
AN IMPLEMENTATION OF A PROCEDURAL

LANGUAGE FOR REPRESENTING

TURING MACHINES

By

Charles Bradley Slaten
"

Bachelor of Science

Arkansas Tech University

Russellville, Arkansas

1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1987

tkrusi~
lC\~1

Sla.3 ti
LOp.~

AN IMPLEMENTATION OF A PROCEDURAL

LANGUAGE FOR REPRESENTING

TURING MACHINES

Thesis Approved:

Thesis Adviser

~(Ye~

Dean of the Graduate College

ii
1291066

PREFACE

In preparation of this study, I would like to express my

sincere appreciation to all the people who assisted me. I am

especially thankful to my major adviser, Dr. G. E. Hedrick,

for his guidance and valuable help.

Appreciation is also extended to the other members of my

committee, Dr. George and Dr. Chandler for their advisement

in the preparation of this work. I would also like to

express my appreciation to Dr. D. D. Fisher who substituted

for Dr. George on my oral exam and for all the wisdom he has

shared with me.

My deepest appreciation goes to my wife Amanda for her

patience and support. I would also like to recognize the

contribution made by my daughter Kathleen Elizabeth.

iii

Chapter

I.

II.

III.

IV.

TABLE OF CONTENTS

Page

INTRODUCTION. 1

Objectives • 1
Preliminaries. . • 3
Definitions. 4

REVIEW OF LITERATURE. • 6

History 6
The Significance of the Turing Machine Model • 7

The Turing Machine as a Computer of
Functions of Natural Numbers • • .

The Turing Machine as an Acceptor
and a Generator of Languages •

The Church-Turing Thesis • • • • • • • .

Language Representations of
Effective Procedures ••..•••

Machine Construction Tools
and Program Generators ••••..••

Summary. • • • • • • • • • • •

SYNTAX AND SEMANTICS OF TLDELTA,
TLDELTA/S, AND PSDELTA •

Introduction • . . • • • • . • • • • . • . .
The Syntax of TLDelta. . . • • • • ••.
The Semantics of TLDelta ••••••••••
The Syntax of TLDelta/S .••••.•••
The Semantics of TLDelta/S ..•••.•••
The Syntax of PSDelta .••..•••..••
The Semantics of PSDel ta • . . • • • . • . .
Summary. • • . . • • • • •

LANGUAGE TRANSLATION METHODS •.
Introduction • •
Translation from
Translation from
Translation from
Summary •••.•

.
TLDelta to a Turing Machine
TLDelta/S to TLDelta ••.•
PSDelta to TLDelta/S ••••

iv

8

8
10

11

12
13

16

16
16
18
20
22
24
27
30

31

31
31
33
41
47

Chapter Page

v. IMPLEMENTATION. 49

Introduction . . • . • . . • • • • . 49
Lexical Analysis and Symbol Table Design • . 50
Parsing, Intermediate Representation,

and Code Generation. . . • • • . . • . • . 51

TLDelta Intermediate Representation and
Simulator Generation . . • • • . • . • 51

TLDelta/S Intermediate Representation. . 53
PSDelta Intermediate Representation

and Code Generation. • • • • . . • • . 54

Summary.

VI. SUMMARY, CONCLUSIONS AND FUTURE WORK •.

57

58

60

61

63

66

70

73

76

79

83

89

A SELECTED BIBLIOGRAPHY ..••••..

APPENDIX A - A CONTEXT-FREE GRAMMAR FOR TLDELTA.

APPENDIX B - A CONTEXT-FREE GRAMMAR FOR TLDELTA/S. . . .
APPENDIX c - A CONTEXT-FREE GRAMMAR FOR PSDELTA.
APPENDIX D - A CONTEXT-FREE GRAMMAR FOR hA PROGRAM . . .
APPENDIX E - ALGORITHM TO OBTAIN <NEW P CODE>.
APPENDIX F - RECURSIVE ALGORITHM FOR T(P). • . .
APPENDIX G - A SAMPLE PSDELTA PROGRAM. •
APPENDIX H - A SAMPLE TLDELTA/S PROGRAM SEGMENT.
APPENDIX I - A SAMPLE TLDELTA PROGRAM SEGMENT. • • .

v

LIST OF FIGURES

Figure

1. A Usual TLDelta Statement ..

2.

3.

4.

5.

6.

7.

Reserved Words • • . . .
Reserved Symbols • . . .
A Usual TLDelta Statement •• . . .
A Usual TLDelta/S Statement.

The Form of a TLDelta/S Program ••

A Usual TLDelta/S Statement ••••

. .

. .

.

Page

17

18

18

20

21

22

24

8. Two Forms of a PSDelta Assignment Statement. . 25

9. A PSDelta IF-THEN-ELSE Statement .

10. A PSDelta WHILE-DO Statement
11. A PSDelta BEGIN-END Block .••

12. The Form of a PSDelta Program.

13. Program P" • • • • . • . • • . .
14. Usual TLDelta/S Statement of P

15. TLGamma Code for Usual TLDelta/S Statement •

16. New hA Accepting Statement •
17. <yes/no switch> Code
18. New F Code Accepting Statement

19. A PSDelta Statement With a Compound And Booleam

26

26

26

27

36

38

38

38

39

39

Expression • • • • • • . • • • . • • • • • • • • 44

20. TLDelta/S Code Equivalent to A PSDelta Statement
with a Compound And Boolean Expression • • • • • 45

vi

Figure Page

21~ A PSDelta Statement With a Compound Or Booleam
Expression • . • . • • • • . • . . • • • . • 46

22. TLDelta/S Code Equivalent to A PSDelta Statement
With a Compound Or Boolean Expression. • • . • . 47

vii

CHAPTER I

INTRODUCTION

Objectives

In 1936 Alan Mathison Turing developed a mathematical

model that expresses the ideas of an effective procedure.

This model has subsequently been named the Turing Machine

after its originator. Although Turing's model may seem

simple, it has all of the computing capability of a

general-purpose computer. Perhaps the most important

concept of this mathematical model is that of the

Church-Turing thesis, which states that any function which

is computable, can be computed by some Turing machine {or

provably equivalent model). The Turing machine is studied

also for the class of languages it defines, known as the

recursively enumerable sets.

In his text Abstract Machines and Grammars, Savitch

presents a high-level language and shows that it can be

transformed into a Turing machine which performs the same

tasks. This Pascal-like language makes many of the theorems

and concepts of Turing machines and computability more

easily understandable to persons with a programming, rather

than an exclusively formal mathematical, background.

1

Actually, Savitch defines three languages; TLDelta,

TLDelta/S, and PSDelta, each successively more

sophisticated. The last of the three, PSDelta, is the

high-level language. At this writing, no production

compiler exists for any of these three languages

2

[Savitch, 1987). The primary objectives of this thesis are:

(1) to expand upon the definitions of these languages to

include subprocedure declarations, (2) to implement

compilers which produce a functional Turing machine

simulator for them, along with a Turing machine description

in standard notation; and (3) to produce compilers for use

in teaching automata theory.

PSDelta provides students with a procedural language

which is related closely to the Turing machine model and

which can be used to solve various problems in automata

theory. The output o.f the compilers provides students with

a Turing machine description in standard notation.

Therefore, students can solve problems using PSDelta as well

as view the resulting Turing machine description.

Construction of Turing machines can be extremely time

consuming. Since PSDelta en.ables students to apply top-down

structured programming concepts to the construction of

Turing machines, students are able to construct several

Turing machines within the time constraints of class

assignments. Each of the three compilers provides students

with a tool which simulates the execution of a Turing

machine and enables them to view results which might not be

3

produced practically by hand.

Preliminaries

According to Hopcroft and Ullman [1979), a Turing

machine consists of a finite state control, an input tape

which extends into infinity in both directions and is

divided into cells, and a tape head which scans one tape

cell at a time. Each cell of the input tape is capable of

~ontaining exactly one symbol of a finite tape alphabet at a

time. All but a finite number of cells contain a blank at

any given time. The tape head points to one cell of the

tape, can read the symbol at that cell, can overwrite the

symbol at that cell, and can move at most one cell in either

direction during any unit of time. One of the symbols of

the tape alphabet is designated as the blank symbol. One

state of the finite-state control is designated the start

state. A subset of the set of states is designated as the

set of accepting states.

Initially, n cells (for some finite n > 0) of the input

tape contain symbols from an input alphabet such that the

input alphabet is a proper subset of the tape alphabet. The

remaining cells each hold the blank symbol, which is not an

input symbol. The finite-state control is in the start

state, and the tape head is positioned at the leftmost

nonblank input symbol of the input tape.

The actions of a Turing machine depend upon both the

state of the finite state control and the symbol currently

4

scanned by the tape head. During one unit of time, (1) the

finite-state control changes to a state which may or may not

be different, (2) the tape head changes the symbol at the

tape cell currently being scanned to a new symbol which may

or may not be different, and (3) the tape head moves at most

one cell to the left, one cell to the right, or remains

stationary. A combination of these actions forms a move of

a Turing machine. The machine is said to halt when no move

is defined for the current state and symbol being scanned

[Hopcroft, 1979).

Definitions

Turing machine. a (simple) Turing machine is a
six-tuple M = (S,E,S,s,B,Y) where S is a finite
set of states, I:: is a finite set of symbols
referred to as the tape alphabet, s is an element
of S called the start state, B is an element of
called the blank symbol, and Y is a subset of S
called the accepting states. The third element,
S, m~ be any partial function from S x E into
S x r; x {<-,->,~J provided that ~(q,a) is
undefined whenever q is in Y. The function S is
called the transition function. If
8Cp ,a) = (p7 ,a7 ,->), then this is to be
int~rp~eted to mean the following. If the finite
control of M is in state p1 and the tape head is
scanning symbol a , then M will do all of the
following in one ~ove: replace a 1 by a 7 , change
the state of its finite control to p2 , ~nd shift
its tape head one square right. If we replace ->
by <- or ~ respectively, then the tape head
instructions would be changed to shift left or to
remain stationary respectively [Savitch, 1982].

Instantaneous description. An instantaneous

description or id of Turing machine M is denoted by the

ordered pair (p,~~), where pis in S, o.{l is in E*, and~ is

a symbol not in~. The intuitive meaning of this id is that

the input tape contains the string ~ preceded and followed

by an infinite string of blanks, the current state of the

finite-state control of M is p, and the tape head is

positioned at the first symbol of beta.

Halting id. A halting id is an id for which the

transition function is undefined [Savitch, 1982).

Tape configuration. ~t>'3 is said to be the tape

configuration of id (p,~~~), assuming that~ does not begin

with a string of blanks, and that {j does not end with a

string of blanks. If o< does begin with a string of blanks

or~ ends with a string of blanks, then the tape

configuration is said to be Vt>f'-, where Vt>)" is o<t>~ with the

leading and trailing blanks removed [Savitch, 1982).

Move. If Turing machine M goes from id Cp 1 ,~1~~l) to

id Cp2 , 2~ 2 > in one step, M is said to move from id

Cp 1 ,C1(1 >~1 > to id Cp2 ,~2t>P2 > and is written Cp 1 ,oc1~~) fM

Cp2 ,~2~P2 > [Savitch, 1982).

Valid output. Turing machine M has valid output for

input provided that (s,~~) fM (q,t>~) for some accepting

state q.

5

CHAPTER II

REVIEW OF LITERATURE

History

Alan Turing's machine was actually developed in answer

to a challenge. In 1900 David Hilbert presented a list of

unsolved mathematical problems at the International Congress

of Mathematicians in Paris. Problem twenty-three was "to

discover a method for establishing the truth or falsity of

any statement in a language of formal logic called predicate

calculus." [Hopcroft, 1984]. Specifically, the problem was

to determine whether or not an arbitrary function in the

first-order calculus which was applied to integers was true.

