PULSE THERMAL DIFFUSIVITY MEASUREMENTS

OF SEDIMENTARY ROCKS

By

VALENTINA ADELAIDA STEPHEN
W

Bachelor of Science
University of Bucharest

Bucharest, Romania

1975

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 1987






ACKNOWLEDGMENTS

I wish to express my gratitude to my major adviser, Professor
George S. Dixon, for his guidance, support and encouragement during this
work. His patience and assistance during the long hours of the prepara-
tion of this manuscript are much appreciated.

I also wish to express my thanks to Professors Joel J. Martin and
Paul A. Westhaus for agreeing to serve on my thesis advisory committee
and for their helpful comments and suggestions.

Special thanks are due to Conoco, Inc., for their financial support
of this work and to Ms. Renea Behrens for her typing and editing of this

manuscript.

iii



TABLE OF CONTENTS

Chapter
I. INTRODUCTION. . . v v & ¢ & ¢ ¢ o o o o o o &

Thermal Comparator (Divided-Bar) Method.
Needle-Probe Method. . . . . . . . . .

II. EXPERIMENTAL PROCEDURE. . . . . . . . . . . .

Apparatus. . . ¢ ¢ ¢« ¢« « 4 4 e e e e e
Procedure. « « ¢« ¢ ¢ ¢ ¢ ¢ o o o 6 o o

III. EXPERIMENTAL RESULTS AND DISCUSSION . . . . .

Standardization of the Apparatus . . . .
Experimental Results and Conclusions . .

BIBLIOGRAPHY . . ¢« v v ¢ v ¢ v ¢ v ¢ @ o o o o o o &

APPENDIX . ¢ v v ¢« ¢ v v v e o o o o o o o o o o o

iv

Page
1

2

6

10

. 1
. 1
. 19
. 19
21

. 314
. 35



LIST OF TABLES
Table Page

I. Thermal Properties of Standard Materials:
Observed Valu€S. + o o o o o o o o o s o o o o o o o o 20

II. Thermal Properties of Standard Materials:
Reference ValueS. « « « &+ &+ o o o o s o o s o o o o o s 21



LIST OF FIGURES

Figure

1.
2.

3.

10.

1.

Thermal Comparator Method: Schematic Assembly. . . . .
Schematic Diagram of Thermal Conductivity Probe . . . . . .

Block Diagram of the Apparatus. The Temperature Profile
in the Sample S is Sensed by the Thermocouples T and
Digital Voltmeters DVM after the Heater H is Activated
by the Data Acquisition Unit DAC. The Sample and the
Heater are Enclosed in a Furnace not Shown. . . . . . . .

Typical Temperature vs. Time Curves for the Three
Thermometers. The Upper Curve is from the
Thermometer nearest the Heater and the Lower
from that farthest from the Heater. . . . . . . . . .

Rate of Change of Temperature vs. its Second Space
Derivative Calculated from the Data in Figure A4,
The Slope of the Regression Line is the Thermal
DIffusivity « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e & ¢ o s o o o s e s e

Thermal Diffusivity of Carbonate Packstone as a
Function of Temperature. The Solid Line is a
Guide to the Eye. « v ¢« ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o

Thermal Diffusivity of Carbonate Mudstone as a
Function of Temperature. The Solid Line is a
Guide To the Eye. v ¢« ¢ ¢ ¢ o ¢ o o o ¢ o o o o o o o o o

Thermal Diffusivity of Limey Sandstone as a
Function of Temperature. The Solid Line is a
Guide to the Eye. ¢« ¢« ¢ ¢ v ¢ ¢ ¢ o o o o o o o o s o o

Thermal Diffusivity of Limey Sandstone as a
Function of Temperature. The Solid Line is a
Guide to the Eye. + ¢ ¢« v ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o s o o

Thermal Diffusivity of Dolomitic Sandstone as a
Function of Temperature. The Solid Line is a
Guide to the Eye. ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ot o o o o o o o o

