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CHAPTER I 

INTRODUCTION 

This thesis project investigated 

using a computer to evaluate responses 

the possibi I ity of 

to (rather special) 

q u es t i on s assoc i ate d w i th w r i t i n g program s e gme n ts . I f a 

general statements evaluation system CSESl could be 

developed, then a computer could be used to conduct computer 

based learning exercise at a much higher intellectual level 

than is currently possible. A problem statement might be 

"Construct a program segment to compute the payment 

of mo r t gage I o an" 

The loan payment could be computed in several different 

formats and st i II be correct; furthermore arbitrary 

intermediate substitutions, i f correct, should be allowed 

and evaluated as correct by such SES. The idea is to supply 

the SES with a template, regarded correct, to be used to 

determine whether the user's response is functionally 

equivalent to the template. 

functionally equivalence or 

the increased capab i Ii ty of 

It is the ability to determine 

non-equivalence that provides 

this system over systems which 

can only determine whether a single response is an exact 

match of a given answer. The imp I eme n t e d mode I co u Id be 

de v e I oped i n to a computer ass i s t e d i n s t r u ct i on C CA I ) sys t em, 
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which is a useful tool in helping students in programming, 

debugging, and for retraining technical people in industry. 

The CAI system is i n t u t o r i a I f o r ma t , as k i n g s t u den t s to 

compose statements for particular tasks, beginning with the 

simple single statement and proceeding to compound multiple 

statements. The CAI system generates responses to student's 

input, replies include error messages and the correct answer 

to the problem. 

The statements evaluation system CSESl is implemented 

to respond to the mini-language by Ledgard and Marcotty 

C1981), and it can be modified to adopt an appropriate 

subset of any other s i mi I a r high 

CKernighan and Ritchie 1978), Pascal 

level language like C 

(Jensen and Wirth 1975) 

or Fortran C1966). In the mini-language there are basically 

four types of statements: 

(1) declaration statement; 

(2) assignment statement; 

C3) conditional statement Cif then else); 

C4) loop statement Cwhi le loop). 

The system evaluates on declaration statement, assignment 

statement 

different 

statement, 

and one level conditional statement. Because of 

complexity and structure of each type of 

each has a separate evaluation method. For 

example, some of the many possible ways to declare variables 

x, y and z are 

C 1) de c I are x, y, z; 

(2) declare y,x,z; 

2 
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( 3) declare x, y; 

declare z; 

( 4) declare z, y; 

declare x ; 

( 5) declare X; 

declare y; 

declare z ; 

Above are not a I I the variations, 

different formats ju s t to declare the 

there are a total of 18 

three variables x, y 

The template answer provided to the system is one of and z. 

the 18 formats, and the system must be able to recognize the 

o the r 1 7 format s are f u n ct i on a I I y e q u i v a I en t to the temp I ate 

answer. There is only one variable type Ci n t eg er) in the 

Ledgard mini-language, therefore the system does not do any 

type checking on the variable types. 

The different priorities of operators (+, -, .:«), levels 

of parenthesis and substitution of variables increase the 

d i f f i cu I t i es and comp I ex i t i es of evaluation of assignment 

statement. To be able to determine the template's assignment 

statements and the input's assignment statements are 

functionally equivalent, the system translated 

assignment statements into standard format w i th a I 

a I I 

the 

parenthesis removed and al I variables are substituted with 

their latest assigned value. For example the statement 

x : = 8; 

y := x .:«( 2 + 3) - cs+ 9); 

is translated into 
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x . - 8; 

y := 8 *2 + 8 * 3 - 8 - 9; 

The system uses tables to represent assignment statements, 

which is more easy to implement the t r a n s I a t i o n and keep 

track of the recent assigned value of every variable. 

Chapter five has a detailed description of the method and 

implementation of the table transl at ion. 

Because of i t s various formats and complexities of 

expression in assignment statement, therefore, this study 

emphasizes on the evaluation of the sequential assignment 

statements. Below is an example which shows that a simple 

assignment statement can be transformed into different 

format s w i th d i f fer en t complexities, which complicate the 

evaluation process. 

(1) x :=a - b*e + c*e + d*e; 

C2) x :=a - b*e + e*Cc + dl; 

C3l x := a -Cb - c -dl * e; 

C4l x := a -Cb - c + d) * e ; 

( 5) u . -. - c + d; 

. - ( b - u ) * e ; 

x : = a - t ; 

( 6) u . -. - c* ( e + d -b) 

x := u + a; 

Above are on I y some of the poss i b I e formats , the var i at i on s 

are a I mos t u n I i mi t e d by using parenthesis and substitution 

with multiple assignment statements. 

The conditional and loop statements are the most 
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unpredictable, especially with the nested if-then-else and 

while loop statements. To restrict the problem, this study 

concentrates on one format of if-then-else statement and its 

variations, which is a one level i f-then-e I se with the 

condition in this format, 

(variable conditional operator variable) 

Below is an example of if-then-else statement, and its 

variations. 

Cll if Ca >bl then 

a := a - b - c; 

else 

a := a + b; 

end if; 

C2l if Ca > bl then 

U :: b + C; 

a . -. - a - u ; 

else 

a . - a + b; . -
end i f ; 

C3l if Ca< bl then 

a := a + b; 

else 

a := a - b - c; 

end if; 



(4) if Ca < bl then 

a := a + b; 

else 

a :=a - C b +cl; 

end i f; 

Chapter I I is a discussion on 

6 

computer assisted 

instruction C CA I), i t , s history and development. The 

evolution of parsing and translation are also given in this 

formal chapter. Chapter I I I gives an introduction of 

language theory. Chapter IV gives an overview of the design 

of the 

analyzer, 

methods, 

system. 

parser 

The structure of 

and translator), 

t he sys t em C I ex i ca I 

the 

and program codes are discussed 

implementation 

in Chapter V. 

Examples of different statements and responses are given in 

Chapter VI. Chapter VI I is the summary of this project, and 

future study and development are suggested. 



CHAPTER I I 

LITERATURE REVIEW 

CAI Overview 

The Requirement 

There are three basic educational requirements that 

make CAI inevitable CLoughary 1967): 

Cll the trend to individualized instruction; 

C 2) the gr ow th i n i n format i on to be a c q u i red ; 

(3) the shortage of qua I ified teachers. 

Since 1950's, computer assisted i n s t r u ct i on C CA I l has been 

deve I oped and app Ii ed to these three problems in education 

from elementary school to professional training CSuppes, 

1978). In t r a i n i n g en v i r o nme n ts such as industry and the 

military, students are also paid. For this reason, in 

training environments the relationship between time and 

costs is a direct one --- costs can be reduced to the extent 

that reductions in instructional time can be achieved. A 

major advantage of CAI systems is that they can reduce 

instruction t i me wh i I e ma i n ta i n i n g e q u i v a I en t levels of 

performance when compared to the traditional type of lecture 

- discussion techniques. 

7 

• 



8 

History 

The first use of computers for educational purpose was 

started at the end of the 1950's. One such research 

application was the PLATO project at the University of 

Illinois CAlpert and Bitzer, 1970), which began in 1960 with 

the goal of designing a large computer-based system for 

instruction. Soon after, IBM introduced COURSEWRITER, a 

programming language designed for preparing instructional 

materials on IBM's mainframe computer. At Stanford 

University and Pennsylvania State University, there were 

projects by Atkinson and Hansen C1966l,Suppes, Jerman and 

Brian C1968l, and Suppes and Morningstar C1972J. 

In the early 1970's the PLATO project introduced PLATO 

IV, a large time-shared instructional system. Students 

studied on 

connected 

individual terminals, hundreds of which were 

to a large computer on which al I lessons and 

student data were stored. PLATO IV now al lows up to 600 

students to use the computer simultaneously. 

In the mid-1970's, a few smal I companies began to 

experiment with microcomputers, including Radio Shack, 

Commodore Business Machines, 

the success of microcomputers, 

and the Apple computer. With 

it became possible for the 

individual university researcher, and public schools to 

possess a microcomputer and use it for educational purposes. 

From 1977 to today we have seen phenomenal growth in the 

educational uses of computers, and computer i n s t r u ct i on a I 
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system became affordable to pub I ic school or family. 

State of the Art Assessments 

The state of the art assessments are an idealized 

computer assisted instructional system, including hardware-

software, courseware, learning strategies, management and 

development. 

Baker C1971J provides the background of i de a I i zed CA I 

systems. A system is documented in the form of a systems 

concept document. The document has three main goals: 

Cl) provide a conceptual frame work for the CAI 

system; 

( 2) 

( 3 ) 

serve as the guidance document for the design 

and implementation of the CAI system; 

act as a base Ii ne document 

purpose. 

for evaluation 

Bushnel I C1964) describes, briefly, developments in computer 

based teaching machines and rapid i n format i on re t r i e v a I 

systems, and the advances in computer technology for aiding 

teachers in the diagnosis of student learning needs and 

selection of appropriate teaching strategies. The most 

common teaching strategies used in courseware are: 

Cl) dri I I and practice; 

C2l tutorial instruction; 

C 3) s i mu I at i on ; 

C4) games. 
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We a I I a r e f am i I i a r w i t h d r i I I and p r a c t i c e i n one f o rm 

or another: work-books, flash cards, spelling bees. In a 

dri I I-and-practice system, a selection of questions or 

problems is presented repeatedly unti I the student answers 

or solves them al I at some predetermined level of 

proficiency. Computer programs can enhance the effectiveness 

and efficiency of dr i I 1-and-pract ice. One of the latest 

dri I I-and-practice programming tool is Drillshell CAlessi, 

S. M. and Schwaegher, D. G. 1984) which a I I ows CA I 

developers to p rod u c e d r i I I s w i t ho u t p r o g r amm i n g a I I t he 

detai Is of queuing and data storage. 

Tu to r i a I i n s t r u c t i on s are comp u t e r programs that teach 

by carrying on a dialogue with the student. They present 

information ask the student questions and make decisions 

based on the student's comprehension whether to move on to 

the next i n s·t r u ct i on or to engage i n rev i ew and r eme d i at i on . 

Tutorial instruction is the m~st basic and common form of 

CAI. The SOPHIE system developed by Brown 

example of a CAI tutorial program. 

(1975) is an 

Simulation systems provide the student with the 

i I I us ion of experiencing a rea I Ii fe occurrence. They have 

the advantages of convenience, safety, and control labi Ii ty 

over real exp e r i men t s , and a r e us e f u I for giving students 

experiences that would not otherwise be possible. AIR SIM is 

an air flow simulation program by Fortner C1979l. Lagowski 

C1970l and Gelder C n . d. l also have written several good 

examples of laboratory simulation programs which are very 
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helpful for chemistry students to experience a dangerous 

experiment in a simulated environment. 

Parsing 

The two most common forms of parsers are bottom-up, and 

top-down. Floyd C1963l was the first one to come up with the 

operator-precedence idea and the use of precedence 

functions. Since then there have been a variety of other 

bottom-up parsing strategies developed, such as the Wirth-

Weber precedence by Wirth and Weber C1966l, bounded-context 

parsing CFloyd 1964 and Graham 1964), LL parsers as defined 

by Lewis and Stearns 

( 1965). 

C1968l, and the LR parsers by Knuth 

Bottom-up parsing traverses the tree f r om t he I eaves 

Cbottom) to the root Ctopl. Top-down parsing does the 

reverse, i.e., it starts from the root of the parse tree and 

works its way down to the leaves. There are basically two 

types of top-down parser, one involves backtracking and the 

other does not <recursive descent parsing). META CSchorre 

1964) and TMG CMcClure 1965) are some of the comp i I er 

writing systems which used top-down parsing with 

The parser of the statements evaluation backtracking. 

system CSESl in th i s project is implemented in recursive 

descent parsing. Conway C1963l 

ones who introduced 

technique. In Chapter 3, 

this 

there 

formal language theory which 

and Lucas C 1961) were the 

recursive descent parsing 

is a basic background of 

is essential for defining the 



grammar 0 f the programming languages. Chapter 4 has the 

detailed description of recursive descent pr as i ng and an 

imp I eme n ta t i on of the parser for mini-language CLedgard and 

Marcotty, 1981) is given. 

Translation 

Syntax directed translation was f i r s t used by Irons 

(1961) as a method in compiler design. Aho and Ullman (1977) 

gave a basic diagram for syntax directed translations in 

their book, to explain the process of the translation. 

input ----> 
string 

Figure 1. 

parse ----> 
tree 

dependency ----> eva I ua ti on 
graph for semantic 

rules 

Process of Translation 

A parse tree is generated during the parsing process of the 

input string, and it is traversed to generate the semantic 

actions during the t r as I at i on process . The s ema n t i c act i on s 

may be the comp u tat i on s of values of variables, generation 

0 f intermediate codes, pr i n t i n g messages or s tor i n g some 

values into a particular table for future reference. 

The idea of a parser calling for s ema n t i c act i on s was 

first discussed by Samelson and Bauer C 1960), and I ater by 

Brooker and Mor r i s C 1 9 6 2) . In the mid 60's, Eicke!, Paul, 

Bauer and Same Ison (1963), Che at ham and Sat t I e y C 1 9 6 4 ) , 

lngermanC1966) and Feldman (1966) contributed a great amount 

of work to syntax-directed translations, which led to the 

12 
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development of the ear I y theory of syntax-directed 

translation by Lewis and Stearns (1968). A mo r e de t a i I e d 

description of syntax directed translation is given in 

Chapter 5. 



CHAPTER I I I 

FORMAL LANGUAGE THEORY 

Formal Grammar 

The Need 

When we say about grammar, we all know English grammar. 

An Eng I i sh grammar i s a set of r u I es e i the r for cons t r u ct i n g 

English sentences or f o r determining whether an English 

sentence i s syn tact i ca I I y co r rec t . Thus the sen ten c e " am 

working very hard." obeys and follows the grammatical rules, 

whereas the sentence " working am hard very . " fa i Is 

miserably. The grammar is concerned with the form of the 

sentence but not the meaning, therefore the meaningless 

sentence ike "Books are working very hard." is quite 

accept ab I e gr amma t i ca I I y. The grammar of a programming 

I anguage is very s i mi I a r to the grammar of spoken I an g u age , 

b u t mo r e co n s t r i c t e d . I t e i t he r p r o v i de s a s e t of rules for 

writing a program in that programming language or i t 

determines whether a program is syntactically correct Cbut 

not necessarily meaningful). A program can be syntactically 

correct with no error but does not do anything meaningful at 

a I I. Grammars for programming languages are exact and 

precise, and they can be described in a formal mathematical 

14 
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notation, . e. , a f o rma I grammar. 

Different Classes of Grammars 

A phrase-structure grammar CPSG) is an ordered 

quadruple, 

( 1 ) 

G = £N, E, P, Sl where 

N is a finite set of nonterminal symbols 

Csometimes 

categories); 

ca I I ed variables or syntactic 

C 2) E i s a f i n i t e set of term i n a I s ymb o I s , d i s j o i n t 

from N; 

(3) P is a finite subset of 

CN U EJ1' N CN U Et X CN U El;; 

where an element Ca,b) in P is written a---> b 

and is called a production; 

C 4) S i s a d i s t i n g u i shed s ymb o I i n N ca I I e d the 

s tar t s ymb o I . 

Below are some examples of PSG's and non-PSG's : 

Cl) G =CfS,Al, £0,ll, P, S) where P consists of 

S ----> OAl 

OA ----> OOAl 

OAl ----> 01 

C2) G =C£A,Bl, £0, ll, P, Sl where P consists of 

S ----> OAl 

01 ----> OOAl 

----> ABC 
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Ex amp I e C 1 ) i s a P SG, and i t generates strings of the form 

01, 0011, 000111, and so on i n def i n i t e I y • Ex amp I e C 2) 

is not a PSG, for it violates rules 3 and 4 in the grammar . 