Although Turing was not present at the congress, he became

familiar with Hilbert's twenty-third problem through the

lectures of M. H. A. Newman.

Kurt G8del was instrumental in the solution of this

problem with his incompleteness theorem of 1931. G8del

proved that no effective procedure could exist within these

limitations which could determine the truth or falsity of an

arbitrary function. He did this by constructing a formula

in the predicate calculus which was applied to integers, but

whose definition was such that it could neither be proved

6

7

nor disproved. This statement and the formalization of the

intuitive idea of an effective procedure is considered by

many to be one of the great intellectual achievements of our

century [Hopcroft, 1984].

While Turing was developing the solution to Hilbert's

'problem independently, he faced another problem: how can

the concept of method be given a precise definition

[Hopcroft, 1984]. By stating that a method is an algorithm,

he showed a detailed process by which a method could be

developed into a mathematical model. This model would be

finitely describable and contain a sequence of discrete

instructions which would be carried out mechanically without

any creative intervention [Hopcroft, 1984]. The resulting

model is called a Turing machine.

The Significance of the

Turing Machine Model

Savitch [1982] in the presentation of TLDelta,

TLDelta/S, and PSDelta, proves that a partial function is

computed by some simple Turing machine if and only if it is

computed by some program in each of these three languages.

He also presents algorithms which convert TLDelta programs

into Turing machines, TLDelta/S programs into TLDelta

programs, and PSDelta programs into TLDelta/S programs.

Therefore each of these three languages is equivalent to the

Turing machine model.

The Turing Machine as a Computer

of Functions of Natural Numbers

8

The Turing machine can be viewed as a computer of

functions from the set of natural numbers onto the set of

natural numbers. One accepted convention for representing

integers is in unary; that is to represent the integer x>O

by the string lx on the input tape. If a function has

multiple arguments, each of these arguments is separated on

the input tape by a single 0 [Hopcroft, 1984].

If Turing machine M halts, regardless of whether or not

it is in an accepting state, the output of the function is

said to be the string of nonblank characters remaining on

the tape. If this string is in the form iY, then it is said

that M c9mputes the function f (x) = y. An interesting

peculiarity is that Turing machine M may compute one

function for one argument, a different function for two

arguments, and so on [Hopcroft, 1979].

The Turing Machine as an Acceptor

and a Generator of Languages

Turing machines also may .be useful as recogn:l..zors or

acceptors of languages. An acceptor is merely a procedure

which is used to define a set [Aho, 1972]. If the Turing

machine accepts a string, then the procedure must output the

correct result •. Otherwise the procedure is not required to

output anything.

9

Hopcroft and Ullman [1979] define the language accepted

by Turing machine M as the set of all input strings which

cause M to enter a final state. This language is denoted as

L(M). The languages which are accepted by at least one

Turing machine that halts on all inputs are the recursive

sets. In this case the input may or may not be accepted

before halting.

Turing machines also may be used to represent

procedures which generate the strings of a language as

output. It in not necessary for such a procedure to have

any input and usually is discussed assuming that there is no

input. If the procedure halts, then this language is

finite; otherwise it is infinite. A procedure such as this

is said to enumerate the language L, where L is exactly

those strings which are listed by the procedure. No

restrictions are placed upon the order of the strings within

the list nor upon the number of times a string may appear in

the list, with the exception that each string in L must

appear in the list at least once [Savitch, 1982].

There exist languages within the class of recursively

enumerable languages, whose membership cannot be determined

mechanically [Hopcroft, 1979). If L(M) is such a language,

then there exists a Turing machine M which must fail to

accept some input which is not within L(M). If input w is

in L(M), then M must eventually halt. If Mis still running

on some input, then it cannot be determined whether or not M

will ultimately accept the input (if the machine runs long

10

enough) or the machine will run forever.

The Church-Turing Thesis

In the 1930's, Alonzo Church along with two of his

premier graduate students from Princeton University, Stephen

C. Kleene and J. Barkley Rosser, began to tackle a segment

of Hilbert's problem. Church proposed that if any arbitrary

mathematical function could be computed under any

circumstances, it could be defined by a mathematical model

provably equivalent to the Turing machine [Hopcroft, 1984].

Working independently of Church, Turing developed much

the same idea, but in a different manner. Turing recognized

a technical connection between Hilbert's twenty-third

problem and the concept of computable functions. He

developed the Turing machine as a simple, but exact model

for the process of calculation. Any Turing machine can be

expressed as a finite character string, just as all

effective procedures are finitely describable

[Hopcroft, 1979]. Therefore all possible Turing machines

can be listed in alphabetical or numerical order; thus they

can be paired one-to-one with the whole numbers

[Hopcroft, 1984]. However, the class of functions mapping

the nonnegative integers onto fo,1} cannot be placed into

one-to-one correspondence with the integers

[Hopcroft, 1979]. Therefore Turing concluded that some

functions are not computable.

Jones [1973] states the Church-Turing thesis as

follows:

The Turing machine is an accurate
formalization of the intuitive concept of
'effective process'. Thus any computation done by
a Turing machine is intuitively effective;
conversely, any intuitively effective process can
be simulated by a Turing machine. In particular,
(i) a function is effectively computable if and
only if it is Turing computable;
(ii) a set or predicate is effectively decidable
if and only if it is Turing decidable (recursive);
(iii) a set or predicate is effectively enumerable
if and only it is recursively enumerable
[Jones , 19 7 3] .

The Church-Turing thesis does not present itself for

formal proof because it deals with a relation between a

formally defined system and the intuitive concept of an

effective procedure [Jones, 1973]. Cutland [1980] states

that this thesis has the status of a claim or belief and

must be verified by evidence. Cutland [1980] and

11

Jones [1973] present several informal arguments in favor of

the Church-Turing thesis.

Language Representations of

Effective Procedures

In addition to the languages presented by Savitch

[1982], many representations of effectively computable

processes have been language oriented. One example is the

lambda calculus developed by Church, Kleene, and Rosser.

The Greek letter Lambda, which corresponds to the Roman

letter L, was chosen by Church as the name of this formal

system to suggest that it is in fact a consistent formal

language. The contemporary programming language Lisp, which

is used extensively for list processing in artificial

intelligence applications, is modeled on Church's lambda

calculus [Hopcroft, 1984].

12

Martin Davis [1974] also developed languages which are

provably equivalent to the Turing machine model.

language closely resembles the style of FORTRAN.

One such

Another of

Davis' languages is in essence a language representation of

the Turing machine. A program in each of the languages

consists of a sequence of instructions from a specified

instruction set. The instructions may or may not have

labels, but no two instructions can have the same label.

Program execution terminates when a branch is made to a

label which is not in the program or when the final

instruction in the program is not a branch and that

instruction is executed.

Machine Construction Tools

and Program Generators

Aho, Sethi, and Ullman [1986] present a variety of

software-development tools which are used in compiler

construction. Two types of these tools have as their basis

specific mathematical models and are of particular interest:

parser generators and scanner generators. Parser

generators, such as Yacc [Johnson, 1975] generally have an

input based upon a context-free grammar and generate a

push-down transducer as output. Scanner generators, such as

Lex [Lesk, 1975) often generate lexical analyzers from an

13

input based upon regular expressions. A lexical analyzer is

basically a finite automaton.

By using automated tools in the construction of complex

program components, tasks which consume a large portion of

the writing effort can be reduced to one of the easier steps

in the development process. Automated development tools can

also implement algorithms which are too complex to be

carried out by hand effectively. Also it is often easier to

produce a correct implementation of a mathematical model

using a generator and a description scheme rather than to

implement it directly by hand [Aho, 1986].

The two tools Yacc and Lex from the UNIX system are

implemented as program generators. Instead of a subroutine,

a system command, or a part of the supported features of a

compiler, program generators take as input a specification

of a task to be performed and produce as output a program

which will perform that task. The language in which the

output language is written is known as the host language.

The host language can be either high or low level, although

care should be taken that the generated code is as portable

as possible. Both Ratfor and C are used as host languages

for Yacc and Lex, however C is used more widely.

Summary

The Turing machine was developed by Alan Turing in the

solution of David Hilbert's twenty-third problem: could an

arbitrary function in first-order calculus applied to

14

integers be shown to be true? In his incompleteness theorem

of 1931, Kurt G8del proved that Hilbert's problem could not

be solved. Turing's machine, which was a finitely

describable mathematical model, was developed as a precise

definition of an effective procedure.

The Turing machine may be used to define functions

which map the natural numbers to the natural numbers.

Turing machines may also be used to accept the strings of a

language or to enumerate the strings of a language. There

exist languages which are recursively enumerable, but whose

membership cannot be determined mechanically.

The Church-Turing thesis developed independently by

both Alonzo Church and Alan Turing states that any effective

procedure can be defined by a Turing machine. This thesis

does not present itself for proof, but is a claim which is

backed by substantial evidence.

In addition to the three languages defined by Savitch,

other languages have been introduced to represent effective

procedures. Church, Kleene, and Rosser developed lambda

calculus, a language upon which the programming language

Lisp is based. Davis also defined two languages equivalent

to the Turing machine model. One of these languages closely

resembled FORTRAN, while the other was a language

representation of a Turing machine.

Several tools have been developed to implement

mathematical models. These tools can be very helpful in

reducing the effort of implementing a complex program

15

component. Lex, a scanner generator, and Yacc, a parser

generator are implemented as program generators and produce

as their output C source code.

CHAPTER III

SYNTAX AND SEMANTICS OF TLDELTA,

TLDELTA/S, AND PSDELTA

Introduction

In his text Abstract Machines and Grammars

Savitch [1982] presents three languages, TLDelta, TLDelta/S

and PSDelta, which are used to represent the Turing machine

model. The first language TLDelta is a variation of the

standard notation of the Turing machine model and is a

subset of the second language TLDelta/S. TLDelta/S is the

language TLDelta expanded to include subprocedures.

TLDelta/S is a subset of the third language PSDelta.

PSDelta is a high-level language which closely resembles

Pascal. Savitch also shows that programs in each of these

languages can be translated into equivalent Turing machines.

The Syntax of TLDelta

TLDelta is the language upon which TLDelta/S and

PSDelta are based. TLDelta stands for "Turing language with

alphabet~" [Savitch, 1982]. A TLDelta statement is either

a usual statement or an accepting statement. The form of an

16

accepting statement is

<Label> : ACCEPT.

The form of a usual statement is shown in Figure 1.

<Label l> IF <Boolean> THEN
BEGIN

<Assignment instruction>;
<Pointer move>;
GOTO <Label 2>

END

Figure 1. A Usual TLDelta Statement

In this paper, a valid identifier is defined as any

finite string of letters, numbers, and underscores which

begins with a letter. A valid identifier cannot be a

reserved word (Figure 2), although it may contain a

substring which is a reserved word. In the original

definition, a TLDelta label was any nonempty string of

symbols without any TLDelta reserved words or TLDelta

symbols. For this paper, however, a TLDelta label is any

17

(1)

valid identifier. Each statement must have a unique label.

A TLDelta boolean expression has the form

SCAN = a (2)
~

where "a" is any ASCII character or one of the reserved

words BLANK, <YES>, <NO>, or <ANY>. An assignment

instruction has the form

SCAN := b (3)

where "b" is any ASCII character or one of the reserved

words BLANK, <YES>, <NO>, or <CURRENT>. The pointer moves

18

consist of the reserved word POINTER followed by one of the

symbols ->, <-, or i· A TLDelta program consists of the

reserved word BEGIN, followed by a sequence of TLDelta

statements separated by semicolons, followed by the reserved

word END.

