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CHAPTER I 

INTRODUCTION 

Objectives 

In 1936 Alan Mathison Turing developed a mathematical 

model that expresses the ideas of an effective procedure. 

This model has subsequently been named the Turing Machine 

after its originator. Although Turing's model may seem 

simple, it has all of the computing capability of a 

general-purpose computer. Perhaps the most important 

concept of this mathematical model is that of the 

Church-Turing thesis, which states that any function which 

is computable, can be computed by some Turing machine {or 

provably equivalent model). The Turing machine is studied 

also for the class of languages it defines, known as the 

recursively enumerable sets. 

In his text Abstract Machines and Grammars, Savitch 

presents a high-level language and shows that it can be 

transformed into a Turing machine which performs the same 

tasks. This Pascal-like language makes many of the theorems 

and concepts of Turing machines and computability more 

easily understandable to persons with a programming, rather 

than an exclusively formal mathematical, background. 
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Actually, Savitch defines three languages; TLDelta, 

TLDelta/S, and PSDelta, each successively more 

sophisticated. The last of the three, PSDelta, is the 

high-level language. At this writing, no production 

compiler exists for any of these three languages 

2 

[Savitch, 1987). The primary objectives of this thesis are: 

(1) to expand upon the definitions of these languages to 

include subprocedure declarations, (2) to implement 

compilers which produce a functional Turing machine 

simulator for them, along with a Turing machine description 

in standard notation; and (3) to produce compilers for use 

in teaching automata theory. 

PSDelta provides students with a procedural language 

which is related closely to the Turing machine model and 

which can be used to solve various problems in automata 

theory. The output o.f the compilers provides students with 

a Turing machine description in standard notation. 

Therefore, students can solve problems using PSDelta as well 

as view the resulting Turing machine description. 

Construction of Turing machines can be extremely time 

consuming. Since PSDelta en.ables students to apply top-down 

structured programming concepts to the construction of 

Turing machines, students are able to construct several 

Turing machines within the time constraints of class 

assignments. Each of the three compilers provides students 

with a tool which simulates the execution of a Turing 

machine and enables them to view results which might not be 
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produced practically by hand. 

Preliminaries 

According to Hopcroft and Ullman [1979), a Turing 

machine consists of a finite state control, an input tape 

which extends into infinity in both directions and is 

divided into cells, and a tape head which scans one tape 

cell at a time. Each cell of the input tape is capable of 

~ontaining exactly one symbol of a finite tape alphabet at a 

time. All but a finite number of cells contain a blank at 

any given time. The tape head points to one cell of the 

tape, can read the symbol at that cell, can overwrite the 

symbol at that cell, and can move at most one cell in either 

direction during any unit of time. One of the symbols of 

the tape alphabet is designated as the blank symbol. One 

state of the finite-state control is designated the start 

state. A subset of the set of states is designated as the 

set of accepting states. 

Initially, n cells (for some finite n > 0) of the input 

tape contain symbols from an input alphabet such that the 

input alphabet is a proper subset of the tape alphabet. The 

remaining cells each hold the blank symbol, which is not an 

input symbol. The finite-state control is in the start 

state, and the tape head is positioned at the leftmost 

nonblank input symbol of the input tape. 

The actions of a Turing machine depend upon both the 

state of the finite state control and the symbol currently 
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scanned by the tape head. During one unit of time, (1) the 

finite-state control changes to a state which may or may not 

be different, (2) the tape head changes the symbol at the 

tape cell currently being scanned to a new symbol which may 

or may not be different, and (3) the tape head moves at most 

one cell to the left, one cell to the right, or remains 

stationary. A combination of these actions forms a move of 

a Turing machine. The machine is said to halt when no move 

is defined for the current state and symbol being scanned 

[Hopcroft, 1979). 

Definitions 

Turing machine. a (simple) Turing machine is a 
six-tuple M = (S,E,S,s,B,Y) where S is a finite 
set of states, I:: is a finite set of symbols 
referred to as the tape alphabet, s is an element 
of S called the start state, B is an element of 
called the blank symbol, and Y is a subset of S 
called the accepting states. The third element, 
S, m~ be any partial function from S x E into 
S x r; x {<-,->,~J provided that ~(q,a) is 
undefined whenever q is in Y. The function S is 
called the transition function. If 
8Cp ,a) = (p7 ,a7 ,->), then this is to be 
int~rp~eted to mean the following. If the finite 
control of M is in state p1 and the tape head is 
scanning symbol a , then M will do all of the 
following in one ~ove: replace a 1 by a 7 , change 
the state of its finite control to p2 , ~nd shift 
its tape head one square right. If we replace -> 
by <- or ~ respectively, then the tape head 
instructions would be changed to shift left or to 
remain stationary respectively [Savitch, 1982]. 

Instantaneous description. An instantaneous 

description or id of Turing machine M is denoted by the 

ordered pair (p,~~), where pis in S, o.{l is in E*, and~ is 

a symbol not in~. The intuitive meaning of this id is that 



the input tape contains the string ~ preceded and followed 

by an infinite string of blanks, the current state of the 

finite-state control of M is p, and the tape head is 

positioned at the first symbol of beta. 

Halting id. A halting id is an id for which the 

transition function is undefined [Savitch, 1982). 

Tape configuration. ~t>'3 is said to be the tape 

configuration of id (p,~~~), assuming that~ does not begin 

with a string of blanks, and that {j does not end with a 

string of blanks. If o< does begin with a string of blanks 

or~ ends with a string of blanks, then the tape 

configuration is said to be Vt>f'-, where Vt>)" is o<t>~ with the 

leading and trailing blanks removed [Savitch, 1982). 

Move. If Turing machine M goes from id Cp 1 ,~1~~l) to 

id Cp2 , 2~ 2 > in one step, M is said to move from id 

Cp 1 ,C1(1 >~1 > to id Cp2 ,~2t>P2 > and is written Cp 1 ,oc1~~) fM 

Cp2 ,~2~P2 > [Savitch, 1982). 

Valid output. Turing machine M has valid output for 

input provided that (s,~~) fM (q,t>~) for some accepting 

state q. 

5 



CHAPTER II 

REVIEW OF LITERATURE 

History 

Alan Turing's machine was actually developed in answer 

to a challenge. In 1900 David Hilbert presented a list of 

unsolved mathematical problems at the International Congress 

of Mathematicians in Paris. Problem twenty-three was "to 

discover a method for establishing the truth or falsity of 

any statement in a language of formal logic called predicate 

calculus." [Hopcroft, 1984]. Specifically, the problem was 

to determine whether or not an arbitrary function in the 

first-order calculus which was applied to integers was true. 

Although Turing was not present at the congress, he became 

familiar with Hilbert's twenty-third problem through the 

lectures of M. H. A. Newman. 

Kurt G8del was instrumental in the solution of this 

problem with his incompleteness theorem of 1931. G8del 

proved that no effective procedure could exist within these 

limitations which could determine the truth or falsity of an 

arbitrary function. He did this by constructing a formula 

in the predicate calculus which was applied to integers, but 

whose definition was such that it could neither be proved 

6 
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nor disproved. This statement and the formalization of the 

intuitive idea of an effective procedure is considered by 

many to be one of the great intellectual achievements of our 

century [Hopcroft, 1984]. 

While Turing was developing the solution to Hilbert's 

'problem independently, he faced another problem: how can 

the concept of method be given a precise definition 

[Hopcroft, 1984]. By stating that a method is an algorithm, 

he showed a detailed process by which a method could be 

developed into a mathematical model. This model would be 

finitely describable and contain a sequence of discrete 

instructions which would be carried out mechanically without 

any creative intervention [Hopcroft, 1984]. The resulting 

model is called a Turing machine. 

The Significance of the 

Turing Machine Model 

Savitch [1982] in the presentation of TLDelta, 

TLDelta/S, and PSDelta, proves that a partial function is 

computed by some simple Turing machine if and only if it is 

computed by some program in each of these three languages. 

He also presents algorithms which convert TLDelta programs 

into Turing machines, TLDelta/S programs into TLDelta 

programs, and PSDelta programs into TLDelta/S programs. 

Therefore each of these three languages is equivalent to the 

Turing machine model. 



The Turing Machine as a Computer 

of Functions of Natural Numbers 

8 

The Turing machine can be viewed as a computer of 

functions from the set of natural numbers onto the set of 

natural numbers. One accepted convention for representing 

integers is in unary; that is to represent the integer x>O 

by the string lx on the input tape. If a function has 

multiple arguments, each of these arguments is separated on 

the input tape by a single 0 [Hopcroft, 1984]. 

If Turing machine M halts, regardless of whether or not 

it is in an accepting state, the output of the function is 

said to be the string of nonblank characters remaining on 

the tape. If this string is in the form iY, then it is said 

that M c9mputes the function f (x) = y. An interesting 

peculiarity is that Turing machine M may compute one 

function for one argument, a different function for two 

arguments, and so on [Hopcroft, 1979]. 

The Turing Machine as an Acceptor 

and a Generator of Languages 

Turing machines also may .be useful as recogn:l..zors or 

acceptors of languages. An acceptor is merely a procedure 

which is used to define a set [Aho, 1972]. If the Turing 

machine accepts a string, then the procedure must output the 

correct result •. Otherwise the procedure is not required to 

output anything. 
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Hopcroft and Ullman [1979] define the language accepted 

by Turing machine M as the set of all input strings which 

cause M to enter a final state. This language is denoted as 

L(M). The languages which are accepted by at least one 

Turing machine that halts on all inputs are the recursive 

sets. In this case the input may or may not be accepted 

before halting. 

Turing machines also may be used to represent 

procedures which generate the strings of a language as 

output. It in not necessary for such a procedure to have 

any input and usually is discussed assuming that there is no 

input. If the procedure halts, then this language is 

finite; otherwise it is infinite. A procedure such as this 

is said to enumerate the language L, where L is exactly 

those strings which are listed by the procedure. No 

restrictions are placed upon the order of the strings within 

the list nor upon the number of times a string may appear in 

the list, with the exception that each string in L must 

appear in the list at least once [Savitch, 1982]. 

There exist languages within the class of recursively 

enumerable languages, whose membership cannot be determined 

mechanically [Hopcroft, 1979). If L(M) is such a language, 

then there exists a Turing machine M which must fail to 

accept some input which is not within L(M). If input w is 

in L(M), then M must eventually halt. If Mis still running 

on some input, then it cannot be determined whether or not M 

will ultimately accept the input (if the machine runs long 
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enough) or the machine will run forever. 

The Church-Turing Thesis 

In the 1930's, Alonzo Church along with two of his 

premier graduate students from Princeton University, Stephen 

C. Kleene and J. Barkley Rosser, began to tackle a segment 

of Hilbert's problem. Church proposed that if any arbitrary 

mathematical function could be computed under any 

circumstances, it could be defined by a mathematical model 

provably equivalent to the Turing machine [Hopcroft, 1984]. 

