication, the order of the rows of each individual
column and the order of the columns of the expression table
do not affect the result of the assignment statement,

therefore the two representations in Fig. 46 and Fig. 47 are

functionally equivalent. Using the table representation of
the assignment statement can simplify and speed up the
evaluation process, and it can be implemented weasily by
arrays or linked lists.

The evaluation system generates separate assignment



tables and expression tables for the template and the input
statements. The input assignment statements are evaluated by
comparing the tables with the template answer. The input
answer is correct if the assignment table is matched with
the assignment table of the template.

For subtraction, the sign bit of the expression table
is set to 1 with the subtracted variable placed into the
expression table. See Fig. 48 for the table representation

for x := a + b - c.

Assignment table

Expression table

: X | === =) e e - = -

e i e e H i ai bt ci H : HE R
c o0 1

Figure 48. Table Representation of x := a + b - ¢

There are two operations on the expression tables,
addition and multiplication. The best way to understand
these two operations is to look at the examples in Fig. 49

and Fig. 50.
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Expression table

table

Expression

Expression table

Addition of Expression Tables

Figure 49.

example above shows the addition of the expression

The

is an expression table

the result

[d+e],

and

[a+b+c]

tables

[a+b+c+d+el.

with expression

table

Expression

table

Expression

table

Expression

Multiplication of Expression

Figure 50.

Tables
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The multiplication of expression tables is more
complicated than addition. An example of multiplying two
expression tables [aXu+b+c) and [d+e] and returns the
expression table [aXuXd+aXuXe+bXd+bXe+cXd+cXe] as a result
appears in Fig. 50.

An example of expression table addition with negative
sign is given in Fig. 51, and Fig. 52 is an example of
multiplying two expression tables fa-b+c]l and [u-wl. The
sign bit is determined by the XOR of the sign bits of the

two colunms which are being muitiplied. Fig. 53 is the XOR

table.
Expression table Expression table
i ay bi ¢ : : H v di e H : H
e e i + i I :
HER T H H H H : : Pow : : :
o 0 ©0 0 1

Figure 51. Addition of Expression Tables
[aXu+b+c], [d-eXwl
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Expression table Expression table
i ai bi ¢ : : : Ul ow ' H :
R R e Rk e X e L el E :
0o o0 1 o 1

Expression table

Figure 52. Multiplying the Expression Tables of
[a+b-c], [u-wl

XOR 1 0
0 1 0
11 0 1

Figure 53. XOR Table

After understanding the table translation of the
assignment statements, we are ready to add semantic actions
to the productions. The following is a revised grammar for
assignment statement with semantic action added.

<assgn_stmt> -===> <id> {input id into assignment
tablel := <expr> ftlinked
expression table to assigned

idl



<expr>

<term_tail>

<term_tail>

<term_tail>
<term>

<factor__tail>»

<factor_tail>»

<factor>

<factor>

S

-————>

-——

————)

-——>

————

-_——

-———

—_————

fcreate expression table}
<term> <term_tail>
+ <expr> { + expression table

derived from <expr>}

88

- <expr> {set negative flag to true?

{ + expression tablel

epsilon
<factor> <factor_tail>»
X <term> { X expression table

derived from <term>

to the last <factor>}

epsilon

<constant> {input constant into

expression table}

{if negative is true
set negative sign

in expression table,

to 1

set

negative flag to falsel

<id» finput id into expression

tablel

fif negative is true

set negative sign to 1 in

expression table, set

negative flag to false}l
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<factor>» -=-==> (<expr>) {return expression table
derived from <e§pr>}

{if negative is true then
return expression table
with all the signs
changed; set negative flag
to falsel

The semantic actions are inside the "{31", and they are added
into the parsing procedures at the same location they are in
the grammar . A semantic action can be implemented in one or
more subroutines, depending on its complexity and function.
The following Figure is an example showing the
generation of the expression tables from the semantic

actions for the expression,

a - (b + ¢c) x e
Remaining input Expression tables created
a - (b +¢) *xe  co-e——e————-
- (b + ¢) Xe  seemee—mee———--
Voal '
0

Figure 54. Generation of Expression Tables
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(b + ¢c) X ¢

negative

to

flag set

ture

b + ¢c) X e

+ c) X e

c) X e

X

to false

negative flag set

(Continued)

Fig 54.
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Voas HE S N X1 e, H
0 1 1 0
- v+ b ¢ H
0 P el el H
1 1
i ai bl ¢t H
H el e H
0 1 1

Figure 54. (Continued)

Translation Scheme for Multiple Statements

The difficulty of evaluating multiple statements is to
keep track of the same variable in different statements. The
value of a variable is defined by the latest executed
statement in which the variable is assigned. Consider the

statements,

X = w;
X = aj;
y := X + b;

After the execution of the first statement, the value of 'w’
is assigned to 'x', and then the value of ’'x’' is replaced by
the value of 'a’' in the second statement. What is the value

of 'y' in the third statement ?
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If all the above statements are executed sequentially,
then the latest value which is assigned to 'x' is the value
in variable 'a’, therefore, the value of y is equal to the
value of 'a' plus the value of 'b'. To be able to evaluate

such multiple statements, the statements evaluation system
must be able to keep track of the order of all assigned
variables, that means the system must know the latest value
which is assigned to the wvariable. The best way to keep
track of the variables is to place the assigned variable
into an assignment table. Let's look at the assignment table

in Fig. 55 for the above example.