ACCEPT
BLANK
END
IF

;QR
.THEN

AND
<CURRENT>
F
IN
POINTER
WHILE

:=
;
->

Figure 2.

<ANY>
DO
G
<NO>
SCAN
<YES>

Reserved

=
(
<-

Words

Figure 3. Reserved Symbols

The Semantics of TLDelta

. .
)

i

BEGIN
ELSE
GOTO
NOT
STRING

A TLDelta program is used to represent a Turing

machine. The labels correspond to the states of a Turing

machine, SCAN corresponds to the tape symbol currently being

scanned by the tape head, the symbol <CURRENT> corresponds

to the tape symbol currently being scanned by the tape head,

and a pointer move defines the direction which the tape head

moves.

A Turing machine M = (S,I:,8,s,B,Y) can be obtained from

a TLDelta program P in the following manner: Initially S,

19

I:, B, and Y are empty. Let S be the set of all labels of P.

Let E =fi U {s}, where B represents the blank symbol and is

not an element of /:l. Lets be the label of the first

statement of P. Let Y be the set of all labels of accepting

statements of P.

Although <YES> and <NO> are ordinary symbols which may

be in I:, <ANY> and <CURRENT> are special symbols which are

not contained in In a boolean expression of the form

IF SCAN = <ANY> (4)

<ANY> represents any symbol in I:. Therefore a boolean

expression of this form will always be true. Similarly an

assignment instruction of the form

SCAN := <CURRENT> (5)

assigns to SCAN the symbol currently being scanned.

Therefore an assignment instruction of this form will not

change the value of SCAN.

Define the transition function ~as follows: consider

each ordered pair (<Labeli>,c) where <Labeli> is an element

of S and "c" is an element of A or B. If <Labeli> is the

label of some accepting statement in P, then (<Labeli>,c)

is undefined for all c in~. If <Labeli> is the label of

some usual statement sj in P in the format of the statement

in Figure 4, where <Arrow> is exactly one of the three

symbols ->, <-, and ~' then 8<<Labeli>,c) is determined by

one of the cases given below.

Case 1: c = a and <Label 2> is the label of some

statement in P.

Case 2: c = B, a = BLANK, and <Label 2> is the label

of some statement in P.

in P.

Case 3: <Label 2> is not the label of any statement

Case 4: c is a symbol in /1, but a + c.

Case 5: c = B, but a f BLANK.

In both cases 1 and 2, o(<Labeli>,c) =

20

(<Label 2>,b,<Arrow>) if b + BLANK and <Arrow> is exactly

one of the three symbols ->, <-, and ~· If b = BLANK then

~(<Labeli>,c) = (<Label 2>,B,<Arrow>). In case 3

8<<Labeli>,c) is undefined. In cases 4 and 5, S<<Labeli>,c)

= (<Next-label>,c,~), where <Next-label> is the label of the

next statement in P. If there is no next statement in P,

then (<Label.>,c) is undefined.
l

<Label.>
l

Figure 4.

IF SCAN = a THEN
BEGIN

SCAN := b;
POINTER <Arrow>;
GOTO <Label 2>

END

A Usual TLDelta Statement

The Syntax of TLDelta/S

TLDelta/S is the language TLDelta enhanced to provide

subroutines. Also, TLDelta/S has a single variable STRING,

where TLDelta had none. The structure of the two languages

is essentially the same. Each statement is either a usual

statement or an accepting statement. The form of a usual

21

TLDelta/S statement is given in Figure 5. The syntax of

TLDelta/S accepting statements is exactly the same as their

TLDelta counterparts.

<Label l> : IF <Boolean> THEN
BEGIN

<Assignment>;
GOTO <Label 2>

END

Figure 5. A Usual TLDelta/S Statement

A label in a TLDelta/S program is exactly the same as a

TLDelta label. A TLDelta/S boolean expression is defined by

Savitch to be of the form

STRING E A (6)

where "A" was any symbol representing a subprocedure which

accepts strings of language A. In this paper a TLDelta/S

boolean expression is of the form

STRING IN <Language>.

An assignment is of the form

STRING := f(STRING).

The symbol "f" represents a function subprocedure. Any

valid identifier is considered an acceptable subprocedure

name for a function.

(7)

(8)

A TLDelta/S schema consists of the reserved word BEGIN,

followed by a series of TLDelta/S statements separated by

semicolons, followed by the reserved word END. A TLDelta/S

program is a triple (P,G,F) such that P is a TLDelta/S

schema, G is an assignment of language subprocedures to P,

and F is an assignment of function subprocedures to P

[Savitch, 1982]. Although the syntax of subprocedure

declarations for a TLDelta/S program was not defined

formally by Savitch, one form is presented in Figure 6,

where languagei and functionj are any valid TLDdelta/S

identifiers and <TLDelta program> is a TLDelta program.

Note that in this context G(language) and F(function) are

not functions. They are declarations for subprocedures.

G(language1)=<TLDelta_program >
G(language2)=<TLDelta_program~>

.
F(function1)=<TLDelta_program.>
F(function2)=<TLDelta_programj>

<TLDelta/S_schema>

Figure 6. The Form of a TLDelta/S Program

The Semantics of TLDelta/S

22

A TLDelta/S schema has no meaning until a finite-state

language is assigned to each procedure name for a language

and a computable partial function is assigned to each

procedure name for a function. The first two sections of a

TLDelta/S program define these assignments.

The assignment of a function name to a language is

defined by the reserved word "G", followed by the name of

the language procedure in parenthesis, followed by a TLDelta

23

program which serves as this procedure. For input ~'

TLDelta programs which serve as acceptors of finite-state

languages for TLDelta/S programs should return valid output

<YES>~ if the input string is accepted and <NO>~ if the

input string is not accepted. The assignment of a function

name to a function is defined by the reserved word "F",

followed by the name of the function procedure in

parenthesis followed by a TLDelta program which will compute

the partial function.

A TLDelta/S program begins execution at the first label

of the TLDelta/S schema. A usual TLDelta/S statement in the

form of the statement shown in Figure 7 determines whether

or not the contents of STRING is an element of the language

A. If STRING is an element of the language A, then the

instructions contained in the BEGIN-END block are executed.

Otherwise either the following statement is executed or the

program abnormally terminates if there is no following

statement. An assignment instruction assigns to STRING the

result of the application of function f to the contents of

STRING. If the function f is undefined for STRING, then the

program abnormally terminates. Otherwise the program

continues execution at the statement labeled by <Label 2>,

or terminates abnormally if no statement labeled by

<Label 2> exists. A TLDelta/S accepting statement normally

terminates the program when executed.

<Label l> IF STRING IN A THEN
BEGIN

STRING := f(STRING);
GOTO <Label 2>

END

Figure 7. A Usual TLDelta/S Statement

24

TLDelta/S program (P,G,F) is said to have valid output

~ for input ~ provided that the program terminates normally

by executing an accepting statement. Initially the contents

of STRING are read from the standard input. Upon

termination, the variable STRING contains ~.

The Syntax of PSDelta

Although TLDelta/S is a much nicer language to work

with than TLDelta, it is still very cumbersome compared with

many modern programming languages. PSDelta is a language

based upon TLDelta/S, but has nicer control structures and

more variables. The only way to change the flow of control

in a TLDelta/S program is through the use of a GOTO

instruction. PSDelta provides no GOTO instructions, but

uses IF-THEN-ELSE, BEGIN-END, and WHILE-DO as a means to

combine simple statements together to get more complicated

statements. TLDelta/S has only one variable STRING. A

PSDelta program can have any number of variables STRINGl,

STRING2, STRING3, ••. The boolean expressions of PSDelta

allow the use of AND, OR, and NOT to form complex

expressions, where TLDelta/S allowed only simple boolean

25

expressions.

A PSDelta variable is represented by STRINGi, where "i"

is any base ten numeral with no leading zeros. A PSDelta

statement is either an assignment statement (originally

called an atomir statement by Savitch, 1982), an

IF-THEN-ELSE statement, a WHILE-DO statement or a BEGIN-END

block. The two forms of an assignment statement are given

in Figure 8. STRINGi, STRINGj, and STRINGk are variables

and "f" is a name for a function subprocedure.

STRINGi := f (STRINGj)
STRINGi := STRINGjSTRINGk

Figure 8. Two Forms of a PSDelta Assignment Statement

An atomic boolean expression has the form

STRINGi IN A

where STRINGi is a variable and "A" is the name of a

(9)

subprocedure which accepts strings of language A. A boolean

expression is either an atomic expression or one or more

atomic expressions used in conjunction with some combination

of the operators NOT, AND, or OR. Parenthesis also may be

used in a boolean expression to impose a precedence upon the

operators. NOT is a unary operator and requires one

operand, while AND and OR are binary operators requiring two

operands.

The form of an IF-THEN-ELSE statement is given in

Figure 9. <Boolean> is any boolean expression.

26

<Statement i> and <Statement j> are any PSDelta statements.

The ELSE portion of the IF-THEN-ELSE is required in PSDelta.

The form of the WHILE-DO statement is shown in Figure 10.

<Boolean> is any boolean expression and <Statement> is any

PSDelta statement. The form of the BEGIN-END block is shown

in Figure 11. <Statement i> is any PSDelta statement.

Through the use of these three constructs, statements may be

nested in any way desired.

IF <Boolean> THEN
<Statement i>

ELSE
<Statement j>

Figure 9. A PSDelta IF-THEN-ELSE Statement

WHILE <Boolean> DO
<Statement>

Figure 10. A PSDelta WHILE-DO Statement

BEGIN
<Statement i>;
<Statement j>;

<Statement n>
END

Figure 11. A PSDelta BEGIN-END Block

There is no distinction between a PSDelta schema and a

27

PSDelta statement. A PSDelta program is a triple (P,G,F)

where P is a PSDelta schema, G is an assignment of language

subprocedures to P, and F is an assignment of function

subprocedures to P [Savitch, 1982). Although the form of a

PSDelta program was not formally defined by Savitch, one

form is presented in Figure 12, where languagei and

functionj are any valid TLDdelta/S identifiers and

<TLDelta/S program> is a TLDelta/S program. Note that in

this context G(language) and F(function) are not functions.

They are declarations for subprocedures.

G(language1>=<TLDelta_program >
G(language2)=<TLDelta_program~>

.
F(function1)=<TLDelta/S_programi>
F(function2)=<TLDelta/S program.>

- J

<PSDelta schema>

Figure 12. The Form of a PSDelta Program

The Semantics of PSDelta

Like TLDelta/S, a PSDelta schema has no meaning until a

finite-state language is assigned to each procedure name for

a language and a computable partial function is assigned to

each procedure name for a function. The first two sections

of a PSDelta program define these assignments.

The assignment of a function name to a language is

defined by the reserved word "G", followed by the procedure

28

name of the language in parenthesis, followed by a TLDelta

program which serves as this procedure. The assignment of a

function name to a computable partial function is defined by

the reserved word "F", followed by the procedure name of the

function in parenthesis, followed by a TLDelta/S program

which computes the partial function.

An assignment statement of the form

STRINGi := f (STRINGj) (10)

changes the contents of STRINGi to the result of the

function named by f applied to the contents of STRINGj. If

jfi, then the contents of STRINGj are not altered. If the

function named by f is undefined, the program terminates

abnormally. An assignment statement of the form

STRINGi := STRINGjSTRINGk (11)

changes the contents of STRINGi to the contents of STRINGj

concatenated with the contents of STRINGk. The contents of

STRINGj and STRINGk are not altered unless j=i or k=i.

