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CHAPTER I 

INTRODUCTION 

The thermal transport properties of sedimentary rocks are of inter­

est to petroleum geology because of the possibility of using thermal 

profiles of sedimentary basins to evaluate the oil and gas generation 

potential of the rocks. The thermal transport properties are also 

important because of the current interest in the thermal methods of 

petroleum production from underground oil-bearing rocks and sands. At 

present, the thermal transport properties of petroleum reservoir-type 

rocks are not very well characterized, and few reliable data are avail­

able in the literature. The properties of interest are the thermal 

conductivity, the thermal diffusivity, and the specific heat. The 

relation of these properties to such other parameters as porosity, 

temperature, pressure, and fluid saturation is also important in devel­

oping predictive models of the thermal history of sedimentary basins and 

in the thermal oil-recovery processes. 

Techniques for thermal conductivity measurements can be grouped 

into steady-state temperature and transient temperature methods. The 

steady-state methods require simultaneous measurements of the steady­

state heat flux and temperature gradient through the test samples. The 

samples are usually in the form of spheres, cylinders or slabs, for 

which solutions to the differential equation of heat conduction are 

readily available. Drawbacks common to all steady-state methods are the 
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relatively long time needed to attain thermal equilibrium as well as the 

necessity of sophisticated guarding systems to minimize as much as 

possible the edge or end effects (since no thermal insulation is perfect 

in practice). 

The transient methods are much faster than the steady-state 

methods. Some of the transient methods determine thermal conductivity 

directly, .but most of them lead to a measurement of thermal diffusi­

vity. The test sample is initially in a state of thermodynamic 

equilibrium. An addition of thermal energy to the sample induces a 

transitory temperature change as the sample seeks a new state of equili­

brium. A measurement of the temperature as a function of time at 

several points in the sample leads to the determination of thermal 

diffusivity or thermal conductivity. 

Because of the short duration of test, these methods are much 

faster than the steady-state methods, and also they are not restricted 

to measurements of the conductivity of dry samples only. This is impor­

tant because of the increasing interest in materials where moisture 

affects the thermal conductivity, like soils. 

The most commonly used techniques for measurements of thermal 

conductivity of geological media are: 1) the thermal comparator (or 

divided-bar) method which is a steady-state method and is used for core 

samples, such as rocks; 2) the needle-probe method which is a transient 

method and is suitable for unconsolidated samples such as sands. 

Thermal Comparator (Divided-Bar) Method 

The sample or specimen in the form of a circular or square 

parallel-faced flat plate is sandwiched between two standards (reference 
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materials of known thermal conductivity) of dimensions equal to those of 

the specimen. This "stack" is surmounted by a heating element. To 

minimize the radial heat losses to the surroundings, an outer cylin-

drical guard tube with a number of heating elements in it is put around 

the specimen-standards stack. The space between the guard tube and the 

stack is filled with thermal insulation. Thermocouples inside the 

standards and sample measure the difference in temperature across each 

of these materials. 

A version of the thermal comparator method as it appears in [10] is 

shown in Figure 1. Determination of the thermal conductivity of the 

specimen, A , is based on the assumption that the heat flow across the 
x 

standard is equal to the heat flow across the sample, i.e. 

aT x -A A -x ai 
( 1 ) 

( A = thermal conductivity of the standard; A = cross sectional area of 

the specimen and the standard; ~i = temperature gradient down the stan­
aT 

dard; aix =temperature gradient down the sample). 

In a first approximation, from (1), it can be written that: 

(2) 

Since the distance ~i along which the temperature difference is measured 

is the same for both the standard and the specimen, then (2) becomes: 

(3) 



/Guard tube 

Stack gradient 
Insulation 

Insulation 
Gua•d gradient 

Figure 1. Thermal Comparator Me~hod: Schematic 
Assembly 
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Therefore, to a first approximation, the ratio of the conductivity 

of the specimen to the conductivity of the standard is equal to the 

ratio of the temperature difference across the standard to the temper-

ature difference across the specimen and A can thus be determined. x 

There are two effects the divided-bar method suffers from and which 

affect the accuracy of the measurements: 1) conductivity mismatch 

between the specimen and the standards; 2) interfacial resistance be-

tween specimen and standards. The former affects the heat flow through 

the specimen and standards which in this method is considered the same 

5 

in determining the thermal conductivity. However, analysis conducted on 

this method have shown that in practice, the heat flow through the 

specimen and standards is never the same due to radial heat exchanges 

between the test stack and the insulation, and also due to the fact that 

the direct longitudinal heat flow through the insulation can "shunt" the 

flow through the test sample (i.e. heat bypassing the specimen through 

the insulation or bypassing the insulation through the specimen, depend-

ing on whether the conductivity of the sample is less or more than that 

of the standards). And these problems become more significant when the 

thermal conductivities of the specimen and the standards approach that 

of the insulation, which is always the case when measurements are done 

on geological media which typically have low conductivities. A complete 

analysis of these errors can be found in [7]. 

The interfacial resistance affects the temperature distribution on 

both the sample and the standards since there is always a temperature 

drop across the thermal resistances which appear at the contacting 

surfaces of the specimen and standards. Apart from the two special 

sources of error mentioned above, the divided-bar method is also subject 
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to most of the errors pertinent to the absolute steady-state temperature 

methods, and therefore it is less accurate. For this reason, the ther-

mal comparator (divided-bar) method is largely regarded as a compromise 

which sacrifices accuracy for the simplicity of sample configuration and 

relative ease of assembly and operation. 

Needle-Probe Method 

This method uses a line heat source (i.e. a wire through which a 

constant electric current passes) and a thermocouple which are embedded 

alongside each other in the test sample. After the assembly is at a 

uniform and constant temperature, a constant power is supplied to the 

heater for a short time and the rise in temperature is recorded. The 

rise in temperature is determined by the ability of the sample to 

conduct the heat generated away from the line source. The thermal 

conductivity of the sample can be determined from the temperature-time 

record and the power input. The theory on which this method is based 

can be found in [2]. 

If we consider the application of heat through an infinitely long, 

thin heat source embedded in an infinite homogeneous material which is 

initially at equilibrium, then the temperature rise at a point in the 

material as a function of time while the heater is on is given by: 

e(r,t) (4) 

where Q = power input per unit length of source, cal/cm sec; A = thermal 

conductivity of the material, cal/cm sec°C; n = thermal diffusivity of 

the material, cm2/sec; r = radial distance of point from line source, 
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cm; t time from the start of heating, sec; and 
2 4 

I(x) = C - ln x + ~ - ~ + 

where C Euler's constant (0.5772). If x = r 112 is small, i.e., 
2( nt) 

large t and small r, then the terms of the order of x 2 and above can be 

neglected and 

e 2 Q JC - ln r I iJ 
1T 2(nt) 

(5) 

If t 1 and t 2 are two sufficiently long times during the heating 

interval, the corresponding temperature rise is given by 

Q t2 
M e2 - e1 41T>. ln(t) 

1 
( 6) 

Then >. is given by 

Q t2 
>. 41TM ln(t) 

1 
(7) 

A plot of the temperature rise ~e versus the logarithm of time 

t2 Q 
(t) gives a straight line with a slope of 41T>." Thus >. can be obtained 

1 
by the knowledge of this slope and of the applied power per unit length 

of the heat source. 

Although the above theory applies to a perfect line heat source 

(i.e. infinitely large length to diameter ratio), it was shown that the 

errors in this respect are negligibly small for probes of length to 

diameter ratio of 30 or more. The theory also applies to samples of 

infinite dimensions; it was shown that if the testing time interval is 

limited to the time before the heating effect reaches the surface of the 

sample, then a sample of practical dimensions behaves as one infinite in 



size. 