Assignment table

Expression table

' X | ====) e — e
== i " : : : : A
| X ettt Dl e R R L L
R HE I
: H HE - : : VX
: y T et ke
e et b L : i ai b : HE R
Figure 55. Assignment Table for X 1= W3 X = aj;
y = X + bj;

Every variable appearing in the right hand side of the

assignment statement is replaced by its latest assigned

value. Since 'w' and 'a’' in “x := w" and "x HER- B are not
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previously defined, 'w’ and - are placed into the
expression table. For the assignment statement "y := x + b",
by searching the assignment table sequentially for 'x' and
'b'  we found that 'x' was previously defined twice,
therefore the latest value ’'a’ is substituted for 'x' in the
expression, and the expression for 'y' becomes "a + b". The
substitution takes place before the variable is input into
the expression table. The semantic action added to the

grammar is as follows

<factor> ----> id f{checks assignment table for id
,if found in assignment table,
substituted the latest assigned
value for id}

f{input id or assigned value
into expression table, if
negative is true then set
negative sign in expression
table; set negative flag to

falsesl

Translation Scheme for Conditional Statement

Because of the complexity and different variations of
nested if-then-else statements, therefore, this study is
restricted to the one level if-then-else statement with the
condition in this format,

(variable conditional operator variable)
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The following are the four conditional operators in the

mini-language,

> < <> ]
The translation process for if-then-else uses a similar
process to transiate sequential statements, except the
statements are separated into two different assignment

blocks, the then-block and the else-block. The then-block is
an assignment table with all the assignment statements
between the 'then' and the 'end’ or between the 'then’' and
the 'else’, see Fig. 56. On the other hand, the else-block
is an assignment table with all the assignment statements
between the 'else’ and the ’'end', see Fig 56. The execution
flow of the statements is determined by the condition of the
if-then—-else, therefore, distinct comparisons will take

place between the then-block of the template and the input,

as well as between the else-block of the template and the
input.
if Ca >b) then if C a >b) then
c := t; }Then-blockt c := t;
3 {
u := a Xb; 3 { u := a X b;
else end if;
a := b + c¢; } Else-block
end if;

Figure 56. Then-block and Else-block



The system also recognizes the complement of the if-
then-else statement, that means the statements in Fig. 57
are considered functionally wequaivalent by the system. To
determine the equivalence of complements of an if-then-else
statement, the system performs cross comparisons between the
then-block and else-block of the template and the input, and

vice versa.

if (. a > b) then if ( a <=b)

a := a + 1; a := a - 1;
else else

a := a - 1; a := a + 1;
end if; end if;

Figure 57. Cross Comparisons Between Complements

The source listing of the translator is in Appendix E.

95



CHAPTER VI

EXAMPLES OF DIFFERENT STATEMENTS

AND RESPONSES
Introduction

This chapter demonstrates how the system responds to
different types of statements. The questions and the
template answers are provided to thé system, and the
possible valid inputs are shown in each example. When a
student logs on to the system, he is asked to compose a
program segment for a spécific programming task. The answer
from the student is then evaluated by the system. First the
system separates statements into a stream of tokens by its
lexical analyzer, then the parser checks the syntax of the
statements. |f the statements contain no syntactical errors,
they are translated into table formats by the translator.
The final!l procedure of the system is to compare all the
tables from the input program segment with the template
answer provided to the system. The answer is correct if the
input and the template are matched, otherwise the input is
incorrect, and error messages and the correct template

answer are printed.
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Declarations

Example 1

Question : Write a program segment to declare
the variables a, b and c.
Answer template  :
deciare a, b, c.
Valid inputs
1) declare a, b, c¢;
2) declare a, b;
declare c¢;
3) declare aj;
declare b;
declare c;
(a, b and ¢ can be in any order of the three sets of inputs)
If the input is valid, the system notifies the user
that the input statements are correct. On the other hand, if
the input is invalid, the system notifies the wuser that the
answer is incorrect and prints the <correct answer. For
example, if the input is

declare a. b, c¢;

the output from the system is

input

declare a. XXsyntax errorXX b, c;
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error : syntax error "," or ";" expected
correct answer :
declare a, b, c¢;
Example 2
With the same question in example 1, let’'s look at
another input,
declare a;
declare x,c;
These input statements are syntactically correct, but they
have not fulfilled the answer of the question, which is to
declare variables a, b and c. The following is the output

from the system,

input
declare a;
declare x,c;
error : incorrect answer

correct answer :

declare a, b, c;

Assignment Statements

Addition

Question : Write a program segment to
calculate the '"sum’' of a, b, c.
Answer tempiate

sum := a + b + c;
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Valid inputs

1) sum

"
@
+
o
+
(2]

2) u := a + b;

»
c
3

]
c
+
o

3) u := a;

v = u + b
sum = Vv + C;
4) sum := a + (b + cJl;

5§) sum (a + b) + c¢;

(a, b and ¢ can be in any order in the 5 sets of inputs)
Assignment expression tables are generated by the

translator when the statements are parsed, and they are used

to compare with the answer template during the evaluation

phase. Above are the wvalid inputs for the question, the

variables a, b and ¢ in the five valid inputs can be in any

order, and the variables u and v are arbitrary.