Thermal Diffusivity of Berea Sandstone as a

Function of Temperature. The Solid Line is a
Guide to the Eye. « v ¢ v v 4 ¢ ¢ ¢ ¢ o ¢ o o o o o o o

vi

Page

12

15

16

26

27

28

29

30

32



CHAPTER I
INTRODUCTION

The thermal transport properties of sedimentary rocks are of inter-
est to petroleum geology because of the possibility of using thermal
profiles of sedimentary basins to evaluate the oil and gas generation
potential of the rocks. The thermal transport properties are also
important because of the current interest in the thermal methods of
petroleum production from underground oil-bearing rocks and sands. At
present, the thermal transport properties of petroleum reservoir-type
rocks are not very well characterized, and few reliable data are avail-
able in the literature. The properties of interest are the thermal
conductivity, the thermal diffusiyity, and the specific heat. The
relation of'these properties to such other parameters as porosity,
temperature, pressure, and fluid saturation is also important in devel-
oping predictive models of the thermal history of sedimentary basins and
in the thermal oil-recovery processes.

Techniques for thermal conductivity measurements can be grouped
into steady-state temperature and transient temperature methods. The
steady-state methods require simultaneous measurements of the steady-
state heat flux and temperature gradient through the test samples. The
samples are usually in the form of spheres, cylinders or slabs, for
which solutions to the differential equation of heat conduction are

readily available. Drawbacks common to all steady-state methods are the



relatively long time needed to attain thermal equilibrium as well as the
necessity of sophisticated guarding systems to minimize as much as
possible the edge or end effects (since no thermal insulation is perfect
in practice).

The transient methods are much faster than the steady-state
methods. Some of the transient methods determine thermal conductivity
directly, but most of them lead to a measurement of thermal diffusi-
vity. The test sample is initially in a state of thermodynamic
equilibrium. An addition of thermal energy to the sample induces a
transitory temperature change as the sample seeks a new state of equili-
brium. A measurement of the temperature as a function of time at
several points in the sample leads to the determination of thermal
diffusivity or thermal conductivity.

Because of the short duration of test, these methods are much
faster than the steady-state methods, and also they are not restricted
to measurements of the conductivity of dry samples only. This is impor-
tant because of the increasing interest in materials where moisture
affects the thermal conductivity, like soils.

The most commonly used techniques for measurements of thermal
conductivity of geological media are: 1) the thermal comparator (or
divided-bar) method which is a steady-state method and is used for core
samples, such as rocks; 2) the needle-probe method which is a transient

method and is suitable for unconsolidated samples such as sands.

Thermal Comparator (Divided-Bar) Method

The sample or specimen in the form of a circular or square

parallel-faced flat plate is sandwiched between two standards (reference



materials of known thermal conductivity) of dimensions equal to those of
the specimen. This "stack" is surmounted by a heating element. To
minimize the radial heat losses to the surroundings, an outer cylin-
drical guard tube with a number of heating elements in it is put around
the specimen-standards stack. The space between the guard tube and the
stack is filled with thermal insulation. Thermocouples inside the
standards and sample measure the difference in temperature across each
of these materials.

A version of the thermal comparator method as it appears in [10] is
shown in Figure 1. Determination of the thermal conductivity of the
specimen, Ax’ is based on the assumption that the heat flow across the
standard is equal to the heat flow across the sample, i.e.

Q = —AAg—} - -AXA;;E (1)
( 2 = thermal conductivity of the standard; A = cross sectional area of
the specimen and the standard; L temperature gradient down the stan-

3T 3%

H 5@5 = temperature gradient down the sample).

In a first approximation, from (1), it can be written that:

dard

AT
AT =X (2)

A AL x AR

Since the distance AL along which the temperature difference is measured

is the same for both the standard and the specimen, then (2) becomes:

X - A (3)
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Therefore, to a first approximation, the ratio of the conductivity
of the specimen to the conductivity of the standard is equal to the
ratio of the temperature difference across the standard to the temper-
ature difference across the specimen and Ax can thus be determined.
There are two effects the divided-bar method suffers from and which
affect the accuracy of the measurements: 1) conductivity mismatch
between the specimen and the standards; 2) interfacial resistance be-
tween specimen and standards. The former affects the heat flow through
the specimen and standards which in this method is considered the same
in determining the thermal conductivity. However, analysis conducted on
this method have shown that in practice, the heat flow through the
specimen and standards is never the same due to radial heat exchanges
between the test stack and the insulation, and also due to the fact that
the direct longitudinal heat flow through the insulation can "shunt" the
flow through the test sample (i.e. heat bypassing the specimen through
the insulation or bypassing the insulation through the specimen, depend-
ing on whether the conductivity of the sample is less or more than that
of the standards). And these problems become more significant when the
thermal conductivities of the specimen and the standards approach that
of the insulation, which is always the case when measurements are done
on geological media which typically have low conductivities. A complete
analysis of these errors can be found in [T7].