A diagram of a thermal conductivity probe, as shown in [10] is 

given in Figure 2. 

In the following chapters, a pulse method for determination of 

thermal diffusivity of geological media, as well as the results of 

measurements on several sedimentary rocks, will be presented. 

8 
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CHAPTER II 

EXPERIMENTAL PROCEDURE 

One of the thermal transport properties of a solid is its thermal 

diffusivity, n, which governs the temperature profile of a solid through 

the diffusion equation: 

oT 
at (8) 

where T is the temperature and t is time. Solutions to this diffusion 

equation for a variety of sample shapes and boundary conditions are 

given in [2]. 

The thermal diffusivity, n, and thermal conductivity, A, of a solid 

are related by: 

n 
A 
pc 

where p is the mass density and c is the specific heat of the solid. 

In this work, the thermal diffusivity was determined from the 

(9) 

diffusion equation (8) by a pulse method. This method is an adaptation 

using computer control and modern digital instrumentation of an earlier 

technique first used for the study of thermal transport properties in 

metals and semiconductors at high temperatures [3]. 

10 
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Apparatus 

The samples used are sedimentary rocks in the shape of cylinders of 

2.5 cm in diameter and 4 to 8 cm in length. A heater located at one end 

of the sample creates, when energized for a short time, a one-dimen­

sional heat pulse through the sample. Both the sample and the heater 

are enclosed by a furnace connected to a programmable temperature con­

troller (Omega CN 2000). The furnace provides the ambient temperature 

at which the diffusivity is desired. A block diagram of the apparatus 

is shown in Figure 3. The heater is turned on and off through the 

computer which actuates a relay in the data acquisition unit, DAC (HP 

3412A). Three thermocouple wells 0.9 mm in diameter were drilled along 

the length of the sample. The distance separation between the three 

thermocouple wells was chosen to be 5 mm in order to allow response to 

the heat pulse by all three thermometers when the thermal diffusivity of 

the sample is low (of the order of 10-2cm2/sec) as it is for sedimentary 

rocks. The thermometers used were type K thermocouples and electronic 

ice points were used as the reference junctions. The thermocouples were 

monitored, under computer control, by digital voltmeters (HP 3478A), 

DVM, with a sensitivity of 0.1 µV. This gives a temperature measurement 

sensitivity of - 3mK near room temperature. 

Procedure 

After the sample is brought to steady-state conditions at the 

temperature where the diffusivity is desired, the computer triggers the 

voltmeters and records the initial readings of the thermometers. It 

then closes the relay, turning the heater on. A one-dimensional heat 

pulse now flows through the sample, and the temperature is monitored as 



.. 
DVM ~ 

' ' s 
T .. 

DVM " ' ... 
H ... 

DVM " ' .. 

POWER ~ - DAC ~ 

SUPPLY ' ... 

COMPUTER/ .... 

" CONTR)LLER ' '" 

Figure 3. Block Diagram of the Apparatus. The 
Temperature Profile in the Sample s 
is Sensed by the Thermocouples T 
and Digital Voltmeters DVM after 
the Heater H is Activated by the 
Data Acquisition Unit DAC. The 
Sample and Heater are Enclosed in 
a Furnace not Shown 
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a function of time. To do this, the computer triggers simultaneously 

the three voltmeters at regular intervals, which in this experiment were 

0.5 seconds. The temperature readings of the three thermometers are 

thus collected every 0.5 seconds and stored in the computer. Data are 

collected for a time interval of 30 to 100 seconds, during which the 

temperature at the thermometer nearest the heater rises by 1 to 5 K. It 

is desired that the data acquisition times be short so as to minimize 

the possibility of electronic drift. When data collection is completed, 

the relay in the data acquision unit, DAC, is automatically opened by 

computer command, thus turning off the heater. The computer now reduces 

the data stored during the process of data acquisition and displays the 

thermal diffusivity. 

The simple one-dimensional diffusion equation 

n 
ax2 

(10) 

applies to the region of interest which is the part of the sample be­

aT tween the lowest and the highest thermocouples. A plot of at versus 

a2T 
~- for the mid-plane between these two thermocouples is made. The 
ax2 

thermal diffusivity is given by the slope of the least squares regres-

sion line for this plot. 

The data reduction process starts with the conversion of the volt-

meter readings to temperatures using an interpolation formula for the 

thermocouple tables. The initial thermometer readings are subtracted 

from each point in the data set to eliminate any small mismatch between 

the thermocouples. The rate of change of the temperature with time 

(~~) at the mid-plane is approximated by the slope of the regression 
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line for a small subset of the data, and this value is assigned to the 

a2T mid-point of the time interval of the subset. The value of at the 
ax2 

mid-plane at this time is approximated by the finite difference 

relation: 

[T0 (t)-TM(t)] - [TM(t)-TL(t)] 

(file >2 

where ~x is the distance between adjacent thermometers and the sub-

scripts U, M, L refer to the upper, middle and lower thermometers 

( 11) 

respectively. 

a2T 

This way, a set of values for ~~and the corresponding 

~- are obtained for the mid-plane. 
ax2 

These values are fitted by least 

squares to obtain the thermal diffusivity, n. 

Typical curves for the variation of temperature as a function of 

time are shown in Figure 4. 

a2T 

aT Figure 5 displays a plot of at versus 

the straight line being the least squares regression line. It 2• 
ax 

can be seen that the experimental points follow closely the linear 

relation expected from the diffusion equation (10). 

The thermal conductivity, A, of the sample was calculated using (9) 

after the density and specific heat of the sample were determined. 

Since the samples were right circular cylinders, the density was deter-

mined from the mass and the dimensions of the sample. To measure the 

specific heat of the samples, a simple drop calorimeter was con-

structed. The sample, heated to the steam point, was rapidly 

transferred to an insulated water bath at room temperature and the 

temperatures of both the bath and the sample were monitored until final 

equilibrium was attained. The specific heat was calculated by straight 

forward application of the first law of thermodynamics, heat losses to 
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the surroundings being neglected. 

The pulse method presented here, like all other transient temper-

ature methods for measuring thermal diffusivity, has the advantage of 

being much faster than the steady-state methods which determine the 

thermal conductivity directly from Fourier's Law: 

J -\VT (12) 

where J is the thermal current density and T is the temperature. Since 

J and VT must be constant over the measurement volume, such methods are 

complicated by two problems: 1) the necessity of rigorous steady-state 

' conditions which makes the collection of data, and thus the method, 

become very slow because the thermal equilibrium times are very long (of 

the order of hours) at elevated temperatures; 2) the necessity of con-

trolling accurately the heat losses through complicated guarding systems 

to shield against such losses and/or correction of the experimental data 

for such losses. 

The pulse method, being a dynamic method, does not require rigorous 

steady-state conditions, and this reduces sharply the time necessary for 

a measurement. Unlike the steady-state methods which require measure-

ments of the heat flux and the temperature gradient through the sample, 

this method requires only the measurement of the time interval in which 

a heat pulse propagates a known distance. And in principle, lengths and 

time intervals can be more accurately and more easily measured than heat 

fluxes and temperature gradients. 

Due to the fact that the samples used have typically low thermal 

conductivities and also because the region of interest is the part of 

the sample between the lowest and the highest thermocouples (which are 
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10 mm apart), the heat losses through the lateral surface of the sample 

in the region of interest are, to a first approximation, negligibly 

small and therefore there is no need for corrections for heat losses 

through radiation or convection. 

