
DESIGN OF A REAL TIME SYSTEM TO

DETERMINE MASS TRANSFER

COEFFICIENTS IN

THIN FILMS

BY

SUHEL IQBAL SIDDIQUI

Bachelor of Science

Andhra University College of Engineering

Waltair, India

1984

submitted to the Faculty of the Gr~duate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

May, 1987

.. ~ .:

,•.

'j

' '

DESIGN OF A REAL TIME SYSTEM TO

DETERMINE MASS TRANSFER

COEFFICIENTS IN

THIN FILMS

Thesis Approved:

Dean of the Graduate College

ii

PREFACE

The use of microelectrodes as a research tool is

relatively new and it has extensive applications in the

biological, medical and environmental systems.

A real-time data acquisition system and a computer

controlled micropositioning system has been designed and

built to measure the chemical concentration gradients in

biological membranes, which are typically less than 100

microns thick. The microcomputer used is a Texas

Instrument Professional computer and the programming

languages are C and BASIC. C is sophisticated as well as

convenient in data acquisition and control aspects of

the system, whereas BASIC's input and output

functions are more useful than other high level

languages. The computer controlled system designed,

enables the movement of microelectrodes with the

precision of 1 micron which is considerably less

when compared to the precision of the movement of the

electrodes applied in the current methods incorporating the

use of similar electrodes. This helps to acquire a large

amount of data from the same system and also helps in better

understanding of the system.

I am deeply indebted to my thesis advisor,

iii

Professor A. J. Johannes for his valuable guidance and

timely help in enabling me to complete my M.S. degree

requirements. His great co-operation and encouragement

have been a constant source of inspiration to me.

I am also thankful to the other committee members,

Dr. Robert A. Wills and Dr. Gary L. Foutch for their

advisement in the course of this work.

A special note of thanks is due to Touf eeq Habib for

his suggestions and help in completing this research. I am

thankful to the unforgettable friendship, encouragement

and company of Raja Venkateshwar, Rajni Venkateshwar,

Shahrooz Parkhideh, and Tushar Ghosh.

Finally, I would express my deepest gratitude to my

parents, my uncles and all the other family members for

their constant support and sacrifices in making my

dreams come true.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ·........................ J..

I I . LITERATURE REVIEW . 3

Microelectrodes............. 3
Past Studies Using Microelectrodes and
its Applications.......................... 4

III. CONSTRUCTION OF MICROELECTRODES.. 9

IV. COMPUTERIZED MEASUREMENT SYSTEM 13

Real Time Definition...................... 13
Real Time vs Batch Signal Processing...... 14
Structure of Real Time System............. 15

Arithmetic Unit. i 5
Control Unit.......................... 15
Memory Unit. 16
Input/Output Interface................ 16

Selection and Justification of_ Computer
Language. .l. 6

V. INTERFACING FOR DATA ACQUISITION:
SELECTION AND JUSTIFICATION.................... 19

Analog/Digital Converters................. 20
Digital/Digital Converter................. 20
RS-232 Serial Port........................ 21
IEEE-488 Parallel Port.................... 22

VI. EXPERIMENTAL SYSTEM............................ 25

VII. OPERATION OF THE SYSTEM........................ 29

Equipment Used............................ 29
Main Control Loop......................... 30

Command Register. 3 2
Status Register...................... 33
Data-In Register..................... 36

v

Data-Out Register.................... 37
Inner Control Loop........................ 39

Polarographic Oxygen Measurement..... 39
Characteristics of Oxygen Electrodes. 42
Calibration.......................... 43

Laboratory Microprobing................... 44

VIII. OVERVIEW OF THE MICROPOSITIONERS PROGRAM....... 49
Set Digital Port for Output............... :iO
Write Digital Output Immed.iate. :il

IX. CONCLUSIONS AND RECOMMENDATIONS................ S3

X. SUGGESTED APPLICATIONS......................... SS

A SELECTED BIBLIOGRAPHY. :i 7

APPENDIXES•..............••......•..... ·. :) 9

APPENDIX A·- IEEE 488 CONTROLLER DRIVERS......... 60

APPENDIX B - SINGLE OPERATION COMMANDS........... 63

APPENDIX C - MICROPROBE MAINTENANCE.............. 64

APPENDIX D - THE DIFFUSION EQUATIONS............. 65

APPENDIX E - LISTING OF PROGRAMS................. 68

vi

LIST OF FIGURES

Figure Page

1. The Oxygen Microelectrode...................... 11

2. Three Stages in the Preparation of the
Microelectrodes.............................. 12

3. The Experimental System........................ 27

4. Screw Terminal for A/D Converter............... 31

). Command Register Bit Functions................. 33

6. Command and Legal Modifiers.................... 34

7. Status Register Bit Functions.................. 35

8. Register Functions and Addresses............... 38

9. Characteristic Curve........................... 40

10 . Standard Curve. 41

11. Flow Chamber................................... 45

12. Microprobe Measurement of Dissolved Oxygen
Concentration................................ 47

\7 j_ i

CHAPTER I

INTRODUCTION

Measurement of chemical concentration in extremely thin

biological films (membranes, slimes, etc.) is difficult and

current methods are crude. One of the difficulties for

direct investigations of these slimes is their thinness,

which is on the order of microns. Also, the thickness of

the boundary layer covering these slimes is found to be

extremely thin even at high Reynolds number.

A delicate balance exists in biological systems between

che biomass, required nutrients and oxygen concentrations.

New biochemical and biomass applications require precise

measurements of chemical concentrations on a microscale.

Microelectrodes are highly desirable in these areas of

applications since their extremely small tip size (0.5-5

microns) does not damage the cells in the bio-mass. Such

minute amounts of biomass are required for sampling that it

does not alter the state of the system. The other

advantages of these microprobes include; freedom from

effects due to flow, stirring or mechanical pressure. The

microprobe is also capable of measuring very small

concentrations. Past investigations involved the use of

~hese microelectrodes to measure mass transfer coefficients

1

in biological slimes. Different types of microelectrodes,

such as, pH, carbon-dioxide, ammonia, sodium and potassium

microelectrodes have recently become commercially available.

The main disadvantage of micro-electrodes is the extreme

fragility due to the small tip size (generally 0.5 to 5

microns). Proper handling and careful storage of the probe

are essential for extended probe life. Most microprobes are

broken due to imprecise positioning in the sample.

The single greatest weakness of all the past studies

utilizing microelectrodes has been, not knowing where

the tip is with respect to the reference point, film surface

and the underlying support surface. These studies were

based on a very limited number of measurements and did not

measure concentrations as a function of position in the

slime due to extreme difficulty of repositioning the

electrode for each measurement.

The objective of the present research work is to solve

this problem by designing and building a real-time computer

controlled micropositioning system. The system was

controlled by a Texas Instrument professional microcomputer

using state of the art micropositioners. This system has

oeen built and tested. The programs are designed in C and

Basic languages. The following contains a detailed

description of the system, how it was developed and built,

its important features and recommendations for future work.

2

CHAPTER II

LITERATURE REVIEW

Microelectrodes

The use of microelectrodes is steadily finding

increasing areas of application in biological and medical

research (1) and several areas of chemical engineering, such

as study of mass transfer through gas-liquid interface.

These devices measure the chemical activity instead of

concentration of ionic species. This is important since

biological phenomena are functions of ionic activity, and in

a biological system there are significant ion-complexing and

ion-association phenomena (2). This measurement is

accomplished simply and quickly with few interferences from

other species. There is also the unique potential for

making measurements in living system in-vivo under

representative conditions. If the tip diameter is

sufficiently small, entry into a cell causes negligible

injury thus the activity should closely approximate that of

the undisturbed system.

The first ion selective electrode, a pH electrode,

invented by Cremer in 1906 was a solid state unit based on

antimony. In the 1920s glass electrodes filled with an

3

electrolyte for measuring conductivity were in common use.

However these electrodes needed a high-input-impedance

amplifier. In 1953, Dowben and Rose (3) invented a metal

filled microelectrode that satisfied the need for an

electrode of low impedance. A glass "wetting" metal, an

alloy of gallium and indium, was drawn into a glass

microcapillary. This microelectrode was sturdier than

saline filled electrodes of comparable size. Based on this

concept, Whalen et al. (4) developed the first oxygen

microelectrode in 1967.

Different types of microelectrodes are now available

from private and commercial sources. The polarographic type

microelectrodes, which are described in the literature (3),

are currently made by Nair (4) of the Cleveland Research

institute. Many modifications can be made in the probe,

primarily dealing with the tip design and length of the

recess.

Past Studies Using Microelectrodes And

Its Applications

'rhe microprobe is used in physiologic research for

measuring intracellular oxygen (po2 .1. If the diameter of

the tip is sufficiently small, this can be done without

damaging the cell, or interfering with the blood supply.

Thus the activity measured closely approximates an

undisturbed system. In-vivo measurement of pO~ in brain,

heart, and skeletal muscle have shown that po2 normally

4

fluctuates with time and the cell po2 is lower than that of

the venous outflow (5). The oxygen microelectrode was also

adapted as a hypodermic needle p02 electrode (6). It is

advantageous in many situations to use a stainless steel

needle as the anode in the system, rather than havinq a

separate anode and a cathode. However, the needle causes

~issue damage due to its large tip size. Another adaptation

of the oxygen micro electrode has been as a part of flow

through po2 sensor which is easy to use and has excellent

~ong term stability and eliminates clotting problems (7).

A membrane-covered, platinum, polarographic

microelectrode has been used for an amperometric assay of

dissolved oxygen in marine sediments (8). The oxygen level

of marine sediments may be a limiting factor for the Benthic

community. This type of information allows a more complete

characterization of the Benthic community. Oxygen profiles

of the sediment were recorded during a light-dark cycle.

These profiles were used to estimate the rate of oxygen

production and consumption, and to calculate the apparent

diffusion coefficients for oxygen in the sediment. In

qeneral, the depth of oxygen penetration was limited to 1 -

5.5 mm. The depth of oxygen production was related to the

rate at which oxygen is consumed in the sediment (9).

Oxygen transport into the deeper layer (5-lOcm) was mainly a

function of macrofaunal activity such as by burrowing

animals(ie., clams, flounders, etc).

Microbial slimes are found in natural waters affecting

5

private, recreational, municipal and potable water use.

Fixed film reactors utilize microbial slimes for biological

waste treatment of municipal and industrial waste.

Microbial slime growth is often undesirable and has adverse

effects on systems, such as, industrial cooling towers or

water distribution systems. Therefore, a better

understanding of the mass transfer of oxygen into the slime

system can lead to improved design and control of microbial

systems.

The oxygen probe was first applied to environmental

engineering applications in 1968 when Whalen et al. (10)

measured dissolved oxygen profiles in laboratory grown

slimes. Additional work was performed with slimes to

determine the respiration rate and diffusivity of oxygen

(11, 12). Oxygen profiles for slimes under natural stream

conditions as well as profiles for trickling filter slimes

were determined (13, 14, 15). Oxygen profiles were produced

by changing the illumination of the slimes, thereby

examining the effect of photosynthesis on the oxygen

production.

The microprobe is also used to characterize oxygen

transfer into activated sludge flow (16) and into mycelial

µellets (17). A study was also done to test the feasibility

of using the microprobe as an assaying tool for trace

quantities of toxic chemicals (18). The chemicals used for

this study were phenol, potassium cyanide and copper

sulphate. It was indicated by the results that the

6

respiratory and the photosynthetic functions of Chlorella

Vulgaris (green algae) were not discernably effected by

trace concentrations of these toxic chemical during short

term exposure of these substances. However, chronic effects

of long term exposure to trace concentrations was not

studied.

The survey of literature clearly indicates that:

1. The techniques used in the past are not sophisticated

enough for measuring slime concentrations at very low

depths. Whalen et al. (10) tried to locate the slime

surf ace and the underlying base within a distance of two

microns from the base by a trial and error procedure,

since the resolution of the movement of the probe was

much higher (25 microns).

2. Previous studies involved simulating a system and then

proposing a mathematical model to suit the system. No

real-time measurements were made. Precision was

qenerally poor. According to Bungay and Harold (19)

greater accuracy can be obtained by specifying small

error tolerances and by taking more layers and closer

slices of slimes which is only possible through a

computer controlled system.

3. There is a need for a more sophisticated computer

controlled system to make accurate real-time

measurements. Bicher and Knisley (20) measured brain

tissue reoxygenation time manually with a

micromanipulator (in 10 microns steps) using a

7

ultramicro oxygen electrode. The type of accuracy

needed in such measurements which is in the order of 1 -

2 microns can be obtained through a computer controlled

system.

8

CHAPTER III

CONSTRUCTION OF MICROELECTRODES

The type of microelectrode shown in Figure 1 is made

oy filling a glass capillary tube with Wood's metal and

pulling it in a pipette puller.