Working independently of Church, Turing developed much 

the same idea, but in a different manner. Turing recognized 

a technical connection between Hilbert's twenty-third 

problem and the concept of computable functions. He 

developed the Turing machine as a simple, but exact model 

for the process of calculation. Any Turing machine can be 

expressed as a finite character string, just as all 

effective procedures are finitely describable 

[Hopcroft, 1979]. Therefore all possible Turing machines 

can be listed in alphabetical or numerical order; thus they 

can be paired one-to-one with the whole numbers 

[Hopcroft, 1984]. However, the class of functions mapping 

the nonnegative integers onto fo,1} cannot be placed into 

one-to-one correspondence with the integers 

[Hopcroft, 1979]. Therefore Turing concluded that some 

functions are not computable. 

Jones [1973] states the Church-Turing thesis as 



follows: 

The Turing machine is an accurate 
formalization of the intuitive concept of 
'effective process'. Thus any computation done by 
a Turing machine is intuitively effective; 
conversely, any intuitively effective process can 
be simulated by a Turing machine. In particular, 
(i) a function is effectively computable if and 
only if it is Turing computable; 
(ii) a set or predicate is effectively decidable 
if and only if it is Turing decidable (recursive); 
(iii) a set or predicate is effectively enumerable 
if and only it is recursively enumerable 
[Jones , 19 7 3] . 

The Church-Turing thesis does not present itself for 

formal proof because it deals with a relation between a 

formally defined system and the intuitive concept of an 

effective procedure [Jones, 1973]. Cutland [1980] states 

that this thesis has the status of a claim or belief and 

must be verified by evidence. Cutland [1980] and 
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Jones [1973] present several informal arguments in favor of 

the Church-Turing thesis. 

Language Representations of 

Effective Procedures 

In addition to the languages presented by Savitch 

[1982], many representations of effectively computable 

processes have been language oriented. One example is the 

lambda calculus developed by Church, Kleene, and Rosser. 

The Greek letter Lambda, which corresponds to the Roman 

letter L, was chosen by Church as the name of this formal 

system to suggest that it is in fact a consistent formal 

language. The contemporary programming language Lisp, which 



is used extensively for list processing in artificial 

intelligence applications, is modeled on Church's lambda 

calculus [Hopcroft, 1984]. 

12 

Martin Davis [1974] also developed languages which are 

provably equivalent to the Turing machine model. 

language closely resembles the style of FORTRAN. 

One such 

Another of 

Davis' languages is in essence a language representation of 

the Turing machine. A program in each of the languages 

consists of a sequence of instructions from a specified 

instruction set. The instructions may or may not have 

labels, but no two instructions can have the same label. 

Program execution terminates when a branch is made to a 

label which is not in the program or when the final 

instruction in the program is not a branch and that 

instruction is executed. 

Machine Construction Tools 

and Program Generators 

Aho, Sethi, and Ullman [1986] present a variety of 

software-development tools which are used in compiler 

construction. Two types of these tools have as their basis 

specific mathematical models and are of particular interest: 

parser generators and scanner generators. Parser 

generators, such as Yacc [Johnson, 1975] generally have an 

input based upon a context-free grammar and generate a 

push-down transducer as output. Scanner generators, such as 

Lex [Lesk, 1975) often generate lexical analyzers from an 
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input based upon regular expressions. A lexical analyzer is 

basically a finite automaton. 

By using automated tools in the construction of complex 

program components, tasks which consume a large portion of 

the writing effort can be reduced to one of the easier steps 

in the development process. Automated development tools can 

also implement algorithms which are too complex to be 

carried out by hand effectively. Also it is often easier to 

produce a correct implementation of a mathematical model 

using a generator and a description scheme rather than to 

implement it directly by hand [Aho, 1986]. 

The two tools Yacc and Lex from the UNIX system are 

implemented as program generators. Instead of a subroutine, 

a system command, or a part of the supported features of a 

compiler, program generators take as input a specification 

of a task to be performed and produce as output a program 

which will perform that task. The language in which the 

output language is written is known as the host language. 

The host language can be either high or low level, although 

care should be taken that the generated code is as portable 

as possible. Both Ratfor and C are used as host languages 

for Yacc and Lex, however C is used more widely. 

Summary 

The Turing machine was developed by Alan Turing in the 

solution of David Hilbert's twenty-third problem: could an 

arbitrary function in first-order calculus applied to 
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integers be shown to be true? In his incompleteness theorem 

of 1931, Kurt G8del proved that Hilbert's problem could not 

be solved. Turing's machine, which was a finitely 

describable mathematical model, was developed as a precise 

definition of an effective procedure. 

The Turing machine may be used to define functions 

which map the natural numbers to the natural numbers. 

Turing machines may also be used to accept the strings of a 

language or to enumerate the strings of a language. There 

exist languages which are recursively enumerable, but whose 

membership cannot be determined mechanically. 

The Church-Turing thesis developed independently by 

both Alonzo Church and Alan Turing states that any effective 

procedure can be defined by a Turing machine. This thesis 

does not present itself for proof, but is a claim which is 

backed by substantial evidence. 

In addition to the three languages defined by Savitch, 

other languages have been introduced to represent effective 

procedures. Church, Kleene, and Rosser developed lambda 

calculus, a language upon which the programming language 

Lisp is based. Davis also defined two languages equivalent 

to the Turing machine model. One of these languages closely 

resembled FORTRAN, while the other was a language 

representation of a Turing machine. 

Several tools have been developed to implement 

mathematical models. These tools can be very helpful in 

reducing the effort of implementing a complex program 
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component. Lex, a scanner generator, and Yacc, a parser 

generator are implemented as program generators and produce 

as their output C source code. 



CHAPTER III 

SYNTAX AND SEMANTICS OF TLDELTA, 

TLDELTA/S, AND PSDELTA 

Introduction 

In his text Abstract Machines and Grammars 

Savitch [1982] presents three languages, TLDelta, TLDelta/S 

and PSDelta, which are used to represent the Turing machine 

model. The first language TLDelta is a variation of the 

standard notation of the Turing machine model and is a 

subset of the second language TLDelta/S. TLDelta/S is the 

language TLDelta expanded to include subprocedures. 

TLDelta/S is a subset of the third language PSDelta. 

PSDelta is a high-level language which closely resembles 

Pascal. Savitch also shows that programs in each of these 

languages can be translated into equivalent Turing machines. 

The Syntax of TLDelta 

TLDelta is the language upon which TLDelta/S and 

PSDelta are based. TLDelta stands for "Turing language with 

alphabet~" [Savitch, 1982]. A TLDelta statement is either 

a usual statement or an accepting statement. The form of an 

16 



accepting statement is 

<Label> : ACCEPT. 

The form of a usual statement is shown in Figure 1. 

<Label l> IF <Boolean> THEN 
BEGIN 

<Assignment instruction>; 
<Pointer move>; 
GOTO <Label 2> 

END 

Figure 1. A Usual TLDelta Statement 

In this paper, a valid identifier is defined as any 

finite string of letters, numbers, and underscores which 

begins with a letter. A valid identifier cannot be a 

reserved word (Figure 2), although it may contain a 

substring which is a reserved word. In the original 

definition, a TLDelta label was any nonempty string of 

symbols without any TLDelta reserved words or TLDelta 

symbols. For this paper, however, a TLDelta label is any 

17 

(1) 

valid identifier. Each statement must have a unique label. 

A TLDelta boolean expression has the form 

SCAN = a (2) 
~ 

where "a" is any ASCII character or one of the reserved 

words BLANK, <YES>, <NO>, or <ANY>. An assignment 

instruction has the form 

SCAN := b (3) 

where "b" is any ASCII character or one of the reserved 

words BLANK, <YES>, <NO>, or <CURRENT>. The pointer moves 
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consist of the reserved word POINTER followed by one of the 

symbols ->, <-, or i· A TLDelta program consists of the 

reserved word BEGIN, followed by a sequence of TLDelta 

statements separated by semicolons, followed by the reserved 

word END. 

ACCEPT 
BLANK 
END 
IF 

;QR 
.THEN 

AND 
<CURRENT> 
F 
IN 
POINTER 
WHILE 

:= 
; 
-> 

Figure 2. 

<ANY> 
DO 
G 
<NO> 
SCAN 
<YES> 

Reserved 

= 
( 
<-

Words 

Figure 3. Reserved Symbols 

The Semantics of TLDelta 

. . 
) 

i 

BEGIN 
ELSE 
GOTO 
NOT 
STRING 

A TLDelta program is used to represent a Turing 

machine. The labels correspond to the states of a Turing 

machine, SCAN corresponds to the tape symbol currently being 

scanned by the tape head, the symbol <CURRENT> corresponds 

to the tape symbol currently being scanned by the tape head, 

and a pointer move defines the direction which the tape head 

moves. 

A Turing machine M = (S,I:,8,s,B,Y) can be obtained from 

a TLDelta program P in the following manner: Initially S, 
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I:, B, and Y are empty. Let S be the set of all labels of P. 

Let E =fi U {s}, where B represents the blank symbol and is 

not an element of /:l. Lets be the label of the first 

statement of P. Let Y be the set of all labels of accepting 

statements of P. 

Although <YES> and <NO> are ordinary symbols which may 

be in I:, <ANY> and <CURRENT> are special symbols which are 

not contained in In a boolean expression of the form 

IF SCAN = <ANY> (4) 

<ANY> represents any symbol in I:. Therefore a boolean 

expression of this form will always be true. Similarly an 

assignment instruction of the form 

SCAN := <CURRENT> (5) 

assigns to SCAN the symbol currently being scanned. 

Therefore an assignment instruction of this form will not 

change the value of SCAN. 

Define the transition function ~as follows: consider 

each ordered pair (<Labeli>,c) where <Labeli> is an element 

of S and "c" is an element of A or B. If <Labeli> is the 

label of some accepting statement in P, then (<Labeli>,c) 

is undefined for all c in~. If <Labeli> is the label of 

some usual statement sj in P in the format of the statement 

in Figure 4, where <Arrow> is exactly one of the three 

symbols ->, <-, and ~' then 8<<Labeli>,c) is determined by 

one of the cases given below. 

Case 1: c = a and <Label 2> is the label of some 

statement in P. 



Case 2: c = B, a = BLANK, and <Label 2> is the label 

of some statement in P. 

in P. 

Case 3: <Label 2> is not the label of any statement 

Case 4: c is a symbol in /1, but a + c. 

Case 5: c = B, but a f BLANK. 

In both cases 1 and 2, o(<Labeli>,c) = 
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(<Label 2>,b,<Arrow>) if b + BLANK and <Arrow> is exactly 

one of the three symbols ->, <-, and ~· If b = BLANK then 

~(<Labeli>,c) = (<Label 2>,B,<Arrow>). In case 3 

8<<Labeli>,c) is undefined. In cases 4 and 5, S<<Labeli>,c) 

= (<Next-label>,c,~), where <Next-label> is the label of the 

next statement in P. If there is no next statement in P, 

then (<Label.>,c) is undefined. 
l 

<Label.> 
l 

Figure 4. 

IF SCAN = a THEN 
BEGIN 

SCAN := b; 
POINTER <Arrow>; 
GOTO <Label 2> 

END 

A Usual TLDelta Statement 

The Syntax of TLDelta/S 

TLDelta/S is the language TLDelta enhanced to provide 

subroutines. Also, TLDelta/S has a single variable STRING, 

where TLDelta had none. The structure of the two languages 

is essentially the same. Each statement is either a usual 

statement or an accepting statement. The form of a usual 
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TLDelta/S statement is given in Figure 5. The syntax of 

TLDelta/S accepting statements is exactly the same as their 

TLDelta counterparts. 