A boolean expression of the form

STRINGi IN A (12)

is true if the contents of STRINGi is an element of the

language A. Otherwise the boolean expression is false. A

boolean expression of the form

NOT <Boolean> (13)

where <Boolean> is any boolean expression is true if

<Boolean> is false and false if <Boolean> is true. A

boolean expression of the form

<Boolean.> AND <Boolean.> (14)
1. J

29

is true only if b h <B 1 d 1 ot oo eani> an <Boo eanj> are true;

otherwise it is false. A boolean expression of the form

<Boolean.>
J_

OR <Boolean.>
J

(15)

is true if at least one of <Booleani> and <Boolean.>
J

is

true; otherwise it is false.

An IF-THEN-ELSE statement of the form given in Figure 9

has the same effect as <Statement i> if <Boolean> is true

and the same effect as <Statement j> if <Boolean> is false.

A WHILE-DO statement of the form given in Figure 10 has the

same effect as executing <statement> again and again as long

as <Boolean> is true. A BEGIN-END Block of the form given

in Figure 11 has the same effect as executing <Statement i>,

<Statement j>, ••• , <Statement n> one after the other.

Initially the input for a PSDelta program is read from

the standard input and placed into the variable STRING!.

All other variables contain the empty string. A PSDelta

program begins execution at the first statement of the

PSDelta schema and continues execution sequentially until

the last statement has been executed. A PSDelta program is

said to have output (J for a given input provided that upon

normal termination of the program STRING! contains{j. A

PSDelta program is said to compute the partial function f

provided that for input OC the program normally terminates

with STRING! containing f(~). Every PSDelta Program defines

a unique partial function.

30

Summary

TLDelta is a variation of the standard notation of the

Turing machine model and can be directly converted into a

Turing machine. TLDelta is the language upon which

TLDelta/S and PSdelta are based and is a subset of both of

these languages. TLDelta/S is the language TLDelta enhanced

to provide subroutines and a single variable STRING.

TLDelta/S is a subset of PSDelta. PSDelta is a procedural

language whose form closely resembles Pascal. PSDelta has

nicer control stuctures than TLDelta/S and provides any

number of variables.

CHAPTER IV

LANGUAGE TRANSLATION METHODS

Introduction

TLDelta is the language upon which TLDelta/S and

PSDelta are based. TLDelta can be transformed directly into

a Turing machine realization, while TLDelta/S may be

transformed into a TLDelta program, and PSDelta may be

transformed into a TLDelta/S program.

Translation from TLDelta to

a Turing Machine

A TLDelta program P is used to represent a Turing

machine M known as the Turing machine realization of P. The

labels correspond to the states of a Turing machine, SCAN

corresponds to the tape symbol currently being scanned by

the tape head, and a pointer move defines the direction

which the tape head moves.

A Turing machine M = (S,L:,a,s,B,Y) can be obtained from

a TLDelta program P in the following manner: Initially S,

'[, B, and Y are empty. Let S be the set of all labels of P.

Let L be Li. Let s be the label of the first statement of P.

Let Y be the set of all labels of accepting statements of P.

31

32

Define the transition function a as follows: consider each

ordered pair (<labeli>,c) where <labeli> is an element of S

and c is an element of /),,or B. If there is no statement in

P labeled by <labeli>, then &C<labeli>,c) is undefined for

all c inl1. If <label.> is the label of some accepting
J_

statement in P, then SC<labeli>,c) is undefined for all c in

~. If <labeli> is the label of some usual statement sj in P

in the format of the statement in Figure 4, where <Arrow> is

exactly one of the three symbols ->, <-, and~' then

'S<<labeli>,c) is determined by one of the five cases given

below.

Case 1: c =a and <label 2> is the label of some

statement in P.

Case 2: c = B, a = BLANK, and <label 2> is the label

of some statement in P.

in P.

Case 3: c =<ANY>.

Case 4: <label 2> is not the label of any statement

Case 5: c is a symbol in /1, but a + c.

Case 6: c = B, but a '/ BLANK.

In both cases 1 and 2, S<<labeli>,c) =

{<label 2>,b,<Arrow>) if b + BLANK, where <Arrow> is exactly

one of the three symbols ->, <-, and ~· If b = BLANK then

o(<labeli>,c) =(<label 2>,B,<Arrow>). In case 4

8<<labeli>,c) is undefined. In cases 5 and 6, f (<labeli>,c)

= (<next-label>,c,), where <next-label> is the label of the

next statement in P. If there is no next statement in P,

I 33

then (<labeli>,c) is undefined.

Translation from TLDelta/S

to TLDelta

A TLDelta/S program consists of one or more TLDelta

languge subprocedures, one or more TLDelta function

subprocedures, and a TLDelta/S schema. Both language

subprocedures and function subprocedures are implemented as

macro expansions in the TLDelta/S statement which calls

them. Savitch [1982] states that two programs are

input/output equivalent provided that they both compute the

same partial function. A function subprocedure P is

input/output equivalent to a subprocedure P" such that

(1) if P computes the partial function f, then P" also

computes f, and (2) for any input, if P" reaches an

accepting statement in the computation of P", then P" has a

valid output.

Language subprocedures for a TLDelta/S program must be

in a certain format. IF A is any finite-state language over

/l, then the desired TLDelta program hA has the following

property: for each~ in A, hA(~) =<YES>~; for each~ in

~* - A, hA(~) =<NO>~. TLDelta program hA may be

constructed by the following method. Let M be a

deterministic finite-state acceptor which accepts language

A. Let p0 ,p1 , ••• ,pm be a list without repetition of all the

states of Mand let Po be the start state. Let a0 ,a1 , ..• ,an

be a list without repetition of all the symbols of M.

34

Choose the names of the states of M to be TLDelta labels and

choose M so that (pi,aj) is defined for all pi and a ..
J

Let

qij = ~(piaj)' i=0,1,2, .•• ,m and j=0,1,2, .•. ,n. A

context-free grammar which generates a TLDelta program for

hA is given in Appendix D.

A computation on input ~proceeds as follows. The

block of code <M code> is executed first. This code

simulates M with except for the handling of blanks.

Whenever a nonaccepting state is reached, the block

<end no?> is executed and whenever an accepting state is

reached, the block <end yes?> is executed. These blocks

check to see if all of ~is read. They do this by checking

for a blank symbol. If all of ~is read and an accepting

state is reached, then the GOTO INA is executed and control

passes to the block <yes rewind>. If all of~ is read and

the last pi was not an accepting state, then control goes

from the block <M code> to the block <no rewind>. So after

<M code> is executed, all of ~is read, and control passes

to either <yes rewind> or <no rewind> depending on whether

or not ~is in A. Both of these rewind blocks move the

pointer to the front of ~- <yes rewind> puts <yes> in front

of~- <no rewind> puts <no> in front of~. Finally,

whichever rewind block is executed, the program ends by a

GOTO EXITA.

Function subprocedures for TLDelta/S programs may be

any TLDelta program. A test is included into the code of

each TLDelta program P serving as a function subprocedure to

see if it has a valid output for a given input. This

additional code checks to see if the program reaches an

accepting statement in its computation on an input. If an

accepting statement is reached, then the input tape is

checked to determine whether or not it contains a single

string of nonblank characters and the tape head is in the

correct position.

35

If f is computed by a TLDelta program P, then a program

P" may be constructed such that (1) P" also computes f, (2)

For any input 0(, if P" reaches an accepting statement in the

computation of P" on o<., then P" has a valid output for the

input o<. The alphabet r for P" will be expanded so that r =

6Uf<dirty blank>}, where the symbol <dirty blank> is a new

symbol that will serve as a pseudo blank. The pseudo blank

symbol will serve as a blank symbol, but will mark the

portion of the input tape which is scanned. Program P" will

simulate P with the exception of the reading and writing of

blank symbols. Whenever P would write a blank symbol, P"

will write a <dirty blank> symbol. Whenever P" reads a

<dirty blank> symbol, P" will simulate the program P reading

a true blank symbol. By simulating the execution of P in

this manner the input tape may be checked for the correct

format. Every cell scanned in the simulation of P must be

checked to see that there are not any two symbols of Llwith

one or more blank or <dirty blank> symbols between them, and

that the tape head is positioned at the first nonblank

symbol. Every cell scanned by P" will contain either a

36

symbol of Llor the <dirty blank> symbol. Therefore the

portion of the input tape to be checked is marked by a blank

symbol at each end.

In the construction of P", let <P code> be the program

P without the enclosing BEGIN-END. Define program P" to be

the program shown in Figure 13 where <new label>, <abort>,

and <formcheck> are new labels and <abort> does not label

any statement in P". <new P code> is a block of code

obtained from <P code> by the algorithm described in

Appendix E. <check code> checks that the requirements for a

valid output are satisfied. If the requirements are met,

then <check code> produces the output that P would produce

and transfers control to an accepting statement. Otherwise

control is transferred to <abort>.

BEGIN

END

<new label>
<f ormcheck>

<new P code>;
GOTO <abort>;
<check code>

Figure 13 Program P"

A TLDelta/S program (P,G,F) may be changed into an

equivalent TLGamma program P'. A TLGamma program is

syntactically equivalent to a TLDelta program; however, the

alphabet is expanded. First we replace each usual statement

of the TLDelta/S program by a block of TLGamma code that has

the same effect as the TLDelta/S statement. To obtain P'

37

from P, replace every usual statement of P by a block of

code obtained by the following method. Consider a usual

TLDelta/S statement of P as shown in Figure 14. Let BEGIN

<hA code> END be a TLDelta program for the function hA

obtained from G(A). Let BEGIN <f code> END be a program for

the partial function F(f) modified as previously described.

The usual TLDelta/S statement shown in Figure 14 is replaced

by the code shown in Figure 15. The parts of the code are

defined as follows:

1. <switch label> and <f label> are new labels.

2. The block <new hA code> is <hA code> modified such that

every accepting statement <label> : ACCEPT is replaced by

the code in Figure 16.

3. <yes/no switch> is the code shown in Figure 17.

<correct label> is the label of the next TLDelta/S statement

provided there is a next TLDelta/S statement. If this is

the last TLDelta/S statement, then <correct label> is a new

label which does not label any statement.

4. <new f code> is <f code> modified as follows: every

accepting statement <label> : ACCEPT is replaced by the code

in figure 18.

<label l> IF STRING IN A THEN
BEGIN

STRING := f(STRING);
GOTO <label 2>

END

Figure 14 Usual TLDelta/S Statement of P

<label l> IF SCAN = <ANY> THEN
BEGIN

SCAN := <CURRENT>;
POINTER ~;
GOTO <new hA code>;

END;
<new h code>;

<switch la~el> : <yes/no switch>;
<f label> : IF SCAN = <ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER ~;
GOTO <new f code>;

END;
<new f code>

<label>

Figure 15 TLGamma Code for Usual

TLDelta/S Statement

IF SCAN = <ANY> THEN
BEGIN

SCAN := <CURRENT>;
POINTER l;
GOTO <sw!tch label>

END

Figure 16 New hA Accepting Statement

38

<label>

IF SCAN = <yes> THEN
BEGIN

SCAN := BLANK;
POINTER->;
GOTO <f label>

END;
IF SCAN = <no> THEN

BEGIN
SCAN := BLANK;
POINTER->;
GOTO <correct label>

END

Figure 17 <yes/no switch> Code

IF SCAN = <ANY> THEN
BEGIN

SCAN := <CURRENT>;
POINTER l;
GOTO <latel 2>

END

Figure 18 New F Code Accepting Statement

To get program P' which is equivalent to TLDelta/S

program (P,G,F), replace each usual TLDelta/S statement by

the code produced by the method just described. Only the

usual statements of the TLDelta/S schema are altered. The

accepting statements remain as they are. The labels of

39

<hA code> and <f code> must have different label names from

each other. The resulting program is input/output

equivalent to the TLDelta/S program (P,G,F).

