
A STATEMENTS EVALUATION SYSTEM FOR

FUNCTIONALLY EQUIVALENT RESPONSES

By

PETER YU YEE TSANG n
Bachelor of Science

University of Wisconsin - Madison

Madison, Wisconsin

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
i n par t i a I f u I f i I I men t of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 19 8 7

•

LIBRARY
'~··,

A STATEMENTS EVALUATION SYSTEM FOR "..;;.;;.;;;.-.;:;.-.;;""--

FUNCTIONALLY EQUIVALENT RESPONSES

Thesis Approved:

{)
Thesis Ad_v iJer

~v.~-

Dean of the Graduate College

ii

PREFACE

This study is concerned with the development of the

statements evaluation system to evaluate responses to

C rather spec i a I J q u es t i on s assoc i ate d w i th w r i t i n g program

segments.

The earliest motivation for this study was provided by

Or. Donald 0. Fisher, who also is my major advisor. I would

I i k e to express my gr at i tu de to h i m for h i s g u i dance and

invaluable help during this study. I would also I ike to

thank Dr. K. M. George for his advice and help, and Dr.

Donald W. Grace for serving on my graduate committee.

Final I ly, express my gr at i t u de to my f am i I y , for their

support, patience, and encouragement.

iii

TABLE OF CONTENTS

Chapter

I . INTRODUCTION

I I. LITERATURE REVIEW

CAI Overview
The Requirement
History
State of the Art Assessments

Parsing .
Translation .

I I I . FORMAL LANGUAGE THEORY

Formal Grammar
The Need .
Different Classes of Grammars

Recognizers .
Introduction .
Different Classes of Recognizers

IV. AN OVERVIEW OF THE STATEMENTS EVALUATION
SYSTEM

V. DESIGN AND IMPLEMENTATION

Lexical Analyzer
The Role of Lexical Analyzer
The Need for a Lexical Analyzer
Regular Grammar
F i n i t e S t a t e Mach i n e
Implementation .

Parser
The Role of the Parser
Basic Design for Recursive-Descent
Parser .
Parsing Procedures for the Mini
Language

Translator
The Role of the Translator
Semantic Actions .
Implementation of Systax-Directed
Translator
Translation Scheme for Declaration

iv

Page

7

7
7
8
9

1 1
1 2

1 4

1 4
1 4
1 5
1 8
1 8
1 9

22

28

28
28
30
30
3 1
36
45
45

46

50
74
74
75

75
76

Chapter

Translation Scheme for Assignment
Statement
Trans I at i on Scheme for Mu I t i p I e
Statements .
Translation Scheme for Conditional
Statement

VI. EXAMPLES OF DIFFERENT STATEMENTS AND
RESPONSES

Introduction
Declarations
Assignment Statements

Addition .
Subtraction
Mu I t i p I i cat ion .
Compound Statement

If-then-else Statements

VI I. SUMMARY, FUTURE STUDY AND DEVELOPMENT

Summary . .
Future Study

BIBLIOGRAPHY

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

v

Page

80

9 1

93

96

96
97
98
98
99

101
102
106

108

108
108

1 1 0

1 1 3

1 1 5

1 1 6

122

126

LIST OF FIGURES

Figure

1. Process of Translation

2. Basic Turing Machine

3. Stack

4. Finite State Machine

5. Structure of Statements Evaluation System

6. Translation of "declare x,y; x := y + z*w"

7. Translation of "declare y; declare x;
x : = w*z + y 11 •

8. General Description of Lexical Analyzer

9. A Tape Reading Description of Finite State
Machine .

10. A Finite State Diagram for ldentif ier

1 1 . A F i n i t e St ate D i a gr am for I n t e g er number

Page

12

1 9

20

2 1

24

25

26

28

32

33

33

12. State Transition Diagram for the Mini-language. 35

13. Structure of the Lexical Analyzer 36

1 4 . P r o c e d u r e Re ad_ i n p u t 3 7

15. Procedure Scanner . 38

16. Internal Representation of Token 41

17. Procedure Get_token . 42

18. Procedure Check_reserve 43

1 9. The Role of Parser in the Evaluation System 45

20. Procedure Match for Matching Input Token 47

21. Function Next that Returns the Lookahead Token. 48

vi

Figure

22.

23.

24.

25.

26.

27.

28.

29.

30.

3 1 .

32.

3 3.

34.

35.

36.

3 7.

38.

39.

40.

4 1 .

42.

4 3.

44.

4 5.

46.

Parsing Procedure A

Hierarchial Structure of the Parser

Parsing Procedure for <start>

Parsing Procedure for <dec_seq>

Parsing Procedure for <declaration>

Parsing Procedure for <dec_tai I>

Parsing Procedure for <id_I ist>

Pa r s i n g P r o c e du r e f o r < i d_ I i s t t a i I >

Parsing Procedure for <stmt_seq>

Parsing Procedure for <statement>

Parsing Procedure for <stmt_tai I>

Parsing Procedure for <assgn_stmt>

Parsing Procedure for <if_stmt>

Par s i n g P r o c e du r e f or < end i f _e I s e >

Parsing Procedure for <loop_stmt>

Parsing Procedures for <comparsion>,
< comp_ ta i I >

Parse Trees Generated by Ambiguous Grammar

Procedures for Parsing an Expression

Structure of Statements Evaluation System

Declaration Table

Parsing Procedure id i s t

Insert Procedure

Declaration Table for "declare u,w;"

Declaration Table for "declare w; declare u;"

Table Representation of x := a*3 + b + c

Vii

Page

49

5 1

53

55

56

56

57

58

59

60

6 1

6 1

62

63

64

65

66

67

74

77

77

78

79

80

82

Figure

47. Table Representation of x .- 3*a + c + b

48. Table Representation of x :=a+ b - c

4 9. Addition of Expression Tables

50. Multiplication of Expression Tables

51. Addition of Expression Tables Ca*u+b+cl,
Cd-e*wl

52.

53.

54.

55.

56.

5 7.

Multiplying the Expression Tables of [a+b-cl,
Cu-wl

XOR Table

Generation of Expression Tables

Assignment Table for x .- w; x :=a; y := x +b.

If-block and Else-block

Cross Comparisons Between Complements

viii

Page

83

84

85

85

86

87

87

89

92

94

95

•

CHAPTER I

INTRODUCTION

This thesis project investigated

using a computer to evaluate responses

the possibi I ity of

to (rather special)

q u es t i on s assoc i ate d w i th w r i t i n g program s e gme n ts . I f a

general statements evaluation system CSESl could be

developed, then a computer could be used to conduct computer

based learning exercise at a much higher intellectual level

than is currently possible. A problem statement might be

"Construct a program segment to compute the payment

of mo r t gage I o an"

The loan payment could be computed in several different

formats and st i II be correct; furthermore arbitrary

intermediate substitutions, i f correct, should be allowed

and evaluated as correct by such SES. The idea is to supply

the SES with a template, regarded correct, to be used to

determine whether the user's response is functionally

equivalent to the template.

functionally equivalence or

the increased capab i Ii ty of

It is the ability to determine

non-equivalence that provides

this system over systems which

can only determine whether a single response is an exact

match of a given answer. The imp I eme n t e d mode I co u Id be

de v e I oped i n to a computer ass i s t e d i n s t r u ct i on C CA I) sys t em,

1

which is a useful tool in helping students in programming,

debugging, and for retraining technical people in industry.

The CAI system is i n t u t o r i a I f o r ma t , as k i n g s t u den t s to

compose statements for particular tasks, beginning with the

simple single statement and proceeding to compound multiple

statements. The CAI system generates responses to student's

input, replies include error messages and the correct answer

to the problem.

The statements evaluation system CSESl is implemented

to respond to the mini-language by Ledgard and Marcotty

C1981), and it can be modified to adopt an appropriate

subset of any other s i mi I a r high

CKernighan and Ritchie 1978), Pascal

level language like C

(Jensen and Wirth 1975)

or Fortran C1966). In the mini-language there are basically

four types of statements:

(1) declaration statement;

(2) assignment statement;

C3) conditional statement Cif then else);

C4) loop statement Cwhi le loop).

The system evaluates on declaration statement, assignment

statement

different

statement,

and one level conditional statement. Because of

complexity and structure of each type of

each has a separate evaluation method. For

example, some of the many possible ways to declare variables

x, y and z are

C 1) de c I are x, y, z;

(2) declare y,x,z;

2

3

(3) declare x, y;

declare z;

(4) declare z, y;

declare x ;

(5) declare X;

declare y;

declare z ;

Above are not a I I the variations,

different formats ju s t to declare the

there are a total of 18

three variables x, y

The template answer provided to the system is one of and z.

the 18 formats, and the system must be able to recognize the

o the r 1 7 format s are f u n ct i on a I I y e q u i v a I en t to the temp I ate

answer. There is only one variable type Ci n t eg er) in the

Ledgard mini-language, therefore the system does not do any

type checking on the variable types.

The different priorities of operators (+, -, .:«), levels

of parenthesis and substitution of variables increase the

d i f f i cu I t i es and comp I ex i t i es of evaluation of assignment

statement. To be able to determine the template's assignment

statements and the input's assignment statements are

functionally equivalent, the system translated

assignment statements into standard format w i th a I

a I I

the

parenthesis removed and al I variables are substituted with

their latest assigned value. For example the statement

x : = 8;

y := x .:«(2 + 3) - cs+ 9);

is translated into

4

x . - 8;

y := 8 *2 + 8 * 3 - 8 - 9;

The system uses tables to represent assignment statements,

which is more easy to implement the t r a n s I a t i o n and keep

track of the recent assigned value of every variable.

Chapter five has a detailed description of the method and

implementation of the table transl at ion.

Because of i t s various formats and complexities of

expression in assignment statement, therefore, this study

emphasizes on the evaluation of the sequential assignment

statements. Below is an example which shows that a simple

assignment statement can be transformed into different

format s w i th d i f fer en t complexities, which complicate the

evaluation process.

(1) x :=a - b*e + c*e + d*e;

C2) x :=a - b*e + e*Cc + dl;

C3l x := a -Cb - c -dl * e;

C4l x := a -Cb - c + d) * e ;

(5) u . -. - c + d;

. - (b - u) * e ;

x : = a - t ;

(6) u . -. - c* (e + d -b)

x := u + a;

Above are on I y some of the poss i b I e formats , the var i at i on s

are a I mos t u n I i mi t e d by using parenthesis and substitution

with multiple assignment statements.

The conditional and loop statements are the most

5

unpredictable, especially with the nested if-then-else and

while loop statements. To restrict the problem, this study

concentrates on one format of if-then-else statement and its

variations, which is a one level i f-then-e I se with the

condition in this format,

(variable conditional operator variable)

Below is an example of if-then-else statement, and its

variations.

Cll if Ca >bl then

a := a - b - c;

else

a := a + b;

end if;

C2l if Ca > bl then

U :: b + C;

a . -. - a - u ;

else

a . - a + b; . -
end i f ;

C3l if Ca< bl then

a := a + b;

else

a := a - b - c;

end if;

(4) if Ca < bl then

a := a + b;

else

a :=a - C b +cl;

end i f;

Chapter I I is a discussion on

6

computer assisted

instruction C CA I), i t , s history and development. The

evolution of parsing and translation are also given in this

formal chapter. Chapter I I I gives an introduction of

language theory. Chapter IV gives an overview of the design

of the

analyzer,

methods,

system.

parser

The structure of

and translator),

t he sys t em C I ex i ca I

the

and program codes are discussed

implementation

in Chapter V.

Examples of different statements and responses are given in

Chapter VI. Chapter VI I is the summary of this project, and

future study and development are suggested.

CHAPTER I I

LITERATURE REVIEW

CAI Overview

The Requirement

There are three basic educational requirements that

make CAI inevitable CLoughary 1967):

Cll the trend to individualized instruction;

C 2) the gr ow th i n i n format i on to be a c q u i red ;

(3) the shortage of qua I ified teachers.

Since 1950's, computer assisted i n s t r u ct i on C CA I l has been

deve I oped and app Ii ed to these three problems in education

from elementary school to professional training CSuppes,

1978). In t r a i n i n g en v i r o nme n ts such as industry and the

military, students are also paid. For this reason, in

training environments the relationship between time and

costs is a direct one --- costs can be reduced to the extent

that reductions in instructional time can be achieved. A

major advantage of CAI systems is that they can reduce

instruction t i me wh i I e ma i n ta i n i n g e q u i v a I en t levels of

performance when compared to the traditional type of lecture

- discussion techniques.

7

•

8

History

The first use of computers for educational purpose was

started at the end of the 1950's. One such research

application was the PLATO project at the University of

Illinois CAlpert and Bitzer, 1970), which began in 1960 with

the goal of designing a large computer-based system for

instruction. Soon after, IBM introduced COURSEWRITER, a

programming language designed for preparing instructional

materials on IBM's mainframe computer. At Stanford

University and Pennsylvania State University, there were

projects by Atkinson and Hansen C1966l,Suppes, Jerman and

Brian C1968l, and Suppes and Morningstar C1972J.

In the early 1970's the PLATO project introduced PLATO

IV, a large time-shared instructional system. Students

studied on

connected

individual terminals, hundreds of which were

to a large computer on which al I lessons and

student data were stored. PLATO IV now al lows up to 600

students to use the computer simultaneously.

In the mid-1970's, a few smal I companies began to

experiment with microcomputers, including Radio Shack,

Commodore Business Machines,

the success of microcomputers,

and the Apple computer. With

it became possible for the

individual university researcher, and public schools to

possess a microcomputer and use it for educational purposes.

From 1977 to today we have seen phenomenal growth in the

educational uses of computers, and computer i n s t r u ct i on a I

9

system became affordable to pub I ic school or family.

State of the Art Assessments

The state of the art assessments are an idealized

computer assisted instructional system, including hardware-

software, courseware, learning strategies, management and

development.

Baker C1971J provides the background of i de a I i zed CA I

systems. A system is documented in the form of a systems

concept document. The document has three main goals:

Cl) provide a conceptual frame work for the CAI

system;

(2)

(3)

serve as the guidance document for the design

and implementation of the CAI system;

act as a base Ii ne document

purpose.

for evaluation

Bushnel I C1964) describes, briefly, developments in computer

based teaching machines and rapid i n format i on re t r i e v a I

systems, and the advances in computer technology for aiding

teachers in the diagnosis of student learning needs and

selection of appropriate teaching strategies. The most

common teaching strategies used in courseware are:

Cl) dri I I and practice;

C2l tutorial instruction;

C 3) s i mu I at i on ;

C4) games.

10

We a I I a r e f am i I i a r w i t h d r i I I and p r a c t i c e i n one f o rm

or another: work-books, flash cards, spelling bees. In a

dri I I-and-practice system, a selection of questions or

problems is presented repeatedly unti I the student answers

or solves them al I at some predetermined level of

proficiency. Computer programs can enhance the effectiveness

and efficiency of dr i I 1-and-pract ice. One of the latest

dri I I-and-practice programming tool is Drillshell CAlessi,

S. M. and Schwaegher, D. G. 1984) which a I I ows CA I

developers to p rod u c e d r i I I s w i t ho u t p r o g r amm i n g a I I t he

detai Is of queuing and data storage.

Tu to r i a I i n s t r u c t i on s are comp u t e r programs that teach

by carrying on a dialogue with the student. They present

information ask the student questions and make decisions

based on the student's comprehension whether to move on to

the next i n s·t r u ct i on or to engage i n rev i ew and r eme d i at i on .

Tutorial instruction is the m~st basic and common form of

CAI. The SOPHIE system developed by Brown

example of a CAI tutorial program.

(1975) is an

Simulation systems provide the student with the

i I I us ion of experiencing a rea I Ii fe occurrence. They have

the advantages of convenience, safety, and control labi Ii ty

over real exp e r i men t s , and a r e us e f u I for giving students

experiences that would not otherwise be possible. AIR SIM is

an air flow simulation program by Fortner C1979l. Lagowski

C1970l and Gelder C n . d. l also have written several good

examples of laboratory simulation programs which are very

11

helpful for chemistry students to experience a dangerous

experiment in a simulated environment.