The terminal strings 01 and 1 are not • in the set CN U El N 

• C N U E) , and S C s tar t i n g s ymb o I ) i s not an e I eme n t i n N • 

Example Cll is an unrestricted grammar which means the 

p r o d u c t i o n s o f t h e g r a mm a r w i t h t h e f o r m A - - - - > B , w h e r e A 

f! 
and B are i n C N U El are a I I owed. 

The definition of phrase-structure grammars describes 

much too large a class of grammars to de a I w i th i n the 

process of translation and evaluation. However, i t is 

possible to add some more restrictions to form a restrictive 

grammar, which is less flexible but easier to translate 

because of the restricted properties of the grammar. The 

restrictions are often placed on the format of the 

productions. A con t ex t - f r e e g r amma r i s a r es t r i c t i v e t y p e 

grammar. 

A grammar G = CN, E, p. s) is a context-free grammar 

CCFGl i f and only i f i t is a PSG and the roots of al I 

productions in P are single nonterminal symbols. Single 

product ions with this property are referred to as context-

free productions. Below is an example of context-tree 

grammar 

G = CfEJ, (+,*,(,), idl, P, El where P consists of 

E ----> E + E 

E ----> E * E 

E ----> CE) 

• 
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E ----> id 

This context-free grammar defines the arithmetic expressions 

with operators "+" and "*" and operands represented by 

s ymbo I id. Here Eis the only variable which represents 

expression, and the terminals are"+", "*", "C", ")"and id. 

The f i r s t two productions say that an expression can be 

composed of two expressions connected by addition or 

multiplication sign. The third production says that an 

expression may be another surrounded by 

parenthesis. The last says 

expression 

a single operand is an 

expression. By applying productions repeatedly we can obtain 

more and more comp I i cat e d express ions . For ex amp I e, 

E ----> E * E C2l 

----> E * CEl c 3 ) 

----> E * CE + El c 1l 

----> CEl * CE + El c 3 ) 

----> CE + El * CE + El c 1 ) 

----> c id + El * CE + El c 4 ) 

----> c id + id) * CE + El c 4) 

----) c id + id) * c id + El c 4 ) 

----> c id + id) * c id + id) c 4 ) 

The symbol "---->" denotes the act of deriving, that is, 

replacing a variable by the right-hand side of a production 

for that variable. The numbers appearing on the right-hand 

side of the derivations are the production numbers used by 
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the derivations. 

A grammar G = CN, I: ' P, S) is a context-sensitive 

grammar CCSGl if and only if it is a PSG and each production 

i n P i s of the f o I I ow i n g form 

C1l a----> b, where a and bare in CN U tf and 

the length of a is I es s than or equal to the 

length of b c:a: <= :b:l. 

C2l S ----> e, where S is the start symbol and e is 

the empty string. 

The f o I I ow i n g i s an ex amp I e of context - sens i t iv e grammar , 

G = ClS,AJ, {0,1), P, Sl where P consists of 

S ----> A 

S ----> OA1 

OA1 ----> OOA11 

This grammar generates strings of form 01, 0011, 000111 as 

the PSG's example before. The PFG, CFG, and CSG are some of 

the most common formal grammars which are discussed in 

formal language theory. There are also some other types of 

rest r i ct e d grammars w i th more rest r i ct e d r u I es I i k e the 

Chomsky normal form and Greibach normal form, but they wi 11 

not be discussed in this study. 

Recognizers 

Introduction 

The other way to specify a language is in a recognitive 

manner, that means def i n i n g a too I to rec o g n i z e i t . We 



define a recognizer which accepts al I the possible output 

strings of the language. 

Different Classes of Recognizers 

A t u r i n g mac h i n e is the most general class of 

recognizer. It recognizes the class of languages definable 

by an unrestricted grammar. The basic model of a turing 

machine, i I lust rated in Fig. 2, has a finite control, an 

input tape that is divided into eel Is, and a tape head that 

scans one c e I I of the tape at a t i me . 

Input tape 

:a1:a2:a3: 

I\ 

: Finite 
: control 

Figure 2. 

:an: 

Basic Turing Machine 

The input tape has a leftmost cell but is infinite to the 

r i g ht . Each c e I I may ho I d exact I y one of a f i n i t e number of 

tape symbols Ctokensl. The current symbol is scanned by the 

tape head to determine what to do next, i.e., whether to 

change state or to reposition the tape head. The tape head 

can be repositioned to the left or r i g ht, one ce II at a 

time. 

A pushdown automaton is a recognizer with a read-only 

19 



input tape, a finite state control, and a push-down stack or 

11 f i r s t i n - I as t out 11 I i st . That i s , s ymb o I s may be en t ere d 

or removed at the top of the list. Fig. 3 is an example of 

the stack, the number 11 1 11 is the first one input into the 

stack and then 11 2 11 , "3" and "4", but the number 11 1 11 wi 11 be 

the last one to get out from the stack. A nondeterministic 

pushdown automaton recognizes the class of context-free 

languages. 

5 

\ I 

4 
3 
2 

Figure 3. 

5 
4 
3 
2 
1 

Stack 

A pushdown automaton uses the current input symbol on 

the tape, the contents of the top element of the stack, and 

the current state of the finite state control to determine 

an appropriate move. A I anguage is said to be accepted by 

the pushdown automaton when some input symbol causes the 

push down automaton to enter a final state or when the 

20 
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pushdown automaton has emptied its stack after some sequence 

of moves. 

The last recognizer to be discussed is the finite 

state automaton. It is equivalent to the pushdown automaton 

without the pushdown stack. For determining the next move, 

it uses only the current input symbol and the current state 

of the f i n i t e state con t r o I . A f i n i t e s tat e mac h i n e i s 

always described by the transition diagram. Fig. 4 is a 

transition diagram of a finite state machine, which accepts 

al I the strings beginning with one or more a's and ending 

with one or more b's. 

a 
b 

} 0-a -----a} 
b 

Figure 4. Finite State Machine 

In Fig. 4, Sis the starting state, and F is the final state 

. Each label arc defines a transition between the states 

caused by the symbol shown on the arc. 



CHAPTER IV 

AN OVERVIEW OF THE STATEMENTS 

EVALUATION SYSTEM 

The purpose of the statements evaluation system CSES) 

is to evaluate the syntactic and semantic correctness of 

user's input program segments by comparing them with the 

template answer provided to the system. The program segment 

can include of declaration statements, 

assignement 

a combination 

statements and if-then-else statements. The 

system responses include a lexical analysis report, error 

messages and the correct answer to the problem. For example, 

with the template answer, 

template 

the system 

segments, 

declare x,y; 

X :: y + Z; 

if Ca > bl then 

a := c * c b + 1); 

else 

a:= c *Cb - ll; 

end if; 

is able to determine 

1. declare x; 

declare y; 

22 

that these two program 
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x := z + y; 

if Ca> bl then 

a . -. - Cb+ 1) * c; 

else 

a := b*c - 1*c; 

end if; 

2. declare y ' x ; 

x : = y + z ; 

i f Ca <.:b) then 

a . - c * c b - 1 ) ; . -
else 

a . -. - c b + 1 ) * c ; 

end i f ; 

are equivalent to the template answer. On the other hand, 

the system recognizes that the program segment, 

3. declare x,y. 

X := y + Z; 

if Ca> bl then 

a := c * C b + 1l; 

else 

a := c * C b - 1l; 

end i f ; 

is not equivalent to the template answer, so error messages 

output declare x, z. ** syntax error ** 

syntax error 11 , 11 or ";"expected 

are printed as a response to the incorrect input. 
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Pro g ram s e gme n t number 4 has no syn tac t i ca I e r r or , bu t i t i s 

not performing the same function as the template answer, 

therefore, the system responds with an error message and the 

correct answer. 

4. declare x,y; 

X :: y + Z; 

if Ca > b) then 

a := c * C b - 1); 

else 

a := c *Cb+ 1); 

end i f ; 

output incorrect if-then-else statement 

The SES bascial ly has 3 phases, namely, the lexical 

analyzer, the parser, and the translator Csee Fig. 5). 

input text stream 
of tokens parse tree 

tables of 
declarations 
assignments 
expressions 
for evaluation 

--->:Lexical :----> :Parser :------> :Translator:-------> 
:Analyzer: 

Figure 5. Structure of Statements Evaluation System 

The lexical analyzer divides the input text into separate 

tokens variables, keywords, labels, constants and 
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operators). The purpose of the parser is to performs 

syntactic checking on the input token stream which is 

generated by the lexical analyzer. The translator translates 

the statements into standard table formats, so they can be 

easily evaluated. Consider the statements 

1. declare x,y; 

X :: y + Z * W; 

2. declare y; 

declare x; 

x := w * z + y; 

The translator translates these statements into 3 different 

kinds of tables, namely, declaration table, assignment 

table, and expression table Csee Fig. 6 and Fig. 7) 

Oeclaratin table 

x :integer: 
:-----------: 

y integer: 

Assignment table Expression table 

x :------> ---------------
:-----------: y z: +111.: 

:---------------: 
: w: 

:---------------: 

0 0 sign bit 

Figure 6. Translation of "declare x,y; x := y+z*w" 
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Declaration table 

y :integer: 
:-----------: 

x integer: 

Assignment table Expression table 

x :------> ---------------
:-----------: : w : y: +/*: 

:---------------: 
z 

:---------------: 

0 0 sign bit 

Figure 7. Translation of "declare y;declare x; x := 

w*z + y" 

The first row of the expression table represents addition 

and each co I umn rep res en ts mu I t i p I i cat i on . The I as t row i s 

the sign bit for each column, it is set to 0 i f the column 

is positive and set to 1 if the column is negative. 

How do the tables help in the evaluation? Two 

declaration tables are equivalent i f they have the same 

variables in the table regardless of the i r order . Two 

expression tables are equivalent i f they have the same 

elements regardless of the order of the columns and the 

order of the rows of each individual column. The r fore , we 

can determine that the tables in Fig. 6 and Fig. 7 are 

equivalent. That means the program segment "declare x,y; x 

: = y + z*w;" is equivalent to program segment "declare y; 

declare x; x := w*z + y;". 

This chapter only gives a brief description of the 
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design of the statements evaluation system. A detai I 

description of the design and implementation is in the 

fol !wing chapter. 



CHAPTER V 

DESIGN AND IMPLEMENTATION 

Lexical Analyzer 

The Role of Lexical Analyzer 

The purpose of the lexical analyzer is to read the 

input , character by character, and to group individual 

characters into tokens Cvariable names, keywords, labels, 

constants, and operators). 

input------>: Lexical 
stream : Analyzer 

Figure 8. 

:--------> stream of 
tokens 

General Description of 
Lexical Analyzer 

To be able to return a token, the lexical analyzer must 

isolate the next sequence of characters in the input stream 

which designate a valid token. The lexical analyzer must be 

able to ignore blanks, and i t is responsible for 

differentiating between different terminal symbols in a 

28 
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grammar . Append i x B cont a i n s a tab I e of a I I the term i n a I and 

non-terminal symbols of the context-free grammar for the 

Ledgard mini-language. Each terminal and non-terminal has 

i ts own symbol number which is an internal representation 

number f o r that symbo I. The lexical analyzer produces a 

token and the number associated with each token, Each 

Ctoken,number) tuple is fed to the parser for syntactic 

analysis. 

F o r ex amp I e , w i t h t he i n p u t s ta t eme n t s 

a := b + c ; 

if a> b then a := c; end if 

the I ex i ca I an a I y z er returns the f o I I ow i n g i t ems 

Token symbol # description 

a 2 identifier 
. - 2 1 assignment operator . -
b 2 identifier 
+ 1 5 addition operator 
c 2 identifier 

6 semicolon 
i f 3 reserved word 
a 2 identifier 
> 1 4 greater than 
b 2 identifier 
then 4 reserved word 
a 2 identifier 
: = 2 1 assignment operator 
c 2 identifier 

6 semicolon 
end 7 reserved word 
i f 3 reserved word 
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The Need for a Lexical Analyzer 

The statements evaluation system CSESl has 3 phases to 

analyze the source text, namely, the lexical analyzer, the 

parser, and the tans I at or. The lexical analyzer performs 

lexical analysis and the parser performs syntactic analysis. 

By separating the lexical and the syntactic analysis 

processes, the system is easier to implement and we can 

construct a more specialized and effecienct recognizer for 

tokens. Furthermore, 

of the parser. 

this separation s imp I i f i es the des i g n 

Regular Grammar 

As described in the previous section, the main purpose 

of the lexical analyzer is to return the next input token to 

the parser. To be able to return a token, the lexical 

analyzer must be able to isolate the next sequence of 

characters in the source text which designates a val id 

token. To do this, the lexical analyzer must recognize every 

val id token, while ignoring "noise" symbol strings such as 

comments, blanks, I ine boundaries, and whatever 

important to the parsing process. 

else is not 

Tokens can be described in several ways. One way of 

describing tokens is by using a regular grammar. Using this 

method of specificiation, generative rules are given for 

producing the desired tokens. For example, the regular 

grammar, 
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<identifier>---> a:b:c: .... :z:o:1: .... :9: 

a<identifier>:b<identifier>: .... 

.... z<identifier> 

contains the rules for generating the set of identifiers in 

the mini-Language. 

The other way to describe tokens is in recognitive 

manner. Describing tokens how they can be 

recognized Cor accepted) 

by means 

is often 

of 

done in terms of a 

mathematical model 

automaton). 

F i n i t e St ate Mach i n e 

ca I I e d a f i n i t e state mac h i n e Co r f i n i t e 

The output of the lexical analyzer is a function of the 

input, and there are on I y a f i n i t e number of act ions wh i ch 

the lexical analyzer can take for any input. Thus, the 

lexical analyzer can be di scribed by a finite state machine. 

A finite state machine can be thought of as a machine 

consisting of a read head and a finite state control box. 

The machine reads a tape one character at a time Cf r om I e ft 

to right), as shown i n F i g . 9 . At any i n s tan t a F SM can be 

i n on I y one of a f i n i t e number of d i f fer en t s tat es . A ch an g e 

in state occurs in the machine whenever the next character 

is read. Whenever an FSM begins reading a tape, it is always 

in a certain state designated as the starting state. Another 

type of state is a final state, and if the FSM attempts to 

read beyond the end of the tape while in a final state, the 

string which was on the tape is said to be accepted by the 
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FSM. In other words, the string belongs to the language 

which is accepted by the FSM. 

I\ Read 
: Head 

:Finite State 
:control Box 

Figure 9. A Tape Reading Description 
o f F i n i t e St a t e Mach i n e 

Finite state diagrams or transition diagrams are often 

used to rep res en t an F SM p i ct or i a I I y . An ex amp I e of such i s 

i I lust rated in Fig. 10. The FSM represented in the diagram 

accepts identifier in the mini-language. The first character 

in the identifier must be a letter and follow by I e t t e r s o r 

digits. The nodes of the finite state diagram represent the 

s tat es of the F SM, and i n F i g . 1 0 , the states are named S 

Cstarting state) and A C f i n a I s tat e) . The arcs I ea d i n g f r om 

one state to another indicate the state transitions, with 

the characters immediately above or beside the arcs denoting 

the input characters which cause this state transition. The 

arrow and the word "START" signify which state of the FSM is 

the starting state. In Fig. 10, the starting state is S. The 

nodes that consist of a pair of concentric circles are final 

states. In Fig. 10, only state A is a final state. Fig. 11 

is a transition diagram for an integer number. 