The interfacial resistance affects the temperature distribution on
both the sample and the standards since there is always a temperature
drop across the thermal resistances which appear at the contacting
surfaces of the specimen and standards. Apart from the two special

sources of error mentioned above, the divided-bar method is also subject



to most of the errors pertinent to the absolute steady-state temperature
methods, and therefore it is less accurate. For this reason, the ther-
mal comparator (divided-bar) method is largely regarded as a compromise
which sacrifices accuracy for the simplicity of sample configuration and

relative ease of assembly and operation.
Needle-Probe Method

This method uses a line heat source (i.e. a wire through which a
constant electric current passes) and a thermocéuple which are embedded
alongside each other in the test sample. After the assembly is at a
uniform and constant temperature, a constant power is supplied to the
heater for a short time and the rise in temperature is recorded. The
rise in temperature is determined by the ability of the sample to
conduct the heat generated away from the line source. The thermal
conductivity of the sample can be determined from the temperature-time
record and the power input. The theory on which this method is based
can be found in [2].

If we consider the application of heat through an infinitely long,
thin heat source embedded in an infinite homogeneous material which is
initially at equilibrium, then the temperature rise at a point in the

material as a function of time while the heater is on is given by:

- 9 r
(r,t) = SN I(mz) (u)

where Q = power input per unit length of source, cal/cm sec; A = thermal
conductivity of the material, cal/cm sec°C; n = thermal diffusivity of

the material, cm2/sec; r = radial distance of point from line source,



cm; t = time from the start of heating, sec; and

2 ]
I(x) = C=1Inx + 3= = 5= * ...
where C = Euler's constant (0.5772). If X =-—ll—t%is small, i.e.,
2(nt)

large t and small r, then the terms of the order of x~ and above can be

neglected and

r
0 = -2—“7\'[(: - 1n ———"172] (5)

If t; and to are two sufficiently long times during the heating

interval, the corresponding temperature rise is given by

t
- - = 8 2
b = 8, -0, = = ln(t1) (6)
Then A is given by
t
- 9 (-2
R 1n(t ) (7)

1

A plot of the temperature rise A6 versus the logarithm of time
[;E) gives a straight line with a slope of ﬂ%i‘ Thus A can be obtained
by lhe knowledge of this slope and of the applied power per unit length
of the heat source.

Although the above theory applies to a perfect line heat source
(i.e. infinitely large length to diameter ratio), it was shown that the
errors in this respect are negligibly small for probes of length to
diameter ratio of 30 or more. The theory also applies to samples of
infinite dimensions; it was shown that if the testing time interval is

limited to the time before the heating effect reaches the surface of the

sample, then a sample of practical dimensions behaves as one infinite in



size.

A diagram of a thermal conductivity probe, as shown in [10] is
given in Figure 2.

In the following chapters, a pulse method for determination of
thermal diffusivity of geological media, as well as the results of

measurements on several sedimentary rocks, will be presented.
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CHAPTER II
EXPERIMENTAL PROCEDURE

One of the thermal transport properties of a solid is its thermal
diffusivity, n, which governs the temperature profile of a solid through

the diffusion equation:

2L - VT ’ (8)

where T is the temperature and t is time. Solutions to this diffusion
equation for a variety of sample shapes and boundary conditions are
given in [2].

The thermal diffusivity, n, and thermal conductivity, A, of a solid

are related by:

n = — (9)

where p is the mass density and ¢ is the specific heat of the solid.

In this work, the thermal diffusivity was determined from the
diffusion equation (8) by a pulse method. This method is an adaptation
using computer control and modern digital instrumentation of an earlier
technique first used for the study of thermal transport properties in

metals and semiconductors at high temperatures [3].