Parsing

The two most common forms of parsers are bottom-up, and

top-down. Floyd C1963l was the first one to come up with the

operator-precedence idea and the use of precedence

functions. Since then there have been a variety of other

bottom-up parsing strategies developed, such as the Wirth-

Weber precedence by Wirth and Weber C1966l, bounded-context

parsing CFloyd 1964 and Graham 1964), LL parsers as defined

by Lewis and Stearns

(1965).

C1968l, and the LR parsers by Knuth

Bottom-up parsing traverses the tree f r om t he I eaves

Cbottom) to the root Ctopl. Top-down parsing does the

reverse, i.e., it starts from the root of the parse tree and

works its way down to the leaves. There are basically two

types of top-down parser, one involves backtracking and the

other does not <recursive descent parsing). META CSchorre

1964) and TMG CMcClure 1965) are some of the comp i I er

writing systems which used top-down parsing with

The parser of the statements evaluation backtracking.

system CSESl in th i s project is implemented in recursive

descent parsing. Conway C1963l

ones who introduced

technique. In Chapter 3,

this

there

formal language theory which

and Lucas C 1961) were the

recursive descent parsing

is a basic background of

is essential for defining the

grammar 0 f the programming languages. Chapter 4 has the

detailed description of recursive descent pr as i ng and an

imp I eme n ta t i on of the parser for mini-language CLedgard and

Marcotty, 1981) is given.

Translation

Syntax directed translation was f i r s t used by Irons

(1961) as a method in compiler design. Aho and Ullman (1977)

gave a basic diagram for syntax directed translations in

their book, to explain the process of the translation.

input ---->
string

Figure 1.

parse ---->
tree

dependency ----> eva I ua ti on
graph for semantic

rules

Process of Translation

A parse tree is generated during the parsing process of the

input string, and it is traversed to generate the semantic

actions during the t r as I at i on process . The s ema n t i c act i on s

may be the comp u tat i on s of values of variables, generation

0 f intermediate codes, pr i n t i n g messages or s tor i n g some

values into a particular table for future reference.

The idea of a parser calling for s ema n t i c act i on s was

first discussed by Samelson and Bauer C 1960), and I ater by

Brooker and Mor r i s C 1 9 6 2) . In the mid 60's, Eicke!, Paul,

Bauer and Same Ison (1963), Che at ham and Sat t I e y C 1 9 6 4) ,

lngermanC1966) and Feldman (1966) contributed a great amount

of work to syntax-directed translations, which led to the

12

13

development of the ear I y theory of syntax-directed

translation by Lewis and Stearns (1968). A mo r e de t a i I e d

description of syntax directed translation is given in

Chapter 5.

CHAPTER I I I

FORMAL LANGUAGE THEORY

Formal Grammar

The Need

When we say about grammar, we all know English grammar.

An Eng I i sh grammar i s a set of r u I es e i the r for cons t r u ct i n g

English sentences or f o r determining whether an English

sentence i s syn tact i ca I I y co r rec t . Thus the sen ten c e " am

working very hard." obeys and follows the grammatical rules,

whereas the sentence " working am hard very . " fa i Is

miserably. The grammar is concerned with the form of the

sentence but not the meaning, therefore the meaningless

sentence ike "Books are working very hard." is quite

accept ab I e gr amma t i ca I I y. The grammar of a programming

I anguage is very s i mi I a r to the grammar of spoken I an g u age ,

b u t mo r e co n s t r i c t e d . I t e i t he r p r o v i de s a s e t of rules for

writing a program in that programming language or i t

determines whether a program is syntactically correct Cbut

not necessarily meaningful). A program can be syntactically

correct with no error but does not do anything meaningful at

a I I. Grammars for programming languages are exact and

precise, and they can be described in a formal mathematical

14

15

notation, . e. , a f o rma I grammar.

Different Classes of Grammars

A phrase-structure grammar CPSG) is an ordered

quadruple,

(1)

G = £N, E, P, Sl where

N is a finite set of nonterminal symbols

Csometimes

categories);

ca I I ed variables or syntactic

C 2) E i s a f i n i t e set of term i n a I s ymb o I s , d i s j o i n t

from N;

(3) P is a finite subset of

CN U EJ1' N CN U Et X CN U El;;

where an element Ca,b) in P is written a---> b

and is called a production;

C 4) S i s a d i s t i n g u i shed s ymb o I i n N ca I I e d the

s tar t s ymb o I .

Below are some examples of PSG's and non-PSG's :

Cl) G =CfS,Al, £0,ll, P, S) where P consists of

S ----> OAl

OA ----> OOAl

OAl ----> 01

C2) G =C£A,Bl, £0, ll, P, Sl where P consists of

S ----> OAl

01 ----> OOAl

----> ABC

16

Ex amp I e C 1) i s a P SG, and i t generates strings of the form

01, 0011, 000111, and so on i n def i n i t e I y • Ex amp I e C 2)

is not a PSG, for it violates rules 3 and 4 in the grammar .

The terminal strings 01 and 1 are not • in the set CN U El N

• C N U E) , and S C s tar t i n g s ymb o I) i s not an e I eme n t i n N •

Example Cll is an unrestricted grammar which means the

p r o d u c t i o n s o f t h e g r a mm a r w i t h t h e f o r m A - - - - > B , w h e r e A

f!
and B are i n C N U El are a I I owed.

The definition of phrase-structure grammars describes

much too large a class of grammars to de a I w i th i n the

process of translation and evaluation. However, i t is

possible to add some more restrictions to form a restrictive

grammar, which is less flexible but easier to translate

because of the restricted properties of the grammar. The

restrictions are often placed on the format of the

productions. A con t ex t - f r e e g r amma r i s a r es t r i c t i v e t y p e

grammar.

A grammar G = CN, E, p. s) is a context-free grammar

CCFGl i f and only i f i t is a PSG and the roots of al I

productions in P are single nonterminal symbols. Single

product ions with this property are referred to as context-

free productions. Below is an example of context-tree

grammar

G = CfEJ, (+,*,(,), idl, P, El where P consists of

E ----> E + E

E ----> E * E

E ----> CE)

•

17

E ----> id

This context-free grammar defines the arithmetic expressions

with operators "+" and "*" and operands represented by

s ymbo I id. Here Eis the only variable which represents

expression, and the terminals are"+", "*", "C", ")"and id.

The f i r s t two productions say that an expression can be

composed of two expressions connected by addition or

multiplication sign. The third production says that an

expression may be another surrounded by

parenthesis. The last says

expression

a single operand is an

expression. By applying productions repeatedly we can obtain

more and more comp I i cat e d express ions . For ex amp I e,

E ----> E * E C2l

----> E * CEl c 3)

----> E * CE + El c 1l

----> CEl * CE + El c 3)

----> CE + El * CE + El c 1)

----> c id + El * CE + El c 4)

----> c id + id) * CE + El c 4)

----) c id + id) * c id + El c 4)

----> c id + id) * c id + id) c 4)

The symbol "---->" denotes the act of deriving, that is,

replacing a variable by the right-hand side of a production

for that variable. The numbers appearing on the right-hand

side of the derivations are the production numbers used by

18

the derivations.

A grammar G = CN, I: ' P, S) is a context-sensitive

grammar CCSGl if and only if it is a PSG and each production

i n P i s of the f o I I ow i n g form

C1l a----> b, where a and bare in CN U tf and

the length of a is I es s than or equal to the

length of b c:a: <= :b:l.

C2l S ----> e, where S is the start symbol and e is

the empty string.

The f o I I ow i n g i s an ex amp I e of context - sens i t iv e grammar ,

G = ClS,AJ, {0,1), P, Sl where P consists of

S ----> A

S ----> OA1

OA1 ----> OOA11

This grammar generates strings of form 01, 0011, 000111 as

the PSG's example before. The PFG, CFG, and CSG are some of

the most common formal grammars which are discussed in

formal language theory. There are also some other types of

rest r i ct e d grammars w i th more rest r i ct e d r u I es I i k e the

Chomsky normal form and Greibach normal form, but they wi 11

not be discussed in this study.

Recognizers

Introduction

The other way to specify a language is in a recognitive

manner, that means def i n i n g a too I to rec o g n i z e i t . We

define a recognizer which accepts al I the possible output

strings of the language.

Different Classes of Recognizers

A t u r i n g mac h i n e is the most general class of

recognizer. It recognizes the class of languages definable

by an unrestricted grammar. The basic model of a turing

machine, i I lust rated in Fig. 2, has a finite control, an

input tape that is divided into eel Is, and a tape head that

scans one c e I I of the tape at a t i me .

Input tape

:a1:a2:a3:

I\

: Finite
: control

Figure 2.

:an:

Basic Turing Machine

The input tape has a leftmost cell but is infinite to the

r i g ht . Each c e I I may ho I d exact I y one of a f i n i t e number of

tape symbols Ctokensl. The current symbol is scanned by the

tape head to determine what to do next, i.e., whether to

change state or to reposition the tape head. The tape head

can be repositioned to the left or r i g ht, one ce II at a

time.

A pushdown automaton is a recognizer with a read-only

19

input tape, a finite state control, and a push-down stack or

11 f i r s t i n - I as t out 11 I i st . That i s , s ymb o I s may be en t ere d

or removed at the top of the list. Fig. 3 is an example of

the stack, the number 11 1 11 is the first one input into the

stack and then 11 2 11 , "3" and "4", but the number 11 1 11 wi 11 be

the last one to get out from the stack. A nondeterministic

pushdown automaton recognizes the class of context-free

languages.

5

\ I

4
3
2

Figure 3.

5
4
3
2
1

Stack

A pushdown automaton uses the current input symbol on

the tape, the contents of the top element of the stack, and

the current state of the finite state control to determine

an appropriate move. A I anguage is said to be accepted by

the pushdown automaton when some input symbol causes the

push down automaton to enter a final state or when the

20

21

pushdown automaton has emptied its stack after some sequence

of moves.

The last recognizer to be discussed is the finite

state automaton. It is equivalent to the pushdown automaton

without the pushdown stack. For determining the next move,

it uses only the current input symbol and the current state

of the f i n i t e state con t r o I . A f i n i t e s tat e mac h i n e i s

always described by the transition diagram. Fig. 4 is a

transition diagram of a finite state machine, which accepts

al I the strings beginning with one or more a's and ending

with one or more b's.

a
b

} 0-a -----a}
b

Figure 4. Finite State Machine

In Fig. 4, Sis the starting state, and F is the final state

. Each label arc defines a transition between the states

caused by the symbol shown on the arc.

CHAPTER IV

AN OVERVIEW OF THE STATEMENTS

EVALUATION SYSTEM

The purpose of the statements evaluation system CSES)

is to evaluate the syntactic and semantic correctness of

user's input program segments by comparing them with the

template answer provided to the system. The program segment

can include of declaration statements,

assignement

a combination

statements and if-then-else statements. The

system responses include a lexical analysis report, error

messages and the correct answer to the problem. For example,

with the template answer,

template

the system

segments,

declare x,y;

X :: y + Z;

if Ca > bl then

a := c * c b + 1);

else

a:= c *Cb - ll;

end if;

is able to determine

1. declare x;

declare y;

22

that these two program

23

x := z + y;

if Ca> bl then

a . -. - Cb+ 1) * c;

else

a := b*c - 1*c;

end if;

2. declare y ' x ;

x : = y + z ;

i f Ca <.:b) then

a . - c * c b - 1) ; . -
else

a . -. - c b + 1) * c ;

end i f ;

are equivalent to the template answer. On the other hand,

the system recognizes that the program segment,

3. declare x,y.

X := y + Z;

if Ca> bl then

a := c * C b + 1l;

else

a := c * C b - 1l;

end i f ;

is not equivalent to the template answer, so error messages

output declare x, z. ** syntax error **

syntax error 11 , 11 or ";"expected

are printed as a response to the incorrect input.

24

Pro g ram s e gme n t number 4 has no syn tac t i ca I e r r or , bu t i t i s

not performing the same function as the template answer,

therefore, the system responds with an error message and the

correct answer.

4. declare x,y;

X :: y + Z;

if Ca > b) then

a := c * C b - 1);

else

a := c *Cb+ 1);

end i f ;

output incorrect if-then-else statement

The SES bascial ly has 3 phases, namely, the lexical

analyzer, the parser, and the translator Csee Fig. 5).

input text stream
of tokens parse tree

tables of
declarations
assignments
expressions
for evaluation

--->:Lexical :----> :Parser :------> :Translator:------->
:Analyzer:

Figure 5. Structure of Statements Evaluation System

The lexical analyzer divides the input text into separate

tokens variables, keywords, labels, constants and

25

operators). The purpose of the parser is to performs

syntactic checking on the input token stream which is

generated by the lexical analyzer. The translator translates

the statements into standard table formats, so they can be

easily evaluated. Consider the statements

1. declare x,y;

X :: y + Z * W;

2. declare y;

declare x;

x := w * z + y;

The translator translates these statements into 3 different

kinds of tables, namely, declaration table, assignment

table, and expression table Csee Fig. 6 and Fig. 7)

Oeclaratin table

x :integer:
:-----------:

y integer:

Assignment table Expression table

x :------> ---------------
:-----------: y z: +111.:

:---------------:
: w:

:---------------:

0 0 sign bit

Figure 6. Translation of "declare x,y; x := y+z*w"

26

Declaration table

y :integer:
:-----------:

x integer:

Assignment table Expression table

x :------> ---------------
:-----------: : w : y: +/*:

:---------------:
z

:---------------:

0 0 sign bit

Figure 7. Translation of "declare y;declare x; x :=

w*z + y"

The first row of the expression table represents addition

and each co I umn rep res en ts mu I t i p I i cat i on . The I as t row i s

the sign bit for each column, it is set to 0 i f the column

is positive and set to 1 if the column is negative.

How do the tables help in the evaluation? Two

declaration tables are equivalent i f they have the same

variables in the table regardless of the i r order . Two

expression tables are equivalent i f they have the same

elements regardless of the order of the columns and the

order of the rows of each individual column. The r fore , we

can determine that the tables in Fig. 6 and Fig. 7 are

equivalent. That means the program segment "declare x,y; x

: = y + z*w;" is equivalent to program segment "declare y;

declare x; x := w*z + y;".

This chapter only gives a brief description of the

27

design of the statements evaluation system. A detai I

description of the design and implementation is in the

fol !wing chapter.

CHAPTER V

DESIGN AND IMPLEMENTATION

Lexical Analyzer

The Role of Lexical Analyzer

The purpose of the lexical analyzer is to read the

input , character by character, and to group individual

characters into tokens Cvariable names, keywords, labels,

constants, and operators).

input------>: Lexical
stream : Analyzer

Figure 8.

:--------> stream of
tokens

General Description of
Lexical Analyzer

To be able to return a token, the lexical analyzer must

isolate the next sequence of characters in the input stream

which designate a valid token. The lexical analyzer must be

able to ignore blanks, and i t is responsible for

differentiating between different terminal symbols in a

28

•

29

grammar . Append i x B cont a i n s a tab I e of a I I the term i n a I and

non-terminal symbols of the context-free grammar for the

Ledgard mini-language. Each terminal and non-terminal has

i ts own symbol number which is an internal representation

number f o r that symbo I. The lexical analyzer produces a

token and the number associated with each token, Each

Ctoken,number) tuple is fed to the parser for syntactic

analysis.

F o r ex amp I e , w i t h t he i n p u t s ta t eme n t s

a := b + c ;

if a> b then a := c; end if

the I ex i ca I an a I y z er returns the f o I I ow i n g i t ems

Token symbol # description

a 2 identifier
. - 2 1 assignment operator . -
b 2 identifier
+ 1 5 addition operator
c 2 identifier

6 semicolon
i f 3 reserved word
a 2 identifier
> 1 4 greater than
b 2 identifier
then 4 reserved word
a 2 identifier
: = 2 1 assignment operator
c 2 identifier

6 semicolon
end 7 reserved word
i f 3 reserved word

30

The Need for a Lexical Analyzer

The statements evaluation system CSESl has 3 phases to

analyze the source text, namely, the lexical analyzer, the

parser, and the tans I at or. The lexical analyzer performs

lexical analysis and the parser performs syntactic analysis.