START 

{alb/cl .. . /z/0/1 .. . 9!} 

{a/b/c/ ... /z/] 

Figure 10. A Finite State Diagram for Identifier 

START 

Figure 11. A Finite State Diagram for Integer 
Number. 

33 
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The operation of the lexical analyzer f o r the mini-

I anguage is shown in the state t r ans i t i on d i a g ram i n F i g . 

12. The arcs of the diagram are labelled with the input 

symbol which causes the 

such that it corresponds 

t rans i t i on . I f the i n put s ymb o I i s 

to no arc leaving the state, the 

s ymbo I is invalid and the scanner prints an error message. 

The actions are labelled on the arc when a transition is 

made. The action 

RETURNCtoken,symbol#) 

signifies that token with corresponding symbol number should 

be returned to the parser as the input token. With the 

f i n i t e - s tat e mac h i n e des c r i pt i on of the I ex i ca I an a I y z er , a 

procedure can be implemented which emulates 

t he s t a t e d i a g r am i n F i g . 1 2 . 

• 

the actions of 



8---- =----i 
~ ~)____J SKIP BLAN.K 

<> 

< 

> 

+ 

* 

Figure 12. 

RETURN(",",S) 

RETURN(";",6) 

RETURN("(",9) 

o~ RETURN(")",10) 

)(~ RETURN("=",!!) 

·o---~ RETURN("<>",12) 

(0--7 RETURN("<",13) 

RETURN(">",14) 

·--4 RETURN("+",15) 

REPORT ERROR 

State Transition Diagram for the 
Mini-Language 

, .... 

35 
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lmplementat ion 

The algorithm for the lexical analyzer can be described 

in a top-down manner , w i th five different routines 

performing individual functions. Fig. 13 i I lust rates the 

structure of the lexical analyzer. 

Read_input 

Scanner 

Get_token 

:check_reserve 

Print __ table 

Figure 13. Structure of the Lexical Analyzer 

The Read_input routine is used to read the source text, 

return characters, and store them in an array structure 

cal led buffer, see Fig. 14. 
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procedure Read_input; 

var 
buffer : stream; 

charnum : integer; 
i integer; 
ch : char; 

{buffer is for storing input 
characters} 

begin 
for i := 1 to 100 do 

bufferCil .-

ch : = 

.. 
• 

charnum := O; 
while Cnot eolnCtrmJ) and Cch <>'@')do 
begin 

charnum := charnum + 1; 
readCtrm,chl; 
if ch <> '@' then {'@' is the 

template} 
:= ch 

end marker of 

bufferCcharnuml 
else 

t em : = fa I s e ; 
end; 

end; 

Figure 14. Procedure Read_input 

The heart of the lexical analyzer is the Scanner 

procedure which is implemented to emulate the actions of the 

f i n i t e s ta t e mac h i n e d i a g ram i n F i g . 1 2 • I t s f u n c t i on i s to 

group individual characters into tokens and it must be able 

to isolate the next sequence of characters in the input 

buffer which designates a val id token. The Scanner marks the 

beginning and the end of the token in the input buffer, send 

the token and its symbo I number to the Get_token routine for 

linking all the tokens together to form a token's stream. 

See Fig. 15 for the procedure Scanner. 



procedure ScannerCbuffer:stream; charnum integer); 

var 
,j,k integer; 

begin 

: = 1 ; 

wh i I e <= charnum do 

begin 
case buffer[ i J of 

: = i + 1 ; 

'A' .. 'Z', 'a' .. 'z' 

, 0' .. '9. 

£skip blanks} 

(identifier} 
begin 
j : = i ; 
repeat 
i : = i + 1 ; 
unti I notCbufferC i l in 

C'A' .. 'Z','a' .. 'z','0' .. '9']); 
k := i - 1; 
get_tokenCbuffer,j,k,2); 
end; 

(integer} 
begin 
j : = i ; 
repeat 
i : = i + 1 ; 

38 

until not CbufferCiJ in 

Figure 15. 

['0' .. '9']); 

k := i - 1; 
get_tokenCbuffer, j ,k,18); 
end; 

Procedure Scanner 



'+' 

' * ' 

'=' 

' ) ' 

Figure 15. 

begin 
get_tokenCbuffer, i, i, 15); 

: = i + 1 ; 
end; 

begin 
get_tokenCbuf fer, i, i, 16); 

: = i + 1 ; 
end; 

begin 
get_tokenCbuffer, i, i, 17); 

. - i + 1 ; 
end; 

begin 
get_tokenCbuffer, i, i ,11); 

: = i + 1 ; 
end; 

begin 
get_tokenCbuffer, i, i ,5); 

:= i + 1; 
end; 

begin 
get_tokenCbuffer, i, i ,6); 

: = i + 1 ; 
end; 

begin 
get_tokenCbuffer, i, i, 14); 

: = i + 1 ; 
end; 

CContinued) 
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end; 

end; 

' ( ' 

' : ' 

' ( ' 

' ) ' 

else begin 

begin 
j : = i + 1 ; 
if sCj1 <> '>' then 
begin 
get_tokenCbuffer,i,i,13); [<J 

i : = i + 1 ; 
end 
else 
begin 
get_ token Cb u ff er , i , j , 12) ; £ <> l 

i : = i + 2; 
end; 
end; 

begin 
j : = i ; 
i : = i + 1 ; 
if s[i] = '=' then 
begin 

get_tokenCbuffer,j, i ,21l;l:=l 
: = i + 1 ; 

end; 
end; 

begin 
get_tokenCbuffer, i, i ,9); 

: = i + 1 ; 
end; 

begin 
get_tokenCbuffer, i, i ,10); 

: = i + 1 ; 
end; 

get_tokenCbuffer, i, i ,0); 
: = i + 1 ; 

£invalid input} 

end; 
end; 

Figure 15. CCont i nued) 

40 
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Before describing the function of Get_token, we must 

understand how the token is represented and stored. The 

internal representation of the token is a record which 

contains the symbol, its symbol number, and a pointer to the 

next input token Csee Fig. 16). 

string= packed array£1 .. 71 of char; 

token_! ist = record 

sym : string; 

s ym_n um : i n t e g er ; 

I ink token pt r; 

end; 

Symbol L 

i ---------> 
:--------------; n 

S ymb o I number : k 
I I ---------·--· 

Figure 16. Internal Representation of Token 

Fig. 1 7 is the procedure Get_token, the routine is used to 

receive tokens from the Scanner procedure, inking all 

tokens together to form a stream of tokens, and bui Id symbol 

table for tokens . 

41 
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procedure Get_tokenCbuffer:stream; j, i ,des integer); 

var 

k, I 
token 

begin 

integer; 
tokenptr; 

new C token J ; 
initptrCtokenJ; (initialize pointer} 
I : = 0; 

for k := j to i do 
begin 

I : = I + 1 ; 
tokenA.sym[ I l := buffer[kl; 

end; 
tokenA.sym_num := des; 
if des = 2 then 

checkresCtoken,restableJ; 

if tem = true then 

(check 
wordsl 

f o r reserve 

bu i I d tab I e C token , temp head , temp I as t J {bu i I d 

else 

end; 

symbol table for templates} 

bui ldtableCtoken, inputhead, input last); 
{bu i I d s ymb o I tab I e for i n p u t1 

Figure 17. Procedure Get_token 

The Check_reserve routine is used to compare a I I 

identifiers with entries in the reserved word table 

Cdeclare, if, then, end, else, while, loop). Fig. 18 is the 

procedure Check_reserve. 



procedure Check_reserveCvar token: tokenptr; 
reserve table table); 

var 

integer; 

begin 

for i := 1 to 7 do 
begin 

end; 

end; 

if reserve_tableC i JA.sym = tokenA.sym then 
begin 

Figure 18. 

tokenA.sym_num := 
restableC i JA.sym_num; 

end; 

Procedure Check_reserve 

The last procedure Print_table is used to print al I the 

input tokens recognized by the lexical analyzer. The token 

s ymb o I , i ts symbol number and description are printed, An 

example listing generated by the lexical analyzer follows. 

Input statements 

wh i I e Ca > b) I oop 

x := x. 1; 

a :=a+ 1; 

end loop; 
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Output I ist ing from the lexical analyzer 

Token 

wh i I e 

a 

> 

b 

loop 

x 

. -. -

x 

a 

a 

+ 

end 

loop 

Syrnbo I # 

1 9 

9 

2 

1 4 

2 

1 0 

20 

2 

2 1 

2 

0 

1 8 

6 

2 

2 1 

2 

1 5 

1 8 

6 

7 

20 

6 

Description 

reserved word 

left parenthesis 

identifier 

greater than 

identifier 

right parenthesis 

reserved word 

identifier 

assignment operator 

identifier 

invalid token 

constant 

semicolon 

identifier 

assignment operator 

identifier 

addition operator 

constant 

semicolon 

reserved word 

reserved word 

semicolon 

44 
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Parser 

The Role of the Parser 

The parser performs syntactic checking in the 

evaluation system, see Fig. 19. The parser input is a token 

stream generated by the lexical analyzer, and the output is 

a parse tree generated for the input statement. 

check syntax 

:Lexical :------->: Parser 
:Analyzer: stream 
-------- of ----------

:-----> 
generate error 

messages 
tokens create parse trees 

Figure 19. The Role of Parser in the Evaluation 
System 

The parse tree produced by the parser is not created 

physically, the parse tree only exists abstractly as a 

sequence of actions made by stepping through the tree 

construction process. There are two common forms of parsers 

---- operator precedence and recursive descent. The parsing 

algorithm used in the implementation of the parser in the 

statements evaluation system CSES) is the recursive descent. 

A recursive descent parser is constructed by a set of 

recursive procedures to recognize i t s input with no 
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backtracking. This method of parsing is more effecient 

Cthough less general) than most top-down parsing method that 

a I I ow backup . I t sh o u I d be noted , however , that th i s h i g h I y 

recursive technique does not work on a I I context-free 

grammars . That is, certain grammars require backup in order 

for sucessful parsing to occur. 

In the recursive-descent method of parsing, a sequence 

of production applications is realized in a sequence of 

function or procedures cal Is. In particular, functions or 

procedures are written for each non-terminal symbol. Each 

procedure recognizes substrings which are expansions of the 

non-terminal. Error signals and error messages should result 

when an unexpected terminal is recognized. 

Basic Design for Recursive-Descent Parser 

Appendix A contains a context free grammar for the 

mini-language consisting of 20 non-terminals. Each non-

terminal of the language has a parsing procedure associated 

w i th i t that i s used to deter mi n e i f that non term i n a I may 

generate an i n i t i a I subs t r i n g of the tokens r ema i n i n g i n the 

input. Within a parsing procedure, both nonterminals and 

terminals can be "matched". To match a non-terminal "A", we 

cal I the parsing procedure corresponding to 11 A11 Cthere may 

be recursive calls). To match a terminal symbol 11 t 11 , we call 

a procedure MatchCptr,x,yl; ptr is the pointer which points 

to the current position in the input tokens stream, x is the 

s ymb o I number assoc i ate d w i th the token 11 t 11 to be matched , y 
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is the message number associated with the error message to 

be printed if the token is not in the input stream. For 

example to match the token "declare", the symbol number 

associated with the terminal "dee I are" is 1, therefore the 

procedure ca I I is 

match C pt r , 1 , 1 ) ; 

Match ca I I s the scanner to get the next token . I f th i s token 

is "declare", everything is as expected, and the token is 

consumed. Otherwise, a syntax error is detected which 

res u I ts i n an er r or message f o I I owed by term i n at i on of the 

parsing process. The procedure Match is in Fig. 20. 

procedure MatchCvar ptr tokenptr;num integer; messcode : 
integer); 

begin 

end; 

if error = false then {no syntax error occured beforel 
begin 

end; 

if nextCptr) = num then {matched next tokenl 
{function Next wi I I returns the lookahead token} 

ptr := ptr".link 
else {next input token is error} 

begin 

end; 

error 
pt r : = 

:= true; 
ptr".link; 

{ p r i n t e r r or mes sage l 

{skip the error 
tokenl 

if error = true then syntaxerrorCmesscodel; 

Figure 20. Procedure Match for Matching Input 
Token 
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To be able to look ahead and not to consume the next 

input token, a function ca I I ed "Next" is defined. The 

function Next returns the symbol number of the lookahead 

token . I t i s d i f fer en t f r om Match i n that Next just "peeks" 

at the next token, whereas Match tries to match and consume 

it. Fig. 21 is the function Next. 

function NextCvar ptr 

var 
temp 

begin 

tokenptr; 

temp := ptr~. I ink; 

tokenptr) 

n ex t : = t emp ~ . des c r i p ; 

end; 

integer; 

Figure 21. Function Next that Returns the Lookahead 
Token 

• 
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The parsing procedure for each non-terminal is very 

easy to imp I eme n t : I f the product i on for A i s 

A -----> X1 X2 ... Xm 

then procedure "A" is simply X1; X2; ... Xm, see Fig. 22; Cif 

some Xi is a terminal, then we call matchCptr,a,b), where a 

is the symbol number associated with Xi, and b is the 

message number associated with the error message to be 

printed if Xi is not in the input stream). 

procedure A; 

begin 

X1; £call procedure Xll 

X2; (cal I procedure X2l 

ma t ch C p t r , a , b ) £match the terminal 

symbol number equal al 

Xm; £cal I procedure Xml 

end; 

Figure 22. Parsing Procedure A 

xi with 
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Parsing Procedures for the Mini-Language 

The parsing procedure A in the last section seems very 

But how are we going to define the easy to implement. 

parsing procedure 

example, 

i f A has more than one product i on , for 

A -----> Xl X2 X3 Xm 

A -----> Yl Y2 Y3 Yn 

We must decide what production to try to match, 

therefore we need to lookahead and use the lookahead token 

to decide what production to choose. Appendix C has a brief 

des c r i pt i on on L LC 1 l grammar and generation of the predict 

set of production. 

The design of the parser is a hierarchial structure of 

parsing procedures, which cal I each other recursively. There 

are a total of twenty parsing procedures, each for every 

non-terminal in the context-free grammar. The basic 

structure of the parser fol lows the production rules of the 

grammar. Fig. 23 is the hierarchial structure of the parser, 

which also shows the execution flow of the parsing 

procedures. The alphabets on the arcs are the choices of 

execution flow and the numbers on the arcs are the sequence 

steps of 

procedure 

the execution 

"dec_seq 11 , i t 

flow. 

has 

For example, the parsing 

two choices of A and B 

determined by the input token. I f the token is not an 

identifier, "if" or "while, it cal Is the parsing procedures 

11 de c I a r a t i on " a n d 11 de c_ t a i I 11 in that order, otherwise, it 



START 

2 

STMT_SEQ 

2 l 

13 'XC('(ll 

[end J [end],..__ _ _, 

2 

STO~) 
[id] 

A c 

[if] 

B 

ASSGN_S'HI' IF_surr 

DEC_SEQ 

13 

[id,if ,wh · 1e] 

STOP 

[while] 

LOOP_STMT ID_LIST 

ID_LIST_T~. 

IJECLARATI 

al;_ 
(;Jr t__ 

STOP 

Figure 23. Hierarchial Structure of the Parser 
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STMT_SEQ 
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EXPR 
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COMPARISON 
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Figure 23. (Continued) 
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stops and the execution begins at stmt_seq". 