Suppose that program (P,G,F) is a TLDelta/S program

such that /l. contains at least two symbols and F(f) is a

40

total function for each subprocedure. Under these

conditions, there is no need to check for valid output and

the original TLDelta code may be used in place of TLGamma

code. In order to change a TLGamma program P, whose Turing

machine realization is Turing machine M, into a TLDelta

program P', let a1 ,a2 , ..• ,an be a listing without repetition

·of the symbols in r. Let pl, p2 , ..• , Pm be a listing of the

states of M. Each symbol and each state may then be coded

as strings of the symbols of A. This coding may then be

used to represent id's of M. For example, if (pj,d~~) is an

id of M, then code(pj,o<t>{1) = code(o()code(pj)code(,8).

Subroutines may then be defined to simulate the execution of

M. Define language A to be the set of coded strings such

that M is in an accepting state. Define language B to be

the set of coded strings which are halting id's of M.

Define <initial> such that for all ~' <initial>(~) =

code(s,t>~), wheres is the start state of M. Define <next>

such that for any id(p,a<t>{3) of M, <next>(code(p,c{S>(?)) =

code(p' ,C{'t>(?'), provided that (p,o<t>(3) fM (p' ,oe't>~'). For any

other string~' <next>(~) = ~. For any string (1 in l:t and

any state p, <decode> (code (p ,e>(3)) = {1. For any string e=. in

6*, which is not of the form code(p,t>B), <decode>(~)=~­

Because <initial>, <next>, and <decode> are all total

functions, a TLDelta program may be constructed which is

input/output equivalent to any given TLDelta/S program.

Translation from PSDelta

to TLDelta/S

A PSDelta program consists of one or more TLDelta

languge subprocedures, one or more TLDelta/S function

subprocedures, and a PSDelta schema. PSDelta programs may

have more than one string variable. In order to convert a

41

PSDelta program into an input/output equivalent TLDelta/S

program, several steps must be taken. First, the PSDelta

program must be converted into a PSGamma program with only

one string variable. A PSGamma program is syntactically

equivalent to a PSDelta program; however, the alphabet is

expanded. The alphabet r will have one more symbol than ~.

The additional symbol serves as a separator symbol. This

will allow several strings from fl* to be coded as a single

nonblank string in r*. For example, ~, p, and Yin /S~ can

be coded as #~#~lf'Y#, where # is the separator symbol. Next

the PSGamma program will be shown to be equivalent to a

PSGamma program which has only one string and in which all

Boolean expressions are atomic Boolean expressions. Boolean

expressions of this type are essentially the same as those

of TLDelta/S programs. Finally the PSGamma constructs, such

as WHILE-DO, must be converted into TLGamma/S code by the

use branching statement.

A new language subprocedure must be generated each time

a different string number is used as the source of the

original language procedure. A TLDelta language

subprocedure in a PSDelta program expects to have only one

I

I

42

string on the input tape. Therefore additional code must be

added to the program to provide for its correct operation in

the simulated multiple string environment as follows:

1. At the beginning of the TLDelta code, a section of code

must be inserted to place the tape head at the first

character of the correct simulated string.

2. Because a language subprocedure does not expect to have

any separators in a string, after each statement which

shifts the tape, a piece of code must be inserted to check

whether the current symbol is the separator symbol. If so,

then the TLDelta code should encounter a blank. Therefore a

blank must be inserted in this position and the string must

be shifted one cell.

3. When the language subprocedure executes an accepting

statement, the new code must move the <yes> or <no> from the

beginning of the simulated string to the beginning of the

entire string.

4. At the end a section of code which removes any extra

blanks and repositions the tape head at the beginning of the

string should be inserted.

The transformation of function subprocedures in a

PSDelta program is similar to that of the language

subprocedures. A new function subprocedure must be

generated each time a different string number is used as the

source of the original function procedure. The additional

code necessary for the simulated multiple string environment

is as follows:

1. At the beginning of the TLDelta/S function, a piece of

code must be inserted to replace the simulated string used

as the destination of the function computation with the

contents of the simulated string used as the source of the

function computation.

2. Next, code must be added which positions the tape head

at the first character of the simulated string used as the

destination of the function computation.

43

3. Because the TLDelta subprocedures of the TLDelta/S code

do not expect to see any separators, after each statement of

a TLDelta subprocedure which shifts the tape, a piece of

code must be inserted to check whether the current symbol is

the separator symbol. If so, then the TLDelta code should

see a blank. Therefore a blank must be inserted in this

position and the string must be shifted over one square.

4. Code should be inserted at the end to remove any extra

blanks and to reposition the tape head at the beginning of

the string.

Compound Boolean expressions of the PSDelta program

must be changed into combinations of statements with atomic

Boolean expressions. Boolean expressions of the form

STRINGn IN A are unchanged. A Boolean expression of the

form (NOT STRINGn in A) requires additional code which

replaces <yes> returned from a language subprocedure to <no>

and replaces <no> returned from a language subprocedure to

<yes>. Boolean expressions of the form

(STRINGi IN A AND STRINGj IN B) result in the generation of

multiple statements. A statement in the form shown in

Figure 19 must be changed into code of the form shown in

Figure 20. ANY LANGUAGE and IDENTITY are two special

subprocedures generated in the translation process.

ANY_LANGUAGE is a TLDelta language subprocedure which

accepts any string. IDENTITY is a TLDelta function

subprocedure corresponding to the identity function which

maps each string to itself. <label 2>, <label 3>,

<label 4>, and <label 5> are new labels. <next statement

label> is the label of the next TLDelta/S statement if it

exists. Otherwise it is a new label which does not label

any statement.

<label 1> IF (STRING. IN A AND STRING. IN B) THEN
<statemeftts 1> J

ELSE
<statements2>

Figure 19 A PSDelta Statement With a

Compound And Boolean Expression

44

<label l>

<label 3>

<label 2>

<label 4>

<label 5>

IF STRING IN A. THEN
BEGIN 1

STRING := IDENTITY(STRING);
GOTO <label 2>

END;
IF STRING IN ANY LANGUAGE THEN

BEGIN
STRING := IDENTITY(STRING);
GOTO <label 5>

END;
IF STRING IN B. THEN

BEGIN J
<statements 1>;

END;
IF STRING IN ANY LANGUAGE THEN

BEGIN
STRING := IDENTITY(STRING);
GOTO <next statement label>

END;
IF STRING IN ANY LANGUAGE THEN

BEGIN
<statements2>;

END;

Figure 20 TLDelta/S Code Equivalent to

A PSDelta Statement With a

Compound And Boolean Expression

45

Boolean expressions of the form (STRINGi IN A OR

STRINGj IN B) result in the generation of multiple

statements. A statement in the form shown in Figure 21 must

be changed into code of the form shown in Figure 22.

ANY LANGUAGE and IDENTITY are two special subprocedures

generated in the translation process. ANY LANGUAGE is a

TLDelta language subprocedure which accepts any string.

IDENTITY is a TLDelta function subprocedure corresponding to

the identity function which maps each string to itself.

<label 2>, <label 3>, <label 4>, and <label 5> are new

labels. <next statement label> is the label of the next

TLDelta/S statement if it exists; otherwise it is a new

label which does not label any statement.

<label l>

<label l>

<label 3>

<label 4>

<label 5>

<label 2>

IF (STRING. IN A OR STRINGj IN B) THEN
<statemeftts1>

ELSE
<statements2>

Figure 21 A PSDelta Statement With a

Compound Or Boolean Expression

IF STRING IN A. THEN
BEGIN i

STRING := IDENTITY(STRING);
GOTO <label 2>

END;
IF STRING IN B. THEN

BEGIN J
STRING := IDENTITY(STRING);
GOTO <label 2>

END;
IF STRING IN ANY LANGUAGE THEN

BEGIN
<statements2>;

END;
IF STRING IN ANY LANGUAGE THEN

BEGIN
STRING := IDENTITY(STRING);
GOTO <next statement label>

END;
IF STRING IN ANY LANGUAGE THEN

BEGIN
<statements1>;

END;

Figure 22 TLDelta/S Code Equivalent to

A PSDelta Statement With a

Compound Or Boolean Expression

46

47

In addition to the language subprocedures and function

subprocedures, a TLGamma/S schema must also be obtained from

the PSDelta program. A recursive algorithm to obtain a

TLGamma/S schema T(P) from a given PSGamma program is shown

in Appendix F. First the algorithm eleminates all of the

BEGIN-END's, IF-THEN-ELSE's, and WHILE-DO's. Next the

replaces function calls using specific numbered strings to

calls of functions which operate on a simulated string.

Assignment statements which concatenate strings together are

changed into calls to functions which concatenate the

correct simulated strings. The final TLGamma/S program is

defined by the following schema:

BEGIN
T(P);
L : ACCEPT

END

where Lis a label which does not occur in T(P).

Summary

The languages TLDelta, TLDelta/S and PSDelta may all be

used to define Turing machines. A program P written in

TLDelta may be directly translated into a Turing machine

which is known as the Turing machine realization of P. A

TLDelta/S program may be translated into an input/output

equivalent TLGamma program whose alphabet is

~U{<dirty blank>}. By encoding the symbols of rand the

states of a Turing machine realization Mas strings of~, a

TLDelta program may be obtained from any TLDelta/S program.

48

Finally a PSDelta program may be translated into an

input/output equivalent TLGamma/S program whose alphabet is

6Uf#J where '#' is a separator symbol not found in~.

i

~

CHAPTER V

IMPLEMENTATION

Introduction

There are several major goals of the implementation of

the compilers for TLDelta, TLDelta/S, and PSDelta. First of

all it is desired to produce fully operational compilers for

each of the languages. Another goal is to produce a Turing

machine simulator. Also it is desired that the overall

method of implementation follow Savitch's [1982) original

discussion of the languages as closely as possible.

The development environment for these compilers is the

UNIX system. In particular two tools are used extensively:

Lex and Yacc. Lex is used to generate the lexical analyzer

for the compilers, and Yacc is used to generate the parsers

for the compilers. The C code which Lex and Yacc produces

is combined with other necessary functions and UNIX shell

programs to form the actual compilers.

Three compilers actually make up the PSDelta compiler.

The first compiler translates a PSDelta program into a

TLDelta/S program. The next compiler translates a TLDelta/S

program into a TLDelta program. The last of the three

compilers translates a TLDelta program into a Turing machine

representation in standard format and a C program which will

49

i

simulate the execution of the resulting Turing machine.

Lexical Analysis and

Symbol Table Design

50

The task of recognizing keywords, installing

identifiers into the symbol table, removing comments, and

producing listing files is the responsibility of the lexical

analyzer. The UNIX development tool Lex is used to produce

the lexical analyzer. Because PSDelta programs and

TLDelta/S programs both define subprocedures using TLDelta

programs, the same lexical analyzer is used for all three

languages. This removes the possibility of text from a

subprocedure being interpreted differently by the three

compilers. Lists of the keywords and symbols recognized by

the lexical analyzer are given in Figure 2 and Figure 3.

The symbol table design for the compilers is

implemented as a dynamically allocated singly linked list.

The symbol table includes a pointer to the name of the

identifier, a unique integer associated with each

identifier, a flag used to determine whether or not the

identifier labels any statement in the program, and a

pointer to the next element of the list. Each time an

identifier is recognized by the lexical analyzer, the symbol

table is searched to see whether the identifier already has

been installed. If the identifier already has been

installed, a pointer to its entry in the symbol table is

returned. Otherwise, the new identifier is installed into

51

the symbol table and a pointer to its entry is returned.