About 5g of Wood's metal, with a melting range of 73 -

75°c, is melted on a hot plate and mixed with 0.3 -0.Sg of

precipitated gold powder. An initial heating of 300°c forms

an alloy. This alloy remains bright and exposed to air for

several days, and requires aqua regia to dissolve it. Yet,

it adheres to glass as well as or better than, the Wood's

metal by itself. There are three stages involved in

preparation of the microelectrodes. These are illustrated

in Figure 2. In stage one, a glass capillary tube (0.9 mm

OD - 0.4 mm ID) about 4 inches long is filled by suction to

about half its length with the molten alloy. The suction is

applied by using the syringe fitted with vinyl tubing which

fits snugly over the capillary tube. In stage two, the

glass capillary tube is placed in a pipette puller with the

~op edge of the metal at the top of the heating element.

The glass capillary is pulled out to a tip of 1 -2 microns.

Usually, the metal does not extend all the way to the tip.

In stage three, the base end of the capillary is heated, and

9

then a wire (usually iridium 0.2 mm OD, crimped in a Burndy

contact (Burndy corp., Norwalk, Connecticut), is inserted

into the metal alloy. The tip is warmed again over the hot

plate to force the metal towards the tip, resulting in an

electrode having a recess of 10-30 microns at the tip. The

electrode is placed in a gold plating solution for several

minutes and the metal in the recess is electroplated with a

iayer of gold, using 0.1 to 0.5 volts. For an electrode of

2 to 3 microns, the plating time is 30 to 45 seconds. The

plating solution is removed by allowing the electrode to

stand in distilled water for several hours, then for two

nours in 95% ethanol. Finally, the electrode tip is placed

in collodion for 5-10 minutes. Collodion improves the

performance of recessed oxygen electrodes.

The advantages of using such microelectrodes are listed

below:

l. They have a rapid response time.

2. Similar calibration curves and current-voltage plateau

relationships are obtained in different media.

3. They show no effect of stirring. This is attributed to

a stagnant layer, a few microns thick, around the

electrode tip. Since the electrodes (cathodes) are small

they cannot see beyond this stagnant layer.

4. They show little ageing or poisoning by the microbial

system.

10

11

Figure 1. The Oxygen Microelectrode

THP.EE SfAG~ IN PHEPAP~TION OF THE
Utf()f\Etri RQn11 Idl\#i\V · Vu

STAGE 1

STAGE 2
/J

·~

c

STAGE 3

·~

Source: Dowben., R. M. and J. E. Rose
"A Metal-Filled Microelectrod~ "

' Science (1953).

Figure 2. Three Stages in the Prep
aration of Microelectrodes.

12

CHAPTER IV

COMPUTERIZED MEASUREMENT SYSTEM

A computerized measurement system can collect

information and process it efficiently with the least effort

on the part of the operator. Careful planning is the key to

get maximum utilization out of a computerized measurement

system. First, the following must be determined:

1. How often to sample the data signal and with what

resolution.

2. Choose what computations the computer will perform on

line,

3. Decide what information to process in real-time and

what measurements to save for later processing.

Real Time Definition

The term applies to the use of a computer in conjuction

with some external "process". The object of this

interconnection is to obtain information from the process by

monitoring its operation through measurement of important

variables. It is also used to operate in some desired

fashion and to control the way in which it operates based on

the information previously acquired. For the computer to

accomplish these objectives, its operations have to be

13

carefully sequenced in time. This is called "Real-Time".

It implies that the computer has the ability to respond to

stimuli from the process in a timely fashion, i.e.,

sufficiently fast to accommodate the needs of the process.

For example, if some emergency conditions arise in the

process and is signalled to the computer, the computer must

oe capable of reacting to the process requirements fast

enough to handle the emergency. The idea of real-time

response requires careful attention in the selection of the

computer and in designing the total real-time system.

A common feature of the computer system involves the

physical means of connecting the process to the computer.

The measurement equipment used to connect the physical

process to a computer is called a "Computer Interface".

Every real-time system is a unique creation. Hence

attention needs to be paid to the structure of the computer

system, to the interface, and to the programming. The other

term used commonly in place of "Real-Time" computing is "on

Line" computing.

Real Time vs Batch Signal Processing

Any result used for feedback during a measurement

session must be calculated in real-time. These results

might be used in experimental control or perhaps provide a

visual display as the data is being collected.

Alternatively if the data is not needed for feedback, it

must be saved for later analysis.

14

In real-time the data processing that occurs, reduces

the information content in signal and thus precludes some

type of later analysis. Saving raw data for batch

processing can therefore allow greater flexibility, and can

possibly save rewriting a real-time data collection program,

whenever a new type of data analysis is desired.

The second major advantage of batch processing is the

ability to perform computations that require more time than

available in real-time.

The advantages of real-time data processing are also

two-fold. First, the amount of data that needs to be

printed or saved on mass storage devices is greatly reduced.

The second advantage is that it does not have to be done

later.

Normally, any measurement situation with more than

1,000,000 data values per hour must be considered for real

time computing.

Structure of Real Time Systems

Any digital computer is composed of 4 sub units:

15

1. Arithmetic unit: It contains all the hardware necessary

to carry out arithmetic and logic commands. All the

components in the computer are constantly under the

supervision of the control units.

2. Control units: This part of the computer is

responsible for reading a program from the memory,

interpreting it and causing appropriate action to take

16

place.

3. Memory unit: This is used for the storage of the data

and the computer program itself. Normally the control

unit causes a sequence of program statements stored in a

consecutive memory to b~ executed.

4. Input/Output Interface: The I/O interface is

necessary for the computer to communicate with all of

its peripheral equipment. The interface generally

consists of set of bi-directional data lines and control

lines, usually referred to as buses, and the logic

necessary to detect and respond to external "events".

These events usually take the form of a request for some

kind of action on the part of the computer which than

would have to interrupt its normal processing. The

ability to respond to the external "interrupt" is a

requirement for the computer. It is this capability

that allows the real-time computer to keep track of

time, independent of its normal operations, and to watch

multiple processes, each with a different set of

commands which must be serviced by the computer. As

with the other three computer units, the I/O interface

operations are coordinated by the control unit.

Selection And Justification of

Computer Language

FORTRAN and BASIC are two major types of high level

computer languages. FORTRAN is a computer based language,

meaning that a FORTRAN source program must be translated

into a series of steps involving the computer itself before

execution can take place. These steps are:

1. The FORTRAN program must be compiled, i.e., read into

the computer where the compiler converts each high level

statement into a correct sequence of assembly language

statement,

2. The assembly language program is then converted to

machine language in the computer using the machine

assembler, and

3. The machine language program is loaded and executed

under the supervision of the operating system.

BASIC, by contrast, usually is an interpreter based

language. Compiler versions of BASIC also exist. This means

that the sequence of statements constituting a BASIC program

is read into the computer along with the BASIC interpreter

program and the operating system. The interpreter treats

the basic program source statements as a set of data. In

executing the program, it proceeds to look at each

statement, interpret it as to specific functions, and call

subroutines to carry out the functions. Hence a BASIC

program does not become a executing program. Each time a

statement is executed, it must be interpreted as if it were

the first time. The operating characteristics of a high

level language depend significantly on whether it is

compiler or interpreter based. BASIC language programs run

17

much slower than the FORTRAN because of the extra time

required to interpret. On the other hand the basic program

can be modified on line, simply by typing in any desired

changes and rerunning the program; whereas the FORTRAN

program must have the changes edited in, then recompiled,

reassembled, and reloaded before rerunning. BASIC has

advantages for situations where the programs are developed

continuously. FORTRAN has advantages where a fixed program

once developed will be used for long periods of time.

In general, both programming languages require more

memory for execution than does an equivalent program written

in assembly language. Assembly language requires four times

less memory than the programs generated by FORTRAN compiler,

and will also execute faster. Inspite of such advantages of

assembly language, high level languages are preferred

oecause they simplify the task of programing, and make

programing documentation and restructuring easier.

In the present work two high level languages are used -

c and BASIC. Though c does not generate code as fast or

memory efficient as assembly language, it is more elegant

and powerful than other high level languages like FORTRAN or

PASCAL. Another advantage of using C language is, it has

powerful Input/Output functions which make real-time

computing small and maneauverable.

18

CHAPTER V

INTERFACING FOR DATA ACQUISITION:

SELECTION AND JUSTIFICATION

Generally the data may be acquired using either the

main frame computer, minicomputer or microcomputer. The

experiences that the people had in the past using

minicomputers and mainframe were generally very

discouraging. The basic reasons why microcomputers are

important for data acquisition are as follows:

1. Minicomputers and Mainframes must be shared by more than

one person. But in data acquisition it is crucial to

have the computer's attention when the data is ready.

2. The main frame is not located in the laboratory. Thus

in data acquisition contexts, there is a communication

bottle neck created by the data transmission.

3. There is no common standard for interfacing laboratory

instruments on large computers.

Interfacing for data acquisition may be achieved in two

ways:

l. Using Analog to Digital converters.

2. Using Digital/Digital converters.

The important features and limitations of each are

discussed briefly.

19

Analog/Digital Converters

·rhe least expensive way to automate a laboratory is

with an analog to digital converter, which converts analog

signals to digital signals and vice versa. However, it has

the following limitations:

l. An A/D converter samples only one voltage source at a

time. A/D converter may be acceptable, but often the

time lag is sufficient to make the data hopelessly

imprecise.

20

2. A/D converters are slow (the maximum sampling rate on

most "high speed" A/Dis 100 kHz). This means that we

cannot track a transient of greater than approximately

20 kHz. But the scientific data acquisition requires at

least a few megahertz.

3. In A/D converters the boards are expensive. The

linearity is not very good. A 12 bit board may have a

resolution of only 7 or 8 bits.

4. The most important is that the A/D converters are

very susceptible to noise in the laboratory. This may

not give the level of noise immunity required in a

laboratory environment.

Digital/Digital Converters

A D/D converter can communicate directly with a

computer because both are digital devices. The digital to

analog convertion step is not required in this type of

21

communication. This makes the D/D converter faster than the

A/D converter.

The speed of data transfer is important because it

determines how quickly the instrument can repeat an

analysis.

DID converters are available in two types: 1) Serial

Port, which transfers information one bit at a time, and 2)

Parallel Port, which transfers one word at a time.

RS-232 Serial Port

1rhe most common serial port is an RS-232C interface.

Its disadvantages are as follows,

i. It is not a standard interface.

2. There are two ends to an RS-232 interface: The data

terminal equipment end and the data communication end.

Often the two instruments hooked together are configured

as DTEs (data terminal equipments).

3. The handshaking provided is on the level of whole

messages only. The interface does not verify that the

data has been received before proceeding.

4. It is very noisy.

~. It can connect only two devices together.

6. RS-232 is slow since it sends only one bit at a

cime.

1. For multiple data sources, more than one RS-232C port

is required on the computer making it very difficult to

write the software.

IEEE-488 Parallel Port

l. The IEEE-488 is a byte serial, bit parallel that

overcomes the problems of the interface outlines above.

2. The interface is incredibly resistant to

interferences.

J. It provides excellent noisy immunity.

22

4. A very important feature of IEEE-488 is that the

interface has a bus-structure, and up to 15 devices can

be interfaced at a time using the same board. This

structure simplifies the process control and allows true ·

simultaneous data acquisition.

~. The interface is as fast as the microcomputer. ·Data

can be transferred up to one million bytes per second

(using special tri state drivers on the lines) and

without any special care will support transmission rates

of about 250-300K bytes per second using direct memory

access (DMA) .

6. The interface is standard and is widely available.

All IEEE-488 instruments are plug compatible.

7. The primary limitation on the standard is that it

cannot exceed 20 meters in cable length without

expensive repeaters. And given long cabling slows

transmission rates and is more susceptible to noise.

In the present work a 4 meter cable is used.

Perhaps the greatest advantage of the IEEE-488

interface is that it is a standard interface. The use of

23

IEEE-488 began as a general purpose interface bus (GPIB) of

the Hewlett Packard Corp. In 1975, the IEEE adopted the

GPIB as its standard. Some minor modifications were made to

the standard in 1978. But IEEE-488 still goes by the name

of GPIB on HP products. Devices on the interface may

perform three types of functions.

1. They may be talkers i.e., they may transmit data to

other devices on the interface. There can be only one

active talker at a given time.

2. Alternatively, a device may be a listener. It may

receive data and instructions. There may be more than

one active listener at a time.

3. Finally, a device may do nothing but standby. At

different times may assume any of the above functions.

The interface has two modes of operations - Command and

Data. Command mode is for process control. In the Data

mode, data is transferred from talker to listener(s).

The interface has 24 lines, out of which 8 lines are

ground lines. The other 16 lines are divided into three

qroups. 8 bi-directional data lines, 3 data byte control

lines (hand shake lines), and 5 general interface lines.