10
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Apparatus

The samples used are sedimentary rocks in the shape of cylinders of
2.5 em in diameter and 4 to 8 em in length. A heater located at one end
of the sample creates, when energized for a short time, a one-dimen-
sional heat pulse through the sample. Both the sample and the heater
are enclosed by a furnace connected to a programmable temperature con-
troller (Omega CN 2000).‘ The furnace provides the ambient temperature
at which the diffusivity is desired. A block diagram of the apparatus
is shown in Figure 3. The heater is turned on and off through the
computer which actuates a relay in the data acquisition unit, DAC (HP
3412A). Three thermocouple wells 0.9 mm in diameter were drilled along
the length of the sample. The distance separation between the three
thermocouple wells was chosen to be 5 mm in order to allow response to
the heat pulse by all three thermometers when the thermal diffusivity of
the sample is low (of the order of 10"20m2/sec) as it is for sedimentary
rocks. The thermometers used were type K thermocouples and electronic
ice points were used as the reference junctions. The thermocouples were
monitored, under computer control, by digital voltmeters (HP 3478A),
DVM, with a sensitivity of 0.1 uV. This gives a temperature measurement

sensitivity of ~ 3mK near room temperature.
Procedure

After the sample is brought to steady-state conditions at the
temperature where the diffusivity is desired, the computer triggers the
voltmeters and records the initial readings of the thermometers. It
then closes the relay, turning the heater on. A one-dimensional heat

pulse now flows through the sample, and the temperature is monitored as
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a function of time. To do this, the computer triggers simultaneously
the three voltmeters at regular intervals, which in this experiment were
0.5 seconds. The temperature readings of the three thermometers are
thus collected every 0.5 seconds and stored in the computer. Data are
collected for a time interval of 30 to 100 seconds, during which'the
temperature at the thermometer nearest the heater rises by 1 to 5 K. It
is desired that the data acquisition times be short so as to minimize
the possibility of electronic drift. When data collection is completed,
the relay in the data acquision unit, DAC, is automatically opened by
computer command, thus turning off the heater. The computer now reduces
the data stored during the process of data acquisition and displays the
thermal diffusivity.

The simple one-dimensional diffusion equation

aT 37T (10)

applies to the region of interest which is the part of the sample be-

tween the lowest and the highest thermocouples. A plot of %% versus
2

§_% for the mid-plane between these two thermocouples is made. The
9X

thermal diffusivity is given by the slope of the least squares regres-
sion line for this plot.

The data reduction process starts with the conversion of the volt-
meter readings to temperatures using an interpolation formula for the
thermocouple tables. The initial thermometer readings are subtracted
from each point in the data set to eliminate any small mismatch between
the thermocouples. The rate of change of the temperature with time

3T

(53) at the mid-plane is approximated by the slope of the regression
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line for a small subset of the data, and this value is assigned to the

2
mid-point of the time interval of the subset. The value of 2.% at the
X

mid-plane at this time is approximated by the finite difference
relation:
527 [Tye)=Ty(e) ] = [T, (e)-T (2]

= (11)
9%° (Ax)° |

where Ax is the distance between adjacent thermometers and the sub-

scripts U, M, L refer to the upper, middle and lower thermometers

respectively. This way, a set of values for %% and the corresponding
2

é—g are obtained for the mid-plane. These values are fitted by least
9x

squares to obtain the thermal diffusivity, n.
Typical curves for the variation of temperature as a function of

time are shown in Figure 4. Figure 5 displays a plot of %%
2

2—%, the straight line being the least squares regression line. It
9x

can be seen that the experimental points follow closely the linear

versus

relation expected from the diffusion equation (10).

The thermal conductivity, A, of the sample was calculated using (9)
after the density and specific heat of the sample were determined.
Since the samples were right circular cylinders, the density was deter-
mined from the mass and the dimensions of the sample. To measure the
specific heat of the samples, a simple drop calorimeter was con-
structed. The sample, heated to the steam point, was rapidly
transferred to an insulated water bath at room temperature and the
temperatures of both the bath and the sample were monitored until final
equilibrium was attained. The specific heat was calculated by straight

forward application of the first law of thermodynamics, heat losses to
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the surroundings being neglected.