~lthough the symbol table is maintained as a linear

structure, access time other than the original searching of

the list is not unreasonable because pointers to the

specific entries are used whenever possible. This approach

.allows direct access to the elements of the symbol table.

Parsing, Intermediate Representation,

and Code Generation

The parsers for the three compilers are generated using

the UNIX development tool Yacc. Although TLDelta and

TLDelta/S are subsets of PSDelta, it is necessary to have a

different parser for each of the three languages. The '-d'

option of Yacc is used to produce an external header file

which contains the definitions of the token values produced

by Yacc. This allows the separate modules of the compiler

to be compiled separately. Although sometimes there exist

obvious optimizations of the code, they are not made in

order to remain as close to the original language

,descriptions as possible.

TLDelta Intermediate Representation and

Simulator Generation

The intermediate code which is used for a usual TLDelta

statement is a shorthand representation of the same

information provided by a TLDelta statement. Each

intermediate code instruction contains a pointer to the

52

symbol table entry for the label of the statement, the

symbol to be compared with the current symbol being scanned,

the character to be written to the tape, the direction which

the tape is to be shifted, and a pointer to the symbol table

entry for the next statement • If the statement is an

accepting statement, the next state is null. This

information is stored in a singly linked list. Because in

TLDelta/S and PSDelta multiple TLDelta programs may exist,

there is a structure containing certain information about

the TLDelta program associated with each TLDelta program.

The information contained in this structure includes a

pointer to a list of all the labels of the program (states

of the machine), a pointer to a list of all the characters

of the program, a pointer to the intermediate representation

of the transitions of the program, and a pointer to the list

of all accepting states of the program.

The Turing machine description is produced directly

from the intermedite representation by the method described

in Chapter 4. The Turing machine simulator generated by

this compiler is table driven. All characters in the input

alphabet are placed into a lookup table and given a numeric

value based upon their ordering. Three static

two-dimensional arrays govern the moves of the machine from

one id to the next. The arrays are indexed by the id number

of the state and the numeric value assigned to the current

character. These three arrays contain the next state, the

character to be written to the tape, and the direction to

53

shift tape. If a transition from a given state is

undefined, then the array contains a negative one in the

corresponding entry. If a state is a final state, then the

array contains a zero in the corresponding entries.

The simulator normally receives its input from the

standard input device and writes any output to the standard

output device. By using the UNIX operating system, input

and output can be redirected to come from and go to several

different places. The simulator is capable of

single-stepping through its execution. When the single-step

option is active, the user is prompted for an input file and

may control the execution in various ways. All error

messages are written to the standard error file. Therefore

any error messages generated will always appear on the

terminal regardless of where the output is directed.

TLDelta/S Intermediate Representation

The intermediate code chosen to represent a usual

TLDelta/S statement contains essentially the same

information as a usual TLDelta/S statement. Each

intermediate code instruction contains a pointer to the

symbol table entry for the label of the statement, a pointer

to the TLDelta code for the language subprocedure, a pointer

to the TLDelta code for the function subprocedure, and the

label of the next statement. If the statement is an

accepting statement, all entries except the label are NULL.

This information is stored in a singly linked list. Because

54

in PSDelta multiple TLDelta/S programs may exist, there is a

structure associated with each TLDelta/S program which

contains the name of the program and a pointer to the head

of the intermediate representation.

The generation of the TLDelta code is exactly as

described in Chapter 4. The labels of statements from

subprocedures consist of the label of the TLDelta/S

statement from which the subprocedure is called concatenated

with the label of the statement from the subprocedure. For

this reason, statement labels should never be combinations

of other statement labels.

PSDelta Intermediate Representation

and Code Generation

The intermediate code which is used to represent

PSDelta statements is in the form of quadruples. Each

intermediate code instruction contains a unique integer

label, an opcode, and up to three operands. The opcode is

one of the integer representations of IF, FUNCTION,

ASSIGNMENT, or GOTO. If the opcode is IF, then the first

operand is a pointer to the TLDelta code for a language

subprocedure to be executed, the second operand is the

number of the string variable to be checked for membership,

and the third operand is the id of the statement to be

executed if the string variable is an element of the

language. If the opcode is FUNCTION, then the first operand

is a pointer to the TLDelta/S code for the function to be

55

computed, the second operand is the number of the string to

serve as the source to the function, and the third operand

is the number of the string to serve as the destination of

the computation. If the opcode is ASSIGNMENT, then the

first operand is the number of the left string to be

concatenated, the second operand is the number of the right

string to be concatenated, and the third operand is the

number of the string into which the result will be placed.
)

If the operand is GOTO, then the third operand is the id of

the statement to be executed next.

Generation of the resulting TLDelta/S program is by the

method described in Chapter 4. Code generation proceeds by

first outputing the code for the generated language

subprocedure ANY_LANGUAGE. Next all necessary language

subprocedures are generated. The code for the generated

function IDENTITY is produced next, followed by all

necessary function subprocedures and concatenation

subprocedures.

Certain routines appear often in the TLDelta/S code

produced from a PSDelta program. They include routines

which shift the tape over one cell, routines which remove

the blanks from one simulated string, and routines which

copy one simulated string to another simulated string. Each

of these routines is usually quite large but not

complicated. The shift routine is the basis for the other

two types of routines. In order to shift the tape one cell

in either direction, the symbol which is currently being

56

scanned must be retained in some manner so that it may be

written in the next cell. The only way which a Turing

machine may retain this information is by the state of the

machine. Therefore, the number of states for one of these

routines is often quite large, although much of the code is

almost identical.

In order to remove the blanks from a given simulated

string, the tape head begins at one end of the string and

works its way toward the other end. If a blank is

encountered the tape is shifted toward the blank in order to

eliminate it. If a separator is encountered then all blanks

have been removed. In order to copy one string to another,

a blank is inserted into the source string to serve as a

marker symbol. Then for each character in the source

string, the blank is shifted over one character, that

character is retained in the state of the machine, the tape

head is moved to the destination string where the symbol is

written, and the tape head returns to the source where the

process is repeated.

Each of these routines is always the same except for

the input alphabet of the program and the labels of the

statements. Therefore the compiler contains functions which

generate these routines for a given input alphabet. The

labels of the statements are combinations of the name of the

routine used, the numeric value of the character retained,

and the label of the originating statement.

57

Summary

The implementations of these compilers attains three

major goals: to produce fully operational compilers for

each of the languages, to produce a Turing machine

simulator, and to follow Savitch's [1982] original

discussion of the languages as closely as possible. The

intermediate representations of TLDelta and TLDelta/S

closely resemble the information given in their respective

languages. The intermediate code for PSDelta is quadruples.

Certain routines are produced several times by the PSDelta

compiler which vary only in the labels of the statements and

possible the input alphabet. Although there exist areas

where the code could be optimized, the code is left intact

in order to remain as close to the original definitions as

possible.

CHAPTER VI

SUMMARY, CONCLUSIONS AND FUTURE WORK

In his text Abstract Machines and Grammars, Savitch

Il982] presents a high-level language PSDelta and shows that

it can be translated into a Turing machine which performs

the same tasks. Compilers have been implemented for this

language and for the two languages, TLDelta and TLDelta/S

upon which this languge is based. The family of compilers

produce a functional Turing machine description in standard

notation and a functional simulator of the Turing machine.

These compilers are intended for use in teaching automata

theory. Therefore the translation methods follow those

presented by Savitch as closely as possible without

optimization.

Keep in mind that we are developing a theory about
what things can and cannot be done by programs.
To do this, it is helpful to know that every
PSDelta program can be converted to a TLDelta/S
program. However, TLDelta and TLDelta/S are just
aids to developing this theory. They are not
languages used by any real computers. So we will
never implement our PSDelta compiler in the 'real
world.' Therefore, there is no need for the
algorithms we present to be efficient. Our goal
will be to make them correct, easy to prove
correct, and easy to understand. Efficiency is
not important to our purpose here {Savitch, 1982).

Suggested work in this area includes the implementation

of the subprocedures as closed subroutines instead of macro

58

59

expansions (open subroutines). This would utilize tape

storage better rather than producing an enormous number of

identical statements. Additions to the compilers could be

made to allow users to associate sections of their own C

code with TLDelta, TLDelta/S, and PSDelta statements. These

sections of code would be performed when the corresponding

statement was executed. This type of enhancement should

greatly resemble the actions of Lex and Yacc. Other control

structures such as REPEAT-UNTIL, and indexed loops could be

added. These would not actually increase the power of the

languages, but would strengthen the similarities between

PSDelta and other high-level languages such as Pascal. A

preprocessor could be developed for the three languages.

This would allow file inclusion, global macro substitution,

and add the capability of using programs such as Lex

routines for the input. This would enable the input to be

more legible to the user. Likewise a routine could be used

to convert an output from a string of symbols to a more

human-readable form.

A SELECTED BIBLIOGRAPHY

Aho, A. V., and J. D. Ullman. The Theory of Parsing,
_T~r_a~n~s~l_a_t_i_o_n __ a_n_d __ C_o_m_._1~·1_i_·n,_--~..,....,,,----P-a_r_s_i_n Englewood
Cliffs, N.J.:

Aho, A. V., Ravi Sethi and J. D. Ullman. Compilers,
Principles, Technigues, and Tools. Reading,
Massachusetts: Addison-Wesley Publishing Company, 1985.

Cutland, Nigel (ed.). Computability: An Introduction to
Recursive Function Theory. New York: Cambridge
University Press, 1980.

Davis, Martin. Computability. New York: Courant Institute
of Mathematical Sciences, 1974.

Hopcroft, John E. and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, anad Computation. Reading,
Massachusetts: Addison-Wesley Publishing Company, 1979.

Hopcroft, John E. "Turing Machines." The Scientific
American, Vol. 250 (May 1984), pp. 86-98.

Johnson, S. C. "Yacc - Yet Another Compiler-Compiler."
Comp. Sci. Tech. Rep. No. 32, Bell Laboratories
(July 1975).

Johnson, S. C. and M. E. Lesk. "Language Development
Tools." The Bell System Technical Journal, Vol. 57, No.
6 (July-August 1978 , pp. 2155-2175.

Jones, Neil D. Computabilit~ Theory, An Introduction.
York: Academic Press, 1 73.

New

Lesk, M. E. "Lex -- A Lexical Analyzer Generator." Comp.
Sci. Tech. Rey· No. 39, Bell Laboratories
(October 1975 .

Savitch, Walter J. Abstract Machines and Grammars. Boston:
Little, Brown and Company, 1982.

Savitch, Walter J. Personal Letter. University of
California, San Diego. La Jolla, CA, 1987. June 1,
1987.