The method has, however, a few sources of error: 1) the degree of 

precision in measuring the distances at which the three thermocouple 

wells are drilled is probably the most significant source of error, 

considering that, due to reasons shown already, the spacing between the 

thermocouple wells was chosen to be 5 mm and therefore an imprecision of 

a few tenths of a mm becomes significant. This is a systematic error 

that appears in the measurements of all samples used; 2) there are also 

random errors due to the scattering of the experimental data with 

respect to the least squares regression line; 3) finally, there is an 

error involved in measuring the specific heat due to neglection of heat 

losses to the surroundings. This last affects the calculated conduc­

tivity A, but not the diffusivity , n. 

Based on multiple measurements done on several samples, the errors 

are estimated to be approximately 5% each for the thermal diffusivity 

and the specific heat measurements. 



CHAPTER III 

EXPERIMENTAL RESULTS AND DISCUSSION 

Standardization of the Apparatus 

The thermal diffusivities and thermal conductivities were deter­

mined by the pulse method described in the previous chapter for four 

homogeneous materials whose thermal conductivities span the range that 

one expects to encounter for sedimentary rocks (10-2 - 10-1 W/cmK). 

These materials were: synthetic crystalline quartz, fused quartz glass, 

type 304 stainless steel and plastic lexan, which is a polymeric 

glass. For steel and lexan, specimens were prepared in the shape of 

cylinders one inch in diameter and two inches in length, to approximate 

the shape and dimensions of the sedimentary rock samples. For quartz 

crystal and quartz glass samples, large specimens were not available; 

the crystal (a-quartz) sample was a square rod 5mm on a side and 5cm 

long with its long dimension perpendicular to the optic axis. The fused 

quartz (g-Si02 ) sample was a circular rod 10cm long and 5 mm in 

diameter. Because of the smaller diameter of these two samples, instead 

of drilling thermocouple wells inside the samples at 5mm intervals, as 

was done for all other samples, the thermocouples were mounted on the 

surface of the quartz samples at 5mm intervals. 

Table I shows the thermal diffusivities, specific heats and densi­

ties measured for these standard materials as well as the thermal 

conductivity calculated from these using (9). 

1 9 
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Table II shows the thermal diffusivities and thermal conductivities 

of these materials as reported in the literature. 

The measured values agree with the corresponding reference values 

to within 10%. In fact, except for lexan, the agreement is to within 5% 

or better, which is less than the experimental errors of this method, 

estimated from multiple observations, to be 5% each for the thermal 

diffusivity and specific heat measurements. 

TABLE I 

THERMAL PROPERTIES OF STANDARD MATERIALS: 
OBSERVED VALVES 

Material Thermal Diffusivity Specific Heat Density Thermal 
(cm2/sec) (cal/gK) (g/cm3) Conductivity 

(W/cmK) 

a-Quartz 0.0324 0.17 2.65 0.064 
<le-axis) 

Type 304 0.0389 0. 122 7.90 0. 157 
Stainless 
Steel 

Si02 Glass 0.0089 0. 17 2.22 0.014 

Lexan 0.00145 0.29 1. 19 0. 0021 
(polycarbonate 
Glass) 
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TABLE II 

THERMAL PROPERTIES OF STANDARD MATERIALS: 
REFERENCE VALUES 1 

Material Thermal Diffusivity 
(cm2/sec) 

Thermal Conductivity 
(W/cmK) 

a-Quartz 
<le-axis) 

Type 304 
Stainless 
Steel 

Si02 Glass 

Lexan 
(Polycarbonate Glass) 

o. 031 

0.0085 

Reference values taken from [11]. 

0.062 

0. 152 

0.0142 

0.00192 

2 Gross, S., Modern Plastics Encyclopedia, (McGraw-Hill, New York, 
1971), p.561. 

Experimental Results and Conclusions 

The temperature dependence of the thermal diffusivity of six 

different sedimentary rocks was measured over a temperature range of 

practical interest in geology (i.e. from 20° C to 100° C). The rocks 

studied were: two carbonates (a packstone and a mudstone), berea sand-

stone, two limey sandstones, and dolomitic sandstone. The sandstones 

are generally rich in quartz (up to about 60%) which is found in both 
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small crystallites and amorphous form. Dolomitic sandstones have, 

besides quartz, a significant content of calcium and magnesium carbon-

ates. The carbonate packstone and mudstone are part of the larger 

family of limestones. Limestones are rich in calcium and magnesium 

carbonates (60-80%), mudstones being finely grained while the packstones 

contain large crystallites. Apart from the minerals mentioned above, 

each of these types of rocks contains also small amounts of other misc-

ellaneous minerals, both in amorphous and small crystallites form, 

depending on the age and geological history of the sedimentary basins 

the rock comes from. 

The well-known result from the kinetic theory of gases: 

.!_ C v L 
3 

was first applied by Debye to describe thermal conductivity in die-

lectric solids, with C = the heat capacity per unit volume of the 

( 1 3) 

phonons, v = phonon velocity, L = phonon mean free path and \ = thermal 

conductivity [4]. 

In the Debye approximation (where the phonon velocity v is consi-

dered constant for all polarizations), the phonon heat capacity at high 

temperatures (i.e. T > e0 , where e0 = Debye temperature) approaches a 

constant value (i.e. the classical value of 3Nk8 of Dulong and Petit, 

where N is the number of atoms in the specimen and kg is Boltzman con-

stant). Therefore, the behavior of A at high temperatures is determined 

by the phonon mean free path, L. 

In crystals, the phonon mean free path L is determined by two 

processes: geometrical scattering (i.e. scattering by lattice imper-
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fections and by crystal boundaries), and scattering by other phonons. 

The requirement of conservation of wavevector in crystals is ex-

pressed for the three phonon processes by: 

(14) 

where Ki (i = 1 ,2,3) is the wavevector of a phonon and G is a reciprocal 

lattice vector. Processes in which G = 0 are called normal processes 

~ 

while those in which G * 0 are called Umklapp processes. 

At high temperatures, the dominant processes that cause thermal 

resistivity (1/X) in a crystal are the three phonon Umklapp processes. 

These processes do not conserve the total momentum of a phonon gas, 

changing, therefore, the resultant heat flow through a crystal. Thus, 

Umklapp processes are capable of bringing the distribution of phonons 

into local thermal equilibrium (i.e. the phonons at one end of the 

crystal being in thermal equilibrium at a temperature T2 and those at 

the other end in equilibrium at another temperature, T1). The three 

phonon normal processes do not play a direct role in producing thermal 

resistivity because they leave the total momentum of a phonon gas un-

changed and therefore produce very little change (none in the absence of 

dispersion) in the heat flow through a crystal. 

+ ~ 
The energy of phonons K1 and K2 suitable for Umklapp processes to 

1 occur is of the order of 2 k8 00 because each of the colliding phonons 

must have wavevectors of the order of ~ G in order for the collision 

(14) to be possible. At high temperatures (i.e. T > 00 ), most phonons 

have energies high enough for Umklapp processes to occur and therefore 

these are the dominant resistive processes in a crystal. 
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The phonon mean free path at high temperatures is therefore deter-

mined by the relaxation time associated with Umklapp processes. 

The three-phonon processes are caused by the anharmonic coupling 

between different phonons (i.e. the third-order terms in the lattice 

potential energy). The theory of the effect of anharmonic coupling on 

thermal resistivity predicts that the mean free path is proportional to 

1/T at high temperatures in agreement with many experiments [6]. This 

can be explained by the fact that the total number of excited phonons at 

high temperatures is proportional to T and the collision frequency 

(i.e. 1/T, where Tis the relaxation time) of a given phonon is pro-

portional to the number of phonons with which it can collide, therefore 

T 

and since L 

L 

T 

VT, 

1 
r 

( 1 5) 

this implies that 

( 1 6) 

Therefore, the thermal conductivity of crystals is proportional to 1/T 

at high temperatures. 

