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NOMENCLATURE 

- Half width of the web 

- Clearance between the web and rider 
roller 

- Minimum clearance between the web 
and rider roller 

Dimensional clearances in the two 
regions defined in Figure 27 

- Constants of integration 

- Normalized clearance for c 1 , c 11 

- Flexure rigidity 

- Modulus of elasticity 

- Body forces along x-, y- and 
z-directions, respectively 

- Shear Modulus 

- air film thickness 

- Constant gap film thickness 

- Normalized air film thickness 

- Defined by equations (4.2.5) and 
(4.2.6) 

- Characterstic length 

- Bending moments per unit length of 
sections of web perpendicular to x
and y- directions, respectively 



p 

Pa 

Pr 

~=p/pa 

- Twisting moment per unit length of 
sections of web perpendicular to 
x-axis 

- Normal forces per unit length of 
sections perpendicular to x- and 
y-directions, respectively 

- Shearing force in direction of 
y-axis per unit length of section 
perpendicular to x-axis 

- Air film pressure 

- Ambient pressure 

- Rider roller pressure 

- Normalized pressure 

~=h0/T{T/(6~U>} 2 / 3 p - Normalized pressure 

R 

t 

t 

T 

u, v, w 

- Normalized pressure 

- Transverse shearing force parallel 
to z-axis per unit length of section 
perpendicular to x- and y-directions 

- Radii of curvature of the middle 
surf ace of the web in xz- and 
yz-planes, respectively 

- Radius of supporting roller 

- Sum of roller radius and constant 
gap film thickness 

- Time (section 2.2.1) 

- Thickness of the web 

- Reduced tension in the web 

- Tension of the web 

- Components of velocity of air 
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uo, Va 
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U· l. 

lll=u/Ui 
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IW=(wl)/(Uih) 

x, y, z 

K=x/l 

Y=y/b 

Z=z/h 

p 

v 

v 

under the web 

- Components of displacement 

- Middle surface displacement (at z=O) 

- Sum of the web and the supporting 
roller speed 

- Characterstic velocity 

- Sum of the web and the rider roller 
speed 

- Velocity of Roller (x-direction) 

- Velocity of web (x-direction) 

- Normalized u velocity 

- Velocity of Roller (y-direction) 

- Velocity of web Cy-direction) 

- Normalized v velocity 

- load due to rider roller 

- Normalized w velocity 

- Rectangular coordinates 

- dimensional distance of point of 
minimum clearance 

- x-coordinate defined at point of 
minimum clearance 

- Normalized x-coordinate 

- Normalized y-coordinate 

- Normalized z-coordinate 

- Air density 

- Kinematic viscosity (section 2.2.1) 

- Poisson's ratio 
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- Coefficient of viscosity 

- Normal components of stress 
parallel to x-, y- and z-directions 

- Total shear force 

- Shearing stress components 

- Shearing force per unit area on the 
web due to air under it 

- Mass per unit area of the web 

- Rotations in x- and y-directions 

- Normal strains 

- Shearing strains 

- Shearing strains 

~=(x/hol{C6J!U)/T} 1 / 3 - Normalized x-coordinate 

'+'r, '+'rr 

'+'ro 

- Normalized distance of point of 
minimum clearance 

- Transformed angles 

- Transformed angle defined by 
equation (4.2.33) 

- Defined by equation (4.2.13) 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

A web may be defined as any material manufactured 

in continuous strips. Many materials are processed in 

web form which requires techniques for their transpor-

tation and manipulation. These techniques may be 

collectively termed web handling. Web handling is 

therefore quite important in industries involved with 

paper products, plastic films, magnetic tapes, packaging 

processes, printing applications and textiles, to name but 

a few. 

An integral component of any web handling application 

is the passage of the web material over a supporting roller 

as shown in Figure 1 which also depicts the phenomenon 

of air entrainment. Due to the small but finite viscosity 

of air, the air in contact with the web and roller is 

drawn toward the region where the web meets the 

roller (which is known as the nip). Due to this air 

entrainment, the web rides on an air film which acts as a 

lubricant and prevents perfect surf ace to surface contact 

between the web and the roller. The thickness of the air 

1 
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film between the web and the roller is expected to depend 

on parameters such as the sum of the web and the roller 

speed, viscosity of air, tension in the web and the size 

of the roller. The air entrainment phenomenon is an 
----,., -·---·------

important consideration .. ~~. determining the coefficient of 

friction between the web and roller. It is apparent that 

3 

if too' much air is entrained, the result will be 

instability to lateral disturbances and related 

difficulties in guiding the web. 

The phenomenon of air entrainment is also an important 

concern in winding, the process by which a web material is 

wrapped into wound rolls. If too much air is entrained, 

surface to surface contact between adjacent layers of the 

material is severely reduced which results in a reduction 

of resistance to transverse directed disturbances. This 

can lead to roll formation failure due to "telescoping". 

Further, entrapped air in the roll causes formation of 

tires, balloons and bubbles (see Figure 2) which cause 

deformation of the web and consequently become one reason 

for wrinkle formation. On the other hand, if too little 

air is entrained, the coefficient of friction between 

adjacent layers of the material is very high leading to 

poor longitudinal transmission of tension. The absence of 

ample air film between the adjacent layers of material 

prevents minor irregularities from being smoothed out and 

results in their growth. These propagate outward as the 

roll is formed and can lead to gauge bands and may even 
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Figure 2. Typical Problem in Winding Process Due to Air 
Entrainment 
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locally yield the material. 

From the above discussion it is ·clear that air 

entrainment effects play an important role in a variety of 

web handling applications. This is particularly true as 

line speeds continue to increase. It is widely recognized 

by industrial practitioners that. a paucity of fundamental 

knowledge regarding air entrainment is a major hurdle in 

understanding the dynamics of winding and the instabilities 

encountered in a variety of web handling applications. 

Despite the recognized importance of air entrainment, there 

is at present, very little published work available. One 

effort in this regard is a work concerning air entrainment 

in winding by Knox & Sweeney (1). These authors suggested 

the application of foil bearing theory to model fluid film 

effects in winding since the winding process is 

geometrically similar to the foil bearing problem. Based 

upon their analysis an expression for nominal air film 

thickness was obtained. 

It is appropriate to next review breif ly foil bearing 

literature. A foil bearing consists of a rotating shaft 

which is supported by a stationary foil. Alternately, the 

shaft may be stationary and the foil moving with a certain 

speed over the shaft. The angle of wrap may vary from zero 

to 180 degrees. A typical foil bearing geometry is shown 

in Figure 3. The first major publication regarding foil 

bearings was that of Block and van Rossum (2). This work 

gives an approximate expression for the film thickness in 
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the uniform gap region. Gross (3) introduced the 

fundamental differential equations for foil bearings and 

presented methods for their linearization. Langlois (4) 

analyzed lightly loaded foil bearing at zero angle of wrap. 

Baumeister (5) derived a set of six different foil bearing 

governing differential equations, each based on different 

physical assumptions. These were solved for gap clearance 

in order to determine the effect of the assumptions. 

Eshel and Elrod (6) discussed the theory of the 

infinitely wide, perfectly flexible self acting foil 

bearing while'E~B~=-~~~~~2)) discussed the numerical 

technique for the solution of the governing differential 

equation for an infinitely wide, self-acting foil bearing. 

1.2 Problem Statement 

The purpose of the present work is to develop a 

mathematical model that allows one to predict analytically 

the air film thickness between a web and a supporting 

roller. In addition, strategy for controlling the air 

7 

film thickness will be developed and modelled. 

Geometrically the problem for which the model will be 

developed is defined in Figure 1. Due to local 

geometrical similarity between the nip of a wound roll and 

web over a supporting roller, it is expected that dynamic 

mechanisms will be similar in both cases. Hence the 

results of the work to be presented should also be 

applicable to the winding problem. 



CHAPTER II 

MATHEMATICAL FORMULATION 

2.1 Problem Formulation 

Figure 4 shows schematically the basic geometric 

configuration of the problem and the coordinate system that 

will be used for the mathematical formulation. It may be 

seen that a thin web of spanwise width 2b and thickness t 

passes over an infinitely long roller of radius R, which 

may be stationary or may be rotating. The web is assumed 

to be under uniform tension and is travelling with a 

velocity Uw over the roller in the direction of arc length 

of the web. The roller is assumed to have an inflexible 

surface and is completely impermeable. 

The mathematical formulation of the problem is 

obtained from a "first principles" approach. The prediction 

of air film thickness and pressure requires a coupling of 

the relevant hydrodynamics of the air film with the web 

equilibrium dynamics. These two analyses are thus 

necessary for developing the required mathematical model. 

2.2 Basic Equations 

In this section the partial differential equations 

8 



Figure 4. Geometric Configuration of the 
Problem with Coorinate System 
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governing both the hydrodynamic lubrication and the web 

equilibrium are developed. Since nearly every web handling 

application involves an air film thickness which is much 

smaller than the radius of curvature of the lubricating 

film, it is satisfactory to work with a Cartesian 

coordinate system. A similar argument holds for the 
- ··---"---~---~--- ·- ~ '' ~ 

analysis of equilibriiiiii-of the web, since most web 

materials are very thin • 

. 2 ··-~ .1 General Lubrication Equation -

Hy_grodynamic Aspects of the Problem 

The basic equations of viscous fluid flow are the 

Navier-Stokes equations which are derived by applying the 

principle of conservation of momentum to a fluid. The 

component form of these equations are 

2. 2 z. 

~ + u~~ + v-~ + wi¥ = FxlP -~IP + v rn-~z. + ~-~z. + ~-¥2] 

-213£..!!xi·(llJ. V) IP + llP [2~xP-~Ux- + 8µ /av + B'Y,\ + ~/~ + :Z,u\·] 
Cl"jl "dy \Ox "E!y .f 8-Z \ ·:7X ·==' Z ; 

(2.2.1) 

2 2 2 

§¥ + ii~ + v§~ + w§-¥ = FylP - ~IP + v [§-¥2 + ~-~2 + g-¥2 J 

a 11o[~~x{~x- Elq\ + 2:§y~ 8 {&W + av1] - 2 I 3oY ( ll;J • v) Ip + r B"x 0 A + Oy) + ¥z cry Oz! 

(2.2.2) 



2. :t 2 

-213¥zcro.v)/P + l/P[~{~ + ~} + ~{ij + ~} + 2~~?z] 

(2.2.3) 

In addition, the equation of mass conservation is 

given by 

~+ 10.(pV)=O 

or, 

~ + ~(Pu) + ~(f'v) + ~(Pw) = 0 (2.2.4) 

- - -where u,v .. w are the velocity components and Fx,Fy,Fz are 

the body forces along the x, y, z coordinate directions 

respectively, p is the density of air, v is the kinematic 

viscosity , v = iii + jv + kw is the velocity vector and 

'V = i~ + j~ + k~ is the gradient operator. 

Assuming viscosity to be constant and neglecting the 

effects of body forces, equations (2.2.1) through (2.2.3) 

reduce to 

(2.2.5) 

11 
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2. 2. :t:. 

av -av -.~v- -av -1/PgI? v [z_¥,, Q - S?-·~t.., J + UpX + V~gy + W;Siz = + + :;:;,_Y.- + ~9t . .... y .::i x·· d yl. •':J' z• ... 

(2.2.6) 

2. 2. 2 

~ + -&W U'BX + v~ + w~ = -1/P~ + [& -
v ;;-~2. + ~-~z + 8 - J ;;-1f 2 

(2.2.7) 

Non-dimensionalizing equations (2.2.4) through (2.2.7) 

with following normalization 

x = x/l 1.U = ii./Ui 

y = y/b 1i.1 = (vl)/(Uib) 
(2.2.8) 

t2 z/h lW (wl)/(Uih) 

In above normalization 1 and Ui are the characterstic 

length and velocity in the web arc direction, h is the air 

film thickness and Pa is the ambient pressure. A 

mathematical justification for choosing normalized 

expressions for V & lW as cited above is given in 

Appendix A. Substituting these normalized quantities into 

equations (2.2.5) through (2.2.7) and then neglecting 

higher order terms of ratio of the film thickness h to 

the characterstic length 1 (see Appendix B), we 

obtain 
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(2.2.9) 

2. 

(h2 pal)/(_µb 2 Ui) ~ = ~-~2 (2.2.10) 

~ = 0 (2.2.11) 

Transforming these normalized equations back into 

dimensional form yields 

2. 

~ = _µ~-¥2 (2.2.12) 

:I.. 

~ = _µ~-i:z 
8 z - (2.2.13) 

~ = 0 (2.2.14) 

Equation (2.2.14) tells us that pressure along z-direction 
·-------·--··--··----·~---~··-·-·----~---····------, 

is constant, i.e. there is no significant hydrostatic 

variation in pressure across the film thickness. While 

equati.ons ( 2. 2 .12) & ( 2. 2 .13) after double integration 

give us following expressions for velocity components 

ii & ij 

(2.2.15a) 



14 

v = l/(2J.L} ~y z 2 + c ~ z + c ,1 (2.2.15b) 

Let us first assume that the roller is stationary and 

the web is moving with a speed Uw in x-direction. Applying 

appropriate boundary conditions at the web and roller 

surfaces we get following expressions for velocity 

-u z/(2~) ~ (z-h) + (Uwz)/h (2.2 . 16a) 

v = z/(2~) ~ (z-h) + (Vwz)/h (2.2.16b) 

where Vw is the speed of web in the spanwise direction. 

The surface velocities are shown in Figure 5 which also 

shows the lubricant flow channel of the problem. Now 

replacing velocity component -w in the continuity equation 

(2.2.4) by 

( 2.2.17 ) 

we get 

~ + L·~. x- < Pu) + Su· (Pv) + ~-· ( pah> = o "" '- .... y .... z Bl: (2.2.18) 

Integrating the above equation with respect to z 

from 0 to h, we ge t 



SURFACE2 (WEB) 

SURFACE! (ROLLER) Vw 

Figure 5. Air Film Flow Channel 

u w 
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J.h J .. h 
§x<Pu)dz + ~(Pv)dz + ~(Ph) = o 

·o ·o 
(2.2.19) 

Substituting velocity components from equations 

(2.2.16a) & (2.2.16b) into the above equation and then 

applying Leibnitz's rule we obtain following equation (see 

Appendix c) • 

+ 12~ [Ph] (2.2.20) 

The above equation may be written in a general form as 

where 

and, 

This is the hydrodynamic lubrication equation 

and axis of the roller. 

Now if we assume that the roller is rotating with 

speed along with the motion of the web then we 
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obtain an equation similar to equation (2.2.17) with Uw & 

Vw being replaced by sum of web and roller speeds in x & 

y directions, respectively. Mathematically, for this case, 

velocity vector will be 

2.2.2 Web Equilibrium Eguetion 

In order to determine the position of the web relative 

to ~!!-~- _:['.oller, an equation relating the displacement of the 

web to the applied tension is required. Such an equation 

is termed the equilibrium equation. 

We assume that the web is bent into a cylindrical 

shell with an added deformation due to anticlastic bending. 

Deviations caused by the anticlastic effects and the 

tension variation in the web arc direction will be assumed 

to be small, i.e. of the same order of magnitude as the web 

thickness. Under these assumptions we can apply the theory 

of thin cylindrical shells under small deformations with an 

additional study of bending stresses caused by bending of 

the web while wrapping around the roller. It is further 

assumed that the web resists lateral loads by the action of 

bending and transverse shear stresses. 

Let us assume that a cartesian coordinate system x,y,z 

has been defined on the middle surface of the web and cut 

an element from the web by cutting along two pairs of 
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adjacent coordinate lines as shown in Figure 6. The cuts 

are made so that the four sides of the web element of 

dimensions dx, dy are normal to the middle surface of 

the web. Such an element of thickness dz has been 

shaded in Figure 7 which also shows various stresses 

acting on the web. Because of the curvature of the web in 

the x-coordinate direction, the length of the web element 

is not simply dx but 

where rx is the principal radius of curvature in the web 

motion direction, z is the distance from the middle 

surface. The normal force transmitted through this element 

will-be 

The total normal force acting on area (dx t) may be found 

by integrating the above expression between the limits 

-t/2 to t/2 • Now Figure 8 shows a web element with 

various forces and moments acting on it. Nx & Ny are the 

normal forces, Nxy & Nyx are the shearing forces, Qx & Oy 

are the transverse forces, Mx & My are the moments, Myx & 

Mxy are the twisting moments (These forces and moments · 
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z 

y 

Figure 6. Cartesian Coordinate System on Web 
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Figure 7. Element of Web with Various Stresses 
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are all on a per unit length basis). Referring to this 

figure the total normal force acting on the element in 

y-coordinate direction is Ny dx. This force must be equal 

to the force obtained. by integrating the above expression 

across the thickness. Equating these two and dropping out 

dx from both sides we get 

t/ 2. 
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Ny = J ~ylrx + z)/rx dz (2.2.22) 

-t/2 

In the same way the shearing stresses .,-yx & ·T yz must 

be integrated to obtain the shearing force Nyx and the 

transverse force QY respectively. 

J
. t/ 2. 

Nyx = ('lyx<rx + z)/rx) dz (2.2.23) 

-t/2 

~ t/ 2. 

Oy = -j -ryzlrx + zlfrx dz (2.2.24) 

-t/z. 

The negative sign with the equation for the shear 

stress resultant QY stipulates that a positive transverse 
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force shall have a direction opposite to its corresponding 

shear stress. An analysis similar to above leads us to 

evaluate three more force equations, Nx, Nxy, Ox, for the 

remaining three stress resultants. These equations are 

cited in Appendix D. 
I 

When the stresses within the element are not \ 
'./.../ 

distributea uniformly acress the thickness of the web, some 

of them have moments with respect to the center of the 

section. Since these moments influence the equilibrium of 

the web element, we must consider them. The non-uniformity 

of shear stress lij , across the thickness results in their 

resultant lying anywhere in the plane of the cross-section 

and has a moment with respect to an axis which is normal to 

the section and passes through the center of the line 

element dj. The moments, due to stresses shown in Figure 

7, are defined in Appendix D. The negative signs with 

these equations are arbitrarily chosen. 

From the equations defined in Appendix D it can 

be seen that .,-xy = .,-yx does not imply that shear forces 

Nxy & Nyx are same. The only condition that makes them 

~qual is when rx = ry· Since in our case the thickness of 

the web is very small as compared to the principal radii of 

curvature along both x & y-coordinate directions , the 

difference between Nxy & Nyx will be small and can be 

safely neglected. Also note from the moment equations 
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that the moments are not zero when stresses are independent 

of z, i.e stresses uniformly distributed across the 

thickness. This is 

curvatures in both 

so because we are considering 

x & y-coordinate directions. Also note 

that transverse shearing stresses ·Txz & Tyz do not lead to 

moments. 

In our problem, for a certain finite angle of wrap of 

the web, there always exists curvature in the x-coordinate 

direction, whose radius value depends upon the angle of 

wrap of the web. But for the y-coordinate direction, even 

if the side leakages are n•t negligible, the radius of 

curvature is very large, therefore, the term Cry + z)/ry 

approaches unity. With this condition general equations of 

Appendix D reduce to equations of Appendix E which 

which will be used in developing the web equilibrium 

equation. 