By separating the lexical and the syntactic analysis

processes, the system is easier to implement and we can

construct a more specialized and effecienct recognizer for

tokens. Furthermore,

of the parser.

this separation s imp I i f i es the des i g n

Regular Grammar

As described in the previous section, the main purpose

of the lexical analyzer is to return the next input token to

the parser. To be able to return a token, the lexical

analyzer must be able to isolate the next sequence of

characters in the source text which designates a val id

token. To do this, the lexical analyzer must recognize every

val id token, while ignoring "noise" symbol strings such as

comments, blanks, I ine boundaries, and whatever

important to the parsing process.

else is not

Tokens can be described in several ways. One way of

describing tokens is by using a regular grammar. Using this

method of specificiation, generative rules are given for

producing the desired tokens. For example, the regular

grammar,

31

<identifier>---> a:b:c: :z:o:1: :9:

a<identifier>:b<identifier>:

.... z<identifier>

contains the rules for generating the set of identifiers in

the mini-Language.

The other way to describe tokens is in recognitive

manner. Describing tokens how they can be

recognized Cor accepted)

by means

is often

of

done in terms of a

mathematical model

automaton).

F i n i t e St ate Mach i n e

ca I I e d a f i n i t e state mac h i n e Co r f i n i t e

The output of the lexical analyzer is a function of the

input, and there are on I y a f i n i t e number of act ions wh i ch

the lexical analyzer can take for any input. Thus, the

lexical analyzer can be di scribed by a finite state machine.

A finite state machine can be thought of as a machine

consisting of a read head and a finite state control box.

The machine reads a tape one character at a time Cf r om I e ft

to right), as shown i n F i g . 9 . At any i n s tan t a F SM can be

i n on I y one of a f i n i t e number of d i f fer en t s tat es . A ch an g e

in state occurs in the machine whenever the next character

is read. Whenever an FSM begins reading a tape, it is always

in a certain state designated as the starting state. Another

type of state is a final state, and if the FSM attempts to

read beyond the end of the tape while in a final state, the

string which was on the tape is said to be accepted by the

32

FSM. In other words, the string belongs to the language

which is accepted by the FSM.

I\ Read
: Head

:Finite State
:control Box

Figure 9. A Tape Reading Description
o f F i n i t e St a t e Mach i n e

Finite state diagrams or transition diagrams are often

used to rep res en t an F SM p i ct or i a I I y . An ex amp I e of such i s

i I lust rated in Fig. 10. The FSM represented in the diagram

accepts identifier in the mini-language. The first character

in the identifier must be a letter and follow by I e t t e r s o r

digits. The nodes of the finite state diagram represent the

s tat es of the F SM, and i n F i g . 1 0 , the states are named S

Cstarting state) and A C f i n a I s tat e) . The arcs I ea d i n g f r om

one state to another indicate the state transitions, with

the characters immediately above or beside the arcs denoting

the input characters which cause this state transition. The

arrow and the word "START" signify which state of the FSM is

the starting state. In Fig. 10, the starting state is S. The

nodes that consist of a pair of concentric circles are final

states. In Fig. 10, only state A is a final state. Fig. 11

is a transition diagram for an integer number.

START

{alb/cl .. . /z/0/1 .. . 9!}

{a/b/c/ ... /z/]

Figure 10. A Finite State Diagram for Identifier

START

Figure 11. A Finite State Diagram for Integer
Number.

33

34

The operation of the lexical analyzer f o r the mini-

I anguage is shown in the state t r ans i t i on d i a g ram i n F i g .

12. The arcs of the diagram are labelled with the input

symbol which causes the

such that it corresponds

t rans i t i on . I f the i n put s ymb o I i s

to no arc leaving the state, the

s ymbo I is invalid and the scanner prints an error message.

The actions are labelled on the arc when a transition is

made. The action

RETURNCtoken,symbol#)

signifies that token with corresponding symbol number should

be returned to the parser as the input token. With the

f i n i t e - s tat e mac h i n e des c r i pt i on of the I ex i ca I an a I y z er , a

procedure can be implemented which emulates

t he s t a t e d i a g r am i n F i g . 1 2 .

•

the actions of

8---- =----i
~ ~)____J SKIP BLAN.K

<>

<

>

+

*

Figure 12.

RETURN(",",S)

RETURN(";",6)

RETURN("(",9)

o~ RETURN(")",10)

)(~ RETURN("=",!!)

·o---~ RETURN("<>",12)

(0--7 RETURN("<",13)

RETURN(">",14)

·--4 RETURN("+",15)

REPORT ERROR

State Transition Diagram for the
Mini-Language

,

35

36

lmplementat ion

The algorithm for the lexical analyzer can be described

in a top-down manner , w i th five different routines

performing individual functions. Fig. 13 i I lust rates the

structure of the lexical analyzer.

Read_input

Scanner

Get_token

:check_reserve

Print __ table

Figure 13. Structure of the Lexical Analyzer

The Read_input routine is used to read the source text,

return characters, and store them in an array structure

cal led buffer, see Fig. 14.

37

procedure Read_input;

var
buffer : stream;

charnum : integer;
i integer;
ch : char;

{buffer is for storing input
characters}

begin
for i := 1 to 100 do

bufferCil .-

ch : =

..
•

charnum := O;
while Cnot eolnCtrmJ) and Cch <>'@')do
begin

charnum := charnum + 1;
readCtrm,chl;
if ch <> '@' then {'@' is the

template}
:= ch

end marker of

bufferCcharnuml
else

t em : = fa I s e ;
end;

end;

Figure 14. Procedure Read_input

The heart of the lexical analyzer is the Scanner

procedure which is implemented to emulate the actions of the

f i n i t e s ta t e mac h i n e d i a g ram i n F i g . 1 2 • I t s f u n c t i on i s to

group individual characters into tokens and it must be able

to isolate the next sequence of characters in the input

buffer which designates a val id token. The Scanner marks the

beginning and the end of the token in the input buffer, send

the token and its symbo I number to the Get_token routine for

linking all the tokens together to form a token's stream.

See Fig. 15 for the procedure Scanner.

procedure ScannerCbuffer:stream; charnum integer);

var
,j,k integer;

begin

: = 1 ;

wh i I e <= charnum do

begin
case buffer[i J of

: = i + 1 ;

'A' .. 'Z', 'a' .. 'z'

, 0' .. '9.

£skip blanks}

(identifier}
begin
j : = i ;
repeat
i : = i + 1 ;
unti I notCbufferC i l in

C'A' .. 'Z','a' .. 'z','0' .. '9']);
k := i - 1;
get_tokenCbuffer,j,k,2);
end;

(integer}
begin
j : = i ;
repeat
i : = i + 1 ;

38

until not CbufferCiJ in

Figure 15.

['0' .. '9']);

k := i - 1;
get_tokenCbuffer, j ,k,18);
end;

Procedure Scanner

'+'

' * '

'='

') '

Figure 15.

begin
get_tokenCbuffer, i, i, 15);

: = i + 1 ;
end;

begin
get_tokenCbuf fer, i, i, 16);

: = i + 1 ;
end;

begin
get_tokenCbuffer, i, i, 17);

. - i + 1 ;
end;

begin
get_tokenCbuffer, i, i ,11);

: = i + 1 ;
end;

begin
get_tokenCbuffer, i, i ,5);

:= i + 1;
end;

begin
get_tokenCbuffer, i, i ,6);

: = i + 1 ;
end;

begin
get_tokenCbuffer, i, i, 14);

: = i + 1 ;
end;

CContinued)

39

end;

end;

' ('

' : '

' ('

') '

else begin

begin
j : = i + 1 ;
if sCj1 <> '>' then
begin
get_tokenCbuffer,i,i,13); [<J

i : = i + 1 ;
end
else
begin
get_ token Cb u ff er , i , j , 12) ; £ <> l

i : = i + 2;
end;
end;

begin
j : = i ;
i : = i + 1 ;
if s[i] = '=' then
begin

get_tokenCbuffer,j, i ,21l;l:=l
: = i + 1 ;

end;
end;

begin
get_tokenCbuffer, i, i ,9);

: = i + 1 ;
end;

begin
get_tokenCbuffer, i, i ,10);

: = i + 1 ;
end;

get_tokenCbuffer, i, i ,0);
: = i + 1 ;

£invalid input}

end;
end;

Figure 15. CCont i nued)

40

•

Before describing the function of Get_token, we must

understand how the token is represented and stored. The

internal representation of the token is a record which

contains the symbol, its symbol number, and a pointer to the

next input token Csee Fig. 16).

string= packed array£1 .. 71 of char;

token_! ist = record

sym : string;

s ym_n um : i n t e g er ;

I ink token pt r;

end;

Symbol L

i --------->
:--------------; n

S ymb o I number : k
I I ---------·--·

Figure 16. Internal Representation of Token

Fig. 1 7 is the procedure Get_token, the routine is used to

receive tokens from the Scanner procedure, inking all

tokens together to form a stream of tokens, and bui Id symbol

table for tokens .

41

42

procedure Get_tokenCbuffer:stream; j, i ,des integer);

var

k, I
token

begin

integer;
tokenptr;

new C token J ;
initptrCtokenJ; (initialize pointer}
I : = 0;

for k := j to i do
begin

I : = I + 1 ;
tokenA.sym[I l := buffer[kl;

end;
tokenA.sym_num := des;
if des = 2 then

checkresCtoken,restableJ;

if tem = true then

(check
wordsl

f o r reserve

bu i I d tab I e C token , temp head , temp I as t J {bu i I d

else

end;

symbol table for templates}

bui ldtableCtoken, inputhead, input last);
{bu i I d s ymb o I tab I e for i n p u t1

Figure 17. Procedure Get_token

The Check_reserve routine is used to compare a I I

identifiers with entries in the reserved word table

Cdeclare, if, then, end, else, while, loop). Fig. 18 is the

procedure Check_reserve.

procedure Check_reserveCvar token: tokenptr;
reserve table table);

var

integer;

begin

for i := 1 to 7 do
begin

end;

end;

if reserve_tableC i JA.sym = tokenA.sym then
begin

Figure 18.

tokenA.sym_num :=
restableC i JA.sym_num;

end;

Procedure Check_reserve

The last procedure Print_table is used to print al I the

input tokens recognized by the lexical analyzer. The token

s ymb o I , i ts symbol number and description are printed, An

example listing generated by the lexical analyzer follows.

Input statements

wh i I e Ca > b) I oop

x := x. 1;

a :=a+ 1;

end loop;

43

Output I ist ing from the lexical analyzer

Token

wh i I e

a

>

b

loop

x

. -. -

x

a

a

+

end

loop

Syrnbo I #

1 9

9

2

1 4

2

1 0

20

2

2 1

2

0

1 8

6

2

2 1

2

1 5

1 8

6

7

20

6

Description

reserved word

left parenthesis

identifier

greater than

identifier

right parenthesis

reserved word

identifier

assignment operator

identifier

invalid token

constant

semicolon

identifier

assignment operator

identifier

addition operator

constant

semicolon

reserved word

reserved word

semicolon

44

45

Parser

The Role of the Parser

The parser performs syntactic checking in the

evaluation system, see Fig. 19. The parser input is a token

stream generated by the lexical analyzer, and the output is

a parse tree generated for the input statement.

check syntax

:Lexical :------->: Parser
:Analyzer: stream
-------- of ----------

:----->
generate error

messages
tokens create parse trees

Figure 19. The Role of Parser in the Evaluation
System

The parse tree produced by the parser is not created

physically, the parse tree only exists abstractly as a

sequence of actions made by stepping through the tree

construction process. There are two common forms of parsers

---- operator precedence and recursive descent. The parsing

algorithm used in the implementation of the parser in the

statements evaluation system CSES) is the recursive descent.

A recursive descent parser is constructed by a set of

recursive procedures to recognize i t s input with no

46

backtracking. This method of parsing is more effecient

Cthough less general) than most top-down parsing method that

a I I ow backup . I t sh o u I d be noted , however , that th i s h i g h I y

recursive technique does not work on a I I context-free

grammars . That is, certain grammars require backup in order

for sucessful parsing to occur.

In the recursive-descent method of parsing, a sequence

of production applications is realized in a sequence of

function or procedures cal Is. In particular, functions or

procedures are written for each non-terminal symbol. Each

procedure recognizes substrings which are expansions of the

non-terminal. Error signals and error messages should result

when an unexpected terminal is recognized.

Basic Design for Recursive-Descent Parser

Appendix A contains a context free grammar for the

mini-language consisting of 20 non-terminals. Each non-

terminal of the language has a parsing procedure associated

w i th i t that i s used to deter mi n e i f that non term i n a I may

generate an i n i t i a I subs t r i n g of the tokens r ema i n i n g i n the

input. Within a parsing procedure, both nonterminals and

terminals can be "matched". To match a non-terminal "A", we

cal I the parsing procedure corresponding to 11 A11 Cthere may

be recursive calls). To match a terminal symbol 11 t 11 , we call

a procedure MatchCptr,x,yl; ptr is the pointer which points

to the current position in the input tokens stream, x is the

s ymb o I number assoc i ate d w i th the token 11 t 11 to be matched , y

47

is the message number associated with the error message to

be printed if the token is not in the input stream. For

example to match the token "declare", the symbol number

associated with the terminal "dee I are" is 1, therefore the

procedure ca I I is

match C pt r , 1 , 1) ;

Match ca I I s the scanner to get the next token . I f th i s token

is "declare", everything is as expected, and the token is

consumed. Otherwise, a syntax error is detected which

res u I ts i n an er r or message f o I I owed by term i n at i on of the

parsing process. The procedure Match is in Fig. 20.

procedure MatchCvar ptr tokenptr;num integer; messcode :
integer);

begin

end;

if error = false then {no syntax error occured beforel
begin

end;

if nextCptr) = num then {matched next tokenl
{function Next wi I I returns the lookahead token}

ptr := ptr".link
else {next input token is error}

begin

end;

error
pt r : =

:= true;
ptr".link;

{ p r i n t e r r or mes sage l

{skip the error
tokenl

if error = true then syntaxerrorCmesscodel;

Figure 20. Procedure Match for Matching Input
Token

48

To be able to look ahead and not to consume the next

input token, a function ca I I ed "Next" is defined. The

function Next returns the symbol number of the lookahead

token . I t i s d i f fer en t f r om Match i n that Next just "peeks"

at the next token, whereas Match tries to match and consume

it. Fig. 21 is the function Next.

function NextCvar ptr

var
temp

begin

tokenptr;

temp := ptr~. I ink;

tokenptr)

n ex t : = t emp ~ . des c r i p ;

end;

integer;

Figure 21. Function Next that Returns the Lookahead
Token

•

49

The parsing procedure for each non-terminal is very

easy to imp I eme n t : I f the product i on for A i s

A -----> X1 X2 ... Xm

then procedure "A" is simply X1; X2; ... Xm, see Fig. 22; Cif

some Xi is a terminal, then we call matchCptr,a,b), where a

is the symbol number associated with Xi, and b is the

message number associated with the error message to be

printed if Xi is not in the input stream).

procedure A;

begin

X1; £call procedure Xll

X2; (cal I procedure X2l

ma t ch C p t r , a , b) £match the terminal

symbol number equal al

Xm; £cal I procedure Xml

end;

Figure 22. Parsing Procedure A

xi with

50

Parsing Procedures for the Mini-Language

The parsing procedure A in the last section seems very

But how are we going to define the easy to implement.

parsing procedure

example,

i f A has more than one product i on , for

A -----> Xl X2 X3 Xm

A -----> Yl Y2 Y3 Yn

We must decide what production to try to match,

therefore we need to lookahead and use the lookahead token

to decide what production to choose. Appendix C has a brief

des c r i pt i on on L LC 1 l grammar and generation of the predict

set of production.