In amorphous substances, the thermal conductivity at high temper-

atures increases slightly with temperature. This can be explained by 

the fact that, at such temperatures, the heat conduction is due to 

localized phonons. With an increase in temperature, the number of local 

phonons being able to overcome an energy barrier and hop from one site 

to another increases and therefore the thermal conductivity increases. 

Due to the specific structure of the sedimentary rocks which con-

tain minerals in grains of different sizes the heat conduction at high 

temperatures can be attributed to the fact that phonons localized in the 
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small crystallites inside the rock hop from one crystallite to 

another. 

Since the specific heat and the density of the sedimentary rocks 

are only very weakly temperature dependent over the temperature range 

considered (i.e. 20°C to 100°C), it can be concluded that the thermal 

conductivity over this temperature range varies in a similar manner to 

the diffusivity variation with temperature. With regard to this, it is 

interesting to note that using (9) and (13) we get the result: 

n 
A 
c 

1 3 v L 

This shows that, at high temperatures, the phonon mean free path, L, 

( 17) 

affects the thermal diffusivity in the same way it affects >., which was 

discussed earlier. 

Figures 6 and 7 show the variation of thermal diffusivity with 

temperature for the two carbonates (packstone and mudstone). The solid 

straight line is a guide to the eye and the dotted line represents the 

1/T curve. The thermal diffusivity, and therefore the thermal conduc-

tivity, for these two rocks decrease with temperature at a rate slower 

than 1/T which is an indication that in these materials the limiting 

thermal resistivity is between the crystallites rather than inside the 

grains. 

Figures 8, 9 and 10 show the diffusivity variation with temperature 

for the two limey sandstones and for dolomitic sandstone, respectively. 

In these rocks a nearly 1/T temperature dependence of the diffusivity, 

and therefore of the thermal conductivity, is observed which suggests a 

crystal-like behavior in terms of heat conduction. This indicates that 
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the limiting thermal resistivity in these rocks may be inside the 

grains. 
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Berea sandstone shows a behavior in-between the two distinct groups 

discussed above: the temperature dependence of thermal diffusivity is 

not as weak as in carbonates, but not as close to a 1/T dependence as in 

dolomitic sandstone and limey sandstones. 

In summary, this work has shown that the pulse thermal diffusivity 

measurements using modern digital instrumentation and computer control 

provide a practical and accurate method for the determination of the 

thermal transport properties of geological materials and other solids of 

similar thermal conductivity. 

The study of the temperature dependence of the thermal diffusivity 

in sedimentary rocks has shown basically two types of behavior: 1) a 

nearly 1/T dependence which indicates that the heat conduction is 

limited within the grains; 2) a decrease of diffusivity with temperature 

slower than 1/T, case in which the weaker the temperature dependence of 

the diffusivity, the stronger is the indication that the transfer of 

heat is limited between the grains. 

It was also observed that the higher diffusivity rocks display a 

stronger and closer to 1/T temperature dependence of the thermal dif­

fusivity. Indeed, for all the six rocks studied, a consistent trend is 

observed, which shows that the higher the thermal diffusivity is, the 

closer to 1/T its temperature dependence becomes. 

Finally, the measurement of thermal diffusivity of different sedi­

mentary rocks over a temperature range of 20°C to 100°C clearly shows 

that the diffusivity, and therefore the thermal conductivity, is not 

constant, but decreases with temperature: a drop of 14-21% was observed 
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for the six rocks studied. This shows the importance of knowing the 

relation between the thermal diffusivity and temperature over a range of 

practical interest. 
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10 ! THERMAL DIFFUSIVITY -- MAIN PGM 
20 COM t1<200>,t2<200>,t3(200>,dtdt(200),d2tdx<200>,tdfs<200) 
30 COM eta<200l,xe<200),yx(200l,tc(50l,tbar(200) 
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40 COM runuM,Jr,tint,deti,dlay,x12,x23,tl,th,dt ,NT,runtyp,etabar,ed(200) 
50 COM tau 
100 DISP "Enter a descriptive title for the experiMent" @ INPUT title$ 
I 10 OISP "Enter additional inforMation" @ INPUT subtitle$ 
120 
130 DISP "Chooee a file naMe for data etorage." 
140 OISP " USE THE SPECIAL FUNCTION KEYS" 
150 ON KEYi I ,"CONOCO" GOTO 800 
160 ON KEY# 2,"0THER" GOTO 900 
170 KEY LABEL 
180 GOTO 180 
190 OFF KEY# 
200 ! 200-299 are reeerved for alarMs 
300 WAIT 2000 
310 CLEAR 
320 OISP "*** CHOOSE THE TYPE OF EXPERIMENT *** " 
330 OISP 
340 OISP " 
350 DISP " 
360 OISP " 
365 OISP " 

<fl> Single teMperature only" 
<f2) N epecified teMperatures" 
<f3> Range of teMperatures at regular intervals" 
<f4> Several teMperatures, Manual control" 

366 DISP " <f5> Auto" 
370 ON KEY# 1 ,"SINGLE" GOTO 500 
380 ON KEY# 2,"N TEMP" GOTO 600 
390 ON KEY# 3,"T RANGE" GOTO 700 
395 ON KEY# 4,"MANUAL" GOTO 550 
396 ON KEY# 5,"AUTODATA" GOTO 580 
400 KEY LABEL 
410 GOTO 410 
420 OFF KEY# 
430 GOTO 1000 
500 runtyp$="singlet" 
505 runtyp=l 
510 GOTO 420 
550 runtyp$="einglet" 
560 runtyp=4 
570 GOTO 420 
580 runtypS="AUTO" 
581 runtyp=S 
582 GOTO 420 
600 runtyp$="nteMp" 
605 runtyp=2 
610 GOTO 420 
700 runtyp$="trange" 
705 runtyp=3 
710 GOTO 420 
800 ! set up Conoco file 
810 0$=VAL$(0ATE> 
820 L$="CONOCO"&O$ 
830 DISP "The data will be stored as ";LI 



840 GOTO 190 
900 D$=VAL$<DATE) 
910 DISP "Enter the file naMe (up to 5 characters)" @ INPUT L$ 
920 L$=L$&D$ 
930 DISP " The data will be stored as ";L$ 
940 GOTO 190 
999 ! 
1000 ! Enter the experiMental paraMeters 
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1010 CLEAR @ DISP "SET THE PARAMETERS FOR THE DIFFUSIVITY MEASUREMENT" 
1020 DISP " " 
1030 DISP "TiMe between teMperature MeasureMents (Msec)"@ INPUT tint 
1040 DISP "Total tiMe for a diffusivity MeasureMent (Msec)" @INPUT deti 
1050 DISP "TiMe delay before starting data acquisition (Msec)" 
1060 DISP "Distances between therMocouples: xl2,x23 (cM)" @INPUT x12,x23-
1070 runuM=0 
1080 tau=2*ti nt 
1099 ! 
1100 IF runtyp$="singlet" THEN 1110 ELSE 1200 
I 102 IF runtyp=I THEN 1110 
1105 CLEAR@ DISP" INSTRUCTIONS FOR A MANUAL RUN" 
1106 DISP" "@GOTO 1120 
1110 CLEAR@ DISP "INSTRUCTIONS FOR A SINGLE TEMPERATURE RUN"@ DISP 
1120 DISP" 1. Set the teMperature controller Manually to the desired" 
1121 DISP " teMperature. NOTE THAT THE SETTINGS ARE IN DEG C." 
1122 DISP 
1130 DISP "2. 
1131 DISP" " 
1140 DISP " 3. 
1141 DISP 
1150 DISP " 4. 
1151 DISP" 
1160 PAUSE 
1170 runs=! 
1180 GOTO 1500 

Wait for the systeM to equilibrate. 