<Label l> : IF <Boolean> THEN 
BEGIN 

<Assignment>; 
GOTO <Label 2> 

END 

Figure 5. A Usual TLDelta/S Statement 

A label in a TLDelta/S program is exactly the same as a 

TLDelta label. A TLDelta/S boolean expression is defined by 

Savitch to be of the form 

STRING E A (6) 

where "A" was any symbol representing a subprocedure which 

accepts strings of language A. In this paper a TLDelta/S 

boolean expression is of the form 

STRING IN <Language>. 

An assignment is of the form 

STRING := f(STRING). 

The symbol "f" represents a function subprocedure. Any 

valid identifier is considered an acceptable subprocedure 

name for a function. 

(7) 

(8) 

A TLDelta/S schema consists of the reserved word BEGIN, 

followed by a series of TLDelta/S statements separated by 

semicolons, followed by the reserved word END. A TLDelta/S 

program is a triple (P,G,F) such that P is a TLDelta/S 

schema, G is an assignment of language subprocedures to P, 



and F is an assignment of function subprocedures to P 

[Savitch, 1982]. Although the syntax of subprocedure 

declarations for a TLDelta/S program was not defined 

formally by Savitch, one form is presented in Figure 6, 

where languagei and functionj are any valid TLDdelta/S 

identifiers and <TLDelta program> is a TLDelta program. 

Note that in this context G(language) and F(function) are 

not functions. They are declarations for subprocedures. 

G(language1 )=<TLDelta_program > 
G(language2 )=<TLDelta_program~> 

. 
F(function1)=<TLDelta_program.> 
F(function2)=<TLDelta_programj> 

<TLDelta/S_schema> 

Figure 6. The Form of a TLDelta/S Program 

The Semantics of TLDelta/S 
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A TLDelta/S schema has no meaning until a finite-state 

language is assigned to each procedure name for a language 

and a computable partial function is assigned to each 

procedure name for a function. The first two sections of a 

TLDelta/S program define these assignments. 

The assignment of a function name to a language is 

defined by the reserved word "G", followed by the name of 

the language procedure in parenthesis, followed by a TLDelta 
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program which serves as this procedure. For input ~' 

TLDelta programs which serve as acceptors of finite-state 

languages for TLDelta/S programs should return valid output 

<YES>~ if the input string is accepted and <NO>~ if the 

input string is not accepted. The assignment of a function 

name to a function is defined by the reserved word "F", 

followed by the name of the function procedure in 

parenthesis followed by a TLDelta program which will compute 

the partial function. 

A TLDelta/S program begins execution at the first label 

of the TLDelta/S schema. A usual TLDelta/S statement in the 

form of the statement shown in Figure 7 determines whether 

or not the contents of STRING is an element of the language 

A. If STRING is an element of the language A, then the 

instructions contained in the BEGIN-END block are executed. 

Otherwise either the following statement is executed or the 

program abnormally terminates if there is no following 

statement. An assignment instruction assigns to STRING the 

result of the application of function f to the contents of 

STRING. If the function f is undefined for STRING, then the 

program abnormally terminates. Otherwise the program 

continues execution at the statement labeled by <Label 2>, 

or terminates abnormally if no statement labeled by 

<Label 2> exists. A TLDelta/S accepting statement normally 

terminates the program when executed. 



<Label l> IF STRING IN A THEN 
BEGIN 

STRING := f(STRING); 
GOTO <Label 2> 

END 

Figure 7. A Usual TLDelta/S Statement 
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TLDelta/S program (P,G,F) is said to have valid output 

~ for input ~ provided that the program terminates normally 

by executing an accepting statement. Initially the contents 

of STRING are read from the standard input. Upon 

termination, the variable STRING contains ~. 

The Syntax of PSDelta 

Although TLDelta/S is a much nicer language to work 

with than TLDelta, it is still very cumbersome compared with 

many modern programming languages. PSDelta is a language 

based upon TLDelta/S, but has nicer control structures and 

more variables. The only way to change the flow of control 

in a TLDelta/S program is through the use of a GOTO 

instruction. PSDelta provides no GOTO instructions, but 

uses IF-THEN-ELSE, BEGIN-END, and WHILE-DO as a means to 

combine simple statements together to get more complicated 

statements. TLDelta/S has only one variable STRING. A 

PSDelta program can have any number of variables STRINGl, 

STRING2, STRING3, ••. The boolean expressions of PSDelta 

allow the use of AND, OR, and NOT to form complex 

expressions, where TLDelta/S allowed only simple boolean 
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expressions. 

A PSDelta variable is represented by STRINGi, where "i" 

is any base ten numeral with no leading zeros. A PSDelta 

statement is either an assignment statement (originally 

called an atomir statement by Savitch, 1982), an 

IF-THEN-ELSE statement, a WHILE-DO statement or a BEGIN-END 

block. The two forms of an assignment statement are given 

in Figure 8. STRINGi, STRINGj, and STRINGk are variables 

and "f" is a name for a function subprocedure. 

STRINGi := f (STRINGj) 
STRINGi := STRINGjSTRINGk 

Figure 8. Two Forms of a PSDelta Assignment Statement 

An atomic boolean expression has the form 

STRINGi IN A 

where STRINGi is a variable and "A" is the name of a 

(9) 

subprocedure which accepts strings of language A. A boolean 

expression is either an atomic expression or one or more 

atomic expressions used in conjunction with some combination 

of the operators NOT, AND, or OR. Parenthesis also may be 

used in a boolean expression to impose a precedence upon the 

operators. NOT is a unary operator and requires one 

operand, while AND and OR are binary operators requiring two 

operands. 

The form of an IF-THEN-ELSE statement is given in 

Figure 9. <Boolean> is any boolean expression. 
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<Statement i> and <Statement j> are any PSDelta statements. 

The ELSE portion of the IF-THEN-ELSE is required in PSDelta. 

The form of the WHILE-DO statement is shown in Figure 10. 

<Boolean> is any boolean expression and <Statement> is any 

PSDelta statement. The form of the BEGIN-END block is shown 

in Figure 11. <Statement i> is any PSDelta statement. 

Through the use of these three constructs, statements may be 

nested in any way desired. 

IF <Boolean> THEN 
<Statement i> 

ELSE 
<Statement j> 

Figure 9. A PSDelta IF-THEN-ELSE Statement 

WHILE <Boolean> DO 
<Statement> 

Figure 10. A PSDelta WHILE-DO Statement 

BEGIN 
<Statement i>; 
<Statement j>; 

<Statement n> 
END 

Figure 11. A PSDelta BEGIN-END Block 

There is no distinction between a PSDelta schema and a 
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PSDelta statement. A PSDelta program is a triple (P,G,F) 

where P is a PSDelta schema, G is an assignment of language 

subprocedures to P, and F is an assignment of function 

subprocedures to P [Savitch, 1982). Although the form of a 

PSDelta program was not formally defined by Savitch, one 

form is presented in Figure 12, where languagei and 

functionj are any valid TLDdelta/S identifiers and 

<TLDelta/S program> is a TLDelta/S program. Note that in 

this context G(language) and F(function) are not functions. 

They are declarations for subprocedures. 

G(language1>=<TLDelta_program > 
G(language2 )=<TLDelta_program~> 

. 
F(function1)=<TLDelta/S_programi> 
F(function2 )=<TLDelta/S program.> 

- J 

<PSDelta schema> 

Figure 12. The Form of a PSDelta Program 

The Semantics of PSDelta 

Like TLDelta/S, a PSDelta schema has no meaning until a 

finite-state language is assigned to each procedure name for 

a language and a computable partial function is assigned to 

each procedure name for a function. The first two sections 

of a PSDelta program define these assignments. 

The assignment of a function name to a language is 

defined by the reserved word "G", followed by the procedure 
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name of the language in parenthesis, followed by a TLDelta 

program which serves as this procedure. The assignment of a 

function name to a computable partial function is defined by 

the reserved word "F", followed by the procedure name of the 

function in parenthesis, followed by a TLDelta/S program 

which computes the partial function. 

An assignment statement of the form 

STRINGi := f (STRINGj) (10) 

changes the contents of STRINGi to the result of the 

function named by f applied to the contents of STRINGj. If 

jfi, then the contents of STRINGj are not altered. If the 

function named by f is undefined, the program terminates 

abnormally. An assignment statement of the form 

STRINGi := STRINGjSTRINGk (11) 

changes the contents of STRINGi to the contents of STRINGj 

concatenated with the contents of STRINGk. The contents of 

STRINGj and STRINGk are not altered unless j=i or k=i. 

A boolean expression of the form 

STRINGi IN A (12) 

is true if the contents of STRINGi is an element of the 

language A. Otherwise the boolean expression is false. A 

boolean expression of the form 

NOT <Boolean> (13) 

where <Boolean> is any boolean expression is true if 

<Boolean> is false and false if <Boolean> is true. A 

boolean expression of the form 

<Boolean.> AND <Boolean.> (14) 
1. J 
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is true only if b h <B 1 d 1 ot oo eani> an <Boo eanj> are true; 

otherwise it is false. A boolean expression of the form 

<Boolean.> 
J_ 

OR <Boolean.> 
J 

(15) 

is true if at least one of <Booleani> and <Boolean.> 
J 

is 

true; otherwise it is false. 

An IF-THEN-ELSE statement of the form given in Figure 9 

has the same effect as <Statement i> if <Boolean> is true 

and the same effect as <Statement j> if <Boolean> is false. 

A WHILE-DO statement of the form given in Figure 10 has the 

same effect as executing <statement> again and again as long 

as <Boolean> is true. A BEGIN-END Block of the form given 

in Figure 11 has the same effect as executing <Statement i>, 

<Statement j>, ••• , <Statement n> one after the other. 

Initially the input for a PSDelta program is read from 

the standard input and placed into the variable STRING!. 

All other variables contain the empty string. A PSDelta 

program begins execution at the first statement of the 

PSDelta schema and continues execution sequentially until 

the last statement has been executed. A PSDelta program is 

said to have output (J for a given input provided that upon 

normal termination of the program STRING! contains{j. A 

PSDelta program is said to compute the partial function f 

provided that for input OC the program normally terminates 

with STRING! containing f(~). Every PSDelta Program defines 

a unique partial function. 
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Summary 

TLDelta is a variation of the standard notation of the 

Turing machine model and can be directly converted into a 

Turing machine. TLDelta is the language upon which 

TLDelta/S and PSdelta are based and is a subset of both of 

these languages. TLDelta/S is the language TLDelta enhanced 

to provide subroutines and a single variable STRING. 

TLDelta/S is a subset of PSDelta. PSDelta is a procedural 

language whose form closely resembles Pascal. PSDelta has 

nicer control stuctures than TLDelta/S and provides any 

number of variables. 