Subtraction

Question : Write a program segment to

calculate the net profit 'n’ from

the sales 's', tax . and cost

Answer template

Valid inputs
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2) n = s - ¢ - t;

3) n := (s - t) - ¢;

4) n := (s - ¢) -t;
5 u := s - t;
n := u - cj
6) u := s - ¢;
n := u - t;
7 n := s - (c + tJ;

8) u := ¢ + t;

The above question is very easy, we just need to
subtract the cost and the tax from the sales to get the net
profit as in number 1 in the valid inputs. As you can see a
simple task like this can have eight different valid
answers. Like the valid answer in number 6, we can first
calculate the profit from sales minus cost, and then come up
with the net profit by subtracting the tax from the profit.

From the example above, you can also see that

subtraction is more restricted than addition (addition is

commutative but subtraction is not) . For example the
statement 'a - b’ is functionally different from the
statement 'b - a'. But in addition, the statement ’'a + b’ is

functinally equivalent to the statement 'b + a’'. Therefore,
unlike addition, the order of the operands makes a

difference in the function of a subtraction statement.
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Multiplication

Question : Write a program segement to
calculate the simple interest i’
from capital '¢’', interest rate ’'r’
and number of years 'y'.

Answer template
i = ¢c X r X y;

Valid inputs

1) i := ¢ X r X y;
2) U = ¢ X r;
X = u X y;

3) u := ¢;

V 1= u X r;
IEERAE X
4) i := ¢ X (r X y);
5) i := (c * r) X y;

(c, r and y can be in any order in the 5 sets of inputs)

The characteristics of addition and multiplication are
very similar, they are both commutative, that means the
changing the order of the operands of the statement does not

affect the result of the statement.

We can calculate the interest by first getting the
interest for one year, then multiply it by the number of
years, see number 2. Or we can do the whole calculation in

one program statement as in number 1.
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Compound Statement

All the examples above are statements with one kind of
operator. In this section, we are going to encounter
statements with more than one kind of operator. Such
statements are called compound statements. Because of
different characteristics and priorities of different
operators, a compound statement can have more variations of
statement formats and are more complicated to evaluate.
Examples of simple compound statements follow,

Example 1
Question : Write a program segment to
calculate the area 'a’' of the

following figure.

t 3

It is a rectangle with width 'w’,
and the length is divided into 3

sections, 'x', 'y' and 'z'.

Answer template:

a = WXX + WXy + wXz;
Valid inputs

1) a := wXx + wXy + wXgz;

2) a

wWX(x + y + 2);
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3 a := wXx + wX (y + z);
4) u := x + y + Z;
a := u Xw;
5) u := x + y;
t = u o+ Z;
a := w X t;
6) u = wXx;
t = wXy;,
vV 1= wXz;
a = u + t + vj

(x, y and z can be in any order)
(u, t, v are arbitrary variables)
We can solve the question by adding up the areas of the
3 smaller size rectangles, which combine together to form
the big rectangle (see numbers 1 and 6). On the other hand,
we can calculate the length of the rectangle by adding up
all the section lengths together, x + y + z. Then we can
come up the area by multiplying the length by the width 'w’
(see numbers 2 and 4).
Only a few of the valid inputs are listed above.
Example 2
Question : Write a program segment to
calculate the area 'Area’ of the

following figure.



Answer

Valid

template:

inputs
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It

is a

and the

rectangle with width a+b,

sections,

Area :=

1)

2)

3)

4)

5)

6)

7)

Area

Area

Area

Area

c
"

Area

Area

Area

length is divided into 2

'x' and 'y'.

aXx + aXy + bXx + bXy;

axXx + aXy + bXx + bXy;
(a+b) X (x+y);
aX(x + y) + bX(x + y);

xX(a + b) + yx(a + bJ);

a + b;

X + Y3

.

u X v
axX(x + y) + bXx +bXy;

xX(a +b) + yXa + yXb;
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Examplie 3

Question : Write a program segment to
calculate the shaded area 'Area’ of
the following figure.

V1171171717777 73

(2]

V1111717717770
V1171771717777 7%
e e
It is a rectangle with width ¢,
and the length is u.
Answer template:
Area := uXc - aXc - bXc;
Valid inputs :
1) Area := uXc - aXc - bXc;
2) Area := ¢ X (u - a - bJ;
3) Area := (u - (a + bl)) X ¢;
4) Area := ¢ X ( u - a -bl;
5§ x := a + b;
y = u - X;
Area := y X c;
6) x := u - a;
y := x - b;
Area := ¢c X y;

Again only a few of the many variations are given

above.
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lf-then~-else Statements

Example 1

Question : Write a program segment to add 1 to
a if a is‘negative, and subtract 1
from a if a is positive.