The design of the parser is a hierarchial structure of

parsing procedures, which cal I each other recursively. There

are a total of twenty parsing procedures, each for every

non-terminal in the context-free grammar. The basic

structure of the parser fol lows the production rules of the

grammar. Fig. 23 is the hierarchial structure of the parser,

which also shows the execution flow of the parsing

procedures. The alphabets on the arcs are the choices of

execution flow and the numbers on the arcs are the sequence

steps of

procedure

the execution

"dec_seq 11 , i t

flow.

has

For example, the parsing

two choices of A and B

determined by the input token. I f the token is not an

identifier, "if" or "while, it cal Is the parsing procedures

11 de c I a r a t i on " a n d 11 de c_ t a i I 11 in that order, otherwise, it

START

2

STMT_SEQ

2 l

13 'XC('(ll

[end J [end],..__ _ _,

2

STO~)
[id]

A c

[if]

B

ASSGN_S'HI' IF_surr

DEC_SEQ

13

[id,if ,wh · 1e]

STOP

[while]

LOOP_STMT ID_LIST

ID_LIST_T~.

IJECLARATI

al;_
(;Jr t__

STOP

Figure 23. Hierarchial Structure of the Parser

51

To
STMT_SEQ

(\ R

lr""il•J [id] [if l

EN_snrr IF_snrr e3
3

EXPR

1,-------..
~~LTAII.)

2 2

COMPARISON

exccp~f S-f A[)

..___ I'--+-+.:... -...,e + .-

C:~

A R [(]

[constant,
--""'---... id l

STOP

-------->·---------"'---------:;i>-----

Figure 23. (Continued)

,

52

53

stops and the execution begins at stmt_seq".

For the mini-language we start with the non-terminal

"start", the production for "start"

<start> ----> <dec_seq> <stmt_seq>

The procedure "start" i s very simple, ca I I in g two other

parsing procedures "dec_seq" and "stmt_seq" Csee Fig. 24).

procedure startCvar ptr

begin

end;

error : = f a I s e ;

dec_seqCptr);
s t mt _seq C p t r) ;

token pt r);

£error
sets to

is a flag which
true if syntax

error occurs}

Figure 24. Parsing Procedure for <start>

As we have seen in Appendix C, the parsing procedure of

<dec_seq> is more comp I i cat e d, for <dec_seq> has 2

productions in the grammar. To construct the parsing

procedure for <dec_seq>, we need to have the predict sets to

make the decision which production to choose. To obtain the

predict sets of non-terminal <dec_seq>, we need to get

f i r s t C < de c_s e q >) and f o I I ow C <de c_s e q >) , s i n c e <de c_s e q > can

produce epsilon.

Production :

< de c_s e q > - - - - > < de c I a r a t i on > < de c_ t a i I >

<de c_s e q > - - - - > e p s i Ion

54

We can obtain the predict sets of <dec_seq> by the fol lowing

steps :

predictC<dec_seq> ----> <declaration> < de c_ t a i I >) =

f i rstc<declarat ion>)

f irstC<declaration>) = £declare}

pre d i ct C <de c_s e q > - - - - > e p s i I on) = f o I I ow Cd e c_s e q)

To ob ta i n the f o I I ow Cd e c_s e q) , we need to search for a I I the

productions in the grammar with <dec_seq> at the right hand

side of the production. There is only one production,

<start> ----> <dec_seq> <stmt_seq>

with <dec_seq> at the right hand side of the production Csee

Appendix A).

f o I I ow Cd e c_s e q) = f i rs t C <st m t_s e q >)

f irstC<stmt_seq>l = firstC<statement>l

f i rs t C <statement >) = £ i d, i f , wh i I e J

Therefore, the predict sets for <dec_seq> are £declare} and

£id, if, whilel. That is, if the lookahead token is in one

of the predict sets of the productions, in th i s case , we

choose the predicted production according to whatever the

lookahead token is; otherwise, if the lookahead token is not

55

in any predict set, the lookahead token occurs in an i I legal

position and we have a syntax error. See Fig. 25

procedrue dec_seq.

procedure dec_seq;

begin

if error = false then
case nextCptrl of {nextcptrl returns

lookahead token}
2, 3, 19 : {id, if, wh i I el
else begin

declarationCptrl;
d e c_ t a i I C p t r l ;

end;
end;

end;

Figure 25. Parsing Procedure for <dec_seq>

for the

The predict set of <declaration> is much simpler than

<dec_seq>, for it has only one production.

p r e d i c t C < de c I a r a t i on > - - - - > de c I a r e < i d_ I i s t > l =

{declare}

<declaration> has only one predict set and only one element

in the set, that makes the parsing procedure fairly simple,

see Fig. 26.

procedure declaration;

begin

if error = false then
begin

end;

end;

match (pt r , 1 , 1) ;
i d_ I i s t C p t r) ;

! d e c I a r e l

Figure 26. Parsing Procedure for <declaration>

predictC<dec_tai I> ---->

procedure dec_tai I;

begin

if error = false then
begin

end;

end;

match C pt r , 6 , 6) ;
dec_seqCptr);

<dec_seq>) = £;1

{ ; l

Figure 27. Pars i n g Procedure for <de c_ ta i I >

56

predictC<id_I ist> ----> <id> <id_I ist_tai l>l = { idl

p r o c e d u r e i d_ I i s t ;

begin
if error = false then
begin

matchCptr,2,2); £id}
id_I ist_tai ICptrl;

end;

end;

Figure 28. Parsing Procedure for<id_I ist>

predictC<id_I ist_tai I> ----> , <id_I ist>l = £,l

predictc< id_I ist_tai I> ----> epsi Ion) =

fol lowC<id_I ist_tai I>)

57

To compute f o I I ow C < id_ I i st_ ta i I >) , we check a I I

o c c u r e n c e s o f < i d_ I i s t _ t a i I > o n v a r i o u s r i g h t ha n d s i d e s o f

all the productions. Since it appears only in

<id_list> ----><id> <id_list_tail>

f o I I ow C < i d_ I i s t _ t a i I >) = f o I I ow C < i d_ I i s t >)

Inspecting al I occurences of < i d_ I i s t > on t he r i g h t hand

sides of al I productions, we conclude that

f o I I ow C < i d_ I i st >) = f o I I ow C <de c I a rat i on>)

since <declaration> ----> declare <id_list> is the only

p r o d u c t i o n w i t h < i d_ I i s t > a t t h e r i g h t h a n d s i d e .

58

fol lowC<declaration>l = f i rstC<dec_tai l>l = {;l =

followC<id_list_tail>J =

p r e d i c t C < i d_ I i s t _ t a i I > - - - - > e p s i I on l

Therefore, the predict sets for <id_I ist_tai I> are £,l and

f;l, the parsing procedure for <id_I ist_tai I> is in Fig. 29.

procedure i d_ I i st_ ta i I ;

begin
if error = false then
case nextCptrl of
6:
else

end;

end;

begin
ma t c h C p t r , 5 , 2 6 l ;
i d_ I i s t C p t r J ;

end;

{ ; }

{ ' l

F i g u re 2 9. Pars i n g Procedure for < i d_ I i st_ ta i I >

We have finished al I the parsing procedures for the

declarations part of the mini-language, and are ready for

the statements sequence procedure. The start symbol for

statements sequence is <stmt_seq> with production

<stmt_seq> ----> <statement> ; <stmt_tai I>

The procedure <stmt_seq> is very simple, cal I <statement>,

match';', and call <stmt_tail>, see Fig. 30.

procedure stmt_seq;

begin
if error = false then
begin

end;
end;

statementCptr);
ma t ch C p t r , 6 , 6) ;
stmt_tai I Cptr);

£ ; }

Figure 30. Parsing Procedure for <stmt_seq>

The non-terminal <statement> has 3 productions,

<statement> ----> <assgn_stmt>

<statement> ----> <if_stmt>

<statement> ----> <loop_stmt>

predictC<statement> ----> <assgn_stmt>) =

f irstC<assgn_stmt>) = £idl

predictC<statement> ----> <if_stmt>) =

firstC<if_stmt>) = £ifl

predictC<statement> ----> <loop_stmt>) =

f irstC<loop_stmt> = £whi lel

59

procedure statement;

begin
case nextCptrl of

end;

end;

2
3
1 9
else

ass g n_s t mt C pt r l ;
i f _s t mt C p t r l ;
loop_stmtCptr);
syntaxerrorC25l;

Figure 31. Parsing Procedure for <statement>

<stmt_tai I> has 2 productions in the grammar,

<stmt_tai I> ----> <statement> <stmt_tail>

<stmt tai I> ----> epsi Ion

{ i d}
{ i f }

£while}

60

predictC<stmt_tai I> ----> <statement> <stmt_tail>l =

f irstC<statement>) = [id, if, while}

predictC<stmt_tai I> ----> epsi Ion) =

f o I I ow C < s t mt_ ta i I >) =

fol lowC<stmt_seq>) = fend}, [else}, and Cend of input].

The <stmt_tail> procedure is in Fig. 32.

procedure stmt_tai I

begin

end;

if error = false then
if ptr".link <> ni then

case ,nextCptrJ of
7 :
8 :
else begin

statementCptrl;

{not end of input}

{ e n d l
! e I s e l

mat ch C p t r , 6 , 6) ; { ; l
stmt_tai ICptr);

end;
end;

Figure 32. Parsing Procedure for <stmt_tai I>

Fig. 33 to Fig. 36 are the parsing procedures for

<ass g n_s t mt > , < i f _st mt> , <end i f _e I s e > , and < I o o p_s t mt > .

<ass g n_s t mt > - - - - > < i d > : = <exp r >

procedure assgn_stmt;

begin
if error = false then
begin

end;

end;

matchCptr,2,2);
matchCptr,21,21);
exprCptrl;

{ i d]
{ : =]

Figure 33. Parsing Procedure for <assgn_stmt>

61

<if stmt> ----> if <comparison> then
<stmt_seq>

<endif_else>

procedure if_stmt;

begin

if error = false then

begin

end;

end;

ma t ch C p t r , 3 , 3) ;
comp a r i son C pt r) ;
ma t c h C p t r , 4 , 4) ;
stmt_seqCptr);
e n d i f _e I s e C p t r) ;

(i f)

£then)

Figure 34. Parsing Procedure for <if_stmt>

•

62

<endif_else> ----> end if

<endif_else> ----> else
<stmt_seq>

end i f

procedure endif_else;

begin

if error = false then
begin

end;

end;

case nextCptr) of
7 : begin

end;

8 begin

end;
end;

ma t ch C p t r , 7 , 7) ;
ma t ch C p t r , 3 , 3) ;

ma t ch C p t r , 8 , 8) ;
stmt_seqCptr);
ma t ch C p t r , 7 , 7) ;
ma t ch C pt r , 3 , 3)

fendl

{ i f)

{elsel

(endl
(i f)

Figure 35. Parsing Procedure for <endif_else>

63

<loop_stmt> ---->while <comparison> loop
<stmt_seq>

end I oop

procedure loop_stmt;

begin
if error = false then
begin

end;

end;

matchCptr, 19,191;
comp a r i son C pt r l ;
matchCptr,20,20);
st m t_s e q C pt r) ;
mat ch C p t r , 7 , 7) ;
matchCptr,20,20);

{whi leJ

{loopl

fendl
floopJ

64

Figure 36. Parsing Procedure for <loop_stmt>

The "comp a r i son 11 in the while statement is in the form

of

C a > bl

Ccount <> 10)

There are four relational operators in the mini-language

(II: U f II (II 1 "> " ' "< > ") ' the parser looksahead for the token

and returns an error signal if the token is not in the set

of relational opera to r s . The f o I I ow i n g i s t he LL C 1 J g r amma r

for <comp a r i son> .

<comparison> ----> <factor> <comp_tai I>)

<comp_ ta i I > ----> = <factor>)

<comp_ta i I> ----> <> <factor>)

<comp_tai I> ----> < <factor>

<comp_tai I> ----> > <factor>

procedure comparison;

begin
if error = false then
begin

ma t ch C p t r , 9 , 9 J ;
factorCptr);
comp_ ta i I C pt r) ;

£ (}

end;

end;

procedure comp_tai I;

begin
if error = false then

end;

case nextCptrl of
11 begin

matchCptr,11,11); £=1
factorCptrl;
matchCptr,10,lOJ; £)}

end;
12 begin

mat ch C p t r , 1 2 , 1 2) ; £ < > l
factorCptrl;
ma t ch C p t r , 1 0 , 1 O) ; £ l l

end;
13 begin

matchCptr,13,13); £<1
factorCptrJ;
matchCptr,10,10); £)1

end;
14 begin

ma t ch C p t r , l 4 , l 4 l ; £ > l
factor C pt r);
matchCptr,10,10); £)1

end;
else syntaxerrorC28J;
end;

Figure 37. Parsing Procedures for <comparison>,
<comp_ta i I>

65

66

Let ' s I o o k at a s imp I e a r i th ema t i c express i on ,

x*a+b*c

this expression gives different results, depending on the

grammar for the expression. For ex amp I e i f the grammar for

the expression is

<expr> ----> <expr> + <expr>

<expr> ----> <expr> llC <expr>

<expr> ----> <expr> - <expr>

<expr> ----> id I constant Cexprl I

This grammar is ambiguous because there can be more than one

parse tree generated by the grammar, see Fig. 38.

+

/\ (\ /\.
* *

/\ c
/~\ c /\/\

x a b c * b x /+\ /\ a b
x a

Figure 38. Parse Trees Generated by Ambiguous Grammar.

67

We cannot use an amb i g u o us grammar i n the parser , for

we cannot uniquely determine which parse tree to select for

a sentence. To make the grammar unambiguous, we have to

separate the multiplication part from the addition,

subtraction part. The modified grammar in which

multiplication has higher priority than addition and

subtraction is as follows,

<expr> ----> <term> <term_tai I >

< term_ta i I> ----> + <expr>

< term_ta i I> ----> - <expr>

<term_tai I > ----> epsi Ion

<term> ----> <factor> <factor_tai I>

<factor_tai I> ----> * <term>

<factor_tai I > ----> epsi Ion

<factor> ----> <constant>

<factor> ----> < id)

<factor> ----> (<expr>)

Fig. 39 gives the parsing procedures needed to parse

expression.

procedure expr;

begin
if error = false then
begin

termCptr);
term_tai I Cptr);

end;
end;

Figure 39. Procedures for Parsing an Expression

predictC<term_tai I> ----> + <expr>l = £+)

predictC<term_tai I> ----> <expr>) = £-l

pre d i ct C < term_ ta i I > - - - - > e p s i I on) = f o I I ow C < term_ ta i I >) =

fol lowC<expr>) = fol lowC<assgn_stmt>l = fol lowC<statement>l
= { ;)

procedure term_ta i I;

begin

i f error = false then
begin

case nextcptr) of
1 5 : begin

matchCptr,15,15); { +)

exp r C pt r);
end;

16 begin
matchCptr,16,16); { - }

exprCptrl;
end;

6 £ ; }
else

end;
end;

end;

Figure 39. (Continued)

68

procedure term;

begin

end;

if error = false then
begin

end;

factorCptr);
factor tailCptr);

predictC<factor> ----> <constant>) = £constantl

predictC<factor> ----> <id>) = £ idl

predictC<factor> ----> C <expr> l

procedure factor;

begin

end;

if error = false then

case
1 8
2
9

nextCptrl of
matchCptr,18,18);
match (pt r • 2 r 2) ;
begin

end;

ma t ch C p t r , 9 , 9) ;
exp r C pt r);
matchCptr,10,10);

e I s e match C pt r , 0 , 2 7) ;
end;

Figure 39. CContinuedl

= { (}

£constant}
{ i d}

{ (}

{) }

£skip error tokenl

69

•

procedure factor_tai I;

begin

if error = false then
begin

case nextCptr) of
15,16,6 :