The pulse method presented here, like all other transient temper-
ature methods for measuring thermal diffusivity, has the advantage of
being much faster than the steady-state methods which determine the

thermal conductivity directly from Fourier's Law:
d = =AVT (12)

where J 1is the thermal current density and T is the temperature. Since
J and VT must be constant over the measurement volume, such methods are
complicated by two problems: 1) the necessity of rigorous steady-state
conditions whicﬁ makes the collection of data, and thus the method,
become very slow because the thermal equilibrium times are very long (of
the order of hours) at elevated temperatures; 2) the necessity of con-
trolling accurately the heat losses through complicated guarding systems
to shield against such losses and/or correction of the experimental data
for such losses.

The pulse method, being a dynamic method, does not require rigorous
steady-state conditions, and this reduces sharply the time necessary for
a measurement. Unlike the steady-state methods which require measure-
ments of the heat flux and the temperature gradient through the sample,
this method requires only the measurement of the time interval in which
a heat pulse propagates a known distance. And in principle, lengths and
time intervals can be more accurately and more easily measured than heat
fluxes and temperature gradients.

Due to the fact that the samples used have typically low thermal
conductivities and also because the region of interest is the part of

the sample between the lowest and the highest thermocouples (which are
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10 mm apart), the heat losses through the lateral surface of the sample
in the region of interest are, to a first approximation, negligibly
small and therefore there is no need for corrections for heat losses
through radiation or convection.

The method has, however, a few sources of error: 1) the degree of
precision in measuring the distances at which the three thermocouple
wells are drilled is probably the most significant source of error,
considering that, due to reasons shown already, the spacing between the
thermocouple wells was chosen to be 5 mm and therefore an imprecision of
a few tenths of a mm becomes significant. This is a systematic error
that appears in the measurements of all samples used; 2) there are also
random errors due to the scattering of the experimental data with
respect to the least squares regression line; 3) finally, there is an
error involved in measuring the specific heat due to neglection of heat
losses to the surroundings. This last affects the calculated conduc-
tivity A, but not the diffusivity , n.

Based on multiple measurements done on several samples, the errors
are estimated to be approximately 5% each for the thermal diffusivity

and the specific heat measurements.



CHAPTER III
EXPERIMENTAL RESULTS AND DISCUSSION
Standardization of the Apparatus

The thermal diffusivities and thermal conductivities were deter-
mined by the pulse method described in the previous chapter for four
homogeneous materials whose thermal conductivities span the range that
one expects to encounter for sedimentary rocks (10—2 - 10_1 W/cmK) .
These materials were: synthetic crystalline quartz, fused quartz glass,
type 304 stainless steel and plastic lexan, which is a polymeric
glass., For steel and lexan, specimens were prepared in the shape of
cylinders one inch in diameter and two inches in length, to approximate
the shape and dimensions of the sedimentary rock samples. For quartz
crystal and quartz glass samples, large specimens were not available;
the crystal (a-quartz) sample was a square rod 5mm on a side and 5cm
long with its long dimension perpendicular to the optic axis. The fused
quartz (g-SiOZ) sample was a circular rod 10cm long and 5 mm in
diameter. Because of the smaller diameter of these two samples, instead
of drilling thermocouple wells inside the samples at 5mm intervals, as
was done for all other samples, the thermocouples were mounted on the
surface of the quartz samples at 5mm intervals.

Table I shows the thermal diffusivities, specific heats and densi-
ties measured for these standard materials as well as the thermal

conductivity calculated from these using (9).

19
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Table II shows the thermal diffusivities and thermal conductivities
of these materials as reported in the literature.

The measured values agree with the corresponding reference values
to within 10%. In fact, except for lexan, the agreement is to within 5%
or better, which is less than the experimental errors of this method,
estimated from multiple observations, to be 5% each for the thermal

diffusivity and specific heat measurements.