Equilibrium Equation The force and moments defined 

above have to satisfy six conditions of equilibrium, three 

of them concerning the force components and the other three 

concerning the moments. Referring to Figure 7 and applying 

the condition of force equilibrium in the y-coordinate 

direction we have 

{Txy + ~xy dx}dy dz - TxydY dz = 0 
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or, 

= 0 (2.2.25) 

Integrating the above equation and then applying Leibnitz's 

rule we get the following force equilibrium equation for 

the y-coordinate direction (Refer to Appendix F) 

i1xy + ~y = 0 (2.2.26) 

A similar force balancing in beth the x & z-coordinate 

directions gives us the remaining two force equilibrium 

equations. These are 

(2.2.27) 

~x+ ~y=O (2.2.28) 

In equation (2.2.27) the last term on the left hand 

side represents the contribution of the transverse shear 

force Qx due to the curvature of the web along its arc 

length; w is the radial displacement of the web. The above 

three equations are developed by balancing the forces 

obtained by integrating stresses across the thickness of 

the web. Besides such forces, there are some external 
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forces acting on the web which should be considered for the 

true equilibrium of the web. These forces, some of which 

are shewn in Figure 8, are as follows: 

1. Shearing force en the web due to presence of air 

2. A net force due to the pressure in the air film 
J p" ' 

and the ambient pressure; (p - Pal· 
,...-----------~-----, :--... 

/? 

3. Hoop force due to the curvature of the web. This 

force affects the equillibrium equation of the normal 

shear force (Flugge (8)). 

4. Centrifugal force due to the motion of the web 

over a supporting roller. 

The addition of these forces to the equilibrium 

equations result in the following modified set of 

equilibrium equations 

2 

§H:xX + §fyx + Qx ~-12 - .,.. a = 0 (2.2.29) 

6'N ox.'XY + ~y = 0 (2.2.30) 

:2. 2 ::<. 

~x + ~y - (p - Pal + g_W2 fS' Uw ~-12 Nx = 0 d x 
--------- --~--- .... ·--

1' (2.2.31) 

The fourth term on the 1,left hand side of the last 

equation is the term due to\ centrifugal force which ....... ~.--,~~. -#···---.. ~·"-~-~ ·- ··--·-

causes the tension in the web to be reduced. If T0 is 
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the tension in the web then the reduced tension 
2. 

will be (T0 - crUw), where cr is the mass per unit 
2. 

area of the web. The term ~-1:~· in the equilibrium 

equations represents the effects of the curvature in the 

web motion direction, w, as mentioned earlier, is the 

radial displacement of the web (see Figure 9). 

The equations of equilibrium concerning the moments 

may be derived in a fashion similar to the derivation of 

force equilibrium equations. These moment equilibrium 

equations are 

(2.2.32) 

(2.2.33) 

Since the transverse shearing stresses Txz & Tyz do 

not lead to moments, only two equations concerning the 

moments could be derived. Now since the force and moment 

equilibrium equations contain more unknowns than the 

number of equations, the problem is indeterminate, and it 

is necessary to study the deformation of the web. 

Web Peformation Since most webs are thin we establish 

simple kinematic relations of deformation based on thin 

shell or thin plate theory. This may be done in two 

different ways. We may start with the fundamental equations 
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y 

Figure 9. Deflections and Rotations of Web 
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of three-dimensional elasticity and investigate which terms 

become unimportant when the thickness is made small 

compared with other dimensions; or we may try to use the 

basic assumptions and then develop the necessary kinematic 

relations. We choose the second approach which is 

more physically intuitive. The basic assumptions which 

are necessary for our problem of web motion over a 

supporting roller and which are based on the theory of thin 

shells or thin plates, are as follows: 

1. A lineal element of the web extending through the 

web thickness, normal to the mid-surface x-y plane, in the 

unstressed state, on the application of load, undergoes at 

most a translation and a rotation with respect to the 

original coordinate system and remains normal to the 

deformed middle surface. 

This assumption may be stated in the following two 

simple statements: 

la. A lineal element through the thickness does not 

elongate or contract. 

lb. The lineal element remains straight upon load 

application. 

2. For all kinematic relations the distance z of a 

point (point A in Figure 9) from the middle surface may 

be considered as unaffected by the deformation of the web. 

3. The web resists lateral and in-plane loads by 

bending and transverse shear stresses, not through 

blocklike compression or tension in the thickness 



30 

direction. This results in a stress system in which ~z may 

be considered negligible compared with ~x and cry· 

Applied to the web, the first assumption means that 

we neglect the deformations due to the transverse shear 

forces Ox & Oy· The second assumption means that whatever 

happens in the z-direction regarding stress or strain is 

without significance. 

4. In order to keep our equations linear we make an 

additional assumption. All displacements are small, i.e. 

they are negligible compared with the principal radii of 

curvature. Also their first derivatives, i.e. the slopes, 

are negligible compared with unity. 

From these assumptions we establish the kinematic 

relations of the web. Defining the two in-plane 

displacements in the most general forms as 

u = u0 (x,y) + zcr(x,y) (2.2.34a) 

v = v0 (x,y) + z~(x,y) (2.2.34b) 

where u0 & v0 are middle surface displacements (at z=O) 

and a & ~ are the rotations and are defined in Figure 9. 

Assumption (la) requires that £z = O; which means that the 

lateral deflection w is a function of x & y only. 

Assumption (lb) requires that for any z, ~xz & ~yz are 
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constant at any specific location(x,y) on the web middle 

surface, for all z. The second part of assumption (1) 

requires that the constant should be zero; hence 

(2.2.35) 

The stress-strain relationships in terms of 

dispalcements are 

·r,xz 

__ Bu + ·9v -·ay Fx 

= &w + au = ox PZ 

8v &w = 
Clz + Py 

-r /G xy 

Txz/G 

(2.2.36) 

(2.2.37) 

(2.2.38) 

(2.2.39) 

(2.2.40) 

where >-'s are the normal strain, Yi's are the shear 

strains, E is the modulus of elasticity, v is the 

Poisson's ratio and G = E/(2(l+v)) is the shear modulus. 

Now the condition of €xz = "-yz = 0 implies that 

eu = &w oz - '5'x (2.2.41a) 



and, 

av = 
C1Z -~ 

Using equation (2.2.34), we may write 

•:C = - ?x 

ft = &w - cry 

·~ = eu0 + 
BX 

z8a: ox 

and, 

~ = §yo+ z813 cry 
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(2.2.4lb) 

{2.2.42a) 

(2.2.42b) 

(2.2.42c) 

{2.2.42d) 

Using above expressions, equation (2.2.36) simplifies to 

(2.2.43) 

Multiplying the above equation by z and then integrating 

across the thickness yields 

I 
t/2 

z ~o dz + 

t/2 

[ z 2. 80:. 
BX 

J 

r 
t~z 

dz= l(cr-
~ x 

j 
(2.2.44) 

-t/2 -t/z. -t/2 

It was mentioned earlier that the principal radius of 

curvature rx is very large compared to thickness of the 

web, thus we may disregard the terms z/rx from the 
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equations of Appendix E. Applying Leibnitz's rule 

and substituting appropriate expression for the 

resulting integral, the above equation may be written as 

2. 

- ~-Iz.[t 3 112] = (2.2.45) 

A similar analysis with equations (2.2.37) & (2.2.38) 

result in the following equations 

2. 

= 

2. 

- ~x~ 

- (My - vMx)/E 

= - M /G xy 

(2.2.46) 

(2.2.47) 

Solving equations (2.2.45) & (2.2.46) we get the following 

equations for moments as a function of web deviation from 

the roller, w. 

2. 2. 

Mx = D [~-12 + v~-~2. J (2.2.48) 

2. 2. 

My = D [~-W2 CJ y + v~-Iz. J (2.2.49) 

where D = (Et 3 }/(12(1-v 2 )) is the flexure rigidity of the 

web material. Equation (2.2.47) may be written as 



z. 

(2.2.50) 

A similar approach may be adopted to obtain the 

equations for normal and shear forces. 
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Nx = ( .. , [~ \ ( Et ) I ( 1-.,_, z. ) / ... xo + av J v·&yO (2.2.51) 

Ny = {CEt)/(l-v 2 )}[~o + &u] vBxO (2.2.52) 

NXY = {<Et)/ 2 ( 1 +v)} [~~o + u~o] (2.2.53) 

The above equations(in which u 0 & v 0 are the middle 

surf ace displacements not attributed to tension T0 ) 

describe only the in-plane force and deformation behavior. 

The inclusion of tension along the web arc direction 

results in the following modified set of force equations: 

(2.2.54) 

(2.2.55) 

Nxy = { (Et) I ( 2 ( 1 +v )) } [~~o + ~o] (2.2.56) 
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Equations (2.2.31) through (2.2.33) and equations 

(2.2.48) through (2.2.50) are the governing equations for 

the lateral deflections, bending and shearing action of the 

web element, while equations (2.2.29), (2.2.30) & equations 

(2.2.54) through (2.2.56) are the governing equations for 

the in-plane stress resultants and in-plane mid-surf ace 

displacements. In order to relate these eleven equations to 

a differential equation that governs the equilibrium of the 

web, it is necessary to define the shape of the air film 

between the web and the roller. From the basic geometry of 

the problem we have a condition that far from the roller 

the air film thickness is comparable with the radius of the 

roller R and the pressure there approaches the ambient 

pressure. In this region the air film shape is assumed 

to be parabolic. The parabolic film assumption is 

expected to provide satisfactory results for our web 

handling applications as it does for various pertinent 

applications (like gear teeth meshing and slider bearings 

which support the magnetic elements used for memory 

devices, etc). Mathametically, the air film in this region 

is approximated by 

where w(x,y) 

Figure 9). A 

h = x 2 /(2R) + w(x,y) (2.2.57) 

is the radial displacement of the web (see 

mathematical proof of approximating 
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parabolic film assumption for a foil bearing is 

given by W.A.Gross (3). From equation (2.2.57) we may 

write 

l/R (2.2.58) 

(2.2.59) 

This parabolic film approximation will be used in 

reducing the governing equations to a differential equation 

for the web equilibrium. Differentiating equation (2.2.32) 

with respect to x and equation (2.2.33) with respect to y 

and substituting the resulting equations in equation 

(2.2.31} we obtain 

~l 2. 2 2 z 

~-M2 J + a M + q M J - (p - Pa) 2:eix":Jyxy ~-yz. ox· ._. "' 
x y 

2. 

Nx ~-~z. = 0 (2.2.60) 

Double differentiation of equations (2.2.48), 

(2.2.49), & (2.2.50) with respect to x, y, and x and y, 
2. 

respectively and substituting the expression for ~-~2 from 

equation (2.2.59) we obtain the following equations 
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4 

n[ v (2.2.61) 
x 

2. 4 4 

~-~2] = n[ ~-~4 + (2.2.62) 
y 

(2.2.63) 

Substituting the above equations and the equation for Nx 

in equation (2.2.60) we obtain 

4 4 4 4 

2. 2. 

2. 

or, 

<1. 

2. 

(2.2.64) 
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From assumption (4) it may be inferred that the 

normal force Nx due to displacement alone is negligible 

compared to that due to the tension in the web. This leads 

to a simplified form of the above equation. 

4 4 

J.. z. 

2 

Substituting the expression for ~-~2 

(2.2.58) in the above equation we obtain 

4 4 4 

2 2 

or, 

where ~ 2 is given by 

(2.2.65) 

from equation 

(2.2.66) 
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2. 2:. 

8 8 
&'X 2. + Cly 2. 

The above equation is the general equilibrium equation 

for a thin web. This equation and equation (2.2.21), 

together with the appropriate boundary conditions, describe 

the system of web motion over a supporting roller. It is 

important to examine. equation ( 2. 2. 66) when R ---> 1:r.i. For 

this condition it becomes the equation of an infinitely 

wide plate under tension. The first term in equation 

(2.2.66) expresses the flexibility of the web; the third 

term, which is the result of tension in the web, usually 

dominates in most web handling applications. The first term 

may become predominant when the web material is such that 

the elastic deformation has to be taken into account. It 

is also interesting to note that this equation is similar 

to the one derived by E.J Barlow (9) for a foil bearing 

problem. The only difference is the additional term in the 

equation of Barlow which expresses the curvature of the 

foil in the foil width direction and which is the cause for 

the non-linearity of the partial differential equation. 

Without this term equations for normal forces (Nx & Ny} are 

simply that of a thin plate under tension. One important 

conclusion from this comparison is that the resulting web 

equilibrium equation will be non-linear if the radius of 

curvature in the web width is not very large compared to 

the radius of curvature in the web length direction. 



Physically, this is possible when side leakages are 

considerable. 

Determination of the air film thickness between the 

web and the roller requires the simulataneous solution of 

the Reynolds lubrication equation and the web 

equilibrium equation. 

2.3 Governing Differential Equation 

40 

We make certain assumptions based upon physical 

analysis of the problem. Since in most web handling 

applications, the width of the web is much greater than the 

air film thickness, we may neglect the end effects. This 

assumption reduces the Reynolds lubrication equation 

(equation (2.2.21)) to a one-dimensional ordinary 

differential equation. Since the pressure developed in the 

air film is expected not to be significant, we will 

initially assume the air to be incompressible. These two 

asswnptions along with the previously made assumption of 

constant viscosity reduce equation (2.2.21) to 

(2.3.1) 

where U is the algebric sum of the velocity of the web and 

the roller. As discussed in the last section, since the 

web material in most web handling applications is very 

thin, the bending term in the equilibrium equation may 
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be neglected compared to the term due to the tension (Ref. 

Timoshenko(lO)). The resulting equilibrium equation will 

be that for a perfectly flexible web and may be written as 

2. 2. 

(2.3.2) 

Let T be defined as the reduced tension; 

(2.3.3) 

Since the mass per unit area of the web (i.e. ~> is 

very small, the difference between the tension T0 and the 

reduced tension Twill not be significant. However, the 

difference may be significant at high web speeds. Now 

equation (2.3.2) may be written as 

2 

p - Pa = T{l/R - g-i2 }-

or, 

2. 

P - Pa= (T/R){l - Rg-i2} (2.3.4) 

Now integrating equation (2.3.1) we get 

(2.3.5) 

-
;; 
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where h0 is the constant of integration and defines the 

film thickness at the point where Si = 0. Now 

differentiating equation (2.3.4) with respect to x we get 

3 

Si= (T/R){-R R-i3} 

or, 

Eliminating the pressure .gradient term by combining 

equations (2.3.5) & (2.3.6) we get 

) 2-,)A Cv_ ----
-----"'!~ 

{C6~U)/T}[Ch0-h)/h 3 ] v 

Let us define a normalized film thickness as 

H=h/h0 v 

:;
Substituting equation ( 2. J. 8) in equation ( 2. 3 .JI) 

3 

h 0 R-Jl3 = {< 6~Uh0 ) I (Th0 3 )} [ ( 1-H) /H 3 ] v -

or, 

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2.3.9) 
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Let us now define the normalized x-coordinate as 

~ = (x/h0 ) {< 6_µU) /T} 1 ~ 3 
.....___,_._""""'~-----,._-,;:;;:;:;-~..:=-.:~~=--

(2.3.lOa) 

From this we may write 

(2.3.lOb) 

With the above normalization we may write equation 

(2.3.9) as 

3 

~-~3 = [ ( 1-H) /H 3 ] 
v 

(2.3.11) 

This is the governing, third-order non-linear, 

differential equation, the solution of which will allow us 

to determine the air-film thickness between the web and 

roller. 

2.4 Pressure Distribution 

The pressure profile in the air film may be obtained 

by considering the equation (2.3.6) 

3 

(2.4.1) 

Substituting dimensionless variables from equations 

(2.3.8) and (2.3.10) in the above equation we may write 
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(2.4.2) 

Let us define a non-dimensional pressure as 

(2.4.3) 

Substituting the above non-dimensional pressure in 

equation (2.4.2) we obtain 

3 

(2.4.4) 

This equation may be solved to obtain the pressure 

distribution. An alternate approach is to use equation 

(2.3.4) 

2. 
p - Pa = T/R - TR-~2. 

or, 

2. 

P - Pa= T/R - (T/h0 ){(6~U)/T} 2 / 3 g-~2 

which may be written as (after multiplying it by 

2. 
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using equation (3.2.1) the above equation may be w?itten 

as 

(2.4.5) 

where P is the non-dimensional pressure in the air film 

given by equation (2.4.3) and Pa is the non-dimensional 

ambient pressure, given by 

2 

and the expression for ~-~2] 
~00 

(3.2) (see equation (3.2.1)). 

(2.4.6) 

is derived in section 

The advantage of using equation (2.4.4) over equation 

(2.4.5) is that it enables the estimation of air film 

pressure without knowing the numerical value of ~-~2] 

Now equation (2.4.5) is the normalized form of 

equation (2.3.4). In this equation the normalized pressure 

~ is defined by equation (2.4.3). The dimensional 

equation (equation (2.3.4)) can also be transformed into a 

normalized equation by using the following normalized 

pressure 

P~ = p(R/T) (2.4.7) 
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Now equation (2.3.4) may be written as 

2 

p(R/T) -pa(R/T) = 1 - RS:-~2 

using normalized equations (2.3.8). & (2.3.lOb), the above 

equation may be written as 

1. 

p(R/T) - Pa(R/T) = 1 - [RI { h (TI 6Jl u) 2· I :. \ ··1 d_Hz. 
.0 ) .. dYJ. 

which may be simplified to (by using equations (2.4.7) & 

(3.2.1)) 

2. :t 

PN - PaH = 1 - {R-~2 I R-~2] } (2.4.8) 

where PaH=pa(R/T) is a new non-dimensional ambient 

pressure. 

2.5 Swnmary of The Simplified 

Governing Equations 

The simplified one-dimensional Reynolds equation is 

(2.5.1) 

and the simplified equilibrium equation of the web is 
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2 

P - Pa = T{l/R - a-~2} (2.5.2) 

The governing differential equation is obtained from 

combination of the above two equations and by introducing 

non-dimensional variables H=h/h0 & '\=(x/h0 ) { ( 6_µ.U) /T} 1 I 3 

3 

(2.5.3) 

The pressure distribution in the air film may be 

obtained from any of the following three equations 

3 

~ = - a-~3 (2.5.4) 

2 2. 

I? - IP = R-~2 J R-!{2 a (2.5.5) 
l'\_-?ro 

2. :2. 

Pr1 - i?aN = 1 - {R-~2 I R-~~ J } (2.5.6) 
l'\.~ro 

2.6 Qualitative Analysis Based 

on Governing Equations 

Since one of the surfaces (i.e web) of the lubricating 

channel is flexible, an increase in pressure in the air 

film will cause an increase in the air gap. But from the 

simplified form of the Reynolds equation (2.3.5) it can be 
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seen that an increase in the air gap will result in a 

decrease in pressure gradient. Thus the result of 

combining the Reynolds equation and equilibrium 

equation will always result in a smoothing of the pressure 

peaks. This, physically, means that for the problem of web 

motion over a supporting roller, most of the region has 

constant pressure. The absence of pressure gradient in 

such a region is possible only when the air film thickness 

is constant. Such a region is termed the constant gap 

region or uniformity region and according to equation 

(2.3.5) has a film thickness h 0 (Figure 10 shows how this 

region separates the entrance and the exit regions). 

In the entrance region the pressure increases from 

ambient to the pressure in the uniformity region. This 

requires a positive pressure gradient. We note from the 

one- dimensional Reynolds equation (2.3.5) that ~ is 

positive only when h > h 0 which clearly satisfies the 

physical situation. A positive pressure gradient is thus 

compatible with a decrease in the air film from "infinity" 

to the constant gap film thickness h 0 • (Note that the film 

thickness at "infinity" refers to film thickness at a 

point where pressure approaches ambient pressure). 