Press CONT (f4> when equilibriuM has been reached." 

If the desired teMperature is rooM teMperature, you May" 
press CONT at once." @ OISP " " 

1200 IF runtyp$="nteMp" THEN 1210 ELSE 1300 
1210 CLEAR @ DISP " INSTRUCTIONS FOR SETTING N TEMPERATURES " 
1211 DISP" II 

1220 DISP" I. Enter the nuMber of teMperatures. "@INPUT NT 
1230 DISP " 2. Enter the ";NT;" teMperatures as proMpted" @ DISP 
1240 FOR Jt=I TO NT@ DISP "TeMp #";jt;" (deg C) "; @INPUT tc(jtl 
1250 NEXT Jt 
1260 runs=NT 
1270 GOTO 1500 
1300 IF runtyp$="trange" THEN 1305 ELSE 1400 
1305 CLEAR @ DISP " INSTRUCTIONS FOR SETTING A RANGE OF TEMPERATURES " 
1310 DISP 
1320 DISP " 1. Enter the lowest teMperature. <deg Cl" @ INPUT tl 
1330 DISP 
1340 DISP " 2. Enter the highest teMperature. <deg Cl" @ INPUT th 
1350 DISP 
1360 DISP " 3. Enter the teMperature interval between points. (deg Cl" 
1370 INPUT dt 
1380 runs=(th-tll/tint+l 



1390 GOTO 1500 
1400 runs=1 
1410 GOTO 1500 
1499 
1500 ! Set up storage for the experiMent. 
1510 NR=6 
1520 IF runtyp$=•nteMp" THEN NR=NR+NT+l 
1530 IF runtyp$="trange" THEN NR=NR+l 
1540 LL$=L$&".TX" 
1542 MASS STORAGE IS "/voll" 
1545 ON ERROR GOTO 2000 
1550 CREATE LL$,NR,256 
1560 ASSIGN# 1 TO LL$ 
1565 PRINT# runs 
1570 PRINT# title$ 
1580 PRINT# subtitle$ 
1590 PRINT# runtyp$ 
1600 PRINT# L$ 
1610 PRINT# tint,deti,dlay 
1620 PRINT# x12,x23 
1630 IF runtyp$="trange" THEN PRINT# 1 ; tl,th,dt 
1640 IF runtyp$="ntemp" THEN 1650 ELSE 1700 
1650 PRINT# 1 ; NT 
1660 FOR jt=l TO NT@ PRINT# 1 ; tc(jt)@ NEXT jt 
1700 ASSIGN# 1 TO * @ ! Close the file 
1705 MASS STORAGE IS "/~str/basfo" 
1710 ASSIGN# 1 TO "naMe" 
1720 PRINT# 1 ; L$ 
1730 ASSIGN# 1 TO * 
1800 CLEAR @ DISP USING 1810 
1810 IMAGE" TEMP" ,3X," DFSVTY ",3X," ETA ",3X,"STD DEV" 
1900 CHAIN runtyp$ 
2000 OFF ERROR 
2010 IF ERRN=63 THEN 2020 ELSE 2200 
2020 ASSIGN# 1 TO LL$ 
2030 READ# 1 oldruns 
2040 READ# 1 oldtitle$ 
2050 ASSIGN# TO * 
2060 DIS~ " File: ";L$ 
2070 DISP title$ 
2080 DISP oldruns 
2090 DISP "IncreMent nuMber of runs? (y/n)" @ INPUT qM$ 
2100 IF qM$="y" THEN 2110 ELSE 2200 
2110 runs=runs+oldruns 
2120 IF title$=oldtitle$ THEN 1560 
2200 ERRM 
2210 IF ERRN<>63 THEN 2300 
2220 DISP "Old title: ";oldtitle$ 
2230 DISP "New title: ";title$ 
2240 DISP "Use old title? (y/n)" @ INPUT qM$ 
2250 IF qM$="y" THEN title$=oldtitle$ ELSE 2300 
2260 GOTO 1560 
2300 OISP "This action will DESTROY data." 
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2310 DISP "Execution of this prograM is terMinated." 
2320 BEEP @ GOTO 2320 

10 !AUTO 
20 COM t1<200>,t2(200),t3(200),dtdt(200),d2tdx<200),tdfs(200) 
30 COM eta(200),xs(200),ys(200),tc<50),tbar(200) 
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40 COM runuM,jr,tint,deti,dlay,x12,x23,tl,th,dt,NT,runtyp,etabar,sd(200) 
50 COM tau 
90 ASSIGN 7 TO "hpib" 
100 ASSIGN# 1 TO "naMe" 
110 READ# 1 ; L$ 
120 ASSIGN# 1 TO * 
121 LL$=L$&".TX" @MASS STORAGE IS "/voll" 
122 ASSIGN# 1 TO LL$ 
123 READ# 1 runs 
124 READ# 1 title$ 
125 ASSIGN# TO * 
130 DISP "SAMPLE# ";title$ 
140 DISP "STORED AS ";L$ 
150 DISP "SET TIME IN MINUTES BETWEEN OBSERVATIONS" 
180 INPUT TOBS 
170 TOBS=TOBS*60000 
175 MASS STORAGE IS "/Mstr/basfo" 
180 FINDPROG "TAKEDATA" 
190 FINDPROG "TDREDUCE" 
200 FINDPROG "TDSTORE" 
210 ASSIGN 7 TO "hpib" 
220 MASS STORAGE IS "/vol1" 
230 CALL "TAKEDATA" 
235 runuM=runuM+1 
240 CALL "TDREDUCE" 
250 CALL "TDSTORE" (L$) 
255 ON TIMER# 1 ,TOBS GOTO 230 
260 OFF KEY# @ ON KEY# 1 ,"PARMS" GOTO 300 
270 ON KEY# 18,"STOP" GOTO 880 
290 GOTO 290 
300 OFF KEY# 
310 ON KEY# 1 ,"PLOT" GOT0'410 
320 ON KEY# 2,"TOBS" GOTO 710 
330 ON KEY# 3,"TINT" GOSUB 750 
340 ON KEY# 4,"DETI" GOSUB 790 
350 ON KEY# 5,"DELAY" GOSUB 840 
380 ON KEY# 8,"RESUME" GOTO 1800 
370 GOTO 370 
410 rn$=VAL$(runuM)@ LL$=L$&"."&rn$ 
420 ! Set plotting options 
425 tbar=tbar(runuM)@ tdfs=tdfs(runuM)@ OFF KEY# 
430 LT$=L$&".TX" 
440 ASSIGN# TO LT$ 
450 READ# 1 ; runs 



460 READ# 1 ; title$ 
470 ASSIGN# 1 TO * 
480 ON r'.EY# 1, "TMP/TIM" GOTO 570 
490 ON KEY# 2,"DERIVS" GOTO 610 
500 ON KEY# 8,"RETURN" GOTO 300 
510 KEY LABEL 
520 CLEAR @ DISP " SELECT THE TYPE OF PLOT USING THE FUNCTION KEYS" 
530 DISP " <fl> TeMperatures vs. tiMe 
540 DISP " <f2> dT/dt vs. d2T/dx2 " 
550 DISP " " @ DISP " 
560 GOTO 560 

<f8> Return to Main Menu." 