For the mini-language we start with the non-terminal 

"start", the production for "start" 

<start> ----> <dec_seq> <stmt_seq> 

The procedure "start" i s very simple, ca I I in g two other 

parsing procedures "dec_seq" and "stmt_seq" Csee Fig. 24). 

procedure startCvar ptr 

begin 

end; 

error : = f a I s e ; 

dec_seqCptr); 
s t mt _seq C p t r ) ; 

token pt r); 

£error 
sets to 

is a flag which 
true if syntax 

error occurs} 

Figure 24. Parsing Procedure for <start> 

As we have seen in Appendix C, the parsing procedure of 

<dec_seq> is more comp I i cat e d, for <dec_seq> has 2 

productions in the grammar. To construct the parsing 

procedure for <dec_seq>, we need to have the predict sets to 

make the decision which production to choose. To obtain the 

predict sets of non-terminal <dec_seq>, we need to get 

f i r s t C < de c_s e q > ) and f o I I ow C <de c_s e q > ) , s i n c e <de c_s e q > can 

produce epsilon. 



Production : 

< de c_s e q > - - - - > < de c I a r a t i on > < de c_ t a i I > 

<de c_s e q > - - - - > e p s i Ion 
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We can obtain the predict sets of <dec_seq> by the fol lowing 

steps : 

predictC<dec_seq> ----> <declaration> < de c_ t a i I > ) = 

f i rstc<declarat ion>) 

f irstC<declaration>) = £declare} 

pre d i ct C <de c_s e q > - - - - > e p s i I on) = f o I I ow Cd e c_s e q) 

To ob ta i n the f o I I ow Cd e c_s e q) , we need to search for a I I the 

productions in the grammar with <dec_seq> at the right hand 

side of the production. There is only one production, 

<start> ----> <dec_seq> <stmt_seq> 

with <dec_seq> at the right hand side of the production Csee 

Appendix A). 

f o I I ow Cd e c_s e q) = f i rs t C <st m t_s e q > ) 

f irstC<stmt_seq>l = firstC<statement>l 

f i rs t C <statement > ) = £ i d, i f , wh i I e J 

Therefore, the predict sets for <dec_seq> are £declare} and 

£id, if, whilel. That is, if the lookahead token is in one 

of the predict sets of the productions, in th i s case , we 

choose the predicted production according to whatever the 

lookahead token is; otherwise, if the lookahead token is not 
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in any predict set, the lookahead token occurs in an i I legal 

position and we have a syntax error. See Fig. 25 

procedrue dec_seq. 

procedure dec_seq; 

begin 

if error = false then 
case nextCptrl of {nextcptrl returns 

lookahead token} 
2, 3, 19 : {id, if, wh i I el 
else begin 

declarationCptrl; 
d e c_ t a i I C p t r l ; 

end; 
end; 

end; 

Figure 25. Parsing Procedure for <dec_seq> 

for the 

The predict set of <declaration> is much simpler than 

<dec_seq>, for it has only one production. 

p r e d i c t C < de c I a r a t i on > - - - - > de c I a r e < i d_ I i s t > l = 

{declare} 

<declaration> has only one predict set and only one element 

in the set, that makes the parsing procedure fairly simple, 

see Fig. 26. 



procedure declaration; 

begin 

if error = false then 
begin 

end; 

end; 

match (pt r , 1 , 1 ) ; 
i d_ I i s t C p t r ) ; 

! d e c I a r e l 

Figure 26. Parsing Procedure for <declaration> 

predictC<dec_tai I> ----> 

procedure dec_tai I; 

begin 

if error = false then 
begin 

end; 

end; 

match C pt r , 6 , 6) ; 
dec_seqCptr); 

<dec_seq>) = £;1 

{ ; l 

Figure 27. Pars i n g Procedure for <de c_ ta i I > 
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predictC<id_I ist> ----> <id> <id_I ist_tai l>l = { idl 

p r o c e d u r e i d_ I i s t ; 

begin 
if error = false then 
begin 

matchCptr,2,2); £id} 
id_I ist_tai ICptrl; 

end; 

end; 

Figure 28. Parsing Procedure for<id_I ist> 

predictC<id_I ist_tai I> ----> , <id_I ist>l = £,l 

predictc< id_I ist_tai I> ----> epsi Ion) = 

fol lowC<id_I ist_tai I>) 
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To compute f o I I ow C < id_ I i st_ ta i I >) , we check a I I 

o c c u r e n c e s o f < i d_ I i s t _ t a i I > o n v a r i o u s r i g h t ha n d s i d e s o f 

all the productions. Since it appears only in 

<id_list> ----><id> <id_list_tail> 

f o I I ow C < i d_ I i s t _ t a i I > ) = f o I I ow C < i d_ I i s t > ) 

Inspecting al I occurences of < i d_ I i s t > on t he r i g h t hand 

sides of al I productions, we conclude that 

f o I I ow C < i d_ I i st > ) = f o I I ow C <de c I a rat i on> ) 

since <declaration> ----> declare <id_list> is the only 

p r o d u c t i o n w i t h < i d_ I i s t > a t t h e r i g h t h a n d s i d e . 
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fol lowC<declaration>l = f i rstC<dec_tai l>l = {;l = 

followC<id_list_tail>J = 

p r e d i c t C < i d_ I i s t _ t a i I > - - - - > e p s i I on l 

Therefore, the predict sets for <id_I ist_tai I> are £,l and 

f;l, the parsing procedure for <id_I ist_tai I> is in Fig. 29. 

procedure i d_ I i st_ ta i I ; 

begin 
if error = false then 
case nextCptrl of 
6: 
else 

end; 

end; 

begin 
ma t c h C p t r , 5 , 2 6 l ; 
i d_ I i s t C p t r J ; 

end; 

{ ; } 

{ ' l 

F i g u re 2 9. Pars i n g Procedure for < i d_ I i st_ ta i I > 

We have finished al I the parsing procedures for the 

declarations part of the mini-language, and are ready for 

the statements sequence procedure. The start symbol for 

statements sequence is <stmt_seq> with production 

<stmt_seq> ----> <statement> ; <stmt_tai I> 

The procedure <stmt_seq> is very simple, cal I <statement>, 

match';', and call <stmt_tail>, see Fig. 30. 



procedure stmt_seq; 

begin 
if error = false then 
begin 

end; 
end; 

statementCptr); 
ma t ch C p t r , 6 , 6 ) ; 
stmt_tai I Cptr); 

£ ; } 

Figure 30. Parsing Procedure for <stmt_seq> 

The non-terminal <statement> has 3 productions, 

<statement> ----> <assgn_stmt> 

<statement> ----> <if_stmt> 

<statement> ----> <loop_stmt> 

predictC<statement> ----> <assgn_stmt>) = 

f irstC<assgn_stmt>) = £idl 

predictC<statement> ----> <if_stmt>) = 

firstC<if_stmt>) = £ifl 

predictC<statement> ----> <loop_stmt>) = 

f irstC<loop_stmt> = £whi lel 
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procedure statement; 

begin 
case nextCptrl of 

end; 

end; 

2 
3 
1 9 
else 

ass g n_s t mt C pt r l ; 
i f _s t mt C p t r l ; 
loop_stmtCptr); 
syntaxerrorC25l; 

Figure 31. Parsing Procedure for <statement> 

<stmt_tai I> has 2 productions in the grammar, 

<stmt_tai I> ----> <statement> <stmt_tail> 

<stmt tai I> ----> epsi Ion 

{ i d} 
{ i f } 

£while} 
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predictC<stmt_tai I> ----> <statement> <stmt_tail>l = 

f irstC<statement>) = [id, if, while} 

predictC<stmt_tai I> ----> epsi Ion) = 

f o I I ow C < s t mt_ ta i I > ) = 

fol lowC<stmt_seq>) = fend}, [else}, and Cend of input]. 

The <stmt_tail> procedure is in Fig. 32. 



procedure stmt_tai I 

begin 

end; 

if error = false then 
if ptr".link <> ni then 

case ,nextCptrJ of 
7 : 
8 : 
else begin 

statementCptrl; 

{not end of input} 

{ e n d l 
! e I s e l 

mat ch C p t r , 6 , 6) ; { ; l 
stmt_tai ICptr); 

end; 
end; 

Figure 32. Parsing Procedure for <stmt_tai I> 

Fig. 33 to Fig. 36 are the parsing procedures for 

<ass g n_s t mt > , < i f _st mt> , <end i f _e I s e > , and < I o o p_s t mt > . 

<ass g n_s t mt > - - - - > < i d > : = <exp r > 

procedure assgn_stmt; 

begin 
if error = false then 
begin 

end; 

end; 

matchCptr,2,2); 
matchCptr,21,21); 
exprCptrl; 

{ i d ] 
{ : =] 

Figure 33. Parsing Procedure for <assgn_stmt> 
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<if stmt> ----> if <comparison> then 
<stmt_seq> 

<endif_else> 

procedure if_stmt; 

begin 

if error = false then 

begin 

end; 

end; 

ma t ch C p t r , 3 , 3) ; 
comp a r i son C pt r ) ; 
ma t c h C p t r , 4 , 4 ) ; 
stmt_seqCptr); 
e n d i f _e I s e C p t r ) ; 

( i f ) 

£then) 

Figure 34. Parsing Procedure for <if_stmt> 

• 
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<endif_else> ----> end if 

<endif_else> ----> else 
<stmt_seq> 

end i f 

procedure endif_else; 

begin 

if error = false then 
begin 

end; 

end; 

case nextCptr) of 
7 : begin 

end; 

8 begin 

end; 
end; 

ma t ch C p t r , 7 , 7 ) ; 
ma t ch C p t r , 3 , 3 ) ; 

ma t ch C p t r , 8 , 8 ) ; 
stmt_seqCptr); 
ma t ch C p t r , 7 , 7 ) ; 
ma t ch C pt r , 3 , 3 ) 

fendl 

{ i f ) 

{elsel 

(endl 
( i f ) 

Figure 35. Parsing Procedure for <endif_else> 
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<loop_stmt> ---->while <comparison> loop 
<stmt_seq> 

end I oop 

procedure loop_stmt; 

begin 
if error = false then 
begin 

end; 

end; 

matchCptr, 19,191; 
comp a r i son C pt r l ; 
matchCptr,20,20); 
st m t_s e q C pt r ) ; 
mat ch C p t r , 7 , 7 ) ; 
matchCptr,20,20); 

{whi leJ 

{loopl 

fendl 
floopJ 
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Figure 36. Parsing Procedure for <loop_stmt> 

The "comp a r i son 11 in the while statement is in the form 

of 

C a > bl 

Ccount <> 10) 

There are four relational operators in the mini-language 

(II: U f II (II 1 "> " ' "< > " ) ' the parser looksahead for the token 

and returns an error signal if the token is not in the set 

of relational opera to r s . The f o I I ow i n g i s t he LL C 1 J g r amma r 

for <comp a r i son> . 

<comparison> ----> <factor> <comp_tai I>) 

<comp_ ta i I > ----> = <factor> ) 

<comp_ta i I> ----> <> <factor> ) 



<comp_tai I> ----> < <factor> 

<comp_tai I> ----> > <factor> 

procedure comparison; 

begin 
if error = false then 
begin 

ma t ch C p t r , 9 , 9 J ; 
factorCptr); 
comp_ ta i I C pt r ) ; 

£ ( } 

end; 

end; 

procedure comp_tai I; 

begin 
if error = false then 

end; 

case nextCptrl of 
11 begin 

matchCptr,11,11); £=1 
factorCptrl; 
matchCptr,10,lOJ; £)} 

end; 
12 begin 

mat ch C p t r , 1 2 , 1 2 ) ; £ < > l 
factorCptrl; 
ma t ch C p t r , 1 0 , 1 O ) ; £ l l 

end; 
13 begin 

matchCptr,13,13); £<1 
factorCptrJ; 
matchCptr,10,10); £)1 

end; 
14 begin 

ma t ch C p t r , l 4 , l 4 l ; £ > l 
factor C pt r); 
matchCptr,10,10); £)1 

end; 
else syntaxerrorC28J; 
end; 

Figure 37. Parsing Procedures for <comparison>, 
<comp_ta i I> 
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Let ' s I o o k at a s imp I e a r i th ema t i c express i on , 

x*a+b*c 

this expression gives different results, depending on the 

grammar for the expression. For ex amp I e i f the grammar for 

the expression is 

<expr> ----> <expr> + <expr> 

<expr> ----> <expr> llC <expr> 

<expr> ----> <expr> - <expr> 

<expr> ----> id I constant Cexprl I 

This grammar is ambiguous because there can be more than one 

parse tree generated by the grammar, see Fig. 38. 

+ 

/\ (\ /\. 
* * 

/\ c 
/~\ c /\/\ 

x a b c * b x /+\ /\ a b 
x a 

Figure 38. Parse Trees Generated by Ambiguous Grammar. 
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We cannot use an amb i g u o us grammar i n the parser , for 

we cannot uniquely determine which parse tree to select for 

a sentence. To make the grammar unambiguous, we have to 

separate the multiplication part from the addition, 

subtraction part. The modified grammar in which 

multiplication has higher priority than addition and 

subtraction is as follows, 

<expr> ----> <term> <term_tai I > 

< term_ta i I> ----> + <expr> 

< term_ta i I> ----> - <expr> 

<term_tai I > ----> epsi Ion 

<term> ----> <factor> <factor_tai I> 

<factor_tai I> ----> * <term> 

<factor_tai I > ----> epsi Ion 

<factor> ----> <constant> 

<factor> ----> < id) 

<factor> ----> ( <expr> ) 

Fig. 39 gives the parsing procedures needed to parse 

expression. 

procedure expr; 

begin 
if error = false then 
begin 

termCptr); 
term_tai I Cptr); 

end; 
end; 

Figure 39. Procedures for Parsing an Expression 



predictC<term_tai I> ----> + <expr>l = £+) 

predictC<term_tai I> ----> <expr>) = £-l 

pre d i ct C < term_ ta i I > - - - - > e p s i I on ) = f o I I ow C < term_ ta i I > ) = 

fol lowC<expr>) = fol lowC<assgn_stmt>l = fol lowC<statement>l 
= { ; ) 

procedure term_ta i I; 

begin 

i f error = false then 
begin 

case nextcptr) of 
1 5 : begin 

matchCptr,15,15); { +) 

exp r C pt r); 
end; 

16 begin 
matchCptr,16,16); { - } 

exprCptrl; 
end; 

6 £ ; } 
else 

end; 
end; 

end; 

Figure 39. (Continued) 
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procedure term; 

begin 

end; 

if error = false then 
begin 

end; 

factorCptr); 
factor tailCptr); 

predictC<factor> ----> <constant>) = £constantl 

predictC<factor> ----> <id>) = £ idl 

predictC<factor> ----> C <expr> l 

procedure factor; 

begin 

end; 

if error = false then 

case 
1 8 
2 
9 

nextCptrl of 
matchCptr,18,18); 
match (pt r • 2 r 2) ; 
begin 

end; 

ma t ch C p t r , 9 , 9 ) ; 
exp r C pt r); 
matchCptr,10,10); 

e I s e match C pt r , 0 , 2 7 ) ; 
end; 

Figure 39. CContinuedl 

= { ( } 

£constant} 
{ i d} 

{ ( } 

{ ) } 

£skip error tokenl 
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procedure factor_tai I; 

begin 

if error = false then 
begin 

case nextCptr) of 
15,16,6 : 

1 7 : begin 

( +' - ' ; 1 

ma t ch C p t r , 1 7 , 1 7 ) ; 
termCptrJ; 

end; 
6 : 

end; 
end; 

end; 