The three line handshake protocol functions as

follows:

When the information is transferred over the bus the

listeners must be ready to receive the data. If they are

not they signal NRFD (not ready for data) by pulling the

NRFD line low ("low" is defined as true by the IEEE-488

24

standard). The NRFD line has an open collector design, so

~hat if one listener is not ready, the line is kept low.

When all the listeners are ready, the NRFD block goes high.

If the talker is ready to transmit data, it sets the DAV

\data valid) line low. The transmission of the DAV triggers

the resetting of the NRFD line, and the listeners pick up

~he last byte of data. When each listener receives the

data, it releases NDAC (not data accepted) line, which is

also an open collector. When all listeners have received

~he data the NDAC line goes high, causing the reset of the

DAV line, which in turn triggers the resetting of the NDAC

line. This information is repeated for each byte in

~ransmission.

The description of the IEEE controller drivers, in both

C and Basic languages, is provided in Appendix A. A program

to test these IEEE drivers provided by Ziatech corporation,

is located in Appendix E along with the listing of other

programs.

CHAPTER VI

EXPERIMENTAL SYSTEM

Polarographic measurement of dissolved gases,

especially of oxygen is most frequently done in the field of

medicine and physiology. Micro sized electrodes with tip

diameters of 1 - 25mm are used for measuring oxygen

concentration in blood and tissues. Micro organisms are

generally found attached to solid surf aces in bodies of

water and in other natural environments. The critical role

of these micro organisms, is the removal and degradation of

organic materials in water and waste water systems. This

sparked a national concern for water pollution and water

pollution control. Fortunately, the introduction of

electronics in chemical engineering has opened promising

avenues of research to provide a greater insight into the

study of microbial systems.

A system using microelectrodes has been developed and

designed to effectively make chemical measurements.

Figure 3 illustrates the diagram of the system which is

divided into two control loops-the main control loop and the

inner loop. The main control loop consists of a Texas

Instrument Professional microcomputer designed to function

in real-time with Oriel Corporation stepper motor

25

controllers. In turn, these controllers are used in

conjunction with the micromanipulators for x, y and z

directions micropositioning. The circular motion of the

stepper motor drives is then translated into the precision

linear motion with the help of translators. Also included

in this main loop are the A/D converter and IEEE-488

interface.

The inner loop contains a microelectrode, an auto

ranging picoammeter, a constant voltage source, and a

voltmeter. The main control loop and the inner loop are

interfaced in real-time through the IEEE-488 interface and

the A/D converter.

·rhe key to the system is that micromanipulators and

controllers can under computer control be positioned within

l micron. Position changes using this system can be

operated in half and full step mode, corresponding to 1 or 2

microns per step. Maximum speed under full step operation

is 500 steps per second i.e., 1000 microns per second. A

ten pin collector located on the rear of the controller

module allows for external control by the computer. Two

remote control inputs drive the motor in either the forward

or backward direction one singie step per 5 volts

TTL (transistor transistor logic) pulse received. Two

additional inputs from the computer drive the motor in the

forward or reverse direction at the speed control for the

length of time the TTL (transistor transistor logic) signal

is applied. Two out pins indicate motion in the forward or

26

27

Figure 3. The Experimental System

reverse direction by a +5volt (TTL) pulse per step.

At this point it is necessary to explain why a

stepper motor is used for precise positioning instead of a

conventional motor. The stepper motor is a device which

~ranslates electrical pulses into mechanical movements. The

shaft rotates through a specific angular rotation for each

pulse, and this is repeated precisely with each succeeding

pulse. The result of this precise, fixed and repeatable

movement is the ability to accurately position the probe. A

conventional motor has a free running shaft, while the

stepper motor does not. The stepper motor shaft rotation

is in fixed repeatable, known increments. The shaft

rotation for this particular stepper motor for each complete

step is 15 degrees.

Computer operation is accomplished by applying TTL

J.ogic"O" and "1" using the Data Translation's A/D converter

model 2805. The digital I/O lines on this converter are

used for this purpose. The digital input;output (also

called digital I/O, or Dio) permits the Texas Instruments

Professional computer to be used with stepper motor drives

controllers which accept and supply parallel digital data.

Barallel data requires a separate electrical connection for

each bit.

28

CHAPTER VII

OPERATION OF THE SYSTEM

EQUIPMENT USED

Texas Instrument Professional computer.

Kiethly's Auto-ranging Picoammeter. Model 485

Kiethly's IEEE-488 Interface. Model 4853

Oriel Corporation's Micropositioners. Model 18503

Oriel Corporation's Stepper Motor Controllers.

Model 18548

Data Translation's A/D Converter. Model DT 285

Data Translation's Screw Terminal Panel. Model DT 707

Ziatech's IEEE-488 Interface Card. Model ZT 1446

Ziatech's Controller Device Drivers. Model c and BASIC

Languages Software

Diamond Electro-tech Incorporated's Oxygen

Microelectrodes. Model 723(Po 2 i

Reference Electrodes Ag/AgCl.

Plexiglass Chamber.

As mentioned before, the system consists of two loops:

i) A main loop run by the TI professional computer and 2)

An inner loop to carry out the actual measurements. Each is

discussed in detail.

29

MAIN CONTROL LOOP

The DT 2805 of the Data Translation is a complete

single board data acquisition system for personal

computers (IBM and compatible systems). This boa-rd has

an on board microprocessor with a power supply. The Data

Translation board is capable of performing :

1. A/D conversion.

2. D/A conversion.

3. Digital I/O transfers.

It consists of 16 channels of 12 bit A/D conversion,

and two channels of D/A conversion. It also consists of

16 lines of digital I/O. This feature of digital I/O is

split into two 8-line digital I/O ports which can be

used separately to read or write 8-bit transfers, or

simultaneously a 16-bit transfer.

All the channels for analog to digital and digital to

analog conversion are easily accessible through a screw

~erminal shown in Figure 4. The terminal board also shows

all the digital I/O lines used for I/O signals from the

computer to the stepper. They are divided as port 0 and

port 1, each port consisting of 8 lines of digital I/O.

·rhe board is also capable of performing the following:

i. Reporting errors in the operation of the board while

running the micropositioners.

2. Setting the period of the on board clock.

3. Stopping board operations in process and thus,

30

31

Figure 4. Screw Terminal for A/D Converter

stopping the stepper motors.

4. Resetting some of the board's programmable

parameters.

32

~. Performing simple tests on the board such as clearing up

-c.he set bits.

There are basically four registers which control all

the functions on the DT 2805 board. All these registers are

8-bit registers.

l. Command Register (write only J •

2. Status Register (read only).

3. Data-In Register (write only).

4. Data-Out Register (read only).

1. Command Register: This is located at the base address +

l of the DT 2805 board. Base address is the lowest I/0

address at which the board can be accessed over the TI

professional computer bus i.e., it is computer's I/O

space where the board will be addressed. Among the 8-

oits of the command register, the first four bits of 0-3

1lower byte) are called operation code bits. There are

sixteen pre-defined functions on the board. These

operation code bits are used to specify what functions

-c.he board should perform. This can be understood a

little better with the help of Figure 5.

The upper four bits are called command modifiers.

Depending on the first 4 bits the operation can be

performed in DMA (Direct Memory Access) mode, continuous

mode, and with an external trigger or external clock.

33

External Continuous
Clock

MODIFIERS
--

Figure 5. Command Register Bit Functi(Jll<-

The motors can run in different modes depending on

which command modifier bit is set low or high(low or high

is indicated by a 0 or ll. Figure 6 shows as to which

command modifier can be used with which command. In

Figure 6, "X" is a legal modifier. "0" is a illegal

modifier. l'his bit-value must always be a "0". For

instance, if the binary code "0010" is used in the OPCODE

bits of the Command Register, the DT 2805 series board

will "Read the Error Register".

2. Status Register: This is Read only register located at

the base address + 1 of the board. It contains status

byte from the board. Using the register bits as Status

Flags, the current status of the board is reflected by

indicating:

34

r---
LEGAL MODIFIERS I :

COMMAND Ext Ext Cont DMA OPCODE :
Trig Clk I (Binary) l

------------------ ------- ------ ------ ---~--r---------~-RESET 0 0 0 o I 0000 !
I !

CLEAR ERROR 0 0 0 0 I 0001 i i
I

READ ERROR REG. 0 0 0 0 0010

SET INTERNAL
CLOCK· PERIOD 0 0 0 0 0011

STOP 0 0 0 0 1111

TEST x 0 0 0 1011

SET DIG. PORT
FOR INPUT x 0 0 0 0100

SET DIG. PORT
FOR OUTPUT x 0 0 0 0101

READ DIG. INPUT
IMMEDIATE x 0 0 0 0110

WRITE DIG. OUT-
I PUT IMMEDIATE x 0 0 0 0111

! WRITE
;

D/A
IMMEDIATE x 0 0 0 1000

SET D/A
PARAMETERS 0 0 0 0 1001

WRITE D/A x x x x 1010

READ A/D
IMMEDIATE x 0 0 0 1100

SET !1./D
PARAMETERS 0 0 0 0 1101

READ A/D x x x x I llJO
-- _______ L __________ ~

Figure 6. Command and Legal Modifiers

i) If an error has occurred,

ii) Whether a command is completed or not,

iii) Whether the last byte written to the DT 2805 board

was written to the Data-In Register or to the Command

Register,

iv} Whether a write to the Data-In Register can occur, and

v) Whether a read from the Data-Out Register can

occur.

The Status Register bit functions are indicated below in

Figure 7.

Composite
Error

Not Used

Colllllland

Data In
Full

Data Out
Ready

' --·
Figure 7. Status Register Bit Functions

Bit 0 is a Data-Out ready bit. when is set, it

indicates that new A/D data, digital data, or error register

information is present in the Data-Out register and has not

35

36

oeen read. Bits are set to 1 if they are O and setting

themselves to 0 if they are 1. After the Data-Out Register

is read, bit 0 clears automatically. The Data-Out ready bit

always needs to be checked before reading the Data-Out

Register.

Bit 1, a Data-In full bit, when set, indicates that D/A

data, digital output data, or a command parameter is present

in· the Data-In register, or that a command byte is pres~nt

in the command register, and has not been read by the

ooards internal circuitry.

Bit 2, a Ready bit, when set, indicates that the board

has completed the previous command, and is ready to begin

execution of the next command. When clear, bit 0 indicates

that the board is busy executing a command. Writing to the

command register while bit 2 is clear will result in a

command overwrite error.

Bit 3, a command bit, when set indicates that the last

byte written to the DT board was written to the command

register. When clear it indicates that the last byte was

written to the Data-In register.

Bit 4, 5, 6 are not used.

Bit 7 is a composite error bit, when set this indicates

~hat an error has occurred on the board. The error bit

remains set until cleared by a reset or clear error command.

3. pata-In Register: This is a write only register located

at the base address of the board. It receives data

written from the TI professional personal computer to the

ooard to perform a D/A conversion, or a digital output

operation. The Data-In register also receives command

parameters as a part of the operating sequence of a

number of commands.

4. Data-Out Register: This is a read only register located

at the board's base address. It contains data which is

read from the DT 2805 board by the TI professional

computer as a result of an A/D conversion, or a digital

Finally, when a command is written from the personal

computer to the board , its execution is divided into three

sequential events.

1. The set period, during which the various subsystems

of the boards are prepared to perform the command,

2. The issuing of an internal software trigger, which

starts the operating sequence opted from the list in

Figure 6. In this case digital I/O commands are used.

3. The actual performance of the command. In this board

~he operations can be either single operation commands

or block commands. All the commands in this board are

single operation commands except for Read A/D and Write

D/A (digital to analog) which are block commands.

Single operation commands accomplish a single event when

~hey run, and block commands accomplish multiple events

when they run. Single operation commands are listed in

Appendix B.

The above register functions and addresses are

37

38

indicated in Figure 8.

Now with a clear understanding of all the aspects

involved in real-time control of micropositioners, Chapter

VIII will highlight the sequential steps involved in writing

the program for the process. As mentioned earlier, only the

digital I/O lines, shown in Figure 4 are used to control

--------------------;

REGISTER NAME REGISTER FUNCTION REGISTER ADDRESS I
Data-In

Data-Out

Command

Status

Receives data, command
parameters from the
TI professional
computer

Base (Write)

Contains data, error Base (Read)
information from the
board

Receives command byte Base + 1 (Write)
from the TI PC

Contains status byte Base + 1 (Read)
from the board

Figure 8. Register Functions and Addresses

I

the stepper motors. There are basically four commands for

the digital I/O.

1. Set digital port for input.

2. Set digital port for output.

3. Read digital input immediate.

4. Write digital output immediate.

Only 'Set Digital Port for Output' and 'Write Digital

Output Immediate' are used.