In the exit region the pressure decreases from the 

constant gap region pressure to ambient while the air film 

thicness increases from h 0 to some infinity. This requires 

a negative pressure gradient. But from the Reynolds 
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Figure 10. The Three Regions in Web-Roller 
Interaction 
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equation (2.3.5) we observe that a negative pressure 

gradient can exist only if h < h 0 , which is incompatible 

50 

with the increasing gap. The increase in film thickness is 

therefore preceded by a region where h < h 0 in which the 

pressure decreases to below ambient, followed by a region 

of increasing film thickness and increasing pressure. Thus 

theoretically it is observed that the air film profile in 

both inlet and exit regions is different. There is a 

gradual reduction in air film thickness in the inlet region 

as we approach uniformity region while there are some 

oscillations of the web in the exit region which diminish 

in amplitude as we move towards the exit transition region. 

Another conclusion may be obtained by ref erring 

equation (2.3.4). Since the web is surrounded by 

atmospheric pressure in the region far away from the 

roller, equations (2.3.4) & (2.2.58) show that the radius 

of curvature must be infinite; that is, the web becomes 

straight in that region, as is physically correct. 



CHAPTER III 

SOLUTION OF THE GOVERNING 

DIFFERENTIAL EQUATION 

3.1 Mathematical Description 

of the Problem 

The qualitative analysis of the last chapter leads to 

the important conclusion that the entrance and the exit 

regions are separated by a constant gap region and that 

the air film thickness variation in both the inlet and the 

exit regions is different. 

The derivation of the governing equation (equation 

(2.3.11)) is based on a coordinate system in which the 

independent variable ~ is taken positive in the direction 

of the web motion. From the coordinate system shown in 

Figure 11 it may be observed that for a differential 

equation that defines the air film profile in the inlet 

region, we have to define the independent variable in the 

direction opposite to the web motion. The governing 

differential equation is altered only by a change of sign. 

In general then, the governing differential equation may be 

written as 

51 
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TRANSITION 

' Figura. 11. Schematic Representation of Inlet and Exit 
Transitions Regions. 
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or, 

H' I I (3.1.1) 

where the upper sign applies to the inlet condition while 

the lower sign applies to the exit condition. The 

problem is solved in two parts, and it is possible to 

construct the entire air film thickness variation by 

integrating equation (3.1.1) outward from the region of 

uniformity toward the inlet region in one case and the exit 

region in the other, with appropriate boundary conditions. 

Observe that the variable ~ is set equal to zero at the 

two transition regions for the tworseparate solutions. 

The two transition boundaries are located approximately at 

the points where the tangents to the roller match the given 

web directions far from the roller. Such tangents are 

shown in Figure 11. It can be observed from this figure 

that at the transition points the normalized film thickness 

H does not necessarily have a value of exactly unity, but 

is close to unity. 

3.2 Boundary Conditions 

The appropriate boundary conditions for the present 

problem will be now developed. Since the web is surrounded 

by the atmospheric pressure in a region "far" from the 
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roller, in both the inlet and the exit regions, we have 

from equation (2.3.4) 

= 1/R 
x7co 

where the infinity condition is valid for both the inlet 

and the exit regions. Using normalized parameters from 

equations (2.3.8) and (2.3.lOb), above condition may be 

written as 

2. 

(3.2.1) 

The significance of the above equation is that if we 

know the numerical value of H''(ro) it enables us to 

determine the constant gap film thickness, as a function of 

various dimensional parameters. Equation (3.2.1) may be 

solved for the constant gap film thickness as 

2. 

hq = R {c 6J1 U) /T} 2 I 3 R-~2 J (3.2.2) 
. ''\700 

Since ~] = 0 we may write from equation (2.2.57) 

Ri] = x/R 
x-too 
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or, 

S:l{] = ~(h0/R){T/(6~U)}2 / 3 

~~00 

or, 

(3.2.3) 

Another useful boundary condition is that at the 

entrance and exit transition regions the film thickness 

approaches unity; i.e. 

1 (3.2.4) 

3.3 Nwnerical Solution 

We know that the governing equation is a non-linear, 

third order differential equation. A practical solution 

results from a simple linearization. Since near the 

transition regions the normalized film thickness H is 

nearly unity, we may write 

H ~ 1 + oH (3.3.1) 

where '~H is some small quantity. Substituting the above 
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equation in equation (3.1.1) we get 

.c.H' I ' = ±6H 

or, 

(3.3.2) 

The solution of this equation is given by 

(3.3.3) 

where C1 ,c 2., & C3 are constants of integration. The above 

equation may also be written as 

(3.3.4) 

where C4 & C5 are new constants of integration. This 

solution of the linearized form of the governing 

differential equation is essentially valid near the 

uniformity region where H is nearly unity. The numerical 

values obtained from the above equation may be further used 

to provide initial values in the integration of equation 

(3.1.1) in the region away from the constant gap region 

where the change in the film thickness is high. Let us now 

examine the significance of equation (3.3.3)(or equation 
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(3.3.4)) in obtaining complete solutions in the inlet and 

the exit region. 

3.3.1 Inlet Region Solution 

Equation (3.3.3) for the inlet region is 

(3.3.5) 

In the uniformity region, 'ti. is large and negative. For 

such a large and negative value of 'ti. the first term in 

equation (3.3.5) becomes very small. Thus the second term 

will be of the order of oH. Since x is of the order of R, 

~ will be of the order of R/h0 (see equation (2.3.10)), 

thus eR/ho times the bracketed term will be of the order of 

6H. Since R >>> h0 (and since oH is small quantity) C2 

and C3 has to be very small so that 6H will remain bounded 

at ~7-ro. From these arguments we have anywhere near the 

inlet transition region 

oH = c e'l'l. (3.3.6) 1 

so that, 

6H' = c e'l. (3.3.7) 
i 

oH'' = C e'ti. (3.3.8) 1 
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From equation (3.3.1) we have then 

(3.3.9) 

H' I = c e'Y'\. 
i 

(3.3.10) 

(3.3.11) 

Equations (3.3.9) through (3.3.11) may be used along 

with equations (3.3.2) & (3.1.1) to obtain the air film 

thickness in the inlet region. It is convenient to start 

integration somewhere in the uniformity region, close to 

the transition region. Initial values for the inlet 

solution are chosen by assignment of an arbitrary small 

value of C 1 e~ which determine H and its derivatives from 

the last three equations. With these initial values the 

inlet region is integrated until the boundary condition 

(3.2.3) is satisfied; or until H'''(ro) differs from zero by 

a prescribed small number. 

Equation (3.3.3) for the exit region is 

(3.3.12) 

It is expected that for large and negative i·1., the 
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second term is small, so that C1 e-Y\ is of the order of .:::::.a. 

In other words, c 1 eR/ho is of the order of 6H. In order 

that 6H remains bounded at '1=-ro, C1 should be very 

small(since R >> h0 ). Thus for the region close to the 

exit transition region we have 

(3.3.13) 

From the above equation we may write 

(3.3.14) 

and, 

c.H' '=-C l (1/2)e·ri./ 2 cos(A../J ri./2) + (A,/)/2)e~"l./ 2 sin(.-../J 1\/2) '.1 
2. \ 

(3.3.15) 

From the last three equations we may write 
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cH( 0) = C 7_ (3.3.16) 

oH'(O) = (l/2)C~ + (.l\/3/2)C 3 (3.3.17) 

oH''(O) = -(l/2)C2 + (A/'J/2)C 3 (3.3.18) 

Unlike the inlet region, where oH=c.H'=6H'' , in 

the exit region oH ¢ 6H' ¢ 6H'' and two constants are 

involved in the equations of these three. For such a case 

we choose an arbitrary value of C2 and then pick a value 

of C3 and substitute them in the above three equations to 

obtain oH and its derivatives. We then use these values 

as initial values of oH, oH' & oH'' and march the solution 

of the differential equation for the exit region. This 

determines H''(oo). Since the web at a distance far away 

from the roller, at both the inlet and the exit regions, 

is surrounded by the same atmospheric pressure, we must 

have 

(3.3.19) 

that is, the same value of H' ' (co) is required for both 

inlet and exit region solutions. If the chosen values of C:?. 

& C3 do not satisfy the above condition we choose a new set 

of values of C2 & C3 • This trial and error procedure 

j 



continues until the above condition is satisfied. This 

gives us air film thickness variation in the exit region. 

The pressure distribution in the inlet and the exit 

regions may be obtained by incorporating equation (2.4.4) 

in the above numerical solution. 

3.3.3 Numerical Integra~~gn Method 
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Since one of the boundary conditions for the present 

problem is set at infinity, which is numerically undefined, 

it is obvious that the range of integration of the problem 

involves a large number of steps. It is necessary for such 

a case to use a method having a small per-step truncation 

error so that the cumulative error is minimized. The 

Milne predictor-corrector method with variable step size, 

which has a per-step error of order (A~) 5 , is used for the 

inlet and the exit region solutions of the differential 

equation. Due to its very low per-step error this 

method is considerably more accurate than many other 

numerical methods. However, this method does have the 

disadvantage of not being self-starting, though, as we 

shall see later, the advantages of it will camouflage 

this disadvantage. Although the fourth-order 

Runge-Kutta method is self-starting and has the same 

order of the per-step error as the Milne method, the former 

is not preferred because of the fact that the change in 

film thickness away from the transition regions is high 
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(whereas it is low near the transition regions) causing the 

Runge-Kutta method to give unsatisfactory results for 

higher order derivatives. In addition to this, it has been 

found that the estimation of the per-step error in Milne 

method is far easier than in Runge-Kutta method(James (11) 

pp- 356-403). 

A computer code for the purpose of solving the 

governing differential equation was written in FORTRAN. 

This code uses a coupled numerical technique of Runge-Kutta 

method and Milne predictor-corrector method, the details of 

which is given in Appendix G. The six starting values 

required for the Milne method are computed through the 

Runge-Kutta method with small interval of constant size. 

Since the integration process is started somewhere in the 

uniformity region, the linearized form of the differential 

equation (equation (3.3.2)) is used in the Runge-Kutta 

method for computing six starting values of each H and its 

derivatives. These values are then further used in the 

integration process by the Milne method. The step size in 

this method is automatically controlled so that the 

relative error in H for each step is less than some small 

number assigned in advance. 

One problem that remains in the above numerical scheme 

is determining the point in the uniformity region where we 

should start the numerical integration. This problem is 

solved by first arbitrarily choosing a small negative value 

of ·~ (negative value is chosen since the integration must 
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be started in the uniformity region). Using this value the 

numerical solution of the governing differential equation 

(equation (3.1.1)) is obtained. From this solution the 

intercept of the asymptote of the H'-curve with the l'\.-axis 

is determined. If this intercept does not meet at ~=O 

then the arbitrarily chosen value of l'\ is changed. This 

trial-and-error procedure is continued until we arrive at a 

solution which gives the intercept of the asymptote of 

H'-curve at ~=O. This point is further elaborated in the 

next section. 

Two listings of the computer program which give 

complete solutions of the air film thickness and the 

pressure distribution in the inlet and the exit region are 

provided in Appendix I. 

3.4 Discussion of the 

Numerical Results 

Numerical values of the air film thickness and the 

pressure in the air film are given in Table I & II. The 

solutions are also depicted graphically in Figures 12 

through 22. Observe from the plots of ETA VS H (Figures 

12 and 18), which also show the film thickness variation, 

the different web behaviour in the inlet and the exit 

region. This air film thickness variation obtained from 

the numerical solution in both regions is compatible with 

the conclusions obtained from the qualitative analysis of 

the governing differential equations in the last chapter. 
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TABLE I 

NUMERICAL RESULTS OF INLET REGION SOLUTION 

ETA H H' H'' H''' p 

-7.5000 O.lOOOE+Ol 0.5000E-03 0.5000E-03 0.5000E-03 O.lOOOE+Ol 
-7.2500 O.lOOlE+Ol 0.6420E-03 0.6420E-03 0.6420E-03 0.9990E+OO 
-7.0000 O.lOOlE+Ol O.B243E-03 0. B243E-03 . O.B243E-03 0.99B7E+OO 
-6.7500 O.lOOlE+Ol 0.105BE-02 0.105BE-02 0.105BE-02 0.99B4E+OO -6.5000 O.lOOlE+Ol 0.1359E-02 0.1359E-02 0.1359E-02 0.9979E+OO 
-6.2500 0.1002E+Ol 0.1745E-02 0.1745E-02 0.1745E-02 0.9973E+OO 
-5.7500 0.1003E+Ol 0.2B76E-02 0.2B70E-02 0.2B52E-02 0.9955E+OO 
-5.2500 0.1005E+Ol 0.4735E-02 0.4715E-02 0.4675E-02 0.9927E+OO 
-4.7500 O.lOOBE+Ol 0.77B6E-02 O. 7732E-02 0.7629E-02 0.9B80E+OO 
-4.2500 0.1013E+Ol 0.1278E-01 0.1264E-01 0.1237E-Ol 0.9803E+OO 
-3.7500 0.1021E+Ol 0.2092E-01 0.2055E-Ol 0.1983E-Ol 0.9680E+OO 
-3.2500 0.1035E+Ol 0.3411E-01 0.3313E-Ol 0.3125E-01 0.9485E+OO 
-2.7500 0.1057E+Ol 0.5521E-Ol 0.5268E-Ol 0.4793E-Ol 0.9181E+OO 
-2.2500 0.1092E+Ol 0.8842E-01 0.8206E-Ol 0.7055E-Ol 0.8724E+OO 
-1. 7500 O.ll48E+Ol 0.1394E+OO 0.1240E+OO 0. 9778E-Ol 0.8071E+OO 
-1.2500 0.1235E+Ol 0.2148E+OO 0.1798E+OO 

~ 
0. 7203E+OO 

-0.7500 0.1368E+Ol 0.3212E+OO 0.2475E+OO 0.6151E+OO 
-0.2500 0.1562E+Ol 0.4632E+OO 0.3210E+OO 0.1475E+OO 0.5008E+OO 

0.2500 0.1837E+Ol 0.641BE+OO 0. 3922E+OO )0 .1350E+OO 0.3900E+OO 
0.7500 0.2210E+Ol 0.8539E+OO 0.4543E+OO 10, 1121E+O 0.2935E+OO 
l. 2500 0.2696E+Ol 0.1094E+Ol 0.5039E+OO O.B656E-Ol 0.2163E+OO 
1.7500 0.3307E+Ol 0.1356E+Ol 0.5413E+OO 0.6378E-Ol 0.15B2E+OO 
2.2500 0.4054E+Ol 0.1634E+Ol 0.5685E+OO 0.4583E-01 0 .1159E+OO 
2.7500 0.4943E+Ol 0.1923E+Ol 0.5B79E+OO 0.3265E-01 0.8566E-01 
3.2500 0.5978E+Ol 0.2221E+Ol 0.6018E+OO 0.2330E-01 0.6412E-01 
3.7500 0. 7164E+Ol 0.2524E+Ol 0 .6117E+OO 0.1676E-01 0.4870E-Ol 
4.2500 0.8503E+Ol 0.2B32E+Ol 0.6189E+OO 0.1220E-01 0.3754E-01 
4.7500 0.9997E+Ol 0.3143E+Ol 0.6241E+OO 0.9006E-02 0.2937E-01 
5.2500 0 .1165E+02 0.3456E+Ol 0.6280E+OO 0.6740E-02 0.2329E-Ol 
5.7500 0 .1345E+02. 0. 3770E+Ol 0.6310E+OO 0. 5115E-02 0 .1872E-01 
6.2500 0.1542E+02 0.4087E+Ol 0.6332E+OO 0.3934E-02 0.1522E-01 
7.0000 0.1866E+02 0.4562E+Ol 0.6357E+OO 0.2718E-02 0 .1139E-01 
7.5000 0.2102E+02 0.4881E+Ol 0.6369E+OO 0.2155E-02 0.9510E-02 
8.0000 0.2354E+02 0.5199E+Ol 0.6379E+OO 0. l 728E-02 0.8008E-02 
8.5000 0.2622E+02 0.5518E+Ol 0.6386E+OO 0.1399E-02 0.6798E-02 
9.0000 0.2906E+02 0.5838E+Ol 0.6393E+OO 0.1143E-02 0.5813E-02 
9.5000 0.3206E+02 0.6158E+Ol 0.6398E+OO 0.9427E-03 0.5005E-02 

10.0000 0.3522E+02 0.6478E+Ol 0.6402E+OO 0.7834E-03 0.4336E-02 
10.5000 0.3854E+02 0.6798E+Ol 0.6406E+OO 0.6559E-03 0. 3778E-02 
11.5000 0.4565E+02 0.7439E+Ol 0.6411E+OO 0.4693E-03 0.2913E-02 
12.5000 0.5341E+02 0.8080E+Ol 0.6415E+OO 0.3439E-03 0.2287E-02 
13.5000 0.6181E+02 0.8722E+Ol 0.6418E+OO 0.2575E-03 0.1823E-02 
14.5000 0.7086E+02 0.9364E+Ol 0.6421E+OO 0.1964E-03 0.1473E-02 
15.5000 0.8054E+02 0.1001E+02 0.6422E+OO 0.1522E-03 0.1203E-02 
16.5000 0.9087E+02 O.l065E+02 0.6424E+OO 0.1198E-03 0.9934E-03 
17.5000 O.l018E+03 0.1129E+02 0.6425E+OO 0.9548E-04 0.8265E-03 
18.5000 0 .1134E+03 0. ll93E+02 0.6426E+OO 0. 7701E-04 0.6934E-03 
20.5000 0.1386E+03 0.1322E+02 0.6427E+OO 0.5168E-04 0.4962E-03 
22.5000 0.1663E+03 0.1450E+02 0.6428E+OO 0.3593E-04 0.36l,9E-03 
24.5000 0.1966E+03 0.1579E+02 0.6428E+OO 0.2574E-04 0.2669E-03 
26.5000 0.2295E+03 0.1708E+02 0.6429E+OO 0.1B91E-04 0.1983E-03 
28.5000 0.2649E+03 0.1836E+02 0.6429E+OO 0.1420E-04 0 .14 71E-03 
30.5000 0.3029E+03 0.1965E+02 0.6429E+OO 0.1086E-04 0.1086E-03 
38.5000 0.4807E+03 0.2479E+02 0.6430E+OO. 0.4319E-05 0.2178E-04 
42.5000 0.5850E+03 0.2736E+02 0.6430E+OO 0.2917E-05 -0.5061E-06 
46.5000 0.6996E+03 0.2993E+02 0.6430E+OO 0.2040E-05 -0.1560E-04 
50.5000 0.8245E+03 0.3251E+02 0.6430E+OO O, ... JA-6-9·:&--~ -0. 2653E-04 
54.5000 0.9596E+03 0.3508E+02 0.6430E+OO ,,,&71.il'S~ -0. 3427E-04 - _, .. ··-· ---- ., 
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TABLE II 

NUMERICAL RESULTS OF EXIT REGION SOLUTION 

ETA H H' H'' H''' p 

-13.0000 0.9997E+OO 0.4600E-05 0.2600E-03 0.2600E-03 O.lOOOE+Ol 
-12.7500 0.9997E+OO 0.7805E-04 0. 3271E-03 0.2620E-03 0.9995E+OO 
-12.5000 0.9998E+OO 0.1678E-03 0.3893E-03 0.23l6E-03 0.9994E+OO 
-12.2500 0.9998E+OO 0.2718E-03 0.4409E-03 0.1769E-03 0.9993E+OO 
-12.0000 0.9999E+OO 0.3868E-03 0.4755E-03 0.9478E-04 0.9993E+OO 
-11. 7500 O.lOOOE+Ol 0.5075E-03 0.4858E-03 -0.1696E-04 0.9992E+OO 
-11.0000 O.lOOlE+Ol 0.8253E-03 0.2977E-03 -0.5246E-03 0.9995E+OO 
-10.0000 O.lOOlE+Ol 0. 7173E-03 -0.6582E-03 -0 .1371E-02 O.lOOlE+Ol 