Figure 39. CContinuedl 

pq 

We have def in e d a I I the parsing procedures for each non-

terminal symbol in the Ledgard mini-language. Now let's look 

at a simple example to see how the praser works. For 

ex amp I e , the i n put statement i s , 

id := id * constant + id Cend of input] 

Step Procedure Cal Is Rema i n i n g I n put 

star t id := id* constant + id ;Cendl 
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2 dec_seq id := id * constant + id Ce n d 1 

3 stmt_seq id . - id * constant + i d ; Cend1 . -

4 statement id . -. - id * constant + id; Cend1 
match C 11 ; 11 ) 

stmt_tail 

5 assgn_stmt id : = id * constant + id; C e n d 1 
match C " ; 11 ) 

stmt_tai I 

6 match C id l id . -. - id * constant + id; Cend1 
ma t ch C 11 : = 11 l 
ex pr 
match C 11 ; 11 ) 

stmt_tai I 

7 ma t ch C 11 : :: 11 l . -. - id * constant + id; Cendl 
expr 
match C 11 ; 11 l 
stmt_tai I 

8 ex pr id * constant + id; Cendl 
match C 11 ; 11 ) 

stmt_tail 

9 term id * constant + id; Cendl 
term_ta i I 
match C 11 ; 11 ) 

stmt_tai I 

10 factor id * constant + id; Cendl 
factor_tai I 
term_ta i I 
match C 11 ; 11 ) 

stmt_tail 

1 1 match C id) id * constant + id; Ce n d 1 
factor_tai 
term_ta i I 
match C 11 ; 11 ) 

stmt_tai I 



72 

12 factor_tai I * constant + id; Ce n d l 
term_tai I 
match C 11 ; 11 ) 

stmt_tai I 

1 3 match C 11 * 11 ) * constant + id; Ce n d l 
term 
term_ta i I 
match C 11 ; 11 ) 

stmt_tai I 

1 4 term constant + id Cendl 
term_ta i I 
match C 11 ; 11 ) 

stmt_tai I 

1 5 factor constant + id Ce n d l 
factor_tai 
term_ta i I 
match C 11 ; 11 l 
s tmt_ta i I 

1 6 matchCconstantl constant + id Cendl 
factor_tai I 
term_ta i I 
match C 11 ; 11 l 
stmt_tail 

1 7 factor_tai I + id Ce n d l 
term_ta i I 
match C 11 ; 11 ) 

stmt_tai I 

18 term_ta i I + id Cendl 
match C 11 ; 11 l 
stmt_tai I 

1 9 match C 11 + 11 l + id C e n d l 
ex pr 
match C 11 ; 11 l 
stmt_tai I 
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20 ex pr id Ce n d l 
match C 11 ; 11 l 
stmt_tai I 

2 1 term id Ce n d l 
term_tai I 
match C 11 ; 11 ) 

stmt_tai I 

22 factor id Cendl 
factor_tai I 
term_ta i I 
match C 11 ; 11 ) 

stmt_tail 

23 match C id) id Cendl 
factor_tai I 
t e rm_t a i I 
match C 11 ; 11 ) 

stmt_tail 

24 factor_tai I ; Cendl 
term_ta i I lfactor_tai I wi 11 match epsilonl 
match l 11 ; 11 ) 

stmt_tai I 

25 term_tai I ; Cendl 
ma t ch C 11 ; 11 ) ; l term_ta i I wi 11 match epsi lonl 
stmt_tail 

26 match C ' ; 11 ) Cendl 
stmt_tai I 

27 stmt_tai I Cendl 

28 Done! lstmt_tail wi 11 match end of input} 
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Translator 

The Role of the Translator 

The best way to evaluate different statements is to 

translate the statements into a standard f o r ma t , and t hen 

compare it to the template answer. The standard format can 

be a symbol table, 3-address code, quadruples or tree 

s t r u c t u r e • The translator in this project translates 

different statements into different structures, depending on 

the statement structure and i ts comp I ex i t y . F i g . 4 O i s the 

structure of the statements evaluation system CSESl 

including the translator. 

input text 
stream 

of tokens parse tree 

tables of 
declarations 
assignments 
expressions 
for evaluation 

--->:Lexical :----->:parser:----->:translator:------> 
:Analyzer: 

Figure 40. Structure of Statements Evaluation System 

The translation scheme used in this project is a 

syntax-directed translation scheme, which al lows a semantic 

action Csubroutinel to be attached to the production of the 

context-free grammar. The subroutine is attached to the 

parsing procedure of the recursive descent parser, which is 

cal led at the appropriate time by the parser. The advantages 
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of the syntax-directed translation scheme are its directed 

translation in terms of the syntactic structure of the 

grammar and i ts ea s i n es s i n mod i f i cat i on w i thou t d i s tu r b i n g 

the existing translations, which simplifies the design of 

the translator and efficiently exploits the parser. 

Semantic Actions 

The semantic action is to generate output when a 

particular production 

example 

is recognized fr om the 

U ---->ABC fcalled subroutine wl 

input. For 

is a product ion with 

The semantic action 

whenever the parser 

semantic action w associated with it. 

Ccalled subroutine wl is executed 

recognizes in its input a substring x 

which has a derivation of the form U ----> ABC--*--> x. 

The semantic action can be the generation of intermediate 

code C3-address code, quadruples), or the placement of data 

into a symbol table, or the computation of values for 

variables or the transfering of symbols into different 

Cstandardl formats. 

Implementation of Syntax-Directed Translator 

To design the syntax-directed tanslator for the mini-

language, we need to define semantic actions for 

procedures in the recursive descent parser. 

the parsing 

After the 

semantic actions are defined, subroutine codes are generated 

corresponding to each semantic action. Subroutine calls are 
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added to the parsing procedure wherever 

is required. 

the semantic action 

Trans I at i on Scheme for Dec I a rat i on 

( 1 ) 

( 2) 

( 3 ) 

declare 

declare 

declare 

declare 

declare 

declare 

x 'y' z; 

x ' y ; 

z; 

x ; 

y ; 

z ; 

The 3 sets of declaration statements above have the same 

effect (define the variables x,y,zl. Since x,y and z can be 

in any order, there are 3C2 = 6 variations in the first set, 

6 variations in the second set and 6 in the third set, which 

make up a total 0 f 6 + 6 + 6 = 1 8 comb i n at i on s of formats 

for declaring just 3 variables x,y,and z - The statements 

evaluation system should be able to recognize a 11 these 

different formats of declarations and determine the 

equivalence of each statement. 

The translation scheme is to input the variables into a 

table) when the variable is symbo I tab I e 

recognized by 

(declaration 

the parser. By adding semantic action to the 

d e c I a r t i o n p a r t o f t h e p r o d u c t i o n g r a mm a r , 

<dec_seq> 

<dec_seq> 

<declaration> 

<de c_ ta i I > 

----><declaration> <dee tail> 

---->epsilon 

- - - - > de c I are < i d_ i s t > 

----> <dec_seq> 



<id list> ----><id> £ACTION 11 <id_list_tail> 

<id_I ist_tai I> ----> , <id I ist> 

< i d_ I i s t _ t a i I > - - - - > e p s i I on 

ACTION 1 input id into declaration table 

the recognized variable is placed into the declaration 

table, see Fig. 41. 

variable name type 

x integer 

--------------------: 
y integer 

--------------------: 
z integer : 

--------------------: 
--------------------: 

Figure 41. Declaration Table 

The de c I a rat i on tab I e i s imp I eme n t e d as a I i n k e d I i st , 

which stores the name and the type of the variables Conly 

the single type integer occurs in the mini-language). Fig. 

42 is the pars i n g procedure i d_ I i st for de c I a rat i on w i th 

s ema n t i c a c t i on added . 

p r o c e du r e i d_ I i s t ; 
begin 
if error = false then 

begin 
ma t ch C p t r , 2 , 2 ) ; { i d l 
i n s er t Cd e ch ea d , de ct a i I , p tr ) ; { s ema n t i c act i on l 
i d_ I i s t _ t a i I C p t r l ; 

end; 
end; 

Figure 42. Pa r s i n g P r o c e d u r e i d_ I i s t 

• 
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The insert routine is the s ema n t i c a c t i on for i n put i n g the 

declared variables into the declaration table. The procedure 

insert is in Fig. 43 . 

procedure insertCvar headptr, tai lptr 

( i n s er t e I eme n t i n to the I i n k e d I i s t 
tai lptr point to the head and the tai I of 

var 
id rec var pt r; 

begin 
new C i d rec) ; 
in it var C id rec); 
idrecA. idCll := ptrA.sym; 
i d re cA. I en : = 1 ; 

varptr; ptr 
tokenptrl; 

with headptr and 
the list} 

if headptrA.link <>nil then 
begin 

{insert at the endl 

end; 

end 

tai lptrA.1 ink := idrec; 
tai lptr := idrec; 

else 
begin 
headptrA. I ink := idrec; 
tai lptr := idrec; 
end; 

Figure 43. Insert Procedure 

{ f i rs t e I eme n t l 

The fol lowing is an example of how the system evaluates 

declaration statements, 

Template answer declare u, w; 

Input answer declare w; 

declare u; 



79 

The template answer is 1 irst fed into the evaluation system. 

When parsing the template answer, a template declaration 

table is created for storing all the declared variables in 

the template answer, which is used to compare with the input 

statements later on in the evaluation process. Fig. 44 is 

the declaration table for "declare u,w;". 

variable name type 

u integer 

w integer 

Figure 44. Declaration Table for "declare u,w;" 

Fig. 45 is the declaration table generated for the input 

statement when i t i s translated by the translator. The 

evaluation system compares both declarations, they are 

considered functionally identical if they all have the same 

variables regardless of their order in the table. For 

example, Fig. 44 and Fig. 45 have the same variables 

although they are not located at the same locations inside 

the tables. Therfore, we conclude that the input answer is 

correct, which declares the variables "u" and 11 w 11 as in the 

template answer. 
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variable name type 

w integer 

:--------------------: 
u integer 

' ' .--------------------, 
' ' ,--------------------, 

:--------------------: 

Figure 45. Declaration Table 
"declare u" 

for "dee I are w;" 

Translation Scheme for Assignment Statement 

The translation process for an assignment statement is 

a more complicated process than the t r a n s I a t i o n 0 f a 

declaration statement. Generally assignment statements can 

be written in many different forms, which when combined with 

different pr ior.i ties and characteristics of operations Ii ke 

mul t ipl icat ion, addition, subtraction and parenthesis, lead 

to translation difficulties. For example, a s imp I e 

assignment statement I ike 

X := a + b * ( 2 + 3) - C; 

can be written in these different forms, which are a I I 

funt ional ly equivalent, 

1.x:=b* 2 + 3) -c + a; 

2. x . - a - c + b lk ( 2 + 3 ) ; . -

3. x : = a + 2 *b - c + 3 *c; 

4. x : = b lk 2 + b* 3 -c + a ; 

5. x . - a -c + 2* b + b lk 3; 

6. x : = Ca - c) + b lk ( 2 + 3) ; 
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or in the f o I I owing s i mi I a r forms, which are not 

functionally equivalent and do not produce the same result 

when the statement is executed. 

1. x := b + a *C2 + 3) -c; 

2. x : = a + b*2 + 3 - c; 

3. x := Ca + bl * C2 + 3) -c; 

Let us begin by looking at the production grammar for 

the assignment statement. 

< as s g n_s t mt > ----) < id) . -. - <expr> 

<expr> ----> <term> <term_tai .I ) 

<term_tai I > ----) + <expr> 

<term_tai I > ----> - <expr> 

<term_tai I > ----> epsi Ion 

<term> ----) <factor> <factor_tai I> 

<factor_tai I> ----) * <term> 

<factor_tai I > ----> epsilon 

<factor> ----) <constant> <id> <expr> 

The context-free grammar above can produce the fol lowing 

statements 

1. X :=a* 3 + b + C; 

2. x := 3 * a + c + b; 

Because of the commutative characteristic of the 11 + 11 and "*" 

operators, the two statements generate the same result upon 

execution. When an operator is commutative I ike "*"and 11 + 11 , 

the order of the operands does not affect the function of 

the statement. The evaluation system should be able to 

recognize that the two statements are functionally 
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equivalent. To s imp I i f y the evaluation process, the 

translation scheme translates the assignment statements into 

table formats which eliminated the parenthesis in the 

assignment statement. Using the table approach made the 

internal represenation of the assignment statement easy to 

imp I eme n t and i t a I so s imp I i f i es the task of keeping track 

the latest assigned value of each variable for subs ti tut ion. 

The assigned identifier is placed into the assignment table; 

the expression table which holds al I the variables in the 

expression is linked to the assigned identifier, see Fig. 46 

and Fig. 47. 

Assignment table 

Expression table 
x ----> ------------------------------

: a : b : c : :+/*: 
I I I I I I I .--,--,--,--,--,---------------, 
: 3: 

0 0 0 sign bit 

Figure 46. Table Representation of x := a*3 + b + c 

The first row of the expression table represents addition, 
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and each column represents multiplication. The last row is 

the sign bit for each column, it is set to 0 i f the column 

is positive and set to 1 if the column is negative. 

Assignment table 

Expression table 
x ----> ------------------------------

3: c: b: :+/*: 
:--:--:--:--:--:---------------: 

a: 

0 0 0 

Figure 47. Table Representation of x :: 3*a + c + b 

Because of the commutative characteristic of addition 

and multiplication, the order of the rows of each individual 

column and the order of the columns of the expression table 

do not affect the result of the assignment statement, 

therefore the two representations in Fig. 46 and Fig. 47 are 

functionally equivalent. Using the table representation of 

the assignment statement can simplify and speed up the 

evaluation process, and i t can be implemented eas i I y by 

arrays or I inked I ists. 

The evaluation system generates separate assignment 
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tables and expression tables for the template and the input 

statements. The input assignment statements are evaluated by 

comparing the tables with the template answer. The input 

answer is correct if the assignment table is matched with 

the assignment table of the template. 

For subtraction, the sign bit of the expression table 

is set to with the subtracted variable placed into the 

expression table. See Fig. 48 for the table representation 

for x := a + b - c. 

Assignment table 

:----------------- Expression table 
x ----> ------------------------------

:----------------- a: b: c: :+/*: 
:--:--:--:--:--:---------------: 

:-----------------
0 0 

Figure 48. Table Representation of x :=a+ b - c 

There are two operations on the expression tables, 

addition and mu I t i p I i cat i on . The best way to understand 

these two operations is to look at the e xamp I es in Fig. 49 

and Fig. 50. 
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Expression table Expression table 

a: b: c: d: e: 
I I I I I I I .--,--.--.--.--,----, + I I I I I I ,--,--.--.--.-----------, 

0 0 0 0 0 

Expression table 

a: b: c: d: e: 
= I I I I I I I .--.--.--,--,--,---. 

0 0 0 0 0 

Figure 49. Addition of Expression Tables 

The example above shows the addition of the expression 

tables Ca+b+cl and Cd+el, the result is an expression table 

with expression Ca+b+c+d+el. 

Expression table Expression table 

a: b: c: d: e: 
:--:--:--:--:--:----: * :--:--:--:--:-----------: 

u: 

0 0 

= 

0 0 0 

Expression table 

a : a : b : b : c : c 
I I I I I I I ,--.--.--.--.--.---, 

u : u : d : e : d : e 
:--:--:--:--:--:---: 

d: e: 

0 0 0 0 0 0 

Figure 50. Multiplication of Expression 
Tables 
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The multiplication of expression tables is more 

comp I i cat e d than add i t i on _ An example of multiplying two 

expression tables Ca*u+b+cl and Cd+el and returns the 

expression table Ca*u*d+a*u*e+b*d+b*e+c*d+c*el as a result 

appears in Fig. 50. 