CHAPTER IV 

LANGUAGE TRANSLATION METHODS 

Introduction 

TLDelta is the language upon which TLDelta/S and 

PSDelta are based. TLDelta can be transformed directly into 

a Turing machine realization, while TLDelta/S may be 

transformed into a TLDelta program, and PSDelta may be 

transformed into a TLDelta/S program. 

Translation from TLDelta to 

a Turing Machine 

A TLDelta program P is used to represent a Turing 

machine M known as the Turing machine realization of P. The 

labels correspond to the states of a Turing machine, SCAN 

corresponds to the tape symbol currently being scanned by 

the tape head, and a pointer move defines the direction 

which the tape head moves. 

A Turing machine M = (S,L:,a,s,B,Y) can be obtained from 

a TLDelta program P in the following manner: Initially S, 

'[, B, and Y are empty. Let S be the set of all labels of P. 

Let L be Li. Let s be the label of the first statement of P. 

Let Y be the set of all labels of accepting statements of P. 

31 
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Define the transition function a as follows: consider each 

ordered pair (<labeli>,c) where <labeli> is an element of S 

and c is an element of /),,or B. If there is no statement in 

P labeled by <labeli>, then &C<labeli>,c) is undefined for 

all c inl1. If <label.> is the label of some accepting 
J_ 

statement in P, then SC<labeli>,c) is undefined for all c in 

~. If <labeli> is the label of some usual statement sj in P 

in the format of the statement in Figure 4, where <Arrow> is 

exactly one of the three symbols ->, <-, and~' then 

'S<<labeli>,c) is determined by one of the five cases given 

below. 

Case 1: c =a and <label 2> is the label of some 

statement in P. 

Case 2: c = B, a = BLANK, and <label 2> is the label 

of some statement in P. 

in P. 

Case 3: c =<ANY>. 

Case 4: <label 2> is not the label of any statement 

Case 5: c is a symbol in /1, but a + c. 

Case 6: c = B, but a '/ BLANK. 

In both cases 1 and 2, S<<labeli>,c) = 

{<label 2>,b,<Arrow>) if b + BLANK, where <Arrow> is exactly 

one of the three symbols ->, <-, and ~· If b = BLANK then 

o(<labeli>,c) =(<label 2>,B,<Arrow>). In case 4 

8<<labeli>,c) is undefined. In cases 5 and 6, f (<labeli>,c) 

= (<next-label>,c, ), where <next-label> is the label of the 

next statement in P. If there is no next statement in P, 
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then (<labeli>,c) is undefined. 

Translation from TLDelta/S 

to TLDelta 

A TLDelta/S program consists of one or more TLDelta 

languge subprocedures, one or more TLDelta function 

subprocedures, and a TLDelta/S schema. Both language 

subprocedures and function subprocedures are implemented as 

macro expansions in the TLDelta/S statement which calls 

them. Savitch [1982] states that two programs are 

input/output equivalent provided that they both compute the 

same partial function. A function subprocedure P is 

input/output equivalent to a subprocedure P" such that 

(1) if P computes the partial function f, then P" also 

computes f, and (2) for any input, if P" reaches an 

accepting statement in the computation of P", then P" has a 

valid output. 

Language subprocedures for a TLDelta/S program must be 

in a certain format. IF A is any finite-state language over 

/l, then the desired TLDelta program hA has the following 

property: for each~ in A, hA(~) =<YES>~; for each~ in 

~* - A, hA(~) =<NO>~. TLDelta program hA may be 

constructed by the following method. Let M be a 

deterministic finite-state acceptor which accepts language 

A. Let p0 ,p1 , ••• ,pm be a list without repetition of all the 

states of Mand let Po be the start state. Let a0 ,a1 , ..• ,an 

be a list without repetition of all the symbols of M. 
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Choose the names of the states of M to be TLDelta labels and 

choose M so that (pi,aj) is defined for all pi and a .. 
J 

Let 

qij = ~(piaj)' i=0,1,2, .•• ,m and j=0,1,2, .•. ,n. A 

context-free grammar which generates a TLDelta program for 

hA is given in Appendix D. 

A computation on input ~proceeds as follows. The 

block of code <M code> is executed first. This code 

simulates M with except for the handling of blanks. 

Whenever a nonaccepting state is reached, the block 

<end no?> is executed and whenever an accepting state is 

reached, the block <end yes?> is executed. These blocks 

check to see if all of ~is read. They do this by checking 

for a blank symbol. If all of ~is read and an accepting 

state is reached, then the GOTO INA is executed and control 

passes to the block <yes rewind>. If all of~ is read and 

the last pi was not an accepting state, then control goes 

from the block <M code> to the block <no rewind>. So after 

<M code> is executed, all of ~is read, and control passes 

to either <yes rewind> or <no rewind> depending on whether 

or not ~is in A. Both of these rewind blocks move the 

pointer to the front of ~- <yes rewind> puts <yes> in front 

of~- <no rewind> puts <no> in front of~. Finally, 

whichever rewind block is executed, the program ends by a 

GOTO EXITA. 

Function subprocedures for TLDelta/S programs may be 

any TLDelta program. A test is included into the code of 

each TLDelta program P serving as a function subprocedure to 



see if it has a valid output for a given input. This 

additional code checks to see if the program reaches an 

accepting statement in its computation on an input. If an 

accepting statement is reached, then the input tape is 

checked to determine whether or not it contains a single 

string of nonblank characters and the tape head is in the 

correct position. 
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If f is computed by a TLDelta program P, then a program 

P" may be constructed such that (1) P" also computes f, (2) 

For any input 0(, if P" reaches an accepting statement in the 

computation of P" on o<., then P" has a valid output for the 

input o<. The alphabet r for P" will be expanded so that r = 

6Uf<dirty blank>}, where the symbol <dirty blank> is a new 

symbol that will serve as a pseudo blank. The pseudo blank 

symbol will serve as a blank symbol, but will mark the 

portion of the input tape which is scanned. Program P" will 

simulate P with the exception of the reading and writing of 

blank symbols. Whenever P would write a blank symbol, P" 

will write a <dirty blank> symbol. Whenever P" reads a 

<dirty blank> symbol, P" will simulate the program P reading 

a true blank symbol. By simulating the execution of P in 

this manner the input tape may be checked for the correct 

format. Every cell scanned in the simulation of P must be 

checked to see that there are not any two symbols of Llwith 

one or more blank or <dirty blank> symbols between them, and 

that the tape head is positioned at the first nonblank 

symbol. Every cell scanned by P" will contain either a 
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symbol of Llor the <dirty blank> symbol. Therefore the 

portion of the input tape to be checked is marked by a blank 

symbol at each end. 

In the construction of P", let <P code> be the program 

P without the enclosing BEGIN-END. Define program P" to be 

the program shown in Figure 13 where <new label>, <abort>, 

and <formcheck> are new labels and <abort> does not label 

any statement in P". <new P code> is a block of code 

obtained from <P code> by the algorithm described in 

Appendix E. <check code> checks that the requirements for a 

valid output are satisfied. If the requirements are met, 

then <check code> produces the output that P would produce 

and transfers control to an accepting statement. Otherwise 

control is transferred to <abort>. 

BEGIN 

END 

<new label> 
<f ormcheck> 

<new P code>; 
GOTO <abort>; 
<check code> 

Figure 13 Program P" 

A TLDelta/S program (P,G,F) may be changed into an 

equivalent TLGamma program P'. A TLGamma program is 

syntactically equivalent to a TLDelta program; however, the 

alphabet is expanded. First we replace each usual statement 

of the TLDelta/S program by a block of TLGamma code that has 

the same effect as the TLDelta/S statement. To obtain P' 
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from P, replace every usual statement of P by a block of 

code obtained by the following method. Consider a usual 

TLDelta/S statement of P as shown in Figure 14. Let BEGIN 

<hA code> END be a TLDelta program for the function hA 

obtained from G(A). Let BEGIN <f code> END be a program for 

the partial function F(f) modified as previously described. 

The usual TLDelta/S statement shown in Figure 14 is replaced 

by the code shown in Figure 15. The parts of the code are 

defined as follows: 

1. <switch label> and <f label> are new labels. 

2. The block <new hA code> is <hA code> modified such that 

every accepting statement <label> : ACCEPT is replaced by 

the code in Figure 16. 

3. <yes/no switch> is the code shown in Figure 17. 

<correct label> is the label of the next TLDelta/S statement 

provided there is a next TLDelta/S statement. If this is 

the last TLDelta/S statement, then <correct label> is a new 

label which does not label any statement. 

4. <new f code> is <f code> modified as follows: every 

accepting statement <label> : ACCEPT is replaced by the code 

in figure 18. 



<label l> IF STRING IN A THEN 
BEGIN 

STRING := f(STRING); 
GOTO <label 2> 

END 

Figure 14 Usual TLDelta/S Statement of P 

<label l> IF SCAN = <ANY> THEN 
BEGIN 

SCAN := <CURRENT>; 
POINTER ~; 
GOTO <new hA code>; 

END; 
<new h code>; 

<switch la~el> : <yes/no switch>; 
<f label> : IF SCAN = <ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER ~; 
GOTO <new f code>; 

END; 
<new f code> 

<label> 

Figure 15 TLGamma Code for Usual 

TLDelta/S Statement 

IF SCAN = <ANY> THEN 
BEGIN 

SCAN := <CURRENT>; 
POINTER l; 
GOTO <sw!tch label> 

END 

Figure 16 New hA Accepting Statement 
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<label> 

IF SCAN = <yes> THEN 
BEGIN 

SCAN := BLANK; 
POINTER->; 
GOTO <f label> 

END; 
IF SCAN = <no> THEN 

BEGIN 
SCAN := BLANK; 
POINTER->; 
GOTO <correct label> 

END 

Figure 17 <yes/no switch> Code 

IF SCAN = <ANY> THEN 
BEGIN 

SCAN := <CURRENT>; 
POINTER l; 
GOTO <latel 2> 

END 

Figure 18 New F Code Accepting Statement 

To get program P' which is equivalent to TLDelta/S 

program (P,G,F), replace each usual TLDelta/S statement by 

the code produced by the method just described. Only the 

usual statements of the TLDelta/S schema are altered. The 

accepting statements remain as they are. The labels of 
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<hA code> and <f code> must have different label names from 

each other. The resulting program is input/output 

equivalent to the TLDelta/S program (P,G,F). 

Suppose that program (P,G,F) is a TLDelta/S program 

such that /l. contains at least two symbols and F(f) is a 
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total function for each subprocedure. Under these 

conditions, there is no need to check for valid output and 

the original TLDelta code may be used in place of TLGamma 

code. In order to change a TLGamma program P, whose Turing 

machine realization is Turing machine M, into a TLDelta 

program P', let a1 ,a2 , ..• ,an be a listing without repetition 

·of the symbols in r. Let pl, p2 , ..• , Pm be a listing of the 

states of M. Each symbol and each state may then be coded 

as strings of the symbols of A. This coding may then be 

used to represent id's of M. For example, if (pj,d~~) is an 

id of M, then code(pj,o<t>{1) = code(o()code(pj)code(,8). 

Subroutines may then be defined to simulate the execution of 

M. Define language A to be the set of coded strings such 

that M is in an accepting state. Define language B to be 

the set of coded strings which are halting id's of M. 