-9.0000 0.1002E+Ol -0.7044E-03 -0.2213E-02 -0.1508E-02 0.1003E+Ol 
-8.0000 0.9995E+OO -0.3451E-02 -0.2948E-02 0.4976E-03 0.1005E+Ol 
-7.0000 0.9948E+OO -0.5454E-02 -0.2584E-03 0.5251E-02 O.lOOOE+Ol 
-6.2500 0.9911E+OO -0.3784E-02 0.5212E-02 0.9140E-02 0.9919E+OO 
-5.5000 0.9904E+OO 0.2887E-02 0.1267E-01 0.9866E-02 0.9803E+OO 
-4.7500 0.9968E+OO 0.1476E-Ol 0.1816E-01 0.3265E-02 0. 9718E+OO 
-4.0000 0.1013E+Ol 0.2802E-Ol 0.1524E-01 -0.1245E-01 0.9763E+OO 
-3.2500 0.1037E+Ol 0.3403E-Ol -0.1819E-02 -0.3318E-01 0.1003E+Ol 
-2.5000 0.1059E+Ol 0.2156E-01 -0.3355E-01 -0.4992E-Ol 0.1052E+Ol 
-1. 7500 0.1062E+Ol -0.1831E-01 -0.7308E-01 -0.5206E-01 0 .1114E+Ol 
-1.0000 0.1025E+Ol -0.8607E-Ol -0.1041E+OO -0.2302E-Ol 0 .1162E+Ol 
-0.3750 0.9503E+OO -0.1516E+OO -0.9735E-01 0.5791E-01 0 .1151E+Ol 

0.2500 0.8405E+OO -0.1904E+OO -0.5048E-02 0.2687E+OO 0.1008E+Ol 
0.8750 0.7351E+OO -0.ll71E+OO 0.2822E+OO 0.6669E+OO 0. 5611E+OO 
1. 4375 0.7355E+OO 0.1580E+OO 0.6969E+OO 0.6650E+OO -0.8376E-01 
2.0000 0.9500E+OO 0.6237E+OO 0.8994E+OO 0.5832E-01 -0.3988E+OO 
2.5625 0.1442E+Ol 0.1122E+Ol 0.8526E+OO -0.1474E+OO -0.3260E+OO 
3.1250 0.2204E+Ol 0.1579E+Ol 0. 7765E+OO -0 .1125E+OO -0.2076E+OO 
3.7500 0.3338E+Ol 0.2046E+Ol 0.7229E+OO -0.6285E-Ol -0.1242E+OO 
4.3750 0.4756E+Ol 0.2487E+Ol 0.6933E+OO -0.3492E-Ol -0.7818E-01 
5.0000 0.6445E+Oi 0.2915E+Ol 0.6765E+OO -0.2034E-01 -0.5208E-01 
5.7500 0.8820E+Ol 0.3418E+Ol 0.6650E+OO -0. 1140E-Ol -0.3418E-Ol 
6.5000 0.1157E+02 0.3914E+Ol 0.6583E+OO -0.6825E-02 -0.2383E-01 
7.2500 0.1469E+02 0.4406E+Ol 0.6542E+OO -0.4319E-02 -0.1747E-01 
8.2500 0.1942E+02 0.5058E+Ol 0.6509E+OO -0.2515E-02 -0.1231E-01 
9.2500 0.2481E+02 0.5708E+Ol 0.6489E+OO -0.1560E-02 -0. 9212E-02 

10.2500 0.3084E+02 0.6356E+Ol 0.6477E+OO -0.1017E-02 -0. 7246E-02 
11. 2500 0.3752E+02 0.7004E+Ol 0.6468E+OO -0.6915E-03 -0.5937E-02 
12.7500 0.4875E+02 0.7973E+Ol 0.6460E+OO -0.4121E-03 -0.4684E-02 
13.7500 0.5705E+02 0.8619E+Ol 0.6457E+OO -0.3019E-03 -0.4134E-02 
14.7500 0.6599E+02 0.9264E+Ol 0.6454E+OO -0.2262E-03 -0.3727E-02 
15.7500 0.7557E+02 0.9910E+Ol 0.6452E+OO -0. l 728E-03 -0.3419E-02 
16.7500 0.8581E+02 0.1055E+02 0.6450E+OO -0.1342E-03 -0.3182E-02 
17.7500 0.9668E+02 0 .1120E+02 0.6449E+OO -0.1059E-03 -0. 2996E-02 
18.7500 0.1082E+o3 0 .1184E+02 0.6448E+OO -0.8462E-04 -0.2849E-02 
22.7500 0.1607E+03 0.1442E+02 0.6446E+OO -0.3846E-04 -0.2489E-02 
24.7500 0.1909E+03 0 .1571E+02 0.6445E+OO -0.2730E-04 -0.2388E-02 
26.7500 0.2236E+03 0.1700E+02 0.6445E+OO -0.1991E-04 -0.2315E-02 
28.7500 0.2589E+03 0.1829E+02 0.6445E+OO -0 .1486E-04 -0.2261E-02 
30.7500 0.2968E+03 0.1958E+02 0.6444E+OO -0. 1132E-04 -0.2221E-02 
32.7500 0.3372E+03 0.2087E+02 0.6444E+OO -0.8768E-05 -0.2190E-02 
40.7500 0.5248E+03 0.2602E+02 0.6444E+OO -0.3624E-05 -0. 2119E-02 
44.7500 0.6340E+03 0.2860E+02 0.6444E+OO -0.2484E-05 -0.2100E-02 
48.7500 0.7536E+03 0.3118E+02 0.6443E+OO -0.1759E-05 -0.2087E-02 
52.7500 0.8834E+03 0.3376E+02 0.6443E+OO -0.1280E-05 -0.2077E-02 
56.7500 0.1024E+04 0.3633E+02 0.6443E+OO -0.9534E-06 -0. 2071E-02 
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It is obvious from these plots that there is a gradual 

increase in the air film thickness near the inlet tran

sition region (Figure 12) whereas, there is a sinusoidal 

behaviour (undulation) of the web near the exit transition 

region. This sinusoidal behavior ·of the web is shown in 

Figure 18 which is an enlarged plot of Figure 17 near the 

exit transition region. An important point to observe from 

these plots (ETA VS H) is that the normalized air film 

thickness H does not have a value of exactly unity at the 

two transition points, i.e. the points where we defined '"1.=0 

for the two separate solutions in the inlet and the exit 

region. This fact has already been observed 

geometrically from Figure 11. Another important fact to 

observe from these two plots is that the constant gap film 

thickness is not the minimum film thickness; infact, 

minimum film thickness occurs somewhere in the exit region 

and is approximately 71.6% of the nominal clearance (see 

Figure 18). 

The significance of ETA VS H' plot (Figures 13 and 19) 

is that it enables us to locate graphically the point of 

tangency, i.e. the trasition point. The point of tangency 

is located by finding the intercept of the asymptote of 

H' -curve with the ·ri.-axis (see Figures 13 and 19) . This 

curve helps us in the trial-and-error procedure of locating 

the point in the uniformity region where we should start 

the integration process (The numerical results given in 

Tables I and II are for the final solution when the 



tangency point is located at approximately tt=O for the two 

regions)~ 

As discussed in section 3.2, the constant gap 

film thickness may be determined if the numerical value of 

H''(oo). is known. From the numerical results and from 

equation (3.2.2) we may write the constant gap film 

thickness as 
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(3.4.1) 

or, 

2. 

h0 = 0.643 R {<6~(Uw+UR))/(T0-~Uw)} 1 / 3 (3.4.2) 

The numerical value of H''(ro)=0.643 may also be 

obtained from the asymptote value of H'' (see Figure 14). 

Since the inlet and exit region solutions must give the 

same constant gap film thickness, the asymptotic value of 

H'' from Figure 20 (exit region) is the same as obtained 

from Figure 14 (inlet region). 

Figure 16 and Figure 22 show the pressure distribution 

in the inlet and exit region, respectively. These pressure 

curves are obtained for the normalized pressure equation 

given by equation (2.4.8) (in this and the subsequent 

pressure curves Pn represents the normalized pressure P~ 

define by equation (2.4.7)). This distribution of the 

pressure in both regions corroborate the results of the 
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theoretical analysis (section 2.6). It can be seen from 

these two figures that the behavior of the pressure in the 

two regions is quite different. There is a gradual 

increase of pressure from ambient to a constant value 

corresponding to the uniformity region in case of inlet 

region (see Figure 16) while there is a sinusoidal pressure 

distribution in the exit region (see Figure 22), compatible 

with the undulation of the web noted in Figure 18. Both 

the inlet region and the exit region solutions give the 

same pressure in the uniformity region and according to 

equation (2.4.7) this pressure is given by 

p = Pa + T/R (3.4.3) 

From equation (3.4.1) it is obvious that the sum of 

the web and supporting roller speed U and the reduced 

tension in the web T are important parameters in developing 

the air film thickness. The effect of these parameters on 

air film thickness is shown in Figures (23) & (24). In 

order to observe the effect of the speed U on the 

constant gap film thickness h 0 , the reduced tension T was 

kept at a constant value of 1 lb/in. And to observe the 

effect of the tension T on the constant gap film thickness, 

the speed U was kept at a constant value of 400 in/sec. 

These two plots are obtained for a roller of 36 inches in 

dia. 
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3.5 Constant Gap Film Thickness 

for Various Web Handling 

Applications 

Numerical values of the constant gap film thickness 

h0 and the length of the inlet region for three different 

sets of operating parameters are given in Table III. The 

first three columns show the operating parameters whereas, 

the last two are the calculated numerical values of 

constant gap film thickness h0 and the length of the inlet 

region. The constant gap film thickness is calculated by 

using equation (3.4.1) whereas the length of the inlet 

region is calculated by usi~g equation (2.3.lOb). Observe 

from Figure 16 that the ambient pressure is achieved at 

approximately ~=8. This value of ~ is used in equation 

(2.3.lOb) to obtain the dimensional length of the inlet 

region. 

TABLE III 

NUMERICAL VALUES OF CONSTANT GAP FILM THICKNESS AND 
LENGTH OF THE INLET REGION FOR DIFFERENT 

OPERATING PARAMETERS 

Speed Constant Length of 
Radius of Tension Uw+UR Gap Film Inlet 
Roller in Web Thickness Region 

(in) (lb/in) (in/sec) (;iin) (in) 

0.5 0.5 50 43.50 0.0374 

18.0 1.0 400 3943.0 2.1400 

54.0 10.0 1600 6422.0 4.7200 
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CHAPTER IV 

STRATEGY FOR CONTROLLING AIR 

ENTRAINMENT 

Since it is desirable to move webs at high speeds, it 

is important to be able to control the entrainment of the 

air in order to avoid related web handling problems. 

This is true not only for the present problem but for other 

related applications such as the winding process. In this 

chapter a strategy for controlling the air entrainment 

will be developed and modelled. 

In the last three chapters a model was developed which 

enables the estimation of the air· film clearance for the 

passage of a flexible web over a supporting roller. This 

clearance cannot usually be modified without changing any 

of the parameters given in equation (3.4.1). However, 

application of some external pressure on the web will 

enable the uniform clearance to be reduced considerably. 

One conunon method of reducing the air entrainment in most 

web handling applications is through the use of a "rider 

roller". A rider roller may be described as the roller 

which rides on the web at the web-supporting roller 

interaction. In case of winding process it is placed near 

the nip of the wound roll. However, such a practice is 
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based solely on physical intuition and, at present, no 

theory exists which analyzes the effects of placing a rider 

roller over the web. In the present chapter the model that 

has been developed will be modified to incorporate the 

effects of placing a rider roller in the inlet region of 

the web-supporting roller interaction. The new modified 

geometry is shown in Figure 25. The objective of this 

portion of the study will be to determine the effect of 

rider roller size, location, and imposed pressure on 

controlling air film thickness between the web and the 

supporting roller. 

4.1 Modification of the Model 

As for the supporting roller we assume that there is a 

negligible amount of friction on the rider roller 

surface (i.e. the surface is completely smooth). The 

general Reynolds lubrication equation for the air 

entrainment between the web and the supporting roller, as 

derived in chapter II, is found to be unchanged and is 

rewritten as 

(4.1.1) 

where all the notations have the same definition as given 

for equation (2.2.21). 

From the modified geometry, however, it is clear that 
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Figure 25. The Modified Geometry 
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the equilibrium equation must be changed. A new modified 

set of equilibrium equations is developed in an approach 

similar to the one given in section (2.2) and on the basis 

of Figure 26, which shows the action of forces on the web 

element. These equilibrium equations are 

2. 

~x + ~yx + Q ~-'d~ 
•:7X •:7Y x i::7 x"" T = Q (4.1.2) 

~xy+~y=O (4.1.3) 

(4.1.4) 

BM ;::;iM_ __ 
crxx + ·~yx - Ox = 0 (4.1.5) 

(4.1.6) 

where all the notations have the same definition as given 

in section (2.2), except now -r is the sum of shear forces 

(per unit area) between the web and the roller and between 

the web and the rider roller (see Figure 26 ) and Pr is 

the external pressure on the web due to the rider roller. 

Applying the same assumptions for the derivation· of 

normal shear force and moment equations as previously, the 

equations governing the lateral deflection, bending and 

shearing action of the web are: 



' ----.?; .¢' )- - - - - -
I ---rj:1 ~ -,, 

----1 I ----_ 

I 

I 
I 

I 
----"T"a 

Figure 26. Web Element Under Various Forces 
and Moments 
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(4.1.7) 

~xy+~-Oy= 0 (4.1.8) 

2 2. :z. 

~x+~y- (p-pa) + Pr + o-Uw ~-l:z. - §-W:z. . x Nx = 0 (4.1.9) 

2 2 
M -x - D rn-12 + v 8 J tr~z (4.1.10) 

2. 2 

My = n[~-Jz. + v ~-12] (4.1.11) 

~ 

Mxy = {CEt 3 )/(12(l+v))} ~x~~ (4.1.12) 

where D = {CEt 3 )/(12(1-v 2 ))} is the flexure rigidity of 

the web material. 

The equations governing the in-plane stress resultants 

and in-plane mid-surface displacements are: 

2. 

~x + ~yx + Qx ~-12 - -r = O (4.1.13) 

(4.1.14) 

(4.1.15) 
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(4.1.16) 

Nxy = {CEt)/(12(l+v)}}[~ +§lo] {4.1.17) 

By comparing above eleven equations with the 

pertinent equations of section (2.2) (equations (2.2.31) 

through (2.2.33), equations (2.2.48) through (2.2.50), 

equations (2.2.54) through (2.2.56), and equation (2.2.29) 

& (2.2.30)) it is clear that only two equations are 

modified; equation (4.1.9) and equation (4.1.13). Applying 

the same mathematical manipulation as in section (2.2) we 

get the following modified equilibrium equation: 

(4.1.18) 

If the assumptions of constant viscosity and 

incompressibility hold true for this case also then 

equation (4.1.1) for a steady state case reduces to one 

dimensional form 

(4.1.19) 
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Integrating the above equation we get 

(4.1.20) 

where, again, ho is the constant of integration and is the 

constant gap film thickness (film thickness at the point 

where S:i = 0 ) • 

For a perfectly flexible web, equation (4.1.18) 

reduces to 

2. 

- (p - Pa> + Pr - T{R-~2 - 1/R} = 0 (4.1.21) 

where Tis the reduced tension defined by equation (2.3.3). 

The above equation may be written as 

2 

P - Pa= Pr + (T/R){l - RR-~2} (4.1.22) 

Differentiating equation (4.1.22) with respect to x, we 

get 

3 

(4.1.23) 

Eliminating ai by combining equations (4.1.20) and 

(4.1.23), we have 
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3 

R-~3 = ( 6J.LU/T) {<h0 - h) /h :?:} + ( 1/T)~r (4.1.24) 

Using normalized expressions from equations (2.3.8) 

and (2.3.10) we may write the above equation as 

( 4 .1. 25) 

Let us define a non-dimensional pad (external) 

pressure as 

(4.1.26) 

Equation (4.1.25) is then written as 

(4.1.27) 

Since the air film clearance in the uniformity region 

is dependent on the amount of air entrained and since the 

exit region air film thickness variation is also dependent 

on the amount of air initially entrained in the inlet 

region, it is obvious that any control strategy will be 

most effective if applied in the entrance region. 

Consequently, the modified differential equation should be 

true for the inlet region. Equation (4.1.27) is based on 

a coordinate system as defined in Figure 25. For a 
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differential equation that governs the inlet region we need 

to define a coordinate system where the x-coordinate 

direction is positive in a direction opposite to the 

direction of web motion. From the analysis of Chapter II 

it is clear that for this new coordinate system only the 

Reynolds Lubrication equation is changed. Hence for the 

inlet region equation (4.1.27) may be written as 

3 

~-~~ = {CH - l)/H 3 } + ~r (4.1.28) 

4.2 Controlling Air Entrainment 

Via a Rider Roller 

In this section the effects of applying an external 

pressure on the web through a rider roller will be studied. 

In this regard, an equation for the pressure due to the 

rider roller will be developed which may be incorporated 

in the modified differential equation (equation (4.1.28)). 

This pressure equation will be developed for the case 

where the pressure due to the rider roller is contained in 

both the inlet and the uniformity region (see Figure 27). 

The merit of analyzing this geometry is that it enables one 

to evaluate the pressure equation for the case where the 

pressure due to the rider roller is contained fully in the 

inlet region of the web-supporting roller interaction (as 

shown in Figure 28) along with the case where the pressure 



u w 

0' 

Figure 27. Pressure due to Rider Roller in Both the Inlet 
and Uniformity Region 
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u w 

Figure 28. Rider Roller Pressure Fully in the Inlet 
Region 
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is partially contained in both the inlet region and the 

uniformity region. Since the modified differential equation 

is true for the inlet region where the air film thickness 

variation is assumed to be parabolic, the numerical 

solution will be obtained for the case where pressure due 

to the rider roller is within the inlet region. 

Let us assume that the point of minimum clearance 

between the web and the rider roller (point O) lies 

somewhere in the inlet region such that the pressure 

developed on the web is in both the inlet and the 

uniformity region (see Figure 27). The clearance in the 

two regions are given by: 

2 2 

CI = 1 + K 1 {~ - ~c} (4.2.1) 

and, 

z 2 

CII = 1 + K2{~} (4.2.2) 

where subscript I and II represent the clearance in the 

inlet region and in the uniformity region, respectively. 

In equation (4.2.1) ~c is the normalized distance of the 

point of minimum clearance from the point where ~=O, CI and 

CII are the ratio of local clearance to the minimum 

clearance, i.e. 
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(4.2.3) 

(4.2.4) 

and Ki and K2 are given by 

(4.2.5) 

(4.2.6) 

where Re is the combination of radii Rr and R0 and may be 

defined from equation l/Rc = 1/Rr + 1/R0 • 

A detailed derivation of equations (4.2.1) & (4.2.2) 

along with the expressions of K1 and K2 i~ given in 

Appendix H. From equations (4.2.5) and (4.2.6) we may 

write 

(4.2.7b) 

A relationship between Ki and K2 may be obtained as 

(4.2.7b) 

For a cooridinate system, whose origin is defined at 

the point of minimum clearance, we may write the one 
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dimensional Reynolds equation for the air entrained 

between the web and the rider roller as 

Sir = -6J.LUn{<c - c*)Jc 3 ) 

n 

(4.2.8) 

where c* is the constant of integration and is the 

clearance at the point where air = O, Un is the relative 

speed between the web and the rider roller. The negative 

sign on the right hand side of equation (4.2.8) is due to 

the fact that the velocity of the web is in a direction 

opposite to the Xii-coordinate direction. 