TABLE I

THERMAL PROPERTIES OF STANDARD MATERIALS:
OBSERVED VALUES

Material Thermal Diffusivity Specific Heat Density Thermal

(cmz/sec) (cal/gK) (g/cm3) Conductivity
(W/cmK)

a~Quartz 0.0324 0.17 2.65 0.064
(Je-axis)
Type 30U 0.0389 0.122 7.90 0.157
Stainless
Steel
8102 Glass 0.0089 0.17 2.22 0.014
Lexan 0.00145 0.29 1.19 0.0021
(polycarbonate

Glass)
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TABLE II

THERMAL PROPERTIES OF STANDARD MATERIALS:
REFERENCE VALUES'

Material Thermal Diffusivity Thermal Conductivity
(cmz/sec) (W/cmK)

a-Quartz 0.031 0.062

(Je-axis)

Type 304 - 0.152

Stainless

Steel

810, Glass 0.0085 0.0142

Lexan -—- 0.00192

(Polycarbonate Glass)

1 Reference values taken from [11].

2 Gross, S., Modern Plastics Encyclopedia, (McGraw-Hill, New York,
1971), p.561.

Experimental Results and Conclusions

The temperature dependence of the thermal diffusivity of six
different sedimentary rocks was measured over a temperature range of
practical interest in geology (i.e. from 20° C to 100° C). The rocks
studied were: two carbonates (a packstone and a mudstone), berea sand-
stone, two limey sandstones, and dolomitic sandstone. The sandstones

are generally rich in quartz (up to about 60%) which is found in both
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small crystallites and amorphous form. Dolomitic sandstones have,
besides quartz, a significant content of calcium and magnesium carbon-
ates. The carbonate packstone and mudstone are part of the larger
family of limestones. Limestones are rich in calcium and magnesium
carbonates (60-80%), mudstones being finely grained while the packstones
contain large crystallites. Apart from the minerals mentioned above,
each of these types of rocks contains also small amounts of other misc-
ellaneous minerals, both in amorphous and small crysﬁallites form,
depending on the age and geological history of the sedimentary basins
the rock comes from.

The well-known result from the kinetic theory of gases:
A = =CvL (13)

was first applied by Debye to describe thermal conductivity in die-
lectric solids, with C = the heat capacity per unit volume of the
phonons, v = phonon velocity, L = phonon mean free path and A = thermal
conductivity [4].

In the Debye approximation (where the phonon velocity v is consi-
dered constant for all polarizations), the phonon heat capacity at high
temperatures (i.e. T > GD’ where OD = Debye temperature) approaches a
constant value (i.e. the classical value of 3NkB of Dulong and Petit,
where N is the number of atoms in the specimen and kg is Boltzman con-
stant). Therefore, the behavior of A at high temperatures is determined
by the phonon mean free path, L.

In crystals, the phonon mean free path L is determined by two

processes: geometrical scattering (i.e. scattering by lattice imper-
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fections and by crystal boundaries), and scattering by other phonons.
The requirement of conservation of wavevector in crystals is ex-

pressed for the three phonon processes by:
K.+ &k = K, +8 (14)

where Ki (i =1,2,3) is the wavevector of a phonon and & is a reciprocal
lattice vector. Processes in which a = 0 are called normal processes
while those in which a # 0 are called Umklapp processes.

At high temperatures, the dominant processes that cause thermal
resistivity (1/X) in a crystal are the three phonon Umklapp processes.
These processes do not conserve the total momentum of a phonon gas,
changing, therefore, the resultant heat flow through a crystal. Thus,
Umklapp processes are capable of bringing the distribution of phonons
into local thermal equilibrium (i.e. the phonons at one end of the
crystal beihg in thermal equilibrium at a temperature 'I‘2 and those at
the other end in equilibrium at another temperature, T1). The three
phonon normal processes do not play a direct role in producing thermal
resistivity because they leéve the total momentum of a phonon gas un-
changed and therefore produce very little change (none in the absence of
dispersion) in the heat flow through a crystal.

The energy of phonons K1 and Kz suitable for Umklapp processes to
occur is of the order of % kB OD because each of the colliding phonons
must have wavevectors of the order of % G in order for the collision
(14) to be possible. At high temperatures (i.e. T > OD), most phonons

have energies high enough for Umklapp processes to occur and therefore

these are the dominant resistive processes in a crystal.
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The phonon mean free path at high temperatures is therefore deter-
mined by the relaxation time associated with Umklapp processes.

The three-phonon processes are caused by the anharmonic coupling
between different phonons (i.e. the third-order terms in the lattice
potential energy). The theory of the effect of anharmonic coupling on
thermal resistivity predicts that the mean free path is proportional to
1/T at high temperatures in agreement with many experiments [6]. This
can be explained by the fact that the total number of excited phonons at
high temperatures is proportional to T and the collision frequency
{i.e. 1/1, where v is the relaxation time) of a given phonon is pro-

portional to the number of phonons with which it can collide, therefore
1
- ~ T (15)
1

and since L = vt, this implies that

(16)

—| =

Therefore, the thermal conductivity of crystals is proportional to 1/T
at high temperatures.