Answer template

else

end if;

Valid inputs

1Y if ¢ a > 0) then

a := a - 1;
else

a := a + 1;
end if;

2) if C a <=0) then

a := a + 1;
else

a := a - 1;
end if;

From the above examples, you can see the number of
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variations of formats that a simple statement can have.

This chapter only gives some of the simple examples for
demonstrations. The more complex the statements are, the
more variations they can have, and the more difficult to

evaluate them.



CHAPTER Vi1

SUMMARY, FUTURE STUDY AND DEVELOPMENT

Summary

Purpose of this study was to <create a statements
evaluation system, which can be developed into an
interactive tutorial system in evaluating input program
segments and responding with evaluation messages and correct
answers. The system served as a computer assisted

instruction system in helping users in improving programming

skills and techniques. Through the system, a student can
learn from his past mistakes; he will be able to improve his
logic and his skills in developing algorithm.

The implemented system is written in Pascal running on
an IBM PC environment, and it is implemented to respond to
the mini-language by Ledgard and Marcotty. The system is

built from the ground floor; from construction of the LLC1)

grammar for the mini-language to the code generation of the
lexical analyzer, parser and translator. All the components
of the system are described in detail including the design

and implementation methods.

Future Study

Availability of future development surrounding the area
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of tutorial system in program improvement is unlimited.
Technology is changing so fast that programming languages
are constantly developing in order to become more powerful,
easy to read/write, and faster in terms of <compilation and
execution time. Program improvement systems will become very
helpful, both in formal classroom teaching and technical
training. Proposed area of further research associates with
the area

1) creation of a fully automatic system by utilizing
the compiler optimization technique;

2) development of an interactive system which is
capable of comparing separate inputs from different
users, so that, students will be able to learn from
other students’ programming techniques or mistakes;

3) research in the area of automated algorithm

improvement system.
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10.

11.

12.

13.

14

15.

16.

CONTEXT-FREE GRAMMAR

<start>
<dec_seq>
<dec_seqg>
<declaration>

<dec__tail>

<id_list>
<id__list_tail>
<id_list__tail>

<stmt_seq>
<stmt_tail>
<stmt__tail>
<statement>
<statement)>
<statement>
<assgn_stmt>

<if_stmt>

APPENDIX A

—_——

—_———

-_———

-_———

—_——

————

-———

-_——

-——

—-————

—_———

—_———

-———>

-—==>

(MINI-LANGUAGE
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~---LEDGARD)

<dec_seq> <stmt_seq>

<declaration> <dec_tail>

epsilon

declare <¢id_list>

;i <dec_seq>

<id> <id_list_tail>
,» <id_list>

epsilon

<statement> ; <s
<statement> ; <s
epsilon
<assgn_stmt>
<if_stmt>
<loop_stmt>
<id> := <expr>
if <comparison>
<stmt__seq>

<endif_else>

tmt_tail>

tmt__tail>

then



17.

18.

19.

20.

21.

22.

23.

24 .

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

<endif_else>

<endif_else>

<loop stmt>

<comparison>
<comp_tail>
<comp__tail>
<comp__tail>

<comp__tail>

<expr>
<term_tail>»
<term_tail>
<term_tail>
<term>
<factor_tail>
<factor_tail>
<factor>
<factor>

<factor>

_————

—_———

—_———

—_————

—_———

_————)

—_———

—_———

—_———

_———

—_———

—_———

—_———

B

—-————

—_———

————)

-———

end if

else

<stmt_seq>

end if

while <comparison>

loop

<stmt_seq>

end loop

( <factor> <comp_tail>

= <factor> )

<> <factor> )

¢ <facotr> )

> <facotr> )

Cterm> <term_tail>

+ <expr>
- <expr»>
epsilon

<factor>
X <term>

epsilon

<factor_tail>

<constant>

<id>

( <expr>

)



APPENDIX B

TERMINAL AND NON-TERMINAL SYMBOLS

OF MINI-LANGUAGE (LEGARD)

The numbers on the left-hand side of the symbols are

the internal representation numbers of the symbols.

TERMINAL SYMBOLS NON-TERMINAL SYMBOL

1 declare

2 id 22 <dec_seq>

3 i f 23 <dec_tail>

4 then 24 <id_list>

5 ' 25 <id_list_tail>
6 H 26 <stmt_seq>

7 end 27 <stmt_tail>
8 else 28 <statement>
g ( 29 <assgn_stmt>
10 ) 30 <if_stmt>

11 = 31 <endif_else>
12 <> 32 <loop_stmt>
13 « 33 <comparison>
14 > 34 <comp_tail>
15 + 35 <expr>

16 - 36 <term__tail>
17 X 37 <term>

18 constant 38 <factor>

19 while 39 <factor__tail>
20 loop 40 <operand>

21 := 41 <start>
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APPENDIX C

Basic Background for LL(1) grammar and predict set

Let's take a look at a LLC1) grammar for the mini-

language in Appendix A, the production for "dec_seq"