The above equation may be written as 

ffir = -(6.µ.Un>lem 2 {<c - c*)/c?:} 
n 

Referring to Figure 27 we may write 

Xn=X-Xc 

(4.2.9) 

(4.2.10) 

where Xe is the dimensional distance corresponding to the 

normalized distance ~c· Substituting equation (4.2.10) in 

equation (4.2.9) we get 
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substituting the normalized expressions from equations 

(2.3.lOa) and (4.1.26) in the above equation we get 

~r=-{ 6J.LUn/Cm 2 } { (h0 2 /T) (T/6_µU) 1 I 3 /( 6_µU/T) 2 / 3 }{ ( c-c*) /C 3 } 

(4.2.11) 

which may be written as 

(4.2.12) 

where, 

(4.2.13) 

The above expression for A is obtained by substituting 

the expression for h 0 from equation (3.4.1) in the 

dimensional term of equation (4.2.11). It is important to 

note the difference between U and Un ; U is the sum of 

the web and supporting roller speed while Un is the sum 

of the web and rider roller speed. 

The equation (4.2.12) for the two zones may be 

written as 

~r] = -1\{<c - c*)fc 3 } (4.2.14) 
I I 
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$(r] = -A{Cc - c*)/c 3 } 

II 
(4.2.15) 

II 

The pressure developed by the rider roller can be 

determined by integrating equations (4.2.14) and (4.2.15). 

Let us define the following transformation 

(4.2.16) 

tan ~II= {x/~(2RcCin>} (4.2.17) 

Such a transformation has been used for the solution 

of many lubrication problems. A better understanding of 

these transformed angles may be obtained from Figure 29. 

In a normalized form these transformed equations may be 

written as 

tan '+'I = Ki. (l\ - ri.c) (4.2.18) 

and, 

tan '+'rI = K 2 ( ri.) (4.2.19) 

Equations (4.2.1) & (4.2.2) are then written as 



't-tn/2 
'l'=O 

Figure 29. Definition of the Transformed 
Angle 
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Cr = 1 + tan2 '+'r (4.2.20) 

or, 

Cr = sec 2 '1'r (4.2.21) 

and, 

Crr = 1 + tan2 +'rI (4.2.22) 

or, 

Crr = sec 2 't' II (4.2.23) 

Using the last six equations, we may write equation 

(4.2.11) for the two regions as 

dpr] =-{ 6J-1.Unl /Cm 2 { ( sec 2 +'r- sec 2 +'I *) /sec 6 '+'I},.~/2RrCmsec 2·'+'Id·+·I 
I 

which may be simplified to 

{c;u2·/(6J1.Un''/2RrCml}dPr] = {<cos 4 '+'I/cos 2 '+'1 *> - cos 2 '+'I}d·+·I 
I 

(4.2.24) 

Similarly, for the second region we may write 

{Cm 2 / ( 6JJ.Un~> }dp J = {ccos 4 '+'rI/cos 2 '+'II * )-cos 2 '+'II}d'+'II 
II 

(4.2.25) 
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* * where '+'r and '+'rr are the angles corresponding to the 

* * point where Cr=Cr and Crr=Crr , respectively. 

Integrating the last two equations 

(4.2.26) 

(4.2.27) 

Applying the following integral expressions 

J cos 2 '+' d~ = sin2'+'/4 + ~/2 + C1 

J cos 4~ d'+' = sin4'+'/32 + sin2'+'/4 + 3'+'/8 + C1 

the last two equations may be written as 

{Cm 2 I ( 6J.LUn"v'.'2RrCm>} Pr]= ( l/cos 2 '+'r *) [ sin4'+'r/32 + sin2'+'r/ 4 + 
I 

(4.2.28) 

and, 
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{Cm 2 I ( 6_µUnv"2R0 Cm)} Pr] = ( 1/cos2 '+'II *) [sin4'+'II/32 + 
II 

(4.2.29) 

Applying the boundary conditions 

@ Xn~co Pr] 
_, 0 (ambient) 

I 

i.e. 

@ '+' -7 n/2 Pr] -7 0 
I 

with this condition equation (4.2.28) gives 

Substituting the above expression of ct in equation 

(4.2.28) we get 

{Cm2./(6JiUnJ2RrCm>} Pr] = (l/cos 2·'t'I*> [sin4'+'I/32 + sin2·+·1 /4 
I 

+ 3'+'1 /8 - 3n/16] - sin2~1 /4 - '+'1 /2 + n/4 

(4.2.30) 

The other boundary condition is 



@ * '+'rr = '+'rr Pr] = 0 
II 

Substituting the above condition in equation (4.2.29) we 

get 

Substituting this expression for C2 in equation 

(4.2.29) we get 
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{Cm 2 IC 6J.LU~) }Pr] =( l/cos 2 '+'11 *) [ sin4'i"rr/32 + sin2-+-·11 / 4 
II 

(4.2.31) 

Since the connection between the two regions is 

continious, we have c1 * = c11*; from which we may write 

w * l_o * Tr = ·Trr (4.2.32) 

Let '+'10 be defined as the transformed angle that 

corresponds to the distance of the point of minimum 
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clearance (point O in Figure 27) from the inlet transition 

point where ~=O (i.e. transformed angle corresponding to 

normalized length ~c>· This angle may be determined from 

equation (4.2.18) and is written as 

(4.2.33) 

The importance of -this angle is that for a particular 

combination of rider roller size and its location, it 

enables one to determine whether the pressure developed by 

the rider roller is within the inlet region or is partially 

in the inlet region and partially in the uniformity region 

(for the latter case this angle may be further used in 

* determining the point where ~=~ by solving equation 

(4.2.34)). This fact may be determined by first assuming 

that the whole pressure development is within the inlet 

region (refer Figure 28). For this case the angle~* is 

* determined (the angle corresponding to c=c ). This angle 

* may be determined by applying the condition that at ~I=* ; 

Pr = 0 in equation (4.2.30) and is calculated to be 

-25.415°. If *Io is less than -25.415° the pressure 

developed is within the inlet region. And if it is greater 

than -25.415° the pressure developed is partially in the 

inlet region and partially in the uniformity region. 

Let us now develop a pressure equation for the latter 



case where pressure is partially in the inlet region and 

partially in the uniformity region. We then have a 

condition 

@ '+'II = 0 ; '+' = I '+'Ia i Pr] 
I II 

With this condition equations (4.2.30) and (4.2.31) 

combine to give 

3n/16} - sin2'+'I0 /4 '+'I0 /2 + n/4] = 

[ sin2·t* I 4 * + '+' /2 + 
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(4.3.34) 

This equation may be solved to obtain the value of 'I'* 

for particular values of K1 and K2 ; from which we may 

d . * etermine c . 

Using the following trignometric relations 

sin2'+' = 2{tan'l'/sec 2 '+'} 

and, 

sin4'+' = 4{tan'+'/sec 1·'+'}{2/sec 2 '+' - 1} 

we may write equation (4.2.30) as 
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{Cm2/(6.1.1Un~m>}Pr] ="<c*/a){2/sec 2 '+'I - 1}{2/secz.'+'I - 1} 
I 

+ (1/2){tan'+'I/sec2 '+'I}<c*-1> + ('+'I/2){3c*/4 - 1} 

- (n/4){3c*/4 - 1} 
(4.2.35) 

Using equations (4.2.5), (4.2.18) and (4.2.21) the 

above equation may be written in a normalized pressure 

form as 

~rJ = (A/K 1 ) [cc*/a){K 1 C~ - ~c>fcI}{2/cI - 1} 
I 

(4.2.36) 

In an approach similar to that used above, equation 

(4.2.31) may be reduced to 

Pr] = (A/K2 ) [<c*/a>{K2 (~ - Y\c>}{2/cII - 1} 
II 
+ (l/2l{K2 (Y\-V\c)/CII}<c*-1> + tan- 1 {K.2 Cri.-11.c>}{3c*/4-1}/2 

- (tan~*/a>{21c* - 1} * * * - (1/2)(tan'+' /C )(C -1) 

- c~*12>{3c*/4 - 1}] (4.2.37) 

The load w dev~loped by the rider roller on the web at 

the inlet region may be determined by integrating the 

pressure developed within the inlet region of the 

web-supporting roller interaction. Such a load in an 

integral form is given by 
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* 
J,x 

w = Pr d.x 
(Q 

(4.2.38) 

which may be written as 

(4.2.39) 

I z. 

Using the expression of Pr from equation (4.2.36) and 

substituting ~*=-25.415° = -0.44355 rad (for the case of 

pressure within the inlet region) in the above equation 

and performing the integration we get 

lb/in (4.2.40) 

Substituting the above relation in equation (4.2.13) 

we get 

/\ = 0. 41412{w 2 / (.µUnT)} { 6;1U/T} 1 I 3 (R/Rr) 2 (4.2.41) 

4.3 Modification of the Computer 

Code to Account for Rider 

Roller Effects 

The same coupled numerical technique of a Runge-Kutta 

method and a Milne predictor-corrector method (as used for 



the solution of the governing differential equation 

(3.1.1)) is used for the solution of the modified 

differential equation (4.1.28). The essential difference 

between these two equations is the additional pressure 
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term in the modified differential equation due to the 

external pressure. This term for the case of a rider roller 

has been developed in the previous section (see equation 

(4.2.12)). The analysis of the previous section is based 

on Figure 27 which depicts the partial distribution of 

pressure in both the inlet and uniformity region. The 

modification in the computer code is done on the basis of 

this analysis. However, as discussed earlier, since the 

modified differential equation is essentially true for the 

inlet region, numerical solutions will be obtained for the 

case when the pressure due to the rider roller is within 

the inlet region (with reference to Figure 28 for such a 

case the applied pressure development is confined within 

the region I ) . 

Before starting the numerical solution it is important 

first to determine the angle ·+10 produced by a given 

combination of KJ. and 'l'i.c (using equation (4.2.33)). As 

discussed in the previous section, for the rider roller 

pressure to be within the inlet region I '+'r0 I should be 

greater than 25.415°. A solution cannot be obtained for 

the case when l~rol < 25.415° (because then some of the 

pressure due to the rider roller will be in the uniformity 
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region). Once the above condition is satisfied the 

nwnerical solution of the modified differential equation 

can be proceed. In order to incorporate the pressure term 

(equation (4.2.12)) in the modified differential equation 

we need three quantities; A, c*, and c. A is the normalized 

quantity which relates to the minimwn clearance between the 

web and rider roller the significance of this quantity 

and those associated with C is discussed in the next 

section). c* is the normalized clearance at the point where 

dtP * .., * 0~r = Pr = O and may be determined by using c = sec~~ 

(see equation (4.2.21)). C is the local normalized 

clearance between the web and rider roller (for the case 

where pressure due to the rider roller is within the inlet 

region this local clearance is given by equation (4.2.1)). 

Three subprograms have been added to the computer code 

in order to obtain the nwnerical solution of the modified 

differential equation. This modified computer program is 

listed in Appendix I. In this program the purpose of the 

subroutine "SEARCH" is to determine the value to ·+-* for the 

given parameters which satisfies equation (4.2.34). Note 

that the parameter K2 relates to the region II of Figure 

27. For the case where pressure is within the inlet region 

K2 =K 1 (see equations (4.2.5) and (4.2.6)). The local 

clearance C for the case where pressure is within the inlet 

region may be determined for each value of ~ by using 

equation (4.2.1). Note that there are two normalized 
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quantities in the equation C; K:t and ri.c. The significance 

of these quantities will be discussed in the next section. 

Functions "EQNl" and "EQN2" may be used for calculating the 

pressure due to rider roller for the two regions I and II 

(see Figure 27) by the use of equations (4.2.36) and 

(4.2.37), respectively. Each set of these three quantities 

(A, c*, and C) are substituted in the equation of pressure 

(equation (4.2.12)) which finally is incorporated in the 

solution of the modified differential equation (equation 

(4.1.28)). 

4.4 Significance of the Normalized 

Quantities and Discussion 

of Results 

The significance of H'' was obvious from chapter III 

where it was shown that its asymptotic value allows one to 

determine the constant gap film thickness. The governing 

dimensional expression between the asymptotic value of H'' 

and the constant gap film thickness h0 is given by equation 

(3.4.1). The significance of the other normalized 

quantities, developed in this chapter, will be discussed in 

this section along with the discussion of the numerical 

results. 

As discussed earlier,the essential difference between 

the governing differential equation (equation (3.1.1)) and 

the modified differential equation (equation (4.1.28)) is 
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the term due to the pressure developed via the rider 

roller. This term will be incorporated from the-analysis of 

the previous section (equation (4.2.12)). The effect of 

this term may be observed by varying the size of the 

rider roller, by varying its location, or by varying the 

amount of load on the web due to the rider roller. The 

normalized expressions that may be used in order to examine 

the effects of varying these three quantities are given by 

equations (4.2.5), (4.2.18), and (4.2.13), respectively. 

The variation in these three quantities will enable us to 

determine the effect of the rider roller size, its 

location, and the imposed pressure on the constant gap film 

thickness. 

Observe from equation (4.2.40) that the load w due to 

the rider roller depends on both the radius of the rider 

roller Rr and the amount of minimwn clearance cm. In other 

words, the effect of imposed pressure and the size of the 

rider roller are interrelated. An increase in the rider 

roller size will always be associated with an increase in 

the pressure even when Cm is kept the same. However, since 

A may be considered as a function of cm for a particular 

set of operating parameters (see equation (4.2.13)), this 

normalized quantity may be used to vary the amount of 

imposed pressure by varying the minimum clearance Cm· For 

a particular rider roller size Rr this variation in Cm will 

result in different values of K1 • Thus in order to examine 
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the effect of varying imposed pressure by changing cm it is 

necessary to modify both the normalized quantities K 1 and 

A. However, keeping K 1 constant (see equation (4.2.5)) 

while varying A means that the amount of the imposed 

pressure (or load) is varied by changing both the radius of 

the rider roller and the minimum clearance. Physically, 

this is shown in Figure 30. Let us now discuss the 

significance of the above mentioned normalized quantities 

in detail and relate their effects on the numerical 

results. 

First consider the significance of the normalized 

quantity Ki. This quantity relates to the size of rider 

roller for a particular set of operating parameters (i.e. 

radius of supporting roller, tension in the web, sum of the 

web and supporting roller speed and the clearance 

between the web and rider roller), see equation (4.2.5). 

It can be seen from this equation that as the normalized 

quantity Ki is increased the dimensional radius of the 

rider roller decreases and vice versa. Thus the effect of 

rider roller size may be obtained by varying the parameter 

K1 (a normalized quantity) and substituting that value of 

K1 into equation (4.2.1) which finally appears in the 

pressure equation (4.2.12). In obtaining the numerical 

solution A is kept constant (i.e. Cm constant) while K 1 is 

changed by varying Rr· This phenomenon of changing Rr 
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Figure 30. Sketch Illustrating Method of 
Increasing Rider Roller 
Pressure 
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while keeping cm constant along with the location of the 

rider roller is shown in Figure 31. Note from equation 

(4.2.40) that the change in Rr is associated with a change 

in load w or pressure due to the rider roller. Figure 32, 

which is obtained from the numerical solution of the 

modified differential equation and by keeping A=5 and Y\c=l 

(these values of A and ~care arbitrarily chosen), shows 

the effect of the rider roller size on the constant gap 

film thickness. In this and the subsequent figures the 

term BN and ETC represent the normalized quantities A and 

~C' respectively. This figure basically shows the 

asymptotic values of H'' (i.e. H' '(ro)) for a range of K1 

values. It can be seen that as the value of Kt is 

decreased (i.e. rider roller size is increased) the 

constant gap film thickness decreases. Note that the 

numerical solution has not be obtained for K1 lower than 

0.4. This is due to the limitation on the numerical value 

of the product of K1 and ~c which should not be lower than 

0.475156. Note that this numerical value has been obtained 

by substituting the limiting value of ~Io (i.e 25.4.15°) in 

equation (4.2.33). It is obvious that if K1 is reduced 

below 0.4 then K1 llc (since ~c=l.O) will be significantly 
' 

lower than the limiting value of 0.475156 and thus a large 

amount of pressure will be developed in the unifomity 

region for which the modified differential equation is not 



Figure 31. Sketch Illustrating Method of 
Varying Rider Roller Size 
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valid. This limitation was discussed in detail in the last 

two sections. Observe from Figure 32 that there is a 

continious reduction in H' '(ro) which is due to the fact 

that as K1 is decreased the amount of pressure development 

within the inlet region (which is of small length 5~ - 8~) 

increases. This higher amount of pressure due to the rider 

roller within the inlet region is basically responsible for 

the greater reduction in the film thickness as the value of 

K1 is decreased (i.e. as the size of the rider roller is 

increased). This increment in the amount of the imposed 

pressure due to the rider roller for different values of K1 

is shown in Figure 33. It can be seen that as the value of 

K1 is decreased (rider roller size is increased) the 

pressure development increases. It is interesting to note 

that increasing the rider roller size results in an 

increase of pressure development area (i.e. ·rt range) . 

This physically explains why the product of K 1 ~c has to be 

kept within a limit so that the pressure due to the rider 

roller remains within the inlet region (as discussed 

earlier). The pressure distribution in the air film 

beneath the web is shown in Figure 34 for three different 

values of K1 (this and the subsequent pressure curves are 

obtained for a normalized pressure defined by equation 

(2.4.7)). It can be observed that there is almost no 

effect of the rider roller on the pressure in the air film 

since the pressure due to the rider roller only affects the 
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equilibrium of the web. Note that these last two plots for 

three different values of K1 are obtained for BN=5 and 

~c=l.O. As mentioned ealier, keeping A constant means that 

the minimum clearance is kept same for all value of K1 • In 

other words, the radius of the rider roller is changed 

while the minimum clearance is kept same for all sizes of 

the rider roller (see Figure 31). 

Let us now discuss the significance of the normalized 

quantity ~c· Recall that ~c is the normalized distance of 

the minimum clearance point from the inlet transition point 

i.e. from the point where ~=O (see Figure 28). Thus this 

quantity may be used to observe the effect of the rider 

roller location. The rider roller location may be varied 

by changing ~c within the inlet region; i.e. between ~=O 

to l\=oo (where oo corresponds to the point where p-tpa) . In 

order to observe the effect of rider roller location, the 

rider roller size and the minimum clearance (the normalized 

quantities.hand K1 ) should be kept constant while the 

value of ~c is varied within the inlet region. Physically 

this is shown in Figure 35. Note that by keeping A and K1 

constant we are keeping the amount of imposed pressure due 

to the rider roller constant. The dimensional quantity Xe 

corresponding to ~c may be obtained from equation 

(2.3.lOb). The numerical solution for observing the effect 

of rider roller location has been obtained for constant 



Figure 35. Sketch Illustrating Method of 
Varying Rider Roller 
Location 

122 



123 

values of BN=S.O and K1 =0.50 (i.e same value of both cm and 

Rr). Figure 36 shows the effect of rider roller location on 

the constant gap film thickness. The reduction in the 

asymptotic value of H'' can be seen as the rider roller is 

moved towards the inlet transition region. It can be seen 

that as the rider roller is moved away from the inlet 

transition region the value of H''(a:i) increases. A rider 

roller located near the inlet transition region develops 

most of the pressure within the inlet region and thus is 

most effective in reducing H' '(~·) (i.e. constant gap film 

thickness). This pressure distribution due to the rider 

roller for three different positions is shown in Figure 37. 