Define <initial> such that for all ~' <initial>(~) = 

code(s,t>~), wheres is the start state of M. Define <next> 

such that for any id(p,a<t>{3) of M, <next>(code(p,c{S>(?)) = 

code(p' ,C{'t>(?'), provided that (p,o<t>(3) fM (p' ,oe't>~'). For any 

other string~' <next>(~) = ~. For any string (1 in l:t and 

any state p, <decode> (code (p ,e>(3)) = {1. For any string e=. in 

6*, which is not of the form code(p,t>B), <decode>(~)=~­

Because <initial>, <next>, and <decode> are all total 

functions, a TLDelta program may be constructed which is 

input/output equivalent to any given TLDelta/S program. 



Translation from PSDelta 

to TLDelta/S 

A PSDelta program consists of one or more TLDelta 

languge subprocedures, one or more TLDelta/S function 

subprocedures, and a PSDelta schema. PSDelta programs may 

have more than one string variable. In order to convert a 
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PSDelta program into an input/output equivalent TLDelta/S 

program, several steps must be taken. First, the PSDelta 

program must be converted into a PSGamma program with only 

one string variable. A PSGamma program is syntactically 

equivalent to a PSDelta program; however, the alphabet is 

expanded. The alphabet r will have one more symbol than ~. 

The additional symbol serves as a separator symbol. This 

will allow several strings from fl* to be coded as a single 

nonblank string in r*. For example, ~, p, and Yin /S~ can 

be coded as #~#~lf'Y#, where # is the separator symbol. Next 

the PSGamma program will be shown to be equivalent to a 

PSGamma program which has only one string and in which all 

Boolean expressions are atomic Boolean expressions. Boolean 

expressions of this type are essentially the same as those 

of TLDelta/S programs. Finally the PSGamma constructs, such 

as WHILE-DO, must be converted into TLGamma/S code by the 

use branching statement. 

A new language subprocedure must be generated each time 

a different string number is used as the source of the 

original language procedure. A TLDelta language 

subprocedure in a PSDelta program expects to have only one 
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string on the input tape. Therefore additional code must be 

added to the program to provide for its correct operation in 

the simulated multiple string environment as follows: 

1. At the beginning of the TLDelta code, a section of code 

must be inserted to place the tape head at the first 

character of the correct simulated string. 

2. Because a language subprocedure does not expect to have 

any separators in a string, after each statement which 

shifts the tape, a piece of code must be inserted to check 

whether the current symbol is the separator symbol. If so, 

then the TLDelta code should encounter a blank. Therefore a 

blank must be inserted in this position and the string must 

be shifted one cell. 

3. When the language subprocedure executes an accepting 

statement, the new code must move the <yes> or <no> from the 

beginning of the simulated string to the beginning of the 

entire string. 

4. At the end a section of code which removes any extra 

blanks and repositions the tape head at the beginning of the 

string should be inserted. 

The transformation of function subprocedures in a 

PSDelta program is similar to that of the language 

subprocedures. A new function subprocedure must be 

generated each time a different string number is used as the 

source of the original function procedure. The additional 

code necessary for the simulated multiple string environment 

is as follows: 



1. At the beginning of the TLDelta/S function, a piece of 

code must be inserted to replace the simulated string used 

as the destination of the function computation with the 

contents of the simulated string used as the source of the 

function computation. 

2. Next, code must be added which positions the tape head 

at the first character of the simulated string used as the 

destination of the function computation. 
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3. Because the TLDelta subprocedures of the TLDelta/S code 

do not expect to see any separators, after each statement of 

a TLDelta subprocedure which shifts the tape, a piece of 

code must be inserted to check whether the current symbol is 

the separator symbol. If so, then the TLDelta code should 

see a blank. Therefore a blank must be inserted in this 

position and the string must be shifted over one square. 

4. Code should be inserted at the end to remove any extra 

blanks and to reposition the tape head at the beginning of 

the string. 

Compound Boolean expressions of the PSDelta program 

must be changed into combinations of statements with atomic 

Boolean expressions. Boolean expressions of the form 

STRINGn IN A are unchanged. A Boolean expression of the 

form (NOT STRINGn in A) requires additional code which 

replaces <yes> returned from a language subprocedure to <no> 

and replaces <no> returned from a language subprocedure to 

<yes>. Boolean expressions of the form 

(STRINGi IN A AND STRINGj IN B) result in the generation of 



multiple statements. A statement in the form shown in 

Figure 19 must be changed into code of the form shown in 

Figure 20. ANY LANGUAGE and IDENTITY are two special 

subprocedures generated in the translation process. 

ANY_LANGUAGE is a TLDelta language subprocedure which 

accepts any string. IDENTITY is a TLDelta function 

subprocedure corresponding to the identity function which 

maps each string to itself. <label 2>, <label 3>, 

<label 4>, and <label 5> are new labels. <next statement 

label> is the label of the next TLDelta/S statement if it 

exists. Otherwise it is a new label which does not label 

any statement. 

<label 1> IF (STRING. IN A AND STRING. IN B) THEN 
<statemeftts 1> J 

ELSE 
<statements2> 

Figure 19 A PSDelta Statement With a 

Compound And Boolean Expression 
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<label l> 

<label 3> 

<label 2> 

<label 4> 

<label 5> 

IF STRING IN A. THEN 
BEGIN 1 

STRING := IDENTITY(STRING); 
GOTO <label 2> 

END; 
IF STRING IN ANY LANGUAGE THEN 

BEGIN 
STRING := IDENTITY(STRING); 
GOTO <label 5> 

END; 
IF STRING IN B. THEN 

BEGIN J 
<statements 1>; 

END; 
IF STRING IN ANY LANGUAGE THEN 

BEGIN 
STRING := IDENTITY(STRING); 
GOTO <next statement label> 

END; 
IF STRING IN ANY LANGUAGE THEN 

BEGIN 
<statements2>; 

END; 

Figure 20 TLDelta/S Code Equivalent to 

A PSDelta Statement With a 

Compound And Boolean Expression 
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Boolean expressions of the form (STRINGi IN A OR 

STRINGj IN B) result in the generation of multiple 

statements. A statement in the form shown in Figure 21 must 

be changed into code of the form shown in Figure 22. 

ANY LANGUAGE and IDENTITY are two special subprocedures 

generated in the translation process. ANY LANGUAGE is a 

TLDelta language subprocedure which accepts any string. 

IDENTITY is a TLDelta function subprocedure corresponding to 

the identity function which maps each string to itself. 

<label 2>, <label 3>, <label 4>, and <label 5> are new 



labels. <next statement label> is the label of the next 

TLDelta/S statement if it exists; otherwise it is a new 

label which does not label any statement. 

<label l> 

<label l> 

<label 3> 

<label 4> 

<label 5> 

<label 2> 

IF (STRING. IN A OR STRINGj IN B) THEN 
<statemeftts1> 

ELSE 
<statements2> 

Figure 21 A PSDelta Statement With a 

Compound Or Boolean Expression 

IF STRING IN A. THEN 
BEGIN i 

STRING := IDENTITY(STRING); 
GOTO <label 2> 

END; 
IF STRING IN B. THEN 

BEGIN J 
STRING := IDENTITY(STRING); 
GOTO <label 2> 

END; 
IF STRING IN ANY LANGUAGE THEN 

BEGIN 
<statements2>; 

END; 
IF STRING IN ANY LANGUAGE THEN 

BEGIN 
STRING := IDENTITY(STRING); 
GOTO <next statement label> 

END; 
IF STRING IN ANY LANGUAGE THEN 

BEGIN 
<statements1>; 

END; 

Figure 22 TLDelta/S Code Equivalent to 

A PSDelta Statement With a 

Compound Or Boolean Expression 
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In addition to the language subprocedures and function 

subprocedures, a TLGamma/S schema must also be obtained from 

the PSDelta program. A recursive algorithm to obtain a 

TLGamma/S schema T(P) from a given PSGamma program is shown 

in Appendix F. First the algorithm eleminates all of the 

BEGIN-END's, IF-THEN-ELSE's, and WHILE-DO's. Next the 

replaces function calls using specific numbered strings to 

calls of functions which operate on a simulated string. 

Assignment statements which concatenate strings together are 

changed into calls to functions which concatenate the 

correct simulated strings. The final TLGamma/S program is 

defined by the following schema: 

BEGIN 
T(P); 
L : ACCEPT 

END 

where Lis a label which does not occur in T(P). 

Summary 

The languages TLDelta, TLDelta/S and PSDelta may all be 

used to define Turing machines. A program P written in 

TLDelta may be directly translated into a Turing machine 

which is known as the Turing machine realization of P. A 

TLDelta/S program may be translated into an input/output 

equivalent TLGamma program whose alphabet is 

~U{<dirty blank>}. By encoding the symbols of rand the 

states of a Turing machine realization Mas strings of~, a 

TLDelta program may be obtained from any TLDelta/S program. 
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Finally a PSDelta program may be translated into an 

input/output equivalent TLGamma/S program whose alphabet is 

6Uf#J where '#' is a separator symbol not found in~. 



i 

~ 

CHAPTER V 

IMPLEMENTATION 

Introduction 

There are several major goals of the implementation of 

the compilers for TLDelta, TLDelta/S, and PSDelta. First of 

all it is desired to produce fully operational compilers for 

each of the languages. Another goal is to produce a Turing 

machine simulator. Also it is desired that the overall 

method of implementation follow Savitch's [1982) original 

discussion of the languages as closely as possible. 

The development environment for these compilers is the 

UNIX system. In particular two tools are used extensively: 

Lex and Yacc. Lex is used to generate the lexical analyzer 

for the compilers, and Yacc is used to generate the parsers 

for the compilers. The C code which Lex and Yacc produces 

is combined with other necessary functions and UNIX shell 

programs to form the actual compilers. 

Three compilers actually make up the PSDelta compiler. 

The first compiler translates a PSDelta program into a 

TLDelta/S program. The next compiler translates a TLDelta/S 

program into a TLDelta program. The last of the three 

compilers translates a TLDelta program into a Turing machine 

representation in standard format and a C program which will 
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simulate the execution of the resulting Turing machine. 

Lexical Analysis and 

Symbol Table Design 

50 

The task of recognizing keywords, installing 

identifiers into the symbol table, removing comments, and 

producing listing files is the responsibility of the lexical 

analyzer. The UNIX development tool Lex is used to produce 

the lexical analyzer. Because PSDelta programs and 

TLDelta/S programs both define subprocedures using TLDelta 

programs, the same lexical analyzer is used for all three 

languages. This removes the possibility of text from a 

subprocedure being interpreted differently by the three 

compilers. Lists of the keywords and symbols recognized by 

the lexical analyzer are given in Figure 2 and Figure 3. 

The symbol table design for the compilers is 

implemented as a dynamically allocated singly linked list. 

The symbol table includes a pointer to the name of the 

identifier, a unique integer associated with each 

identifier, a flag used to determine whether or not the 

identifier labels any statement in the program, and a 

pointer to the next element of the list. Each time an 

identifier is recognized by the lexical analyzer, the symbol 

table is searched to see whether the identifier already has 

been installed. If the identifier already has been 

installed, a pointer to its entry in the symbol table is 

returned. Otherwise, the new identifier is installed into 
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the symbol table and a pointer to its entry is returned. 