Inner Control Loop

~olarographic Oxygen Measurement

Oxygen microelectrodes are the most commonly used, and

since it is monolayer electrode, it requires the use of an

external reference electrode. Two electrodes are polarized

with a potential of slightly less than 1.0 volt in a

electrolytic solution containing dissolved oxygen. Current

flows as a result of the reduction of oxygen at the

cathodic (negatively polarized) surface. At the cathode the

reaction is expressed as

At the other electrode(Ag/AgCl, reference electrode), the

reaction is,

4Ag + 4Cl- ---> 4AgCl + 4e-

Theoretically, the voltage-current relationship for a

polarographic oxygen is represented by the characteristic

curve shown in Figure 9. In the region below approximately

-0.5 volt, there is a reasonably linear voltage-current

39

40

so
-1.l

50 i=
<ll
H 40 H
;:l
u 30

20

10

0 -0.2 -0.4 -0.6 -a.a -1.0

Voltage

Figure 9. Chqracteristic Curve

relationship. As the polarization voltage is increased

beyond -0.5 volt, the current tends to reach a plateau where

changes in voltage have little effect on current. In this

plateau region, the current is limited by the rate at which

oxygen diffuses to the cathode. As the voltage is increased

above -1.0 volt, the current increases again with the

voltage, due to reduction of other elements in addition to

oxygen.

The electrode is best operated with polarization

voltage set to the mid-point of the plateau region, in which

case the current is diffusion limited. In a diffusion

iimited condition, virtually all of the oxygen molecules

which reach the cathode are immediately reduced, resulting

41

in a zero oxygen concentration at the cathode surface, and a

current which is limited by the rate at which oxygen can

diffuse to this zero concentration region. The diffusion

rate is a function of the oxygen diffusion coefficient of

the substance (membrane and media) surrounding the cathode

and the dissolved oxygen concentration. This, in turn, is

proportional to the oxygen partial pressure. For constant

~emperature, current flow through the electrode is directly

proportional to the partial pressure of oxygen.

A plot of the relationship between the current and the

partial pressure of oxygen (at a fixed polarization voltage)

is called the standard curve. This is shown in figure(lO).

The curve is linear and it does not intersect the origin,

nut rather, indicates a small current at the zero partial

60

50

~ 40 ~ w
H 30 H
~
u 20

10

0 5 10 15 20

Figure 10. Standard Curve

pressure. This is the residual current and results from the

factors such as electrical leakage through insulating

materials in the system and reduction of oxygen which is

absorbed into the electrode material.

Characteristics of Oxygen Electrodes

Since the electrode is very small, it is difficult to

maintain identical characteristics from one electrode to

another. For micro~sized electrodes, the characteristics

are sometimes less than ideal. Wide variety of applications

of these electrodes makes it difficult to optimize the

system for a particular application. However a proper

understanding of the electrode characteristics is important

tor accurate oxygen measurements. The slope of the plateau

in the characteristics curve varies from electrode to

electrode. It generally covers a span of 0.1 to 0.4 volt in

width, with the mid-point occurring anywhere between 0.5 and

0.95 volt. A plateau is generally defined as the region of

the characteristics curve which has the minimum slope and

operation of the electrode is at a voltage occurring near

the mid-point of this region. Since oxygen electrodes

function well when polarized with a potential of 0.75 volts,

it is not necessary to produce a characteristics curve. The

electrode is stabilized at the operating voltage (normally

0.75) at a temperature at which measurements are made for

at least two hours. It is important to take extreme care in

nandling the electrodes. Electrodes maintenance techniques

42

are located in Appendix c.

Calibration

The probes are soaked in saline solution or in

distilled water before use. It is also possible to store

the probes in the saline solution. Storage techniques are

nighlighted by Cully (19).

Calibration is carried out at the same temperature as

the measurement media. A reference electrode is used in the

calibration media as well as in measurement media. Since

oxygen partial pressure and current have a linear

relationship, a two-point calibration suffices. However, a

three-point calibration should be done to ensure the

linearity.

·rhe first step in probe calibration is to warm up the

picoammeter for 20 minutes. It is also necessary to

calibrate the probe in saline solution and not in distilled

water since distilled water contains very few ions, and it

does not conduct electricity well. The calibration is done

using 21% oxygen (ambient room air) and 0% oxygen (100%

nitrogen) to produce two calibration points. This is done

oy bubbling higher level oxygen gas through the saline

solution containing the electrode for a period of 15

minutes. This will allow the solution to equilibrate with

the gas. Next step is to bubble 100% nitrogen until the

solution is saturated. This displaces the oxygen gas. The

picoammeter still displays a small residual current called

43

11 dark current". This small current is subtracted

electronically at the amplifier later.

'rhe reference electrode and microprobe are now placed

into the aerated saline solution and a voltage slowly turned

to 0.75 volts. A probe working properly will display a

reading of 10-10 amps - 10-12 amps on the picoammmeter. It

is important not to remove the reference electrode from the

solution before the microprobe. This may send a sudden surge

of current through the probe, separating the gold layer from

the woods metal, thus ruining the probe. Regardless of the

calibration methods chosen, electrodes do drift. So, it is

important to do additional calibration checks during the

experiment.

Electrodes should also be transferred as quickly as

possible from the calibration media to the measurement

media. If there are any temperature changes while

~ransferring, it will take several minutes to restabilize.

Polarization is temporarily stopped when electrode is

removed from the solution.

Laboratory Microprobing

After the calibration is done, the microprobe is

carefully lowered in the flow chamber, shown in Figure 11

until the electrical contact is made with the slime. This

can be viewed on the picoammeter. The probe is moved up and

down in cycles to confirm this location.

44

45

Figure 11. Flow Chamber

46

The flow chamber is made out of plexiglass.

Slimes (Algal layers) are grown on concentrated agar surface

in the flow chamber, since this kind of surface minimizes

the chance of microprobe breakage. Nutrient broth or Algal

gro concentrate is used to grow the algae. Since this is a

continuous media, it is necessary to maintain a low velocity

of the flowing media to reduce the shear on the algae

surface, and efficiently utilize the nutrient within the

medium. The chamber is raised slightly at the inlet end to

reduce pooling of the liquid and to maintain flow across the

surface.

The microprobe and silver/silver chloride reference

are connected to a voltage source, picoammeter and

micropositioners, which in turn are connected to the TI

personal computer for data acquisition and control. This is

illustrated in Figure 3. As in the calibration stage, a

voltage of 0.75 volts is applied across the microelectrode

and the reference electrode. At this stage, the molecular

oxygen breaks into ions which move in the electrical field

created. A picoammeter used in conjunction with the

microcomputer records the changes in the current. Oxygen

activity is linear with the current flow. The microprobe is

positioned with a micromanipulator which allows 3-axis

movement with a precision of 1 micron. The positioners have

a limit switch which enables them to stop after a maximum

movement of 3cm. This very important function of the

manipulators is incorporated in the computer program. It

47

prevents the microprobe to reach the bottom of the studying

media and thus, avoid its breakage.

The Ag/Agel reference electrode is approximately 7cm in

length. It is very important that the microelectrode set be

well shielded and grounded to minimize any electrical

interference. Co-axial low noise cable is used and is taped

down to-minimize vibrations that create stray signals.

8

7

6

!I

l
' 0

~ 4

z
w
L1
>-
)(
0 J
0 ...
>
d
"' 2 "' Ci

200

LIQUID

100 0

ll'HERF"ACE

Depth (Microns)

-100 -200

SLlhilE

Source: Whalen et al, "Microelectrode
Determination of Oxygen Profiles
in Microbial Systems", Environm
ental Science and Technology (1969)

Figure 12. Microprobe Measurements of
Dissolved Oxygen Concent
rations.

48

A typical profile of oxygen concentration with respect

~o the distance in the slime using air saturated substrate

is shown in Figure 12. This study done by Bungay, Sanders

and Whalen (10) involved lowering of the probe at 25 microns

increments at 30 second interval each. such studies

demonstrate the applicability of microelectrodes in direct

determination of oxygen concentration, and also the oxygen

and nutrient diffusivity coeffecients for the microbial

system. Mass transfer cosiderations are provided in

Appendix D.

CHAPTER VIII

OVERVIEW OF THE MICROPOSITIONERS PROGRAM

The program is written both in C and BASIC languages.

The program is listed in Appendix E.

The micropositioners are run and controlled by writing

command bytes to the boards Command Register, and by

writing data bytes and command parameters bytes to the

boards Data-In Register.

The following points are important for programing the

board.

Before each read or write of the Command or Data

Registers, the Status Register must be checked. The Status

Register can be read at any time.

Before starting a command, the Status Register must

indicate that the board is ready for a new command and a

check must be made to see that the Ready bit, bit 2 of the

Status Register, is set.

Data must not at any time be written to the Data-In

Register unless the Data-In full bit is clear, indicating

that the board is ready for data input. The Stop command is

a special case, and can be written to the Command Register

any time, without checking the Status Register and

regardless of the state of the board.

49

Valid data cannot be read from the Data-Out Register

unless the data out ready bit is set. The board will not

return to the ready state if data remains in the Data-Out

Register.

Thus considering all the points mentioned above, the

actual program is written in two parts. The first part sets

up the digital ports for output, and the second part writes

digital output immediate commands to the board. Each part

involves a sequence of operation. These operating sequences

are detailed below:

SET DIGITAL PORT FOR OUTPUT

1. Check Status Register and write command to Command

Register.

2. Check Status Register and write Digital Port Select to

Data-In Register.

3. If no external trigger, the board issues a software

~rigger.

4. If external trigger:

A. Wait at least 1 ms.

B. Issue external trigger.

~. If Digital Port Select equals 0 or 1:

A. DIO Port 0 or 1 is set to provide digital outputs.

6. If digital Port Select equals 2:

A. DIO ports 0 and 1 are set to provide digital

outputs.

so

7. Perform a WRITE DIGITAL OUTPUT IMMEDIATE operating

sequence, specifying a data byte value of 0 to clear the

newly enabled output port.

WRITE DIGITAL OUTPUT IMMEDIATE

1. Check Status Register and perform a SET DIGITAL PORT FOR

OUTPUT command to set the port or ports used for output.

~. Check Status Register and write command to Command

Register.

J. Check Status Register and write Digital Port Select

to the Data-In Register.

4. Check Status Register and data for DIO port O or 1 to

Data-In Register.

~. If Digital Port Select equals 2:

A. Write data for DIO port 1 to Data-In Register.

6. If no external trigger, the board issues a software

trigger.

7. If external trigger:

A. Wait at least 1 ms.

B. Issue external trigger.

8. If Digital Port Select equals 0 or 1:

A. Check Status Register and write data to Data-In

Register.

9. If Digital Port Select equals 2:

A. Check Status Register and write data for Port O to

Data-In register.

51

B. Check Status Register and write data for Port 1 to

Data-In Register.

52

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

1. A real-time computer controlled positioning system

has been designed and built, using the state of the art

micropositioners. The system controlled by Texas

Instrument's professional computer has been tested and works

satisfactorily with respect to the micro movement of the

probe.

2. A software package has been developed in C and BASIC

languages. The package is easy to use and may be

conveniently combined with other available packages to expand

the current capabilities of the system.

3. C language is sophisticated as well as convenient in

data acquisition and control aspects of the system. Basie's

Input/Output functions have proved to be very useful.

RECOMMENDATIONS

1. The developed computer package, when used, prompts

the user to provide an external trigger to move the position

of the microprobes. This trigger may be provided through

another software package. Such a feature is desirable to

53

make micropositioning of the probe a function of the trend

analysis of the measurements. For instance, the position of

the microprobe can be made a function of the oxygen

concentration with time. This would be the basis for

automatic feedback to control the amount of oxygen supplied

to a biological or a chemical system.

2. All the equipment used in building the system is

designed for IBM personal computers only. However, they are

controlled by a TI personal computer, which is not completely

compatible with parts designed for IBM machines. This was

accomplished by emulating the TI computer to work like an IBM

computer. Most software packages available in the market are

IBM compatible and may not work even if TI is emulated as an

IBM machine. Consequently, controlling the whole system with

an IBM computer would be more advantageous in the long run.

3. If an IBM computer is eventually installed in place

of the TI, care should be taken to ensure that I/O addresses

of the measuring and the sensing systems do not interfere

with the I/O mapping of the IBM personal computer.

54

CHAPTER X

SUGGESTED APPLICATIONS

l. For delicate.and accurate positioning of any sensing

device for a particular measurement.

2. Study of the fundamental mechanism of the growth of

micro-organisms. This will better define the kinetics of

growth and metabolism of slime organisms in water bodies and

waste water systems.

3. Study of corrosion mechanisms and developing rapid

methods for identifying microbiologically innf luenced

corrosion. On-line detection and trend analysis of the

microbiological and chemical systems will help.

4. Measureing the effect of fouling in Heat

Exchangers.

~. Measureing the cell activity as a function of their

immediate environment.

6. Precise measurements of the interfacial mass

transfer can be made with ultra microprobes. This

information would be valuable in improving equipment design

and performance.

7. Considerable insight into mass tranfer to and within

microbial slime films can be obtained from steady state and

trom dynamic measurements of dissolved oxygen.