<dec_seq> = @====-=- > <declaration> <dec_tail>
<dec_seq> =——=-- > epsilon
in defining the parsing procedure corresponding to <dec_seq>
we run into a problem: More than one production has

<dec_seq> as a left hand side in the Grammar. We must decide

what production to try to match. If we try to match the
first production and fail, it is too late to try the second
now since we have already consumed the input tokens. We

therfore peek ahead one token (without deleting it) and use
this lookahead symbol to decide what production to choose.
Consider the production
A ----> X1 X2 ... Xm

For what lookahead tokens should we decide to try this
production? We need the set of all possible lookahead tokens
that might indicate that this "A" production is to be
matched, and none other. Sine a lookahead is only a single
token, we want the set of first (leftmost) tokens that could

be produced from the string X1 X2 ... Xm. We call this set
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first(X1...Xm). |f the leftmost symbo i X1 is a terminal,
then clearly, first(Xt...Xm) = X1. However, if X1 is a
nonterminal, then first(X1...Xm) will depend on what

terminals X1 can generate. So we begin by computing "first"
for each right hand side corresponding to X1.

For example, the production of X1 is,

X1 -=---> Y1 Y2 ... ¥Yn

X1 -=-=-=> 21 22 ... Zm

Since X1 has 2 productions, therefore the set of first(Yy1l)
and first(Z1) will be included in first(X1...Xm).

What if X1 can generate epsilon?

A ---=-> X1 X2 .... Xm

X1 ====> Y1 Y2 ... ¥Yn

X1 ====> 21 22 ... Zm

X1 -~--> epsilon
Then first (X1...Xm) depends on X2 as well. In particular,
if X2 is a terminal, it is then included in first(X1...Xm).
If it is a non-terminal, we compute "first" for each of its

corresponding right hand sides. Similarly, if both X1 and X2
can produce epsilon, we consider X3, and so on. What if the

entire right hand side can produce epsilon?
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A ----> epsiton
or
X1 Xm ----- > epsilon
The look ahead will then be determined by those terminals
that can follow the left hand side ("A" in our examplel). We
define a set of tokens follow(A) equal to those tokens that
can follow "A" in some legal derivation. As an example, if
the grammar has
Z ----> Y1 ¢ Y2 At Ym Y1, Y2,...Ym, A
are non-terminals
c,t are terminals
X ====> Vi A B Vn Vi...Vn, A, B are
non-terminals
B ----> a
B ---=-> b
as productions, then "t" will be in follow(A). Further, the
terminals a, b in the "first" sets of all the right hand
side of the B-productions will be in follow(A). The set
follow(A) will have t, a and b. We now define the set of
lookahead tokens that will cause the prediction of the
production
A ----> X1 xXm



119

Call this set Predict. As we have seen,
predict(A ---=-> X1 ... Xm) =
first(X1 ... Xm) + Cif X1 ... Xm ----> epsilon

then follow(A))

That is, any token that can be the first symbol produced by

the right hand side of a production will predict that

production. Further, if the entire right hand side can
produce epsilon, then tokens that can immediately follow the
left hand side of a production will also predict that
production.

We use predict to figure out which production to use if
there is a choice. We may now have three cases

1. The lookahead token is in the predict set of exactly
one production. In this case, we choose the predicted
production.

2. The lookahead is in the predict set of no production.
In this case, clearly, the lookahead token occurs in an
illegal position, so we have a syntax error.

3. The lookahead token is in the predict set of more than
one production. This is not indicative of any error in
the input string; it is, rather, a property of the
grammar. We can analyze the grammar even before we
start parsing to determine if some token can be in the
predict set of more than one production. Such a CFG
cannot be parsed by recursive descent, and some other,
more powerful technique may have to be used.

Therfore, we will parse only those context-free grammar that
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have disjoint predict sets for productions that share a
common left hand side. context-free grammar that obey this
restriction are called LLC1) grammar . Appendix A is the
LLC1) grammar for the mini-language. Since a language may be
generated by more than one grammar, it may still be possible
to write another grammar for the same language that has the
LLC1) property. The following is the formal definition of an

LLC1) grammar.

A grammar G is LL(C1) if and only if

for all rules A ----> «1 | x2 | ... «n,
1. first(xi) N first(xj) = @ for all i <> j
and, furthermore, if xi ~--%X--> epsilon, then

2. first(xj) N follow(A) = @ for all j.

The first and follow sets used in this definition are the
same sets we defined before, and they can be defined in
mathematical terms as follows. Given some string « € VX, the
set of terminal symbols given by first(x) represent the
leftmost derivable symbols of a and this set is given by the

equation

first(x) = fw: &« --X-=> w ... and w € Vi

The follow sets are defined for a nullable nonterminal A

(one which can produce the empty string). The definition for

the follow sets is given by
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follow(A) = {w € Vi S' --%X--> xAB]}
where w € first(B8) and S is the start symbol of
the grammar.
The predict sets of all the non-terminals in the mini-

language are in the LL(1) parse table in Appendix D.