Since the rider roller size (Rr) and the minimum clearance 

cm are kept the same( i.e the same values of K1 and A) for 

the three different positions of the rider roller, the 

amount of pressure development is constant (i.e the area 

under the curve is the same). The only effective parameter 

is the location of the rider roller. The pressure in the 

air film beneath the web (see Figure 38) is again observed 

to be almost the same except that the length of the inlet 

region decreases slightly as the rider roller moves away 

from the inlet transition region(since the asymptotic value 

of Pn is reached at small l\ range). Observe that at infi

nity the pressure is not exactly zero. Physically, this is 

because of the presence of a certain amount of rider roller 

pressure at infinity (see Figure 37). Mathematically, this 
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may be justified from equation (4.1.21) which indicates 

that if the rider roller pressure exists at infinity then 

the pressure in the air film will not be ambient but a sum 

of ambient and rider roller pressure (since at infinity 

the last term of equation (4.1.21) becomes zero). 

The effect of varying the amount of imposed pressure 

due to a rider roller located somewhere in the inlet region 

may be seen from the expression of A given by equation 

(4.2.13) which appears in the pressure equation. For a 

rider roller this relates to the amount of load developed 

on the web (see equation (4.2.41)). It is clear that an 

increase in load w will increase the value of this 

normalized quantity. The effect of the imposed pressure may 

thus be seen by varying the dimensional quantity w (lb/in). 

Note that the variation in load w is possible by changing 

the radius of the rider roller Rr and by changing the 

minimum clearance Cm (see equation (4.2.40)). To observe 

the effect of the imposed pressure, K1 will be kept 

constant along with ~c while ~ is varied. This combination 

of the normalized quantities has already been discussed 

earlier in this section with the help of Figure 30. The 

effect of varying the normalized quantity~ for Kt =0.5 and 

~c =1.0 is shown in Figure 39. This figure shows the 

effect of imposed pressure on the constant gap film 

thickness (note BN represents A). The reduction in the 

asymptotic value of H'' is clear as the amount of imposed 
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pressure (i.e. BN) is increased. It may be observed from 

this curve that a limit is approached beyond which the 

increment in BN will not be effective in reducing the air 

film thickness. This is due to the fact that the 

derivation of the rider roller pressure (equation (4.2.12)) 

is based on the entrainment of the air (which is assumed to 

be incompressible) between the web and rider roller. In 

other words, the pressure on the web due to. the rider 

roller is assumed to be the pressure which is developed in 

the air film between the web and the rider roller. Such an 

analysis is the basis of many lubrication problems (like 

slider bearings, gear teeth meshing, lubricating channel 

between two discs, etc). In such problems the increment in 

the bearing number (for the present problem the bearing 

number is A) after a certain limit is not effective in 

reducing the air film thickness. In the case of the 

present problem this behaviour is shown in Figure 39 where 

it can be seen that after a certain limit of BN (i.e. A) 

the increment in BN (or A) is not effective in reducing the 

constant gap .film thickness. Note that in the development 

of the rider roller pressure the effects of the flexibility 

of the web were not considered (the consideration of the 

flexibility of the web in the development of the rider 

roller pressure requires a consideration of a web element 

under a complex state of bending moments and middle-plane 

forces due to both the wrapping of the web around the 

supporting roller and pressure on the web due to the rider 
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roller). Due to this simplification the present work has 

the limitation on the amount of external pressure applied. 

In the actual problem due to the flexibility of the web, 

after a certain amount of pressure the web will bend by 

wrapping around the rider roller, a situation which the 

present model cannot handle. 

The increment in the amount of pressure due to rider 

roller is obvious from Figure 40, as BN is increased. 

Again note that the increment in the amount of pressure is 

due to the combined effect of varying rider roller size Rr 

and minimum clearance cm. The pressure in the air film 

beneath the web is same as can be seen from Figure 41. The 

only difference occurs in the range of 1"\ at which the 

pressure approaches the ambient. It can be observed that 

as the load is increased the length of the inlet region is 

slightly decreased (i.e ambient pressure is achieved in a 

smaller~ range). 

4.5 An Example of Air Film 

Thickness Control 

In this section the effect of the rider roller on the 

constant gap film thickness will be examined for the 

dimensional parameters by considering the following 

operating parameters as an example 

Radius of the supporting roller 

Reduced tension in the web 

=18 in 

=l lb/in 
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Sum of the web and supporting roller speed 

Sum of the web and rider roller speed 

=400 in/sec 

=400 in/sec 

As discussed in the last section, the dimensional 

quantities corresponding to the three normalized quantities 

.f\, K 1 and )1c are the minimum clearance between the web and 

rider roller cm, the radius of the rider roller Rr, and the 

dimensional location of the rider roller Xe· The effect of 

these three dimensional parameters will be obtained for 

the above mentioned operating parameters on the constant 

gap film thickness. 

Figure 42 shows the effect of rider roller size (Rrl 

on the constant gap film thickness (h0 ). This result has 

been obtained for the case where rider roller size is 

increasing while the minimum clearance and the location of 

the rider roller are kept same for all sizes of the rider 

roller (see Figure 31) so that the normalized quantities A 

and 11c remain constant while the radius of the rider roller 

is varied (i.e K1 is varied). These constant values of Xe 

and cm are 0 . 2 0 in and 15 0 0 . .Ltin, respectively. Compare 

this figure with Figure 32 which shows the effect of 

K1 (normalized quantity which relates the radius of rider 

roller). A reduction in constant gap film thickness is 

observed as the radius of rider roller is increased. 

Figure 43 shows the effect of rider roller location Xe 

(in dimensional form) on the constant gap film thickness 
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h 0 • This plot has been obtained for a constant value of 

both cm = 1500 Jdn and Rr= 6 in . Since 1"tc is the 

normalized value of Xe, a curve similar to the one shown in 

Figure 36 is obtained. Again observe that as the rider 

roller is moved towards the inlet transition region the 

reduction in the constant gap film thickness h 0 increases. 

The effect of imposed pressure (in dimensional form) 

on constant gap film thickness is shown in Figure 44. Note 

that the relation expressing the load w is given by 

equation (4.2.40). As mentioned earlier, the load may be 

varied by changing the size of the rider roller Rr and by 

changing the amount of minimum clearance between the web 

and the rider roller (see Figure 30). It can be seen from 

Figure 44 that as the amount of load is increased (which 

may be due to change in both cm and Rr) the constant gap 

film thickness h 0 is decreased. Comparing this figure with 

Figure 39 it can be seen that both curves (i.e. 

dimensional and dimensionless results) give the identical 

behavior. This curve has been obtained for a constant 

value of xc=0.2 in 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The following conclusions are drawn from both the 

qualitative analysis and the numerical solution of the 

differential equations. Reference is made to the section 

or figure of the thesis where the details corresponding to 

each conclusion is laid down. 

1. In the passage of a web over a supporting roller 

three regions exist; the entrance region where pressure 

increases from ambient to some value corresponding to the 

constant gap region, uniformity region in which both the 

air film thickness and the pressure are constant, and the 

exit region where the web undulates in order, to adjust to 

the decreasing pressure from the constant gap region value 

to the ambient. (Ref. Section 2.6). 

2. Constant gap air film thickness is dependent upon 

viscosity of air, sum of the web and supporting roller 

speed, radius of the roller, and the reduced tension in the 

web. This film thickness is given by equation (3.4.1). 

h 0 = 0.643 R {(6~U)/T} 2 / 3 

138 



3. Pressure in the constant gap region is given by 

equation (3.4.3). 

p = Pa + T/R 
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From the above equation it is clear that the increase 

in air film pressure from ambient to constant gap region is 

T/R. This ratio for most web handling applications is 

small compared to ambient pressure. Thus the assumption of 

incompressibility should be appropriate (Ref. Section 3.4). 

4. The length of the inlet region for most web 

handling applications is very small. This fact may be 

corroborated from Table III where it can be seen that for 

a roller of 18 in. radius the length of the inlet region is 

2.14 inches, which is very small compared to the radius of 

the roller. 

5. The constant gap film thickness is not the 

minimum film thickness, in fact, minimum film thickness 

occurs somewhere in the exit region and is approximately 

71.6% of the constant gap film thickness. (Ref. Section 

3.4 and Figure 18). 

6. The modification of the mathematical formulation 

for the modified geometry, in ~hich external pressure is 

applied on the we!t, results in a new modified equilibrium 

equation. The hydrodynamic lubrication equation is not 

affected. Since the constant gap air film thickness is 

dependent on the amount of air entrained through the inlet 



region, the strategy for controlling air entrainment will 

be effective in the inlet region. (Ref. Section 4.2). 

7. Increase in pressure on the web due to the rider 

roller results in a decrease in the constant gap film 

thickness~ (Ref. Section 4.4) . 
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./a. It has been found numerically that a rider roller 

closer to the inlet trasition point is most effective in 

reducing the air entrainment. (Ref. Section ~.4). 

9. Since an increase in the rider roller size is 

associated with an increase in the 

rider roller, a reduction in the 

pressure due to the 

constant gap film 

thickness has been observed as the rider roller size is 

increased. (Ref. Section 4.4). 

5.2 Recommendations for Future Work 

The following points are recommended as the areas for 

the further investigations. 

1. The model that has been developed is based on 

many assumptions. Before the study of this model is 

further extended it seems very appropriate to have an 

experimental verification of the model. The experimental 

phase will provide a reliable data base by which the 

present model may be tested (an experimental work in this 

regard is already underway under the guidance of principal 

investigator of this project). 

The recommendations for extending the analytical 

model are described in the following points: 
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2. The transformation of the coordinate system to the 

transition regions lead to a solution which is independent 

of the length of the constant gap region (i.e. wrap angle). 

This approximation is true as long as a sufficient length 

of the uniformity region separates the inlet and exit 

regions and as long as the web is close to the roller. 

However, when the length of the uniformity region (i.e. 

wrap angle) approaches zero, the gap is expected to 

approach infinity because no radial component of tension is 

present to keep the web near the roller. On the basis of 

these arguments it seems important to obtain a formulation 

by considering the origin of the coordinate system at the 

center of the uniformity region. Such a formulation will 

enable one to obtain a solution dependent on the length of 

the uniformity region(i.e wrap angle). Such a formulation 

will also be appropriate for examining the effects of 

applying external pressure in the uniformity region. 

3. The present model will not give a true picture of 

air film thickness variation for web handling applications 

where porous materials are processed. It is recommended for 

future work to take into account the porosity effects. 

This will involve modification of the hydrodynamic equation 

and a one dimensional Reynolds equation will not be 

applicable for such a problem. 

4. As mentioned earlier in the report, the neglect of 

the bending term in the web equilibrium equation leads to a 

solution valid for a perfectly flexible web. A perfectly 
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flexible web, thus, by our analysis is the one in which the 

resistance to bending is negligible and the tension term 

is the dominating one in the equilibrium equation. 

This idealization is very useful to get insight into the 

air entrainment mechanism for tension-dominated web 

handling applications. However, even a very thin web when 

bent over a small roller can produce substantial resistance 

to the bending thereby affecting the equilibrium equation. 

It is recommended that future work examines the effects of 

the resistance to bending of the web material in the 

development of air film thickness. For such a study one 

needs to consider the flexure rigidity of the web. The one 

dimensional hydrodynamic equation will still remain 

applicable, but in the web equilibrium equation the bending 

term should not be disregarded so that the effects of plane 

strain, plate type bending are included. The consideration 

of web rigidity is very important for the study of control 

strategy. The inclusion of this term will enable to 

examine the effects of applying load to the extent beyond 

which the web material will elastically deform. 

5. We know that the entrance region is all important 

as far as the development of air film thickness is 

concerned. Any change in this region will ultimately affect 

the film thickness behavior. A change in pressure in the 

inlet region can be caused at high line speeds due to fluid 

inertial effects. The inertial effects create a pressure 

component given by ~u2;2. If the line speed is high the 



pressure due to this term will be comparable to the 

pressure due to tension. Since today most webs are 

processed at high speeds, it is felt necessary also to 

study the effect of fluid inertia on the overall air film 

development. 

j' 6. The limitation of the modified model is that it 

does not take into account the effects of the flexibility 

of the web material (since in the derivation of the 

equation of the rider roller pressure we did not consider 

the flexibility of the web). Due to this limitation the 

application of external pressure beyond a certain limit 

does not show any reduction in the constant gap film 

thickness. It is recommended that in future work, the 
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flexibility effects of the web should be considered in the 

derivation of the equation of the rider roller pressure. 

The inclusion of this effect will enable us to determine 

the true reduction in the constant gap film thickness, 

particularly at large loads (the range beyond which the 

present model does not show any reduction in the constant 

gap film thickness). 

7. The conclusion drawn that the rise in pressure in 

the air film is much smaller than the ambient pressure is 

true as long as there is no external pressure applied on 

the web. However, application of a significant amount of 

pressure on the web is expected to cause the rise in air 

film pressure to be comparable with the ambient pressure. 

In such case the incompressibility assumption will not be 



true and it becomes necessary to modify the model by 

treating air to be compressible. Such a treatment is 

expected to show a higher reduction in constant gap film 

thickness. This will be due to the smaller volume flow 

rate at a given mass flow for higher pressure. 
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APPENDIX A 

NORMALIZATION FOR THE DERIVATION OF THE 

REYNOLDS LUBRICATION EQUATION 
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Let us first assume the following normalizations 

X = x/l 

y = y/b 

iu = u/u. 
l. 

V = v/V' 

Now the continuity equation for a steady two dimensional 

case is 

Substituting above normalizatons 

(Ui/l)~ + (V'/b)~ = 0 

8UJ + ·;;x (V'l)/(Ui b) §¥ = 0 

Since the continuity equation must not change, hence we 

may write 

(V'l)/(Ui b) = 1 

or 

Thus the new normalized velocity component for 

y-coordinate direction is 

v = v/V' = (vl)/(Uib) 

Similarly we may write z-coordinate direction normalized 
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velocity as 



APPENDIX B 

COMPARISON OF THE ORDER OF MAGNITUDE IN 

THE DERIVATION OF REYNOLDS EQUATION 
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Consider x-coordinate momentum equation for a steady 

state case 

1 2. 2. 

-au + uux. v~+~ = - (l/P)~ + re u. 
v L.;-x.2 

a ii + ~-i;:z. 
au 1 + ;-z2 J 

Substituting the normalized expressions from equation 

(2.2.8) we get 

2. 2. 2. 

v[(ui/la)~-~2 + (Ui/b2 )~-~a + (Ui/h2 )~-~2] 

or, 

2. 2. 2. 

v(Ui/h2 )[(h/1) 2~-~2 + (h/b) 1§-~2 +~-~a] 

which may be writt~n as 

Since h <<< 1 and h <<< b , we may neglect the higher 

order terms of (h/l) & (h/b). 

= 



APPENDIX C 

SIMPLIFYING STEPS IN THE DERIVATION 

OF REYNOLDS EQUATION 
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We have from equation (2.2.19) 

Jh r·h ~(pu)dz + ~(pv)dz + ~(ph) = o 
0 '0 

(i) 

Applying Leibnitz's rule 

h 
~x Jo (pu)dz 

h 
+ ~ J0 cpv)dz + kCPh) = 0 

Assuming that density of air is constant along the 

thickness of the air film (i.e. p ~ p(z)) 

(ii) 

Substituting u & v from equations (2.2.16a) & (2.2.16b) we 

get, for the integral terms 

Substituting the above integrals in equation (ii) we get 

+~[Ph] = 0 



~ 
which may be simplified to f form 

12~ [Ph] 
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APPENDIX D 

FORCE AND MOMENT EQUATIONS FOR 

THE WEB ELEMENT 

155 



156 

t/·z. 

Nx = J ~xlry + z)/ry dz 

-t/2 

' t/2 

Ny = J ~ylrx + z)/rx dz 

-t/2 

r/, 
Nxy = Txy(ry + z)/ry dz 

-t/z. 

r/, 
Nyx = Tyx(rx + z)/rx dz 

-t/2 

Qx = 
- J t/, 

Txz<ry + Z)/ry dz 

-t/2 

Qy = - I t/, 
~yz<rx + z)/rx dz 

-th-
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M = - I t/2 
·-x. ~x<ry + z)/ry z dz 

-t/z 

My = 
-f t/• 

cry<rx + z)/rx z dz 

-t/·2 

I 
t/2 

Mxy = - -rxyCry + z)/ry z dz 

-t/2 

J 
t/2 

Myx = -

-t/1 



APPENDIX E 

SIMPLIFIED FORCE AND MOMENT EQUATIONS 

FOR THE WEB ELEMENT 
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Nx = r'· cr-x dz 

-t/2 

Ny = r'· "yCrx + z)/rx dz 

-t/-:.i. 

Nxy = r'· Txy dz 

-t/:i. 

Nyx = 
r,, 

Tyx.Crx + z}/rx dz 

-th .. 

Qx = 
-J t/' 

-rxz dz 

-t/1 .. 

Qy = 
- J t/2 

.,-yz<rx +z)/rx dz 

-t/2 
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M = - I t~2 ·~ crx z dz 

-t/2. 

My = -I t/> 
a-y<rx + z)/rx z dz 

-t/z. 

Mxy = 
_ I tf, 

'Txy z dz 

-t/.2 

r,, 
Myx = - Tyx(rx +Z)/rx z dz 

-t/2 



APPENDIX F 

DERIVATION OF THE FORCE EQUILIBRIUM EQUATION 
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Multiplying equation (2.2.25) with dz and then 

integrating between the limits -t/~ to t/2 we get 

I 
t/2 

~xy dz + I 
t/2. 

~y 

-t/z. -t/2. 

Applying Leibnitz's rule 

e j' t/2.. 
me -rxy dz 

-t/z. 

t/z.. 

+ ~f ~y{<rx + z)/rx} dz 

-t/2 

= 0 

= 0 

Referring to the equations given in the Section II, 

Appendix B the above equation may be written as 
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APPENDIX G 

COUPLED NUMERICAL PROCEDURE OF RUNGE-KUTTA 

AND MILNE PREDICTOR-CORRECTOR METHODS 
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The computer code that has been written for the 

purpose of solving the governing differential equation 

uses a coupled numerical procedure of Runge-Kutta method 

and Milne predictor-corrector method. The starting values 

required for the Milne method are ·computed by the use of 

fourth-order Runge-Kutta method, which is in its most 

general form written as 

where K's are given by 

With the starting procedure established, the 

following predictor-corrector equations of the Milne 

method are used in furthe.v integration of the differential 

equation. 