570 ynax=INT<tl(jr))@ xnax=deti/1000@ fl=l 
580 IF yMax=0 THEN ynax=l 
590 xlbl$="TIME (sec)" @ ylbl$="TEMP. CHANGE (Cl" 
600 GOTO 900 
610 ynax=MAXABCys}@ xnax=MAXAB<xs)@ xMax=INT<xnaxl+l @ fl=2 
620 IF ynax<l THEN 630 ELSE 680 
630 za=l 
640 za=10*za 
650 IF za*ynax<l THEN 640 
660 yMax=INTC za*yMax+ 1 )/za 
670 GOTO 690 
680 yMa:·:=INT( yMax+ 1 ) 
690 xlbl$="d2T/dx2" @ ylbl$="dT/dt" 
700 GOTO 900 
710 DISP "SET TIME IN MINUTES BETWEEN OBSERVATIONS" 
720 INPUT TOBS 
730 TOBS=TOBS*60000 
740 OFF KEY# @ GOTO 255 
750 DISP "SET TINT" 
760 DISP "OLD TINT= ";tint 
770 INPUT tint 
780 RETURN 
790 DISP " SET DETI -- TIME FOR EXPERIMENT" 
800 DISP "OLD DETI = ";deti 
810 INPUT deti 
820 RETURN 
830 ENO 
840 DISP "SET DELAY" 
850 DISP " OLD DELAY 
860 INPUT dlay 
870 RETURN 

";dlay 

880 MASS STORAGE IS "/Mstr/basfo" 
890 END 
900 ! plotting routine 
910 GCLEAR @ DEG @ CSIZE 4,0.6 
920 LOCATE 0,200,0,100 
930 SCALE C-0.Sl*xMax,1 .05•xMax,(-0.2l*yMax,1 .15•yMax 
940 CLIP 0,xMax,0,yMax 
950 AXES xMax/5,yMax/5,0,0@ AXES xMax/5,yMax/5,xMax,yMax 
960 LDIR 0 @ LORG 2 
970 y=(-0.05l•ynax 
980 FOR x=0 TO xMax STEP xnax/S 
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990 MOVE :-.; , y 
1000 LABEL x 
1010 NEXT x 
1020 MOVE XMax/2,C-0.12>•yMax 
1030 LABEL xlbl$ 
1040 x=0.32*xMax @ LORG 8 
1050 FOR y=0 TO yMax STEP yMax/5 
1060 MOVE x,y 
1070 LABEL y 
1080 NEXT y 
1090 LDIR 90 @ LORG 5 
1100 MOVE (-0. 1 )*:-.;f'iax ,0. G*yMa:~ 
1110 LABEL ylbl$ 
1120 LDIR 0 @ LORG 2 
1130 MOVE 0.05•xMax,1 .04*yl'iaX 
1140 LABEL title$ 
1150 MOVE 0.05•xMax,0.9•yMax 
1160 LABEL "T = " 
1170 MOVE 0.1*xMax,0.9•yMax 
1180 tbar=INT< 100*tbar)/100 
1190 LABEL tbar 
1200 IF fl=l THEN 1230 
1210 GOTO 1590 
1220 ! Plot the teMperature vs. tiMe data 
1230 FOR j=l TO jr 
1240 x=j•tint•0.001 
1250 y=t 1 ( j ) 
1260 MOVE x,y@ GOSUB 1670 
1270 y=t2( j) 
1280 MOVE x,y@ GOSUB 1700 
1290 y=t3( j) 
1300 MOVE x,y@ GOSUB 1670@ GOSUB 1700 
1316 NEXT j 

1320 ! Add additional data to the plot 
1330 LDIR 0@ LORG 2 @ CSIZE 4,0.6 
1340 MOVE (-0.4)•xMax,1 .04•yMax 
1350 LABEL "DATA" 
1360 CSIZE 3,0.6 
1370 MOVE (-0.5)•xMax,0.9•yMax@ 
1380 MOVE (-0,4)•xMax,0.9•yMax@ 
1390 MOVE (-0.5)•xMax,0.8•yMax@ 
1400 MOVE (-0.4)•xMax,0.8•yMax@ 
1410 MOVE (-0.5)*xMax,0.7•yMax@ 
1420 tdfs=INT<tdfs•l00000)/l00000 

LABEL 
LABEL 
LABEL 
LABEL 
LABEL 

"DELAY 
dlay 
"T-INT 
tint 
"TDFSVTY 

1430 MOVE (-0.38>•xMax,0.7•yMax@ LABEL tdfs 
1440 MOVE C-0.5l•xMax,0.6•yMax@ LABEL "L$ = " 
1450 MOVE (-0.42>•xMax,0.6•yMax@ LABEL LL$ 
1460 MOVE C-0.5l•xMax,0.5•yMax@ LABEL "x12 =" 
1470 MOVE C-0.4>•xMax,0.5•yMax@ LABEL x12 
1480 MOVE (-0.5l•xMax,0.4•yMax@ LABEL "x23 
1490 MOVE <-0.4)•xMax,0.4•yMax@ LABEL x23 

.. 

1500 MOVE (-0.5)•xMax,0.3•yMax@ LABEL "TIME CONST. =" 
1510 MOVE.C-0.3)•xMax,0.3•yMax @LABEL tau 
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1520 MOVE (-0.5l•xMax,0.2•yMax@ LABEL "STD. DEV. =" 
1530 sd=INT<sd(runuMl•1000000)/1000000 
1540 MOUE (-0.3l•xMax,0.2•yMax@ LABEL sd 
1550 MOUE (-0.Sl•xMax,0.l•yMax@ LABEL "ETA=" 
1560 etabar=INT(etabar•100000l/100000 
1570 MOUE (-0.4l•xMax,0.1•yMax@ LABEL etabar 
1580 CLEAR @ GOTO 420 
1590 ! dtdt vs d2tdx2 plots 
1600 FOR jp=2 TO jr-1 
1610 MOVE xs(jpl,ys(jpl@ GOSUB 1670 
1620 NEXT jp 
1630 ! Draw the regre5sion line 
1640 MOVE 0,0@ y=tdfs•xMax 
1650 LINE TYPE 1 @DRAW xMax,y 
1660 GOTO 1330 
1670 ! plus syMbol 
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1680 SETGU @ IDRAW 1 ,0 @ IORAW -2 ,0 @ IDRAW 1 ,0 @ IDRAW 0, 1 @ IDRAl~ 0, -2 
@ IDRAW 0, 1 
1690 SETUU @ RETURN 
1700 ! :~ syMbol 
1710 SETGU @ IDRAW 1 , 1 @ ID RAW -2 , -2 @ IDRAl~ 1 , 1 @ IO RAW -1 , 1 @ IDRAW 2 , -2 
@ IDR AW -J, 1 
1720 SETUU @ RETURN 
1800 !UPDATE THE DISPLAY 
1810 CLEAR@ DISP "SAMPLE I ";title$ 
1820 DISP "STORED AS ";L$ 
1830 DISP "TIME BETWEEN MEASUREMENTS ";TOBS/60000 
1840 DISP USING 1850 
1850 IMAGE" TEMP" ,3X," DFSVTY ",3X," 
1860 FOR JU=l TO runuM 

ETA ",3X I "STD DEV" 