An example of expression table addition with negative 

sign is given in Fig. 51 , and Fig. 52 is an example of 

multiplying two expression tables Ca-b+cl and Cu-wl. The 

sign bit is determined by the XOR of the sign bits of the 

two colunms which are be i n g mu I t i p I i ed. F i g . 5 3 i s the XOR 

table. 

Expression table Expression table 

a: b: c: d: e: 
I I I I I I I ,--.--.--.--.--.----, + I I I I I I ,--.--.--.--.-----------. 

u: : w: 

0 0 0 0 

Expression table 

a: b: c: d: e: 
= I I I I I I I .--.--.--.--.--,---, 

u: : w: 

0 0 0 0 

Figure 51. Addition of Expression Tables 
Ca*u+b+cl, Cd-e*wl 
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Expression table Expression table 

a: b: c: u: w: 
I I I I I I I ,--,--,--,--,--,----, * :--:--:--:--:-----------: 

0 0 0 

Expression table 
I --------------------

a: a: b: b: c: c: 
= :--:--:--:--:--:--:--: 

u: w: u: w: u: w: 

0 0 0 

Figure 52. Multiplying the Expression Tables of 
Ca+b-cl, Cu-wl 

XOR 0 

0 0 

0 

Figure 53. XOR Table 

After understanding the table translation of the 

assignment statements, we are ready to add semantic actions 

to the productions. The f o I I ow i n g i s a r e v i s e d g r a mm a r f o r 

assignment statement with semantic action added. 

<assgn_stmt> ----> <id> {input id i.nto assignment 

tab I el := <expr> {I inked 

expression table to assigned 

i d l 



<expr> 

< t e r m_ t a i I > 

< term_ta i I> 

<term_tai I> 

<term> 

<factor_tai I> 

<factor_tai I> 

<factor> 

<factor> 
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----> £create expression table} 

< t e r m > < t e r m_ t a i I > 

----> + <expr> + expression table 

derived from <expr>l 

----> - <expr> {set negative flag to true} 

{ + expression table} 

----> eps i I on 

----> <factor> <factor tai I> 

----> * <term> { * expression table 

derived from <term> 

to the last <factor>} 

----> epsi Ion 

----> <constant> {input constant into 

----> <id> 

expression table} 

{if negative is true 

set negative sign to 1 

in expression table, set 

negative flag to false} 

£input 

table} 

id into expression 

{if negative is true 

set negative sign to in 

expression table, set 

negative flag to false} 
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<factor> ----> C<expr>) {return expression table 

derived from <expr>l 

{if negative is true then 

return expression table 

with all the signs 

changed; set negative flag 

to falsel 

The semantic actions are inside the "£1", and they are added 

into the parsing procedures at the same location they are in 

the grammar. A semantic action can be implemented in one or 

more subroutines, depending on its comp I ex i ty and function. 

The f o I I ow i n g F i g u r e is an example showing the 

generation of the expression tables from the semantic 

actions for the expression, 

a - Cb + cl * e 

Remaining input Expression tables created 

a - Cb + c) * e 

- Cb + C) * e 
: a: 

0 

Figure 54. Generation of Expression Tables 

• 



Cb + c) * e 

b + c) * e 

+ c) * e 

c) * e 
a: 

0 

* e 
a: 

0 

* e 

* e 

e 
a: 

0 

F g 54. 

a: 

0 

negative 
flag set to 
tu re 

a: +: 

0 0 

a: +: b: 

0 0 

+: b: +: 

0 

+ +: c: 

0 0 

a: +: b: c: 

0 0 0 

a: +: b: c: 

0 
negative flag set to false 

: +: b: c: 

CCont nued) 
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Figure 54. 

a: : +: b: c: 

0 0 

a: : +: b: c: 

0 

a: b: c: 
I I I I I ,--.--.--.--. 

e: e: 

0 

CContinuedl 

I I I I ,--,--.-----. 
e: e: 
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Translation Scheme for Multiple Statements 

The d i f f i cu I t y of e v a I u at i n g mu I t i p I e s tat eme n ts i s to 

keep track of the same variable in different statements. The 

value of a variable is defined by the latest executed 

statement in which the variable is assigned. Consider the 

statements, 

X := W; 

x : = a; 

y := x + b; 

After the execution of the first statement, the value of 'w' 

is assigned to 'x', and then the value of 'x' is replaced by 

the value of 'a' in the second statement. Wh a t i s t h e v a I u e 

of 'y' in the third statement ? 
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I f a I I the above statements are executed sequentially, 

then the latest value which is assigned to 'x' is the value 

in variable 'a', therefore, the value of y is equal to the 

value of 'a' plus the value of 'b'. To be able to evaluate 

such multiple s tat eme n ts , the statements evaluation system 

must be able to keep track of the order of all assigned 

variables, that means the system must know the latest value 

which is assigned to the variable. The best way to keep 

track of the variables is to place the assigned variable 

into an assignment table. Let's look at the assignment table 

in Fig. 55 for the above example. 

Assignment tab I e 

:-----------------
x 

:-----------------
x 

:-----------------

:-----------------
y 

:-----------------

Figure 55. 

Expression table 
----> ------------------------------

: w: 

----> ------------------------------
a: :+/*: 

----> ------------------------------
a: b: 

Assignment Table for 
y := x + b; 

x . -. -

:+/*: 

W; X : = a; 

Every variable appearing in the right hand side of the 

assignment statement is replaced by its latest assigned 

value. Since 'w' and 'a' in "x := w" and "x • - a II are not 
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previously defined, 'w' and 'a' are placed into the 

expression table. For the assignment statement "y := x + b", 

by searching the assignment table sequentially for 'x' and 

'b' we found that • x' was previous I y defined twice, 

therefore the latest value 'a' is substituted for 'x' in the 

expression, and the expression for 'y' becomes "a+ b". The 

subs ti tut ion takes place before the variable is input into 

the expression tab I e. The semantic action added to the 

grammar is as fol lows 

<factor> ----> id {checks assignment table for id 

, if found in assignment table, 

substituted the 

value for idl 

latest assigned 

{input id or assigned value 

into expression table, if 

negative is true then set 

negative sign in expression 

table; set negative flag to 

f a I s e l 

Transl at ion Scheme for Conditional Statement 

Because of the comp I ex i t y and d i f fer en t var i at i on s of 

nested if-then-else statements, t h e r e f o r e , this study is 

restricted to the one I eve I i f - then - e I s e s tat eme n t w i th the 

condition in this format, 

Cvar iable conditional operator variable) 
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The f o I I ow i n g are the four conditional operator's in the 

mini-language, 

) < < ) = 

The translation process f o r if-then-else uses asimilar 

process to translate sequential statements, except the 

statements are separated into two different assignment 

blocks, the then-block and the else-block. The then-block is 

an assignment table with all the assignment statements 

between the 'then' and the ' end ' or between the ' then ' and 

the 'else', see Fig. 56. On the other hand, the else-block 

is an assignment table with all the assignment statements 

between the ' e I s e ' and the ' end ' , see F i g 5 6 . The exec u t i on 

flow of the statements is determined by the condition of the 

if-then-else, therefore, distinct comp a r i sons w i I I take 

place between the then-block of the template and the input, 

as wel I as between the else-block of the template and the 

input . 

i f Ca ) b ) then i f a > b) then 

c . - t ; lThen-block{ c . - t ; . -
} { 

u . - a *b; } u . - a * b ; . - . -

else end i f ; 

a . - b + c; } Else-block 

end i f ; 

Figure 56. Then-block and Else-block 
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The system also recognizes the complement of the if-

then-else statement, that means the statements in Fig. 57 

are considered functionally equaivalent by the system. To 

determine the equivalence of complements of an i f-then-e I se 

statement, the system performs cross comparisons between the 

then-block and else-block of the template and the input, and 

vice versa. 

i f ( a > b) then i f ( a <= b) 

a : = a + 1 ; a - - a - 1 ; . -

else else 

a . - a - 1 ; a . - a + 1 ; . - . -

end i f ; end i f ; 

Figure 57. Cross Comparisons Between Complements 

The source I isting of the translator is in Appendix E. 
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This 

different 

CHAPTER VI 

EXAMPLES OF DIFFERENT STATEMENTS 

AND RESPONSES 

Introduction 

chapter demonstrates how the system responds to 

types of statements. The quest ions 

template answers are provided to the system, 

and 

and 

the 

the 

possible valid inputs are shown in each example. When a 

student logs on to the system, he is asked to compose a 

program segment for a specific programming task. The answer 

from the student is then evaluated by the system. First the 

system separates statements into a stream of tokens by its 

lexical analyzer, then the parser checks the syntax of the 

statements. If the statements contain no syntactical errors, 

they are 

The final 

translated into 

procedure of the 

table formats 

system is 

by the translator. 

to compare a I I the 

tables 

answer 

from the input program 

provided to the system. The 

s e gme n t w i th the temp I ate 

answer is correct if the 

input and 

incorrect, 

the temp I ate are matched , other w i s e the i n put i s 

and error messages and the correct template 

answer are printed. 

96 
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Declarations 

Example 1 

Question Write a program segment to declare 

the variables a, band c. 

Answer temp I ate -~ 

declare a, b, c. 

Val id inputs 

1) declare a ' b' c ; 

2) declare a' b ; 

declare c ; 

3) declare a; 

declare b ; 

declare c ; 

ca' b and c can be in any order of the three sets of inputs) 

If the input is valid, the system notifies the user 

that the input statements are correct. On the other hand, if 

the i n put i s i n v a I i d , the system not i f i es the user that the 

answer is incorrect and prints 

ex amp I e , i f the i n put i s 

declare a. b, c; 

the output from the system is 

input 

the correct answer. For 

declare a. **syntax error** b, c; 



error 

correct answer 

Example 2 

syntax error II II , 

declare a, b, c; 

or II I II 

' 
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expected 

With the same question in example 1 , I et 's look at 

another input, 

declare a; 

declare x,c; 

These input statements are syntactically correct, but they 

have not fulfilled the answer of the question, wh i ch i s to 

declare variables a, b and c. The f o I I ow i n g i s the output 

from the system, 

input 

declare a; 

declare x,c; 

error incorrect answer 

correct answer 

declare a, b, c; 

Assignment Statements 

Addition 

Question Write a program segment to 

calculate the 'sum' of a, b, c. 

Answer temp I ate 

sum := a + b + c; 



Valid inputs 

1 ) sum : = a + b + c ; 

2) u := a + b; 

sum := u + c; 

3) u := a; 

v := u + b; 

sum := v + c; 

4) sum : = a + Cb + c) ; 

5 ) sum : = C a + b ) + c ; 
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Ca, b and c can be in any order in the 5 sets of inputs) 

Assignment expression tables are generated by the 

translator when the statements are parsed, and they are used 

to compare with the answer template during the evaluation 

phase. Above are the val id inputs for the question, the 

variables a, band c in the five valid inputs can be 

order, and the variables u and v are arbitrary. 

in any 

Subtraction 

Question 

Answer template 

Valid inputs 

Write a program segment to 

calculate the net profit 'n' from 

the sales 's', tax , t , and cost 

'c ... 

n :: S - t - C; 

1) n .- s - t - c; 
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2. ) n . - s - c - t ; 

3 ) n : = ( s - t ) - c; 

4 ) n . - ( s - c) - t ; 

5) u . - s - t ; . -

n . - u - c; . -

6) u : = s - c ; 

n . - u - t ; . -

7) n . -. - s - ( c + t) ; 

8) u : = c + t ; 

n := s - u; 

The above question is very easy, we just need to 

subtract the cost and the tax from the sales to get the net 

prof it as in number in the valid inputs. As you can see a 

simple task I i k e this can have eight different va I id 

answers. Like the valid answer in number 6, we can first 

calculate the profit from sales minus cost, and then come up 

with the net profit by subtracting the tax from the prof it. 

From the example above, you can also see that 

sub t r a c t i on i s mo r e res t r i c t e d than addition (addition is 

c o mm u t a t i v e b u t subtraction is not) For example the 

statement ' a b ' is functionally different fr om the 

s tat eme n t 'b - a ' . But i n add i t i on , the s tat eme n t ' a + b ' i s 

functinally equivalent to the statement 'b +a'. Therefore, 

unlike addition, the order of the operands makes a 

difference in the function of a subtraction statement. 
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Mui tip I icat ion 

Question Write a program segement to 

calculate the simple interest 

from capital 'c', interest rate 'r' 

and number of years 'y'. 

Answer template 

:= c * r * y; 

Val id inputs 

1 ) . - c * r * y; 

2) u . - c * r ; 

x . - u * y; . -

3) u . - c ; . -

v : = u * r ; 

: = v * y; 

4) . - c * C r * y) ; . -
5) . - ( c * r ) * y ; . -

( c • r and y can be in any order in the 5 sets of inputs) 

The characteristics of addition and multiplication are 

very s i mi I a r, they are both c o mm u t a t i v e , t h a t me a n s t h e 

changing the order of the operands of the statement does not 

affect the result of the statement. 

We can calculate the interest by t irst getting the 

interest for one year, then multiply it by the number of 

years, see number 2. Or we can do the whole calculation in 

one program statement as in number 1. 
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Compound Statement 

A I I the ex amp I es above are statements w i th one kind of 

operator. In th i s section, we are going to encounter 

statements with more than one kind of operator. Such 

are ca I I ed compound statements. Because of statements 

different characteristics and p r i o r i t i e s of different 

operators, a compound statement can have more variations of 

statement formats and a r e mo r e comp I i ca t e d to evaluate. 

Examples of simple compound statements fol low, 

Example 1 

Question 

Answer template: 

Val id inputs 

Write a program segment to 

calculate the area 'a' of the 

1 o I I ow i n g f i g u r e . 

w 

x y z 

I t i s a rectangle with width 'w', 

and the length is divided into 3 

sections, 'x', 'y' and 'z'. 

a := w*x + w*y + w*z; 

ll a := w*x + w*y + w*z; 

2J a := w*Cx + y + zl; 
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3 ) a : = w* x + w* C y + z l ; 

4) U :: X + y + Z; 

a . -. - u *w; 

5) u : = x + y; 

t :: U + Z; 

a :=w* t; 

6) u : = w*x; 

t := w*y; 

v : = w*z; 

a := U + t + V; 

Cx, y and z can be in any order) 

Cu, t, v are arbitrary variables) 

We can solve the question by adding up the areas of the 

3 sma I I er size rectangles, which combine together to form 

the big rectangle Csee numbers 1 and 6). On the other hand, 

we can calculate the length of the rectangle by adding up 

a I I the section lengths together, x + y + z. Then we can 

come up the area by multiplying the length by the width 'w' 

Csee numbers 2 and 4l. 

Only a few of the valid inputs are listed above. 

Example 2 

Question Write a program segment to 

calculate the area 'Area' of the 

f o I I ow i n g f i g u re . 

• 
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a 

b 

x y 

It is a rectangle with width a+b, 

and the length is divided into 2 

sections, 'x' and • y •• 

Answer template: 

Area := a*x + a*y + b*x + b*y; 

Val id inputs 

1 ) Area . - a*x + a*y + b*x + b*y; . -

2) Area . -. - Ca+b) * Cx+y); 

3) Area : = a*Cx + y) + b*Cx + y) ; 

4) Area . -. - x*Ca + b) + y*Ca + b ) ; 

5) u . -. - a + b ; 

v . -. - x + y ; 

Area . -. - u * v; 

6) Area . - a*Cx + y) + b*x +b*y; . -

7) Area . -. - x*Ca +b) + y*a + Y*b; 



Example 3 

Question 

Answer template: 

Val id inputs 
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Write a program segment to 

calculate the shaded area 'Area' of 

t he f o I I ow i n g f i g u re . 

u 

: ///////////: 
:11//lllllll: 
: ///////////: 

: a b 

c 

I t is a rectangle with width c, 

and the length is u. 