APPENDIX D

LL(1) PARSE TABLE FOR MINI-LANGUAGE (LEDGARD?

The following is the LL(1) Parse Table for Mini-
Language (Ledgard Henryl). For each non-terminal symbol, a
list of terminals and the productions they predict are
listed. Terminals not listed predict no production and thus

are erroneous .

<start> symbol #* production #
declare 1 1
id 2 1
i f 3 1
while 19 1
<dec_seqg> symbol # production #
declare 1 2
id 2 3
if 3 3
while 19 3

<declaration> symbol # production #

declare 1 4
<dec_tail> symbol # production #
; 6 5
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<id_list> symbol # production

<id_list_tail> symbol #production

' 5 7

H 6 8
<stmt_seq> symbol # production
id 2 9

if 3 9
while 19 9
<stmt_tail> symbol # production
id 2 10

i f 3 10
while 19 10
eise 8 11
end 7 1"
end of input 11
<statement> symbol # production #
id 2 12

if 3 13
while 19 14

<assgn_stmt> symbol # production #
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<endif_else> symbol

<loop_stmt> symbol

<comparison> symbol

<comp_tail> symbol

<> 12

13
> 14
<expr> symbol
constant 18
id 2
C 9

<term_tail> symbol

+ 16

- 16

i 6
<term> symbol
constant 18

id

( 9

production

production

production

production

producti

producti

producti
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<factor> symbol # production #
constant 18 32
id 2 33
( 9 34

¢<factor_tail> symbol # production #

X 17 30
+ 15 31
- 16 31



APPENDIX E

Source Listing of translator

procedure syntaxerror(messcode : integer); forward;
procedure dec_seq(var ptr: tokenptrl); forward;

procedure declaration(var ptr : tokenptrl); forward;
procedure dec_tail(var ptr : tokenptrl; forward;

procedure id_listCvar ptr : tokenptr); forward;

procedure id_list_tail(var ptr : tokenptr) ; forward;
procedure stmt_seq(var ptr : tokenptrl); forward;

procedure stmt_tail(var ptr : tokenptrl); forward;

procedure statement(var ptr : tokenptrl); forward;

procedure assgn_stmt(var ptr : tokenptrl); forward;

procedure if_stmt(var ptr : tokenptr); forward;

procedure endif_else(var ptr : tokenptrl); forward;

procedure expr(var ptr : tokenptr;var idhead,idtail
:varptrl); forward;

procedure term__tail(Cvar ptr : tokenptr;var idhead,idtail
:varptr;var multi:boolean;var old :varptr); forward;

procedure term(var ptr : tokenptr;var idhead,idtail
:varptr;var multi:boolean;var old : varptr); forward;
procedure factor__tail(var ptr : tokenptr;var idhead,idtail:
varptr;var multi:boolean;var old : varptr); forward;
procedure factor(var ptr : tokenptr;var idhead, idtail
varptri;var multi:boolean;var old : varptr); forward;
procedure comparison(var ptr : tokenptr); forward;
procedure comp_tail(var ptr : tokenptr); forward;
procedure loop_stmt(var ptr : tokenptrl); forward;
procedure merge(var heada,taila,headb,tailb: varptr);
forward;
procedure match(Cvar ptr : tokenptr;num : integer; messcode
integer);
var
i : integer;
begin
if error = false then
begin
if next(ptr) = num then
ptr = ptr~.link
else
begin )
error := true;
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error := true;

ptr := ptr~.link; tskip the error
token}

end;
i = 1;
while (ptro.symlil] <>’ ') and(i <= 7) do
begin

writeCtrm,ptr~_symlil);

i o= 0 o+ 1;
end;

writeCtrm,"' 'J;

if error = true then syntaxerror(messcode);
if ptro.symli1] = "5’ then writeln(Ctrm);
end;
end;

procedure syntaxerror;

begin

case messcode of

1 : writeln(Ctrm, 'XXdeclarations or statements
expectedxx ');

2 : writeln(Ctrm, "XXid expectedXxx');

3 writeln(trm, 'XXjf expectedXx’');

4 writeln(Ctrm, ' 'XXthen expectedxx’);

5 writelnCtrm, "XxX" " expectedXx’');

6 writeln(trm, "xXx" ;" expectedXx’);

7 writeln(trm, ' XXend expected*xx’);

8 writeln(trm, ' 'XXelse expected*x');

9 : writelnCtrm, "XX" (" expectedXx’');

10 : writelnCtrm, "Xx")" expectedXXx');

11 : writeln(Ctrm, "XX"=" expectedXx’');

17 : writelnCtrm, "XX"X" expectedXX');

18 : writeln(Ctrm, 'constant expected');

19 : writeln(trm, 'XXwhile expectedXx’);

20 : writeln(Ctrm,’XX]Joop expectedXx’);

21 : writelnCtrm, "XX":=" expectedXxx’);

25 : writeln(Ctrm, "XXassgn,if_then_else,while_loop

statements expected’');