60

APPENDIX A

A CONTEXT-FREE GRAMMAR FOR TLDELTA

61

APPENDIX A

A CONTEXT-FREE GRAMMAR FOR TLDELTA

tld_program : BEGIN tld_stmt_seq END

tld stmt seq : tld stmt
- - I tld=stmt_seq tld stmt

tld stmt : tld usual stmt
- I accepting:stmt

tld usual stmt stmt label IF tld boolean THEN
BEGIN

tld_assignment_stmt
tld_pointer_move
tld_goto_stmt

END

tld_assignment_stmt : SCAN := SYMBOL

tld_goto_stmt : GOTO label

accepting_stmt : stmt_label ACCEPT

stmt label : label ' . ' .
label : ID

tld boolean symbol : tld symbol
- - I ANY-

tld_assignment_symbol : tld symbol
I CURRENT

tld_symbol SYMBOL
YES
NO
DIRTY BLANK
SEPARATOR

tld pointer move : POINTER LEFTARROW - - I POINTER RIGHTARROW
POINTER DOWNARROW

62

APPENDIX B

A CONTEXT-FREE GRAMMAR FOR TLDELTA/S

63

APPENDIX B

A CONTEXT-FREE GRAMMAR FOR TLDELTA/S

tlds_program tlds_grammar_seq
tlds_function_seq
tlds schema

tlds_grammar_seq : tlds_grammar
I tlds_grammar_seq tlds_grammar

tlds_grammar : G(tlds_language) = tld_program

tlds function seq : tlds function
- - I tlds:function_seq tlds function

tlds function : F(tlds_function_name) = tld_program

tlds schema : BEGIN tlds_stmt_seq END

tlds stmt seq : tlds stmt
- - I tlds=stmt_seq ; tlds stmt

tlds stmt : tlds usual stmt
I tlds:accepting_stmt

tlds usual stmt stmt label IF tlds boolean THEN
BEGIN

tlds_assignment_stmt
tlds_goto_stmt

END

tlds_accepting_stmt stmt label ACCEPT

tlds boolean : STRING IN tlds_language

tlds_assignment_stmt : STRING:= tlds function_name(STRING);

tlds_goto_stmt : GOTO label

tlds_language : ID

tlds function name : ID

tld_program : BEGIN tld_stmt_seq END

64

tld stmt seq : tld stmt
- - I tld=stmt_seq tld stmt

tld stmt : tld usual stmt
- I accepting:stmt

tld usual stmt stmt label IF tld boolean THEN
BEGIN

tld_assignment_stmt
tld_pointer_move
tld_goto_stmt

END

tld_assignment_stmt : SCAN := SYMBOL

tl<l_goto_stmt : GOTO label

accepting_stmt : stmt_label ACCEPT

stmt label : label :

label : ID

tld_boolean_symbol : tld symbol
I ANY-

tld_assignment_symbol : tld symbol
I CURRENT

tld_symbol SYMBOL
YES
NO
DIRTY BLANK
SEPARATOR

tld pointer move : POINTER LEFTARROW - - I POINTER RIGHTARROW
POINTER DOWNARROW

65

APPENDIX C

A CONTEXT-FREE GRAMMAR FOR PSDELTA

66

psd_program

APPENDIX C

A CONTEXT-FREE GRAMMAR FOR PSDELTA

psd_grammar_seq
psd_function_seq
psd_schema

psd_grammar_seq : psd_grammar
I psd_grammar_seq psd_grammar

psd_grammar : G(ID) = tld_program

psd_function_seq : psd_function
I psd_function_seq psd_function

psd function : F(ID) = tlds_program

psd_schema psd_stmt

psd stmt : psd_if_stmt
psd_begin_block
psd_while_stmt
psd_assg_stmt

psd_if_stmt : IF psd boolean THEN
psd_stmt

ELSE
psd_stmt

psd_begin_block : BEGIN
psd_stmt_list

END

psd_while_stmt : WHILE psd_boolean DO
psd_stmt

psd_assg_stmt

psd_stmt_list

VARIABLE := psd_function_name(VARIABLE)
VARIABLE := VARIABLE VARIABLE

psd stmt
psd=stmt_list psd_stmt

67

psd_boolean

psd_language

tlds_program

(psd_boolean AND psd_boolean)
(psd_boolean OR psd_boolean)
(NOT psd_boolean)
VARIABLE IN psd_language

ID

tlds_grammar_seq
tlds_function_seq
tlds schema

tlds_grammar_seq : tlds_grammar
I tlds_grammar_seq tlds_grammar

tlds_grammar : G(tlds_language) = tld_program

tlds_function_seq : tlds_function
I tlds_function_seq tlds function

tlds function : F(tlds_function_name) = tld_program

tlds schema : BEGIN tlds_stmt_seq END

tlds_stmt_seq : tlds stmt
I tlds:stmt_seq ; tlds stmt

tlds stmt : tlds usual stmt
- I tlds accepting_stmt

tlds usual stmt stmt label IF tlds boolean THEN
BEGIN

tlds_assignment_stmt
tlds_goto_stmt

END

tlds_accepting_stmt stmt label ACCEPT

tlds boolean : STRING IN tlds_language

68

tlds_assignment_stmt : STRING := tlds function_name(STRING);

tlds_goto_stmt : GOTO label

tlds_language : ID

t1ds function name : ID

tld_program : BEGIN tld_stmt_seq END

tld stmt seq : tld stmt
- - I tld=stmt_seq tld stmt

tld stmt : tld usual stmt
- I accepting:stmt

tld usual stmt stmt label IF tld boolean THEN
BEGIN

tld_assignment_stmt
tld_pointer_move
tld_goto_stmt

END

tld_assignment_stmt : SCAN := SYMBOL

tld_goto_stmt : GOTO label

accepting_stmt : stmt_label ACCEPT

stmt label : label :

label : ID

tld_boolean_symbol : tld symbol
I ANY-

tld_assignment_symbol : tld symbol
I CURRENT

tld_symbol SYMBOL
YES
NO
DIRTY BLANK
SEPARATOR

tld pointer move : POINTER LEFTARROW - - I POINTER RIGHTARROW
POINTER DOWNARROW

69

APPENDIX D

A CONTEXT-FREE GRAMMAR FOR hA PROGRAM

70

APPENDIX D

A CONTEXT-FREE GRAMMAR FOR hA PROGRAM

<program> : BEGIN <A code>; EXITA':' ACCEPT END

<A code> <M code> <no rewind> ; <yes rewind>

<M code> <p0 code> <p1 code> .•• <pm code>

For all p. which are not accepting states:
<p. code : p. ':'<end no?>;<p.,a0>;<p.,a0>; ..• ;<p. ,a>;

1 1 1 1 1 n

For all p. which are accepting states:
<p. code> : p. ':'<end yes?>;<p. ,a0>;<p. ,a0>; •.• ;<p. ,a>;

1 1 1 1 i n

For all states p. and all symbols a.:
<p.,a.> : IF SCAN= a. THEN J

1 J BEGIN J

<end yes?>

SCAN : = a.;
POINTER:; J
GOTO q ..

END lJ

IF SCAN = BLANK THEN
BEGIN

SCAN := BLANK;
POINTER.I.;
GOTO IN!

END

<end no?> is just like <end yes?> but with INA replaced by
OUTA. Notice that INA will label the start of <yes rewind>
anad OUTA will label the start of <no rewind>.

<yes rewind>: INA':' <rewind 2>;
IF SCAN = BLANK THEN

BEGIN
SCAN := <yes>;
POINTER.Ir;
GOTO EXiTA

END

71

<no rewind>

For i = 1,2
<rewind i>

OUTA' :' <rewind l>;
IF SCAN = BLANK THEN

BEGIN
SCAN := <no>;
POINTER.I.;
GOTO EX!TA

END

POINTER<-;
LOOPi':' IF (NOT SCAN= BLANK) THEN

BEGIN
POINTER<-;
GOTO LOOPi

END;

Note: p0 , p1 , ••• , p , EXITA, INA, OUTA, LOOP!, and LOOP2
must be m+5 distinctmlabels, but this is easy to ensure.

72

APPENDIX E

ALGORITHM TO OBTAIN <NEW P CODE>

73

APPENDIX E

ALGORITHM TO OBTAIN <NEW P CODE>

1. Replace each occurrence of
SCAN := BLANK by SCAN := <dirty blank>

2. Replace each statement of the form

<label>

by

<label>

IF SCAN = BLANK THEN
BEGIN

END

IF (SCAN = BLANK OR SCAN = <dirty blank>) THEN
BEGIN

END

3. Replace each statement of the form

<label>

by

IF SCAN = <ANY> THEN
BEGIN

SCAN := <CURRENT>

.
END

74

<label> IF SCAN = BLANK THEN
BEGIN

SCAN := <dirty blank>

.
END

<labela>: IF SCAN = <ANY> THEN
BEGIN

SCAN := <CURRENT>

.
END

4. Replace each occurrence of ACCEPT by GOTO <formcheck>

75

APPENDIX F

RECURSIVE ALGORITHM FOR T(P)

76

APPENDIX F

RECURSIVE ALGORITHM FOR T(P)

T(P) is a TLGamma/S schema obtained from a given

PSGamma program. This code is used when transforming a

PSDelta program to a TLDelta/S program. This algorithm

takes as input a PSGamma program with a single string

variable and only atomic Boolean expressions.

1. If P =BEGIN sl;s2; ••• ;sn END then T(P) is
T(sl);T(s2); ••• ;T(sn).

2. If P = IF boolean THEN sl ELSE s2 then T(P)
IF boolean THEN GOTO Ll;
T(s2);
GOTO L2

Ll: <nothing l>;
T (sl) ;

L2: <nothing 2>;

is

where <nothing 1> and <nothing 2> are any TLGamma/S
statements that have no effect on the program. For example,
each might be a GOTO to the next statement.

3. If P = WHILE boolean DO s' then T(P) is
Ll: IF boolean THEN GOTO L2;

GOTO L3;
L2: <nothing l>;

T (s) ;
GOTO Ll;

L3: <nothing 2>

where Ll, L2, and L3 are new labels and both <nothing l>
and <nothing 2> are TLGamma/S statements that have no effect
on the program.

77

4. If P is STRING. := f (STRING.) then T(P) is
STRING := f_i:j(STRING) J

78

where f_i_j is a new function which first copies STRINGj
to STRINGi and then computes fusing STRINGi.

5. If P is STRING. := STRING. STRINGk then T(P) is
STRING := g_jik_i(STRING~

where f_j_k_i is a new function which concatenates
STRINGj with STRINGk and places the result in STRINGi

END OF ALGORITHM

APPENDIX G

A SAMPLE PSDELTA PROGRAM

79

APPENDIX G

A SAMPLE PSDELTA PROGRAM

The following program is a PSDelta program which will

read a string of zeros and ones from the standard input.

The program will then replace each occurrence of a zero by a

one. The result is written to the standard output.

G(ONES) =
BEGIN
ONE: IF SCAN = 1 THEN

BEGIN
SCAN := <CURRENT>;
POINTER->;
GOTO ONE

END;
ONE BLANK: IF SCAN = BLANK THEN

BEGIN
SCAN := <CURRENT>;
POINTER <-;
GOTO YES ONES

END;
ONE ANY: IF SCAN =<ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER<-;
GOTO NO ONES

END;
YES ONES: IF SCAN = BLANK THEN

BEGIN
SCAN := <YES>;
POINTER I;
GOTO ONE ACCEPT

END;
YES ONES ANY: IF SCAN = <ANY> THEN

BEGIN -
SCAN := <CURRENT>;
POINTER<-;
GOTO YES ONES

END;

80

REWIND: IF SCAN = 1 THEN
BEGIN

SCAN := l;
POINTER<-;
GOTO REWIND

END;
L3: IF SCAN = <ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER->;
GOTO FINISH

END;
FINISH: ACCEPT
END

BEGIN
TLDS START: IF STRING IN ANY LANGUAGE THEN

BEGIN
STRING := PROC2(STRING);
GOTO TLDS ACCEPT

END; - ,
TLDS ACCEPT: ACCEPT
END

BEGIN
STRING! := PROCl(STRINGl)

END

82

APPENDIX H

A SAMPLE TLDELTA/S PROGRAM SEGMENT

83

APPENDIX H

A SAMPLE TLDELTA/S PROGRAM SEGMENT

The following program segment is an excerpt of the

TLDelta/S code produced by compiling the PSDelta program in

Appendix G. Due to the extreme length of the program, only

a portion of the function PROC2 is shown. The original

PSDelta program contains 112 lines. The resulting TLDelta/S

program contains 2980 lines. <SHIFT TAPE> is substituted

for the actual block of code which inserts a blank symbol

and shifts the tape one cell. <REMOVE BLANKS> is

substituted for the actual block of code which removes any

embedded blank symbols.