~lthough the symbol table is maintained as a linear 

structure, access time other than the original searching of 

the list is not unreasonable because pointers to the 

specific entries are used whenever possible. This approach 

.allows direct access to the elements of the symbol table. 

Parsing, Intermediate Representation, 

and Code Generation 

The parsers for the three compilers are generated using 

the UNIX development tool Yacc. Although TLDelta and 

TLDelta/S are subsets of PSDelta, it is necessary to have a 

different parser for each of the three languages. The '-d' 

option of Yacc is used to produce an external header file 

which contains the definitions of the token values produced 

by Yacc. This allows the separate modules of the compiler 

to be compiled separately. Although sometimes there exist 

obvious optimizations of the code, they are not made in 

order to remain as close to the original language 

,descriptions as possible. 

TLDelta Intermediate Representation and 

Simulator Generation 

The intermediate code which is used for a usual TLDelta 

statement is a shorthand representation of the same 

information provided by a TLDelta statement. Each 

intermediate code instruction contains a pointer to the 
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symbol table entry for the label of the statement, the 

symbol to be compared with the current symbol being scanned, 

the character to be written to the tape, the direction which 

the tape is to be shifted, and a pointer to the symbol table 

entry for the next statement • If the statement is an 

accepting statement, the next state is null. This 

information is stored in a singly linked list. Because in 

TLDelta/S and PSDelta multiple TLDelta programs may exist, 

there is a structure containing certain information about 

the TLDelta program associated with each TLDelta program. 

The information contained in this structure includes a 

pointer to a list of all the labels of the program (states 

of the machine), a pointer to a list of all the characters 

of the program, a pointer to the intermediate representation 

of the transitions of the program, and a pointer to the list 

of all accepting states of the program. 

The Turing machine description is produced directly 

from the intermedite representation by the method described 

in Chapter 4. The Turing machine simulator generated by 

this compiler is table driven. All characters in the input 

alphabet are placed into a lookup table and given a numeric 

value based upon their ordering. Three static 

two-dimensional arrays govern the moves of the machine from 

one id to the next. The arrays are indexed by the id number 

of the state and the numeric value assigned to the current 

character. These three arrays contain the next state, the 

character to be written to the tape, and the direction to 
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shift tape. If a transition from a given state is 

undefined, then the array contains a negative one in the 

corresponding entry. If a state is a final state, then the 

array contains a zero in the corresponding entries. 

The simulator normally receives its input from the 

standard input device and writes any output to the standard 

output device. By using the UNIX operating system, input 

and output can be redirected to come from and go to several 

different places. The simulator is capable of 

single-stepping through its execution. When the single-step 

option is active, the user is prompted for an input file and 

may control the execution in various ways. All error 

messages are written to the standard error file. Therefore 

any error messages generated will always appear on the 

terminal regardless of where the output is directed. 

TLDelta/S Intermediate Representation 

The intermediate code chosen to represent a usual 

TLDelta/S statement contains essentially the same 

information as a usual TLDelta/S statement. Each 

intermediate code instruction contains a pointer to the 

symbol table entry for the label of the statement, a pointer 

to the TLDelta code for the language subprocedure, a pointer 

to the TLDelta code for the function subprocedure, and the 

label of the next statement. If the statement is an 

accepting statement, all entries except the label are NULL. 

This information is stored in a singly linked list. Because 
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in PSDelta multiple TLDelta/S programs may exist, there is a 

structure associated with each TLDelta/S program which 

contains the name of the program and a pointer to the head 

of the intermediate representation. 

The generation of the TLDelta code is exactly as 

described in Chapter 4. The labels of statements from 

subprocedures consist of the label of the TLDelta/S 

statement from which the subprocedure is called concatenated 

with the label of the statement from the subprocedure. For 

this reason, statement labels should never be combinations 

of other statement labels. 

PSDelta Intermediate Representation 

and Code Generation 

The intermediate code which is used to represent 

PSDelta statements is in the form of quadruples. Each 

intermediate code instruction contains a unique integer 

label, an opcode, and up to three operands. The opcode is 

one of the integer representations of IF, FUNCTION, 

ASSIGNMENT, or GOTO. If the opcode is IF, then the first 

operand is a pointer to the TLDelta code for a language 

subprocedure to be executed, the second operand is the 

number of the string variable to be checked for membership, 

and the third operand is the id of the statement to be 

executed if the string variable is an element of the 

language. If the opcode is FUNCTION, then the first operand 

is a pointer to the TLDelta/S code for the function to be 



55 

computed, the second operand is the number of the string to 

serve as the source to the function, and the third operand 

is the number of the string to serve as the destination of 

the computation. If the opcode is ASSIGNMENT, then the 

first operand is the number of the left string to be 

concatenated, the second operand is the number of the right 

string to be concatenated, and the third operand is the 

number of the string into which the result will be placed. 
) 

If the operand is GOTO, then the third operand is the id of 

the statement to be executed next. 

Generation of the resulting TLDelta/S program is by the 

method described in Chapter 4. Code generation proceeds by 

first outputing the code for the generated language 

subprocedure ANY_LANGUAGE. Next all necessary language 

subprocedures are generated. The code for the generated 

function IDENTITY is produced next, followed by all 

necessary function subprocedures and concatenation 

subprocedures. 

Certain routines appear often in the TLDelta/S code 

produced from a PSDelta program. They include routines 

which shift the tape over one cell, routines which remove 

the blanks from one simulated string, and routines which 

copy one simulated string to another simulated string. Each 

of these routines is usually quite large but not 

complicated. The shift routine is the basis for the other 

two types of routines. In order to shift the tape one cell 

in either direction, the symbol which is currently being 
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scanned must be retained in some manner so that it may be 

written in the next cell. The only way which a Turing 

machine may retain this information is by the state of the 

machine. Therefore, the number of states for one of these 

routines is often quite large, although much of the code is 

almost identical. 

In order to remove the blanks from a given simulated 

string, the tape head begins at one end of the string and 

works its way toward the other end. If a blank is 

encountered the tape is shifted toward the blank in order to 

eliminate it. If a separator is encountered then all blanks 

have been removed. In order to copy one string to another, 

a blank is inserted into the source string to serve as a 

marker symbol. Then for each character in the source 

string, the blank is shifted over one character, that 

character is retained in the state of the machine, the tape 

head is moved to the destination string where the symbol is 

written, and the tape head returns to the source where the 

process is repeated. 

Each of these routines is always the same except for 

the input alphabet of the program and the labels of the 

statements. Therefore the compiler contains functions which 

generate these routines for a given input alphabet. The 

labels of the statements are combinations of the name of the 

routine used, the numeric value of the character retained, 

and the label of the originating statement. 
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Summary 

The implementations of these compilers attains three 

major goals: to produce fully operational compilers for 

each of the languages, to produce a Turing machine 

simulator, and to follow Savitch's [1982] original 

discussion of the languages as closely as possible. The 

intermediate representations of TLDelta and TLDelta/S 

closely resemble the information given in their respective 

languages. The intermediate code for PSDelta is quadruples. 

Certain routines are produced several times by the PSDelta 

compiler which vary only in the labels of the statements and 

possible the input alphabet. Although there exist areas 

where the code could be optimized, the code is left intact 

in order to remain as close to the original definitions as 

possible. 



CHAPTER VI 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

In his text Abstract Machines and Grammars, Savitch 

Il982] presents a high-level language PSDelta and shows that 

it can be translated into a Turing machine which performs 

the same tasks. Compilers have been implemented for this 

language and for the two languages, TLDelta and TLDelta/S 

upon which this languge is based. The family of compilers 

produce a functional Turing machine description in standard 

notation and a functional simulator of the Turing machine. 

These compilers are intended for use in teaching automata 

theory. Therefore the translation methods follow those 

presented by Savitch as closely as possible without 

optimization. 

Keep in mind that we are developing a theory about 
what things can and cannot be done by programs. 
To do this, it is helpful to know that every 
PSDelta program can be converted to a TLDelta/S 
program. However, TLDelta and TLDelta/S are just 
aids to developing this theory. They are not 
languages used by any real computers. So we will 
never implement our PSDelta compiler in the 'real 
world.' Therefore, there is no need for the 
algorithms we present to be efficient. Our goal 
will be to make them correct, easy to prove 
correct, and easy to understand. Efficiency is 
not important to our purpose here {Savitch, 1982). 

Suggested work in this area includes the implementation 

of the subprocedures as closed subroutines instead of macro 
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expansions (open subroutines). This would utilize tape 

storage better rather than producing an enormous number of 

identical statements. Additions to the compilers could be 

made to allow users to associate sections of their own C 

code with TLDelta, TLDelta/S, and PSDelta statements. These 

sections of code would be performed when the corresponding 

statement was executed. This type of enhancement should 

greatly resemble the actions of Lex and Yacc. Other control 

structures such as REPEAT-UNTIL, and indexed loops could be 

added. These would not actually increase the power of the 

languages, but would strengthen the similarities between 

PSDelta and other high-level languages such as Pascal. A 

preprocessor could be developed for the three languages. 

This would allow file inclusion, global macro substitution, 

and add the capability of using programs such as Lex 

routines for the input. This would enable the input to be 

more legible to the user. Likewise a routine could be used 

to convert an output from a string of symbols to a more 

human-readable form. 
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APPENDIX A 

A CONTEXT-FREE GRAMMAR FOR TLDELTA 

tld_program : BEGIN tld_stmt_seq END 

tld stmt seq : tld stmt 
- - I tld=stmt_seq tld stmt 

tld stmt : tld usual stmt 
- I accepting:stmt 

tld usual stmt stmt label IF tld boolean THEN 
BEGIN 

tld_assignment_stmt 
tld_pointer_move 
tld_goto_stmt 

END 

tld_assignment_stmt : SCAN := SYMBOL 

tld_goto_stmt : GOTO label 

accepting_stmt : stmt_label ACCEPT 

stmt label : label ' . ' . 
label : ID 

tld boolean symbol : tld symbol 
- - I ANY-

tld_assignment_symbol : tld symbol 
I CURRENT 

tld_symbol SYMBOL 
YES 
NO 
DIRTY BLANK 
SEPARATOR 

tld pointer move : POINTER LEFTARROW - - I POINTER RIGHTARROW 
POINTER DOWNARROW 
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APPENDIX B 