1870 DISP USING 1890 ; tbar<JUl;tdfs(JUl;eta<JUl;sd(JUI 
1880 NEXT JU 
1890 IMAGE DDD.DD,3<3X,DD.50l 
1900 GOTO 260 



10 SUB "TAKEDATA" 
312) COM t1{200),t2{200),t3(200l,dtdt<200),d2tdxC200),tdfs{200) 
40 COM eta(200),;~s(200),yx(200l,tc(50l,tbar(200) 
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50 COM runuM,jr,tint,deti,dlay,x12,x23,tl,th,dt,NT,runtyp,etabar,sd(200) 
60 COM tau 
70 GOTO 150 
80 GOTO 80 
90 TRIGGER vMl ,vM2 ,vM3 @ jr=jr+l 
1 00 ENTER VM 1 ; t 1 ( j r ) @ ENTER vM2 
110 GOTO 110 
120 OFF TIMER# 3@ GOTO 310 
130 OFF TIMER# 2 @ OFF TIMER# 
140 OUTPUT dac "opn 0" @ GOTO 340 
150 ! Set up instruMents 

t2(jrl @ENTER vM3 t3(jr) 

170 dac=709 @ vM1=723 @ vM2=724 @ vM3=725 @ !hpib addresses 
180 ! set Up voltMeters 
190 FOR ji=0 TO 2@ vM=vMl+ji @ OUTPUT VM 
200 OUTPUT dac ; "opn 0 " 
210 ! get the teMperature baseline 
220 TRIGGER YMl ,vM2,vM3 
230 ENTER VM 1 t 1 ( 0 ) 
240 ENTER VM2 t2(0) 
250 ENTER VM3 t3(0) 
260 jr=0 
270 OUTPUT dac ; "els 0" 
280 IF dlay<l0 THEN 310 
290 ON TIMER# 3,dlay GOTO 120 
300 GOTO 300 
310 ON TIMER# 1 , de ti GOTO 130 
320 ON TIMER# 2,tint GOTO 90 
330 GOTO 80 
340 FOR ji=0 TO 2 @ VM-VM1+ji @ OUTPUT VM 
360 SUBEND 

10 SUB "TDREOUCE" 
20 ! t dreduce 

"F1R-2T4Z0N5" @ NEXT Ji 

"Tl"@ NEXT ji 

30 COM t 1<200), t2( 200), t3\ 200) ,dtdt ( 200 l ,d2t dx(200 >, tdfs( 200 > 
40 COM eta(200),xs(200),ys\200),tc(50),tbar(200) 
50 COM runuM,jr,tint ,deti,dlay,x12,x23,tl,th,dt ,NT,runtyp,etabar,sd(200) 
60 COM tau 
70 xbar=0.5*(x12+x23l 
80 at=25.33 @ bt=-0.352 @ ct=0.032 
90 ! Convert voltages to teMperatures 
100 FOR j=0 TO jr 
110 tt=tl<j)*l000@ tl<j)=tt*<at+tti1-(bt+tti1-ct)l 
120 tt=t2(j )*1000@ t2(j )=tt*<at+tt*<bt+tH·ct)) 
130 tt=t3(j )*1000@ t3(j )=tt*(at+tt*(bt+tt*ct)) 
140 NEXT j 

150 ! Calculate the tiMe derivatives of t2 
160 n=8 
170 sj=0 @ sj2=0 @ st=0 @ sjt=0 



180 FOR =1 TO 2*n+1 
190 sj=s +j @ sj2=sj2+j*j 
200 st=s +t2(j) @ sjt=sjt+j*t2(j) 
210 NEXT j 
220 dtdt(n+l )=1000*( (2·•n+1 }*sjt-sj*st )/(tint*< <2*n+1 )*sj2-sj*sj)) 
230 FOR j=n+2 TO jr-n 
240 sj=sj+ntntl @ sj2=sj2-< j-n-1 )*( j-n-1 )+( jtn )*( j+n) 
250 st=st-t2(j-n-1 Ht2(jtn)@ sjt=sjt-(j-n-J )*t2(j-n-1 )t(j+n}id2(jtnl 
260 dtdt(j )=1000*((2*n+1 )*sjt-sj•st )/(tint*((2*n+1 )*sj2-sj*sj )) 
270 NEXT j 
280 ! Get the delta t's and the laplacian 
290 FOR j=l TO jr 
300 t1(j)=t1(j)-t1(0)@ t2(j)=t2(j)-t2(il))@ t3(j)=t3(j)-t3(0) 
310 d2td;d j )=( ( t3( j )-t2< j) )/x23-( t2( j )-t 1 ( j) )/;<. 12 )/xbar 
320 NEXT j 
330 ! Get the therMal diffusivity by least squares 
340 sx=0 @ sx2=0 @ sy=0 @ sxy=0 @ st=0 @ set=0 @ sy2=0 
350 FOR j=n+l TO jr-n 
360 x=( d2td;d j-1 Hd2td;d j )+d2td;d j+J) )/3 
370 xs(j)=x 
380 y=dt dt ( j } 
390 ys(j )=y 
400 s;•;y=s;.;y+x*y 
410 sx2=sx2+x*x 
420 sy2=sy2+y*y 
430 st=st+t2( j) 
440 eta(j )=y/x 
450 set=set+y/x 
460 NEXT j 
470 tdfs(runum)=sxy/sx2 
480 tbar(runuM}=st/(jr-2*n)+t2(0) 
490 etabar=set/(jr-2*n) 
500 sd=SQR((sy2-sxy*sxy/sx2)/(jr-2))/x@ sd(runuml=sd 
510 DISP USING 520 ; tbar(runum);tdfs(runum);etabar;sd(runum) 
520 IMAGE DDD.DD,3<3X,DD.50} 
530 eta(runuM}=etabar 
540 SUBEND 

10 SUB "TDSTORE" <L$) 
20 ! t dstore 
30 COM t1(200l,t2<200),t3<200>,dtdt\200),d2tdx<200),tdfs(200l 
40 COM eta<200l,xs\200),ys(200),tc(50),tbar(200) 
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50 COM runuM,jr,tint,deti,dlay,x12,x23,tl,th,dt ,NT,runtyp,etabar,sd(200) 
60 COM tau 
70 sd=sd(runui"ll 
100 rn$=VAL$(runum) 
110 LL$=L$&"."&rn$ 
120 CREATE LL$,jr+8,40 
130 ASSIGN# 1 TO LL$ 
140 PRINT# 1 ; LL$ 



150 PRINT# 
160 PRINT# 
170 PRINT# 
180 PRINT# 
190 FOR js=0 
200 PRINT# 1 

I 

210 NEXT JS 
220 ASSIGN# 
'?'?C:: 
"-.J:...._J GOTO 260 
260 SUBEND 

10 ! tdplot 

1 

tbar(runuM),tdfs(runuM),etabar,sd 

tint ,deti ,dlay,tau 
jr 

TO jr 
; tHjs),t2(js),t3(js),xs(js),ys(js) 

TO * 

20 MASS STORAGE IS "/voll" 
999 CLEAR 
1000 DISP " THIS PROGRAM READS THERMAL DIFFUSIVITY DATA FILES" 
1001 DISP " AND MAKES PLOTS ON THE SCREEN" 
1005 DIM t 1 ( 200), t2( 200), t3( 200) ,xs( 200) ,ys( 200) ,yx( 200) 
1006 DIM ylbl$(130l 
1010 OISP 
1020 OISP ''The file naMes have the forM FFFFFFFFFFF.##" 
1030 DISP " Enter FFFFFFFFFFF" @ INPUT LL$ 
1031 L T$=LL$&". TX" @ ASSIGN# 1 TO LT$ @ READ# 1 ; runs 
1 032 READ# 1 ; title$ 
1033 ASSIGN# 1 TO * 
1035 DISP "Enter ##" @ INPUT rn 
1036 rn$=VAL$(rn) 
1040 L$=LL$&"."&rn$ 
1050 ASSIGN# I TO LI 
I 160 READ# I L$ 
1170 READ# 
1180 READ# 
1190 READ# 
1200 READ# 
1320 FOR j=0 
1330 READ# 1 
1340 NEXT j 

tbar,tdfs,eta,sd 
x12,:..:23 
tint ,deti ,dlay, tau 
jr 

TO jr 
; tl<j),t2(j),t3(j),;..:s(j),ys(j) 