26 : writelnCtrm, 'XXx" " o "," expected’);

27 : writeln(Ctrm, "XXconstant,id,or "(" expectedXxXx');

28 : writeln(Ctrm,'XXrelational operator expectedXx');

end;

writeln('XXXExecution terminatedXXxx');
error := true;
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end;
procedure initvar(var idrec : varptr);
var
i : integer;
begin
idrec™.link := nil;
for i := 1 to 10 do
idrec~r.idlil := 7 '
idrec”~.len := 0;
end;
procedure subsit(var head, tail : varptr; var ptr
tokenptrl;
var
temphead, temptail : varptr;
i,j : integer;
tempptr,ioc : varptr;
begin

new(temphead);
initvar(temphead);
temptail := nil;

for i := 1 to expnum - 1 do
begin
if expheadlil~.link~.id [1]1 = ptr~.sym then
begin
loc := expheadlil”~.link~.link;
while loc <> nil do
begin

new(tempptr);
initvar(Ctempptr);

for j := 1 to loc”~.len do
tempptr~.idljl := locr.idljl;
tempptr~.len := loc™.len;
if temphead”~.link <> nil then
begin
temptail~.link := tempptr;
temptail = tempptr;
end
else
begin
temphead”~.link := tempptr;
temptail := tempptr;
end;
loc := loc™.link;

end;



end;
end;
if temptail = nil then
insert(Chead,tail,ptr)
else

merge(head,tail,temphead,temptaill;

end;

procedure merge;
begin
if heada~.link <> nil then
begin
taila~.link := headb”.link;
taita := tailb;
end
else
begin
heada~.link := headb”~.link;
taita tailb;
end;

end;

procedure concat(var heada, taila,old,
varptrl;
var
ptri, ptr2 : varptr;
temphead, temptail : varptr;
ptr,save : varptr;
i : integer;

begin
new(temphead);
initvar(temphead);
new(temptaill;
initvar(temptaill;
ptr1 := old~.link;

while ptr1 <> nil do
begin
ptr2 := headb”~.link;
while ptr2 <> nil do
begin
new(ptr);
initvar(ptr);

if temphead”~.link = nil then

begin

headb,

tailb
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temphead~.link := ptr;
temptail := ptr;
end
else
begin
temptail~.link := ptr;
temptail := ptr;
end;
for i := 1 to ptri~_len do
begin
ptr~o.len := ptro.len + 1;
ptro.idiptr~.len]l := ptri~.idlil;
end;
for i := 1 to ptr2~.1len do
begin
ptroa.len := ptr~.len + 1;
ptroa.idliptr~.len]l := ptr2~_.idlil;
end;
ptr2 := ptr2~_1ink;
end;
ptr1 := ptri~.link;

end:;

save := old;
merge(heada,old,temphead,temptail);
taila := temptail;

old := save;
end;
procedure printdec(dechead : varptrl;
var
ptr : varptr;
begin
Writein( '  XXXXXXKKKKKKKKKKKKKK ) ;
ptr := dechead”~.link;
while ptr <> nil do
begin
writelnCptr~.idl11);
ptr := ptr~_link;
end;
end;
procedure printid(var exphead : vartable);
var
ptr : varptr;
i : integer; j = integer;

begin



writeln;

writeln('XXXThe jdentifierXxx');

for i := 1 to expnum do

begin
ptr := expheadlil~.iink;
while ptr <> nil do
begin

if ptr~.len > 0 then
begin

for j := 1 to ptr~.len do

writel(ptr~.idl[jl);
writeln;

end;
ptr := ptr~.link;
end;
end;
end;
procedure id_list_tail;
begin
if error = false then
case next(ptr) of
6: ; ;13
else begin
match(ptr,5,26); 1,13
id_list(ptr);
end;
end;
end;

procedure dec_tail;

begin
if error = false then
begin
match(ptr,6,6); ;1
dec_seq(ptir);
end;

end;
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procedure declaration;

begin
if error = false then
begin
match(ptr,1,1); {declare!
id_list(ptrd;
end;
end;

procedure dec_seq;

begin
if error = false then
case next(ptr) of
2,3,19 : ; tid, if, while}
else begin
declaration(ptrl;
dec_tail(ptrl;
end;
end;
end;

procedure stmt_seq;

begin
if error = false then
begin
statement(ptr);
match(ptr,6,6); {;1}
stmt_tail(ptr);
end;
end;

procedure stmt_tail;

begin
if error = false then
if ptroa.link <> nil then fnot end of

case next(ptr) of
7 @ ; tends}

input?}
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else begin
statement(ptr);
match(ptr,6,6);
stmt_tail(ptr);

end;
end;
end;
procedure statement;
begin
case next(ptr) of
2 : assgn_stmt(ptr);
3 : if_stmt(ptrl;
19 : loop_stmt(ptr);
else syntaxerror(25);
end;
end;

procedure assgn_stmt;

var
idhead,idtail : varptr;
printptr : varptr;
begin
expnum := expnum + 1;

new(idheadl;
initvar(idhead);
idtail = nil;
if error = false then
begin
match(ptr,2,23; tid}

insert(expheadiexpnuml,exptaillexpnuml,ptrld;
match(ptr,21,21);
expr(ptr,idhead,idtail);

merge(expheadliexpnuml],exptaillexpnuml],idhead,idtail)l;

end;

end;
procedure if_stmt;

begin
if error = false then
begin

{;1

{id3

{ifl

{whilel
f:=1
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match(ptr,3,3); £ifl

comparison(ptr);
match(ptr,4,43; {then?