(Predictor) 

P(Hi+t) = Hl_ 3 + (4/3)~~[2Hl - Hl- 1 + 2Hl- 2 ] (i) 
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P(Hl_+1) = H1 ' + (4/3).e..yt[2H' '- H1 ' + 2H 1 ' J 1-3 1 1-i. 1-2 (ii) 

P(Hl_.f. 1 ) = HI ' ' + ( 4 I 3 ) .b'l [2H I ' I - HI I I + 2H I I I ] 1-3 1 1-1 1-2 (iii) 

(Corrector) 
~ 

C(Hl_+ 1 ) = HI I + t::.'Y\/3 [H' I + 4H' '+ P(H'+' >]' 1-1 1-1 1 1 1 

(iv) 

(v) 

(vi) 

C(Hl_.L) = H 1 1 1 + on/ 3 [H 1 1 1 + 4H 1 1 1 + p ( H 1 1 1 ) J 1-1 -, 1-1 1 1+1 (vii) 

C(H 1 '') 1+1 (viii) 

From equations (i) through (iv) we obtain predicted 

values. These values are then substituted in equations (v) 

through (viii) to obtain the corrected values. Since both 

P(Hi+ 1 ) and C(Hi+ 1 ) are determined in each step of the 

calculation, it is a trivial amount of work to determine 

the error at each step. Once the error has been determined 

we may easily change the step size. To change the step 

size at any point we must restart the solution at that 

point with four new starting values of each H and its 

derivatives corresponding to new step size. An easy 

approach in this regard is to double or halve the step 

size, since in that way we can use values of H and its 



derivatives already available. This approach requires 

seven values of each H and its derivatives computed at the 

old step size 
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APPENDIX H 

EQUATION FOR WEB-RIDER ROLLER CLEARANCE 
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From Figure 27 we can write 

Cr = OB = OC + CB 

where 

CB = O'C - O'B 

or, 

CB = Rr(l - easer> 

and, 

oc = Cm 

then, 

Generally, the pressure development in such a case is 

within a small region; i.e. within a small angle, thus the 

expansion of easer is 

easer= 1 - 9r 2 /2! + ------ neglected 

Also for small angle, 

This gives the expansion of easer as 

Thus 
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or, 

which may be written as 

where 

From Figure 27 we may write 

then, 

Using the normalized form of x from equation (2.3.10) 

the above equation may be written as 

or, 

where 

or, 
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The clearance equation to the right of the inlet 

transition point may be determined in a similar approach. 

Now the length DE due to the curvature of the web in the 

uniformity region must be considered. 

Since the pressure is developed within a small range 

we may write 

DE = x 2 /2Ra 

where Ro = R + ho 

Let us define 

which may be simplified to 
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where, 
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COMPUTER PROGRAM LISTINGS 
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C INLET REGION SOLUTION 
c 
c 

DIMENSION ETC6) 
DIMENSION FC6),FDC6),FDDC6>,FDDDC6),HC7),HDC7>,HDDC7>,HDDDC7), 

c 
c 

c 

1 QC3),QDC3),QDDC3),QDDDC3),PRC7),PRNC7),PRDC7),RC3>,RDC3> 

DATA D,EPS,ERR/.25,l.OE-06,1.0E-06/ 
OPENCUNIT=l22,FILE='ENT1') 
HDDINF=0.643 

C INITIAL VALUES 

I=l 
ETCI>=-7.5 V"' 
FCI>=0.0005 
FDCI)=0.0005 
FDDC I> =O. 0005 
FDPD<I>=0.0005 -
PRCI>=l.O 
PRNC I> =l. O 
PRDCI)=-FDDDCI> c ~---··-··-·--····-.---........ --·--·-

c SIX REQUIRED STARTING VALUES THROUGH RUNGE-KUTTA METHOD 
c 

111 IFCI .GT. 5) GOTO 112 
DlF=D*FDCI) 
DlP=D*FDDCI> 
DlQ=D*FCI > 
DlR=D*C-FDDD<I>> 
D2F=D*CFDCI>+DlP/2.> 
D2P=D*CFDDCI)+DlQ/2.) 
D2Q=D*CFCI>+DlF/2.) 
D2R=D*C-FDDDCI>+DlR/2.) 
D3F=D*CFDCI>+D2P/2.) 
D3P=D*CFDD<I>+D2Q/2.) 
D3Q=D*<FCI>+D2F/2.) 
D3R=D*C-FDDDCI)+D2R/2.) 
D4r=D*(fD{I)+D3Pl 
D4P=D""CFDDCI>+D3Ql 
D4Q=D*CFCI>+D3Fl 
D4R=D*C-FDDDCI>+D3R> 
f(I+l>=FCil+CDlF+2.*D2F+2.*D3F+D4F)/6.0 
FDCI+ll=FD(I>+CD1P+2.*D2P+2.*D3P+D4Pl/6.0 
FDDCI+ll=FDDCI>+CD1Q+2.*D2Q+2.*D3Q+D4Q)/6.0 
FDDD(I+l)=FCI+ll 
PRCI+ll=PRCil+CD1R+2.*D2R+2.*D3R+D4Rl/6. 
PRNCI+ll=l.-FDDCI+ll/HDDINF 
PRDCI+ll=-FDDDCI+ll 
ETC I+l) =ETC I) +D 
I=I+l 
GOTO 111 

112 DO 113 I=l,6 
HCil=F(I)+l.0 



c 

113 

97 

98 

99 

1 

1 

HDCI>=FDCI> 
HDDC I> =FDDC I) 
HODD C I> = FDDD ( I> 
WRITE(l22,97) 
FORMAT ( lH , I 

WRITEC122,98) 
FORMAT ( lH , I 

'REGION 
WRITEC122, 99 > 
FORMAT ( lH , I 

DO 114 I=l,6 
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TABLE I' ,II> 

NUMERICAL RESULTS OF INLET ' 
SOLUTION', 111) 

ETA H H' H\' I 

H',, P',11> 

114 WRITEC122,100) ETCI> ,HCI} ,HD<I> ,HDD<I> ,HDDDCI> ,PRtHil. 

C MILNE PREDICTOR CORRECTOR METHOD 
c 

c 

ETA=ETC6} 
ETOLD=ETA 
ETAM=lOOOO.O 
DETA=D 
ERR=l.OE-06 
EPS=l.OE-06 
ERP=29.0:kERR 
ERG=.Ol*ERP 

10 A=4./3.:kDETA 
B=l. I 3. :kDETA 
K=l 

1 HDDC7)=HDDC3>+A*C2.*HDDDC4>-HDDDC5)+2.*HDDDC6)) 
ETA=ETA+DETA 
HDDP=HDDC7) 
HDC7l=HDC3>+A*C2.*HDDC4>-HDDC5>+2.*HDDC6)) 
HDP=HDC7) 
HC7l=HC3>+A*C2.:kHDC4>-HDC5}+2.*HDC6)) 
HP=HC7) 
HDDDC7)=CHP-l.0)/(HP*:k3) 
HDDDP=HDDDC7) 
PRC7l=PRC3l+A*C2.*PRDC4l-PRDC5l+2.*PRDC6)) 
PRNC7l=l.O-HDDPIHDDINF 
PRDC7)=-HDDDP 

3 HDDC7)=HDDC5)+B*CHDDDC5l+4.*HDDDC6l+HDDDC7l) 
HDDC=HDDC7) 
HDC7>=HDC5>+B*CHDDC5l+4.*HDDC6l+HDDC7ll 
HDC=HDC7l 
HC7l=HC5l+B*CHD<Sl+4.*HDC6l+HDC7>l 
HC=H< 7) 
HDDDC7l=CHC-l.)/CHC**3l 
HDDDC=HDDDC7l 
PRC7l=PRC5l+B*CPRDC5l+4.*PRDC6l+PRDC7ll 
PRNC7l=l.0-HDDC/HDDINF 
PRDC7>=-HDDDC 

C LOCAL ERROR EVALUATION 
c 

IFCABSCHC-HP>-l.OE-04)26,26,4 
26 IFCCETA-ETOLD)-0.320)4,4,27 



27 WRITE<3,~) ETA,H<7l,HD<7>,HDD(7l,HDDD<7l 
WRITE<l22,100) ETA,H<7l,HD<7l,HDD<7l,HDDD<7l,PRN<7l 

100 FORMAT<lH ,Fl0.4,5El3.4) 
ETOLD=ETA 

4 C=ABS<HC-HP) 
IF<C-ERP~HC) 20,20,21 

20 IF<<ETA .GT. 3.) .AND. <HDDDC .LE. l.E-06)) GOTO 40 
5 IF<C-ERG~HC) 7,7,30 
30 K=l 
16 DO 31 I=l,6 

H<I) =H< I+l) 
HD< I) =HD ( I+ 1) 
HDD< I) =HDD( I+l) 
PR< I) =PR( I+l) 
PRD ( I ) = PRD ( I+ 1 ) 

31 HDDD( I>=HDDD< I+ll 
GOTO 1 

7 GOTO(ll,12,13,14,15),K 
11 Wl=H<l) 

WDl=HD<l) 
WDDl=HDD(l) 
WDDDl=HDDD(l) 
Pl=PR(l) 
PDl=PRD(l) 
K=2 
GOTO 16 

12 K=3 
GOTO 16 

13 W2=H<l) 
WD2=HD(l) 
WDD2=HDD(l) 
WDDD2=HDDD(l) 
P2=PR( 1) 
PD2=PRD(l) 
K=4 
GOTO 16 

14 K=5 
GOTO 16 

15 H(6)=H(7) 
H<4l=H(3) 
H(3)=H(l) 
H( 2) =W2 
H ( 1) =Wl 
PR(6l=PR(7) 
PR ( 4 ) =PR (3 l 
PR(3)=PR(l) 
PR(2)=P2 
PR<l) =Pl 
HDC6l=HD(7) 
HD<4l=HD(3) 
HD(3l=HD<l) 
HD(2)=WD2 
HD<ll=WDl 
HDD(6)=HDD(7) 
HDD ( 4 ) = HDD ( 3 ) 
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HDDC 3) =HDDC 1) 
HDDC2>=WDD2 
HDDCll=WDDl 
PRDC6l=PRD<7l 
PRDC4l=PRDC3) 
PRDC 3>=PRDC1 > 
PRDC2>=PD2 
PRDCll=PDl 
HDDDC6l=HDDDC7} 
HDDD<4>=HDDDC3l 
HDDD< 3l=HDDDC1} 
HDDDC2>=WDDD2 
HDDDCl>=WDDDl 
DETA=DETA+DETA 
GOTO 10 

21 IF<DETA-0.00000001)40,40,41 
41 DO 42 I=l,3 

QCil=.5*CHC5-Il+HC6-Ill-.0625*CHC7-Il-HC6-Il-HC5-Il+H(4-I)) 
RCil=.5*CPRC5-Il+PRC6-Ill-.0625*CPRC7-Il-PRC6-Il-PRC5-I> 

1 +PRC4-I>> 
QD<I>=.5*CHDC5-I>+HD(6-Ill-.0625*CHDC7-I>-HDC6-Il-HDC5-I) 

1 +HDC4-Il> 
RDCI)=.5*CPRDC5-Il+PRDC6-Ill-.0625*CPRDC7-Il-PRDC6-I)-

l PRDC5-I)+PRDC4-I>l 
QDD(Il=.5*CHDDC5-Il+HDDC6-I)l-.0625*CHDDC7-I)-HDDC6-Il-

l HDDC5-Il+HDDC4-Ill 
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42 QDDDCil=.5*CHDDDC5-Il+HDDDC6-I)l-.0625*CHDDDC7-Il-HDDDC6-Il 
1 -HDDDC5-I>+HDDDC4-Il) 

HC6)=H(5) 
HC2>=H(3) 
HC5l=QC1> 
HC3>=QC2> 
HCl>=QC3l 
PR{6)=PR(5) 
PRC2>=PRC3l 
PRC5l=R(l) 
PRC3l=RC2l 
PR<ll=RC3l 
HDC6l=HDC5) 
HDC2l=HDC3l 
HD( 5 l =QDCl) 
HDC3l=QDC2) 
HDCll=QD(3) 
PRDC6l=PRDC5l 
PRDC2l=PRD(3) 
PRDC5l=RDCll 
PRDC3l=RDC2> 
PRDCll=RDC3) 
HDDC6)=HDDC5) 
HDDC 2 > =HDDC 3 > 
HDDCS>=QDDCl) 
HDDC3l=QDDC2) 
HDD<ll=QDDC3) 
HDDDC6l=HDDDC5) 
HDDDC2l=HDDDC3) 



HDDD(5)=QDDD(l) 
HDDDC3)=QDDD(2l 
HDDD(l)=QDDD(3) 
ETA=ETA-2.:ll:DETA 
DETA=O.S*DETA 
GOTO 10 

40 STOP 
END 
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C EXIT REGION SOLUTION 
c 
c 

DIMENSION ETC6l 
DIMENSION F(6l,FDC6l,FDDC6l,FDDDC6),H(7),HD(7),HDDC7l,HDDDC7), 

c 
c 

c 

1 QC3l,QDC3l,QDDC3l,QDDDC3l,PRC7l,PRD(7),R(7l,RDC7l,PRNC7l 

DATA D,EPS,ERR/.25,l.OE-06,1.0E-06/ 
OPENCUNIT=l22,FILE='EXT1' l 
HDDINF=0.643 

C INITIAL VALUES 
c 

c 

I=l 
ETC I) =-13. 0 
FCil=-0.000272 J-. 
FDCil=0.0000046 7 
FDDCil=0.000260 
FDDDCil=0.00026 
PR< I l =l. O 
PRN< I) =l. 0 
PRDCil=-FDDD<Il 

C USE OF RUNGE-KUTTA METHOD FOR SIX STARTING VALUES 
c 

111 IFCI .GT. 5) GOTO 112 
DlF=D""FDCil 
DlP=D;).:f'DDC I) 
DlQ=-D*F<Il 
DlR=D,1:<-FDDDCill 
D2F=D*CFDCil+DlP/2.) 
D2P=D*CFDDCil+DlQ/2.) 
D2Q=-D*CFCil+DlF/2.l 
D2R=D*C-FDDDCil+DlR/2.) 
D3F=D*CFDCil+D2P/2.) 
D3P=D*CFDDCil+D2Q/2.l 
D3Q=-D*CFCil+D2F/2.) 
D3R=D*(-FDDD(Il+D2R/2.l 
D4F=D*(FDCil+D3Pl 
D4P=D*CFDDCil+D3Ql 
D4Q=-D*CF<Il+D3Fl 
D4R=D"'=C-FDDDCil+D3Rl 
FCI+ll=F(I)+(DlF+2."'=D2F+2."'=D3F+D4Fl/6.0 
FDCI+ll=FDCil+CDlP+2."'=D2P+2."'=D3P+D4Pl/6.0 
FDDCI+ll=FDDCil+CDlQ+2.*D2Q+2.*D3Q+D4Ql/6.0 
FDDDCI+ll=-FCI+ll 
PRCI+ll=PRCil+CDlR+2.:ll:D2R+2.*D3R+D4Rl/6.0 
PRN<I+U =l. 0-FDDC I+U /HDDINF 
PRD<I+ll=-FDDDCI+ll 
ET< I+l l =ETC I) +D 
I=I+l 
GOTO 111 

112 DO 113 I=l,6 
HC Il =F<I) +l. 0 



c 

113 

97 

98 

99 

1 

1 

HDC I> =FD< I) 
HDD ( I) =FDD C I) 
HDDDCil=FDDDCI) 
WRITEC122, 97 l 
FORMAT ClH , I 

WRITEC122,98l 
FORMAT( lH , I 

I REGION 
WRITEC122,99) 
FORMAT ( lH , I ETA 

DO 114 I=l,6 

TABLE I I I , I /) 

NUMERICAL RESULTS OF EXIT' 
SOLUTION I , I I I ) 

H H' 
H''' P',//l 

114 WRITEC122,100l ETCI),HCI),HD(Il,HDDCI),HDDDCI),PRNCil 

C MILNE PREDICTOR-CORRECTOR METHOD 
c 

c 

ETA=ETC6l 
ETOLD=ETA 
ETAM=lOOOO.O 
DETA=D 
ERR=l. OE-06 
EPS=l.OE-06 
ERP=29.0,i.,ERR 
ERG=.01,i.,ERP 

10 A=4./3,,i.,DETA 
B=l./3.,i.,DETA 
K=l 

1 HDDC7l=HDDC3l+A,i.,(2.*HDDD<4l-HDDDC5)+2.*HDDDC6)) 
ETA=ETA+DETA 
HDDP=HDDC7l 
HDC7l=HDC3l+A*<2.,i.,HDDC4l-HDD<Sl+2.*HDDC6l) 
HDP=HDC7l 
HC7)=HC3l+A,i.,<2.*HDC4l-HDC5l+2.,i.,HDC6ll 
HP=HC7l 
HDDDC7l=Cl.0-HPl/CHP*,i.,3l 
HDDDP=HDDDC7l 
PRC7l=PRC3l+A*<2.,i.,PRDC4l-PRDC5l+2.,i.,PRDC6l) 
PRN(7)=1.0-HDDP/HDDINF 
PRD(7)=-HDDDP 

3 HDD<7l=HDDC5l+B*CHDDDC5l+4.,i.,HDDDC6l+HDDD(7ll 
HDDC=HDDC7) 
HDC7l=HDC5l+B*<HDDC5l+4.*HDD(6l+HDDC7ll 
HDC=HDC7l 
HC7l=HC5l+B*CHDC5l+4.*HDC6l+HDC7)l 
HC=H(7) 
HDDDC7l=(l.-HCl/CHC**3l 
HDDDC=HDDD(7) 
PRC7l=PRC5l+B*CPRDC5)+4.*PRDC6l+PRDC7ll 
PRNC7l=l.0-HDDC/HDDINF 
PRDC7)=-HDDDC 

C LOCAL ERROR EVALUATION 
c 

IFCABSCHC-HPl-l.OE-04)26,26,4 
26 IFCCETA-ETOLDl-0.520) 4,4,27 
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27 ~lRITE<3,~) ETA,H<7>,HDD<7l,HDDD(7),PRN(7) 
WRITE(l22,100l ETA,H(7l,HD(7l,HDD(7),HDDD(7l,PRN(7) 

100 FORMAT(lH ,Fl0.4,5El3.4l 
ETOLD=ETA 

4 C=ABS(HC-HPl 
IFCC-ERP~HC) 20,20,21 

20 IFC<ETA .GT. 3.) .AND. <ABS<HDDDCl .LE.l.E-6ll GOTO 40 
5 IFCC-ERG~HCl 7,7,30 
30 K=l 
16 DO 31 I=l,6 

H<I) =HC I+l) 
HD< I) =HDC I+l l 
HDD< I) =HDD< I+l l 
PRCil=PRCI+ll 
PRD ( I ) = PRD ( I+ 1 ) 

31 HDDD<Il=HDDDCI+ll 
GOTO 1 

7 GOTO(ll,12,13,14,15),K 
11 Wl=H C ll 

WDl=HDCl) 
WDDl=HDDCl) 
WDDDl=HDDDCll 
Pl=PRCl) 
PDl=PRDCll 
K=2 
GOTO 16 

12 K=3 
GOTO 16 

13 W2=HC1 l 
WD2=HD<ll 
WDD2=HDD<l) 
WDDD2=HDDD(l) 
P2=PR< 1) 
PD2=PRD(l l 
K=4 
GOTO 16 

14 K=5 
GOTO 16 

15 H(6l=H(7) 
H<4l=H(3l 
H<3l=H(ll 
H(2)=W2 
H<ll=Wl 
PR< 6) =PR<7) 
PR<4l=PR<3l 
PR<3l=PR(l) 
PR(2)=P2 
PR<l) =Pl 
HD(6)=HD{7) 
HDC4l=HDC3l 
HD(3l=HDCll 
HDC2l=WD2 
HD<ll=WDl 
PRD(6)=PRD(7) 
PRD ( 4 l = PRD ( 3 l 
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HDDD(3)=QDDD(2) 
HDDD(l)=QDDD(3) 
ETA=ETA-2.*DETA 
DETA=O.S*DETA 
GOTO 10 

40 STOP 
END 
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C THE MODIFIED COMPUTER PROGRAM 
c 
c 

DIMENSION ETC6l 

182 

DIMENSION FC6l,FDC6l,FDDC6l,FDDDC6l,HC7l,HDC7l,HDDC7l,HDDDC7l, 

c 
c 

c 

1 QC 3) , QD ( 3 l , QDD C 3 l , QDDD < 3) , PRC 7 l , PRN C 7 l , PRO C 7 l , RC 3 l , RD C 3 l , 
1 PPRC7l,PPRDC7l,S(3l,SDC3l 