55

8. The dynamic method presented here, for measuring

oxygen transfer coefficients, has a potential to provide more

consistent results.

9. This technique adds one more dimension to the study

of turbulent mass transfer in addition to conventional

methods such as hot film or wire anemometry, interferometry,

and holography.

10. This technique can also be applied to investigate

the surface region of the liquid, which has been difficult so

far.

11. Many different models can be checked in this way

and, above all, an interfacial mass transfer mechanism can be

elucidated which can be directly used in improving the

performance of existing two-phase contactors or designing new

mass transfer devices.

12. Unsteady state measurements are real difficult to

make and a real time operation has a potential to make point

concentration measurements in real time.

56

A SELECTED BIBLIOGRAPHY

1. Khuri, R. N. Ion-Selective electrodes in biomedical
research In: Ion-Selective electrodes, R. A.
Durst (editor) National Bureau of Standards Special
Publication 314 November (1969).

2. Kim, N. K. and D. w. Stone. Organic Chemicals and
Drinking Water. New York State Department of Health
\undated).

3. Dowben, R. M. and J. E. Rose. A Metal Filled
Microelectrode, Scierice 118: 22-24 (1953).

4. Whalen, W. J., J. Riley and P. Nair. A Microelectrode
for Measuring Intracellular po2 , ~ournal ~pplied
Physiology, 23, 798 (1967).

~. Whalen, W. J., P. Nair and R. A. Ganfield. Measurements
of Oxygen Tension in Tissues with a Micro Oxygen
Electrode, Microvascular Research 5: 254-262 (1973).

6. Berman, H. and M. Herbert (editors). Ion-Selective
Microelectrode, Proceeding of a Workshop on Ion
Selective Microelectrodes, Plenum Press, New York
(1974).

7. Spande, J. I., W. J. Whalen and D. Buerk. Flow Through
no 2 Sensor, JEPT, vol. 7, No. 1: 4-9 (1980).

8. Revsbech, N., J. Sorensen, T. Blackburn and J. Lomholt.
Distribution of Oxygen in Marine Sediments Measured
with Microelectrodes, Limnology and Oceanography
25(3): 403-411 (1980).

9. Revsbech, N., B. Jorgensen and T. Blackburn. Oxygen in
the Sea Bottom Measured with a Microelectrode,
?cience 207: 1355-1356 (1980).

10. Whalen, W. J., H. R. Bungay III and W. M. Sanders III.
Microelectrode Determination of Oxygen Profiles in
Microbial Slime Systems, Environmental Science and
Technology 3: 1297 (1969). ---

11. Bungay III, H. R., w. J. Whalen and w. M. Sanders III.
Microprobe Techniques for determining Diffusivities
and Respiration Rates in Microbial Slime Systems,

57

Biotechnology and Bioengineering 11: 765 (1965).

12. Bungay III, H. R., w. M. Sanders III and w. J. Whalen.
oxygen Transfer at the Microscopic level. 160th
National A.C.S Meeting, Division of Microbial
Chemistry and Technology, Chicago (1970).

13. Chen, Y. s. Microelectrode Studies of Oxygen Transfer
in Microbial Slime, PH. D Thesis, R.P.I. (1979).

14. Chen, Y. s. and H. R. Bungay. Microelectrode Studies of
oxygen Transfer in Trickling Filter Slimes
Manuscript for American Chemical Society Meeting,
Washington, D.C. (1979).

15. Bungay III, H. R. and Y. s. Chen. Oxygen Transfer in
Photosynthetic Slimes. Manuscript for American
Chemical Society National Meeting, Miami (1978).

16. Drislane, A. M. and H. R. Bungay. Microelectrode
Measurements of Oxygen Profiles in Activated Sludge
Floes, not published yet (1982).

17. Huang, M. Y. and H. R. Bungay III. Microprobe
Measurement of Oxygen Concentration in Mycelail
Pellets. Biotechnology and Bioengineering 15: 1183
(1973).

18. Cully, D. T. Masters Thesis Work, R.P.I. New York,
(1982).

19. Bungay III, H. R. and D. M. Harold, Jr .. Simulation of
Oxygen Transfer in Microbial Slimes. Biotechnology
and Bioengineering. 13: 569(1971).

20. Bicher, H. I. and M. H. Kinsley. Brain Tissue
Reoxygenation Time, Demonstrated With a New
Ultramicro oxygen Electrode. ~ournal of Applied
Physiology 28: 387(1970).

58

!!!!

APPENDIXES

59

APPENDIX A

IEEE 488 CONTROLLER DRIVERS

IEEE 488 controller drivers and files contained in

Ziatech's disk for ZT 1444 GPIB and multifunction I/O board

are listed as follows. Also a program called XXTEST.exe

interactively gives control of the bus to the computer. All

the function modules listed below are incorporated in this

program.

ZT 1444 GPIB Basic and C Language Drivers

Driver Name

bust at

cmd

devclr

doc

eoi

init

.l.ocl

lokout

ppoll

9pold

ppollu

Function

Get bus status.

Send command.

Device clear.

Get software revision.

Supress EOI output.

Initialize the bus.

Set local state .

Lock out state.

Perform a parallel poll.

Parallel poll disable.

Parallel poll unconfigure.

60

recvdm

recvst

remote

senddm

sendst

setaddr

setp~i

set sec

spell

srqsta

term

i:imedy

i:rig

xf er

example

alarm

ins tat

loadc

readc

readl

synch

sys tic

Receive data with DMA.

Receive data.

Remote the bus.

Send data with DMA.

Send data.

Set I/O port address.·

Select primary port.

Select secondary port.

Serial poll.

Get SRQ status.

Set terminating char.

Set timeout delay.

Execute trigger.

Transfer between devices.

Example program.

Set alarm.

Get clock status.

Load counter.

Read counter.

Read latch.

Synchronize.

System tic.

The Following highlights the installed IEEE

board's capabilities.

IEEE bus is a listener, talker and controller.

Can control upto 15 other IEEE-488 compatible

61

62

devices.

Each controller occupies one Input/Output slot in the

TI PC.

Fully compatible with IEEE-488 1978 standards.

OMA channel user selectable.

Eight Input/Output port addresses.

Interrupt enabling and disabling.

System controller enabling and disabling.

No jumper changes need be made when used.

The board has been installed with the following

Input/Output address dip switch configuration.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

SWl I * ~ * * * SW2 x * * * * I
x x * * * x I

I
I
I

APPENDIX B

SINGLE OPERATION COMMANDS

1. Reset.

L. Clear Error.

3. Read Error Register.

4. Set Internal Clock.

::i. Stop.

6. Test.

i . Set Digital Port for

8. Set digital port for

Input.

Output.

9. Read digital Input Immediate.

10. Write Digital Output Immediate.

11. Write D/A Immediate.

12. Set D/A Parameters.

13. Read A/D Immediate.

14. Set A/D Parameters.

63

APPENDIX C

MICROPROBE MAINTENANCE

A. §torage: Microelectrodes should either be stored in

saline solution or in a dust free container. Care

should be taken to see that the tips are not touching

any surface. Contact with any surface can result in

microprobe breakage.

B. Cleaning: 723 oxygen microelectrodes can not be used

indefinitely without some biomass build-up or

contamination in the tip. The probe can be used a

number of times if proper care is taken. After use, the

tip of the electrode is submerged in de-ionized water

for 15-30 minutes. Following this, there are three more

steps for cleaning the probes.

l. Put a drop of water on a kimwipe.

2. Hold the wet spot of the tissue folded between the thumb

and the index finger.

3. Pull the electrode through these fingers, being very

careful not to snap the tip by bending the probe.

Fragility of the Probes

'rhe main disadvantage of using the microprobe is the

fragility of the instrument. Extreme care is necessary in

64

handling the electrodes, as mechanical contact with

materials can easily break the tip. When bubbling gases

through test solutions to calibrate the electrode, it is

advantageous to make certain that the tip is not directly in

the flow of bubbles, as this can create breakage. Other

factors that can cause breakage are,

continuous use over extended periods of time

sneezing or sudden movement of the probe in hand

shipping hazards

probing too far in the test medium and hitting the hard

bottom surface.

65

APPENDIX D

THE DIFFUSION EQUATIONS

The diffusion equations are presented here.

Consider an element of slime parallel to the slime-medium

interface. The mass transfer equations for the system can

be written for rectangular coordinates as follows,

2 2 2
0 c 0 c 0 c

D [ox2 + 8Y7 + ~] + R (D-1)

neglecting the influence of velocity terms, Equation (D-lJ

becomes,

oc
at

where,

But in

nence

oc
at

D

R =
the

R is

D [

(D-2)

rate of generation.

present system, oxygen is consumed in the

negative (-R) •

o2 c
2 2

+ 0 c + 0 c
6? 8Y7 oz z] - R (D- 3)

Neglecting the diffusion in Y and Z directions,

Equation (D-3) can be written as,

QC
at (D-4)

Since inside film is in steady state,

66

system,

oc - = 0 at

t:herefore,

2
D [cS c w-]

(D-5)

R (D- 6)

Now diffusivity D, can be assumed to be constant.

Then, partial equation becomes total differential equation

and Equation (D-6) becomes,

R
D (D-7)

Integrating Equation (D-7)

de
dx

R
D x + K (D- 8)

where K = constant of integration.

Now D can be found by plotting dc/dx versus X. It will

oe a straight line as suggested by Equation (D-8). Hence,

t:he slope of the straight line will be R/D. Knowing R, the

rate of oxygen uptake, D can be found from the slope.

·rhe local mass transfer coefficient can be obtained

from the following equation,

(D- 9)

where Ci is the concentration at the interface and c0 is

the bulk concentration.

67

10
20
30
40
50

60
70
80
90
100
110

120
130

140
150

160
170
180
190
200
210
220
230
240
250
260

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

APPENDIX E

LISTING OF PROGRAMS

SET DIO FOR OUTPUT

A Program to set DIO for output.

This is a program to run the micropositioners. As this program
sets the DIO for output, it needs to be run before the
WRITE DIGITAL PORT IMMEDIATE program which follows.

This program is written in BASIC language. It can be used
to move the micropositioners with a precision of 1 micron in
any of the three directions--X, Y or Z. Each single step
corresponds to 1 micron.

The program asstUDes that there is a Data Translation's
2801 series board installed at the Base address of &H2EC.
A different Base address can be chosen, but since this is a
location in the TI professional computer's I/O space where the
board is addressed, care should be taken to see that this address
does not interfere with the I/O mapping of the TI computer.

The user is asked whether DIO port o, DIO port 1 or DIO
port 2 is to be written (note that port 2 is a way to specify
both port 1 and port 0).

Progranuning principles are couonented preceding each step.
This serves the purpose of doctUDentation for any further changes

270 CLS : PRINT
280 PRINT" A PROGRAM TO SET DIO FOR OUTPUT

290 PRINT" -------------------------------
300
310

11

PRINT" THIS PROGRAM ASSUMES THAT A DT 2801 SERIES BOARD IS INSTALLED.

320 PRINT" ---
330
340
350
360
370
380

11

11

PRINT" Please make sure to run this program before you run the
PRINT" WRITE DIGITAL OUTPUT IMMEDIATE PROGRAM.
PRINT : PRINT

11 Define constants and variables: Definitions are used to specify

68

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

11 the addresses of the Cormuand Register, the Status Register, the
1 1 Data_In Register and the Data-Out Register. Lines 510 530
11 define Hex values which when used with a 1WAIT11 cormuand,
1 1 indicate whether a particular bit in the Status Register is set or
11 cleared. Cstop is defined as the Hex value F. This is the Connnand
11 byte value for stop. Similarly, other Hex values are used to define
11

DEFINT A-Z
BASE.ADDRESS &H2EC
COMMAND.REGISTER BASE.ADDRESS + 1
STATUS.REGISTER BASE.ADDRESS + 1
DATA.REGISTER BASE.ADDRESS
COMMAND.WAIT &H4
WRITE.WAIT &H2
READ.WAIT &HS

11

CCL EAR &Hl
CERROR &H2
CS OUT &HS
CSTOP &HF

EXT.TRIGGER &HBO
MENU$ 11EPOO.BAS11

11

620 11 Check for legal Status Register.
630
640
650
660
670
680

11

11

11

11

STATUS = INP(STATUS.REGISTER)
IF NOT((STATUS AND &H70) = 0) THEN GOTO 1650

690 11 Stop and clear the DT2801.
700
710

720

730
740
750
760
770

780
790
800
810
820
830
840
850
860
870
880
890
900
910

11

11

11

11

11

11

11

OUT COMMAND.REGISTER, CSTOP
TEMP = INP(DATA.REGISTER)
WAIT STATUS.REGISTER, COMMAND.WAIT
OUT COMMAND.REGISTER, CCLEAR

INPUT 11 Set DIO Port 0, 1 or 2 for OUTPUT11 ;DIOPORT
IF DIOPORT >= 0 AND DIOPORT =< 2 THEN GOTO 820

PRINT : PRINT II

GOTO 760
Please respond with O, 1 or 2 only."