A CONTEXT-FREE GRAMMAR FOR TLDELTA/S 

tlds_program tlds_grammar_seq 
tlds_function_seq 
tlds schema 

tlds_grammar_seq : tlds_grammar 
I tlds_grammar_seq tlds_grammar 

tlds_grammar : G(tlds_language) = tld_program 

tlds function seq : tlds function 
- - I tlds:function_seq tlds function 

tlds function : F(tlds_function_name) = tld_program 

tlds schema : BEGIN tlds_stmt_seq END 

tlds stmt seq : tlds stmt 
- - I tlds=stmt_seq ; tlds stmt 

tlds stmt : tlds usual stmt 
I tlds:accepting_stmt 

tlds usual stmt stmt label IF tlds boolean THEN 
BEGIN 

tlds_assignment_stmt 
tlds_goto_stmt 

END 

tlds_accepting_stmt stmt label ACCEPT 

tlds boolean : STRING IN tlds_language 

tlds_assignment_stmt : STRING:= tlds function_name(STRING); 

tlds_goto_stmt : GOTO label 

tlds_language : ID 

tlds function name : ID 

tld_program : BEGIN tld_stmt_seq END 
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tld stmt seq : tld stmt 
- - I tld=stmt_seq tld stmt 

tld stmt : tld usual stmt 
- I accepting:stmt 

tld usual stmt stmt label IF tld boolean THEN 
BEGIN 

tld_assignment_stmt 
tld_pointer_move 
tld_goto_stmt 

END 

tld_assignment_stmt : SCAN := SYMBOL 

tl<l_goto_stmt : GOTO label 

accepting_stmt : stmt_label ACCEPT 

stmt label : label : 

label : ID 

tld_boolean_symbol : tld symbol 
I ANY-

tld_assignment_symbol : tld symbol 
I CURRENT 

tld_symbol SYMBOL 
YES 
NO 
DIRTY BLANK 
SEPARATOR 

tld pointer move : POINTER LEFTARROW - - I POINTER RIGHTARROW 
POINTER DOWNARROW 
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A CONTEXT-FREE GRAMMAR FOR PSDELTA 
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psd_program 

APPENDIX C 

A CONTEXT-FREE GRAMMAR FOR PSDELTA 

psd_grammar_seq 
psd_function_seq 
psd_schema 

psd_grammar_seq : psd_grammar 
I psd_grammar_seq psd_grammar 

psd_grammar : G(ID) = tld_program 

psd_function_seq : psd_function 
I psd_function_seq psd_function 

psd function : F(ID) = tlds_program 

psd_schema psd_stmt 

psd stmt : psd_if_stmt 
psd_begin_block 
psd_while_stmt 
psd_assg_stmt 

psd_if_stmt : IF psd boolean THEN 
psd_stmt 

ELSE 
psd_stmt 

psd_begin_block : BEGIN 
psd_stmt_list 

END 

psd_while_stmt : WHILE psd_boolean DO 
psd_stmt 

psd_assg_stmt 

psd_stmt_list 

VARIABLE := psd_function_name(VARIABLE) 
VARIABLE := VARIABLE VARIABLE 

psd stmt 
psd=stmt_list psd_stmt 
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psd_boolean 

psd_language 

tlds_program 

(psd_boolean AND psd_boolean) 
(psd_boolean OR psd_boolean) 
(NOT psd_boolean) 
VARIABLE IN psd_language 

ID 

tlds_grammar_seq 
tlds_function_seq 
tlds schema 

tlds_grammar_seq : tlds_grammar 
I tlds_grammar_seq tlds_grammar 

tlds_grammar : G(tlds_language) = tld_program 

tlds_function_seq : tlds_function 
I tlds_function_seq tlds function 

tlds function : F(tlds_function_name) = tld_program 

tlds schema : BEGIN tlds_stmt_seq END 

tlds_stmt_seq : tlds stmt 
I tlds:stmt_seq ; tlds stmt 

tlds stmt : tlds usual stmt 
- I tlds accepting_stmt 

tlds usual stmt stmt label IF tlds boolean THEN 
BEGIN 

tlds_assignment_stmt 
tlds_goto_stmt 

END 

tlds_accepting_stmt stmt label ACCEPT 

tlds boolean : STRING IN tlds_language 
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tlds_assignment_stmt : STRING := tlds function_name(STRING); 

tlds_goto_stmt : GOTO label 

tlds_language : ID 

t1ds function name : ID 

tld_program : BEGIN tld_stmt_seq END 



tld stmt seq : tld stmt 
- - I tld=stmt_seq tld stmt 

tld stmt : tld usual stmt 
- I accepting:stmt 

tld usual stmt stmt label IF tld boolean THEN 
BEGIN 

tld_assignment_stmt 
tld_pointer_move 
tld_goto_stmt 

END 

tld_assignment_stmt : SCAN := SYMBOL 

tld_goto_stmt : GOTO label 

accepting_stmt : stmt_label ACCEPT 

stmt label : label : 

label : ID 

tld_boolean_symbol : tld symbol 
I ANY-

tld_assignment_symbol : tld symbol 
I CURRENT 

tld_symbol SYMBOL 
YES 
NO 
DIRTY BLANK 
SEPARATOR 

tld pointer move : POINTER LEFTARROW - - I POINTER RIGHTARROW 
POINTER DOWNARROW 
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APPENDIX D 

A CONTEXT-FREE GRAMMAR FOR hA PROGRAM 

<program> : BEGIN <A code>; EXITA':' ACCEPT END 

<A code> <M code> <no rewind> ; <yes rewind> 

<M code> <p0 code> <p1 code> .•• <pm code> 

For all p. which are not accepting states: 
<p. code : p. ':'<end no?>;<p.,a0>;<p.,a0>; ..• ;<p. ,a>; 

1 1 1 1 1 n 

For all p. which are accepting states: 
<p. code> : p. ':'<end yes?>;<p. ,a0>;<p. ,a0>; •.• ;<p. ,a>; 

1 1 1 1 i n 

For all states p. and all symbols a.: 
<p.,a.> : IF SCAN= a. THEN J 

1 J BEGIN J 

<end yes?> 

SCAN : = a.; 
POINTER:; J 
GOTO q .. 

END lJ 

IF SCAN = BLANK THEN 
BEGIN 

SCAN := BLANK; 
POINTER.I.; 
GOTO IN! 

END 

<end no?> is just like <end yes?> but with INA replaced by 
OUTA. Notice that INA will label the start of <yes rewind> 
anad OUTA will label the start of <no rewind>. 

<yes rewind>: INA':' <rewind 2>; 
IF SCAN = BLANK THEN 

BEGIN 
SCAN := <yes>; 
POINTER.Ir; 
GOTO EXiTA 

END 
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<no rewind> 

For i = 1,2 
<rewind i> 

OUTA' :' <rewind l>; 
IF SCAN = BLANK THEN 

BEGIN 
SCAN := <no>; 
POINTER.I.; 
GOTO EX!TA 

END 

POINTER<-; 
LOOPi':' IF (NOT SCAN= BLANK) THEN 

BEGIN 
POINTER<-; 
GOTO LOOPi 

END; 

Note: p0 , p1 , ••• , p , EXITA, INA, OUTA, LOOP!, and LOOP2 
must be m+5 distinctmlabels, but this is easy to ensure. 
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APPENDIX E 

ALGORITHM TO OBTAIN <NEW P CODE> 
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APPENDIX E 

ALGORITHM TO OBTAIN <NEW P CODE> 

1. Replace each occurrence of 
SCAN := BLANK by SCAN := <dirty blank> 

2. Replace each statement of the form 

<label> 

by 

<label> 

IF SCAN = BLANK THEN 
BEGIN 

END 

IF (SCAN = BLANK OR SCAN = <dirty blank>) THEN 
BEGIN 

END 

3. Replace each statement of the form 

<label> 

by 

IF SCAN = <ANY> THEN 
BEGIN 

SCAN := <CURRENT> 

. 
END 
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<label> IF SCAN = BLANK THEN 
BEGIN 

SCAN := <dirty blank> 

. 
END 

<labela>: IF SCAN = <ANY> THEN 
BEGIN 

SCAN := <CURRENT> 

. 
END 

4. Replace each occurrence of ACCEPT by GOTO <formcheck> 
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APPENDIX F 

RECURSIVE ALGORITHM FOR T(P) 
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APPENDIX F 

RECURSIVE ALGORITHM FOR T(P) 

T(P) is a TLGamma/S schema obtained from a given 

PSGamma program. This code is used when transforming a 

PSDelta program to a TLDelta/S program. This algorithm 

takes as input a PSGamma program with a single string 

variable and only atomic Boolean expressions. 

1. If P =BEGIN sl;s2; ••• ;sn END then T(P) is 
T(sl);T(s2); ••• ;T(sn). 

2. If P = IF boolean THEN sl ELSE s2 then T(P) 
IF boolean THEN GOTO Ll; 
T(s2); 
GOTO L2 

Ll: <nothing l>; 
T ( sl) ; 

L2: <nothing 2>; 

is 

where <nothing 1> and <nothing 2> are any TLGamma/S 
statements that have no effect on the program. For example, 
each might be a GOTO to the next statement. 

3. If P = WHILE boolean DO s' then T(P) is 
Ll: IF boolean THEN GOTO L2; 

GOTO L3; 
L2: <nothing l>; 

T ( s) ; 
GOTO Ll; 

L3: <nothing 2> 

where Ll, L2, and L3 are new labels and both <nothing l> 
and <nothing 2> are TLGamma/S statements that have no effect 
on the program. 
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4. If P is STRING. := f (STRING.) then T(P) is 
STRING := f_i:j(STRING) J 

78 

where f_i_j is a new function which first copies STRINGj 
to STRINGi and then computes fusing STRINGi. 

5. If P is STRING. := STRING. STRINGk then T(P) is 
STRING := g_jik_i(STRING~ 

where f_j_k_i is a new function which concatenates 
STRINGj with STRINGk and places the result in STRINGi 

END OF ALGORITHM 



APPENDIX G 

A SAMPLE PSDELTA PROGRAM 
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APPENDIX G 

A SAMPLE PSDELTA PROGRAM 

The following program is a PSDelta program which will 

read a string of zeros and ones from the standard input. 

The program will then replace each occurrence of a zero by a 

one. The result is written to the standard output. 

G(ONES) = 
BEGIN 
ONE: IF SCAN = 1 THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER->; 
GOTO ONE 

END; 
ONE BLANK: IF SCAN = BLANK THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER <-; 
GOTO YES ONES 

END; 
ONE ANY: IF SCAN =<ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER<-; 
GOTO NO ONES 

END; 
YES ONES: IF SCAN = BLANK THEN 

BEGIN 
SCAN := <YES>; 
POINTER I; 
GOTO ONE ACCEPT 

END; 
YES ONES ANY: IF SCAN = <ANY> THEN 

BEGIN -
SCAN := <CURRENT>; 
POINTER<-; 
GOTO YES ONES 

END; 
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REWIND: IF SCAN = 1 THEN 
BEGIN 

SCAN := l; 
POINTER<-; 
GOTO REWIND 

END; 
L3: IF SCAN = <ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER->; 
GOTO FINISH 

END; 
FINISH: ACCEPT 
END 

BEGIN 
TLDS START: IF STRING IN ANY LANGUAGE THEN 

BEGIN 
STRING := PROC2(STRING); 
GOTO TLDS ACCEPT 

END; - , 
TLDS ACCEPT: ACCEPT 
END 

BEGIN 
STRING! := PROCl(STRINGl) 

END 
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APPENDIX H 

A SAMPLE TLDELTA/S PROGRAM SEGMENT 
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APPENDIX H 

A SAMPLE TLDELTA/S PROGRAM SEGMENT 

The following program segment is an excerpt of the 

TLDelta/S code produced by compiling the PSDelta program in 

Appendix G. Due to the extreme length of the program, only 

a portion of the function PROC2 is shown. The original 

PSDelta program contains 112 lines. The resulting TLDelta/S 

program contains 2980 lines. <SHIFT TAPE> is substituted 

for the actual block of code which inserts a blank symbol 

and shifts the tape one cell. <REMOVE BLANKS> is 

substituted for the actual block of code which removes any 

embedded blank symbols. 