Area := u*c - a*c - b*c; 

1) Area . -. - u*c - a*c - b*c; 

2) Area . -. - c * Cu - a - b) ; 

3) Area . -. - cu - Ca + b)) * c ; 

4) Area : = c * c u - a -b) ; 

5) x . -. - a + b; 

y . -. - u - x; 

Area . -. - y * c ; 

6) x . -. - u - a; 

y . - x - b; . -
Area . -. - c * y ; 

Again only a few of the many variations are given 

above. 

• 
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If-then-else Statements 

Example 1 

Question Write a program segment to add 1 to 

a i t a is negative, and subtract 

from a if a is positive. 

Answer template 

i f Ca > O) then 

a:=a-1; 

else 

a:=a+l; 

end i f ; 

Val id inputs 

1) i f ( a ) 0) then 

a . - a - 1 ; . -

else 

a . -. - a + 1 ; 

end i f ; 

2) i f ( a <.::. 0) then 

a . - a + 1 ; . -

else 

a : = a - 1 ; 

end i f ; 

From the above examples, you can see the number of 
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variations of formats that a simple statement can have. 

This chapter only gives some of the simple examples for 

demonstrations. The more complex the statements are, the 

mo r e var i a t i on s 

evaluate them. 

they can have , and t he mo r e d i f f i cu I t to 



CHAPTER VI I 

SUMMARY, FUTURE STUDY AND DEVELOPMENT 

Summary 

Purpose of this study was to create a statements 

evaluation 

interactive 

system, which 

tutorial system 

can be developed into an 

in evaluating input program 

segments and responding with evaluation messages and correct 

answers. The system served as a computer assisted 

i n st r u ct i on system i n he I p i n g users i n imp r o v i n g pro gr amm i n g 

skills and techniques. Through the system, a student can 

learn from his past mistakes; he wi I I be able to improve his 

logic and his ski I Is in developing algorithm. 

The imp I eme n t e d system is written in Pascal running on 

an IBM PC environment, and it i s imp I eme n t e d to respond to 

the mini-language by Ledgard and Marcotty. The system is 

bu i I t f r om the ground f I o or ; f r om cons t r u ct i on of the LLC1) 

grammar for the mini-language to the code generation of the 

lexical analyzer, parser and translator. Al I the components 

of the system are described in detai I including the design 

and implementation methods. 

Future Study 

Avai labi Ii ty of future development surrounding the area 

108 
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of tutorial system in program improvement is unlimited. 

Technology is changing so fast that programming languages 

are constantly developing in order to become more powerful, 

easy to read/write, and faster in terms of comp i I at ion and 

execution time. Program improvement systems wi I I become very 

helpful, both in formal classroom teaching and technical 

training. Proposed area of further research associates with 

the area : 

1l creation of a f u I I y au t oma t i c sys t em by u t i I i z i n g 

the compiler optimization technique; 

2) development of an interactive system which is 

capable of comparing separate inputs from different 

users, so that, students wi I I be able to learn from 

other students' programming techniques or mistakes; 

3) research i n the are a of automated a I go r i t hm 

improvement system. 

• 
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APPENDIX A 

CONTEXT-FREE GRAMMAR CMINl-LANGUAGE ---LEDGARDl 

1 . 

2. 

3 . 

4. 

5. 

6. 

7. 

8. 

<start> 

<dec_seq> 

<dec_seq> 

<declaration> 

<de c_ ta i I > 

< id_ I is t > 

< i d_ I i s t _ta i I > 

< i d_ I i s t _ta i I > 

9. <stmt_seq> 

10. <stmt_tail> 

11. <stmt_tail> 

1 2 . < s ta t eme n t > 

13. <statement> 

14. <statement> 

1 5 . < as s g n_s t mt > 

1 6 . < i f _s t mt > 

----> 

----> 

----> 
----> 
----> 

----> 

----> 
----> 
----> 

----> 
----> 
----> 

----> 
----> 
----> 

----> 
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<dec_seq> <stmt_seq> 

<declaration> <dec_tai I> 

epsilon 

de c I a r e < i d_ I i s t > 

; <dec_seq> 

<id> <id_I ist_tai I> 

, < i d_I is t > 

epsi Ion 

<statement> 

<statement> 

epsi Ion 

<assgn_stmt> 

<if_stmt> 

<loop_stmt> 

<id> := <expr> 

<stmt_tail> 

<stmt_tail> 

i f <comp a r i son> then 

<stmt_seq> 

<endif_else> 
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1 7 . <end i f _e I s e > ----> end i f 

1 8. <end i f _e I s e > ----> else 

<stmt_seq> 

end i f 

1 9. <loop s tmt > ----> wh i le <comparison> loop 

<stmt_seq> 

end loop 

20. <comparison> ----> ( <factor> <comp_tai I > 

2 1 . <comp_tai I > ----> = <factor> ) 

22. <comp_tai I > ----> < > <factor> ) 

23. < comp_ ta i I > ----> < <facotr> ) 

24. < comp_ ta i I > ----> > <facotr> ) 

25. <expr> ----> <term> <term_tail> 

26. <term_tai I > ----> + <expr> 

2 7. <term_tai I > ----> - <expr> 

28. <term_tail> ----> epsi Ion 

29. <term> ----> <factor> <factor_tai I> 

30. <factor_tai I > ----> * <term> 

3 1 . <factor_tai I > ----> epsilon 

32. <factor> ----> <constant> 

33. <factor> ----> < id> 

34. <factor> ----> ( <expr> ) 



APPENDIX B 

TERMINAL AND NON-TERMINAL SYMBOLS 

OF MINI-LANGUAGE CLEGARDJ 

The numbers on the left-hand side of the symbols are 

the internal representation numbers of the symbols. 

TERMINAL SYMBOLS NON-TERMINAL SYMBOL 

1 declare 
2 id 22 <dec_seq> 
3 i f 23 <de c_ ta i I > 
4 then 24 < i d_I is t > 
5 25 <id_list_tail> 
6 26 <stmt_seq> 
7 end 27 <stmt_tail> 
8 else 28 <statement> 
9 ( 29 <assgn_stmt> 
1 0 ) 30 < i f _s tm t > 
1 1 = 3 1 < end i f _e I s e > 
12 < > 32 <loop_stmt> 
1 3 < 33 < comp a r i son > 
1 4 > 34 < comp_ t a i I > 
1 5 + 35 <expr> 
16 - 36 <term_tai I> 
1 7 * 37 <term> 
18 constant 38 <factor> 
1 9 wh i I e 39 <factor_tai I> 
20 loop 40 <operand> 
2 1 . - 4 1 < s t a r t > . -
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APPENDIX C 

Basic Background for LLC1l grammar and predict set 

Let's take a look at a LLC1l grammar for the mini-

I an g u age i n Append i x A, the product i on for 11 de c_s e q 11 

<dec_seq> 

<dec_seq> 

- - - - - > <de c I a rat i on> <de c_ ta i I > 

-----> eps i I on 

In defining the parsing procedure corresponding to <dec_seq> 

we run into a problem: More than one production has 

<dec_seq> as a left hand side in the Grammar. We must decide 

what production to try to match. If we try to match the 

first production and fail, it is too late to try the second 

now since we have already consumed the input tokens. We 

therfore peek ahead one token Cwithout deleting it) and use 

this lookahead symbol to decide what production to choose. 

Consider the production : 

A - - - - > X 1 X 2 • . . Xm 

For what lookahead tokens should we decide to try this 

production? We need the set of al possible lookahead tokens 

that might indicate that this 11A11 production is to be 

matched, and none other. Sine a lookahead is only a single 

token, we want the set of first Cleftmostl tokens that could 

be produced f r om the s t r i n g X 1 X 2 . . . Xm. We ca I I th i s set 
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firstCXl ... Xm). If the leftmost symbol x 1 is a terminal, 

then clearly, f i r s t C X 1 ... Xm) = x 1 .. However, if Xl is a 

nontermi na I, 

terminals Xl 

then f i r s t C X 1 ... Xm) w i I I depend on what 

can generate. So we begin by computing "first" 

for each right hand side corresponding to Xl. 

For example, the production of Xl is, 

Xl ----> Y1 Y2 Yn 

X1 ----> Z1 Z2 Zm 

Since Xl has 2 productions, therefore the set of f irstCY1) 

and firstCZ1l wi I I be included in f irstCXl ... Xm). 

Wh a t i f X 1 can g e n e r a t e e p s i I on ? 

A ----> X1 X2 .... Xm 

X1 ----> Y1 Y2 Yn 

Xl ----> Zl Z2 Zm 

Xl ----> epsi Ion 

Then first CX1 ... Xm) depends on X2 as well. In particular, 

if X2 is a terminal, it is then included in firstCXl ... Xml. 

I f i t is a non-terminal, we compute "first" for each of its 

corresponding right hand sides. Similarly, if both Xl and X2 

can produce epsi Ion, we consider X3, and so on. What if the 

entire right hand side can produce epsilon? 



A ----> eps i I on 

or 

Xl Xm -----> epsi Ion 
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The look ahead wi 11 then be determined by those terminals 

that can f o I I ow t he I e f t hand s i de C 11 A 11 i n our ex amp I e l . We 

def i n e a set of tokens f o I I ow CA) e qua I to those tokens that 

can f o I I ow 11 A" i n some I e g a I de r iv at ion . As an ex amp I e, i f 

the grammar has 

Z ---- > Y 1 c Y2 • . . A t . . . Ym Y 1 , Y 2, .•. Ym, A 

X ----> Vt ... A B ... Vn 

B ----> a 

B ----> b 

are non-terminals 

c,t are terminals 

Vt. .. Vn, A, B are 

non-terminals 

as productions, then 11 t " w i I I be i n f o I I ow CA l . Fur the r , the 

terminals a, b in the "first" sets of all the right hand 

side of the B-productions wi I I be in followCAl. The set 

followCAJ wi II have t, a and b. We now define the set of 

lookahead 

production 

tokens that will 

A ----> Xl .... Xm 

cause the prediction of the 



119 

Cal I this set Predict. As we have seen, 

predict CA----> Xl ... Xml = 

f irstCXl ... Xml + Cif Xl ... Xm ----> epsi Ion 

then f o I I ow CA) ) 

That is, any token that can be the first symbol produced by 

the r i g ht hand side of a 

production. Further, i f the 

production wi I I predict that 

entire right hand side can 

produce epsi Ion, then tokens that can immediately fol low the 

left hand side of a production wi I I also predict that 

production. 

We use predict to figure out which production to use if 

there is a choice. We may now have three cases : 

1 . 

2. 

3. 

The I ookahead token is in the predict set of exactly 

one production. 

production. 

In this case, we choose the predicted 

The lookahead is in the predict set of no production. 

In this case, clearly, the lookahead token occurs in an 

illegal position, so we have a syntax error. 

The lookahead token is in the predict set of more than 

one production. This is not indicative of any error in 

the input string; it is, rather, a property of the 

grammar. We can analyze the grammar even before we 

start parsing to deter mi n e i f some token can be i n the 

predict set of more than one production. Such a CFG 

cannot be parsed by recursive descent, and some other, 

more powerful technique may have to be used. 

Therfore, we wi I I parse only those context-free grammar that 
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have disjoint predict sets for product ions that share a 

common left hand side. context-free grammar that obey this 

restriction are called L LC 1l grammar. Appendix A is the 

LLC1) grammar for the mini-language. Since a language may be 

generated by more than one grammar, it may st i I 

to write another grammar for the same language 

be possible 

that has the 

LL C 1 ) proper t y . The f o I I ow i n g i s the for ma I def i n i t i on of an 

LL C 1 ) g r amma r . 

A grammar G is LLC1) if and only if 

for al I rules A ----> ex1 ex2 : exn , 

1. firstCexi) n firstCexj) = 0 for all <> 

and, furthermore, if exi --lie--> epsi Ion, then 

2. firstCexj) n followCAJ = 0 for all j. 

The f i r s t and f o I I ow s e t s used in this definition are the 

same sets we defined before, and they can be defined in 

mathematical terms as fol lows. Given some string ex e Vlle, the 

set of terminal symbols given by f irst(ex) represent the 

leftmost derivable symbols of a and this set is given by the 

equation 

f i rst(ex) = lw: ex --lie--> w ... and we Vl 

The fol low sets are defined for a nut table nonterminal A 

ConP. which can produce the empty string). The definition for 

the f o I I ow set s i s g i v en by 
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fol lowCA) = {w E v: S' --*--> a:ABl 

where w E f irstCB) and S is the start symbol of 

the grammar. 

The predict sets of a I I the non-termi na Is in the mini-

language are in the LLCll parse table in Appendix D. 
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APPENDIX D 

LLC 1) PARSE TABLE FOR MINI-LANGUAGE CLEDGARD) 

The following is the LL(l) Parse Table for Mini-

Language CLedgard Henry). For each non-terminal s ymbo I , a 

I i st of terminals and the productions they predict are 

listed. Terminals not listed predict no production and thus 

are erroneous. 