1 7 : begin

(+' - ' ; 1

ma t ch C p t r , 1 7 , 1 7) ;
termCptrJ;

end;
6 :

end;
end;

end;

Figure 39. CContinuedl

pq

We have def in e d a I I the parsing procedures for each non-

terminal symbol in the Ledgard mini-language. Now let's look

at a simple example to see how the praser works. For

ex amp I e , the i n put statement i s ,

id := id * constant + id Cend of input]

Step Procedure Cal Is Rema i n i n g I n put

star t id := id* constant + id ;Cendl

70

71

2 dec_seq id := id * constant + id Ce n d 1

3 stmt_seq id . - id * constant + i d ; Cend1 . -

4 statement id . -. - id * constant + id; Cend1
match C 11 ; 11)

stmt_tail

5 assgn_stmt id : = id * constant + id; C e n d 1
match C " ; 11)

stmt_tai I

6 match C id l id . -. - id * constant + id; Cend1
ma t ch C 11 : = 11 l
ex pr
match C 11 ; 11)

stmt_tai I

7 ma t ch C 11 : :: 11 l . -. - id * constant + id; Cendl
expr
match C 11 ; 11 l
stmt_tai I

8 ex pr id * constant + id; Cendl
match C 11 ; 11)

stmt_tail

9 term id * constant + id; Cendl
term_ta i I
match C 11 ; 11)

stmt_tai I

10 factor id * constant + id; Cendl
factor_tai I
term_ta i I
match C 11 ; 11)

stmt_tail

1 1 match C id) id * constant + id; Ce n d 1
factor_tai
term_ta i I
match C 11 ; 11)

stmt_tai I

72

12 factor_tai I * constant + id; Ce n d l
term_tai I
match C 11 ; 11)

stmt_tai I

1 3 match C 11 * 11) * constant + id; Ce n d l
term
term_ta i I
match C 11 ; 11)

stmt_tai I

1 4 term constant + id Cendl
term_ta i I
match C 11 ; 11)

stmt_tai I

1 5 factor constant + id Ce n d l
factor_tai
term_ta i I
match C 11 ; 11 l
s tmt_ta i I

1 6 matchCconstantl constant + id Cendl
factor_tai I
term_ta i I
match C 11 ; 11 l
stmt_tail

1 7 factor_tai I + id Ce n d l
term_ta i I
match C 11 ; 11)

stmt_tai I

18 term_ta i I + id Cendl
match C 11 ; 11 l
stmt_tai I

1 9 match C 11 + 11 l + id C e n d l
ex pr
match C 11 ; 11 l
stmt_tai I

73

20 ex pr id Ce n d l
match C 11 ; 11 l
stmt_tai I

2 1 term id Ce n d l
term_tai I
match C 11 ; 11)

stmt_tai I

22 factor id Cendl
factor_tai I
term_ta i I
match C 11 ; 11)

stmt_tail

23 match C id) id Cendl
factor_tai I
t e rm_t a i I
match C 11 ; 11)

stmt_tail

24 factor_tai I ; Cendl
term_ta i I lfactor_tai I wi 11 match epsilonl
match l 11 ; 11)

stmt_tai I

25 term_tai I ; Cendl
ma t ch C 11 ; 11) ; l term_ta i I wi 11 match epsi lonl
stmt_tail

26 match C ' ; 11) Cendl
stmt_tai I

27 stmt_tai I Cendl

28 Done! lstmt_tail wi 11 match end of input}

74

Translator

The Role of the Translator

The best way to evaluate different statements is to

translate the statements into a standard f o r ma t , and t hen

compare it to the template answer. The standard format can

be a symbol table, 3-address code, quadruples or tree

s t r u c t u r e • The translator in this project translates

different statements into different structures, depending on

the statement structure and i ts comp I ex i t y . F i g . 4 O i s the

structure of the statements evaluation system CSESl

including the translator.

input text
stream

of tokens parse tree

tables of
declarations
assignments
expressions
for evaluation

--->:Lexical :----->:parser:----->:translator:------>
:Analyzer:

Figure 40. Structure of Statements Evaluation System

The translation scheme used in this project is a

syntax-directed translation scheme, which al lows a semantic

action Csubroutinel to be attached to the production of the

context-free grammar. The subroutine is attached to the

parsing procedure of the recursive descent parser, which is

cal led at the appropriate time by the parser. The advantages

75

of the syntax-directed translation scheme are its directed

translation in terms of the syntactic structure of the

grammar and i ts ea s i n es s i n mod i f i cat i on w i thou t d i s tu r b i n g

the existing translations, which simplifies the design of

the translator and efficiently exploits the parser.

Semantic Actions

The semantic action is to generate output when a

particular production

example

is recognized fr om the

U ---->ABC fcalled subroutine wl

input. For

is a product ion with

The semantic action

whenever the parser

semantic action w associated with it.

Ccalled subroutine wl is executed

recognizes in its input a substring x

which has a derivation of the form U ----> ABC--*--> x.

The semantic action can be the generation of intermediate

code C3-address code, quadruples), or the placement of data

into a symbol table, or the computation of values for

variables or the transfering of symbols into different

Cstandardl formats.

Implementation of Syntax-Directed Translator

To design the syntax-directed tanslator for the mini-

language, we need to define semantic actions for

procedures in the recursive descent parser.

the parsing

After the

semantic actions are defined, subroutine codes are generated

corresponding to each semantic action. Subroutine calls are

76

added to the parsing procedure wherever

is required.

the semantic action

Trans I at i on Scheme for Dec I a rat i on

(1)

(2)

(3)

declare

declare

declare

declare

declare

declare

x 'y' z;

x ' y ;

z;

x ;

y ;

z ;

The 3 sets of declaration statements above have the same

effect (define the variables x,y,zl. Since x,y and z can be

in any order, there are 3C2 = 6 variations in the first set,

6 variations in the second set and 6 in the third set, which

make up a total 0 f 6 + 6 + 6 = 1 8 comb i n at i on s of formats

for declaring just 3 variables x,y,and z - The statements

evaluation system should be able to recognize a 11 these

different formats of declarations and determine the

equivalence of each statement.

The translation scheme is to input the variables into a

table) when the variable is symbo I tab I e

recognized by

(declaration

the parser. By adding semantic action to the

d e c I a r t i o n p a r t o f t h e p r o d u c t i o n g r a mm a r ,

<dec_seq>

<dec_seq>

<declaration>

<de c_ ta i I >

----><declaration> <dee tail>

---->epsilon

- - - - > de c I are < i d_ i s t >

----> <dec_seq>

<id list> ----><id> £ACTION 11 <id_list_tail>

<id_I ist_tai I> ----> , <id I ist>

< i d_ I i s t _ t a i I > - - - - > e p s i I on

ACTION 1 input id into declaration table

the recognized variable is placed into the declaration

table, see Fig. 41.

variable name type

x integer

--------------------:
y integer

--------------------:
z integer :

--------------------:
--------------------:

Figure 41. Declaration Table

The de c I a rat i on tab I e i s imp I eme n t e d as a I i n k e d I i st ,

which stores the name and the type of the variables Conly

the single type integer occurs in the mini-language). Fig.

42 is the pars i n g procedure i d_ I i st for de c I a rat i on w i th

s ema n t i c a c t i on added .

p r o c e du r e i d_ I i s t ;
begin
if error = false then

begin
ma t ch C p t r , 2 , 2) ; { i d l
i n s er t Cd e ch ea d , de ct a i I , p tr) ; { s ema n t i c act i on l
i d_ I i s t _ t a i I C p t r l ;

end;
end;

Figure 42. Pa r s i n g P r o c e d u r e i d_ I i s t

•

77

78

The insert routine is the s ema n t i c a c t i on for i n put i n g the

declared variables into the declaration table. The procedure

insert is in Fig. 43 .

procedure insertCvar headptr, tai lptr

(i n s er t e I eme n t i n to the I i n k e d I i s t
tai lptr point to the head and the tai I of

var
id rec var pt r;

begin
new C i d rec) ;
in it var C id rec);
idrecA. idCll := ptrA.sym;
i d re cA. I en : = 1 ;

varptr; ptr
tokenptrl;

with headptr and
the list}

if headptrA.link <>nil then
begin

{insert at the endl

end;

end

tai lptrA.1 ink := idrec;
tai lptr := idrec;

else
begin
headptrA. I ink := idrec;
tai lptr := idrec;
end;

Figure 43. Insert Procedure

{ f i rs t e I eme n t l

The fol lowing is an example of how the system evaluates

declaration statements,

Template answer declare u, w;

Input answer declare w;

declare u;

79

The template answer is 1 irst fed into the evaluation system.

When parsing the template answer, a template declaration

table is created for storing all the declared variables in

the template answer, which is used to compare with the input

statements later on in the evaluation process. Fig. 44 is

the declaration table for "declare u,w;".

variable name type

u integer

w integer

Figure 44. Declaration Table for "declare u,w;"

Fig. 45 is the declaration table generated for the input

statement when i t i s translated by the translator. The

evaluation system compares both declarations, they are

considered functionally identical if they all have the same

variables regardless of their order in the table. For

example, Fig. 44 and Fig. 45 have the same variables

although they are not located at the same locations inside

the tables. Therfore, we conclude that the input answer is

correct, which declares the variables "u" and 11 w 11 as in the

template answer.

80

variable name type

w integer

:--------------------:
u integer

' ' .--------------------,
' ' ,--------------------,

:--------------------:

Figure 45. Declaration Table
"declare u"

for "dee I are w;"

Translation Scheme for Assignment Statement

The translation process for an assignment statement is

a more complicated process than the t r a n s I a t i o n 0 f a

declaration statement. Generally assignment statements can

be written in many different forms, which when combined with

different pr ior.i ties and characteristics of operations Ii ke

mul t ipl icat ion, addition, subtraction and parenthesis, lead

to translation difficulties. For example, a s imp I e

assignment statement I ike

X := a + b * (2 + 3) - C;

can be written in these different forms, which are a I I

funt ional ly equivalent,

1.x:=b* 2 + 3) -c + a;

2. x . - a - c + b lk (2 + 3) ; . -

3. x : = a + 2 *b - c + 3 *c;

4. x : = b lk 2 + b* 3 -c + a ;

5. x . - a -c + 2* b + b lk 3;

6. x : = Ca - c) + b lk (2 + 3) ;

81

or in the f o I I owing s i mi I a r forms, which are not

functionally equivalent and do not produce the same result

when the statement is executed.

1. x := b + a *C2 + 3) -c;

2. x : = a + b*2 + 3 - c;

3. x := Ca + bl * C2 + 3) -c;

Let us begin by looking at the production grammar for

the assignment statement.

< as s g n_s t mt > ----) < id) . -. - <expr>

<expr> ----> <term> <term_tai .I)

<term_tai I > ----) + <expr>

<term_tai I > ----> - <expr>

<term_tai I > ----> epsi Ion

<term> ----) <factor> <factor_tai I>

<factor_tai I> ----) * <term>

<factor_tai I > ----> epsilon

<factor> ----) <constant> <id> <expr>

The context-free grammar above can produce the fol lowing

statements

1. X :=a* 3 + b + C;

2. x := 3 * a + c + b;

Because of the commutative characteristic of the 11 + 11 and "*"

operators, the two statements generate the same result upon

execution. When an operator is commutative I ike "*"and 11 + 11 ,

the order of the operands does not affect the function of

the statement. The evaluation system should be able to

recognize that the two statements are functionally

82

equivalent. To s imp I i f y the evaluation process, the

translation scheme translates the assignment statements into

table formats which eliminated the parenthesis in the

assignment statement. Using the table approach made the

internal represenation of the assignment statement easy to

imp I eme n t and i t a I so s imp I i f i es the task of keeping track

the latest assigned value of each variable for subs ti tut ion.

The assigned identifier is placed into the assignment table;

the expression table which holds al I the variables in the

expression is linked to the assigned identifier, see Fig. 46

and Fig. 47.

Assignment table

Expression table
x ----> ------------------------------

: a : b : c : :+/*:
I I I I I I I .--,--,--,--,--,---------------,
: 3:

0 0 0 sign bit

Figure 46. Table Representation of x := a*3 + b + c

The first row of the expression table represents addition,

83

and each column represents multiplication. The last row is

the sign bit for each column, it is set to 0 i f the column

is positive and set to 1 if the column is negative.

Assignment table

Expression table
x ----> ------------------------------

3: c: b: :+/*:
:--:--:--:--:--:---------------:

a:

0 0 0

Figure 47. Table Representation of x :: 3*a + c + b

Because of the commutative characteristic of addition

and multiplication, the order of the rows of each individual

column and the order of the columns of the expression table

do not affect the result of the assignment statement,

therefore the two representations in Fig. 46 and Fig. 47 are

functionally equivalent. Using the table representation of

the assignment statement can simplify and speed up the

evaluation process, and i t can be implemented eas i I y by

arrays or I inked I ists.

The evaluation system generates separate assignment

84

tables and expression tables for the template and the input

statements. The input assignment statements are evaluated by

comparing the tables with the template answer. The input

answer is correct if the assignment table is matched with

the assignment table of the template.

For subtraction, the sign bit of the expression table

is set to with the subtracted variable placed into the

expression table. See Fig. 48 for the table representation

for x := a + b - c.

Assignment table

:----------------- Expression table
x ----> ------------------------------

:----------------- a: b: c: :+/*:
:--:--:--:--:--:---------------:

:-----------------
0 0

Figure 48. Table Representation of x :=a+ b - c

There are two operations on the expression tables,

addition and mu I t i p I i cat i on . The best way to understand

these two operations is to look at the e xamp I es in Fig. 49

and Fig. 50.

•

85

Expression table Expression table

a: b: c: d: e:
I I I I I I I .--,--.--.--.--,----, + I I I I I I ,--,--.--.--.-----------,

0 0 0 0 0

Expression table

a: b: c: d: e:
= I I I I I I I .--.--.--,--,--,---.

0 0 0 0 0

Figure 49. Addition of Expression Tables

The example above shows the addition of the expression

tables Ca+b+cl and Cd+el, the result is an expression table

with expression Ca+b+c+d+el.

Expression table Expression table

a: b: c: d: e:
:--:--:--:--:--:----: * :--:--:--:--:-----------:

u:

0 0

=

0 0 0

Expression table

a : a : b : b : c : c
I I I I I I I ,--.--.--.--.--.---,

u : u : d : e : d : e
:--:--:--:--:--:---:

d: e:

0 0 0 0 0 0

Figure 50. Multiplication of Expression
Tables

86

The multiplication of expression tables is more

comp I i cat e d than add i t i on _ An example of multiplying two

expression tables Ca*u+b+cl and Cd+el and returns the

expression table Ca*u*d+a*u*e+b*d+b*e+c*d+c*el as a result

appears in Fig. 50.

An example of expression table addition with negative

sign is given in Fig. 51 , and Fig. 52 is an example of

multiplying two expression tables Ca-b+cl and Cu-wl. The

sign bit is determined by the XOR of the sign bits of the

two colunms which are be i n g mu I t i p I i ed. F i g . 5 3 i s the XOR

table.

Expression table Expression table

a: b: c: d: e:
I I I I I I I ,--.--.--.--.--.----, + I I I I I I ,--.--.--.--.-----------.

u: : w:

0 0 0 0

Expression table

a: b: c: d: e:
= I I I I I I I .--.--.--.--.--,---,

u: : w:

0 0 0 0

Figure 51. Addition of Expression Tables
Ca*u+b+cl, Cd-e*wl

87

Expression table Expression table

a: b: c: u: w:
I I I I I I I ,--,--,--,--,--,----, * :--:--:--:--:-----------:

0 0 0

Expression table
I --------------------

a: a: b: b: c: c:
= :--:--:--:--:--:--:--:

u: w: u: w: u: w:

0 0 0

Figure 52. Multiplying the Expression Tables of
Ca+b-cl, Cu-wl

XOR 0

0 0

0

Figure 53. XOR Table

After understanding the table translation of the

assignment statements, we are ready to add semantic actions

to the productions. The f o I I ow i n g i s a r e v i s e d g r a mm a r f o r

assignment statement with semantic action added.