PRINT " Are you sure you want to set DIO Port ";DIOPORT;
INPUT 11 for OUTPUT11 ; Y$
IF Y$ 11Y11 OR Y$ 11y11 THEN GOTO 900
IF Y$ "N" OR Y$ = 11n11 THEN GOTO 1740

PRINT : PRINT II

GOTO 820

PRINT

Please respond with 1 Y1 or 1 N1 only."

69

920
930
940
950
960
970 I I

INPUT II

IF Y$
IF Y$

Wait for External Trigger (Y/N) 11 ;Y$
11Y11 OR Y$ 11y11 THEN GOTO 970
11N11 OR Y$ = 11n11 THEN GOTO 1170

PRINT PRINT II

GOTO 900
Please respond with 1Y1 or 1N1 • 11

980 1 1 Write SET DIGITAL PORT FOR OUTPUT WITH TRIG connnand.

990 II ---

1000 I I

1010 WAIT STATUS.REGISTER, COMMAND.WAIT
1020 OUT COMMAND.REGISTER, CSOUT + EXT.TRIGGER
1030 I I

1040 11 Write DIGITAL PORT SELECT byte.

1050 II ----------------------------------

1060 I I

1070 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
1080 OUT DATA.REGISTER, DIOPORT
1090 I I

1100 1 1 Wait for EXTERNAL TRIGGER.

1110 II ---------------------------

1120 I I

1130 PRINT : PRINT " Waiting for EXTERNAL TRIGGER."
1140 WAIT STATUS.REGISTER, COMMAND.WAIT
1150 PRINT 11 EXTERNAL TRIGGER Received."
1160 PRINT : GOTO 1290
1170 11

1180 1 1 Write SET DIGITAL PORT FOR OUTPUT command.

1190 II ---

1200 I I

1210 WAIT STATUS.REGISTER, COMMAND.WAIT
1220 OUT COMMAND.REGISTER, CSOUT
1230 I I

1240 11 Write DIGITAL PORT SELECT byte.

1250 II --------------------------------

1260 11

1270 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
1280 OUT DATA.REGISTER, DIOPORT
1290 I I

1300 11 Check for ERROR.
1310 I I

1320 I I

1330
1340
1350
1360 11

1370
1380
1390
14QQ I I

WAIT STATUS.REGISTER, COMMAND.WAIT
STATUS = INP(STATUS.REGISTER)
IF (STATUS AND &HBO) THEN GOTO 1400

PRINT
PRINT II SET DIO FOR OUTPUT Operation Complete"
GOTO 1740

1410 11 Fatal board error.
1420 I I

1430 PRINT
1440 PRINT "FATAL BOARD ERROR"

70

1450
1460
1470
1480
1490
1500
1510 I I

1520 I I

1530 I I

1540 I I

PRINT "STATUS REGISTER VALUE IS ";HEX$(STATUS);" HEXIDECIMAL"
PRINT : BEEP : BEEP : GOSUB 1510
PRINT "ERROR REGISTER VALUES ARE:"
PRINT II BYTE 1 - II ;HEX$ (ERROR!) ; II HEXIDECIMAL"
PRINT II BYTE 2 - II ; HEX$ (ERROR2) ; II HEXIDECIMAL II
PRINT GOTO 1740

Read the Error Register.

1550 OUT COMMAND.REGISTER, CSTOP : TEMP INP(DATA.REGISTER)
1560 I I

1570 WAIT STATUS.REGISTER, COMMAND.WAIT
1580 OUT COMMAND.REGISTER, CERROR
1590 I I

1600
1610
1620
1630
1640
1650 I I

1660 I I

1670 I I

1680 I I

1690
1700
1710
1720
1730 II

1740
1750 1 I

1760
1770
1780
1790 I I

WAIT STATUS.REGISTER, READ.WAIT
ERROR! = INP(DATA.REGISTER)
WAIT STATUS.REGISTER, READ.WAIT
ERROR2 = INP(DATA.REGISTER)
RETURN

Illegal Status Register.

PRINT
PRINT "FATAL ERROR - ILLEGAL STATUS REGISTER VALUE"
PRINT "STATUS REGISTER VALUE IS ";HEX$(STATUS);" HEXIDECIMAL"
BEEP : BEEP

PRINT : PRINT

INPUT II

IF Y$
IF Y$

Run program again (Y/N)";Y$
"Y" OR Y$ "y" THEN RUN
"N" OR Y$ = "n" THEN GOTO 1820

1800 PRINT PRINT II

1810 GOTO 1750
Please respond with 'Y' or 'N' ."

1820 I I

1830
1840
1850
1860 I I

INPUT II

IF Y$
IF Y$

Return to MENU (Y/N)";Y$
"Y" OR Y$ "y" THEN RUN MENU$
"N" OR Y$ = "n" THEN GOTO 1890

1870 PRINT : PRINT II

1880 GOTO 1820
Please respond with 'Y' or 1 N1 • 11

1890 END

71

10
20
30
40
50
60
70
80
90
100
llO
120
130

140

150
160
170

180

WRITE DIGITAL OUTPUT IMMEDIATE

1 1 WRITE DIGITAL OUTPUT IMMEDIATE program

I I --------------------------------------

11 Initial doctunentation of this program is same as that for
1 1 the SET DIO for OUTPUT program. Same definitions are used.
11 After setting the DIO port for output, this program is run to
''actually move the micropositioners with a precision of 1 micron.
11 The program prompts for the ntunber of steps to be moved in the desired
1 1 direction. Delay is the time between each step. The smaller this
'' ntunber is, the faster the positioners move. Please make note that
1 ' a very short delay can cause the stepper motors to skip a couple
1 ' steps and lose the precision. The recommended delay for the
11 compiler version of the program is 85.

I I

CLS
PRINT

PRINT 11THIS PROGRAM MOVES THE MICROPOSITIONERS WITH THE PRECISION
PRINT 11 OF ONE MICRON.

PRINT II --

190 PRINT 11
--

200 PRINT "BEFORE YOU RUN THIS PROGRAM PLEASE MAKE SURE TO SET
210 PRINT " THE DIGITAL PORT FOR OUTPUT

220 PRINT "--
230 PRINT
240
250
260
270
280
290
300

310

320
330
340
350
360

370
380
390
400
410
420
430

440

11

11

11

11

11

11

DEFINT A-Z
BASE.ADDRESS &H2EC
COMMAND.REGISTER BASE.ADDRESS +

STATUS.REGISTER BASE.ADDRESS +
DATA.REGISTER BASE.ADDRESS
COMMAND.WAIT &H4
WRITE.WAIT &H2
READ.WAIT &HS

CC LEAR &Hl
CERROR &H2
CDIOOUT &H7
CSTOP &HF

EXT.TRIGGER &HBO

MENU$ "EPOO.BAS"

Check for legal Status Register.

STATUS = INP(STATUS.REGISTER)

1
1

72

450 IF NOT((STATUS AND &H70) = 0) THEN GOTO 2850
46Q II

470 11 Stop and clear the DT2801.
480 I I

490 OUT COMMAND.REGISTER, CSTOP
500 TEMP = INP(DATA.REGISTER)
510 WAIT STATUS.REGISTER, COMMAND.WAIT
520 OUT COMMAND.REGISTER, CCLEAR
530 DIOPORT = 0
540 DIO.DATAO 255
550 GOSUB 1610
560 I I

1 write value to I/O port

570 I 1 ---

580 I I s T A R T T H E M A I N p R 0 G R A M

590 11

600 INPUT " It of steps " ,NUMSTEPS
610 INPUT "delay ",!DELAY
620 INPUT 11 foward or reverse 11 , FRV$
630 IF FRV$ = "F" OR FRV$ = 11f 11 THEN GOSUB 3100
640 IF FRV$ = "R" OR FRV$= 11r 11 THEN GOSUB 3220
650 GOTO 580
66Q I I

670 INPUT 11 Write DIO Port 0,1 or 2";DIOPORT
680 IF DIOPORT >= 0 AND DIOPORT =< 2 THEN GOTO 720
690 I I

700
710
720 11

730
740
750 II

PRINT : PRINT II

GOTO 660

PRINT
PRINT II

Please respond with O, 1 or 2 only."

Legal data values are in decimal, 0 through 11 ;

760 IF DIOPORT < 2 THEN PRINT 11 255. 11

770 IF DIOPORT 2 THEN PRINT 11 65535. 11

780 PRINT 11 Data value to write to DIO Port ";
790 PRINT DIOPORT;
800 INPUT DATA.VALUE#
810 DATA. VALUE/t = INT(DATA. VALUE/t)
820 II

830 IF DATA.VALUE# < 0 THEN GOTO 870
840 IF (DATA.VALUE# > 255 AND DIOPORT < 2) THEN GOTO 870
850 IF DATA.VALUE# > 65535! THEN GOTO 870
860 GOTO 900
870 I I

880
890

PRINT : PRINT 11

GOTO 720
Please use legal value."

900 I I

910 1 1 Decide which port values to print out for user check.
920 I I

930 IF DIOPORT
940 IF DIOPORT
950 IF DIOPORT
96Q I I

0 THEN GOTO 960
1 THEN GOTO 1050
2 THEN GOTO 1140

970 ' 1 Print out data value, port 0.

73

980 I I

990 PRINT
1000 DIO.DATAO =DATA.VALUE# : GOSUB 2020
1010 PRINT 11 Port 0 value = ";DIO.DATAO;" Decimal, ";
1020 PRINT HEX$(DIO.DATAO) ;" Hexidecimal, ";
1030 PRINT BINARYO$;" Binary."
1040 PRINT : GOTO 1330
1050 I I

1060 1 1 Print out data value, port 1.
1070 I I

1080 PRINT : DIO.DATAl = DATA.VALUE#
1090 DIO.DATAO =DATA.VALUE# : GOSUB 2080
1100 PRINT " Port 1 value = ";DIO.DATAl;" Decimal, ";
1110 PRINT HEX$(DIO.DATA1);" Hexidecimal, ";
1120 PRINT BINARY1$;" Binary."
1130 PRINT : GOTO 1330
1140 I I

1150 11 Print out data value, port 2.
1160 I I

1170 PRINT : DIO.DATAl = INT(DATA.VALUE#/256)
1180 DIO.DATAO = DATA.VALUE# - DIO.DATAl * 256
1190 GOSUB 2020 GOSUB 2080
1200 I I

1210
1220
1230
1240 I I

1250
1260
1270
1280 I I

PRINT " Port O value = ";DIO.DATAO;" Decimal, ";
PRINT HEX$(DIO.DATAO);" Hexidecimal, ";
PRINT BINARYO$;" Binary."

PRINT 11 Port 1 value = ";DIO.DATAl;" Decimal, ";
PRINT HEX$(DIO.DATA1);" Hexidecimal, ";
PRINT BINARY!$; 11 Binary."

1290 DIO.DATA2# = DIO.DATAl * 256 + DIO.DATAO
1300 PRINT 11 Port 2 value = ";DIO.DATA21t;" Decimal, ";
1310 PRINT HEX$(DIO.DATA211);" Hex, ";
1320 PRINT BINARY!$;" - ";BINARYO$;" Binary."
1330 I I

1340 ' 1 Check these values with user.
1350 I I

1360 PRINT " Are these the correct values to write to ";
1370 PRINT "digital port ";DIOPORT;" (Y/N)";
1380 INPUT Y$
1390 I I

1400
1410
1420 I I

IF Y$
IF Y$

"Y" OR Y$
11N11 OR Y$

1430
1440
1450 I I

PRINT : PRINT 11

GOTO 900

"y" THEN GOTO 1450
"n" THEN GOTO 2930

Please respond with 1Y1 or 1N1 only."

1460 1 1 Ask user to make external trigger decision.
1470 I I

1480 PRINT
1490
1500

INPUT II

IF Y$
Wait for External Trigger (Y/N)";Y$

"Y" OR Y$ = "y" THEN GOTO 1540

74

1510 IF Y$ = "N" OR Y$ "n" THEN GOTO 1540
1520 PRINT: PRINT" Please respond with 1 Y1 or 1N'."
1530 GOTO 1490
1540 I I

1550 1 1 Set up collllllaiid for EXTERNAL TRIGGER.