<start> symbol # 

declare 1 
id 2 
i f 3 
wh i I e 1 9 

<dec_seq> symbol # 

declare 
id 
i f 
wh i I e 

1 
2 
3 
19 

production# 

production# 

2 
3 
3 
3 

<de c I a rat i on> s ymb o I # product i on # 

declare 4 

<de c_ ta i I > s ymb o I # production# 

6 5 
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< i d_ I i st> s ymb o I # production# 

id 2 6 

<id_list_tail> symbol #production# 

5 
6 

<stmt_seq> symbol# 

id 
i f 
wh i I e 

2 
3 
1 9 

<stmt_tai I> symbol# 

id 2 
i f 3 
wh i I e 19 
else 8 
end 7 
end of input 

< s ta t eme n t > s ymb o I # 

id 
i f 
wh i I e 

2 
3 
19 

7 
8 

production# 

9 
9 
9 

production# 

10 
10 
1 0 
1 1 
1 1 
1 1 

production# 

12 
1 3 
1 4 

<ass g n_s t mt > s ymb o I # product i on # 

id 2 15 

<if_stmt> symbol # production# 

i f 3 1 6 
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<endif_else> symbol # product ion # 

end 
else 

7 
8 

<I oop_s tmt > symbo I # 

wh i I e 19 

1 7 
1 8 

production# 

1 9 

<comparison> symbol # production# 

( 9 

<comp_tai I> symbol # 

= 
< ) 
< 
) 

<expr> 

constant 
id 
( 

1 1 
1 2 
1 3 
1 4 

symbol # 

18 
2 
9 

<term_ ta i I > s ymb o I # 

+ 

<term> 

constant 
id 
( 

1 5 
16 
6 

symbol # 

1 8 
2 
9 

20 

production# 

2 1 
22 
23 
24 

production# 

25 
25 
25 

production# 

26 
27 
28 

production# 

29 
29 
29 
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<factor> 

constant 
id 
( 

symbol # 

1 8 
2 
9 

production# 

32 
33 
34 

<factor_tai I> symbol #production# 

* 
+ 

1 7 
1 5 
1 6 
6 

30 
3 1 
3 1 
3 1 
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APPENDIX E 

Source Listing of translator 

procedure syntaxerrorCmesscode : integer); forward; 
procedure dec_seqCvar ptr: tokenptr); forward; 
procedure declarationCvar ptr tokenptrl; forward; 
procedure dec_tai ICvar ptr tokenptrl; forward; 
procedure id_I istCvar ptr tokenptr); forward; 
procedure id_I ist_tai ICvar ptr tokenptrl forward; 
procedure stmt_seqCvar ptr tokenptr); forward; 
procedure stmt_tai ICvar ptr tokenptrl; forward; 
procedure statementCvar ptr tokenptr); forward1 
procedure assgn_stmtCvar ptr tokenptr); forward; 
procedure if_stmtCvar ptr tokenptr); forward; 
procedure endif_elseCvar ptr tokenptrl; forward; 
procedure exprCvar ptr tokenptr;var idhead,idtai 
:varptrl; forward; 
procedure term_tai I Cvar ptr tokenptr ;var idhead, idtai I 
:varptr;var multi :boolean;var old :varptrl; forward; 
procedure termCvar ptr tokenptr;var idhead,idtai 
:varptr;var multi:boolean;var old: varptrl; forward; 
procedure factor_tai ICvar ptr tokenptr;var idhead, idtai 
varptr;var multi :boolean;var old : varptrl; forward; 
procedure factorCvar ptr tokenptr ;var idhead, idtai I 
varptr;var multi :boolean;var old : varptrl; forward; 
procedure comparisonCvar ptr tokenptrl; forward; 
procedure comp_tai ICvar ptr tokenptrl; forward; 
procedure loop_stmtCvar ptr tokenptrl; forward; 
procedure merge C var head a , ta i I a , head b , ta i I b : var pt r ) ; 
forward; 

procedure matchCvar ptr 
integer); 
var 

i integer; 
begin 

if error = false then 
begin 

tokenptr;num 

if nextCptrl = num then 
ptr := ptr". I ink 

else 
begin 

e r r o r : = t r u e ; 
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integer; messcode 



end; 
end; 
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error := true; 

pt r . -. - ptr". I ink; {skip the error 
token) 

end; 
i : = 1 ; 
while Cptr".sym[il <>' ') andCi <= 7) do 
begin 

writeCtrm,ptr".sym[ ill; 
: = + 1 ; 

end; 
writeCtrm,• '); 

if error = true then syntaxerrorCmesscode); 
if ptr".symC1l = ';' then writelnCtrml; 

procedure syntaxerror; 

begin 
case messcode of 
1 wr·telnCtrm, '**declarations or statements 

expected** 
2 

, ) 

wr telnCtrm,'**id expected**'); 
3 
4 
5 
6 
7 
8 
9 
1 0 
1 1 
1 7 
1 8 
19 
20 
2 1 
25 

wr telnCtrm,'**if expected**'); 
wr telnCtrm,'**then expected**'); 
wr telnCtrm,'**"•" expected**'); 
wr te nCtrm,'**";" expected**'); 
wr te nCtrm,'**end expected**'); 
wr te nCtrm, '**else expected**'); 
wr te nCtrm,'**"C" expected**'); 
wr te nCtrm,'**"l" expected**'); 
wr te nCtrm,'**"=" expected**'); 
wr te nCtrm,'**"*" expected**'); 
wr te nCtrm, 'constant expected'); 
wr te nCtrm,'**while expected**'); 
wr te nCtrm,'**loop expected**'); 
wr te nCtrm,'**":= 11 expected**'); 
wr te nCtrm, '**assgn, if_then_else,whi le_loop 
statements expected'); 

26 writelnCtrm,'**", 11 or";" expected'); 
27 writelnCtrm,'**constant,id,or 11 ( 11 expected**'); 
28 writelnCtrm,'**relational operator expected**'); 

end; 
writelnC'***Execution terminated***'); 
error := true; 



end; 

procedure initvarCvar idrec 

var 

begin 

end; 

integer; 

idrecA. I ink := ni I; 
for i := 1 to 10 do 

idrecA.idCi1 := 

idrec". len := O; 

procedure subsitCvar 
token pt r); 
var 

head, 

temp head , tempt a i I : var pt r ; 
i,j integer; 
tempptr, loc : varptr; 

begin 
newCtemphead); 
initvarCtempheadl; 
tempt a i I : = n i I ; 

varptr); 

.. • 

ta i I 

for i := 1 to expnum - 1 do 
begin 

varptr; var ptr 

if expheadCiJA.link".id C11 = ptr".sym then 
begin 

loc := expheadCi1".linkA.link; 
while loc <> ni I do 
begin 

end; 

newCtempptrl; 
initvarCtempptrl; 
for j := 1 to loc".len do 

tempptr".id[j] := locA.idCj1; 
tempptrA.len := loc".len; 
i f temp head". I i n k < > n i I then 
begin 

end 

tempt a i I". I i n k : = temp pt r ; 
tempt a i I : = temp pt r ; 

else 
begin 

temphead". I ink := tempptr; 
tempt a i I : = temp p t r ; 

end; 
loc := locA.1 ink; 
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end; 
end; 
i f tempt a i I = n i I then 

insertChead,tai I ,ptrl 
else 

merge Che ad, ta i I , temp head, tempt a i I ) ; 
end; 

procedure merge; 
begin 

end; 

if heada". Ii nk <> n i I then 
begin 

tai la". I ink := headb". I ink; 
tai la := tai lb; 

end 
else 
begin 
heada".link := headb".link; 
tai la := tai lb; 

end; 

procedure concatCvar heada,tai la,old, 
varptrl; 
var 

ptr1, ptr2 : varptr; 
temp head , temp ta i I var p t r ; 
ptr,save : varptr; 

integer; 

begin 
newCtemphead); 
i n i t var C temp head l ; 
new Ct empt a i I l ; 
initvarCtemptai I); 
ptr1 := old". I ink; 

while ptr1 <> ni I do 
begin 

ptr2 := headb". I ink; 
while ptr2 <> ni I do 
begin 

newCptrl; 
initvarCptrl; 
if temphead". Ii nk = n i 
begin 

then 

headb, 
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end; 

end; 

end; 

temphead".link := ptr; 
tempt a i I : = pt r ; 

end 
else 
begin 

end; 

temptai I". I ink := ptr; 
temptai I := ptr; 

for i := 1 to ptrl". len do 
begin 

end; 

ptr".len := ptr".len + 1; 
ptr".idCptr".lenl := ptrl".idCil; 

for i := 1 to ptr2". len do 
begin 

ptr". len := ptr". len + 1; 
ptr". idCptr". lenl := ptr2". id[ il; 

end; 
ptr2 := ptr2". I ink; 

ptrl .- ptrl". I ink; 

save := old; 
merge Che ad a, o Id, temp head, tempt a i I l ; 
ta i I a : = temp ta i I ; 
old := save; 

procedure printdecCdechead varptrl; 

var 
ptr 

begin 

varptr; 

writelnC'********************'l; 
ptr := dechead". I ink; 
while ptr <> ni I do 
begin 

end; 
end; 

writelnCptr". idClll; 
ptr := ptr". I ink; 

procedure printidCvar exphead 

var 
p t r 

vartablel; 

: var pt r; 
integer; integer; 

begin 
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end; 

writeln; 

writelnC'***The identifier***'); 
for i := 1 to expnum do 
begin 

end; 

ptr := exphead[ i JA. I ink; 
while ptr <> ni I do 
begin 

end; 

if ptrA.len > 0 then 
begin 

end; 

for j := to ptrA.len do 
write C pt rA. id [ j J); 

writeln; 

ptr := ptrA. I ink; 

procedure id_list_tail; 

begin 

end; 

if error = false then 

case nextCptrl of 
6: 
else begin 

end; 

end; 

ma t c h C p t r , 5 , 2 6 l ; 
i d_ I i s t C p t r l ; 

procedure dec_tai I; 

begin 

end; 

if error = false then 
begin 

matchCptr,6,6); f;l 
dec_seqCptrl; 

end; 

{ ; } 

{ ' } 
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procedure declaration; 

begin 

end; 

if error = false then 
begin 

end; 

match C pt r , 1 , 1 ) ; 
i d_ I i s t C p t r ) ; 

procedure dec_seq; 

begin 
if error = false then 

case nextCptr) of 

{declare) 

2,3,19 : (id, if, whi lel 

end; 

else begin 

end; 
end; 

declarationCptr); 
de c_ t a i I C p t r ) ; 

procedure stmt_seq; 

begin 

end; 

if error = false then 
begin 

end; 

statementCptr); 
match C pt r , 6 , 6) ; 
s t mt_ ta i I C pt r ) ; 

procedure stmt_tai I; 

begin 
if error = false then 

if ptrA. I ink <> ni then 

case nextCptr) of 
7 : 

{ ; } 

{not end of input) 

lend} 
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else begin 
s tat eme n t C pt r ) ; 
matchCptr,6,6); (;l 
stmt_tai I Cptr); 

end; 
end; 

end; 

procedure statement; 

begin 
case nextCptr) of 

2 assgn_stmtCptr); 
3 if_stmtCptr); 
19 loop_stmtCptr); 
else syntaxerrorC25); 

end; 

end; 

procedure assgn_stmt; 

var 
idhead,idtail: varptr; 
printptr : varptr; 

begin 
expnum := expnum + 1; 
newCidhead); 
initvarCidhead); 
idtail :=nil; 
if error = false then 
begin 

matchCptr,2,2); (idl 

( i d} 

( i fl 
( wh i I el 
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insertCexpheadCexpnuml,exptai ICexpnuml,ptrl; 
matchCptr,21,21); ( : =} 

exprCptr, idhead, idtai I); 

merge Ce x p head Ce x p n um l , exp ta i I C exp n um l , i d head , i d ta i I l ; 
end; 

end; 
procedure if_stmt; 

begin 
if error = false then 
begin 



end; 

end; 

match C pt r , 3 , 3) ; 

comparisonCptrl; 
ma t ch C p t r , 4 , 4 ) ; 

stmt_seqCptrl; 
e n d i f _e I s e C p t r ) ; 

procedure endif_else; 

begin 
if error = false then 
begin 

case nextCptrl of 
7 : begin 

end; 
8 begin 

match C pt r , 7 , 7) ; 
matchCptr,3,3); 

{else} 

{end} 

{if) 

end; 
end; 

end; 

procedure expr; 
var 

multi : boolean; 
o Id : var pt r; 

end; 

mat ch C p t r , 8 , 8 ) ; 
stmt_seqCptrl; 
ma t ch C p t r , 7 , 7 l ; 

ma t ch C p t r , 3 , 3 ) 

begin multi:= false; old:= nil; 

end; 

if error = false then 
begin 

end; 

termCptr,idhead, idtai I ,multi ,old); 
term_ ta i I C pt r , i d head , i d ta i I , mu I t i , o I d) ; 
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£then} 

{endl 

{ i f } 



procedure term_tai I; 

begin 
if error = false then 
begin 

case nextCptr) of 
15 : begin 

matchCptr,15,15); f+l 
exprCptr, idhead, idtai I); 

end; 

16 begin 
matchCptr,16,16); £-l 
exprCptr, idhead, idtai I); 

end; 
end; 

6 
else 
end; 

procedure term; 
begin 

end; 

if error = false then 
begin 

( ; ) 

factorCptr, idhead, idtai I ,multi ,old); 
factor_ ta i I C pt r , i d head , i d ta i I , mu I t i , o I d l ; 

end; 
end; 

procedure factor; 

var 
~ewhead varptr; 
newtai I varptr; 
temp head, tempt a i 
yes : boolean; 

varptr; 

begin 
if error = false then 
begin 

case nextCptr) of 
18 : begin 

matchCptr,18,18); 
if multi = true then 

{constant) 
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begin 
newCtemphead); 
initvarCtemphead); 
new C tempt a i I ) ; 
initvarCtemptai I); 
i n s er t C temp head , temp ta i I , pt r ) ; 

concatC idhead, idtai I ,old,temphead,temptai I); 
multi :=false; 

2 

9 

end; 
begin 

end 
else 

begin 

end; 

if idtail =nil then 
old := idhead 

else 
old := idtai I; 

insert( idhead, idtai I ,ptr); 

mat ch C p t r , 2 , 2) ; ( id} 
if multi = true then 

begin 
newCtemphead); 
initvarCtemphead); 
new C temp ta i I ) ; 
initvarCtemptai I); 
subs i t C temp head , tempt a i I , pt r ) ; 

con cat C i d head , i d ta i I , o I d , temp head , tempt a i I ) ; 
mu I t i : = fa I s e ; 

end; 
begin 

end 
else 
begin 

end; 

i f idtail =nil then 
old := idhead 

else 
old := idtai I; 

subsitCidhead, idtai I ,ptrl; 

ma t ch C p t r , 9 , 9 ) ; 
newCnewhead); 
initvarCnewhead); 

[ ( } 

newt a i I : = n i I ; 
exprCptr,newhead,newtai I); 

if multi = true then 
begin 

136 



concatC idhead, idtai I ,old,newhead,newtai I); 
mu I t i : = fa I s e ; 

end; 

end; 

end 
else 
begin 

i f idtail =nil then 
old := idhead 

else 
old := idtai I; 

merge( idhead, idtai I ,newhead,newtai I); 
end; 

ma t c h C p t r , 1 0 , 1 0 l ; { ) l 

else matchCptr,0,27); 
end; 

{skip error token} 

end; 

procedure factor_tai I; 

begin 

end; 

if error = false then 
begin 
case nextCptrl of 
15,16,6: {+,-,;} 

17 : begin l*l 

else 
end; 
end; 

end; 

matchCptr,17,17); multi := true; 
termCptr, idhead, idtai I ,multi ,old); 

procedure loop_stmt; 

begin 
if error = false then 
begin 

matchCptr,19,19); 
compar i sonCpt r l; 
matchCptr,20,20); 
stmt_seqCptrl; 
ma t ch C p t r , 7 , 7 ) ; 
matchCptr,20,20); 

£whi lel 

£1oopl 

£end} 
{loop} 
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end; 

end; 

procedure comparison; 

var 
idhead, idtai I ,old : varptr;mul ti :boolean; 

begin 

end; 

if error = false then 
begin 

end; 

matchCptr,9,9); ((} 
factorCptr., idhead, idtai I ,multi ,old); 
comp_ ta i I C p t r ) ; 

procedure comp_tai I; 
var 
idhead, idtai I ,old 

multi 
varptr; 
boolean; 

begin 
if error = false then 

case nextCptr) of 
11 begin 

matchCptr,11,11); l=l 
factorCptr, idhead, idtai I ,multi ,old); 
mat ch C p t r , 1 O , 1 O) ; £ ) l 

end; 
12 begin 

ma t ch C p t r , 1 2 , 1 2 ) ; ( < > l 
factorCptr, idhead, idtai I ,multi ,old); 
ma t ch C p t r , 1 0 , 1 0 ) ; ( ) l 

end; 
13 begin 

ma t ch C p t r , 1 3 , 1 3 ) ; ( < l 
factorCptr, idhead, idtai I ,multi ,old); 
ma t ch C p t r , 1 0 , 1 0 ) ; ( ) l 

end; 
14 begin 

ma t ch C p t r , l 4 , l 4 ) ; £ > l 
factorCptr, idhead, idtai I ,multi ,old); 
matchCptr,10,10); ()] 

end; 
else syntaxerrorC28); 
end; 

• 
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end; 

procedure startCvar ptr t o k e n p t r ) ; 

begin 

end; 

error :=false; 
expnum := O; 
dec_seqCptrl; 

printdecCdechead); 
stmt_seqCptrl; 

printidCexpheadl; 
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