<assgn_stmt> ----> <id> {input id i.nto assignment

tab I el := <expr> {I inked

expression table to assigned

i d l

<expr>

< t e r m_ t a i I >

< term_ta i I>

<term_tai I>

<term>

<factor_tai I>

<factor_tai I>

<factor>

<factor>

88

----> £create expression table}

< t e r m > < t e r m_ t a i I >

----> + <expr> + expression table

derived from <expr>l

----> - <expr> {set negative flag to true}

{ + expression table}

----> eps i I on

----> <factor> <factor tai I>

----> * <term> { * expression table

derived from <term>

to the last <factor>}

----> epsi Ion

----> <constant> {input constant into

----> <id>

expression table}

{if negative is true

set negative sign to 1

in expression table, set

negative flag to false}

£input

table}

id into expression

{if negative is true

set negative sign to in

expression table, set

negative flag to false}

89

<factor> ----> C<expr>) {return expression table

derived from <expr>l

{if negative is true then

return expression table

with all the signs

changed; set negative flag

to falsel

The semantic actions are inside the "£1", and they are added

into the parsing procedures at the same location they are in

the grammar. A semantic action can be implemented in one or

more subroutines, depending on its comp I ex i ty and function.

The f o I I ow i n g F i g u r e is an example showing the

generation of the expression tables from the semantic

actions for the expression,

a - Cb + cl * e

Remaining input Expression tables created

a - Cb + c) * e

- Cb + C) * e
: a:

0

Figure 54. Generation of Expression Tables

•

Cb + c) * e

b + c) * e

+ c) * e

c) * e
a:

0

* e
a:

0

* e

* e

e
a:

0

F g 54.

a:

0

negative
flag set to
tu re

a: +:

0 0

a: +: b:

0 0

+: b: +:

0

+ +: c:

0 0

a: +: b: c:

0 0 0

a: +: b: c:

0
negative flag set to false

: +: b: c:

CCont nued)

90

Figure 54.

a: : +: b: c:

0 0

a: : +: b: c:

0

a: b: c:
I I I I I ,--.--.--.--.

e: e:

0

CContinuedl

I I I I ,--,--.-----.
e: e:

91

Translation Scheme for Multiple Statements

The d i f f i cu I t y of e v a I u at i n g mu I t i p I e s tat eme n ts i s to

keep track of the same variable in different statements. The

value of a variable is defined by the latest executed

statement in which the variable is assigned. Consider the

statements,

X := W;

x : = a;

y := x + b;

After the execution of the first statement, the value of 'w'

is assigned to 'x', and then the value of 'x' is replaced by

the value of 'a' in the second statement. Wh a t i s t h e v a I u e

of 'y' in the third statement ?

92

I f a I I the above statements are executed sequentially,

then the latest value which is assigned to 'x' is the value

in variable 'a', therefore, the value of y is equal to the

value of 'a' plus the value of 'b'. To be able to evaluate

such multiple s tat eme n ts , the statements evaluation system

must be able to keep track of the order of all assigned

variables, that means the system must know the latest value

which is assigned to the variable. The best way to keep

track of the variables is to place the assigned variable

into an assignment table. Let's look at the assignment table

in Fig. 55 for the above example.

Assignment tab I e

:-----------------
x

:-----------------
x

:-----------------

:-----------------
y

:-----------------

Figure 55.

Expression table
----> ------------------------------

: w:

----> ------------------------------
a: :+/*:

----> ------------------------------
a: b:

Assignment Table for
y := x + b;

x . -. -

:+/*:

W; X : = a;

Every variable appearing in the right hand side of the

assignment statement is replaced by its latest assigned

value. Since 'w' and 'a' in "x := w" and "x • - a II are not

93

previously defined, 'w' and 'a' are placed into the

expression table. For the assignment statement "y := x + b",

by searching the assignment table sequentially for 'x' and

'b' we found that • x' was previous I y defined twice,

therefore the latest value 'a' is substituted for 'x' in the

expression, and the expression for 'y' becomes "a+ b". The

subs ti tut ion takes place before the variable is input into

the expression tab I e. The semantic action added to the

grammar is as fol lows

<factor> ----> id {checks assignment table for id

, if found in assignment table,

substituted the

value for idl

latest assigned

{input id or assigned value

into expression table, if

negative is true then set

negative sign in expression

table; set negative flag to

f a I s e l

Transl at ion Scheme for Conditional Statement

Because of the comp I ex i t y and d i f fer en t var i at i on s of

nested if-then-else statements, t h e r e f o r e , this study is

restricted to the one I eve I i f - then - e I s e s tat eme n t w i th the

condition in this format,

Cvar iable conditional operator variable)

94

The f o I I ow i n g are the four conditional operator's in the

mini-language,

) < <) =

The translation process f o r if-then-else uses asimilar

process to translate sequential statements, except the

statements are separated into two different assignment

blocks, the then-block and the else-block. The then-block is

an assignment table with all the assignment statements

between the 'then' and the ' end ' or between the ' then ' and

the 'else', see Fig. 56. On the other hand, the else-block

is an assignment table with all the assignment statements

between the ' e I s e ' and the ' end ' , see F i g 5 6 . The exec u t i on

flow of the statements is determined by the condition of the

if-then-else, therefore, distinct comp a r i sons w i I I take

place between the then-block of the template and the input,

as wel I as between the else-block of the template and the

input .

i f Ca) b) then i f a > b) then

c . - t ; lThen-block{ c . - t ; . -
} {

u . - a *b; } u . - a * b ; . - . -

else end i f ;

a . - b + c; } Else-block

end i f ;

Figure 56. Then-block and Else-block

95

The system also recognizes the complement of the if-

then-else statement, that means the statements in Fig. 57

are considered functionally equaivalent by the system. To

determine the equivalence of complements of an i f-then-e I se

statement, the system performs cross comparisons between the

then-block and else-block of the template and the input, and

vice versa.

i f (a > b) then i f (a <= b)

a : = a + 1 ; a - - a - 1 ; . -

else else

a . - a - 1 ; a . - a + 1 ; . - . -

end i f ; end i f ;

Figure 57. Cross Comparisons Between Complements

The source I isting of the translator is in Appendix E.

•

This

different

CHAPTER VI

EXAMPLES OF DIFFERENT STATEMENTS

AND RESPONSES

Introduction

chapter demonstrates how the system responds to

types of statements. The quest ions

template answers are provided to the system,

and

and

the

the

possible valid inputs are shown in each example. When a

student logs on to the system, he is asked to compose a

program segment for a specific programming task. The answer

from the student is then evaluated by the system. First the

system separates statements into a stream of tokens by its

lexical analyzer, then the parser checks the syntax of the

statements. If the statements contain no syntactical errors,

they are

The final

translated into

procedure of the

table formats

system is

by the translator.

to compare a I I the

tables

answer

from the input program

provided to the system. The

s e gme n t w i th the temp I ate

answer is correct if the

input and

incorrect,

the temp I ate are matched , other w i s e the i n put i s

and error messages and the correct template

answer are printed.

96

97

Declarations

Example 1

Question Write a program segment to declare

the variables a, band c.

Answer temp I ate -~

declare a, b, c.

Val id inputs

1) declare a ' b' c ;

2) declare a' b ;

declare c ;

3) declare a;

declare b ;

declare c ;

ca' b and c can be in any order of the three sets of inputs)

If the input is valid, the system notifies the user

that the input statements are correct. On the other hand, if

the i n put i s i n v a I i d , the system not i f i es the user that the

answer is incorrect and prints

ex amp I e , i f the i n put i s

declare a. b, c;

the output from the system is

input

the correct answer. For

declare a. **syntax error** b, c;

error

correct answer

Example 2

syntax error II II ,

declare a, b, c;

or II I II

'

98

expected

With the same question in example 1 , I et 's look at

another input,

declare a;

declare x,c;

These input statements are syntactically correct, but they

have not fulfilled the answer of the question, wh i ch i s to

declare variables a, b and c. The f o I I ow i n g i s the output

from the system,

input

declare a;

declare x,c;

error incorrect answer

correct answer

declare a, b, c;

Assignment Statements

Addition

Question Write a program segment to

calculate the 'sum' of a, b, c.

Answer temp I ate

sum := a + b + c;

Valid inputs

1) sum : = a + b + c ;

2) u := a + b;

sum := u + c;

3) u := a;

v := u + b;

sum := v + c;

4) sum : = a + Cb + c) ;

5) sum : = C a + b) + c ;

99

Ca, b and c can be in any order in the 5 sets of inputs)

Assignment expression tables are generated by the

translator when the statements are parsed, and they are used

to compare with the answer template during the evaluation

phase. Above are the val id inputs for the question, the

variables a, band c in the five valid inputs can be

order, and the variables u and v are arbitrary.

in any

Subtraction

Question

Answer template

Valid inputs

Write a program segment to

calculate the net profit 'n' from

the sales 's', tax , t , and cost

'c ...

n :: S - t - C;

1) n .- s - t - c;

100

2.) n . - s - c - t ;

3) n : = (s - t) - c;

4) n . - (s - c) - t ;

5) u . - s - t ; . -

n . - u - c; . -

6) u : = s - c ;

n . - u - t ; . -

7) n . -. - s - (c + t) ;

8) u : = c + t ;

n := s - u;

The above question is very easy, we just need to

subtract the cost and the tax from the sales to get the net

prof it as in number in the valid inputs. As you can see a

simple task I i k e this can have eight different va I id

answers. Like the valid answer in number 6, we can first

calculate the profit from sales minus cost, and then come up

with the net profit by subtracting the tax from the prof it.

From the example above, you can also see that

sub t r a c t i on i s mo r e res t r i c t e d than addition (addition is

c o mm u t a t i v e b u t subtraction is not) For example the

statement ' a b ' is functionally different fr om the

s tat eme n t 'b - a ' . But i n add i t i on , the s tat eme n t ' a + b ' i s

functinally equivalent to the statement 'b +a'. Therefore,

unlike addition, the order of the operands makes a

difference in the function of a subtraction statement.

101

Mui tip I icat ion

Question Write a program segement to

calculate the simple interest

from capital 'c', interest rate 'r'

and number of years 'y'.

Answer template

:= c * r * y;

Val id inputs

1) . - c * r * y;

2) u . - c * r ;

x . - u * y; . -

3) u . - c ; . -

v : = u * r ;

: = v * y;

4) . - c * C r * y) ; . -
5) . - (c * r) * y ; . -

(c • r and y can be in any order in the 5 sets of inputs)

The characteristics of addition and multiplication are

very s i mi I a r, they are both c o mm u t a t i v e , t h a t me a n s t h e

changing the order of the operands of the statement does not

affect the result of the statement.

We can calculate the interest by t irst getting the

interest for one year, then multiply it by the number of

years, see number 2. Or we can do the whole calculation in

one program statement as in number 1.

102

Compound Statement

A I I the ex amp I es above are statements w i th one kind of

operator. In th i s section, we are going to encounter

statements with more than one kind of operator. Such

are ca I I ed compound statements. Because of statements

different characteristics and p r i o r i t i e s of different

operators, a compound statement can have more variations of

statement formats and a r e mo r e comp I i ca t e d to evaluate.

Examples of simple compound statements fol low,

Example 1

Question

Answer template:

Val id inputs

Write a program segment to

calculate the area 'a' of the

1 o I I ow i n g f i g u r e .

w

x y z

I t i s a rectangle with width 'w',

and the length is divided into 3

sections, 'x', 'y' and 'z'.

a := w*x + w*y + w*z;

ll a := w*x + w*y + w*z;

2J a := w*Cx + y + zl;

103

3) a : = w* x + w* C y + z l ;

4) U :: X + y + Z;

a . -. - u *w;

5) u : = x + y;

t :: U + Z;

a :=w* t;

6) u : = w*x;

t := w*y;

v : = w*z;

a := U + t + V;

Cx, y and z can be in any order)

Cu, t, v are arbitrary variables)

We can solve the question by adding up the areas of the

3 sma I I er size rectangles, which combine together to form

the big rectangle Csee numbers 1 and 6). On the other hand,

we can calculate the length of the rectangle by adding up

a I I the section lengths together, x + y + z. Then we can

come up the area by multiplying the length by the width 'w'

Csee numbers 2 and 4l.

Only a few of the valid inputs are listed above.

Example 2

Question Write a program segment to

calculate the area 'Area' of the

f o I I ow i n g f i g u re .

•

104

a

b

x y

It is a rectangle with width a+b,

and the length is divided into 2

sections, 'x' and • y ••

Answer template:

Area := a*x + a*y + b*x + b*y;

Val id inputs

1) Area . - a*x + a*y + b*x + b*y; . -

2) Area . -. - Ca+b) * Cx+y);

3) Area : = a*Cx + y) + b*Cx + y) ;

4) Area . -. - x*Ca + b) + y*Ca + b) ;

5) u . -. - a + b ;

v . -. - x + y ;

Area . -. - u * v;

6) Area . - a*Cx + y) + b*x +b*y; . -

7) Area . -. - x*Ca +b) + y*a + Y*b;

Example 3

Question

Answer template:

Val id inputs

105

Write a program segment to

calculate the shaded area 'Area' of

t he f o I I ow i n g f i g u re .

u

: ///////////:
:11//lllllll:
: ///////////:

: a b

c

I t is a rectangle with width c,

and the length is u.

Area := u*c - a*c - b*c;

1) Area . -. - u*c - a*c - b*c;

2) Area . -. - c * Cu - a - b) ;

3) Area . -. - cu - Ca + b)) * c ;

4) Area : = c * c u - a -b) ;

5) x . -. - a + b;

y . -. - u - x;

Area . -. - y * c ;

6) x . -. - u - a;

y . - x - b; . -
Area . -. - c * y ;

Again only a few of the many variations are given

above.

•

106

If-then-else Statements

Example 1

Question Write a program segment to add 1 to

a i t a is negative, and subtract

from a if a is positive.

Answer template

i f Ca > O) then

a:=a-1;

else

a:=a+l;

end i f ;

Val id inputs

1) i f (a) 0) then

a . - a - 1 ; . -

else

a . -. - a + 1 ;

end i f ;

2) i f (a <.::. 0) then

a . - a + 1 ; . -

else

a : = a - 1 ;

end i f ;

From the above examples, you can see the number of

107

variations of formats that a simple statement can have.

This chapter only gives some of the simple examples for

demonstrations. The more complex the statements are, the

mo r e var i a t i on s

evaluate them.

they can have , and t he mo r e d i f f i cu I t to

CHAPTER VI I

SUMMARY, FUTURE STUDY AND DEVELOPMENT

Summary

Purpose of this study was to create a statements

evaluation

interactive

system, which

tutorial system

can be developed into an

in evaluating input program

segments and responding with evaluation messages and correct

answers. The system served as a computer assisted

i n st r u ct i on system i n he I p i n g users i n imp r o v i n g pro gr amm i n g

skills and techniques. Through the system, a student can

learn from his past mistakes; he wi I I be able to improve his

logic and his ski I Is in developing algorithm.

The imp I eme n t e d system is written in Pascal running on

an IBM PC environment, and it i s imp I eme n t e d to respond to

the mini-language by Ledgard and Marcotty. The system is

bu i I t f r om the ground f I o or ; f r om cons t r u ct i on of the LLC1)

grammar for the mini-language to the code generation of the

lexical analyzer, parser and translator. Al I the components

of the system are described in detai I including the design

and implementation methods.

Future Study

Avai labi Ii ty of future development surrounding the area

108

109

of tutorial system in program improvement is unlimited.

Technology is changing so fast that programming languages

are constantly developing in order to become more powerful,

easy to read/write, and faster in terms of comp i I at ion and

execution time. Program improvement systems wi I I become very

helpful, both in formal classroom teaching and technical

training. Proposed area of further research associates with

the area :

1l creation of a f u I I y au t oma t i c sys t em by u t i I i z i n g

the compiler optimization technique;

2) development of an interactive system which is

capable of comparing separate inputs from different

users, so that, students wi I I be able to learn from

other students' programming techniques or mistakes;

3) research i n the are a of automated a I go r i t hm

improvement system.