F(PROC2 1) = 
BEGIN -
PROC2 1 1 SEPARATOR: IF SCAN = <#> THEN 

BEGIN- -
SCAN := <CURRENT>; 
POINTER->; 
GOTO PROC2 1 2 SEPARATOR - - -END; 

PROC2 1 1 NOT SEPARATOR: IF SCAN = <ANY> THEN 
BEGIN- -

SCAN := <CURRENT>; 
POINTER->; 
GOTO PROC2 1 1 SEPARATOR 

END; - - -
PROC2 1 2 SEPARATOR: IF SCAN = <#> THEN 

BEGIN- -
SCAN := <CURRENT>; 
POINTER I; 
GOTO PROC2 1 GT ST 48 - - - -END; 
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PROC2 1 2 NOT SEPARATOR: IF SCAN <ANY> THEN 
BEGIN- -

SCAN := <CURRENT>; 
POINTER I ; 
GOTO LO 1 

END; -
PROC2 1 GT ST 48: 

. 
<SHIFT TAPE> 

. 
LO 1: IF SCAN = 0 THEN 

BEGIN 
SCAN := l; 
POINTER->; 
GOTO LO 1 CHECK END 

END -
LO 1 ANY: IF SCAN = <ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER I; 
GOTO Ll 1 

END; -
LO 1 CHECK END: IF SCAN = <#> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER I; 
GOTO LO ST 48 

END; -
LO 1 NOT END: IF SCAN = <ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER I; 
GOTO LO 1 

END; -
GOTO LO ST 48: 

<SHIFT TAPE> 

. 
Ll 1: IF SCAN= 1 THEN 

BEGIN 
SCAN := 1; 
POINTER->; 
GOTO Ll 1 CHECK END 

END; 
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Ll 1 ANY: IF SCAN = <ANY> THEN 
BEGIN 

SCAN := <CURRENT>; 
POINTER I j 
GOTO L2 1 

END; -
Ll 1 CHECK END: IF SCAN = <#> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER I j 
GOTO Ll 1 ST 48 

END; - - -
Ll 1 NOT END: IF SCAN = <ANY> THEN 

BEGIN -
SCAN := <CURRENT>; 
POINTER I; 
GOTO LO 1 

END; -
Ll 1 ST 48: 

. 
<SHIFT TAPE> 

. 
L2 1: IF SCAN= BLANK THEN 

BEGIN 
SCAN := BLANK; 
POINTER<-; 
GOTO L2 1 CHECK END 

END; -
L2 1 ANY: IF SCAN = <ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER I; 
GOTO REWIND 1 

END; -
L2 1 CHECK END: IF SCAN = <#> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER I ; 
GOTO L2 1 ST 48 - - -END; 

L2 1 NOT END: IF SCAN = <ANY> THEN 
BEGIN 

SCAN := <CURRENT>; 
POINTER I; 
GOTO REWIND 1 

END; -
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L2 1 ST 48: - - -

. 
<SHIFT TAPE> 

. 
REWIND 1: IF SCAN= 1 THEN 

BEGIN 
SCAN := l; 
POINTER<-; 
GOTO REWIND 1 CHECK END 

END; 
REWIND 1 ANY: IF SCAN = <ANY> THEN 

BEGIN -
SCAN := <CURRENT>; 
POINTER!; 
GOTO L3 1 

END; 
REWIND 1 CHECK END: IF SCAN = <#> THEN 

BEGIN -
SCAN := <CURRENT>; 
POINTER I; 
GOTO REWIND 1 ST 48 

END; - - -
REWIND 1 NOT END: IF SCAN = <ANY> THEN 

BEGIN -
SCAN := <CURRENT>; 
POINTER I; 
GOTO REWIND 1 

END; -
REWIND 1 ST 48: 

<SHIFT TAPE> 

. 
L3 1: IF SCAN= <ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER->; 
GOTO L3 1 CHECK END 

END; - - -
L3 1 ANY: IF SCAN = <ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER I; 
GOTO FINISH 1 

END; -
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L3 1 CHECK END: IF SCAN = <#> THEN 
BEGIN -

SCAN := <CURRENT>; 
POINTER I; 
GOTO L3 1 ST 48 - - -END; 

L3 1 NOT END: IF SCAN = <ANY> THEN 
BEGIN 

SCAN := <CURRENT>; 
POINTER I; 
GOTO FINISH 1 

END; -
L3 1 ST 48: 

. 
<SHIFT TAPE> 

• 
FINISH 1: IF SCAN= <ANY> THEN 

BEGIN 
SCAN := <CURRENT>; 
POINTER I ; 
GOTO PROC2 1 REMOVE BLANKS 

END; 
PROC2 1 REMOVE BLANKS: 

<REMOVE BLANKS> 

. 
PROC2 1 ACCEPT: ACCEPT 
END - -
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APPENDIX I 

A SAMPLE TLDELTA PROGRAM SEGMENT 
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APPENDIX I 

A SAMPLE TLDELTA PROGRAM SEGMENT 

The following program segment is an excerpt of the 

TLDelta code produced by compiling the TLDelta/S program in 

Appendix H. Due to the extreme length of the program, only 

a portion of the function PROC2 is shown. The original 

TLDelta/S program contains 2980 lines. The resulting 

TLDelta program contains 4251 lines. <SHIFT TAPE> is 

substituted for the actual block of code which inserts a 

blank symbol and shifts the tape one cell. 

YY PSD 0 TLDS START F LABEL: IF SCAN = <ANY> THEN 
BEGIN -

SCAN := <CURRENT>; 
POINTER I; 
GOTO YY PSD 0 TLDS START PROC2 1 1 SEPARATOR 

END; - - - - -
YY PSD 0 TLDS START PROC2 1 1 SEPARATOR: IF SCAN = 

BEGIN - - - - -
SCAN := <CURRENT>; 
POINTER->; 
GOTO YY PSD 0 TLDS START PROC2 1 2 SEPARATOR 

END; 
YY PSD 0 TLDS START PROC2 1 1 NOT SEPARATOR: 

IF SCAN = BLANK THEN - - - -
BEGIN 

SCAN := DIRTY BLANK; 
POINTER->; -
GOTO YY PSD 0 TLDS START PROC2 1 1 SEPARATOR 

END; - - - - - - -
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YY PSD 0 TLDS START PROC2 1 1 NOT SEPARATOR DB: 
IF SCAN = <ANY> THEN - - -
BEGIN 

SCAN := <CURRENT>; 
POINTER->; 
GOTO YY PSD 0 TLDS START PROC2 1 1 SEPARATOR 

END; - - - - - - -
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YY PSD 0 TLDS START PROC2 1 2 SEPARATOR: IF SCAN = <#> THEN 
BEGIN - - - - -

SCAN := <CURRENT>; 
POINTER I; 
GOTO YY PSD 0 TLDS START PROC2 1 GT ST 48 

END; - - - - - - -
YY PSD 0 TLDS START PROC2 1 2 NOT SEPARATOR: 

IF SCAN = BLANK THEN - - -
BEGIN 

SCAN := DIRTY BLANK; 
POINTER I; -
GOTO YY PSD 0 TLDS START LO 1 

END; - - - - -
YY PSD 0 TLDS START PROC2 1 2 NOT SEPARATOR DB: 

IF SCAN = <ANY> THEN - - -
BEGIN 

SCAN := <CURRENT>; 
POINTER I; 
GOTO YY PSD 0 TLDS START LO 1 

END; 
YY PSD 0 TLDS START PROC2 1 GT ST 48: -- -- - -

. 
<SHIFT TAPE> 

• 
• 

YY PSD 0 TLDS START LO 1: IF SCAN = 0 THEN 
BEGIN -

SCAN := l; 
POINTER->; 
GOTO YY PSD 0 TLDS START LO 1 CHECK END -- - - -- -END; 

YY PSD 0 TLDS START LO 1 ANY: IF SCAN = BLANK THEN 
BEGIN - - - -

SCAN := DIRTY BLANK; 
POINTER I; -
GOTO YY PSD 0 TLDS START Ll 1 

END; - - - - -
YY PSD 0 TLDS START LO 1 ANY DB: IF SCAN = <ANY> THEN 

BEGIN - - - - - -
SCAN := <CURRENT>; 
POINTER I; 
GOTO YY PSD 0 TLDS START Ll 1 

E~D; - - -



~--------

YY PSD 0 TLDS START LO 1 CHECK END: IF SCAN = <#> THEN 
BEGIN - - - - -

SCAN := <CURRENT>; 
POINTER I; 
GOTO YY PSD 0 TLDS START LO 1 ST 48 

END; - - - - - -
YY PSD 0 TLDS START LO 1 NOT END: IF SCAN = BLANK THEN 

BEGIN - - - -
SCAN := DIRTY BLANK; 
POINTER I; -
GOTO YY PSD 0 TLDS START LO 1 

END; - -
YY PSD 0 TLDS START LO 1 NOT END DB: IF SCAN = <ANY> THEN 

BEGIN - - - - - -
SCAN := <CURRENT>; 
POINTER I; 
GOTO YY PSD 0 TLDS START LO 1 

END; - - -
YY_PSD_O_TLDS_START_LO_l_ST_48: 

. 
<SHIFT TAPE> 

. 
YY PSD 0 TLDS START Ll 1: IF SCAN= 1 THEN 

BEGIN -
SCAN := 1; 
POINTER->; 
GOTO YY PSD 0 TLDS START Ll 1 CHECK END 

END; - - - -
YY PSD 0 TLDS START Ll 1 ANY: IF SCAN = BLANK THEN 

BEGIN - - - -
SCAN·:= DIRTY BLANK; 
POINTER I; -
GOTO YY PSD 0 TLDS START L2 1 

END; - - - - - -
YY PSD 0 TLDS START Ll 1 ANY DB: IF SCAN = <ANY> THEN 

BEGIN - - - - - -
SCAN := <CURRENT>; 
POINTER I ; 
GOTO YY PSD 0 TLDS START L2 1 

END; 
YY PSD 0 TLDS START Ll 1 CHECK END: IF SCAN = <#> THEN 

BEGIN - - - - - -
SCAN := <CURRENT>; 
POINTER I; 
GOTO YY PSD 0 TLDS START Ll 1 ST 48 

END; - - - - - - -
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YY PSD 0 TLDS START Ll 1 NOT END: IF SCAN = BLANK THEN 
BEGIN - - - - -

SCAN := DIRTY BLANK; 
POINTER I; -
GOTO YY PSD 0 TLDS START LO 1 

END; - - - - -
YY PSD 0 TLDS START Ll NOT END DB: IF SCAN = <ANY> THEN 

BEGIN - - - -
SCAN := <CURRENT>; 
POINTER!; 
GOTO YY PSD 0 TLDS START LO 1 

END; - - - -
YY_PSD_O_TLDS_START_Ll_l_ST_48: 
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