1560 II -----------------------------------

1570 I I

1580 IF Y$ = "Y" OR Y$ = "y" THEN COMMAND = EXT.TRIGGER
1590 IF Y$ = "N" OR Y$ = "n" THEN COMMAND = 0

1600 11 ---

1610 II R 0 u TINE F 0 R 0 u T p u T IMMEDIATE

1620 11

1630 1 1 Write WRITE DIGITAL OUTPUT IMMEDIATE.
1640 I I

1650 WAIT STATUS.REGISTER, ·COMMAND.WAIT
1660 OUT COMMAND.REGISTER, CDIOOUT + COMMAND
1670 I I

1680 11 Write DIGITAL PORT SELECT byte.
1690 I I

1700 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
1710 OUT DATA.REGISTER, DIOPORT
1720 I I

1730 11 Write the first data byte.
1740 I I

1750
1760
1770

WAIT STATUS.REGISTER,
OUT DATA.REGISTER,
RETURN : END

WRITE.WAIT, WRITE.WAIT
DIO.DATAO

1780 I 1 ------------------------- ROUTINE ENDS------------------------
1790 11 If Port 2, write second data byte.
1800 I I

1810 IF NOT(DIOPORT = 2) THEN GOTO 1840
1820 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
1830
1840 I I

OUT DATA.REGISTER, DIO.DATAl

1850 1 1 Wait for EXTERNAL TRIGGER.
1860 I I

1870 IF Y$ "N" OR Y$ = "n" THEN GOTO 1920
1880 I I

1890
1900
1910
1920 I I

PRINT : PRINT II Waiting for EXTERNAL TRIGGER."
WAIT STATUS.REGISTER, READ.WAIT
PRINT II EXTERNAL TRIGGER Received." : PRINT

1930 11 Check for ERROR.
1940 I I

1950
1960
1970
1980 I I

1990
2000

WAIT STATUS.REGISTER, COMMAND.WAIT
STATUS = INP(STATUS.REGISTER)
IF (STATUS AND &H80) THEN GOTO 2590

PRINT
PRINT II WRITE DIGITAL INPUT Operation Complete"

2010 GOTO 2930
2020 I I

2030 11 Decode DIO value, port 0.

75

76

2040 11

2050 HEADER$ = II DIO PORT o, BIT II

2060 TEST = DIO.DATAO GOSUB 2140
2070 BINARYO$ = BINARY$: RETURN
2080 11

2090 I I Decode DIO value, port 1
2100 I I

2110 HEADER$ = II DIO PORT 1, BIT II

Zl20 TEST = DIO.DATAl GOSUB 2140
2130 BINARY!$ = BINARY$: RETURN

Z140 11

Z150 11 Decode set and clear bits of TEST.
2160 I I -----------------------------------
Z170 11

2180 IF (TEST AND &Hl) TiiEN PRINT HEADER$; "O SET",
2190 IF (TEST AND &Hl) = 0 THEN PRINT HEADER$;"0 CLEAR",
2200 IF (TEST AND &Hl) THEN BINARY$ = "1"
ZZlO IF (TEST AND &Hl) = 0 TiiEN BINARY$ = 11011

Z2ZO I I

ZZ30 IF (TEST AND &HZ) THEN PRINT HEADER$; 11 1 SET"
ZZ40 IF (TEST AND &HZ) = 0 THEN PRINT HEADER$;"! CLEAR"
2Z50 IF (TEST AND &HZ) THEN BINARY$ = 11111 + BINARY$
ZZ60 IF (TEST AND &HZ) = 0 THEN BINARY$ = "O" + BINARY$
ZZ70 11

Z280 IF (TEST AND &H4) TiiEN PRINT HEADER$;"Z SET",
2290 IF (TEST AND &H4) = 0 THEN PRINT HEADER$;"Z CLEAR",
2300 IF (TEST AND &H4) THEN BINARY$ = 11 111 + BINARY$
Z310 IF (TEST AND &H4) = 0 THEN BINARY$ = 11011 + BINARY$
23ZO 11

2330 IF (TEST AND &HS) THEN PRINT HEADER$; 113 SET"
Z340 IF (TEST AND &HS) = 0 THEN PRINT HEADER$;"3 CLEAR"
2350 IF (TEST AND &HS) TiiEN BINARY$ = 11 111 + BINARY$
Z360 IF (TEST AND &HS) = 0 THEN BINARY$ = 11011 + BINARY$
2370 11

Z3SO IF (TEST AND &HlO) THEN PRINT HEADER$;"4 SET",
2390 IF (TEST AND &HlO) = 0 THEN PRINT HEADER$; 114 CLEAR",
2400 IF (TEST AND &HlO) THEN BINARY$ = 11 111 + BINARY$
2410 IF (TEST AND &HlO) = 0 THEN BINARY$ = 11011 + BINARY$
Z420 11

2430 IF (TEST AND &H20) THEN PRINT HEADER$;" 5 SET"
Z440 IF (TEST AND &H20) = 0 THEN PRINT HEADER$;"5 CLEAR"
2450 IF (TEST AND &H20) THEN BINARY$ = 11111 + BINARY$
2460 IF (TEST AND &H20) = 0 THEN BINARY$ = "O" + BINARY$
Z470 11

2480 IF (TEST AND &H40) THEN PRINT HEADER$;"6 SET",
2490 IF (TEST AND &H40) = 0 THEN PRINT HEADER$;"6 CLEAR",
Z500 IF (TEST AND &H40) THEN BINARY$ = 11 111 + BINARY$
Z510 IF (TEST AND &H40) = 0 THEN BINARY$ = "O" + BINARY$
Z5ZO 11

2530 IF (TEST AND &HBO) THEN PRINT HEADER$;"7 SET"
2540 IF (TEST AND &H80) = 0 THEN PRINT HEADER$;"7 CLEAR"
Z550 IF (TEST AND &HSO) THEN BINARY$ = 11 111 + BINARY$
Z560 IF (TEST AND &HSO) = 0 THEN BINARY$ = "O" + BINARY$

2570 I I

2580 PRINT : RETURN
2590 I I

2600 11 Fatal board error.
2610 I I

2620 PRINT
2630 PRINT "FATAL BOARD ERROR"
2640 PRINT "STATUS REGISTER VALUE IS ";HEX$(STATUS);" HEXIDECIMAL"
2650 PRINT : BEEP : BEEP : GOSUB 2700
2660 PRINT "ERROR REGISTER VALUES ARE:"
2670 PRINT II BYTE 1 - II ;HEX$(ERROR1) ;" HEXIDECIMAL"
2680 PRINT II BYTE 2 - II ;HEX$(ERROR2) ;" HEXIDECIMAL"
2690 PRINT GOTO 2930
2700 I I

2710 1 ' Read the Error Register.

2720 I I -------------------------

2730 II

2740 OUT COMMAND.REGISTER, CSTOP : TEMP INP(DATA.REGISTER)
2750 I I

2760 WAIT STATUS.REGISTER, COMMAND.WAIT
2770 OUT COMMAND.REGISTER, CERROR
2780 I I

2790
2800
2810
2820
2830
2840 I I

2850 I I

WAIT STATUS.REGISTER, READ.WAIT
ERROR! = INP(DATA.REGISTER)
WAIT STATUS.REGISTER, READ.WAIT
ERROR2 = INP(DATA.REGISTER)
RETURN

2860 11 Illegal Status Register.
2870 I I

2880
2890
2900
2910
2920 I I

2930
2940 II

2950
2960
2970
2980 I I

PRINT
PRINT "FATAL ERROR - ILLEGAL STATUS REGISTER VALUE"
PRINT "STATUS REGISTER VALUE IS ";HEX$(STATUS);" HEXIDECIMAL"
BEEP : BEEP

PRINT : PRINT

INPUT II

IF Y$
IF Y$

Run program again (Y/N)";Y$
"Y" OR Y$ "y" THEN RUN
"N" OR Y$ = "n" THEN GOTO 3010

2990 PRINT PRINT II Please respond with 1 Y1 or 1 N1 • 11

3000 GOTO 2940
3010 I I

3020
3030
3040

INPUT II

IF Y$
IF Y$

Return to MENU (Y/N)";Y$
"Y" OR Y$ "y" THEN RUN MENU$
"N" OR Y$ = "n" THEN GOTO 3080

3050 I I

3060 PRINT PRINT II

3070 GOTO 3010
3080 END

Please respond with 1 Y1 or 1 N1 • 11

3090 11 ---

77

3100 11 R 0 UT IN E F 0 R F 0 R WARD M 0 VE MEN T

3110 11

3120 FOR I = 1 TO NUMSTEPS
3130 DIO.DATAO = 21
3140 GOSUB 1610
3150 GOSUB 3340
3160 DIO.DATAO = 255
3170 GO SUB 1610
3180 GOSUB 3340
3190 NEXT I
3200 RETURN : END

3210 1 ---

3220 II R 0 u TINE F 0 R BA c Kw ARD M 0 v EM ENT

3230 1 ---

3240 FOR I = 1 TO NUMSTEPS
3250 DIO.DATAO = 42
3260 GOSUB 1610
3270 GOSUB 3340
3280 DIO.DATAO = 255
3290 GO SUB 1610
3300 GOSUB 3340
3310 NEXT I
3320 RETURN : END

3330 '---
3340 I I R 0 u T I N E F 0 R D E L A y

3350 '---
3360 FOR J = 1 TO !DELAY
3370 X = X+l : X = X-1
3380 NEXT J

3390 RETURN : END

78

A PROGRAM TO TEST THE IEEE-488 DRIVERS

,,.,
This program is used to test the Lattice c IEEE 488
drivers for the Ziatech ZT 1488 board. Each driver can
be tested by inputing the statement to be tested. Any
other required inputs are p~ompted for. To exit type
"end". In this version this program has been modified to change
arg form for term and strlen from pointer to value.

To verify operation of each of the routines a zr 488
analyzer or IEEE 488 instrument is used.

,., I

j:': FOR WRITING ANY MODULES TO "LISTEN", "TALK" OR CONTROL
THE IEE-488 BUS, IT IS BETTER TO BUY THE ZT 488 LOGIC
ANLYZER . This is required to debug the program. "'I

#include "stdio.h"
/.'include "ctype.h"

#define NREG 25 /* number of chars in time string */
/fdefine N 8097 />'< size of data buffers >':/

#define GETS(str) gets(str)
/fdefine GET!(i) scanf ("%d", &i) ;getchar()
/tdefine GETH(j) scanf ("%x", &j) ;getchar ()
/fdefine LF '\012' I"' line feed terminator string "'/
#define LINE_MODE 30
#define COL_MODE 1
/tdefine TRUE 1
lfdefine FALSE 0

extern ercode; /* set by 488 */
extern rcvlen; />': likewise >'</

extern primaryadr; />': GPIB I/O addresss "'I
extern clkadr; /:': Clock I/O address :':/
extern secondaryadr; /* zSBX I/O address */
extern year; />'< clock year "'/
extern delayconst; />': const for software delay :':/

char devlst[80) = {O};
int line = {1}; ,,., default is column mode >'</

int b_len;
int files = FALSE; />': flag for files command >'</

char ans[3];

79

I* space for both types of buffers */ int buffer[N};

char devdata[N];
int il = {3000};
int i2; />': temp

int iO = {O}; /*
int di5180 = {O};

/)'< initial timeout value 3 seconds>':/
location)':I

location containing a zero >':/

/>'< 5180 flag set false >':/

int found;

main (k, argv) int k; char *argv[];
{
char command[80};

char tim[NREG];
int i·

'

I* Now initialize various parameters within the driver.
Note, the I/O addresses can be changed. >':/

year = Ox3538; />': ascii code for '85')'</

delayconst = 42; /* const for IBM 4.7 MHz clock*/
clkadr = Ox240; />': clock I/O address)':/
primaryadr = Ox210; /)': GPIB I/O address)':/
secondaryadr = Ox220; /)'< zSBX I/O address >':/

I* If primaryadr or clkadr are changed form the defaults
then place a call to setaddr here. This will change
the factory default I/O addresses. >'</

timedy(il); />'< set initial time delay in case of init error '"I

i = l; />'< for init w/commands :':/
init(i); /:': always perform an init on entry>':/

if(ercode == 5) {
printf("\nTime out occurred during initialization. Turn on a device");
exit(l); />'< exit the program>':/