•

BIBLIOGRAPHY

Aho, A. V., and Ullman.,J. D. Principles of Compiler Design.
Addi son-Wes I ey Pub Ii sh i ng Company, Massachusetts, 1977.

Alpert, D., and Bitzer, D. L. "Advances in Computer-Based
Education." Science, Vol 167, 1970, 1582-90.

Atkinson, R. C., arrd Hansen,
Instruction in Initial Reading:
Reading Research Quarterly, Vol

D. N. "Computer-Based
The Stanford Project."

2, 1966, 5-25.

Baker, F. B. "Computer - based Instructional System: A first
look." Review of Educational Research, Vol 41:1, 1971,
51-70.

Brooker, R. A., and Morris, D. "A general translation
program for phrase structure
9: 1, 1962, 1-10.

languages." J. ACM, Vol

Brown, J. S., Burton, R. R., and Bel I, A. G. "SOPHIE - A
step toward creating a reactive learning environment."
International Journal of Man-Machine, studies 7, 1975,
675 -696.

Bushnel I, D. D. "The Computer as a Instructional Toot, A
summary & SOC, Learning needs, Teaching Strategies."
Santa Monica California. System Dev. Corp. ,Report No.
SP-1554, 1964.

Cheatham, T. E. jr. and _Sattley, K. "Syntax directed
compiling." Proceedings AFIPS 1964, Spring Joint
Computer Conference., Spartan Books, Baltimore, Md.,
1964, 31-57.

Conway, R. W. "Design of a separable transition diagram
c om p i I e r . " Co mm u n i c a t i o n ACM , Vo I 6 : 7 , 1 9 6 3 , 3 9 6 - 4 o 8 .

Eicke I, J., Paul, M., Bauer, F. L . , and Same I son , K . "A
syntax control led generator of formal language
processors." Communication ACM, Vol 6:8, 1963, 451-455.

Feldman, J. A. "A format semantics for computer languages
and i ts a pp I i cat i on i n a comp i t er - comp i I er . "
Communication ACM, Vol 9:1, 1966, 3-9.

110

Ill

Feldman, J. A., and Gries, 0. "Translator writing systems."
C o mm u n i c a t i o n A CM , V o I 1 1 : 2 , 1 9 6 8 , 7 7 - 1 1 3 .
Floyd, R. W. "Syntactic analysis and operator
precedence." J. ACM, Vol 10:3, 1963, 316-333.

FI oyd, R. W. "Bounded context styntactic analysis."
Communication ACM, Vol 7:2, 1964, 62-67.

Fortran. Ansi Standard Fortran. American National Standards
Institute, New York, 1966.

Gelder, J. I. Unpublished Chemistry simulation programs.
Oklahoma
C n . d .) •

State University, Department of Chemistry,

Graham, R. M. "Bounded context translation." Proceedings
AFIPS Soring JCC, Vol 40, 1964, 205-217.

lngerman, P. Z. A Syntax
1966.

Oriented Translator. Academic
Press, New York,

Irons, E. T. "A syntax directed compiler for ALGOL 60."
Communication ACM, Vol 4:1, 1961, 51-55.

Jensen, K., and Wirth, N. Pascal User Manual and Report.
Springer-Verlag, New York, 1975.

Kernighan, B. W. and Ritchie, D. M. The C Programming
Language. Prent ice-Hal I, Inc., New Jersey, 1978.

Knuth, D. E. "On the translation of languages from left to
r i g ht. II
639.

Information and Control, Vol 8:6, 1965, 607-

Lagowski, J. J. "Computer-Assisted Instruction in
Chemistry." In W. H. Holtzman Ced.), Computer-Assisted
Instruction, Testing, and Guidance. Harper and Ron, New
York, 1970, 283 - 298.

Ledgard, H. and Marcotty, M. The Programming Language
198 1 . Landscape. Science Research Associates, Inc.,

Lewis, P. M. II, Rosenkrantz, D. J., and Stearns, R. E .
.... c""o ... m.._p.....,.i _,1_,e....._r _o"""e.s-....i ...,g...,n,_____._T""h""'e"""o....._r.._y . Ad d i s o n -We s I e y , Ma s s a c h u e t t s ,
197 6.

Lewis, p. M. I I,
transduction."

and Stearns, R. E.
J . A CM, Vo I 1 5 : 3 , 1 9 6 8 ,

"Syntax-directed
465-488.

112

Loughary, J. W. "Educational system requirements and
society." address at conference on Educational
information system requirements during the next decade.
University of Oregon, August 6-10, 1967.

McClure, R. M. "TMG
Proceedings 20th ACM
274.

a syntax directed
National Conference,

comp i I er . "
1965' 262-

Same Ison K., and Bauer, F.L. "Sequential
Vol 3:2, 1960,

formula
76-83. t rans I at ion . " Commun i cat ion ACM,

Schorre, D. V. "META-II : a syntax-oriented compiler writing
language." Proceedings 19th acm National Conference,
1964 01 .3-1-01.3-11.

Suppes, P. "Current Trends in Computer-Assisted
Instruction." In M.C. YovitsCed.), Advances in
Computers, Vol. 18,
173-229.

Academic Press, New York, 1979,

Supp es , P . , Jerman , M. , and Brain,D. Computer-Aided
Instruction: Standford's 1965-1966 Arithmetic Program.
Academic Press, New York, 1968.

Suppes, P., and Mroningstar, M. Computer-Assisted
Instruction at Stanford, 1966-1968: Data. Models. and
Evaluation of the Arithematic Programs. New York,
Academic Press, 1972.

Wirth, N. and Weber, H. "EULER: a generalization of ALGOL
a n d i t s f o r ma I d e f i n i t i o n P a r t I . " Co mm u n i c a t i o n ACM ,
Vol 9:1, 1966, 13-23.

APPENDIX A

CONTEXT-FREE GRAMMAR CMINl-LANGUAGE ---LEDGARDl

1 .

2.

3 .

4.

5.

6.

7.

8.

<start>

<dec_seq>

<dec_seq>

<declaration>

<de c_ ta i I >

< id_ I is t >

< i d_ I i s t _ta i I >

< i d_ I i s t _ta i I >

9. <stmt_seq>

10. <stmt_tail>

11. <stmt_tail>

1 2 . < s ta t eme n t >

13. <statement>

14. <statement>

1 5 . < as s g n_s t mt >

1 6 . < i f _s t mt >

---->

---->

---->
---->
---->

---->

---->
---->
---->

---->
---->
---->

---->
---->
---->

---->

113

<dec_seq> <stmt_seq>

<declaration> <dec_tai I>

epsilon

de c I a r e < i d_ I i s t >

; <dec_seq>

<id> <id_I ist_tai I>

, < i d_I is t >

epsi Ion

<statement>

<statement>

epsi Ion

<assgn_stmt>

<if_stmt>

<loop_stmt>

<id> := <expr>

<stmt_tail>

<stmt_tail>

i f <comp a r i son> then

<stmt_seq>

<endif_else>

114

1 7 . <end i f _e I s e > ----> end i f

1 8. <end i f _e I s e > ----> else

<stmt_seq>

end i f

1 9. <loop s tmt > ----> wh i le <comparison> loop

<stmt_seq>

end loop

20. <comparison> ----> (<factor> <comp_tai I >

2 1 . <comp_tai I > ----> = <factor>)

22. <comp_tai I > ----> < > <factor>)

23. < comp_ ta i I > ----> < <facotr>)

24. < comp_ ta i I > ----> > <facotr>)

25. <expr> ----> <term> <term_tail>

26. <term_tai I > ----> + <expr>

2 7. <term_tai I > ----> - <expr>

28. <term_tail> ----> epsi Ion

29. <term> ----> <factor> <factor_tai I>

30. <factor_tai I > ----> * <term>

3 1 . <factor_tai I > ----> epsilon

32. <factor> ----> <constant>

33. <factor> ----> < id>

34. <factor> ----> (<expr>)

APPENDIX B

TERMINAL AND NON-TERMINAL SYMBOLS

OF MINI-LANGUAGE CLEGARDJ

The numbers on the left-hand side of the symbols are

the internal representation numbers of the symbols.

TERMINAL SYMBOLS NON-TERMINAL SYMBOL

1 declare
2 id 22 <dec_seq>
3 i f 23 <de c_ ta i I >
4 then 24 < i d_I is t >
5 25 <id_list_tail>
6 26 <stmt_seq>
7 end 27 <stmt_tail>
8 else 28 <statement>
9 (29 <assgn_stmt>
1 0) 30 < i f _s tm t >
1 1 = 3 1 < end i f _e I s e >
12 < > 32 <loop_stmt>
1 3 < 33 < comp a r i son >
1 4 > 34 < comp_ t a i I >
1 5 + 35 <expr>
16 - 36 <term_tai I>
1 7 * 37 <term>
18 constant 38 <factor>
1 9 wh i I e 39 <factor_tai I>
20 loop 40 <operand>
2 1 . - 4 1 < s t a r t > . -

115

•

APPENDIX C

Basic Background for LLC1l grammar and predict set

Let's take a look at a LLC1l grammar for the mini-

I an g u age i n Append i x A, the product i on for 11 de c_s e q 11

<dec_seq>

<dec_seq>

- - - - - > <de c I a rat i on> <de c_ ta i I >

-----> eps i I on

In defining the parsing procedure corresponding to <dec_seq>

we run into a problem: More than one production has

<dec_seq> as a left hand side in the Grammar. We must decide

what production to try to match. If we try to match the

first production and fail, it is too late to try the second

now since we have already consumed the input tokens. We

therfore peek ahead one token Cwithout deleting it) and use

this lookahead symbol to decide what production to choose.

Consider the production :

A - - - - > X 1 X 2 • . . Xm

For what lookahead tokens should we decide to try this

production? We need the set of al possible lookahead tokens

that might indicate that this 11A11 production is to be

matched, and none other. Sine a lookahead is only a single

token, we want the set of first Cleftmostl tokens that could

be produced f r om the s t r i n g X 1 X 2 . . . Xm. We ca I I th i s set

116

117

firstCXl ... Xm). If the leftmost symbol x 1 is a terminal,

then clearly, f i r s t C X 1 ... Xm) = x 1 .. However, if Xl is a

nontermi na I,

terminals Xl

then f i r s t C X 1 ... Xm) w i I I depend on what

can generate. So we begin by computing "first"

for each right hand side corresponding to Xl.

For example, the production of Xl is,

Xl ----> Y1 Y2 Yn

X1 ----> Z1 Z2 Zm

Since Xl has 2 productions, therefore the set of f irstCY1)

and firstCZ1l wi I I be included in f irstCXl ... Xm).

Wh a t i f X 1 can g e n e r a t e e p s i I on ?

A ----> X1 X2 Xm

X1 ----> Y1 Y2 Yn

Xl ----> Zl Z2 Zm

Xl ----> epsi Ion

Then first CX1 ... Xm) depends on X2 as well. In particular,

if X2 is a terminal, it is then included in firstCXl ... Xml.

I f i t is a non-terminal, we compute "first" for each of its

corresponding right hand sides. Similarly, if both Xl and X2

can produce epsi Ion, we consider X3, and so on. What if the

entire right hand side can produce epsilon?

A ----> eps i I on

or

Xl Xm -----> epsi Ion

118

The look ahead wi 11 then be determined by those terminals

that can f o I I ow t he I e f t hand s i de C 11 A 11 i n our ex amp I e l . We

def i n e a set of tokens f o I I ow CA) e qua I to those tokens that

can f o I I ow 11 A" i n some I e g a I de r iv at ion . As an ex amp I e, i f

the grammar has

Z ---- > Y 1 c Y2 • . . A t . . . Ym Y 1 , Y 2, .•. Ym, A

X ----> Vt ... A B ... Vn

B ----> a

B ----> b

are non-terminals

c,t are terminals

Vt. .. Vn, A, B are

non-terminals

as productions, then 11 t " w i I I be i n f o I I ow CA l . Fur the r , the

terminals a, b in the "first" sets of all the right hand

side of the B-productions wi I I be in followCAl. The set

followCAJ wi II have t, a and b. We now define the set of

lookahead

production

tokens that will

A ----> Xl Xm

cause the prediction of the

119

Cal I this set Predict. As we have seen,

predict CA----> Xl ... Xml =

f irstCXl ... Xml + Cif Xl ... Xm ----> epsi Ion

then f o I I ow CA))

That is, any token that can be the first symbol produced by

the r i g ht hand side of a

production. Further, i f the

production wi I I predict that

entire right hand side can

produce epsi Ion, then tokens that can immediately fol low the

left hand side of a production wi I I also predict that

production.

We use predict to figure out which production to use if

there is a choice. We may now have three cases :

1 .

2.

3.

The I ookahead token is in the predict set of exactly

one production.

production.

In this case, we choose the predicted

The lookahead is in the predict set of no production.

In this case, clearly, the lookahead token occurs in an

illegal position, so we have a syntax error.

The lookahead token is in the predict set of more than

one production. This is not indicative of any error in

the input string; it is, rather, a property of the

grammar. We can analyze the grammar even before we

start parsing to deter mi n e i f some token can be i n the

predict set of more than one production. Such a CFG

cannot be parsed by recursive descent, and some other,

more powerful technique may have to be used.

Therfore, we wi I I parse only those context-free grammar that

120

have disjoint predict sets for product ions that share a

common left hand side. context-free grammar that obey this

restriction are called L LC 1l grammar. Appendix A is the

LLC1) grammar for the mini-language. Since a language may be

generated by more than one grammar, it may st i I

to write another grammar for the same language

be possible

that has the

LL C 1) proper t y . The f o I I ow i n g i s the for ma I def i n i t i on of an

LL C 1) g r amma r .

A grammar G is LLC1) if and only if

for al I rules A ----> ex1 ex2 : exn ,

1. firstCexi) n firstCexj) = 0 for all <>

and, furthermore, if exi --lie--> epsi Ion, then

2. firstCexj) n followCAJ = 0 for all j.

The f i r s t and f o I I ow s e t s used in this definition are the

same sets we defined before, and they can be defined in

mathematical terms as fol lows. Given some string ex e Vlle, the

set of terminal symbols given by f irst(ex) represent the

leftmost derivable symbols of a and this set is given by the

equation

f i rst(ex) = lw: ex --lie--> w ... and we Vl

The fol low sets are defined for a nut table nonterminal A

ConP. which can produce the empty string). The definition for

the f o I I ow set s i s g i v en by

121

fol lowCA) = {w E v: S' --*--> a:ABl

where w E f irstCB) and S is the start symbol of

the grammar.

The predict sets of a I I the non-termi na Is in the mini-

language are in the LLCll parse table in Appendix D.

•

APPENDIX D

LLC 1) PARSE TABLE FOR MINI-LANGUAGE CLEDGARD)

The following is the LL(l) Parse Table for Mini-

Language CLedgard Henry). For each non-terminal s ymbo I , a

I i st of terminals and the productions they predict are

listed. Terminals not listed predict no production and thus

are erroneous.