In amorphous substances, the thermal conductivity at high temper-
atures increases slightly with temperature. This can be explained by
the fact that, at such temperatures, the heat conduction is due to
localized phonons. With an increase in temperature, the number of local
phonons being able to overcome an energy barrier and hop from one site
to another increases and therefore the thermal conductivity increases.

Due to the specific structure of the sedimentary rocks which con-
tain minerals in grains of different sizes the heat conduction at high

temperatures can be attributed to the fact that phonons localized in the
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small crystallites inside the rock hop from one crystallite to
another.

Since the specific heat and the density of the sedimentary rocks
are only very weakly temperature dependent over the temperature range
considered (i.e. 20°C to 100°C), it can be concluded that the thermal
conductivity over this temperature range varies in a similar manner to
the diffusivity variation with temperature. With regard to this, it is

interesting to note that using (9) and (13) we get the result:
A 1
= 2 - = 1

This shows that, at high temperatures, the phonon mean free path, L,
affects the thermal diffusivity in the same way it affects A, which was
discussed earlier.

Figures 6 and 7 show the variation of thermal diffusivity with
temperature for the two carbonates (packstone and mudstone). The solid
straight line is a guide to the eye and the dotted line represents the
1/T curve. The thermal diffusivity, and therefore the thermal conduc-
tivity, for these two rocks decrease with temperature at a rate slower
than 1/T which is an indication that in these materials the limiting
thermal resistivity is between the crystallites rather than inside the
grains.

Figures 8, 9 and 10 show the diffusivity variation with temperature
for the two limey sandstones and for dolomitic sandstone, respectively.
In these rocks a nearly 1/T temperature dependence of the diffusivity,
and therefore of the thermal conductivity, is observed which suggests a

crystal-like behavior in terms of heat conduction. This indicates that
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stone as a Function of Temperature.
The Solid Line is a Guide to the Eye
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the limiting thermal resistivity in these rocks may be inside the
grains.

Berea sandstone shows a behavior in-between the two distinect groups
discussed above: the temperature dependence of thermal diffusivity is
not as weak as in carbonates, but not as close to a 1/T dependence as in
dolomitic sandstone and limey sandstones.

In summary, this work has shown that the pulse thermal diffusivity
measurements using modern digital instrumentation and computer control
provide a practical and accurate method for the determination of the
thermal transport properties of geological materials and other solids of
similar thermal conductivity.

The study of the temperature dependence of the thermal diffusivity
in sedimentary rocks has shown basically two types of behavior: 1) a
nearly 1/T dependence which indicates that the heat conduction is
limited within the grains; 2) a decrease of diffusivity with temperature
slower than 1/T, case in which the weaker the temperature dependence of
the diffusivity, the stronger is the indication that the transfer of
heat is limited between the grains.

It was also observed that the higher diffusivity rocks display a
stronger and closer to 1/T temperature dependence of the thermal dif-
fusivity. Indeed, for all the six rocks studied, a consistent trend is
observed, which shows that the higher the thermal diffusivity is, the
closer to 1/T its temperature dependence becomes.

Finally, the measurement of thermal diffusivity of different sedi-
mentary rocks over a temperature range of 20°C to 100°C clearly shows
that the diffusivity, and therefore the thermal conductivity, is not

constant, but decreases with temperature: a drop of 14-21% was observed
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for the six rocks studied. This shows the importance of knowing the
relation between the thermal diffusivity and temperature over a range of

practical interest.
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19 ! THERMAL DIFFUSIVITY —-- MAIN PGM