stmt_seq(ptr);
endif_else(ptr);

end;

end;

procedure endif_else;

begin
if error = false then
begin
case next(ptr) of
7 : begin tend}
match(ptr,7,7);
match(ptr,3,3); fifs}
end;
8 : begin
felsel
match(ptr,8,8);
stmt_seq(ptr);
match(ptr,7,7);
{end3}
match(ptr,3,3) ;
fifs
end;
end;
end;
end;
procedure expr;
var
multi : boolean;
old : varptr;
begin multi := false; old == nit;
if error = false then
begin
term(ptr,idhead,idtail,multi,old);
term_tail(ptr,idhead,idtail ,multi,oldl;
end;

end;



procedure

begin
if er
begin
end;
end;

procedure
begin
if er
begin

end;
end;

procedure

var
newhead
newtail
temphea
yes : b

begin
if er
begin

case
18

term_tail;

ror = false then

case next(ptr) of

16 : begin
match(ptr,15,15); {+1
expr(ptr,idhead,idtail);

end;
16 : begin
match(ptr,16,16); {-1
expr(ptr,idhead,idtail);
end;
6 F ;1
else ;
end;
term;
ror = false then

factor(ptr,idhead,idtail ,multi,oid);
factor_tail(ptr,idhead,idtail,multi,oldl;

factor;

varptr;

varptr;
d, temptail : varptr;
oolean;

ror = false then

next(ptr) of
begin

match(ptr,18,18); {fconstant}

if multi = true then
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begin
new(temphead);
initvar(temphead);
new(temptaill;
initvar(temptaill;
insert(temphead, temptail,ptr);

concat(idhead,idtail,old,temphead,temptail);
multi := false;

end
else
begin
if idtail = nil then
old := idhead
else
old := idtail;
insertCidhead,idtail,ptr);
end;
end;
2 : begin
match(ptr,2,2); {id}
if multi = true then
begin
new(temphead);
initvar(temphead);
new(temptail);
initvar(temptaill;
subsit(temphead, temptail,ptr);
concat(idhead,idtail,old,temphead, temptaill;
multi := false;
end
else
begin
if idtail = nil then
old = idhead
else
old := idtail;
subsit(idhead,idtail,ptr);
end;
end;
9 : begin
match(ptr,9,9); (3

new(newhead);
initvar(newhead);
newtail := nil;

expr(ptr,newhead,newtaill;
if multi = true then
begin
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concat(idhead,idtail,old,newhead,newtaill;
multi := false;

end
else
begin
if idtail = nil then
old := idhead
else
old = jidtail;

merge(idhead,idtail,newhead,newtail);

end;
match(ptr,10,10); {11
end;
else match(ptr,0,27); {skip error tokenl
end;
end;

end;

procedure factor__tail;

begin
if error = false then
begin
case next(ptr) of
156,16,6 : ; {+,-,:1
17 : begin {x}
match(ptr,17,17); multi := true;
term(ptr,idhead,idtail ,multi,old);
end;
else ;
end;
end;
end;

procedure loop_stmt;

begin

if error = false then

begin
match(ptr,19,19); {whilel
comparison(ptr);
match(ptr,20,20); {loopl
stmt_seq(ptr);
match(ptr,7,7); {end}

match(ptr,20,20); {loop}



end;

end;

procedure comparison;

var
idhead, idtail,old : varptr;multi :boolean;
begin ‘
if error = false then
begin
match(ptr,9,9); {1
factor(ptr,idhead,idtail,multi,old);
comp__tail(ptr)d;
end;
end;

procedure comp_tail;

var
idhead,idtail,o
mul

begin
if error =

case
11 :

12

13

14

else
end;

Id : varptr;
ti : boolean;

false then

next(ptr) of

begin
match(ptr,11,11); {=1
factor(ptr,idhead,idtail,multi,old);
match(ptr,10,10); {)1

end;

begin
match(ptr,12,12); £<¢<>1}
factor(ptr,idhead,idtail,multi,old);
match(ptr,10,10); £)1

end;

begin
match(ptr,13,13); <3
factor(ptr,idhead,idtail,multi,old);
match(ptr,10,10); {11

end;

begin
match(ptr,14,14); {>3
factor(ptr,idhead,idtail,muiti,old);
matchCptr,10,10); {11

end; :

syntaxerror(28);
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end;

procedure start(var ptr : tokenptr);

begin
error := false;
expnum := 0;
dec_seq(ptr);

printdec(dechead);

stmt_seq(ptrl;
printid(exphead);
end;
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