<start> symbol #

declare 1
id 2
i f 3
wh i I e 1 9

<dec_seq> symbol #

declare
id
i f
wh i I e

1
2
3
19

production#

production#

2
3
3
3

<de c I a rat i on> s ymb o I # product i on #

declare 4

<de c_ ta i I > s ymb o I # production#

6 5

122

< i d_ I i st> s ymb o I # production#

id 2 6

<id_list_tail> symbol #production#

5
6

<stmt_seq> symbol#

id
i f
wh i I e

2
3
1 9

<stmt_tai I> symbol#

id 2
i f 3
wh i I e 19
else 8
end 7
end of input

< s ta t eme n t > s ymb o I #

id
i f
wh i I e

2
3
19

7
8

production#

9
9
9

production#

10
10
1 0
1 1
1 1
1 1

production#

12
1 3
1 4

<ass g n_s t mt > s ymb o I # product i on #

id 2 15

<if_stmt> symbol # production#

i f 3 1 6

123

<endif_else> symbol # product ion #

end
else

7
8

<I oop_s tmt > symbo I #

wh i I e 19

1 7
1 8

production#

1 9

<comparison> symbol # production#

(9

<comp_tai I> symbol #

=
<)
<
)

<expr>

constant
id
(

1 1
1 2
1 3
1 4

symbol #

18
2
9

<term_ ta i I > s ymb o I #

+

<term>

constant
id
(

1 5
16
6

symbol #

1 8
2
9

20

production#

2 1
22
23
24

production#

25
25
25

production#

26
27
28

production#

29
29
29

124

<factor>

constant
id
(

symbol #

1 8
2
9

production#

32
33
34

<factor_tai I> symbol #production#

*
+

1 7
1 5
1 6
6

30
3 1
3 1
3 1

125

APPENDIX E

Source Listing of translator

procedure syntaxerrorCmesscode : integer); forward;
procedure dec_seqCvar ptr: tokenptr); forward;
procedure declarationCvar ptr tokenptrl; forward;
procedure dec_tai ICvar ptr tokenptrl; forward;
procedure id_I istCvar ptr tokenptr); forward;
procedure id_I ist_tai ICvar ptr tokenptrl forward;
procedure stmt_seqCvar ptr tokenptr); forward;
procedure stmt_tai ICvar ptr tokenptrl; forward;
procedure statementCvar ptr tokenptr); forward1
procedure assgn_stmtCvar ptr tokenptr); forward;
procedure if_stmtCvar ptr tokenptr); forward;
procedure endif_elseCvar ptr tokenptrl; forward;
procedure exprCvar ptr tokenptr;var idhead,idtai
:varptrl; forward;
procedure term_tai I Cvar ptr tokenptr ;var idhead, idtai I
:varptr;var multi :boolean;var old :varptrl; forward;
procedure termCvar ptr tokenptr;var idhead,idtai
:varptr;var multi:boolean;var old: varptrl; forward;
procedure factor_tai ICvar ptr tokenptr;var idhead, idtai
varptr;var multi :boolean;var old : varptrl; forward;
procedure factorCvar ptr tokenptr ;var idhead, idtai I
varptr;var multi :boolean;var old : varptrl; forward;
procedure comparisonCvar ptr tokenptrl; forward;
procedure comp_tai ICvar ptr tokenptrl; forward;
procedure loop_stmtCvar ptr tokenptrl; forward;
procedure merge C var head a , ta i I a , head b , ta i I b : var pt r) ;
forward;

procedure matchCvar ptr
integer);
var

i integer;
begin

if error = false then
begin

tokenptr;num

if nextCptrl = num then
ptr := ptr". I ink

else
begin

e r r o r : = t r u e ;

126

•

integer; messcode

end;
end;

127

error := true;

pt r . -. - ptr". I ink; {skip the error
token)

end;
i : = 1 ;
while Cptr".sym[il <>' ') andCi <= 7) do
begin

writeCtrm,ptr".sym[ill;
: = + 1 ;

end;
writeCtrm,• ');

if error = true then syntaxerrorCmesscode);
if ptr".symC1l = ';' then writelnCtrml;

procedure syntaxerror;

begin
case messcode of
1 wr·telnCtrm, '**declarations or statements

expected**
2

,)

wr telnCtrm,'**id expected**');
3
4
5
6
7
8
9
1 0
1 1
1 7
1 8
19
20
2 1
25

wr telnCtrm,'**if expected**');
wr telnCtrm,'**then expected**');
wr telnCtrm,'**"•" expected**');
wr te nCtrm,'**";" expected**');
wr te nCtrm,'**end expected**');
wr te nCtrm, '**else expected**');
wr te nCtrm,'**"C" expected**');
wr te nCtrm,'**"l" expected**');
wr te nCtrm,'**"=" expected**');
wr te nCtrm,'**"*" expected**');
wr te nCtrm, 'constant expected');
wr te nCtrm,'**while expected**');
wr te nCtrm,'**loop expected**');
wr te nCtrm,'**":= 11 expected**');
wr te nCtrm, '**assgn, if_then_else,whi le_loop
statements expected');

26 writelnCtrm,'**", 11 or";" expected');
27 writelnCtrm,'**constant,id,or 11 (11 expected**');
28 writelnCtrm,'**relational operator expected**');

end;
writelnC'***Execution terminated***');
error := true;

end;

procedure initvarCvar idrec

var

begin

end;

integer;

idrecA. I ink := ni I;
for i := 1 to 10 do

idrecA.idCi1 :=

idrec". len := O;

procedure subsitCvar
token pt r);
var

head,

temp head , tempt a i I : var pt r ;
i,j integer;
tempptr, loc : varptr;

begin
newCtemphead);
initvarCtempheadl;
tempt a i I : = n i I ;

varptr);

.. •

ta i I

for i := 1 to expnum - 1 do
begin

varptr; var ptr

if expheadCiJA.link".id C11 = ptr".sym then
begin

loc := expheadCi1".linkA.link;
while loc <> ni I do
begin

end;

newCtempptrl;
initvarCtempptrl;
for j := 1 to loc".len do

tempptr".id[j] := locA.idCj1;
tempptrA.len := loc".len;
i f temp head". I i n k < > n i I then
begin

end

tempt a i I". I i n k : = temp pt r ;
tempt a i I : = temp pt r ;

else
begin

temphead". I ink := tempptr;
tempt a i I : = temp p t r ;

end;
loc := locA.1 ink;

128

end;
end;
i f tempt a i I = n i I then

insertChead,tai I ,ptrl
else

merge Che ad, ta i I , temp head, tempt a i I) ;
end;

procedure merge;
begin

end;

if heada". Ii nk <> n i I then
begin

tai la". I ink := headb". I ink;
tai la := tai lb;

end
else
begin
heada".link := headb".link;
tai la := tai lb;

end;

procedure concatCvar heada,tai la,old,
varptrl;
var

ptr1, ptr2 : varptr;
temp head , temp ta i I var p t r ;
ptr,save : varptr;

integer;

begin
newCtemphead);
i n i t var C temp head l ;
new Ct empt a i I l ;
initvarCtemptai I);
ptr1 := old". I ink;

while ptr1 <> ni I do
begin

ptr2 := headb". I ink;
while ptr2 <> ni I do
begin

newCptrl;
initvarCptrl;
if temphead". Ii nk = n i
begin

then

headb,

129

ta i I b

end;

end;

end;

temphead".link := ptr;
tempt a i I : = pt r ;

end
else
begin

end;

temptai I". I ink := ptr;
temptai I := ptr;

for i := 1 to ptrl". len do
begin

end;

ptr".len := ptr".len + 1;
ptr".idCptr".lenl := ptrl".idCil;

for i := 1 to ptr2". len do
begin

ptr". len := ptr". len + 1;
ptr". idCptr". lenl := ptr2". id[il;

end;
ptr2 := ptr2". I ink;

ptrl .- ptrl". I ink;

save := old;
merge Che ad a, o Id, temp head, tempt a i I l ;
ta i I a : = temp ta i I ;
old := save;

procedure printdecCdechead varptrl;

var
ptr

begin

varptr;

writelnC'********************'l;
ptr := dechead". I ink;
while ptr <> ni I do
begin

end;
end;

writelnCptr". idClll;
ptr := ptr". I ink;

procedure printidCvar exphead

var
p t r

vartablel;

: var pt r;
integer; integer;

begin

130

end;

writeln;

writelnC'***The identifier***');
for i := 1 to expnum do
begin

end;

ptr := exphead[i JA. I ink;
while ptr <> ni I do
begin

end;

if ptrA.len > 0 then
begin

end;

for j := to ptrA.len do
write C pt rA. id [j J);

writeln;

ptr := ptrA. I ink;

procedure id_list_tail;

begin

end;

if error = false then

case nextCptrl of
6:
else begin

end;

end;

ma t c h C p t r , 5 , 2 6 l ;
i d_ I i s t C p t r l ;

procedure dec_tai I;

begin

end;

if error = false then
begin

matchCptr,6,6); f;l
dec_seqCptrl;

end;

{ ; }

{ ' }

131

procedure declaration;

begin

end;

if error = false then
begin

end;

match C pt r , 1 , 1) ;
i d_ I i s t C p t r) ;

procedure dec_seq;

begin
if error = false then

case nextCptr) of

{declare)

2,3,19 : (id, if, whi lel

end;

else begin

end;
end;

declarationCptr);
de c_ t a i I C p t r) ;

procedure stmt_seq;

begin

end;

if error = false then
begin

end;

statementCptr);
match C pt r , 6 , 6) ;
s t mt_ ta i I C pt r) ;

procedure stmt_tai I;

begin
if error = false then

if ptrA. I ink <> ni then

case nextCptr) of
7 :

{ ; }

{not end of input)

lend}

132

else begin
s tat eme n t C pt r) ;
matchCptr,6,6); (;l
stmt_tai I Cptr);

end;
end;

end;

procedure statement;

begin
case nextCptr) of

2 assgn_stmtCptr);
3 if_stmtCptr);
19 loop_stmtCptr);
else syntaxerrorC25);

end;

end;

procedure assgn_stmt;

var
idhead,idtail: varptr;
printptr : varptr;

begin
expnum := expnum + 1;
newCidhead);
initvarCidhead);
idtail :=nil;
if error = false then
begin

matchCptr,2,2); (idl

(i d}

(i fl
(wh i I el

133

insertCexpheadCexpnuml,exptai ICexpnuml,ptrl;
matchCptr,21,21); (: =}

exprCptr, idhead, idtai I);

merge Ce x p head Ce x p n um l , exp ta i I C exp n um l , i d head , i d ta i I l ;
end;

end;
procedure if_stmt;

begin
if error = false then
begin

end;

end;

match C pt r , 3 , 3) ;

comparisonCptrl;
ma t ch C p t r , 4 , 4) ;

stmt_seqCptrl;
e n d i f _e I s e C p t r) ;

procedure endif_else;

begin
if error = false then
begin

case nextCptrl of
7 : begin

end;
8 begin

match C pt r , 7 , 7) ;
matchCptr,3,3);

{else}

{end}

{if)

end;
end;

end;

procedure expr;
var

multi : boolean;
o Id : var pt r;

end;

mat ch C p t r , 8 , 8) ;
stmt_seqCptrl;
ma t ch C p t r , 7 , 7 l ;

ma t ch C p t r , 3 , 3)

begin multi:= false; old:= nil;

end;

if error = false then
begin

end;

termCptr,idhead, idtai I ,multi ,old);
term_ ta i I C pt r , i d head , i d ta i I , mu I t i , o I d) ;

134

{ i f }

£then}

{endl

{ i f }

procedure term_tai I;

begin
if error = false then
begin

case nextCptr) of
15 : begin

matchCptr,15,15); f+l
exprCptr, idhead, idtai I);

end;

16 begin
matchCptr,16,16); £-l
exprCptr, idhead, idtai I);

end;
end;

6
else
end;

procedure term;
begin

end;

if error = false then
begin

(;)

factorCptr, idhead, idtai I ,multi ,old);
factor_ ta i I C pt r , i d head , i d ta i I , mu I t i , o I d l ;

end;
end;

procedure factor;

var
~ewhead varptr;
newtai I varptr;
temp head, tempt a i
yes : boolean;

varptr;

begin
if error = false then
begin

case nextCptr) of
18 : begin

matchCptr,18,18);
if multi = true then

{constant)

135

begin
newCtemphead);
initvarCtemphead);
new C tempt a i I) ;
initvarCtemptai I);
i n s er t C temp head , temp ta i I , pt r) ;

concatC idhead, idtai I ,old,temphead,temptai I);
multi :=false;

2

9

end;
begin

end
else

begin

end;

if idtail =nil then
old := idhead

else
old := idtai I;

insert(idhead, idtai I ,ptr);

mat ch C p t r , 2 , 2) ; (id}
if multi = true then

begin
newCtemphead);
initvarCtemphead);
new C temp ta i I) ;
initvarCtemptai I);
subs i t C temp head , tempt a i I , pt r) ;

con cat C i d head , i d ta i I , o I d , temp head , tempt a i I) ;
mu I t i : = fa I s e ;

end;
begin

end
else
begin

end;

i f idtail =nil then
old := idhead

else
old := idtai I;

subsitCidhead, idtai I ,ptrl;

ma t ch C p t r , 9 , 9) ;
newCnewhead);
initvarCnewhead);

[(}

newt a i I : = n i I ;
exprCptr,newhead,newtai I);

if multi = true then
begin

136

concatC idhead, idtai I ,old,newhead,newtai I);
mu I t i : = fa I s e ;

end;

end;

end
else
begin

i f idtail =nil then
old := idhead

else
old := idtai I;

merge(idhead, idtai I ,newhead,newtai I);
end;

ma t c h C p t r , 1 0 , 1 0 l ; {) l

else matchCptr,0,27);
end;

{skip error token}

end;

procedure factor_tai I;

begin

end;

if error = false then
begin
case nextCptrl of
15,16,6: {+,-,;}

17 : begin l*l

else
end;
end;

end;

matchCptr,17,17); multi := true;
termCptr, idhead, idtai I ,multi ,old);

procedure loop_stmt;

begin
if error = false then
begin

matchCptr,19,19);
compar i sonCpt r l;
matchCptr,20,20);
stmt_seqCptrl;
ma t ch C p t r , 7 , 7) ;
matchCptr,20,20);

£whi lel

£1oopl

£end}
{loop}

137

end;

end;

procedure comparison;

var
idhead, idtai I ,old : varptr;mul ti :boolean;

begin

end;

if error = false then
begin

end;

matchCptr,9,9); ((}
factorCptr., idhead, idtai I ,multi ,old);
comp_ ta i I C p t r) ;

procedure comp_tai I;
var
idhead, idtai I ,old

multi
varptr;
boolean;

begin
if error = false then

case nextCptr) of
11 begin

matchCptr,11,11); l=l
factorCptr, idhead, idtai I ,multi ,old);
mat ch C p t r , 1 O , 1 O) ; £) l

end;
12 begin

ma t ch C p t r , 1 2 , 1 2) ; (< > l
factorCptr, idhead, idtai I ,multi ,old);
ma t ch C p t r , 1 0 , 1 0) ; () l

end;
13 begin

ma t ch C p t r , 1 3 , 1 3) ; (< l
factorCptr, idhead, idtai I ,multi ,old);
ma t ch C p t r , 1 0 , 1 0) ; () l

end;
14 begin

ma t ch C p t r , l 4 , l 4) ; £ > l
factorCptr, idhead, idtai I ,multi ,old);
matchCptr,10,10); ()]

end;
else syntaxerrorC28);
end;

•

138

end;

procedure startCvar ptr t o k e n p t r) ;

begin

end;

error :=false;
expnum := O;
dec_seqCptrl;

printdecCdechead);
stmt_seqCptrl;

printidCexpheadl;

139

VITA

Peter Yu Yee Tsang

Candidate for the Degree of

Master of Science

Thesis: A STATEMENTS EVALUATION SYSTEM FOR FUNCTIONALLY
EQUIVALENT RESPONSES

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Hong Kong, October 8, 1960, the
son of Yue Lap and Kwa i Chi Tsang.

Education: Graduated from Chan Sui Ki CLa Salle)
College, Hong Kong, in May, 1980. Attended
University of Wisconsin - Milwaukee from June, 1981
to May, 1982. Received a Bachelor of Science degree
in Computer Science and Mathematics from University
of Wisconsin - Madison, May, 1984. Completed the
requirements for a Master of Science degree in
Computing and Information Science at Oklahoma State
Un i v er s i t y , May , 1 9 8 7 .

Professional Experience: Reasearch Assistant, Department of
Computer Science, University of Wisconsin -
Madison, December 1984 to May 1985; Computer Tutor,
Oklahoma State University, December 1984 to
December 1985; Computer Programmer, Bursar Off ice,
Oklahoma State University, December 1985 to May
1987.