F(PROC2 1) =
BEGIN -
PROC2 1 1 SEPARATOR: IF SCAN = <#> THEN

BEGIN- -
SCAN := <CURRENT>;
POINTER->;
GOTO PROC2 1 2 SEPARATOR - - -END;

PROC2 1 1 NOT SEPARATOR: IF SCAN = <ANY> THEN
BEGIN- -

SCAN := <CURRENT>;
POINTER->;
GOTO PROC2 1 1 SEPARATOR

END; - - -
PROC2 1 2 SEPARATOR: IF SCAN = <#> THEN

BEGIN- -
SCAN := <CURRENT>;
POINTER I;
GOTO PROC2 1 GT ST 48 - - - -END;

84

PROC2 1 2 NOT SEPARATOR: IF SCAN <ANY> THEN
BEGIN- -

SCAN := <CURRENT>;
POINTER I ;
GOTO LO 1

END; -
PROC2 1 GT ST 48:

.
<SHIFT TAPE>

.
LO 1: IF SCAN = 0 THEN

BEGIN
SCAN := l;
POINTER->;
GOTO LO 1 CHECK END

END -
LO 1 ANY: IF SCAN = <ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER I;
GOTO Ll 1

END; -
LO 1 CHECK END: IF SCAN = <#> THEN

BEGIN
SCAN := <CURRENT>;
POINTER I;
GOTO LO ST 48

END; -
LO 1 NOT END: IF SCAN = <ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER I;
GOTO LO 1

END; -
GOTO LO ST 48:

<SHIFT TAPE>

.
Ll 1: IF SCAN= 1 THEN

BEGIN
SCAN := 1;
POINTER->;
GOTO Ll 1 CHECK END

END;

85

Ll 1 ANY: IF SCAN = <ANY> THEN
BEGIN

SCAN := <CURRENT>;
POINTER I j
GOTO L2 1

END; -
Ll 1 CHECK END: IF SCAN = <#> THEN

BEGIN
SCAN := <CURRENT>;
POINTER I j
GOTO Ll 1 ST 48

END; - - -
Ll 1 NOT END: IF SCAN = <ANY> THEN

BEGIN -
SCAN := <CURRENT>;
POINTER I;
GOTO LO 1

END; -
Ll 1 ST 48:

.
<SHIFT TAPE>

.
L2 1: IF SCAN= BLANK THEN

BEGIN
SCAN := BLANK;
POINTER<-;
GOTO L2 1 CHECK END

END; -
L2 1 ANY: IF SCAN = <ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER I;
GOTO REWIND 1

END; -
L2 1 CHECK END: IF SCAN = <#> THEN

BEGIN
SCAN := <CURRENT>;
POINTER I ;
GOTO L2 1 ST 48 - - -END;

L2 1 NOT END: IF SCAN = <ANY> THEN
BEGIN

SCAN := <CURRENT>;
POINTER I;
GOTO REWIND 1

END; -

86

L2 1 ST 48: - - -

.
<SHIFT TAPE>

.
REWIND 1: IF SCAN= 1 THEN

BEGIN
SCAN := l;
POINTER<-;
GOTO REWIND 1 CHECK END

END;
REWIND 1 ANY: IF SCAN = <ANY> THEN

BEGIN -
SCAN := <CURRENT>;
POINTER!;
GOTO L3 1

END;
REWIND 1 CHECK END: IF SCAN = <#> THEN

BEGIN -
SCAN := <CURRENT>;
POINTER I;
GOTO REWIND 1 ST 48

END; - - -
REWIND 1 NOT END: IF SCAN = <ANY> THEN

BEGIN -
SCAN := <CURRENT>;
POINTER I;
GOTO REWIND 1

END; -
REWIND 1 ST 48:

<SHIFT TAPE>

.
L3 1: IF SCAN= <ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER->;
GOTO L3 1 CHECK END

END; - - -
L3 1 ANY: IF SCAN = <ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER I;
GOTO FINISH 1

END; -

87

L3 1 CHECK END: IF SCAN = <#> THEN
BEGIN -

SCAN := <CURRENT>;
POINTER I;
GOTO L3 1 ST 48 - - -END;

L3 1 NOT END: IF SCAN = <ANY> THEN
BEGIN

SCAN := <CURRENT>;
POINTER I;
GOTO FINISH 1

END; -
L3 1 ST 48:

.
<SHIFT TAPE>

•
FINISH 1: IF SCAN= <ANY> THEN

BEGIN
SCAN := <CURRENT>;
POINTER I ;
GOTO PROC2 1 REMOVE BLANKS

END;
PROC2 1 REMOVE BLANKS:

<REMOVE BLANKS>

.
PROC2 1 ACCEPT: ACCEPT
END - -

88

APPENDIX I

A SAMPLE TLDELTA PROGRAM SEGMENT

89

APPENDIX I

A SAMPLE TLDELTA PROGRAM SEGMENT

The following program segment is an excerpt of the

TLDelta code produced by compiling the TLDelta/S program in

Appendix H. Due to the extreme length of the program, only

a portion of the function PROC2 is shown. The original

TLDelta/S program contains 2980 lines. The resulting

TLDelta program contains 4251 lines. <SHIFT TAPE> is

substituted for the actual block of code which inserts a

blank symbol and shifts the tape one cell.

YY PSD 0 TLDS START F LABEL: IF SCAN = <ANY> THEN
BEGIN -

SCAN := <CURRENT>;
POINTER I;
GOTO YY PSD 0 TLDS START PROC2 1 1 SEPARATOR

END; - - - - -
YY PSD 0 TLDS START PROC2 1 1 SEPARATOR: IF SCAN =

BEGIN - - - - -
SCAN := <CURRENT>;
POINTER->;
GOTO YY PSD 0 TLDS START PROC2 1 2 SEPARATOR

END;
YY PSD 0 TLDS START PROC2 1 1 NOT SEPARATOR:

IF SCAN = BLANK THEN - - - -
BEGIN

SCAN := DIRTY BLANK;
POINTER->; -
GOTO YY PSD 0 TLDS START PROC2 1 1 SEPARATOR

END; - - - - - - -

90

<II> THEN

YY PSD 0 TLDS START PROC2 1 1 NOT SEPARATOR DB:
IF SCAN = <ANY> THEN - - -
BEGIN

SCAN := <CURRENT>;
POINTER->;
GOTO YY PSD 0 TLDS START PROC2 1 1 SEPARATOR

END; - - - - - - -

91

YY PSD 0 TLDS START PROC2 1 2 SEPARATOR: IF SCAN = <#> THEN
BEGIN - - - - -

SCAN := <CURRENT>;
POINTER I;
GOTO YY PSD 0 TLDS START PROC2 1 GT ST 48

END; - - - - - - -
YY PSD 0 TLDS START PROC2 1 2 NOT SEPARATOR:

IF SCAN = BLANK THEN - - -
BEGIN

SCAN := DIRTY BLANK;
POINTER I; -
GOTO YY PSD 0 TLDS START LO 1

END; - - - - -
YY PSD 0 TLDS START PROC2 1 2 NOT SEPARATOR DB:

IF SCAN = <ANY> THEN - - -
BEGIN

SCAN := <CURRENT>;
POINTER I;
GOTO YY PSD 0 TLDS START LO 1

END;
YY PSD 0 TLDS START PROC2 1 GT ST 48: -- -- - -

.
<SHIFT TAPE>

•
•

YY PSD 0 TLDS START LO 1: IF SCAN = 0 THEN
BEGIN -

SCAN := l;
POINTER->;
GOTO YY PSD 0 TLDS START LO 1 CHECK END -- - - -- -END;

YY PSD 0 TLDS START LO 1 ANY: IF SCAN = BLANK THEN
BEGIN - - - -

SCAN := DIRTY BLANK;
POINTER I; -
GOTO YY PSD 0 TLDS START Ll 1

END; - - - - -
YY PSD 0 TLDS START LO 1 ANY DB: IF SCAN = <ANY> THEN

BEGIN - - - - - -
SCAN := <CURRENT>;
POINTER I;
GOTO YY PSD 0 TLDS START Ll 1

E~D; - - -

~--------

YY PSD 0 TLDS START LO 1 CHECK END: IF SCAN = <#> THEN
BEGIN - - - - -

SCAN := <CURRENT>;
POINTER I;
GOTO YY PSD 0 TLDS START LO 1 ST 48

END; - - - - - -
YY PSD 0 TLDS START LO 1 NOT END: IF SCAN = BLANK THEN

BEGIN - - - -
SCAN := DIRTY BLANK;
POINTER I; -
GOTO YY PSD 0 TLDS START LO 1

END; - -
YY PSD 0 TLDS START LO 1 NOT END DB: IF SCAN = <ANY> THEN

BEGIN - - - - - -
SCAN := <CURRENT>;
POINTER I;
GOTO YY PSD 0 TLDS START LO 1

END; - - -
YY_PSD_O_TLDS_START_LO_l_ST_48:

.
<SHIFT TAPE>

.
YY PSD 0 TLDS START Ll 1: IF SCAN= 1 THEN

BEGIN -
SCAN := 1;
POINTER->;
GOTO YY PSD 0 TLDS START Ll 1 CHECK END

END; - - - -
YY PSD 0 TLDS START Ll 1 ANY: IF SCAN = BLANK THEN

BEGIN - - - -
SCAN·:= DIRTY BLANK;
POINTER I; -
GOTO YY PSD 0 TLDS START L2 1

END; - - - - - -
YY PSD 0 TLDS START Ll 1 ANY DB: IF SCAN = <ANY> THEN

BEGIN - - - - - -
SCAN := <CURRENT>;
POINTER I ;
GOTO YY PSD 0 TLDS START L2 1

END;
YY PSD 0 TLDS START Ll 1 CHECK END: IF SCAN = <#> THEN

BEGIN - - - - - -
SCAN := <CURRENT>;
POINTER I;
GOTO YY PSD 0 TLDS START Ll 1 ST 48

END; - - - - - - -

92

YY PSD 0 TLDS START Ll 1 NOT END: IF SCAN = BLANK THEN
BEGIN - - - - -

SCAN := DIRTY BLANK;
POINTER I; -
GOTO YY PSD 0 TLDS START LO 1

END; - - - - -
YY PSD 0 TLDS START Ll NOT END DB: IF SCAN = <ANY> THEN

BEGIN - - - -
SCAN := <CURRENT>;
POINTER!;
GOTO YY PSD 0 TLDS START LO 1

END; - - - -
YY_PSD_O_TLDS_START_Ll_l_ST_48:

93

VITA

Charles Bradley Slaten

Candidate for the Degree of

Master of Science

Thesis: AN IMPLEMENTATION OF A PROCEDURAL LANGUAGE FOR
REPRESENTING TURING MACHINES

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in North Little Rock, Arkansas,
February 23, 1963, the· son of Mr. and Mrs. Doyle
Slaten.

Education: Graduated from Searcy High School, Searcy,
Arkansas in May 1981; received Bachelor of Science
Degree in Computer Science from Arkansas Tech
University, 1985; completed requirements for the
Master of Science degree at Oklahoma State
University in December, 1987.

Professional Experience: Teaching Assistant, Department
of Computing and Information Sciences, Oklahoma
State University, 1985-1987.

Professional Organizations: Oklahoma State University
Student Chapter of the Association for Computing
Machinery, Blue Key National Honor Fraternity.