};
timedy(iO); />':restore time delay to forever 'i:/

term(LF); /)'< and set line feed as default terminator >'</

printf("\nFirst test routine must be 'devlst' to set a device address");
printf("\n'help' will provide a brief list of available commands.\n");

do {
printf ("\n enter routine to test - ");
do {

GETS (command);
} while (strlen(command) == O);
strlower(command); />'< everything lower case >'</
decode! (conunand);
if (found == 0) {

decode2 (command);
}

} while (strcmp (command, "end" != 0);
} />'< main >'</

80

decodel (conunand) char *conunand;
{

int datalen;

found = l;

if (strcmp(conunand, "help") == 0) {
printf("\n\t\t\tConunands are:");
printf("\nIEEE-488 Routines.");
printf("\n\tdevlst\'tset device address");
printf("\n\tinit\tinitialize (done automatically at start)");
printf("\n\tline\tset recvst output to line or col mode");
printf("\n\tsendst\tsend string to device");
printf("\n\trecvst\tretrieve data from device");

printf("\n\tremote\tenable remote programming");
printf("\n\tdevclr\tclear device");
printf("\n\tlocl\tset device to local");
printf (11 \n\ tspoll \ tperform serial poll (after srqsta)");
printf("\n\ttimedy\tsets timeout delay per handshake");
printf("\n\tsenddm\t\send string to device using dma");
printf("\n\trecvdm\tretrieve data from device using dma");

printf("\n\tsendbn\tsend binary data to device");
printf("\n\tsnddbn\tsend binary data to device using dma");

printf(11 \n\tterm\tchange default string terminator character");
printf("\n\tsetpri\tuse primary (default) IBM i/o port address(0210h)");

printf("\n\tsetsec\tuse secondary ZT 1488 IBM i/o port address (0220h)");
printf("\n\tsrqsta\treturns current srq status");

printf("\n\tlokout\tlocal lock out");
printf("\n\teoi\tsuppress eoi");
printf("\n\tbustat\tget bus status");

printf("\n\tfiles\tpermits storage of data in a disk file");
printf("\n\tppoll\treturn parallel poll status");
printf("\n\tppollu\tunconfigure for parallel poll");
printf("\n\tppolle\tenable parallel poll");
printf("\n\tppolld\tdisable parallel poll");

printf("\n\ttrig\tgroup execute trigger");
printf("\n\tsetaddr\tchange I/O addresses");

printf("\n\tdoc\tget version number");
printf("\n\tcmd\toutput IEEE 488 command");
printf("\n\txfer\ttransfer between devices");
printf("\nReal Time Clock Routines 'ZT 1488 1 • 11);

printf("\n\talarm\tset clock alarm");
printf("\n\tloadl\tload clock latches");
printf("\n\treadl\tread clock latches");

printf("\n\tloadc\tload clock counters");
printf("\n\treadc\tread clock counters");
printf("\n\tsystic\tset periodic tics");
printf("\n\tinstat\tget status\n");

return;
};

31

if (strcmp(command, "devlst") 0) {
getlist(devlst);
return;

};

if (strlen(devlst) == O) {
printf("\nDevice list must be set up before any other command.");
return;

};

if strcmp (command, "init") O)

{
int t;

printf (11 \ninit data - ");
GETI(t);
init (t);
}

else if (strcmp (command, "sendst") 0)
{
getdata(devdata);
sendst(devlst, devdata);
puts (devlst);
puts (devdata) ;
}

else if (strcmp (command, "sendbn") 0)
{
getdata(devdata);
b_len = strlen(devdata);
printf("\nbuffer length is %d. Do you wish to change it (y/n)? ");
GETS(ans);
if (tolower(ans[O]) == 'y') {
printf("\nEnter new length - ");
GETI (b_len);

}
sendbn(devlst, devdata, b_len);
puts (devlst) ;
puts (devdata);
}

else if (strcmp (command, "recvst") O)
{
int i
int actualen

printf("\ninput number of bytes - ");
GETI (datalen);

setstr (devdata, datalen < N ? datalen : N);
recvst (devlst, devdata);
printf ("\nnumber bytes requested = %d\n", datalen);

82

printf ("number bytes untransmitted %d\n", rcvlen);
actualen = datalen - rcvlen;
printf ("number bytes received %d\n", actualen);

prntdata(devdata,actualen,line);

}

else if (strcmp (command, "cmd") 0)
{
getdata (devdata);
cmd (devdata);
}

else if (strcmp (command, "xfer") 0)
{
xfer devlst);
}

else if (strcmp (command, "srqsta") 0)
{
int stat;

srqsta &stat);
printf "\nstatus %x\n", stat);
}

else if strcmp (command, "remote") 0)

{
remote (devlst);
}

else if (strcmp (command, "locl") 0)
{
locl (devlst);
}

else if (strcmp (command, "lokout") 0)
{
lokout();
}

else if strcmp (command, "devclr") 0)
{
devclr (devlst);
}

else if (strcmp (command, "trig") o)

trig (devlst);
}

else if (strcmp (command, "doc") 0)

{
char ver[35);

setstr (ver, 35);
doc (ver);
printf ("%s\n", ver);
}

else if strcmp (conunand, "eoi")
{
int t·

'

0)

printf (11 \nenter 1 for EOI, 0 to supress EOI - ");
GETI (t) ;

eoi (&t);
}

else if (strcmp (command, "bus tat") O)
{
int t;

bustat(&t);
printf (11 \n status
}

%x\n", t);

else if (strcmp (command, "term") == 0
{
printf("\n Enter terminating character - ");
ans[O) getche();
ans[l) ' ';
ans[2) O;
i2 = term (ans[O]);
printf("\nprevious terminating character was %02x (hex)", i2);
}

else if (strcmp (conunand, "timedy") 0)
{
int msecs;

printf("\nmilliseconds timeout - ");
GETI (msecs);
i2 = timedy (msecs);
printf("\nprevious value of timeout was %d millisec.", i2);
}

else if (strcmp (command, 11ppol111) 0)
{
int response;

ppoll (&response);
printf ("ppoll response
}

%x\n",response);

84

else
{
found o· '
}

if (ercode != 0)
{
printf ("\nerror code for %s is %d\n", command, ercode);
}

} /* decodel */

decode2 (command) char *command;
{

int dataleri';

found = l;

if (strcmp (command, "ppolld") 0)
{
ppolld (devlst);
}

else if (strcmp (command, "ppolle") 0)
{
int conf;

printf ("\nconfiguration data - ");
GET! (conf);
ppolle {devlst,conf);
}

else if (strcmp (command, "ppollu") 0)
{
ppollu ();
}

else if (strcmp (command, "spoll") 0)
{
int status[36];
char device[9]
int i;
int n = 10;

for (i = O; i < 36; i++)
status[i] = O; I* zero status array */

setstr (device, 8);
spoll (devlst, &status[l], device);

/)':

* don't bother displaying first srq if none were detected
:':/

if(device[Ol == 1 9 1 && device[l] == 1 9 1)

85

else
printf ("\nfirst device responding with SRQ is %s\n", device);

printf("\ndev#\thex\toctal\n");
for (i=l; i < n; i++)
printf("\n%d\t%x\t%o", i, status[i], status[i]);

}

else if (strcmp (conunand, "setpri") O)
{
setpri ();
}

else if (strcmp (connnand, "setsec") 0)
{
setsec ();
}

else if (strcmp (connnand, "setaddr") O)
{
int t;

printf {"\ncurrent GPIB I/O address is %x (hex), new hex value - ", primaryadr);
GETH { t);
primaryadr = t;
printf {"\n current clock I/O address is %x (hex), new hex value - ", clkadr);
GETH (t);
clkadr = t;

setaddr ();
}

else if (strcmp (conunand, "senddm") O)
{
getdata (devdata);
senddm {devlst,devdata);
puts (devlst);
puts (devdata);
}

else if (strcmp (connnand, "snddbn") 0)
{
getdata(devdata);
b_len = strlen{devdata);
printf{"\nbuffer length is %d. Do you wish to change it {y/n)? ");
GETS{ans);
if (tolower(ans[O]) == 'y') {
printf("\nEnter new length - ");
GET! { b_len);

}
snddbn{ devlst, devdata, b_len);
puts (devlst);

86

puts (devdata);
}

else if (strcrnp (command, "recvdm11) 0)

{
int i,j;
int actualen;
union {
char rdgc(2];
int rdgi;

} fix;
char itidx;
int itidi;

/* temp pointer */

printf ("\ninput number of data bytes - ");
GET! (datalen) ;
setstr (buffer, datalen < N ? datalen N);
recvdm (devlst, buffer);
printf ("\nnumber bytes requested = %d\n", datalen);
printf ("number bytes untransmitted %d\n", rcvlen);
actualen = datalen - rcvlen;
printf ("number bytes received = 9'od\n", actualen);
prntdata(buffer,actualen,line); /i: normal data output.>':/
}

else if (strcrnp (command, "loadc") O)
{
char string[NREG];

getdate (string);
loadc (string);
}

else if (strcrnp (command, "loadl") O)

}

{
char string(NREG];

getdate (string);
loadl (string);

else if (strcrnp (command, "readc") O)
{
char tim [NREG] ;

setstr (tim, NREG-1);
readc (tim) ;
pdate (tim) ;
}

else if (strcrnp (command, "readl") O)
{
char tim[NREG];

87

setstr (tim, NREG-1);
readl (tim) ;
pdate (tim) ;
}

else if (strcmp (co111111ru1d, "synch") 0)
{
synch();
}

else if (strcmp (co111111ru1d, "systic") 0)
{
int stat;

printf (11 \nperiodic value - ");
GETI (stat);
systic (stat);
}

else if (strcmp (connnand, "alarm") O)
{

char tim[NREG);

setstr (tim, NREG-1);
getdate (tim) ;
alarm (tim) ;
}

else if (strcmp (co111111ru1d, "instat") O)
{
int stat;

instat (&stat);
printf (11 \nstatus %02x (hex)", stat);
}

else if (strcmp (conunand, "end") 0)

else if (strcmp(co1IDDand, "line") == 0) {

}

printf("\n recvst data may be output in either a horizontal line (best");
printf("\n for ascii data) or in column format in octal, hex and ascii");
printf("\n (better for binary or mixed ascii/binary data)");
printf("\n Enter 'l' to output data in line form, else 'c' for column - ");
ans[O] = getche();
line= ((tolower(ans[O]) == 'l') ? LINE_MODE : COL_MODE);

else if (strcmp(conunand, "files") == O)
{
printf("\n Turn data file recording flag ON or OFF - ");

88

gets(ans);
strlower(ans);
files = ((strcmp(ans,"on")
}

else
{

0) ? TRUE FALSE) ;

puts ("illegal conunand\n\n");
}

if (ercode != O)

{
printf ("\nerror code for %s is %d\n", conunand, ercode);
}

} /* decode2 */

getlist (dl) char *dl;
{
printf("\nEnter device list");
GETS (dl);
strcat (dl, " 11 .);

} /* getlist */

getdata dl) char *dl;
{
printf (11 \nenter data string 11);

GETS (dl);
} /* getdata */

setstr (string, n) char *string; int n;
{
int i;

for (i = O; i < n; i++)
>':string++ = ' 1 ;

'~string = O;

} /* setstr */

getdate (dl) char >':dl;
{
int len;

printf (11 \ninput time and date:\n11);

if ((len = strlen (dl)) < (NREG - 1))
{
printf ("\nstring must be longer then %d chars \n11 , len);
}

printf (11 \nHT SS MM HH DW DM MO YR\n11);

GETS (dl);
strcat (dl, 11 11);

} /* getdate */

89

pdate (dl) char >'<dl;
{
printf (11 \nHT SS MM HH DW DM MO YR\n");
printf ("%s\n", dl) ;

} / ''' pdate ,., I

strlower(strng) /•': convert string to lower case >'t/

char 1'strng;
{
while (*strng) {
1:strng = tolower(•'tstrng);
:':strng++;

}
}

prntdata(dbuf ,actualen,line)
char '''dbuf;
int actualen,line;
{

I* this routine just prints out the received data in column or
1: line format depending on value of line
:'t I

int i;
char ans(4], filename[l2], c;
FILE :':fl;

for (i = O; i < actualen; i++) {
if (i % (20 * line) == 0) {
printf ("\n press any key to continue (e to exit) ");
ans(O] = getch();
printf("\n");
if (ans[O] == 'e')
break;
}

if(line != COL_MODE) {
printf("%c11 ,dbuf[i]);

}

if (i != 0 && i % 60 == 0)
printf ("\n");

else {

}

};

if (i % (20 ,., line) == 0) {
printf ("\nbyte#\toctal\thex\tcharacter\n");
}

printf ("\n%d\t%03o\t%03xh\t%c", i, dbuf[i],dbuf[i],dbuf(i] <' '? '!'

if (files == TRUE) {
printf("\nwrite data to file (y/n)? ");
c = getche();
if (tolower(c) == 'y') {

90

dbuf[i));

}
}

}

printf{"\nenter file name: ");
gets(filename);
if ((fl = fopen{filename,"w")) == NULL) {
printf{"\ncannot open output file");
exit(l);

}
fputs("\n");
fclose(fl);

91

VITA\

Suhel Iqbal Siddiqui

Candidate for the Degree of

Master of Science

Thesis: DESIGN OF A REAL TIME.SYSTEM TO DETERMINE MASS
TRANSFER COEFFICIENTS IN THIN FILMS.

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Hyderabad, India, July 7, 1962
to Tahir Iqbal Siddiqui and Faheem Siddiqui.

Education: Attended the St. Georges Grarruner School and
St. Joseph Junior College, Hyderabad, India; received
the Degree of Bachelor of Science in Chemical
Engineering from Andhra University, Waltair, India in
June, 1984; completed the requirements for the Degree
of Master of Science in Chemical Engineering at
Oklahoma State University in May, 1987.

Professional Experience: Engineer Trainee, Coromandel
Fertilizers Limited, Waltair, India, summer of 1983;
Chemical Engineer, Hindustan Petroleum Corporation
Limited, Waltair, June 1984 to December 1985.