1350 ! Set plotting options 
1360 ON f<EY# 1 ,"TMP/TIM" GOTO 1450 
1370 ON KEY# 2,"DERIVS" GOTO 1500 
1375 ON KEY# 5,"NEW FILE" GOTO 1530 
1376 ON KEY# 8,"QUIT" GOTO 1700 
1 380 t<EY LABEL 
1390 CLEAR @ DISP " SELECT THE TYPE OF PLOT USING THE FUNCTION KEYS" 
1400 DISP " 
1410 DISP " 
1420 OISP " 
1430 DISP " 

(fl> TeMperatures vs. tiMe 
<f2> dT/dt vs. d2T/dx2 " 

" @ DISP " <f5> Change file" 
" @ DISP " <f8> Quit" 

1440 GOTO 1440 
1450 yMax=INT<tl(jr))@ xMax=deti/1000@ fl=1 
1455 IF yMax=0 THEN yMax=l 
1460 xlbl$="TIME <sec)"@ ylbl$="TEMP. CHANGE CC)" 
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1470 GOTO 2000 
1500 yMax=MAXABCys)@ xMax=MAXABlxs)@ xMax=INT(xMax)+l @ fl=2 
1510 IF yMax<1 THEN 1512 ELSE 1518 
1512 za=1 
1513 za=10•za 
1514 IF za•yMax<I THEN 1513 
1515 yMax=INT( za*yMa:.;+1 )/za 
1 51 6 GOTO 1 51 9 
1518 yMax=INT(yMax+l) 
1519 xlbl$="d2T/dx2" @ ylbl$="dT/dt" 
1520 GOTO 2000 
1530 OFF l<EY# 
1540 DISP "The file naMes have the forM FFFFFFFFFFF.##" 
1550 ON ~:EY# 1 , "FFFFFF" GOTO 1590 
1560 ON KEY# 2,"##" GOTO 1610 
1 570 l<EY LABEL 
1580 GOTO 1580 
1590 OFF KEY# 
1600 GOTO 1030 
1 610 OFF l<EY# 
1620 GOTO 1035 
1700 END 
2000 ! plotting routine 
2010 GCLEAR @ DEG @ CSIZE 4,0.6 

2030 SCALE (-0.Sl•xMax,1 .05•xMax,(-0.2l•yMax,1 .15•yMax 
2050 CLIP 0,xMax,0,yMax 
2060 AXES xMax/5,yMax/5,0,0@ AXES xMax/5,yMax/5,xMax,yMax 
2070 LDIR 0 @ LORG 2 
2080 y=(-0.05)•yMax 
2090 FOR x=0 TO xMax STEP xMax/S 
21 00 MOVE ~: , y 
2110 LABEL x 
2120 NEXT x 
2130 MOVE xMax/2,(-0.12l•yMax 
2140 LABEL xlbl$ 
2150 x=0.32•xMax @ LORG 8 
2160 FOR y=0 TO yMax STEP yMax/5 
21 70 MOVE :< , y 
2180 LABEL y 

2190 NEXT y 
2200 LDIR 90 @ LORG 5 
2210 MOVE (-0.1 )•:<:Max,0.6•yMa;-: 
2220 LABEL ylbl$ . 
2230 LDIR 0 @ LORG 2 
2240 MOVE 0.05*xMax,1 .04•yMax 
2250 LABEL title$ 
2260 MOVE 0.05•xMax,0.9•yMax 
2270 LABEL "T = " 
2280 MOVE 0.1*xMax,0.9•yMax 
2285 tbar=INT( 100•tbarl/100 
2290 LABEL tbar 
2900 IF fl=l THEN 3000 
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2910 GOTO 3500 
2999 ! Plot the teMperature vs. tiMe data 
3000 FOR j=l TO jr 
3010 x=j•tint•0.001 
3020 
3030 
3040 
3050 
3060 
3070 

y=tl(j) 
MOVE x,y 
y=t2(j) 
MOVE x,y 
y=t3( j) 

MO\,'E x,y 
3080 NEXT j 

@ GOSUB 

@ GOSUB 

@ GO SUB 

4500 

4530 

4500 @ GO SUB 4530 

3090 ! Add additional data to the plot 
3100 LDIR 0@ LORG 2 @ CSIZE 4,0.6 
3110 MOVE (-0.4l•xMax,1 .04•yMax 
3120 LABEL "DATA" 
3130 CSIZE 3,0.6 

LABEL 
LABEL 
LABEL 
LABEL 

"DELAY 
dlay 
"T-INT 
tint 

3140 MOUE (-0.5l•xMax,0.9•yMax@ 
3150 MOVE (-0.4l•xMax,0.9•yMax@ 
3160 MOUE C-0.5)•xMax,0.8•yMax@ 
3170 MOVE (-0.4)•xMax,0.8•yMax@ 
3180 MOVE C-0.5l•xMax,0.7•yMax@ 
3185 tdfs=INTCtdfs•100000l/100000 

LABEL "TDFSVTY 

3190 MOVE (-0.38l•xMax,0.7•yMax@ LABEL tdfs 
3200 MOVE C-0.Sl•xMax,0.6•yMax@ LABEL "L$ = " 
3210 MOVE C-0.42)•~:Max,0.6•yMax@ LP.iBEL L$ 
3220 MOVE C-0.Sl•xMax,0.5•yMax@ LABEL "x12 =" 
3230 MOVE C-0.4)•xMax,0.5•yMax@ LABEL x12 

@ LABEL 11 x23 = 
@ LABEL x23 

" 3240 MOUE (-0.5)•xMax,0.4•yMax 
3250 MOVE (-0.4)•xMax,0.4•yMax 
3260 MOVE (-0.5l•xMax,0.3•yMax 
3270 MOVE (-0.3)•xMax,0.3•yMax 
3280 MOVE (-0.5l•xM~x,0.2•yMax 

3285 sd=INT<sd•1000000)/1000000 

@ LABEL "TIME CONST. 
@ LABEL tau 
@ LABEL "STD. 

3290 MOVE C-0.3)•xMax,0.2•yMax@ LABEL ~d 
3300 MOVE C-0.5l•xMax,0.1•yMax@ LABEL "ETA 
3305 eta=INTCeta•100000l/100000 
3310 MOVE (-0.4l•xMax,0.1•yMax@ LABEL eta 
3390 CLEAR @ GOTO 1350 
3500 ! dtdt vs d2tdx2 plots 
3510 FOR jp=2 TO jr-1 
3520 MOVE xs(jp),ys(jpl@ GOSUB 4500 
3530 NEXT jp 
3540 ! Draw the regression line 
3550 MOVE 0,0@ y=tdfs•xMax 
3560 LINE TYPE 1 @DRAW xMax,y 
3570 GOTO 3100 
4500 ! plus syMbol 

DE'J. =" 
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=II 

4510 SET GU @ ID RAW 1 , 0 @ IDRAW -2 , 0 @ IDRAW 1 , 0 @ ID RAW 0, 1 @ IDRAW 0, -2 
@ IDRAW 0, 1 
4520 SETUU @ RETURN 
4530 ! x syMbol 
4540 SETGU @ IDRAW 1 , 1 @ ID RAW -2 , -2 @ ID RAW 1 , 1 @ ID RAW -1 , 1 @ ID RAW 2 , -2 
@ IDR AvJ -1 , 1 
4550 SETUU @ RETURN 
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