2 OM 11(208),12(200) ,13(200),d1d1{(200),d2tdx( 288 ) ,tdfs( 209

38 COM eta(200),x3(228) ,yx(209),tc(58) ,tbar(200)

4@ COM runum,jr,tint ,deti,dlay,x12,x23,t1,ih,dt NT,runtiyp,etabar ,sd(268}

50 COM tau

109 DISP "Enter a desc
11@ DISP Ert:: additi
120 !

132 DISP "Choose a file name for data storags.”
14@ DISP " USE THE SPECIAL FUNCTION KEYS"

15@ ON KEY# 1,"CONDCO" 6GOTO 800

16 ON KEY# 2,"0OTHER" GOTO 900

172 KEY LABEL

GOTO 180

OFF KEY#

! 200-299 are ressrved for alarms

WAIT 20200

iptive title for the experiment” @ INPUT titles
nal information" @ INPUT subiitles

0'1

co
&

-J
2
]

w
BN~ 09 988NN MU NUE U898

CLEAR

DISP "=x+ CHOOSE THE TYPE OF EXPERIMENT #%+ "

pIrsp "

DISF “ <f1> Single temperature only"

DISP " <f2> N specified temperatures"

DISP " <f3> Range of temperatures at regular intervals”
DISP " <f4> Several temperatures, manual controcl"

DISP " <f5> Auto"

ON KEY# 1 ,"SINGLE" GQTO 500

1
ON KEY# 2,"N TEMP" GOTO 600
ON KEY# 3,"T RANGE" GOTO 709
ON KEY# 4,"MANUAL"™ GOTO 550
ON KEY# 5,"ARUTODATA" GOTO 580
KEY LABEL
GOTO 410
OFF KEY#
GOTO 122
runtyp$="singlet"”
runtyp=1
GOTO 42
runtyp$="singlet”

7 u"ﬂ‘. YR=

070 42
untyg$
ntyp=
T

[a} A
“ LW

"AUTO"

runtyp$="ntemp"
BOS runtyp=2
E19 GOTO 429

722 runtyp®="trange"

(A7 =1 \J'h.yp"3

710 GOTO 420

802 ! set up Conoco file

812 Dg= UHL$(DHTE>

82 L$-"“ON“CO"’

83@ DISP "The data will be stored as ";L$

QWO -JMUNT—- 88 WMN -8 WWWE-JOommou & M-8 ¢

M arularotar gy s 00U WO

™



842 60TO 190
900 DE=VALS{DATE)
919 DISP “Erter the file name (up to 5 characters)" @ INPUT L$
920 Le=L$&D ’
932 DISP " The data will be stored as ";L$
848 GOTO 198
899 !
1802 | Enter the experimental parameters
1910 CLEAR ® DISP "SET THE PARAMETERS FOR THE DIFFUSIVITY MEASUREMENT"
1829 DIsSP " "
1832 DISP "Time between temperature measurements (msec)" 8 INPUT tint
1849 DISP "Total time for a diffusivity measurement {(msec)" @ INPUT deti
185@ DISP "Time delay before starting data acquisition (msec)"
1QE@ DISP "Distances between thermocouples: =12 ,x23 (cm)" 8 INPUT =12,x23-
1972 runum=0
1088 tau=Z2#tint
1299 |
1180 IF runtyp$="singlet" THEN 1110 ELSE 1200
1182 IF runtyp=1 THEN 1110
1125 CLEAR @ DISP INSTRUCTIONS FOR A MANUAL RUN"
11@6 DISP " " €@ GOTO 11209
1112 CLEAR @ DISP "INSTRUCTIONS FOR A SINGLE TEMPERATURE RUN " @ DISP " "
1120 DISP " 1. Set the temperature controller manually to the desired '
1121 DISP * temperature. NOTE THAT THE SETTINGS ARE IN DEG C."
1122 DISP " "
130 DISP " 2. Wait for the system to equilibrate. "
1131 DISP " *
114@ DISP " 3. Press CONT <f4> when equilibrium has been reached.”
1141 DISP " "
1152 DISP " 4. If ths desired temperature is rcoom temperature, you may"
1151 DISP * press CONT at once." @ DISP " "
1169 PAUSE
1170 runs=1
1180 60TO 15920
1208 IF runtyp®="ntemp" THEN 121@ ELSE 1320
1210 CLEAR @ DISP " INSTRUCTIONS FOR SETTING N TEMPERATURES *
1211 DISP " "
1222 DISP " 1. Enter the number of temperatures. " @ INPUT NT
1230 DISP " 2. Enter the ";NT;" temperatures as prompted" @ DISP " "
1248 FOR jt=1 TO NT @ DISP " Temp #<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>