LOGICAL FLAG 

PARAMETER CPI=3.141593l 
DATA D,EPS,ERR,VIS/.25,l.OE-06,l.OE-06,2.62E-09/ 
OPENCUNIT=l22,FILE='VWRR'l 

C INPUT OPERATING PARAMETERS 
c 

U=400.0 
UN=400.0 
RS=l8.0 
T=l. 0 

C CONSTANT GAP FILM THICKNESS W/O RIDER ROLLER 

c 

H0=0.643*RS*CC6.*VIS*U/Tl**0.6667) 
RO=RS+HO 
XC=0.2136 
RR=l. 0 
CM=l500E-06 
WLOD=2.44752*VIS*UN,i,RR/CM 
C0=0.45467,i,RS*C<6.*VIS*U/CTll**0.3333)/(SQRTCCMll 
Cl=CQ . .i.SQRTC l/RRl 
C2=CO,i,SQRT(l/RR+l/ROl 
BN=O. 41345* C (RS /CM) ,i,,.:.2) * (U /UN l * C ( 6*VIS*U/Tl **l. 33333) 
ETC=l.5552l*XC*CCT/(6.*VIS*Ull**0.3333l/RS 
~"'R.ITE(3,*lBN,Cl,ETC 

PSilO=ATANC-Cl*ETCl 
FLAG=.FALSE. 
IF<<ETC*Cll .LT. 0.475156) FLAG=.TRUE. 

c 
C FOR INLET REGION SOLUTION £ET FLAG = FALSE 
c 

c 

FLAG=.FALSE. 
CALL SEARCH<Cl,C2,FLAG,PSI10,PSISl 
CS=(l/COS<PSISll**2 
HDDINF=0.593 

C INITIAL VALUES 
c 

91 I=l 
ET<Il=-7.5 
F< Il =O. 0005 
FD<Il=0.0005 
FDDCil=0.0005 
CI=C2 
IF<ETCil .GE. 0. l CI=Cl 

C FOR INLET REGION SOLUTION USE Cl 



CI=Cl 
XP=CI*(ET(Il-ETCl 
C = 1 . + ( XP >'<"" 2 l 
IFCET<Il .GE. 0.) THEN 

PPRCil=EQNl(Cl,C2,BN,XP,C,CS,PSISl 
ELSE 

PPR<I>=EQN2(Cl,C2,BN,XP,C,CS,PSIS) 
·END IF 

C FOR INLET REGION SOLUTION USE FIRST EQUATION 
PPRCI)=EQNl(Cl,C2,BN,XP,C,CS,PSIS) 
IFCXP .LT. TANCPSISll PPR(Il=O.O 
PPRD(Il=BN*(CS-Cl/(C>'<>'<3l 
IF(XP .LT. TANCPSISll PPRDCil=O.O 
FDDDCil=F(I)+PPRD(I) 
PRCI>=l.O 
PRN<Il=l.O+(PPRCil-FDDCill/HDDINF 
PRDCil=PPRDCil-FDDDCil 

111 IFCI .GT. 5) GOTO 112 
DlF=D>'<FDCil 
DlP=D*FDD<Il 
DlQ=D*F<Il 
DlR=D*<-FDDD<Ill 
D2F=D"'CFDCil+DlP/2.) 
D2P=D"'CFDD<Il+DlQ/2.) 
D2Q=D"'(F(Il+DlF/2.) 
D2R=D>'<(-FDDD<Il+DlR/2.) 
D3F=D>'<(FD(Il+D2P/2.) 
D3P=D>'<(FDD(I)+D2Q/2.) 
D3Q=D*(FCil+D2F/2.) 
D3R=D>'<(-FDDD(Il+D2R/2.) 
D4F=D*(FD<I)+D3Pl 
D4P=D*CFDD(Il+D3Ql 
D4Q =D'"' ( F ( Il +D3F) 
D4R=D*(-FDDD(Il+D3Rl 
F(I+ll=F(Il+<DlF+2.*D2F+2.*D3F+D4Fl/6.0 
FD(I+ll=FD(Il+(DlP+2.*D2P+2.*D3P+D4Pl/6.0 
FDD(I+ll=FDD(I)+(DlQ+2.*D2Q+2.*D3Q+D4Ql/6.0 
ET ( I+ ll =ET ( I l + D 
CI=C2 
IF(ET(I+ll .GE. 0.) CI=Cl 

C USE Cl FOR INLET REGION SOLUTION 
CI=Cl 
XP=CI*(ET(I+ll-ETC) 
C=l.+<XP1<*2l 
IFCETCI+ll .GE. 0. l THEN 

PPRCI+ll=EQN1CC1,C2,BN,XP,C,CS,PSIS) 
ELSE 

PPR(I+ll=EQN2(Cl,C2,BN,XP,C,CS,PSISl 
END IF 

C USE FIRST EQUATION FOR INLET REGION SOLUTION 
PPR(I+ll=EQNlCCl,C2,BN,XP,C,CS,PSISl 
IFCXP .LT. TANCPSISll PPRCI+l)=O.O 
PPRD(I+ll=BN*(CS-C)/CC*t.3) 
IFCXP .LT. TAN(PSISll PPRD(I+ll=O.O 
FDDD(I+ll=F(I+ll+PPRD(I+ll 
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PR<I+ll=PR(Il+<DlR+2.*D2R+2.*D3R+D4Rl/6.0 
PRN<I+ll=l.O+(PPR(I+ll-FDDD(I+l))/HDDINF 
PRD(I+ll=PPRD(I+ll-FDDD<I+ll 
I=I+l 
GOTO 111 

112 DO 113 I=l,6 
H<I>=F<Il+l.0 
HD< I) =FD< Il 
HDD( I) =FDD( I) 

113 HDDD<Il=FDDD(I) 
C DO 114 I=l,6 
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C 114 ~JRITE<l22,100l ET<I>,H<Il,HD(Il,HDD(Il,HDDD(Il,PRN<Il,PPR(Il 
ETA=ET(6) 
ETOLD=ETA 
ETAM=lOOOO.O 
DETA=D 
ERP=29.0*ERR 
ERG=. Ol""ERP 

10 A=4./3.*DETA 

1 

B=l. /3. *DETA 
K=l 
HDD<7l=HDD<3l+A*(2.*HDDD(4l-HDDD(5)+2.*HDDD(6)) 
ETA=ETA+DETA 
HDDP=HDD<7l 
HD(7l=HD(3)+A*(2.*HDD<4l-HDD(5)+2.*HDD(6)) 
HDP=HD<7 l 
H<7l=H(3)+A*(2.*HD(4l-HD(5)+2.*HD(6)) 
HP=H(7) 
CI=C2 
IF<ETA .GE. 0.) CI=Cl 

C USE Cl 
CI=Cl 
XP=CI*(ETA-ETCl 
C=l.+<XP**2l 
PPR<7l=PPR(3)+A*(2.*PPRD(4l-PPRD(5)+2.*PPRD(6)) 
IF<ETA . GE .. 0.) THEN 

PPR<7l=EQNl(Cl,C2,BN,XP,C,CS,PSIS) 
ELSE 

PPR(7l=EQN2<Cl,C2,BN,XP,C,CS,PSIS) 
END IF 

C USE FIRST EQUATION 
PPR(7)=EQNl(Cl,C2,BN,XP,C,CS,PSISl 
IF<XP .LT. TAN(PSIS)l PPR(7l=O.O 
PPRP=PPR(7) 
PPRD<7l=BN*(CS-Cl/(C~*3l 

3 

IF<XP .LT. TAN<PSISll PPRD(7l=O.O 
PPRDP=PPRD(7) 
HDDD<7l=<HP-l.0)/(HP*""3l+PPRDP 
HDDDP=HDDD(7) 
PR(7)=PR(3l+A*(2.*PRD(4l-PRD(5)+2.*PRD(6)) 
PRN(7l=l.0+(PPRP-HDDPl/HDDINF 
PRD(7)=PPRDP-HDDDP 
HDD(7l=HDD<5l+E*<HDDD(5)+4.*HDDD(6)+HDDD(7)l 
HDDC=HDD(7l 
HD(7)=HD(5)+B*<HDD<5l+4.*HDD(6)+HDD(7ll 



HDC=HD(7) 
H(7l=H(5l+B*<HD(5l+4.*HD(6l+HD(7)) 
HC=H ( 7l 
CI=C2 
IF<ETA .GE. 0.) CI=Cl 

C USE Cl 
CI=Cl 
XP=CV<( ETA-ETC) 
C=l.+<XP"'""2l 

C PPR<7l=PPR<5l+B""<PPRD(5)+4.*PPRD(6l+PPRD(7)) 
IF<ETA .GE. 0.) THEN 

PPR(7)=EQNl(Cl,C2,BN,XP,C,CS,PSIS) 
ELSE 

PPR(7)=EQN2(Cl,C2,BN,XP,C,CS,PSISl 
END IF 

C USE FIRST EQUATION 
PPR(7l=EQNl(Cl,C2,BN,XP,C,CS,PSISl 
IF<XP .LT. TAN<PSIS)) PPR(7l=O.O 
PPRC=PPR<7l 
PPRD<7l=BN*<CS-C)/(C**3l 

c 
c 
c 
c 
c 
c 
c 
c 
c 

IF<XP .LT. TAN(PSISll PPRD(7)=0.0 
PPRDC=PPRD<7> 
HDDD<7l=<HC-l.)/(HC1<*3l+PPRDC 
HDDDC=HDDD<7) 
PR(7l=PR(5l+B*<PRD(5)+4.*PRD<6l+PRD(7)) 
PRN<7>=1.0+(PPRC-HDDCl/HDDINF 
PRD(7l=PPRDC-HDDDC 

LOCAL ERROR EVALUATION 

DO NOT WRITE FOR OBTAINING Rr OR cm OR xc 

DWRIT=0.35 
IF<ETA .GT. 10.) DWRIT=l.5 

IF<ABS(HC-HPl-9.99E-04l26,26,4 
IF<<ETA-ETOLDl-DWRITl 4,4,27 

VS ho 

c 26 
c 27 
c 

~iRITE(3,*l ETA,HDD(7l ,HDDD(7) ,PPR(7) ,PPR(7l 

c 100 
c 

4 

20 
5 
30 
16 

31 

vJRITEll22,100) ETP. .. ,H<Il ,HD(7) ,HDDl7) ,HDDD(7l ,PRN<7l ,PPR(7l 
FORM .. i\T( lH ,FlO. 4 ,6Ell. 3) 
ETOLD=ETA 
CL=ABS(HC-HPl 
IF<CL-ERP1<HCl 20,20,21 
IF(<ETA .GT. 3.J.AND.<ABS<HDDDCl .LE. l.OE-09)) GOTO 92 
IF(CL-ERG*HCl 7,7,30 
K=l 
DO 31 I=l,6 
H<I) =H(l+ll 
PR ( I ) =PR ( I+ ll 
HD< I) =HD< I+l) 
PRD< I) =PRD< I+l l 
PPR( I) =PPR< I+l l 
PPRD<Il=PPRD(I+ll 
HDD ( I l = HDD < I+ 1 l 
HDDD<Il=HDDD(I+ll 
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GOTO 1 
7 GOTO(ll,12,13,14,15l,K 
11 Wl=H(ll 

Pl=PR ( 1 l 
WDl=HD( 1) 
PDl=PRD(l) 
PPl=PPR(l) 
PPDl=PPRD(l) 
WDDl=HDD(l) 
WDDDl=HDDD(l) 
K=2 
GOTO 16 

12 K=3 
GOTO 16 

13 W2=H(ll 
P2=PR<ll 
WD2=HD<l) 
PD2=PRD<ll 
PP2=PPR(ll 
PPD2=PPRD<ll 
WDD2=HDD<l l 
WDDD2=HDDD(ll 
K=4 
GOTO 16 

14 K=5 
GOTO 16 

15 H(6l=HC7) 
H<4l=H(3l 
HC3l=H(ll 
H(2l=W2 
Hlll=Wl 
PR<6l=PR(7l 
PRC4l=PRC3l 
PR<3l=PR(ll 
PRC2l=P2 
PR(ll=Pl 
PPR(6l=PPR(7l 
PPR<4l=PPRC3l 
PPR ( 3 l =PPR C 1 l 
PPR(2l=PP2 
PPRCll=PPl 
HDC6l=HD(7) 
HD(4l=HD(3) 
HD ( 3 l =HD ( 1 l 
HD(2l=WD2 
HD<l l =WDl 
PRD C 6 ) = PRD C 7 l 
PRD(4l=PRD(3l 
PRD(3l=PRD<ll 
PRD< 2 l =PD2 
PRD< 1 l =PDl 
PPRD(6)=PPRDC7l 
PPRDC4l=PPRD(3) 
PPRDC3l=PPRDCll 
PPRD(2l=PPD2 
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PPRD ( 1) =PPDl 
HDD ( 6 l = HDD ( 7l 
HDDC 4) =HDDC 3} 
HDD C 3 ) = HDD ( l } 
HDDC 2} =WDD2 
HDD < 1} =WDDl 
HDDD(6l=HDDD(7} 
HDDDC4l=HDDD(3) 
HDDDC 3) =HDDDC 1 l 
HDDDC2l=WDDD2 
HDDDCll=WDDDl 
DETA=DETA+DETA 
GOTO 10 

21 IF<DETA-0.00000001)40,40,41 
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41 DO 42 I=l,3 
QCI)=.5*CHC5-Il+H(6-Il)-.0625*(H(7-Il-HC6-Il-HC5-Il+H(4-I)) 
RCI)=.5*CPRC5-Il+PR(6-Ill-.0625*<PRC7-Il-PR(6-Il-PRC5-Il 

1 +PR(4-Ill 
SCil=.5*CPPRC5-Il+PPRC6-Ill-.0625*CPPRC7-Il-PPRC6-Il-PPRC5-Il 

1 +PPRC4-I)) 
QD<Il=.5*CHDC5-Il+HDC6-I)l-.0625*CHDC7-Il-HDC6-Il-HDC5-Il 

1 +HDC4-Ill 
RDCil=.5*CPRDC5-Il+PRD(6-Ill-.0625*CPRDC7-Il-PRD(6-Il-

l PRD<5-Ill 
SDCil=.5*CPPRDC5-Il+PPRDC6-Ill-.0625*CPPRD(7-Il-PPRD(6-Il 

1 -PPRD(5-Il+PPRD(4-Ill 
QDDCil=.5*CHDD(5-Il+HDD(6-Il)-.0625*(HDDC7-Il-HDD(6-I}-

l HDDC5-Il+HDD(4-I}} 
42 QDDDCI)=.5*<HDDDC5-Il+HDDDC6-Ill-.0625*(HDDD(7-Il-HDDDC6-Il 

1 -HDDDC5-Il+HDDD(4-I}} 
HC6l=H(5) 
HC2l=H(3) 
HC5l=QCll 
HC3l=Q(2) 
HCll=QC3} 
PR(6l=PR(5) 
PRC2l=PR(3} 
PRC5l=R(l) 
PR(3l=R(2) 
PRCll=R(3) 
PPRC6l=PPR(5) 
PPR(2l=PPR(3) 
PPR(5}=SC1} 
PPR(3}=S(2) 
PPRCll=S(3) 
HDC6l=HDC5l 
HDC2l=HDC3l 
HD(5l=QDC1} 
HDC3l=QDC2) 
HDCll=QD<3l 
PRD ( 6 ) = PRD ( 5 l 
PRD ( 2 l = PRD ( 3 } 
PRD < 5} =RD Cl} 
PRD<3l=RDC2l 
PRD ( 1} =RD ( 3} 



c 

PPRD<6l=PPRD<5l 
PPRD(2l=PPRD(3) 
PPRD(5l=SD(l) 
PPRD<3l=SD(2) 
PPRD<ll=SD(3) 
HDD(6)=HDD(5) 
HDD< 2) =HDD< 3) 
HDD(5)=QDD<ll 
HDD<3l=QDD(2) 
HDD(ll=QDD(3) 
HDDD<6l=HDDD(5) 
HDDD(2)=HDDD(3) 
HDDD ( 5) =QDDD <l) 
HDDD(3l=QDDD(2) 
HDDD(l)=QDDD(3) 
ETA=ETA-2.""DETA 
DETA=0.5""DETA 
GOTO 10 

C CONSTANT GAP FILM THICKNESS WITH RIDER ROLLER 
c 

92 HON=HDDC""RS*((6.*VIS""U/Tl""""0.66667l*l.OE+06 

c 
c 
c 
c 

c 

c 

c 

WRITE(3,*lRR,HON 
WRITE(l22,19llRR,HON 

191 FORMAT(lH ,Fl2.6,Fl2.0) 
RR=RR+l.O 
Cl=CO*SQRT(l/RR) 
IFCRR .GT. 15.0) GOTO 40 
GOTO 91 

40 STOP 
END 

SUBROUTINE S£ll.RCH<Cl,C2,FLAG,SIO,Sil 

REAL Cl,C2,SIO,SI 
LOGICAL FLAG 

PARAMETER (Pl=3.141593l 

EPSI=l. OE-6 
IFCFLAG) THEN 

SI=-0.l 
DSI=-0.05 
ITER=O 

21 ITER=ITER+l 
IF<ITER .GT. 100) GOTO 22 
DHS=(C2/Cll""((l./(COS<Sil**2ll*(SINC4""SIOl/32.+ 

1 SINC2""SIOl/4.+3.""SI0/8.-3.*PI/16.)-SIN<2""S10)/4.-
2 SI0/2.+PI/4.) 

RHS=SIN<2*SI)/4.+SI/2.-((l/COS(Sill""*2l""(SINC4*Sil/32.+ 
1 SIN(2*SI)/4.+3.""SI/8.) 

ERROR=RHS-DHS 
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c 
c 
c 

c 

c 

c 
c 
c 

c 

c 

IFCERROR .GT. 0 .. AND. ERROR .LE. EPSI> GOTO 22 
IFCCDHS .GT. RHS .AND. DSI .GT. 0.) .OR. CDHS .LT. RHS 1 

1 .A.ND. DSI .LT. 0.)) DSI=-DSI/2. 
SI=SI+DSI 
GOTO 21 

22 CONTINUE 
END IF 
IFC.NOT. FLAG> SI=-0.44355 
RETURN 
END 

REAL FUNCTION EQNlCCl,C2,BN,XP,C,CS,PSISl 

REAL Cl,C2,EN,XP,C,CS,PSIS 
PA.RA.METER CPI=3.141593) 

EQNl=CBN/Cl)>1<( CCS>1.XP/(8>1.C) )>1.(2./C-l.) 
1 +CXP*CCS-1.))/(2.>1.C) 
2 +A.TANCXPl*C3.*CS/4.-l.l/2.-CPI/4.)>1.(3.>1.CS/4.-l.ll 

RETURN 
END 

REAL FUNCTION EQN2CCl,C2,BN,XP,C,CS,PSISl 

REAL Cl,C2,BN,XP,C,CS,PSIS 
PA.RA.METER CPI=3.141593) 

EQN2=CBN/C2l*((CS*XP/C8*Cll*C2./C-l.) 
1 +CXP*(CS-1.))/(2.*Cl 
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2 +A.TA.NCXPl1'(3.*CS/4.-l.l/2.-TA.NCPSISl*(2./CS-l.l/8. 
3 -T.ANCPSISl*(CS-l.l/(2.*CSl-CPSIS/2.)*(3.*CS/4.-1.ll 

RETURN 
END 
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